

High Level Assembler for MVS & VM & VSE IBM

Programmer’s Guide
Release 3

 SC26-4941-02

High Level Assembler for MVS & VM & VSE IBM

Programmer’s Guide
Release 3

 SC26-4941-02

 Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xi.

Third Edition (September 1998)

This edition applies to IBM High Level Assembler for MVS & VM & VSE, Release 3, Program Number 5696-234 and to any
subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department BWE/H3
 P.O.Box 49023

SAN JOSE, CA 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1982, 1998. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

Notices . xi
Trademarks . xii

About this Manual . xiii
Who Should Use this Manual . xiii
Programming Interface Information . xiii
Organization of this Manual . xiii
IBM High Level Assembler for MVS & VM & VSE Publications xvi
Hardcopy Publications . xvi
Online Publications . xvii
Related Publications . xvii
Syntax Notation . xvii

Summary of Changes . xx

Part 1. Understanding and Using the Assembler . 1

Chapter 1. Introduction . 5
Requirements . 5

System Requirements . 5
Machine Requirements . 5
Storage Requirements . 6

Compatibility . 7
Assembler Language Support . 7
Migration Considerations . 7

Chapter 2. Using the Assembler Listing . 8
High Level Assembler Option Summary . 9
External Symbol Dictionary (ESD) . 11
Source and Object . 13
Relocation Dictionary (RLD) . 20
Ordinary Symbol and Literal Cross Reference 22
Unreferenced Symbols Defined in CSECTs . 24
Macro and Copy Code Source Summary . 24
Macro and Copy Code Cross Reference . 25
DSECT Cross Reference . 28
USING Map . 29

| General Purpose Register Cross Reference . 30
Diagnostic Cross Reference and Assembler Summary 31

Chapter 3. Controlling your Assembly with Options 37
Specifying Assembler Options . 37
Default Options . 39
Precedence of Assembler Options . 39
Assembler Options . 40

ADATA . 40
ALIGN . 40
ASA (MVS and CMS) . 41
BATCH . 41

 Copyright IBM Corp. 1982, 1998 iii

 Contents

COMPAT . 42
DBCS . 43
DECK . 43

| DISK (CMS Only) . 44
DXREF . 44

| ERASE (CMS Only) . 44
ESD . 45
EXIT . 46
FLAG . 49
FOLD . 51

| GOFF (MVS and CMS) . 52
| INFO . 52

LANGUAGE . 55
LIBMAC . 56
LINECOUNT . 56
LIST . 57
MXREF . 58
OBJECT . 59
OPTABLE . 60
PCONTROL . 61
PESTOP . 63

| PRINT (CMS Only) . 63
PROFILE . 64
RA2 . 65
RENT . 65
RLD . 66

| RXREF . 66
| SEG (CMS Only) . 66

SIZE . 67
SYSPARM . 69
TERM . 70
TEST . 71
TRANSLATE . 71
USING . 72
XOBJECT (MVS and CMS) . 74
XREF . 75

Chapter 4. Providing User Exits . 76
Exit Types . 76
Specifying User Exits . 77
Loading User Exits . 78
Calling User Exits . 78
Exit Parameter List . 79

Request Info Pointer . 81
Buffer Pointer . 87
Error Buffer Pointer . 87
Exit-Specific Information Pointer . 87
DCB Pointer . 88

Error Handling . 88
Exit-Specific Information Block . 89

Member Name . 90
Member Type . 90
Data Set Name . 90
Volume Serial . 90

iv HLASM V1R3 Programmer’s Guide

 Contents

Relative Record Number . 91
Absolute Record Number . 92
Linecount . 92
Current Page Number . 92

SOURCE Exit Processing . 93
OPEN . 93
CLOSE . 93
READ . 93
PROCESS . 94

LIBRARY Exit Processing . 95
OPEN . 95
CLOSE . 96
READ . 96
PROCESS MACRO or PROCESS COPY . 96
FIND MACRO or FIND COPY . 97

| END OF MEMBER . 99
LISTING Exit Processing . 100

OPEN . 101
CLOSE . 102
WRITE . 102
PROCESS . 102

| OBJECT (MVS and CMS) and PUNCH Exit Processing 104
OPEN . 104
CLOSE . 105
WRITE . 105
PROCESS . 106

ADATA Exit Processing . 107
OPEN . 107
CLOSE . 108
PROCESS . 108

TERM Exit Processing . 108
OPEN . 109
CLOSE . 109
WRITE . 109
PROCESS . 110

Sample User Exits . 111
User Exit Coding Example . 111

Chapter 5. Providing External Functions . 131
External Function Processing . 131
Linkage Conventions . 132
External Function Parameter List . 132

Request Information List . 135
| Ptr to User Work Area . 137
| Ptr to Msg Buffer . 137
| Ptr to Return String (SETCF Only) . 137
| Ptr to Parm String n (SETCF Only) . 137

Chapter 6. Diagnosing Assembly Errors . 139
Assembly Error Diagnostic Messages . 139
MNOTE Statements . 141
Suppression of Error Messages and MNOTE Statements 143
Reference Information for Statements in Error 143
Abnormal Assembly Termination . 144

 Contents v

 Contents

MHELP—Macro Trace Facility . 144

Part 2. Developing Assembler Programs on MVS . 145

Chapter 7. Assembling Your Program on MVS 147
Input to the Assembler . 147
Output from the Assembler . 147
Invoking the Assembler on MVS . 147
Invoking the Assembler on TSO . 149
Invoking the Assembler Dynamically . 150
Batch Assembling . 152
Input and Output Data Sets . 153

Work Data Set: SYSUT1 . 156
Specifying the Source Data Set: SYSIN . 156
Specifying Macro and Copy Code Libraries: SYSLIB 156
Specifying the Listing Data Set: SYSPRINT 157
Directing Assembler Messages to Your Terminal: SYSTERM 157
Specifying Object Code Data Sets: SYSLIN and SYSPUNCH 157
Specifying the Associated Data Data Set: SYSADATA 157

Return Codes . 158

Chapter 8. Linking and Running Your Program on MVS 159
The Program Management Binder . 159
The Loader . 161
Creating a Load Module . 161

Creating a Load Module on MVS . 161
Creating a Load Module on TSO . 162

Input to the Linker . 162
Data Sets for Linker Processing . 163
Additional Object Modules as Input . 164

Output from the Linker . 165
Linker Processing Options . 165
Specifying Linker Options Through JCL . 166
Specifying Linker Options Using the TSO LINK Command 166
AMODE and RMODE Attributes . 167
Overriding the Defaults . 167
Detecting Linker Errors . 168

Running Your Assembled Program . 168
Running Your Assembled Program in Batch 168
Running Your Assembled Program on TSO 168

Chapter 9. MVS System Services and Programming Considerations . . . 169
Adding Definitions to a Macro Library . 169
Using Cataloged Procedures . 170

Cataloged Procedure for Assembly (ASMAC) 170
Cataloged Procedure for Assembly and Link (ASMACL) 172
Cataloged Procedure for Assembly, Link, and Run (ASMACLG) 174
Cataloged Procedure for Assembly and Run (ASMACG) 175
Overriding Statements in Cataloged Procedures 177
Examples of Cataloged Procedures . 177

Operating System Programming Conventions . 179
Saving and Restoring General Register Contents 179
Ending Program Execution . 180

vi HLASM V1R3 Programmer’s Guide

 Contents

| Accessing Execution Parameters . 180
Object Module Linkage . 181

Modifying Program Modules . 182

Part 3. Developing Assembler Programs on CMS . 183

Chapter 10. Assembling Your Program on CMS 184
Input to the Assembler . 184
Output from the Assembler . 184
Accessing the Assembler . 184
Invoking the Assembler on CMS . 185
Batch Assembling . 186
Controlling Your Assembly . 186
Input and Output Files . 187

Work file: SYSUT1 . 189
Specifying the Source File: SYSIN . 189
Specifying Macro and Copy Code Libraries: SYSLIB 191
Specifying the Listing File: SYSPRINT . 191
Directing Assembler Messages to Your Terminal: SYSTERM 192
Specifying Object Code Files: SYSLIN and SYSPUNCH 192
Specifying the Associated Data File: SYSADATA 192

Return Codes . 193
Diagnostic Messages Written by CMS . 193

Chapter 11. Running Your Program on CMS 194
Using the CMS LOAD and START Commands 194
Using the CMS GENMOD Command . 194
Using the CMS LKED and OSRUN Commands 195
Using the CMS Batch Facility . 196

Chapter 12. CMS System Services and Programming Considerations . . 197
Using Macros . 197

Assembler Macros Supported by CMS . 197
Adding Definitions to a Macro Library . 197

Operating System Programming Conventions . 197
Saving and Restoring General Register Contents 197
Ending Program Execution . 198
Passing Parameters to Your Assembler Language Program 199

Part 4. Developing Assembler Programs on VSE . 201

Chapter 13. Assembling Your Program on VSE 202
Input to the Assembler . 202
Output from the Assembler . 202
Invoking the Assembler in Batch . 202
Invoking the Assembler on ICCF . 204
Invoking the Assembler Dynamically . 206
Batch Assembling . 206
Controlling Your Assembly . 207
Input and Output Files . 208

Work File: IJSYS03 . 210
Specifying the Source File: SYSIPT . 210

 Contents vii

 Contents

Specifying Macro and Copy Code Libraries: LIBDEF Job Control Statement 211
Specifying the Listing File: SYSLST . 211
Directing Assembler Messages to Your Console Log: SYSLOG 211
Specifying Object Code Files: SYSLNK and SYSPCH 211
Specifying the Associated Data File: SYSADAT 212

Return Codes . 212

Chapter 14. Link-Editing and Running Your Program on VSE 213
The Linkage Editor . 213
Creating a Phase . 213
Input to the Linkage Editor . 214

Inputting Object Modules . 214
Files for Linkage Editor Processing . 214
Inputting additional Object Modules . 215
Linkage Editor Control Statements . 215

Output from the Linkage Editor . 216
Running your Assembled Program . 217

Chapter 15. VSE System Services and Programming Considerations . . . 218
Adding Definitions to a Macro Library . 218
Processing E-Decks . 218
Operating System Programming Conventions . 219

Saving and Restoring General Register Contents 219
Ending Program Execution . 220
Accessing Execution Parameters . 220

Appendixes . 221

Appendix A. Earlier Assembler Compatibility and Migration 223
Comparison of Instruction Set and Assembler Instructions 223
Comparison of Macro and Conditional Assembly Statements 226
Comparison of Macro and Conditional Assembly 229
Comparison of Language Features . 234
Comparison of Assembler Options . 236
Comparison of Assembler Listing . 238
Comparison of Diagnostic Features . 240
Other Assembler Differences . 241

Appendix B. Cross-System Portability Considerations 243
Using Extended Architecture Instructions . 243
Using System Macros . 243
Migrating Object Programs . 243

Appendix C. Object Deck Output . 245
ESD Record Format . 246
TXT Record Format . 247
RLD Record Format . 247
END Record Format . 248
SYM Record Format . 249

Appendix D. Associated Data File Output . 252
Record Types . 254
ADATA Record Layouts . 259

viii HLASM V1R3 Programmer’s Guide

 Contents

Common Header Section . 259
Job Identification Record—X'0000' . 261
ADATA Identification Record—X'0001' . 261
ADATA Compilation Unit Start/End Record—X'0002' 262
System 370/390 Output File Information Record—X'000A' 262
Options Record—X'0010' . 265
External Symbol Dictionary Record—X'0020' 267
Source Analysis Record—X'0030' . 268
Source Error Record—X'0032' . 271
DC/DS Record—X'0034' . 271

| DC Extension Record—X'0035' . 277
Machine Instruction Record—X'0036' . 277
Relocation Dictionary Record—X'0040' . 277
Symbol Record—X'0042' . 278
Symbol Cross Reference Record—X'0044' . 279

| Register Cross Reference Record—X'0045' . 280
Library Record—X'0060' . 280
Library Member and Macro Cross Reference Record - X'0062' 281
User-supplied Information Record - X'0070' . 282
USING Map Record—X'0080' . 282
Statistics Record—X'0090' . 283

Appendix E. Sample Program . 287

Appendix F. MHELP Sample Macro Trace and Dump 298

Appendix G. High Level Assembler Messages 306
Message Code Format . 306
Message Descriptions . 307
Assembly Error Diagnostic Messages . 309

Message Not Known . 311
Messages . 312

Abnormal Assembly Termination Messages . 347
ASMAHL Command Error Messages (CMS Only) 352

Appendix H. User Interface Macros . 356

Appendix I. Sample ADATA User Exit (MVS and CMS) 357

Appendix J. Sample LISTING User Exit (MVS and CMS) 364

Appendix K. Sample SOURCE User Exit (MVS and CMS) 366

Appendix L. How to Generate a Translation Table 367

Glossary . 369

Bibliography . 373
High Level Assembler Publications . 373
Toolkit Feature Publications . 373
Related Publications (Architecture) . 373
Related Publications for MVS . 373
Related Publications for VM . 374
Related Publications for VSE . 374

 Contents ix

 Contents

General Publications . 374

Index . 375

x HLASM V1R3 Programmer’s Guide

 Notices

 Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

 IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie New York 12601-5400

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

 Copyright IBM Corp. 1982, 1998 xi

 Notices

PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

 Trademarks
The following are trademarks of International Business Machines Corporation in the
United States, or other countries, or both:

Other company, product, and service names may be trademarks or service marks
of others.

CICS
BookMaster
DFSMS/MVS
Enterprise System/9000
Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
ES/9000
ESA/390
IBM
IBMLink
IMS
MVS
MVS/DFP
MVS/ESA

MVS/XA
OpenEdition
OS/390
OS/2
RETAIN
QMF
S/370
SP
System/370
System/390
VM/ESA
VTAM
3090

xii HLASM V1R3 Programmer’s Guide

 Organization of this Manual

About this Manual

This manual describes how to use the IBM High Level Assembler for MVS & VM &
VSE licensed program, hereafter referred to as High Level Assembler, or simply the
assembler. It is intended to help you assemble, link, and run your High Level
Assembler programs. It is meant to be used in conjunction with the High Level
Assembler Language Reference.

Throughout this book, we use these indicators to identify platform-specific
information:

� Prefix the text with platform-specific text (for example, “Under CMS...”)

� Add parenthetical qualifications (for example, “(CMS only)”)

� Bracket the text with icons. The following are some of the icons that we use:

 Informs you of information specific to MVS

 Informs you of information specific to CMS

 Informs you of information specific to VSE

MVS is used in this manual to refer to Multiple Virtual Storage/Enterprise Systems
Architecture (MVS/ESA) and to OS/390.

CMS is used in this manual to refer to Conversational Monitor System on Virtual
Machine/Enterprise Systems Architecture (VM/ESA).

VSE is used in this manual to refer to Virtual Storage Extended/Enterprise Systems
Architecture (VSE/ESA).

Who Should Use this Manual
The Programmer's Guide is for application programmers coding in the High Level
Assembler language. To use this manual, you should be familiar with the basic
concepts and facilities of your operating system.

Programming Interface Information
This manual is intended to help the customer create application programs. This
manual documents General-Use Programming Interface and Associated Guidance
Information provided by IBM High Level Assembler for MVS & VM & VSE.

General-use programming interfaces allow the customer to write programs that
obtain the services of IBM High Level Assembler for MVS & VM & VSE.

Organization of this Manual
This manual is organized as follows:

Part 1. Understanding and Using the Assembler

� Chapter 1, Introduction, describes High Level Assembler, and defines the
environmental requirements for using the assembler.

 Copyright IBM Corp. 1982, 1998 xiii

 Organization of this Manual

� Chapter 2, Using the Assembler Listing, describes the content and
format of the assembler listing.

� Chapter 3, Controlling your Assembly with Options, describes the
assembler options that you can use to control the assembly of your
program.

� Chapter 4, Providing User Exits, describes how you can provide user
exits to compliment the assembler's data-set processing.

� Chapter 5, Providing External Functions, describes how to provide
user-supplied routines in conditional assembly instructions to set the value
of SET symbols.

� Chapter 6, Diagnosing Assembly Errors, describes the purpose and
format of error messages, MNOTEs, and the MHELP trace facility.

Part 2. Developing Assembler Programs on MVS

� Chapter 7, Assembling your Program on MVS, describes the different
methods of assembling your program on MVS, including invoking the
assembler with job control statements, invoking the assembler on TSO/E,
invoking the assembler dynamically, and batch assembling.

� Chapter 8, Linking and Running your Program on MVS, describes
linking, creating load modules, input and output for the linkage editor and
binder, detecting linking errors, and running your program on MVS.

� Chapter 9, MVS System Services and Programming Considerations,
describes the MVS system services that you can use to maintain macro
definitions in a macro library, and the cataloged procedures that are
provided to help you assemble, link-edit, and run your program on MVS.
This chapter also discusses programming topics such as standard entry
and exit procedures.

Part 3. Developing Assembler Programs on CMS

� Chapter 10, Assembling your Program on CMS, describes how to invoke
the assembler on CMS.

� Chapter 11, Running your Program on CMS, describes how to load and
run your program on CMS.

� Chapter 12, CMS System Services and Programming Considerations,
describes the CMS system services that you can use to maintain members
in a macro library. It also discusses programming topics such as standard
entry and exit procedures.

Part 4. Developing Assembler Programs on VSE

� Chapter 13, Assembling your Program on VSE, describes how to invoke
the assembler on VSE.

� Chapter 14, Link-Editing and Running your Program on VSE, describes
link-editing, creating load modules, input and output for the linkage editor,
detecting link-edit errors, and running your program on VSE.

� Chapter 15, VSE System Services and Programming Considerations,
describes the VSE system services that you can use to maintain macro
definitions in a macro library, and the cataloged procedures that are
provided to help you assemble, link-edit, and run your program on VSE.

xiv HLASM V1R3 Programmer’s Guide

 Organization of this Manual

This chapter also discusses programming topics such as standard entry
and exit procedures.

 Appendixes

� Appendix A, Previous Assembler Compatibility and Migration, provides
a comparison of High Level Assembler and Assembler H Version 2, and
High Level Assembler and the DOS/VSE Assembler.

� Appendix B, Cross-System Portability Considerations, contains
information that helps you prepare your program for running under a
different operating system.

� Appendix C, Object Deck Output, describes the format of the object
module generated by the assembler.

� Appendix D, Associated Data File Output, describes the format of the
associated data file records generated by the assembler.

� Appendix E, Sample Program, provides a sample program that
demonstrates many of the assembler language features.

� Appendix F, MHELP Sample Macro Trace and Dump, provides a sample
program listing which shows the primary functions of MHELP.

� Appendix G, High Level Assembler Messages, describes the error
diagnostic messages, abnormal termination messages, and CMS command
error messages issued by the assembler.

� Appendix H, User Interface Macros, lists the macros that are provided as
Programming Interfaces with High Level Assembler.

� Appendix I, Sample ADATA User Exit, provides a description of the
sample ADATA user exit supplied with High Level Assembler.

� Appendix J, Sample LISTING User Exit, provides a description of the
sample LISTING user exit supplied with High Level Assembler.

� Appendix K, Sample SOURCE User Exit, provides a description of the
sample SOURCE user exit supplied with High Level Assembler to read
variable length input files.

� Appendix L, How to Generate a Translation Table, provides instructions
for generating a translation table to convert the characters contained in
character data constants and literals.

Glossary defines the terms used in this manual.

Bibliography lists the IBM Publications referred to within this manual.

 About this Manual xv

IBM High Level Assembler for MVS & VM & VSE Publications
High Level Assembler runs on MVS, VM and VSE. These publications are
described in this section.

 Hardcopy Publications
The books in the High Level Assembler library are shown in Figure 1. This figure
shows which books can help you with specific tasks, such as application
programming.

General Information
Introduces you to the High Level Assembler product by describing what
it does and which of your data processing needs it can fill. It is
designed to help you evaluate High Level Assembler for your data
processing operation and to plan for its use.

Installation and Customization Guide
Contains the information you need to install and customize, and
diagnose failures in, the High Level Assembler product.

The diagnosis section of the book helps users determine if a correction
for a similar failure has been documented previously. For problems not
documented previously, the book helps users to prepare an APAR. This
section is for users who suspect that High Level Assembler is not
working correctly because of some defect.

Language Reference
Presents the rules for writing assembler language source programs to
be assembled using High Level Assembler.

Figure 1. IBM High Level Assembler for MVS & VM & VSE Publications

Task Publication Order Number

Evaluation and Planning General Information GC26-4943

Installation and
Customization

Installation and
Customization Guide

SC26-3494

Programmer's Guide SC26-4941

Toolkit Feature Installation
Guide

GC26-8711

Application
Programming

Programmer's Guide SC26-4941

Language Reference SC26-4940

General Information GC26-4943

Toolkit Feature User's
Guide

GC26-8710

Toolkit Feature IDF User's
Guide

GC26-8709

Diagnosis Installation and
Customization Guide

SC26-3494

Warranty Licensed Program
Specifications

GC26-4944

xvi HLASM V1R3 Programmer’s Guide

Licensed Program Specifications
Contains a product description and product warranty information for High
Level Assembler.

Programmer's Guide
Describes how to assemble, debug, and run High Level Assembler
programs.

Toolkit Feature Installation Guide
Contains the information you need to install and customize, and
diagnose failures in, the High Level Assembler Toolkit Feature.

Toolkit Feature User's Guide
Describes how to use the High Level Assembler Toolkit Feature.

Toolkit Feature IDF Reference Summary
Contains a reference summary of the High Level Assembler Interactive
Debug Facility.

Toolkit Feature IDF User's Guide
Describes how to use the High Level Assembler Interactive Debug
Facility.

 Online Publications
The High Level Assembler publications are available in the following softcopy
formats:

� Application Development Collection Kit CD-ROM, SK2T-1237
� MVS Collection CD-ROM, SK2T-0710
� OS/390 Collection CD-ROM, SK2T-6700
� VM/ESA Collection CD-ROM, SK2T-2067
� VSE Collection CD-ROM, SK2T-0060

| For more information about High Level Assembler, see the High Level Assembler
| web site, at

| http://www.software.ibm.com/ad/hlasm

 Related Publications
See “Bibliography” on page 373 for a list of publications that supply information you
might need while using High Level Assembler.

 Syntax Notation
Throughout this book, syntax descriptions use the structure defined below.

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ��── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next
line.

The �─── symbol indicates that a statement is continued from the previous line.

The ──�� indicates the end of a statement.

 About this Manual xvii

Diagrams of syntactical units other than complete statements start with the �───
symbol and end with the ───� symbol.

� Keywords appear in uppercase letters (for example, ASPACE) or upper and
lower case (for example, PATHFile). They must be spelled exactly as shown.
Lower case letters are optional (for example, you could enter the PATHFile
keyword as PATHF, PATHFI, PATHFIL or PATHFILE).

Variables appear in all lowercase letters in a special typeface (for example,
integer). They represent user-supplied names or values.

� If punctuation marks, parentheses, or such symbols are shown, they must be
entered as part of the syntax.

� Required items appear on the horizontal line (the main path).

��──INSTRUCTION──required item───────────────────────────────────────��

� Optional items appear below the main path. If the item is optional and is the
default, the item appears above the main path.

 ┌ ┐─default item──
��──INSTRUCTION─ ──┼ ┼─────────────── ──────────────────────────────────��
 └ ┘─optional item─

� When you can choose from two or more items, they appear vertically in a
stack.

If you must choose one of the items, one item of the stack appears on the
main path.

��──INSTRUCTION─ ──┬ ┬─required choice1─ ───────────────────────────────��
 └ ┘─required choice2─

If choosing one of the items is optional, the whole stack appears below the
main path.

��──INSTRUCTION─ ──┬ ┬────────────────── ───────────────────────────────��
 ├ ┤─optional choice1─
 └ ┘─optional choice2─

� An arrow returning to the left above the main line indicates an item that can be
repeated. When the repeat arrow contains a separator character, such as a
comma, you must separate items with the separator character.

 ┌ ┐─,───────────────
��──INSTRUCTION─ ───+ ┴─repeatable item─ ────────────────────────────────��

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

xviii HLASM V1R3 Programmer’s Guide

The following example shows how the syntax is used.

 Format

 �A� �B� �C�

 ┌ ┐─,───────
��─ ──┬ ┬─────────────── ─INSTRUCTION─ ───+ ┴─┤ �1� ├─ ─��
 └ ┘ ─optional item─

�1�:
├─ ──┬ ┬─operand choice1─── ─┤
 ├ ┤─operand choice2───(1)

 └ ┘─operand choice3───

Note:
1 operand choice2 and operand choice3 must not be specified together

�A� The item is optional, and can be coded or not.

�B� The INSTRUCTION key word must be specified and coded as shown.

�C� The item referred to by �1� is a required operand. Allowable choices for
this operand are given in the fragment of the syntax diagram shown
below �1� at the bottom of the diagram. The operand can also be
repeated. That is, more than one choice can be specified, with each
choice separated by a comma.

 About this Manual xix

Summary of Changes

Date of Publication September 1998

Form of Publication Third Edition, SC26-4941-02

| This section describes the major changes that have been made for High Level
| Assembler Release 3. These changes are marked in the text by a change bar in
| the left margin.

| Binary floating-point: Binary floating-point architecture is supported. This support
| includes:

| � New DC types including new syntax for qNans, sNans and infinities.

| � Extended DC statement.

| � Conversion routines for creating binary floating-point constants.

| For decimal to binary floating-point conversion, the assembler conforms to
| ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, dated
| August 12, 1985, with the following differences: exception status flags are not
| provided and traps are not supported.

| Assembler Listing: The assembler listing is changed, to improve readability, and
| to provide more information to the programmer:

| � Allows variable record format for the listing file. (MVS and CMS)

| � Changes the source and object section:

| – Adds the PUSH level to the USING heading.

| – Provides start and end address information in the ADDR1 and ADDR2
| fields for CSECT, START, LOCTR, and RSECT statements.

| – Provides current and next address information in the ADDR1 and ADDR2
| fields for the ORG statement.

| – Provides the value and length information in the ADDR1 and ADDR2 fields
| for the EQU statement.

| – Provides additional statement type information in the position following the
| statement number.

| � Changes the symbol and cross reference section:

| – Removes leading zeroes on lengths, to accentuate the decimal notation.

| – Changes statement reference information to columnar.

| – Uses the full width, that is, 121 or 133 characters, if specified.

| � Provides a new optional section, the cross reference listing of General Purpose
| register usage. This reference includes the register number and the statement
| number which references the register.

| � Provides a new External Function Statistics table, as part of the Diagnostic
| Cross Reference and Assembler Summary page.

| Improved Diagnostic Information: Extra warning messages have been provided.
| These highlight behavior that may lead to unexpected results.

xx  Copyright IBM Corp. 1982, 1998

| USING: The USING statement has an additional parameter, the end parameter.
| When this parameter is supplied, it specifies a range, to override the default range.

| New Options:

| COMPAT(LITTYPE) This new suboption instructs the assembler to return “U” as
| the type attribute for all literals.

| FLAG(IMPLEN) This new suboption instructs the assembler to issue a
| diagnostic message when an explicit length subfield is
| omitted from an SS-format machine instruction.

| FLAG(PAGE0) This new suboption instructs the assembler to issue a
| diagnostic message when an operand is resolved to a
| baseless address and a base and displacement is expected.

| GOFF A synonym for the XOBJECT assembler option.

| INFO Produces a Product Information Page in the listing output
| data set.

| RXREF A new option that allows the selective production of the
| Register Cross Reference.

 Summary of Changes xxi

xxii HLASM V1R3 Programmer’s Guide

 Part 1. Understanding and Using the Assembler

Part 1. Understanding and Using the Assembler

Chapter 1. Introduction . 5
Requirements . 5

System Requirements . 5
Machine Requirements . 5
Storage Requirements . 6

Compatibility . 7
Assembler Language Support . 7
Migration Considerations . 7

Chapter 2. Using the Assembler Listing . 8
High Level Assembler Option Summary . 9
External Symbol Dictionary (ESD) . 11
Source and Object . 13
Relocation Dictionary (RLD) . 20
Ordinary Symbol and Literal Cross Reference 22
Unreferenced Symbols Defined in CSECTs . 24
Macro and Copy Code Source Summary . 24
Macro and Copy Code Cross Reference . 25

Effects of LIBMAC and PCONTROL(MCALL) Options 26
DSECT Cross Reference . 28
USING Map . 29

| General Purpose Register Cross Reference . 30
Diagnostic Cross Reference and Assembler Summary 31

Chapter 3. Controlling your Assembly with Options 37
Specifying Assembler Options . 37
Default Options . 39
Precedence of Assembler Options . 39
Assembler Options . 40

ADATA . 40
ALIGN . 40
ASA (MVS and CMS) . 41
BATCH . 41
COMPAT . 42
DBCS . 43
DECK . 43

| DISK (CMS Only) . 44
DXREF . 44

| ERASE (CMS Only) . 44
ESD . 45
EXIT . 46
FLAG . 49
FOLD . 51

| GOFF (MVS and CMS) . 52
| INFO . 52

LANGUAGE . 55
LIBMAC . 56
LINECOUNT . 56
LIST . 57
MXREF . 58

 Copyright IBM Corp. 1982, 1998 1

 Part 1. Understanding and Using the Assembler

OBJECT . 59
OPTABLE . 60
PCONTROL . 61
PESTOP . 63

| PRINT (CMS Only) . 63
PROFILE . 64
RA2 . 65
RENT . 65
RLD . 66

| RXREF . 66
| SEG (CMS Only) . 66

SIZE . 67
SYSPARM . 69
TERM . 70
TEST . 71
TRANSLATE . 71
USING . 72
XOBJECT (MVS and CMS) . 74
XREF . 75

Chapter 4. Providing User Exits . 76
Exit Types . 76
Specifying User Exits . 77
Loading User Exits . 78
Calling User Exits . 78
Exit Parameter List . 79

Request Info Pointer . 81
Parameter List Version . 81
Exit Type . 81
Request Type . 81
Options . 82
EXITCTLn . 83
Return Code . 83
Reason Code . 84
Buffer Length . 85
Error Buffer Length . 86
Error Severity . 86
User-Defined Field . 87

| Common User Field . 87
Buffer Pointer . 87
Error Buffer Pointer . 87
Exit-Specific Information Pointer . 87
DCB Pointer . 88

Error Handling . 88
Exit-Specific Information Block . 89

Member Name . 90
Member Type . 90
Data Set Name . 90
Volume Serial . 90
Relative Record Number . 91
Absolute Record Number . 92
Linecount . 92
Current Page Number . 92

SOURCE Exit Processing . 93

2 HLASM V1R3 Programmer’s Guide

 Part 1. Understanding and Using the Assembler

OPEN . 93
CLOSE . 93
READ . 93
PROCESS . 94

LIBRARY Exit Processing . 95
OPEN . 95
CLOSE . 96
READ . 96
PROCESS MACRO or PROCESS COPY . 96
FIND MACRO or FIND COPY . 97

| END OF MEMBER . 99
LISTING Exit Processing . 100

OPEN . 101
CLOSE . 102
WRITE . 102
PROCESS . 102

| OBJECT (MVS and CMS) and PUNCH Exit Processing 104
OPEN . 104
CLOSE . 105
WRITE . 105
PROCESS . 106

ADATA Exit Processing . 107
OPEN . 107
CLOSE . 108
PROCESS . 108

TERM Exit Processing . 108
OPEN . 109
CLOSE . 109
WRITE . 109
PROCESS . 110

Sample User Exits . 111
User Exit Coding Example . 111

Chapter 5. Providing External Functions . 131
External Function Processing . 131
Linkage Conventions . 132
External Function Parameter List . 132

Request Information List . 135
Parameter List Version . 135
Function Type . 135
Number of Parameters . 135
Return Code . 135

| Flag Byte . 135
| Reserved . 136
| Msg Length . 136
| Msg Severity . 136
| Return Value (SETAF Only) . 136
| Parm Value n (SETAF Only) . 136
| Return String Length (SETCF Only) . 136
| Parm String n Length (SETCF Only) . 137
| Ptr to User Work Area . 137
| Ptr to Msg Buffer . 137
| Ptr to Return String (SETCF Only) . 137
| Ptr to Parm String n (SETCF Only) . 137

 Part 1. Understanding and Using the Assembler 3

 Part 1. Understanding and Using the Assembler

Chapter 6. Diagnosing Assembly Errors . 139
Assembly Error Diagnostic Messages . 139
MNOTE Statements . 141
Suppression of Error Messages and MNOTE Statements 143
Reference Information for Statements in Error 143
Abnormal Assembly Termination . 144
MHELP—Macro Trace Facility . 144

4 HLASM V1R3 Programmer’s Guide

 Requirements

 Chapter 1. Introduction

IBM High Level Assembler for MVS & VM & VSE is an IBM licensed program that
can be used to assemble assembler language programs that use the following
machine instructions:

 System/370
System/370 Extended Architecture (370-XA)
Enterprise Systems Architecture/370 (ESA/370)
Enterprise Systems Architecture/390 (ESA/390) machine instructions

 Requirements
This section describes the operating systems, the processors, and the amount of
storage required to run High Level Assembler.

 System Requirements
High Level Assembler runs under the operating systems listed below. Unless
otherwise stated, the assembler also operates under subsequent versions,
releases, and modification levels of these systems:

MVS/ESA SP Version 4
MVS/ESA SP Version 5
VM/ESA Release 1 (370 feature) running:

 CMS 7
VM/ESA Release 1 (ESA feature) running:

 CMS 8
VM/ESA Release 2 running:

 CMS 9
 CMS 10
 CMS 11

VSE/ESA Version 1 Release 2, and later
VSE/ESA Version 2 Release 1, and later

High Level Assembler supports the operation codes available with the Extended
Architecture (370-XA) mode processor and Enterprise Systems Architecture/370
(ESA/370) or Enterprise Systems Architecture/390 (ESA/390) mode processors and
the new operation codes available with Enterprise System/9000 (ES/9000)
mode processors.

 Machine Requirements
For assembling High Level Assembler programs: Programs written using High
Level Assembler can be assembled, including use of the Extended Architecture
mode processor machine instructions and Enterprise System Architecture mode
processor machine instructions, on all System/370 family and its follow-on
machines supporting the following operating systems:

 MVS/ESA
 VM/ESA
 VSE/ESA

You might require an operating system-specific macro library to assemble programs
that run under that operating system, depending on macro usage.

 Copyright IBM Corp. 1982, 1998 5

 Requirements

For running High Level Assembler programs: A generated object program
using Extended Architecture (370-XA), Enterprise Systems Architecture/370
(ESA/370), Enterprise Systems Architecture/390 (ESA/390), Enterprise
Systems/9000 (ES/9000) or Vector instructions can be run only on an applicable
processor under an operating system that provides the necessary architecture
support for the instructions used.

Tape device: High Level Assembler is distributed on one of the following:

Standard labeled 9-track magnetic tape written at 1600 or 6250 bpi
3480 tape cartridge
1/4 inch tape cartridge (VM and VSE)

An appropriate tape device is required for installation.

Double-byte data: Double-byte data can be displayed, entered, or both, in their
national language representation on the following:

IBM 3800-8 system printer
IBM 3200 system printer
IBM 3820 remote printer
IBM PS/55 family as an IBM 3270 terminal

 Storage Requirements
Virtual storage: High Level Assembler requires a minimum of 560K bytes of main
storage. 360K bytes of storage are required for High Level Assembler load
modules. The rest of the storage allocated to the assembler is used for assembler
working storage.

Auxiliary storage space: Depending on the assembler options used, auxiliary
storage space might be required for the following data sets:

 System input
Macro instruction library—either system or private or both
An intermediate work file, which must be a direct-access device such as 3350,
3375, 3380, 3390, 9345 or FBA.

 Print output
Object module output
Associated data output

Library space: The space requirements for the High Level Assembler load
modules (or phases) and procedures are provided in the High Level Assembler
Installation and Customization Guide.

Installation: Please refer to High Level Assembler Installation and Customization
Guide for installation requirements.

6 HLASM V1R3 Programmer’s Guide

 Compatibility

 Compatibility
This section describes source program compatibility and migration issues that you
need to consider before using High Level Assembler.

Assembler Language Support
The assembler language supported by High Level Assembler has functional
extensions to the languages supported by Assembler H Version 2 and the
DOS/VSE Assembler. High Level Assembler uses the same language syntax,
function, operation, and structure as these earlier assemblers. The functions
provided by the Assembler H Version 2 macro facility are all provided by High Level
Assembler.

 Migration Considerations
| Source Programs: Migration from High Level Assembler Release 1, High Level
| Assembler Release 2, Assembler H Version 2 or DOS/VSE Assembler to High

Level Assembler Release 2, requires an analysis of existing assembler language
| programs to ensure that they do not contain macro instructions with names that
| conflict with the High Level Assembler Release 3 symbolic operation codes, or SET
| symbols with names that conflict with the names of High Level Assembler Release
| 3 system variable symbols.

With the exception of these possible conflicts, and with appropriate High Level
Assembler option values, assembler language source programs written for High

| Level Assembler Release 1, High Level Assembler Release 2, Assembler H
Version 2 or the DOS/VSE Assembler, that assemble without warning or error

| diagnostic messages, should assemble correctly using High Level Assembler
| Release 3.

| Object Programs: Object programs generated by High Level Assembler Release
| 3 in any one of the supported operating systems can be migrated to any other of

the supported operating systems for execution.

The object programs being migrated must be link-edited in the target operating
system environment before execution.

You should be aware of the differences in the code generated by system macros in
the supported operating systems. Operational facilities available on the source
operating system but not available on the target operating system should not be
specified for any program which is required to be compatible, either during
assembly or link-edit.

 Chapter 1. Introduction 7

 Using the Assembler Listing

Chapter 2. Using the Assembler Listing

This chapter tells you how to interpret the printed listing produced by the
assembler. The listing is obtained only if the option LIST is in effect. Parts of the
listing can be suppressed by using other options; for information on the listing
options, refer to Chapter 3, “Controlling your Assembly with Options” on page 37.

| The High Level Assembler listing consists of up to twelve sections, ordered as
follows:

� High Level Assembler Option Summary
� External Symbol Dictionary (ESD)
� Source and Object
� Relocation Dictionary (RLD)
� Ordinary Symbol and Literal Cross Reference
� Unreferenced Symbols Defined in CSECTs
� Macro and Copy Code Source Summary
� Macro and Copy Code Cross Reference
� DSECT Cross Reference

 � USING Map
| � General Purpose Register Cross Reference

� Diagnostic Cross Reference and Assembler Summary

The following assembler options are used to control the format, and which sections
to produce, of the assembler listing:

ASA (MVS and CMS) Allows you to use American National Standard printer
control characters, instead of machine printer control characters.

DXREF Produces the DSECT Cross Reference section.

ESD Produces the External Symbol Dictionary section.

EXIT(PRTEXIT(mod3))
Allows you to supply a listing exit to replace or complement the
assembler's listing output processing.

LANGUAGE
Produces error diagnostic messages in the following languages:

� English mixed case (EN)
 � English uppercase (UE)
 � German (DE)
 � Japanese (JP)
 � Spanish (ES)

When you select either of the English languages, the assembler listing
headings are produced in the same case as the diagnostic messages.

When you select either the German language or the Spanish language,
the assembler listing headings are produced in mixed case English.

When you select the Japanese language, the assembler listing headings
are produced in uppercase English.

The assembler uses the installation default language for messages
produced in CMS by the ASMAHL command.

8  Copyright IBM Corp. 1982, 1998

 High Level Assembler Option Summary

LINECOUNT
Allows you to specify how many lines should be printed on each page.

LIST Controls the format of the Source and Object section of the listing.
NOLIST suppresses the entire listing.

MXREF Produces one, or both, of the Macro and Copy Code Source Summary
and Macro and Copy Code Cross Reference sections.

PCONTROL
Controls which statements are printed in the listing, and overrides some
PRINT instructions.

RLD Produces the Relocation Dictionary section.

| RXREF Produces the General Purpose Register Cross Reference section.

USING(MAP)
Produces the Using Map section.

XREF Produces one, or both, of the Ordinary Symbol and Literal Cross
Reference and the Unreferenced Symbols Defined in CSECTs sections.

The following additional options can be specified when you run the assembler on
CMS:

LINECOUN
An abbreviation of the LINECOUNT option.

PRINT The assembler listing is written to the virtual printer instead of to a disk
file.

The sections in the listing are described on the following pages.

High Level Assembler Option Summary
High Level Assembler provides a summary of the options current for the assembly,
including:

� A list of the overriding parameters specified when the assembler was called

� The options specified on *PROCESS statements

� In-line error diagnostic messages for any overriding parameters and
*PROCESS statements in error

You cannot suppress the option summary unless you suppress the entire listing, or
you supply a user exit to control which lines are printed.

On MVS and CMS, High Level Assembler provides a sample LISTING exit that
allows you to suppress the the option summary or print it at the end of the listing.
See Appendix J, “Sample LISTING User Exit (MVS and CMS)” on page 364.

Figure 2 shows an example of the High Level Assembler Option Summary. The
example includes assembler options that have been specified in the invocation
parameters and in *PROCESS statements. It also shows the *PROCESS
statements in the Source and Object section of the listing.

 Chapter 2. Using the Assembler Listing 9

 High Level Assembler Option Summary

High Level Assembler Option Summary Page 1
 �1� �2�

HLASM R3.9 1998/99/25 11.38
 Overriding Parameters- NOOBJECT,language(en),size(4meg),xref(short,unrefs)
 Process Statements- ALIGN
 noDBCS
 MXREF(FULL),noLIBMAC
 FLAG(9)
 noFOLD,LANGUAGE(ue)
 NORA2
 NODBCS
 XREF(FULL)

 �3�
KK ASMA499W Error in invocation parameter - size(4meg)
KK ASMA422N Option LANGUAGE is not valid on a KPROCESS statement.
KK ASMA437N Attempt to override invocation parameter in KPROCESS statement. Suboption FULL of XREF option ignored.

Options for this Assembly
 NOADATA
 ALIGN
 NOASA
 BATCH
 NOCOMPAT
 NODBCS
 NODECK
 DXREF
 ESD
 NOEXIT
 FLAG(9,ALIGN,CONT,NOIMPLEN,PAGE9,RECORD,NOSUBSTR)
 NOFOLD
 NOINFO
 LANGUAGE(EN)
 NOLIBMAC
 LINECOUNT(69)
 LIST(121)
 MXREF(FULL)
 NOOBJECT
 OPTABLE(UNI)
 NOPCONTROL
 NOPESTOP
 NOPROFILE
 NORA2
 NORENT
 RLD
 SIZE(MAX)
 SYSPARM()
 NOTERM
 NOTEST
 NOTRANSLATE
 USING(NOLIMIT,MAP,WARN(15))
 NOXOBJECT
 XREF(SHORT,UNREFS)

 �4�
No Overriding DD Names

...
 Page 3
Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
 �5�

1 KPROCESS ALIGN 99991999
2 Kprocess noDBCS any text here is a comment 99992999
3 Kprocess MXREF(FULL),noLIBMAC 99993999
4 KPROCESS FLAG(9) 99994999
5 Kprocess noFOLD,LANGUAGE(ue) 99995999
6 KPROCESS NORA2 99996999
7 KPROCESS NODBCS 99997999
8 KPROCESS XREF(FULL) 99998999

999999 99999 99999 9 A CSECT 99999999
R:F 99999 19 USING K,15 99919999

Figure 2. Option Summary Including Options Specified on *PROCESS Statements

The highlighted numbers in the example are:

�1� Shows the product description at the top of each page of the assembler listing.
(You can use the TITLE instruction to generate individual headings for each
page of the source and object program listing.)

�2� Shows the date and the time of the assembly.

�3� Error diagnostic messages for overriding parameters and *PROCESS
statements are shown immediately following the list of *PROCESS statement
options.

10 HLASM V1R3 Programmer’s Guide

 External Symbol Dictionary

�4� On MVS and CMS, if the assembler has been called by a program (see
“Invoking the Assembler Dynamically” on page 150) and any standard (default)
ddnames have been overridden, both the default ddnames and the overriding
ddnames are listed. Otherwise, this statement appears:

No Overriding DD Names

�5� The *PROCESS statements are written as comment statements in the Source
and Object section of the listing.

External Symbol Dictionary (ESD)
This section of the listing contains the external symbol dictionary information
passed to the linkage editor or loader, or DFSMS/MVS binder, in the object
module.

This section helps you find references between modules in a multimodule program.
The ESD may be particularly helpful in debugging the running of large programs
constructed from several modules.

The ESD entries describe the control sections, external references, and entry points
in the assembled program. There are eight types of ESD entries (SD, ED, LD, ER,
PC, CM, XD, and WX). Figure 3 shows the ESD entries when you specify the

| NOXOBJECT option. Figure 4 shows the ESD entries when you specify the
XOBJECT option. For each of the different types of ESD entries, the Xs indicate
which of the fields have values.

Figure 3. Types of ESD Entries when NOXOBJECT Option Specified

SYMBOL TYPE ID ADDR LENGTH LD ID FLAGS

X SD X X X - X

X LD - X - X -

X ER X - - - -

- PC X X X - X

X CM X X X - X

X XD X X X - -

X WX X - - - -

Figure 4. Types of ESD Entries when XOBJECT Option Specified

SYMBOL TYPE ID ADDR LENGTH LD ID FLAGS

X SD X - - - -

X ED X X X X X

X LD X X - X X

X ER X - - X -

X CM X X - X X

X XD X X X - -

X WX X - - X -

 Chapter 2. Using the Assembler Listing 11

 External Symbol Dictionary

| Figure 5 is an example of the External Symbol Dictionary generated with the
| XOBJECT assembler option, and is followed by a description of its contents.

| SAMP91 External Symbol Dictionary Page 2
| �1� �2� �3� �4� �5� �6� �7� �8�
| Symbol Type Id Address Length LD ID Flags Alias-of HLASM R3.9 1998/99/25 11.38
| SAMP91 SD 99999991
| B_PRV ED 99999992 99999991
| B_TEXT ED 99999993 99999999 999999E4 99999991 99
| SAMP91 LD 99999994 99999999 99999993 99
| ENTRY1 LD 99999995 99999999 99999993 99
| KL_INST SD 99999996
| B_PRV ED 99999997 99999996
| B_TEXT ED 99999998 99999999 99999999 99999996 99
| KL_INST CM 99999999 99999999 99999998 99
| SD 9999999A
| B_PRV ED 9999999B 9999999A
| B_TEXT ED 9999999C 999999E8 99999999 9999999A 99
| Date9991 ER 9999999D 9999999A RCNVDTE
| RCNVTME ER 9999999E 9999999A

Figure 5. External Symbol Dictionary Listing

�1� The name of every external dummy section, control section, entry point,
| external symbol, and class. If the external dummy section, control section,

entry point or external symbol has a corresponding ALIAS instruction, the
symbol shows the operand of the ALIAS instruction.

When you specify the XOBJECT assembler option, on MVS or CMS, the
| assembler generates an entry type of ED with a symbol name of B_TEXT
| and B_PRV.

�2� The type designator for the entry, as shown in the table:

SD Control section definition. The symbol appeared in the name field of a
START, CSECT, or RSECT instruction.

LD Label definition. The symbol appeared as the operand of an ENTRY
statement.

When you specify the XOBJECT assembler option, on MVS or CMS,
the assembler generates an entry type of LD for each CSECT and
RSECT.

ER External reference. The symbol appeared as the operand of an
EXTRN statement, or was declared as a V-type address constant.

PC Unnamed control section definition (private code). A CSECT, RSECT,
or START statement that commences a control section that does not
have a symbol in the name field, or a control section that is
commenced (by any instruction which affects the location counter)
before a CSECT, RSECT, or START.

When you specify the XOBJECT assembler option, on MVS or CMS,
the assembler does not generate an entry type of PC. For private
code, the assembler creates an SD entry type with a blank name.

CM Common control section definition. The symbol appeared in the name
field of a COM statement.

XD External dummy section. The symbol appeared in the name field of a
DXD statement or a Q-type address constant.

The external dummy section is also called a pseudo register in the
applicable Linkage Editor and Loader manual, and DFSMS/MVS
Program Management manual.

12 HLASM V1R3 Programmer’s Guide

 Source and Object

WX Weak external reference. The symbol appeared as an operand in a
WXTRN statement.

| ED Element definition (one for each class).

| When you specify the NOXOBJECT assembler option, on MVS or
| CMS, the assembler does not generate an entry type of ED.

| For further information, refer to the DFSMS/MVS Program
| Management manual.

�3� The external symbol dictionary identification number (ESDID). The number
is a unique 8-digit hexadecimal number identifying the entry. It is used in
combination with the LD entry of the ESD and in the relocation dictionary for
referencing the ESD.

�4� The address of the symbol (in hexadecimal notation) for SD- and LD-type
entries, and blanks for ER- and WX-type entries. For PC- and CM-type
entries, it indicates the beginning address of the control section. For
XD-type entries, it indicates the alignment by printing a number one less
than the number of bytes in the unit of alignment. For example, 7 indicates
doubleword alignment.

�5� The assembled length, in bytes, of the control section (in hexadecimal
notation).

�6� For an LD-type entry, the ESDID of the control section in which the symbol
was defined.

�7� For SD-, PC-, and CM-type entries, this field contains the following flags:

Bit 4: 9 = Section is not an RSECT
1 = Section is an RSECT

Bit 5: 9 = RMODE is 24
1 = RMODE is ANY

Bits 6-7: 99 = AMODE is 24
91 = AMODE is 24
19 = AMODE is 31
11 = AMODE is ANY

�8� When symbol �1� is defined in an ALIAS instruction, this field shows the
external symbol name of which symbol �1� is an alias.

Source and Object
This section of the listing documents the source statements of the module and the
resulting object code.

This section is the most useful part of the listing because it gives you a copy of all
the statements in your source program (except listing control statements) exactly as
they are entered into the machine. You can use it to find simple coding errors, and
to locate and correct errors detected by the assembler. By using this section with
the Ordinary Symbol and Literal Cross Reference section, you can check that your
branches and data references are in order. The location counter values and the
object code listed for each statement help you locate any errors in a storage dump.
Finally, you can use this part of the listing to check that your macro instructions
have been expanded properly.

 Chapter 2. Using the Assembler Listing 13

 Source and Object

On MVS and CMS, the assembler can produce two formats of the Source and
Object section: a 121-character format and a 133-character format. To select one,
you must specify either the LIST(121) assembler option or the LIST(133) assembler
option. Both sections show the source statements of the module, and the object
code of the assembled statements.

The 133-character format shows the location counter, and the first and second
operand addresses (ADDR1 and ADDR2) as 8-byte fields in support of 31-bit
addresses. This format is required when producing the extended object format
data set (see “XOBJECT (MVS and CMS)” on page 74). The 133-character format
also contains the first eight characters of the macro name in the
identification-sequence field for statements generated by macros. Figure 6 on
page 15 shows an example of the Source and Object section of the listing. This
section shows the source statements of the module, and the object code of the
assembled statements.

High Level Assembler lets you write your program, and print the assembler listing
headings, in mixed-case. Diagnostic messages are printed in the language you
specify in the LANGUAGE assembler option described in “LANGUAGE” on
page 55.

Figure 6 shows an example of the Source and Object section in 121-character
format, and in mixed-case.

14 HLASM V1R3 Programmer’s Guide

 Source and Object

| �1� �2�
| SAMP91 Sample Listing Description Page 3
| Active Usings: None
| �3� �4� �5� �6� �7� �8� �9�
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 999999 99999 999E9 2 Samp91 Csect 99992999
| 3 Sav (14,12) Save caller's registers 99993999
| �1��KK ASMA957E Undefined operation code - SAV
| �11�KK ASMA435I Record 3 in FIG6 ASSEMBLE A1 on volume: ADISK| .| .| .
| 23 Entry1 SAMPMAC Parm1=YES 99923999
| 999999 18CF 24+Entry1 LR 12,15 91-SAMPM
| �12�
| R:C 99999 25+ USING Entry1,12 Ordinary Using 91-SAMPM
| 999992 9999 9999 99999 26+ LA Savearea,19 91-SAMPM
| KK ASMA944E Undefined symbol - Savearea
| KK ASMA929E Incorrect register specification
| �13�KK ASMA435I Record 5 in TEST MACLIB A1(SAMPMAC) on volume: ADISK
| 999996 59D9 A994 99994 27+ ST 13,4(,19) 91-SAMPM
| 99999A 59A9 D998 99998 28+ ST 19,8(,13) 91-SAMPM
| 99999E 18DA 29+ LR 13,19 91-SAMPM
| R:A35 99919 39+ USING K,19,3,5 Ordinary Using,Multiple Base 91-SAMPM
| �14�
| KK ASMA393W Multiple address resolutions may result from this USING and the USING on statement number 25
| KK ASMA435I Record 9 in TEST MACLIB A1(SAMPMAC) on volume: ADISK| .| .| .
| 42+ DROP 19,3,5 Drop Multiple Registers 91-SAMPM
| 43 COPY SAMPLE 99924999
| 44=K Line from member SAMPLE 99991999
| C 92A 99999 9992A 45 Using IHADCB,INDCB Establish DCB addressability 99925999
| C 97A 99999 9997A 46 ODCB Using IHADCB,OUTDCB 99926999
| 47 push using 99927999
| �15�
| R:2 99999 48 PlistIn Using Plist,2 Establish Plist addressability 99928999
| R:3 99999 49 PlistOut Using Plist,3 99929999
| SAMP91 Sample Listing Description Page 4
| �16� Active Usings (1):Entry1(X'1999'),R12 IHADCB(X'FD6'),R12+X'2A' PlistIn.Plist(X'1999'),R2
| PlistOut.Plist(X'1999'),R3 ODCB.IHADCB(X'F86'),R12+X'7A'
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/98/94 19.16
| 999919 1851 59 ?Branch LR R5,R1 Save Plist pointer 99939999
| KK ASMA147E Symbol too long, or first character not a letter - ?Branch
| KK ASMA435I Record 39 in FIG6 ASSEMBLE A1 on volume: ADISK
| 999912 5825 9999 99999 51 L R2,9(R5) R2 = address of request list 99931999
| 999916 47F9 C922 99922 52 B Open 99932999| .| .| .
| 697 End 99959999
| 9999D9 99999991 698 =f'1'
| 9999D4 99999999 699 =v(Rcnvdte)
| 9999D8 99999999 799 =v(Rcnvtme)
| 9999DC 99999992 791 =f'2'

Figure 6. Source and Object Listing Section—121 Format

�1� The deck identification, if any, consisting of 1–8 characters. It is obtained
from the name field of the first named TITLE statement. The assembler
prints the deck identification and date on every page of the listing, except the
Options Summary.

�2� The information taken from the operand field of a TITLE statement.

�3� Location field. This is the value of the location counter that represents the
assembled address (in hexadecimal notation) of the object code.

� For ORG statements, the value of the location counter before the ORG
is placed in the location column, and the value of the location counter
after the ORG is placed in the ADDR2 field.

� If the END statement contains an operand, the operand value (transfer
address) appears in the location field.

� In the case of LOCTR, COM, CSECT, RSECT, and DSECT statements,
the location field contains the current address of these control sections.

� In the case of EXTRN, WXTRN, ENTRY, and DXD instructions, the
location field and object code field are blank.

� For LTORG statements, the location field contains the location assigned
to the literal pool.

 Chapter 2. Using the Assembler Listing 15

 Source and Object

If, at the time of the page eject, the current control section being assembled
is a COM section, the heading line starts with C-LOC. If, at the time of the
page eject, the current control section being assembled is a DSECT, the
heading line starts with D-LOC. If, at the time of the page eject, the current
control section being assembled is an RSECT, the heading line starts with
R-LOC.

�4� The object code produced by the source statement. The entries, which are
shown left-justified and in hexadecimal notation, are machine instructions or
assembled constants. Machine instructions are printed in full with a blank
inserted after every 4 digits (2 bytes). Only the first 8 bytes of a constant
appears in the listing if PRINT NODATA is in effect, unless the statement
has continuation records. The whole constant appears if PRINT DATA is in
effect. (See the PRINT assembler instruction in the High Level Assembler
Language Reference.)

This field also shows the base registers for ordinary USING instructions, and
the base register and displacement for dependent USING instructions. See
�12� and �15� for more details.

�5� Effective addresses (each the result of adding a base register value and a
displacement value):

� The field headed Addr1 contains the effective address for the first
operand of an instruction (if applicable). It may also contain the
following:

– For a USING instruction, the Addr1 field contains the value of the
first operand.

– For a CSECT, START, LOCTR, or RSECT instruction, the Addr1
field contains the start address of the control section.

– For an ORG instruction, the Addr1 field contains the current address.

– For an EQU instruction, the Addr1 field contains the value assigned.

� The field headed Addr2 contains the effective address of the last
operand of any instruction referencing storage.

– For a USING instruction, the Addr2 field contains the value of the
second operand.

– For a CSECT, START, LOCTR, or RSECT instruction, the Addr2
field contains the end address of the control section.

– For an ORG instruction, the Addr2 field contains the next address as
specified by the operand field.

– For an EQU instruction, the Addr2 field contains the length assigned.

Both address fields contain 6 digits; however, if the high-order digit is 0, it is
not printed. For USING and EQU instructions, the Addr2 field may contain
up to 8 digits.

�6� The statement number. The column following the statement number may
contain the following values:

� A plus sign (+) indicates that the statement was generated as the result
of macro call processing.

� An unnumbered statement with a plus sign (+) is the result of open code
substitution.

16 HLASM V1R3 Programmer’s Guide

 Source and Object

� A minus sign (−) indicates that the statement was read by a preceding
AREAD instruction.

� An equals sign (=) indicates that the statement was included by a COPY
instruction.

� A greater than sign (>) indicates that the statement was generated as
the result of a preceding AINSERT instruction. If the statement is read
by an AREAD instruction, this will take precedence and a minus sign will
be printed.

�7� The source program statement. The following items apply to this section of
the listing:

� Source statements are listed, including those brought into the program
by the COPY assembler instruction, and including macro definitions
submitted with the main program for assembly. Listing control
instructions are not printed, except for PRINT, which is printed unless the
NOPRINT operand is specified.

� Macro definitions obtained from a library are not listed, unless the macro
definition is included in the source program by means of a COPY
statement, or the LIBMAC assembler option was specified.

� The statements generated as the result of a macro instruction follow the
macro instruction in the listing, unless PRINT NOGEN is in effect. If
PRINT GEN is in effect and PRINT NOMSOURCE is specified, the
printing of the source statements generated during macro processing
and conditional assembly substitution is suppressed, without suppressing
the printing of the generated object code of the statements. If PRINT
MCALL is in effect, nested macro instructions including all parameters
are printed. When the PRINT NOGEN instruction is in effect, the
assembler prints one of the following on the same line as the macro call
or model statement:

– The object code for the first instruction generated
– The first 8 bytes of generated data from a DC instruction

When the assembler forces alignment of an instruction or data constant,
it generates zeros in the object code and prints the generated object
code in the listing. When you use the PRINT NOGEN instruction the
generated zeros are not printed.

Diagnostic Messages and Generated Data: If the next line to print
after a macro call or model statement is a diagnostic message, the
generated data is not shown.

� Assembler and machine instructions in the source program that contain
variable symbols are listed twice: firstly, as they appear in the source
input, and secondly, with values substituted for the variable symbols.

� All error diagnostic messages appear in line except those suppressed by
the FLAG option. Chapter 6, “Diagnosing Assembly Errors” on
page 139 describes how error messages and MNOTEs are handled.

� Literals that have not been assigned locations by LTORG statements
appear in the listing following the END statement. Literals are identified
by the equal sign (=) preceding them.

� Whenever possible, a generated statement is printed in the same format
as the corresponding macro definition (model) statement. The starting

 Chapter 2. Using the Assembler Listing 17

 Source and Object

columns of the operation, operand, and comments fields are preserved,
unless they are displaced by field substitution, as shown in Figure 7 on
page 18.

 LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT
1 &A SETC 'abcdefghijklmnop'

 2 &A LA 4,1 Comment
999999 4149 9991 99991 +abcdefghijklmnop LA 4,1
 + Comment

3 &b SETC 'abc'
 4 &b LA 4,1 Comment
999994 4149 9991 99991 +abc LA 4,1 Comment

Figure 7. Source and Object Listing Section

It is possible for a generated statement to occupy ten or more continuation lines on
the listing. In this way, generated statements are unlike source statements, which
are restricted to nine continuation lines.

�8� The release level of High Level Assembler.

�9� The date and time at the start of the assembly.

�1�� The error diagnostic messages immediately following the source statement in
error. Many error diagnostic messages include the segment of the statement
that is in error. You can use the FLAG assembler option to control the level
of diagnostic messages displayed in your listing.

�11� The informational message, ASMA435I, that describes the origin of the
source statement in error. This message is only printed when you specify the
FLAG(RECORD) assembler option.

�12� The Addr1 and Addr2 columns show the first and second operand addresses
in the USING instructions. The base registers on an ordinary USING
instruction are printed, right justified in the object code columns, preceded by
the characters “R:”.

�13� The informational message, ASMA435I, that describes the origin of the
source statement in error. Conditional assembly statements and comment

| statements contribute to the record count of macro definitions, as suggested
| by the record number which is greater than the number of generated

statements.

�14� The identification-sequence field from the source statement. For a
macro-generated statement, this field contains information identifying the
origin of the statement. The first two columns define the level of the macro
call, where a level of 91 indicates statements generated by the macro
specified within the source code, and higher level numbers indicate
statements generated from macros invoked from within a macro.

For a library macro call, the last five columns contain the first five characters
of the macro name. For a macro whose definition is in the source program
(including one read by a COPY statement or by the LIBMAC assembler
option), the last five characters contain the line number of the model
statement in the definition from which the generated statement is derived.
This information can be an important diagnostic aid in analyzing output
resulting from macro calls within macro calls.

�15� The Addr1 and Addr2 columns show the first and second operand addresses
in the USING instructions. The resolved base displacement for a dependent
USING instruction is printed in the object code columns, as register
displacement, where register is shown as a hexadecimal value.

18 HLASM V1R3 Programmer’s Guide

 Source and Object

| �16� The current PUSH level is printed after the heading and before the first
| active USING. If the PUSH level is zero, it is not shown.

If PRINT UHEAD or PCONTROL(UHEAD) has been specified, a summary of
current active USINGs is printed on up to four heading lines, following the
TITLE line on each page of the source and object section. The USINGs
listed are those current at the end of the assembly of the last statement on
the previous page of the listing, with the following exceptions:

� The USINGs summary shows the effect of the USING instruction when:

– It is the first statement in the source input data set, or
– It is the first statement on the new page

� The USINGs summary shows the effect of the DROP instruction when:

– It is the first statement in the source input data set, or
– It is the first statement on the new page

Current active USINGs include USINGs that are temporarily overridden. In
the following example the USING for base register 12 temporarily overrides
the USING for base register 10. After the DROP instruction, the base
register for BASE1 reverts to register 10.

 USING BASE1,19
USING BASE1,12 Temporarily overrides register 19
LA 1,BASE1 Uses base register 12

 DROP 12
LA 1,BASE1 Uses base register 19

The summary of active USINGs heading lines have the format:

| Active Usings (1): label.sectname+offset(range),registers

| where:

| 1 Is the current PUSH level. If the PUSH level is zero, it is not
| shown.

label Is the label name specified for a Labeled USING. If the USING is
not labeled, this field is omitted.

sectname Is the section name used to resolve the USING. The section
name is listed as (PC) if the section is an unnamed CSECT,
(COM) if the section is unnamed COMMON, and (DSECT) if the
section is an unnamed DSECT.

offset Is the offset from the specified section that is used to resolve the
USING. This field is omitted if it is zero.

| (range) Is the total range for the USING. For example, if you specified 3
| registers and allowed the range to default, then the range value
| displayed would be X'3000'.

registers Is the register or registers specified on the USING statement.

For dependent USINGs, the register is printed as register+offset
where register is the register used to resolve the address from
the corresponding ordinary USING, and offset is the offset from
the register to the address specified in the dependent USING.

If there are more active USINGs than can fit into four lines, the summary is
truncated, and the character string 'MORE ...' is appended to the last line.

 Chapter 2. Using the Assembler Listing 19

 Relocation Dictionary

| In this example, the first is an ordinary USING, the second a dependent
| USING, the third a labeled dependent USING, and the last two are labeled
| USINGS.

Figure 8 shows an example of the Source and Object section when the same
| assembly is run with assembler option LIST(133), and is followed by a description
| of its differences with Figure 6 on page 15:

| SAMP91 Sample Listing Description Page 3
| Active Usings: None
| �1�
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 99999999 99999999 999999E9 2 Samp91 Csect 99992999
| 3 Sav (14,12) Save caller's registers 99993999
| KK ASMA957E Undefined operation code - SAV
| KK ASMA435I Record 3 in FIG8 ASSEMBLE A1 on volume: ADISK| .| .| .
| 23 Entry1 SAMPMAC Parm1=YES 99923999
| 99999999 18CF 24+Entry1 LR 12,15 91-SAMPMAC
| �2�
| R:C 99999999 25+ USING Entry1,12 Ordinary Using 91-SAMPMAC
| 99999992 9999 9999 99999999 26+ LA Savearea,19 91-SAMPMAC
| KK ASMA944E Undefined symbol - Savearea
| KK ASMA929E Incorrect register specification
| KK ASMA435I Record 5 in TEST MACLIB A1(SAMPMAC) on volume: ADISK
| 99999996 59D9 A994 99999994 27+ ST 13,4(,19) 91-SAMPMAC
| 9999999A 59A9 D998 99999998 28+ ST 19,8(,13) 91-SAMPMAC
| 9999999E 18DA 29+ LR 13,19 91-SAMPMAC
| �3�
| R:A35 99999919 39+ USING K,19,3,5 Ordinary Using,Multiple Base 91-SAMPMAC
| KK ASMA393W Multiple address resolutions may result from this USING and the USING on statement number 25
| KK ASMA435I Record 9 in TEST MACLIB A1(SAMPMAC) on volume: ADISK| .| .| .
| 42+ DROP 19,3,5 Drop Multiple Registers 91-SAMPMAC
| 43 COPY SAMPLE 99924999
| 44=K Line from member SAMPLE 99991999
| C 92A 99999999 9999992A 45 Using IHADCB,INDCB Establish DCB addressability 99925999
| C 97A 99999999 9999997A 46 ODCB Using IHADCB,OUTDCB 99926999
| 47 push using 99927999
| R:2 99999999 48 PlistIn Using Plist,2 Establish Plist addressability 99928999
| R:3 99999999 49 PlistOut Using Plist,3 99929999
| SAMP91 Sample Listing Description Page 4
| Active Usings (1):Entry1(X'1999'),R12 IHADCB(X'FD6'),R12+X'2A' PlistIn.Plist(X'1999'),R2
| PlistOut.Plist(X'1999'),R3 ODCB.IHADCB(X'F86'),R12+X'7A'
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/98/94 17.23
| 99999919 1851 59 ?Branch LR R5,R1 Save Plist pointer 99939999
| KK ASMA147E Symbol too long, or first character not a letter - ?Branch
| KK ASMA435I Record 39 in FIG8 ASSEMBLE A1 on volume: ADISK
| 99999912 5825 9999 99999999 51 L R2,9(R5) R2 = address of request list 99931999
| 99999916 47F9 C922 99999922 52 B Open 99932999| .| .| .
| 697 End 99959999
| 999999D9 99999991 698 =f'1'
| 999999D4 99999999 699 =v(Rcnvdte)
| 999999D8 99999999 799 =v(Rcnvtme)
| 999999DC 99999992 791 =f'2'

Figure 8. Source and Object Listing Section—133 Format

�1� The assembled address of the object code occupies 8 characters.

| �2� The Addr1 and Addr2 columns show 8-character operand addresses.

| �3� The first 8 characters of the macro name are shown in the
| identification-sequence field.

Relocation Dictionary (RLD)
This section of the listing describes the relocation dictionary information passed to
the linkage editor or loader, or DFSMS/MVS binder, in the object module.

The entries describe the address constants in the assembled program that are
affected by relocation. This section helps you find relocatable constants in your
program.

20 HLASM V1R3 Programmer’s Guide

 Relocation Dictionary

SAMP91 Relocation Dictionary Page 17
 �1� �2� �3� �4�
 Pos.Id Rel.Id Flags Address HLASM R3.9 1998/99/25 11.38
99999991 99999991 9C 999999E9
99999991 99999994 1C 999999DC
99999991 99999995 1C 999999E4
99999991 99999996 1C 999999E8
99999991 99999997 1C 999999EC

Figure 9. Relocation Dictionary (RLD) Listing

�1� The external symbol dictionary ID number assigned to the ESD entry for the
control section in which the address constant is used as an operand.

�2� The external symbol dictionary ID number assigned to the ESD entry for the
control section in which the referenced symbol is stored.

�3� The 2-digit hexadecimal number represented by the characters in this field is
interpreted as follows:

First Digit: This digit indicates the type of entry:

Second Digit: The first three bits of this digit indicate the length of the
constant and whether the base should be added or subtracted:

�4� The assembled address (in hexadecimal notation) of the field where the
address constant is stored.

First Digit Indicates that the entry describes ...

0 An A-type or Y-type address constant

1 A V-type address constant

2 A Q-type address constant

3| A CXD entry

Bits 0 and 1 Bit 2 Bit 3

00 = 1 byte 0 = + 0

01 = 2 bytes 1 = − 0

10 = 3 bytes 0

11 = 4 bytes 0

 Chapter 2. Using the Assembler Listing 21

 Ordinary Symbol and Literal Cross Reference

Ordinary Symbol and Literal Cross Reference
This section of the listing concerns symbols and literals that are defined and used
in the program. This is a useful tool in checking the logic of your program; it helps
you see if your data references and branches are in order.

| Ordinary Symbol and Literal Cross Reference Page 29
| �1� �2� �3� �4� �5� �6� �7� �8�
| Symbol Length Value Id R Type Defn References HLASM R3.9 1998/99/25 11.38
| ASMAXINV 1 99999999 99999991 J 152 179U 185U 199U
| AXPABSREC
| 4 99999494 FFFFFFFC F 781 473
| AXPCEND 2 99999498 FFFFFFFC H 782 789
| AXPDSN 255 99999299 FFFFFFFC C 776 267M
| AXPERRL 4 9999992C FFFFFFFD F 761 279M 598M| .| .| .
| fl12nd 1 99999989 FFFFFFFF A U 622 414 416
| FullStatement
| 89 99999999 FFFFFFFA C 1371 343M 344 344M 344 461M 464M
| IHADCB 1 99999999 FFFFFFFB J 799 189U 293U 249M 879 928 999 1124 1131 1147 1154 1167 1265
| 1271 1298 1317 1318 1324 1365 1366
| IOError 2 99999499 99999991 H 489 252 569
| jfcb 176 99999958 FFFFFFFF X 599 256 699
| jix 1 99999999 99999999 C U 214 215| .| .| .
| WA 99999991 A U 292 293U 296D 296 297
| WORKAREA 1 99999999 FFFFFFFF J 595 292U 213U 638

Figure 10. Ordinary Symbol and Literal Cross Reference

�1� Shows each symbol or literal. Symbols are shown in the form in which they
are defined, either in the name entry of a machine or assembler instruction, or
in the operand of an EXTRN or WXTRN instruction. Symbols defined using
mixed-case letters are shown in mixed-case letters, unless the FOLD
assembler option was specified.

If a symbol name is used as a literal more than once in a program, and the
form of the symbol name is coded differently, for example =V(symbol) and
=V(SYMBOL), and the symbol is not defined in the program, the symbol is listed
in the form of the first reference. In the following example the assembler lists
the symbol name as inPUT, because the third statement is the first occurrence
of the symbol, and the symbol is not defined.

test csect
 using K,15
 la 1,=a(inPUT) third statement
 la 1,=a(INPUT)
 end

In the following example the assembler lists the symbol name as INput,
because the symbol is defined in the fifth statement.

test csect
 using K,15
 la 1,=a(inPUT) third statement
 la 1,=a(INPUT)

 INput dc cl4' ' fifth statement
 END

�2� Shows, in decimal notation, the byte length of the field represented by the
| symbol. This field is blank for labeled USINGs (see symbol WA).

�3� Shows the hexadecimal address that the symbol or literal represents, or the
hexadecimal value to which the symbol is equated. This field is blank for
labeled USING symbols.

22 HLASM V1R3 Programmer’s Guide

 Ordinary Symbol and Literal Cross Reference

�4� For symbols and literals defined in an executable control section or an external
dummy section, this field shows the external symbol dictionary ID (ESDID)
assigned to the ESD entry for the control section in which the symbol or literal
is defined. For external symbols, this field indicates the ESDID assigned to
ESD entry for this symbol. For symbols defined in a dummy control section,
this field indicates the control section ID assigned to the control section. For
symbols defined using the EQU statement, if the operand contains a
relocatable expression, this field shows the external symbol dictionary ID of the
relocatable expression. Otherwise, it contains the current control section ID.

| �5� Symbols fl12nd and WA are absolute symbols and are flagged “A” in the R
| column. Symbol jix is the result of a complex relocatable expression and is
| flagged “C” in the R column. Symbol IOerror is simply relocatable and is not

flagged. (Column title R is an abbreviation for “Relocatability Type”.)

�6� Indicates the type attribute of the symbol or literal. Refer to the Language
Reference manual for details.

�7� Is the statement number in which the symbol or literal was defined.

�8� Shows the statement numbers of the statements in which the symbol or literal
appears as an operand. Additional indicators are suffixed to statement
numbers as follows:

B The statement contains a branch instruction, and the relocatable
symbol is used as the branch-target operand address.

D The statement contains a DROP instruction, and the symbol is used in
the instruction operand.

M The instruction causes the contents of a register represented by an
absolute symbol, or a storage location represented by one or more
relocatable symbols, to be modified.

U The statement contains a USING instruction, and the symbol is used in
one of the instruction operands.

X The statement contains an EX machine instruction, and the symbol in
the second operand is the symbolic address of the target instruction.

In the case of a duplicate symbol or literal, this column contains the message:

KKKKDUPLICATEKKKK

The following notes apply to the cross reference section:

Notes:

1. Cross reference entries for symbols used in a literal refer to the assembled
literal in the literal pool. Look up the literals in the cross reference to find
where the symbols are used.

2. A PRINT OFF listing control instruction does not affect the production of the
cross reference section of the listing.

| 3. In the case of an undefined symbol, the columns Length (�2�) and Value (�3�)
| contain the message:

KKKKUNDEFINEDKKKK

 Chapter 2. Using the Assembler Listing 23

 Macro and Copy Code Source Summary

Unreferenced Symbols Defined in CSECTs
This section of the listing shows symbols that have been defined in CSECTs but
not referenced. This helps you remove unnecessary data definitions, and reduce
the size of your program. The list of symbols are shown in symbol name order. To
obtain this section of the listing, you need to specify the XREF(UNREFS)
assembler option.

| SAMP91 Unreferenced Symbols Defined in CSECTs Page 19
| �1� �2�
| Defn Symbol HLASM R3.9 1998/99/25 11.38
| 47 ODCB
| 49 PlistIn
| 59 PlistOut
| 7 R9
| 19 R3
| 16 Unreferenced_Long_Symbol

Figure 11. Unreferenced Symbols Defined in CSECTS

�1� The statement number that defines the symbol.

�2� The name of the symbol.

Macro and Copy Code Source Summary
This section of the listing shows the names of the macro libraries from which the
assembler read macros or copy code members, and the names of the macros and
copy code members that were read from each library. This section is useful for
checking that you have included the correct version of a macro or copy code
member.

| SAMP91 Macro and Copy Code Source Summary Page 27
| �1� �2� �3� �4�
| Con Source Volume Members HLASM R3.9 1998/99/25 11.38
| PRIMARY INPUT A AINSERT_TEST_MACRO AL L MAC1
| N O SL ST TYPCHKRX X
| L1 TEST MACLIB A1 ADISK SAMPLE SAMPMAC XIT1 XIT3
| L2 DSECT MACLIB A1 ADISK XIT2
| L3 OSMACRO MACLIB S2 MNT199 DCBD IHBERMAC SAVE

Figure 12. Macro and Copy Code Source Summary

�1� Contains a number representing the concatenation order of macro and copy
code libraries. (This number is not shown when the Source �2� is “PRIMARY
INPUT”.) The number is prefixed with “L” which indicates Library. The
concatenation value is cross-referenced in the Macro and Copy Code Cross
Reference section.

�2� Shows either the name of each library from which the assembler reads a
macro or a copy code member or, for in-line macros, the words “PRIMARY
INPUT”.

�3� Shows the volume serial number of the volume on which the library resides.

�4� Shows the names of the macros or copy members that were retrieved from the
library.

You can suppress this section of the listing by specifying the NOMXREF assembler
option.

24 HLASM V1R3 Programmer’s Guide

 Macro and Copy Code Cross Reference

LIBRARY User Exit: If a LIBRARY user exit has been specified for the assembly,
and the exit opens the library data set, the exit can return the name of the library to
the assembler. In this case the Macro and Copy Code Source Summary lists the
library names returned by the user exit.

Macro and Copy Code Cross Reference
This section of the listing shows the names of macros and copy code members and
the statements where the macro or copy code member was called. You can use
the assembler option MXREF(XREF) or MXREF(FULL) to generate this section of
the listing.

| SAMP91 Macro and Copy Code Cross Reference Page 28
| �1� �2� �3� �4� �5�
| Macro Con Called By Defn References HLASM R3.9 1998/99/25 11.38
| A PRIMARY INPUT 826 971, 973, 998
| AINSERT_TEST_MACRO
| PRIMARY INPUT 3 16
| AL PRIMARY INPUT 873 981, 983
| DCBD L3 PRIMARY INPUT - 113
| IHBERMAC L3 DCBD - 113
| L PRIMARY INPUT 816 966, 968
| MAC1 PRIMARY INPUT 28 36
| N PRIMARY INPUT 933 991
| O PRIMARY INPUT 953 993
| SAMPLE L1 PRIMARY INPUT - 85C �6�
| SAMPMAC L1 PRIMARY INPUT - 64
| SAVE L3 PRIMARY INPUT - 42
| SL PRIMARY INPUT 883 986, 988
| ST PRIMARY INPUT 836 976, 978
| TYPCHKRX PRIMARY INPUT 745 775, 845, 892
| X PRIMARY INPUT 943 996
| XIT1 L1 PRIMARY INPUT - 39C
| XIT2 L2 PRIMARY INPUT - 32C
| XIT3 L1 PRIMARY INPUT - 34C

Figure 13. Macro and Copy Code Cross Reference

�1� The macro or copy code member name.

�2� Shows the value representing the input source concatenation, as listed in the
Macro and Copy Code Source Summary (refer to Figure 12 on page 24) and
under the sub-heading “Datasets Allocated for this Assembly” in the Diagnostic
Cross Reference and Assembler Summary (refer to Figure 22 on page 32).

�3� Shows either the name of the macro that calls this macro or copy code
member, or the words “PRIMARY INPUT” indicating the macro or copy code
member was called directly from the primary input source. If you use the
COPY instruction to copy a macro definition, then references to the macro are
shown as called by “PRIMARY INPUT”.

�4� Either:

� The statement number for macros defined in the primary input file,
or
� A dash (–) indicating the macro or copy code member was retrieved from a

library.

�5� The statement number that contains the macro call or COPY instruction.

Lookahead Processing: If a COPY instruction is encountered during
lookahead, this is the number of the statement that causes lookahead
processing to commence.

PCONTROL(MCALL) Assembler Option: If you specify the
PCONTROL(MCALL) assembler option, and you copy a macro definition from
an inner macro, the number shown against the copied member is one less

 Chapter 2. Using the Assembler Listing 25

 Macro and Copy Code Cross Reference

than the statement number containing the inner macro call instruction. See
“Effects of LIBMAC and PCONTROL(MCALL) Options” on page 26 for
examples of assemblies using different combinations of the LIBMAC and
PCONTROL(MCALL) options.

�6� Statement numbers have a suffix of “C” when the reference is to a member on
a COPY instruction.

Figure 14 shows the format of the Macro and Copy Code Cross Reference when
you specify the assembler option, LIBMAC.

| SAMP91 Macro and Copy Code Cross Reference Page 81
| Macro Con Called By Defn References HLASM R3.9 1998/99/25 11.38
| �1�
| A PRIMARY INPUT 3667 3812, 3814, 3839
| AINSERT_TEST_MACRO
| PRIMARY INPUT 3 16
| AL PRIMARY INPUT 3714 3822, 3824
| DCBD L3 PRIMARY INPUT 224X 2329
| IHBERMAC L3 DCBD 2331X 2954
| L PRIMARY INPUT 3657 3897, 3899
| MAC1 PRIMARY INPUT 28 36
| N PRIMARY INPUT 3774 3832
| O PRIMARY INPUT 3794 3834
| SAMPLE L1 PRIMARY INPUT - 195C
| SAMPMAC L1 PRIMARY INPUT 153X 174
| SAVE L3 PRIMARY INPUT 43X 139
| SL PRIMARY INPUT 3724 3827, 3829
| ST PRIMARY INPUT 3677 3817, 3819
| TYPCHKRX PRIMARY INPUT 3586 3616, 3686, 3733
| X PRIMARY INPUT 3784 3837
| XIT1 L1 PRIMARY INPUT - 39C
| XIT2 L2 PRIMARY INPUT - 32C
| XIT3 L1 PRIMARY INPUT - 34C

Figure 14. Macro and Copy Code Cross Reference—with LIBMAC Option

�1� The “X” flag indicates the macro was read from a macro library and
imbedded in the input source program immediately preceding the invocation

| of that macro. For example, in Figure 14, you can see that SAMPMAC was
| called by the PRIMARY INPUT stream from LIBRARY L1, at statement number
| 174, after being imbedded in the input stream at statement number 153. See

“Effects of LIBMAC and PCONTROL(MCALL) Options” for examples of
assemblies using different combinations of the LIBMAC and
PCONTROL(MCALL) options.

You can suppress this section of the listing by specifying the NOMXREF assembler
option.

Effects of LIBMAC and PCONTROL(MCALL) Options
When you specify different combinations of the LIBMAC and PCONTROL(MCALL)
assembler options to assemble the same source program, the definition statement
and reference statement numbers can be different in each assembly listing.

The example that follows shows how these options affect the output from an
assembly of the same source program. The source program that we are using for
our example is coded as follows:

 MACOUTER
 END

The assembly of this program uses the following library members:

MACOUTER: A macro definition that issues a call to macro MACINNER.

MACINNER: A macro definition that copies member COPYCODE.

26 HLASM V1R3 Programmer’s Guide

 Macro and Copy Code Cross Reference

COPYCODE: A member containing an MNOTE instruction.

The following four figures illustrate the effects of using the various combinations of
the LIBMAC and PCONTROL(MCALL) assembler options.

Figure 15 shows the output when you specify the NOLIBMAC and NOPCONTROL
options.

| Page 2
| Active Usings: None
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 1 MACOUTER TEM99919
| 2+K,MNOTE FROM MEMBER COPYCODE 92-MACIN
| 3 END TEM99929

| Macro and Copy Code Source Summary Page 3
| Con Source Volume Members HLASM R3.9 1998/99/25 11.38
| L1 TEST MACLIB A1 ADISK COPYCODE MACINNER MACOUTER

| Macro and Copy Code Cross Reference Page 4
| Macro Con Called By Defn References HLASM R3.9 1998/99/25 11.38
| COPYCODE L1 MACINNER - 1C
| MACINNER L1 MACOUTER - 1
| MACOUTER L1 PRIMARY INPUT - 1

Figure 15. Assembly with NOLIBMAC and NOPCONTROL Options

Figure 16 shows the output when you specify the NOLIBMAC and
PCONTROL(MCALL) options.

| Page 2
| Active Usings: None
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| ┌────────────────────────────┐ 1 MACOUTER TEM99919
| │ This line produced because │────�2+ MACINNER 91-MACOU
| │ PCONTROL(MCALL) specified │ 3+K,MNOTE FROM MEMBER COPYCODE 92-MACIN
| └────────────────────────────┘ 4 END TEM99929

| Macro and Copy Code Source Summary Page 3
| Con Source Volume Members HLASM R3.9 1998/99/25 11.38
| L1 TEST MACLIB A1 ADISK COPYCODE MACINNER MACOUTER

| Macro and Copy Code Cross Reference Page 4
| Macro Con Called By Defn References HLASM R3.9 1998/99/25 11.38
| COPYCODE L1 MACINNER - 1C
| MACINNER L1 MACOUTER - 2
| MACOUTER L1 PRIMARY INPUT - 1

Figure 16. Assembly with NOLIBMAC and PCONTROL(MCALL) Options

Figure 17 shows the output when you specify the LIBMAC and NOPCONTROL
options.

| Page 2
| Active Usings: None
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 1 MACRO MAC99
| 2 MACOUTER MAC99
| 3 MACINNER MAC99
| 4 MEND MAC99
| 5 MACOUTER 99991999
| 6 MACRO MA
| 7 MACINNER MA
| 8 COPY COPYCODE MA
| 9 MNOTE K,'MNOTE FROM MEMBER COPYCODE' COP99919
| 19 MEND MA
| 11+K,MNOTE FROM MEMBER COPYCODE 92-99998
| 12 END 99992999

| Macro and Copy Code Source Summary Page 3
| Con Source Volume Members HLASM R3.9 1998/99/25 11.38
| L1 TEST MACLIB A1 ADISK COPYCODE MACINNER MACOUTER

| Macro and Copy Code Cross Reference Page 4
| Macro Con Called By Defn References HLASM R3.9 1998/99/25 11.38
| COPYCODE L1 MACINNER - 8C
| MACINNER L1 MACOUTER 7X 19
| MACOUTER L1 PRIMARY INPUT 2X 5

Figure 17. Assembly with LIBMAC and NOPCONTROL Options

 Chapter 2. Using the Assembler Listing 27

 DSECT Cross Reference

Figure 18 on page 28 shows the output when you specify the LIBMAC and
PCONTROL(MCALL) options.

| Page 2
| Active Usings: None
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 1 MACRO MAC99
| 2 MACOUTER MAC99
| 3 MACINNER MAC99
| 4 MEND MAC99
| 5 MACOUTER 99991999
| 6 MACRO MA
| 7 MACINNER MA
| 8 COPY COPYCODE MA
| 9 MNOTE K,'MNOTE FROM MEMBER COPYCODE' COP99919
| ┌────────────────────────────┐ 19 MEND MA
| │ This line produced because │────�11+ MACINNER 91-99993
| │ PCONTROL(MCALL) specified │ 12+K,MNOTE FROM MEMBER COPYCODE 92-99998
| └────────────────────────────┘ 13 END 99992999

| Macro and Copy Code Source Summary Page 3
| Con Source Volume Members HLASM R3.9 1998/99/25 11.38
| L1 TEST MACLIB A1 ADISK COPYCODE MACINNER MACOUTER

| Macro and Copy Code Cross Reference Page 4
| Macro Con Called By Defn References HLASM R3.9 1998/99/25 11.38
| COPYCODE L1 MACINNER - 8C
| MACINNER L1 MACOUTER 7X 11
| MACOUTER L1 PRIMARY INPUT 2X 5

Figure 18. Assembly with LIBMAC and PCONTROL(MCALL) Options

DSECT Cross Reference
This section of the listing shows the names of all internal or external dummy
sections defined in the program, and the number of the statement where the
definition of the dummy section began.

| Dsect Cross Reference Page 26
| �1� �2� �3� �4�
| Dsect Length Id Defn HLASM R3.9 1998/99/25 11.38
| AXPRIL 9999993C FFFFFFFD 655
| AXPSIL 99999419 FFFFFFFC 771
| AXPXITP 99999914 FFFFFFFE 641
| IHADCB 99999969 FFFFFFFB 799
| Statement
| 99999959 FFFFFFFA 1379
| WORKAREA 999991A8 FFFFFFFF 595

Figure 19. DSECT Cross Reference

�1� Shows the name of each dummy section defined in your program.

�2� Shows, in hexadecimal notation, the assembled byte length of the dummy
section.

�3� For external dummy sections, this field indicates the external symbol dictionary
ID assigned to the ESD entry for the external dummy section. For internal
dummy sections, this field indicates the control section ID assigned to the
dummy control section. You can use this field in conjunction with the ID field
in the Ordinary Symbol and Literal Cross Reference (see Figure 10 on
page 22) to relate symbols to a specific section.

�4� Shows the number of the statement where the definition of the dummy section
began.

You can suppress this section of the listing by specifying the NODXREF assembler
option.

28 HLASM V1R3 Programmer’s Guide

 USING Map

 USING Map
This section of the listing shows a summary of the USING, DROP, PUSH USING,
and POP USING instructions used in your program.

| Using Map Page 27
| HLASM R3.9 1998/99/25 11.38
| �1� �2� �3� �4� �5� �6� �7� �8� �9� �1�� �11� �12�
| Stmt -----Location----- Action ----------------Using----------------- Reg Max Last Label and Using Text
| Count Id Type Value Range Id Disp Stmt
| 179 99999999 99999991 USING ORDINARY 99999999 99991999 99999991 15 92A 171 asmaxinv,r15
| 175 99999939 99999991 DROP 15 r15
| 185 99999934 99999991 USING ORDINARY 99999999 99991999 99999991 12 999 asmaxinv,r12
| 186 99999934 99999991 USING ORDINARY 99999999 99991999 FFFFFFFD 7 934 598 axpril,r97
| 187 99999934 99999991 USING ORDINARY 99999999 99991999 FFFFFFFA 8 948 464 Statement,r98
| 188 99999934 99999991 USING ORDINARY 99999999 99991999 FFFFFFFC 19 494 474 axpsil,r19
| 189 99999934 99999991 USING ORDINARY 99999999 99991999 FFFFFFFB 11 952 465 ihadcb,r11
| 199 99999934 99999991 USING ORDINARY 99999999 99991999 99999991 12 589 519 asmaxinv,r12
| 292 9999994E 99999991 USING LABELED 99999999 99991999 FFFFFFFF 1 999 WA.WorkArea,r91
| 293 9999994E 99999991 USING LAB+DEPND +9999914A 99999EB6 FFFFFFFB 1 local.ihadcb,WA.mydcb
| 295 99999954 99999991 DROP 1 local
| 212 9999996A 99999991 DROP 1 WA
| 213 9999996A 99999991 USING ORDINARY 99999999 99991999 FFFFFFFF 13 14A 527 WorkArea,r13

Figure 20. USING Map

�1� Shows the number of the statement that contains the USING, DROP, PUSH
USING, or POP USING instruction.

�2� Shows the value of the location counter when the USING, DROP, PUSH
USING, or POP USING statement was encountered.

�3� Shows the value of the ESDID of the current section when the USING,
DROP, PUSH USING or POP USING statement was encountered.

�4� Shows whether the instruction was a USING, DROP, PUSH, or POP
instruction.

�5� For USING instructions, this field indicates whether the USING is an ordinary
USING, a labeled USING, a dependent USING, or a labeled dependent
USING.

�6� For ordinary and labeled USING instructions, this field indicates the base
address specified in the USING. For dependent USING instructions, this
field is prefixed with a plus sign (+) and indicates the hexadecimal offset of
the address of the second operand from the base address specified in the
corresponding ordinary USING.

| �7� Shows the range of the USING. For more information, see the description of
| the USING statement in the High Level Assembler Language Reference.

�8� For USING instructions, this field indicates the ESDID of the section
specified on the USING statement.

�9� For ordinary and labeled USING instructions, and for DROP instructions, this
field indicates the register or registers specified in the instruction. There is a
separate line in the USING map for each register specified in the instruction.
If the DROP instruction has no operands, all registers and labels are
dropped and this field contains two asterisks (KK).

For dependent USING instructions, the field indicates the register for the
corresponding ordinary USING instruction that is used to resolve the
address. If the corresponding ordinary USING instruction has multiple
registers specified, only the first register used to resolve the address is
displayed.

 Chapter 2. Using the Assembler Listing 29

 General Purpose Register Cross Reference

�1�� For each base register specified in an ordinary USING instruction or a
labeled USING instruction, this field shows the maximum displacement
calculated by the assembler when resolving symbolic addresses into
base-displacement form using that base register.

�11� For ordinary and labeled USING instructions, this field indicates the
statement number of the last statement that used the specified base register
to resolve an address. Where an ordinary USING instruction is used to
resolve a dependent USING, the statement number printed reflects the use
of the register to resolve the dependent USING.

�12� For USING and DROP instructions, this field lists the text specified on the
USING or DROP instruction, truncated if necessary. For labeled USING
instructions, the text is preceded by the label specified for the USING.

If a DROP instruction drops more than one register or labeled USING, the
text for each register or labeled USING is printed on the line corresponding
to the register that is dropped.

You can suppress this section of the listing by specifying either of the assembler
options, USING(NOMAP) or NOUSING.

| General Purpose Register Cross Reference
| This section of the listing shows all references in the program to each of the
| general registers. Additional flags indicate the type of reference. This is a useful
| tool in checking the logic of your program; it helps you see if your use of registers
| is in order.

| General Purpose Register Cross Reference
| Register References (M=modified, B=branch, U=USING, D=DROP, N=index)
| �1� �2�
| 9(9) 115
| 1(1) 118 129 121 122 124 126 127 128 139 131 133 135 136 137
| 2(2) 36 37 38 39 49 41 42 43 44M 45 46 47 48 49 59 51
| 52M 53 54 55M 56 57 58 59M 69 61 62 63 64 65 66 67
| 68 69 79 71 72M 73 74 75 76 77 78 79 89 81 82 83
| 84 85 86 87 88 89M 99 91 92 93M 94 95 96 97 98 99
| 199 191 192 193 194 195 196 197 198 199 119 111 112
| 3(3) (no references identified) �3�
| 4(4) 16M 281
| 5(5) 283
| 6(6) 66N 167N 179 171 174 178 189N 199 192 193 194 197 199 299 291N
| 7(7) 283
| 8(8) 283
| 9(9) 224 225 226 227
| 19(A) 255U 342D
| 11(B) 237 238 239N 249 241 242 243N 244 245N 271
| 12(C) 8U
| 13(D) 261 262 263 264 265 266
| 14(E) 299 219 211 212 213 214 215 216
| 15(F) 34 144

| Figure 21. General Purpose Register Cross Reference

| �1� Lists the sixteen general registers (0–15).

30 HLASM V1R3 Programmer’s Guide

 Diagnostic Cross Reference and Assembler Summary

| �2� The statements within the program that reference the register. Additional
| indicators are suffixed to the statement numbers as follows:

| (blank) Referenced

| M Modified

| B Used as a branch address

| U Used in USING statement

| D Used in DROP statement

| N Used as an index register

| �3� The assembler indicates when it has not detected any references to a
| register.

| Note: The implicit use of a register to resolve a symbol to a base and
| displacement does not create a reference in the General Purpose Register Cross
| Reference.

Diagnostic Cross Reference and Assembler Summary
This section of the listing summarizes the error diagnostic messages issued during
the assembly, and provides statistics about the assembly.

The sample listing shown in Figure 22 on page 32 contains a combination of MVS
and CMS data sets to show examples of the differences in data set information.

Note: For a complete list of the diagnostic messages issued by the assembler,
see Appendix G, “High Level Assembler Messages” on page 306.

 Chapter 2. Using the Assembler Listing 31

 Diagnostic Cross Reference and Assembler Summary

| Diagnostic Cross Reference and Assembler Summary Page 9
| HLASM R3.9 1998/99/25 11.38
| Statements Flagged
| �1�
| 1(P1,9), 3(P1,3), 4(P1,4), 5(P1,5), 6(P1,6), 7(P1,7), 8(P1,8), 179(L3:DCBD,2149)

| �2� 8 Statements Flagged in this Assembly 16 was Highest Severity Code
| High Level Assembler, 5696-234, RELEASE 3.9 �3�
| SYSTEM: CMS 11 JOBNAME: (NOJOB) STEPNAME: (NOSTEP) PROCSTEP: (NOPROC) �4�
| Datasets Allocated for this Assembly �5�
| Con DDname Dataset Name Volume Member
| P1 SYSIN XITDIS ASSEMBLE A1 ADISK
| L1 SYSLIB TEST MACLIB A1 ADISK
| L2 DSECT MACLIB A1 ADISK
| L3 OSMACRO MACLIB S2 MNT199
| L4 OSMACRO1 MACLIB S2 MNT199
| �6� SYSLIN XITDIS TEXT A1 ADISK
| SYSPRINT XITDIS LISTING A1 ADISK

| External Function Statistics �7�
| ----Calls---- Message Highest Function
| SETAF SETCF Count Severity Name
| 3 1 5 22 MSG
| 1 9 2 8 MSG1
| 1 9 1 9 MSG2
| �8�
| Input/Output Exit Statistics
| Exit Type Name Calls ---Records--- Diagnostic
| Added Deleted Messages
| LIBRARY CTLXIT 258 9 9 2
| LISTING ASMAXPRT 195 9 52 9

| �9�4622K allocated to Buffer Pool, �1��489K would be required for this to be an In-Storage Assembly
| �11� 16 Primary Input Records Read �13�3972 Library Records Read �15�9 Work File Reads
| �12� 141 Primary Print Records Written �14� 2 Punch Records Written �16�9 Work File Writes
| �17� 9 ADATA Records Written
| Assembly Start Time: 12.96.96 Stop Time: 12.96.97 Processor Time: 99.99.99.1771 �18�
| Return Code 916

Figure 22. Diagnostic Cross Reference and Assembler Summary

�1� The statement number of a statement that causes an error message, or
contains an MNOTE instruction, appears in this list. Flagged statements are
shown in either of two formats. When assembler option FLAG(NORECORD) is
specified, only the statement number is shown. When assembler option
FLAG(RECORD) is specified, the format is: statement(dsnum:member,record),
where:

statement is the sequential, absolute statement number as shown in the
source and object section of the listing.

dsnum is the value applied to the source or library dataset, showing the
type of input file and the concatenation number. “P” indicates the
statement was read from the primary input source, and “L” indicates
the statement was read from a library. This value is
cross-referenced to the input datasets listed under the sub-heading
“Datasets Allocated for this Assembly” �5�.

member is the name of the macro from which the statement was read. On
MVS, this may also be the name of a partitioned data set member
that is included in the primary input (SYSIN) concatenation.

record is the relative record number from the start of the dataset or
member which contains the flagged statement.

32 HLASM V1R3 Programmer’s Guide

 Diagnostic Cross Reference and Assembler Summary

�2� The number of statements flagged, and the highest non-zero severity code of
all messages issued. The highest severity code is equal to the assembler
return code.

If no statements are flagged, the following statement is printed:

No Statements Flagged in this Assembly

If the assembly completes with a non-zero return code, and there are no
flagged statements, it indicates there is a diagnostic message in the Option
Summary section of the listing (see Figure 2 on page 10).

For a complete discussion of how error messages and MNOTEs are handled,
see Chapter 6, “Diagnosing Assembly Errors” on page 139.

�3� The current release of High Level Assembler and the last PTF applied.

�4� Provides information about the system on which the assembly was run. These
are:

� The name and level of the operating system used to run the assembly.

� The jobname for the assembly job. If the jobname is not available,
“(NOJOB)” is printed.

� The stepname for the assembly job. If the stepname is not available,
“(NOSTEP)” is printed.

� The procedure name for the assembly job. If the procedure name is not
available, “(NOPROC)” is printed.

�5� On MVS and CMS, all data sets used in the assembly are listed by their
standard ddname. The data set information includes the data set name, and
the serial number of the volume containing the data set. On MVS, the data set
information may also include the name of a member of a partitioned data set
(PDS).

If a user exit provides the data set information, then the data set name is the
value extracted from the Exit-Specific Information block described in the High
Level Assembler Programmer's Guide.

The “Con” column shows the concatenation value assigned for each input data
set. You use this value to cross-reference flagged statements, and macros
and copy code members listed in the Macro and Copy Code Cross Reference
section.

MVS: On MVS, the data set name for all data sets is extracted from the MVS
job file control block (JFCB). If the data set is a JES2 spool file, for example,
the data set name is the name allocated by JES2. If the data set is allocated
to DUMMY, or NULLFILE, the data set name is shown as NULLFILE.

CMS: On CMS, the data set name is assigned one of the values shown in
Figure 23.

 Chapter 2. Using the Assembler Listing 33

 Diagnostic Cross Reference and Assembler Summary

VSE: On VSE, the data set name is assigned one of the values shown in
Figure 24.

�6� Output data sets do not have a concatenation value.

| �7� The usage statistics of external functions for the assembly. The following
| statistics are reported:

| SETAF function calls The number of times the function was called from a
| SETAF assembler instruction.

| SETCF function calls The number of times the function was called from a
| SETCF assembler instruction.

| Messages issued The number of times the function requested that a
| message be issued.

| Messages severity The maximum severity for the messages issued by
| this function.

| Function Name The name of the external function module.

Figure 23. Data Set Names on CMS

File Allocated To: Data Set Name

CMS file The 8-character filename, the
8-character filetype, and the
2-character filemode of the file, each
separated by a blank. If the data set
is a disk file in the Shared File system,
the volume serial number contains “KK
SFS”.

Dummy file (no physical I/O) DUMMY

Printer PRINTER

Punch PUNCH

Reader READER

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9,
or from A to F.

Terminal TERMINAL

Figure 24. Data Set Names on VSE

File Allocated To: Data Set Name

Disk The file-id

Job stream (SYSIPT) None

Librarian (Disk). The ddname is shown
as KLIBK.

The file-id

Printer None

Punch None

Labeled tape file The file-id of the tape file

Unlabeled tape file None

Terminal (TERM) None

34 HLASM V1R3 Programmer’s Guide

 Diagnostic Cross Reference and Assembler Summary

�8� The usage statistics of the I/O exits you specified for the assembly. If you do
not specify an exit, the assembler does not produce any statistics. The
following statistics are reported:

Exit Type The type of exit.

Name The name of the exit module as specified in the EXIT
assembler option.

Calls The number of times the exit was called.

Records The number of records added and deleted by the exit.

Diagnostic Messages The number of diagnostic messages printed, as a result
of exit processing.

All counts are shown right justified and leading zeroes are suppressed, unless
the count is zero.

�9� The amount of storage allocated to the buffer pool.

�1�� The minimum value for the SIZE option that the assembler estimates would
result in the assembly being performed in storage. This may be less than the
amount of storage allocated to the assembler. If the amount of storage in the
buffer pool is not enough for an in-storage assembly, this value contains the
assembler's approximation of the amount of storage required.

�11� The number of primary input records read by the assembler. This count does
not include any records read or discarded by the SOURCE user exit.

�12� The count of the actual number of records generated by the assembler. If you
have used the SPACE n assembler instruction, the count may be less than the
total number of printed and blank lines appearing in the listing. For a SPACE
n that does not cause an eject, the assembler inserts n blank lines in the listing
by generating n/3 blank records, rounded to the next lower integer if a fraction
results. For a SPACE 2, no blank records are generated. The assembler
does not generate a blank record to force a page eject.

This count does not include any listing records generated or discarded by the
LISTING user exit.

�13� The number of records read from the libraries allocated to SYSLIB on MVS
and CMS, or assigned to the Librarian on VSE. This count does not include
any records read or discarded by the LIBRARY user exit.

�14� The number of object records written. This count does not include any object
records generated or discarded by the OBJECT or PUNCH user exits.

�15� The number of reads from the work file (SYSUT1).

�16� The number of writes to the work file (SYSUT1).

�17� The number of ADATA records written to the associated data file.

�18� On VSE, the assembly start and stop times in hours, minutes and seconds.

On MVS and CMS, the assembly start and stop times in hours, minutes and
seconds and the approximate amount of processor time used for the assembly,
in hours, minutes, and seconds to four decimal places.

The assembly start time does not include the time used during assembly
initialization, which allocates main storage and data sets and processes the
assembler invocation parameters. The assembly stop time does not include

 Chapter 2. Using the Assembler Listing 35

 Diagnostic Cross Reference and Assembler Summary

the time used during assembly termination, which deallocates main storage
and data sets.

On MVS and CMS, High Level Assembler provides a sample listing exit which
allows you to suppress the Diagnostic Cross Reference and Assembler Summary.
See Appendix J, “Sample LISTING User Exit (MVS and CMS)” on page 364.

36 HLASM V1R3 Programmer’s Guide

 Specifying Assembler Options

Chapter 3. Controlling your Assembly with Options

High Level Assembler offers a number of optional facilities. For example, you can
suppress printing of the assembly listing or parts of the listing, and you can specify
whether you want an object module or an associated data file. There are two types
of options:

� Simple pairs of keywords: A positive form (such as OBJECT) that requests a
facility, and an alternate negative form (such as NOOBJECT) that excludes that
facility.

� Keywords, such as LINECOUNT(50), that permit you to assign a value to a
function.

This chapter describes each of the assembler options, and when you can use
them. Each of the options has a default value that the assembler uses if you do
not specify an alternative value. The default values are explained under “Default
Options” on page 39.

Specifying Assembler Options
The way you specify the options depends on the environment in which High Level
Assembler is running.

MVS Batch: On MVS Batch, you select the options by specifying them in the
PARM field of the JCL EXEC statement that invokes the assembler. For example:

//ASSEMBLE EXEC PGM=ASMA99,PARM=‘LIST(133),DBCS’

You can also use catalogued procedures to invoke the assembler. To override
options in a cataloged procedure, you must include the PARM field in the EXEC
statement that invokes the procedure. If the cataloged procedure contains more
than one step, you must also qualify the keyword parameter (PARM) with the name
of the step within the procedure that invokes the assembler. For example:

// EXEC ASMACG,PARM.C=‘LIST(133),DBCS’

For more examples on how to specify options in a cataloged procedure, see
“Overriding Statements in Cataloged Procedures” on page 177.

TSO: On TSO, you select the options by specifying them in the second parameter
of the TSO CALL command that invokes the assembler. For example:

CALL ‘SYS1.LINKLIB(ASMA99)’ ‘LIST(133),DBCS’

CMS: On CMS, you select the options by specifying them after the left parenthesis
on the CMS ASMAHL command that invokes the assembler. For example:

ASMAHL filename (LIST(133) DBCS[)]

VSE Batch: In batch, you select the options by specifying them in the PARM field
of the EXEC JCL statement that invokes the assembler. You can also specify
some of the options on the JCL OPTION statement. For example:

// OPTION TERM
// EXEC ASMA99,SIZE=ASMA99,PARM=‘LIST,DBCS’

 Copyright IBM Corp. 1982, 1998 37

 Specifying Assembler Options

VSE ICCF: On ICCF, you select the options by specifying them in the PARM field
of the job entry statement /LOAD that invokes the assembler. For example:

/LOAD ASMA99 PARM=‘LIST,DBCS’

Coding Rules: The rules for coding the assembler options are:

� You can specify the options in any order.

� If you specify contradictory options, for example, LIST and NOLIST, the
assembler uses the last (or rightmost) option, and issues a warning message.

� If you specify an incorrect option the assembler issues a diagnostic message,
and sets the return code to 2 or higher. You can prevent the setting of the
return code by using the FLAG option.

� On CMS, if you specify two or more options, the options can be separated by
spaces or commas.

� On MVS, if you specify two or more options, the list of options must be
enclosed within single quotation marks or parentheses. Each option must be
separated by a comma.

If you specify only one option and it does not include any special characters,
the enclosing single quotation marks or parentheses can be omitted.

All options that have suboptions must be within single quotation marks because
they contain special characters.

The option list must not be longer than 100 characters, including the separating
commas.

If you need to continue the PARM field onto another record, the entire PARM
field must be enclosed in parentheses. However, any part of the PARM field
enclosed in single quotation marks must not be continued on another record.

� On VSE, you must enclose the options in single quotation marks and separate
each option with a comma.

The option list must not be longer than 100 characters, including the separating
commas.

If you need to continue the PARM field onto another record, place any
character in column 72 of the record you wish to continue, and continue in
column 16 on the following record.

| The operating system passes to the assembler any spaces you code in the
| PARM=JCL parameter, including those implied in a continuation. For example:

| // EXEC ASMA99,SIZE=(ASMA99,59K),PARM='RENT,SIZE(MAX-599K),EXIT(LIBEXIT/
| (EDECKXIT))'

| is not equivalent to:

| // EXEC ASMA99,SIZE=(ASMA99,59K),PARM='RENT,SIZE(MAX-599K), /
| EXIT(LIBEXIT(EDECKXIT))'

| The second example results in the following diagnostic message:

| KK ASMA499W ERROR IN INVOCATION PARAMETER - EXIT(LIBEXIT(EDECKXIT))

Fixed Options: If an option was specified on the DELETE operand of the
ASMAOPT macro during installation, you cannot change the option when you
invoke the assembler.

38 HLASM V1R3 Programmer’s Guide

 Precedence of Assembler Options

PESTOP: If the PESTOP option was specified during installation, and an error is
detected in the options you specify at run time, the assembly stops.

*Process Statements: Process (*PROCESS) statements let you specify selected
assembler options in your assembler source program. You can include them in the
primary input data set or provide them from a SOURCE user exit. You cannot
specify the following options on process statements:

 ADATA LINECOUNT SIZE
| ASA (MVS and CMS) LIST SYSPARM
| DECK NOPRINT (CMS) TERM
| DISK (CMS) OBJECT TRANSLATE
| EXIT OPTABLE XOBJECT (MVS and CMS)
| LANGUAGE PRINT (CMS)

Refer to the Language Reference for a description of the *PROCESS statement.

Invoking the Assembler Dynamically: Assembler options can be passed in a
parameter list when the assembler is invoked dynamically from an executing
program. For further information, refer to “Invoking the Assembler Dynamically” on
page 150 (for the MVS platform) or “Invoking the Assembler Dynamically” on
page 206 (for the VSE platform).

 Default Options
When High Level Assembler is installed, each assembler option is preset to a
default. The IBM-supplied default options are shown above the main path of the
syntax diagrams in the description of the assembler options that follow. However,
these might not be the default options in effect at your installation; the defaults
could have been changed when High Level Assembler was installed. For example,
NOADATA is an IBM-supplied default, and ADATA might be the default at your
installation. Default options can be fixed during installation which prevents you
from overriding them during the assembly. The assembler issues a message if you
try to override a fixed option.

Precedence of Assembler Options
Assembler options are recognized in the order of precedence (highest to lowest)
described below.

� Fixed installation defaults (options that may not be specified at assembly time
because they were specified in the DELETE operand of the OPTIONS
installation macro).

� Options on the JCL PARM parameter of the EXEC statement on MVS and
VSE, or the ASMAHL command on CMS.

� Options on the JCL OPTION statement (VSE only).

� Options on *PROCESS statements.

� Non-fixed installation defaults.

 Chapter 3. Controlling your Assembly with Options 39

 ALIGN

 Assembler Options
A description of each of the options you can use to control the assembly follow.

Refer to “Syntax Notation” on page xvii for instructions how to read the option
syntax diagrams. The IBM-supplied option defaults are shown above the main path
of the syntax diagrams.

 ADATA

 ┌ ┐─NOADATA─
��─ ──┴ ┴─ADATA─── ─��

Default
NOADATA

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

ADATA
Specifies that the assembler collect associated data and write it to the
associated data file. You define the associated data file with the SYSADATA
ddname on MVS and CMS, or with the SYSADAT filename on VSE.
Appendix D, “Associated Data File Output” on page 252 describes the format
of the associated data file.

| Note: Specifying XOBJECT, LIBMAC, or XREF(FULL) will change the content
| of the ADATA that is produced.

NOADATA
| Specifies that the assembler is not to collect associated data. If you specify
| NOADATA, then the assembler ignores the EXIT(ADEXIT) option.

 ALIGN

 ┌ ┐─ALIGN───
��─ ──┴ ┴─NOALIGN─ ─��

Default
ALIGN

Abbreviations
None

ALIGN
Instructs the assembler to check alignment of addresses in machine
instructions for consistency with the requirements of the operation code type.
DC, DS, DXD, and CXD are to be aligned on the correct boundaries.

NOALIGN
Instructs the assembler not to check alignment of unprivileged machine
instruction data references, but still to check instruction references and

40 HLASM V1R3 Programmer’s Guide

 BATCH

privileged machine instruction data references. DC, DS, and DXD are to be
aligned on the correct boundaries only if the duplication factor is 0.

Notes:

1. Specify the FLAG(NOALIGN) option to suppress the message issued when the
assembler detects an alignment inconsistency.

| 2. If your program is assembled with data areas or DSECT for interfacing with
| IBM products, you should use the default (ALIGN) unless specifically directed
| otherwise.

3. On VSE, you can specify the ALIGN option on the JCL OPTION statement.

ASA (MVS and CMS)

 ┌ ┐─NOASA─
��─ ──┴ ┴─ASA─── ─��

Default
NOASA

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

ASA
Instructs the assembler to use American National Standard printer control
characters in records written to the listing data set.

NOASA
Instructs the assembler to use machine printer control characters in records
written to the listing data set.

 BATCH

 ┌ ┐─BATCH───
��─ ──┴ ┴─NOBATCH─ ─��

Default
BATCH

Abbreviations
None

BATCH
Instructs the assembler that multiple assembler source programs may be in the
input data set. The first statement of the second and subsequent source
programs must immediately follow the END statement of the previous source
program. An end-of-file must immediately follow the last source program.

NOBATCH
Instructs the assembler that only one assembler source program is in the input
data set.

 Chapter 3. Controlling your Assembly with Options 41

 COMPAT

 COMPAT

 ┌ ┐─NOCOMPAT────────────────────
 │ │┌ ┐─,─────────────
��─ ──┴ ┴──COMPAT(───+ ┴┬ ┬─CASE────────) ─��

| ├ ┤─LITTYPE─────
 ├ ┤─MACROCASE───
 ├ ┤─SYSLIST─────

| ├ ┤─NOCASE──────
| ├ ┤─NOLITTYPE───
| ├ ┤─NOMACROCASE─
| └ ┘─NOSYSLIST───

Default
NOCOMPAT

Abbreviations
| CPAT(CASE,LIT,MC,SYSL,NOCASE,NOLIT,NOMC,NOSYSL) / NOCPAT

| Note: You can specify the COMPAT (or NOCOMPAT) option as a parameter of
| the ACONTROL statement. For further details, refer to the High Level Assembler
| Language Reference.

COMPAT(CASE)
Instructs the assembler to maintain uppercase alphabetic character set
compatibility with earlier assemblers. It restricts language elements to
uppercase alphabetic characters A through Z if they were so restricted in earlier
assemblers.

| COMPAT(LITTYPE)
| Instructs the assembler to return “U” as the type attribute for all literals.

COMPAT(MACROCASE)
Instructs the assembler to convert lowercase alphabetic characters (a through
z) in unquoted macro operands to uppercase alphabetic characters (A through
Z).

COMPAT(SYSLIST)
Instructs the assembler to treat sublists in SETC symbols as compatible with
earlier assemblers. SETC symbols that are assigned parenthesized sublists
are treated as character strings, not sublists, when passed to a macro definition
in an operand of a macro instruction.

| COMPAT(NOCASE)
| Instructs the assembler to allow a mixed-case alphabetic character set.

| COMPAT(NOLITTYPE)
| Instructs the assembler to provide the correct type attribute for literals once
| they have been defined.

| COMPAT(NOMACROCASE)
| Instructs the assembler not to convert lowercase alphabetic characters (a
| through z) in unquoted macro operands.

| COMPAT(NOSYSLIST)
| Instructs the assembler not to treat sublists in SETC symbols as character
| strings, when passed to a macro definition in an operand of a macro
| instruction.

42 HLASM V1R3 Programmer’s Guide

 DECK

NOCOMPAT
Instructs the assembler to allow lowercase alphabetic characters a through z in
all language elements, to treat sublists in SETC symbols as sublists when

| passed to a macro definition in the operand of a macro instruction, and to
| provide the correct type attribute for literals once the have been defined.

 DBCS

 ┌ ┐─NODBCS─
��─ ──┴ ┴─DBCS─── ─��

Default
NODBCS

Abbreviations
None

DBCS
Instructs the assembler to accept double-byte character set data, and to
support graphic (G-type) constants and self-defining terms. The assembler
recognizes X'0E' and X'0F' in character strings enclosed by single quotation
marks, and treats them as Shift-Out and Shift-In control characters for
delimiting DBCS data.

NODBCS
Specifies that the assembler does not recognize X'0E' and X'0F' as
double-byte character set data delimiters, and does not support graphic
(G-type) constants and self-defining terms.

 DECK

 ┌ ┐─NODECK─
��─ ──┴ ┴─DECK─── ─��

Default
NODECK

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

DECK
Specifies that the assembler generate object code and write it to the object
data set. You define the object data set with the SYSPUNCH ddname on MVS
and CMS, or with the IJSYSPH filename and by assigning SYSPCH on VSE.

NODECK
Instructs the assembler not to write the object code to SYSPUNCH on MVS
and CMS, or SYSPCH on VSE.

If you specify NODECK and NOOBJECT, the assembler ignores the
EXIT(OBJEXIT)) option.

 Chapter 3. Controlling your Assembly with Options 43

 ERASE

| On VSE, you can only specify the DECK option on the JCL OPTION statement. If
you specify it on the PARM operand of the JCL EXEC statement, the assembler
issues message ASMA499W, and ignores the option.

| DISK (CMS Only)
See “PRINT (CMS Only)” on page 63.

 DXREF

 ┌ ┐─DXREF───
��─ ──┴ ┴─NODXREF─ ─��

Default
DXREF

Abbreviations
DX / NODX

DXREF
Instructs the assembler to produce the DSECT Cross Reference section of the
assembler listing. The DSECT cross reference includes:

� The symbolic names of all DSECTs defined in the assembly
� The assembled length of each DSECT
� The ESDID of each DSECT
� The statement number which defines the DSECT

NODXREF
Instructs the assembler not to produce the DSECT Cross Reference section of
the assembler listing.

| ERASE (CMS Only)

 ┌ ┐─ERASE───
��─ ──┴ ┴─NOERASE─ ─��

Default
ERASE

Abbreviations
None

Restrictions
This option is not allowed on *PROCESS statements.

This option can only be specified when you use the ASMAHL command on
CMS.

ERASE
Specifies that the existing files with a filename the same as the filename on the
ASMAHL command, and a filetype of LISTING, TEXT, and SYSADATA, are to
be deleted before the assembly is run. Only files on the disk on which the
assembler writes the new listing, object, and associated data files are deleted.

44 HLASM V1R3 Programmer’s Guide

 ESD

NOERASE
Specifies that the existing LISTING, TEXT, and SYSADATA files are not to be
deleted before the assembly is run.

 ESD

 ┌ ┐─ESD───
��─ ──┴ ┴─NOESD─ ─��

Default
ESD

Abbreviations
None

ESD
Instructs the assembler to produce the External Symbol Dictionary section of
the assembler listing. The ESD contains the external symbol dictionary
information that is passed to the linkage editor or loader, or DFSMS/MVS
binder, in the object module.

NOESD
Instructs the assembler not to produce the External Symbol Dictionary section
of the assembler listing.

On VSE, you can specify this option on the JCL OPTION statement.

 Chapter 3. Controlling your Assembly with Options 45

 EXIT

 EXIT

 ┌ ┐─NOEXIT──────────────
 │ │┌ ┐─,───────
��─ ──┴ ┴──EXIT(───+ ┴─┤ �1� ├─) ─��

�1�:
├─ ──┬ ┬─────────────────────────────────── ─┤

 │ │┌ ┐──NOINEXIT ────────────────────
 ├ ┤──┼ ┼────────────────────────────── ─

│ │└ ┘──INEXIT(mod1 ──┬ ┬────────────)
 │ │└ ┘─(──str1──)─
 │ │┌ ┐──NOLIBEXIT ────────────────────
 ├ ┤──┼ ┼───────────────────────────────

│ │└ ┘──LIBEXIT(mod2 ──┬ ┬────────────)
 │ │└ ┘─(──str2──)─
 │ │┌ ┐──NOPRTEXIT ────────────────────
 ├ ┤──┼ ┼───────────────────────────────

│ │└ ┘──PRTEXIT(mod3 ──┬ ┬────────────)
 │ │└ ┘─(──str3──)─
 │ │┌ ┐──NOOBJEXIT ────────────────────
 ├ ┤──┼ ┼───────────────────────────────

│ │└ ┘──OBJEXIT(mod4 ──┬ ┬────────────)
 │ │└ ┘─(──str4──)─
 │ │┌ ┐──NOADEXIT ────────────────────
 ├ ┤──┼ ┼────────────────────────────── ─

│ │└ ┘──ADEXIT(mod5 ──┬ ┬────────────)
 │ │└ ┘─(──str5──)─
 │ │┌ ┐──NOTRMEXIT ────────────────────
 └ ┘──┼ ┼───────────────────────────────

└ ┘──TRMEXIT(mod6 ──┬ ┬────────────)
 └ ┘─(──str6──)─

Default
NOEXIT

Abbreviations
EX(INX,LBX,PRX,OBX,ADX,TRX) / NOEX

Restrictions
You cannot specify this option on *PROCESS statements.

INEXIT
Specifies that the assembler use an input (SOURCE) exit for the assembly.
mod1 is the name of the load module for the exit. The assembler passes

| control to the load module for SOURCE type exit processing, and provides a
| pointer to str1 in a parameter list when the exit is first called. For a full
| description, see Chapter 4, “Providing User Exits” on page 76.

You can use a SOURCE exit, for example, to read variable-length source input
records. See also Appendix K, “Sample SOURCE User Exit (MVS and CMS)”
on page 366.

NOINEXIT
Specifies that there is no SOURCE exit.

LIBEXIT
Specifies that the assembler use a LIBRARY exit for the assembly. mod2 is the
name of the load module for the exit. The assembler passes control to the

| load module for LIBRARY type exit processing, and provides a pointer to str2 in

46 HLASM V1R3 Programmer’s Guide

 EXIT

| a parameter list when the exit is first called. For a full description, see
| Chapter 4, “Providing User Exits” on page 76.

On CMS, you can use this exit, for example, to handle non-standard libraries,
| or macros and copy books that are in separate CMS files instead of CMS

MACLIBs.

On VSE, you can use this exit to handle edited macros from the Librarian
sublibraries.

Refer to VSE/ESA Guide to System Functions for a description of a LIBRARY
exit to read edited macros.

NOLIBEXIT
Specifies that there is no LIBRARY exit.

PRTEXIT
Specifies that the assembler use a LISTING exit for the assembly. mod3 is the
name of the load module for the exit. The assembler passes control to the

| load module for LISTING type exit processing, and provides a pointer to str3 in
| a parameter list when the exit is first called. For a full description, see
| Chapter 4, “Providing User Exits” on page 76.

You can use the LISTING exit, for example, to suppress parts of the assembly
listing, or provide additional listing lines. See also Appendix J, “Sample
LISTING User Exit (MVS and CMS)” on page 364.

NOPRTEXIT
Specifies that there is no LISTING exit.

OBJEXIT
On MVS and CMS, specifies that the assembler use an OBJECT exit or
PUNCH exit, or both, for the assembly. mod4 is the name of the load module
for the exit. The assembler passes control to the load module for OBJECT
type exit processing when you specify either the OBJECT or XOBJECT option,

| and provides a pointer to str4 in a parameter list when the exit is first called.
| For a full description, see Chapter 4, “Providing User Exits” on page 76. The

assembler passes control to the load module for PUNCH type exit processing
when you specify the DECK option. The OBJEXIT suboption is ignored if you
specify the assembler options NODECK and NOOBJECT.

On VSE, specifies that the assembler use a PUNCH exit for the assembly. The
name of the load module for the exit is mod4. The assembler passes control to
the load module for PUNCH type exit processing when you specify the DECK
option. You can use the PUNCH exit, for example, to catalog object modules
directly into a Librarian sublibrary.

NOOBJEXIT
Specifies that there is no OBJECT exit or PUNCH exit.

ADEXIT
Specifies that the assembler use an ADATA exit for the assembly. mod5 is the
name of the load module for the exit. The assembler passes control to the

| load module for ADATA type exit processing, and provides a pointer to str5 in a
| parameter list when the exit is first called. For a full description, see Chapter 4,
| “Providing User Exits” on page 76. See also Appendix I, “Sample ADATA

User Exit (MVS and CMS)” on page 357.

 Chapter 3. Controlling your Assembly with Options 47

 EXIT

NOADEXIT
Specifies that there is no ADATA exit.

TRMEXIT
Specifies that the assembler use a TERM exit for the assembly. mod6 is the
name of the load module for the exit. The assembler passes control to the

| load module for TERM type exit processing, and provides a pointer to str6 in a
| parameter list when the exit is first called. For a full description, see Chapter 4,
| “Providing User Exits” on page 76.

NOTRMEXIT
Specifies that there is no TERM exit.

NOEXIT
Specifies that there are no exits for the assembly.

The module names mod1, mod2, mod3, mod4, mod5, and mod6 can refer to the
same load module.

The suboptions str1, str2, str3, str4, str5, and str6 are optional. They are character
strings, up to 64 characters in length, that are passed to the exit module during
OPEN processing. You may include any character in a string, but you must pair
parentheses. JCL restrictions require that you specify two single quotation marks
to represent a single quotation mark, and two ampersands to represent a single
ampersand.

For more information about the EXIT option, see Chapter 4, “Providing User Exits”
on page 76.

You specify these options in the installation default options using the ADEXIT,
INEXIT, LIBEXIT, OBJEXIT, PRTEXIT, and TRMEXIT operands.

48 HLASM V1R3 Programmer’s Guide

 FLAG

 FLAG
|

| ┌ ┐─,───────
| ��─ ──FLAG(───+ ┴─┤ �1� ├─) ─��

| �1�:
| ├─ ──┬ ┬────────────── ─┤
| │ │┌ ┐─9───────
| ├ ┤──┼ ┼───────── ─
| │ │└ ┘─integer─
| │ │┌ ┐─ALIGN───
| ├ ┤──┼ ┼───────── ─
| │ │└ ┘─NOALIGN─
| │ │┌ ┐─CONT───
| ├ ┤──┼ ┼──────── ──
| │ │└ ┘─NOCONT─
| │ │┌ ┐─NOIMPLEN─
| ├ ┤──┼ ┼──────────
| │ │└ ┘─IMPLEN───
| │ │┌ ┐─NOPAGE9─
| ├ ┤──┼ ┼───────── ─
| │ │└ ┘─PAGE9───
| │ │┌ ┐─RECORD───
| ├ ┤──┼ ┼──────────
| │ │└ ┘─NORECORD─
| │ │┌ ┐─NOSUBSTR─
| └ ┘──┼ ┼──────────
| └ ┘─SUBSTR───

Default
| FLAG(0,ALIGN,CONT,NOIMPLEN,NOPAGE0,RECORD,NOSUBSTR)

Abbreviations
AL,IMP,PG0,RC,SUB / NOAL,NOIMP,NOPG0,NORC,NOSUB

| Note: You can specify the FLAG option as a parameter of the ACONTROL
| statement. For further details, refer to the High Level Assembler Language
| Reference.

integer
Specifies that error diagnostic messages with this or a higher severity code are
printed in the source and object section of the assembly listing. Error
diagnostic messages with a severity code lower than integer do not appear in
the source and object section, and the severity code associated with those
messages is not used to set the return code issued by the assembler. Any
severity code from 0 through 255 may be specified. Error diagnostic messages
have a severity code of 0, 2, 4, 8, 12, 16, or 20. MNOTEs can have a severity
code of 0 through 255.

When specified with the TERM assembler option, FLAG controls which
messages are displayed in the terminal output.

FLAG(ALIGN)
| Instructs the assembler to issue diagnostic message ASMA933I when an
| inconsistency is detected between the operation code type and the alignment of

addresses in machine instructions. Assembler option ALIGN describes when
the assembler detects an inconsistency.

 Chapter 3. Controlling your Assembly with Options 49

 FLAG

FLAG(NOALIGN)
| Instructs the assembler not to issue diagnostic message ASMA933I when an
| inconsistency is detected between the operation code type and the alignment of

addresses in machine instructions.

FLAG(CONT)
Specifies that the assembler is to issue diagnostic messages ASMA439W through
ASMA433W when one of the following situations occurs in a macro call instruction:

� The operand on the continued record ends with a comma, and a
continuation statement is present but continuation does not start in the
continue column (usually column 16).

� A list of one or more operands ends with a comma, but the continuation
column (usually column 72) is blank.

� The continuation record starts in the continue column (usually column 16)
but there is no comma present following the operands on the previous
record.

� The continued record is full but the continuation record does not start in the
continue column (usually column 16).

| Note: FLAG(CONT) checks only apply to statements that appear in the output
| listing.

FLAG(NOCONT)
Specifies that the assembler is not to issue diagnostic messages ASMA439W
through ASMA433W when an inconsistent continuation is encountered.

| FLAG(IMPLEN)
| Instructs the assembler to issue diagnostic message ASMA169I when an explicit
| length subfield is omitted from an SS-format machine instruction.

| FLAG(NOIMPLEN)
| Instructs the assembler not to issue diagnostic message ASMA169I when an
| explicit length subfield is omitted from an SS-format machine instruction.

| FLAG(PAGE0)
| Instructs the assembler to issue diagnostic message ASMA399W when an
| operand is resolved to a baseless address and a base and displacement is
| expected. This message will only be issued for instructions that reference
| storage. For example, a LOAD instruction will generate the message but a
| LOAD ADDRESS instruction will not generate the message.

| FLAG(NOPAGE0)
| Instructs the assembler not to issue diagnostic message ASMA399W when an
| operand is resolved to a baseless address and a base and displacement is
| expected.

| The FLAG suboptions PAGE0 and IMPLEN are specified in the installation
| default options as PAGE0WARN and IMPLENWARN respectively.

FLAG(RECORD)
Instructs the assembler to do the following:

� Issue diagnostic message ASMA435I immediately after the last diagnostic
message for each statement in error. The message text describes the
record number and input data set name of the statement in error.

50 HLASM V1R3 Programmer’s Guide

 FOLD

� Include the member name (if applicable), the record number and the input
data set concatenation value with the statement number in the list of
flagged statements in the Diagnostic Cross Reference and Assembler
Summary section of the assembler listing.

FLAG(NORECORD)
Instructs the assembler to do the following:

� Not issue diagnostic message ASMA435I for statements in error.

� Only show the statement number in the list of flagged statements in the
Diagnostic Cross Reference and Assembler Summary section of the
assembler listing.

FLAG(SUBSTR)
Instructs the assembler to issue warning diagnostic message ASMA994 when the
second subscript value of the substring notation indexes past the end of the
character expression.

FLAG(NOSUBSTR)
Instructs the assembler not to issue warning diagnostic message ASMA994 when
the second subscript value of the substring notation indexes past the end of the
character expression.

The FLAG suboptions ALIGN, CONT, RECORD, and SUBSTR are specified in the
installation default options as ALIGNWARN, CONTWARN, RECORDINFO, and
SUBSTRWARN, respectively.

 FOLD

 ┌ ┐─NOFOLD─
��─ ──┴ ┴─FOLD─── ─��

Default
NOFOLD

Abbreviations
None

FOLD
Instructs the assembler to convert lowercase alphabetic characters (a through
z) in the assembly listing to uppercase alphabetic characters (A through Z). All
lowercase alphabetic characters are converted, including lowercase characters
in source statements, assembler error diagnostic messages, and assembly
listing lines provided by a user exit. Lowercase alphabetic characters are
converted to uppercase alphabetic characters, regardless of the setting of the
COMPAT(CASE) option.

NOFOLD
Specifies that lowercase alphabetic characters are not converted to uppercase
alphabetic characters.

The assembler listing headings are not affected by the FOLD option. The
LANGUAGE option controls the case for assembler listing headings.

 Chapter 3. Controlling your Assembly with Options 51

| GOFF (MVS and CMS)
|

| ┌ ┐─NOGOFF──────────────
| │ │┌ ┐─NOADATA─
| ��─ ──┴ ┴──GOFF(──┴ ┴─ADATA───) ─��

| Default
| NOGOFF

| Abbreviations
| None

| Restrictions
| You cannot specify this option on *PROCESS statements.

| GOFF
| Instructs the assembler to produce a Generalized Object File format (GOFF)
| data set. You define this data set with the SYSLIN or SYSPUNCH ddname.

| Note: For more information on the GOFF format, refer to DFSMS/MVS
| Program Management.

| GOFF(NOADATA)
| The same as GOFF without a suboption.

| GOFF(ADATA)
| Instructs the assembler to produce a Generalized Object File format data set,
| and include ADATA text records.

| NOGOFF
| Instructs the assembler not to produce a Generalized Object File format data
| set.

| Notes:

| 1. You should specify the LIST(133) option when you specify the GOFF option. If
| the logical record length of the listing data set is less than 133, the assembler
| truncates the listing lines.

| 2. The extended object format does not support TEST (SYM) records. If you
| specify the TEST option with the GOFF option, the assembler issues a
| diagnostic error message.

| 3. GOFF is treated as a synonym for the XOBJECT option and accepts the same
| subparameters as XOBJECT.

| INFO
|

| ┌ ┐─NOINFO─────────
| ��─ ──┼ ┼──INFO(yyyymmdd) ─��
| └ ┘─INFO───────────

| Default
| NOINFO

| Abbreviations
| None

52 HLASM V1R3 Programmer’s Guide

| INFO
| Instructs the assembler to copy to the list data set all product information.

| The Product Information Page (see Figure 25 on page 54) follows the Option
| Summary,

| INFO(yyyymmdd)
| Instructs the assembler not to copy to the list data set any product information
| which is dated prior to yyyymmdd.

| NOINFO
| Instructs the assembler not to copy any product information to the list data set.

 Chapter 3. Controlling your Assembly with Options 53

| High Level Assembler Product Information
| HLASM R3.9
| Note - The following information is provided to highlight enhancements and
| changes to the High Level Assembler Product.

| The information displayed can be managed by using the following options:
| INFO - will print all available information for this release of the
| product.
| INFO(yyyymmdd) - will suppress those information items which are dated
| prior to "yyyymmdd".
| NOINFO - will suppress the product information page entirely including
| these notes.

| 19969529 APAR PN81262 Fixed
| PROBLEM SUMMARY:
| KK
| K USERS AFFECTED: High Level Assembler programs with a K
| K requirement to pass macro names and copy K
| K member names greater than 8 characters K
| K long to a library user exit. K
| KK
| K PROBLEM DESCRIPTION: The assembler does not support member K
| K names greater than 8 characters long. K
| K MSGASMA955S is not always produced K
| K following the COPY statement to which K
| K it refers. K
| K MSGASMA969S is erroneously produced. K
| KK
| K RECOMMENDATION: Apply the PTF provided. K
| KK
| The assembler does not currently support member names greater
| than 8 characters in length. MSGASMA115S, MSGASMA969S and
| MSGASMA957E will be produced when library macro calls and COPY
| statements refer to member names greater than 8 characters long.
| This restricts LIBEXIT processing to member names of 8 or less
| characters in length.
| Publication Closing Code: DEVCHNG

| Modify SC26-8264-99 High Level Assembler for MVS & VM & VSE
| Programmers Guide VSE edition and
| SC26-4941-91 High Level Assembler for MVS & VM & VSE
| Programmers Guide MVS & VM edition
| as follows:

Page 196 (VSE) and Page 246 (VM & MVS)
Change the length of the member or macro name and parent
macro name reference in the Library Member and Macro Cross
Reference Record X'9962' from CL8 to CL64.

| --
| Member or Macro CL64 The name of the member or macro.

| Figure 25. High Level Assembler Product Information Page

54 HLASM V1R3 Programmer’s Guide

 LANGUAGE

 LANGUAGE

 ┌ ┐─EN─
��─ ──LANGUAGE(──┼ ┼─DE─) ─��
 ├ ┤─ES─
 ├ ┤─JP─
 └ ┘─UE─

Default
LANGUAGE(EN)

Abbreviations
LANG(EN|ES|DE|JP|UE)

Restrictions
This option is not allowed on *PROCESS statements.

LANGUAGE(EN)
Specifies that the assembler issues messages, and prints the assembler listing
headings in mixed uppercase and lowercase English.

LANGUAGE(DE)
Specifies that the assembler issues messages in German. The assembler
listing headings are printed in mixed-case English.

LANGUAGE(ES)
Specifies that the assembler issues messages in Spanish. The assembler
listing headings are printed in mixed-case English.

LANGUAGE(JP)
Specifies that the assembler issues messages in Japanese. The assembler
listing headings are printed in uppercase English.

LANGUAGE(UE)
Specifies that the assembler issues messages, and prints the assembler listing
headings in uppercase English.

Note: The assembler uses the language specified in the installation default
options for messages produced in CMS by the ASMAHL command.

 Chapter 3. Controlling your Assembly with Options 55

 LIBMAC

 LIBMAC

 ┌ ┐─NOLIBMAC─
��─ ──┴ ┴─LIBMAC─── ─��

Default
NOLIBMAC

Abbreviations
LMAC / NOLMAC

| Note: You can specify the LIBMAC (or NOLIBMAC) option as a parameter of the
| ACONTROL statement. For further details, refer to the High Level Assembler
| Language Reference.

LIBMAC
Specifies that, for each macro, macro definition statements read from a macro
library are to be imbedded in the input source program immediately preceding
the first invocation of that macro. The assembler assigns statement numbers
to the macro definition statements as though they were included in the input
source program.

NOLIBMAC
Specifies that macro definition statements read from a macro library are not
included in the input source program.

 LINECOUNT

 ┌ ┐─69──────
��─ ──LINECOUNT(──┴ ┴─integer─) ─��

Default
LINECOUNT(60)

Abbreviations
LC(integer)

CMS Only:

The LINECOUNT option can be abbreviated to LINECOUN.

Restrictions
This option is not allowed on *PROCESS statements.

integer
Specifies the number of lines to be printed on each page of the assembly
listing. integer must have a value of 0, or 10 to 32767. If a value of 0 is
specified, no page ejects are generated and EJECT, CEJECT, and TITLE
statements in the assembly are ignored.

Up to 7 lines on each page may be used for heading lines.

56 HLASM V1R3 Programmer’s Guide

 LIST

 LIST

��─ ──┬ ┬──LIST ──┬ ┬───────────── ─��
 │ ││ │┌ ┐─121─
 │ │└ ┘──(──┼ ┼─133─)
 │ │└ ┘─MAX─
 └ ┘─NOLIST────────────────

Default
LIST(121)

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

LIST
Instructs the assembler to produce a listing. Specifying LIST without a
suboption is equivalent to specifying LIST(121).

LIST(133) (MVS and CMS)
Instructs the assembler to produce a listing, and print the Source and Object
section in the 133-character format. You should use this option when you
specify the XOBJECT option.

LIST(121) (MVS and CMS)
Instructs the assembler to produce a listing, and print the Source and Object
section in the 121-character format.

LIST(MAX) (MVS and CMS)
Instructs the assembler to produce a listing, and print the Source and Object
section in either the 121-character format or the 133-character format. If the
logical record length (LRECL) of the listing data set is less than 133 then the
assembler selects the 121-character format. If the LRECL of the listing data set
is 133 or more then the assembler selects the 133-character format.

NOLIST
Instructs the assembler to suppress the assembly listing. When you specify
NOLIST the assembler ignores the following options:

| DXREF RLD
| ESD RXREF
| EXIT(PRTEXIT) USING(MAP)
| MXREF(MAP) XREF
| PCONTROL

 Chapter 3. Controlling your Assembly with Options 57

 MXREF

 MXREF

��─ ──┬ ┬──MXREF ──┬ ┬──────────────── ─��
 │ ││ │┌ ┐─SOURCE─
 │ │└ ┘──(──┼ ┼─FULL───)
 │ │└ ┘─XREF───
 └ ┘─NOMXREF───────────────────

Default
MXREF(SOURCE)

Abbreviations
MX / NOMX

MXREF
Specifying MXREF without a suboption is equivalent to specifying
MXREF(SOURCE).

MXREF(SOURCE)
Instructs the assembler to produce the Macro and Copy Code Source
Summary section of the assembler listing. The macro and copy code source
summary includes the name of each macro library or copy library accessed, the
volume serial number of the first DASD volume on which the library resides,
and the names of each member retrieved from the library.

MXREF(FULL)
Instructs the assembler to produce the Macro and Copy Code Source
Summary section and the Macro and Copy Code Cross Reference section of
the assembler listing.

| Note: See note following MXREF(XREF).

MXREF(XREF)
Instructs the assembler to produce the Macro and Copy Code Cross Reference
section of the assembler listing. The Macro and Copy Code Cross Reference
includes the name of each macro or copy code member referenced in the
assembly, where it was referenced and where it was called or copied from.

| Note: If you specify MXREF(FULL) or MXREF(XREF), you might need to
| review the value of the SIZE option (as both of these assembler options
| use considerable amounts of storage).

NOMXREF
Specifies that macro and copy code information is not generated in the
assembler listing.

58 HLASM V1R3 Programmer’s Guide

 OBJECT

 OBJECT

 ┌ ┐─OBJECT───
��─ ──┴ ┴─NOOBJECT─ ─��

Default
OBJECT

Abbreviations
OBJ / NOOBJ

Restrictions
You cannot specify this option on *PROCESS statements.

OBJECT
Instructs the assembler to generate object code and write it to the object data
set. You define the object data set with the SYSLIN ddname, on MVS and
CMS, or with the IJSYSLN filename and by assigning SYSLNK on VSE.

NOOBJECT
Instructs the assembler not to write the object code to SYSLIN, on MVS and
CMS, or SYSLNK on VSE.

On VSE, you can only specify the OBJECT option by using the LINK or CATAL
option on the JCL OPTION statement. If you specify OBJECT on the PARM
operand of the JCL EXEC statement, the assembler issues message ASMA499W,
and ignores the option.

 Chapter 3. Controlling your Assembly with Options 59

 OPTABLE

 OPTABLE

 ┌ ┐─UNI─
��─ ──OPTABLE(──┼ ┼─DOS─) ─��
 ├ ┤─ESA─
 ├ ┤─XA──
 └ ┘─379─

Default
OPTABLE(UNI)

Abbreviations
OP(DOS|ESA|UNI|XA|370)

Restrictions
This option is not allowed on *PROCESS statements.

OPTABLE(DOS)
Instructs the assembler to load and use the DOS operation code table. The
DOS operation code is designed specifically for assembling programs
previously assembled using the DOS/VSE assembler. The following instructions
are not included in the DOS operation code table:

� Vector facility machine instructions

| � Branch Relative and Register Immediate machine instructions

 � Machine instructions:

 � Assembler instructions:

OPTABLE(ESA)
Instructs the assembler to load and use the operation code table that contains
the ESA/370 and ESA/390 architecture machine instructions, including those
with a vector facility.

BAS
BASR
CLRCH
CONCS
DISCS
EPAR
ESAR
IAC
IPTE
ISKE

IVSK
LASP
MVCK
MVCP
MVCS
PC
PT
RIO
RRBE
SAC

SIGP
SPX
SSAR
SSKE
STAP
STPX
TB
TPROT

ADATA
AEJECT
ACONTROL
AINSERT
ALIAS
AMODE
AREAD
ASPACE

CATTR
CCW0
CCW1
CEJECT
CXD
DXD
EXITCTL
LOCTR

MHELP
OPSYN
POP
PUSH
RMODE
RSECT

60 HLASM V1R3 Programmer’s Guide

 PCONTROL

OPTABLE(UNI)
Instructs the assembler to load and use the operation code table that contains
the System/370 and System/390 architecture machine instructions, including
those with a vector facility.

OPTABLE(XA)
Instructs the assembler to load and use the operation code table that contains
the System/370 extended architecture machine instructions, including those
with a vector facility.

OPTABLE(370)
Instructs the assembler to load and use the operation code table that contains
the System/370 systems machine instructions, including those with a vector
facility.

Notes:

1. These operation code tables do not contain symbolic operation codes for
machine instructions that are unique to IBM 4300 Processors operating in
ECPS:VSE mode.

2. The operation codes supported by High Level Assembler are described in the
manuals listed under “Related Publications (Architecture)” on page 373.

 PCONTROL

 ┌ ┐─NOPCONTROL──────────────────
 │ │┌ ┐─,───────────
��─ ──┴ ┴──PCONTROL(───+ ┴┬ ┬─DATA──────) ─��
 ├ ┤─NODATA────
 ├ ┤─GEN───────
 ├ ┤─NOGEN─────
 ├ ┤─MCALL─────
 ├ ┤─NOMCALL───
 ├ ┤─MSOURCE───
 ├ ┤─NOMSOURCE─
 ├ ┤─ON────────
 ├ ┤─OFF───────
 ├ ┤─UHEAD─────
 └ ┘─NOUHEAD───

Default
NOPCONTROL

Abbreviations
PC(DATA,NODATA,GEN,NOGEN,MC,NOMC,MS,NOMS,ON,OFF,UHD,NOUHD)
/ NOPC

PCONTROL(DATA)
Specifies that the assembler is to print the object code of all constants in full,
as though a PRINT DATA statement were specified at the beginning of the
source program. All PRINT NODATA statements in the source program are
ignored. However, specifying PCONTROL(DATA) does not override PRINT
OFF or PRINT NOGEN statements in the source program.

PCONTROL(NODATA)
Specifies that the assembler is to print only the first 8 bytes of the object code
of constants, as though a PRINT NODATA statement were specified at the

 Chapter 3. Controlling your Assembly with Options 61

 PCONTROL

beginning of the source program. All PRINT DATA statements in the source
program are ignored.

PCONTROL(GEN)
Specifies that the assembler is to print all statements generated by the
processing of a macro, as though a PRINT GEN statement were specified at
the beginning of the source program. All PRINT NOGEN statements in the
source program are ignored. However, specifying PCONTROL(GEN) does not
override PRINT OFF statements in the source program.

PCONTROL(NOGEN)
Specifies that the assembler is not to print statements generated by the
processing of a macro or open code statements with substitution variables, as
though a PRINT NOGEN statement were specified at the beginning of the
source program. All PRINT GEN and PRINT MSOURCE statements in the
source program are ignored.

PCONTROL(MCALL)
Specifies that the assembler is to print nested macro instructions, as though a
PRINT MCALL statement were specified at the beginning of the source
program. All PRINT NOMCALL statements in the source program are ignored.
However, specifying PCONTROL(MCALL) does not override PRINT OFF or
PRINT NOGEN statements in the source program.

PCONTROL(NOMCALL)
Instructs the assembler not to print nested macro instructions, as though a
PRINT NOMCALL statement were specified at the beginning of the source
program. All PRINT MCALL statements in the source program are ignored.

PCONTROL(MSOURCE)
Specifies that the assembler is to print the source statements generated during
macro processing, as well as the assembled addresses and generated object
code of the statements. All PRINT NOMSOURCE statements in the source
program are ignored. However, specifying PCONTROL(MSOURCE) does not
override PRINT OFF or PRINT NOGEN statements in the source program.

PCONTROL(NOMSOURCE)
Instructs the assembler to suppress the printing of source statements
generated during macro processing, but not suppress the printing of the
assembled addresses and generated object code of the statements. All PRINT
MSOURCE statements in the source program are ignored.

PCONTROL(OFF)
Specifies that the assembler is not to produce the Source and Object section of
the assembly listing. All PRINT ON statements in the source program are
ignored.

PCONTROL(ON)
Specifies that the assembler is to produce an assembly listing unless the
NOLIST option is specified. All PRINT OFF statements in the source program
are ignored.

PCONTROL(UHEAD)
Specifies that the assembler is to print a summary of active USINGs in the
heading lines of each page of the source and object code section of the listing,
as though a PRINT UHEAD statement were specified at the beginning of the
source program. All PRINT NOUHEAD statements in the source program are

62 HLASM V1R3 Programmer’s Guide

 PRINT

ignored. However, specifying PCONTROL(UHEAD) does not override PRINT
OFF statements in the source program.

PCONTROL(NOUHEAD)
Instructs the assembler not to print a summary of active USINGs, as though a
PRINT NOUHEAD statement were specified at the beginning of the source
program. All PRINT UHEAD statements in the source program are ignored.

NOPCONTROL
Specifies that the assembler honor all PRINT statements in the source
program. The standard PRINT operands active at the beginning of an
assembly are ON, GEN, NODATA, NOMCALL, MSOURCE, and UHEAD.

NOLIST Assembler Option: The PCONTROL option cannot be used to override
the NOLIST option. If the NOLIST option is specified, the PCONTROL option is
ignored.

 PESTOP
PESTOP is an installation-default option that instructs the assembler to terminate
when an error is detected in the invocation parameters or *PROCESS statements.
Refer to the High Level Assembler Installation and Customization Guide,
SC26-3494, for instructions how to specify this option.

| PRINT (CMS Only)

 ┌ ┐─DISK────
��─ ──┼ ┼─PRINT─── ─��
 └ ┘─NOPRINT─

Default
DISK

Abbreviations
PR/NOPR/DI

Restrictions
This option is not allowed on *PROCESS statements.

This option can only be specified when you use the ASMAHL command on
CMS.

PRINT
Specifies that the LISTING file is to be written on the virtual printer.

NOPRINT
Specifies that the writing of the LISTING file is suppressed. Any diagnostic
messages to be written to SYSTERM are not affected.

DISK
Specifies that the LISTING file is to be written to disk.

 Chapter 3. Controlling your Assembly with Options 63

 PROFILE

 PROFILE

 ┌ ┐─NOPROFILE───────────
��─ ──┴ ┴──PROFILE ──┬ ┬──────── ─��

└ ┘──(name)

Default
NOPROFILE

Abbreviations
PROF

PROFILE
Instructs the assembler to copy the installation-default profile member into the
source program, as if the source program contained a COPY instruction.

PROFILE(name)
Instructs the assembler to copy the member name into the source program, as
if the source program contained a COPY instruction.

NOPROFILE
Specifies that the assembler is not to copy a library member into the source
program.

Notes:

1. The profile member is copied into the source program immediately following an
ICTL statement or *PROCESS statements, or both.

2. You specify the default profile member name in the PROFMEM parameter of
the installation options macro ASMAOPT. If the PROFMEM parameter is not
specified, ASMAOPT generates a default member name of ASMAPROF. Refer
to the High Level Assembler Installation and Customization Guide for
instructions how to use the ASMAOPT macro.

3. On MVS and CMS, the assembler searches for the member in the macro and
copy code libraries defined in the SYSLIB DD statement.

4. On VSE, the assembler searches for the member in the macro and copy code
libraries defined in the LIBDEF job control statement.

5. The assembler processes the source statements in the profile member the
same way it does for source statements obtained using the COPY instruction.
Refer to the Language Reference for further information about the COPY
instruction.

64 HLASM V1R3 Programmer’s Guide

 RENT

 RA2

 ┌ ┐─NORA2─
��─ ──┴ ┴─RA2─── ─��

Default
NORA2

Abbreviations
None

| Note: You can specify the RA2 (or NORA2) option as a parameter of the
| ACONTROL statement. For further details, refer to the High Level Assembler
| Language Reference.

RA2
Instructs the assembler to suppress error diagnostic message ASMA966W when
2-byte relocatable address constants, such as AL2(*) and Y(*), are defined in
the source program.

NORA2
Instructs the assembler to issue error diagnostic message ASMA966W when
2-byte relocatable address constants, such as AL2(*) and Y(*), are defined in
the source program.

 RENT

 ┌ ┐─NORENT─
��─ ──┴ ┴─RENT─── ─��

Default
NORENT

Abbreviations
None

RENT
Specifies that the assembler checks for possible coding violations of program
reenterability. Non-reenterable code is identified by an error message, but is
not exhaustively checked because the assembler cannot check the logic of the
code. Therefore, the assembler might not detect all violations of program
reenterability.

NORENT
Specifies that the assembler not check for possible coding violations of
program reenterability.

 Chapter 3. Controlling your Assembly with Options 65

 SEG

 RLD

 ┌ ┐─RLD───
��─ ──┴ ┴─NORLD─ ─��

Default
RLD

Abbreviations
None

RLD
Instructs the assembler to produce the Relocation Dictionary (RLD) section of
the assembler listing. The RLD shows the relocation dictionary information that
is passed to the linkage editor or loader, or DFSMS/MVS binder, in the object
module.

NORLD
Instructs the assembler not to produce the RLD section of the assembler listing.

On VSE, you can specify the RLD option on the JCL OPTION statement.

| RXREF
|

| ┌ ┐─RXREF───
| ��─ ──┴ ┴─NORXREF─ ─��

| Default
| RXREF

| Abbreviations
| RX / NORX

| RXREF
| Instructs the assembler to produce the Register Cross Reference section of the
| assembler listing. The Register Cross Reference includes:

| � The register number
| � The statement number which references the register

| NORXREF
| Instructs the assembler not to produce the Register Cross Reference section of
| the assembler listing.

| SEG (CMS Only)

��─ ──┬ ┬─SEG─── ─��
 └ ┘─NOSEG─

Default
None. The assembler modules are loaded from the Logical Saved Segment
(LSEG). If the LSEG is not available, the assembler modules are loaded from
disk.

66 HLASM V1R3 Programmer’s Guide

 SIZE

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

You can only specify this option on CMS using the ASMAHL command.

SEG
Specifies that the assembler modules are loaded from the Logical Saved
Segment (LSEG). If the LSEG is not found the assembler stops.

NOSEG
Specifies that the assembler modules are loaded from disk.

 SIZE

 ┌ ┐─MAX─
��─ ──SIZE(──┬ ┬── ──┴ ┴───── ──┬ ┬────────── ───) ─��
 │ │└ ┘ ─,──ABOVE─

├ ┤──integerK ──────────────────
├ ┤──integerM ──────────────────
├ ┤──MAX-integerK ──┬ ┬──────────

 │ │└ ┘ ─,──ABOVE─
└ ┘──MAX-integerM ──┬ ┬──────────

 └ ┘ ─,──ABOVE─

You use the SIZE option to specify the amount of virtual storage available to the
assembler to perform an in-storage assembly. If you specify an insufficient amount,
the assembler uses the work data set (SYSUT1) on MVS and CMS, or the work
data set (IJSYS03) on VSE, for intermediate storage.

Default
SIZE(MAX)

Abbreviations
SZ

Restrictions
You cannot specify this option on *PROCESS statements.

SIZE(integerK)
Specifies the amount of virtual storage in 1024-byte (1K) increments.

The minimum acceptable value is 200K (refer to Note 2 on page 68).

SIZE(integerM)
Specifies the amount of virtual storage in 1048576-byte (1M) increments.

The minimum acceptable value is 1M.

SIZE(MAX)
Specifies that the assembler requests all the available space (refer to Note 3
on page 68) in the user region (MVS), or virtual machine (CMS) or in the
partition GETVIS (VSE).

 Chapter 3. Controlling your Assembly with Options 67

 SIZE

SIZE(MAX-integerK)
Specifies that the assembler requests all the available space (refer to Note 3
on page 68) in the user region (MVS), virtual machine (CMS) or partition
GETVIS (VSE) less the amount of integerK of storage (1K equals 1024 bytes).

The minimum acceptable value is 1K.

SIZE(MAX-integerM)
Specifies that the assembler requests all the available space (refer to Note 3)
in the user region (MVS), virtual machine (CMS) or partition GETVIS (VSE) less
the amount of integerM of storage (1M equals 1048756 bytes).

The minimum acceptable value is 1M.

Note:

1. The maximum storage value you can specify might not be available in the user
region (MVS), virtual machine (CMS), or in the partition GETVIS (VSE), after
storage has been allocated for the operating system.

2. The minimum amount of working storage required by the assembler is 200K or
10 times the work data set block size, whichever is greater.

3. When you specify the MAX suboption, the assembler releases 128K back to
the user region (MVS), virtual machine (CMS), or the partition GETVIS (VSE),
for system usage. When you specify the MAX suboption, there might not be
enough storage remaining in the user region (MVS), virtual machine (CMS), or
the partition GETVIS (VSE), to load any exits you specify, or any external
functions you use in your assembly or for operating system functions that may

| be required during the assembly. If the assembly does fail due to a lack of
| storage, then use MAX-integerK or MAX-integerM to ensure that there is
| sufficient free storage during the assembly for any of these functions.

4. The assembler loads user I/O exits before it obtains the working storage. If the
user exit obtains storage, then it reduces the amount available for the
assembler.

5. The assembler loads external function routines after it obtains working storage.
If you use external functions in your program, you should reduce the value you
specify in the SIZE option, to allow storage space for the external function
modules, and any storage they might acquire.

High Level Assembler acquires the amount of storage you specify in the SIZE
option from the user region (MVS), virtual machine (CMS), or partition GETVIS
(VSE). The assembler only requires a work data set when it has insufficient virtual
storage to perform an in-storage assembly. An in-storage assembly usually
reduces the elapsed time needed to complete the assembly.

The statistics in the Diagnostic Cross Reference and Assembler Summary section
of the assembly listing shows the amount of storage the assembler used and an
estimate of the amount of storage it requires to perform an in-storage assembly. If
you do not provide a work data set, you must specify a large enough value on the
SIZE option to allow the assembler to perform an in-storage assembly.

Use the STORAGE operand of the installation default options macro, ASMAOPT, to
specify the equivalent of the ABOVE suboption.

68 HLASM V1R3 Programmer’s Guide

 SYSPARM

 SYSPARM

��─ ──SYSPARM(──┬ ┬────────) ─��
 └ ┘ ─string─

Default
The &SYSPARM system variable is set to NULL.

Abbreviations
None

Restrictions
You cannot specify this option on *PROCESS statements.

string
Specifies the character string the assembler assigns to the &SYSPARM system
variable symbol. The character string is up to 255 characters in length. Any
character may be included in the string, subject to the rules for building
character strings defined in the Language Reference. If the string includes
blanks, commas, or parentheses, it must be enclosed in single quotation marks.
Any parentheses inside the string must be paired.

On MVS and VSE, you must use two single quotation marks to represent a
single quotation mark, and two ampersands to represent a single ampersand.
For example:

PARM='OBJECT,SYSPARM((&&AM,''EO).FY)'

assigns the value (&AM,'EO).FY to &SYSPARM.

On MVS and VSE, JCL restrictions limit the length of the SYSPARM value as
explained in the notes below. When you call the assembler from a problem
program (dynamic invocation), you can specify a SYSPARM value up to 255
characters long.

On CMS, you can specify SYSPARM(?). This causes the assembler to issue
the following message at your terminal:

ENTER SYSPARM:

In response to this message you can enter up to 255 characters. To specify a
SYSPARM value of ?, you must specify SYSPARM(?) and enter ? at the
terminal prompt.

MVS Batch: The restrictions imposed upon the PARM field limit the maximum
length of the SYSPARM value to 56 characters, unless you use symbolic
procedure parameters to substitute for the value, or the value contains commas
that can be used as breaking points between records. Consider the following
example:

// EXEC ASMAC,PARM=(ADATA,MXREF(XREF),
// 'SYSPARM(Parametervalue..)')
b b b b
└──┴────────┴──┘
1 4 13 68

Because SYSPARM uses parentheses, you must surround it with single
quotation marks. The leftmost column that you can use is column 4 on a
continuation record. A quotation mark and the keyword, as well as the closing
quotation mark, must appear on that line. In addition, either a right

 Chapter 3. Controlling your Assembly with Options 69

 TERM

parenthesis, indicating the end of the PARM field, or a comma, indicating that
the PARM field is continued on the next record, must be coded before or in the
last column of the statement field (column 71). Because of these JCL rules,
you cannot continue the SYSPARM value on the next record.

TSO: The restriction of the length of the PARM parameter of the CALL
command limits the maximum length of the SYSPARM value to 91 characters.

VSE BATCH: The restriction of the length of the PARM string on the EXEC job
control statement limits the maximum length of the SYSPARM value to 91
characters.

You can use the SYSPARM option of the JCL OPTION statement to specify
the SYSPARM assembler option, however the maximum length of the
SYSPARM string value is 8 characters. If you specify SYSPARM on both the
JCL OPTION statement and the PARM string on the JCL EXEC statement, the
PARM string takes precedence. A null string does not override the SYSPARM
default option.

| VSE ICCF: The restriction of the length of the PARM string on the /LOAD job
entry statement limits the maximum length of the SYSPARM value to 91
characters.

 TERM

 ┌ ┐─NOTERM─────────────────
��─ ──┴ ┴──┬ ┬──────────────────── ─��

└ ┘──TERM(──┬ ┬─WIDE───)
 └ ┘─NARROW─

Default
NOTERM

Abbreviations
None

Restrictions
This option is not allowed on *PROCESS statements.

TERM
Is equivalent to WIDE. See the description of TERM(WIDE) below.

TERM(WIDE)
On MVS and CMS, instructs the assembler to write error messages to the
terminal data set. You define the terminal data set with the SYSTERM
ddname.

On VSE, instructs the assembler to write error messages to SYSLOG.
SYSLOG is usually assigned at system initialization time and is assigned
permanently to the system log (console).

TERM(NARROW)
The NARROW suboption instructs the assembler to compress multiple
consecutive blanks into a single blank.

On MVS and CMS, instructs the assembler to write error messages to the
terminal data set. You define the terminal data set with the SYSTERM
ddname.

70 HLASM V1R3 Programmer’s Guide

 TRANSLATE

On VSE, instructs the assembler to write error messages to SYSLOG.
SYSLOG is usually assigned at system initialization time and is assigned
permanently to the system log (console).

NOTERM
Instructs the assembler not to write error messages to SYSTERM (MVS and
CMS) or SYSLOG (VSE).

You can specify the TERM option on the JCL OPTION statement.

 TEST

 ┌ ┐─NOTEST─
��─ ──┴ ┴─TEST─── ─��

Default
NOTEST

Abbreviations
None

TEST
Specifies that the object module contains the special source symbol table (SYM
records) required by the TSO TEST command.

NOTEST
Specifies that the object module does not contain the special source symbol
table (SYM records) required by the TSO TEST command.

On MVS and CMS, if you specify the TEST option with the XOBJECT option, the
assembler ignores the TEST option.

 TRANSLATE

 ┌ ┐─NOTRANSLATE─────────
��─ ──┴ ┴──TRANSLATE(──┬ ┬─AS─) ─��
 └ ┘─xx─

Default
NOTRANSLATE

Abbreviations
TR

Restrictions
This option is not allowed on *PROCESS statements.

TRANSLATE(AS)
Specifies that characters contained in character (C-type) data constants (DCs)
and literals are converted into ASCII characters using the ASCII translation
table provided with High Level Assembler.

TRANSLATE(xx)
Specifies that characters contained in character (C-type) data constants (DCs)
and literals are converted using a user-supplied translation table. The
translation table must be named ASMALTxx.

 Chapter 3. Controlling your Assembly with Options 71

 USING

Notes:

1. The assembler does not convert DBCS strings.

2. The assembler searches for the user-supplied translation table load module in
the standard load module search order. See also Appendix L, “How to
Generate a Translation Table” on page 367.

 USING

 ┌ ┐─USING(MAP,WARN(15))──────────
 │ │┌ ┐─,───────────────
��─ ──┼ ┼──USING(───+ ┴──┬ ┬─MAP─────────) ─��

│ │├ ┤──WARN(n) ────
│ │├ ┤──LIMIT(xxxx)

 │ │├ ┤─NOLIMIT─────
 │ │├ ┤─NOMAP───────
 │ │└ ┘─NOWARN──────
 └ ┘─NOUSING──────────────────────

Default
USING(MAP,WARN(15))

Abbreviations
US / NOUS

LIMIT(xxxx)
This suboption, when used in combination with the WARN(8) suboption,
specifies the maximum displacement that base-displacement address resolution
checks.

xxxx is the decimal value of the displacement, and must be less than or equal
to 4095. X'xxx' may also be used to specify the value in hexadecimal. If
specified, this value must be less than or equal to X'FFF'.

If more than one base register is specified in a USING statement, the value
specified in the LIMIT suboption is used only to check the maximum
displacement from the last specified base register. For example, if
USING(LIMIT(X'F00'),WARN(8)) were specified at invocation, the messages
would be issued as in Figure 26.

| Active Usings: None
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 999999 99999 91F82 1 EXAMPLE CSECT 99991999
| R:AB 99999 2 USING EXAMPLE,19,11 99992999| .| .| .
| 99949E 47F9 AB8C 99B8C 176 B LABEL111 �1� 99176999| .| .| .
| 99B8C 496 LABEL111 EQU K 99496999| .| .| .
| 99152E 47F9 BF89 91F89 998 B LABEL999 �2� 99998999
| KK ASMA394W Displacement exceeds LIMIT value specified| .| .| .
| 91F89 1436 LABEL999 EQU K 91436999
| 991F89 97FE 1437 BR 14 91437999
| 1438 END 91438999

Figure 26. Effect of the LIMIT Suboption

72 HLASM V1R3 Programmer’s Guide

 USING

Although the resolved displacement of the instruction at �1� is greater than the
specified limit, error diagnostic message ASMA394W is not issued because
register 10 was not the last specified base register. However, the instruction at
�2� causes the message to be issued because register 11 was the last
specified base register.

NOLIMIT
This suboption specifies that displacements are not checked. Specifying this
suboption is equivalent to specifying the LIMIT suboption with a value of 4095
or X'FFF'.

MAP
This suboption instructs the assembler to produce the USING Map section of
the assembler listing. For more information, see “USING Map” on page 29.

NOMAP
This suboption specifies that no USING map is produced.

WARN(n)
This suboption specifies the conditions under which warning error diagnostic
messages are issued. Each condition has an associated condition number, n.
The allowable values for n are:

1 Nullified USINGs: The assembler issues message:

� ASMA399W when a previous active ordinary (unlabeled) USING's range
coincides with and supersedes that of the USING being processed.

� ASMA391W when the range of the USING being processed coincides
with and supersedes that of a previous active ordinary (unlabeled)
USING.

2 R0 based USINGs: The assembler issues message ASMA392W when a
USING specifies R0 as a base register, with a non-zero absolute or
relocatable expression for the base address.

4 Multiple resolutions: The assembler issues message ASMA393W when
multiple resolutions are possible for an implicit address.

8 LIMIT: The assembler issues message ASMA394W when the calculated
displacement in any valid resolution exceeds the threshold specified in
the LIMIT suboption. This has no effect if the LIMIT suboption is not
specified.

Several conditions may be combined by adding together the associated
condition numbers. For example, specifying WARN(12) would request the
assembler to issue warning diagnostic messages for the conditions with
condition numbers 4 and 8.

NOWARN
This suboption specifies that no USING warning messages are issued.

| NOUSING
| NOUSING specifies that all USING suboptions are off. It is equivalent to
| specifying USING(NOLIMIT,NOMAP,NOWARN), or specifying in the
| ASMADOPT default options: LIMIT=NO,MAP=NO,WARN=NO.

The USING suboptions LIMIT, MAP, and WARN are specified in the installation
default options as LIMIT, MAP, and WARN.

 Chapter 3. Controlling your Assembly with Options 73

 XOBJECT

XOBJECT (MVS and CMS)

 ┌ ┐─NOXOBJECT──────────────
 │ │┌ ┐─NOADATA─
��─ ──┴ ┴──XOBJECT(──┴ ┴─ADATA───) ─��

Default
NOXOBJECT

Abbreviations
XOBJ / NOXOBJ

Restrictions
You cannot specify this option on *PROCESS statements.

XOBJECT
| Instructs the assembler to produce a Generalized Object File format (GOFF)
| data set. You define this data set with the SYSLIN or SYSPUNCH ddname.

| Note: For more information on GOFF, refer to DFSMS/MVS Program
| Management.

XOBJECT(NOADATA)
The same as XOBJECT without a suboption.

XOBJECT(ADATA)
| Instructs the assembler to produce a Generalized Object File format data set,

and include ADATA text records.

NOXOBJECT
| Instructs the assembler not to produce a Generalized Object File format data

set.

Notes:

1. You should specify the LIST(133) option when you specify the XOBJECT
option. If the logical record length of the listing data set is less than 133, the
assembler truncates the listing lines.

2. The extended object format does not support TEST (SYM) records. If you
specify the TEST option with the XOBJECT option, the assembler issues a
diagnostic error message.

| 3. The assembler option GOFF is treated as a synonym for the XOBJECT option
| and accepts the same subparameters as XOBJECT.

74 HLASM V1R3 Programmer’s Guide

 XREF

 XREF

 ┌ ┐─XREF(SHORT,UNREFS)───────
��─ ──┼ ┼──XREF(──┬ ┬─FULL─────────) ─��
 │ ││ │┌ ┐─,────────
 │ │└ ┘───+ ┴┬ ┬─SHORT──
 │ │└ ┘─UNREFS─
 └ ┘─NOXREF───────────────────

Default
XREF(SHORT,UNREFS)

Abbreviations
None

XREF(FULL)
Instructs the assembler to produce the Ordinary Symbol and Literal Cross
Reference section of the assembler listing. This includes symbols that are
defined, but never referred to.

XREF(SHORT)
Instructs the assembler to produce the Ordinary Symbol and Literal Cross
Reference section of the assembler listing. Symbols that are defined, but not
referred to, are not included in the cross reference listing. SHORT may be
specified with the UNREFS suboption to produce a list of unreferenced
symbols. The SHORT suboption can not be specified with the FULL suboption.

XREF(UNREFS)
Instructs the assembler to produce the Unreferenced Symbols Defined in
CSECTs section of the assembler listing. The symbols are listed in symbol
name order. UNREFS may be specified with the SHORT suboption to produce
a cross reference list of referenced symbols. The UNREFS suboption can not
be specified with the FULL suboption.

NOXREF
Specifies that symbol cross reference information is not generated as part of
the assembly listing.

Any suboption you specify overrides the suboptions specified in the installation
default options, unless the XREF option is fixed.

If you specify the XREF option more than once, the assembler uses the last one
you specify. For example, if you specify XREF(SHORT),XREF(UNREFS), the assembler
uses XREF(UNREFS). To use both suboptions, specify XREF(SHORT,UNREFS).

On VSE, you can use the XREF option of the JCL OPTION statement to specify
the XREF(FULL) assembler option, and the SXREF option of the JCL OPTION
statement to specify the XREF(SHORT) assembler option.

 Chapter 3. Controlling your Assembly with Options 75

 Exit Types

Chapter 4. Providing User Exits

This chapter describes how you can provide user exits to complement the
assembler's data set processing. It describes the type of exits, how to specify them
during assembly, and the details you need to write an exit.

 Exit Types
You can instruct the assembler to call the following types of exits:

SOURCE Exit: To process Primary Input records.

You use a SOURCE exit to replace or complement the assembler's primary input
data set processing. You can use it to supply primary input records to the
assembler, or monitor and modify records the assembler has read before the
assembler processes them. The exit can supply all the primary input records, or
extend the primary input by supplying additional records during the assembly. The
exit can also discard records.

LIBRARY Exit: To process Library Input records.

You use a LIBRARY exit to replace or complement the assembler's macro call
(MACRO) and copy code (COPY) library processing. You can use it to supply
MACRO and COPY library records to the assembler, or monitor and modify records
the assembler has read before the assembler processes them. The exit can supply
all the MACRO and COPY library records, or extend the library input processing by
supplying additional MACRO and COPY records during the assembly. The exit can
also discard records.

LISTING Exit: To process Listing Output records.

You use a LISTING exit to replace or complement the assembler's listing output
processing. You can use it to write the listing records the assembler supplies, or
monitor and modify the records before the assembler writes them to the listing data
set. The exit can write all the listing records, or supply additional listing records for
the assembler to write during the assembly. The exit can also discard records.

OBJECT (MVS and CMS) and PUNCH Exit: To process Object and Punch
Output records.

You use an OBJECT and PUNCH exit to replace or complement the assembler's
object module output processing. You can use it to write the object module records
the assembler supplies, or monitor and modify the records before the assembler
writes them to the object data set. The exit can write all the object module records,
or supply additional records for the assembler to write during the assembly. The
exit can also discard records.

ADATA Exit: To process Associated Data Output records.

You use an ADATA exit to monitor the associated data records that are written by
the assembler. The ADATA exit cannot modify the records, discard records, or
provide additional records.

76  Copyright IBM Corp. 1982, 1998

 Specifying User Exits

TERM Exit: To process Terminal Output records.

You use a TERM exit to replace or complement the assembler's terminal output
processing. You can use it to write the terminal records the assembler supplies, or
monitor and modify the records before the assembler writes them. The exit can
write all the terminal records, or supply additional terminal records for the
assembler to write during the assembly. The exit can also discard records.

 The assembler writes terminal output to SYSLOG; however, you can use
the exit to write the output to a disk data set.

Specifying User Exits
You use the EXIT option to specify the name of one or more user exits to load, and
optionally pass to the exit a character string up to 64 characters long that is
processed during assembly initialization. You can use the EXITCTL assembler
instruction to pass data from the assembler source program to the user exit during
the assembly.

The Diagnostic Cross Reference and Assembler Summary section of the assembler
listing shows the statistics for records processed by the user exits during the
assembly. See “EXIT” on page 46 for the syntax of the EXIT assembler option.

The following tables lists the exit type, the EXIT suboption, the default data set
ddname (MVS and CMS), or filename (VSE), that the exit corresponds to, and a
Page number reference to the section that describes how the assembler processes
the exit:

Figure 27. MVS and CMS Exit Types

Exit Type Exit Suboption ddname Page Number

SOURCE INEXIT SYSIN 93

LIBRARY LIBEXIT SYSLIB 95

LISTING PRTEXIT SYSPRINT 100

PUNCH OBJEXIT SYSPUNCH 104

OBJECT OBJEXIT SYSLIN 104

ADATA ADEXIT SYSADATA 107

TERM TRMEXIT SYSTERM 108

Figure 28. VSE Exit Types

Exit Type Exit Suboption filename Page Number

SOURCE INEXIT IJSYSIN 93

LIBRARY LIBEXIT Librarian
Sublibraries

95

LISTING PRTEXIT IJSYSLS 100

PUNCH OBJEXIT IJSYSPH 104

ADATA ADEXIT SYSADAT 107

TERM TRMEXIT SYSLOG 108

 Chapter 4. Providing User Exits 77

 Calling User Exits

Loading User Exits
The assembler loads the user exits during initialization. The assembler must be
able to locate the user exits as follows:

 The user exit must be a link-edited load module that is located in a
partitioned data set in the standard search sequence. The user exit can also be
located in the Link Pack Area (LPA).

If you use the same exit load module for more than one user exit type, for example
as a SOURCE and LISTING exit, the load module can be loaded more than once,
depending on the link edit options specified.

 The user exit must be a MODULE that is located on one of the accessed
disks. You generate the module using the CMS LOAD and GENMOD commands.
When the LOAD command is issued, the RLDSAVE option must be specified to
make the module relocatable. If RLDSAVE is not specified, it might result in the
assembler program or data storage being overlaid.

If you use the same exit load module for more than one user exit type, for example
as a SOURCE and LISTING exit, only one copy of the module is loaded.

 The user exit must be a relocatable phase that is in a sublibrary you
specify in your JCL LIBDEF phase search chain. The user exit can also be located
in the Shared Virtual Area (SVA).

If you use the same exit for more than one exit type, for example as a SOURCE
and LISTING exit, only one copy of the phase is loaded.

The user exits may be created in any addressing mode (AMODE) and residency
mode (RMODE).

Calling User Exits
The assembler calls user exits using the standard OS Linkage conventions. The
user exit can be written in any language that conforms to the following:

� Can be called many times via the exit module entry point
� Retains storage for private variables across invocations

| High Level Assembler provides an “anchor word” in the Exit Parameter List to allow
| you to maintain information across calls to the exit.

Refer to the language's Programming Guide to find out if you can use it to write a
user exit for the assembler.

The contents of the registers upon entry to the user exit are as follows:

Register 0 Undefined

Register 1 Address of Exit Parameter List, see Figure 29 on
page 80.

Registers 2 through 12 Undefined

Register 13 Address of 72 byte save area

78 HLASM V1R3 Programmer’s Guide

 Exit Parameter List

Register 14 Return address

Register 15 Address of entry point of user exit

Exit Parameter List
The assembler passes an Exit Parameter List to the user exit. On entry to the exit,
Register 1 contains the address of this parameter list. Each exit is passed a
separate copy of the parameter list. The parameter list includes a pointer to an
Exit-Specific block that contains information for each exit type. High Level
Assembler provides macro ASMAXITP to map the Exit Parameter List and the
Exit-Specific Information block. Figure 29 on page 80 describes the format of the
Exit Parameter List, Figure 33 on page 89 describes the format of the Exit-Specific
Information block for the LISTING exit, and Figure 34 on page 89 describes the
format of the Exit-Specific Information block for the other exit types.

 Chapter 4. Providing User Exits 79

 Exit Parameter List

 9 31
 ┌─────────────────────────┐

┌────────────────�│Parameter List Version │
 │ ├─────────────────────────┤
 │ │Exit Type │
 │ ├─────────────────────────┤
 │ │Request Type │
 │ ├─────────────────────────┤
 │ │Options │
 │ ├─────────────────────────┤
 │ │EXITCTL 1 │
 │ ├─────────────────────────┤
 │ │EXITCTL 2 │
 │ ├─────────────────────────┤
 │ │EXITCTL 3 │
 │ ├─────────────────────────┤
 │ │EXITCTL 4 │
 │ ├─────────────────────────┤
 │ │Return Code │
 │ ├─────────────────────────┤
 │ │Reason Code │
 │ ├─────────────────────────┤
 │ │Buffer Length │
 │ ├─────────────────────────┤

│ │Error Buffer Length │
 │ ├─────────────────────────┤
 │ │Error Severity │
 │ ├─────────────────────────┤
 │ │User-Defined Field │
 │ ├─────────────────────────┤

| │ │Common User Field │
 9 31 │ └─────────────────────────┘
┌────────────┐ ┌───────────────────────┐ │
│ Register 1 ├────�│ Ptr to Request Info ├─────┘

 └────────────┘ ├───────────────────────┤ ┌─────────────────────────┐
│ Ptr to Buffer ├──────────────────────�│Buffer │

 ├───────────────────────┤ └─────────────────────────┘
│ Ptr to Error Buffer ├─────────────┐

 ├───────────────────────┤ │
│ Ptr to Exit Info ├─────┐ │ ┌─────────────────────────┐

 ├───────────────────────┤ │ └────────�│Error Buffer │
│ Ptr to DCB │ │ └─────────────────────────┘

 └───────────────────────┘ │
 │
 │ ┌─────────────────────────┐
 └────────────────�│ │
 │Exit-Specific Block │
 │ │
 └─────────────────────────┘

Figure 29. Exit Parameter List Format

80 HLASM V1R3 Programmer’s Guide

 Exit Parameter List

The following sections describe the Exit Parameter List.

Request Info Pointer
The request info pointer points to a list of fullword fields that describe the exit
request. The assembler sets this pointer, which is always a valid address.

Parameter List Version
A fullword identifying the version of the parameter list. For High Level Assembler
Release 3 this field contains a value of 2.

 Exit Type
A fullword identifying the type of exit being called. You use this field when the exit
handles more than one exit type. The exit type is identified by the following values:

1 SOURCE Input

2 LIBRARY Input

3 LISTING Output

4 PUNCH Output

5 OBJECT Output

6 ADATA Output

7 TERM Output

The assembler always sets this field.

 Request Type
A fullword identifying the type of processing request. The request type is identified
by the following values:

1 OPEN—exit receives control before any input or output processing.

2 CLOSE—exit receives control before the assembler does any close
processing.

3 READ—exit receives control to provide a record to the assembler.

4 WRITE—exit receives control to write a record provided by the assembler.

5 PROCESS (for exit types other than LIBRARY)—exit receives control to
inspect or manipulate the record provided by the assembler.

5 PROCESS MACRO (for LIBRARY exit type only)—exit receives control to
inspect or manipulate the macro definition record provided by the assembler.

6 PROCESS COPY (for LIBRARY exit type only)—exit receives control to
inspect or manipulate the copy member record provided by the assembler.

7 FIND MACRO (for LIBRARY exit type only)—exit receives control to locate the
specified library macro.

8 FIND COPY MEMBER (for LIBRARY exit type only)—exit receives control to
locate the specified copy member.

| 9 END OF MEMBER (for LIBRARY exit type only)—exit receives control after the
| reading of a macro or copy member is completed.

The assembler always sets this field.

 Chapter 4. Providing User Exits 81

 Exit Parameter List

 Options
A fullword that provides additional information to the exit.

For the SOURCE and LIBRARY Exits: The following values are provided:

0 No additional information available.

1 New information is available in the Exit-Specific Information block. The
assembler updates this block whenever the primary input data set changes.

For example, the SOURCE input might be a concatenation of data sets. When
the first data set is opened, and when each subsequent concatenated data set
is opened, this value is set to 1 to inform the exit that a data set switch has
occurred. It is also set for LIBRARY processing to inform the exit which data
set in the concatenation is being used to provide the specific member.

2 For the LIBRARY exit, when the request type is FIND MACRO or FIND COPY,
this indicates that the copy code or a macro should resume at the saved
record position.

3 For the LIBRARY exit, when the request type is FIND MACRO or FIND COPY,
this indicates that copy code or a macro definition is currently being processed.
The user exit should save the position within the current member to allow it to
be resumed when the new member has been processed.

See “Nesting COPY Instructions and Macro Definitions” on page 98.

For the LISTING exit: The following decimal values are provided:

00 No additional information available
10 High Level Assembler Options Summary heading line
11 High Level Assembler Options Summary detail line
15 High Level Assembler Options Summary diagnostic message

| 17 High Level Assembler Product Information heading line
| 18 High Level Assembler Product Information detail line

20 External Symbol Dictionary heading line
21 External Symbol Dictionary detail line
30 Source and Object heading line
31 Source and Object machine instruction
32 Source and Object DC/DS instruction
33 Source and Object comment
34 Source and Object statement in error
35 Source and Object diagnostic message
36 Source and Object other
40 Relocation Dictionary heading line
41 Relocation Dictionary detail line
50 Ordinary Symbol and Literal Cross Reference heading line
51 Ordinary Symbol and Literal Cross Reference detail line
52 Unreferenced Symbols Defined in CSECTs heading line
53 Unreferenced Symbols Defined in CSECTs detail line
60 Macro and Copy Code Source Summary heading line
61 Macro and Copy Code Source Summary detail line
62 Macro and Copy Code Cross Reference heading line
63 Macro and Copy Code Cross Reference detail line
70 DSECT Cross Reference heading line
71 DSECT Cross Reference detail line
80 USING Map heading line

82 HLASM V1R3 Programmer’s Guide

 Exit Parameter List

81 USING Map detail line
| 85 General Purpose Register Cross Reference heading line
| 86 General Purpose Register Cross Reference detail line

90 Diagnostic Cross Reference and Assembler Summary heading line
91 Diagnostic Cross Reference and Assembler Summary detail line

For the PUNCH, OBJECT, and ADATA Exits: This field contains 0.

The assembler sets this field.

 EXITCTLn
Four fullword fields containing the exit-control values for this exit type. Exit-control
values are set by the EXITCTL assembler instruction during the assembly.

For the SOURCE and LIBRARY Exits: The new EXITCTL values are available to
the exit when the input record following the EXITCTL instruction is passed to the
exit.

For the LISTING, ADATA, and TERM Exits: The new EXITCTL values are
available to the exit with the output record containing the EXITCTL instruction.

For the OBJECT and PUNCH Exits: The new EXITCTL values are available to
the exit when the next object module record is passed to the exit. This may
happen several source statements after the EXITCTL instruction statement. A
possible consequence is that one or more EXITCTL statements can be processed
without the exit receiving the EXITCTL parameter values, if they occur between
object records.

 Return Code
A fullword, set by the exit, that indicates success or failure of the exit call, and the
action taken by the assembler on return from the exit. Figure 30 summarizes the
return codes.

Figure 30 (Page 1 of 2). User-Exit Return Codes

Exit Request RC=0 4 8 16 20

SOURCE OPEN Assembler to
open the
primary input
data set1

Exit provides
records2

 | Disable Operation failed

 CLOSE Operation
successful

 Operation failed

 READ Exit has
provided
record

 End-of-file
indicator

Operation failed

 PROCESS Accept record Discard record | Disable Operation failed

LIBRARY OPEN Assembler to
open its
library1

Exit has
opened its
library3

Exit has
opened its
library,
assembler to
open its library

| Disable Operation failed

 CLOSE Operation
successful

 Operation failed

 READ Exit has
provided
record

 EOD on input
source

Operation failed

 Chapter 4. Providing User Exits 83

 Exit Parameter List

Figure 30 (Page 2 of 2). User-Exit Return Codes

Exit Request RC=0 4 8 16 20

 PROCESS
(macro or
copy
member)

Accept record Discard record | Disable6 Operation failed

 FIND (macro
or copy
member)

Operation
successful

Member not
found; search
assembler
library if
available

 Operation failed

| | END OF
| MEMBER
| Operation
| successful
| | | Disable6| Operation failed

LISTING
PUNCH
OBJECT(MVS
and CMS)
TERM

OPEN Assembler
opens the
output data
set1

Exit has
opened its
output data
set4

 | Disable Operation failed

 CLOSE Operation
successful

 Operation failed

 WRITE Exit has
written record

 Operation failed

 PROCESS Accept record Discard record | Disable Operation failed

ADATA5 OPEN Operation
successful;
exit has
initialized
successfully

 | Disable Operation failed

 CLOSE Operation
successful

 Operation failed

 PROCESS Operation
successful

 | Disable Operation failed

Notes:

1. The assembler only uses the PROCESS and CLOSE operation codes on subsequent calls.

2. The assembler only uses the READ and CLOSE operation codes on subsequent calls.

3. The assembler only uses the READ, FIND, and CLOSE operation codes on subsequent calls.

4. The assembler only uses the WRITE and CLOSE operation codes on subsequent calls.

5. The ADATA exit can only be used to monitor records written to the associated data file. Unlike other exit types, the ADATA exit
cannot be used to replace assembler I/O processing, and can not manipulate the data in the records passed to it by the
assembler.

| 6. This return is valid from all PROCESS and END OF MEMBER requests with the following exceptions:

a. PROCESS MACRO requests when the LIBRARY exit set the return code of 8 for the OPEN request.
b. PROCESS COPY requests when the LIBRARY exit set the return code of 8 for the OPEN request.

| c. END OF MEMBER requests when the LIBRARY exit set the return code of 4 or 8 for the OPEN request.

 Reason Code
A fullword, set by the exit, to qualify the return code. Figure 31 shows reason
codes for each exit type, and which request they are checked after.

84 HLASM V1R3 Programmer’s Guide

 Exit Parameter List

Figure 31. User Exit Reason Codes

Exit Request Reason Code=0 Reason Code=4

SOURCE OPEN No additional information Input source information available

READ No additional information Input source information available

| LIBRARY| OPEN| No additional information| End of member call required

| FIND (macro
| or copy
| member)

| No additional information| Input source information available

| LISTING
| TERM
| OPEN| No additional information| When return code is 0, reason code 4 indicates the
| exit has provided a line length in the buffer length
| field. When return code is 4, reason code 4
| indicates the exit has provided the data set
| information.

| SOURCE
| LIBRARY
| LISTING
| PUNCH
| OBJECT(MVS
| and CMS)
| TERM

PROCESS No additional information Return to exit with empty buffer

PUNCH
OBJECT(MVS
and CMS)

OPEN No additional information Exit has provided the output data set information

 Buffer Length
A fullword containing the length of the area pointed to by the buffer pointer.

For OPEN Requests: This field contains the length of the optional character string
you specified in the EXIT assembler option.

For WRITE and PROCESS Requests: This field contains the length of the record
pointed to by the buffer pointer.

For READ Requests: This field contains the length of the area pointed to by the
buffer pointer where the exit may return a record to the assembler.

All Other Requests: This field contains zero.

Setting the Length: When either the SOURCE, LIBRARY, PUNCH, or OBJECT
exit is invoked for a READ, WRITE, or PROCESS request, the assembler sets the
buffer length to 80.

On MVS and CMS, if you specify the XOBJECT assembler option, and the
OBJECT exit is invoked, the buffer length might be fixed-length 80, or
variable-length, depending on the JCL (MVS) you supply. The maximum value for
variable-length records is 8212.

For an OPEN request the LISTING exit can use this field to pass the listing line
length to the assembler. The exit indicates that it has provided a print line length
by setting the return code to 0 and the reason code to 4.

 The line length must be in the range 121 to 255. If it is any other
value, the assembler issues message ASMA492W and does not call the exit to
process listing records.

 Chapter 4. Providing User Exits 85

 Exit Parameter List

 If the assembler opens the listing data set and the LISTING exit provides
a print line length, the line length must be 121 if SYSLST is assigned to disk,
otherwise it can be any value from 121 to 133. If it is any other value, the
assembler issues message ASMA492W and does not call the exit to process listing
records.

For all other calls to the LISTING exit, the assembler sets this field to the length
determined during the OPEN call.

The TERM exit can use this field to indicate to the assembler the length of the
terminal record. This may be done when the exit is invoked with an OPEN request.
The exit indicates that it has provided a terminal line length by setting the Return
Code to 0 and the Reason Code to 4. The value must not be zero, or negative,
and must not be greater than 255 on MVS and CMS, or 125 on VSE. If the value
is not correct, the assembler issues message ASMA494W and does not call the exit to
process terminal records.

For all other calls to the TERM exit, the assembler sets this field to the length
determined during the OPEN call.

Error Buffer Length
An unsigned fullword, set by the exit, that contains the length of the text pointed to
by the error buffer pointer. The maximum length is 255 bytes. If the exit specifies a
larger value, the assembler uses 255.

The assembler uses this length to determine whether to issue an error message. If
the length is greater than zero, the text in the error buffer is inserted into one of the
messages ASMA799I to ASMA794C. The assembler selects which message to issue
by checking the value of the error severity field.

 Error Severity
A fullword, set by the exit, that contains the severity code the assembler uses to
determine which diagnostic message to issue.

The severity code should be a value of 0, 4, 8, 12, or 16. If the severity code is not
one of these values, it is rounded up to the nearest value or, if the severity code is
greater than 16, it is reset to 16.

| The values 0, 4, 8, 12, and 16 correspond to the five diagnostic messages,
| ASMA799I through ASMA794C, respectively. For example, severity code of 4 causes

the assembler to issue message ASMA791W. Figure 32 summarizes the return code
values and the associated diagnostic message.

Figure 32. Error Severity and Associated Diagnostic Message

Error Severity Code
Specified

Error Severity Code
Used

Associated
Message

0 0 ASMA700I

1–4 4 ASMA701W

5–8 8 ASMA702E

9–12 12 ASMA703S

> 12 16 ASMA704C

86 HLASM V1R3 Programmer’s Guide

 Exit Parameter List

 User-Defined Field
A fullword, set to zero by the assembler before it calls the exit with an OPEN
request. The exit can use this field to store information (such as the address of
acquired storage) between calls. This field is separately maintained for each exit
type and is preserved across all calls until the exit is closed. The assembler does
not modify or interpret this field.

| Common User Field
| A fullword, set to zero by the assembler. Any exit can use this to store information
| (such as the address of acquired storage) between calls. This field is common for
| all exit types and so provides a mechanism for different exits to share information.
| The assembler does not modify or interpret this field.

 Buffer Pointer
The buffer pointer points to the area containing a record to be processed by the
exit.

For OPEN Requests: This field contains the character string from the EXIT
assembler option. If you did not specify a character string in the EXIT assembler
option, this area contains blanks and the buffer length field is set to zero.

For READ Requests: This field points to an empty buffer area.

For PROCESS and WRITE Requests: This field points to the record supplied by
the assembler.

All Other Requests: This field is set to zero.

Error Buffer Pointer
The error buffer pointer points to the error text buffer.

The assembler sets this pointer. If you want the assembler to issue a message on
behalf of the exit, you must supply the text of the error messages in the area
pointed to by the error buffer pointer. The text can be up to 255 characters. The
exit must place the length of the text in the error buffer length field. The assembler
selects a message number based on the value you place in the error severity field.

Exit-Specific Information Pointer
The exit-specific information pointer is a fullword that contains the address of the
Exit-Specific Information block. The assembler sets this pointer. For more details,
see “Exit-Specific Information Block” on page 89.

 Chapter 4. Providing User Exits 87

 Error Handling

 DCB Pointer
 This field is a fullword and always contains zeros. It is included to

maintain compatibility with the Exit Parameter List in the MVS and CMS
environments.

 The DCB pointer is a fullword that contains the address of the Data
Control Block.

The assembler sets this address which points to the applicable DCB for the exit
being called as follows:

Exit DCB

SOURCE SYSIN

LIBRARY SYSLIB

LISTING SYSPRINT

PUNCH SYSPUNCH

OBJECT SYSLIN

ADATA SYSADATA

TERM SYSTERM

When an exit is invoked with an OPEN request, the data set referred to by the DCB
is not open, and the contents of the DCB might not be complete.

When an exit is invoked with a PROCESS request, the exit may use the DCB to
obtain additional information about the data set or member being used. For
example, on MVS, the exit can obtain user information from a PDS directory by
using the BLDL system macro.

 Error Handling
Exit Failure Handling: You can signal an exit failure for any call to the exit by
setting the return code field in the Exit Parameter List to 20. When the assembler
receives this return code it issues message ASMA949U, and stops the assembly.
You can provide the assembler with additional information to insert in the message
text by placing the information in the error buffer pointed to by error buffer pointer,
and the length of the information in the error buffer length.

If the exit sets the return code field in the Exit Parameter List to any value other
than those described in Figure 30 on page 83, the assembler issues message
ASMA949U and stops the assembly.

User Error Handling: You can instruct the assembler to produce an error
message after any call to the exit by placing information in the error buffer pointed
to by error buffer pointer, and the length of the information in the error buffer length.
You can indicate the severity of the message by placing the severity code in the
error severity field. The message is issued as a normal assembler message and,
as such, can be suppressed using the FLAG assembler option.

88 HLASM V1R3 Programmer’s Guide

 Exit-Specific Information Block

Exit-Specific Information Block
All user exits are passed an Exit-Specific Information block pointed to by the Exit
Parameter List. It contains a list of character data items which describe the data
for the exit, and the absolute and relative record numbers for the record passed to
the exit. The Exit-Specific Information block passed to all exits, except the
LISTING exit, is shown in Figure 34. The Exit-Specific Information block passed to
the LISTING exit has additional parameters as shown in Figure 33.

 9 31
 ┌───────────────────────┐ ┌─────────────────────────┐
│ Ptr to Exit Block ├──────────────────────�│Member Name (255 Bytes) │

 └───────────────────────┘ ├─────────────────────────┤
│Member Type (255 Bytes) │

 │ │
 ├─────────────────────────┤

│Data Set Name (255 Bytes)│
 ├─────────────────────────┤

│Volume Serial (255 Bytes)│
 ├─────────────────────────┤

│Relative Record (4 Bytes)│
 ├─────────────────────────┤

│Absolute Record (4 Bytes)│
 ├─────────────────────────┤

│Linecount Value (4 Bytes)│
 ├─────────────────────────┤

│Current page number │
 │ (4 Bytes)│
 └─────────────────────────┘

Figure 33. Exit-Specific Information Block—LISTING Exit

 9 31
 ┌───────────────────────┐ ┌─────────────────────────┐
│ Ptr to Exit Block ├──────────────────────�│Member Name (255 Bytes) │

 └───────────────────────┘ ├─────────────────────────┤
│Member Type (255 Bytes) │

 │ │
 ├─────────────────────────┤

│Data Set Name (255 Bytes)│
 ├─────────────────────────┤

│Volume Serial (255 Bytes)│
 ├─────────────────────────┤

│Relative Record (4 Bytes)│
 ├─────────────────────────┤

│Absolute Record (4 Bytes)│
 └─────────────────────────┘

Figure 34. Exit-Specific Information Block—Other Exit Types

 Chapter 4. Providing User Exits 89

 Exit-Specific Information Block

The Exit-Specific Information block consists of the following fields:

 Member Name
Member name within the data set. It is always provided for library members and is
also provided for data set members used sequentially on MVS where the data set
is a partitioned data set.

The assembler also sets this field as a parameter for the FIND operation. It is
left-justified and padded with blanks.

For output files, the information should not be updated after it has been set by the
OPEN call.

The assembler uses this field to update the system variable symbols, as described
in Figure 35 (CMS, MVS) and Figure 36 (VSE).

 Member Type
| Always blank. This field is present to maintain compatibility with High
| Level Assembler running on VSE.

| The file type of the member. This field is also set by the assembler as a
| parameter for the FIND operation. It is left-justified and padded with blanks.
|

Data Set Name
The name of the data set from which the last input record was retrieved, or to
which the next output record is written. It is left-justified and padded with blanks.

 For library data sets, the name includes the library and sublibrary name.

For output files, the information should not be updated after it has been set by the
OPEN call.

The assembler uses this field to update the system variable symbols, as described
in Figure 35 (CMS, MVS) and Figure 36 (VSE).

 Volume Serial
Volume serial where the data set is located. It is left-justified and padded with
blanks.

For output files, the information should not be updated after it has been set by the
OPEN call.

The assembler uses this field to update the system variable symbols, as described
in Figure 35 (MVS and CMS) and Figure 36 (VSE).

90 HLASM V1R3 Programmer’s Guide

 Exit-Specific Information Block

Figure 35. MVS and CMS System Variable Symbols

Data Set Member Name Data Set Name Volume Serial

SYSIN &SYSIN_MEMBER &SYSIN_DSN &SYSIN_VOLUME

SYSLIB &SYSLIB_MEMBER &SYSLIB_DSN &SYSLIB_VOLUME

SYSPRINT &SYSPRINT_MEMBER &SYSPRINT_DSN &SYSPRINT_VOLUME

SYSTERM &SYSTERM_MEMBER &SYSTERM_DSN &SYSTERM_VOLUME

SYSPUNCH &SYSPUNCH_MEMBER &SYSPUNCH_DSN &SYSPUNCH_VOLUME

SYSLIN &SYSLIN_MEMBER &SYSLIN_DSN &SYSLIN_VOLUME

SYSADATA &SYSADATA_MEMBER &SYSADATA_DSN &SYSADATA_VOLUME

Figure 36. VSE System Variable Symbols

Data Set Member Name Data Set Name Volume Serial

SYSIPT (IJSYSIN) &SYSIN_MEMBER &SYSIN_DSN &SYSIN_VOLUME

Librarian &SYSLIB_MEMBER &SYSLIB_DSN &SYSLIB_VOLUME

SYSLST (IJSYSLS) &SYSPRINT_MEMBER &SYSPRINT_DSN &SYSPRINT_VOLUME

SYSLOG &SYSTERM_MEMBER &SYSTERM_DSN &SYSTERM_VOLUME

SYSPCH (IJSYSPH) &SYSPUNCH_MEMBER &SYSPUNCH_DSN &SYSPUNCH_VOLUME

SYSADAT &SYSADATA_MEMBER &SYSADATA_DSN &SYSADATA_VOLUME

Relative Record Number
The relative record number is the number assigned to the current record being
processed.

PROCESS Calls: For PROCESS calls, it represents the total number of records
the assembler has passed to the exit for the current data set. Each time a new
data set or library member is opened for input, the relative record number is reset
to 1 for the first record. If the new data set is a library member, caused by a macro
call or a COPY instruction, the relative record number is returned to the correct
sequential number when the macro or COPY processing is complete.

LISTING Exit: The relative record number is reset to 1 for the LISTING exit
whenever the assembler forces a page eject.

BATCH Assembler Option: The relative record number is reset to 1 for all output
data sets prior to each assembly when the BATCH assembler option is specified.

READ and WRITE Calls: For READ calls and WRITE calls, the exit should
maintain the relative record number. The assembler uses the relative record
number in information messages when you specify the FLAG(RECORD) option. If
you specify the ADATA option, the assembler includes the record number in the
associated data file (ADATA) Source Analysis record.

 Chapter 4. Providing User Exits 91

 Exit-Specific Information Block

Absolute Record Number
The absolute record number is the number assigned to the current record being
processed. The number is incremented by 1 for each record since the assembly
started. For PROCESS calls, it represents the total number of records provided to
the exit for the current exit type. It starts at 1, but is not reset when the BATCH
assembler option is specified to assemble multiple source programs.

For READ calls and WRITE calls, the exit should maintain the absolute record
number. The number provided after READ calls is written to the associated data file
(ADATA) in the Source Analysis record.

 Linecount
This field is only provided for the LISTING exit.

The linecount value is set to the value of the LINECOUNT assembler option before
the OPEN call to the LISTING exit. This option contains the number of lines per
page in the assembler listing. The exit may change the linecount value only during
the OPEN call.

For PROCESS calls, the linecount field contains the number of logical records
written to the current listing page. A page eject occurs when the number exceeds
the linecount value specified in the LINECOUNT assembler option or during the
OPEN call.

Current Page Number
The assembler sets this field to the value of the current page number. Any change
the exit makes to this number is ignored.

This field is only provided for the LISTING exit and only for the PROCESS, WRITE
and CLOSE call types.

92 HLASM V1R3 Programmer’s Guide

 SOURCE Exit Processing

SOURCE Exit Processing
The assembler calls the SOURCE exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly. This is the first call to the exit.

The exit may set the return code in the Exit Parameter List to one of the following:

0 Instructs the assembler to open the primary input data set, and supply the
primary input records to the exit in later PROCESS calls.

4 Indicates that the exit supplies the primary input records to the assembler in
later READ calls. If you wish to provide the assembler with the values for
the system variables &SYSIN_DSN, &SYSIN_MEMBER and
&SYSIN_VOLUME, the user exit must set the reason code to 4 and place
the values in the data set name, member name, and volume serial fields of
the exit-specific information block. The assembler also shows this
information in the Diagnostic Cross Reference and Assembler Summary
section of the listing, and includes it in the associated data file Job
Identification record.

| 16 Instructs the assembler to open the primary input data set, and make no
| further calls to the exit.

If you provide a character string in the str1 suboption of the EXIT assembler option,
the buffer pointer points to the character string, and buffer length contains the
length of the character string. The buffer length is set to zero if there is no
character string.

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

 READ
The assembler calls the exit with a request type of 3 (READ) when the exit is
supplying the primary input records.

The exit may set the return code in the Exit Parameter List to one of the following:

0 A record is supplied. The record must be placed in the area pointed to by
the buffer pointer field. The record area is 80 characters in length.

The user exit should maintain the absolute record number and the relative
record number. These fields are set to zero before the OPEN request. The
assembler uses the relative record number in diagnostic messages when
you specify the FLAG(RECORD) assembler option. If you specify the
ADATA assembler option, the assembler includes both fields in the
associated data file Source Analysis record.

If you wish to provide the assembler with the values for the system variables
&SYSIN_DSN, &SYSIN_MEMBER and &SYSIN_VOLUME, the user exit
must set the reason code to 4 and place the values in the data set name,
member name, and volume serial fields of the exit-specific information block.

 Chapter 4. Providing User Exits 93

 SOURCE Exit Processing

You can provide this information during the OPEN call, or whenever the exit
supplies a record to the assembler. If the exit is reading records from
concatenated data sets, it should supply the data set information with the
first record from each data set in the concatenation.

If the exit does not supply the data set information, the system variables are
set to null, and the primary input data set details are not shown in the
Diagnostic Cross Reference and Assembler Summary section of the listing,
nor are they included in the ADATA Job Identification record.

16 Indicates to the assembler that there are no more records. This is equivalent
to end-of-file processing for input data sets.

 PROCESS
The assembler calls the exit with a request type of 5 (PROCESS) when the
assembler is reading the primary input data set, and it has a record for the exit to
process. The address of the record read is in the buffer pointer field, and the
length is in the buffer length field. The record length is always 80.

The exit can set the return code in the Exit Parameter List to one of the following:

0 Indicates that the record has been accepted, and the assembler is to
process it. The exit may modify the record before it returns control to the
assembler. The user exit may also insert extra records in the primary input
by setting the reason code to 4. The assembler processes the current
record and then calls the user exit with an empty buffer. The exit must place
the record in the 80-byte area pointed to by the buffer pointer field. The exit
can continue to supply additional records, by setting the reason code to 4.
The exit must keep track of when the assembler calls it with an empty buffer,
and ensure that it resets the reason code to zero to resume normal
processing.

4 Instructs the assembler to discard the current record.

| 16 Instructs the assembler to make no further calls to the exit.

Although the user exit might insert or discard records, the assembler maintains the
absolute record number and relative record number.

If the options field is set to 1 (see “Options” on page 82), the assembler has
provided the exit with the current primary input data set information in the data set
name, member name, and volume serial fields of the exit-specific information block.
The assembler updates this information when it reads the first record of each data
set in a data set concatenation.

Figure 37 summarizes the SOURCE exit processing.

94 HLASM V1R3 Programmer’s Guide

 LIBRARY Exit Processing

Figure 37. SOURCE Exit Processing Summary

Request
Value=Type

Exit
Return Code

Action

1=OPEN 0 Assembler opens primary input.

4 Exit supplies primary input records.
If reason code=4, exit supplies data set information.

| 16| Assembler opens primary input,
| and makes no further calls to the exit.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

3=READ 0 Exit supplies record in buffer.
If reason code=4, exit supplies data set information.

16 Exit indicates end-of-file.

5=PROCESS 0 Record accepted. Exit may modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

4 Requests assembler to discard record.

| 16| Assembler makes no further calls to the exit.

LIBRARY Exit Processing
The assembler calls the LIBRARY exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly. This is the first call to the exit.

The exit can set the return code in the Exit Parameter List to one of the following:

0 Instructs the assembler to open the library data set, and supply the macro
and copy code library input records to the exit in later PROCESS calls.

| Note: A reason code of 4 indicates that the exit expects to receive END OF
| MEMBER calls.

4 Indicates that the exit supplies the macro and copy code library records to
the assembler in later READ calls. If you wish to provide the assembler with
the values for the system variables &SYSLIB_DSN, &SYSLIB_MEMBER and
&SYSLIB_VOLUME, the user exit must set the reason code to 4 and place
the values in the data set name, member name, and volume serial fields of
the exit-specific information block. The assembler also shows this
information in the Diagnostic Cross Reference and Assembler Summary
section of the listing, and includes it in the associated data file Library
record.

| Note: A reason code of 4 indicates that the exit expects to receive END OF
| MEMBER calls.

8 Indicates that both the assembler and user exit supply the macro and copy
code library records. On return from the exit, the assembler opens the library
data set. When a macro or copy member is required, the assembler calls

 Chapter 4. Providing User Exits 95

 LIBRARY Exit Processing

the exit with a FIND request. If the member is found by the exit, the exit
supplies the records in later READ calls. If the exit cannot find the member,
the assembler attempts to find the member in the library data set. If the
assembler finds the member, the records are passed to the exit in later
PROCESS calls.

| Note: A reason code of 4 indicates that the exit expects to receive END OF
| MEMBER calls.

| 16 Instructs the assembler to open the library data set, and make no further
| calls to the exit.

If you provide a character string in the str2 suboption of the EXIT assembler option,
the buffer pointer field points to the character string, and buffer length contains the
length of the character string. The buffer length is set to zero if there is no
character string.

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

 READ
The assembler calls the exit with a request type of 3 (READ) when the exit is
supplying the library records, and after a successful FIND request. For copy
members, the assembler calls the exit until the exit indicates the end-of-file. For
macro definitions, the assembler calls the exit until it receives a MEND statement,
or the exit indicates the end-of-file.

The exit can set the return code in the Exit Parameter List to one of the following:

0 The exit is supplying a record. The record must be placed in the area
pointed to by the buffer pointer field. The record area is 80 characters in
length.

The user exit should maintain the absolute record number and the relative
record number. These fields are set to zero before the OPEN request. The
assembler uses the relative record number in diagnostic messages when
you specify the FLAG(RECORD) assembler option. If you specify the
ADATA assembler option, the assembler includes both fields in the
associated data file Source Analysis record.

16 Indicates to the assembler that there are no more records. This is equivalent
to end-of-file processing for input members.

PROCESS MACRO or PROCESS COPY
The assembler calls the exit with a request type of 5 (PROCESS MACRO) or 6
(PROCESS COPY) when the assembler is reading members from the library data
set, and it has a record for the exit to process. The exit is also called with these
request types when both the assembler and the exit are supplying library records
(return code 8 from the OPEN call), and the assembler is supplying the record.
The address of the record read is in the buffer pointer field, and the length is in the
buffer length field. The record length is always 80.

The exit can set the return code in the Exit Parameter List to one of the following:

96 HLASM V1R3 Programmer’s Guide

 LIBRARY Exit Processing

0 Indicates that the record has been accepted, and the assembler is to
process it. The exit can modify the record before it returns control to the
assembler. The user exit can also insert extra records in the library member
by setting the reason code to 4. The assembler processes the current
record and then calls the user exit with an empty buffer. The exit must place
the record in the 80-byte area pointed to by the buffer pointer field. The exit
can continue to supply additional records by setting the reason code to 4.
The exit must keep track of when the assembler calls it with an empty buffer,
and ensure that it resets the reason code to zero to resume normal
processing.

4 Instructs the assembler to discard the current record.

| 16 Instructs the assembler to make no further calls to the exit. This will be
| disregarded by the assembler if the exit return code from the OPEN was 8.

Although the user exit can insert or discard records, the assembler maintains the
absolute record number and relative record number.

If the options field is set to 1, the assembler has provided the exit with the current
primary input data set information in the data set name, member name, and volume
serial fields of the exit-specific information block. The assembler updates this
information when it reads the first record of each data set in a data set
concatenation.

FIND MACRO or FIND COPY
The assembler calls the exit with a request type of 7 (FIND MACRO) whenever the

| assembler cannot find an operation code and the exit issued a return code on
| OPEN of either 4 or 8. The member name field contains the operation code, and is

the name of the macro definition that the assembler is searching for.

The assembler calls the exit with a request type of 8 (FIND COPY) whenever the
| assembler processes a COPY instruction and the exit issued a return code on
| OPEN of either 4 or 8. The member name field contains the name of the copy

code member.

If the user exit is supplying the library records, the exit can set the return code in
the Exit Parameter List to one of the following:

0 Indicates that the exit supplies the library records. The assembler calls the
user exit with later READ calls to retrieve each record.

4 Indicates that the exit is not supplying the macro or copy member, and is
equivalent to not finding the member in the library.

If both the assembler and the user exit are supplying the library records, the exit
can set the return code in the Exit Parameter List to one of the following:

0 Indicates that the exit supplies the library records. The assembler calls the
user exit with later READ calls to retrieve each record.

4 Indicates that the exit is not supplying the macro or copy member, and is
equivalent to not finding the member in the library. On return from the exit,
the assembler attempts to find the member in the library. If the assembler
finds the member, it calls the user exit with later PROCESS MACRO or
PROCESS COPY calls passing each record read from the library.

 Chapter 4. Providing User Exits 97

 LIBRARY Exit Processing

System Variables: If you wish to provide the assembler with the values for the
system variables &SYSLIB_DSN, &SYSLIB_MEMBER, and &SYSLIB_VOLUME,
the user exit must set the return code to 0, the reason code to 4, and place the
values in the data set name, member name, and volume serial fields of the
exit-specific information block.

If the exit does not supply the data set information, the system variables are set to
null, and the library data set details are not shown in the Diagnostic Cross
Reference and Assembler Summary section of the listing, nor are they included in
the ADATA Library record.

Nesting COPY Instructions and Macro Definitions: The assembler lets you
code COPY instructions and macro call instructions in copy code members. It also
lets you code COPY instructions in macro definitions. This type of coding is
described as nesting.

If the exit is processing a member, and supplies a record to the assembler
containing a COPY instruction, or a macro call instruction, the assembler calls the
exit with a request type of FIND COPY or FIND MACRO, respectively. In this case,
the exit needs to save the position in the currently active member before reading
the new copy code or macro member. This enables the exit to resume processing
the currently active member after it finishes with the new member.

The assembler indicates that it is processing a new (or nested) member by setting
the options field to 3. When the assembler finishes processing the new member
and resumes the previous (or outer) member, it issues a FIND call to the exit with
the options field set to 2 indicating that the previous member is resumed. After the
FIND call is complete, the assembler continues with PROCESS or READ calls to
the exit for the previous member.

When the assembler calls the exit with a FIND COPY or FIND MACRO request,
and the options field is set to 3, the exit should save the current member control
information in a stack.

When the assembler calls the exit with a FIND COPY or FIND MACRO request,
and the options field is set to 2, the exit should restore the previous member control
information from the stack. The next READ request expects the next record from
the previous member.

The assembler does not limit the number of levels of nesting.

There is a corresponding FIND (resume) request for every successful nested FIND
request, except under the following situations:

� An END instruction is found while reading a copy code member. The END
instruction causes the assembly to stop.

� When the assembler issues a PROCESS call, and provides the last record in a
copy code member, and the record is a macro call. In this case there are no
more copy records to resume reading.

� When a macro call (outer macro) inside a copy code member in turn issues a
macro call (inner macro). In this case, the assembler processes the outer
macro to completion, and then begins to generate the outer macro. During
generation, the assembler begins to process the inner macro, without issuing a
FIND (resume) request for the outer macro or copy code member. The

98 HLASM V1R3 Programmer’s Guide

 LIBRARY Exit Processing

assembler issues a FIND request for each nested macro call, with options set
to 3. It does not issue a FIND request for the outer macro, with options set to
2, because the outer macro processing is complete.

� An error occurs during the assembly that prevents the member from being read
completely.

If the FIND COPY or FIND MACRO is unsuccessful, the position in the currently
active member should not be affected.

| END OF MEMBER
| The assembler calls the exit with a request type of 9 (END OF MEMBER)
| whenever the reading of a macro or copy member is completed. For a macro,
| processing of a MEND statement indicates completion; for a copy member, an end
| of file condition indicates completion.

| The END OF MEMBER call simplifies stack management required in coding a
| LIBRARY exit which contains READs and FINDs. The exit may use the information
| provided by this call in the handling of nested FINDs where there is usually, but not
| always, a corresponding resume FIND (options=2) for every nested FIND
| (options=3). For an example of how you can use END OF MEMBER calls to
| perform stack management, see page 121.

Figure 38 summarizes the LIBRARY exit processing.

Figure 38 (Page 1 of 2). LIBRARY Exit Processing Summary

Request
Value=Type

Exit Return
Code

Action

1=OPEN 0 Assembler opens its library for input.
| If reason code=4, the assembler makes END OF
| MEMBER calls to the exit.

| 4| Exit supplies library records.
| If reason code=4, the assembler makes END OF
| MEMBER calls to the exit.

| 8| Both the assembler and the exit supply library records.
| The assembler opens its library.
| If reason code=4, the assembler makes END OF
| MEMBER calls to the exit.

| 16| Assembler opens the library data set, and makes no
| further calls to the EXIT.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

3=READ 0 Exit supplies record in buffer. Record with MEND
statement indicates end of macro member.

16 Exit indicates end-of-file for member.

 Chapter 4. Providing User Exits 99

 LISTING Exit Processing

Figure 38 (Page 2 of 2). LIBRARY Exit Processing Summary

Request
Value=Type

Exit Return
Code

Action

5=PROCESS
 MACRO

0 Record accepted. Exit can modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

4 Requests assembler to discard record.

| 16| Assembler makes no further calls to the EXIT
| (disregarded if the EXIT return code from the OPEN is
| 8).

6=PROCESS
 COPY

0 Record accepted. Exit can modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

4 Requests assembler to discard record.

| 16| Assembler makes no further calls to the EXIT
| (disregarded if the EXIT return code from the OPEN is
| 8).

7=FIND
 MACRO

0 Macro member found by exit; the exit supplies the
records.
If options=3, the exit should save the current member
position.
If options=2, the exit should restore the previous
member position.
If reason code=4, exit supplies data set information.

4 Macro member not found by exit; the exit does not
supply the records.

8=FIND
 COPY

0 Copy code member found by exit; the exit supplies the
records.
If options=3, the exit should save the current member
position.
If options=2, the exit should restore the previous
member position.
If reason code=4, exit supplies data set information.

4 Copy code member not found by exit; the exit does not
supply the records.

| 9=END OF
| MEMBER
| Exit may use the information to perform stack
| management.

LISTING Exit Processing
You can use the LISTING exit to override the effect of the LIST assembler option.
The exit does this by indicating to the assembler that it opens the listing data set
and does all listing output processing. Then, as each listing record is passed to the
exit, the exit can decide whether to print the record, and where it writes the record.
For instance, the exit can write the listing records to a different data set than the
assembler would normally write them.

100 HLASM V1R3 Programmer’s Guide

 LISTING Exit Processing

The LISTING exit is not called if you specify the NOLIST assembler option. If you
wish to process the listing records in the exit but you do not want the assembler to

| write the records to the normal output data set, you can do one of the following:

� Instruct the assembler to discard the listing records by setting the exit return
code

or
� Suppress the listing output as follows:

MVS Provide a //SYSPRINT DD DUMMY JCL statement.
CMS Issue a FILEDEF SYSPRINT DUMMY command.
VSE Assign the SYSLST to IGN.

| or
| � Instruct the exit to issue an OPEN return code of 4

The sections of the listing that are passed to the exit depend on the assembler
options you specify. For instance, if you specify the NORLD option, then no
Relocation Dictionary listing records are passed to the exit.

| Although the assembler can write to a listing data set with a record
| format of variable-length, the exit is always presented with fixed-length records.
|

The assembler calls the LISTING exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly.

The exit may set the return code in the Exit Parameter List to one of the following:

0 Instructs the assembler to open the listing data set, and supply the listing
output records to the exit in later PROCESS calls.

The exit can set the record length for the listing data set by setting the
reason code to 4 and the buffer length field.

| The buffer length field can be set to any value from 121 to 255.
| If the listing data set has a variable-length record format, the LRECL
| assigned is 4 bytes greater than the value the exit returns. If the value is
| less than 121 or greater than 255, the assembler issues message ASMA492W
| and does not call the exit for any further processing.

| The buffer length field can be set to any value from 121 to 133. If
| the value is less than 121 or greater than 133, the assembler issues
| message ASMA492W and does not call the exit for any further processing.

| If you assign SYSLST to a disk data set in your JCL, the record length must
| be 121.

4 Indicates that the exit writes the listing records in later WRITE calls. If you
wish to provide the assembler with the values for the system variables
&SYSPRINT_DSN, &SYSPRINT_MEMBER, and &SYSPRINT_VOLUME, the
exit must set the reason code to 4 and place the values in the data set
name, member name, and volume serial fields of the exit-specific information
block. The assembler also shows this information in the Diagnostic Cross
Reference and Assembler Summary section of the listing, and includes it in
the associated data file Output File Information record.

 Chapter 4. Providing User Exits 101

 LISTING Exit Processing

| 16 Instructs the assembler to open the listing data set, and make no further
| calls to the exit.

| The assembler sets the linecount field to the value of the LINECOUNT assembler
| option. This value is the number of lines per page in the listing. The exit can
| change the line count to a value of 0, or any value from 10 to 32767.
| “LINECOUNT” on page 56 describes the LINECOUNT assembler option.

If you provide a character string in the str3 suboption of the EXIT assembler option,
the buffer pointer field points to the character string, and buffer length contains the
length of the character string. The buffer length is set to zero if there is no
character string.

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

 WRITE
The assembler calls the exit with a request type of 4 (WRITE) when the exit is
writing the listing records. The buffer pointer field points to the listing record, and
the buffer length contains the length of the record.

 Depending on the setting of the ASA assembler option, the record has
either an American National Standard or a machine printer control character at the
start of the record.

The options field contains a value that represents the type of listing record that is
passed. The listing record types, and their corresponding options values, are shown
on page 82.

The user exit should maintain the absolute record number and the relative record
number. These fields are set to zero before the OPEN request. The assembler
uses the relative record number and the linecount value to determine when to start
a new page in the assembler listing. A new page is started when the relative record
number exceeds the line count.

 PROCESS
The assembler calls the exit with a request type of 5 (PROCESS) when the
assembler is writing the listing records, and it has a record for the exit to process.
The address of the record is in the buffer pointer field, and the length is in the
buffer length field.

 The record has either an American National Standard or a machine
printer control character at the start of the record depending on the setting of the
ASA assembler option.

The options field contains a value that represents the type of listing record that is
passed. The listing record types, and their corresponding options values, are shown
on page 82.

The exit can set the return code in the Exit Parameter List to one of the following:

102 HLASM V1R3 Programmer’s Guide

 LISTING Exit Processing

0 Indicates that the record has been accepted, and the assembler is to write it
to the listing data set. The exit may modify the record before it returns
control to the assembler. The user exit may also insert extra records in the
listing by setting the reason code to 4. The assembler writes the current
record and then calls the user exit with an empty buffer. The exit must place
the additional listing record in the area pointed to by the buffer pointer field.
The exit can continue to supply additional records by setting the reason code
to 4. The exit must keep track of when the assembler calls it with an empty
buffer, and ensure that it resets the reason code to zero to resume normal
processing.

 The exit must also ensure that a valid printer control character
is placed in the first character of the record. The printer control character
may be either American National Standard or machine. The exit can check
the DCB, pointed to by the DCB pointer field in the Exit Parameter List, to
find out which printer control character to use.

 The exit must also ensure that a valid American National
Standard printer control character is placed in the first character of the
record.

4 Instructs the assembler to discard the listing record.

| 16 Instructs the assembler to make no further calls to the exit.

Although the user exit can insert or discard records, the assembler maintains the
absolute record number and relative record number.

Figure 39 summarizes the LISTING exit processing.

Figure 39. LISTING Exit Processing Summary

Request
Value=Type

Exit Return
Code

Action

1=OPEN 0 Assembler opens listing data set.
If reason code=4, exit supplies listing line length.

4 Exit writes listing records.
If reason code=4, exit supplies data set information.

| 16| Assembler opens listing data set,
| and makes no further calls to the exit.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

4=WRITE 0 Exit writes record.

5=PROCESS 0 Record accepted. Exit may modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

4 Requests assembler to discard record.

| 16| Assembler makes no further calls to the exit.

 Chapter 4. Providing User Exits 103

 OBJECT (MVS and CMS) and PUNCH Exit Processing

| OBJECT (MVS and CMS) and PUNCH Exit Processing
When you specify the OBJEXIT suboption of the EXIT assembler option, the
assembler calls either the OBJECT user exit or the PUNCH user exit, or both, as
follows:

| � If you specify the OBJECT assembler option, the assembler calls
| the OBJECT user exit.

| � If you specify the OBJECT and the DECK assembler options, the assembler
| calls the user exit as an OBJECT exit, and then as a PUNCH exit.
| � If you specify the DECK assembler option, the assembler calls the PUNCH
| user exit.

| You can use the exit to override the effect of the DECK or OBJECT assembler
options. The exit does this by indicating to the assembler that it opens the output
data set and does all the output processing. Then, as each object record is passed
to the exit, the exit can decide whether to write the record, and where to write the
record. For instance, the exit can write the records to a different data set than the
assembler would normally write them.

| The exit is not called if you specify the NODECK and NOOBJECT
| assembler options.

| The exit is not called if you specify the NODECK assembler option.
|

If you wish to process the object records in the exit, but you do not want the
| assembler to write the records to the normal output data set, you can do one of the
| following:

� Instruct the assembler to discard the records by setting the exit return code
or
� Suppress the object output as follows:

MVS Provide a //SYSLIN DD DUMMY JCL statement, and a //SYSPUNCH DD
DUMMY JCL statement.

CMS Issue a FILEDEF SYSLIN DUMMY command, and a FILEDEF SYSPUNCH DUMMY
command.

VSE Assign SYSPCH to IGN.

| or
| � Instruct the exit to issue an OPEN return code of 4.

The assembler calls the OBJECT and PUNCH exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly. The exit type field indicates which exit is being called. The OBJECT exit
is type 5, and the PUNCH exit is type 4.

The exit can set the return code in the Exit Parameter List to one of the following:

104 HLASM V1R3 Programmer’s Guide

 OBJECT (MVS and CMS) and PUNCH Exit Processing

0 Instructs the assembler to open the object data set, and supply the object
records to the exit in later PROCESS calls.

4 Indicates that the exit writes the object records in later WRITE calls. If you
wish to provide the assembler with the values for the system variables
&SYSLIN_DSN, &SYSLIN_MEMBER, and &SYSLIN_VOLUME, then during
the OPEN call for the OBJECT exit, the exit must set the reason code to 4
and place the values in the data set name, member name, and volume serial
fields of the exit-specific information block. If you wish to provide the
assembler with the values for the system variables &SYSPUNCH_DSN,
&SYSPUNCH_MEMBER, and &SYSPUNCH_VOLUME, then during the
OPEN call for the PUNCH exit, the exit must set the reason code to 4 and
place the values in the data set name, member name, and volume serial
fields of the exit-specific information block. The assembler also shows the
information for both object and punch data sets in the Diagnostic Cross
Reference and Assembler Summary section of the listing, and includes it in
the associated data file Output File Information record.

16 Instructs the assembler to open the object data set and make no further calls
to the exit.

If you provide a character string in the str4 suboption of the EXIT assembler option,
the buffer pointer field points to the character string, and the buffer length contains
the length of the character string. The buffer length is set to zero if there is no
character string.

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

 WRITE
The assembler calls the exit with a request type of 4 (WRITE) when the exit is
writing the object records. The buffer pointer field points to the object record, and
the buffer length contains the length of the record.

| The record length is always 80 bytes when you specify the
| NOXOBJECT assembler option. If you specify the XOBJECT assembler option, the
| record length is 80 bytes for fixed-length output or up to 8212 bytes for
| variable-length output. The record length for variable-length records does not
| include the 4-byte length of the record descriptor word (RDW), and the buffer
| pointer field points at the object data, not the RDW.

| The record length is always 80 bytes.

The user exit should maintain the absolute record number and the relative record
number. These fields are set to zero before the OPEN request.

 Chapter 4. Providing User Exits 105

 OBJECT (MVS and CMS) and PUNCH Exit Processing

 PROCESS
The assembler calls the exit with a request type of 5 (PROCESS) when the
assembler is writing the object records, and it has a record for the exit to process.
The address of the record is in the buffer pointer field, and the length is in the
buffer length field.

| The record length is always 80 bytes when you specify the
| NOXOBJECT assembler option. If you specify the XOBJECT assembler option, the
| record length is 80 bytes for fixed-length output or up to 8212 bytes for
| variable-length output. The record length for variable-length records does not
| include the 4-byte length of the record descriptor word (RDW), and the buffer
| pointer field points at the object data, not the RDW.

| The record length is always 80 bytes.

The exit can set the return code in the Exit Parameter List to one of the following:

0 Indicates that the record has been accepted, and the assembler is to write it
to the object data set. The exit can modify the record before it returns
control to the assembler. The user exit can also insert extra records in the
object data set by setting the reason code to 4. The assembler writes the
current record and then calls the user exit with an empty buffer. The exit
must place the additional object record in the area pointed to by the buffer
pointer field. The exit can continue to supply additional records by setting
the reason code to 4. The exit must keep track of when the assembler calls
it with an empty buffer, and ensure that it resets the reason code to zero to
resume normal processing.

4 Instructs the assembler to discard the record.

| 16 Instructs the assembler to make no further calls to the exit.

Although the user exit can insert or discard records, the assembler maintains the
absolute record number and relative record number.

Figure 40 summarizes the OBJECT and PUNCH exit processing.

106 HLASM V1R3 Programmer’s Guide

 ADATA Exit Processing

Figure 40. OBJECT and PUNCH Exit Processing Summary

Request
Value=Type

Exit
Return Code

Action

1=OPEN 0 Assembler opens object data set.

4 Exit writes object records.
If reason code=4, exit supplies data set information.

| 16| Assembler opens object data set,
| and makes no further calls to the exit.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

4=WRITE 0 Exit writes record.

5=PROCESS 0 Record accepted. Exit can modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

4 Requests assembler to discard record.

| 16| Assembler makes no further calls to the exit.

ADATA Exit Processing
When you specify the ADEXIT suboption of the EXIT assembler option, the
assembler calls the ADATA user exit if you also specify the ADATA assembler
option.

The ADATA exit is not called if you specify the NOADATA assembler option. If you
wish to process the associated data records in the exit but you do not want the

| assembler to write the records to the normal output data set, you suppress the
| associated data output as follows:

| MVS Provide a //SYSADATA DD DUMMY JCL statement.
| CMS Issue a FILEDEF SYSADATA DUMMY command.
| VSE Assign SYSADAT to IGN.

The assembler calls the ADATA exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly.

If you provide a character string in the str5 suboption of the EXIT assembler option,
the buffer pointer field points to the character string, and the buffer length contains
the length of the character string. The buffer length is set to zero if there is no
character string.

| The exit can set the return code in the Exit Parameter List to one of the following:

| 0 Instructs the assembler to open the ADATA data set, and supply the object
| records to the exit in later PROCESS calls.

| 16 Instructs the assembler to open the ADATA data set and make no further
| calls to the exit.

 Chapter 4. Providing User Exits 107

 TERM Exit Processing

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

 PROCESS
The assembler calls the exit with a request type of 5 (PROCESS) when the
assembler is writing the associated data records, and it has a record for the exit to
process. The address of the record read is in the buffer pointer field, and the
length is in the buffer length field. The record length for variable-length records
does not include the 4-byte length of the record descriptor word (RDW), and the
buffer pointer field points at the ADATA header data, not the RDW. The assembler
ignores all modifications to the ADATA records.

| The exit can set the return code in the Exit Parameter List to one of the following:

| 0 Operation successful.

| 16 Instructs the assembler to make no further calls to the exit.

Figure 41 summarizes the ADATA exit processing.

Figure 41. ADATA Exit Processing Summary

Request
Value=Type

Exit
Return Code

Action

1=OPEN 0 Operation successful.

| 16| Assembler opens ADATA data set,
| and makes no further calls to the exit.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

5=PROCESS 0 Operation successful.

| 16| Assembler makes no further calls to the exit.

Note: The ADATA exit is not called for WRITE request type.

TERM Exit Processing
You can use the TERM exit to override the effect of the TERM assembler option.
The exit does this by indicating to the assembler that it opens the terminal data set
and does all terminal output processing. Then, as each terminal record is passed
to the exit, the exit can decide whether to write the record, and where to write the
record. For instance, the exit can write the terminal records to a different data set
to which the assembler would normally write them.

The TERMINAL exit is not called if you specify the NOTERM assembler option. If
you wish to process the terminal records in the exit, but you do not want the

| assembler to write the records to the normal output data set, you can do one of the
| following:

� Instruct the assembler to discard the terminal records by setting the exit return
code

or
| � Suppress the terminal output as follows:

108 HLASM V1R3 Programmer’s Guide

 TERM Exit Processing

MVS Provide a //SYSTERM DD DUMMY JCL statement.
CMS Issue a FILEDEF SYSTERM DUMMY command.
VSE Assign SYSTERM to IGN.

| or
| � Instruct the exit to issue an OPEN return code of 4

The assembler calls the TERMINAL exit with the following request types:

 OPEN
The assembler calls the exit with a request type of 1 (OPEN) at the start of the
assembly.

The exit may set the return code in the Exit Parameter List to one of the following:

0 Instructs the assembler to open the terminal data set, and supply the
terminal output records to the exit in later PROCESS calls.

The exit can set the record length for the terminal data set by setting the
reason code to 4 and the buffer length field. The buffer length field can be
set to any value from 1 to 255 on MVS and CMS, or from 1 to 125 on VSE.
If the value is zero or greater than 255 on MVS and CMS, or zero or greater
than 125 on VSE, the assembler issues message ASMA494W and does not call
the exit for any further processing.

4 Indicates that the exit writes the terminal records in later WRITE calls. If you
wish to provide the assembler with the values for the system variables
&SYSTERM_DSN, &SYSTERM_MEMBER, and &SYSTERM_VOLUME, the
exit must set the reason code to 4 and place the values in the data set
name, member name, and volume serial fields of the exit-specific information
block. The assembler also shows this information in the Diagnostic Cross
Reference and Assembler Summary section of the listing, and includes it in
the associated data file Output File Information record.

| 16 Instructs the assembler to open the terminal data set and make no further
| calls to the exit.

If you provide a character string in the str6 suboption of the EXIT assembler option,
the buffer pointer field points to the character string, and the buffer length contains
the length of the character string. The buffer length is set to zero if there is no
character string.

 CLOSE
The assembler calls the exit with a request type of 2 (CLOSE) at the end of the
assembly. The exit should close any data sets it opened and release any storage
that it acquired.

 WRITE
The assembler calls the exit with a request type of 4 (WRITE) when the exit is
writing the terminal records. The buffer pointer field points to the terminal record,
and the buffer length contains the length of the record.

The user exit should maintain the absolute record number and the relative record
number. These fields are set to zero before the OPEN request.

 Chapter 4. Providing User Exits 109

 TERM Exit Processing

 PROCESS
The assembler calls the exit with a request type of 5 (PROCESS) when the
assembler is writing the terminal records, and it has a record for the exit to process.
The address of the record is in the buffer pointer field, and the length is in the
buffer length field.

The exit can set the return code in the Exit Parameter List to one of the following:

0 Indicates that the record has been accepted, and the assembler is to write it
to the terminal data set. The exit may modify the record before it returns
control to the assembler. The user exit may also insert extra records in the
terminal by setting the reason code to 4. The assembler writes the current
record and then calls the user exit with an empty buffer. The exit must place
the additional terminal record in the area pointed to by the buffer pointer
field. The exit can continue to supply additional records by setting the
reason code to 4. The exit must keep track of when the assembler calls it
with an empty buffer, and ensure that it resets the reason code to zero to
resume normal processing.

4 Instructs the assembler to discard the terminal record.

| 16 Instructs the assembler to make no further calls to the exit.

Although the user exit can insert or discard records, the assembler maintains the
absolute record number and relative record number.

Figure 42 summarizes the TERM exit processing.

Figure 42. TERM Exit Processing Summary

Request
Value=Type

Exit
Return Code

Action

1=OPEN 0 Assembler opens terminal data set.
If reason code=4, exit supplies listing line length.

4 Exit writes terminal records.
If reason code=4, exit supplies system variable
symbols.

| 16| Assembler opens terminal data set,
| and makes no further calls to the exit.

2=CLOSE n/a Exit should close any data sets it opened, and release
any storage it acquired.

4=WRITE 0 Exit writes record.

5=PROCESS 0 Record accepted. Exit can modify record.
If reason code=4, the assembler, after processing the
current record, provides an empty buffer for the exit to
provide additional record.

4 Requests assembler to discard record.

| 16| Assembler makes no further calls to the exit.

110 HLASM V1R3 Programmer’s Guide

 User Exit Coding Example

Sample User Exits
Three sample exits are provided with High Level Assembler. They are described
under:

� Appendix I, “Sample ADATA User Exit (MVS and CMS)” on page 357
� Appendix J, “Sample LISTING User Exit (MVS and CMS)” on page 364
� Appendix K, “Sample SOURCE User Exit (MVS and CMS)” on page 366

User Exit Coding Example
Figure 43 on page 113 shows how to code a user exit. The exit is called
“MYEXIT”. It uses all user exit types and all request types. It uses the field
AXPUSER to anchor the storage it has acquired to make it reenterable.

This user exit is not supplied with High Level Assembler.

The user exit does not show examples of how to open, read, write, or close a data
set when it is responsible for opening the data set. Instead, it provides source
records from its own storage, and writes output records to the operator using the
WTO macro.

The user exit can be invoked as the following exit types.

SOURCE Exit—INEXIT: If you specify EXIT(INEXIT(MYEXIT)), the exit allows the
assembler to open the input data set. The exit issues a WTO for each record read
from the input data set.

If you specify EXIT(INEXIT(MYEXIT(EXIT))), the exit opens the input data set. It
passes the following records to the assembler:

SMALL TITLE 'Test the assembler exits'
 MACRO
 LITTLE
 BSM 9,14 Return
 MEND
 START
 OUTER
 LITTLE
 REPRO
This is to be written to the punch data set
 COPY TINY
 END

LIBRARY Exit—LIBEXIT: If you specify EXIT(LIBEXIT(MYEXIT)), the exit allows
the assembler to open the library data set. The exit issues a WTO for each record
read from the library data set.

If you specify EXIT(LIBEXIT(MYEXIT(EXIT))), the exit opens the library data set. It
passes the records for the following macros and COPY members to the assembler:

 � Macro OUTER
 � Macro INNER
� COPY member TINY
� COPY member TINY1

 Chapter 4. Providing User Exits 111

 User Exit Coding Example

If you specify EXIT(LIBEXIT(MYEXIT(BOTH))), the exit and the assembler opens
the library data sets. The exit passes the records for the following macros and
COPY members to the assembler:

 � Macro OUTER
 � Macro INNER
� COPY member TINY
� COPY member TINY1

LISTING Exit—PRTEXIT: If you specify EXIT(PRTEXIT(MYEXIT)), the exit allows
the assembler to open the listing data set. The exit issues a WTO for the first 80
characters of each listing record.

If you specify EXIT(PRTEXIT(MYEXIT(EXIT))), the exit opens the listing data set.
The exit issues a WTO for the first 80 characters of each listing record passed to
the exit.

OBJECT and PUNCH Exit—OBJEXIT: If you specify EXIT(OBJEXIT(MYEXIT)),
the exit allows the assembler to open the object and punch data sets. The exit
issues a WTO for each object record written to the object and punch data set.

If you specify EXIT(OBJEXIT(MYEXIT(EXIT))), the exit opens the object and punch
data set. The exit issues a WTO for each object record passed to the exit.

ADATA Exit—ADEXIT: If you specify EXIT(ADEXIT(MYEXIT)), the exit issues a
WTO for the first 80 characters of each record written to the associated data file.

TERM Exit—TRMEXIT: If you specify EXIT(TRMEXIT(MYEXIT)), the exit allows
the assembler to open the terminal data set. The exit issues a WTO for the first 68
characters of each terminal record.

If you specify EXIT(TRMEXIT(MYEXIT(EXIT))), the exit opens the terminal data set.
The exit issues a WTO for the first 68 characters of each terminal record passed to
the exit.

112 HLASM V1R3 Programmer’s Guide

 User Exit Coding Example

MYEXIT TITLE '- EXAMPLE OF A USER EXIT' 99991999
KKK 99992999
K K 99993999
K This sample user exit demonstrates how to code a user exit. K 99994999
K It has code to demonstrate the use of SOURCE, LIBRARY, LISTING, K 99995999
K PUNCH, OBJECT, ADATA and TERM exits. K 99996999
K K 99997999
K This user exit uses the field AXPUSER to anchor the storage it has K 99998999
K acquired to make it reenterable. If the user exit does not need to K 99999999
K be reenterable, this code is not required. K 99919999
K K 99911999
K REGISTER USAGE: K 99912999
K R9 - WORK K 99913999
K R1 - WORK K 99914999
K R2 - WORK K 99915999
K R3 - WORK K 99916999
K R4 - WORK K 99917999
K R5 - POINTER TO DCB (MVS/CMS) ONLY K 99918999
K R6 - POINTER TO SOURCE INFORMATION K 99919999
K R7 - POINTER TO ERROR BUFFER K 99929999
K R8 - POINTER TO BUFFER K 99921999
K R9 - POINTER TO REQUEST INFORMATION K 99922999
K R19 - POINTER TO ORIGINAL PASSED PARAMETER K 99923999
K R11 - NOT USED. K 99924999
K R12 - PROGRAM SECTION BASE REGISTER K 99925999
K R13 - SAVEAREA AND DYNAMIC STORAGE AREA K 99926999
K R14 - RETURN ADDRESS OF CALLING MODULE K 99927999
K R15 - ENTRY POINT OF CALLED MODULE K 99928999
K K 99929999
KKK 99939999
 PRINT NOGEN 99931999
 EJECT 99932999

Figure 43 (Part 1 of 18). Example of a User Exit

 Chapter 4. Providing User Exits 113

 User Exit Coding Example

KKK 99933999
K MYEXIT Entry K 99934999
K - Save the registers. K 99935999
K - Acquire the dynamic storage on the first entry and save the K 99936999
K address in AXPUSER. K 99937999
K - Chain the save areas using the forward and backward pointers. K 99938999
K - Address the data areas passed. K 99939999
K - Process the required exit according to the 'Exit type' passed. K 99949999
KKK 99941999
MYEXIT CSECT 99942999
 STM R14,R12,12(R13) Save registers 99943999

LR R12,R15 Set up first base register 99944999
 USING MYEXIT,R12,R11 99945999
 LA R11,2948(,R12) 99946999

LA R11,2948(,R11) Set up second base register 99947999
LR PARMREG,R1 Save parameter list address 99948999

 USING AXPXITP,PARMREG 99949999
L REQREG,AXPRIP Get address of exit parm list 99959999

 USING AXPRIL,REQREG 99951999
ICM R1,B'1111',AXPUSER Get address of user area 99952999
BNZ CHAIN Yes, use area 99953999
LA 9,WORKLEN Otherwise, get length 99954999
GETMAIN R,LV=(9) and getmain storage 99955999
ST R1,AXPUSER Save it for later 99956999

 XC 9(WORKLEN,R1),9(R1) Clear area 99957999
CHAIN DS 9H 99958999

ST R13,4(R1) Save previous pointer 99959999
ST R1,8(R13) Save next pointer 99969999
LR R13,R1 Set savearea/workarea address 99961999

 USING WORKAREA,R13 99962999
 SPACE 1 99963999

L BUFREG,AXPBUFP Get address of buffer 99964999
 USING BUFF,BUFREG 99965999

L ERRREG,AXPERRP Get address of error buffer 99966999
 USING ERRBUFF,ERRREG 99967999

L SRCREG,AXPSIP Get address of source info 99968999
 USING AXPSIL,SRCREG 99969999

L DCBREG,AXPDCBP Get address of DCB 99979999
 USING IHADCB,DCBREG 99971999
 SPACE 1 99972999

XC AXPRETC,AXPRETC Zero the return code 99973999
L R15,AXPTYPE Load the exit type value (1-7) 99974999
BCTR R15,9 Decrement by 1 99975999
SLL R15,1 Multiply by 2 99976999
LH R15,EXITADDR(R15) Index into address list 99977999
AR R15,R12 Calculate the address 99978999
BR R15 Branch to applicable routine 99979999

 SPACE 1 99989999
EXITADDR DC Y(SOURCE-MYEXIT) 99981999
 DC Y(LIBRARY-MYEXIT) 99982999
 DC Y(LISTING-MYEXIT) 99983999
 DC Y(PUNCH-MYEXIT) 99984999
 DC Y(OBJECT-MYEXIT) 99985999
 DC Y(ADATA-MYEXIT) 99986999
 DC Y(TERM-MYEXIT) 99987999
 DC Y(K-K) 99988999
 EJECT 99989999

Figure 43 (Part 2 of 18). Example of a User Exit

114 HLASM V1R3 Programmer’s Guide

 User Exit Coding Example

KKK 99999999
K MYEXIT Exit1 K 99991999
K - Restore the callers register 13 K 99992999
K - Restore the registers and set the register 15 to zero. K 99993999
K - Return to the caller. K 99994999
KKK 99995999
EXIT1 DS 9H 99996999

MVC LASTOP,AXPRTYP+3 Save last operation code 99997999
L R13,4(,R13) Unchain save areas 99998999

EXIT2 DS 9H 99999999
LM R14,R12,12(R13) Restore callers registers 99199999
LA R15,9 Set the return code 99191999
BSM R9,R14 Return to caller 99192999

 SPACE 1 99193999
KKK 99194999
K MYEXIT - Free storage K 99195999
K - Called on a CLOSE request. K 99196999
K - Free the storage acquired and zero AXPUSER. K 99197999
K - Go to EXIT (after R13 is restored) K 99198999
KKK 99199999
FREESTOR DS 9H 99119999

XC AXPUSER,AXPUSER Zero User field 99111999
LA 9,WORKLEN Length of area to free 99112999
LR R1,R13 Address of area to free 99113999
L R13,4(,R13) Restore callers register 13 99114999
FREEMAIN R,A=(1),LV=(9) Free the storage acquired 99115999

 B EXIT2 99116999
 SPACE 1 99117999
KKK 99118999
K MYEXIT - Logic error K 99119999
K - If an error occurred, set up the error message in the buffer K 99129999
K and length in AXPERRL. Set the severity code. K 99121999
K - Set the return code to 29. K 99122999
K - Return to the caller. K 99123999
KKK 99124999
LOGICERR DS 9H 99125999

MVC AXPRETC,=A(AXPCBAD) Severe error occurred 99126999
MVC ERRBUFF(ERRMSGL),ERRMSG Set up error message 99127999
MVC AXPERRL,=A(ERRMSGL) Set up error message length 99128999
MVC AXPSEVC,=A(29) Set up error message severity 99129999

 B EXIT1 99139999
 EJECT 99131999

Figure 43 (Part 3 of 18). Example of a User Exit

 Chapter 4. Providing User Exits 115

 User Exit Coding Example

KKK 99132999
K SOURCE EXIT K 99133999
K - Process required request type K 99134999
KKK 99135999
SOURCE DS 9H 99136999

L R15,AXPRTYP Get the request type value (1-5) 99137999
BCTR R15,9 Decrement by 1 99138999
SLL R15,1 Multiply by 2 99139999
LH R15,SOURCE_ADDR(R15) Index into Address list 99149999
AR R15,R12 Calculate the address 99141999
BR R15 Branch to applicable routine 99142999

SOURCE_ADDR DC Y(SOURCE_OPEN-MYEXIT) 99143999
 DC Y(SOURCE_CLOSE-MYEXIT) 99144999
 DC Y(SOURCE_READ-MYEXIT) 99145999
 DC Y(SOURCE_WRITE-MYEXIT) 99146999
 DC Y(SOURCE_PROCESS-MYEXIT) 99147999
 DC Y(K-K) 99148999
 SPACE 1 99149999
KKK 99159999
K SOURCE EXIT - Process OPEN request K 99151999
K - Pick up character string if it is supplied. K 99152999
K - Set return code indicating whether the assembler or user exit K 99153999
K will open the primary input data set. K 99154999
K - Open data set if required. K 99155999
KKK 99156999
SOURCE_OPEN DS 9H 99157999

MVI OPENPARM,C' ' Clear open parm 99158999
 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM 99159999

L R1,AXPBUFL Get the Buffer length 99169999
LTR R1,R1 Is string length zero? 99161999
BZ SOURCE_NOSTR Yes, no string passed 99162999
BCTR R1,9 Decrement for execute 99163999
EX R1,UPPERSTR Move and uppercase string 99164999

SOURCE_NOSTR DS 9H 99165999
CLC OPENPARM(8),=CL8'EXIT' Will user exit read input? 99166999

 BE SOURCE_OPEN_EXIT Yes 99167999
MVC AXPRETC,=A(9) assembler to read primary input 99168999

 B EXIT1 Return 99169999
SOURCE_OPEN_EXIT DS 9H 99179999
 OI OPENFLAG,EXIT Set flag 99171999

MVC AXPRETC,=A(AXPCOPN) User exit to read primary input 99172999
LA R1,SRC1 Address first source record 99173999
ST R1,CURR_PTR Set up pointer 99174999

 B EXIT1 Return 99175999
 SPACE 1 99176999
KKK 99177999
K SOURCE EXIT - Process CLOSE request K 99178999
K - Close data set if required. K 99179999
K - Free storage and return. K 99189999
KKK 99181999
SOURCE_CLOSE DS 9H 99182999
 B FREESTOR 99183999
 SPACE 1 99184999

Figure 43 (Part 4 of 18). Example of a User Exit

116 HLASM V1R3 Programmer’s Guide

 User Exit Coding Example

KKK 99185999
K SOURCE EXIT - Process READ request K 99186999
K - Provide source information on first read. K 99187999
K - Read primary input record and place in buffer. K 99188999
K - Set return code to 16 at end of file. K 99189999
KKK 99199999
SOURCE_READ DS 9H 99191999

CLI LASTOP,AXPROPN Was last operation OPEN? 99192999
 BNE SOURCE_READ2 99193999
 MVC AXPMEMN,=CL255'Member' 99194999
 MVC AXPMEMT,=CL255'None' 99195999
 MVC AXPDSN,=CL255'INPUT.data set.NAME' 99196999
 MVC AXPVOL,=CL255'VOL991' 99197999

MVC AXPREAC,=A(AXPEISA) Indicate source info available 99198999
XC AXPRELREC,AXPRELREC Set Relative Record No. to 9 99199999
XC AXPABSREC,AXPABSREC Set Absolute Record No. to 9 99299999

SOURCE_READ2 DS 9H 99291999
L R1,CURR_PTR Get record address 99292999
CLI 9(R1),X'FF' Is it EOF? 99293999
BE SOURCE_EOF Yes, set return code 99294999

 MVC 9(89,BUFREG),9(R1) 99295999
 LA R1,89(,R1) 99296999

ST R1,CURR_PTR Point to next source record 99297999
 MVC WTOL+4(89),9(BUFREG) 99298999

WTO MF=(E,WTOL) Issue WTO for source record 99299999
 L R1,AXPRELREC Update 99219999
 LA R1,1(R1) Relative Record 99211999
 ST R1,AXPRELREC Number 99212999
 L R1,AXPABSREC Update 99213999
 LA R1,1(R1) Absolute Record 99214999
 ST R1,AXPABSREC Number 99215999
 B EXIT1 99216999
SOURCE_EOF DS 9H 99217999

MVC AXPRETC,=A(AXPCEOD) End of file on input 99218999
 B EXIT1 99219999
 SPACE 1 99229999
KKK 99221999
K SOURCE EXIT - Process WRITE request K 99222999
K - Not valid for SOURCE exit. K 99223999
K - Set return code to 29 and set up error message. K 99224999
KKK 99225999
SOURCE_WRITE DS 9H 99226999
 B LOGICERR 99227999
 SPACE 1 99228999
KKK 99229999
K SOURCE EXIT - Process PROCESS request K 99239999
K - Exit may modify the record, have the assembler discard the K 99231999
K record or insert additional records by setting the return code K 99232999
K and/or reason code. K 99233999
KKK 99234999
SOURCE_PROCESS DS 9H 99235999
 MVC WTOL+4(89),9(BUFREG) 99236999

WTO MF=(E,WTOL) Issue WTO for source record 99237999
 B EXIT1 99238999
 EJECT 99239999

Figure 43 (Part 5 of 18). Example of a User Exit

 Chapter 4. Providing User Exits 117

 User Exit Coding Example

KKK 99249999
K LIBRARY EXIT K 99241999
K - Process required request type K 99242999
KKK 99243999
LIBRARY DS 9H 99244999

L R15,AXPRTYP Get the request type value (1-8) 99245999
BCTR R15,9 Decrement by 1 99246999
SLL R15,1 Multiply by 2 99247999
LH R15,LIBRARY_ADDR(R15) Index into Address list 99248999
AR R15,R12 Calculate the address 99249999
BR R15 Branch to applicable routine 99259999

LIBRARY_ADDR DC Y(LIBRARY_OPEN-MYEXIT) 99251999
 DC Y(LIBRARY_CLOSE-MYEXIT) 99252999
 DC Y(LIBRARY_READ-MYEXIT) 99253999
 DC Y(LIBRARY_WRITE-MYEXIT) 99254999
 DC Y(LIBRARY_PR_MAC-MYEXIT) 99255999
 DC Y(LIBRARY_PR_CPY-MYEXIT) 99256999
 DC Y(LIBRARY_FIND_MAC-MYEXIT) 99257999
 DC Y(LIBRARY_FIND_CPY-MYEXIT) 99258999
 DC Y(LIBRARY_EOM-MYEXIT) 99259999
 DC Y(K-K) 99269999
 SPACE 1 99261999
KKK 99262999
K LIBRARY EXIT - Process OPEN request K 99263999
K - Pick up character string if it is supplied. K 99264999
K - Set return code indicating whether the assembler, user exit or K 99265999
K both will process the library. K 99266999
K - Open data set if required. K 99267999
KKK 99268999
LIBRARY_OPEN DS 9H 99269999

MVI OPENPARM,C' ' Clear open parm 99279999
 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM 99271999

L R1,AXPBUFL Get the Buffer length 99272999
LTR R1,R1 Is string length zero? 99273999
BZ LIBRARY_NOSTR Yes, no string passed 99274999
BCTR R1,9 Decrement for execute 99275999
EX R1,UPPERSTR Move and uppercase string 99276999

LIBRARY_NOSTR DS 9H 99277999
CLC OPENPARM(4),=CL8'EXIT' Will user exit process library 99278999

 BE LIBRARY_OPEN_EXIT Yes 99279999
CLC OPENPARM(4),=CL8'BOTH' Will Both process library 99289999

 BE LIBRARY_OPEN_BOTH Yes 99281999
MVC AXPRETC,=A(9) assembler to process library 99282999

 B EXIT1 Return 99283999
LIBRARY_OPEN_EXIT DS 9H 99284999
 OI OPENFLAG,EXIT Set flag 99285999

MVC AXPRETC,=A(AXPCOPN) User exit to process library 99286999
MVC AXPREAC,=A(AXPEEOM) EXIT to get End of member calls 99287999

 B EXIT1 Return 99288999
LIBRARY_OPEN_BOTH DS 9H 99289999
 OI OPENFLAG,BOTH Set flag 99299999

MVC AXPRETC,=A(AXPCOPL) Both to process library 99291999
MVC AXPREAC,=A(AXPEEOM) EXIT to get End of member calls 99292999

 B EXIT1 Return 99293999
 SPACE 1 99294999

Figure 43 (Part 6 of 18). Example of a User Exit

118 HLASM V1R3 Programmer’s Guide

 User Exit Coding Example

KKK 99295999
K LIBRARY EXIT - Process CLOSE request K 99296999
K - Close data set if required. K 99297999
K - Free storage and return. K 99298999
KKK 99299999
LIBRARY_CLOSE DS 9H 99399999

USING LIBSTACK,R2 Map stack entries 99391999
ICM R2,B'1111',STACKPTR Check that stack is empty 99392999
BZ FREESTOR It should be! 99393999

LIBRARY_FREE_LOOP DS 9H 99394999
LTR R1,R2 Load address for FREEMAIN 99395999

 BZ FREESTOR Finished here 99396999
L R2,NEXT_MEM Prepare for next loop 99397999
LA R9,LIBSTACK_LEN Load length for FREEMAIN 99398999
FREEMAIN R,A=(1),LV=(9) Free the storage acquired 99399999

 B LIBRARY_FREE_LOOP 99319999
 SPACE 1 99311999
KKK 99312999
K LIBRARY EXIT - Process READ request K 99313999
K - Read copy/macro source and place in buffer. K 99314999
K - Set return code to 16 at end of member. K 99315999
KKK 99316999
LIBRARY_READ DS 9H 99317999

ICM R2,B'1111',STACKPTR Is the stack empty? 99318999
BZ LIBRARY_STACK_ERR It shouldn't be! 99319999
L R1,MEM_PTR Get record address 99329999
CLI 9(R1),X'FF' Is it EOF? 99321999
BE LIBRARY_EOF Yes, set return code 99322999

 MVC 9(89,BUFREG),9(R1) 99323999
LA R1,89(,R1) Point to next record address 99324999
ST R1,MEM_PTR and save in stack entry 99325999

 MVC WTOL+4(89),9(BUFREG) 99326999
WTO MF=(E,WTOL) Issue WTO for library record 99327999

 L R1,AXPRELREC Update 99328999
 LA R1,1(R1) Relative Record 99329999
 ST R1,AXPRELREC Number 99339999

ST R1,MEM_RELREC and save in stack entry 99331999
 L R1,AXPABSREC Update 99332999
 LA R1,1(R1) Absolute Record 99333999
 ST R1,AXPABSREC Number 99334999
 B EXIT1 99335999
LIBRARY_EOF DS 9H 99336999

MVC AXPRETC,=A(AXPCEOD) End of file on input 99337999
 B EXIT1 99338999
 SPACE 1 99339999
KKK 99349999
K LIBRARY EXIT - Process WRITE request K 99341999
K - Not valid for LIBRARY exit. K 99342999
K - Set return code to 29 and set up error message. K 99343999
KKK 99344999
LIBRARY_WRITE DS 9H 99345999
 B LOGICERR 99346999
 SPACE 1 99347999
KKK 99348999
K LIBRARY EXIT - Process PROCESS MACRO/COPY request K 99349999
K - Exit may modify the record, have the assembler discard the K 99359999
K record or insert additional records by setting the return code K 99351999
K and/or reason code. K 99352999
KKK 99353999
LIBRARY_PR_MAC DS 9H 99354999
LIBRARY_PR_CPY DS 9H 99355999
 MVC WTOL+4(89),9(BUFREG) 99356999

WTO MF=(E,WTOL) Issue WTO for library record 99357999
 B EXIT1 99358999
 SPACE 1 99359999

Figure 43 (Part 7 of 18). Example of a User Exit

 Chapter 4. Providing User Exits 119

 User Exit Coding Example

KKK 99369999
K LIBRARY EXIT - Process FIND MACRO/COPY request K 99361999
K - Search for the member. Set the return code to indicate K 99362999
K whether the member was found. K 99363999
K - If the member is found, the source information is returned. K 99364999
KKK 99365999
LIBRARY_FIND_MAC DS 9H 99366999
LIBRARY_FIND_CPY DS 9H 99367999

CLC AXPOPTS,=A(AXPORES) Is it a resume request? 99368999
BE LIBRARY_RESUME Yes, resume member 99369999

 LA R3,MACA1 99379999
 CLC AXPMEMN(8),=CL8'OUTER' 99371999
 BE LIBRARY_FOUND 99372999
 LA R3,MACB1 99373999
 CLC AXPMEMN(8),=CL8'INNER' 99374999
 BE LIBRARY_FOUND 99375999
 LA R3,CPYA1 99376999
 CLC AXPMEMN(8),=CL8'TINY' 99377999
 BE LIBRARY_FOUND 99378999
 LA R3,CPYB1 99379999
 CLC AXPMEMN(8),=CL8'TINY1' 99389999
 BE LIBRARY_FOUND 99381999

MVC AXPRETC,=A(AXPCMNF) Indicate member not found 99382999
 B EXIT1 99383999
LIBRARY_FOUND DS 9H 99384999

ICM R2,B'1111',STACKPTR Is the stack empty? 99385999
 BZ LIBRARY_GET_STACK 99386999

CLC AXPOPTS,=A(AXPONEST) Is it a nested COPY/MACRO? 99387999
BNE LIBRARY_STACK_ERR NO - report an error 99388999

LIBRARY_GET_STACK DS 9H 99389999
LA R9,LIBSTACK_LEN Load reg with length 99399999
GETMAIN R,LV=(9) and getmain storage 99391999
XC 9(LIBSTACK_LEN,R1),9(R1) Clear the storage 99392999

NEW_LIBSTACK USING LIBSTACK,R1 Map the new stack entry 99393999
ST R2,NEW_LIBSTACK.NEXT_MEM Add new link to top of stack 99394999

 DROP NEW_LIBSTACK 99395999
ST R1,STACKPTR Re-anchor the stack 99396999
LR R2,R1 Make the new entry current 99397999
ST R3,MEM_PTR Save current record pointer 99398999
MVC MEM_NAME,AXPMEMN Save name in stack entry 99399999
MVC AXPREAC,=A(AXPEISA) Indicate source info available 99499999

 MVC AXPMEMT,=CL255'None' 99491999
 MVC AXPDSN,=CL255'LIBRARY.data set.NAME' 99492999
 MVC AXPVOL,=CL255'VOL992' 99493999

XC AXPRELREC,AXPRELREC Set relative record No to zero 99494999
 B EXIT1 99495999

Figure 43 (Part 8 of 18). Example of a User Exit

120 HLASM V1R3 Programmer’s Guide

 User Exit Coding Example

KKK 99496999
K LIBRARY EXIT - Process FIND (resume) request K 99497999
K - Set the relative record number in the parameter list K 99498999
K N.B. if the EXIT read the records from disk, at this point it would K 99499999
K use the information saved in the stack to reposition itself K 99419999
K ready for the next read. (i.e. a FIND and POINT) K 99411999
KKK 99412999
LIBRARY_RESUME DS 9H Stack Management now in EOM call 99413999

MVC AXPRETC,=A(AXPCMNF) Assume member not found 99414999
ICM R2,B'1111',STACKPTR Is the stack empty? 99415999
BZ LIBRARY_CHECK_BOTH Yes - check open option 99416999
CLC MEM_NAME,AXPMEMN Compare name with stack entry 99417999
BNE LIBRARY_CHECK_BOTH Not equal - check open option 99418999
MVC AXPRETC,=A(9) Correct our assumption 99419999
L R9,MEM_RELREC Get saved rel rec no from stack 99429999
ST R9,AXPRELREC Set relative record No 99421999

 B EXIT1 99422999
 SPACE 1 99423999
KKK 99424999
K LIBRARY EXIT - Use End of Member calls to perform stack management K 99425999
K - Compare member name, if equal unstack the top entry K 99426999
KKK 99427999
LIBRARY_EOM DS 9H 99428999

ICM R2,B'1111',STACKPTR Is the stack empty? 99429999
BZ LIBRARY_CHECK_BOTH Yes - check open option 99439999
CLC MEM_NAME,AXPMEMN Compare name with stack entry 99431999
BNE LIBRARY_CHECK_BOTH Not equal - check open option 99432999
LR R1,R2 Load address for FREEMAIN 99433999
L R2,NEXT_MEM Get address of next entry 99434999
ST R2,STACKPTR and save it. 99435999

 DROP R2 99436999
LA R9,LIBSTACK_LEN Load length for FREEMAIN 99437999
FREEMAIN R,A=(1),LV=(9) Free the storage acquired 99438999

LIBRARY_CHECK_BOTH DS 9H 99439999
CLI OPENFLAG,BOTH Did EXIT open with BOTH option 99449999
BE EXIT1 Yes - don't issue error msg 99441999

KKK 99442999
K LIBRARY EXIT - Stack Error Routine K 99443999
K - If an error occurred, set up the error message in the buffer K 99444999
K and length in AXPERRL. Set the severity code. K 99445999
K - Set the return code to 29. K 99446999
K - Return to the caller. K 99447999
KKK 99448999
LIBRARY_STACK_ERR DS 9H 99449999

MVC AXPRETC,=A(AXPCBAD) Severe error occurred 99459999
MVC ERRBUFF(ERRMSGL),STKMSG Set up error message 99451999
MVC AXPERRL,=A(STKMSGL) Set up error message length 99452999
MVC AXPSEVC,=A(29) Set up error message severity 99453999

 B EXIT1 99454999
 EJECT 99455999

Figure 43 (Part 9 of 18). Example of a User Exit

 Chapter 4. Providing User Exits 121

 User Exit Coding Example

KKK 99456999
K LISTING EXIT K 99457999
K - Process required request type K 99458999
KKK 99459999
LISTING DS 9H 99469999

L R15,AXPRTYP Get the request type value (1-5) 99461999
BCTR R15,9 Decrement by 1 99462999
SLL R15,1 Multiply by 2 99463999
LH R15,LISTING_ADDR(R15) Index into Address list 99464999
AR R15,R12 Calculate the address 99465999
BR R15 Branch to applicable routine 99466999

LISTING_ADDR DC Y(LISTING_OPEN-MYEXIT) 99467999
 DC Y(LISTING_CLOSE-MYEXIT) 99468999
 DC Y(LISTING_READ-MYEXIT) 99469999
 DC Y(LISTING_WRITE-MYEXIT) 99479999
 DC Y(LISTING_PROCESS-MYEXIT) 99471999
 DC Y(K-K) 99472999
 SPACE 1 99473999
KKK 99474999
K LISTING EXIT - Process OPEN request K 99475999
K - Pick up character string if it is supplied. K 99476999
K - Set return code indicating whether the assembler or the user exit K 99477999
K will write the listing. K 99478999
K - Open data set if required. K 99479999
KKK 99489999
LISTING_OPEN DS 9H 99481999

MVI OPENPARM,C' ' Clear open parm 99482999
 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM 99483999

L R1,AXPBUFL Get the Buffer length 99484999
LTR R1,R1 Is string length zero? 99485999
BZ LISTING_NOSTR Yes, no string passed 99486999
BCTR R1,9 Decrement for execute 99487999
EX R1,UPPERSTR Move and uppercase string 99488999

LISTING_NOSTR DS 9H 99489999
CLC OPENPARM(4),=CL8'EXIT' Will user exit process listing 99499999

 BE LISTING_OPEN_EXIT Yes 99491999
MVC AXPRETC,=A(9) assembler to write listing 99492999

 B EXIT1 Return 99493999
LISTING_OPEN_EXIT DS 9H 99494999
 OI OPENFLAG,EXIT Set flag 99495999

MVC AXPRETC,=A(AXPCOPN) User exit to write listing 99496999
 MVC AXPMEMN,=CL255' ' 99497999
 MVC AXPMEMT,=CL255' ' 99498999
 MVC AXPDSN,=CL255'LISTING.data set.NAME' 99499999
 MVC AXPVOL,=CL255'VOL991' 99599999

MVC AXPREAC,=A(AXPEISA) Indicate data set info available 99591999
XC AXPRELREC,AXPRELREC Set Relative Record No. to 9 99592999
XC AXPABSREC,AXPABSREC Set Absolute Record No. to 9 99593999

 B EXIT1 Return 99594999
 SPACE 1 99595999

Figure 43 (Part 10 of 18). Example of a User Exit

122 HLASM V1R3 Programmer’s Guide

 User Exit Coding Example

KKK 99596999
K LISTING EXIT - Process CLOSE request K 99597999
K - Close data set if required K 99598999
K - Free storage and return. K 99599999
KKK 99519999
LISTING_CLOSE DS 9H 99511999
 B FREESTOR 99512999
 SPACE 1 99513999
KKK 99514999
K LISTING EXIT - Process READ request K 99515999
K - Not valid for LISTING exit. K 99516999
K - Set return code to 29 and set up error message. K 99517999
KKK 99518999
LISTING_READ DS 9H 99519999
 B LOGICERR 99529999
KKK 99521999
K LISTING EXIT - Process WRITE request K 99522999
K - Write the listing record passed. K 99523999
KKK 99524999
LISTING_WRITE DS 9H 99525999
 MVC WTOL+4(89),9(BUFREG) 99526999

WTO MF=(E,WTOL) Issue WTO for listing record 99527999
 L R1,AXPRELREC Update 99528999
 LA R1,1(R1) Relative Record 99529999
 ST R1,AXPRELREC Number 99539999
 L R1,AXPABSREC Update 99531999
 LA R1,1(R1) Absolute Record 99532999
 ST R1,AXPABSREC Number 99533999
 B EXIT1 99534999
 SPACE 1 99535999
KKK 99536999
K LISTING EXIT - Process PROCESS request K 99537999
K - Exit may modify the record, have the assembler discard the K 99538999
K record or insert additional records by setting the return code K 99539999
K and/or reason code. K 99549999
KKK 99541999
LISTING_PROCESS DS 9H 99542999
 MVC WTOL+4(89),9(BUFREG) 99543999

WTO MF=(E,WTOL) Issue WTO for listing record 99544999
 B EXIT1 99545999
 EJECT 99546999

Figure 43 (Part 11 of 18). Example of a User Exit

 Chapter 4. Providing User Exits 123

 User Exit Coding Example

KKK 99547999
K OBJECT EXIT K 99548999
K - Process required request type K 99549999
KKK 99559999
PUNCH DS 9H 99551999
OBJECT DS 9H 99552999

L R15,AXPRTYP Get the request type value (1-5) 99553999
BCTR R15,9 Decrement by 1 99554999
SLL R15,1 Multiply by 2 99555999
LH R15,OBJECT_ADDR(R15) Index into Address list 99556999
AR R15,R12 Calculate the address 99557999
BR R15 Branch to applicable routine 99558999

OBJECT_ADDR DC Y(OBJECT_OPEN-MYEXIT) 99559999
 DC Y(OBJECT_CLOSE-MYEXIT) 99569999
 DC Y(OBJECT_READ-MYEXIT) 99561999
 DC Y(OBJECT_WRITE-MYEXIT) 99562999
 DC Y(OBJECT_PROCESS-MYEXIT) 99563999
 DC Y(K-K) 99564999
 SPACE 1 99565999
KKK 99566999
K OBJECT EXIT - Process OPEN request K 99567999
K - Pick up character string if it is supplied. K 99568999
K - Set return code indicating whether the assembler or the user exit K 99569999
K will write the object/punch records. K 99579999
K - Open data set if required K 99571999
KKK 99572999
OBJECT_OPEN DS 9H 99573999

MVI OPENPARM,C' ' Clear open parm 99574999
 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM 99575999

L R1,AXPBUFL Get the Buffer length 99576999
LTR R1,R1 Is string length zero? 99577999
BZ OBJECT_NOSTR Yes, no string passed 99578999
BCTR R1,9 Decrement for execute 99579999
EX R1,UPPERSTR Move and uppercase string 99589999

OBJECT_NOSTR DS 9H 99581999
CLC OPENPARM(4),=CL8'EXIT' Will user exit process object 99582999

 BE OBJECT_OPEN_EXIT Yes 99583999
MVC AXPRETC,=A(9) assembler to write object/punch 99584999

 B EXIT1 Return 99585999
OBJECT_OPEN_EXIT DS 9H 99586999
 OI OPENFLAG,EXIT Set flag 99587999

MVC AXPRETC,=A(AXPCOPN) User exit to write object/punch 99588999
 MVC AXPMEMN,=CL255'Member' 99589999
 MVC AXPMEMT,=CL255' ' 99599999
 MVC AXPDSN,=CL255'OBJECT.data set.NAME' 99591999
 MVC AXPVOL,=CL255'VOL991' 99592999

MVC AXPREAC,=A(AXPEISA) Indicate data set info available 99593999
XC AXPRELREC,AXPRELREC Set Relative Record No. to 9 99594999
XC AXPABSREC,AXPABSREC Set Absolute Record No. to 9 99595999

 B EXIT1 Return 99596999
 SPACE 1 99597999

Figure 43 (Part 12 of 18). Example of a User Exit

124 HLASM V1R3 Programmer’s Guide

 User Exit Coding Example

KKK 99598999
K OBJECT EXIT - Process CLOSE request K 99599999
K - Close data set if required. K 99699999
K - Free storage and return. K 99691999
KKK 99692999
OBJECT_CLOSE DS 9H 99693999
 B FREESTOR 99694999
 SPACE 1 99695999
KKK 99696999
K OBJECT EXIT - Process READ request K 99697999
K - Not valid for OBJECT exit. K 99698999
K - Set return code to 29 and set up error message. K 99699999
KKK 99619999
OBJECT_READ DS 9H 99611999
 B LOGICERR 99612999
KKK 99613999
K OBJECT EXIT - Process WRITE request K 99614999
K - Write the source record passed. K 99615999
KKK 99616999
OBJECT_WRITE DS 9H 99617999
 MVC WTOL+4(89),9(BUFREG) 99618999

WTO MF=(E,WTOL) Issue WTO for object record 99619999
 L R1,AXPRELREC Update 99629999
 LA R1,1(R1) Relative Record 99621999
 ST R1,AXPRELREC Number 99622999
 L R1,AXPABSREC Update 99623999
 LA R1,1(R1) Absolute Record 99624999
 ST R1,AXPABSREC Number 99625999
 B EXIT1 99626999
 SPACE 1 99627999
KKK 99628999
K OBJECT EXIT - Process PROCESS request K 99629999
K - Exit may modify the record, have the assembler discard the K 99639999
K record or insert additional records by setting the return code K 99631999
K and/or reason code. K 99632999
KKK 99633999
OBJECT_PROCESS DS 9H 99634999
 MVC WTOL+4(89),9(BUFREG) 99635999

WTO MF=(E,WTOL) Issue WTO for object record 99636999
 B EXIT1 99637999
 EJECT 99638999

Figure 43 (Part 13 of 18). Example of a User Exit

 Chapter 4. Providing User Exits 125

 User Exit Coding Example

KKK 99639999
K ADATA EXIT K 99649999
K - Process required request type K 99641999
KKK 99642999
ADATA DS 9H 99643999

L R15,AXPRTYP Get the request type value (1-5) 99644999
BCTR R15,9 Decrement by 1 99645999
SLL R15,1 Multiply by 2 99646999
LH R15,ADATA_ADDR(R15) Index into Address list 99647999
AR R15,R12 Calculate the address 99648999
BR R15 Branch to applicable routine 99649999

ADATA_ADDR DC Y(ADATA_OPEN-MYEXIT) 99659999
 DC Y(ADATA_CLOSE-MYEXIT) 99651999
 DC Y(ADATA_READ-MYEXIT) 99652999
 DC Y(ADATA_WRITE-MYEXIT) 99653999
 DC Y(ADATA_PROCESS-MYEXIT) 99654999
 DC Y(K-K) 99655999
 SPACE 1 99656999
KKK 99657999
K ADATA EXIT - Process OPEN request K 99658999
K - Pick up character string if it is supplied. K 99659999
KKK 99669999
ADATA_OPEN DS 9H 99661999

MVI OPENPARM,C' ' Clear open parm 99662999
 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM 99663999

L R1,AXPBUFL Get the Buffer length 99664999
LTR R1,R1 Is string length zero? 99665999
BZ ADATA_NOSTR Yes, no string passed 99666999
BCTR R1,9 Decrement for execute 99667999
EX R1,UPPERSTR Move and uppercase string 99668999

ADATA_NOSTR DS 9H 99669999
 B EXIT1 Return 99679999
 SPACE 1 99671999
KKK 99672999
K ADATA EXIT - Process CLOSE request K 99673999
K - Close data set if required. K 99674999
K - Free storage and return. K 99675999
KKK 99676999
ADATA_CLOSE DS 9H 99677999
 B FREESTOR 99678999
 SPACE 1 99679999
KKK 99689999
K ADATA EXIT - Process READ request K 99681999
K - Not valid for ADATA exit. K 99682999
K - Set return code to 29 and set up error message. K 99683999
KKK 99684999
ADATA_READ DS 9H 99685999
 B LOGICERR 99686999
KKK 99687999
K ADATA EXIT - Process WRITE request K 99688999
K - Not valid for ADATA exit. K 99689999
K - Set return code to 29 and set up error message. K 99699999
KKK 99691999
ADATA_WRITE DS 9H 99692999
 B LOGICERR 99693999
 SPACE 1 99694999
KKK 99695999
K ADATA EXIT - Process PROCESS request K 99696999
K - Exit may check the record but it may not modify the record, K 99697999
K discard the record or insert additional records. K 99698999
KKK 99699999
ADATA_PROCESS DS 9H 99799999
 MVC WTOL+4(89),9(BUFREG) 99791999

WTO MF=(E,WTOL) Issue WTO for ADATA record 99792999
 B EXIT1 99793999
 EJECT 99794999

Figure 43 (Part 14 of 18). Example of a User Exit

126 HLASM V1R3 Programmer’s Guide

 User Exit Coding Example

KKK 99795999
K TERM EXIT K 99796999
K - Process required request type K 99797999
KKK 99798999
TERM DS 9H 99799999

L R15,AXPRTYP Get the request type value (1-5) 99719999
BCTR R15,9 Decrement by 1 99711999
SLL R15,1 Multiply by 2 99712999
LH R15,TERM_ADDR(R15) Index into Address list 99713999
AR R15,R12 Calculate the address 99714999
BR R15 Branch to applicable routine 99715999

TERM_ADDR DC Y(TERM_OPEN-MYEXIT) 99716999
 DC Y(TERM_CLOSE-MYEXIT) 99717999
 DC Y(TERM_READ-MYEXIT) 99718999
 DC Y(TERM_WRITE-MYEXIT) 99719999
 DC Y(TERM_PROCESS-MYEXIT) 99729999
 DC Y(K-K) 99721999
 SPACE 1 99722999
KKK 99723999
K TERM EXIT - Process OPEN request K 99724999
K - Pick up character string if it is supplied. K 99725999
K - Set return code indicating whether the assembler or the user exit K 99726999
K will write the terminal records. K 99727999
K - Open data set if required. K 99728999
KKK 99729999
TERM_OPEN DS 9H 99739999

MVI OPENPARM,C' ' Clear open parm 99731999
 MVC OPENPARM+1(L'OPENPARM-1),OPENPARM 99732999

L R1,AXPBUFL Get the Buffer length 99733999
LTR R1,R1 Is string length zero? 99734999
BZ TERM_NOSTR Yes, no string passed 99735999
BCTR R1,9 Decrement for execute 99736999
EX R1,UPPERSTR Move and uppercase string 99737999

TERM_NOSTR DS 9H 99738999
CLC OPENPARM(4),=CL8'EXIT' Will user exit process records? 99739999

 BE TERM_OPEN_EXIT Yes 99749999
MVC AXPRETC,=A(9) assembler to write records 99741999

 B EXIT1 Return 99742999
TERM_OPEN_EXIT DS 9H 99743999
 OI OPENFLAG,EXIT Set flag 99744999

MVC AXPRETC,=A(AXPCOPN) User exit to write records 99745999
 MVC AXPMEMN,=CL255' ' 99746999
 MVC AXPMEMT,=CL255' ' 99747999
 MVC AXPDSN,=CL255'TERM.data set.NAME' 99748999
 MVC AXPVOL,=CL255'VOL991' 99749999

MVC AXPREAC,=A(AXPEISA) Indicate data set info available 99759999
XC AXPRELREC,AXPRELREC Set Relative Record No. to 9 99751999
XC AXPABSREC,AXPABSREC Set Absolute Record No. to 9 99752999

 B EXIT1 Return 99753999
 SPACE 1 99754999

Figure 43 (Part 15 of 18). Example of a User Exit

 Chapter 4. Providing User Exits 127

 User Exit Coding Example

KKK 99755999
K TERM EXIT - Process CLOSE request K 99756999
K - Close data set if required. K 99757999
K - Free storage and return. K 99758999
KKK 99759999
TERM_CLOSE DS 9H 99769999
 B FREESTOR 99761999
 SPACE 1 99762999
KKK 99763999
K TERM EXIT - Process READ request K 99764999
K - Not valid for TERM exit. K 99765999
K - Set return code to 29 and set up error message. K 99766999
KKK 99767999
TERM_READ DS 9H 99768999
 B LOGICERR 99769999
KKK 99779999
K TERM EXIT - Process WRITE request K 99771999
K - Write the terminal record passed. K 99772999
KKK 99773999
TERM_WRITE DS 9H 99774999
 MVC WTOL+4(68),9(BUFREG) 99775999

WTO MF=(E,WTOL) Issue WTO for terminal record 99776999
 L R1,AXPRELREC Update 99777999
 LA R1,1(R1) Relative Record 99778999
 ST R1,AXPRELREC Number 99779999
 L R1,AXPABSREC Update 99789999
 LA R1,1(R1) Absolute Record 99781999
 ST R1,AXPABSREC Number 99782999
 B EXIT1 99783999
 SPACE 1 99784999
KKK 99785999
K TERM EXIT - Process PROCESS request K 99786999
K - Exit may modify the record, have the assembler discard the K 99787999
K record or insert additional records by setting the return code K 99788999
K and/or reason code. K 99789999
KKK 99799999
TERM_PROCESS DS 9H 99791999
 MVC WTOL+4(68),9(BUFREG) 99792999

WTO MF=(E,WTOL) Issue WTO for terminal record 99793999
 B EXIT1 99794999
STKMSG DC C'LIBRARY EXIT encountered a stack error' 99795999
STKMSGL EQU K-ERRMSG 99796999
ERRMSG DC C'Invalid EXIT type or Request type passed to exit' 99797999
ERRMSGL EQU K-ERRMSG 99798999
WTOL WTO '1234567899123456789912345678991234567899123456789912345X99799999
 6789912345678991234567899',MF=L 99899999
UPPERSTR OC OPENPARM(K-K),9(BUFREG) Move and uppercase string 99891999
 SPACE 1 99892999

Figure 43 (Part 16 of 18). Example of a User Exit

128 HLASM V1R3 Programmer’s Guide

 User Exit Coding Example

SRC1 DC CL89'SMALL TITLE ''Test the assembler exits''' 99893999
SRC2 DC CL89' MACRO' 99894999
SRC3 DC CL89' LITTLE' 99895999
SRC4 DC CL89' BSM 9,14 Return' 99896999
SRC5 DC CL89' MEND' 99897999
SRC6 DC CL89' START' 99898999
SRC7 DC CL89' OUTER' 99899999
SRC8 DC CL89' LITTLE' 99819999
SRC9 DC CL89' REPRO' 99811999
SRC19 DC CL89'This is to be written to the punch data set' 99812999
SRC11 DC CL89' COPY TINY' 99813999
SRC12 DC CL89' END' 99814999
SRCEND DC X'FF' END OF SOURCE STMTS 99815999
 SPACE 1 99816999
MACA1 DC CL89' MACRO' 99817999
MACA2 DC CL89' OUTER' 99818999
MACA3 DC CL89' XR 15,15' 99819999
MACA4 DC CL89' INNER' 99829999
MACA5 DC CL89' LTR 15,15' 99821999
MACA6 DC CL89' MEND' 99822999
MACAEND DC X'FF' END OF MACRO STMTS 99823999
 SPACE 1 99824999
MACB1 DC CL89' MACRO' 99825999
MACB2 DC CL89' INNER' 99826999
MACB3 DC CL89' LR 12,15' 99827999
MACB4 DC CL89' MEND' 99828999
MACBEND DC X'FF' END OF MACRO STMTS 99829999
 SPACE 1 99839999
CPYA1 DC CL89'TINY DSECT LINE 1 TINY' 99831999
CPYA2 DC CL89' DS C''TINY'' LINE 2 TINY' 99832999
CPYA3 DC CL89' COPY TINY1 LINE 3 TINY' 99833999
CPYA4 DC CL89' DS CL19''TINY'' LINE 4 TINY' 99834999
CPYA5 DC CL89' DS CL89 LINE 5 TINY' 99835999
CPYEND DC X'FF' END OF COPY STMTS 99836999
CPYB1 DC CL89'TINY1 DSECT LINE 1 TINY1' 99837999
CPYB2 DC CL89' DS C''TINY1'' LINE 2 TINY1' 99838999
CPYB3 DC CL89' DS CL19''TINY1'' LINE 3 TINY1' 99839999
CPYBEND DC X'FF' END OF COPY STMTS 99849999
 SPACE 1 99841999

Figure 43 (Part 17 of 18). Example of a User Exit

 Chapter 4. Providing User Exits 129

 User Exit Coding Example

R9 EQU 9 99842999
R1 EQU 1 99843999
R2 EQU 2 99844999
R3 EQU 3 99845999
R4 EQU 4 99846999
R5 EQU 5 99847999
R6 EQU 6 99848999
R7 EQU 7 99849999
R8 EQU 8 99859999
R9 EQU 9 99851999
R19 EQU 19 99852999
R11 EQU 11 99853999
R12 EQU 12 99854999
R13 EQU 13 99855999
R14 EQU 14 99856999
R15 EQU 15 99857999
DCBREG EQU 5 Address of DCB 99858999
SRCREG EQU 6 Address of Source Information 99859999
ERRREG EQU 7 Address of Error Buffer 99869999
BUFREG EQU 8 Address of buffer 99861999
REQREG EQU 9 Address of request information 99862999
PARMREG EQU 19 Address or parameter 99863999
 LTORG , 99864999
 SPACE 1 99865999
 DCBD DSORG=PS,DEVD=DA 99866999
 SPACE 1 99867999

ASMAXITP , Mapping for exit parameter list 99868999
 SPACE 1 99869999
BUFF DSECT , 99879999
 DS CL255 Record buffer 99871999
 SPACE 1 99872999
ERRBUFF DSECT , 99873999

DS CL255 Error message buffer 99874999
 SPACE 1 99875999
WORKAREA DSECT 99876999
SAVEAREA DS 18F Save area 99877999
OPENPARM DS CL64 Character string passed at open time 99878999
OPENFLAG DS X Type of Operation requested at OPEN 99879999
EXIT EQU X'89' 99889999
BOTH EQU X'C9' 99881999
LASTOP DS X Previous request type 99882999
CURR_PTR DS A Current record pointer 99883999
STACKPTR DS A Address of top of Lib status stack 99884999
WORKLEN EQU K-WORKAREA 99885999
LIBSTACK DSECT Library status stack entry 99886999
NEXT_MEM DS A Address of entry next in stack 99887999
MEM_PTR DS A Current record pointer 99888999
MEM_RELREC DS F Current relative record number 99889999
MEM_NAME DS CL64 Stack of saved member names 99899999
LIBSTACK_LEN EQU K-LIBSTACK 99891999
 END MYEXIT 99892999

Figure 43 (Part 18 of 18). Example of a User Exit

130 HLASM V1R3 Programmer’s Guide

 External Function Processing

Chapter 5. Providing External Functions

Two conditional assembly instructions, SETAF and SETCF, let you call routines
written in a programming language that conforms to standard OS Linkage
conventions. The assembler calls the external function load module and passes
the address of an external function parameter list in Register 1. Each
differently-named external function called in the same assembly is provided with a
separate parameter list.

The SETAF instruction calls an external function module, and passes to the module
any number of parameters containing arithmetic values. The SET symbol in the
instruction is assigned the fullword value returned by the external function module.

The SETCF instruction calls an external function module, and passes to the module
any number of parameters containing character values. The SET symbol in the
instruction is assigned the character string value returned by the external function
module. The character string value can be up to 255 characters long.

This chapter describes the external function processing requirements, the linkage
conventions for generating an external function module, and the contents of the
parameter list that the assembler passes to the module

External Function Processing
The assembler calls an external function each time it processes a SETAF or
SETCF instruction. The assembler loads the external function module when the

| first call to the module is encountered. The assembler expects the external
| function module to be generated in 31-bit addressing mode (AMODE 31). The
| external function must return to the assembler in the same addressing mode from
| which it was called after restoring the registers to the values they contained at the
| time of the call. Only one copy of the load module is loaded, so it must be serially

reusable. The assembler must be able to locate the external function module as
follows:

| The external function must be a link-edited load module in a partitioned
| data set, or a program object in a PDSE, that is in the standard search sequence.

The external function can also be located in the Link Pack Area (LPA)

 The external function must have a file type of MODULE and be located
on one of the accessed disks. To generate the module, use the CMS LOAD and
GENMOD commands. When the LOAD command is issued, specify the RLDSAVE
option to make the module relocatable. If RLDSAVE is not specified, the
assembler program or data storage might be overlaid during execution.

 The external function must be a relocatable phase in a sublibrary that is
specified in the LIBDEF phase search chain. The external function can also be
located in the Shared Virtual Area (SVA).

Using the SIZE Option to Reserve Storage: External function modules are
loaded by the assembler during the assembly, which is after the assembler
completes initialization. Therefore, you should allow enough virtual storage in the
address space (MVS and CMS) or the partition (VSE) in which the assembler runs,

 Copyright IBM Corp. 1982, 1998 131

 External Function Parameter List

so that the external function modules can be loaded successfully, and for any
storage that your external function might acquire. You can reserve storage for your
external function modules by reducing the amount of storage the assembler uses.
Use the SIZE assembler option to control the amount of storage the assembler
uses.

 Linkage Conventions
External function modules are called by the assembler using standard OS Linkage
conventions. The external function can be written in any language that:

� Uses standard OS linkage conventions.

� Can be called many times using the module (or phase) entry point.

� Retains storage for variables across invocations and does not require a
run-time environment to be maintained across invocations.

See the specific programming language Programmer's Guide to determine if you
can use the programming language to write an external function for the High Level
Assembler.

The contents of the registers upon entry to the external function are as follows:

Register 0 Undefined

Register 1 Address of external function parameter list

Registers 2 through 12 Undefined

Register 13 Address of the 72 byte register save area

Register 14 Return address

Register 15 Address of entry point of external function

External Function Parameter List
The assembler passes a parameter list to the external function module. Register 1
points to the parameter list, and macro ASMAEFNP maps the parameter list.
Figure 44 on page 133 shows the SETAF parameter list, and Figure 45 on
page 134 shows the SETCF parameter list. A separate copy of the external
function parameter list is passed to each external function. The sections following
the figures describe each of the parameters in detail.

132 HLASM V1R3 Programmer’s Guide

 External Function Parameter List

 9 31
 ┌─────────────────────────┐

┌───────────────�│ Parameter List Version │
 │ ├─────────────────────────┤

│ │ Function Type │
 │ ├─────────────────────────┤

│ │ Number of Parameters │
 │ ├─────────────────────────┤

│ │ Return Code │
| │ ├─────────────────────────┤
| │ │ Flag byte │
| │ ├─────────────────────────┤
| │ │ Reserved │
| │ ├────────────┬────────────┤
| │ │ Msg Length │Msg Severity│
| │ ├────────────┴────────────┤

│ │ Return Value │
 │ ├─────────────────────────┤

│ │ Parm Value 1 │
 │ ├─────────────────────────┤

│ │ Parm Value 2 │
 │ ├─────────────────────────┤

│ │ . │
│ │ . │
│ │ . │

 │ ├─────────────────────────┤
│ │ Parm Value n │

 │ └─────────────────────────┘
 9 31 │
 ┌────────────┐ ┌───────────────────────┐ │
│ Register 1 ├────�│ Ptr to Request Info ├──────┘

 └────────────┘ ├───────────────────────┤ ┌─────────────────────────┐
│ Ptr to User Work Area ├──────────────────────�│ User Work Area 32 Bytes │

 ├───────────────────────┤ └─────────────────────────┘
 │ Reserved │
 ├───────────────────────┤
 │ Reserved │

| ├───────────────────────┤ ┌─────────────────────────┐
| │ Ptr to Msg Buffer ├──────────────────────�│ Msg Buffer (255 Bytes) │
| └───────────────────────┘ └─────────────────────────┘

Figure 44. SETAF External Function Parameter List Format

 Chapter 5. Providing External Functions 133

 External Function Parameter List

| 9 31
| ┌─────────────────────────┐
| ┌───────────────�│ Parameter List Version │
| │ ├─────────────────────────┤
| │ │ Function Type │
| │ ├─────────────────────────┤
| │ │ Number of Parameters │
| │ ├─────────────────────────┤
| │ │ Return Code │
| │ ├─────────────────────────┤
| │ │ Flag byte │
| │ ├─────────────────────────┤
| │ │ Reserved │
| │ ├────────────┬────────────┤
| │ │ Msg Length │Msg Severity│
| │ ├────────────┴────────────┤
| │ │ Return String Length │
| │ ├─────────────────────────┤
| │ │ Parm String 1 Length │
| │ ├─────────────────────────┤
| │ │ Parm String 2 Length │
| │ ├─────────────────────────┤
| │ │ . │
| │ │ . │
| │ │ . │
| │ ├─────────────────────────┤
| │ │ Parm String n Length │
| │ └─────────────────────────┘
| 9 31 │
| ┌────────────┐ ┌───────────────────────┐ │
| │ Register 1 ├────�│ Ptr to Request Info ├──────┘
| └────────────┘ ├───────────────────────┤ ┌─────────────────────────┐
| │ Ptr to User Work Area ├──────────────────────�│ User Work Area 32 Bytes │
| ├───────────────────────┤ └─────────────────────────┘
| │ Reserved │
| ├───────────────────────┤ ┌─────────────────────────┐
| │ Reserved │ ┌───────────�│Msg Buffer (255 Bytes) │
| ├───────────────────────┤ │ └─────────────────────────┘
| │ Ptr to Msg Buffer ├──────────┘ ┌─────────────────────────┐
| ├───────────────────────┤ ┌───────────�│Return String (255 Bytes)│
| │ Ptr to Return String ├──────────┘ └─────────────────────────┘
| ├───────────────────────┤ ┌─────────────────────────┐
| │ Ptr to Parm String 1 ├──────────────────────�│Parm String 1 (255 Bytes)│
| ├───────────────────────┤ └─────────────────────────┘
| │ Ptr to Parm String 2 ├──────────┐ ┌─────────────────────────┐
| ├───────────────────────┤ └───────────�│Parm String 2 (255 Bytes)│
| │ . │ └─────────────────────────┘
| │ . │ .
| │ . │ .
| │ . │ .
| │ . │
| ├───────────────────────┤ ┌─────────────────────────┐
| │ Ptr to Parm String n ├──────────────────────�│Parm String n (255 Bytes)│
| └───────────────────────┘ └─────────────────────────┘

| Figure 45. SETCF External Function Parameter List Format

134 HLASM V1R3 Programmer’s Guide

 External Function Parameter List

The external function parameter list consists of the following addresses:

Request Information List
Pointer to a list of binary fullword items that describe the external function request.
The assembler sets this pointer, which is always valid.

The Request Information List consists of the following fields:

Parameter List Version
A fullword identifying which version of the parameter list is
provided to the external function. Only one value is allowed
in this field:

| 2 (for High Level Assembler Release 3)

 Function Type
A fullword, set by the assembler to indicate the function type:

| 0 CLOSE call

1 SETAF function

2 SETCF function

Number of Parameters
A fullword indicating the number of parameters provided on
the call to this external function.

The assembler always sets this field.

 Return Code
A fullword, set by the external function, indicating success or
failure of the operation, and action to be taken by the
assembler on return from the external function:

0 Operation successful. Value or string returned.

>0 Operation failed. Request assembler to terminate
immediately.

When the return code is greater than 0 the assembler issues
diagnostic error message ASMA941U.

| Flag Byte
| X'80' Function requested a CLOSE call.

| The CLOSE call is not enabled by default. Each
| time the external function is called, it is able to set
| (or reset) this flag to indicate that it needs to
| perform some extra processing (releasing storage,
| for example) before being deleted. The external
| function may therefore set the flag on one call and
| reset it on another.

| The assembler maintains the Flag Byte and provides it to the
| external function on all calls.

 Chapter 5. Providing External Functions 135

 External Function Parameter List

| Reserved
| This storage is reserved for future use by IBM. The external
| function should not use this field, nor should it rely on the
| contents of this field (which are liable to change without
| notice).

| External functions can request that a message be issued on their behalf. The
| function provides the text of the message, and the assembler inserts the function's
| name and the supplied text into one of five messages. The relevant information is
| contained in two fields, Message Length and Message Severity:

| Msg Length
| A halfword, set by the external function, indicating the length
| of the message to be issued.

| Msg Severity
| A halfword, set by the external function, from which the
| assembler determines the associated message number. The
| severity code returned by the function is rounded up to a
| multiple of four as shown in Figure 46.

| Figure 46. Message Severity and Associated Messages

| Severity Code
| Specified
| Severity Code
| Used
| Associated
| Message

| 0| 0| ASMA710I

| 1–4| 4| ASMA711W

| 5–8| 8| ASMA712E

| 9–12| 12| ASMA713S

| >12| 16| ASMA714C

| Return Value (SETAF Only)
| A fullword, set by the external function. This field is set to
| zero by the assembler before the external function call.

| Parm Value n (SETAF Only)
| A fullword, set by the assembler, containing the value of the
| parameter passed to the external function.

| The Number of Parameters field indicates the number of
| Parm Value n fields in the Request Information List.

| Return String Length (SETCF Only)
| An unsigned fullword, set by the external function, containing
| the length of the string pointed to by the Ptr to Return
| String field.

| The assembler uses this field as the length of the returned
| string.

136 HLASM V1R3 Programmer’s Guide

 External Function Parameter List

| If the length is greater than 255, it is reset to 255 by the
| assembler. The consequence of returning a string longer
| than 255 bytes is unpredictable.

| Parm String n Length (SETCF Only)
| An unsigned fullword, set by the assembler, containing the
| length of the string pointed to by the Ptr to Parm String n
| field.

| The external function should use this length to determine the
| length of the Parm String n passed by the assembler.

| The assembler sets this field to a value between 0 and 255
| inclusive.

| The Number of Parameters field indicates the number of
| Parm String n Length fields in the Request Information List.

| Ptr to User Work Area
| Pointer to the User Work Area.

| The assembler provides four double words of storage for use by the external
| function. This storage is double-word aligned and the assembler initializes it to zero
| for the first call to the external function.

| It can be used by the external function to store information (such as the address of
| acquired storage) between calls. The contents of this storage area is preserved
| across all call types (SETAF, SETCF, and CLOSE) until the assembly completes.
| The assembler does not use or modify the work area.

| Ptr to Msg Buffer
| Pointer to the “function-supplied message” area.

| The assembler always sets this pointer before invoking an external function. The
| external function can put up to 255 bytes of message text into the area addressed
| by this field.

| Ptr to Return String (SETCF Only)
| Pointer to the string returned by the external function.

| The assembler always sets this pointer before invoking an external function. The
| external function can put up to 255 bytes of character string data into the area
| addressed by this field.

| Ptr to Parm String n (SETCF Only)
| Pointer to Parm String n passed to the external function.

| The assembler always sets this pointer before invoking an external function. The
| length of the string pointed to by this field is contained in the Parm String n
| Length field.

 Chapter 5. Providing External Functions 137

 External Function Parameter List

| The Number of Parameters field in the Request Information List indicates the
| number of Ptr to Parm String n fields in the External Function Parameter List.

138 HLASM V1R3 Programmer’s Guide

 Assembly Error Diagnostic Messages

Chapter 6. Diagnosing Assembly Errors

The diagnostic facilities for High Level Assembler include:

� Diagnostic messages for assembly errors.
� A macro trace and dump facility (MHELP).
� Messages and dumps issued by the assembler if it ends abnormally.
� Diagnostic or explanatory messages issued by the source program or by macro

definitions (MNOTEs).

This chapter provides an overview of these facilities. The assembly error
diagnostic messages and abnormal assembly termination messages are described
in detail in Appendix G, “High Level Assembler Messages” on page 306.

Assembly Error Diagnostic Messages
High Level Assembler prints most error messages in the listing immediately
following the statement in error. It also prints the total number of flagged
statements and their statement numbers in the Diagnostic Cross Reference and
Assembler Summary section of the assembler listing.

The messages do not follow the statement in error when:

� Errors are detected during editing of macro definitions read from a library. A
message for such an error appears after the first call in the source program to
that macro definition. You can, however, bring the macro definition into the
source program with a COPY statement or using the LIBMAC assembler
option. The editing error messages then follow immediately after the
statements in error.

� Errors are detected by the lookahead function of the assembler. (For attribute
references, look-ahead processing scans for symbols defined on statements
after the one being assembled.) Messages for these errors appear after the
statements in which they occur. The messages may also appear at the point at
which lookahead was called.

� Errors are detected on conditional assembler statements during macro
generation or MHELP testing. Such a message follows the most recently
generated statement or MHELP output statement.

A typical error diagnostic message is:

| KK ASMA957E UNDEFINED OPERATION CODE — xxxxxxxx

A copy of a segment of the statement in error, represented above by xxxxxxxx, is
appended to the end of many messages. Normally this segment begins at the bad
character or term. For some errors, however, the segment begins after the bad
character or term.

 Copyright IBM Corp. 1982, 1998 139

 Assembly Error Diagnostic Messages

If a diagnostic message follows a statement generated by a macro definition, the
following items might be appended to the error message:

� The number of the model statement in which the error occurred, or the first five
characters of the macro name.

| � The SET symbol, system variable, macro parameter, or value string associated
| with the error.

| Macro Parameters: Messages may reference three types of macro parameter:
| the name field parameter, keyword parameters, and positional parameters. A
| reference to the name field parameter is indicated by the word “NAME” appended
| to the message. References to keyword and positional parameters (for which there
| may be multiple occurences) are in the form “KPARMnnnn” and “PPARMnnnn”
| respectively, where nnnn is the relative number of the parameter within the macro
| definition.

| Figure 47 shows an example of a macro with messages referencing each type of
| variable or parameter.

| Active Usings: None
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 1 MACRO 99991999
| �3� �4� �4� �5�
| 2 &z parms &kw1=a,&kw2=b,&kw3=c,&kw4=d,&kw5=e,&kw6=f,&pp1,&pp2 99992999
| 3 &c SETC 'just a string' �┬─��1� 99993999
| 4 &ss SETA &c �┘ 99994999
| 5 &sv SETA &sysasm �2� 99995999
| 6 &z1 SETA &z �3� 99996999
| 7 &k1 SETA &kw1 �┬� �4� 99997999
| 8 &k5 SETA &kw5 �┘ 99998999
| 9 &n SETA n'&syslist 99999999
| 19 &pn SETA &syslist(&n)�─┬� �5� 99919999
| 11 &p2 SETA &pp2 �┘ ┌� �5� 99911999
| 12 MEND ┌┴────┐ 99912999
| 999999 99999 99999 13 default CSECT + + 99913999
| 14 n parms pp1,pp2,kw5=z,pp3,kw1=y,pp4,pp5,pp6 99914999
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99994/C �1�
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99995/SYSASM �2�
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99996/NAME �3�
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99997/KPARM99991 �┬� �4�
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99998/KPARM99995 �┘
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99919/PPARM99996 �┬� �5�
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99911/PPARM99992 �┘
| 15 END 99915999

| Figure 47. Sample Macro Parameter Messages

| Notes to Figure 47:

| �1� SET symbol, and related message

| �2� System variable symbol, and related message

| �3� The name field parameter, and related message

| �4� Keyword parameters, and related messages

| �5� Positional parameters, and related messages

Conditional Assembly: If a diagnostic message follows a conditional assembly
statement in the source program, the following items are appended to the error
message:

� The word “OPENC”, meaning “open code”.
� The SET symbol, or value string, associated with the error.

140 HLASM V1R3 Programmer’s Guide

 MNOTE Statements

Multiple Messages: Several messages can be issued for a single statement or
even for a single error within a statement. This happens because each statement
is usually evaluated on more than one level (for example, term level, expression
level, and operand level) or by more than one phase of the assembler. Each level
or phase can diagnose errors; therefore, most or all of the errors in the statement
are flagged. Occasionally, duplicate error messages may occur. This is a normal
result of the error detection process.

Figure 48 on page 142 is an example of High Level Assembler handling of error
messages, and includes message ASMA435I to show the effect of the
FLAG(RECORD) assembler option.

 MNOTE Statements
An MNOTE statement is included in a macro definition or in the source program. It
causes the assembler to generate an inline error or informational message.

An MNOTE appears in the listing as follows:

| ASMA254I KKKMNOTEKKK statement number, severity code, message

Unless the severity code is shown as an asterisk (K), or the severity code is
omitted, the statement number of the MNOTE is listed in the diagnostic
cross-reference.

 Chapter 6. Diagnosing Assembly Errors 141

 MNOTE Statements

| Active Usings: None
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/98/95 12.55
| 1 KKK DIA99919
| 2 K SAMPLE ERROR DIAGNOSTIC MESSAGES K DIA99929
| 3 K IN SOURCE PROGRAM (OPEN CODE) AND GENERATED BY MACRO CALLS K DIA99939
| 4 KKK DIA99949
| 999999 99999 9993C 5 A CSECT DIA99959
| 999999 9999 9999 99999 6 STM 14,U2,12(13(DIA99969
| KK ASMA944E Undefined symbol - U2
| KK ASMA929E Incorrect register specification
| KK ASMA179S Delimiter error, expected right parenthesis
| KK ASMA435I Record 6 in DIAGMSG ASSEMBLE A1 on volume: ADISK
| 999994 95C9 7 BALR 12,9 DIA99979
| R:C 99996 8 USING K,12 DIA99989
| 999996 9999 9999 99999 9 ST 13,SAVE+4 DIA99999
| KK ASMA944E Undefined symbol - SAVE
| KK ASMA435I Record 9 in DIAGMSG ASSEMBLE A1 on volume: ADISK
| 19 OPEN (CRDIN,(INPUT),CRDOUT,(OUTPUT) DIA99199
| KK ASMA988E Unbalanced parentheses in macro call operand - OPEN /(CRDIN,(INPUT),CRDOUT,(OUTPUT)
| KK ASMA435I Record 323 in OSMACRO MACLIB S2(OPEN) on volume: MNT199
| 99999A 9799 11+ CNOP 9,4 ALIGN LIST TO FULLWORD 91-OPEN
| 99999C 4119 C99E 99914 12+ LA 1,K+8 LOAD R1 W/LIST ADR @V6PXJRU 91-OPEN
| 999919 47F9 C99E 99914 13+ B K+4 BRANCH AROUND LIST @V6PXJRU 91-OPEN
| KK ASMA254I KKK MNOTE KKK 14+ 12,KKK IHB991 DCB OPERAND REQ'D-NOT SPECIFIED 92-IHBER
| 15 DROP 11 DIA99119
| KK ASMA945W Register or label not previously used - 11
| KK ASMA435I Record 11 in DIAGMSG ASSEMBLE A1 on volume: ADISK
| 16 KKK DIA99129
| 17 K EDITING AND GENERATION ERRORS AND MNOTES FROM A LIBRARY MACRO K DIA99139
| 18 KKK DIA99149
| 19 LOADR REG1=19,REG2=8,WOOSHA,SUMA DIA99159
| 999914 58A9 C92E 99934 29+ L 19,WOOSHA 91-LOADR
| 999918 5889 C932 99938 21+ L 8,SUMA 91-LOADR
| 22 LOADR REG1=25,REG2=8,WOOSHA,MAINY DIA99169
| 99991C 9999 9999 99999 23+ L 25,WOOSHA 91-LOADR
| KK ASMA929E Incorrect register specification
| KK ASMA435I Record 5 in TEST MACLIB A1(LOADR) on volume: ADISK
| 999929 9999 9999 99999 24+ L 8,MAINY 91-LOADR
| KK ASMA944E Undefined symbol - MAINY
| KK ASMA435I Record 6 in TEST MACLIB A1(LOADR) on volume: ADISK
| 25 LOADR REG2=19,SUMA,MAINY DIA99179
| KK ASMA254I KKK MNOTE KKK 26+ 36,YOU LEFT OUT THE FIRST REGISTER 91-LOADR

| Figure 48 (Part 1 of 2). Sample Error Diagnostic Messages

142 HLASM V1R3 Programmer’s Guide

 Reference Information for Statements in Error

| 27 KKK DIA99189
| 28 K SAMPLE IN-LINE MACRO DEFINITION K DIA99199
| 29 KKK DIA99299
| 39 MACRO DIA99219
| 31 &NAME LOADR ®1=,®2=,&OP1,&OP2 DIA99229
| 32 &R(1) SETA ®1,®2 DIA99239
| 33 AIF (T'®1 EQ 'O').ERR DIA99249
| 34 L &R(1),&OP1 DIA99259
| 35 L &R(2),&OP2 DIA99269
| 36 MEXIT DIA99279
| 37 .ERR MNOTE 36,'YOU LEFT OUT THE FIRST REGISTER' DIA99289
| 38 MEND DIA99299
| 39 KKK DIA99399
| 49 K SAMPLE MACRO CALLS WITH GENERATION ERRORS AND MNOTES K DIA99319
| 41 KKK DIA99329
| Page 4
| Active Usings: A+X'6'(X'1999'),R12
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/98/95 12.55
| 42 LOADR REG1=19,REG2=8,WOOSHA,SUMA DIA99339
| 999924 58A9 C92E 99934 43+ L 19,WOOSHA 91-99934
| 999928 5889 C932 99938 44+ L 8,SUMA 91-99935
| 45 LOADR REG1=25,REG2=8,WOOSHA,&MAINY DIA99349
| KK ASMA993E Undeclared variable symbol; default=9, null, or type=U - OPENC/MAINY
| KK ASMA435I Record 34 in DIAGMSG ASSEMBLE A1 on volume: ADISK
| 99992C 9999 9999 99999 46+ L 25,WOOSHA 91-99934
| KK ASMA929E Incorrect register specification
| KK ASMA435I Record 25 in DIAGMSG ASSEMBLE A1 on volume: ADISK
| 999939 9999 9999 99999 47+ L 8, 91-99935
| KK ASMA974E Illegal syntax in expression -
| KK ASMA435I Record 26 in DIAGMSG ASSEMBLE A1 on volume: ADISK
| 48 LOADR REG2=8,SUMA,MAINY DIA99359
| KK ASMA254I KKK MNOTE KKK 49+ 36,YOU LEFT OUT THE FIRST REGISTER 91-99937
| 999934 59 WOOSHA DS F DIA99369
| 999938 51 SUMA DS F DIA99379
| 52 END DIA99389

Figure 48 (Part 2 of 2). Sample Error Diagnostic Messages

Suppression of Error Messages and MNOTE Statements
Optionally, you can suppress error messages and MNOTE statements below a
specified severity level by specifying the assembler option FLAG(n) (where n is the
lowest severity message that the assembler issues).

Reference Information for Statements in Error
The FLAG(RECORD) assembler option instructs the assembler to issue message
ASMA435I after the last error message for each statement in error. This message
shows reference information, including the data set name, and member name (if
applicable), and the input record number of the statement in error. When you
specify this option, the assembler includes reference information with the flagged
statements in the Diagnostic Cross Reference and Assembler Summary section of
the assembler listing. The reference information includes:

� The member name (if applicable).
� The input record number of the statement in error.
� The input data set concatenation value.

 Chapter 6. Diagnosing Assembly Errors 143

 MHELP—Macro Trace Facility

Abnormal Assembly Termination
Whenever the assembly cannot complete, High Level Assembler provides a
message and, in some cases, a specially formatted dump for diagnostic
information. This might indicate an assembler malfunction or it might indicate a
programmer error. The statement causing the error is identified and, if possible,
the assembly listing up to the point of the error is printed. Appendix G, “High Level
Assembler Messages” on page 306 describes the abnormal termination messages.
The messages give enough information to enable you (1) to correct the error and
reassemble your program, or (2) to determine that the error is an assembler
malfunction.

MHELP—Macro Trace Facility
The MHELP instruction controls a set of trace and dump facilities. You select
options by specifying an absolute expression in the MHELP operand field. MHELP
statements can occur anywhere in open code or in macro definitions. MHELP
options remain in effect until superseded by another MHELP statement.

Format of MHELP:

Name Operation Operand

| MHELP Absolute expression, (the sum of binary or decimal options)

The options are:

| B'1' or 1 Macro Call Trace
| B'10' or 2 Macro Branch Trace
| B'100' or 4 Macro AIF Dump
| B'1000' or 8 Macro Exit Dump
| B'10000' or 16 Macro Entry Dump
| B'100000' or 32 Global Suppression
| B'1000000' or 64 Macro Hex Dump
| B'10000000' or 128 Suppression
| Other values Control on &SYSNDX

Refer to Appendix F, “MHELP Sample Macro Trace and Dump” on page 298 for
complete details about this facility.

144 HLASM V1R3 Programmer’s Guide

 Part 2. Developing Assembler Programs on MVS

Part 2. Developing Assembler Programs on MVS

Chapter 7. Assembling Your Program on MVS 147
Input to the Assembler . 147
Output from the Assembler . 147
Invoking the Assembler on MVS . 147
Invoking the Assembler on TSO . 149
Invoking the Assembler Dynamically . 150
Batch Assembling . 152
Input and Output Data Sets . 153

Work Data Set: SYSUT1 . 156
Specifying the Source Data Set: SYSIN . 156
Specifying Macro and Copy Code Libraries: SYSLIB 156
Specifying the Listing Data Set: SYSPRINT 157
Directing Assembler Messages to Your Terminal: SYSTERM 157
Specifying Object Code Data Sets: SYSLIN and SYSPUNCH 157
Specifying the Associated Data Data Set: SYSADATA 157

Return Codes . 158

Chapter 8. Linking and Running Your Program on MVS 159
The Program Management Binder . 159
The Loader . 161
Creating a Load Module . 161

Creating a Load Module on MVS . 161
Creating a Load Module on TSO . 162

Input to the Linker . 162
Data Sets for Linker Processing . 163
Additional Object Modules as Input . 164

Output from the Linker . 165
Linker Processing Options . 165
Specifying Linker Options Through JCL . 166
Specifying Linker Options Using the TSO LINK Command 166
AMODE and RMODE Attributes . 167
Overriding the Defaults . 167
Detecting Linker Errors . 168

Running Your Assembled Program . 168
Running Your Assembled Program in Batch 168
Running Your Assembled Program on TSO 168

Chapter 9. MVS System Services and Programming Considerations . . . 169
Adding Definitions to a Macro Library . 169
Using Cataloged Procedures . 170

Cataloged Procedure for Assembly (ASMAC) 170
Cataloged Procedure for Assembly and Link (ASMACL) 172
Cataloged Procedure for Assembly, Link, and Run (ASMACLG) 174
Cataloged Procedure for Assembly and Run (ASMACG) 175
Overriding Statements in Cataloged Procedures 177

EXEC Statements . 177
DD Statements . 177

Examples of Cataloged Procedures . 177
Operating System Programming Conventions . 179

Saving and Restoring General Register Contents 179

 Copyright IBM Corp. 1982, 1998 145

 Part 2. Developing Assembler Programs on MVS

Ending Program Execution . 180
| Accessing Execution Parameters . 180

Object Module Linkage . 181
Modifying Program Modules . 182

146 HLASM V1R3 Programmer’s Guide

 Invoking the Assembler on MVS

Chapter 7. Assembling Your Program on MVS

This chapter describes how to invoke the assembler on MVS. It describes:

� The input to the assembler.
� The output from the assembler.
� How to invoke the assembler on MVS and TSO.
� How to invoke the assembler dynamically from a program.
� How to assemble multiple source programs using the BATCH option.
� The data sets used by the assembler.
� The assembler return codes.
� The cataloged procedures of job control language supplied by IBM.

Input to the Assembler
As input, the assembler accepts a program written in the assembler language as
defined in the High Level Assembler Language Reference. This program is
referred to as a source module. Some statements in the source module (macro or
COPY instructions) may cause additional input to be obtained from a macro library.

Input can also be obtained from user exits. See Chapter 4, “Providing User Exits”
on page 76 for more information.

Output from the Assembler
The output from the assembler can consist of an object module, a program listing,
terminal messages, and an associated data file. The object module can be written
to a data set residing on a direct access device or a magnetic tape. If you specify
the XOBJECT assembler option, the assembler produces an extended object
format module. Both formats of the object module are written to the same data set,
however only one format can be produced at a time. From that data set, the object
module can be read and processed by the linkage editor, the batch loader, or the
DFSMS/MVS binder. See Appendix C, “Object Deck Output” on page 245 for the
format of the object module. The format of the extended object format module is
described in DFSMS/MVS Program Management.

The program listing shows all the statements in the module, both in source and
machine language format, and gives other important information about the
assembly, such as error messages and cross reference information. The listing is
described in detail in Chapter 2, “Using the Assembler Listing” on page 8.

Invoking the Assembler on MVS
The JCL for running an assembly includes:

� A job description.
� A statement to run the assembler.
� Definitions for the data sets needed.

The simplest way to assemble your program on MVS is to code JCL that uses the
cataloged procedure shown in Figure 49 on page 148.

 Copyright IBM Corp. 1982, 1998 147

 Invoking the Assembler on MVS

//jobname JOB accountno,progrname,MSGLEVEL=1 �1�
//stepname EXEC ASMAC �2�
//SYSIN DD K �3�
...
Assembler source statements
...
/K

Figure 49. JCL for Assembly, Using Cataloged Procedure

�1� Identifies the beginning of your job to the operating system. jobname is the
name you assign to the job. accountno specifies the account to which your job
is charged, and progrname is the name of the programmer responsible for the
job. MSGLEVEL=1 specifies that the job control statements connected with this
job are to be listed. Check what parameters are required at your installation
and how they must be specified.

�2� Calls the cataloged procedure ASMAC. As a result, a number of job control
statements are included in the job from the procedure library. ASMAC is
described under “Cataloged Procedure for Assembly (ASMAC)” on page 170;
an expanded job stream is shown there.

�3� Specifies that the assembler language source program follows immediately
after this statement.

These statements cause the assembler to assemble your program, produce a
listing and write an object module to the SYSLIN data set. If you do not want an
object module written to the SYSLIN data set, use the following job control
statements to assemble the program:

//jobname JOB accountno,progrname,MSGLEVEL=1
//stepname EXEC ASMAC,PARM=NOOBJECT
//SYSIN DD K
...
Assembler source statements
...
/K

Figure 50. JCL for Assembly, Using Cataloged Procedure, with NOOBJECT

Assembler Options: The second parameter (PARM) specifies the assembler option
NOOBJECT, which tells the assembler not to write the object module to SYSLIN. For
a full discussion of assembler options, see Chapter 3, “Controlling your Assembly
with Options” on page 37.

Using your own JCL: The cataloged procedures might not comply with your data
processing requirements. Figure 51 on page 149 shows sample job control
statements that you can use instead to assemble your program.

148 HLASM V1R3 Programmer’s Guide

 Invoking the Assembler on TSO

//ASMJOB JOB 1,MSGLEVEL=1
//ASSEMBLY EXEC PGM=ASMA99,PARM=OBJECT

| //SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSPRINT DD SYSOUT=A
//SYSTERM DD SYSOUT=A
//SYSLIN DD DSNAME=PROG.OBJ,DISP=OLD
//SYSPUNCH DD DSNAME=PROG.DECK,DISP=OLD
//SYSADATA DD DSNAME=PROG.ADATA,DISP=OLD
//SYSIN DD DSNAME=PROG.SOURCE,DISP=SHR

Figure 51. JCL for Assembly

Refer to “Bibliography” on page 373 for a list of JCL manuals that describe
additional techniques for specifying job control statements and overriding cataloged
procedures.

Invoking the Assembler on TSO
| On TSO, you can use TSO commands, command lists (CLISTs), REXX EXECs, or

ISPF to assemble your program. Figure 52 shows how to allocate the data sets
and assemble the source program using the ALLOCATE and CALL commands.
The commands are shown in bold text.

h i
READY
ALLOCATE FILE(SYSUT1) CYLINDERS SPACE(1 1) REUSE
READY
ALLOCATE FILE(SYSPRINT) DATASET(�) REUSE
READY
ALLOCATE FILE(SYSTERM) DATASET(�) REUSE
READY
ALLOCATE FILE(SYSLIN) DATASET(PROG.OBJ) NEW TRACKS SPACE(3,3)

BLKSIZE(8!) LRECL(8!) RECFM(F B) CATALOG REUSE
READY
ALLOCATE FILE(SYSADATA) DATASET(PROG.ADATA) NEW CYLINDERS

SPACE(1 1) BLKSIZE(8192) LRECL(8188) RECFM(V B)
 REUSE CATALOG
READY
ALLOCATE FILE(SYSIN) DATASET(PROG.ASSEMBLE) SHR REUSE
READY
CALL ‘SYS1.LINKLIB(ASMA9!)’ ‘ADATA,LIST(133),OBJECT,TERM’
...
Assembler listing and messages
...
READY
FREE FILE(SYSADATA,SYSUT1,SYSPRINT,SYSTERM,SYSLIN,SYSIN)
READY

j k

Figure 52. Assembling on TSO

You can enter ALLOCATE commands in any order; however, you must enter all of
them before you start the assembly. Figure 53 shows the data sets you must
allocate when you specify particular assembler options.

 Chapter 7. Assembling Your Program on MVS 149

 Invoking the Assembler Dynamically

Exit Option: If you specify the EXIT option, the user exit program module must be
in a partitioned data set that is in the standard search sequence, including the Link
Pack Area (LPA).

Figure 53. Assembler Options and Data Sets Required

Option Specified Data Sets Required

Any SYSUT1 and SYSIN

LIST SYSPRINT

TERM SYSTERM

OBJECT or XOBJECT SYSLIN

DECK SYSPUNCH

ADATA SYSADATA

Invoking the Assembler Dynamically
You can invoke High Level Assembler from a running program using the CALL,
LINK, XCTL, or ATTACH system macro instructions.

When you use CALL, LINK, or ATTACH, you can supply:

� The assembler options.
� The ddnames of the data sets to be used during processing.

If you use XCTL, you cannot pass options to the assembler; the assembler uses
the installation default options. Figure 54 shows how to invoke the assembler
dynamically.

ASMA90 The load module name and entry point to invoke the assembler.
ASMA90 may be invoked in either 24-bit or 31-bit addressing mode.

EP Specifies the symbolic name of the assembler load module and entry
point.

PARAM Specifies, as a sublist, address parameters to be passed from the
program to the assembler. The first word in the address parameter list
(optionlist) contains the address of the option list. The second word
(ddnamelist) contains the address of the ddname list.

optionlist
Specifies the address of a variable-length list containing the options.
The address of an option list must be provided even if no options are
required.

Figure 54. Invoking the Assembler Dynamically

Name Operation Operand

symbol CALL

��─ ──ASMA99,(optionlist ──┬ ┬─────────────),VL ─��
└ ┘──,ddnamelist

LINK
or
ATTACH

��─ ──EP=ASMA99,PARAM=(optionlist ──┬ ┬─────────────),VL=1 ─��
└ ┘──,ddnamelist

150 HLASM V1R3 Programmer’s Guide

 Invoking the Assembler Dynamically

The option list must begin on a halfword boundary. The first two
bytes contain the number of bytes in the remainder of the list. If no
options are specified, the count must be zero. The option list is free
form, with each field separated from the next by a comma. No
blanks should appear in the list, except within the string specified for
the EXIT or SYSPARM options, providing the string is enclosed
within single quotes.

ddnamelist
Specifies the address of a variable-length list containing alternative
ddnames for the data sets used during assembler processing. If
standard ddnames are used, this operand can be omitted.

The ddname list must begin on a halfword boundary. The first two
bytes contain the number of bytes in the remainder of the list. Each
name of less than 8 bytes must be left-justified and padded to 8
bytes with blanks. If an alternative ddname is omitted, the standard
name is assumed. If the name is omitted within the list, the 8-byte
entry must contain binary zeros. Names can be omitted from the
end merely by shortening the list. The sequence of the 8-byte
entries in the ddname list is as follows:

Entry Alternative
1 SYSLIN
2 Not applicable
3 Not applicable
4 SYSLIB
5 SYSIN
6 SYSPRINT
7 SYSPUNCH
8 SYSUT1
9 Not applicable
10 Not applicable
11 Not applicable
12 SYSTERM
13 Not applicable
14 Not applicable
15 Not applicable
16 SYSADATA

Overriding ddname: Any overriding ddname specified when High
Level Assembler was installed, occupies the corresponding position
in the above list. The overriding ddname can also be overridden
during invocation. For example, if SYSWORK1 replaced SYSUT1, it
occupies position 8 in the above list. However, SYSWORK1 can be
overridden by another name during invocation.

VL specifies that the sign bit is to be set to 1 in the last word of the
parameter address list. VL must be specified for the CALL macro and
VL=1 for the LINK or ATTACH macros.

 Chapter 7. Assembling Your Program on MVS 151

 Batch Assembling

DYNAMICM CSECT
DYNAMICM RMODE 24
DYNAMICM AMODE ANY
BEGIN SAVE (14,12)
 USING BEGIN,15
 ST 13,SAVEAREA+4
 LA 13,SAVEAREA
 CALL ASMA99,(OPTIONS),VL
 L 13,SAVEAREA+4
 RETURN (14,12)
SAVEAREA DS 18F
OPTIONS DC Y(OPTIONSL)
OPTS DC C'XREF(SHORT)'
OPTIONSL EQU K-OPTS
 END

Figure 55. Sample Program to Call the Assembler Dynamically

 Batch Assembling
A sequence of separate assembler programs may be assembled with a single
invocation of the assembler when the BATCH option is specified. The object
programs produced from this assembly may be linked into either a single program
module or separate program modules.

When the BATCH option is specified, each assembler program in the sequence
must be terminated by an END statement, including the last program in the batch.
If an END statement is omitted, the program will be assembled with the next
program in the sequence. If the END statement is omitted from the last program in
the sequence, an END statement will be generated by the assembler.

If you want to produce more than one program module, a NAME control statement
must be written for each one. The NAME statement must be written after the
object module. The following example shows how to create two program modules,
SECT1 and SECT2.

SECT1 CSECT Start of first load module
...

 Source instructions
 . . .

END End of first load module
PUNCH ' NAME SECT1(R)'

 END
SECT2 CSECT Start of second load module

...
 Source instructions
 . . .

END End of second load module
PUNCH ' NAME SECT2(R)'

 END

152 HLASM V1R3 Programmer’s Guide

 Input and Output Data Sets

Input and Output Data Sets
Depending on the options in effect, High Level Assembler requires the following
data sets, as shown in Figure 56:

 ┌──────────────┐
 │ SYSIN │
 └───────┬──────┘
 │
 │
 +
 ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
 │ SYSLIB ├──────────�│ Assembler │�──────────�│ SYSUT1 │
 └──────────────┘ └───────┬──────┘ └──────────────┘
 │
 +
 ┌──────────────┬──────────────┬──────────────┬──────────────┐

│ │ │ │ │
+ + + + +

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐
│ SYSPRINT │ │ SYSTERM │ │ SYSLIN │ │ SYSPUNCH │ │ SYSADATA │
└───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

Figure 56. High Level Assembler Files

You can override the ddnames during installation or when invoking the assembler
dynamically (see “Invoking the Assembler Dynamically” on page 150).

High Level Assembler requires the following data sets:

SYSUT1 A work data set used as intermediate external storage when
processing the source program. This data set is used when there
is not enough main storage available to assemble in-storage.

If the value specified for the SIZE option is large enough, an
in-storage assembly is done and the work data set SYSUT1 can
be omitted, although a warning message is issued.

SYSIN An input data set containing the source statements to be
processed.

In addition, the following six data sets might be required:

SYSLIB A data set containing macro definitions (for macro definitions not
defined in the source program), source code to be called through
COPY assembler instructions, or both.

SYSPRINT A data set containing the assembly listing (if the LIST option is in
effect).

SYSTERM A data set containing a condensed form of SYSPRINT, principally
flagged statements and their error messages (only if the TERM
option is in effect).

SYSPUNCH A data set containing object module output (only if the DECK
option is in effect).

SYSLIN A data set containing object module output usually for the linkage
editor, loader, or binder (only if the OBJECT option or XOBJECT
option is in effect).

 Chapter 7. Assembling Your Program on MVS 153

 Input and Output Data Sets

SYSADATA A data set containing associated data output (only if the ADATA
option is in effect).

The data sets listed above are described on page 156. Figure 57 describes the
characteristics of these data sets, including the characteristics set by the assembler
and those you can override. The standard ddname that defines the data set
appears as the heading for each data set description.

Notes to Figure 57:

�1� If you specify EXIT(PRTEXIT) and the user exit specifies the logical record
| length, the logical record length returned is used, unless the SYSPRINT data
| set has a variable-length record format in which case the LRECL used is 4
| bytes greater than the value returned by the exit. If EXIT(PRTEXIT) has not

been specified or the user exit does not specify a record length, the record
length from the DD statement or data set label is used if present. Otherwise,

| the record length defaults to 133, or 137 if the record format is variable-length.

The minimum record length allowed for SYSPRINT is 121, and the maximum
| allowed is 255. If the record format is variable-length, the LRECL should be at
| least 125 or 137 depending on the LIST option.

�2� If you specify EXIT(TRMEXIT) and the user exit specifies the logical record
length, the logical record length returned is used. If EXIT(TRMEXIT) has not
been specified or the user exit does not specify a record length, the record
length from the DD statement or data set label is used if present. If not
present, the record length defaults to the record length for SYSPRINT (if the
LIST option is in effect) or 133 otherwise.

The maximum record length allowed for SYSTERM is 255.

�3� If you specify the OBJECT option the logical record length for SYSLIN must be
80. If you specify the XOBJECT option the object module can be generated
with either fixed-length records of 80 bytes, or variable-length records up to
8212 bytes.

Figure 57. Assembler Data Set Characteristics

Data Set Access
Method

Logical
Record
Length
(LRECL)

Block Size
(BLKSIZE)

Record Format
(RECFM)

SYSUT1 BSAM Same as
BLKSIZE

�4� F

SYSIN QSAM 80 �5� �9�

SYSLIB BPAM 80 �6� �9�

SYSPRINT QSAM �1�| �7��8� �1��

SYSTERM QSAM �2� �5��8� �11�

SYSPUNCH QSAM 80 �5� �9�

SYSLIN QSAM �3� �5� �9�

SYSADATA QSAM 8188 8192 or
greater�8�

VB

154 HLASM V1R3 Programmer’s Guide

 Input and Output Data Sets

Hierarchical File System: If you wish to copy the object data set to a file in a
Hierarchical File System, for example under MVS OpenEdition, the object
data set must be created with fixed-length records.

�4� You can specify a block size (BLKSIZE) between 2008 and 32760 bytes on the
DD statement or in the data set label. The BLKSIZE should be a multiple of 8.
If it is not, it is rounded to the next lower multiple of 8. If you do not specify
BLKSIZE, the assembler sets the block size to 4088.

�5� If specified, the BLKSIZE must equal the LRECL or be a multiple of the
LRECL. If BLKSIZE is not specified, it is set to LRECL.

Refer to the applicable Linkage Editor and Loader manual, or DFSMS/MVS
Program Management manual, for the block size requirements of SYSPUNCH
and SYSLIN, if you use them as input to the linkage editor, or DFSMS/MVS
Binder.

�6� The BLKSIZE on the DD statement or the data set label must be equal to, or
be a multiple of, the LRECL.

| �7� If the record format is fixed (for example, FB), any specified blocksize must
| equal the LRECL or be a multiple of the LRECL. If the record format is
| variable (for example, VB), the blocksize must be at least 4 bytes greater than
| the LRECL.

�8� High Level Assembler supports MVS/DFP System-Determined Blocksize
(SDB) for all output data sets except SYSLIN and SYSPUNCH.

System-Determined Blocksize is applicable when all of the following conditions
are true:

� The operating system is MVS/ESA with a MVS/DFP level of 3.1 or higher.

� The data set is NOT allocated to SYSOUT.

� A block size of zero is specified or the blocksize is not specified in the JCL.

� A record length (LRECL) is specified.

� A record format (RECFM) is specified.

� A data set organization (DSORG) is specified.

If these conditions are met, MVS/DFP selects the appropriate blocksize for a
new data set depending on the device type selected for output.

If the System-Determined Blocksize feature is not available, and your JCL
omits the blocksize, or specifies a blocksize of zero, the assembler uses the
logical record length as the blocksize.

�9� Set by the assembler to F (or FB) if necessary.

| �1�� Both fixed and variable formats are supported; the default is fixed. If the DD
statement or data set label specifies machine or ASA control characters, the
ASA option is set or reset accordingly. If machine or ASA control characters

| are not specified on the DD statement or data set label, the record format is
| modified according to the ASA option.

�11� Set by the assembler to F (or FB) if necessary. The record format is set to
FA (or FBA) if the ASA option is specified or FM (or FBM) otherwise.

 Chapter 7. Assembling Your Program on MVS 155

 Input and Output Data Sets

Work Data Set: SYSUT1
The assembler uses this work data set as an intermediate external storage device
when processing the source program. The input/output device assigned to this
data set must be a direct-access device. The assembler does not support
multivolume utility data sets.

This data set is only used if there is insufficient virtual storage allocated to
assemble the program in storage.

Specifying the Source Data Set: SYSIN
Define the data sets that contain your source code with the SYSIN DD statement:

//SYSIN DD DSN=datasetname,DISP=SHR

This data set contains the input to the assembler; that is, the assembler language
source statements to be processed.

You can place your assembler source code in the input stream. To do this, use
this SYSIN DD statement:

//SYSIN DD K

When you use the (*) DD parameter, the source code must follow the DD
statement. If another job step follows the assembly, the EXEC statement for that
step must follow the last source statement, or end-of-file (/*) statement.

The IBM-supplied High Level Assembler procedures do not contain the SYSIN DD
statement. The DD statement for SYSIN must be provided in the input stream:

//STEP1 EXEC ASMAC
//SYSIN DD K
...
assembler source statements
...
/K

Specifying Macro and Copy Code Libraries: SYSLIB
Define the partitioned data sets that contain your macro or copy members with the
SYSLIB DD statement:

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

From this data set, the assembler obtains macro definitions and assembler
language statements to be called by the COPY assembler instruction. Each macro
definition or sequence of assembler language statements is a separate member in
a partitioned data set. The member name is the operation code used to invoke the
macro in a macro instruction, or the operand name in a COPY instruction.

The data set can be defined as SYS1.MACLIB, or your private macro definition or
COPY library. SYS1.MACLIB contains macro definitions for the system macro
instructions provided by IBM. Your private library may be concatenated with
SYS1.MACLIB. The two libraries must have the same logical record length (80
bytes), but the blocking factors may be different. The applicable JCL Reference
explains the concatenation of data sets.

156 HLASM V1R3 Programmer’s Guide

 Input and Output Data Sets

Specifying the Listing Data Set: SYSPRINT
Define the data set that contains your listing output with the SYSPRINT DD
statement:

//SYSPRINT DD SYSOUT=A

The assembler uses this data set to produce a listing. You can direct output to a
printer, a magnetic tape, or a direct-access storage device. The assembler uses
ASA or machine control characters for this data set according to the ASA option.

Directing Assembler Messages to Your Terminal: SYSTERM
Define the data set that contains your terminal message's output with the
SYSTERM DD statement:

//SYSTERM DD SYSOUT=A

On TSO, the terminal messages can be sent to your terminal by using the following
ALLOC statement:

ALLOC F(SYSTERM) DA(K)

This data set is used by the assembler to store a condensed form of SYSPRINT
containing flagged statements and their associated error messages. It is intended
for output to a terminal, but can also be routed to a printer, a magnetic tape, or a
direct-access storage device. Depending on the ASA option, the assembler uses
ASA or machine control characters to skip to a new line for this data set.

Specifying Object Code Data Sets: SYSLIN and SYSPUNCH
Define the data set that contains your object output with the SYSLIN and
SYSPUNCH DD statements. When the OBJECT or XOBJECT option is in effect,
the object module is written to SYSLIN. When the DECK option is in effect, the
object module is written to SYSPUNCH. When both OBJECT and DECK options
are in effect, the object module is written to both SYSLIN and SYSPUNCH.

You can direct the SYSLIN data set to either a card punch or an intermediate
storage device capable of sequential access:

| //SYSLIN DD DSN=dsname,UNIT=SYSALLDA,
// SPACE=(subparms),DISP=(MOD,PASS)

You can direct the SYSPUNCH data set to either a card punch or an intermediate
storage device capable of sequential access:

//SYSPUNCH DD SYSOUT=B

Specifying the Associated Data Data Set: SYSADATA
Define the data set that contains your associated data output with the SYSADATA
DD statement:

| //SYSADATA DD DSN=dsname,UNIT=SYSALLDA,
// SPACE=(subparms),DISP=(MOD,PASS)

The associated data data set contains information regarding the assembly. It
provides information for use by symbolic debugging and cross-reference tools. The
SYSADATA data set must be directed to an intermediate storage device capable of
sequential access.

 Chapter 7. Assembling Your Program on MVS 157

 Return Codes

 Return Codes
| High Level Assembler issues return codes for use with the IF job control statement
| and the COND parameter of the JOB and EXEC job control language statements.
| The IF statement and the COND parameter enable you to skip or to run a job step,

depending on the results (indicated by the return code) of a previous job step. It is
explained in the applicable JCL Reference.

The return code issued by the assembler is the highest severity code that is
associated with any error detected in the assembly or with any MNOTE message
produced by the source program or macro instructions. The return code can be
controlled by the FLAG(n) assembler option described on page 49. See
Appendix G, “High Level Assembler Messages” on page 306 for a listing of the
assembler errors and their severity codes.

158 HLASM V1R3 Programmer’s Guide

 The Program Management Binder

Chapter 8. Linking and Running Your Program on MVS

The output from an assembly is an object module. An object module is a
relocatable module of machine code that is not executable.

| Before an object module can be executed, you must use the binder to convert it
| into executable machine code.

The Program Management Binder
The binder converts object modules into an executable program unit that can either
be read directly into virtual storage for execution, or stored in a program library.
Executable program units can either be load modules, or program objects. You
can use the binder to:

� Convert object or load modules, or program objects, into a program object and
store it in a PDSE program library.

� Convert object or load modules, or program objects, into a load module and
store it in a partitioned data set program library.

� Convert object or load modules, or program objects, into an executable
program in virtual storage and execute the program.

For the remainder of this section, the binder is referred to as the linker, unless
otherwise stated.

 Copyright IBM Corp. 1982, 1998 159

 The Program Management Binder

 ┌──────────────────────┐
 │ │
 │ Source Programs │
 │ │
 └──────────┬───────────┘
 │
 +
 ┌──────────────────────┐
 │ │
 │ ASSEMBLER │
 │ │
 └──────────┬───────────┘
 │
 +
 ┌──────────────────────┐
 │ │
 │ Object Modules ├─────────────────┐
 │ │ │
 └──────────┬───────────┘ │
 │ │
 + +
 ┌──────────────────────┐ ┌──────────────────────┐
 │ Program Management │ │ │

┌──────�│ BINDER ├──┐ │ BATCH LOADER │
 │ │ │ │ │ │
 │ └──────────────────────┘ │ └──────────┬───────────┘

│ b │ │
│ │ │ │
+ + │ │

 ┌──────────────────────┐ ┌──────────────────────┐ │ │
│ Load Module │ │ Program Object │ │ │

 │ in │ │ in │ │ │
│ PDS Program Library │ │ PDSE Program Library │ │ │

 └──────────┬───────────┘ └──────────┬───────────┘ │ │
+ │ │ │

┌──────────────────────┐ │ │ │
│ Program Management │ │ │ │
│ LOADER │�─────────────┘ │ │

 │ (Fetch) │ │ │
 └──────────┬───────────┘ │ │
 │ │ │
 │ + │
 │ ┌──────────────────────┐ │

│ │ Loaded Module in │ │
 └─────────────────────────────�│ Virtual Storage │�─┘

│ Ready for Execution │
 └──────────────────────┘

 Components are shown in uppercase.

 �──� = Two-way relationship.
Indicates a component can
produce that structure as
output or accept it as input.

Figure 58. Using the Program Management Components

160 HLASM V1R3 Programmer’s Guide

 Creating a Load Module

 The Loader
The loader component of MVS/DFP, and the batch loader component of
DFSMS/MVS perform the same task. Given this, the batch loader is hereafter
referred to as the loader, unless otherwise stated.

The loader combines the basic editing and loading services, that can also be
provided by the linkage editor and program fetch, into one step. The loader
accepts object modules and load modules, and loads them into virtual storage for
execution. The loader does not produce load modules that can be stored in
program libraries.

To keep a load module for later execution, use the linkage editor or binder.

Creating a Load Module
The linker processes your object module (assembled source program) and
prepares it for execution. The processed object module becomes a load module or
program object.

Optionally, the linker can process more than one object module, or load module,
and convert them into one or more load modules, or program objects, by using the
NAME control statement. See “Batch Assembling” on page 152 for an example
that uses the NAME control statement.

Creating a Load Module on MVS
Figure 59 shows the general job control for creating a load module or program
object.

//jobname JOB acctno,name,MSGLEVEL=1
...
//stepname EXEC PGM=HEWL,PARM=(options)
//SYSPRINT DD SYSOUT=A

| //SYSLMOD DD DSN=&&name(member),UNIT=SYSALLDA,
// DISP=(NEW,PASS),SPACE=(subparms)
//SYSLIB DD DSN=dsname,DISP=SHR

| //SYSUT1 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSLIN DD DSN=MYOBJ,DISP=SHR

Figure 59. Sample Job Control for Creating a Load Module

The SYSUT1 DD statement is used by the linkage editor, and ignored by the
binder.

High Level Assembler provides cataloged procedures for the following:

� Assembly and link.
� Assembly, link, and go (to execute your program).
� Assembly and go using the loader.

See “Using Cataloged Procedures” on page 170.

 Chapter 8. Linking and Running Your Program on MVS 161

 Input to the Linker

Creating a Load Module on TSO
You can invoke the linker on TSO (Time Sharing Option) with the LINK and
LOADGO commands.

The LINK command creates a program module and saves it in either a partitioned
data set or PDSE program library. If you run the LINK command in a system with
DFSMS/MVS, you can use the BINDER and NOBINDER option on the LINK
command to control whether your object module is linked using the binder or the
MVS/DFP linkage editor.

The LOADGO command creates and executes a program module. The module is
not saved in a program library.

Examples Using the LINK Command: If your assembly produced an object
module in a data set called PROGRAM1.OBJ, issue the following LINK command at
your terminal:

LINK PROGRAM1

The program module is placed by default in member TEMPNAME of a partitioned
data set, or PDSE program library called userid.PROGRAM1.LOAD. If you want to
put the program module in a different data set, issue the following LINK command:

LINK PROGRAM1 LOAD(data-set-name(member-name))

where data-set-name is a program library, and and member-name is the name of
the program module.

The following example shows how to link two object modules and place the
resulting program module in member TEMPNAME of the userid.LM.LOAD data set:

LINK PROGRAM1,PROGRAM2 LOAD(LM)

If your program refers to other modules (that is, external references), you can
instruct the linker to search for them by including the LIB parameter on the LINK
command. The LIB parameter specifies one or more names of library data sets to
search. For example:

LINK PROGRAM1 LIB('SALESLIB.LIB.SUBRT2')

This request searches library SALESLIB.LIB.SUBRT2.

You can also specify link options on the LINK and LOADGO commands. See
“Specifying Linker Options Using the TSO LINK Command” on page 166.

Linker options are discussed in “Linker Processing Options” on page 165.

For more information about using the LINK and LOADGO commands, see the
TSO/E Command Reference.

Input to the Linker
Your input to the linker can be:

� One or more object modules.

� Linker control statements (that you can generate using the PUNCH assembler
statement).

162 HLASM V1R3 Programmer’s Guide

 Input to the Linker

� Previously linked program modules you want to combine into one load module.

The primary input to the linker can be:

� A sequential data set.

� A member of a partitioned data set.

� A member of a PDSE (if you are using the binder to link your program).

� Concatenated data sets of any combination of the above.

The primary input data set can contain object modules, linker control statements,
and linked program modules.

You specify the primary input data set with the SYSLIN DD statement.

Secondary input to the linker can consist of object modules or program modules
that are not part of the primary input data set, but are included explicitly or

| automatically in the program module using the automatic call library process.

An automatic call library contains modules that you can use as secondary input to
the linkage editor to resolve external symbols left undefined after all primary input
has been processed.

The automatic call library may be in the form of:

� Libraries containing object modules, with or without linkage editor control
statements.

� Libraries containing linked program modules.

Secondary input for the linkage editor is composed of either all object modules or
all load modules, but it cannot contain both types. Secondary input for the binder
can be any combination of object modules, load modules libraries, and program
object libraries.

| You specify the secondary input data sets with a SYSLIB DD statement and, if the
| data sets are object modules, the LIBRARY and INCLUDE control statements. If

you have multiple secondary input data sets, concatenate them as follows:

//SYSLIB DD DSNAME=ORDERLIB,DISP=SHR
// DD DSNAME=SALESLIB,DISP=SHR

In this case, both the partitioned data sets (library) named ORDERLIB and
SALESLIB are available as the automatic call library. The LIBRARY control
statement has the effect of concatenating any specified member names with the
automatic call library.

Data Sets for Linker Processing
You need the following data sets for linker processing. Others may be necessary if
you have several additional libraries or object modules. If you need additional
libraries and object modules, include a DD statement for them in your JCL.
Figure 60 summarizes the data sets that you need for linking.

 Chapter 8. Linking and Running Your Program on MVS 163

 Input to the Linker

Figure 60. Data Sets Used for Linking

DD name Type Function

SYSLIN1 Input Primary input data, normally the output of the
assembler

SYSPRINT1 Output Diagnostic messages
Informative messages
Module map
Cross reference list

SYSLMOD1 Output Output data set for the program module

SYSUT11 Utility Work data set. Not used by the binder.

SYSLIB Library Automatic call library

SYSTERM2 Output Numbered error or warning messages

User specified3 Additional object modules and program modules

Notes:

1 Required data set
2 Required if TERM option is specified
3 Optional data set

Additional Object Modules as Input
You can use the INCLUDE and LIBRARY control statements to:

1. Specify additional object modules you want included in the program module
(INCLUDE statement).

2. Specify additional libraries to search for object modules to include in the
program module (LIBRARY statement). This statement has the effect of
concatenating any specified member names with the automatic call library.

Figure 61 shows an example that uses the INCLUDE and LIBRARY control
statements.

...
//SYSLIN DD DSNAME=&&GOFILE,DISP=(SHR,DELETE)
// DD K
 INCLUDE MYLIB(ASMLIB,ASSMPGM)
 LIBRARY ADDLIB(COBREGN9)
/K

Figure 61. INCLUDE and LIBRARY Control Statements

Data sets you specify on the INCLUDE statement are processed as the linker
encounters the statement. In contrast, data sets you specify on the LIBRARY
statement are used only when there are unresolved references after all the other
input is processed.

164 HLASM V1R3 Programmer’s Guide

 Output from the Linker

Output from the Linker
SYSLMOD and SYSPRINT are the data sets used for linker output. The output
varies depending on the options you select, as shown in Figure 62.

You always receive diagnostic and informative messages as the result of linking.
You can get the other output items by specifying options in the PARM parameter of
the EXEC statement in your JCL.

The program modules are written to the data set defined by the SYSLMOD DD
statement in your JCL. Diagnostic output is written to the data set defined by the
SYSPRINT DD statement.

Figure 62. Options for Controlling Linker Output

To Get This Output Use This Option

A map of the program modules generated by the
linker.

MAP

A cross-reference list of data variables XREF

Informative messages Default

Diagnostic messages Default

Listing of the linker control statements LIST

One or more program modules (which you must
assign to a library)

Default

Linker Processing Options
Linker options can be specified either:

� In your JCL,
or
� When you invoke the LINK or LOADGO command on TSO.

Figure 63 describes some of these options.

Figure 63 (Page 1 of 2). Link Processing Options

Option Action Comments

LET Lets you specify the severity level of an error, to
control whether the linker marks the program module
as non-executable.

The LET option is used differently
between the linkage editor and the
binder.

MAP NOMAP Use MAP if you want to get a map of the generated
program modules. NOMAP suppresses this map
listing.

The map of the program module gives
the length and location (absolute
addresses) of the main program and
all subprograms. NOMAP is the
default.

NCAL When you use the no automatic library call option
(NCAL), the linker does not search for library members
to resolve external references.

If you specify NCAL, you don't need to
use the LIBRARY statement, and you
don't need to supply the SYSLIB DD
statement.

 Chapter 8. Linking and Running Your Program on MVS 165

 Output from the Linker

Figure 63 (Page 2 of 2). Link Processing Options

Option Action Comments

RENT
NORENT

The RENT option indicates to the linker that the object
module is reenterable and can be used by more than
one task at a time. This type of module cannot be
modified by itself or any other module when it is
running. The assembler RENT option can be used to
assist in determining whether the object module is
reentrant. NORENT indicates that the object module is
not reentrant.

The assembler RENT option and linker
RENT option are independent of each
other. NORENT is the default linker
option.

AMODE
24 | 31 | ANY

Use AMODE (addressing mode) to override the default
AMODE attribute established by the assembler.

See “AMODE and RMODE Attributes”
on page 167.

RMODE
24 | ANY

Use RMODE (residence mode) to override the default
RMODE attribute established by the assembler.

See “AMODE and RMODE Attributes”
on page 167.

PRINT When you use the TSO commands LINK or LOADGO,
the PRINT option specifies where to print diagnostic
messages and the module map.

PRINT is also an option of the loader, and controls
whether diagnostic messages are produced.

See also “Specifying Linker Options
Using the TSO LINK Command” on
page 166.

Specifying Linker Options Through JCL
In your link JCL, use the PARM statement to specify options:

PARM=(linker-options)
PARM.stepname=('linker-options')

linker-options
A list of linker options (see Figure 63 on page 165). Separate the options with
commas.

stepname
The name of the step in the cataloged procedure that contains the PARM
statement.

Specifying Linker Options Using the TSO LINK Command
You specify linker options on the LINK and LOADGO commands. The following
example shows you how to specify the LET, MAP, and NOCALL options when you
issue the LINK command:

| LINK PROGRAM1 LET MAP NOCALL

You can use the PRINT option to display the module map at your terminal:

LINK PROGRAM1 MAP PRINT(K)

The K indicates that the output from the linker is displayed at your terminal.
NOPRINT suppresses any messages.

166 HLASM V1R3 Programmer’s Guide

 Output from the Linker

AMODE and RMODE Attributes
Every program that runs in MVS/ESA is assigned two attributes, an AMODE
(addressing mode) and an RMODE (residency mode):

AMODE Specifies the addressing mode in which the program is designed to
receive control. Generally, the program is also designed to run in that
mode, although a program can switch modes and can have different
AMODE attributes for different entry points within a program module.

MVS/ESA uses a program's AMODE attribute to determine whether a
program invoked using ATTACH, LINK, or XCTL is to receive control in
24-bit or 31-bit addressing mode.

RMODE Indicates where the program can reside in virtual storage.

MVS/ESA uses the RMODE attribute to determine whether a program
must be loaded into virtual storage below 16 megabytes, or can reside
anywhere in virtual storage (above or below 16 megabytes).

Valid AMODE and RMODE specifications are:

If you don't specify the AMODE or RMODE in the assembler program or when you
link the program, both AMODE and RMODE default to 24.

Attribute Meaning

AMODE=24 24-bit addressing mode

AMODE=31 31-bit addressing mode

AMODE=ANY Either 24-bit or 31-bit addressing mode

RMODE=24 The module must reside in virtual storage below 16
megabytes. Use RMODE=24 for programs that
have 24-bit dependencies.

RMODE=ANY Indicates that the module can reside anywhere in
storage, which includes addresses above the 16
megabyte line.

Overriding the Defaults
The following examples show you how to override the default AMODE and RMODE
values:

� Using the EXEC JCL statement:

 //LKED EXEC PGM=IEWBLINK,
 // PARM='AMODE=31,RMODE=ANY'

� Using the TSO commands LINK or LOADGO:

LINK PROGRAM1 AMODE(31) RMODE(ANY)
or

LOADGO PROGRAM1 AMODE(31) RMODE(ANY)

You can also use linker control statements to override the default AMODE and
RMODE values.

 Chapter 8. Linking and Running Your Program on MVS 167

 Running Your Assembled Program

Detecting Linker Errors
The linker produces a listing in the data set defined by the SYSPRINT DD
statement. The listing includes any informational or diagnostic messages issued by
the linker. You should check the load map to make sure that all the modules you
expected were included.

When linking your program, do not be concerned if you get messages about
unresolved, “weak” external references. For example if you obtain the following
results:

WXTRNNAM is a “weak” external reference; you need not be concerned about it.

EXTRNNAM is a “strong” external reference, which you should resolve for the
program module to run correctly.

Figure 64. Linker Output for Unresolved External References

Location Refers to Symbol In Control Section

 6A8 WXTRNNAM $UNRESOLVED(W)

 6AC EXTRNNAM $UNRESOLVED

Running Your Assembled Program
When you've completed the preparatory work for your assembler program
(designing, coding, assembling, and linking), the program is ready to run.

You can use cataloged procedures to combine the assemble, link, and go
procedures in your programs. See “Using Cataloged Procedures” on page 170.

Running Your Assembled Program in Batch
Figure 65 shows the general job control to run your program in batch.

//stepname EXEC PGM=progname[,PARM='user-parameters']
//STEPLIB DD DSN=library.dsname,DISP=SHR
//ddname DD (parameters for user-specified data sets)
...

Figure 65. General Job Control to Run a Program on MVS

Running Your Assembled Program on TSO
You use the CALL command to run your program on TSO, as follows:

CALL 'JRL.LIB.LOAD(PROGRAM1)'

If you omit the descriptive qualifier (LOAD) and the member name (PROGRAM1),
the system assumes LOAD and TEMPNAME, respectively. If your program module
is in the data set JRL.LIB.LOAD(TEMPNAME), and your TSO userid is JRL, enter:

CALL LIB

168 HLASM V1R3 Programmer’s Guide

 Adding Definitions to a Macro Library

Chapter 9. MVS System Services and Programming
Considerations

This chapter describes some of the MVS system services and program
development facilities that assist you in developing your assembler program. It
provides the following information:

� Adding definitions to a macro library.
� Using cataloged procedures.
� Overriding statements in cataloged procedures.
� Saving and restoring general register contents.
� Ending program execution.
� Accessing execution parameters.
� Combining object modules to form a single program module.
� Modifying program modules.

Adding Definitions to a Macro Library
You can add macro definitions, and members containing assembler source

| statements that can be read by a COPY instruction, to a macro library. You can
use the system utility IEBUPDTE for this purpose. You can find the details of
IEBUPDTE and its control statements in MVS/DFP 3.3 Utilities. Figure 66 shows
how a new macro definition, NEWMAC, is added to the system library,
SYS1.MACLIB.

//CATMAC JOB 1,MSGLEVEL=1
//STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
//SYSUT1 DD DSNAME=SYS1.MACLIB,DISP=OLD �1�
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD �1�
//SYSPRINT DD SYSOUT=A �2�
//SYSIN DD DATA
./ ADD LIST=ALL,NAME=NEWMAC,LEVEL=91,SOURCE=9 �3�
 MACRO �4�
 NEWMAC &OP1,&OP2
 LCLA &PAR1,&PAR2

...
 MEND
./ ENDUP
/K

Figure 66. Macro Library Addition Procedure

Notes to Figure 66:

�1� The SYSUT1 and SYSUT2 DD statements indicate that SYS1.MACLIB, an
existing program library, is to be updated.

�2� Output from the IEBUPDTE program is printed on the Class A output device
(specified by SYSPRINT).

�3� The utility control statement, ./ ADD, and the macro definition follow the SYSIN
statement. The ./ ADD statement specifies that the statements following it are
to be added to the macro library under the name NEWMAC. When you
include macro definitions in the library, the name specified in the NAME

 Copyright IBM Corp. 1982, 1998 169

 Using Cataloged Procedures

parameter of the ./ ADD statement must be the same as the operation code of
the prototype statement of the macro definition.

�4� Following the ADD utility control statement is the macro definition itself.

Using Cataloged Procedures
Often you use the same set of job control statements repeatedly; for example, to
specify the assembly, linking, and running of many different programs. To save
programming time and to reduce the possibility of error, standard sets of EXEC and
DD statements can be prepared once and cataloged in a procedure library. Such a
set of statements is termed a cataloged procedure and can be invoked by either of
the following statements:

//stepname EXEC procname
//stepname EXEC PROC=procname

The specified procedure (procname) is read from the procedure library
(SYS1.PROCLIB) and merged with the job control statements that follow this EXEC
statement.

This section describes four IBM cataloged procedures: a procedure for assembling
(ASMAC); a procedure for assembling and linking (ASMACL); a procedure for
assembling, linking, and running (ASMACLG); and a procedure for assembling and
running the loader (ASMACG).

Cataloged Procedure for Assembly (ASMAC)
This procedure consists of one job step: assembly. Use the name ASMAC to call
this procedure. The result of running this procedure is an object module written to
SYSPUNCH and an assembler listing. (See “Invoking the Assembler on MVS” on
page 147 for more details and another example.)

In the following example, input is provided in the input stream:

//jobname JOB
//stepname EXEC PROC=ASMAC
//SYSIN DD K
...
assembler source statements
...
/K (delimiter statement)

The statements of the ASMAC procedure are read from the procedure library and
merged into the input stream.

Figure 67 on page 171 shows the statements that make up the ASMAC procedure.

170 HLASM V1R3 Programmer’s Guide

 Using Cataloged Procedures

//ASMAC PROC
//K
//KKK ASMAC
//K
//K THIS PROCEDURE RUNS THE HIGH LEVEL ASSEMBLER AND CAN BE USED
//K TO ASSEMBLE PROGRAMS.
//K
//C EXEC PGM=ASMA99,PARM=(OBJECT,NODECK) �1�
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR �2�

| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(4996,(129,129),,,ROUND),UNIT=SYSALLDA �3�
// DCB=BUFNO=1
//SYSPRINT DD SYSOUT=K �4�
//SYSPUNCH DD SYSOUT=B

| //SYSLIN DD DSN=&&OBJ,SPACE=(3949,(49,49),,,ROUND),UNIT=SYSALLDA, �5�
// DISP=(MOD,PASS),
// DCB=(BLKSIZE=3949,LRECL=89,RECFM=FBS,BUFNO=1)

Figure 67. Cataloged Procedure for Assembly (ASMAC)

Notes to Figure 67:

�1� PARM= or COND= parameters can be added to this statement by the EXEC
statement that calls the procedure (see “Overriding Statements in Cataloged
Procedures” on page 177). The system name ASMA90 identifies High Level
Assembler.

�2� This statement identifies the macro library data set. The data set name
SYS1.MACLIB is an IBM designation.

| �3� This statement specifies the assembler work data set. The device class name
| used here, SYSALLDA, represents a direct-access unit The I/O unit assigned

to this name is specified by the installation when the operating system is
| generated. A unit name such as 3390 or SYSDA can be substituted for
| SYSALLDA.

�4� This statement defines the standard system output class, SYSOUT=*, as the
destination for the assembler listing.

�5� This statement describes the data set that contains the object module
produced by the assembler.

 Chapter 9. MVS System Services and Programming Considerations 171

 Using Cataloged Procedures

Cataloged Procedure for Assembly and Link (ASMACL)
This procedure consists of two job steps: assembly and link. Use the name
ASMACL to call this procedure. This procedure produces an assembler listing, the
linker listing, and a program module.

The following example shows input to the assembler in the input job stream.
SYSLIN contains the output from the assembly step and the input to the link step.
It can be concatenated with additional input to the linker as shown in the example.
This additional input can be linker control statements or other object modules.

An example of the statements entered in the input stream to use this procedure is:

//jobname JOB
//stepname EXEC PROC=ASMACL
//C.SYSIN DD K
...
assembler source statements
...
/K
//L.SYSIN DD K
...
object module or linker control statements
/K

//L.SYSIN is necessary only if the linker is to combine modules or read editor
control information from the job stream.

172 HLASM V1R3 Programmer’s Guide

 Using Cataloged Procedures

Figure 68 shows the statements that make up the ASMACL procedure. Only those
statements not previously discussed are explained in the figure.

//ASMACL PROC
//K
//KKK ASMACL
//K
//K THIS PROCEDURE RUNS THE HIGH LEVEL ASSEMBLER, LINKS THE
//K NEWLY ASSEMBLED PROGRAM
//K
//C EXEC PGM=ASMA99,PARM=(OBJECT,NODECK)
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(4996,(129,129),,,ROUND),UNIT=SYSALLDA,
// DCB=BUFNO=1
//SYSPRINT DD SYSOUT=K
//SYSPUNCH DD SYSOUT=B

| //SYSLIN DD DSN=&&OBJ,SPACE=(3949,(49,49),,,ROUND),UNIT=SYSALLDA, �1�
// DISP=(MOD,PASS),
// DCB=(BLKSIZE=3949,LRECL=89,RECFM=FBS,BUFNO=1)
//L EXEC PGM=HEWL,PARM='MAP,LET,LIST,NCAL',COND=(8,LT,C) �2�
//SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE) �3�
// DD DDNAME=SYSIN �4�

| //SYSLMOD DD DISP=(,PASS),UNIT=SYSALLDA,SPACE=(CYL,(1,1,1)), �5�
// DSN=&&GOSET(GO)

| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(1924,(129,129),,,ROUND),UNIT=SYSALLDA, �6�
// DCB=BUFNO=1
//SYSPRINT DD SYSOUT=K �7�

Figure 68. Cataloged Procedure for Assembling and Linking (ASMACL)

Notes to Figure 68:

�1� In this procedure, the SYSLIN DD statement describes a temporary data set,
the object module, which is passed to the linker.

�2� This statement runs the linker. The linker options in the PARM field cause the
linker to produce a cross-reference table, a module map, and a list of all
control statements processed by the linker. The NCAL option suppresses the
automatic library call function of the linker.

�3� This statement identifies the linker input data set as the same one (SYSLIN)
produced as output from the assembler.

�4� This statement is used to concatenate any input to the linker from the input
stream (object decks, linker control statements, or both) with the input from the
assembler.

�5� This statement specifies the linker output data set (the program load module).
As specified, the data set is deleted at the end of the job. If it is required to
retain the program module, the DSN parameter must be respecified and a
DISP parameter added. See “Overriding Statements in Cataloged Procedures”
on page 177. If you want to retain the output of the linker, the DSN parameter
must specify a library name and a member name at which the program module
is to be placed. The DISP parameter must specify either KEEP or CATLG.

�6� This statement specifies the work data set for the linker.

�7� This statement identifies the standard output class as the destination for the
linker listing.

 Chapter 9. MVS System Services and Programming Considerations 173

 Using Cataloged Procedures

Cataloged Procedure for Assembly, Link, and Run (ASMACLG)
This procedure consists of three job steps: assembly, link, and run. Use the name
ASMACLG to call this procedure. It produces an assembler listing, an object
module, and a linker listing.

The statements entered in the input stream to use this procedure are:

//jobname JOB
//stepname EXEC PROC=ASMACLG
//C.SYSIN DD K
...
assembler source statements
...
/K
//L.SYSIN DD K
...
object module or linker control statements
...
/K
//G.ddname DD (parameters)
//G.ddname DD (parameters)
//G.ddname DD K
...
program input
...
/K

//L.SYSIN is necessary only if the linker is to combine modules or read linker
control information from the job stream.

//G.ddname statements are included only if necessary.

174 HLASM V1R3 Programmer’s Guide

 Using Cataloged Procedures

Figure 69 shows the statements that make up the ASMACLG procedure. Only
those statements not previously discussed are explained in the figure.

//ASMACLG PROC
//K
//KKK ASMACLG
//K
//K THIS PROCEDURE RUNS THE HIGH LEVEL ASSEMBLER, LINKS THE
//K NEWLY ASSEMBLED PROGRAM AND RUNS THE PROGRAM AFTER
//K THE LINK IS ACCOMPLISHED.
//K
//C EXEC PGM=ASMA99,PARM=(OBJECT,NODECK)
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(4996,(129,129),,,ROUND),UNIT=SYSALLDA,
// DCB=BUFNO=1
//SYSPRINT DD SYSOUT=K
//SYSPUNCH DD SYSOUT=B

| //SYSLIN DD DSN=&&OBJ,SPACE=(3949,(49,49),,,ROUND),UNIT=SYSALLDA,
// DISP=(MOD,PASS),
// DCB=(BLKSIZE=3949,LRECL=89,RECFM=FBS,BUFNO=1)
//L EXEC PGM=HEWL,PARM='MAP,LET,LIST,NCAL',COND=(8,LT,C) �1�
//SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN

| //SYSLMOD DD DISP=(,PASS),UNIT=SYSALLDA,SPACE=(CYL,(1,1,1)), �2�
// DSN=&&GOSET(GO)

| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(1924,(129,129),,,ROUND),UNIT=SYSALLDA,
// DCB=BUFNO=1
//SYSPRINT DD SYSOUT=K
//G EXEC PGM=K.L.SYSLMOD,COND=((8,LT,C),(8,LT,L)) �3�

Figure 69. Cataloged Procedure for Assembly, Link, and Run (ASMACLG)

Notes to Figure 69:

�1� The LET linker option specified in this statement causes the linker to mark the
program module as executable, even if errors are encountered during
processing.

�2� The output of the linker is specified as a member of a temporary data set,
residing on a direct-access device, and is to be passed to a following job step.

�3� This statement runs the assembled and linker program. The notation
*.L.SYSLMOD identifies the program to be run as being in the data set
described in job step L by the DD statement named SYSLMOD.

Cataloged Procedure for Assembly and Run (ASMACG)
This procedure consists of two job steps: assembly and run, using the loader.
Program modules for program libraries are not produced.

 Chapter 9. MVS System Services and Programming Considerations 175

 Using Cataloged Procedures

Enter these statements in the input stream to use this procedure:

//jobname JOB
//stepname EXEC PROC=ASMACG
//C.SYSIN DD K
...
assembler source statements
...
/K
//G.ddname DD (parameters)
//G.ddname DD (parameters)
//G.ddname DD K
...
program input
...
/K

//G.ddname statements are included only if necessary.

Figure 70 shows the statements that make up the ASMACG procedure. Only
those statements not previously discussed are explained in the figure.

Use the name ASMACG to call this procedure. Assembler and loader listings are
produced. See Figure 70.

//ASMACG PROC
//K
//KKK ASMACG
//K
//K THIS PROCEDURE RUNS THE HIGH LEVEL ASSEMBLER AND WILL USE
//K THE LOADER PROGRAM TO RUN THE NEWLY ASSEMBLED PROGRAM.
//K
//C EXEC PGM=ASMA99,PARM=(OBJECT,NODECK)
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

| //SYSUT1 DD DSN=&&SYSUT1,SPACE=(4996,(129,129),,,ROUND),UNIT=SYSALLDA,
// DCB=BUFNO=1
//SYSPRINT DD SYSOUT=K
//SYSPUNCH DD SYSOUT=B

| //SYSLIN DD DSN=&&OBJ,SPACE=(3949,(49,49),,,ROUND),UNIT=SYSALLDA,
// DISP=(MOD,PASS),
// DCB=(BLKSIZE=3949,LRECL=89,RECFM=FBS,BUFNO=1)
//G EXEC PGM=LOADER,PARM='MAP,LET,PRINT,NOCALL',COND=(8,LT,C) �1�
//SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE) �2�
// DD DDNAME=SYSIN
//SYSLOUT DD SYSOUT=K �3�

Figure 70. Cataloged Procedure for Assembly and Running Using the Loader (ASMACG)

Notes to Figure 70:

�1� This statement runs the loader. The loader options in the PARM field cause
the loader to produce a map and print the map and diagnostics. The NOCALL
option is the same as NCAL for the linker, and the LET option is the same as
for the linker.

�2� This statement defines the loader input data set as the same one produced as
output by the assembler.

�3� This statement identifies the standard output class as the destination for the
loader listing.

176 HLASM V1R3 Programmer’s Guide

 Using Cataloged Procedures

Overriding Statements in Cataloged Procedures
You can override any parameter in a cataloged procedure except the PGM=
parameter in the EXEC statement. Overriding of statements or fields is effective
only for the duration of the job step in which the statements appear. The
statements, as stored in the procedure library of the system, remain unchanged.

To respecify, add, or nullify statements, include statements in the input stream that
contain the required changes and identify the statements to be overridden.

 EXEC Statements
Any EXEC parameter (except PGM) can be overridden. For example, the PARM=
and COND= parameters can be added or, if present, respecified by including them
in the EXEC statement calling the procedure. The JCL notation to specify these
parameters is:

//ASM EXEC PROC=ASMACLG,PARM.C=(NOOBJECT),COND.L=(8,LT,stepname.c)

stepname identifies the EXEC statement within the catalogued procedure
(ASMACLG) to which the modification applies.

If the procedure consists of more than one job step, a PARM.procstepname= or
COND.procstepname= parameter can be entered for each step. The entries must
be in order (PARM.procstepname1=, PARM.procstepname2=, ...).

 DD Statements
All parameters in the operand field of DD statements can be overridden by
including in the input stream (following the EXEC statement calling the procedure) a
DD statement with the notation //procstepname.ddname in the name field.
procstepname refers to the job step in which the statement identified by ddname
appears.

If more than one DD statement in a procedure is to be overridden, the overriding
statements must be in the same order as the statements in the procedure.

Examples of Cataloged Procedures
1. In the assembly procedure ASMAC (Figure 67 on page 171), you might want

to suppress the object module to SYSPUNCH and respecify the UNIT= and
SPACE= parameters of data set SYSUT1. In this case, the following
statements are required:

//stepname EXEC PROC=ASMAC,
// PARM=NODECK
//SYSUT1 DD UNIT=3399,
// SPACE=(4996,(399,49))
//SYSIN DD K
...
assembler source statements
...
/K

2. In procedure ASMACLG (Figure 69 on page 175), you might want to suppress
the assembler listing, and add the COND= parameter to the EXEC statement
that invokes the linker. In this case, the EXEC statement in the input stream
are:

 Chapter 9. MVS System Services and Programming Considerations 177

 Using Cataloged Procedures

//stepname EXEC PROC=ASMACLG,
// PARM.C=(NOLIST,OBJECT),
// COND.L=(8,LT,stepname.C)

For this run of procedure ASMACLG, no assembler listing is produced, and
running of the linker job step //L would be suppressed if the return code issued
by the assembler (step C) were greater than 8.

When you override the PARM field in a procedure, the whole PARM field is
overridden. Thus, in this example, overriding the LIST parameter effectively
deletes PARM=(OBJECT,NODECK). PARM=(OBJECT,NODECK) must be
repeated in the override statement; otherwise, the assembler default values are
used.

3. The following example shows how to use the procedure ASMACL (Figure 68
on page 173) to:

�1� Read input from a nonlabeled 9-track tape in unit 282 that has a standard
blocking factor of 10.

�2� Put the output listing on a tape labeled TAPE10, with a data set name of
PROG1 and a blocking factor of 5.

�3� Block the SYSLIN output of the assembler and use it as input to the linker
with a blocking factor of 10.

�4� Link the module only if there are no errors in the assembly (COND=0).

�5� Link onto a previously allocated and cataloged data set USER.LIBRARY
with a member name of PROG.

//jobname JOB
//stepname EXEC PROC=ASMACL,
// COND.L=(9,NE,stepname.C) �4�
//C.SYSPRINT DD DSNAME=PROG1,UNIT=TAPE, �2�
// VOLUME=SER=TAPE19,DCB=(BLKSIZE=665)
//C.SYSLIN DD DCB=(BLKSIZE=899) �3�
//C.SYSIN DD UNIT=282,LABEL=(,NL), �1�
// DCB=(RECFM=FBS,BLKSIZE=899)
//L.SYSLIN DD DCB=stepname.C.SYSLIN �3�
//L.SYSLMOD DD DSNAME=USER.LIBRARY(PROG),DISP=OLD �5�
/K

The order of appearance of overriding ddnames for job step C corresponds to
the order of ddnames in the procedure; that is, SYSPRINT precedes SYSLIN
within step C. The ddname C.SYSIN was placed last because SYSIN does not
occur at all within step C. These points are covered in the applicable JCL
Reference.

4. The following example shows assembly of two programs, link of the two object
modules produced by the assemblies into one program module, and running
the generated program. The input stream appears as follows:

178 HLASM V1R3 Programmer’s Guide

 Operating System Programming Conventions

//stepname1 EXEC PROC=ASMAC,PARM=OBJECT
//SYSIN DD K
...
assembler source statements for program 1
...
/K
//stepname2 EXEC PROC=ASMACLG
//C.SYSIN DD K
...
assembler source statements for program 2
...
/K
//L.SYSIN DD K
 ENTRY PROG
/K
//G.ddname DD dd statements for G step

The applicable JCL Reference provides additional descriptions of overriding
techniques.

Operating System Programming Conventions
Assembler programs executing on MVS must follow a set of programming
conventions to save and restore registers, and access execution parameters.
These conventions are described in the following sections.

Saving and Restoring General Register Contents
A program should save the values contained in the general registers when it
receives control and, on completion, restore these same values to the general
registers. Thus, as control is passed from the operating system to a program and,
in turn, to a subprogram, the status of the registers used by each program is
preserved. This is done through use of the SAVE and RETURN system macro
instructions.

Saving Register Contents: The SAVE macro instruction should be the first
statement in the program. It stores the contents of registers 14, 15, and 0 through
12 in an area provided by the program that passes control. When a program is
given control, register 13 contains the address of an area in which the general
register contents should be saved.

If the program calls any subprograms, or uses any operating system services other
than GETMAIN, FREEMAIN, ATTACH, and XCTL, it must first save the contents of
register 13 and then load the address of an 18-fullword save area into register 13.

Restoring Register Contents: At completion, the program restores the contents
of general registers 14, 15, and 0 through 12 by use of the RETURN system macro
instruction (which also indicates program completion). The contents of register 13
must be restored before issuing the RETURN macro instruction.

Example: The coding sequence that follows shows the basic process of saving
and restoring the contents of the registers. A complete discussion of the SAVE and
RETURN macro instructions and the saving and restoring of registers is contained
in the MVS/ESA Programming: Assembler Services Reference.

 Chapter 9. MVS System Services and Programming Considerations 179

 Operating System Programming Conventions

Name Operation Operand

BEGIN SAVE (14,12)
 USING BEGIN,15
 . . .
 ST 13,SAVEBLK+4
 LA 13,SAVEBLK
 . . .
program function source statements

...
 L 13,SAVEBLK+4
 RETURN (14,12)
SAVEBLK DC 18F'9'

...
 END

Ending Program Execution
You indicate completion of an assembler language source program by using the
RETURN system macro instruction to pass control from the terminating program to
the program that initiated it. The initiating program might be the operating system
or, if a subprogram issued the RETURN, the program that called the subprogram.

In addition to indicating program completion and restoring register contents, the
RETURN macro instruction can also pass a return code—a condition indicator that
can be used by the program receiving control.

If the program returns to the operating system, the return code can be compared
against the condition stated in the COND= parameter of the JOB or EXEC
statement.

If the program returns to another program, the return code is available in general
register 15 and can be used as required. Your program should restore register 13
before issuing the RETURN macro instruction.

The RETURN system macro instruction is discussed in detail in the MVS/ESA
Programming: Assembler Services Reference.

| Accessing Execution Parameters
You access information in the PARM field of an EXEC statement by referring to the
contents of general register 1. When control is given to the program, general
register 1 contains the address of a fullword which, in turn, contains the address of
the data area containing the information.

The data area consists of a halfword containing the count (in binary) of the number
of information characters, followed by the information field. The information field is
aligned to a fullword boundary. Figure 71 on page 181 shows how the PARM field
information is structured.

180 HLASM V1R3 Programmer’s Guide

 Operating System Programming Conventions

General register 1
 ┌──────────────────────────────────────┐

┌────────────┤ Address of Fullword │
 │ └──────────────────────────────────────┘

│ Points to
 │ ┌──────────────────────────────────────┐

└───────────�│ Address of Data Area ├───────────┐
 └──────────────────────────────────────┘ │

Points to │
 ┌───┘
 │
 │ ┌─────────────────┬────────────────────┐

└───────────�│ Count in Binary │ Information Field │
 └─────────────────┴────────────────────┘

Figure 71. Access to PARM Field

Object Module Linkage
You can combine two or more object modules, whether generated by the
assembler or by another language processor, to produce a single load module.
The object modules can be combined by the linkage editor, or DFSMS/MVS binder,
provided each object module conforms to the data formats and the required linkage
conventions. This makes it possible for you to use different programming
languages for different parts of your program, allowing each part to be written in the
language best suited for it. Use the CALL system macro instruction to link an
assembler language main program to subprograms produced by another language
processor. Refer to the MVS/ESA Programming: Assembler Services Reference
for details about linkage conventions and the CALL system macro instruction.

Figure 72 on page 182 is an example of statements used to establish the
assembler language program linkage to subprograms. See the applicable language
programmer's guide for information about calling the language from an assembler
language program.

If any input or output operations are performed by called subprograms supply the
correct DD statements for the data sets used by the subprograms. See the
applicable language programmer's guide for an explanation of the DD statements
and special data set record formats used for the language.

 Chapter 9. MVS System Services and Programming Considerations 181

 Modifying Program Modules

ENTRPT SAVE (14,12)
 LR 12,15
 USING ENTRPT,12
 ST 13,SVAREA+4
 LA 15,SVAREA
 ST 15,8(,13)
 LR 13,15
 . . .
 CALL subprogram-name,(V1,V2,V3),VL
 . . .
 L 13,SVAREA+4
 RETURN (14,12)
SVAREA DC 18F'9'
V1 DC CL5'Data1'
V2 DC CL5'Data2'
V3 DC CL5'Data3'
 END

Figure 72. Sample Assembler Linkage Statements for Calling Subprograms

Modifying Program Modules
If the editing functions of the linker are used to modify a program module, the entry
point to the program module must be restated when the program module is
reprocessed by the linker. Otherwise, the first byte of the first control section
processed by the linker becomes the entry point. To enable restatement of the
original entry point, or designation of a new entry point, the entry point must have
been identified originally as an external symbol; that is, it must have appeared as
an entry in the external symbol dictionary. The assembler automatically identifies
external symbols if the entry point is the name of a control section or START
statement; otherwise, you must use an assembler ENTRY statement to identify the
entry point as an external symbol.

When a new object module is added to or replaces part of the load module, the
entry point is restated in one of three ways:

� By placing the entry point symbol in the operand field of an EXTRN statement
and an END statement in the new object module,

or
� By using an END statement in the new object module to designate a new entry

point in the new object module,
or
� By using a linker ENTRY statement to designate either the original entry point

or a new entry point for the program module.

Further discussion of program module entry points is contained in the applicable
Linkage Editor and Loader manual, or DFSMS MVS Program Management manual.

182 HLASM V1R3 Programmer’s Guide

 Part 3. Developing Assembler Programs on CMS

Part 3. Developing Assembler Programs on CMS

Chapter 10. Assembling Your Program on CMS 184
Input to the Assembler . 184
Output from the Assembler . 184
Accessing the Assembler . 184
Invoking the Assembler on CMS . 185
Batch Assembling . 186
Controlling Your Assembly . 186
Input and Output Files . 187

Work file: SYSUT1 . 189
Specifying the Source File: SYSIN . 189
Specifying Macro and Copy Code Libraries: SYSLIB 191
Specifying the Listing File: SYSPRINT . 191
Directing Assembler Messages to Your Terminal: SYSTERM 192
Specifying Object Code Files: SYSLIN and SYSPUNCH 192
Specifying the Associated Data File: SYSADATA 192

Return Codes . 193
Diagnostic Messages Written by CMS . 193

Chapter 11. Running Your Program on CMS 194
Using the CMS LOAD and START Commands 194
Using the CMS GENMOD Command . 194
Using the CMS LKED and OSRUN Commands 195
Using the CMS Batch Facility . 196

Chapter 12. CMS System Services and Programming Considerations . . 197
Using Macros . 197

Assembler Macros Supported by CMS . 197
Adding Definitions to a Macro Library . 197

Operating System Programming Conventions . 197
Saving and Restoring General Register Contents 197
Ending Program Execution . 198
Passing Parameters to Your Assembler Language Program 199

 Copyright IBM Corp. 1982, 1998 183

 Accessing the Assembler

Chapter 10. Assembling Your Program on CMS

This chapter describes how to invoke the assembler on CMS (Conversational
Monitor System). It describes:

� The input to the assembler.
� The output from the assembler
� How to gain access to the High Level Assembler product files.
� How to invoke the assembler on CMS.
� How to assemble multiple source programs using the BATCH option.
� Special options for invoking the assembler on CMS.
� The data sets used by the assembler.
� The assembler return codes.
� Special diagnostic messages when invoking the assembler on CMS.

To use this section effectively, you should be familiar with the assembler language
described in the Language Reference.

The assembler language program can be run under control of CMS. For more
information about CMS, refer to the applicable CP Command Reference for
General Users and CMS Command and Macro Reference.

Input to the Assembler
As input, the assembler accepts a program written in the assembler language as
defined in the Language Reference. This program is referred to as a source
module. Some statements in the source module (macro or COPY instructions) can
cause additional input to be obtained from a macro library.

Input can also be obtained from user exits. See Chapter 4, “Providing User Exits”
on page 76 for more information.

Output from the Assembler
The output from the assembler can consist of an object module, a program listing,
terminal messages and an associated data file. The object module is stored on
your virtual disk in a TEXT file. You can bring it into your virtual storage and run it
by using the CMS LOAD and START commands. The program listing lists all the
statements in the module, both in source and machine language format, and gives
other important information about the assembly, such as error messages. The
listing is described in detail in Chapter 2, “Using the Assembler Listing” on page 8.

Accessing the Assembler
To access the High Level Assembler on CMS, you must first link to the mini-disk
containing the assembler by issuing the CP LINK command. You must then issue
the ACCESS command to assign a file mode, and make the mini-disk available to
CMS. For example:

CP LINK PRODUCT 194 198 RR PASSWORD
ACCESS 198 B

184  Copyright IBM Corp. 1982, 1998

 Invoking the Assembler on CMS

In this example, you have linked to disk 194 of the virtual machine that contains the
High Level Assembler product, and whose user ID is PRODUCT. You have
defined disk 194 as 198 to your VM session. You have read access to the disk
(RR) and you specified the read-share password for the 194 disk (PASSWORD).

After you linked to the 194 disk as 198, you accessed the 198 disk as disk B on
your system. After you have access to the product disk, you can invoke the
assembler using the ASMAHL command (see “Invoking the Assembler on CMS”).

If High Level Assembler is stored on your A-disk, or another disk to which you
already have access, you can omit the CP LINK and ACCESS commands. If High
Level Assembler is not on a disk that you have accessed, you can put the CP LINK
and ACCESS commands into your PROFILE EXEC, which issues them for you
each time you log on. For more information on the CP LINK and ACCESS
commands, see the applicable CP Command Reference for your VM environment,
as listed under “Bibliography” on page 373.

Invoking the Assembler on CMS
Use the ASMAHL command to invoke and control assembly of assembler source
programs on CMS.

The format of the ASMAHL command is:

��─ ─ASMAHL─ ──┬ ┬────────── ──┬ ┬────────────────────── ─��
 └ ┘─filename─ │ │┌ ┐──┬ ┬─── ─
 │ ││ │└ ┘─,─
 └ ┘──(───+ ┴─option─ ──┬ ┬───
 └ ┘─)─

where:

filename Is the name of your assembler source program.

Use one of the three methods available for specifying your assembler
source program. See “Specifying the Source File: SYSIN” on page 189
for details on each of these methods.

option Represents one or more assembler options, separated by a blank or
comma, that you want in effect during assembly. These assembler
options are equivalent to the options you would specify on the PARM
parameter of an EXEC job control statement, if you were invoking the
assembler on MVS.

A complete list and discussion of assembler options can be found under
Chapter 3, “Controlling your Assembly with Options” on page 37.

The assembler options in effect are determined by the default options
that were set when High Level Assembler was installed, and by the
options you specify with the ASMAHL command. There are also several
assembler options that can only be specified when running on CMS; see
“Controlling Your Assembly” on page 186.

Synonym for ASMAHL Command: Your installation might have created a
synonym for ASMAHL when High Level Assembler was installed. See your system
programmer for the specific command name.

 Chapter 10. Assembling Your Program on CMS 185

 Controlling Your Assembly

 Batch Assembling
You can assemble a sequence of separate assembler programs with a single
invocation of the assembler, using the BATCH option. The object programs
produced from this assembly can be link-edited into either a single load module or
separate load modules.

When the BATCH option is specified, each assembler program in the sequence
must be terminated by an END statement, including the last program in the batch.
If an END statement is omitted, the program assembles with the next program in
the sequence. If the END statement is omitted from the last program in the
sequence, the assembler generates an END statement.

If separate load modules are to be produced, you must write a NAME linkage editor
control statement for each load module. The NAME statement must be written at
the end of the load module. Figure 73 shows how to create two load modules,
SECT1 and SECT2.

SECT1 CSECT Start of first load module
...

 Source instructions
 . . .

END End of first load module
PUNCH ' NAME SECT1(R)'

 END
SECT2 CSECT Start of second load module

...
 Source instructions
 . . .

END End of second load module
PUNCH ' NAME SECT2(R)'

 END

Figure 73. Example of Creating Two Load Modules on CMS

If separate TEXT files are required, you must issue two separate ASMAHL
commands.

Controlling Your Assembly
The assembly options are specified on the ASMAHL command after the left
parenthesis. The options that can be specified to control your assembly are
described in Chapter 3, “Controlling your Assembly with Options” on page 37.

On CMS, there are additional options that can be specified. These are described in
Chapter 3, “Controlling your Assembly with Options” on page 37, and consist of:

ERASE Deletes LISTING, TEXT, and SYSADATA files before the assembly
begins.

LINECOUN Specifies the number of lines to be printed on each page of the
assembler listing.

NOSEG Specifies that the assembler load modules are loaded from disk. The
default is to load the modules from the Logical Saved Segment
(LSEG); but, if the LSEG is not available, then load the modules from
disk.

186 HLASM V1R3 Programmer’s Guide

 Input and Output Files

PRINT Directs the assembler listing to the virtual printer, instead of to disk.

SEG Specifies that the assembler load modules are loaded from the
Logical Saved Segment (LSEG). The default is to load the modules
from the LSEG; but, if the LSEG is not available, then load the
modules from disk.

SYSPARM A question mark (?) can be specified in the SYSPARM string, which
instructs the assembler to prompt you for a character string at your
terminal.

Input and Output Files
Depending on the options in effect, High Level Assembler requires the files as
shown in Figure 74.

 ┌──────────────┐
 │ SYSIN │
 └───────┬──────┘
 │
 │
 +
 ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ SYSLIB ├──────────�│ Assembler │�──────────�│ SYSUT1 │
 └──────────────┘ └───────┬──────┘ └──────────────┘
 │
 +
 ┌──────────────┬──────────────┬──────────────┬─────────────────┐

│ │ │ │ │
+ + + + +

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌────────────┐ ┌──────────────┐
│ SYSPRINT │ │ SYSTERM │ │ SYSLIN │ │ SYSPUNCH │ │ SYSADATA │
└───────────┘ └───────────┘ └───────────┘ └────────────┘ └──────────────┘

Figure 74. High Level Assembler Files

The ddnames can be overridden during installation.

High Level Assembler requires the following files:

SYSUT1 A work file used as intermediate external storage when processing
the source program. This file is used when there is not enough
main storage available to assemble in-storage.

If the value specified for the SIZE option is large enough, an
in-storage assembly is done and the work file SYSUT1 can be
omitted, though a warning message is issued.

SYSIN An input file containing the source statements to be processed.

In addition, the following six files might be required:

SYSLIB A file containing macro definitions (for macro definitions not
defined in the source program), source code to be called for
through COPY assembler instructions, or both.

SYSPRINT A file containing the assembly listing (if the LIST option is in
effect).

 Chapter 10. Assembling Your Program on CMS 187

 Input and Output Files

SYSTERM A file containing essentially a condensed form of SYSPRINT,
principally error flagged statements and their error messages (only
if the TERM option is in effect).

SYSPUNCH A file containing object module output, usually for punching (only if
the DECK option is in effect).

SYSLIN A file containing object module output usually for the linkage editor
(only if the OBJECT option is in effect). Alternatively, you can
specify the XOBJECT option to instruct the assembler to write the
extended object format to this file.

SYSADATA A file containing associated data output (only if the ADATA option
is in effect).

The files listed above are described in the text following Figure 75. The
characteristics of these files, those set by the assembler and those you can
override, are shown in Figure 75.

Notes to Figure 75:

�1� If you specify EXIT(PRTEXIT) and the user exit specifies the logical record
| length, the logical record length returned is used, unless the SYSPRINT data
| set has a variable-length record format in which case the LRECL used is 4
| bytes greater than the value returned by the exit. If EXIT(PRTEXIT) has not
| been specified or the user exit does not specify a record length, the record
| length from the FILEDEF command or file label is used, if present. Otherwise,
| the record length defaults to 133, or 137 if the record format is variable-length.

| The minimum record length allowed for SYSPRINT is 121, and the maximum
| allowed is 255. If the record format is variable-length, the LRECL should be at
| least 125 or 137 depending on the LIST option.

�2� If you specify EXIT(TRMEXIT) and the user exit specifies the logical record
length, the logical record length returned is used. If you do not specify
EXIT(TRMEXIT) or the user exit does not specify a record length, the record
length from the FILEDEF command or file label is used, if present. If not

Figure 75. Assembler File Characteristics

File Access
Method

Logical
Record
Length
(LRECL)

Block Size
(BLKSIZE)

Record Format
(RECFM)

SYSUT1 BSAM Same as
BLKSIZE

�3� F

| SYSIN| QSAM| 80| �4�| �7��1��

| SYSLIB| BPAM| 80| �5�| �7��1��

| SYSPRINT| QSAM| �1�| �6�| �8��1��

| SYSTERM| QSAM| �2�| �4�| �9��1��

| SYSPUNCH| QSAM| 80| �4�| �7��1��

| SYSLIN| QSAM| 80| �4�| �7��1��

SYSADATA QSAM 8188 8192 or
greater

VB

188 HLASM V1R3 Programmer’s Guide

 Input and Output Files

present, the record length defaults to the record length for SYSPRINT (if the
LIST option is in effect) or 133 otherwise.

The maximum record length allowed for SYSTERM is 255.

�3� You can specify a block size (BLKSIZE) between 2008 and 32760 bytes on the
FILEDEF command or in the file label. The BLKSIZE should be a multiple of
8. If it is not, it is rounded to the next lower multiple of 8. If you do not specify
BLKSIZE, the assembler sets the block size to 4088.

�4� If specified, the BLKSIZE must equal the LRECL, or be a multiple of the
LRECL. If BLKSIZE is not specified, it is set to LRECL.

�5� The BLKSIZE on the FILEDEF command or the file label must equal the
LRECL, or be a multiple of the LRECL.

| �6� If the record format is fixed (for example, FB), any specified blocksize must
| equal the LRECL or be a multiple of the LRECL. If the record format is
| variable (for example, VB), the blocksize must be at least 4 bytes greater than
| the LRECL.

| �7� Set by the assembler to F (or FB) if necessary.

| �8� Both fixed and variable formats are supported; the default is variable. If the
| FILEDEF command or file label specifies machine or ASA control characters,
| the ASA option is set or reset accordingly. If machine or ASA control
| characters are not specified on the FILEDEF command or file label, the record
| format is modified according to the ASA option.

| �9� Set by the assembler to F (or FB) if necessary. The record format is set to FA
| (or FBA) if the ASA option is specified, or FM (or FBM) otherwise.

| �1�� You can specify B, S, or T, or any combination of these.

Work file: SYSUT1
The assembler uses this work file as an intermediate external storage device when
processing the source program. The input/output device assigned to this file must
be a direct-access device.

If no SYSUT1 FILEDEF command is issued before the ASMAHL command is
issued, the following FILEDEF command is issued by the ASMAHL command:

FILEDEF SYSUT1 DISK fn SYSUT1 m4 (BLOCK 4988

where fn is the filename specified on the ASMAHL command, and the file mode m4
is set to use the read/write disk with the most available space. For example, if
three read/write disks were accessed as the A, B, and D disks, and if the D disk
had the most available space, then m4 would be set to “D4” for use during the
assembly.

This data set is only used if there is insufficient virtual storage allocated to
assemble the program in storage.

Specifying the Source File: SYSIN
Use one of the following methods for specifying your assembler source program:

� Specify the filename of the assembler source program on the ASMAHL
command line,

or
� Issue a FILEDEF for SYSIN before issuing the ASMAHL command,

 Chapter 10. Assembling Your Program on CMS 189

 Input and Output Files

or
� Supply source statements from a user-supplied module by using the EXIT

assembler option.

Specify the Filename on the Command Line: Using this method, you specify
the filename of your assembler source program on the ASMAHL command line.
For example:

ASMAHL PROG1 (LIST,XREF(SHORT))

assembles the source program named PROG1 using the assembler options LIST
and XREF(SHORT). The source program must have a filetype of ASSEMBLE.
The ASMAHL command issues the following FILEDEF command:

FILEDEF SYSIN DISK PROG1 ASSEMBLE K (RECFM FB LRECL 89 BLOCK 16999

Issue a FILEDEF for SYSIN: Another method you can use to specify the
assembler source program is to issue a FILEDEF for SYSIN before the assembly.
The assembler then assembles the program specified in the FILEDEF. For
example:

FILEDEF SYSIN DISK PROG2 ASSEMBLE A
ASMAHL (LIST,XREF)

assembles the program named PROG2, using the options specified on the ASMAHL
command line. When you issue a FILEDEF for SYSIN, the source program you
specify with the FILEDEF is the one used for input by the assembler.

If the FILEDEF for SYSIN is issued and the FILEDEF specifies a DISK file, the
filename on the ASMAHL command is optional. If the filename is specified on the
ASMAHL command, the filename must match the filename of the file specified on
the FILEDEF. Additionally, when using a FILEDEF, the file type need not be
ASSEMBLE.

You can read MVS data sets and VSE files as CMS files by defining those data
with the FILEDEF command. For example,

FILEDEF SYSIN DISK OSDS ASSEMBLE fm DSN OS DATASET (options...

You can also assemble a member of an OS partitioned data set or a CMS MACLIB
by using the MEMBER parameter of the FILEDEF command. When you specify
member parameter, the member name is used as the filename for the LISTING,
TEXT, and SYSADATA files.

If you want to assemble a source file that is in your CMS virtual reader, issue the
following FILEDEF command:

FILEDEF SYSIN READER

and then issue the ASMAHL command. You must specify the filename on the
ASMAHL command. The filename is used as the file name of the LISTING, TEXT,
and SYSADATA files.

Similarly, if you have a tape containing an assembler input file that you want to
assemble, you must issue the following command before issuing the ASMAHL
command:

FILEDEF SYSIN TAPn (RECFM F LRECL 89 BLOCK 89

If the blocksize of the file were 800 bytes, you could specify BLOCK 800 as in the
preceding FILEDEF.

190 HLASM V1R3 Programmer’s Guide

 Input and Output Files

If the FILEDEF command specifies a tape file, the filename must be specified on
the ASMAHL command. The filename is used as the filename of the LISTING,
TEXT, and SYSADATA files.

Make sure that any attributes specified for a file conform to the attributes expected
by the assembler for the device.

Specify Source Using the EXIT Option: If you are using an input user exit to
provide source statements to the assembler, the FILEDEF for SYSIN is not
required. For example:

ASMAHL PROG2 (EXIT(INEXIT(INMOD1('ABCD'))),LIST,XREF(SHORT))

assembles the source statements provided by the input user module named INMOD1
using the character string ABCD, and also the assembler options LIST and
XREF(SHORT). (For specific details on using the EXIT assembler option, see
page 46).

Specify the filename on the ASMAHL command, or a FILEDEF for SYSIN, before
issuing the ASMAHL command as described above. This is required even if the
assembler does not read the input file. The filename specified on the ASMAHL
command, or from the FILEDEF for SYSIN, is used as the filename of the LISTING,
TEXT, and SYSADATA files.

If you specify the INEXIT option, the ASMAHL command does not check whether
the input file exists. If the SOURCE user exit instructs the assembler to open the
primary input file, the open fails if the file does not exist.

Specifying Macro and Copy Code Libraries: SYSLIB
If you don't issue SYSLIB FILEDEF before the ASMAHL command, the ASMAHL
command issues the following FILEDEF command:

FILEDEF SYSLIB DISK CMSLIB MACLIB K (RECFM FB LRECL 89 BLOCK 8999

Use the GLOBAL command to identify which CMS libraries are to be searched for
macro definitions and COPY code. Private libraries and CMSLIB can be
concatenated with each other in any order by the GLOBAL command. The format
of this command is described in the applicable CMS Command and Macro
Reference.

You can concatenate a CMS MACLIB with an OS partitioned data set. When this
is required, the library with the largest blocksize must be specified first, as in the
following example:

FILEDEF SYSLIB DISK MYLIB MACLIB M DSN ATR995.MACLIB
FILEDEF SYSLIB DISK OSMACRO MACLIB S (CONCAT
GLOBAL MACLIB MYLIB OSMACRO

Specifying the Listing File: SYSPRINT
If you specify the PRINT option, and you don't issue SYSPRINT FILEDEF before
the ASMAHL command, the ASMAHL command issues the following FILEDEF
command:

FILEDEF SYSPRINT PRINTER

 Chapter 10. Assembling Your Program on CMS 191

 Input and Output Files

If you specify the DISK option (which is the default), and you don't issue
SYSPRINT FILEDEF before the ASMAHL command, the ASMAHL command
issues the following FILEDEF command:

FILEDEF SYSPRINT DISK fn LISTING m1 (RECFM FB BLOCK 13399

where fn is the filename specified on the ASMAHL command. If the assembler
source file (SYSIN input) is not on disk or is on a read-only disk, the file mode m is
set to the first available read/write disk. If the source file is on a read/write disk, the
mode letter m is set to the mode of that read/write disk. For example, if the source
file were on a read/write B disk, the file mode m1 would be set to “B1”.

You can issue a FILEDEF command for SYSPRINT before the ASMAHL command
to direct the listing to the terminal, printer, or a disk file. See “PRINT (CMS Only)”
on page 63 for details about the CMS options for SYSPRINT.

Directing Assembler Messages to Your Terminal: SYSTERM
If you don't issue a SYSTERM FILEDEF command before the ASMAHL command,
the ASMAHL command issues the following FILEDEF command:

FILEDEF SYSTERM TERMINAL

You can issue a FILEDEF command for SYSTERM before the ASMAHL command
to direct the listing to the terminal, printer, or a disk file.

Specifying Object Code Files: SYSLIN and SYSPUNCH
If you don't issue a SYSPUNCH or SYSLIN FILEDEF command before the
ASMAHL command, the ASMAHL command issues the following FILEDEF
commands:

FILEDEF SYSPUNCH PUNCH
FILEDEF SYSLIN DISK fn TEXT m1 (RECFM FB LRECL 89 BLOCK 16999

where fn is the filename specified on the ASMAHL command. If the assembler
source file (SYSIN input) is not on disk or is on a read-only disk, the file mode m is
set to the first available read/write disk. If the source file is on a read/write disk, the
mode letter m is set to the mode of that read/write disk. For example, if the source
file were on a read/write B disk, the file mode m1 would be set to “B1”.

You can issue a FILEDEF command for SYSPUNCH or SYSLIN before the
ASMAHL command is issued to direct the object output to the punch or a disk file.

Specifying the Associated Data File: SYSADATA
If you don't issue a SYSADATA FILEDEF command before the ASMAHL
command, the ASMAHL command issues the following FILEDEF command:

FILEDEF SYSADATA DISK fn SYSADATA m1 (RECFM VB LRECL 8188 BLOCK 8192

where fn is the filename specified on the ASMAHL command, and if the assembler
source file (SYSIN input) is not on disk or is on a read-only disk, the file mode m is
set to the first available read/write disk. If the source file is on a read/write disk, the
mode letter m is set to the mode of that read/write disk. For example, if the source
file were on a read/write B disk, the file mode m1 would be set to “B1”.

A FILEDEF command for SYSADATA can be issued before the ASMAHL command
is issued to direct the associated data output to a different file.

192 HLASM V1R3 Programmer’s Guide

 Diagnostic Messages Written by CMS

 Return Codes
High Level Assembler issues return codes that are returned to the caller. If High
Level Assembler is called from an EXEC, the EXEC can check the return code.

The return code issued by the assembler is the highest severity code that is
associated with any error detected in the assembly, or with any MNOTE message
produced by the source program or macro instructions. The return code can be
controlled by the FLAG(n) assembler option described on page 49. See
Appendix G, “High Level Assembler Messages” on page 306 for a listing of the
assembler errors and their severity codes.

Diagnostic Messages Written by CMS
If an error occurs during the running of the ASMAHL command, a message might
be written at the terminal and, at completion of the command, register 15 contains
a non-zero return code.

Two types of messages might be issued:

� Messages that are issued by the assembler (see Appendix G, “High Level
Assembler Messages” on page 306).

� Messages that are issued by the ASMAHL command processor (see “ASMAHL
Command Error Messages (CMS Only)” on page 352).

The messages issued by the ASMAHL command processor are in two parts: a
message code and the message text. The message code is in the form
ASMACMSnnnt, where ASMACMS indicates that the message was generated by the
ASMAHL command program, nnn is the number of the message, and t is the type
of message. The message text describes the error condition.

You can use the CP command SET EMSG to control what part of the diagnostic
message to display. Figure 76 shows the SET EMSG options you can specify, and
how they affect the message display.

Refer to the applicable CP Command Reference for General Users for details about
the CP SET command.

When you specify the TERM assembler option, diagnostic messages are written to
the terminal in the form ASMAnnns. Errors detected by the ASMAHL command
program, which terminate the command before High Level Assembler is called,
result in error messages (type E).

Figure 76. CP SET EMSG Command Options

SET EMSG
Option

Part of Message Displayed

CODE Displays the message code only.

OFF Suppresses the entire message text and
message code.

ON Displays the entire message text and the
message code.

TEXT Displays the message text only.

 Chapter 10. Assembling Your Program on CMS 193

 Using the CMS GENMOD Command

Chapter 11. Running Your Program on CMS

There are three ways to run your assembler program under any level of CMS:

� Using the CMS LOAD and START commands.

� Using the CMS GENMOD command to create a program module and then
using the module filename to cause the module to be run.

� Using the CMS LKED and OSRUN commands.

Any of these three methods can be used under the control of the CMS batch
facility.

Using the CMS LOAD and START Commands
After you have assembled your program, you can run the object program in the
TEXT file produced by the assembler. The TEXT file produced is relocatable and
can be run merely by loading it into virtual storage with the LOAD command and
using the START command to begin running. For example, if you have assembled
a source program named CREATE, you have a file named CREATE TEXT. Use
the LOAD command to load your program into storage, and then use the START
command to run the program:

LOAD CREATE
START

In this example, the file CREATE TEXT contains the object code from the
assembly.

The CMS START command can be used to pass user-defined parameters. For a
complete description of the START command, see the applicable CMS Command
Reference for your VM environment, as listed under “Bibliography” on page 373.

Using the CMS GENMOD Command
When your programs are debugged and tested, you can use the LOAD and
INCLUDE commands, in conjunction with the GENMOD command, to create
program modules. A module is a relocatable or non-relocatable object program
whose external references have been resolved. In CMS, these files must have a
filetype of MODULE.

To create a program module, load the TEXT files or TXTLIB members into storage
and issue the GENMOD command:

LOAD CREATE ANALYZE PRINT
GENMOD PROCESS

In this example, CREATE, ANALYZE, and PRINT are TEXT files that you are
combining into a module named PROCESS; PROCESS is the filename you are
assigning to the module, which has a filetype of MODULE. If you use the name of
an existing MODULE file, the old one is replaced.

194  Copyright IBM Corp. 1982, 1998

 Using the CMS LKED and OSRUN Commands

From then on, any time you want to run the program composed of the object files
CREATE, ANALYZE, and PRINT, enter:

PROCESS

If PROCESS requires input files, output files, or both, you must define these files
before PROCESS can run correctly.

For more information on creating program modules, see the applicable CMS User's
Guide for your particular VM environment, as listed under “Bibliography” on
page 373.

Using the CMS LKED and OSRUN Commands
A LOADLIB is another type of library available to you on CMS. LOADLIBs, like
MACLIBs and TXTLIBs, are in CMS-simulated partitioned data set formats. Unlike
TXTLIBs, which contain object programs that need to be link-edited when they are
loaded, LOADLIBs contain programs that have already been link-edited, thus
saving the overhead of the link-editing process every time the program is loaded.
You can load the members of TXTLIBs by both CMS loading facilities (LOAD or
INCLUDE command) and certain OS macros (such as LINK, LOAD, ATTACH, or
XCTL), but you can only load the members of LOADLIBs that use these OS
macros.

Use the LKED command to create a CMS LOADLIB. For example:

FILEDEF SYSLIB DISK USERTXT TXTLIB K
LKED TESTFILE

This example takes a CMS TEXT file with the filename of TESTFILE and creates a
file named TESTFILE LOADLIB, using the SYSLIB to resolve external references.
TESTFILE LOADLIB is a CMS-simulated partitioned data set containing one
member, named TESTFILE.

To use the OSRUN command to run TESTFILE, first use the GLOBAL command to
identify which libraries are to be searched when processing subsequent CMS
commands. For example:

GLOBAL LOADLIB TESTFILE
OSRUN TESTFILE

The OSRUN command causes the TESTFILE member of the TESTFILE LOADLIB
to be loaded, relocated, and run.

User parameters can be added on the line with the OSRUN command, but they are
passed in OS format. For a complete description of the OSRUN command, see the
applicable CMS Command Reference for your particular VM environment, as listed
under “Bibliography” on page 373.

 Chapter 11. Running Your Program on CMS 195

 Using the CMS Batch Facility

Using the CMS Batch Facility
The CMS batch facility provides a way of submitting jobs for batch processing in
CMS, and can be used to run an assembler program. You can use this facility
when either:

� You have a job that takes a lot of time, and you want to be able to use your
terminal for other work while the job is running,

or
� You do not have access to a terminal.

The CMS batch facility is really a virtual machine, generated and controlled by the
system operator, who logs onto VM using the batch user ID and invokes the
CMSBATCH command. All jobs submitted for batch processing are spooled to the
user ID of this virtual machine, which runs the jobs sequentially. To use the CMS
batch facility at your location, you must contact the system operator to learn the
user ID of the batch virtual machine.

You can run High Level Assembler under the control of the CMS batch facility.
Terminal input can be read from the console stack. In order to prevent your batch
job from being cancelled, make sure that stacked input is available if your program
requests input from the terminal. For further information on using the CMS batch
facility, see the applicable CMS User's Guide for your particular VM environment,
as listed under “Bibliography” on page 373.

196 HLASM V1R3 Programmer’s Guide

 Operating System Programming Conventions

Chapter 12. CMS System Services and Programming
Considerations

This chapter describes some of the CMS system services and program
development facilities that assist you in developing your assembler program. It
provides the following information:

� Assembler macros supported by CMS.
� Adding definitions to a macro library.
� Saving and restoring general register contents.
� Ending program execution.
� Passing parameters to your assembler language program.

 Using Macros

Assembler Macros Supported by CMS
There are several CMS assembler macros you can use in assembler programs.
Among the services provided by these macros are: the ability to write a record to
disk, to read a record from disk, to write lines to a virtual printer, and so on. All the
CMS assembler macros are described in the applicable CMS Command and Macro
Reference, listed under “Bibliography” on page 373.

Adding Definitions to a Macro Library
Macro definitions, and members containing assembler source statements that can
be read by a COPY instruction, can be added to a macro library. Use the CMS
MACLIB command to create and modify CMS macro libraries. In the following
example, a macro with a filename of NEWMAC and filetype of MACRO is added to
the MACLIB with a filename of MYLIB.

MACLIB ADD MYLIB NEWMAC

Details of this command are described in the applicable CMS Command and Macro
Reference, listed under “Bibliography” on page 373.

Operating System Programming Conventions
Assembler programs executing on CMS must follow a set of programming
conventions to save and restore registers, and access execution parameters.
These conventions are described in the following sections.

Saving and Restoring General Register Contents
A program should save the values contained in the general registers when it
receives control and, on completion, restore these same values to the general
registers. Thus, as control is passed from the operating system to a program and,
in turn, to a subprogram, the status of the registers used by each program is
preserved. This is done through use of the SAVE and RETURN system macro
instructions.

 Copyright IBM Corp. 1982, 1998 197

 Operating System Programming Conventions

Saving Register Contents: The SAVE macro instruction should be the first
statement in the program. It stores the contents of registers 14, 15, and 0 through
12 in an area provided by the program that passes control. When a program is
given control, register 13 contains the address of an area in which the general
register contents should be saved.

If the program calls any subprograms, or uses any operating system services other
than GETMAIN, FREEMAIN, ATTACH, and XCTL, it must first save the contents of
register 13 and then load the address of an 18-fullword save area into register 13.
This save area is in the program and is used by any subprograms or operating
system services called by the program.

Restoring Register Contents: At completion, the program restores the contents
of general registers 14, 15, and 0 through 12 by use of the RETURN system macro
instruction (which also indicates program completion). The contents of register 13
must be restored before issuing the RETURN macro instruction.

Example: The coding sequence that follows shows the basic process of saving
and restoring the contents of the registers. See the VM/ESA CMS Application
Development Reference for Assembler for further information about the SAVE and
RETURN macros.

Name Operation Operand

CSECTNAM SAVE (14,12)
 USING CSECTNAM,15
 . . .
 ST 13,SAVEAREA+4
 LA 13,SAVEAREA
 . . .
program function source statements

...
 L 13,SAVEAREA+4
 RETURN (14,12)
SAVEAREA DC 18F'9'

...
 END

Ending Program Execution
You indicate completion of an assembler language source program by using the
RETURN system macro instruction to pass control from the terminating program to
the program that initiated it. The initiating program may be the operating system or,
if a subprogram issued the RETURN, the program that called the subprogram.

In addition to indicating program completion and restoring register contents, the
RETURN macro instruction may also pass a return code—a condition indicator that
may be used by the program receiving control.

If the program returns to the operating system, the return code can be compared
against the condition stated in the COND= parameter of the JOB or EXEC
statement.

If return is to another program, the return code is available in general register 15,
and may be used as required. Your program should restore register 13 before
issuing the RETURN macro instruction.

198 HLASM V1R3 Programmer’s Guide

 Operating System Programming Conventions

The RETURN system macro instruction is discussed in detail in the VM/ESA CMS
Application Development Reference for Assembler.

Passing Parameters to Your Assembler Language Program
On CMS, you can pass parameters to an assembler language program by means
of the START command. The statement below shows how to pass parameters to
your program using the CMS START command:

START MYJOB PARM1 PARM2

The parameters must be no longer than 8 characters each, and must be separated
by blanks.

CMS creates a list of the parameters that are passed to the program when it is run.
The address of the parameters is passed in register 1. The parameter list for the
command above is:

PLIST DS 9D
 DC CL8'MYJOB'
 DC CL8'PARM1'
 DC CL8'PARM2'
 DC 8X'FF'

where the list is terminated by hexadecimal FFs.

If your program is started using the CMS OSRUN command, the parameters are
passed in the same way as described in “Accessing Execution Parameters” on
page 180.

If a module was created using the CMS GENMOD command and run using the
MODULE name, the parameters are passed in extended parameter list format. The
address of the parameter list is passed in register 0.

The format of the extended parameter list is:

Offset Field
0 Address of command name
4 Address of beginning of options
8 Address of end of options
12 User word
16 Reserved

 Chapter 12. CMS System Services and Programming Considerations 199

 Operating System Programming Conventions

200 HLASM V1R3 Programmer’s Guide

 Part 4. Developing Assembler Programs on VSE

Part 4. Developing Assembler Programs on VSE

Chapter 13. Assembling Your Program on VSE 202
Input to the Assembler . 202
Output from the Assembler . 202
Invoking the Assembler in Batch . 202
Invoking the Assembler on ICCF . 204
Invoking the Assembler Dynamically . 206
Batch Assembling . 206
Controlling Your Assembly . 207
Input and Output Files . 208

Work File: IJSYS03 . 210
Specifying the Source File: SYSIPT . 210
Specifying Macro and Copy Code Libraries: LIBDEF Job Control Statement 211
Specifying the Listing File: SYSLST . 211
Directing Assembler Messages to Your Console Log: SYSLOG 211
Specifying Object Code Files: SYSLNK and SYSPCH 211
Specifying the Associated Data File: SYSADAT 212

Return Codes . 212

Chapter 14. Link-Editing and Running Your Program on VSE 213
The Linkage Editor . 213
Creating a Phase . 213
Input to the Linkage Editor . 214

Inputting Object Modules . 214
Files for Linkage Editor Processing . 214
Inputting additional Object Modules . 215
Linkage Editor Control Statements . 215

Output from the Linkage Editor . 216
Running your Assembled Program . 217

Chapter 15. VSE System Services and Programming Considerations . . . 218
Adding Definitions to a Macro Library . 218
Processing E-Decks . 218
Operating System Programming Conventions . 219

Saving and Restoring General Register Contents 219
Ending Program Execution . 220
Accessing Execution Parameters . 220

 Copyright IBM Corp. 1982, 1998 201

 Invoking the Assembler in Batch

Chapter 13. Assembling Your Program on VSE

This chapter describes how to invoke High Level Assembler on VSE. It describes
the job control required to run the assembler, files used by the assembler and
return codes. The job control language is described in detail in the applicable
System Control Statements manual.

Input to the Assembler
As input, the assembler accepts a program written in the assembler language as
defined in the Language Reference. This program is referred to as a source
module. Some statements in the source module (macro or COPY instructions) can
cause additional input to be obtained from a macro library.

Output from the Assembler
The output from the assembler can consist of an object module, a program listing,
terminal messages, and an associated data file. The object module can be written
to a data set residing on a direct access device or a magnetic tape. From that file,
the object module can be read and processed by the linkage editor or the loader.
See Appendix C, “Object Deck Output” on page 245 for the format of the object
module.

The program listing lists all the statements in the module, both in source and
machine language format, and gives other important information about the
assembly, such as error messages. The listing is described in detail in Chapter 2,
“Using the Assembler Listing” on page 8.

Invoking the Assembler in Batch
The JCL for running an assembly includes:

� A job description.
� Definitions for the files needed.
� A statement to run the assembler.

The following example shows how to run the assembler.

202  Copyright IBM Corp. 1982, 1998

 Invoking the Assembler in Batch

// JOB jobname �1�
// DLBL IJSYS93,'HLASM.WORK.IJSYS93',9,VSAM,RECSIZE=4996, �2�
 RECORDS=(199,59),DISP=(NEW,KEEP),CAT=VSESPUC
// DLBL IJSYSLN,'HLASM.WORK.IJSYSLN',9,VSAM,RECSIZE=322, �3�
 RECORDS=(199,59),DISP=(NEW,KEEP),CAT=VSESPUC
// LIBDEF PHASE,SEARCH=(PRD2.PROD) �4�
// LIBDEF SOURCE,SEARCH=(lib.sublib) �5�
// OPTION LINK �6�
// EXEC ASMA99,SIZE=ASMA99 �7�
...
Assembler source statements
...
/K �8�
/& �9�

Figure 77. JCL to Assemble a Program

�1� Identifies the beginning of your job to the operating system. jobname is the
name you assign to the job.

�2� Defines the work file to be used by the assembler. The work file must be on a
direct-access storage device. The work file can be a SAM file or a SAM-ESDS
file. This statement is not required if IJSYS03 is defined in the System
Standard or Partition Standard labels.

�3� Defines the SYSLNK file that receives the object records produced from the
LINK option. This statement is not required if IJSYSLN is defined in the
System Standard or Partition Standard labels.

�4� Specifies the sublibrary where the assembler resides.

�5� Specifies the sublibraries that are to be searched to locate any macro and
copy members.

�6� Sets the LINK option and the Assembler OBJECT option which causes the
assembler to write the object records produced to SYSLNK.

�7� Invokes the assembler to process the assembler source statements that follow
the EXEC statement.

The SIZE parameter of the EXEC statement specifies SIZE=ASMA99. This sets
the size of program storage to the size of the phase ASMA90 and makes all
the remaining storage in the partition GETVIS storage. High Level Assembler
does not use program storage.

�8� The end-of-data statement indicates the end of input to the assembler (source
code), and separates data from subsequent job control statements in the input
stream.

�9� The end-of-job statement indicates the end of the job.

These statements cause the assembler to assemble your program and to produce
a listing (described in Chapter 2, “Using the Assembler Listing” on page 8) and an
object module (described in Appendix C, “Object Deck Output” on page 245).

 Chapter 13. Assembling Your Program on VSE 203

 Invoking the Assembler on ICCF

Invoking the Assembler on ICCF
To assemble your program on ICCF, use the job entry statements /LOAD,
/OPTION, /INCLUDE, and /RUN. To create and save an object module, you should
also use the /FILE job entry statement.

Before assembling your program on ICCF, ensure that your ICCF Administrator has
provided the following:

� LIBDEF statements for all Librarian sublibraries that are accessed during
assembly, including the sublibrary where High Level Assembler and any user
exits reside. The LIBDEF statements must be provided in the VSE/ICCF
initialization job stream.

� Definitions for the assembler work file used by the assembler to process the
source program. All work files must be pre-allocated, and defined in the
VSE/ICCF initialization job stream. High Level Assembler does not recognize
work files defined using the /FILE job entry statement.

� An interactive partition with sufficient storage to run the assembly. The amount
of storage you need depends upon the size of your source program, and the
value you specify in the SIZE assembler option.

On ICCF, you can either enter the required ICCF commands, or you can write your
own procedure that can be used whenever you need to assemble a program.

Figure 78 shows an example of the ICCF commands you should enter to assemble
your program.

/INPUT
/LOAD ASMA99,PARM='SIZE(899K)'
/OPTION NOGO,RESET,DECK,GETVIS=P-249
/FILE TYPE=ICCF,UNIT=SYSPCH,NAME=ASMOBJ
/INCLUDE ASMPROG
/END
/RUN

Figure 78. Entering ICCF Commands

Figure 79 on page 205 shows a working example of an ICCF procedure for
assembling a program, and generating an object module.

204 HLASM V1R3 Programmer’s Guide

 Invoking the Assembler on ICCF

 K -
 K ASMARUN NNNN (OBJ MMMM/K) OPTIONS
 K
 K PROCEDURE TO ASSEMBLE A HIGH LEVEL ASSEMBLER PROGRAM
 K -
 &&OPTIONS 9919911
 &&IF &&PARMCT NE 9 &&GOTO START
 &&TYPE ENTER NAME (OBJ NAME/K) (OPTIONS)
 &&READ &&PARAMS
 &&IF &&PARMCT EQ 9 &&EXIT
 &&LABEL START
 /LIST 1 1 &&PARAM1 &&VARBL5
 &&IF &&RETCOD NE KFILE &&GOTO SOUR
 &&TYPE KSOURCE MEMBER &&PARAM1 NOT IN LIBRARY OR EMPTY
 &&EXIT
 &&LABEL SOUR
 &&IF &&RETCOD NE KINVALID &&GOTO YESOR
 &&TYPE KINVALID PASSWORD OR INVALID ACCESS TO MEMBER &&PARAM1
 &&EXIT
 &&LABEL YESOR
 &&IF &&RETCOD NE KMISSING &&GOTO OKSOR
 &&TYPE KENTER PASSWORD FOR MEMBER &&PARAM1
 &&READ &&VARBL5
 &&IF &&VARBL5 NE ' ' &&GOTO -START
 &&EXIT
 &&LABEL OKSOR
 &&SET &&VARBL1 &&PARAM1
 &&SHIFT 1
 &&IF &&PARAM1 NE OBJ &&GOTO NOOBJ
 &&SET &&VARBL2 &&PARAM2 ''
 &&IF &&VARBL2 EQ 'K' &&SET &&VARBL2 ' '
 &&IF &&VARBL2 EQ ' ' &&GOTO +INLIB
 /LIST 1 1 &&VARBL2
 &&IF &&RETCOD NE KFILE &&GOTO OVERW
 /INP NOPROMPT
 DUMMY RECORD TO CREATE A MEMBER FOR 'ASMARUN' PROCEDURE OUTPUT
 /SAVE &&VARBL2
 &&IF &&RETCOD NE KLIBRARY &&GOTO INLIB
 &&TYPE KLIBRARY DIRECTORY FULL
 &&EXIT
 &&LABEL OVERW
 &&TYPE KMEMBER &&VARBL2 ALREADY EXISTS. OVERWRITE? (Y/N)
 &&READ &&VARBL4
 &&IF &&VARBL4 EQ 'Y' &&GOTO INLIB
 &&TYPE KNO ASSEMBLY - TRY AGAIN WITH ANOTHER NAME
 &&EXIT
 &&LABEL INLIB
 &&SHIFT 1
 &&SHIFT 1
 &&LABEL NOOBJ
 /INP NOPROMPT
 &/LOAD ASMA99 PARM='&&PARAM1,&&PARAM2,&&PARAM3,&&PARAM4,&&PARAM5'
 /OPTION NOGO RESET GETVIS=P-249
 &&IF &&VARBL2 NE ' ' /FILE TYPE=ICCF,UNIT=SYSPCH,NAME=&&VARBL2
 &/INCLUDE &&VARBL1 &&VARBL5
 /END
 /PEND
 /RUN

Figure 79. Sample Procedure for Assembling on ICCF

 Chapter 13. Assembling Your Program on VSE 205

 Batch Assembling

Invoking the Assembler Dynamically
To invoke High Level Assembler from a running program, use the CDLOAD and
CALL macro instructions.

You can supply assembler options in the CALL macro instruction as shown in
Figure 80

DYNAMICV CSECT
DYNAMICV RMODE 24
DYNAMICV AMODE ANY
BEGIN SAVE (14,12)
 USING BEGIN,15
 ST 13,SAVEAREA+4
 LA 13,SAVEAREA
 CDLOAD ASMA99 �1�
 LR 15,9

CALL (15),(OPTIONS) �2� �3�
CDDELETE ASMA99 Required for VSE/ESA 1.3 onwards

 L 13,SAVEAREA+4
 RETURN (14,12)
SAVEAREA DS 18F
OPTIONS DC Y(OPTIONSL)
OPTS DC C'XREF(SHORT)'
OPTIONSL EQU K-OPTS
 END

Figure 80. Sample Program to Call the Assembler Dynamically

Notes on Figure 80:

�1� ASMA90 is the symbolic name of the assembler. The entry point address is
returned by CDLOAD in register 0.

�2� (15) specifies that the entry point address is in register 15.

�3� (OPTIONS) specifies the address of a variable-length list containing the
options. The address of an option list must be provided, even if no options are
required.

The option list must begin on a halfword boundary. The first two bytes contain
a count of the number of bytes in the remainder of the list. If no options are
specified, the count must be zero. The option list is free form, with each field
separated from the next by a comma. No blanks should appear in the list,
except within the string specified for the EXIT or SYSPARM options providing
the string is enclosed within single quotes.

 Batch Assembling
You can assemble a sequence of separate assembler programs with a single
invocation of the assembler by specifying the BATCH option. The object programs
produced from this assembly can be link-edited into either a single phase or
separate phases.

When the BATCH option is specified, each assembler program in the sequence
must be terminated by an END statement, including the last program in the batch.
If an END statement is omitted, the program is assembled with the next program in

206 HLASM V1R3 Programmer’s Guide

 Controlling Your Assembly

the sequence. If the END statement is omitted from the last program in the
sequence, the assembler generates an END statement.

If you need to produce separate phases, you must write a phase linkage editor
control statement for each phase. The phase statement must be written at the start
of the module. The following example shows how to create two phases, SECT1
and SECT2. When multiple phases are produced, they are link-edited as an
overlay.

PUNCH ' PHASE SECT1,K'
 END
SECT1 CSECT Start of first load module

...
 Source instructions
 . . .

END End of first load module
PUNCH ' PHASE SECT2,K'

 END
SECT2 CSECT Start of second load module

...
 Source instructions
 . . .

END End of second load module

Controlling Your Assembly
The assembler options are specified on the PARM parameter of the JCL EXEC
statement or the ICCF /LOAD job entry statement. The options must be enclosed
within single quotes and be separated by commas.

The assembler options are described in Chapter 3, “Controlling your Assembly with
Options” on page 37. You can also specify some assembler options using the
// OPTION job control statement. These are described in Figure 81.

Figure 81 (Page 1 of 2). Assembler Options in JCL

Assembler
Option

JCL OPTION
Equivalent

Comments

ALIGN ALIGN

DECK DECK The DECK assembler option is always specified
using the JCL OPTION statement. If the DECK
option is specified on the PARM operand of the
JCL EXEC statement, error diagnostic message
ASMA499W is issued, and the DECK option is
ignored.

LIST LIST The LIST assembler option is equivalent to
specifying LIST(121).

OBJECT LINK
CATAL

The OBJECT assembler option is always
specified using the LINK or CATAL option of the
JCL OPTION statement. If the OBJECT option
is specified on the PARM operand of the JCL
EXEC statement, error diagnostic message
ASMA499W is issued, and the OBJECT option is
ignored.

 Chapter 13. Assembling Your Program on VSE 207

 Input and Output Files

Figure 81 (Page 2 of 2). Assembler Options in JCL

Assembler
Option

JCL OPTION
Equivalent

Comments

RLD RLD

SYSPARM SYSPARM The value specified in the SYSPARM option of
the JCL OPTION statement is limited to 8
characters. To provide longer values, use the
SYSPARM assembler option. The SYSPARM
value specified on the PARM operand of the JCL
EXEC statement overrides any value specified
on the JCL OPTION statement. A null value (//
OPTION SYSPARM='') is ignored by the
assembler.

TERMINAL TERM

XREF SXREF
XREF

The XREF option of the JCL OPTION statement
can be used to specify the XREF(FULL)
assembler option. The SXREF option of the JCL
OPTION statement can be used to specify the
XREF(SHORT) assembler option.

Input and Output Files
Depending on the options in effect, High Level Assembler requires the following
files, as shown in Figure 82:

 ┌──────────────┐
 │ SYSIPT │
 └───────┬──────┘
 │
 │
 +
 ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
 │ Librarian ├──────────�│ Assembler │�──────────�│ IJSYS93 │
 └──────────────┘ └───────┬──────┘ └──────────────┘
 │
 +
 ┌──────────────┬──────────────┬──────────────┬──────────────┐

│ │ │ │ │
+ + + + +

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐
│ SYSLST │ │ SYSLOG │ │ SYSLNK │ │ SYSPCH │ │ SYSADAT │
└───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

Figure 82. High Level Assembler Files

High Level Assembler requires the following files:

IJSYS03 A work file used as intermediate external storage when processing
the source program. This file is used when there is not enough
main storage available to do an in-storage assembly.

If the value specified for the SIZE option is large enough, an
in-storage assembly is done and the work file IJSYS03 can be
omitted, though a warning message is issued.

SYSIPT An input file containing the source statements to be processed.

In addition, the following six files might be required:

208 HLASM V1R3 Programmer’s Guide

 Input and Output Files

Librarian Librarian sublibraries containing macro definitions (for macro
definitions not defined in the source program), source code to be
called for through COPY assembler instructions, or both.

SYSLST A file containing the assembly listing (if the LIST option is in
effect).

SYSLOG A file containing flagged statements and diagnostic messages.
(only if the TERM option is in effect). SYSLOG is normally
assigned to the operator console.

SYSPCH A file containing object module output, usually for punching (only if
the DECK option is in effect).

SYSLNK A file containing object module output for input to the linkage editor
(only if the OBJECT option is in effect).

SYSADAT A file containing associated data output (only if the ADATA option
is in effect).

The files listed above are described in the text following Figure 83. The
characteristics of these files, those set by the assembler and those you can
override, are shown in Figure 83.

 Chapter 13. Assembling Your Program on VSE 209

 Input and Output Files

Notes to Figure 83:

�1� You can specify a block size (BLKSIZE) between 2008 and 32760 bytes on the
DLBL statement if a SAM DLBL is provided. The block size should be a
multiple of 8. If it is not, it is rounded to the next lower multiple of 8. If you do
not specify BLKSIZE, the assembler sets the block size to 4088.

If a VSAM DLBL is provided, the block size can be overridden by explicitly
defining the work file with the required block size.

�2� If you specify EXIT(PRTEXIT) and the user exit specifies the logical record
length, the logical record length returned is used. If you do not specify
EXIT(PRTEXIT) or the user exit does not specify a record length, the record
length is set to 121 if SYSLST is assigned to disk or 133 otherwise.

The minimum record length allowed for SYSPRINT is 121, and the maximum
allowed is 133.

�3� If you specify EXIT(TRMEXIT) and the user exit specifies the logical record
length, the logical record length returned is used. If you do not specify
EXIT(TRMEXIT) or the user exit does not specify a record length, the record
length is set to 68. The maximum record length allowed for SYSTERM is 125.

Figure 83. Assembler File Characteristics

File Access
Method

Logical
Record
Length
(LRECL)

Block Size
(BLKSIZE)

Record Format
(RECFM)

IJSYS03 BAM Same as
BLKSIZE

�1� UNDEF

SYSIPT SAM 80 80 FIXED

Librarian LIBR API 80 80 FIXED

SYSLST SAM �2� Same as
record size

FIXED

SYSLOG SAM �3� Same as
record size

FIXED

SYSPCH SAM 80 80 FIXED

SYSLNK SAM 80 80 FIXED

SYSADAT SAM 8188 8192 VARBLK

Work File: IJSYS03
The assembler uses this work file as an intermediate external storage device when
processing the source program. The input/output device assigned to this file must
be a direct-access device. The assembler does not support multivolume work files.

Specifying the Source File: SYSIPT
Define the file that contains your source code with the SYSIPT ASSGN statement.
If you include your source code in your job stream, it must immediately follow the
EXEC statement that invokes the assembler, and be terminated with a /* statement.

210 HLASM V1R3 Programmer’s Guide

 Input and Output Files

You can, however, use JCL statements to define a file that contains your source
code. For example, to define a direct-access device file, use the DLBL, EXTENT,
and ASSGN statements:

// DLBL IJSYSIN,'file-ID',9,SD
// EXTENT SYSIPT,volser,1,9,start,tracks
// ASSGN SYSIPT,DISK,VOL=volser,SHR

Specifying Macro and Copy Code Libraries: LIBDEF Job Control
Statement

Include the LIBDEF job control statement if your program contains any macro calls
to library macros, or any COPY instructions. LIBDEF statements define the
sublibraries that contain macro definition and COPY members.

// LIBDEF SOURCE,SEARCH=(lib.sublib)

The member name in the sublibrary must match the name you specify in the macro
| call or COPY instruction. The member type must be A, unless the SUBLIB job
| control option has changed it to D. See OPTION statement description in VSE/ESA
| System Control Statements for further details.

High Level Assembler does not read edited macros (E-books). To read edited
macros from the Librarian, provide a LIBRARY user exit using the EXIT option.
See “Processing E-Decks” on page 218.

You don't need the LIBDEF SOURCE statement if your assembler source code
does not contain any library macro calls or COPY instructions. You also don't need
the LIBDEF SOURCE statement if the library members are in a sub-library in the
permanent LIBDEF search chain.

Concatenate multiple sublibraries in the search chain if you have multiple macro or
copy sublibraries.

Specifying the Listing File: SYSLST
The assembler uses this file to produce a listing. You can then direct the output to
a printer, a direct access device, or a magnetic-tape device. The listing includes
the results of the default or specified options of the PARM parameter (for example,
diagnostic messages, the object code listing). For example:

// ASSGN SYSLST,PRT1

Directing Assembler Messages to Your Console Log: SYSLOG
If you specify the TERM assembler option, the assembler writes flagged statements
and diagnostic messages to the console log.

SYSLOG can only be assigned permanently, and is usually assigned at system
initialization.

Specifying Object Code Files: SYSLNK and SYSPCH
When using the OBJECT assembler option, or DECK assembler option, you can
store the object code on disk or tape. The assembler uses the SYSLNK or
SYSPCH files you define in your JCL to store the object code.

 Chapter 13. Assembling Your Program on VSE 211

 Return Codes

In the example below, the created object module is ready to be passed to the
linkage editor:

// DLBL IJSYSLN,'file-ID',9,SD
// EXTENT SYSLNK,volser,1,9,start,tracks
// ASSGN SYSLNK,DISK,VOL=volser,SHR

You don't need to define SYSLNK in your JCL if the NOOBJECT option is in effect.

The following example defines SYSPCH as a direct-access device file:

// DLBL IJSYSPH,'file-ID',9,SD
// EXTENT SYSPCH,volser,1,9,start,tracks
ASSGN SYSPCH,DISK,VOL=volser,SHR

You don't need to define the SYSPCH file if the NODECK option is in effect.

Specifying the Associated Data File: SYSADAT
Use the SYSADAT DLBL statement to define your associated data output DLBL
statement:

// DLBL SYSADAT,'HLASM.WORK.SYSADAT',9,VSAM,RECORDS=(199,199),
 RECSIZE=8192,DISP=(NEW,KEEP),CAT=VSESPUC

The associated data file contains information about the assembly. It provides
information for use by symbolic debugging and cross-reference tools. The
SYSADAT file must be directed to a direct-access storage device and can be a
SAM file or SAM-ESDS file.

 Return Codes
High Level Assembler issues return codes that you can check with the IF and ON
job control statements. The IF and ON job control statements let you skip or run a
job step, depending on the results (indicated by the return code) of a previous job
step. See the applicable System Control Statements manual for details about the
IF and ON job control statements.

The return code issued by the assembler is the highest severity code that is
associated with any error detected in the assembly, or with any MNOTE message
produced by the source program or macro instructions. The return code can be
controlled by the FLAG(n) assembler option described on page 49. See
Appendix G, “High Level Assembler Messages” on page 306 for a listing of the
assembler errors and their severity codes.

212 HLASM V1R3 Programmer’s Guide

 Creating a Phase

Chapter 14. Link-Editing and Running Your Program on VSE

If you produce an object module when you assemble your program, it needs further
processing before it can run. This further processing, the resolution of external
references inserted by the assembler, is performed by the linkage editor. The
linkage editor converts an object module into an executable program, which is
called a phase.

The Linkage Editor
The linkage editor converts an object module into a phase and catalogs it in a
Librarian sublibrary. The phase then becomes a permanent member of that
sublibrary, with a member type of PHASE, and can be retrieved at any time and
run in either the job that created it or any other job.

Alternatively, you can request the linkage editor to store the phase temporarily, in
the virtual I/O area. The phase is then ready to run. Using this method, the
linkage editor does not save a permanent copy of the phase. Consequently, after
the phase has been run, it cannot be used again without creating another phase.
This method is useful during testing.

Creating a Phase
The linkage editor processes your assembled program (object module) and
prepares it for running. The processed object module becomes a phase.

Optionally, the linkage editor can process more than one object module, and
transform those object modules into a single phase.

Figure 84 shows the general job control procedure for creating a phase
(link-editing).

// JOB jobname
// DLBL IJSYSLN,'file-ID',9,SD
// EXTENT SYSLNK,volser,1,9,start,tracks
// ASSGN SYSLNK,DISK,VOL=volser,SHR
// LIBDEF OBJ,SEARCH=(lib.sublib)
// LIBDEF PHASE,CATALOG=(lib.sublib)
// OPTION CATAL
 ACTION MAP
 PHASE phasenam,(

...
// EXEC LNKEDT
/&

Figure 84. Sample Job Control for Creating a Phase

 Copyright IBM Corp. 1982, 1998 213

 Input to the Linkage Editor

Input to the Linkage Editor
Your input to the linkage editor can be:

� One or more object modules (created through the OBJECT or DECK assembler
option).

� Linkage editor control statements (including control statements generated using
the assembler PUNCH statement).

Inputting Object Modules
The main input to the linkage editor is the SYSLNK file that contains one or more
separately assembled object modules, possibly with a PHASE linkage editor control
statement.

Additional input to the linkage editor consists of object modules that are not part of
the SYSLNK file, but are to be included in the phase.

The additional input can come from sublibraries containing other application object
modules.

You can specify which sublibrary contains the additional object modules with the
LIBDEF job control statement. If you have multiple sublibraries containing object
modules to be included in the phase, concatenate them, as shown in the following
example:

// LIBDEF OBJ,SEARCH=(PRD2.PROD,SALES.LIB)

In this case, the sublibraries PRD2.PROD and SALES.LIB are available for
additional input to the linkage editor.

Files for Linkage Editor Processing
You need the following files for linkage editor processing. Figure 85 summarizes
the function, and permissible device types, for each file.

Figure 85 (Page 1 of 2). Files Used for Link-Editing

File

Type

Function

Permissible
Device Types

SYSIPT1 Input Additional object module input Card reader
Magnetic tape
Direct access

SYSLNK Input Object module input, normally the output of the
assembler

Direct access

SYSLST2 Output Diagnostic messages
Informative messages
Linkage editor map

Printer
Magnetic tape
Direct access

SYSLOG Output Operator messages Display console

SYSRDR Input Control statement input Card reader
Magnetic tape
Direct access

IJSYS01
(SYS001)

Work file Linkage editor work file Direct access

214 HLASM V1R3 Programmer’s Guide

 Input to the Linkage Editor

Figure 85 (Page 2 of 2). Files Used for Link-Editing

File

Type

Function

Permissible
Device Types

User-specified
Sublibrary

Library Catalog sublibrary for the phase3

External reference and INCLUDE statement
resolution4

Direct access

Notes:

1 Object modules read from SYSIPT are written to SYSLNK
2 If not provided, messages are written to SYSLOG
3 Required if the phase is to be cataloged
4 Required for additional object module input

Inputting additional Object Modules
You can use the INCLUDE linkage editor control statement to specify additional
object modules you want included in the phase.

Code the INCLUDE statements before the EXEC statement that invokes the linkage
editor:

// EXEC ASMA99,SIZE=ASMA99
...

/K
 INCLUDE ASSMPGM
 INCLUDE ASSMPGM1
// EXEC LNKEDT
/&

Object modules specified by the INCLUDE statement are written to SYSLNK as job
control encounters the statements.

Linkage Editor Control Statements
In addition to object modules, input to the linkage editor includes linkage editor
control statements. These statements are described in Figure 86.

 Chapter 14. Link-Editing and Running Your Program on VSE 215

 Output from the Linkage Editor

Figure 86. Linkage Editor Control Statements

Statement Action Comments

ACTION Use the ACTION statement to specify linkage editor
options. The options are:

� MAP—requests the linkage editor to write a linkage
editor map to SYSLST.

� NOMAP—suppresses the MAP option.

� NOAUTO—suppresses the automatic library look
up (AUTOLINK) function; the linkage editor does
not attempt to resolve external references using the
automatic library look-up function.

� CANCEL—requests the linkage editor to cancel the
job if a linkage editor error occurs.

� SMAP—request the linkage editor to produce a
sorted listing of CSECT names on SYSLST.

This statement must be the first
linkage editor statement in your input
stream.

ACTION MAP is the default, if
SYSLST is assigned.

ENTRY Use the ENTRY statement to specify the entry point of
a phase that has multiple possible entry points.

The default entry point is the load
address of the phase.

INCLUDE Use the INCLUDE statement to include additional
object modules in the phase that would not otherwise
be included.

You can use the INCLUDE statement
to include an object module that was
cataloged with a different name to the
name used in the CALL statement in
your program.

PHASE Use the PHASE statement to provide the linkage editor
with a phase name.

You must provide a PHASE statement
(and the job control option CATAL) if
you want to catalog the phase in a
Librarian sublibrary.

For a complete description of these linkage editor control statements, see VSE/ESA
System Control Statements.

Output from the Linkage Editor
You can obtain a linkage editor storage map, and a listing of linkage editor
diagnostics, to help you determine the reasons for particular errors in your program.
To do this, use the ACTION MAP linkage editor control statement. If SYSLST is
assigned, ACTION MAP is the default. You can specify ACTION NOMAP if you do
not want the linkage editor to produce the storage map.

Detecting Link-Edit Errors: After link-editing, you receive a listing of diagnostic
messages on SYSLST. Check the linkage editor map to make sure that all the
object modules you expected were included.

Unresolved “weak” external references (WXTRN) can be ignored. However, all
“strong” external references (EXTRN) should be resolved for a phase to run
correctly.

You can find a description of linkage editor messages in VSE/ESA Diagnosis Tools.

216 HLASM V1R3 Programmer’s Guide

 Running your Assembled Program

Running your Assembled Program
The general job control procedure to run a program on VSE is:

// DLBL (JCL for user-specified files)
// EXEC progname[,PARM='parameters']

...

 Chapter 14. Link-Editing and Running Your Program on VSE 217

 Processing E-Decks

Chapter 15. VSE System Services and Programming
Considerations

This chapter describes some of the system services and program development
facilities that assist you in developing your assembler program on VSE. It provides
the following information:

� Adding definitions to a macro library.
� Saving and restoring general register contents.
� Ending program execution.
� Accessing execution parameters.

 � Processing E-Decks.

Adding Definitions to a Macro Library
You can add macro definitions, and members containing assembler source
statements that can be read by a COPY instruction, to a macro library. Use the
LIBR utility program for this purpose. Details of this program and its control
statements are contained in the applicable System Control Statements publication.
The following example adds a new macro definition, NEWMAC, to the system
library, PRD2.PROD.

// JOB CATMAC
// EXEC LIBR
ACCESS SUBLIB=PRD2.PROD
CATALOG NEWMAC.A REPLACE=YES
 MACRO
 NEWMAC &OP1,&OP2
 LCLA &PAR1,&PAR2
 . . .
 MEND
/+
/K

The ACCESS statement specifies the sublibrary into which the macro is cataloged.
The CATALOG statement specifies the member name and member type.
REPLACE=YES indicates that the member is replaced if it already exists.

 Processing E-Decks
| An E-Deck refers to a macro source book of type E (or type F if SUBLIB=DF
| specified on OPTION statement). You can use these types of macros in your

program; however, they must first be converted to source statement format.
E-Decks are stored in edited format, and High Level Assembler requires that library
macros be stored in source statement format.

You must use a library input exit to analyze a macro definition and, in the case of
an E-Deck, call the ESERV program to change, line by line, the E-Deck definition
back into source statement format.

See the section titled Using the High Level Assembler Library Exit for Processing
E-Decks in the IBM VSE/ESA Guide to System Functions manual. This section
describes how to set up the exit and how to use it.

218  Copyright IBM Corp. 1982, 1998

 Operating System Programming Conventions

Operating System Programming Conventions
Assembler programs executing on VSE must follow a set of programming
conventions to save and restore registers, and access execution parameters.
These are described in the following sections.

Saving and Restoring General Register Contents
A program should save the values contained in the general registers when it starts
to run and, on completion, restore these same values to the general registers.
Thus, as control is passed from the operating system to a program and, in turn, to
a subprogram, the status of the registers used by each program is preserved. This
is done through use of the SAVE and RETURN system macro instructions.

Saving Register Contents: The SAVE macro instruction should be the first
statement in the program. It stores the contents of registers 14, 15, and 0 through
12 in an area provided by the program that passes control. When a program is
given control, register 13 contains the address of an area in which the general
register contents should be saved.

If the program calls any subprograms, or uses any operating system services other
than GETVIS, FREEVIS, and CDLOAD, it must first save the contents of register
13 and then load the address of an 18-fullword save area into register 13. This
save area is in the program and is used by any subprograms or operating system
services called by the program.

Restoring Register Contents: At completion, the program restores the contents
of general registers 14, 15, and 0 through 12 by use of the RETURN system macro
instruction (which also indicates program completion). The contents of register 13
must be restored before issuing the RETURN macro instruction.

Example: The coding sequence that follows shows the basic process of saving
and restoring the contents of the registers. A complete discussion of the SAVE and
RETURN macro instructions and the saving and restoring of registers is contained
in the applicable VSE/ESA System Macros Reference.

Name Operation Operand

BEGIN SAVE (14,12)
 USING BEGIN,15
...

 ST 13,SAVEBLK+4
 LA 13,SAVEBLK
...

 L 13,SAVEBLK+4
 RETURN (14,12)
SAVEBLK DC 18F'9'
...

 END

 Chapter 15. VSE System Services and Programming Considerations 219

 Operating System Programming Conventions

Ending Program Execution
You indicate completion of an assembler language source program by using the
RETURN system macro instruction to pass control from the terminating program to
the program that initiated it. The initiating program might be the operating system
or, if a subprogram issued the RETURN, the program that called the subprogram.

In addition to indicating program completion and restoring register contents, the
RETURN macro instruction can also pass a return code—a condition indicator that
can be used by the program receiving control.

If the return is to the operating system, the return code is compared against the
condition stated in the IF and ON job control statements.

If return is to another program, the return code is available in general register 15,
and can be used as required. Your program should restore register 13 before
issuing the RETURN macro instruction.

The RETURN system macro instruction is discussed in detail in the applicable
Application Programming Macro Reference manual.

Accessing Execution Parameters
You access information in the PARM field of an EXEC statement by referring to the
contents of general register 1. If you do not specify the PARM field of the JCL
EXEC statement, register 1 and register 15 contain the same value on initial entry.

When control is given to the program, general register 1 contains the address of a
fullword which, in turn, contains the address of the data area containing the
information.

The data area consists of a halfword containing the count (in binary) of the number
of information characters, followed by the information field. The information field is
aligned to a fullword boundary. Figure 87 shows how the PARM field information
is structured.

General register 1
 ┌──────────────────────────────────────┐

┌────────────┤ Address of Fullword │
 │ └──────────────────────────────────────┘

│ Points to
 │ ┌──────────────────────────────────────┐

└───────────�│ Address of Data Area ├───────────┐
 └──────────────────────────────────────┘ │

Points to │
 ┌───┘
 │
 │ ┌─────────────────┬────────────────────┐

└───────────�│ Count in Binary │ Information Field │
 └─────────────────┴────────────────────┘

Figure 87. Access to PARM Field

220 HLASM V1R3 Programmer’s Guide

 Appendixes

 Appendixes

Appendix A. Earlier Assembler Compatibility and Migration 223
Comparison of Instruction Set and Assembler Instructions 223
Comparison of Macro and Conditional Assembly Statements 226
Comparison of Macro and Conditional Assembly 229
Comparison of Language Features . 234
Comparison of Assembler Options . 236
Comparison of Assembler Listing . 238
Comparison of Diagnostic Features . 240
Other Assembler Differences . 241

Appendix B. Cross-System Portability Considerations 243
Using Extended Architecture Instructions . 243
Using System Macros . 243
Migrating Object Programs . 243

Appendix C. Object Deck Output . 245
ESD Record Format . 246
TXT Record Format . 247
RLD Record Format . 247
END Record Format . 248
SYM Record Format . 249

Appendix D. Associated Data File Output . 252
Record Types . 254

Macro-only Assemblies . 258
ADATA Record Layouts . 259
Common Header Section . 259
Job Identification Record—X'0000' . 261
ADATA Identification Record—X'0001' . 261
ADATA Compilation Unit Start/End Record—X'0002' 262
System 370/390 Output File Information Record—X'000A' 262
Options Record—X'0010' . 265
External Symbol Dictionary Record—X'0020' 267
Source Analysis Record—X'0030' . 268
Source Error Record—X'0032' . 271
DC/DS Record—X'0034' . 271

| DC Extension Record—X'0035' . 277
Machine Instruction Record—X'0036' . 277
Relocation Dictionary Record—X'0040' . 277
Symbol Record—X'0042' . 278
Symbol Cross Reference Record—X'0044' . 279

| Register Cross Reference Record—X'0045' . 280
Library Record—X'0060' . 280
Library Member and Macro Cross Reference Record - X'0062' 281
User-supplied Information Record - X'0070' . 282
USING Map Record—X'0080' . 282
Statistics Record—X'0090' . 283

Appendix E. Sample Program . 287

 Copyright IBM Corp. 1982, 1998 221

 Appendixes

Appendix F. MHELP Sample Macro Trace and Dump 298

Appendix G. High Level Assembler Messages 306
Message Code Format . 306
Message Descriptions . 307

Message Number and Text . 307
Explanation of Message . 308
Supplemental Information . 308
System Action . 308
Programmer Response . 308
Severity Code . 308

Assembly Error Diagnostic Messages . 309
Message Not Known . 311
Messages . 312

Abnormal Assembly Termination Messages . 347
Messages . 348

ASMAHL Command Error Messages (CMS Only) 352

Appendix H. User Interface Macros . 356

Appendix I. Sample ADATA User Exit (MVS and CMS) 357
Function . 357
Preparing the Exit . 357
Preparing the Filter Management Table . 357
Preparing the Filter Modules . 358
Preparing the Sample Filter Module ASMAXFLU 361
Invoking the Exit . 363

Appendix J. Sample LISTING User Exit (MVS and CMS) 364
Function . 364
Preparing the Exit . 364
Invoking the Exit . 364
Messages . 365

Appendix K. Sample SOURCE User Exit (MVS and CMS) 366
Function . 366
Preparing the Exit . 366
Invoking the Exit . 366

Appendix L. How to Generate a Translation Table 367

222 HLASM V1R3 Programmer’s Guide

 Appendixes

Appendix A. Earlier Assembler Compatibility and Migration

This section compares the High Level Assembler to the earlier assemblers,
Assembler H Version 2 and DOS/VSE Assembler. This section can be used to
determine the changes that might be required to migrate your assembler programs
to High Level Assembler. This section also lists the new facilities that are available
with High Level Assembler that you can use for new and existing assembler
programs.

Comparison of Instruction Set and Assembler Instructions

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Instruction set

S/370 instructions Yes Yes Yes

XA instructions No Yes Yes

ESA instructions No Yes Yes

Vector instructions No Yes Yes

DOS operation code table No No The DOS operation
code table is
designed specifically
for assembling
programs previously
assembled using the
DOS/VSE assembler.
Some machine
instructions and
assembler
instructions are not
included in this
operation code table.
See “OPTABLE” on
page 60 for further
details.

Data definition statements

CCW Yes Yes Yes

CCW0 No Yes Yes

CCW1 No Yes Yes

DC Yes Yes Yes

DS Yes Yes Yes

Symbols used in the DC or DS expression
need not be defined before they are used

No Yes Yes

| J-type Constant| No| No| Yes

Q-type Constant No Yes Yes

S-type Constant No Yes Yes

Number of nominal values for Binary and
Hexadecimal constants

One Multiple Multiple

 Copyright IBM Corp. 1982, 1998 223

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Program control statements

ADATA No No Yes

CNOP Name entry can
have sequence
symbol or blank

Name entry can
have any symbol or
blank

Name entry can have
any symbol or blank

COPY Nesting depth
limited to 3

Nesting depth not
limited

Nesting depth not
limited

EQU Value operand only Value, length
attribute and type
attribute operands

Value, length
attribute and type
attribute operands

END END statement
must be supplied

Multiple END
statements are
allowed. If the
END statement is
omitted, the
assembler
generates an END
statement.

Multiple END
statements are
allowed. If the END
statement is omitted,
the assembler
generates an END
statement.

EXITCTL No No Yes

ICTL Yes Yes Yes

ISEQ Yes Yes Yes

LTORG Yes Yes Yes

OPSYN No Yes Yes

ORG Name entry can
have sequence
symbol or blank

Name entry can
have any symbol or
blank

Name entry can have
any symbol or blank

POP No Yes Yes, with NOPRINT
operand

PUNCH Yes Yes Yes

PUSH No Yes Yes, with NOPRINT
operand

REPRO Yes Yes Yes

Listing control statements

CEJECT No No Yes

EJECT Yes Yes Yes

PRINT Yes Yes Yes, with NOPRINT,
MCALL, NOMCALL,
MSOURCE,
NOMSOURCE,
UHEAD, and
NOUHEAD operands

SPACE Yes Yes Yes

TITLE Up to 4 characters
in name (if not a
sequence symbol)

Up to 8 characters
in name (if not a
sequence symbol)

Up to 8 characters in
name (if not a
sequence symbol)

Base register assignment

224 HLASM V1R3 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

DROP Yes Yes Yes

USING Yes, ordinary
USING

Yes, ordinary
USING

Yes, ordinary,
labeled, and
dependent USINGs

Program sectioning and linking

ALIAS No No Yes

AMODE No Yes Yes

CATTR (MVS and CMS) No No Yes

COM Only unnamed
common control
sections are
allowed

Yes Yes

CSECT Only named control
sections are
allowed

Yes Yes

CXD No Yes Yes

DSECT Yes Yes Yes

DXD No Yes Yes

ENTRY The maximum
number of symbols
that can be
identified by the
ENTRY instruction
is 200

Yes Yes

EXTRN Yes Yes Yes

RMODE No Yes Yes

RSECT No Yes Yes, with automatic
checking for
reenterability

START Only named control
sections are
allowed

Yes Yes

WXTRN Yes Yes Yes

 Appendix A. Earlier Assembler Compatibility and Migration 225

 Appendixes

Comparison of Macro and Conditional Assembly Statements

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Macro definition

MACRO Yes Yes Yes

MEND Yes Yes Yes

MEXIT Yes Yes Yes

Conditional assembly

| ACONTROL| No| No| Yes

ACTR Yes Yes Yes

AEJECT No No Yes

AGO Yes Yes Yes

AIF Yes Yes Yes

| AINSERT| No| No| Yes

ANOP Yes Yes Yes

AREAD No Yes Yes, including
CLOCKB and
CLOCKD operands

ASPACE No No Yes

GBLA Yes Yes Yes

GBLB Yes Yes Yes

GBLC Yes Yes Yes

LCLA Yes Yes Yes

LCLB Yes Yes Yes

LCLC Yes Yes Yes

MHELP No Yes Yes

MNOTE Not allowed in
open code

Allowed in open
code

Allowed in open code

SETA Yes Yes Yes

SETB Yes Yes Yes

SETC Yes Yes Yes

SETAF No No Yes

SETCF No No Yes

System variable symbols

&SYSADATA_DSN No No Yes

&SYSADATA_MEMBER No No Yes

&SYSADATA_VOLUME No No Yes

&SYSASM No No Yes

| &SYSCLOCK| No| No| Yes

&SYSDATC No No Yes

226 HLASM V1R3 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

&SYSDATE No Yes Yes

&SYSECT Yes Yes Yes

&SYSIN_DSN No No Yes

&SYSIN_MEMBER No No Yes

&SYSIN_VOLUME No No Yes

&SYSJOB No No Yes

&SYSLIB_DSN No No Yes

&SYSLIB_MEMBER No No Yes

&SYSLIB_VOLUME No No Yes

&SYSLIN_DSN No No Yes

&SYSLIN_MEMBER No No Yes

&SYSLIN_VOLUME No No Yes

&SYSLIST Yes Yes Yes

&SYSLOC No Yes Yes

| &SYSM_HSEV| No| No| Yes

| &SYSM_SEV| No| No| Yes

| &SYSMAC| No| No| Yes

&SYSNDX Up to maximum of
9999

Up to maximum of
9999999

Up to maximum of
9999999

&SYSNEST No No Yes

&SYSOPT_DBCS No No Yes

&SYSOPT_OPTABLE No No Yes

&SYSOPT_RENT No No Yes

| &SYSOPT_XOBJECT| No| No| Yes

&SYSPARM Yes Yes Yes

&SYSPRINT_DSN No No Yes

&SYSPRINT_MEMBER No No Yes

&SYSPRINT_VOLUME No No Yes

&SYSPUNCH_DSN No No Yes

&SYSPUNCH_MEMBER No No Yes

&SYSPUNCH_VOLUME No No Yes

&SYSSEQF No No Yes

&SYSSTEP No No Yes

&SYSSTMT No No Yes

&SYSSTYP No No Yes

&SYSTEM_ID No No Yes

&SYSTERM_DSN No No Yes

&SYSTERM_MEMBER No No Yes

&SYSTERM_VOLUME No No Yes

 Appendix A. Earlier Assembler Compatibility and Migration 227

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

&SYSTIME No Yes Yes

&SYSVER No No Yes

Symbol attributes

Defined attribute No Yes Yes

Type attribute An ordinary symbol
outside a macro
cannot be used as
an operand of the
T' inside a macro
and cannot be
used to determine
the type of a SETA
or SETB variable.

Only allowed in
conditional
assembly
instructions and not
allowed for literals.

Yes; only allowed
in conditional
assembly
instructions and not
allowed for literals.

Yes; allowed in
conditional assembly,
assembler, and
machine instructions
and are allowed for
previously defined
literals.

Length attribute Yes; allowed in
conditional
assembly,
assembler, and
machine
instructions and not
allowed for literals.

Yes; allowed in
conditional
assembly,
assembler, and
machine
instructions and not
allowed for literals.

Yes; allowed in
conditional assembly,
assembler, and
machine instructions
and are allowed for
previously defined
literals.

Scaling attribute Yes; only allowed
in conditional
assembly
instructions and not
allowed for literals.

Yes; only allowed
in conditional
assembly
instructions and not
allowed for literals.

Yes; allowed in
conditional assembly,
assembler, and
machine instructions
and are allowed for
previously defined
literals.

Integer attribute Yes; only allowed
in conditional
assembly
instructions and not
allowed for literals.

Yes; only allowed
in conditional
assembly
instructions and not
allowed for literals.

Yes; allowed in
conditional assembly,
assembler, and
machine instructions
and are allowed for
previously defined
literals.

Count attribute Can only be used
to determine the
length of a macro
instruction operand

Yes Yes

Number attribute Yes Can be applied to
SETx variables

Can be applied to
SETx variables

Operation Code Data attribute No No Yes

Type and Count attribute for system variable
symbols

No Yes Yes

228 HLASM V1R3 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Type attribute for SETA symbols that are
defined via LCLA or GBLA but are not set
(via SETA)

Not applicable Returns a value of
'00'

Returns a value of
'N'

Type attribute for SETB symbols that are
defined via LCLB or GBLB but are not set
(via SETB)

Not applicable Issues an error
message

Returns a value of
'N'

Type attribute for macro instruction operands
with a value of a previously used literal

Not applicable Returns a value of
'U'

Returns the Type
attribute of the
constant defined by
the literal

Comparison of Macro and Conditional Assembly

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

External Function calls using high level
programming language

No No Yes

Built-In Functions for SETA, SETB, and
SETC expressions

No No Yes

Substring length value

The second subscript value of the substring
notation can be specified as an (*).

No No Yes

Library macros in source format No, library macros
must be stored in
edited format

Yes Yes

Macro definitions can appear anywhere in
your source module.

No, they must be
at the start of the
source file.

Yes Yes

Editing macro definitions

Use conditional assembly statement to avoid
editing of macros.

No Yes Yes

Redefining macros

A macro definition can be redefined at any
point in the source code.

No Yes Yes

Nesting macro definitions

Allow both inner macro instructions and inner
macro definitions.

No Yes Yes

Generated macro instruction operation codes

Macro instruction operation codes can be
generated by substitution.

No Yes Yes

 Appendix A. Earlier Assembler Compatibility and Migration 229

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Multilevel sublists in macro instruction
operands

Multilevel sublists (sublists within sublists)
are permitted in macro instruction operands
and in keyword default values in prototype
statements.

No Yes Yes

DBCS language support

Double-byte data is supported by the macro
language.

No Yes Yes

Macro names, variable symbols (including
the ampersand) and sequence symbols
(including the period) can be up to a
maximum of 63 characters.

No, limited to 8
characters

Yes Yes

Comments (both ordinary comments
beginning with '*' and internal macro
comments beginning with '.*') can be
inserted between the macro header and the
prototype and, for library macros, before the
macro header.

No Yes Yes

Any mnemonic operation code of the
Universal character set, or any assembler
operation code, can be defined as a macro
instruction.

No Yes Yes

Any instruction, except ICTL, is permitted
within a macro definition.

No Yes Yes

AIF statements

The AIF statement can include a string of
logical expressions and related sequence
symbols.

No Yes Yes

AGO statements

The AGO statement can contain computed
branch sequence information.

No Yes Yes

SETx statements

The SETA, SETB and SETC statements can
assign lists or arrays of values to subscripted
SET symbols.

No Yes Yes

230 HLASM V1R3 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

SET symbol format and definition changes

� Either a macro definition or open code
can contain more than one declaration
for a given SET symbol, as long as only
one is encountered during a given macro
expansion or conditional assembly.

� A SET symbol that has not been
declared in a LCLx or GBLx statement is
implicitly declared by appearing in the
name field of a SETx statement.

� A SET symbol can be defined as an
array of values by adding a subscript
after it, when it is declared, either
explicitly or implicitly.

No Yes Yes

Created SET symbols

SET symbols may be created during the
generation of a macro.

No Yes Yes

Using SETC variables in arithmetic
expressions

You can use a SETC variable as an
arithmetic term if its character string value
represents a valid self-defining term.

No Yes Yes

Forward attribute references

If an attribute reference is made to a symbol
that has not yet been encountered, the
assembler scans the source code either until
it finds the referenced symbol in the name
field of a statement in open code, or until it
reaches the end of the source module.

No Yes Yes

Attribute reference using SETC variables

You can take an attribute reference for a
symbol specified as:

� The name of the ordinary symbol itself
� The name of a symbolic parameter

whose value is the name of the ordinary
symbol

� The name of a SETC symbol whose
value is the name of the ordinary symbol

No Yes Yes

Number attributes for SET symbols

The number attribute can be applied to SETx
variables to determine the highest subscript
value of a SET symbol array to which a
value has been assigned in a SETx
instruction.

No Yes Yes

Alternate format in conditional assembly

The alternate format allows a group of
operands to be spread over several lines of
code.

No Yes Yes

 Appendix A. Earlier Assembler Compatibility and Migration 231

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Maximum number of symbolic parameters
and macro instruction operands

200 No fixed maximum No fixed maximum

Mixing positional and keyword symbolic
parameters and macro instruction operands

All positional
parameters or
operands must
come first.

Keyword
parameters or
operands can be
interspersed
among positional
parameters or
operands.

Keyword parameters
or operands can be
interspersed among
positional parameters
or operands.

SET symbol declaration Declaration of local
symbols must
immediately
precede declaration
of global symbols.

Declaration of
global and local
symbols must
immediately follow
prototype
statement if in
macro definition.

Declaration of
global and local
symbols must
immediately follow
source macro
definitions, if in
open code.

Declaration of local
and global symbols
can be mixed.

Declaration of
global and local
symbols does not
need to
immediately follow
prototype
statement if in
macro definition.

Declaration of
global and local
symbols does not
need to
immediately follow
source macro
definitions, if in
open code.

Declaration of local
and global symbols
can be mixed.

Declaration of global
and local symbols
does not need to
immediately follow
prototype statement if
in macro definition.

Declaration of global
and local symbols
does not need to
immediately follow
source macro
definitions, if in open
code.

Maximum dimension for subscripted SET
Symbols

4095 Not limited Not limited

Duplication factor allowed in SETC
instruction

No Yes Yes

Dynamically extended variable SET symbols No Yes Yes

Number of terms in arithmetic expressions in
conditional assembly

Up to 16 Not limited Not limited

Levels of parentheses in arithmetic
expressions in conditional assembly

Up to 5 Not limited Not limited

MNOTE with error in macro is flagged at
each invocation

Yes No No

Blank lines treated as equivalent to ASPACE
1.

No No Yes

Name entry of macro instruction must be a
valid symbol

Yes Yes No

Ampersand preceding the SET symbols
being declared is optional

No No Yes

Predefined absolute symbols allowed in
arithmetic expression

No No Yes

Predefined absolute symbols allowed in
SETx instruction

No No Yes

232 HLASM V1R3 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Type attribute of CNOP Label is set to 'I' No, set to 'J' No, set to 'J' Yes

Type, length, scaling and integer attribute
allowed for ordinary symbols, SETC symbols
and literals in open code

No No Yes

Sublists assigned to SETC symbols can be
passed to macro definitions and be
recognized as sublists

No No Yes

 Appendix A. Earlier Assembler Compatibility and Migration 233

 Appendixes

Comparison of Language Features

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Macro comment statements allowed in open
code

No No Yes

EQU instruction extension

Symbols appearing in the first operand of the
EQU instruction need not have been
previously defined.

No Yes Yes

CNOP instruction extension

There is no restriction that symbols in the
operand field of a CNOP instruction must
have been previously defined.

No Yes Yes

COPY instruction extension

Any number of 'nestings', COPY statements
within code that have been brought into your
program by another COPY statement, is
permitted.

No, nesting depth
limited to 3

Yes Yes

COPY instruction processed immediately

COPY members are read immediately after a
COPY statement is encountered in the
source, regardless of whether or not
conditional processing requires it, as in the
following example:

 AGO .LABEL
 COPY AFILE
.LABEL ANOP

No, AFILE is never
opened, read from,
or processed in
any way.

Yes, AFILE is
scanned during
lookahead
processing

Yes, AFILE is
scanned during
lookahead
processing

COPY instruction operand can, in open
code, be specified as a variable symbol.

No No Yes

ISEQ instruction extension

Sequence checking of any column on input
records is allowed.

No Yes Yes

Macro names

Inline macro names may contain the
underscore character (_).

No Yes Yes

Continuation lines Up to 2 Up to 9 Up to 9

Continuation lines and double-byte data No Yes Yes

Symbol name length up to 63 characters No, limited to 8 Yes Yes

Levels within expressions

Any number of terms or levels of parenthesis
in an expression is allowed.

No Yes Yes

Underscores in symbols

You can specify the underscore character (_)
in ordinary symbols and variable symbols.

No Yes Yes

Underscore character accepted in any
position in symbol name

No No Yes

234 HLASM V1R3 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Underscore character accepted in external
symbols

No No Yes

Underscore character accepted in name field
of OPSYN instruction

No No Yes

Maximum number of external symbols 511 65 535 65 535

DBCS language support

Pure double-byte data, and double-byte data
mixed with single-byte data is permitted.

No Yes Yes

Location counter value printed for EQU,
USING, ORG (in ADDR2 field)

3 bytes 4 bytes (up to 3
leading zeroes
suppressed).

4 bytes (up to 3
leading zeroes
suppressed).

Self-defining term

 Maximum value

Number of digits
 Binary:
 Decimal:
 Hexadecimal:
 Characters:

224-1

24
8
6
3

231-1

31
10
8
4

231-1

31
10
8
4

Relocatable and absolute expressions

 Value carried:

Number of operators:
Levels of parenthesis:

Truncated to 24
bits
15
5

Truncated to 31
bits
Not limited
Not limited

Truncated to 31 bits

Not limited
Not limited

All control sections initiated by a CSECT
start at location 0 in listing and object
module.

Yes No No

Copy files read once Copy files read
when statement is
found

Copy files read
when macro is
edited (only once)

Copy files read when
macro is edited (only
once)

Operand greater than 255 characters when
SUBLIST

Error diagnostic
with message and
return code of 8

Error diagnostic
with message and
return code of 12

Error diagnostic with
message and return
code of 12

Remarks generated because of generated
blanks in operand field

No Yes Yes

Blank lines treated as equivalent to SPACE
1.

No No Yes

Literals usable as relocatable terms in
expressions

No No Yes

Literals usable in RX format instructions in
which index register is used

No No Yes

Mixed case input No No Yes

2-byte relocatable address constants No No Yes

Multi-level PUSH supported

For example, PUSH USING,USING

No Yes. Not
documented.

No

 Appendix A. Earlier Assembler Compatibility and Migration 235

 Appendixes

Comparison of Assembler Options

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

*PROCESS statements No No Selected assembler
options can be
specified in the
source program on
*PROCESS
statements.

ADATA No No Yes

ALIGN Yes Yes Yes

ASA (MVS and CMS) No No Yes

BATCH No Yes Yes

COMPAT No No Yes

DBCS No Yes Yes

DECK Yes Yes Yes

| DISK (CMS only)| No| Yes| Yes

DXREF No No Yes

EDECK Yes No No

| ERASE (CMS only)| No| No| Yes

ESD Yes Yes Yes

EXIT No No Yes

FLAG No Yes| FLAG(ALIGN),
| FLAG(CONT),
| FLAG(IMPLEN),
| FLAG(PAGE0),
| FLAG(RECORD),
| and FLAG(SUBSTR)
| can be specified.

FOLD No No Yes

| INFO| No| No| Yes

LANGUAGE No No Yes. Applies to
messages and listing
headings.

LIBMAC No No Yes

LINECOUNT Yes Yes Yes

LINK Yes No No, see OBJECT
option

LIST Yes Yes LIST(121),
LIST(133), and
LIST(MAX) can be
specified (MVS and
CMS)

MCALL Yes No No;
PCONTROL(MCALL)
can be specified.

236 HLASM V1R3 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

MXREF No No MXREF(SOURCE),
MXREF(XREF), and
MXREF(FULL) can
be specified.

| NOPRINT (CMS only)| No| No| Yes

| NOSEG (CMS Only)| No| No| Yes. See also SEG.

NUM No Yes (CMS only) No

OBJECT Yes Yes Yes

OPTABLE No No Yes

PCONTROL No No Yes

PESTOP No No Yes

| PRINT (CMS Only)| No| Yes| Yes

PROFILE No No Yes

RA2 No No Yes

| RENT| No| Yes| Yes

RLD Yes Yes Yes

| RXREF| No| No| Yes

| SEG (CMS only)| No| No| Yes. See also
| NOSEG.

SIZE No No Yes

STMT (MVS and CMS) No Yes (CMS Only) No

SUBLIB(AE/DF) (VSE Only) Yes No Yes. Specify on //
OPTION statement.

SYSPARM Yes Yes Yes

SXREF Yes Same as
XREF(SHORT)

Same as
XREF(SHORT)

TERM No Yes TERM(WIDE) and
TERM(NARROW)
can be specified.

TEST No Yes Yes

TRANSLATE No No Yes

USING No No Yes

XOBJECT (MVS and CMS) No No Yes

XREF Same as
XREF(LONG)

XREF(SHORT) or
XREF(LONG)

XREF(SHORT),
XREF(FULL), and
XREF(UNREFS) can
be specified.

 Appendix A. Earlier Assembler Compatibility and Migration 237

 Appendixes

Comparison of Assembler Listing

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Mixed case listing headings No No Headings can be in
mixed case English
or uppercase
English. See
LANGUAGE
assembler option.

National Language Support No No Diagnostic messages
in English, German,
Japanese, and
Spanish.

Option summary At end of listing in
Diagnostic and
Statistics section.

At end of listing in
Diagnostic and
Statistics section.

At start of listing.

External symbol dictionary Yes Yes Yes

Dummy section dictionary Yes No See DSECT Cross
Reference

Source and object program Yes Yes Yes

 Page-break handling Limited logic Limited logic Improved page-break
handling in
conjunction with the
EJECT, SPACE, and
TITLE assembler
instructions, to
prevent unnecessary
blank pages.

Optional 133-character wide format with
extended addresses

No No Yes. Required for
XOBJECT.

Control section headings No No Show current control
section type in fixed
heading line for COM
section, DSECT, and
RSECT.

Heading date includes century No No Yes

Active USING Summary No No Yes

PRINT instruction with MCALL option No No Yes

PRINT instruction with MSOURCE option No No Yes

PRINT instruction with NOGEN option
shows object code for first instruction
generated, or the first 8 bytes of data
generated, in the object code column.

No No Yes

PRINT, PUSH and POP instructions with
NOPRINT option

No No Yes

Relocation dictionary Yes Yes Yes

Ordinary symbol and literal cross
reference

Yes Yes Yes

238 HLASM V1R3 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Cross reference includes modification
and branch flags, USING and DROP
flags, EXecute instruction flag, and
relocatability-type column.

No No Yes

Unreferenced symbols defined in CSECTs No No Yes

Macro and copy code source summary No No Yes

Macro and copy code cross reference No No Yes

DSECT cross reference No No Yes

USING map No No Yes

| General purpose register cross reference| No| No| Yes

Diagnostic cross reference and assembler
summary

Diagnostic and
Statistics section
including error
diagnostic
messages

Yes Yes

Flagged statements with input dataset
information

No No Yes, if
FLAG(RECORD)
assembler option
specified

Print line with current PTF level of
assembler

No No Yes

Print line showing operating system,
jobname, stepname and procedure
stepname of assembly job

No No Yes

Print lines showing file names (data set
names), member and volume serial
numbers of each of the input and output
data sets

No No Yes

Print lines showing statistics for I/O exits No No Yes

Print line showing the amount of storage
in the buffer pool and the amount of
storage required for an in-storage
assembly

No No Yes

Record counts show the number of Work
file reads and writes

No No Yes

Print line showing the return code of the
assembly

No No Yes

Print lines showing assembly start and
stop time, and processor time

No No Yes

Terminal output No Yes Yes

Multiple consecutive blanks compressed
to a single blank

No No Yes, when
TERM(NARROW)
specified.

One Line summary No No Yes

 Appendix A. Earlier Assembler Compatibility and Migration 239

 Appendixes

Comparison of Diagnostic Features

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Error messages for conflicting assembler
options

When conflicting assembler options are
specified, such as OBJECT with
NOOBJECT, the assembler issues warning
messages.

No No Yes

Diagnostic information message

The FLAG(RECORD) assembler option
causes message ASMA435I to be printed
after the last diagnostic message for each
statement in error. The message shows the
statement relative record number and where
the statement in error was read from.

No No Yes

Statement continuation errors

The FLAG(CONT) assembler option instructs
the assembler to issue diagnostic messages
ASMA430W through ASMA433W when it
suspects a continuation error in a macro call
instruction.

No No Yes

Suppress alignment error messages

The FLAG(ALIGN) assembler option
| instructs the assembler to issue diagnostic
| messages ASMA033I when an alignment
| error is detected. This message may be

suppressed by specifying the
FLAG(NOALIGN) assembler option.

No No Yes

Error messages

Error messages are printed in the listing and
a summary at the end lists a total of the
errors and a table of their line numbers.

No Yes Yes

Diagnostic messages in macro assembly

More descriptive diagnostic error messages
are printed in macro generated text.

No Yes Yes

Sequence field in macro-generated text

The sequence field (columns 73 through 80)
of the generated statements contains the
level of the macro call, a hyphen, and the
first five characters of the macro-definition
name.

No Yes Yes

Format of macro-generated text

Wherever possible, a generated statement is
printed in the same format as the
corresponding macro definition (model)
statement.

No Yes Yes

240 HLASM V1R3 Programmer’s Guide

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Error messages for a library macro definition

Format errors within a particular library
macro definition are listed directly following
the first call of that macro.

No Yes Yes

Error messages for source program macro
definition

Macro definitions contained in the source
program are printed in the listing, provided
the applicable PRINT options are in effect.

No Yes Yes

Error messages in macro-generated text

Diagnostic messages in generated text
generally include a description of the error,
the recovery action, model statement number
at which the error occurred, and a SET
symbol name, parameter number, or a value
associated with the error.

No Yes Yes

Macro Trace Facility (MHELP) No Yes Yes

Other Assembler Differences

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

Object module

DXD, CXD and Q-type constants produced No Yes Yes

Named COMMON No Yes Yes

Unnamed CSECTS (private code) No Yes Yes

SYM records produced No Yes Yes

Extended object format module generation
(MVS and CMS)

Not applicable No Yes. See XOBJECT
assembler option.

Diagnostics

Diagnostic messages issued At end of assembly At line where error
occurred where
possible.

At line where error
occurred where
possible.

Diagnostic dump No Produced at time of
failure

Produced at time of
failure

Error diagnostics messages in mixed case No No Yes

Resources

Work file 3 Work Files 1 Work File 1 Work File

Associated data file No No Yes

QSAM Input/output (MVS and CMS) Not applicable No Yes

Input/Output user exits No No Yes.

 Appendix A. Earlier Assembler Compatibility and Migration 241

 Appendixes

Element DOS/VSE
Assembler

Assembler H
Version 2

High level
Assembler

| System-Determined Blocksize (MVS) Not applicable No Yes; supported in
MVS/ESA only.

31-bit addressing No No Yes; does not include
I/O buffers.

Minimum virtual storage requirements 200K 200K 500K

Printer control characters (MVS and CMS) American National
Standard

Machine American National
Standard or machine
depending on ASA
option

242 HLASM V1R3 Programmer’s Guide

 Appendixes

Appendix B. Cross-System Portability Considerations

This section describes the issues you must consider when you use High Level
Assembler to assemble a program under one operating system and execute the
resulting program under another operating system.

Using Extended Architecture Instructions
High Level Assembler supports assembly of programs using Extended Architecture
instructions, Enterprise System Architecture instructions, and Vector instructions,
under all operating systems supported by High Level Assembler.

A generated object program using Extended Architecture (370-XA) instructions can
only run on a 370-XA mode processor under an operating system that provides the
necessary architecture support for the 370-XA instructions used.

Similarly, a generated object program using Enterprise Systems Architecture/370
(ESA/370) or Enterprise Systems Architecture/390 (ESA/390) instructions can only
run on an applicable processor under an operating system that provides the
necessary architecture support for the ESA/370 or ESA/390 instructions used.

Using System Macros
Many system macros have the same name under different systems, but generate
different object code and have different parameters. For example, the OPEN,
CLOSE, GET, and PUT macros have the same name on MVS and VSE but
generate different object code.

Wherever the assembler program uses system macros, the system macros for the
target system must be used when the program is assembled.

For example, when the assembler program is to be run under VSE, the VSE
system macros must be used, even if the program is assembled under CMS.

Ensure that the macros used during assembly are for the correct release of the
operating system upon which the assembler program is to run.

Migrating Object Programs
The object module produced by High Level Assembler is portable across all the
supported operating systems. Therefore, an assembler program may be
assembled under any of the supported operating systems and run under any of the
supported operating systems. For example, an assembler program may be
assembled under CMS and run under VSE.

The object module is portable across the supported operating systems with the
following restrictions:

� Wherever the assembler program uses system macros, the system macros for
the target system must be used.

� The object module must be link-edited using the target system linkage editor.

 Copyright IBM Corp. 1982, 1998 243

 Appendixes

� The assembler instructions included in the assembler program must be
supported by the system linkage editor.

The VSE linkage editor, prior to VSE/ESA Version 2 Release 1, does not
support dummy external DSECTS. Therefore, to link-edit the assembler
program under earlier VSE operating systems, the assembler program must not
include any DXD or CXD statements or Q-type address constants.

� The TEST assembler option should only be used if the object module is to be
link-edited under MVS.

 The TEST option cannot be specified with the XOBJECT
| assembler option, which produces the extended object format module.
|

� An extended object format module cannot be ported to a VSE or CMS
environment.

The AMODE and RMODE assembler instructions indicate to the linkage editor the
addressing mode and residency mode for the section. The addressing mode and
residency mode are ignored by the linkage editor on systems that do not support
31-bit addressing.

The AMODE and RMODE assembler instructions have an effect on the addressing
mode and residency mode only if the object module produced is link-edited using
an XA or ESA linkage editor and run on a system that supports 31-bit addressing.

244 HLASM V1R3 Programmer’s Guide

 Appendixes

Appendix C. Object Deck Output

High Level Assembler produces the object module when you specify either the
OBJECT or DECK assembler option.

The object module consists of 80-byte records with 5 record types. The record
types are:

ESD External symbol dictionary records describe the external symbols used in the
program.

TXT Text records describe object code generated.

RLD Relocation dictionary records provide the information required to relocate
address constants within the object module.

END End records terminate the object module and optionally provide the entry
point.

SYM Symbol table records provide symbol information for TSO TEST.

| Note: If you have specified the XOBJECT assembler option, High Level
| Assembler produces the object module in Generalized Object File format
| (GOFF). For more information on GOFF, refer to DFSMS/MVS Program
| Management.

The assembler can also produce records via the PUNCH and REPRO assembler
statements, whose contents and format are entirely determined by the program.

The following sections describe the format of each record type.

 Copyright IBM Corp. 1982, 1998 245

 Appendixes

ESD Record Format
Columns Contents

1 X'02'

2–4 ESD

5–10 Blank

11–12 Variable field count—number of bytes of information in variable
field (columns 17–64)

13–14 Blank

15–16 ESDID of first SD, XD, CM, PC, ER, or WX in variable field

17–64 Variable field. One-to-three 16-byte items of the following format:

� 8-byte external symbol name

� 1-byte ESD type code:

Hex Value ESD Type Code
00 SD
01 LD
02 ER
04 PC
05 CM
06 XD(PR)
0A WX

 � 3-byte address

 � 1-byte flag:

– Alignment if XD
– Blank if LD, ER, or WX
– AMODE/RMODE flags if SD, PC, or CM. Figure 88

describes the AMODE and RMODE flag values.

� 3-byte length, LDID, or blank

Variable field item 1
17–24 External symbol name
25 ESD type code
26–28 Address
29 Flag

Figure 88. AMODE/RMODE Flags

Bits Value Description

4 1 RSECT

5 0 RMODE 24

1 RMODE ANY

6–7 00 AMODE 24

01 AMODE 24

10 AMODE 31

11 AMODE ANY

246 HLASM V1R3 Programmer’s Guide

 Appendixes

30–32 Length, LDID, or blank

Variable field item 2
33–40 External symbol name
41 ESD type code
42–44 Address
45 Flag
46–48 Length, LDID, or blank

Variable field item 3
49–56 External symbol name
57 ESD type code
58–60 Address
61 Flag
62–64 Length, LDID, or blank

65–72 Blank

73–80 Deck ID, sequence number, or both. The deck ID is the name
from the first TITLE statement that has a non-blank name field.
This name can be 1–8 characters. If the name is fewer than 8
characters or if there is no name, the remaining columns contain a
record sequence number.

TXT Record Format
Columns Contents

1 X'02'

2–4 TXT

5 Blank

6–8 Relative address of first instruction on record

9–10 Blank

11–12 Byte count—number of bytes in information field (columns 17–72)

13–14 Blank

15–16 ESDID

17–72 56-byte information field

73–80 Deck ID, sequence number, or both. The deck ID is the name
from the first TITLE statement that has a non-blank name field.
The name can be 1–8 characters. If the name is fewer than 8
characters or if there is no name, the remaining columns contain a
record sequence number.

RLD Record Format
Columns Contents

1 X'02'

2–4 RLD

5–10 Blank

 Appendix C. Object Deck Output 247

 Appendixes

11–12 Data field count—number of bytes of information in data field
(columns 17–72)

13–16 Blank

17–72 Data field:

17–18 Relocation ESDID
19–20 Position ESDID
21 Flag byte
22–24 Absolute address to be relocated
25–72 Remaining RLD entries

73–80 Deck ID, sequence number, or both. The deck ID is the name from
the first TITLE statement that has a non-blank name field. The
name can be 1–8 characters or if there is no name, the remaining
columns contain a record sequence number.

If the rightmost bit of the flag byte is set, the following RLD entry has the same
relocation ESDID and position ESDID, and this information is not repeated; if the
rightmost bit of the flag byte is not set, the next RLD entry has a different relocation
ESDID or position ESDID, and both ESDIDs are recorded.

For example, if the RLD entries 1, 2, and 3 of the program listing contain the
following information:

 Position Relocation
Entry ESDID ESDID Flag Address

1 92 94 9C 999199
2 92 94 9C 999194
3 93 91 9C 999899

then columns 17–72 of the RLD record would be:

 │ Entry 1 │ Entry 2 │ Entry 3 │
 │ │ │ │
Column:│17 18 19 29 21 22 23 24│25 26 27 28│29 39 31 32 33 34 35 36│37────�72
 ├──┬──┬──┬──┬──┬──┬──┬──┼──┬──┬──┬──┼──┬──┬──┬──┬──┬──┬──┬──┤
 │99│94│99│92│9D│99│91│99│9C│99│91│94│99│91│99│93│9C│99│98│99│
 ├──┴──┴──┴──┴──┴──┴──┴──┼──┴──┴──┴──┼──┴──┴──┴──┴──┴──┴──┴──┤

│ ESD Ids b Address │b Address │ ESD Ids b Address │ Blanks
│ │ ││ │ │ │

 │ Flag │Flag │ Flag │
 │ (Set) │(not │ (not │
 │ │set) │ set) │

END Record Format
Columns Contents

1 X'02'

2–4 END

5 Blank

6–8 Entry address from operand of END record in source deck (blank if
no operand)

248 HLASM V1R3 Programmer’s Guide

 Appendixes

9–14 Blank

15–16 ESDID of entry point (blank if no operand)

17–32 Blank

33 Number of IDR items that follow (EBCDIC 1 or EBCDIC 2)

34–52 Translator identification, version and release level (such as 0101),
and date of the assembly (yyddd)

53–71 When present, they are the same format as columns 34–52

72 Blank

73–80 Deck ID, sequence number, or both. The deck ID is the name from
the first TITLE statement that has a non-blank name field. The
name can be 1–8 characters. If the name is fewer than 8
characters or if there is no name, the remaining columns contain a
record sequence number.

SYM Record Format
| If you request it, the assembler writes out symbolic information concerning the
| assembled program ahead of all other object module records. The format of the
| output record images is as follows:

Columns Contents

1 X'02'

2–4 SYM

5–10 Blank

11–12 Variable field—number of bytes of text in variable field (columns
17–72)

13–16 Blank

17–72 Variable field (see below)

73–80 Deck ID, sequence number, or both. The deck ID is the name
from the first TITLE statement that has a non-blank name field.
The name can be 1–8 characters. If the name is fewer than 8
characters or if there is no name, the remaining columns contain a
record sequence number.

| The variable field (columns 17–72) contains up to 56 bytes of text. The items
comprising the text are packed together; consequently, only the last record may
contain less than 56 bytes of text in the variable field. The formats of a text record
and an individual text item are shown in Figure 90 on page 251. The contents of
the fields within an individual entry are as follows:

1. Organization (1 byte). The possible values are shown in Figure 89.

Figure 89 (Page 1 of 2). Organization Value Byte

Bits Value Description

0 0 Non-data type

1 Data type

 Appendix C. Object Deck Output 249

 Appendixes

2. Address (3 bytes)—displacement from base of control section

3. Symbol Name (0–8 bytes)—symbolic name of particular item. If the entry is
non-data type and space, an extra byte is present that contains the number of
bytes that have been skipped.

4. Data Type (1 byte)—contents in hexadecimal

00 = character
04 = hexadecimal or pure DBCS (G-type)
08 = binary
10 = fixed point, full
14 = fixed point, half
18 = floating point, short
1C = floating point, long
20 = A-type or Q-type data
24 = Y-type data
28 = S-type data
2C = V-type data
30 = packed decimal
34 = zoned decimal
38 = floating point, extended

Figure 89 (Page 2 of 2). Organization Value Byte

Bits Value Description

1–3
If
non-data
type

000 Space

001 Control section

010 Dummy control section

011 Common

100 Instruction

101 CCW, CCW0, CCW1

1
If data
type

0 No multiplicity

1 Multiplicity
(indicates presence
of M Field)

2
If data
type

0 Independent
(not a packed or zoned
decimal constant)

1 Cluster
(packed or zoned
decimal constant)

3
If data
type

0 No scaling

1 Scaling
(indicates presence
of S field)

4 0 Name present

1 Name not present

5–7 Length of
name minus 1

250 HLASM V1R3 Programmer’s Guide

 Appendixes

5. Length (2 bytes for character, hexadecimal, decimal, or binary items; 1 byte for
other types)—length of data item minus 1

6. Multiplicity–M field (3 bytes)—equals 1 if not present

7. Scale–signed integer–S field (2 bytes)—present only for F-, H-, E-, D-, P-, and
Z-type data, and only if scale is nonzero.

 1 2 4 5 19 11 12 13 16 17 72 73 89
┌──────┬───┬─────┬───────┬─────┬──────────────────────────────────┬────────────┐
│ │ │ │No. of │ │ │Deck Id and │

| │ X'92'│SYM│Blank│bytes │Blank│ Text - packed entries │Seq. Number │
│ │ │ │of text│ │ │ │
└──────┴───┴─────┴───────┴─────┴──────────────────────────────────┴────────────┘
 1 3 6 2 4 56 8

Text

┌────────────┬─────────────────────────────────┬──────────────┐
│ Entry │ N Complete entries │ Entry │
│(Complete or│ N >= 1 │(Complete or │
│end portion)│ │head portion) │
└────────────┴─────────────────────────────────┴──────────────┘

Variable size entries

Entry

┌────┬───────┬───────────┬────┬──────┬──────┬─────┐
│Org.│Address│Symbol name│Data│Length│Mult. │Scale│
│ │ │ │Type│ │Factor│ │
└────┴───────┴───────────┴────┴──────┴──────┴─────┘
1 3 9–8 1 1–2 3 2

| Figure 90. SYM Record Format

 Appendix C. Object Deck Output 251

 Appendixes

Appendix D. Associated Data File Output

When you specify the ADATA assembler option, a file containing associated data is
produced by the assembler. When you specify the ADATA suboption of the
XOBJECT assembler option, ADATA records are written to the object data set as
text records. You can specify both ADATA and XOBJECT(ADATA) to produce
ADATA records in both the associated data file and the object data set.
Information about the assembled program can be extracted from either data set
and be used by debugging tools or cross reference tools.

The associated data records are subject to change in future releases of High Level
Assembler without prior notice. Any utility which processes associated data files
should not process any files with architecture levels beyond those the utility has
been designed and tested to process.

The ASMADATA macro maps the records in the associated data file, and the
extended object format data set. The syntax and parameter keywords for this
macro are shown on page 253.

252  Copyright IBM Corp. 1982, 1998

 Appendixes

 ASMADATA

 ┌ ┐─,────────────────────
 │ │┌ ┐─NOGEN─

 ��─ ───+ ┴┬ ┬──PRINT= ──┴ ┴─GEN─── ─ ─��
 │ │┌ ┐─NO──
 ├ ┤──AID= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──COMPUNIT= ──┴ ┴─YES─
 │ │┌ ┐─NO──
 ├ ┤──DCDS= ──┴ ┴─YES─ ────
 │ │┌ ┐─NO──
 ├ ┤──DCDSX= ──┴ ┴─YES─ ───
 │ │┌ ┐─NO──
 ├ ┤──ESD= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──JID= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──MACH= ──┴ ┴─YES─ ────
 │ │┌ ┐─NO──
 ├ ┤──MXREF= ──┴ ┴─YES─ ───
 │ │┌ ┐─NO──
 ├ ┤──MXREFX= ──┴ ┴─YES─ ──
 │ │┌ ┐─NO──
 ├ ┤──OPT= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──OUTPUT= ──┴ ┴─YES─ ──
 │ │┌ ┐─NO──
 ├ ┤──RLD= ──┴ ┴─YES─ ─────

| │ │┌ ┐─NO──
| ├ ┤──RXREF= ──┴ ┴─YES─ ───

 │ │┌ ┐─NO──
 ├ ┤──SOURCE= ──┴ ┴─YES─ ──
 │ │┌ ┐─NO──
 ├ ┤──SRCERR= ──┴ ┴─YES─ ──
 │ │┌ ┐─NO──
 ├ ┤──STATS= ──┴ ┴─YES─ ───
 │ │┌ ┐─NO──
 ├ ┤──SYM= ──┴ ┴─YES─ ─────
 │ │┌ ┐─NO──
 ├ ┤──USER= ──┴ ┴─YES─ ────
 │ │┌ ┐─NO──
 ├ ┤──USING= ──┴ ┴─YES─ ───
 │ │┌ ┐─NO──
 └ ┘──XREF= ──┴ ┴─YES─ ────

Default
PRINT=NOGEN,keyword=NO

NOGEN
Do not print the generated DSECTs in the listing

GEN
Print the generated DSECTs in the listing

NO
Do not generate a DSECT for this record

YES
Generate a DSECT for this record

 Appendix D. Associated Data File Output 253

 Appendixes

keywords

AID ADATA Identification DSECT (Type X'0001')

COMPUNIT ADATA Compilation Unit Start/End DSECT (Type X'0002')

DCDS DC/DS DSECT (Type X'0034')

DCDSX DC Extension DSECT(Type X'0035')

ESD External Symbol Dictionary (ESD) DSECT (Type X'0020')

JID Job Identification DSECT (Type X'0000')

MACH Machine Instruction DSECT (Type X'0036')

MXREF Macro and Copy Code Source Summary DSECT (Type
X'0060')

MXREFX Macro and Copy Code Cross Reference DSECT (Type
X'0062')

OPT Options DSECT (Type X'0010')

OUTPUT Output File DSECT (Type X'000A')

RLD Relocation Dictionary (RLD) DSECT (Type X'0040')

| RXREF Register Cross Reference DSECT (Type X'0045')

SOURCE Source Analysis DSECT (Type X'0030')

SRCERR Source Error DSECT (Type X'0032')

STATS Statistics DSECT (Type X'0090')

SYM Symbol DSECT (Type X'0042')

USER User Data Record DSECT (Type X'0070')

USING Using Map DSECT (Type X'0080')

XREF Symbol Cross Reference DSECT (Type X'0044')

 Record Types
The file contains records classified into different record types. Each type of record
provides information about the assembler language program being assembled.
Each record consists of two parts:

| � A 12-byte header section, which has the same structure for all record types.

� A variable-length data section, which varies by record type.

The header section contains, among other items, the record code which identifies
the type of record.

The record types, and their contents, written to the associated data file are:

Job Identification X'0000'
Provides information about the assembly job, the host system
environment, and the names of the primary input data sets.

254 HLASM V1R3 Programmer’s Guide

 Appendixes

ADATA Identification X'0001'
Provides a precise time stamp, and a description of the character set
used for character data in the file.

The time stamp is represented as Universal Time (UT) with the
low-order bit representing 1 microsecond.

ADATA Compilation Unit Start/End X'0002'
Indicates where the associated data records for each assembly unit
begin and end. The START record is written to the associated data file
at the beginning of each assembly. The END record is written to the
associated data file at the end of each assembly. The END record
contains a count of the total number of records written to the associated
data file.

When there are multiple assembler programs in the input file, there is a
START and END record for each program assembled.

Output File X'000A'
Provides information about all the assembler output files used for the
assembly.

Options X'0010'
Describes the assembler options used for the assembly.

External Symbol Dictionary X'0020'
Describes all the control sections, including DSECTs, defined in the
program.

Source Analysis X'0030'
Describes a single source line.

There is one Source Analysis record in the file for each source record
which would appear in the listing as if PRINT ON,GEN was active. This
includes those source records generated by macro instructions, or
included by COPY instructions. A Source Analysis record is also
produced for TITLE statements. The FOLD assembler option does not
cause the source in the Source Analysis record to be converted to
uppercase.

The Source Analysis records appear in the sequence they would appear
in the listing. Conditional assembly statements might cause the source
statements to be skipped or the sequence of the records to be altered.

Source Error X'0032'
Describes errors in source program statements.

All Source Error records follow the Source Analysis record to which they
apply.

DC/DS X'0034'
Describes the constant or storage defined by a source program
statement that contains a DC, DS, CXD, DXD, CCW, CCW0, or CCW1
instruction.

If a source program statement contains one of the above, then a DC/DS
record is written following the Source Analysis record.

If there is an error in the DC, DS, CXD, DXD, CCW, CCW0, or CCW1
instruction, the DC/DS record is not produced.

 Appendix D. Associated Data File Output 255

 Appendixes

If the DC statement has a duplication factor greater than 1, and at least
one of the operand values has a reference to the current location
counter (*), then a DC extension record (X'0035') is generated.

DC Extension X'0035'
This record describes the object text generated by a DC statement when
the DC statement has repeating fields. This record is only created if the
DC statement has a duplication factor greater than 1 and at least one of
the operand values has a reference to the current location counter (*).

Machine Instruction X'0036'
Describes the object code generated for a source program statement.

If a source program statement causes machine instructions to be
generated, then a Machine Instruction record is written following the
source record. If there is an error in the machine instruction, the
Machine Instruction record follows the Source Error record.

Relocation Dictionary X'0040'
Describes the relocation dictionary information that is contained in the
object module RLD records.

Symbol X'0042'
Describes a single symbol defined in the program.

There is one Symbol record for each symbol defined in the program,
including literals.

Symbol and Literal Cross Reference X'0044'
Describes the references to a single symbol.

All Symbol and Literal Cross Reference records follow the Symbol
record to which they apply.

| Register Cross Reference X'0045'
| Describes the references to a single register.

Macro and Copy Code Source Summary X'0060'
Describes the source of each macro and copy code member retrieved
by the program.

Macro and Copy Code Cross Reference X'0062'
Describes the references to a single macro, or member copied by the
COPY assembler instruction.

User Data X'0070'
Describes the data written by the ADATA assembler instruction.

Using Map X'0080'
Describes all USING, DROP, PUSH USING, and POP USING
statements in the program.

Statistics X'0090'
Describes the statistics about the assembly.

256 HLASM V1R3 Programmer’s Guide

 Appendixes

Figure 91 shows part of the listing of an assembler program. If this assembler
program were assembled with the ADATA option, the records produced in the
associated data file would be in the sequence shown below Figure 91.

| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 99999 9991E 1 CSECTNAM CSECT FIG99919
| 999999 99EC D99C 9999C 2 STM 14,12,12(13) FIG99929
| R:F 99999 3 USING CSECTNAM,15 FIG99939
| 999994 9999 9999 99999 4 A 2,FIELD3 FIG99949
| KK ASMA944E Undefined symbol - FIELD3
| 999998 98EC D99C 9999C 5 LM 14,12,12(13) FIG99959
| 99999C 97FE 6 BR 14 FIG99969
| 7 DROP 15 FIG99979
| 8 COPY ADATA FIG99989
| 99999E 9=FIELD1 DS CL8 ADA99919
| 999916 19=FIELD2 DS CL8 ADA99929
| 11 END FIG99999

Figure 91. Sample Assembler Program for Associated Data Output

Type Description
| X'0002' ADATA Compilation Unit START record
| X'0001' ADATA Identification record

X'0000' Job Identification record
X'000A' Output File record
X'0010' Options record
X'0020' External Symbol Dictionary record for CSECTNAM
X'0030' Source record for statement 1

CSECTNAM CSECT
X'0030' Source record for statement 2

 STM 14,12,12(13)
X'0036' Machine Instruction record for STM instruction
X'0030' Source record for statement 3

 USING CSECTNAM,15
X'0030' Source record for statement 4

 A 2,FIELD3
X'0032' Source Error record for message ASMA044E
X'0036' Machine Instruction record for A instruction
X'0030' Source record for statement 5

 LM 14,12,12(13)
X'0036' Machine Instruction record for LM instruction
X'0030' Source record for statement 6

 BR 14
X'0036' Machine Instruction record for BR instruction
X'0030' Source record for statement 7

 DROP 15
X'0030' Source record for statement 8

 COPY ADATA
X'0030' Source record for statement 9 (From COPY member ADATA)

FIELD1 DS CL8
X'0034' DC/DS record for FIELD1
X'0030' Source record for statement 10 (From COPY member ADATA)

FIELD2 DS CL8
X'0034' DC/DS record for FIELD2
X'0030' Source record for statement 11

 END
X'0042' Symbol record for CSECTNAM

 Appendix D. Associated Data File Output 257

 Appendixes

X'0044' Symbol and Literal Cross Reference record for CSECTNAM
X'0042' Symbol record for FIELD1
X'0042' Symbol record for FIELD2
X'0042' Symbol record for FIELD3
X'0044' Symbol and Literal Cross Reference record for FIELD3

| X'0044' Symbol and Literal Cross Reference record for FIELD1
| X'0044' Symbol and Literal Cross Reference record for FIELD2

X'0060' Macro and Copy Code Source Summary record for COPY ADATA
X'0062' Macro and Copy Code Cross Reference record for COPY ADATA
X'0080' USING Map record for USING on statement 3
X'0080' USING Map record for DROP on statement 7

| X'0045' Register Cross Reference records...
| .| .| .
| X'0045' ...for each register referenced (0–15)1

X'0090' Assembly Statistics record
X'0002' ADATA Compilation Unit END record

| The count value in this record is 54.

| Notes:

| 1. There is one X'0045' record for each of the sixteen registers due to the
| implicit references by the STM and LM instructions.

 Macro-only Assemblies
The associated data file can also be useful for assemblies that have macro
processing only (SYSGENs for example). The printing of the generated assembler
source is not printed in the listing, but the information is available in the associated
data file. Figure 92 shows part of the listing of an assembler program that only
includes a macro instruction. The statements generated by the macro instruction
(statements 9 through 11) are not printed on the listing. If this program were
assembled with the ADATA option, the records produced in the associated data file
would be in the sequence shown below.

| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 1 print nogen 99991999
| 2 macro 99992999
| 3 &NAME testhla &job 99993999
| 4 punch '//&job JOB' 99994999
| 5 punch '//STEP1 EXEC PGM=ABC' 99995999
| 6 punch '//DDNAME1 DD DSN=DSN.&job.,DISP=SHR' 99996999
| 7 mend 99997999
| 8 TESTHLA TESTJOB 99998999
| 12 END 99999999

Figure 92. Sample Assembler Program for Macro Only Assembly

Type Description
| X'0002' ADATA Compilation Unit START record
| X'0001' ADATA Identification record

X'0000' Job Identification record
X'000A' Output File record
X'0010' Options record
X'0030' Source record for statement 1

 print nogen
X'0030' Source record for statement 2

 macro

258 HLASM V1R3 Programmer’s Guide

 Appendixes

X'0030' Source record for statement 3
&NAME testhla &job

X'0030' Source record for statement 4
punch '//&job JOB'

X'0030' Source record for statement 5
 punch '//STEP1 EXEC PGM=ABC'

X'0030' Source record for statement 6
punch '//DDNAME1 DD DSN=DSN.&job.,DISP=SHR'

X'0030' Source record for statement 7
 mend

X'0030' Source record for statement 8
 TESTHLA TESTJOB

X'0030' Source record for statement 9
punch '//TESTJOB JOB'

X'0030' Source record for statement 10
 punch '//STEP1 EXEC PGM=ABC'

X'0030' Source record for statement 11
punch '//DDNAME1 DD DSN=DSN.TESTJOB,DISP=SHR'

X'0030' Source record for statement 12
 END

X'0060' Macro and Copy Code Source Summary record for macro TESTHLA
X'0062' Macro and Copy Code Cross Reference record for macro TESTHLA
X'0090' Assembly Statistics record
X'0002' ADATA Compilation Unit END record

The count value in this record is 21.

ADATA Record Layouts
The formats of the records written to the associated data file are shown in the
sections that follow.

In the fields described in each of the record types, a notation based on the
assembler language data type is used:

C indicates EBCDIC data
H indicates 2-byte binary integer data
F indicates 4-byte binary integer data
A indicates 4-byte binary integer address and offset data
X indicates hexadecimal (bit) data

No boundary alignments are implied by any data type, and you can change the
implied lengths by using a length indicator (Ln). All integer data is in System/370
format; that is bit 0 is always the most significant bit, bit n is the least significant bit,
and the byte ordering in the records is from most significant to the least significant.
The bits within a byte are numbered from left to right starting from 0.

Common Header Section
| Each ADATA record contains a 12-byte common header section.

All ADATA records at the same architecture level have the same header section
which describes: the producing language, the record type, the record architecture
level (or version), a continued-record indicator, and, starting at level 2, an edition
number.

 Appendix D. Associated Data File Output 259

 Appendixes

| High Level Assembler Release 3 produces architecture level 3 header records.
This level is described in the following sections.

Figure 93. ADATA Record—Common Header Section

Field Size Description

Language code FL1 16 Assembler

Record type XL2 The record type, which can be one of the following:

X'0000' Job Identification record
X'0001' ADATA Identification record
X'0002' Compilation Unit Start/End record
X'000A' Output File Information record
X'0010' Options record
X'0020' External Symbol Dictionary record
X'0030' Source Analysis record
X'0032' Source Error record
X'0034' DC/DS record
X'0035' DC/DS Extension record
X'0036' Machine Instruction record
X'0040' Relocation Dictionary record
X'0042' Symbol record
X'0044' Symbol and Literal Cross Reference record

| X'0045' Register Cross Reference record
X'0060' Macro and Copy Code Source Summary record
X'0062' Macro and Copy Code Cross Reference record
X'0070' User Data record
X'0080' USING Map record
X'0090' Assembly Statistics record

Associated Data
Architecture level

FL1| 3

Flag XL1 X'00' This record is not continued
X'01' This record is continued on the next record

All other values are reserved.

Edition Number FL1 0

Reserved| CL4

| Associated Data Field
| length
| HL2| The length, in bytes, of the data following the header

Note:

| 1. The mapping of the 12-byte header does not include the area used for the variable-length, record-descriptor word
required by the access method.

2. The BATCH option, when used in conjunction with the ADATA option, produces a group of records for each
assembly. Each group of records is delimited by the ADATA Compilation Start/End records.

3. All undefined and unused values are reserved.

260 HLASM V1R3 Programmer’s Guide

 Appendixes

Job Identification Record—X'0000'

Field Size Description

Date CL8 The date of the assembly in the format YYYYMMDD

Time CL4 The time of the assembly in the format HHMM

Product Number CL8 The product number of the assembler that produced the associated data file

Product version CL8 The version number of the assembler that produced the associated data file, in the
| form V.R.M and padded to the right with blanks. For example, C'1.3.9 '.

PTF level CL8 The PTF level number of the assembler that produced the associated data file

System ID CL24 The system identification of the system on which the assembly was run

Jobname CL8 The jobname of the assembly job

Stepname CL8 The MVS stepname of the assembly step

Procstep CL8 The MVS procedure step name of the assembly procedure step

Number of input files HL2 The number of input files in this record.

The following group of seven fields will occur n times depending on the value in
this field.

...Input file number HL2 The assigned sequence number of the file

...Input file name
length

HL2 The length of the following input file name

...Volume serial
number length

HL2 The length of the volume serial number

...Member name
length

HL2 The length of the member name

...Input file name CL(n) The name of the input file for the assembly

...Volume serial
number

CL(n) The volume serial number of the (first) volume on which the input file resides

...Member name CL(n) Where applicable, the name of the member in the input file

Note:

1. Where the number of input files would exceed the record size for the associated data file, the record is continued
on the next record. The current number of input files (for that record) is stored in the record and the record written
to the associated data file. The next record contains the rest of the input files. The count of the number of input
files is a count for the current record.

2. If a SOURCE user exit has been specified for the assembly, and the SOURCE user exit has opened the input file,
the input file details are those returned by the user exit.

ADATA Identification Record—X'0001'

Field Size Description

Time (binary) XL8 Universal Time (UT) with the low-order bit representing 1 microsecond.

This time may be used as a time-zone-independent time stamp.

CCSID XL2 Coded Character Set IDentifier for any character data within the file

 Appendix D. Associated Data File Output 261

 Appendixes

ADATA Compilation Unit Start/End Record—X'0002'

Field Size Description

Indicator HL2 Start/End Indicator

X'0000' Start of a group of compilation-unit-related ADATA records

X'0001' End of a group of compilation-unit-related ADATA records

All other values are reserved.

Reserved CL2

Record Count FL4 On an ADATA Compilation Unit End record, a count of all the ADATA records for
this compilation unit. (On an ADATA Compilation Unit Start record, this field should
be zero, unless the producing translator has foreknowledge of the exact number of
records to be written, in which case it must be identical to the count in the
Compilation Unit End record. Otherwise, it may be ignored by any consumer of the
ADATA stream.)

In High Level Assembler, the record count in the ADATA Compilation Unit Start
record is always zero.

System 370/390 Output File Information Record—X'000A'
The Output File Information record provides data about the files produced by the
translator.

This architecture level provides for five such output files:

1. The object data set produced when you specify the OBJECT or XOBJECT
(MVS and CMS) option

2. The object data set produced when you specify the DECK option

3. The listing file produced when you specify the LIST option

4. The terminal messages file produced when you specify the TERM option

5. The SYSADATA file produced when you specify the ADATA option

Field Size Description

Number of primary
object-file (OBJECT)
output files

HL2 The number of primary object files in this record.

The groups of seven primary output-file fields below occur n times depending on
the value in this field. (This number is normally 1.)

Number of secondary
object-file (PUNCH)
output files

HL2 The number of secondary (punch) object files in this record.

The groups of seven secondary output-file fields below occur n times depending
on the value in this field. (This number is normally 1.)

Number of listing
(PRINT) output files

HL2 The number of listing (print) files in this record.

The groups of seven listing-file fields below occur n times depending on the value
in this field. (This number is normally 1.)

Number of terminal
(TERM) output files

HL2 The number of terminal output files in this record.

The groups of seven terminal-file fields below occur n times depending on the
value in this field. (This number is normally 1.)

262 HLASM V1R3 Programmer’s Guide

 Appendixes

Field Size Description

Number of
SYSADATA (ADATA)
output files

HL2 The number of ADATA output files in this record.

The groups of seven associated data (ADATA) output-file fields below occur n
times depending on the value in this field. (This number is normally 1.)

 XL10 Reserved

 Start of primary output-file information groups, one group per file.
The ellipses (...) indicate the fields are grouped.

...Object-file primary
output file number

HL2 The assigned sequence number of the file

...Object file
(primary)
name length

HL2 The length of the following output file name for the primary object-file

...Volume serial
number length

HL2 The length of the volume serial number for the primary object-file

...Member name
length

HL2 The length of the member name for the primary object-file. If no member name is
applicable, this field will contain binary zeros.

...Output (primary)
file name

CL(n) The name of the primary object output file for the compilation

...Volume serial
number

CL(n) The volume serial number of the volume on which the primary object output file
resides

...Member name CL(n) Where applicable, the name of the member in the primary object output file.

 End of primary output-file information group.

 Start of secondary output-file information groups, one group per file.

...Object-file sec-
ondary output
file number

HL2 The assigned sequence number of the secondary object-output file

...Output file name
length

HL2 The length of the following secondary object-output file name

...Volume serial
number length

HL2 The length of the volume serial number for the secondary object-output file

...Member name
length

HL2 The length of the member name for the secondary object-output file. If no member
name is applicable, this field contains binary zeros.

...Output (sec-
ondary) file
name

CL(n) The name of the secondary object output file for the compilation.

...Volume serial
number

CL(n) The volume serial number of the volume on which the secondary object output file
resides.

...Member name CL(n) Where applicable, the name of the member in the output file.

 End of secondary output-file information group.

 Start of listing-file information groups, one group per file.

...Listing-file
output file
number

HL2 The assigned sequence number of the listing file

...Listing file
name length

HL2 The length of the following listing file name

...Volume serial
number length

HL2 The length of the volume serial number for the listing file

 Appendix D. Associated Data File Output 263

 Appendixes

Field Size Description

...Member name
length

HL2 The length of the member name for the listing file. If no member name is
applicable, this field contains binary zeros.

...Listing
file name

CL(n) The name of the listing output file for the compilation.

...Volume serial
number

CL(n) The volume serial number of the volume on which the listing file resides.

...Member name CL(n) Where applicable, the name of the member for the listing file.

 End of listing-file information group.

 Start of terminal-file information groups, one group per file.

...Terminal file
output file
number

HL2 The assigned sequence number of the terminal file

...Terminal file
name length

HL2 The length of the following terminal file name

...Volume serial
number length

HL2 The length of the volume serial number for the terminal file

...Member name
length

HL2 The length of the member name for the terminal file. If no member name is
applicable, this field contains binary zeros.

...Terminal
file name

CL(n) The name of the terminal output file for the compilation.

...Volume serial
number

CL(n) The volume serial number of the volume on which the terminal file resides.

...Member name CL(n) Where applicable, the name of the member for the terminal file.

 End of terminal-file information group.

 Start of SYSADATA-file information groups, one group per file.

...ADATA file
output file
number

HL2 The assigned sequence number of the SYSADATA file

...ADATA file
name length

HL2 The length of the SYSADATA file name

...Volume serial
number length

HL2 The length of the volume serial number for the SYSADATA file

...Member name
length

HL2 The length of the member name for the SYSADATA file. If no member name is
applicable, this field contains binary zeros.

...ADATA
file name

CL(n) The name of the SYSADATA output file for the compilation.

...Volume serial
number

CL(n) The volume serial number of the volume on which the SYSADATA file resides.

...Member name CL(n) Where applicable, the name of the member for the SYSADATA file.

 End of SYSADATA-file information group.

Note:

If the number of output data sets causes the record to exceed the ADATA record size, the record is continued on the
next record. The number of output files in the record is stored in the record, and the record is written to the ADATA
file. The next record contains the rest of the output files.

264 HLASM V1R3 Programmer’s Guide

 Appendixes

 Options Record—X'0010'
This record indicates which assembler options were used for the assembly, and the
values passed as suboptions. For example, if the PROFILE option was specified,
bit 0 in option byte 8 would be 1, and the PROFILE_NAME field would contain the
profile member name.

Field Size Description

Option Byte 1 XL1 1... Bit 1 = ALIGN, Bit 0 = NOALIGN
.1.. (MVS and CMS) Bit 1 = ASA, Bit 0 = NOASA
..1. Bit 1 = BATCH, Bit 0 = NOBATCH
...1 Bit 1 = COMPAT, Bit 0 = NOCOMPAT
.... 1... Bit 1 = COMPAT(CASE), Bit 0 = not COMPAT(CASE)
.... .1.. Bit 1 = COMPAT(SYSLIST), Bit 0 = not COMPAT(SYSLIST)
.... ..1. Bit 1 = DBCS, Bit 0 = NODBCS
.... ...1 Bit 1 = DECK, Bit 0 = NODECK

Option Byte 2 XL1 1... Bit 1 = DXREF, Bit 0 = NODXREF
.1.. Bit 1 = ESD, Bit 0 = NOESD
..1. Bit 1 = FOLD, Bit 0 = NOFOLD
...1 Bit 1 = LIBMAC, Bit 0 = NOLIBMAC
.... 1... Bit 1 = LIST, Bit 0 = NOLIST
.... .1.. Bit 1 = ADATA, Bit 0 = NOADATA
.... ..1. Bit 1 = MXREF or MXREF(FULL), Bit 0 = NOMXREF
.... ...1 Bit 1 = OBJECT, Bit 0 = NOOBJECT

Option Byte 3 XL1 1... Bit 1 = PCONTROL, Bit 0 = NOPCONTROL
.1.. Bit 1 = PCONTROL(ON), Bit 0 = not PCONTROL(ON)
..1. Bit 1 = PCONTROL(DATA), Bit 0 = not PCONTROL(DATA)
...1 Bit 1 = PCONTROL(GEN), Bit 0 = not PCONTROL(GEN)
.... 1... Bit 1 = PCONTROL(UHEAD), Bit 0 = not PCONTROL(UHEAD)
.... .1.. Bit 1 = PCONTROL(MSOURCE), Bit 0 = not PCONTROL(MSOURCE)
.... ..1. Bit 1 = PCONTROL(MCALL), Bit 0 = not PCONTROL(MCALL)
.... ...1 Bit 1 = COMPAT(MACROCASE), Bit 0 = not COMPAT(MACROCASE)

Option Byte 4 XL1 1... Bit 1 = RENT, Bit 0 = NORENT
.1.. Bit 1 = RLD, Bit 0 = NORLD
..1. Bit 1 = TERM, Bit 0 = NOTERM
...1 Bit 1 = TEST, Bit 0 = NOTEST
.... 1... Bit 1 = XREF, Bit 0 = NOXREF
.... .1.. Bit 1 = XREF(FULL), Bit 0 = Not XREF(FULL)

|1. (VSE only) Bit 1 = SUBLIB(DF), Bit 0 = SUBLIB(AE)
.... ...1 Bit 1 = XREF(SHORT), Bit 0 = not XREF(SHORT)

Option Byte 5 XL1 1... Bit 1 = EXIT, Bit 0 = NOEXIT
.1.. Bit 1 = INEXIT, Bit 0 = NOINEXIT
..1. Bit 1 = LIBEXIT, Bit 0 = NOLIBEXIT
...1 Bit 1 = OBJEXIT, Bit 0 = NOOBJEXIT
.... 1... Bit 1 = PRTEXIT, Bit 0 = NOPRTEXIT
.... .1.. Bit 1 = ADEXIT, Bit 0 = NOADEXIT
.... ..1. Bit 1 = TRMEXIT, Bit 0 = NOTRMEXIT
.... ...1 Reserved

 Appendix D. Associated Data File Output 265

 Appendixes

Field Size Description

Option Byte 6 XL1 1... Bit 1 = USING(WARN(m)), Bit 0 = USING(NOWARN)
.1.. Bit 1 = USING(LIMIT(nnnn)), Bit 0 = USING(NOLIMIT)
..1. Bit 1 = USING(MAP), Bit 0 = USING(NOMAP)
...1 Bit 1 = FLAG(ALIGN), Bit 0 = FLAG(NOALIGN)
.... 1... Bit 1 = FLAG(CONT), Bit 0 = FLAG(NOCONT)
.... .1.. Bit 1 = FLAG(RECORD), Bit 0 = FLAG(NORECORD)
.... ..1. Bit 1 = XOBJECT, Bit 0 = not XOBJECT
.... ...1 (MVS and CMS) Bit 1 = XOBJECT(ADATA), Bit 0 =

XOBJECT(NOADATA)

Option Byte 7 XL1 1... Bit 1 = PESTOP, Bit 0 = NOPESTOP
.1.. Bit 1 = RA2, Bit 0 = NORA2
..1. Bit 1 = FLAG(SUBSTR), Bit 0 = FLAG(NOSUBSTR)
...1 Bit 1 = TRANSLATE(xx), Bit 0 = NOTRANSLATE
.... 99.. Reserved
.... 91.. (MVS and CMS) LIST(121)
.... 19.. (MVS and CMS) LIST(133)
.... 11.. (MVS and CMS) LIST(MAX)
.... ..91 MXREF(FULL)
.... ..19 MXREF(SOURCE)
.... ..11 MXREF(XREF)

Option Byte 8 XL1 1... Bit 1 = PROFILE, Bit 0 = NOPROFILE
.1.. Bit 1 = PCONTROL(OFF), Bit 0 = not PCONTROL(OFF)
..1. Bit 1 = PCONTROL(NODATA), Bit 0 = not PCONTROL(NODATA)
...1 Bit 1 = PCONTROL(NOGEN), Bit 0 = not PCONTROL(NOGEN)
.... 1... Bit 1 = PCONTROL(NOUHEAD), Bit 0 = not PCONTROL(NOUHEAD)
.... .1.. Bit 1 = PCONTROL(NOMSOURCE), Bit 0 = not

PCONTROL(NOMSOURCE)
.... ..1. Bit 1 = PCONTROL(NOMCALL), Bit 0 = not PCONTROL(NOMCALL)
.... ...1 Bit 1 = XREF(UNREFS), Bit 0 = not XREF(UNREFS)

Warn_Value FL1 Value from USING(WARN(m))

Flag_Value FL1 Value from Flag(n)

| Option Byte 9| XL1| 1... Bit 1 = RXREF, Bit 0 = NORXREF
| .1.. Bit 1 = FLAG(IMPLEN), Bit 0 = FLAG(NOIMPLEN)
| ..1. Bit 1 = FLAG(PAGE0), Bit 0 = FLAG(NOPAGE0)
| ...1 Bit 1 = INFO, Bit 0 = NOINFO
| 1... Bit 1 = COMPAT(LITTYPE), Bit 0 = not COMPAT(LITTYPE)
|1.. Reserved
|1. Reserved
|1 Reserved

| Reserved| CL1| Reserved

TRANS_SUFFIX CL2 Value from TRANSLATE(xx). Blank if not provided.

PROFILE_NAME CL8 Value from PROFILE(xxxxxxxx). Blank if not provided.

Limit_Value HL2 Value from USING(LIMIT(nnnn))

LANGUAGE CL3 Language option in effect for the assembly

OPTABLE CL3 OPTABLE option in effect for the assembly

LINECOUNT HL2 Linecount option in effect for the assembly

INEXIT_PROG_LEN HL2 Length of INEXIT program name

LIBEXIT_PROG_LEN HL2 Length of LIBEXIT program name

OBJEXIT_PROG_LEN HL2 Length of OBJEXIT program name

PRTEXIT_PROG_LEN HL2 Length of PRTEXIT program name

266 HLASM V1R3 Programmer’s Guide

 Appendixes

Field Size Description

ADEXIT_PROG_LEN HL2 Length of ADEXIT program name

TRMEXIT_PROG_LEN HL2 Length of TRMEXIT program name

INEXIT_STR_LEN HL2 Length of string supplied to exit

LIBEXIT_STR_LEN HL2 Length of string supplied to exit

OBJEXIT_STR_LEN HL2 Length of string supplied to exit

PRTEXIT_STR_LEN HL2 Length of string supplied to exit

ADEXIT_STR_LEN HL2 Length of string supplied to exit

TRMEXIT_STR_LEN HL2 Length of string supplied to exit

SYSPARM length HL2 Length of the SYSPARM string supplied

PARMS length HL2 Length of the PARM string supplied

Reserved CL8 Reserved for future use

INEXIT_PROG CL(n) Input exit name

LIBEXIT_PROG CL(n) Library exit name

OBJEXIT_PROG CL(n) Object exit name

PRTEXIT_PROG CL(n) Print exit name

ADEXIT_PROG CL(n) ADATA exit name

TRMEXIT_PROG CL(n) Term exit name

INEXIT_STR CL(n) Field to contain the string to be passed to the exit program

LIBEXIT_STR CL(n) Field to contain the string to be passed to the exit program

OBJEXIT_STR CL(n) Field to contain the string to be passed to the exit program

PRTEXIT_STR CL(n) Field to contain the string to be passed to the exit program

ADEXIT_STR CL(n) Field to contain the string to be passed to the exit program

TRMEXIT_STR CL(n) Field to contain the string to be passed to the exit program

SYSPARM string CL(n) Field to contain the SYSPARM string that is being used for the assembly

PARM string CL(n) Field to contain the PARM string that is being used for the assembly

External Symbol Dictionary Record—X'0020'

Field Size Description

Section Type FL1 X'00' Control Section (CSECT) SD
X'01' Entry Point LD
X'02' External Reference ER
X'04' Private Code PC
X'05' Common Section CM
X'06' Dummy External DSECT XD
X'0A' Weak External Reference WX
X'FF' Dummy Section (DSECT) (no type designator)

 Appendix D. Associated Data File Output 267

 Appendixes

Field Size Description

Flags XL1 — Alignment if XD
— Zero if LD, ER, or WX
— RSECT/AMODE/RMODE flags if SD, PC, or CM

Bits 0–3: Reserved
Bit 4: 1 = RSECT
Bit 5: 0 = RMODE is 24

1 = RMODE is ANY
Bits 6–7: 00 = AMODE is 24

01 = AMODE is 24

10 = AMODE is 31

11 = AMODE is ANY

Reserved HL2 Reserved for future use

ESDID FL4 External Symbol Dictionary ID (ESDID) or zero

Section Address AL4 The section address

For SD- and LD-type entries it contains the address of the symbol. For PC- and
CM-type entries, it indicates the beginning address of the control section. For
XD-type entries, it indicates the number of bytes for alignment less one.

Section Length FL4 The length of the section

LD ID FL4 For LD-type entries, the ESDID of the CSECT in which the entry point was defined

Reserved CL8 Reserved for future use

External Name length HL2 Number of characters in the external name (zero if private code, unnamed
common or unnamed DSECT)

Alias Name length HL2 Number of characters in the Alias name (zero if no alias)

External name CL(n) The external name

Alias Section name CL(n) The alias name for the section

Source Analysis Record—X'0030'

Field Size Description

Statement number FL4 The statement number of the source record.

ESDID FL4 The ESDID for the source record.

Input record number FL4 The input source record number within the current input file.

This field is always present except when the source line is macro generated. (That
is, the Input record origin value is X'02'.)

This field contains the value returned by the exit if the source record is provided by
an exit.

Parent record number FL4 The parent source record number.

If the source record was included by a COPY statement or generated by a macro
instruction, the Parent input number is the record number of the COPY statement
or macro instruction.

This field contains the value returned by the input or library exits if the source
record is provided by either of these exits.

268 HLASM V1R3 Programmer’s Guide

 Appendixes

Field Size Description

Input assigned file
number

HL2 The input file's assigned sequence number. (Refer to the input file n in the Job
Identification record if the Input record origin is X'01', or the Library Record -
X'0060' with Concatenation number n otherwise).

This field is set to zero if an exit provides the source record.

Parent assigned file
number

HL2 The parent file's assigned sequence number. (Refer to the Input file n in the Job
Identification record if the Parent record origin is X'01', or the Library Record -
X'0060' with Concatenation number n otherwise).

This field is set to zero if an exit provides the source record.

Location Counter FL4 The current location counter for the source record.

Input record origin XL1 X'91' Source line from primary input
X'92' Source line from Macro generation.

| X'93' Source line from library member.
| X'95' Source line from AINSERT internal buffer.

Parent record origin XL1 X'91' Source line from primary input
X'92' Source line from Macro generation.

| X'93' Source line from library member.
| X'95' Source line from AINSERT internal buffer

| Print flags| XL1| X'89' PRINT GEN
| X'49' PRINT DATA
| X'29' PRINT ON
| X'19' PRINT NOMSOURCE (0 = PRINT MSOURCE)
| X'98' PRINT UHEAD
| X'94' PRINT MCALL

| Reserved| XL2 Reserved for future use

Source record type
(within source record
origin)

XL1 X'91' Comment line that is not within a macro definition.
X'92' Machine instruction that is not within a macro definition.
X'93' Assembler instruction that is not within a macro definition. This includes

conditional assembly instructions such as AIF and SETC.
X'94' Macro call instruction.
X'95' Macro definition. All statements between (and including) the MACRO

prototype statement and the corresponding MEND statement. This
includes nested macro definitions.

This field is set to zero for ICTL and EXITCTL assembler instructions.

Assembler operation
code

XL1 The assembler operation code for assembler instructions. (See note 3 on
page 270). This field is only valid if the “Source record type” is set to X'03'.

Flags XL1 Flag byte for address fields.

X'89' Address 1 present
X'49' Address 2 present

Address 1 AL4 The address 1 field from the assembly

Address 2 AL4 The address 2 field from the assembly

Offset of name entry
in statement field

HL2 Zero if name entry not present or if the name begins at the beginning of the record
(see notes 1 and 2 on page 270)

Length of name entry HL2 Zero if name entry not present (see note 2 on page 270)

Offset of operation
entry in statement
field

HL2 Zero if operation entry not present (see note 2 on page 270)

Length of operation
entry

HL2 Zero if operation entry not present (see note 2 on page 270)

 Appendix D. Associated Data File Output 269

 Appendixes

Field Size Description

Offset of operand
entry in statement
field

HL2 Zero if operand entry not present (see note 2 on page 270)

Length of operand
entry

HL2 Zero if operand entry not present (see note 2 on page 270)

Offset of remarks
entry in statement
field

HL2 Zero if remarks entry not present (see note 2 on page 270)

Length of remarks
entry

HL2 Zero if remarks entry not present (see note 2 on page 270)

Offset of continuation
indicator field

HL2 Zero if no continuation indicator present (see note 2 on page 270)

Reserved CL4 Reserved for future use

Length of input macro
or copy member name

HL2 Zero if the input record line does not come from a macro or a copy member

Length of parent
macro or copy
member name

HL2 Zero if the parent record line does not come from a macro or a copy member

Length of source
record

HL2 The length of the actual source record following

Reserved CL8 Reserved for future use

Input Macro or copy
member name

CL(n) The macro or copy member name if the input record originated from a macro or
copy member

Parent macro or copy
member name

CL(n) The macro or copy member name if the parent record originated from a macro or
copy member

Source record CL(n)

Notes:

1. The offset and length fields are provided to allow the different fields to be
retrieved from the source without being dependent on the format of the source
record. The offsets are from the start of the source record.

2. The length and offset fields for the name entry, operation entry, remarks entry,
and continuation indicator are zero for the following statements:

� Macro definition statements with a Source Record Type of X'04'
� Macro definition statements with a Source Record Type of X'05'
� EXITCTL assembler statements
� ICTL assembler statements

3. The assembler operation code field can contain the operation code values
shown in Figure 94. There are no operation codes assigned in the Associated
Data Source records for the assembler ICTL and EXITCTL instructions.

270 HLASM V1R3 Programmer’s Guide

 Appendixes

Figure 94. Assembler Operation Code Values

Operation Assembler
 Code Instruction

Operation Assembler
 Code Instruction

Operation Assembler
 Code Instruction

 X'99' GBLA
 X'91' GBLB
 X'92' GBLC
 X'93' LCLA
 X'94' LCLB
 X'95' LCLC
 X'96' SETA
 X'97' SETB
 X'98' SETC
 X'99' AIF
 X'9A' AGO
 X'9B' ANOP
 X'9C' COPY
 X'9D' MACRO
 X'9E' MNOTE
 X'9F' MEXIT
 X'19' MEND
 X'12' ISEQ
 X'13' PRINT
 X'14' SPACE
 X'15' EJECT
 X'16' PUNCH

 X'17' REPRO
 X'18' TITLE
 X'19' ENTRY
 X'1A' EXTRN
 X'1B' START
 X'1C' CSECT
 X'1D' DSECT
 X'1E' COM
 X'1F' EQU
 X'29' ORG
 X'21' END
 X'22' LTORG
 X'23' USING
 X'24' DROP
 X'25' ACTR
 X'26' DC
 X'27' DS
 X'28' CCW
 X'29' CNOP
 X'2A' LOCTR
 X'2B' DXD
 X'2C' CXD

 X'2E' OPSYN
 X'2F' PUSH
 X'39' POP
 X'33' Literal
 X'37' MHELP
 X'38' AREAD
 X'3B' WXTRN
 X'3D' AMODE
 X'3E' RMODE
 X'3F' RSECT
 X'49' CCW9
 X'41' CCW1
 X'43' ASPACE
 X'44' AEJECT
 X'45' ALIAS
 X'46' CEJECT
 X'47' ADATA
 X'48' SETAF
 X'49' SETCF
X'4A' CATTR (MVS & CMS)

| X'4B' ACONTROL
| X'4D' AINSERT

Source Error Record—X'0032'

Field Size Description

Statement number FL4 The statement number of the statement in error

Error Identifier CL16 The error message identifier

Error Severity HL2 The severity of the error

Error message length HL2 The length of the error message text

Reserved CL8 Reserved for future use

Error Message CL(n) The error message text

Note:

1. This record also includes MNOTEs generated by the assembler.

2. The language of the error diagnostic messages is determined by the LANGUAGE assembler option.

 DC/DS Record—X'0034'

Field Size Description

ESDID FL4 The ESDID for the source record.

Number of operands HL2 The number of operands defined by the source record.

 Appendix D. Associated Data File Output 271

 Appendixes

Field Size Description

Type Flag XL1 1... Bit 1 = Define Constant (DC, CXD, CCW, CCW0, or CCW1), Bit 0 =
Define Storage (DS or DXD)

.1.. If “Define Constant” bit is set, bit 1 indicates the operand is a CXD. If
“Define Constant” bit is not set, bit 1 indicates the operand is a DXD.

..1. If “Define Constant” bit is set, bit 1 indicates the operand is a CCW,
CCW0, or CCW1.

...1 Bit 1 indicates this record is associated with an object text record
(X'003A'). The object text record is created when a DC statement has
a duplication factor greater than 1, and at least one of the operand
values has a reference to the current location counter (*).

.... 1... Reserved

.... .1.. Reserved

.... ..1. Reserved

.... ...1 Reserved

| Reserved| CL5 Reserved for future use

Statement Number FL4 The statement number of the source line that generated this text, if known.
Otherwise it contains zeros.

...Location Counter FL4 The location counter for this operand. This field repeats within the group for the
number of operands on the source record.

...Duplication Factor FL4 The duplication factor for the operand. This field repeats within the group for the
number of operands on the source record.

...Bit Offset XL1 The offset within byte (0–7) for B-type operands. This field repeats within the
group for the number of operands on the source record.

...Type Attribute CL1| The value that the assembler Type Attribute reference returns (see “Type Attribute
| (T')” in the chapter “How to Write Conditional Assembly Instructions” in the
| Language Reference manual). This field repeats within the group for the number

of operands on the source record.

...Number of values HL2 The number of nominal values. This field repeats within the group for the number
of operands on the source record.

| ...Type Extension| CL1| The type extension for the operand. This field repeats within the group for the
| number of operands on the source record.

| ...Reserved| CL7 Reserved for future use. This field repeats within the group for the number of
operands on the source record.

......Byte length HL2 The number of bytes in the nominal value. This field repeats within the group for
the number of nominal values in the operand.

......Bit length HL2 The number of bits if the operand specifies a bit length that is not a multiple of 8.
This field repeats within the group for the number of nominal values in the
operand.

|Value XL(n) If this record describes a DC, CXD, CCW, CCW0, or CCW1, then the value
contains the nominal value. (A DC with a zero duplication factor is treated the
same as a DS and this field is not present). If this record describes a DS or DXD,
this field is not present. This field repeats within the group for the number of
nominal values in the operand.

If a byte length is specified (or implied), the value contains the number of bytes
specified. The value field is aligned according to the operand type. For example,
hexadecimal values are left-aligned and packed values are right-aligned.

If a bit length is specified, the length of the value is the number of bytes required
to contain the required bits. For example, if the bit length was 10, the value is 2
bytes in length. The value is in the leftmost 10 bits. Alignment within the specified
number of bits is according to the operand type. For example, hexadecimal values
are left-aligned and packed values are right-aligned.

272 HLASM V1R3 Programmer’s Guide

 Appendixes

Field Size Description

Note:

1. Only one of the two fields for byte/bit lengths contains a non-zero value. This means that there is a byte length, or
a bit length, but not both.

2. No description of any padding is produced. Any padding because of alignment can be calculated by comparing
the location counter of the current operand with the sum of the location counter and length of the previous
operand.

The length of the previous operand would need to be calculated using the duplication factor, number of nominal
values, and the length of each nominal value.

| 3. High Level Assembler creates the DC/DS Extension record X'0035' when the duplication factor is greater than 1
and at least one of the operand values has a reference to the current location counter (K).

| The following examples show the format of a DC/DS record for various DC
| statements.

| 1. EXAMPLE1 DC 3F'5,6',H'7'

| ESDID : F'1'
| Number of Operands : H'2'
| Type Flag : B'19999999'
| Reserved : X'9999999999'
| Statement Number : F'2'
| Location Counter : X'99999999'
| Duplication Factor : F'3'
| Bit Offset : B'99999999'
| Type Attribute : C'F'
| Number of values : H'2'
| Type Extension : C' '
| Reserved : X'99999999999999'
| Byte length : H'4'
| Bit length : H'9'
| Value : X'99999995'
| Byte length : H'4'
| Bit length : H'9'
| Value : X'99999996'

| Location Counter : X'99999918'
| Duplication Factor : F'1'
| Bit Offset : B'99999999'
| Type Attribute : C'H'
| Number of values : H'1'
| Type Extension : C' '
| Reserved : X'99999999999999'
| Byte length : H'2'
| Bit length : H'9'
| Value : X'9997'

 Appendix D. Associated Data File Output 273

 Appendixes

| 2. EXAMPLE2 DC P'5,927'

| ESDID : F'1'
| Number of Operands : H'1'
| Type Flag : B'19999999'
| Reserved : X'9999999999'
| Statement Number : F'2'
| Location Counter : X'99999999'
| Duplication Factor : F'1'
| Bit Offset : B'99999999'
| Type Attribute : C'P'
| Number of values : H'2'
| Type Extension : C' '
| Reserved : X'99999999999999'
| Byte length : H'1'
| Bit length : H'9'
| Value : X'5C'
| Byte length : H'2'
| Bit length : H'9'
| Value : X'927C'

| 3. EXAMPLE3 DC B'101',2B'10111'

| ESDID : F'1'
| Number of Operands : H'2'
| Type Flag : B'19999999'
| Reserved : X'9999999999'
| Statement Number : F'2'
| Location Counter : X'99999999'
| Duplication Factor : F'1'
| Bit Offset : B'99999999'
| Type Attribute : C'B'
| Number of values : H'1'
| Type Extension : C' '
| Reserved : X'99999999999999'
| Byte length : H'1'
| Bit length : H'9'
| Value : X'95' B'99999191'

| Location Counter : X'99999991'
| Duplication Factor : F'2'
| Bit Offset : B'99999999'
| Type Attribute : C'B'
| Number of values : H'1'
| Type Extension : C' '
| Reserved : X'99999999999999'
| Byte length : H'1'
| Bit length : H'9'
| Value : X'17' B'99919111'

274 HLASM V1R3 Programmer’s Guide

 Appendixes

| 4. EXAMPLE4 DC BL.3'101',BL.5'10111,11001'

| ESDID : F'1'
| Number of Operands : H'2'
| Type Flag : B'19999999'
| Reserved : X'9999999999'
| Statement Number : F'2'
| Location Counter : X'99999999'
| Duplication Factor : F'1'
| Bit Offset : B'99999999'
| Type Attribute : C'B'
| Number of values : H'1'
| Type Extension : C' '
| Reserved : X'99999999999999'
| Byte length : H'9'
| Bit length : H'3'
| Value : X'A9' B'19199999'

| Location Counter : X'99999999'
| Duplication Factor : F'1'
| Bit Offset : B'99999911'
| Type Attribute : C'B'
| Number of values : H'2'
| Type Extension : C' '
| Reserved : X'99999999999999'
| Byte length : H'9'
| Bit length : H'5'
| Value : X'B8' B'19111999'
| Byte length : H'9'
| Bit length : H'5'
| Value : X'C8' B'11991999'

| 5. EXAMPLE5 DC LB'4',2L'9'

| This example shows a DC statement that requires the type extension field to
| differentiate the attributes of the two floating point operands.

| ESDID : F'1'
| Number of Operands : H'2'
| Type Flag : B'19999999'
| Reserved : X'9999999999'
| Statement Number : F'2'
| Location Counter : X'99999999'
| Duplication Factor : F'1'
| Bit Offset : B'99999999'
| Type Attribute : C'L'
| Number of values : H'1'
| Type Extension : C'B'
| Reserved : X'99999999999999'
| Byte length : H'16'
| Bit length : H'9'
| Value : X'49919999999999999999999999999999'

 Appendix D. Associated Data File Output 275

 Appendixes

| Location Counter : X'99999919'
| Duplication Factor : F'2'
| Bit Offset : B'99999999'
| Type Attribute : C'L'
| Number of values : H'1'
| Type Extension : C' '
| Reserved : X'99999999999999'
| Byte length : H'16'
| Bit length : H'9'
| Value : X'41999999999999993399999999999999'

| 6. EXAMPLE6 DC 5Y(*-2),5Y(*-1)

| This example shows a DC statement that requires a DC extension record
| (X'0035') to contain the repeating fields.

| The object code generated, and shown in the assembler listing:

| 2 PRINT DATA
| 999999 FFFE999999929994 3 DC 5Y(K-2),5Y(K-1)
| 999998 99969999999B999D
| 999919 999F9911

| The ADATA records produced:

| ESDID : F'1'
| Number of Operands : H'2'
| Type Flag : B'19919999'
| Reserved : X'9999999999'
| Statement Number : F'3'
| Location Counter : X'99999999'
| Duplication Factor : F'5'
| Bit Offset : B'99999999'
| Type Attribute : C'Y'
| Number of values : H'1'
| Type Extension : C' '
| Reserved : X'99999999999999'
| Byte length : H'2'
| Bit length : H'9'
| Value : X'FFFE'

| Location Counter : X'9999999A'
| Duplication Factor : F'5'
| Bit Offset : B'99999999'
| Type Attribute : C'Y'
| Number of values : H'1'
| Type Extension : C' '
| Reserved : X'99999999999999'
| Byte length : H'2'
| Bit length : H'9'
| Value : X'9999'

276 HLASM V1R3 Programmer’s Guide

 Appendixes

| The object text for the statement is in the following DC Extension Record:

| ESDID : F'1'
| Location Counter : F'9'
| Statement Number : F'3'
| Reserved : F'9'
| Reserved : F'9'
| Length of Object : H'29'
| Object Text : X'FFFE99999992999499969999999B999D999F9911'

| DC Extension Record—X'0035'

Field Size Description

ESDID FL4 The ESDID for the record

Location Counter FL4 Address (offset) of the text within the module

Statement number FL4 The statement number of the source line that generated this text, if known. Zero
otherwise.

Reserved FL8 Reserved for future use

Length of Object text HL2 The length of the following object text

Object text XL(n) The actual object text

Machine Instruction Record—X'0036'

Field Size Description

ESDID FL4 The ESDID for the machine instruction record

Location Counter FL4 The location counter for this instruction

Reserved CL8 Reserved for future use

Length of Instruction HL2 The length of the machine instruction

Value of Instruction XL(n) The actual value of the machine instruction

Relocation Dictionary Record—X'0040'

Field Size Description

POS.ID FL4 The external symbol dictionary ID number assigned to the ESD entry for the
control section in which the address constant is used as an operand.

REL.ID FL4 The external symbol dictionary ID number assigned to the ESD entry for the
control section in which the referenced symbol is defined.

Address AL4 The assembled address of the field where the address constant is stored.

 Appendix D. Associated Data File Output 277

 Appendixes

Field Size Description

Flags XL1 The 2-digit hexadecimal number represented by the characters in this field is
interpreted as follows.

First Digit:

� 0 indicates that the entry describes an A-type or Y-type constant
� 1 indicates that the entry describes a V-type address constant
� 2 indicates that the entry describes a Q-type address constant
� 3 indicates that the entry describes a CXD entry

Second Digit. The first three bits of this digit indicate the length of the constant
and whether the base should be added or subtracted:

� Bits 0 and 1

00 = 1 byte
01 = 2 bytes
10 = 3 bytes
11 = 4 bytes

 � Bit 2

0 = +
1 = −

 � Bit 3

 Always 0

 Symbol Record—X'0042'

Field Size Description

ESDID FL4 ESDID of the section in which the symbol is defined. This is zero for an undefined
symbol type.

Statement Number FL4 The number of the statement in which the symbol is defined. This is zero for an
undefined symbol type.

Symbol Type XL1 X'00' Undefined name
X'01' CSECT / RSECT name
X'02' DSECT name
X'03' Common section name
X'04' Dummy External DSECT name (DXD)
X'05' V-type constant name
X'06' Qualifier
X'07' EXTRN/WXTRN name
X'08' LOCTR name
X'09' Duplicate name
X'0A' Literal name
X'0B' *-in-literal name
X'0C' EQU name �1�
X'0D' Ordinary label
X'0E' Unresolvable EQU, DC or DS symbol

Type Attribute CL1| The value that the assembler Type Attribute reference returns (see “Type Attribute
| (T')” in the chapter “How to Write Conditional Assembly Instructions” in the
| Language Reference manual).

Duplication Factor FL4 Number of times the first operand field named by the symbol occurs. This is zero
for an undefined symbol type.

278 HLASM V1R3 Programmer’s Guide

 Appendixes

Field Size Description

Length attribute HL2 Length in bytes, either specified or by default.

Integer attribute HL2 Number of positions occupied by the integer portion of fixed-point and decimal
constants in their object code form. This is zero for an undefined symbol type.

Scale attribute HL2 Number of positions occupied by the fractional portion of fixed-point and decimal
constants in their object code form. This is zero for an undefined symbol type.

Location Counter FL4 Contains the offset from the start of the DSECT, the non-relocated address of the
instruction belonging to this symbol in a CSECT (this is not always the offset from
the start of the CSECT), or the value of the equate. For an undefined symbol, it is
zero.

Symbol Flags XL1 1... Bit 1 = 1, the symbol is a relocatable, Bit 0 = the symbol is absolute.
This bit is zero for an undefined symbol type.

| 11.. Complex relocatable
..1. Reserved
...1 Reserved
.... 1... Reserved
.... .1.. Reserved
.... ..1. Reserved
.... ...1 Reserved

Reserved CL7 Reserved for future use

Symbol name length HL2 Number of characters in the symbol name

Symbol name CL(n) The symbol name. Variable length.

Note:

For record type “EQU” specified at �1�, where the “EQU” is for a relocatable value, the ESDID of the “EQU” is
provided. Where the “EQU” is non-relocatable, the ESDID of the section in control will be provided. The symbol flags
can be checked to determine whether the “EQU” is relocatable or absolute.

Symbol Cross Reference Record—X'0044'

Field Size Description

Symbol length HL2 The length of the symbol

Statement Definition FL4 The statement number where the symbol is defined or declared

Number of references HL2 The number of references to the symbol

Relocatability Type CL1 C' ' Simple relocatable symbol
C'A' Absolute symbol
C'C' Complex relocatable symbol

Reserved CL7 Reserved for future use

Symbol name CL(n) The symbol name. Variable length.

...Reference Flag CL1 C' ' No branch or modification
C'M' Modification reference flag
C'B' Branch reference flag
C'U' USING reference flag
C'D' DROP reference flag
C'X' Execute Instruction reference flag

 Appendix D. Associated Data File Output 279

 Appendixes

Field Size Description

...Statement Number FL4 The statement number on which the symbol is referenced

Note:

1. The Reference Flag field and the Statement Number field both occur as many times as the “Number of
references” field dictates. That is, if there is a value of ten in the “Number of references” field, then there are ten
occurrences of the Reference Flag and Statement Number pair.

2. Where the number of references would exceed the record size for the ADATA file, then the record is continued on
the next record. The continuation flag is set in the common header section of the record.

| Register Cross Reference Record—X'0045'

| Field| Size| Description

| Register number| XL1| The register number (X'0' to X'F')

| Register Type| CL1| G—General

| Total number of
| references
| FL4| The total number of references to the register

| Number of references
| this record
| FL4| The number of references to the register in this record

| Offset to references| AL2| Offset from the beginning of this record to the start of the register reference
| occurrences

| ...Statement Number| FL4| The statement number on which the register is referenced

| ...Reference Flag| CL1| C' ' No branch or modification
| C'M' Modification reference flag
| C'B' Branch reference flag
| C'U' USING reference flag
| C'D' DROP reference flag
| C'N' Index register reference flag

| Note:

| 1. The Reference Flag field and the Statement Number field both occur as many times as the “Number of references
| this record” field dictates. That is, if there is a value of ten in the “Number of references this record” field, then
| there are ten occurrences of the Reference Flag and Statement Number pair.

| 2. Where the number of references would exceed the record size for the ADATA file, then the record is continued on
| the next record. The continuation flag is set in the common header section of the record.

 Library Record—X'0060'

Field Size Description

Number of Macros /
Copy code members

HL2 Count of the number of macros and copy code members described in this record.
For example, if ten macros and source copy code members are retrieved from a
data set, the count field contains 10 and there are ten occurrences of the length
field and the field containing the either the macro or source copy code names.

Data set Name length HL2 The length of the data set (file) name.

280 HLASM V1R3 Programmer’s Guide

 Appendixes

Field Size Description

Data set Volume
length

HL2 The length of the data set (file) volume.

Concatenation number XL2 The library concatenation number.

DDNAME length HL2 The length of the ddname.

Reserved CL4 Reserved for future use.

Data set Name CL(n) The name of the data set (file) from which the macro or copy member was
retrieved, or “PRIMARY INPUT” for an in-stream macro. Under VSE, this field
contains the library and sublibrary name.

Data set Volume CL(n) The volume identification of the volume where the data set (file) resides.

DDNAME CL(n) The ddname of the library.

...Macro name length HL2 The length of the macro name following.

...Macro name CL(n) The name of the macro or source copy code that has been used. If the source is
“PRIMARY INPUT”, then this field contains the macro name from the source
program.

Note:

If a LIBRARY user exit has been specified for the assembly, and the LIBRARY user exit has opened the Library data
set, the record contains the library names returned by the user exit.

Library Member and Macro Cross Reference Record - X'0062'

Field Size Description

Concatenation
Number

FL4 The concatenation number of the library or primary input file

Statement Definition FL4 The statement number is:

9 When the member or macro is retrieved from a library
>9 When the macro is defined in the primary input file. It represents the

statement number where the macro is defined.

Concatenation Type CL1 C'L' Concatenation number refers to a library
C'P' Concatenation number refers to the primary input

Statement Definition
Flag

CL1 C'X' The macro is read from the library and imbedded in the primary source,
using the LIBMAC option.

C' ' The flag is usually blank except in special cases, as described above

Reserved 1 CL8 Reserved for future use.

Member or Macro
name

| CL64 The name of the member or macro.

Parent Macro Name| CL64 The name of the macro that called this macro or issued the COPY instruction.
This field contains “PRIMARY INPUT” when the member or macro is called directly
from the primary input file.

| Number of references| FL4| The number of references to the member or macro. (Reserved.)

| Number of references
| in this record
| FL4| The number of references to the member or macro in this ADATA record.

...Reference
Statement Number

FL4 The statement number on which the member is copied or included, or the
statement number on which the macro is called

 Appendix D. Associated Data File Output 281

 Appendixes

Field Size Description

...Reference Flag CL1 C' ' Blank means the reference is caused by a macro call
C'C' Reference is caused by a COPY instruction

...Reserved 2 XL1 Reserved for future use

Note:

1. The Calling Macro Name field immediately follows Member or Macro name field.

| 2. The Reference Statement Number, the Reference Flag, and the Reserved 2 fields occur as many times as the
| “Number of references in this record” field dictates. For example, if there is a value of ten in the “Number of

references in this record” field, there are ten occurrences of the Reference Statement Number, the Reference
Flag, and the Reserved 2 fields.

3. Where the number of references would exceed the record size for the ADATA file, then the record is continued on
the next record. The continuation flag is set in the common header section of the record.

User-supplied Information Record - X'0070'

Field Size Description

User Field 1 XL4 User-specified binary data

User Field 2 XL4 User-specified binary data

User Field 3 XL4 User-specified binary data

User Field 4 XL4 User-specified binary data

User data length HL2 Length of following field

User data CL(n) User-specified character data

USING Map Record—X'0080'

Field Size Description

Record type XL1 X'00' USING record
X'20' POP record
X'40' PUSH record
X'80' DROP record

USING Flag XL1 USING type (ORDINARY, LABELED, DEPENDENT, LABELED DEPENDENT)

X'00' Ordinary USING
X'10' Labeled USING
X'20' Dependent USING
X'30' Labeled Dependent USING

Location ESDID XL2 The value of the ESDID of the current section when the USING, DROP, PUSH
USING, or POP USING was issued.

Statement number FL4 The statement number of the USING, DROP, PUSH USING, or POP USING.

Location Counter FL4 The value of the location counter when the USING, DROP, PUSH USING, or POP
USING was issued.

USING value FL4 The value of the USING statements first-operand expression. This is zero for
PUSH, POP, and DROP.

282 HLASM V1R3 Programmer’s Guide

 Appendixes

Field Size Description

Last statement FL4 The last statement number for which this base-register was used in converting a
symbolic address into its base-displacement form. This is zero for PUSH, POP,
and DROP.

USING ESDID XL4 For ordinary and labeled USING instructions, this field indicates the ESDID of the
section specified on first operand of the USING statement. For dependent USING
instructions, this field indicates the ESDID of the section specified on the
corresponding ordinary USING instruction that is used to resolve the address.
This is zero for PUSH, POP, and DROP.

Register XL1 The register used in the USING. This is zero for PUSH and POP. Where a
DROP with no operand or a DROP ALL is specified, this field contains X'FF'.

Displacement XL2 The maximum displacement for this USING register. This is zero for PUSH, POP,
and DROP.

| Reserved| XL1| Reserved for future use.

| USING range| FL4| The value of the USING range.

| Reserved| XL2| Reserved for future use.

Label length HL2 The length of the label and USING text field following. This is zero for PUSH and
POP. This length field is rounded up to a doubleword boundary. Hence if the text
was 13 bytes in length, the length would be set at 16 and the text blank padded on
the right.

Label CL(n) The source text for the LABEL and USING from the source USING record.

 Statistics Record—X'0090'

Field Size Description

Buffer pool allocation FL4 The number of Kilobytes (KB) of storage allocated to the buffer pool

Required In-storage FL4 The number of Kilobytes (KB) of storage required to make the assembly an
in-storage assembly.

Primary input records FL4 The number of primary input records read for the assembly

Library records FL4 The number of library records read for the assembly

Work file reads FL4 The number of work file reads for the assembly

Print records written FL4 The number of print records written for the assembly

Object records written FL4 The number of object records written for the assembly

Work file writes FL4 The number of work file writes for the assembly

ADATA file writes FL4 The number of ADATA file writes for the assembly

ADATA calls FL4 The number of calls to the ADATA exit

This field is zero if no exit is present.

ADATA added records FL4 The number of records added by the ADATA exit

This field is always zero.

ADATA deleted
records

FL4 The number of records deleted by the ADATA exit

This field is always zero.

ADATA diagnostic
messages

FL4 The number of diagnostic messages returned by the ADATA exit

This field is zero if no exit is present.

 Appendix D. Associated Data File Output 283

 Appendixes

Field Size Description

Library calls FL4 The number of calls to the LIBRARY exit

This field is zero if no exit is present.

Library added records FL4 The number of records added by the LIBRARY exit

This field is zero if no exit is present.

Library deleted
records

FL4 The number of records deleted by the LIBRARY exit

This field is zero if no exit is present.

Library diagnostic
messages

FL4 The number of diagnostic messages returned by the LIBRARY exit

This field is zero if no exit is present.

Listing calls FL4 The number of calls to the LISTING exit

This field is zero if no exit is present.

Listing added records FL4 The number of records added by the LISTING exit

This field is zero if no exit is present.

Listing deleted records FL4 The number of records deleted by the LISTING exit

This field is zero if no exit is present.

Listing diagnostic
messages

FL4 The number of diagnostic messages returned by the LISTING exit

This field is zero if no exit is present.

| Object calls| FL4| The number of calls to the OBJECT exit. (MVS and CMS)

| This field is zero if no exit is present.

| Reserved (VSE only)

| Object added records| FL4| The number of records added by the OBJECT exit. (MVS and CMS)

| This field is zero if no exit is present.

| Reserved (VSE only)

| Object deleted records| FL4| The number of records deleted by the OBJECT exit. (MVS and CMS)

| This field is zero if no exit is present.

| Reserved (VSE only)

| Object diagnostic
| messages
| FL4| The number of diagnostic messages returned by the OBJECT exit. (MVS and
| CMS)

| This field is zero if no exit is present.

| Reserved (VSE only)

Source calls FL4 The number of calls to the SOURCE exit

This field is zero if no exit is present.

Source added records FL4 The number of records added by the SOURCE exit

This field is zero if no exit is present.

Source deleted
records

FL4 The number of records deleted by the SOURCE exit

This field is zero if no exit is present.

Source diagnostic
messages

FL4 The number of diagnostic messages returned by the SOURCE exit

This field is zero if no exit is present.

Punch calls FL4 The number of calls to the PUNCH exit

This field is zero if no exit is present.

284 HLASM V1R3 Programmer’s Guide

 Appendixes

Field Size Description

Punch added records FL4 The number of records added by the PUNCH exit

This field is zero if no exit is present.

Punch deleted records FL4 The number of records deleted by the PUNCH exit

This field is zero if no exit is present.

Punch diagnostic
messages

FL4 The number of diagnostic messages returned by the PUNCH exit

This field is zero if no exit is present.

Term calls FL4 The number of calls to the TERM exit

This field is zero if no exit is present.

Term added records FL4 The number of records added by the TERM exit

This field is zero if no exit is present.

Term deleted records FL4 The number of records deleted by the TERM exit

This field is zero if no exit is present.

Term diagnostic
messages

FL4 The number of diagnostic messages returned by the TERM exit

This field is zero if no exit is present.

Assembly start time FL4 The local time when the assembly commenced. This time is recorded after data
set allocation, storage allocation, invocation parameter processing, and other
initialization processing.

Stored in packed format as hhmmssth:

hh The hour
mm The minute
ss The second
t Tenths of a second
h Hundredths of a second

Assembly stop time FL4 The local time when the assembly completed

Stored in packed format as hhmmssth:

hh The hour
mm The minute
ss The second
t Tenths of a second
h Hundredths of a second

Processor time FL4 The number of processor seconds utilized by this assembly. (MVS and CMS
only)

The low order bit represents 1 microsecond.

| Reserved (VSE only)

| Reserved| XL8| Reserved

| External Functions
| loaded
| FL4| The number of functions loaded during this assembly. This is also the number
| of function statistic groups to follow.

| ...Reserved| XL4| Reserved

| ...SETAF function
| calls
| FL4| The number of times the function was called from a SETAF assembler
| instruction. This field is part of the group of fields which is repeated for each
| function loaded.

| ...SETCF function
| calls
| FL4| The number of times the function was called from a SETCF assembler
| instruction. This field is part of the group of fields which is repeated for each
| function loaded.

 Appendix D. Associated Data File Output 285

 Appendixes

Field Size Description

| ...Messages issued| FL4| The number of times the function requested that a message be issued. This
| field is part of the group of fields which is repeated for each function loaded.

| ...Messages
| severity
| HL2| The maximum severity for the messages issued by this function. This field is
| part of the group of fields which is repeated for each function loaded.

| ...Name length| HL2| The length of the following field. This field is part of the group of fields which is
| repeated for each function loaded.

| ...External Function
| name
| CL(n)| The external function module name. This field is part of the group of fields
| which is repeated for each function loaded.

286 HLASM V1R3 Programmer’s Guide

 Appendixes

 Appendix E. Sample Program

The sample program included with High Level Assembler is described in this
appendix. This program demonstrates some basic assembler language, macro,
and conditional assembly features, most of which are unique to High Level
Assembler. The highlighted characters in the descriptions below refer to
corresponding characters in the listing that precedes the descriptions.

| High Level Assembler Option Summary Page 1
| HLASM R3.9 1998/99/25 11.38
| No Overriding Parameters
| No Process Statements

| Options for this Assembly
| NOADATA
| ALIGN
| NOASA
| BATCH
| NOCOMPAT
| NODBCS
| NODECK
| DXREF
| ESD
| NOEXIT
| FLAG(9,ALIGN,CONT,NOIMPLEN,NOPAGE9,RECORD,NOSUBSTR)
| NOFOLD
| NOINFO
| LANGUAGE(EN)
| NOLIBMAC
| LINECOUNT(69)
| LIST(121)
| MXREF(SOURCE)
| OBJECT
| OPTABLE(UNI)
| NOPCONTROL
| NOPESTOP
| NOPROFILE
| NORA2
| NORENT
| RLD
| RXREF
| SIZE(MAX)
| SYSPARM()
| NOTERM
| NOTEST
| NOTRANSLATE
| USING(NOLIMIT,MAP,WARN(15))
| NOXOBJECT
| XREF(SHORT,UNREFS)

| No Overriding DD Names

 Copyright IBM Corp. 1982, 1998 287

 Appendixes

| BIGNAME External Symbol Dictionary Page 2
| Symbol Type Id Address Length LD ID Flags Alias-of HLASM R3.9 1998/99/25 11.38
| A SD 99999991 99999999 999999DE 99
| PD2 CM 99999992 99999999 99999814 99 �A�

| BIGNAME Sample program. 1ST TITLE statement has no name, 2ND one does Page 3
| Active Usings: None
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 99999 99999 999DE 2 a csect 99992999
| R:8 99999 3 using K,8 99993999
| 999999 1BFF 4 sr 15,15 Set return code to zero 99994999
| 999992 97FE 5 br 14 and return. 99995999
| 7 KK 99997999
| 8 K PUSH and POP statements K 99998999
| 9 K Push down the PRINT statement, replace it, retreive original K 99999999
| 19 KK 99919999
| �B� 12 push print Save Default setting ' PRINT ON,NODATA,GEN' 99912999
| 13 print nogen,data 99913999
| 999994 9A23 14 wto mf=(E,(1)) Expansion not shown 99914999
| 999996 91239ABC9192939A �C� 16 dc x'123,ABC',(reallylongsymbol-transylvania)b'1,19,11,1919,1911,1199' 99915999
| 99999E 9B9C9192939A9B9C
| 999916 9192939A9B9C9192
| 99991E 939A9B9C
| 17 pop print Restore default PRINT setting 99916999
| 18 wto mf=(E,(1)) Expansion shown 99917999
| 999922 9A23 19+ SVC 35 ISSUE SVC 35 @L2C 91-WTO
| 999924 91239ABC9192939A 29 dc x'123,ABC',(reallylongsymbol-transylvania)b'1,19,11,1919,1911,1199' 99918999
| 22 KK 99929999
| 23 K LOCTR instruction K 99921999
| 24 K LOCTR allows 'REMOTE' assembly of constant K 99922999
| 25 KK 99923999
| 999949 5859 89AC 999AC 27 l 5,constant 99925999
| 999AC 999AC 999DE �D�28 deecees loctr 99926999
| 9999AC 99999995 29 constant dc f'5' Constant coded here, assembled behind LOCTR A 99927999
| 99944 99999 999DE 39 a loctr Return to 1st LOCTR in CSECT A 99928999
| 32 KK 99939999
| 33 K 3 operand EQUATE with forward reference in 1ST operand K 99931999
| 34 KK 99932999
| 999944 1812 36 a5 lr 1,2 L'A5 = 2, T'A5 = I 99934999
| 37 print data 99935999
| 999946 9999
| 999948 413243F6A8885A39 38 a7 dc l'3.1415926535897932384626433832795928841972' L'A7 = 16,T'A7 = L 99936999
| 999959 338D313198A2E937
| 39 &type setc t'a7 99937999
| �E� 49 a8 equ b5,l'a5,c'&type' 99938999
| 999B9 99992 +a8 equ b5,l'a5,c'L' 99938999

�A� The external symbol dictionary shows a named common statement. The
named common section is defined in statement 173.

�B� Statement 12: Save the current status of the PRINT statement.

Statement 13: Modify the print options to DATA and NOGEN.

Statement 14: Macro call; note that the expansion (statement 15) is not
printed.

Statement 16: All 28 bytes of data are displayed to the two-operand DC.

Statement 17: Restore earlier status of PRINT.

Statements 19 and 20: The generated output of the macro WTO is shown
and only the first 8 bytes of the data are displayed.

�C� Statements 16 and 20: Multiple constants are allowed in hexadecimal and
binary DC operands, and neither symbol in the duplication factor has been
defined yet. Definition occurs in statements 115 and 116.

�D� Statements 28, 30, 151, and 164 show use of the LOCTR assembler
instruction. This feature allows you to break down control sections into
“subcontrol” sections. It can be used in CSECT, RSECT, DSECT, and COM.
LOCTR has many of the features of a control section; for example, all of the
first LOCTR in a section is assigned space, then the second, and so on. The
name of the control section automatically names the first LOCTR section.
Thus LOCTR A is begun, or continued, at statements 2, 30, and 170. The
location counter value shown each time is the continued value of the LOCTR.
On the other hand, various LOCTR sections within a control section have

288 HLASM V1R3 Programmer’s Guide

 Appendixes

common addressing as far as USING statements are concerned, subject to
the computed displacement falling within 0 through 4095. In the sample,
CONSTANT is in LOCTR DEECEES but the instruction referring to it
(statement 27) has no addressing problems.

�E� Three-operand EQU. Here, we assign: (a) the value of B5 (not yet defined) to
A8, (b) the length attribute of A5 to A8, and (c) the type attribute of A7 to A8.
If no operand is present in an EQU statement, the type attribute is U and the
length attribute is that of the first term in the operand expression. Symbols
present in the label and operand field must be previously defined. You
cannot express the type attribute of A7 directly in the EQU statement. The
EQU statement at 40 could have been written

a8 equ b5,2,c'L'

a8 equ b5,x'2',x'D3'

| BIGNAME Sample program. 1ST TITLE statement has no name, 2ND one does Page 4
| Active Usings: a(X'1999'),R8
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 42 KK 99949999
| 43 K Implicit declaration of locals &A, &C -- Use of SETC dup factor to K 99941999
| 44 K produce SETC string longer than 8, MNOTE in open code K 99942999
| 45 KK 99943999
| �F� 47 &la8 seta l'a8 99945999
| 48 &ta8 setc t'a8 99946999
| 49 mnote K,'Length of A8 = &LA8, Type of A8 = &TA8' 99947999
| �G� +K,Length of A8 = 2, Type of A8 = L 99947999
| 51 &a seta 2 99949999
| �H� 52 &c setc (&a+3)'STRING,' 99959999
| 53 mnote K,'&&C has value = &c' 99951999
| +K,&C has value = STRING,STRING,STRING,STRING,STRING, 99951999
| 55 KK 99953999
| �I� 56 K Examples of 4 byte self-defined terms, unary + and - K 99954999
| 57 KK 99955999
| 999958 7FFFFFFFC1C2C3C4 59 dc a(2147483647,C'ABCD',X'ffffffff') 99957999
| 999969 FFFFFFFF
| 999964 181D 69 lr -1+2,16+-3 99958999
| FFFFE8 62 X equ 4K-6 99969999

�F� Set symbols &LA8 and &TA8 have not been previously declared in LCL or
GBL statements. Therefore, they default to local variable symbols as follows:
&LA8 is an LCLA SET symbol because it appears in the name field of a
SETA; &TA8 is an LCLC SET symbol because it is first used in a SETC.

�G� MNOTEs can appear in open code. As such, they have all properties of
MNOTEs inside macros, including substitution.

�H� A SETC expression can have a duplication factor. The SETA expression
must be enclosed in parentheses and immediately precede the character
string, the substring notation, or the type attribute reference.

�I� Statements 59 through 62 show 4-byte self-defining values and unary + and
−. The value of X appears later in a literal address constant (see statement
252).

 Appendix E. Sample Program 289

 Appendixes

| BIGNAME Insert Programmer Macro in Source Stream now Page 5
| Active Usings: a(X'1999'),R8
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 64 KK 99962999
| 65 K Mixed keywords and positional parameters, extended AGO and AIF K 99963999
| 66 K statements, declaration and use of subscripted SET symbols, K 99964999
| 67 K Use of created SET symbols, extended SET statements K 99965999
| 68 KK 99966999
| �J� 79 macro 99968999
| 71 demo &p1,&key1=A,&p2,&key2=1,&p3,&key3=3,&p4 99969999
| �K� 72 &loc(1) setc '2','3' &LOC is dimensioned LCLC by default 99979999
| 73 gblc &xa(5),&xb(29),&xc(1) 99971999
| 74 aif ('&system_id'(1,3) eq 'VSE').vse 99972999
| �L� 75 &p1 &syslist(4),&syslist(5),&syslist(6),mf=E 99973999
| 76 ago .notvse 99974999
| 77 .vse anop Use VSE WRITE macro parameters 99975999
| 78 &p1 &syslist(4),SQ,&syslist(6) 99976999
| 79 .notvse anop 99977999
| 89 &n seta 1 99978999
| �M� 81 ago (&key2).mnote1,.mnote2,.mnote3 99979999
| 82 &n seta 2 99989999
| 83 mnote K,'&&KEY2 not 1,2, or 3---Use &&KEY3 in place of it' 99981999
| �N� 84 aif (&key3 eq 1).mnote1, X99982999
| (&key3 eq 2).mnote2,(&key3 eq 3).mnote3 99983999
| 85 mnote K,'Both &&KEY2 and &&KEY3 fail to qualify' 99984999
| 86 ago .common 99985999
| 87 .mnote1 mnote K,'&&KEY&LOC(&N) = 1' 99986999
| 88 ago .common 99987999
| 89 .mnote2 mnote K,'&&KEY&LOC(&N) = 2' 99988999
| 99 ago .common 99989999
| 91 .mnote3 mnote K,'&&KEY&LOC(&N) = 3' 99999999
| 92 .common l 5,8(,19) Note that opcodes, operands & comments 99991999
| 93 &xb(2) sr 9,19 on MODEL statements 99992999
| �O� 94 &(x&key1)(2) lm 12,13,=a(a5,x) are kept in place unless displaced 99993999
| 95 &p2 st 7,&p3 as a result of substitution 99994999
| 96 mend 99995999
| 98 KKKKK DEMO MACRO instruction (call) 99997999
| �P� 199 gblc &xa(1),&xb(2),&xc(3) 99999999
| 191 &xa(1) setc 'A','MISSISSIPPI' 99199999
| 192 &xb(1) setc 'B','SUSQUEHANNA' 99191999
| 193 &xc(1) setc 'C','TRANSYLVANIA' 99192999
| �Q� 194 demo key3=2,write,reallylongsymbol, M99193999
| a8+8K(b5-constant-7)(3),key1=C,(6),SF, N99194999
| (8),key2=7 99195999
| 999966 1816 195+ LR 1,6 LOAD DECB ADDRESS 93-IHBRD
| 999968 9229 1995 99995 196+ MVI 5(1),X'29' SET TYPE FIELD 93-IHBRD
| 99996C 5981 9998 99998 197+ ST 8,8(1,9) STORE DCB ADDRESS 93-IHBRD
| 999979 58F1 9998 99998 198+ L 15,8(1,9) LOAD DCB ADDRESS 93-IHBRD
| 999974 58F9 F939 99939 199+ L 15,48(9,15) LOAD RDWR ROUTINE ADDR 93-IHBRD
| 999978 95EF 119+ BALR 14,15 LINK TO RDWR ROUTINE 93-IHBRD
| 111+K,&KEY2 not 1,2, or 3---Use &KEY3 in place of it 91-99983
| 112+K,&KEY3 = 2 91-99989
| 99997A 5859 A998 99998 113+ l 5,8(,19) Note that opcodes, operands & comments 91-99992
| 99997E 1B9A �R� 114+SUSQUEHANNA sr 9,19 on MODEL statements 91-99993
| 999989 98CD 8999 99999 115+TRANSYLVANIA lm 12,13,=a(a5,x) are kept in place unless displaced 91-99994
| BIGNAME Insert Programmer Macro in Source Stream now Page 6
| Active Usings: a(X'1999'),R8
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 999984 5973 8998 99998 116+reallylongsymbol st 7,a8+8K(b5-constant-7)(3) X91-99995
| + as a result of substitution

�J� The macro DEMO is defined after the start of the assembly. Macros can be
defined at any point and, having been defined, expanded, or both, can be
redefined. The parameters on the prototype are a mixture of keywords and
positional operands. &SYSLIST may be used. The positional parameters are
identified and numbered 1, 2, 3 from left to right; keywords are skipped over.

�K� Statement 72 shows the extended SET feature (as well as implicit declaration
of &LOC(1) as an LCLC). Both &LOC(1) and &LOC(2) are assigned values.
One SETA, SETB, or SETC statement can then do the work of many.

�L� Statement 75 is a model statement with a symbolic parameter in its operation
field. This statement is edited as if it is a macro call; at this time, each
operand is denoted as positional or keyword. At macro call time, you cannot
reverse this decision. Even though it's treated as a macro, it is still expanded
as a machine or assembler operation.

�M� Statement 81 shows the computed AGO statement. Control passes to
.MNOTE1 if &KEY2 is 1, to .MNOTE2 if &KEY2 is 2, to .MNOTE3 if &KEY2 is
3, or otherwise it falls through to the model statement at 82.

290 HLASM V1R3 Programmer’s Guide

 Appendixes

�N� Statement 84 shows the extended AIF facility. This statement is written in the
alternative format. The logical expressions are examined from left to right.
Control passes to the sequence symbol corresponding to the first true
expression encountered, or else falls through to the next model statement.

�O� Statement 94 contains a subscripted created SET symbol in the name field.
The created SET symbol has the form &(e), where e is an expression made
up of character strings, variable symbols, or both. When the symbol is
encountered during macro generation, the assembler evaluates the
expression e. The operation code DEMO is used as a macro instruction in
statement 104, and &KEY1 is given the value C. The e in this case is
X&KEY1, which results in the value XC. Thus the name field in statement 94,
&(x&key1)(2), becomes &XC(2). Statement 103 assigns the value C to
&XC(1), and the value TRANSYLVANIA to &XC(2). The model statement (94) is
generated at statement 115; the name field contains TRANSYLVANIA. The
sequence field of statement 115, shows that this statement is a level 01
expansion of a macro, and the corresponding model statement is statement
number 94.

You can use created SET symbols wherever regular SET symbols are used;
for example: in declarations, name fields, operands of SET statements, model
statements. Likewise, they are subject to all the restrictions of regular SET
symbols.

�P� In statements 100 and 101, &XA is declared as a subscripted global SETC
variable with a subscript of 1 and in the next statement, which is an extended
SET statement, we store the value MISSISSIPPI into &XA(2). The assembler
allows up to 2,147,483,647 array values in a subscripted global SETC symbol.

�Q� Statement 104 is the macro instruction DEMO. &P1 has the value WRITE.
Therefore, the model statement at statement 75 becomes an inner macro
instruction, WRITE, producing the code at statements 105–110. The
sequence field of these statements contains 03-IHBRD, indicating that they
are generated by a level 03 macro (DEMO is 01, WRITE is 02) named
IHBRDWRS. It is an inner macro called by WRITE.

�R� Statements 115 and 116 contain some ordinary symbols longer than 8
characters. The limit for ordinary symbols, operation codes (for programmer
and library macros and operation codes defined through OPSYN), variable
symbols, and sequence symbols, is 63 characters (including the & and . in the
latter two instances, respectively).

 Appendix E. Sample Program 291

 Appendixes

| BIGNAME Insert Programmer Macro in Source Stream now Page 7
| Active Usings: a(X'1999'),R8
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 118 KK 99197999
| 119 K Copy 'NOTE' macro in from maclib, rename it 'MARK', call it under K 99198999
| 129 K its ALIAS -- in expansion of MARK, notice reference back to K 99199999
| 121 K definition statements in 'columns' 76-89 of expansion K 99119999
| 122 KK 99111999
| �S� 124 copy note 99113999
| 125= MACRO 99919999
| 126=&NAME NOTE &DCB,&DUMMY=,&TYPE=REL 99929999
| 127=.K $MAC(NOTE): 99939999
| 128=.K 5665-XA2 99932999
| 129=.K CONTAINS RESTRICTED MATERIALS OF IBM 99934999
| 139=.K (C) COPYRIGHT IBM CORP. 1984 99936999
| 131=.K LICENSED MATERIALS - PROPERTY OF IBM 99938999
| 132=.K REFER TO COPYRIGHT INSTRUCTIONS 99949999
| 133=.K FORM NUMBER G129-2983. 99942999
| 134=.K STATUS = MVS/XA DFP RELEASE 1.2 @H1 99944999
| 135=.K 99946999
| 136=.K CHANGE ACTIVITY = 99129999
| 137=.K 99139999
| 138=.K $H1=3489,JDP1111,,STLPKH: 3489 SUPPORT K 99149999
| 139=.K 99159999
| 149= AIF ('&DCB' EQ '').ERR 99169999
| 141=&NAME IHBINNRA &DCB 99179999
| 142= AIF ('&TYPE' NE 'REL').NOTREL @H1A 99189999
| 143= L 15,84(9,1) LOAD NOTE RTN ADDRESS 99199999
| 144= BALR 14,15 LINK TO NOTE ROUTINE 99299999
| 145= MEXIT 99219999
| 146=.NOTREL AIF ('&TYPE' NE 'ABS').ERR1 @H1A 99229999
| 147= SLR 9,9 INDICATES NOTE MACRO @H1A 99239999
| 148= LA 15,32 ROUTER CODE @H1A 99249999
| 149= SVC 199 SUPERVISOR CALL @H1A 99259999
| 159= MEXIT @H1A 99269999
| 151=.ERR1 MNOTE 8,'INVALID PARAMETER FOR TYPE' @H1A 99279999
| 152= MEXIT @H1A 99289999
| 153=.ERR IHBERMAC 6 99299999
| 154= MEND 99399999
| �T� 157 mark opsyn note Comments of generated statements occupy same 99116999
| 158 mark (6) 'COLUMNS' as those in MODEL statements 99117999
| 999988 1816 159+ LR 1,6 LOAD PARAMETER REG 1 92-IHBIN
| 99998A 58F9 1954 99954 169+ L 15,84(9,1) LOAD NOTE RTN ADDRESS 91-99143
| 99998E 95EF 161+ BALR 14,15 LINK TO NOTE ROUTINE 91-99144
| 163 KK 99119999
| 999B9 999AC 999DE 164 deecees loctr Switch to alternate location counter 99129999
| 9999B9 9B9999B999999959 165 b5 ccw X'9b',b5,9,89 99121999
| 167 KK 99123999
| 168 K Display of &SYSTIME, &SYSDATE, &SYSPARM and &SYSLOC K 99124999
| 169 KK 99125999
| 171 print nodata 99127999
| �U� 172 dc c'TIME = &systime, DATE = &sysdate, PARM = &sysparm' 99128999
| BIGNAME Insert Programmer Macro in Source Stream now Page 8
| Active Usings: a(X'1999'),R8
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 9999B8 E3C9D4C5497E49F1 + dc c'TIME = 19.91, DATE = 98/94/98, PARM = ' 99128999
| 174 macro 99139999
| 175 locate 99131999
| 176 &sysect csect Display of current control section 99132999
| 177 &sysloc loctr and location counter 99133999
| 178 mend 99134999
| 189 locate 99136999
| 999DE 999AC 999DE�V�181+a csect Display of current control section 91-99176
| 999DE 999AC 999DE 182+deecees loctr and location counter 91-99177
| 99999 99999 999DE 183 a loctr 99137999

292 HLASM V1R3 Programmer’s Guide

 Appendixes

�S� Library macros can be inserted into the source stream as programmer macros
by use of a COPY statement. The result (statements 126 to 141) is
essentially a programmer macro definition. When a library macro is brought
in and expanded by use of a macro instruction, the assembler (1) looks the
macro up by its member-name and (2) verifies that this same name is used in
the operation field of the prototype statement. Therefore, for example, DCB
has to be cataloged as DCB. However, as COPY code, the member name
bears no relationship to any of the statements in the member. Thus, several
variations of a given macro could be stored as a library under separate
names, then copied in at various places in a single assembly as needed.
(High Level Assembler allows you to define and redefine a macro any number
of times).

�T� In statement 157, MARK is made a synonym for NOTE. To identify NOTE as
a macro, it has to be used as either a system macro call (that is, from a
macro library), or a programmer macro definition, before its use in the
operand field of an OPSYN statement. The COPY code at statements 126
through 157 is a programmer macro definition. The macro instruction at
statement 158 is MARK. You can use MARK and NOTE interchangeably. If
required, you could remove NOTE as a macro definition in the following way:

MARK OPSYN NOTE
NOTE OPSYN

You could then refer to the macro only as MARK.

�U� Statement 172 demonstrates &SYSTIME, &SYSDATE, and &SYSPARM. The
values for the first two are the same as in the heading line. The value for
&SYSPARM is the value passed in the PARM field of the EXEC statement, or
the default value assigned to &SYSPARM when High Level Assembler is
installed.

�V� System variable symbols &SYSLOC and &SYSECT are displayed. The
sequence field indicates that the model statements are statements 176 and
177.

 Appendix E. Sample Program 293

 Appendixes

| BIGNAME Ordinary, Labeled and Dependent USING Instructions Page 9
| Active Usings: a(X'1999'),R8
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 185 KK 99139999
| 99999 99999 99814�W�186 pd2 com Named COMMON thrown in for good measure 99149999
| 999999 187 ds 599f 99141999
| 9997D9 1867 188 lr 6,7 99142999
| 199 KK 99144999
| 191 K Use of ordinary, labeled and dependent USING Instructions K 99145999
| 192 KK 99146999
| �X�
| R:C 997D2 194 using K,12 99148999
| 9997D2 4119 C922 997F4 195 la 1,area1 99149999
| 9997D6 4129 C932 99894 196 la 2,area2 99159999
| R:1 99999 197 using first,1 Ordinary USING 99151999
| R:2 99999 198 lab using first,2 Labeled USING 99152999
| 1 998 99999 99998 199 using second,first2 Dependent USING 99153999
| 2 998 99999 99998 299 labdep using third,lab.first2 Labeled dependent USING 99154999
| 9997DA D297 1999 8998 99999 99998 291 mvc first1,=cl8'1st' Uses ordinary USING 99155999
| 9997E9 D297 2999 8998 99999 99998 292 mvc lab.first1,=cl8'1st' Uses labeled USING 99156999
| 9997E6 D293 1998 89A9 99999 999A9 293 mvc second1,=cl4'2nd' Uses dependent USING 99157999
| 9997EC D291 2998 89A4 99999 999A4 294 mvc labdep.third1,=cl2'3d' Uses labeled dependent USING 99158999
| 9997F4 295 area1 ds 9f First data area 99159999
| 9997F4 296 area1a ds cl8 99169999
| 9997FC 297 area1b ds cl8 99161999
| 999894 298 area2 ds 9f Second data area 99162999
| 999894 299 area2a ds cl8 99163999
| 99989C 219 area2b ds cl8 99164999
| 99999 99999 99919 211 first dsect First dsect 99165999
| 999999 212 first1 ds cl8 99166999
| 999998 213 first2 ds cl8 99167999
| 99999 99999 99998 214 second dsect Second dsect 99168999
| 999999 215 second1 ds cl4 99169999
| 999994 216 second2 ds cl4 99179999
| 99999 99999 999EC 217 third dsect Third dsect 99171999
| 999999 218 third1 ds cl2 99172999
| 999992 219 third2 ds cl2 99173999

�W� Illustration of named COMMON. You can establish addressability for a
named COMMON section with:

 USING section-name,register

You can address data in a blank COMMON section by labeling a statement
after the COMMON statement.

�X� In statement 197, an ordinary USING is established for AREA1 using the
DSECT FIRST. When the fields within DSECT FIRST are referenced,
register 1 is used to resolve the address as in statement 201.

In statement 198, a labeled USING is established for AREA2 using the
DSECT FIRST. Register 2 is used to resolve the address for fields within
AREA2 when referred to using the label as in statement 202.

In statement 199, a dependent USING is established for the field FIRST2
using the DSECT SECOND. The corresponding ordinary USING for field
FIRST2 is the USING on statement 197. It uses register 1 to resolve the
address. The statement on line 203 specifies a field within DSECT SECOND
and the assembler uses register 1 to resolve the address.

In statement 200, a labeled dependent USING is established for the field
FIRST2 using the DSECT THIRD. The USING specifies the labeled USING
LAB to resolve the address for field FIRST2. In statement 204, the labeled
dependent USING is specified and register 2 is used to resolve the address of
the field THIRD1.

294 HLASM V1R3 Programmer’s Guide

 Appendixes

| BIGNAME Predefined Absolute Symbols in SETA and SETC expressions Page 19
| Active Usings: first(X'1999'),R1 second(X'FF8'),R1+X'8' a(X'1999'),R8 pd2+X'7D2'(X'1999'),R12
| lab.first(X'1999'),R2 labdep.third(X'FF8'),R2+X'8'
| D-Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 221 KK 99175999
| 222 K Use of predefined absolute symbols in SETA and SETC expressions K 99176999
| 223 KK 99177999
| 99964 225 hundred equ 199 99179999
| 226 &dividnd seta 29 99189999
| �Y� 227 &percent seta &dividndK199/49 Predefined symbol in SETA 99181
| 99932 228 fifty equ 59 99182999
| 99981 229 chara equ c'a' 99183999
| �Z� 239 &longwd setc (hundred)chara Predefined symbol in SETC 99184999
| 231 dc c'&longwd' 99185999
| 999994 8181818181818181 + dc c'aaX99185999
| 99999C 8181818181818181 + aa'
| 232 &twowds setc (fifty)chara.' '.(hundred/2)'B' 99186999
| 233 dc c'&twowds' 99187999
| 999968 8181818181818181 + dc c'aa BBBX99187999
| 999979 8181818181818181 + BBB'

�Y� In statement 227, the SETA statement specifies a predefined absolute symbol
(DIVIDND) as well as other arithmetic terms.

�Z� In statements 230 and 231, the SETC statement specifies a predefined
| absolute symbol (HUNDRED) as the duplication factor.

| BIGNAME Symbol Attribute Enhancements Page 11
| Active Usings: first(X'1999'),R1 second(X'FF8'),R1+X'8' a(X'1999'),R8 pd2+X'7D2'(X'1999'),R12
| lab.first(X'1999'),R2 labdep.third(X'FF8'),R2+X'8'
| D-Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 235 KK 99189999
| 236 K Symbol Attribute enhancements K 99199999
| 237 KK 99191999
| 9999CD C1C2C3 239 SYMBOL1 DC C'ABC' 99193999
| 9999D9 12345C 249 SYMBOL2 DC P'123.45' 99194999
| 241 &VAR1 SETC 'SYMBOL1' 99195999
| 242 &VAR2 SETC 'SYMBOL2' 99196999
| 9999D3 99
| 9999D4 4119 89A6 999A6 243 LA 1,=C'ABC' 99197999
| 9999D8 4119 89A9 999A9 244 LA 1,=P'123.45' 99198999
| �1� 246 &TYPE SETC T'=C'ABC' 99299999
| 247 DC CL1'&TYPE' 99291999
| 9999DC C3 + DC CL1'C' 99291999
| 9999DD C3 248 DC AL1(T'SYMBOL1) 99292999
| 249 DC AL1(T'&VAR1) 99293999
| 9999DE C3 + DC AL1(T'SYMBOL1) 99293999
| 9999DF C3 259 DC AL1(T'=C'ABC') 99294999
| �2� 251 &LEN SETA L'=C'ABC' 99295999
| 252 DC AL1(&LEN) 99296999
| 9999E9 93 + DC AL1(3) 99296999
| 9999E1 93 253 DC AL1(L'SYMBOL1) 99297999
| 254 DC AL1(L'&VAR1) 99298999
| 9999E2 93 + DC AL1(L'SYMBOL1) 99298999
| 9999E3 93 255 DC AL1(L'=C'ABC') 99299999
| �3� 256 &INT SETA I'=P'123.45' 99219999
| 257 DC AL1(&INT) 99211999
| 9999E4 93 + DC AL1(3) 99211999
| 9999E5 93 258 DC AL1(I'SYMBOL2) 99212999
| 259 DC AL1(I'&VAR2) 99213999
| 9999E6 93 + DC AL1(I'SYMBOL2) 99213999
| 9999E7 93 269 DC AL1(I'=P'123.45') 99214999
| �4� 261 &SCALE SETA S'=P'123.45' 99215999
| 262 DC AL1(&SCALE) 99216999
| 9999E8 92 + DC AL1(2) 99216999
| 9999E9 92 263 DC AL1(S'SYMBOL2) 99217999
| 264 DC AL1(S'&VAR2) 99218999
| 9999EA 92 + DC AL1(S'SYMBOL2) 99218999
| 9999EB 92 265 DC AL1(S'=P'123.45') 99219999
| 266 end 99229999
| 999999 99999944FFFFFFE8 �5� 267 =a(a5,x)
| 999998 F1A2A34949494949 268 =cl8'1st'
| 9999A9 F2958449 269 =cl4'2nd'
| 9999A4 F384 279 =cl2'3d'
| 9999A6 C1C2C3 271 =C'ABC'
| 9999A9 12345C 272 =P'123.45'

 Appendix E. Sample Program 295

 Appendixes

| �1� The Type attribute (T') is allowed for ordinary symbols, SET symbols, and
literals, in both conditional assembly instructions and machine or assembler
instructions. It is allowed in both open code and macro definitions.

| �2� The Length attribute (L') is allowed for ordinary symbols, SET symbols, and
literals, in both conditional assembly instructions and machine or assembler
instructions. It is allowed in both open code and macro definitions.

| �3� The Integer attribute (I') is allowed for ordinary symbols, SET symbols, and
literals, in both conditional assembly instructions and machine or assembler
instructions. It is allowed in both open code and macro definitions.

| �4� The Scale attribute (S') is allowed for ordinary symbols, SET symbols, and
literals, in both conditional assembly instructions and machine or assembler
instructions. It is allowed in both open code and macro definitions.

�5� If there are literals outstanding when the END statement is encountered, they
are assigned to the LOCTR now in effect for the first control section in the
assembly. This may or may not put the literals at the end of the first control
section. In this sample assembly, the first control section, A, has two
LOCTRs: A and DEECEES. Because A is active (at statement 183), the
literals are assembled there. You control placement of literal pools by means
of the LTORG statement. Note that X'FFFFFFE8' is used for the contents of
A(X), statement 265. The symbol X was assigned the value (4*-6) by an
EQU in statement 62.

| BIGNAME Relocation Dictionary Page 12
| Pos.Id Rel.Id Flags Address HLASM R3.9 1998/99/25 11.38
| 99999991 99999991 9C 99999999
| 99999991 99999991 98 999999B1

| BIGNAME Ordinary Symbol and Literal Cross Reference Page 13
| Symbol Length Value Id R Type Defn References HLASM R3.9 1998/99/25 11.38
| a 1 99999999 99999991 J 2 39 181 183
| area1 4 999997F4 99999992 F 295 195
| area2 4 99999894 99999992 F 298 196
| a5 2 99999944 99999991 I 36 49 267
| a8 2 999999B9 99999991 C L 49 116M
| b5 8 999999B9 99999991 W 165 49 116M 165
| constant 4 999999AC 99999991 F 29 27 116M
| deecees 1 999999AC 99999991 J 28 164 182
| first 1 99999999 FFFFFFFF J 211 197U 198U
| first1 8 99999999 FFFFFFFF C 212 291M 292M
| first2 8 99999998 FFFFFFFF C 213 199U 299
| lab 99999992 A U 198 299U 292
| labdep 99999992 A U 299 294
| reallylongsymbol
| 4 99999984 99999991 I 116 16 29
| second 1 99999999 FFFFFFFE J 214 199U
| second1 4 99999999 FFFFFFFE C 215 293M
| SYMBOL1 3 999999CD FFFFFFFD C 239 248 249 253 254
| SYMBOL2 3 999999D9 FFFFFFFD P 249 258 259 263 264
| third 1 99999999 FFFFFFFD J 217 299U
| third1 2 99999999 FFFFFFFD C 218 294M
| TRANSYLVANIA
| 4 99999989 99999991 I 115 16 29
| X 1 FFFFFFE8 99999991 A U 62 267
| =a(a5,x) 4 99999999 99999991 A 267 115
| =C'ABC' 3 999999A6 99999991 C 271 243 259 255
| =cl2'3d' 2 999999A4 99999991 C 279 294
| =cl4'2nd'
| 4 999999A9 99999991 C 269 293
| =cl8'1st'
| 8 99999998 99999991 C 268 291 292
| =P'123.45'
| 3 999999A9 99999991 P 272 244 269 265

| BIGNAME Unreferenced Symbols Defined in CSECTs Page 14
| Defn Symbol HLASM R3.9 1998/99/25 11.38
| 38 a7
| 114 SUSQUEHANNA

296 HLASM V1R3 Programmer’s Guide

 Appendixes

| BIGNAME Macro and Copy Code Source Summary Page 15
| Con Source Volume Members HLASM R3.9 1998/99/25 11.38
| PRIMARY INPUT DEMO LOCATE NOTE
| L3 OSMACRO MACLIB S2 MNT199 IHBINNRA IHBRDWRS NOTE WRITE WTO

| BIGNAME Dsect Cross Reference Page 16
| Dsect Length Id Defn HLASM R3.9 1998/99/25 11.38
| first 99999919 FFFFFFFF 211
| second 99999998 FFFFFFFE 214
| third 999999EC FFFFFFFD 217

| BIGNAME Using Map Page 17
| HLASM R3.9 1998/99/25 11.38
| Stmt -----Location----- Action ----------------Using----------------- Reg Max Last Label and Using Text
| Count Id Type Value Range Id Disp Stmt
| 3 99999999 99999991 USING ORDINARY 99999999 99991999 99999991 8 9AC 244 K,8
| 194 999997D2 99999992 USING ORDINARY 999997D2 99991999 99999992 12 932 196 K,12
| 197 999997DA 99999992 USING ORDINARY 99999999 99991999 FFFFFFFF 1 998 293 first,1
| 198 999997DA 99999992 USING LABELED 99999999 99991999 FFFFFFFF 2 999 lab.first,2
| 199 999997DA 99999992 USING DEPENDENT +99999998 99999FF8 FFFFFFFE 1 second,first2
| 299 999997DA 99999992 USING LAB+DEPND +99999998 99999FF8 FFFFFFFD 2 labdep.third,lab.first2

| General Purpose Register Cross Reference Page 18
| Register References (M=modified, B=branch, U=USING, D=DROP, N=index) HLASM R3.9 1998/99/25 11.38
| 9(9) (no references identified)
| 1(1) 36M 69M 195M 196 197N 198N 159M 169 195M 197U 243M 244M
| 2(2) 36 196M 198U
| 3(3) 116N
| 4(4) (no references identified)
| 5(5) 27M 113M
| 6(6) 195 159 188M
| 7(7) 116 188
| 8(8) 3U 197
| 9(9) 114M
| 19(A) 113 114
| 11(B) (no references identified)
| 12(C) 115M 194U
| 13(D) 69 115M
| 14(E) 5B 119M 161M
| 15(F) 4M 4 198M 199M 199 119B 169M 161B

| BIGNAME Diagnostic Cross Reference and Assembler Summary Page 19
| HLASM R3.9 1998/99/25 11.38
| No Statements Flagged in this Assembly
| High Level Assembler, 5696-234
| SYSTEM: CMS 11 JOBNAME: (NOJOB) STEPNAME: (NOSTEP) PROCSTEP: (NOPROC)
| Datasets Allocated for this Assembly
| Con DDname Dataset Name Volume Member
| P1 SYSIN APPDIX_E ASSEMBLE A1 ADISK
| L1 SYSLIB TEST MACLIB A1 ADISK
| L2 DSECT MACLIB A1 ADISK
| L3 OSMACRO MACLIB S2 MNT199
| L4 OSMACRO1 MACLIB S2 MNT199
| SYSLIN APPDIX_E TEXT A1 ADISK
| SYSPRINT APPDIX_E LISTING A1 ADISK

| 2348K allocated to Buffer Pool, 261K would be required for this to be an In-Storage Assembly
| 229 Primary Input Records Read 2217 Library Records Read 9 Work File Reads
| 453 Primary Print Records Written 19 Punch Records Written 9 Work File Writes
| 9 ADATA Records Written
| Assembly Start Time: 19.91.31 Stop Time: 19.91.32 Processor Time: 99.99.99.1344
| Return Code 999

 Appendix E. Sample Program 297

 Appendixes

Appendix F. MHELP Sample Macro Trace and Dump

The macro trace and dump (MHELP) facility is a useful means of debugging macro
definitions. MHELP can be used anywhere in the source program or in macro
definitions. MHELP is processed during macro generation. It is completely
dynamic; you can branch around the MHELP statements by using AIF or AGO
statements. Therefore, you can control its use by symbolic parameters and SET
symbols. MHELP options remain in effect until superseded by another MHELP
statement.

Figure 95 on page 300 shows a sample program that uses five functions of
MHELP. The macro dumps and traces in the listing are highlighted, for example
�1A�. Most dumps refer to statement numbers. When you call a library macro, the
macro name is used instead of the statement number in the identification-sequence
field. To get the statement numbers, you should use the LIBMAC assembler option
or the COPY statement to copy the library definition into the source program before
the macro call.

| MHELP 1, Macro Call Trace: Item �1A� on page 300 shows an outer macro call,
| �1B� on page 302 an inner one. In each case, the amount of information given is

short. This trace is given after successful entry into the macro; no dump is given if
error conditions prevent an entry.

MHELP 2, Macro Branch Trace: This trace provides a one-line trace for each
AGO and true AIF branch within a programmer macro. In any such branch, the
“branched from” statement number, the “branched to” statement number, and the

| macro name are included, see example �2A� on page 302. The branch trace
facility is suspended when library macros are expanded and MHELP 2 is in effect.
To obtain a macro branch trace for such a macro, use the LIBMAC assembler
option or insert a COPY “macro-name” statement in the source deck at some point
before the MHELP 2 statement of interest.

| MHELP 4, Macro AIF Dump: Items �4A� (page 301), �4B�, �4C�, �4D�, and �4E�
| (page 303) are examples of these dumps. Each dump includes a complete set of

unsubscripted SET symbols with values. This list covers all unsubscripted variable
symbols that appear in the same field of a SET statement in the macro definition.
Values of elements of dimensioned SET symbols are not displayed.

| MHELP 8, Macro Exit Dump: Items �8A� and �8B� (page 305) are examples of
| these dumps. This option provides a dump of the same group of SET symbols as

are included in the macro AIF dump when an MEXIT or MEND is encountered.

Local and global variable symbols are not displayed at any point unless they
appear in the current macro explicitly as SET symbols.

298  Copyright IBM Corp. 1982, 1998

 Appendixes

MHELP 16, Macro Entry Dump: This option provides a dump of the values of
system variable symbols and symbolic parameters at the time the macro is called.

| If there are k keyword parameters, they are listed as KPARM9991 through KPARM999k
| in order of appearance on the prototype statement.

| If there are p positional parameters, they are listed as PPARM9991 through PPARM999p
| in order of appearance in the macro instruction.

| Item �16A� on page 301 has one keyword parameter (&OFFSET) and one
| positional parameter. In both the prototype (statement 4) and the macro instruction
| (statement 52), the positional parameter appears in the first operand field, the
| keyword in the second. A length appears between the NAME and VALUE fields. A
| length of NUL indicates the corresponding item is empty.

| Item �16B� on page 302 shows an inner call containing zero keywords and two
positional parameters.

MHELP 64, Macro Hex Dump: This option, when used in conjunction with the
Macro AIF dump, the Macro Exit dump, or the Macro Entry dump, dumps the
parameter and SETC symbol values in EBCDIC and hexadecimal formats.

The hexadecimal dump precedes the EBCDIC dump, and dumps the full value of
the symbol. System parameters are not dumped in hexadecimal.

MHELP 128, MHELP Suppression: This option suppresses all the MHELP
options that are active at the time.

MHELP Control on &SYSNDX: The maximum value of the &SYSNDX system
variable can be controlled by the MHELP instruction. The limit is set by specifying a
number in the operand of the MHELP instruction, that is not one of the MHELP
codes defined above, and is in the following number ranges:

� 256 to 65535
� Most numbers in the range 65792 to 9999999. Details for this number range

are described in the Language Reference.

When the &SYSNDX limit is reached, message ASMA913S ACTR counter exceeded is
issued, and the assembler, in effect, ignores all further macro calls. Refer to the
Language Reference for further information.

 Appendix F. MHELP Sample Macro Trace and Dump 299

 Appendixes

 PAGE 3
Active Usings: None

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/97/22 16.15
 99999 99999 1 CSECT 99991999
 2 COPY LNSRCH 99992999
 3= MACRO LNS99919
 4=&NAME LNSRCH &ARG,&OFFSET=STNUMB-STCHAIN LNS99929
 5= LCLC &LABEL LNS99939

6=&LABEL SETC 'A&SYSNDX' GENERATE SYMBOL LNS99949
7= AIF (T'&NAME EQ 'O').SKIP LNS99959
8=&LABEL SETC '&NAME' IF MACRO CALL HAS LABEL, USE IT LNS99969
9=.SKIP ANOP INSTEAD OF GENERATED SYMBOL LNS99979
19=&LABEL LA 9,&OFFSET LOAD REG. 9 LNS99989

 11= SCHI &ARG,9(1) SEARCH LNS99999
12= BC 1,&LABEL IF MAX REACHED, CONTINUE LNS99199

 13= MEND LNS99119
 14 COPY SCHI 99993999
 15= MACRO 99991999
 16=&NM SCHI &COMP,&LIST 99992999
 17= LCLA &CNT 99993999
 18= LCLC &CMPADR 99994999
 19=&CNT SETA 1 99995999
 29=&NM STM 1,15,4(13) 99996999
 21=.TEST ANOP 99997999
 22=&CMPADR SETC '&CMPADR'.'&COMP'(&CNT,1) 99998999

23= AIF ('&COMP'(&CNT,1) EQ '(').LPAR 99999999
 24=&CNT SETA &CNT+1 99919999

25= AIF (&CNT LT K'&COMP).TEST 99911999
 26=.NOLNTH ANOP 99912999
 27= LA 3,&COMP COMPARAND 99913999
 28= AGO .CONTIN 99914999

29=.LPAR AIF ('&COMP'(&CNT+1,1) EQ ',').FINISH 99915999
 39=&CNT SETA &CNT+1 99916999

31= AIF (&CNT LT K'&COMP).LPAR 99917999
 32= AGO .NOLNTH 99918999
 33=.FINISH ANOP 99919999
 34=&CMPADR SETC '&CMPADR'.'&COMP'(&CNT+2,K'&COMP-&CNT) 99929999

35= LA 3,&CMPADR COMPARAND SANS LENGTH 99921999
 36=.CONTIN ANOP 99922999
 37= LA 1,&LIST LIST HEADER 99923999

38= MVC &COMP,9(9) DUMMY MOVE TO GET COMP LENGTH 99924999
39= ORG K-6 CHANGE MVC TO MVI 99925999

 49= DC X'92' MVI OPCODE 99926999
41= ORG K+1 PRESERVE LENGTH AS IMMED OPND 99927999
42= DC X'D999' RESULT IS MVI 9(13),L 99928999

 43= L 15,=V(SCHI) 99929999
 44= BALR 14,15 99939999
 45= LM 1,15,4(13) 99931999
 46= MEXIT 99932999
 47= MEND 99933999
 99999 99934 48 TEST CSECT 99994999
999999 95C9 49 BALR 12,9 99995999

R:C 99992 59 USING K,12 99996999
 51 MHELP B'11111' 99997999
 52 LNSRCH LISTLINE,OFFSET=LISTLINE-LISTNEXT 99998999

�1A� ++//MHELP CALL TO MACRO LNSRCH DEPTH=991 SYSNDX=9999991

Figure 95 (Part 1 of 6). Sample Program Using MHELP

300 HLASM V1R3 Programmer’s Guide

 Appendixes

 Page 4
Active Usings: TEST+X'2'(X'1999'),R12

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/97/22 16.15

�16A� //MHELP ENTRY TO LNSRCH MODEL STMT=99999 DEPTH=991 SYSNDX=99
 ////SYSTEM PARAMETERS:

//SYSVAR NAME LNTH VALUE (56 CHARS/LINE)
 //SYSNDX 994 9991
 //SYSECT 994 TEST
 //SYSLOC 994 TEST
 //SYSTIME 995 16.15
 //SYSDATE 998 97/22/98

//SYSASM 939 (IBM Confidential) High Level Assembler
 //SYSVER 995 1.3.9
 //SYSDATC 998 19989722
 //SYSJOB 997 (NOJOB)
 //SYSSTEP 998 (NOSTEP)
 //SYSSTYP 995 CSECT
 //SYSSTMT 998 99999953
 //SYSCLOCK 926 1998-97-22 96:15:98.885571
 //SYSNEST 991 1
 //SYSSEQF 998 99998999
 //SYSOPT_DBCS 991 9

//SYSOPT_OPTABLE 993 UNI
 //SYSOPT_RENT 991 9

//SYSOPT_XOBJECT 991 9
 //SYSTEM_ID 996 CMS 11
 //SYSIN_DSN 929 FIG94 ASSEMBLE A1
 //SYSIN_MEMBER NUL
 //SYSIN_VOLUME 995 ADISK
 //SYSLIB_DSN 929 FIG94 ASSEMBLE A1
 //SYSLIB_MEMBER NUL
 //SYSLIB_VOLUME 995 ADISK
 //SYSPRINT_DSN 929 FIG94 LISTING A1
 //SYSPRINT_MEMBER NUL
 //SYSPRINT_VOLUME 995 ADISK
 //SYSTERM_DSN NUL
 //SYSTERM_MEMBER NUL
 //SYSTERM_VOLUME NUL
 //SYSPUNCH_DSN NUL
 //SYSPUNCH_MEMBER NUL
 //SYSPUNCH_VOLUME NUL
 //SYSLIN_DSN 929 FIG94 TEXT A1
 //SYSLIN_MEMBER NUL
 //SYSLIN_VOLUME 995 ADISK
 //SYSADATA_DSN NUL
 //SYSADATA_MEMBER NUL
 //SYSADATA_VOLUME NUL
 //SYSPARM NUL
 //SYSM_SEV 993 999
 //SYSM_HSEV 993 999

////NAME; KEYWORD PARAMETERS; POSITIONAL PARAMETERS:
//PARAMETER LNTH VALUE (54 CHARS/LINE)

 //NAME NUL
 //KPARM9991 917 LISTLINE-LISTNEXT
 //PPARM9991 998 LISTLINE

 Page 5
Active Usings: TEST+X'2'(X'1999'),R12

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/97/22 16.15
�4A� //MHELP AIF IN LNSRCH MODEL STMT=99997 DEPTH=991 SYSNDX=999

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
 //9991 LCLC LABEL LNTH= 995
 // VAL=A9991

Figure 95 (Part 2 of 6). Sample Program Using MHELP

 Appendix F. MHELP Sample Macro Trace and Dump 301

 Appendixes

�2A� ++//MHELP BRANCH FROM STMT 99997 TO STMT 99999 IN MACRO LNSRCH

999992 4199 9992 99992 53+A9991 LA 9,LISTLINE-LISTNEXT LOAD REG. 9 91-99919

�1B� ++//MHELP CALL TO MACRO SCHI DEPTH=992 SYSNDX=9999992

�16B� //MHELP ENTRY TO SCHI MODEL STMT=99999 DEPTH=992 SYSNDX=99
 ////SYSTEM PARAMETERS:

//SYSVAR NAME LNTH VALUE (56 CHARS/LINE)
 //SYSNDX 994 9992
 //SYSECT 994 TEST
 //SYSLOC 994 TEST
 //SYSTIME 995 16.15
 //SYSDATE 998 97/22/98

//SYSASM 939 (IBM Confidential) High Level Assembler
 //SYSVER 995 1.3.9
 //SYSDATC 998 19989722
 //SYSJOB 997 (NOJOB)
 //SYSSTEP 998 (NOSTEP)
 //SYSSTYP 995 CSECT
 //SYSSTMT 998 99999954
 //SYSCLOCK 926 1998-97-22 96:15:98.886417
 //SYSNEST 991 2
 //SYSSEQF 998 99998999
 //SYSOPT_DBCS 991 9

//SYSOPT_OPTABLE 993 UNI
 //SYSOPT_RENT 991 9

//SYSOPT_XOBJECT 991 9
 //SYSTEM_ID 996 CMS 11
 //SYSIN_DSN 929 FIG94 ASSEMBLE A1
 //SYSIN_MEMBER NUL
 //SYSIN_VOLUME 995 ADISK
 //SYSLIB_DSN 929 FIG94 ASSEMBLE A1
 //SYSLIB_MEMBER NUL
 //SYSLIB_VOLUME 995 ADISK
 //SYSPRINT_DSN 929 FIG94 LISTING A1
 //SYSPRINT_MEMBER NUL
 //SYSPRINT_VOLUME 995 ADISK
 //SYSTERM_DSN NUL
 //SYSTERM_MEMBER NUL
 //SYSTERM_VOLUME NUL
 //SYSPUNCH_DSN NUL
 //SYSPUNCH_MEMBER NUL
 //SYSPUNCH_VOLUME NUL
 //SYSLIN_DSN 929 FIG94 TEXT A1
 //SYSLIN_MEMBER NUL
 //SYSLIN_VOLUME 995 ADISK
 //SYSADATA_DSN NUL
 Page 6

Active Usings: TEST+X'2'(X'1999'),R12
 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/97/22 16.15
 //SYSADATA_MEMBER NUL
 //SYSADATA_VOLUME NUL
 //SYSPARM NUL
 //SYSM_SEV 993 999
 //SYSM_HSEV 993 999

////NAME; KEYWORD PARAMETERS; POSITIONAL PARAMETERS:
//PARAMETER LNTH VALUE (54 CHARS/LINE)

 //NAME NUL
 //PPARM9991 998 LISTLINE
 //PPARM9992 994 9(1)

Figure 95 (Part 3 of 6). Sample Program Using MHELP

302 HLASM V1R3 Programmer’s Guide

 Appendixes

999996 991F D994 99994 54+ STM 1,15,4(13) 92-99929

�4B� //MHELP AIF IN SCHI MODEL STMT=99923 DEPTH=992 SYSNDX=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999991
 //9992 LCLC CMPADR LNTH= 991
 // VAL=L

�4C� //MHELP AIF IN SCHI MODEL STMT=99925 DEPTH=992 SYSNDX=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999992
 //9992 LCLC CMPADR LNTH= 991
 // VAL=L

�2B� ++//MHELP BRANCH FROM STMT 99925 TO STMT 99921 IN MACRO SCHI

�4D� //MHELP AIF IN SCHI MODEL STMT=99923 DEPTH=992 SYSNDX=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999992
 //9992 LCLC CMPADR LNTH= 992
 // VAL=LI

�4E� //MHELP AIF IN SCHI MODEL STMT=99925 DEPTH=992 SYSNDX=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999993
 //9992 LCLC CMPADR LNTH= 992
 // VAL=LI

�2C� ++//MHELP BRANCH FROM STMT 99925 TO STMT 99921 IN MACRO SCHI

//MHELP AIF IN SCHI MODEL STMT=99923 DEPTH=992 SYSNDX=9999992 KWCNT=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999993
 //9992 LCLC CMPADR LNTH= 993
 // VAL=LIS

//MHELP AIF IN SCHI MODEL STMT=99925 DEPTH=992 SYSNDX=9999992 KWCNT=999
 Page 7
Active Usings: TEST+X'2'(X'1999'),R12

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/97/22 16.15
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999994
 //9992 LCLC CMPADR LNTH= 993
 // VAL=LIS

Figure 95 (Part 4 of 6). Sample Program Using MHELP

 Appendix F. MHELP Sample Macro Trace and Dump 303

 Appendixes

++//MHELP BRANCH FROM STMT 99925 TO STMT 99921 IN MACRO SCHI

//MHELP AIF IN SCHI MODEL STMT=99923 DEPTH=992 SYSNDX=9999992 KWCNT=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999994
 //9992 LCLC CMPADR LNTH= 994
 // VAL=LIST

//MHELP AIF IN SCHI MODEL STMT=99925 DEPTH=992 SYSNDX=9999992 KWCNT=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999995
 //9992 LCLC CMPADR LNTH= 994
 // VAL=LIST

++//MHELP BRANCH FROM STMT 99925 TO STMT 99921 IN MACRO SCHI

//MHELP AIF IN SCHI MODEL STMT=99923 DEPTH=992 SYSNDX=9999992 KWCNT=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999995
 //9992 LCLC CMPADR LNTH= 995
 // VAL=LISTL

//MHELP AIF IN SCHI MODEL STMT=99925 DEPTH=992 SYSNDX=9999992 KWCNT=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999996
 //9992 LCLC CMPADR LNTH= 995
 // VAL=LISTL

++//MHELP BRANCH FROM STMT 99925 TO STMT 99921 IN MACRO SCHI

//MHELP AIF IN SCHI MODEL STMT=99923 DEPTH=992 SYSNDX=9999992 KWCNT=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999996
 //9992 LCLC CMPADR LNTH= 996
 // VAL=LISTLI

//MHELP AIF IN SCHI MODEL STMT=99925 DEPTH=992 SYSNDX=9999992 KWCNT=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999997
 //9992 LCLC CMPADR LNTH= 996
 // VAL=LISTLI
 Page 8
Active Usings: TEST+X'2'(X'1999'),R12

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/97/22 16.15

++//MHELP BRANCH FROM STMT 99925 TO STMT 99921 IN MACRO SCHI

//MHELP AIF IN SCHI MODEL STMT=99923 DEPTH=992 SYSNDX=9999992 KWCNT=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999997
 //9992 LCLC CMPADR LNTH= 997
 // VAL=LISTLIN

//MHELP AIF IN SCHI MODEL STMT=99925 DEPTH=992 SYSNDX=9999992 KWCNT=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999998
 //9992 LCLC CMPADR LNTH= 997
 // VAL=LISTLIN

Figure 95 (Part 5 of 6). Sample Program Using MHELP

304 HLASM V1R3 Programmer’s Guide

 Appendixes

99999A 4139 C924 99926 55+ LA 3,LISTLINE COMPARAND 92-99927

++//MHELP BRANCH FROM STMT 99928 TO STMT 99936 IN MACRO SCHI

99999E 4111 9999 99999 56+ LA 1,9(1) LIST HEADER 92-99937
999912 D292 C924 9999 99926 99999 57+ MVC LISTLINE,9(9) DUMMY MOVE TO GET COMP LENGTH 92-99938
999918 99918 99912 58+ ORG K-6 CHANGE MVC TO MVI 92-99939
999912 92 59+ DC X'92' MVI OPCODE 92-99949
999913 99913 99914 69+ ORG K+1 PRESERVE LENGTH AS IMMED OPND 92-99941
999914 D999 61+ DC X'D999' RESULT IS MVI 9(13),L 92-99942
999916 58F9 C92E 99939 62+ L 15,=V(SCHI) 92-99943
99991A 95EF 63+ BALR 14,15 92-99944
99991C 981F D994 99994 64+ LM 1,15,4(13) 92-99945

�8A� //MHELP EXIT FROM SCHI MODEL STMT=99946 DEPTH=992 SYSNDX=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLA CNT VAL= 9999999998
 //9992 LCLC CMPADR LNTH= 997
 // VAL=LISTLIN

999929 4719 C999 99992 65+ BC 1,A9991 IF MAX REACHED, CONTINUE 91-99912

�8B� //MHELP EXIT FROM LNSRCH MODEL STMT=99913 DEPTH=991 SYSNDX=999
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

 //9991 LCLC LABEL LNTH= 995
 // VAL=A9991

999924 66 LISTNEXT DS H 99999999
999926 67 LISTLINE DS FL3'9' 99919999
999939 68 LTORG 99911999
999939 99999999 69 =V(SCHI)
999999 79 END TEST 99912999

Figure 95 (Part 6 of 6). Sample Program Using MHELP

 Appendix F. MHELP Sample Macro Trace and Dump 305

 Appendixes

Appendix G. High Level Assembler Messages

High Level Assembler produces the following types of messages:

� Assembly error-diagnostic messages.
� Assembly abnormal-termination messages.
� ASMAHL command-error messages (CMS Only).

The following section describes the format and placement of messages issued by
the assembler. “Assembly Error Diagnostic Messages” on page 309, “Abnormal
Assembly Termination Messages” on page 347, and “ASMAHL Command Error
Messages (CMS Only)” on page 352, list and describe each message.

Message Code Format
Assembly error diagnostic messages, and assembly abnormal termination
messages, have the following message code format:

ASMAnnns

nnn a three-character message number

s severity indicator

The severity indicators, and the corresponding severity codes are:

I—Informational
(Severity code = 0)

This error does not affect the running of the program; rather, it is a
coding inefficiency or other such condition that can be changed. The
assembler has not detected any conditions affecting the correctness of
the program.

N—Notice
(Severity code = 2)

This type of message brings your attention to a condition that you might
wish to correct. The assembler has not detected any conditions affecting
the correctness of the program; however, the output from the assembly
might not be what you expect.

W—Warning
(Severity code = 4)

Although the statement in which the condition occurs is syntactically
correct, it has the potential for causing an error when the program is run.

E—Error
(Severity code = 8)

The condition is definitely an error. However, the assembler has tried to
correct the error, or has ignored the statement in error. The program
probably will not run successfully.

S—Severe
(Severity code = 12)

The condition is a serious error. The assembler has either ignored the
statement in error, or the machine instruction has been assembled to

306  Copyright IBM Corp. 1982, 1998

 Appendixes

zero. It is not likely that the program will assemble as expected or that it
will run.

C—Critical
(Severity code = 16)

The condition is a critical error. It is not likely that the program will run
successfully.

U—Unrecoverable
(Severity code = 20)

The error condition is of such magnitude that the assembler could not
continue.

ASMAHL command error messages have the following message code format:

 ASMACMSnnnE

where:

nnn Is a three-character message number

E Simply indicates an error. In some cases the assembly will proceed after the
message has been issued.

LANGUAGE Assembler Option: Unless otherwise indicated, the text of ASMAHL
command error messages is produced in the language specified on the
LANGUAGE operand in the installation default options.

 Message Descriptions
Each message entry for assembly error diagnostic messages and assembly
abnormal termination messages has the following five sections:

� Message Number and Text
� Explanation of Message

 � System Action
 � Programmer Response
 � Severity Code

Each message entry for ASMAHL command error messages has up to five of the
following sections:

� Message Number and Text
� Explanation of Message

 � Supplemental Information
 � System Action
 � Programmer Response

Message Number and Text
Only the message number and the major fixed portion of the message text are
included in the message description. Any abbreviations in actual message text are
described under the message explanation section. Unused message numbers
account for the gaps in the message number sequence. No messages are defined
for numbers which are not included in this section (for example, ASMA222).

 Appendix G. High Level Assembler Messages 307

 Appendixes

Explanation of Message
For some messages there is more than one explanation, as different sections of the
assembler can generate the same message. Several assembler termination
messages have identical explanations.

 Supplemental Information
For ASMAHL command error messages, the supplemental information describes
the possible contents of the variables in the message text.

 System Action
This section describes how the assembler handles statements with errors. Some
actions include:

� A machine instruction assembles as all zeros.

� An assembler instruction is usually ignored; it is printed but has no effect on the
assembly. Many assembler instructions, however, are partially processed or
processed with a default value. For some instructions, the operands preceding
the operand in error, or every operand except the operand in error, is
processed. For example, if one of several operands on a DROP statement is a
symbol that cannot be evaluated to a register number, only that operand is
ignored. All the correctly-specified registers are processed correctly.

� For some assembler statements, especially macro prototype and conditional
assembly statements, the operand or term in error is given a default value.
Thus the statement assembles completely, but will probably cause incorrect
results if the program is run.

For ASMAHL command error messages, this section describes the command return
code and the status of the system after the error.

 Programmer Response
Many errors have specific or probable causes. In such a case, the Programmer
Response section gives specific steps for fixing the error. Most messages,
however, have too many possible causes to list (from keying errors to wrong use of
the statement). The Programmer Response section for these error messages does
not give specific directions. The cause of most such errors can be determined from
the message text and the explanation.

 Severity Code
The level of severity code indicates how critical the error might be. The severity
codes and their meanings are described in “Message Code Format” on page 306.

ASMAHL command error messages do not have a severity code, although each
message issued by the ASMAHL command that causes the assembly to terminate
produces a return code higher than 20.

The severity code is used to determine the return code issued by the assembler
when it returns control to the operating system. The IBM-supplied cataloged
procedures (for MVS) include a COND parameter on the linkage edit and run steps.
The COND parameter prevents the running of these steps if the return code from

| the assembler is greater than 8. Thus errors with a severity code of S prevent the
| assembled program from linkage editing or running. Errors with a severity code of
| E, or lower, in the message do not prevent the assembled program from linkage
| editing or running.

308 HLASM V1R3 Programmer’s Guide

 Appendixes

Assembly Error Diagnostic Messages
High Level Assembler prints most error messages in the listing immediately
following the statements in error. It also prints the total number of flagged
statements and their statement numbers in the Diagnostic Cross Reference and
Assembler Summary section of the assembler listing.

The messages do not follow the statement in error when:

� Errors are detected during editing of macro definitions read from a library. A
message for such an error appears after the first call in the source program to
that macro definition. You can, however, bring the macro definition into the
source program with a COPY statement. The editing error messages will then
be attached to the statements in error.

� Errors are detected by the lookahead function of the assembler. (For attribute
references, lookahead processing scans statements after the one being
assembled.). Messages for these errors appear after the statements in which
they occur. The messages might also appear at the point at which lookahead
was called.

� Errors are detected on conditional assembly statements during macro
generation or MHELP testing. Such a message follows the most recently
generated statement or MHELP output statement.

A typical error diagnostic message is:

| KK ASMA957E Undefined operation code - xxxxx

A copy of a segment of the statement in error, represented above by xxxxx, is
inserted into many messages. Normally this segment begins at the bad character
or term. For some errors, however, the segment might begin after the bad
character or term. The segment might include part of the remarks field.

If a diagnostic message follows a statement generated by a macro definition, the
following items might be appended to the error message:

� The number of the model statement in which the error occurred, or the first five
characters of the macro name.

| � The SET symbol, system variable, macro parameter, or value string associated
| with the error.

| Messages may reference three types of macro parameter: the name field
| parameter, keyword parameters, and positional parameters. A reference to the
| name field parameter is indicated by the word “NAME” appended to the message.
| References to keyword and positional parameters (for which there may be multiple
| occurrences) are in the form “KPARMnnnn” and “PPARMnnnn” respectively, where
| nnnn is the relative number of the parameter within the macro definition.

| Figure 96 on page 310 shows an example of a macro with messages referencing
| each type of variable or parameter.

 Appendix G. High Level Assembler Messages 309

 Appendixes

| Active Usings: None
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R3.9 1998/99/25 11.38
| 1 MACRO 99991999
| �3� �4� �4� �5�
| 2 &z parms &kw1=a,&kw2=b,&kw3=c,&kw4=d,&kw5=e,&kw6=f,&pp1,&pp2 99992999
| 3 &c SETC 'just a string' �┬─��1� 99993999
| 4 &ss SETA &c �┘ 99994999
| 5 &sv SETA &sysasm �2� 99995999
| 6 &z1 SETA &z �3� 99996999
| 7 &k1 SETA &kw1 �┬� �4� 99997999
| 8 &k5 SETA &kw5 �┘ 99998999
| 9 &n SETA n'&syslist 99999999
| 19 &pn SETA &syslist(&n)�─┬� �5� 99919999
| 11 &p2 SETA &pp2 �┘ ┌� �5� 99911999
| 12 MEND ┌┴────┐ 99912999
| 999999 99999 99999 13 default CSECT + + 99913999
| 14 n parms pp1,pp2,kw5=z,pp3,kw1=y,pp4,pp5,pp6 99914999
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99994/C �1�
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99995/SYSASM �2�
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99996/NAME �3�
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99997/KPARM99991 �┬� �4�
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99998/KPARM99995 �┘
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99919/PPARM99996 �┬� �5�
| ASMA192E Arithmetic term is not self-defining term; default=9 - 99911/PPARM99992 �┘
| 15 END 99915999

| Figure 96. Sample Macro Parameter Messages

| Notes to Figure 96:

| �1� SET symbol, and related message

| �2� System variable symbol, and related message

| �3� The name field parameter, and related message

| �4� Keyword parameters, and related messages

| �5� Positional parameters, and related messages

| If a diagnostic message follows a conditional assembly statement in the source
| program, the following items are appended to the error message:

| � The word “OPENC”, meaning “open code”.
| � The SET symbol, or value string, associated with the error.

Several messages might be issued for a single statement or even for a single error
within a statement. This happens because each statement is usually evaluated on
more than one level (for example, term level, expression level, and operand level)
or by more than one phase of the assembler. Each level or phase can diagnose
errors; therefore, most or all of the errors in the statement are flagged.
Occasionally, duplicate error messages might occur. This is a normal result of the
error-detection process.

310 HLASM V1R3 Programmer’s Guide

 Appendixes

Message Not Known
The following message might appear in a listing:

| KK ASMA999S Message not known - nnn

The statement preceding this message contains an error but the assembler routine
that detected the error issued the number (nnn) of a nonexistent error message to
the assembler's message generation routine. If you can correct the error, this
statement will assemble correctly. However, this message indicates an error in the
error detection process of the assembler. Save the output and the source deck
from this assembly and report the problem to your IBM service representative.

 Appendix G. High Level Assembler Messages 311

 ASMA001E 1 ASMA007S

 Messages

ASMA001E Operation code not allowed to be
generated - xxxxxxxx

Explanation: An attempt was made to produce a
restricted operation code by variable symbol
substitution. Restricted operation codes are:

ACTR AGO AGOB AIF
AIFB ANOP AREAD COPY
GBLA GBLB GBLC ICTL

| ISEG LCLA LCLB LCLC
MACRO MEND MEXIT REPRO
SETA SETAF SETB SETC
SETCF

System Action: The statement is ignored.

Programmer Response: If you want a variable
operation code, use AIF to branch to the correct
unrestricted statement.

Severity: 8

ASMA002S Generated statement too long;
statement truncated - xxxxxxxx

Explanation: The statement generated by a macro
definition is more than 1728 characters long.

System Action: The statement is truncated; the
leading 1728 characters are retained.

Programmer Response: Shorten the statement.

Severity: 12

ASMA003E Undeclared variable symbol; default=0,
null, or type=U - xxxxxxxx

Explanation: A variable symbol in the operand field of
the statement has not been declared (defined) in the
name field of a SET statement, in the operand field of
an LCL or GBL statement, or in a macro prototype
statement.

System Action: The variable symbol is given a default
value as follows:

SETA = 9
SETB = 9
SETC = null (empty) string

The type attribute (T') of the variable is given a default
value of U (undefined).

Programmer Response: Declare the variable before
you use it as an operand.

Severity: 8

ASMA004E Duplicate SET symbol declaration; first
is retained - xxxxxxxx

Explanation: A SET symbol has been declared
(defined) more than once. A SET symbol is declared
when it is used in the name field of a SET statement, in
the operand field of an LCL or GBL statement, or in a
macro prototype statement.

System Action: The value of the first declaration of
the SET symbol is used.

Programmer Response: Eliminate the incorrect
declarations.

Severity: 8

ASMA005S No storage for macro call; continue with
open code

Explanation: An inner macro call could not be
processed because no main storage was available.

System Action: The assembly continues with the next
open code statement.

Programmer Response: Check whether the macro is
recursive, and, if so, whether termination is provided for;
correct the macro if necessary. If the macro is correct,
allocate more main storage.

Severity: 12

| ASMA006I Lookahead invoked

| Explanation: This indicates that an instruction has
| caused the assembler to go into lookahead mode to
| resolve a symbol reference. For example:

| � an attribute reference (other than D' and O') to a
| symbol that is not yet defined, or

| � a forward AGO or AIF in open code.

| System Action: The assembly continues.

| Programmer Response: None.

| Severity: 0

ASMA007S Previously defined sequence symbol -
xxxxxxxx

Explanation: The sequence symbol in the name field
has been used in the name field of a previous
statement.

System Action: The first definition of the sequence
symbol is used; this definition is ignored.

Programmer Response: Remove or change one of
the sequence symbols.

Severity: 12

312 HLASM V1R3 Programmer’s Guide

 ASMA008S 1 ASMA011E

ASMA008S Previously defined symbolic parameter -
xxxxxxxx

Explanation: The xxxxxxxx symbol has been used to
define two different symbolic parameters.

System Action: When the parameter name (the
variable symbol) is used inside the macro definition, it
refers to the first definition of the parameter in the
prototype. However, if the second parameter defined
by the variable symbol is a positional parameter, the
count of positional operands still increases by one. The
second parameter can then be referred to only through
use of &SYSLIST.

Programmer Response: Change one of the
parameter names to another variable symbol.

Severity: 12

ASMA009S System variable symbol illegally
re-defined

Explanation: A system variable symbol has been
used in the name field of a macro prototype statement.
The system variable symbols are:

System Action: The name parameter is ignored. The
name on a corresponding macro instruction is not
generated.

Programmer Response: Change the parameter to
one that is not a system variable symbol.

Severity: 12

ASMA010E Invalid use of symbol qualifier - xxxxxxxx

Explanation: One of the following has occurred:

� A symbol qualifier has been used to qualify a
symbol in other than:

– A machine instruction
– The nominal value of an S-type address

constant
– The supporting address operand of a

dependent USING statement

� A symbol qualifier is used to qualify a symbol that
has an absolute value where a symbol that
represents a relocatable address is required

� A symbol qualifier is used to qualify a symbol that is
not within the range of the corresponding labeled
USING statement

� A symbol qualifier is used to qualify an undefined
symbol

� A symbol qualifier is used to qualify an incorrect
symbol

� A period is used as the last character of a term, but
the symbol preceding the period has not been
defined in the name field of a labeled USING
statement

A symbol qualifier can only be used in machine
instructions, the nominal value of S-type address
constants, or the second operand (supporting base
address) of dependent USING instructions. A symbol
qualifier can only be used to qualify symbols that are
within the range of the corresponding labeled USING.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored. If there is a
further error in the statement, a message that describes
the error is issued.

Programmer Response: Correct the use of the
symbol qualifier, or check the statement for the error
indicated in the following message.

Severity: 8

ASMA011E Inconsistent global declarations; first is
retained - xxxxxxxx

Explanation: A global SET variable symbol has been
defined in more than one macro definition or in a macro
definition and in the source program, and the two
definitions are inconsistent in type or dimension.

System Action: The first definition encountered is
retained.

Programmer Response: Assign a new SET symbol or
make the definitions compatible.

Severity: 8

| &SYSADATA_DSN
| &SYSADATA_MEMBER
| &SYSADATA_VOLUME
| &SYSASM
| &SYSCLOCK
| &SYSDATC
| &SYSDATE
| &SYSECT
| &SYSIN_DSN
| &SYSIN_MEMBER
| &SYSIN_VOLUME
| &SYSJOB
| &SYSLIB_DSN
| &SYSLIB_MEMBER
| &SYSLIB_VOLUME
| &SYSLIN_DSN
| &SYSLIN_MEMBER
| &SYSLIN_VOLUME
| &SYSLIST
| &SYSLOC
| &SYSM_HSEV
| &SYSM_SEV
| &SYSMAC

| &SYSNDX
| &SYSNEST
| &SYSOPT_DBCS
| &SYSOPT_OPTABLE
| &SYSOPT_RENT
| &SYSOPT_XOBJECT
| &SYSPARM
| &SYSPRINT_DSN
| &SYSPRINT_MEMBER
| &SYSPRINT_VOLUME
| &SYSPUNCH_DSN
| &SYSPUNCH_MEMBER
| &SYSPUNCH_VOLUME
| &SYSSEQF
| &SYSSTEP
| &SYSSTMT
| &SYSSTYP
| &SYSTEM_ID
| &SYSTERM_DSN
| &SYSTERM_MEMBER
| &SYSTERM_VOLUME
| &SYSTIME
| &SYSVER

 Appendix G. High Level Assembler Messages 313

 ASMA012S 1 ASMA019W

ASMA012S Undefined sequence symbol - xxxxxxxx;
macro aborted

Explanation: A sequence symbol in the operand field
is not defined; that is, it is not used in the name field of
a model statement.

System Action: Exit from the macro definition.

Programmer Response: Define the sequence symbol
or correct the reference to it.

Severity: 12

ASMA013S ACTR counter exceeded - xxxxxxxx

Explanation: The conditional assembly loop counter
(set by an ACTR statement) has been decremented to
zero. The ACTR counter is decremented by one each
time an AIF or AGO branch is processed successfully.
The counter is halved for most errors encountered by
the macro editor phase of the assembler.

System Action: Any macro expansion stops. If the
ACTR statement is in the source program, the assembly
stops.

Programmer Response: Check for an AIF/AGO loop
or another type of error. (You can use the MHELP
facility, described in Chapter 6, “Diagnosing Assembly
Errors” on page 139 and Appendix F, “MHELP Sample
Macro Trace and Dump” on page 298, to trace macro
definition logic.) If there is no error, increase the initial
count on the ACTR instruction.

Severity: 12

ASMA014E Irreducible qualified expression

Explanation: The statement cannot be resolved
because two or more qualified symbols are used in a
complex relocatable expression, or two or more
qualified symbols with different symbol qualifiers are
paired in an absolute expression.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored.

Programmer Response: Supply an absolute
expression, or correct the qualified symbol in error.

Severity: 8

| ASMA015W Literal bounds exceeded

| Explanation: The expression containing the reference
| to the literal resolves to an address outside the bounds
| of the literal. This indicates a potential error.

| System Action: The instruction assembles as
| specified.

| Programmer Response: Change the expression to
| not exceed the bounds.

| Severity: 4

| ASMA016W Literal used as a branch target

| Explanation: The target of a branch instruction is a
| literal. This indicates a potential error.

| System Action: The instruction assembles as
| specified.

| Programmer Response: Specify the branch target
| correctly.

| Severity: 4

ASMA017W Undefined keyword parameter; default
to positional, including keyword -
xxxxxxxx

Explanation: A keyword parameter in a macro call is
not defined in the corresponding macro prototype
statement.

This message is also generated by a valid positional
parameter that contains an equal sign.

System Action: The keyword (including the equals
sign and value) is used as a positional parameter.

Programmer Response: Define the keyword in the
prototype statement, or enclose the valid positional
parameter in parentheses, or single quotation marks,
and adjust the macro coding appropriately.

Severity: 4

ASMA018S Duplicate keyword in macro call; last
value is used - xxxxxxxx

Explanation: A keyword operand occurs more than
once in a macro call.

System Action: The latest value assigned to the
keyword is used.

Programmer Response: Eliminate one of the keyword
operands.

Severity: 12

| ASMA019W Length of EQUated symbol xxxxxxxx
| undefined; default=1

| Explanation: The value of the length attribute
| extracted for an EQUated symbol with an unspecified
| length has been set to the default: 1.

| System Action: The instruction assembles as
| specified.

| Programmer Response: Ensure that the length
| attribute of the symbol is defined.

| Severity: 4

314 HLASM V1R3 Programmer’s Guide

 ASMA020E 1 ASMA028E

ASMA020E Illegal GBL or LCL statement - xxxxxxxx

Explanation: A global (GBL) or local (LCL) declaration
statement does not have an operand.

System Action: The statement is ignored.

Programmer Response: Remove the statement or
add an operand.

Severity: 8

ASMA021E Illegal SET statement - xxxxxxxx

Explanation: The operand of a SETB statement is not
0, 1, or a SETB expression enclosed in parentheses.

System Action: The statement is ignored.

Programmer Response: Correct the operand or
delete the statement.

Severity: 8

| ASMA022I START value rounded up to required
| boundary

| Explanation: The value specified in the operand field
| of the START instruction has been rounded up to the
| required boundary.

| System Action: The assembly continues.

| Programmer Response: To stop the message
| occurring, specify the required boundary for the value.

| Severity: 0

ASMA023E Symbolic parameter too long - xxxxxxxx

Explanation: A symbolic parameter in this statement
is too long. It must not exceed 63 characters, including
the initial ampersand.

System Action: The symbolic parameter and any
operand following it in this statement are ignored.

Programmer Response: Make sure all symbolic
parameters consist of an ampersand followed by 1 to
62 alphanumeric characters, the first of which is
alphabetic.

Severity: 8

ASMA024E Invalid variable symbol - xxxxxxxx

Explanation: One of these errors has occurred:

� A symbolic parameter or a SET symbol is not an
ampersand followed by 1 to 62 alphanumeric
characters, the first being alphabetic.

� A created SET symbol definition is not a valid SET
symbol expression enclosed in parentheses.

System Action: The statement is ignored.

Programmer Response: Supply a valid symbol or
expression.

Severity: 8

ASMA025S Invalid macro prototype operand -
xxxxxxxx

Explanation: The format of the operand field of a
macro prototype statement is not correct. For example,
two parameters are not separated by a comma, or a
parameter contains characters that are not permitted.

System Action: The operand field of the prototype is
ignored.

Programmer Response: Supply a valid operand field.

Severity: 12

ASMA026S Macro call operand too long; 255
leading characters deleted - xxxxxxxx

Explanation: An operand of a macro instruction is
more than 255 characters long.

System Action: The leading 255 characters are
deleted.

Programmer Response: Limit the operand to 255
characters, or limit it to two or more operands.

Severity: 12

ASMA027S Excessive number of operands

Explanation: One of the following has occurred:

� More than 32000 positional operands, keyword
operands, or both have been explicitly defined in a
macro prototype statement.

� There are more than 255 operands in a DC, DS, or
DXD statement.

System Action: The excess parameters are ignored.

Programmer Response: For a DC, DS, or DXD
statement, use more than one statement. For a macro
prototype statement, delete the extra operands and use
&SYSLIST to access the positional operands, or
redesign the macro definition.

Severity: 12

ASMA028E Invalid displacement

Explanation: One of the following has occurred:

� The displacement field of an explicit address is not
an absolute value within the range 0 through 4095.

� The displacement field of an S-type address
constant is not an absolute value within the range 0
through 4095.

System Action: The statement or constant assembles
as zero.

Programmer Response: Correct the displacement or
supply a correct USING statement containing an
absolute first operand before this statement.

Severity: 8

 Appendix G. High Level Assembler Messages 315

 ASMA029E 1 ASMA035S

| ASMA029E Incorrect register specification

| Explanation: The value specifying a register is not an
| absolute value within the range 0 through 15; an odd

register is used where an even register is required; a
register is used where none can be specified; or a
register is not specified where one is required.

System Action: For machine instructions and S-type
address constants, the statement or constant
assembles as zero. For USING and DROP statements,
the incorrect register operand is ignored.

Programmer Response: Specify a valid register.

Severity: 8

ASMA030E Invalid literal usage - xxxxxxxx

Explanation: A literal is used in an assembler
instruction, another literal, or a field of a machine
instruction where it is not permitted.

System Action: An assembler instruction containing a
literal is generally ignored and another message,
relative to the operation code of the instruction,
appears. A machine instruction assembles as zero.

Programmer Response: If applicable, replace the
literal with the name of a DC statement.

Severity: 8

| ASMA031E Invalid immediate or mask field

| Explanation: The value of an immediate or mask
| operand of a machine instruction requires more bits to
| represent it than allowed by the instruction, or the value
| of the immediate operand exceeds 9 on an SRP
| instruction or 15 on an MC instruction.

| Immediate fields used in an arithmetic context are
| allowed to be signed, those in a logical context are not;
| for example:

| AHI r1,-39999 is valid, but
| AHI r1,59999 is not

| TMH r1,59999 is valid, but
| TMH r1,-39999 is not

System Action: The instruction assembles as zero.

Programmer Response: Use a valid immediate
operand, or specify the immediate information in a DC
statement or a literal and change the statement to a
non-immediate type.

Severity: 8

ASMA032E Relocatable value found when absolute
value required - xxxxxxxx

Explanation: One of the following has occurred:

� A relocatable or complex relocatable expression is
used where an absolute expression is required.

� A DSECT-based expression is used as an operand
for an address constant where an expression that
resolves into a storage address is required.

System Action: A machine instruction assembles as
zero. In a DC, DS, or DXD statement, the operand in
error and the following operands are ignored.

Programmer Response: Supply an absolute
expression or term, or for an address constant supply a
valid storage address expression.

Severity: 8

| ASMA033I Storage alignment for xxxxxxxx
| unfavorable

Explanation: An address referenced by this statement
might not be aligned to the optimal boundary for this
instruction; for example, the data referenced by a load
instruction (L) might be on a halfword boundary.

System Action: The instruction assembles as written.

| Programmer Response: Correct the operand if it is
| in error. If you are using an instruction that does not
| require alignment, or you want to suppress alignment
| checking for some other reason, you can specify the
| NOALIGN assembler option or ACONTROL
| FLAG(NOALIGN). If a particular statement is correct,

you can suppress this message by writing the statement
with an absolute displacement and an explicit base
register, as in this example:

 L 1,SYM-BASE(,2)

| Severity: 0

| ASMA034W Operand operand beyond active USING
| range by xxxx bytes

| Explanation: The address of this statement does not
| fall within the range of an active USING statement.

System Action: The instruction assembles as zero.

| Programmer Response: Increase the range of the
| active USING.

Severity: 8

ASMA035S Invalid delimiter - xxxxxxxx

Explanation:

1. A required delimiter in a DC, DS, or DXD statement
is missing or appears where none should be; the
error might be any of these:

� A quotation mark with an address constant.
� A left parenthesis with a non-address constant.

316 HLASM V1R3 Programmer’s Guide

 ASMA036W 1 ASMA041E

� A constant field not started with a quotation
mark, left parenthesis, blank, or comma.

� An empty constant field in a DC.
� A missing comma or right parenthesis following

an address constant.
� A missing subfield right parenthesis in an S-type

address constant.
� A missing right parenthesis in a constant

modifier expression.

2. A parameter in a macro prototype statement was
not followed by a valid delimiter: comma, equal
sign, or blank.

3. The DBCS option is on, and SO follows a variable
symbol without an intervening period.

System Action: The operand or parameter in error
and the following operands or parameters are ignored.

Programmer Response: Supply a valid delimiter.

Severity: 12

ASMA036W Reentrant check failed

Explanation: A machine instruction that might store
data into a control section or common area when run
has been detected. This message is generated only
when reentrant checking is requested by the assembler
option RENT or within an RSECT.

System Action: The statement assembles as written.

Programmer Response: If you want reentrant code,
correct the instruction. Otherwise, for a control section
that has not been defined by an RSECT instruction, you
can suppress reentrancy checking by specifying
NORENT as an assembler option. You cannot
suppress reentrancy for a control section defined by an
RSECT instruction.

Severity: 4

ASMA037E Illegal self-defining value - xxxxxxxx

Explanation: A decimal, binary (B), hexadecimal (X),
or character (C) self-defining term contains characters
that are not permitted or is in illegal format.

System Action: In the source program, the operand in
error and the following operands are ignored. In a
macro definition, the whole statement is ignored.

Programmer Response: Supply a valid self-defining
term.

Severity: 8

ASMA038S Operand value falls outside of current
section/LOCTR

Explanation: An ORG statement specifies a location
outside the control section or the LOCTR in which the
ORG is used. ORG cannot force a change to another
section or LOCTR.

System Action: The statement is ignored.

Programmer Response: Change the ORG statement
if it is wrong. Otherwise, insert a CSECT, DSECT,
COM, or LOCTR statement to set the location counter
to the correct section before the ORG statement is
processed.

Severity: 12

ASMA039S Location counter error

Explanation: The maximum location counter value
has been exceeded. When the OBJECT or DECK
assembler option is specified the maximum location
counter value is X'FFFFFF'.

When the XOBJECT assembler option is specified the
maximum location counter value is X'FFFFFFFF'.

System Action: The assembly continues, however,
the resulting code will probably not run correctly.

Programmer Response: The probable cause is a
high ORG statement value or a high START statement
value. Correct the value or split up the control section.

Severity: 12

ASMA040S Missing operand

Explanation: The statement requires an operand, and
none is present.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored.

Programmer Response: Supply the missing operand.

Severity: 12

ASMA041E Term expected; text is unclassifiable -
xxxxxxxx

Explanation: One of these errors has occurred:

� A term was expected, but the character
encountered is not one that starts a term (letter,
number, =, +, −, *).

� A letter and a quotation mark did not introduce a
valid term; the letter is not L, C, G (DBCS option
only), X, or B.

System Action: Another message accompanies an
assembler statement. A machine instruction assembles
as zero.

Programmer Response: Check for missing
punctuation, a wrong letter on a self-defining term, a
bad attribute request, a leading comma, or a dangling
comma. Note that the length attribute is the only one
accepted here. If a defined, scale, type, or integer
attribute is needed, use a SETA statement and
substitute the variable symbol where the attribute is
needed.

Severity: 8

 Appendix G. High Level Assembler Messages 317

 ASMA042E 1 ASMA048E

ASMA042E Length attribute of symbol is
unavailable; default=1

Explanation: This statement has a length attribute
reference to a symbol, and the length attribute of the
symbol is unavailable for one of the following reasons:

� The symbols has not been previously defined.

� The type attribute of a symbol is U.

A symbol defined by an EQU instruction has a type
attribute of U, however, a reference to its length
does not produce this message.

� The length cannot be determined due to lookahead
processing. If a statement that defines a symbol,
and references a length attribute, causes lookahead
processing, the symbol might not be assigned a
length attribute until after lookahead processing is
complete. References to the same length attribute
in subsequent conditional assembly statements,
before lookahead processing completes, might
cause this message to be produced.

System Action: The L' attribute defaults to 1.

Programmer Response: Ensure the symbol is
defined. If you suspect the error might be caused
because of lookahead processing, restructure your code
so that the symbol is defined before it is referenced.

Severity: 8

ASMA043E Previously defined symbol - xxxxxxxx

Explanation: The symbol in a name field or in the
operand field of an EXTRN or WXTRN statement was
defined (used as a name or an EXTRN/WXTRN
operand) in a previous statement.

System Action: The name or EXTRN/WXTRN
operand of this statement is ignored. The following
operands of an EXTRN or WXTRN are processed. The
first occurrence of the symbol defines it.

Programmer Response: Correct a possible spelling
error, or change the symbol.

Severity: 8

ASMA044E Undefined symbol - xxxxxxxx

Explanation: A symbol in the operand field has not
been defined, that is, used in the name field of another
statement, the operand field of an EXTRN or WXTRN,
or, in the case of a literal, the operand of a previously
processed machine instruction statement.

System Action: A machine instruction or an address
constant assembles as zero. In a DC, DS, or DXD
statement or in a duplication-factor or length- modifier
expression, the operand in error and the following
operands are ignored. In an EQU statement, zero is
assigned as the value of the undefined symbol. Any
other instruction is not processed.

Programmer Response: Define the symbol, or
remove the references to it.

Severity: 8

ASMA045W Register or label not previously used -
xxxxxxxx

Explanation: A register or label specified in a DROP
statement has not been previously specified in a USING
statement.

System Action: Registers or labels not active at the
time are ignored.

Programmer Response: Remove the unreferenced
registers or label from the DROP statement. You can
drop all active base registers and labels at once by
specifying DROP with a blank operand.

Severity: 4

ASMA046E Bit 7 of CCW flag byte must be zero

Explanation: Bit 7 of the flag byte of a channel
command word specified by a CCW, CCW0, or CCW1
statement is not zero.

System Action: The CCW, CCW0, or CCW1
assembles as zero.

Programmer Response: Set bit 7 of the flag byte to
zero to suppress this message during the next
assembly.

Severity: 8

ASMA047E Severity code too large

Explanation: The severity code (first operand) of an
MNOTE statement is not * or an unsigned decimal
number from 0 to 255.

System Action: The statement is printed in standard
format instead of MNOTE format. The MNOTE is given
the severity code of this message.

Programmer Response: Choose a severity code of *
or a number less than or equal to 255, or check for a
generated severity code.

Severity: 8

ASMA048E ENTRY error - xxxxxxxx

Explanation: One of the following errors was detected
in the operand of an ENTRY statement:

� Duplicate symbol (previous ENTRY)
� Symbol defined in a DSECT or COM section
� Symbol defined by a DXD statement

 � Undefined symbol
� Symbol defined by an absolute or complex

relocatable EQU statement

System Action: The external symbol dictionary output
is suppressed for the symbol.

318 HLASM V1R3 Programmer’s Guide

 ASMA049W 1 ASMA055S

Programmer Response: Define the ENTRY operand
correctly.

Severity: 8

ASMA049W Illegal range on ISEQ

Explanation: If this message is accompanied by
another, this one is advisory. If it appears by itself, it
indicates one of the following errors:

� An operand value is less than 1 or greater than 80,
or the second operand (rightmost column to be
checked) is less than the first operand (extreme left
column to be checked).

� More or fewer than two operands are present, or an
operand is null (empty).

� An operand expression contains an undefined
symbol.

� An operand expression is not absolute.
� The statement is too complex. For example, it

might have forward references or cause an
arithmetic overflow during evaluation.

� The statement is circularly defined.

System Action: Sequence checking stops.

Programmer Response: Supply valid ISEQ operands.
Also, be sure that the records following this statement
are in order; they have not been sequence checked.

Severity: 4

ASMA050E Illegal name field; name discarded -
xxxxxxxx

Explanation: One of these errors has occurred:

� The name field of a macro prototype statement
contains an incorrect symbolic parameter (variable
symbol)

� The name field of a COPY statement in a macro
definition contains an entry other than blank or a
valid sequence symbol

System Action: The incorrect name field is ignored.

Programmer Response: Correct the incorrect name
field.

Severity: 8

ASMA051E Illegal statement outside a macro
definition

| Explanation: A MEND, MEXIT, ASPACE, or AREAD
| statement appears outside a macro definition.

System Action: The statement is ignored.

Programmer Response: Remove the statement or, if
a macro definition is intended, insert a MACRO
statement.

Severity: 8

ASMA052S Record out of sequence - xxxxxxxx

Explanation: Input sequence checking, under control
of the ISEQ assembler instruction, has determined that
this statement is out of sequence. The sequence
number of the statement is appended to the message.

System Action: The statement assembles normally.
However, the sequence number of the next statement is
checked relative to this statement.

Programmer Response: Put the statements in correct
sequence. If you want a break in sequence, put in a
new ISEQ statement and sequence number. ISEQ
always resets the sequence number; the record
following the ISEQ is not sequence checked.

Severity: 12

ASMA053W Blank sequence field - xxxxxxxx

Explanation: Input sequence checking, controlled by
the ISEQ assembler statement, has detected a
statement with a blank sequence field. The sequence
number of the last numbered statement is appended to
the message.

System Action: The statement assembles normally.
The sequence number of the next statement is checked
relative to the last statement having a non-blank
sequence field.

Programmer Response: Put the correct sequence
number in the statement or discontinue sequence
checking over the blank statements by means of an
ISEQ statement with a blank operand.

Severity: 4

ASMA054E Illegal continuation record

Explanation: A statement has more than 10 records
or end-of-input has been encountered when a
continuation record was expected.

System Action: The records already read are
processed as is. If the statement had more than 10
records, the next record is treated as the beginning of a
new statement.

Programmer Response: In the first case, break the
statement into two or more statements. In the second
case, ensure that a continued statement does not span
the end of a library member. Check for lost records or
an extraneous continuation character.

Severity: 8

ASMA055S Recursive COPY

Explanation: A nested COPY statement (COPY within
another COPY) attempted to copy a library member
already being copied by a higher level COPY within the
same nest.

System Action: This COPY statement is ignored.

Programmer Response: Correct the operand of this

 Appendix G. High Level Assembler Messages 319

 ASMA056W 1 ASMA060S

COPY if it is wrong, or rearrange the nest so that the
same library member is not copied by COPY
statements at two different levels.

Severity: 12

| ASMA056W Absolute value found when relocatable
| value expected - xxxxxxxx

| Explanation: An absolute expression has been used
| as the immediate field in a branch-relative instruction.
| The immediate field in a branch-relative instruction is
| used as signed number of halfwords relative to the
| current location counter. The use of an absolute
| expression for this value may cause unpredictable
| results.

| System Action: The instruction assembles as written.

| Programmer Response: Supply a relocatable
| expression.

| Severity: 4

ASMA057E Undefined operation code - xxxxxxxx

Explanation: One of the following errors has occurred:

� The operation code of this statement is not a valid
machine or assembler instruction or macro name.

� In an OPSYN statement, this operand symbol is
undefined or illegal or, if no operand is present, the
name field symbol is undefined.

� On VSE the High Level Assembler only reads
library macros that have a member type of A, or if
the // OPTION SUBLIB=DF statement is used, a
member type of D. Edited (E-Deck) macros, that
have a member type of E or F can only be read by
a LIBRARY exit.

System Action: The statement is ignored. Note that
OPSYN does not search the macro library for an
undefined operand.

Programmer Response: Correct the statement. In
the case of an undefined macro instruction, the wrong
data set might have been specified for the macro
library. In the case of OPSYN, a previous OPSYN or
macro definition might have failed to define the
operation code.

If the operation code shown is a VSE edited macro
(E-Deck), High Level Assembler can only find and read
it with a LIBRARY exit. You might want to use the VSE
supplied LIBRARY exit described in VSE/ESA Guide to
System Functions.

Severity: 8

| ASMA058E Invalid target of branch relative
| instruction - xxxxxxxx

| Explanation: One of the following has occurred:

| � The target expression is not in the same control
| section as the instruction
| � The target expression is an odd value, and
| therefore cannot be represented as a number of
| halfwords

| System Action: The instruction assembles as zero.

| Programmer Response: Supply a valid target value
| that is on a halfword boundary and within the same
| control section.

| Severity: 8

ASMA059C Illegal ICTL - xxxxxxxx

Explanation: An ICTL statement has one of the
following errors:

� The operation code was created by variable symbol
substitution

� It is not the first statement in the assembly
� The value of one or more operands is incorrect
� An operand is missing
� A character is detected in the operand field that is

not permitted

System Action: The ICTL statement is ignored.
Assembly continues with standard ICTL values.

Programmer Response: Correct or remove the ICTL.
The begin column must be 1-40; the end column must
be 41-80 and at least five greater than the begin
column; and the continue column must be 2-40.

Severity: 16

ASMA060S COPY code not found - xxxxxxxx

Explanation: (1) If this message is on a COPY
statement and no text is printed with it, one of the
following occurred:

� The library member was not found.
� The lookahead phase previously processed the

COPY statement and did not find the library
member, the copy was recursive, or the operand
contains a variable symbol. Variable symbols can
be used if the COPY statement is in open code.

(2) If this message is not on a COPY statement, but
has a library member name printed with it, the
lookahead phase of the assembler could not find the
library member because the name is undefined or
contains a variable symbol.

System Action: The COPY statement is ignored; the
library member is not copied.

Programmer Response: Check that the correct macro
library was assigned, or check for a possible misspelled
library member name.

320 HLASM V1R3 Programmer’s Guide

 ASMA061E 1 ASMA066W

If COPY member is not defined in any macro library,
and is not processed because of an AGO or AIF
assembler instruction, add a dummy COPY member
with the name to the macro library.

Severity: 12

| ASMA061E Symbol not name of DSECT, DXD or
| external label

| Explanation: The operand of a Q-type address
| constant is not a symbol or the name of a DSECT or
| DXD statement, or an external label.

System Action: The constant assembles as zero.

Programmer Response: Supply a valid operand.

Severity: 8

| ASMA062E Illegal operand format - xxxxxxxx

Explanation: One of the following errors has occurred:

� ADATA—more than five operands are specified, or
the value of one of the expressions specified in one
of the first four operands is outside the range −231

to +231−1, or the fifth operand is not a valid
character expression

| � ACONTROL—one or more of the operands supplied
| is invalid
| � AINSERT—the first operand is not a valid string, or
| the second operand is not BACK or FRONT

� AMODE—the operand does not specify 24, 31, or
ANY

� DROP or USING—more than 16 registers are
specified in the operand field

� EXITCTL—more than five operands are specified,
or the first operand is not a valid exit type, or the
value of one of the expressions specified in the
second and subsequent operands is outside the
range −231 to +231−1

� MNOTE—the syntax of the severity code (first
operand) is not correct, or the sum of the length of
the operands including quotes and commas
exceeds 1024 bytes

� PRINT—an operand specifies an incorrect print
option

� PUSH or POP—an operand does not specify a
PRINT or USING statement

� RMODE—the operand does not specify 24 or ANY
� TITLE—more than 100 bytes were specified

System Action: The first 16 registers in a DROP or
USING statement are processed. The operand in error
and the following operands of a PUSH, POP, or PRINT
statement are ignored. The AMODE or RMODE
instruction is ignored, and the name field (if any) does
not appear in the cross-reference listing. The first 100
bytes of the operand of the TITLE instruction are used
as the title.

Programmer Response: Supply a valid operand field.

Severity: 8

ASMA063E No ending apostrophe - xxxxxxxx

Explanation: The quotation mark terminating an
operand is missing, or the standard value of a keyword
parameter of a macro prototype statement is missing.

System Action: The operand or standard value in
error is ignored. If the error is in a macro definition
model statement, the whole statement is ignored.

Programmer Response: Supply the missing quotation
mark.

Severity: 8

ASMA064S Floating point characteristic out of
range

Explanation: A converted floating-point constant is too
large or too small for the processor. The allowable
range is approximately 5.4x10−79 to 7.2x1075..

System Action: The constant assembles as zero.

Programmer Response: Check the characteristic
(exponent), exponent modifier, scale modifier, and
mantissa (fraction) for validity. Remember that a
floating-point constant is rounded, not truncated, after
conversion.

Severity: 12

ASMA065E Unknown type - xxxxxxxx

Explanation: An unknown constant type has been
used in a DC or DS statement or in a literal.

System Action: The operand in error and the
following operands are ignored.

Programmer Response: Supply a valid constant.
Look for an incorrect type code or incorrect syntax in
the duplication factor.

Severity: 8

ASMA066W 2-byte relocatable address constant

Explanation: This statement contains a relocatable
Y-type address constant or a 2-byte relocatable A-type
address constant. Addressing errors occur if the
address constant is used to refer to a storage address
equal to or greater than 64K (65,536).

System Action: The statement assembles as written.

Programmer Response: If the address constant is
used to refer to a storage address less than 64K
(65,536), the 2-byte relocatable address constant is
valid. You can use the assembler option RA2 to
suppress this message.

Severity: 4

 Appendix G. High Level Assembler Messages 321

 ASMA067S 1 ASMA075E

ASMA067S Illegal duplication factor - xxxxxxxx

Explanation: One of the following errors has occurred:

� A literal has a zero duplication factor
� The duplication factor of a constant is greater than

the maximum of 224−1 bytes
� A duplication factor expression of a constant is not

correct

System Action: The operand in error and the
following operands of a DC, DS, or DXD statement are
ignored. The statement containing the literal assembles
as zero.

Programmer Response: Supply a valid duplication
factor. If you want a zero duplication factor, write the
literal as a DC statement.

Severity: 12

ASMA068S Length error - xxxxxxxx

Explanation: One of the following errors has occurred:

� The length modifier of a constant is wrong
� The C, X, B, Z, or P-type constant is too long
� An operand is longer than 224−1 bytes
� A relocatable address constant has an illegal length
� The length field in a machine instruction is not

correct or out of the permissible range

System Action: The operand in error and the
following operands of the DC, DS, or DXD statement
are ignored, except that an address constant with an
illegal length is truncated. A machine instruction
assembles as zero.

Programmer Response: Supply a valid length.

Severity: 12

ASMA070E Scale modifier error - xxxxxxxx

Explanation: A scale modifier in a constant is used
illegally, is out of range, or is relocatable, or there is an
error in a scale modifier expression.

System Action: If the scale modifier is out of range, it
defaults to zero. Otherwise, the operand in error and
the following operands are ignored.

Programmer Response: Supply a valid scale
modifier.

Severity: 8

ASMA071E Exponent modifier error

Explanation: The constant contains multiple internal
exponents, the exponent modifier is out of range or
relocatable, or the sum of the exponent modifier and the
internal exponent is out of range.

System Action: If the constant contains multiple
internal exponents, the operand in error and the

following operands are ignored. Otherwise, the
exponent modifier defaults to zero.

Programmer Response: Change the exponent
modifier or the internal exponent.

Severity: 8

ASMA072E Data item too large

Explanation: The value of a Y-type address constant
or H-type constant is larger than 215−1 or smaller than
−215, or the value of a F-type constant is larger than
231−1 or smaller than −231.

System Action: The constant is truncated. The
high-order bits are lost.

Programmer Response: Supply a smaller scale
modifier, a longer constant, or a smaller value.

Severity: 8

ASMA073E Precision lost

| Explanation: The modifiers of a floating-point number
| either truncate the exponent or shift the fraction out of
| the converted constant.

| System Action: The constant assembles with an
| exponent but with a fraction of zero.

| Programmer Response: Change the modifier or use
| a longer constant type.

Severity: 8

ASMA074E Illegal syntax in expression - xxxxxxxx

Explanation: An expression has two terms or two
operations in succession, or incorrect or missing
characters or delimiters.

System Action: In a DC, DS, or DXD statement, the
operand in error and the following operands are
ignored. In a macro definition, the whole statement is
ignored. A machine instruction assembles as zero.

Programmer Response: Check the expression for
typing errors, or for missing or incorrect terms or
characters.

Severity: 8

ASMA075E Arithmetic overflow

Explanation: The intermediate or final value of an
expression is not within the range −231 through 231−1.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored.

Programmer Response: Change the expression.

Severity: 8

322 HLASM V1R3 Programmer’s Guide

 ASMA076E 1 ASMA084S

ASMA076E Statement complexity exceeded

Explanation: The complexity of this statement caused
the assembler's expression evaluation work area to
overflow.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored.

Programmer Response: Reduce the number of
terms, levels of expressions, or references to complex
relocatable EQU names.

Severity: 8

ASMA077E Circular definition

Explanation: The value of a symbol in an expression
is dependent on itself, either directly or indirectly, via
one or more EQU statements. In the following
example:

A EQU B
B EQU C
C EQU A

A is circularly defined.

System Action: The value of the EQU statement
defaults to the current value of the location counter. All
other EQU statements involved in the circularity are
defaulted in terms of this one.

Programmer Response: Supply a correct definition.

Severity: 8

| ASMA078E Operand op expression complexly
| relocatable - expr

| Explanation: The expression specified is complexly
| relocatable, but an absolute or simply relocatable
| expression is required.

| System Action: The instruction assembles as zero.

| Programmer Response: Correct the expression.

| Severity: 8

ASMA079E Illegal PUSH-POP

Explanation: More POP assembler instructions than
PUSH instructions have been encountered.

System Action: This POP instruction is ignored.

Programmer Response: Eliminate a POP statement,
or add another PUSH statement.

Severity: 8

ASMA080E Statement is unresolvable

Explanation: A statement cannot be resolved,
because it contains a complex relocatable expression or
because the location counter has been circularly
defined.

System Action: The statement is ignored.

Programmer Response: Untangle the forward

references or check the complex relocatable EQU
statements.

Severity: 8

ASMA081E Created SET symbol exceeds 63
characters - xxxxxxxx

Explanation: A SET symbol created by variable
symbol substitution is longer than 63 characters
(including the ampersand as the first character).

System Action: If the symbol is in the operand field of
a SET, AIF, or AGO statement, its value is set to zero
or null, and the type attribute is set to undefined (U). If
the symbol is in the operand field of a GBL, or LCL
statement or the name field of a SET statement,
processing of the macro stops.

Programmer Response: Shorten the symbol.

Severity: 8

ASMA082E Created SET symbol is null - xxxxxxxx

Explanation: A SET symbol created by variable
symbol substitution is null (empty string).

System Action: If the symbol is in the operand field of
a SET, AIF, or AGO statement, its value is set to zero
or null, and the type attribute is set to undefined (U). If
the symbol is in the operand field of a GBL, or LCL
statement or the name field of a SET statement,
processing of the macro stops.

Programmer Response: Supply a valid symbol.

Severity: 8

ASMA083E Created SET symbol is not a valid
symbol - xxxxxxxx

Explanation: A SET symbol created by variable
symbol substitution or concatenation does not consist of
an ampersand followed by up to 62 alphanumeric
characters, the first of which is alphabetic.

System Action: If the symbol is in the operand field of
a SET, AIF, or AGO statement, its value is set to zero
or null, and the type attribute is set to undefined (U). If
the symbol is in the operand field of a GBL or LCL
statement or the name field of a SET statement,
processing of the macro stops.

Programmer Response: Supply a valid symbol.

Severity: 8

ASMA084S Generated name field exceeds 63
characters; discarded - xxxxxxxx

Explanation: The name field on a generated
statement is longer than 63 characters.

System Action: The name field is not generated. The
rest of the statement assembles normally.

Programmer Response: Shorten the generated name
to 63 characters or fewer.

 Appendix G. High Level Assembler Messages 323

 ASMA085I 1 ASMA093E

Severity: 12

ASMA085I Generated operand field is null - xxxxxxxx

Explanation: The operand field of a generated
statement is null (empty).

System Action: The statement assembles as though
no operand were specified.

Programmer Response: Provide a non-empty
operand field. If you want the statement assembled
with no operand, substitute a comma rather than leave
the operand blank.

Severity: 0

ASMA086S Missing MEND generated - xxxxxxxx

Explanation: A macro definition, appearing in the
source program or being read from a library by a macro
call or a COPY statement, ends before a MEND
statement is encountered to end it.

System Action: A MEND statement is generated.
The portion of the macro definition read in is processed.

Programmer Response: Insert the MEND statement if
it was omitted. Otherwise, check if all the macro
definition is on the library.

Severity: 12

ASMA087S Generated operation code is null -
xxxxxxxx

Explanation: The operation code of a generated
statement is null (blank).

System Action: The generated statement is printed
but not assembled.

Programmer Response: Provide a valid operation
code.

Severity: 12

ASMA088E Unbalanced parentheses in macro call
operand - xxxxxxxx

Explanation: Excess left or too few right parentheses
occur in an operand (parameter) of a macro call
statement.

System Action: The parameter corresponding to the
operand in error is given a null (empty) value.

Programmer Response: Balance the parentheses.

Severity: 8

ASMA089E Arithmetic expression contains illegal
delimiter or ends prematurely - xxxxxxxx

Explanation: An arithmetic expression contains an
incorrect character or an arithmetic subscript ends
without enough right parentheses.

System Action: The statement is ignored.

Programmer Response: Supply a valid expression.

Severity: 8

ASMA090E Excess right parenthesis in macro call
operand - xxxxxxxx

Explanation: A right parenthesis without a
corresponding left parenthesis was detected in an
operand of a macro instruction.

System Action: The excess right parenthesis is
ignored. The macro expansion might be incorrect.

Programmer Response: Insert the correct
parenthesis.

Severity: 8

ASMA091E SETC or character relocatable operand
over 255 characters; truncated to 255
characters - xxxxxxxx

Explanation: The value of the operand of a SETC
statement or the character relational operand of an AIF
statement is longer than 255 characters. This might
occur before substrings are evaluated.

System Action: The first 255 characters are used.

Programmer Response: Shorten the SETC
expression value or the operand value.

Severity: 8

ASMA092E Substring expression 1 points past
string end; default=null - xxxxxxxx

Explanation: The first arithmetic expression of a
SETC substring points beyond the end of the
expression character string.

System Action: The substring is given a null value.

Programmer Response: Supply a valid expression.

Severity: 8

ASMA093E Substring expression 1 less than 1;
default=null - xxxxxxxx

Explanation: The first arithmetic expression of a
SETC substring is less than one; that is, it points before
the expression character string.

System Action: The substring expression defaults to
null.

Programmer Response: Supply a valid expression.

Severity: 8

324 HLASM V1R3 Programmer’s Guide

 ASMA094I 1 ASMA102E

ASMA094I Substring goes past string end;
default=remainder

Explanation: The second expression of a substring
notation specifies a length that extends beyond the end
of the string.

System Action: The result of the substring operation
is a string that ends with the last character in the
character string.

Programmer Response: Make sure the arithmetic
expression used to specify the length does not specify
characters beyond the end of the string. Either change
the first or the second expression in the substring
notation. You can use the assembler option
FLAG(NOSUBSTR) to suppress this message.

Severity: 0

ASMA095W Substring expression 2 less than 0;
default=null - xxxxxxxx

Explanation: The second arithmetic expression of a
SETC substring is less than or equal to zero.

System Action: No characters (a null string) from the
substring character expression are used.

Programmer Response: Supply a valid expression.

Severity: 4

ASMA096E Unsubscripted SYSLIST;
default=SYSLIST(1) - xxxxxxxx

Explanation: The system variable symbol, &SYSLIST,
is not subscripted. &SYSLIST(n) refers to the nth
positional parameter in a macro instruction.
N'&SYSLIST does not have to be subscripted.

System Action: The subscript defaults to one so that
it refers to the first positional parameter.

Programmer Response: Supply the correct subscript.

Severity: 8

ASMA097E Invalid attribute reference to SETA or
SETB symbol; default=U or 0 - xxxxxxxx

Explanation: A length (L'), scaling (S'), integer (I'),
or defined (D') attribute refers to a SETA or SETB
symbol.

System Action: The attributes are set to default
values:L'=0, S'=0, I'=0 ,and D'=0.

Programmer Response: Change or remove the
attribute reference.

Severity: 8

ASMA098E Attribute reference to invalid symbol;
default=U or 0 - xxxxxxxx

Explanation: An attribute attempted to reference a
symbol that is not correct or has a null value. (A valid
symbol is 1 to 63 alphanumeric characters, the first of
which is alphabetic.)

System Action: For a type (T') attribute, defaults to
U. For all other attributes, defaults to 0.

Programmer Response: Supply a valid symbol.

Severity: 8

| ASMA099W Wrong type of constant for S or I
| attribute reference; default=0 - xxxxxxxx

Explanation: An integer (I') or scaling (S') attribute
references a symbol whose type is other than
floating-point (E,D,L), decimal (P,Z), or fixed-point (H,F).

System Action: The integer or scaling attribute
defaults to zero.

Programmer Response: Remove the integer or
scaling attribute reference or change the constant type.

Severity: 4

ASMA100E Subscript less than 1; default to
subscript=1 - xxxxxxxx

Explanation: The subscript of a subscripted SET
symbol in the name field of a SET statement, the
operand field of a GBL or LCL statement, or an
&SYSLIST statement is less than 1.

System Action: The subscript defaults to 1.

Programmer Response: Supply the correct subscript.

Severity: 8

ASMA101E Subscript less than 1; default to value=0
or null - xxxxxxxx

Explanation: The subscript of a SET symbol in the
operand field is less than 1.

System Action: The value is set to zero or null.

Programmer Response: Supply a valid subscript.

Severity: 8

ASMA102E Arithmetic term is not self-defining term;
default=0 - xxxxxxxx

Explanation: A SETC term or expression used as an
arithmetic term is not a valid self-defining term.

System Action: The value of the SETC term or
expression is set to zero.

Programmer Response: Make the SETC a
self-defining term, such as C'A', X'1EC', B'1101', or
27. The C, X, or B and the quotation marks must be
part of the SETC value.

Severity: 8

 Appendix G. High Level Assembler Messages 325

 ASMA103E 1 ASMA110S

ASMA103E Multiplication overflow; default
product=1 - xxxxxxxx

Explanation: A multiplication overflow occurred in a
macro definition statement.

System Action: The value of the expression up to the
point of overflow is set to one; evaluation continues.

Programmer Response: Change the expression so
that overflow does not occur; break it into two or more
operations, or regroup the terms by parentheses.

Severity: 8

| ASMA104W Statement processing incomplete

| Explanation: This indicates that a previously-flagged
| error has terminated processing for this statement.

| System Action: The assembly continues.

| Programmer Response: Correct previous errors.

| Severity: 4

ASMA105U Arithmetic expression too complex

Explanation: An arithmetic expression in a macro
definition statement caused an overflow because it is
too complex; that is, it has too many terms, levels, or
both.

System Action: The assembly stops.

Programmer Response: Simplify the expression or
break it into two or more expressions.

Severity: 20

ASMA106E Wrong target symbol type; value left
unchanged - xxxxxxxx

Explanation: The SET symbol in the name field has
already been declared, and is a different type to the
type of SETx instruction. For example, you might have
previously declared a SET symbol as arithmetic (SETA),
and you are attempting to use the SET symbol as the
target of a SETC instruction.

System Action: The statement is ignored.

Programmer Response: Make the declaration agree
with the SET statement type. If you want to store
across SET symbol types, first store into a SET symbol
of matching type, and then use another SETx
instruction to store the value, represented by the
matching SET symbol, into the non- matching SET
symbol.

Severity: 8

ASMA107E Inconsistent dimension on target
symbol; subscript ignored, or 1 used -
xxxxxxxx

Explanation: The SET symbol in the name field is
dimensioned (subscripted), but was not declared in a
GBL or LCL statement as dimensioned, or vice versa.

System Action: The subscript is ignored or a
subscript of 1 is used, in accordance with the
declaration.

Programmer Response: Make the declaration and
the usage compatible. Note that you can declare a
local SET symbol as dimensioned by using it,
subscripted, in the name field of a SET statement.

Severity: 8

ASMA108E Inconsistent dimension on SET symbol
reference; default = 0, null, or type=U -
xxxxxxxx

Explanation: A SET symbol in the operand field is
dimensioned (subscripted), but was not declared in a
GBL or LCL statement as dimensioned, or vice versa.

System Action: A value of zero or null is used for the
subscript. If the type attribute of the SET symbol is
requested, it is set to U.

Programmer Response: Make the declaration and
the usage compatible. You can declare a SET symbol
as dimensioned by using it, subscripted, in the name
field of a SET statement.

Severity: 8

ASMA109E Multiple SET operands for
undimensioned SET symbol; gets last
operand - xxxxxxxx

Explanation: Multiple operands were assigned to an
undimensioned (unsubscripted) SET symbol.

System Action: The SET symbol is given the value of
the last operand.

Programmer Response: Declare the SET symbol as
dimensioned, or assign only one operand to it.

Severity: 8

ASMA110S Library macro first statement not
'MACRO' or comment

Explanation: A statement other than a comment
statement preceded a MACRO statement in a macro
definition read from a library.

System Action: The macro definition is not read from
the library. A corresponding macro call cannot be
processed.

Programmer Response: Ensure that the library macro
definition begins with a MACRO statement preceded
(optionally) by comment statements only.

Severity: 12

326 HLASM V1R3 Programmer’s Guide

 ASMA111S 1 ASMA119S

ASMA111S Invalid AIF or SETB operand field -
xxxxxxxx

Explanation: The operand of an AIF or SETB
statement either does not begin with a left parenthesis
or is missing altogether.

System Action: The statement is ignored.

Programmer Response: Supply a valid operand.

Severity: 12

ASMA112S Invalid sequence symbol - xxxxxxxx

Explanation: One of the following errors has occurred:

� A sequence symbol does not begin with a period
followed by one to 62 alphanumeric characters, the
first being alphabetic.

� A sequence symbol in the name field was created
by substitution.

� Operand of AGO is blank or sequence symbol in
AIF is blank.

System Action: The sequence symbol in the name
field is ignored. A sequence symbol in the operand
field of an AIF or AGO statement causes the whole
statement to be ignored.

Programmer Response: Supply a valid sequence
symbol.

Severity: 12

ASMA113S Continue column blank

Explanation: A SET symbol declaration in a GBL or
LCL statement began with an ampersand in the end
column (normally column 71) of the previous record, but
the continue column (normally column 16) of this record
is blank.

System Action: This record and any following records
of the statement are ignored. Any SET symbols that
completely appear on the previous record(s), are
processed normally.

Programmer Response: Begin this record in the
continuation column.

Severity: 12

ASMA114S Invalid COPY operand - xxxxxxxx

Explanation: The operand of a COPY statement is not
a symbol of 1 to 8 alphanumeric characters, the first
being alphabetic.

System Action: The COPY statement is ignored.

Programmer Response: Supply a valid operand. In
open code the operand can be specified as a previously
defined SET symbol.

Severity: 12

ASMA115S COPY operand too long - xxxxxxxx

Explanation: The symbol in the operand field of a
COPY statement is more than 8 characters long.

System Action: The COPY statement is ignored.

Programmer Response: Supply a valid operand.

Severity: 12

ASMA116E Illegal SET symbol - xxxxxxxx

Explanation: A SET symbol in the operand field of a
GBL or LCL statement or in the name field of a SET
statement does not consist of an ampersand followed
by one to 62 alphanumeric characters, the first being
alphabetic.

System Action: For a GBL or LCL statement, the
incorrect SET symbol and all following SET symbols in
a GBL or LCL statement are ignored. For a SET
statement, the whole SET statement is ignored.

Programmer Response: Supply a SET symbol.

Severity: 8

ASMA117E Illegal subscript - xxxxxxxx

Explanation: The subscript following a SET symbol
contained unbalanced parentheses or an incorrect
arithmetic expression.

System Action: This statement is ignored.

Programmer Response: Supply an equal number of
left and right parentheses or a valid arithmetic
expression.

Severity: 8

ASMA118S Source macro ended by 'MEND' in
COPY code

Explanation: A library member, being copied by a
COPY statement within a macro definition, contained a
MEND statement.

System Action: The MEND statement is honored and
the macro definition stops. No more COPY code is
read. The statements brought in before the end of the
COPY code are processed.

Programmer Response: Make sure that each library
member to be used as COPY code contains balanced
MACRO and MEND statements.

Severity: 12

ASMA119S Too few MEND statements in COPY
code

Explanation: A macro definition is started in a library
member brought in by a COPY statement and the
COPY code ends before a MEND statement is
encountered.

System Action: A MEND statement is generated to

 Appendix G. High Level Assembler Messages 327

 ASMA120S 1 ASMA126S

end the macro definition. The statements brought in
before the end of the COPY code are processed.

Programmer Response: Check to see if part of the
macro definition was lost. Also, ensure that each macro
definition to be used as COPY code contains balanced
MACRO and MEND statements.

Severity: 12

ASMA120S EOD where continuation record
expected

Explanation: An end-of-data occurred when a
continuation record was expected.

System Action: The portion of the statement read in
is assembled. The assembly stops if the end-of-data is
on the PRIMARY INPUT. If a library member is being
copied, the assembly continues with the statement after
the COPY statement.

Programmer Response: Check to determine whether
any statements were omitted from the source program
or from the COPY code.

Severity: 12

ASMA121S Insufficient storage for editor work area

Explanation: The macro editor module of the
assembler cannot get enough main storage for its work
areas.

System Action: The assembly stops.

Programmer Response: Split the assembly into two
or more parts or give the macro editor more working
storage.

On MVS or CMS, this can be done by increasing the
region size for the assembler, decreasing blocking
factor or block size on the assembler data sets, or a
combination of both.

On VSE, this can be done by decreasing the value you
specify on the SIZE parameter of the JCL EXEC
statement, or by running the assembly in a larger
partition.

Severity: 12

ASMA122S Illegal operation code format

Explanation: The operation code is not followed by a
blank or is missing altogether, or the first record of a
continued source statement is missing.

System Action: The statement is ignored.

Programmer Response: Ensure that the statement
has a valid operation code and that all records of the
statement are present.

Severity: 12

ASMA123S Variable symbol too long - xxxxxxxx

Explanation: A SET symbol, symbolic parameter, or
sequence symbol contains more than 62 characters
following the ampersand or period.

System Action: This statement is ignored.

Programmer Response: Shorten the SET symbol or
sequence symbol.

Severity: 12

ASMA124S Illegal use of parameter

Explanation: A symbolic parameter was used in the
operand field of a GBL or LCL statement or in the name
field of a SET statement. In other words, a variable
symbol has been used both as a symbolic parameter
and as a SET symbol.

System Action: The statement is ignored.

Programmer Response: Change the variable symbol
to one that is not a symbolic parameter.

Severity: 12

ASMA125S Illegal macro name - macro uncallable -
xxxxxxxx

Explanation: The operation code of a macro prototype
statement is not a valid symbol; that is, one to 63
alphanumeric characters, the first alphabetic.

System Action: The macro definition is edited.
However, since the macro name is not correct, the
macro cannot be called.

Programmer Response: Supply a valid macro name.

Severity: 12

ASMA126S Library macro name incorrect - xxxxxxxx

Explanation: The operation code of the prototype
statement of a library macro definition is not the same
as the operation code of the macro instruction (call).
Library macro definitions are located by their member
names. However, the assembler compares the macro
instruction with the macro prototype.

System Action: The macro definition is edited using
the operation code of the prototype statement as the
macro name. Thus, the definition cannot be called by
this macro instruction.

Programmer Response: Ensure that the member
name of the macro definition is the same as the
operation code of the prototype statement. This usually
requires listing the macro definition from the library, use
of the LIBMAC option to cause the macro definition to
be listed, or a COPY of the member name.

Severity: 12

328 HLASM V1R3 Programmer’s Guide

 ASMA127S 1 ASMA133S

ASMA127S Illegal use of ampersand

Explanation: One of the following errors has occurred:

� An ampersand was found where all substitution
should have already been done

� The standard value of a keyword parameter in a
macro prototype statement contained a single
ampersand or a string with an odd number of
ampersands

� An unpaired ampersand occurred in a character (C)
constant

System Action: In a macro prototype statement, all
information following the error is ignored. In other
statements, the action depends on which field the error
occurred in. If the error occurred in the name field, the
statement is processed without a name. If the error
occurred in the operation code field, the statement is
ignored. If the error occurred in the operand field,
another message is issued to specify the default.
However, if the error occurred in a C-type constant, the
operand in error and the following operands are
ignored.

Programmer Response: Ensure that ampersands
used in keyword standard values or in C-type constant
values occur in pairs. Also, avoid substituting an
ampersand into a statement unless there is a double
ampersand.

Severity: 12

ASMA128S Excess right parenthesis - xxxxxxxx

Explanation: An unpaired right parenthesis has been
found.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored and an
additional message relative to the statement type
appears. However, if the error is in the standard value
of a keyword on a macro prototype statement, only the
operands in error and the following operands are
ignored.

Programmer Response: Make sure that all
parentheses are paired.

Severity: 12

ASMA129S Insufficient right parentheses - xxxxxxxx

Explanation: An unpaired left parenthesis has been
found. Parentheses must balance at each comma in a
multiple operand statement.

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored and an
additional message relative to the statement type
appears. However, if the error is in the standard value
of a keyword on a macro prototype statement, only the
operands in error and the following operands are
ignored.

Programmer Response: Make sure that all
parentheses are paired.

Severity: 12

ASMA130S Illegal attribute reference - xxxxxxxx

Explanation: One of the following errors has occurred:

� The symbol following a I, L, S, or T attribute
reference is not a valid variable symbol or ordinary
symbol or literal that has been previously used in a
machine instruction

� The symbol following a K or N attribute reference is
not a valid variable symbol

� The symbol following a D attribute reference is not
a valid variable symbol or ordinary symbol

� The quotation mark is missing from a T attribute
reference

System Action: The statement is ignored.

Programmer Response: Supply a valid attribute
reference.

Severity: 12

ASMA131S Parenthesis nesting depth exceeds 255 -
xxxxxxxx

Explanation: There are more than 255 levels of
parentheses in a SETA expression.

System Action: The statement is ignored.

Programmer Response: Rewrite the SETA statement
using several statements to regroup the subexpressions
in the expression.

Severity: 12

ASMA132S Invalid SETB expression - xxxxxxxx

Explanation: A SETB expression in the operand field
of a SETB statement or an AIF statement does not
consist of valid character relational expressions,
arithmetic relational expressions, and single SETB
symbols, connected by logical operators.

System Action: The statement is ignored.

Programmer Response: Supply a valid SETB
expression.

Severity: 12

ASMA133S Illegal substring reference - xxxxxxxx

Explanation: A substring expression following a SETC
expression does not consist of two valid SETA
expressions separated by a comma and enclosed in
parentheses.

System Action: The statement is ignored.

Programmer Response: Supply a valid substring
expression. The second value in the substring
expression can be K.

Severity: 12

 Appendix G. High Level Assembler Messages 329

 ASMA134S 1 ASMA142E

ASMA134S Invalid relational operator - xxxxxxxx

Explanation: Characters other than EQ, NE, LT, GT,
LE, or GE are used in a SETB expression where a
relational operator is expected.

System Action: The statement is ignored.

Programmer Response: Supply a valid relational
operator.

Severity: 12

ASMA135S Invalid logical operator - xxxxxxxx

Explanation: Characters other than AND, OR, NOT,
or XOR are used in a SETB expression where a logical
operator is expected.

System Action: The statement is ignored.

Programmer Response: Supply a valid logical
operator.

Severity: 12

ASMA136S Illegal logical/relational operator

Explanation: Characters other than a valid logical or
relational operator were found where a logical or
relational operator was expected.

System Action: The statement is ignored.

Programmer Response: Supply a valid logical or
relational operator.

Severity: 12

ASMA137S Illegal SETC expression - xxxxxxxx

Explanation: The operand of a SETC statement or the
character value used in a character relation is
erroneous. It must be a valid type attribute (T')
reference or a valid character expression enclosed in
quotation marks.

System Action: The statement is ignored.

Programmer Response: Supply a valid expression.

Severity: 12

| ASMA138W Non-empty PUSH xxxxxxx stack

| Explanation: The number of PUSH instructions
| exceeds the number of POP instructions at the end of
| the assembly. This indicates a potential error.

| System Action: The assembly continues.

| Programmer Response: Change your program to
| issue POP instructions for all PUSHes.

| Severity: 4

ASMA139S EOD during REPRO processing

Explanation: A REPRO statement was immediately
followed by an end-of-data so that no valid record could
be punched. The REPRO is either the last record of
source input or the last record of a COPY member.

System Action: The REPRO statement is ignored.

Programmer Response: Remove the REPRO or
ensure that it is followed by a record to be punched.

Severity: 12

ASMA140W END record missing

Explanation: End-of-file on the source input data set
occurred before an END statement was read. One of
the following has occurred:

� The END statement was omitted or misspelled.
� The END operation code was changed or deleted

by OPSYN or by definition of a macro named END.
The lookahead phase of the assembler marks what
it thinks is the END statement. If an OPSYN
statement or a macro definition redefines the END
statement, premature end-of-input might occur
because the assembler does not pass the original
END statement.

System Action: An END statement is generated. It is
assigned a statement number but not printed. If any
literals are waiting, they are processed as usual
following the END statement.

Programmer Response: Check for lost records.
Supply a valid END statement; or, if you use OPSYN to
define another symbol as END, place it before the
possible entry into the lookahead phase.

Severity: 4

ASMA141E Bad character in operation code -
xxxxxxxx

Explanation: The operation code contains a
non-alphanumeric character, that is, a character other
than A to Z, 0 to 9, $, #, @ or _. Embedded blanks are
not allowed.

System Action: The statement is ignored.

Programmer Response: Supply a valid operation
code. If the operation code is formed by variable
symbol substitution, check the statements leading to
substitution.

Severity: 8

ASMA142E Operation code not complete on first
record

Explanation: The whole name and operation code,
including a trailing blank, is not contained on the first
record (before the continue column—usually column 72)
of a continued statement.

System Action: The statement is ignored.

330 HLASM V1R3 Programmer’s Guide

 ASMA143E 1 ASMA150E

Programmer Response: Shorten the name, operation
code, or both, or simplify the statement by using a
separate SETC statement to create the name or
operation code by substitution.

Severity: 8

ASMA143E Bad character in name field - xxxxxxxx

Explanation: The name field contains a
| non-alphanumeric character, that is, a character other
| than A to Z, 0 to 9, $, #, @ or _.

System Action: If possible, the statement is
processed without a name. Otherwise, it is ignored.

Programmer Response: Put a valid symbol in the
name field.

Severity: 8

ASMA144E Begin-to-continue columns not blank -
xxxxxxxx

Explanation: On a continuation record, one or more
columns between the begin column (usually column 1)
and the continue column (usually column 16) are not
blank.

System Action: The extraneous characters are
ignored.

Programmer Response: Check whether the operand
started in the wrong column or whether the preceding
record contained an erroneous continuation character.

Severity: 8

ASMA145E Operator, right parenthesis, or
end-of-expression expected - xxxxxxxx

Explanation: One of the following has occurred:

� A letter, number, equal sign, quotation mark, or
undefined character occurred following a term
where a right parenthesis, an operator, a comma, or
a blank ending the expression was expected

� In an assembler instruction, a left parenthesis
followed a term

System Action: A machine instruction assembles as
zero. An assembler instruction is ignored and another
message, relative to the operation code, is issued.

Programmer Response: Check for an omitted or
misplaced operator. Subscripting is not allowed on this
statement.

Severity: 8

ASMA146E Self-defining term too long or value too
large - xxxxxxxx

Explanation: A self-defining term is longer than 4
bytes, (8 hexadecimal digits, 32 bits, or 4 characters),
or the value of a decimal self-defining term is greater
than 231−1.

System Action: A machine instruction assembles as

zero. An assembler instruction is ignored. However,
another message, relative to the operation code, is
issued.

Programmer Response: Reduce the size of the
self-defining term, or specify it in a DC statement.

Severity: 8

ASMA147E Symbol too long, or first character not a
letter - xxxxxxxx

Explanation: A symbol does not begin with a letter or
an underscore (_) or is longer than 63 characters.

System Action: If the symbol is in the name field, the
statement is processed as unnamed. If the symbol is in
the operand field, an assembler operation or a macro
definition model statement is ignored and a machine
operation assembles as zero.

Programmer Response: Supply a valid symbol.

Severity: 8

ASMA148E Self-defining term lacks ending quote or
has bad character - xxxxxxxx

Explanation: A hexadecimal or binary self-defining
term contains a character that is not permitted or is
missing the final quotation mark, or a pure DBCS
self-defining term contains SO and SI with no
double-byte data between them.

System Action: A machine operation assembles as
zero. An assembler operation is ignored and another
message, relative to the operation code, is issued.

Programmer Response: Correct the incorrect term.

Severity: 8

ASMA149E Literal length exceeds 256 characters,
including = sign - xxxxxxxx

Explanation: A literal is longer than 256 characters.

System Action: The instruction assembles as zero.

Programmer Response: Shorten the literal, or change
it to a DC statement.

Severity: 8

ASMA150E Symbol has non-alphanumeric character
or invalid delimiter - xxxxxxxx

Explanation: The first character following a symbol is
not a valid delimiter (plus sign, minus sign, asterisk,
slash, left or right parenthesis, comma, or blank).

System Action: A machine operation assembles as
zero. An assembler operation is ignored, and another
message, relative to this operation code, is issued.

Programmer Response: Ensure that the symbol does
not contain a non-alphanumeric character and that it is
followed by a valid delimiter.

Severity: 8

 Appendix G. High Level Assembler Messages 331

 ASMA151E 1 ASMA156S

ASMA151E Literal expression modifiers must be
absolute and predefined - xxxxxxxx

Explanation: The duplication factor or length modifier
in a literal is not a self- defining term, or an expression
using self-defining terms or previously defined symbols.

System Action: The statement assembles as zero.

Programmer Response: Supply a valid self-defining
term or ensure that symbols appear in the name field of
a previous statement.

Severity: 8

ASMA152S External symbol too long or
unacceptable character - xxxxxxxx

Explanation: One of the following errors has occurred:

� An external symbol is longer than 8 characters, or
contains a bad character. An external symbol might
be the name of a CSECT, START, DXD, AMODE,
RMODE, or COM statement, or the operand of an
ENTRY, EXTRN, or WXTRN statement or a Q-type
or V-type address constant.

� The operand of an ENTRY, EXTRN, or WXTRN
statement or a Q-type or V-type address constant is
an expression instead of a single term, or contains
a bad character.

| � A class name in a CATTR statement is longer than
| 16 characters, or contains a bad character.

System Action: The symbol does not appear in the
external symbol dictionary. If the error is in the name
field, an attempt is made to process the statement as
unnamed. If the error is in the operand field, the bad
operand is ignored and, if possible, the following
operands are processed. A bad constant assembles as
zero.

Programmer Response: Supply a shorter name or
replace the expression with a symbol.

Severity: 12

ASMA153S START statement illegal - CSECT
already begun

Explanation: A START statement occurred after the
beginning of a control section.

System Action: The statement is processed as a
CSECT statement; any operand is ignored.

Programmer Response: Ensure that the START
precedes all machine instructions and any assembler
instruction, such as EQU, that initiates a control section.
If you want EQU statements before the START, place
them in a dummy section (DSECT).

Severity: 12

ASMA154E Operand must be absolute, predefined
symbols; set to zero - xxxxxxxx

Explanation: The operand on a SETA, SETB, SETC,
START or MHELP statement is not correct. If there is
another message with this statement, this message is
advisory. If this message appears alone, it indicates
one of the following:

� There is a location counter reference (*) in a
START operand.

� An expression does not consist of absolute terms,
predefined symbols, or both.

� The statement is too complex. For example, it
might have too many forward references or cause
arithmetic overflow during evaluation.

� The statement is circularly defined.
� A relocatable term is multiplied or divided.

System Action: The operand of the statement is
treated as zero.

Programmer Response: Correct the error if it exists.
Paired relocatable symbols in different LOCTRs, even
though in the same CSECT or DSECT, are not valid
where an absolute, predefined value is required.

Severity: 8

ASMA155S Previous use of symbol is not this
section type

Explanation: The name on a CSECT, DSECT, COM,
or LOCTR statement has been used previously, on a
different type of statement. For example, the name on
a CSECT has been used before on a statement other
than CSECT, such as a machine instruction or a
LOCTR.

System Action: This name is ignored, and the
statement processes as unnamed.

Programmer Response: Correct the misspelled
name, or change the name to one that does not conflict.

Severity: 12

ASMA156S Only ordinary symbols, separated by
commas, allowed

Explanation: The operand field of an ENTRY,
EXTRN, or WXTRN statement contains a symbol that
does not consist of 1-to-8 alphanumeric characters, the
first being alphabetic, or the operands are not separated
by a comma.

System Action: The operand in error is ignored. If
other operands follow, they process normally.

Programmer Response: Supply a correct symbol or
insert the missing comma. If you want an expression
as an ENTRY statement operand (such as
SYMBOL+4), use an EQU statement to define an
additional symbol.

Severity: 12

332 HLASM V1R3 Programmer’s Guide

 ASMA157S 1 ASMA163W

ASMA157S Operand must be a simply-relocatable
expression

Explanation: If there is another message with this
statement, this message is advisory. If this message
appears alone, the operand of an ORG or END
statement is not a simple relocatable expression, is too
complex, or is circularly defined. The error might also
be that the END operand symbol is not in a CSECT.

System Action: An ORG statement or the operand of
an END statement is ignored.

Programmer Response: If an error exists, supply a
correct expression. Paired relocatable symbols in
different LOCTRs, even though in the same CSECT or
DSECT, might cause circular definition when used in an
ORG statement.

Severity: 12

ASMA158E Operand expression is defective; set to *

Explanation: The first operand of an EQU statement
is defective. If another message appears with this
statement, this message is advisory. If this message
appears alone, one of the following errors has occurred:

� The statement is too complex. For example, it has
too many forward references or causes an
arithmetic overflow during evaluation.

� The statement is circularly defined.
� The statement contains a relocatable term that is

multiplied or divided.

System Action: The symbol in the name field is
equated to the current value of the location counter (*),
and operands 2 and 3 of the statement, if present, are
ignored.

Programmer Response: If an error exists, supply a
correct expression for operand 1 of the statement.

Severity: 8

| ASMA159S Operand must be absolute, proper
| multiples of 2 or 4

Explanation: The combination of operands of a CNOP
statement is not one of the following valid combinations:

 9,4 2,4
 9,8 2,8
 4,8 6,8

System Action: The statement is ignored. However,
the location counter is adjusted to a halfword boundary.

Programmer Response: Supply a valid combination
of CNOP operands.

Severity: 12

| ASMA160W Invalid BYTE function operand xxxxxxxx

| Explanation: The value xxxxxxxx of the operand of
| the BYTE built-in function is outside the expected range
| of 0–255.

| System Action: The low-order eight bits of the
| operand's value are used.

| Programmer Response: Supply an arithmetic
| expression which returns an acceptable value.

| Severity: 4

| ASMA161W Only one TITLE statement may have a
| name field

Explanation: More than one TITLE statement has a
name field. The named TITLE statement need not be
the first one in the assembly, but it must be the only
one named.

System Action: The name on this TITLE statement is
ignored. The name used for deck identification is taken
from the first named TITLE statement encountered.

Programmer Response: Delete the unwanted name.

Severity: 4

ASMA162S PUNCH operand exceeds 80 columns;
ignored

Explanation: A PUNCH statement attempted to punch
more than 80 characters into a record.

System Action: The statement is ignored. The record
is not punched.

Programmer Response: Shorten the operand to 80
characters or fewer or use more than one PUNCH
statement.

Severity: 12

ASMA163W Operand not properly enclosed in
quotes

Explanation: The operand of a PUNCH or TITLE
statement does not begin with a quotation mark, or the
operand of a PUNCH, MNOTE, or TITLE statement
does not end with a quotation mark, or the ending
quotation mark is not followed by a blank.

System Action: The statement is ignored.

Programmer Response: Supply the missing quotation
mark. Be sure that a quotation mark to be punched or
printed as data is represented as two quotation marks.

Severity: 4

 Appendix G. High Level Assembler Messages 333

 ASMA164W 1 ASMA170S

ASMA164W Operand is a null string - record not
punched

Explanation: A PUNCH statement does not have any
characters between its two single quotation marks, or a
single quotation mark to be punched as data is not
represented by two single quotation marks.

System Action: The statement is ignored.

Programmer Response: Correct the operand. If you
want to “punch” a blank record, the operand of the
PUNCH statement should be a blank enclosed in single
quotation marks.

Severity: 4

ASMA165W Unexpected name field

Explanation: The name field on this statement is not
blank and is not a sequence symbol. The name field
can not be an ordinary symbol.

System Action: The name is equated to the current
value of the location counter (*). However, if no control
section has been started, the name is equated to zero.

Programmer Response: Remove the name field, or
ensure the name is preceded with a period if you want
it to be a sequence symbol.

Severity: 4

ASMA166S Sequence symbol too long - xxxxxxxx

Explanation: A sequence symbol contains more than
62 characters following the period.

System Action: If the sequence symbol is in the
name field, the statement is processed without a name.
If it is in the operand field of an AIF or AGO statement,
the whole statement is ignored.

Programmer Response: Shorten the sequence
symbol.

Severity: 12

ASMA167E Required name missing

Explanation: This statement requires a name and has
none. The name field might be blank because an error
occurred during an attempt to create the name by
substitution or because a sequence symbol was used
as the name.

System Action: The statement is ignored.

Programmer Response: Supply a valid name or
ensure that a valid name is created by substitution. If a
sequence symbol is needed, put it on an ANOP
statement ahead of this one and put a name on this
statement.

Severity: 8

ASMA168C Undefined sequence symbol - xxxxxxxx

Explanation: The sequence symbol in the operand
field of an AIF or AGO statement outside a macro
definition is not defined; that is, it does not appear in
the name field of an associated statement.

System Action: This statement is ignored; assembly
continues with the next statement.

Programmer Response: If the sequence symbol is
misspelled or omitted, correct it. When the sequence
symbol is not previously defined, the assembler looks
ahead for the definitions. The lookahead stops when
an END statement or an OPSYN equivalent is
encountered. Be sure that OPSYN statements and
macro definitions that redefine END precede possible
entry into look-ahead.

Severity: 16

| ASMA169I Implicit length of symbol symbol used for
| operand n

| Explanation: A length subfield was omitted from
| operand n in an SS-format machine instruction and the
| implicit length of symbol is assembled into the object
| code of the instruction.

| System Action: The instruction is assembled using an
| implicit length which:

| � For an implicit address, is the length attribute of the
| first or only term in the expression representing the
| implicit address

| � For an explicit address, is the length attribute of the
| first or only term in the expression representing the
| displacement

| Programmer Response: Check the instruction to
| ensure that the operation and operands are coded
| correctly. You can suppress this warning by specifying
| the NOIMPLEN suboption of the FLAG option.

| Severity: 0

ASMA170S Interlude error-logging capacity
exceeded

Explanation: The table that the interlude phase of the
assembler uses to keep track of the errors it detects is
full. This does not stop error detection by other phases
of the assembler.

System Action: If there are additional errors, normally
detected by the interlude phase, in other statements
either before or after this one, they are not flagged.
Statement processing depends on the type of error.

Programmer Response: Correct the indicated errors,
and run the assembly again to diagnose any further
errors.

Severity: 12

334 HLASM V1R3 Programmer’s Guide

 ASMA171S 1 ASMA178S

ASMA171S Standard value too long

Explanation: The standard (default) value of a
keyword parameter on a macro prototype statement is
longer than 255 characters.

System Action: The parameter in error and the
following parameters are ignored.

Programmer Response: Shorten the standard value.

Severity: 12

ASMA172E Negative duplication factor; default=1 -
xxxxxxxx

Explanation: The duplication factor of a SETC
statement is negative.

System Action: The duplication factor is given a
default value of 1.

Programmer Response: Supply a positive duplication
factor.

Severity: 8

ASMA173S Delimiter error, expected blank

Explanation: Another character, such as a comma or
a quotation mark, is used where a blank (end of
operand) is required.

System Action: A machine instruction assembles as
zero. An ORG statement is ignored. For an EQU or
END statement, the incorrect delimiter is ignored and
the operand processes normally. For a CNOP
statement, the location counter is aligned to a halfword
boundary.

Programmer Response: Replace the incorrect
delimiter with a blank. Look for an extra operand or a
missing left parenthesis.

Severity: 12

ASMA174S Delimiter error, expected blank or
comma

Explanation: Another character, such as a quotation
mark or ampersand, is used where a blank or a comma
is required.

System Action: A machine instruction assembles as
zero. For a USING or DROP statement, the incorrect
delimiter is ignored and the operand is processed
normally.

Programmer Response: Replace the incorrect
delimiter with a blank or a comma. Look for an extra
operand or a missing left parenthesis.

Severity: 12

ASMA175S Delimiter error, expected comma

Explanation: Another character, such as a blank or a
parenthesis, is used where a comma is required.

System Action: A machine instruction assembles as
zero. For a CNOP statement, the location counter is
aligned to a halfword boundary.

Programmer Response: Replace the incorrect
delimiter with a comma. Be sure each expression is
syntactically correct and that no parentheses are
omitted.

Severity: 12

ASMA176S Delimiter error, expected comma or left
parenthesis

Explanation: Another character, such as a blank or a
right parenthesis, is used in a machine instruction
where a comma or a left parenthesis is required.

System Action: The machine instruction assembles
as zero.

Programmer Response: Replace the incorrect
delimiter with a comma or a left parenthesis. Look for
syntax or a base that are not correct or length fields on
the first operand.

Severity: 12

ASMA177S Delimiter error, expected blank or left
parenthesis

Explanation: Another character, such as a comma or
a right parenthesis, is used in a machine instruction
when a blank or a left parenthesis is required.

System Action: The machine instruction assembles
as zero.

Programmer Response: Replace the incorrect
delimiter with a blank or a left parenthesis. Look for
incorrect punctuation or incorrect length, index, or base
field.

Severity: 12

ASMA178S Delimiter error, expected comma or right
parenthesis

Explanation: Another character, such as a blank or a
left parenthesis, is used in a machine instruction when a
comma or a right parenthesis is required.

System Action: The machine instruction assembles
as zero.

Programmer Response: Replace the incorrect
delimiter with a comma or a right parenthesis. Look for
a missing base field.

Severity: 12

 Appendix G. High Level Assembler Messages 335

 ASMA179S 1 ASMA185W

ASMA179S Delimiter error, expected right
parenthesis

Explanation: Another character, such as a blank or a
comma, is used in a machine instruction when a right
parenthesis is required.

System Action: The machine instruction assembles
as zero.

Programmer Response: Replace the incorrect
delimiter with a right parenthesis. Look for an index
field used where it is not allowed.

Severity: 12

ASMA180S Operand must be absolute

Explanation: The operand of a SPACE or CEJECT
statement or the first, third, or fourth operand of a CCW
statement is not an absolute term.

System Action: A SPACE or CEJECT statement is
ignored. A CCW statement assembles as zero.

Programmer Response: Supply an absolute operand.
Paired relocatable terms can span LOCTRs but must be
in the same control section.

Severity: 12

ASMA181S CCW operand value is outside allowable
range

Explanation: One or more operands of a CCW
statement are not within the following limits:

� 1st operand—0 to 255
� 2nd operand—0 to 16 777 215 (CCW, CCW0); or 0

to 2 147 483 647 (CCW1)
� 3rd operand—0-255 and a multiple of 8
� 4th operand—0-65 535

System Action: The CCW assembles as zero.

Programmer Response: Supply valid operands.

Severity: 12

ASMA182E Operand 2 must be absolute, 0-65535;
ignored

Explanation: If there is another message with this
statement, this message is advisory. If this message
appears alone, the second operand of an EQU
statement contains one of the following errors:

� It is not an absolute term or expression whose
value is within the range of 0 to 65,535

� It contains a symbol that is not previously defined
� It is circularly defined
� It is too complex; for example, it causes an

arithmetic overflow during evaluation
� It is derived from an absolute value

System Action: Operand 2 is ignored, and the length
attribute of the first operand is used. If the third
operand is present, it processes normally.

Programmer Response: Correct the error if it exists.
Paired relocatable symbols in different LOCTRs, even
though in the same CSECT, are not valid where an
absolute, predefined value is required.

Severity: 8

ASMA183E Operand 3 must be absolute, 0-255;
ignored

Explanation: If there is another message with this
statement, this message is advisory. If this message
appears alone, the third operand of an EQU statement
contains one of the following errors:

� It is not an absolute term or expression whose
value is within the range of 0 to 255

� It contains a symbol that is not previously defined
� It is circularly defined
� It is too complex; for example, it causes an

arithmetic overflow during evaluation.

System Action: The third operand is ignored, and the
type attribute of the EQU statement is set to U.

Programmer Response: Correct the error if it exists.
Note that paired relocatable symbols in different
LOCTRs, even though in the same CSECT, are not
valid where an absolute, predefined value is required.

Severity: 8

ASMA184C COPY disaster

Explanation: The assembler copied a library member
(processed a COPY statement) while looking ahead for
attribute references. However, when the complete text
was analyzed, the COPY operation code had been
changed by an OPSYN statement or read by an
AREAD statement, and the COPY should not have
been processed. (Lookahead phase ignores OPSYN
statements.) This message follows the first record of
the COPY code.

System Action: The library member assembles. If it
included an ICTL statement, the format of that ICTL is
used.

Programmer Response: Move COPY statements, or
OPSYN statements that modify the meaning of COPY,
to a point in the assembly before the entry into

| lookahead mode (that is, prior to ASMA996I Lookahead
| invoked).

Severity: 16

ASMA185W Operand 2 is erroneous - xxxxxxxx

Explanation: The second operand is incorrect, or two
operands appear where there should be only one.

System Action: The second operand is ignored.

Programmer Response: Remove or correct the
second operand.

Severity: 4

336 HLASM V1R3 Programmer’s Guide

 ASMA186E 1 ASMA194W

ASMA186E AMODE/RMODE already set for this ESD
item

Explanation: A previous AMODE instruction has the
same name field as this AMODE instruction, or a
previous RMODE instruction has the same name field
as this RMODE instruction.

System Action: The instruction in error is ignored.

Programmer Response: Remove the conflicting
instruction or specify the name of another control
section.

Severity: 8

ASMA187E The name field is invalid - xxxxxxxx

Explanation: The name field of an AMODE instruction
does not refer to a valid control section in this
assembly, or the name field of an RMODE instruction
does not refer to a valid control section in this
assembly.

System Action: The instruction in error is ignored,
and the name field does not appear in the
cross-reference listing.

Programmer Response: Specify a valid control
section in the name field of the AMODE or RMODE
instruction.

Severity: 8

ASMA188E Incompatible AMODE and RMODE
attributes

Explanation: A previous AMODE 24 instruction has
the same name field as this RMODE ANY instruction, or
a previous RMODE ANY instruction has the same name
field as this AMODE 24 instruction.

System Action: The instruction in error is ignored.

Programmer Response: Change the AMODE and
RMODE attributes so they are no longer incompatible.
All combinations except AMODE 24 and RMODE ANY
are valid.

Severity: 8

ASMA189E OPSYN not permitted for REPRO

Explanation: REPRO is specified in either the name
field or the operand field of an OPSYN instruction, but a
REPRO statement has been previously encountered in
the source module. Once a REPRO statement has
been encountered, the REPRO symbolic operation code
cannot be redefined using the OPSYN instruction.

System Action: The OPSYN instruction is ignored.

Programmer Response: Remove the OPSYN
instruction, or remove the previously encountered
REPRO statement.

Severity: 8

ASMA190E CATTR instruction invalid because no
section started

Explanation: A CATTR instruction must be preceded
by a CSECT, START, or RSECT instruction.

System Action: The CATTR instruction is ignored.

Programmer Response: Remove the CATTR
instruction, or precede it with a CSECT, START, or
RSECT instruction.

Severity: 8

ASMA191W CATTR instruction operands ignored

Explanation: You specified operands on a CATTR
instruction which has the same class name as a
previous CATTR instruction.

System Action: The assembler ignores the operands,
and continues as if you did not specify any operands.

Programmer Response: You can correct this error
by:

� Removing the operands from the CATTR instruction
in error

� Changing the class name for the CATTR instruction
in error

� Removing the CATTR instruction in error

Severity: 4

| ASMA192W Lost precision - underflow to zero

| Explanation: The value supplied is non-zero and is
| too small to be represented.

| System Action: The constant assembles with an
| exponent and fraction of zero.

| Programmer Response: Supply a larger value or a
| longer constant type.

| Severity: 4

| ASMA193W Lost precision - underflow to denormal

| Explanation: The value supplied is non-zero and is
| too small to be represented in normalized form, but can
| be represented in denormalized form.

| System Action: The constant assembles with the
| denormalized form.

| Programmer Response: Supply a larger value or a
| longer constant type,

| Severity: 4

| ASMA194W Nominal value too large - overflow to
| MAX

| Explanation: The value supplied is too large to be
| represented and the rounding mode of the constant
| indicates rounding towards zero. The value is
| represented as the signed maximum representable
| value.

 Appendix G. High Level Assembler Messages 337

 ASMA195W 1 ASMA203E

| System Action: The constant assembles with the
| signed maximum value.

| Programmer Response: Supply a smaller value or a
| longer constant type.

| Severity: 4

| ASMA195W Nominal value too large - overflow to
| INF

| Explanation: The value supplied is too large to be
| represented and the rounding mode of the constant
| indicates rounding away from zero. The value is
| represented as a signed infinity.

| System Action: The constant assembles with the
| signed special value INF.

| Programmer Response: Supply a smaller value or a
| longer constant type.

| Severity: 4

| ASMA196W Scaling modifier ignored for binary
| floating-point constant

| Explanation: A scaling modifier has been included in
| the definition of a binary floating-point constant.

| System Action: The scaling modifier has been
| ignored.

| Programmer Response: Remove the scale modifier.

| Severity: 4

| ASMA198E Exponent modifier is not permitted for
| special value

| Explanation: The exponent modifier is not permitted
| for a floating-point special value.

| System Action: The constant assembles as zeroes.

| Programmer Response: Remove the exponent
| modifier.

| Severity: 8

| ASMA199E Rounding indicator invalid

| Explanation: The rounding indicator for the
| floating-point constant is not a valid value.

| System Action: The operand in error and the
| following operands are ignored.

| Programmer Response: Correct the rounding
| indicator.

| Severity: 8

ASMA201W SO or SI in continuation column - no
continuation assumed

Explanation: When High Level Assembler is invoked
with the DBCS option, the double-byte delimiters SO
and SI are treated as blanks in the continuation column,
and not as continuation indicators.

System Action: The SO or SI in the continuation
column assembles as a blank, and the next line is not
treated as a continuation line.

Programmer Response: If continuation is required,
then rearrange the source line so that a non-blank
EBCDIC character can be used to indicate continuation.
If continuation is not required, check that everything
preceding the SO or SI is complete and valid data.

Severity: 4

ASMA202W Shift-in not found at extended
continuation; check data truncation -
xxxxxxxx

Explanation: The assembler has detected an
extended continuation indicator that is not on a source
statement containing double-byte data. The extended
continuation indicator feature is provided to permit
continuation of double-byte data, and single-byte data
adjacent to double-byte data. If you use extended
continuation indicators anywhere else, the assembler
issues this message. As this situation can be caused
by a coding error, the assembler might unintentionally
treat the data as extended continuation indicators.

System Action: The extended continuation indicators
do not assemble as part of the operand.

Programmer Response: Change the continuation
indicator if unintentional truncation occurred.

Severity: 4

ASMA203E Unbalanced double-byte delimiters -
xxxxxxxx

Explanation: A mismatched SO or SI has been found.
This could be the result of truncated or nested
double-byte data. This error does NOT occur because
valid double-byte data is truncated to fit within the
explicit length specified for C-type DC, DS, and DXD
statements and literals - that condition produces error
ASMA208E.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Correct the incorrect
double-byte data.

Severity: 8

338 HLASM V1R3 Programmer’s Guide

 ASMA204E 1 ASMA253C

ASMA204E Invalid double-byte data - xxxxxxxx

Explanation: All data between SO and SI must be
valid double-byte characters. A valid double-byte
character is defined as either double-byte blank
(X'4040'), or two bytes each of which must be in the
range X'41' to X'FE' inclusive.

This error does not apply to the operands of macro
instructions.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Correct the incorrect
double-byte data.

Severity: 8

ASMA205E Extended continuation end column must
not extend into continue column

Explanation: The extended continuation indicator
extended into the continue column.

System Action: The extended continuation indicator is
ignored. The following record or records might be
treated as incorrect. The extended continuation
indicators are treated as part of the source statement.

Programmer Response: If the data in the extended
continuation is to be regarded as valid input then
another non-blank character must be used in the
continuation indication column to identify the data as
valid and to continue to the next record. If the data is
not to be part of the constant then remove the
characters of the extended continuation and add the
correct data to the continue record to the point where
the extended continuation is needed. This message
might be encountered when converting code that
assembled with the NODBCS option to code that is to
be assembled with the DBCS option.

Severity: 8

ASMA206E G-type constant must not contain
single-byte data - xxxxxxxx

Explanation: A G-type constant or self-defining term,
after substitution has occurred, must consist entirely of
double-byte data, correctly delimited by SO and SI. If
SO or SI are found in any byte position other than the
first and last respectively (excepting redundant SI/SO
pairs which are removed) then this error is reported.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Either remove the
single-byte data from the operand, or change the
constant to a C-type.

Severity: 8

ASMA207E Length of G-type constant must be a
multiple of 2 - xxxxxxxx

Explanation: A G-type constant must contain only
double-byte data. If assembled with a length modifier
which is not a multiple of 2, incorrect double-byte data
is created.

System Action: The operand in error, and the
operands following are ignored.

Programmer Response: Either correct the length
modifier, or change the constant to a C-type.

Severity: 8

ASMA208E Truncation into double-byte data is not
permitted - xxxxxxxx

Explanation: The explicit length of a C-type constant
in a DS, DC or DXD statement or literal must not cause
the nominal value to be truncated at any point within
double-byte data.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Either correct the length
modifier, or change the double-byte data so that it is not
truncated.

Severity: 8

| ASMA209E Symbol not name of class or DXD

| Explanation: The operand of a J-type address
| constant is not the name of a class.

| System Action: The constant assembles as zero.

| Programmer Response: Supply a valid operand.

| Severity: 8

ASMA253C Too many errors

Explanation: No more error messages can be issued
for this statement, because the assembler work area in
which the errors are logged is full.

System Action: If more errors are detected for this
statement, the messages, annotated text, or both, are
discarded.

Programmer Response: Correct the indicated errors,
and rerun the assembly. If there are more errors on
this statement, they will be detected in the next
assembly.

Severity: 16

 Appendix G. High Level Assembler Messages 339

 ASMA254I 1 ASMA304W

ASMA254I *** MNOTE ***

Explanation: The text of an MNOTE statement, which
is appended to this message, has been generated by
your program or by a macro definition or a library
member copied into your program. An MNOTE
statement enables a source program or a macro
definition to signal the assembler to generate an error
or informational message.

System Action: None.

Programmer Response: Investigate the reason for
the MNOTE. Errors flagged by MNOTE often cause the
program to fail if it is run.

Severity: An MNOTE is assigned a severity code of 0
to 255 by the writer of the MNOTE statement.

ASMA300W USING overridden by a prior active
USING on statement number nnnnnn

Explanation: The USING instruction specifies the
same base address as a previous USING instruction at
statement number nnnnnn, and the base register
specified is lower-numbered than the previously
specified base register.

System Action: The assembler uses the
higher-numbered base register for address resolution of
symbolic addresses within the USING range.

Programmer Response: Check your USING
statements to ensure that you have specified the correct
base address and base register and that you have not
omitted a needed DROP statement for the previous
base register. You can suppress this message by
reducing the value specified in the WARN sub-option of
the USING option by 1.

Severity: 4

ASMA301W Prior active USING on statement
number nnnnnn overridden by this USING

Explanation: The USING instruction specifies the
same base address as a previous USING instruction at
statement number nnnnnn, and the base register
specified is higher-numbered than the previous base
register.

System Action: The assembler uses the
higher-numbered base register for address resolution of
symbolic addresses within the USING range.

Programmer Response: Check your USING
statements to ensure that you have specified the correct
base address and base register and that you have not
omitted a needed DROP statement for the previous
base register. You can suppress this message by
reducing the value specified in the WARN sub-option of
the USING option by 1.

Severity: 4

ASMA302W USING specifies register 0 with a
non-zero absolute or relocatable base
address

Explanation: The assembler assumes that when
register 0 is used as a base register, it contains zero.
Therefore, regardless of the value specified for the base
address, displacements are calculated from base 0.

System Action: The assembler calculates
displacements as if the base address specified were
absolute or relocatable zero.

Programmer Response: Check the USING statement
to ensure you have specified the correct base address
and base register. You can suppress this message by
reducing the value specified in the WARN suboption of
the USING option by 2.

Severity: 4

| ASMA303W Multiple address resolutions may result
| from this USING and the USING on
| statement number nnnnnn

Explanation: The USING instruction specifies a base
address that lies within the range of an earlier USING
instruction at statement number nnnnnn. The
assembler might use multiple base registers when
resolving implicit addresses within the range overlap.

System Action: The assembler computes
displacements from the base address that gives the
smallest displacement, and uses the corresponding
base register when it assembles addresses within the
range overlap.

Programmer Response: Check your USING
instructions for unintentional USING range overlaps and
check that you have not omitted a needed DROP
statement. You can suppress this message by reducing
the value specified in the WARN suboption of the
USING option by 4.

Severity: 4

ASMA304W Displacement exceeds LIMIT value
specified

Explanation: The address referred to by this
statement has a valid displacement that is higher than
the displacement limit specified in the
USING(LIMIT(xxx)) option.

System Action: The instruction assembles correctly.

Programmer Response: This error diagnostic
message is issued at your request. You can suppress
this message by reducing the value specified in the
WARN suboption of the USING option by 8.

Severity: 4

340 HLASM V1R3 Programmer’s Guide

 ASMA305E 1 ASMA312E

ASMA305E Operand 1 does not refer to location
within reference control section

Explanation: The first operand in a dependent USING
statement does not refer to a location within a reference
control section defined by a DSECT, DXD, or COM
instruction.

System Action: The USING statement is ignored.

Programmer Response: Change the USING
statement to specify a location within a reference
control section.

Severity: 8

| ASMA306W USING range overlaps implicit USING
| 0,0

| Explanation: The USING range overlaps the
| assembler's implicit USING 0,0. This implicit USING is
| used to convert absolute implicit addresses in the range
| 0 to 4095. As a result of this USING, the assembler
| may not generate the expected object code.

| System Action: The assembly continues

| Programmer Response: Correct the USING
| instruction.

| Severity: 4

| ASMA307E No active USING for operand n

| Explanation: The operand specified occurs in a
| section without an active USING.

| System Action: The instruction assembles as zero.

| Programmer Response: Provide a USING instruction.

| Severity: 8

| ASMA308E Repeated register reg nullifies prior
| USING range

| Explanation: The repeated register nullifies the range
| specified by a prior use of that register on the same
| USING instruction.

| System Action: The statement is ignored.

| Programmer Response: Correct the USING
| instruction.

| Severity: 8

| ASMA309W Operand xxxxxxxx resolved to a
| displacement with no base register

| Explanation: The machine instruction specifies an
| operand which is resolved to a baseless address when
| a base and displacement are expected. This might be
| the programmer's intent, but will usually be an error.

| System Action: Base register zero is assembled into
| the object code of the instruction.

| Programmer Response: Check the instruction to
| ensure that the operation and operands are coded
| correctly. If you want to reference page zero you can
| specify a USING for the appropriate DSECT with a zero
| base register. You can suppress this warning by
| specifying the NOPAGE0 suboption of the FLAG option.

| Severity: 4

ASMA310W Name already used in prior ALIAS -
xxxxxxxx

Explanation: The name specified in the ALIAS
statement has already been used in a previous ALIAS
statement.

System Action: The statement is ignored.

Programmer Response: Change the program so that
the name is used in only one ALIAS statement.

Severity: 4

ASMA311E Illegal ALIAS string

Explanation: The ALIAS string is illegal for one of the
following reasons:

� The string is null

� The string is not in the form C'cccccccc' or
X'hhhhhhhh'

� The string is in the form X'hhhhhhhh' but an odd
number of hexadecimal digits has been specified

� The string contains a character outside the valid
range of X'42' to X'FE'

� The string has been used in the name entry on a
previous CSECT, DSECT, COM or LOCTR
instruction

System Action: The statement is ignored.

Programmer Response: Change the program so that
the string conforms to the required syntax.

Severity: 8

ASMA312E ALIAS name is not declared as an
external symbol - xxxxxxxx

Explanation: The name specified on the ALIAS
statement is not declared as an external symbol, either
explicitly via an EXTRN, CSECT, etc., or implicitly via a
V-type constant.

System Action: The statement is ignored.

Programmer Response: Change the program so that
the name is declared as an external symbol.

Severity: 8

 Appendix G. High Level Assembler Messages 341

 ASMA313E 1 ASMA409I

| ASMA313E The end value specified in the USING is
| less than or equal to the base value

| Explanation: The end value specified is less than or
| equal to the base value which would result in a zero or
| negative range.

| System Action: The end value is ignored and the
| default range value is used.

| Programmer Response: Change the USING
| statement to specify an end value that is greater than
| the base value.

| Severity: 8

| ASMA314E The base and end values have differing
| relocation attributes

| Explanation: The base and end values have differing
| relocation attributes; that is, they are defined in different
| sections.

| System Action: The end value is ignored and the
| default range value is used.

| Programmer Response: Change the USING
| statement to specify an end value that is in the same
| section as the base value.

| Severity: 8

ASMA400W Error in invocation parameter - xxxxxxxx

Explanation: The parameter xxxxxxxx is not a
recognized assembler option, or is incorrectly specified.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues, using the installation default value
for the erroneously specified option.

Programmer Response: Correct the parameter error
and resubmit the assembly.

Severity: 4

ASMA401N Fixed option cannot be overridden by
invocation parameter - xxxxxxxx

Explanation: The parameter xxxxxxxx cannot be
specified as an invocation parameter because the
option it is attempting to override was fixed when High
Level Assembler was installed.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues, using the installation default value
for the erroneously specified option.

Programmer Response: Correct the parameter error
and resubmit the assembly.

Severity: 2

ASMA402W Invalid print line length xxxxxx returned
by LISTING exit; exit processing
bypassed

Explanation: When invoked with an OPEN request,
the LISTING exit specified a print line length that was
either outside the range 121 to 255 (MVS and CMS),
121 to 133 (VSE), or was not permitted for the device to
which the listing file is assigned.

System Action: The assembler bypasses the exit
when processing listing records, and writes the
assembly listing to the standard listing file. The print
line length is determined by the assembler.

Programmer Response: Correct the error in the
LISTING exit.

Severity: 4

ASMA403W WORK file blocksize has been set to
xxxxxx

Explanation: The blocksize specified in the job control
language for the work file is not permitted. The valid
range is 2008 bytes to 32760 bytes, or the maximum
track capacity for the device on which the work file
resides, whichever is lesser.

System Action: The blocksize for the work file has
been set to the specified value.

Programmer Response: Supply a valid blocksize for
the work file.

Severity: 4

ASMA404W Invalid term line length xxxxxx returned
by TERM exit; exit processing bypassed

Explanation: When invoked with an OPEN request,
the TERM exit specified a line length that was either
zero or greater than 255 (MVS and CMS), 125 (VSE),
or was not permitted for the device to which the
terminal file is assigned.

System Action: The assembler bypasses the exit
when processing terminal records, and writes the
terminal records to the standard terminal file. The line
length is determined by the assembler.

Programmer Response: Correct the error in the
TERM exit.

Severity: 4

| ASMA409I Unable to load ASMAINFO

| Explanation: The assembler attempted to load the
| INFO option module ASMAINFO, but the load failed.

| System Action: The assembly continues without
| listing the INFO requested.

| Programmer Response: Check that ASMAINFO is in
| a library accessible by the assembler.

| Severity: 0

342 HLASM V1R3 Programmer’s Guide

 ASMA410W 1 ASMA415N

ASMA410W WORK file not defined to the assembler

Explanation: JCL statements for the assembler work
file has not been provided in the job control language
for the assembly job step.

� If you are running the assembler on MVS, the DD
statement for the work file is missing, or the TSO
ALLOCATE command has not been issued

� If you are running the assembler on CMS, the
FILEDEF command for the work file has not been
issued

� If you are running the assembler on VSE, the DLBL
statement for the assembler work file, IJSYS03, is
missing from the assembly JCL

System Action: The assembler attempts to complete
the assembly in virtual storage, without using the work
file. However, if there is not enough virtual storage for
the assembly to complete, another message is issued
and the assembly ends abnormally.

Programmer Response: On MVS, supply valid JCL
for the work file. Check whether your installation has
changed the default ddname for the work file, and
ensure that you are using the correct ddname.

On CMS, supply the FILEDEF command for the work
file.

On VSE, supply a DLBL statement for the work file.
Refer to Figure 83 on page 210 for details of defining
the work file.

Severity: 4

ASMA411W WORK file is not on DASD

Explanation: The JCL statement for the work file
indicates that the work file does not reside on DASD.

System Action: The assembler attempts to complete
the assembly in storage, without using the work file.
However, if there is not enough virtual storage for the
assembly to complete, another message is issued and
the assembly ends abnormally.

Programmer Response: Assign the work file
(SYSUT1 on MVS and CMS and IJSYS03 on VSE) to
DASD and supply the correct JCL for the work file. On
MVS and CMS check whether your installation has
changed the default DDname for the work file, and
ensure that you are using the correct DDname. On
VSE refer to Figure 83 on page 210 for details about
defining the work file.

Severity: 4

ASMA412W Unable to open WORK file

Explanation: The assembler encountered an error
when attempting to open the assembler work file.

System Action: The assembler attempts to complete
the assembly in storage, without using the work file.
However, if there is not enough virtual storage for the
assembly to complete, another message is issued and
the assembly ends abnormally.

Programmer Response: Check the JCL for the work
file. Ensure that the work file is assigned to DASD and
that the DASD volume is not write-protected.

Severity: 4

ASMA413C Unable to open INPUT file

Explanation: The assembler encountered an error
when attempting to open the assembler input file. This
is usually caused by a job control language error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the input
file.

Severity: 16

ASMA414C Unable to open LISTING file

Explanation: The assembler encountered an error
when attempting to open the assembler listing file. This
is usually caused by a job control language error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the listing
file.

Severity: 16

ASMA415N Unable to open TERM file

Explanation: The assembler encountered an error
when attempting to open the assembler terminal output
file. This is usually caused by a job control language
error.

System Action: The assembly continues and no
terminal file is produced.

Programmer Response: Check the JCL for the
terminal output file.

Severity: 2

 Appendix G. High Level Assembler Messages 343

 ASMA416C 1 ASMA424W

ASMA416C Unable to open DECK file

Explanation: The assembler encountered an error
when attempting to open the assembler deck output file.
This is usually caused by a job control language error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the deck
output file.

Severity: 16

ASMA417C Unable to open OBJECT file

Explanation: The assembler encountered an error
when attempting to open the assembler object output
file. This is usually caused by a job control language
error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the object
output file.

Severity: 16

ASMA418C Unable to open ADATA file

Explanation: The assembler encountered an error
when attempting to open the associated data file. This
is usually caused by a job control language error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the
SYSADATA ddname (MVS and CMS), or the SYSADAT
file (VSE).

Severity: 16

ASMA419C Unable to open TRACE file

Explanation: The assembler encountered an error
when attempting to open the internal trace file. This is
usually caused by a job control language error.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the JCL for the
SYSTRACE ddname (MVS and CMS), or the
SYSTRAC file (VSE).

Severity: 16

ASMA420N Error in *PROCESS statement parameter
- xxxxxxxx

Explanation: The parameter xxxxxxxx is not a
recognized assembler option, or is incorrectly specified.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues, using the installation default value
or the invocation parameter value for the erroneously
specified option.

Programmer Response: Correct the parameter error
and resubmit the assembly.

Severity: 2

ASMA421N Fixed option cannot be overridden by
*PROCESS statement parameter -
xxxxxxxx

Explanation: The parameter xxxxxxxx cannot be
specified as a *PROCESS statement parameter
because the option it is attempting to override was fixed
when High Level Assembler was installed.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues, using the installation default value
for the erroneously specified option.

Programmer Response: Remove the option from the
*PROCESS statement and resubmit the assembly.

Severity: 2

ASMA422N Option xxxxxxxx is not valid on a
*PROCESS statement

Explanation: The following options cannot be
specified on a *PROCESS statement:

 ADATA|NOADATA OBJECT|NOOBJECT
 ASA|NOASA OPTABLE
 DECK|NODECK SIZE

| EXIT|NOEXIT SYSPARM
 GOFF|NOGOFF TERM|NOTERM
 LANGUAGE TRANSLATE|NOTRANSLATE
 LINECOUNT XOBJECT|NOXOBJECTLATE
 LIST|NOLIST

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues, using the installation default value
or the invocation parameter value for the erroneously
specified option.

Programmer Response: Remove the option from the
*PROCESS statement and resubmit the assembly.

Severity: 2

| ASMA424W Continuation column is not blank.
| *PROCESS statements may not be
| continued.

Explanation: The continuation column (usually column
72) is not blank for a *PROCESS statement.
*PROCESS statements can not be continued.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues and processes the options
specified.

Programmer Response: Recode the *PROCESS
statement, leaving the continuation column blank. If
you need to specify more options than can fit on the
*PROCESS statement, add another *PROCESS

344 HLASM V1R3 Programmer’s Guide

 ASMA425I 1 ASMA432W

statement to your code. You can specify a maximum of
10 *PROCESS statements.

Severity: 4

ASMA425I Option conflict in invocation parameters.
yyyyyyyy overrides an earlier setting.

Explanation: The option yyyyyyyy specified as an
invocation parameter overrides an earlier setting of the
option in the invocation parameters.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues using the right most of the
conflicting options.

Programmer Response: Correct the parameter error
and resubmit the assembly.

Severity: 2

ASMA426N Option conflict in *PROCESS
statements. yyyyyyyy overrides an earlier
setting.

Explanation: The option yyyyyyyy specified on an
*PROCESS statement overrides an earlier setting of the
option on the same statement or a previous *PROCESS
statement.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues using the last conflicting option
encountered.

Programmer Response: Correct the *PROCESS
statement error and resubmit the assembly.

Severity: 2

ASMA427N Invocation parameter option xxxxxxxx
ignored. This option is not valid under
VSE.

Explanation: The option xxxxxxxx specified on an
invocation parameter is not valid for the VSE operating
system.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues and the option is ignored.

Programmer Response: Remove the option from the
invocation parameter and resubmit the assembly.

Severity: 2

ASMA428N *PROCESS statement option xxxxxxxx
ignored. This option is not valid under
VSE.

Explanation: The option xxxxxxxx specified on an
*PROCESS statement is not valid for the VSE operating
system.

System Action: If option PESTOP is specified, the

assembly stops. If option NOPESTOP is specified, the
assembly continues and the option is ignored.

Programmer Response: Remove the option from the
*PROCESS statement and resubmit the assembly.

Severity: 2

ASMA429W SYSPRINT LRECL should be at least
133 when XOBJECT option is specified

Explanation: The XOBJECT assembler option has
been specified, however the logical record length of the
listing file, SYSPRINT, is less than 133.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues, however the lines in the source
and object section are truncated.

Programmer Response: Specify a record length of at
least 133 for SYSPRINT.

Severity: 4

ASMA430W Continuation statement does not start
in continue column.

Explanation: The operand on the continued record
ends with a comma and a continuation statement is
present but the continue column is blank. The continue
column is column 16, unless you redefined it with an
ICTL instruction.

System Action: Any remaining continuation lines
belonging to this statement are ignored.

Programmer Response: Check that the continuation
was coded as intended.

Severity: 4

ASMA431W Continuation statement may be in error
- continuation indicator column is blank.

Explanation: A list of one or more operands ends with
a comma, but the continuation indicator column is
blank. The continuation indicator column is column 72,
unless you redefined it with an ICTL instruction.

System Action: The next statement assembles as a
standard assembler source statement.

Programmer Response: Check that the continuation
was coded as intended.

Severity: 4

ASMA432W Continuation statement may be in error
- comma omitted from continued
statement.

Explanation: The continuation record starts in the
continue column (usually column 16) but there is no
comma present following the operands on the previous
record.

System Action: Any remaining continuation lines
belonging to this statement are ignored.

 Appendix G. High Level Assembler Messages 345

 ASMA433W 1 ASMA701W

Programmer Response: Check that the continuation
was coded as intended.

Severity: 4

ASMA433W Statement not continued - continuation
statement may be in error

Explanation: The continued record is full but the
continuation record does not start in the continue
column (usually column 16).

System Action: Any remaining continuation lines
belonging to this statement are ignored.

Programmer Response: Check that the continuation
was coded as intended.

Severity: 4

ASMA434N XOBJECT option specified, option
LIST(133) will be used

Explanation: You specified the XOBJECT option, and
the LIST suboption is 121.

System Action: The assembler sets the LIST
suboption to 133. If option PESTOP is specified, the
assembly is stops. If option NOPESTOP is specified,
the assembly continues.

Programmer Response: To prevent this warning
message, run the assembly again specifying XOBJECT
and LIST(133).

Severity: 2

ASMA435I Record n in xxxxxxx on volume: vvvvvv

Explanation: The data set xxxxxxxx which is located
on volume serial vvvvvv, contains an error on record
number n. The volume serial might not be available.

| For an AINSERT instruction:

| n The number of the statement within the AINSERT
| internal buffer. This number may not reflect the
| statement's relative statement number within the
| buffer at the point of retrieval, but does reflect the
| relative retrieval number. This is because it is
| possible to insert records into the buffer after
| statements have been retrieved from the buffer.

| xxxxxxxx
| The constant AINSERT BUFFER to indicate that the
| statement resulted from an AINSERT instruction.

| vvvvvv
| will be null.

System Action: See the System Action section of the
error message(s) which immediately precede this
message.

Programmer Response: Refer to the Programmer
Response section of the error messages which
immediately precede this message.

Severity: 0

ASMA436N Attempt to override invocation
parameter in *PROCESS statement.
Option yyyyyyyy ignored.

Explanation: The option yyyyyyyy specified in a
*PROCESS statement overrides the option specified in
an invocation parameter.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues using the option specified in the
invocation parameters.

Programmer Response: Remove the option from the
*PROCESS statement and resubmit the assembly.

Severity: 2

ASMA437N Attempt to override invocation
parameter in *PROCESS statement.
Suboption yyyyyyyy of xxxxxxxx option
ignored.

Explanation: The suboption yyyyyyyy of option
xxxxxxxx specified in a *PROCESS statement overrides
the suboption specified in an invocation parameter.

System Action: If option PESTOP is specified, the
assembly stops. If option NOPESTOP is specified, the
assembly continues using the suboption specified in the
invocation parameters.

Programmer Response: Remove the option or
suboption from the *PROCESS statement and resubmit
the assembly.

Severity: 2

ASMA700I exit-type: exit supplied text

Explanation: The user supplied exit for exit-type exit
has requested the assembler to issue this message with
the exit supplied text.

System Action: None

Programmer Response: Check the user exit
documentation for the cause of this message and for
the correct response.

Severity: 0

ASMA701W exit-type: exit supplied text

Explanation: The user supplied exit for exit-type exit
has requested the assembler to issue this message with
the exit supplied text.

System Action: None

Programmer Response: Check the user exit
documentation for the cause of this message and for
the correct response.

Severity: 4

346 HLASM V1R3 Programmer’s Guide

 ASMA702E 1 ASMA714C

ASMA702E exit-type: exit supplied text

Explanation: The user supplied exit for exit-type exit
has requested the assembler to issue this message with
the exit supplied text.

System Action: None

Programmer Response: Check the user exit
documentation for the cause of this message and for
the correct response.

Severity: 8

ASMA703S exit-type: exit supplied text

Explanation: The user supplied exit for exit-type exit
has requested the assembler to issue this message with
the exit supplied text.

System Action: None

Programmer Response: Check the user exit
documentation for the cause of this message and for
the correct response.

Severity: 12

ASMA704C exit-type: exit supplied text

Explanation: The user supplied exit for exit-type exit
has requested the assembler to issue this message with
the exit supplied text.

System Action: None

Programmer Response: Check the installation
documentation for the cause of this message and for
the correct response.

Severity: 16

| ASMA710I function-name: function-supplied text

| Explanation: The user supplied function
| function-name has requested the assembler to issue
| this message with the function-supplied text.

| System Action: None

| Programmer Response: Check the external function
| documentation for the cause of this message and for
| the correct response.

| Severity: 0

| ASMA711W function-name: function-supplied text

| Explanation: The user supplied function
| function-name has requested the assembler to issue
| this message with the function-supplied text.

| System Action: None

| Programmer Response: Check the external function
| documentation for the cause of this message and for
| the correct response.

| Severity: 4

| ASMA712E function-name : function-supplied text

| Explanation: The user supplied function
| function-name has requested the assembler to issue
| this message with the function-supplied text.

| System Action: None

| Programmer Response: Check the external function
| documentation for the cause of this message and for
| the correct response.

| Severity: 8

| ASMA713S function-name : function-supplied text

| Explanation: The user supplied function
| function-name has requested the assembler to issue
| this message with the function-supplied text.

| System Action: None

| Programmer Response: Check the external function
| documentation for the cause of this message and for
| the correct response.

| Severity: 12

| ASMA714C function-name : function-supplied text

| Explanation: The user supplied function
| function-name has requested the assembler to issue
| this message with the function-supplied text.

| System Action: None

| Programmer Response: Check the external function
| documentation for the cause of this message and for
| the correct response.

| Severity: 16

Abnormal Assembly Termination
Messages

Whenever an assembly cannot complete, High
Level Assembler provides a message and, in
some cases, a specially formatted dump for
diagnostic information. This might indicate an
assembler malfunction or it might indicate a
programmer error. The statement causing the
error is identified and, if possible, the assembly
listing up to the point of the error is printed. The
messages in this book give enough information to
enable you to correct the error and reassemble
your program, or to determine that the error is an
assembler malfunction.

 Appendix G. High Level Assembler Messages 347

 ASMA930U 1 ASMA936U

 Messages

ASMA930U LOAD OF ASMA93 PHASE FAILED;
INSUFFICIENT GETVIS STORAGE OR
PHASE NOT FOUND

Explanation: The assembler attempted to load the
phase ASMA93, but the load failed either because there
was insufficient GETVIS storage available to complete
the load, or the phase could not be found.

Note: This message is only produced in uppercase
English.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check the LIBDEF chain to
ensure that the sublibrary containing High Level
Assembler is correctly concatenated. If it is, you should
consider increasing the partition size.

Severity: 20

ASMA931U Unable to load specified operation code
table - xxxxxxxx

Explanation: The assembler attempted to load the
named operation code table, but the load failed.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check that the specified
operation code table is in a library accessible by the
assembler.

Severity: 20

ASMA932U Unable to load specified EXIT module -
xxxxxxxx

Explanation: The assembler attempted to load the
named exit module, but the load failed.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check that the specified exit
module is in a library accessible by the assembler.

Severity: 20

ASMA933U UNABLE TO LOAD SPECIFIED
MESSAGES MODULE - xxxxxxxx

Explanation: The assembler attempted to load the
named messages module, but the load failed. The
name of the messages module is determined from the
value specified in the LANGUAGE option.

Note: This message is only produced in uppercase
English.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check that you have
correctly specified the correct messages module using
the LANGUAGE option, and that the specified
messages module is in a library accessible by the
assembler.

Severity: 20

ASMA934U UNABLE TO LOAD DEFAULT OPTIONS
MODULE - xxxxxxxx

Explanation: The assembler attempted to load the
named default options module, but the load failed.

Note: This message is only produced in uppercase
English.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check that the default
options module is in a library accessible by the
assembler.

Severity: 20

ASMA935U One or more required files not available

Explanation: The assembler encountered an error
when attempting to open a required file.

System Action: Before this message is issued, one or
more associated messages are issued that describe
which file or files could not be opened. After this
message is issued, the assembly stops.

Programmer Response: Check the associated
message or messages.

Severity: 20

ASMA936U Assembly terminated due to errors in
invocation parameters

Explanation: The assembler detected an error in one
or more of the parameters specified when the
assembler was invoked, and the installation default
value for the PESTOP assembler option is YES.

System Action: Before this message is issued, one or
more associated messages are issued that describe
which parameter or parameters were in error. After this
message is issued, the assembly stops.

Programmer Response: Check the associated
message or messages. Invoke the assembler with
correct invocation parameters. Do not attempt to
override the fixed installation defaults.

Severity: 20

348 HLASM V1R3 Programmer’s Guide

 ASMA937U 1 ASMA944U

ASMA937U Unable to load specified translation
table - xxxxxxxx

Explanation: The assembler attempted to load the
translation table called xxxxxxxx, but the load failed.
The name of the translation table is determined from
the value specified in the TRANSLATE option.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check you have correctly
specified the translation table module using the
TRANSLATE option, and the module is in a library
accessible by the assembler.

Severity: 20

ASMA938U Module xxxxxxxx is not a valid
translation table

Explanation: The translation table specified in the
TRANSLATE option is not valid.

System Action: The assembly stops.

Programmer Response: Ensure the translation table
is generated according to the instructions described in
Appendix L, “How to Generate a Translation Table” on
page 367.

Severity: 20

ASMA939U Unable to load external function module
- xxxxxxxx

Explanation: The assembler attempted to load the
external function module xxxxxxxx, but the load failed.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Check that the specified
module is in a library accessible by the assembler, and
that the external function name has been spelled
correctly in the SETAF or SETCF statement.

Severity: 20

| ASMA940U exit-type exit has requested termination
| during operation processing; exit error

text: < none | error text >

Explanation: The user supplied exit for exit-type failed
when processing an operation request. The exit might
have provided error text to assist in determination of the
failure.

System Action: The assembly stops.

Programmer Response: Check the specified exit
program for the cause of failure.

Severity: 20

ASMA941U external function name has requested
termination during processing.

Explanation: The user supplied external function
external function name failed during processing.

System Action: The assembly stops.

Programmer Response: Check the specified external
function program for the cause of failure.

Severity: 20

| ASMA942U xxxxxxxx IS NOT IN RELEASE 3 FORMAT

| Explanation: The default options module ASMADOPT,
| or an operation code table module, is not in the
| required format for Release 3.

| Note: This message may be produced in uppercase
| English, even if you have specified a different language.

| System Action: The assembly terminates

| Programmer Response: Ensure that you have the
| correct version of the ASMADOPT or ASMAOxxx
| module available. You might need to reassemble your
| default options module with the ASMAOPT macro
| provided with High Level Assembler Release 3.

Severity: 20

ASMA943U Unable to find listing header nnn

Explanation: The assembler tried to produce a
heading line in the assembler listing but could not find
the heading. This can be caused if the assembler load
module has been corrupted.

System Action: The assembly is aborted.

Programmer Response: Reassemble the program; it
might assemble correctly. If it does not reassemble
without error, save the output from the assembly, and
the input source(s), and contact IBM for support.

Severity: 20

ASMA944U LOAD OF ASMA93 MODULE FAILED;
INSUFFICIENT MAIN STORAGE OR
MODULE NOT FOUND

Explanation: The assembler attempted to load the
module ASMA93, but the load failed either because
there was insufficient main storage available to
complete the load, or the module could not be found.

Note: This message is only produced in uppercase
English.

System Action: The assembly stops and no listing is
produced.

Programmer Response: On MVS, ensure that the
correct High Level Assembler load library is available in
the standard load module search order. If it is, consider
increasing the region size.

On CMS, ensure that the correct mini disk containing
the High Level Assembler modules is being accessed.

 Appendix G. High Level Assembler Messages 349

 ASMA950U 1 ASMA970U

If it is, consider increasing your virtual machine storage
size.

Severity: 20

ASMA950U End of statement flag was expected in
Macro Edited Text, but was not found -
MACRO EDITOR is suspect

ASMA951U The MACRO GENERATOR has
encountered untranslatable Macro Edited
Text

ASMA952U Bad SET symbol name field or LCL/GBL
operand - check the Macro Edited Text

ASMA953U Bad subscript on SET symbol - check
the Macro Edited Text

ASMA954U Character expression followed by bad
subscripts - check the Macro Edited Text

| ASMA955U A right parenthesis with no matching
| left parenthesis was found in an
| expression - check the Macro Edited
| Text or the expression analysis work
| area

ASMA956U Multiple subscripts or bad SET symbol
terminator - check the Macro Edited Text

ASMA957U Bad terminator on created SET symbol -
check the Macro Edited Text

ASMA958U Bad terminator on parameter - check the
Macro Edited Text

ASMA959U Unexpected end of data on WORK file -
internal storage management suspect

ASMA960U A bad internal file number has been
passed to the xxxxxxxx internal storage
management routine

ASMA961U An invalid storage request has been
made, or the free storage chain pointers
have been destroyed

ASMA962U A zero block address or bad block
number has been passed to an internal
storage management routine

ASMA963U Invalid pointer at entry to utility routine
ASMA964U Macro Edited Text Flag is not ICTL

Explanation: The assembly stops because of one of
the errors described in ASMA950U through ASMA964U.
This usually is caused by an error in the assembler
itself. Under certain conditions, however, the assembly
can be rerun successfully.

System Action: The assembly stops and a formatted
abnormal termination dump is produced. Depending on
where the error occurred, the assembly listing up to the
failing statement might also be produced. The dump
usually indicates which statement was being processed
at the time of abnormal termination. It also might
include contents of the assembler registers and work
areas and other status information for use by an IBM
support representative.

Programmer Response: Check the statement that
was being processed at the time of abnormal
termination. Correct any errors in it or, if the statement

is long or complex, rewrite it. Reassemble the program;
it might assemble correctly. However, even if the
program assembles correctly, there might be a problem
with the assembler. Save the abnormal termination
dump, the assembly listing (if one was produced), and
the source program, and contact IBM for support.

Severity: 20

ASMA966U Insufficient partition GETVIS storage to
load xxxxxxxx; increase the partition
GETVIS size

Explanation: The assembler attempted to load the
named phase, but there was not enough GETVIS
storage available for the phase.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Increase the amount of
GETVIS storage allocated to the partition.

Severity: 20

ASMA967U Insufficient partition GETVIS storage for
assembly initialization; increase the
partition GETVIS size

Explanation: The assembler attempted to acquire an
initial block of storage, but there is not enough GETVIS
storage available.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Increase the amount of
GETVIS storage allocated to the partition.

Severity: 20

ASMA970U Statement complexity exceeded, break
the statement into segments, and rerun
the assembly

Explanation: The statement is too complex to be
evaluated by the macro generator phase of the
assembler. It overflowed the evaluation work area of
the assembler. Normally, there is no assembler
malfunction; the statement can be corrected and the
program reassembled successfully.

System Action: A special abnormal termination dump
(High Level Assembler interrupt and diagnostic dump)
follows the message. The statement causing
termination is SETA, SETB, SETC, AGO, or AIF. The
dump does not indicate which statement caused
termination; however, it might show the last statement
generated in the macro. The dump might also include
contents of the assembler registers and work areas and
other status information for use by IBM or your
assembler maintenance programmers in determining
the cause of the termination. However, it is not needed
unless the error persists. This information could be
helpful in diagnosing and fixing an assembler error.

350 HLASM V1R3 Programmer’s Guide

 ASMA971U 1 ASMA976U

Programmer Response: Check the statement that
caused termination. Rewrite the statement or split it
into two or more statements. Reassemble the program;
it should assemble correctly. However, if the error
persists, there might be an assembler malfunction.
Save the abnormal termination dump, the assembly
listing (if one was produced), and the input source(s),
and contact IBM for support.

Severity: 20

ASMA971U Insufficient storage available for Macro
Editor work area

ASMA972U Virtual storage exhausted; increase the
SIZE option

Explanation: The size of the dynamic storage area
allocated for assembler buffer areas, tables, and work
areas, as specified in the SIZE option, is not enough for
the assembly to complete.

System Action: A special abnormal termination dump
(High Level Assembler interrupt and diagnostic dump)
follows the message. The dump usually indicates the
statement being processed when the assembler
determined there was not enough dynamic storage
available to continue. Depending on where the error
occurred, the assembly listing up to the statement being
processed might also be produced. The other
information in the dump, such as register and work area
contents, is not needed.

Programmer Response: Increase the value specified
in the SIZE option, or split the assembly into two or
more assemblies. Check for conditional assembly
language loops in open code that could cause the
symbol table to overflow.

Severity: 20

ASMA973U WORK file maximum block count
exceeded

Explanation: The maximum block count of 65,535 has
been exceeded for SYSUT1 (MVS and CMS) or
IJSYS03 (VSE).

System Action: The assembly stops and no listing is
produced.

Programmer Response: Increase the work file block
size, or split the assembly into two or more smaller
assemblies.

Severity: 20

ASMA974U Insufficient storage available to satisfy
the SIZE option

Explanation: The assembler attempted to acquire the
amount of storage specified in the SIZE option, but
there was not enough available storage in the region
(MVS), virtual machine (CMS), or partition GETVIS
(VSE).

System Action: The assembly stops and no listing is
produced.

Programmer Response: Increase the region size
(MVS), the virtual machine size (CMS), or the partition
GETVIS (VSE) size, or reduce the size requested in the
SIZE option.

Severity: 20

ASMA975U SIZE option specifies insufficient
storage for assembly

Explanation: The SIZE option was specified as
MAX-nnnK or MAX-nnM, but the amount of storage
available to the assembler using this formula is not
enough for the assembly to continue. The assembler
requires a minimum of either 200K bytes or 10 times
the work file blocksize, plus 20K, of working storage in
the region (MVS), virtual machine (CMS), or partition
GETVIS (VSE) to proceed.

System Action: The assembly stops and no listing is
produced.

Programmer Response: Increase the region size
(MVS), virtual machine size (CMS), or the partition
GETVIS (VSE) size, or reduce the amount of storage to
be reserved in the MAX-nnnK or MAX-nnM form of the
SIZE option.

Severity: 20

ASMA976U Statement too complex for expression
analysis

Explanation: The statement is too complex to be
analyzed by the expression analysis routine of the
assembler. It overflowed the analysis work area. The
size of the analysis work area is the same as the work
file block size. Normally, there is no problem with the
assembler. The statement can be rewritten to simplify
it, and the program reassembled successfully.

System Action: The assembly stops and a formatted
abnormal termination dump is produced. The dump
indicates which statement was being processed at the
time of abnormal termination. It also includes the
contents of the assembler registers and work areas and
other status information that might be required by an
IBM support representative if the problem persists.

Programmer Response: Check the statement that
was being processed at the time of abnormal
termination. Rewrite the statement or split it into two or
more statements. Alternatively, increase the work file
block size. Reassemble the program; it should
assemble correctly. However, if the problem persists,
there might be a problem with the assembler. Save the
abnormal termination dump, the assembly listing (if one
was produced), and the input source(s), and contact
IBM for support.

Severity: 20

 Appendix G. High Level Assembler Messages 351

 ASMA990U 1 ASMA999U

ASMA990U Location Counter does not match
symbol table value

Explanation: A difference has been detected between
the symbol table and the location counter. The
assembly stops and a special abnormal termination
dump (High Level Assembler interrupt and diagnostic
dump) is taken. The listing is not completed.

System Action: The High Level Assembler interrupt
and diagnostic dump shows the statement that was
being printed when the difference between the location
counter and the symbol table was detected.

Programmer Response: Reassemble the program
using NOALIGN. If alignment is needed, use CNOP or
DS to force alignment.

Severity: 20

| ASMA998U The assembler could not resume
| reading a LIBRARY member because it
| could not FIND the member again

Explanation: The assembly stops, because the
assembler cannot find a COPY member that it has
already read. This usually is caused by an error in the
assembler itself or by an Operating System I/O error.
Under certain conditions, however, the assembly can be
rerun successfully.

System Action: A special abnormal termination dump
(High Level Assembler interrupt and diagnostic dump)
follows the message. The dump usually indicates which
statement caused termination. It also might include
contents of the assembler registers and work areas and
other status information for use by IBM or your
assembler maintenance programmers in determining
the cause of the termination.

Programmer Response: Reassemble the program; it
might assemble correctly. If it does not reassemble
without error, save the abnormal termination dump, the
assembly listing (if one was produced), and the input
source(s), and contact IBM for support.

Severity: 20

| ASMA999U Assembly terminated - SYNAD Exit
| taken - Permanent I/O error on xxxxxxx
| data set

Explanation: The assembly was stopped because of a
permanent I/O error on the data set indicated in the
message. This is usually caused by a machine or an
operating system error. The assembly usually can be
rerun successfully. This message also appears on the
console output device.

System Action: A special abnormal termination dump
(High Level Assembler interrupt and diagnostic dump)
follows the message. Depending on where the error
occurred, the assembly listing up to the bad statement
might also be produced. The dump usually indicates
which statement caused termination. It also might

include contents of the assembler registers and work
areas and other status information for use by IBM or
your assembler maintenance programmers in
determining the cause of the termination.

Programmer Response: If the I/O error is on SYSIN
or SYSLIB, you might have concatenated the input or
library data sets incorrectly. Make sure that the DD
statement for the data set with the largest block size
(BLKSIZE) is placed in the JCL before the DD
statements of the data sets concatenated to it. Also,
make sure that all input or library data sets have the
same device class (all DASD or all tape). Please also
check that file attributes such as DSORG, RECFM,
LRECL, and BLKSIZE have been correctly specified.

If the I/O error is on SYSUT1, check that SYSUT1 is
allocated to a single volume—the assembler does not
support a multivolume work file.

Reassemble the program; it might assemble correctly.
If it does not reassemble without error, save the
abnormal termination dump, the assembly listing (if one
was produced), and the input source(s), and contact
IBM for support. Also, if the program assembles
correctly, submit a copy of the listing and input
source(s) of the correct assembly.

Severity: 20

ASMAHL Command Error
Messages (CMS Only)

ASMACMS002E File fn ft fm not found

Explanation: The file name you included in the
ASMAHL command does not correspond to the names
of any of the files on your disks.

Supplemental Information: The variable file name, file
type, and file mode in the text of the message indicate
the file that could not be found.

System Action: RC=28. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue the ASMAHL with
the correct file name.

ASMACMS003E Invalid option option

Explanation: You have included an option that is not
correct with your ASMAHL command.

Supplemental Information: The variable option in the
text of the message indicates the option that is not
correct.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

352 HLASM V1R3 Programmer’s Guide

 ASMACMS004E 1 ASMACMS040E

Programmer Response: Check the format of the
ASMAHL command, and reissue the command with the
correct option.

ASMACMS004E Improperly formed option option

Explanation: You have included an improperly formed
option with your ASMAHL command.

Supplemental Information: The variable option in the
text of the message indicates the improperly formed
option.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Check the format of the
ASMAHL command, and reissue the command with the
correct option.

ASMACMS005E Truncation of options may have
occurred because of tokenized PLIST
format

Explanation: The options have been passed to the
ASMAHL command in tokenized PLIST format. Any
options passed might have been truncated to 8
characters. This message is only issued when an error
has been detected in one of the options that was
specified.

System Action: The options are accepted as entered
but might have been truncated.

Programmer Response: If the options have been
truncated, invoke the ASMAHL command with the
extended parameter list. If the SYSPARM option has
been truncated, specify SYSPARM(?).

ASMACMS006E No read/write disk accessed

Explanation: Your virtual machine configuration does
not include a read/write disk for this terminal session, or
you failed to specify a read/write disk.

System Action: RC=36. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Issue an ACCESS command
specifying a read/write disk.

ASMACMS007E File 'fn ft fm' does not contain fixed
length 80 character records

Explanation: The source file you specified in the
ASMAHL command does not contain fixed-length
records of 80 characters.

Supplemental Information: The variable file name, file
type, and file mode in the text of the message indicate
the file that is in error.

System Action: RC=32. The command cannot be
processed.

Programmer Response: You must reformat your file
into the correct record length. CMS XEDIT or
COPYFILE can be used to reformat the file.

ASMACMS010E file name omitted and FILEDEF
'ddname' is undefined

Explanation: You have not included a file name in the
ASMAHL command, and no FILEDEF could be found
for the ddname specified.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue the ASMAHL
command and specify a file name, or issue a FILEDEF
for the ddname specified.

ASMACMS011E file name omitted and FILEDEF
'ddname' is not for DISK

Explanation: You have not included a file name in the
ASMAHL command, and the FILEDEF for the ddname
specified is not for DISK.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue the ASMAHL
command and specify a file name, or reissue the
FILEDEF for the ddname specified with a device type of
'DISK'.

ASMACMS038E Filename conflict for the SYSIN
FILEDEF.

Explanation: The file name specified on the ASMAHL
command conflicts with the file name on the FILEDEF
for the SYSIN ddname.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue the FILEDEF
command or the ASMAHL command specifying the
same file name.

ASMACMS040E Saved segment xxxxxxxx does not
exist

Explanation: The specified saved segment has not
been included in the System Names Table (SNT).

System Action: RC=40. Processing of the command
terminates.

Programmer Response: See your system
administrator.

 Appendix G. High Level Assembler Messages 353

 ASMACMS041E 1 ASMACMS075E

ASMACMS041E The storage for saved segment
xxxxxxxx is already in use

Explanation: The storage for the specified saved
segment has already been used by another saved
segment.

System Action: RC=40. Processing of the command
terminates.

Programmer Response: See your system
administrator.

ASMACMS042E SEGMENT error nnn loading saved
segment xxxxxxxx

Explanation: An error occurred when the ASMAHL
command attempted to load the specified saved
segment.

System Action: RC=40. Processing of the command
terminates.

Programmer Response: See your system
administrator.

ASMACMS043E DIAGNOSE error nnn loading saved
segment xxxxxxxx

Explanation: An error occurred when the ASMAHL
command attempted to load the specified saved
segment.

System Action: RC=40. Processing of the command
terminates.

Programmer Response: See your system
administrator.

ASMACMS044E NUCXLOAD error nnn loading
xxxxxxxx module

Explanation: An error occurred when the ASMAHL
command attempted to load the specified module.

System Action: RC=40. Processing of the command
terminates.

Programmer Response: See your system
administrator.

ASMACMS052E Option list exceeds 512 characters.

Explanation: The string of options that you specified
with your ASMAHL command exceeded 512 characters
in length.

System Action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue your ASMAHL
command with fewer options specified.

ASMACMS062E Invalid character c in file name
xxxxxxxx

Explanation: A character that is not permitted was
specified in the file name specified on the ASMAHL
command.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Check the format of the
option with its correct parameters, and reissue the
command with the correct parameter.

ASMACMS070E Left parenthesis '(' required before
option list

Explanation: An option was specified after the file
name but before the left parenthesis on the ASMAHL
command.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Issue the ASMAHL
command again with the option specified after the left
parenthesis. Only the file name can be specified before
the left parenthesis.

ASMACMS074E Required module xxxxxxxx MODULE
not found

Explanation: The ASMAHL command was unable to
load the specified module.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Verify you have accessed
the disk containing the assembler and issue the
ASMAHL command again.

ASMACMS075E Device device invalid for xxxxxxxx

Explanation: The device specified in your FILEDEF
command cannot be used for the input or output
operation that is requested in your program. For
example, you have tried to read data from the printer or
write data to the reader.

Supplemental Information: The variable device name
in the text of the message indicates the incorrect device
that was specified.

System Action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer Response: Reissue your FILEDEF
command, specifying the correct device for the required
input operation.

354 HLASM V1R3 Programmer’s Guide

 ASMACMS076E 1 ASMACMS076E

| ASMACMS076E xxxxxxxx MODULE IS NOT IN
| RELEASE 3 FORMAT

| Explanation: The module xxxxxxxx is not in the
| required format for Release 3.

| Note: This message is only produced in uppercase
| English.

| System Action: RC=40. Processing of the command
| terminates.

| Programmer Response: Ensure that you have the
| correct version of the module available. Check the
| disks you have linked, and make sure you are not
| accessing modules from an earlier release of High
| Level Assembler. If the module is ASMADOPT, you
| might need to reassemble your default options module
| with the ASMAOPT macro provided with High Level
| Assembler Release 3. If you cannot resolve the
| problem, contact your High Level Assembler
| maintenance programmer, or your IBM service
| representative.

 Appendix G. High Level Assembler Messages 355

Appendix H. User Interface Macros

The macros identified in this appendix are provided as programming interfaces by
High Level Assembler.

Attention: Do not use any High Level Assembler macros, other than those
identified in this appendix, as programming interfaces.

The following macros intended for customers are all General-Use Programming
Interfaces.

ASMADATA Maps the records in the associated data file.

ASMAEFNP Maps the parameter list passed to external function routines for the
SETAF and SETCF conditional assembler instructions.

ASMAXFMB On MVS and CMS, generates the Filter Management Table used by
the sample ADATA user exit ASMAXADT.

ASMAXITP Maps the parameter list passed to the assembler user exits.

356  Copyright IBM Corp. 1982, 1998

Appendix I. Sample ADATA User Exit (MVS and CMS)

ASMAXADT is a sample ADATA exit supplied with High Level Assembler.

 Function
The sample ADATA exit handles the details of interfaces to the assembler, and
provides associated data (ADATA) records to any of a number of filter modules that
inspect the records to extract the information they require. This allows filter
modules to be added or modified without impacting either the exit or the other filter
modules.

The design of the exit:

� Supports multiple simultaneous filter modules.

� Simplifies the ADATA record interface for each filter, because you don't need to
know about the complex details of interacting directly with the assembler.

� Supports filter modules written in high level languages.

The three components that make up the functional ADATA exit are:

1. The exit routine, ASMAXADT, which is invoked by High Level Assembler

2. A table of filter module names, contained in a Filter Management Table (FMT)
module ASMAXFMT. The FMT is loaded by the exit routine.

3. The filter modules. These are loaded by the exit as directed by the FMT. A
sample filter module, ASMAXFLU, is provided with High Level Assembler.

Preparing the Exit
Before the exit can be used it must be assembled and link-edited, and the load
module placed in a library in the standard search order. ASMAXADT, as supplied,

| has the following attributes: reusable, reenterable, amode(24), rmode(24).

Refer to Chapter 4, “Providing User Exits” on page 76 for further information about
coding and preparing user exits.

Preparing the Filter Management Table
The names of the filter modules to be invoked by the user exit are contained in the
Filter Management Table (FMT). The FMT is generated by using the macro
ASMAXFMB. The names of the filter modules are specified as operands to the
ASMAXFMB macro. Figure 97 shows an example of how to create an FMT that
causes the filters MYFILT, YOURFILT, HERFILT, HISFILT, and OURFILT to be invoked
by the exit.

ASMAXFMT Title 'ADATA Exit Filter Management Table'
 ASMAXFMB MYFILT,YOURFILT,HERFILT,HISFILT,OURFILT
 END

Figure 97. Creating a Filter Management Table

The object file produced from the assembly must be link-edited, and the load
module placed in a library in the standard search order. ASMAXFMT, as supplied,

| has the following attributes: reusable, non-reenterable, non-sharable.

 Copyright IBM Corp. 1982, 1998 357

You can specify an initial character string as part of the filter operand that is passed
to the filter routine during initialization. Figure 98 on page 358 shows two filter
routines: MYFILT, that receives the characters “A,B,C”, and ASMAXFLU, that
receives the characters “DUMP”.

ASMAXFMT Title 'ADATA Exit Filter Management Table'
 ASMAXFMB (MYFILT,'A,B,C'),(ASMAXFLU,'DUMP')
 END

Figure 98. Passing Initial Character String to Filter Routines

The default FMT control section (CSECT) name is ASMAXFMT. You can specify a
different CSECT name using the SECT keyword on the ASMAXFMB macro.
Figure 99 shows how to generate a CSECT name of MYFMT.

ASMAXFMT Title 'ADATA Exit Filter Management Table'
 ASMAXFMB SECT=MYFMT,(MYFILT,'A,B,C'),YOURFILT
 END

Figure 99. Generating an Alternative CSECT Name

Preparing the Filter Modules
The exit routine loads the Filter Management Table (FMT) module. The filter
modules specified in the FMT are then loaded by the exit routine. Each filter
module is called by the exit in three ways: once to process an OPEN request,
multiple times to process ADATA records, and once to process a CLOSE request.

Call Interface: The filter modules must be placed in a library in the standard
search order.

Each filter is called by the exit using the standard call interface in the following
form:

 CALL filter(exit_type,action,return_code,handle,record_length,record)

The exit branches to the filter module using the BASR assembler instruction.

Registers on Entry: Standard OS linkage conventions are used, and the registers
on entry to the filter module are:

� R13 contains the address of a standard 18-word save area

� R14 contains the return address to the exit

� R15 contains the filter's entry point address

� R1 contains the address of a list of six fullwords that address:

1. A fullword containing the exit_type

2. A fullword integer containing the action code

3. A fullword integer where the filter puts the return_code

4. A 4-fullword handle area

5. A fullword integer containing the ADATA record_length

6. The ADATA record

358 HLASM V1R3 Programmer’s Guide

The high-order bit of the last fullword address is set to one.

Figure 100 shows the six fullwords in the parameter list.

 ┌───────────────┐
 ┌───────�│ exit_type │
 │ └───────────────┘
 │
 │ ┌───────────────┐

│ ┌─────�│ action │
 ┌───────────────┐ ┌──────────────────────────┐ │ │ └───────────────┘
 │ register 1 ├─────�│ address of exit_type ├─┘ │
 └───────────────┘ ├──────────────────────────┤ │ ┌───────────────┐

│ address of action ├───┘ ┌───�│ return_code │
 ├──────────────────────────┤ │ └───────────────┘

│ address of return_code ├─────┘
 ├──────────────────────────┤ ┌───────────────┐

│ address of handle ├─────────�│ handle │
 ├──────────────────────────┤ └───────────────┘

│ address of record_length ├─────┐
 ├──────────────────────────┤ │ ┌───────────────┐

│ address of record ├─┐ └───�│ record_length │
 └──────────────────────────┘ │ └───────────────┘
 │
 │ ┌───────────────┐
 └───────�│ record │
 └───────────────┘

Figure 100. Filter Module Parameter List Format

Parameters on Entry: The six parameters are:

exit_type (Input) The address of a fullword of storage that indicates the exit
type. The value is always 4, to indicate an ADATA exit.

action (Input only) The address of a fullword integer that can be one of
the following three values:

0 OPEN Request. Open and initialize the filter. No ADATA
| record is available with this call, although there may be initial
| character string data supplied.

The exit accepts the following return codes:

0 The open action was successful. The exit subsequently
calls the filter module to inspect and process each
ADATA record.

12 The open action was unsuccessful. The filter module is
assumed to have closed itself, and is not called again.

1 CLOSE Request. The exit is requesting the filter module to
close itself. No ADATA record is available with this call and
no further calls are made to the filter module.

The exit accepts the following return codes:

0 The filter module has closed successfully. The exit can
delete the filter.

12 The filter module is assumed to have closed itself, and is
not called again. The exit can delete the filter.

 Appendix I. Sample ADATA User Exit (MVS and CMS) 359

3 PROCESS Request. A record is available to the filter module
for processing. The ADATA record should not be modified.

The exit accepts the following return codes:

0 The filter module has completed its processing of this
record, and is ready to accept further records.

12 The filter module is assumed to have closed itself, and is
not called again.

return_code (Output only) The address of a fullword integer where the filter
module should place a return code. Valid return codes are
described under each action.

handle (Input/Output) The address of a 4-fullword area of storage that is
initialized to zero before the OPEN (action=9) call to the filter. Its
contents are preserved across subsequent calls. The handle can
be used in any way by the filter module; for example, to address
working storage for a reenterable filter module.

record_length (Input only) The address of a fullword integer containing the length
of the ADATA record. A length is provided for PROCESS

| (action=3) calls, and for OPEN (action=9) calls when you supply
| an initial character string.

record (Input only) The address of the ADATA record. This points to the
| ADATA record for PROCESS (action=3) calls, and to the initial
| character string for OPEN (action=9) calls.

Information Messages: If all the filter modules request termination before the last
ADATA record is processed, the following message is issued and the assembly
continues:

ASMA799I All SYSADATA filter modules requested early termination

Error Diagnostic Messages: When the Filter Management Table routine detects
an error it directs the assembler to issue message ASMA940U and the assembly

| stops. The following text might be included in the ASMA940U message:

| SYSADATA exit not coded at same level of interface definition (2) as
| assembler

The exit uses version 2 of the exit definition, but the assembler uses a different
version.

| SYSADATA exit called for other than SYSADATA

The exit was invoked with a valid type, but the type is not one that the exit can
process. This is probably caused by an incorrect ADEXIT() suboption of the
EXIT assembler option.

| SYSADATA exit not initialized, and not entered for OPEN

The exit has not yet been initialized, but was not entered with an OPEN
request (action=9). There may be a failure in communication between the
assembler and the exit.

| SYSADATA exit initialized, but was entered for OPEN

The exit has been initialized, but was unexpectedly entered with an OPEN
request (action=9). There may be a failure in communication between the
assembler and the exit.

360 HLASM V1R3 Programmer’s Guide

| SYSADATA exit - Invalid action or operation type requested

An action was requested that is inconsistent with the type of action the exit is
able or was expecting to take. There may be a failure in communication
between the assembler and the exit.

| SYSADATA exit - Expecting input record, zero record length found

The exit was expecting an input record, but the record length was zero. There
may be a failure in communication between the assembler and the exit.

| Unable to load xxxxxxxx module. SYSADATA exit failed

The assembler was unable to load the Filter Management Table module
xxxxxxxx. No SYSADATA processing is possible.

| All SYSADATA filter modules failed to open

All of the filter modules loaded by the exit failed to open. No SYSADATA
processing is possible.

Preparing the Sample Filter Module ASMAXFLU
You can use the supplied filter routine, ASMAXFLU, to:

� Write the names of the primary input and library data sets to a data set.

� Dump the first 32 bytes of each ADATA record to a data set. This function is
only performed if you specify DUMP as the initial character string, as shown in
Figure 101.

ASMAXFMT Title 'ADATA Exit Filter Management Table'
 ASMAXFMB (ASMAXFLU,'DUMP')
 END

Figure 101. Initial Character String for ASMAXFLU

Output from ASMAXFLU: The output from ASMAXFLU is written to a data set
defined by the ddname XFLUOUT. The data set record length is 80 bytes. The
first record in the data set is a header record, and the last record in the data set is
a trailer record. The dump, header, and trailer records are prefixed with an
asterisk.

| The data set records have one of the following formats:

Columns Contents

1 Record type: “P”=Primary Input, “L”=Library

2 Blank

3–10 Date, in YYYYMMDD format (blank for type “L”)

11–14 Time, in HHMM format (blank for type “L”)

15–58 Data set name

59–66 Member name

67–72 Volume ID where file was found

73-80 Sequencing information

| or

 Appendix I. Sample ADATA User Exit (MVS and CMS) 361

| Columns Contents

| 1 Record type: “M”=Inline MACRO

| 2 Blank

| 3–15 “PRIMARY INPUT”

| 16–17 Blank

| 18–80 Macro name (can be up to 63 characters)

Figure 102 shows a sample data set containing records written by ASMAXFLU:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

| K ASMAXFLU Filter Header Record
| KDump 19999293 99999999 99999998 99999999 99999999 99999999 99999999 99999999
| KDump 19999193 99999999 9999999A B9CC4378 E59BF999 99259999 99999999 99999999
| KDump 19999993 99999999 99999977 F1F9F9F8 F9F7F2F4 F1F9F3F3 F5F6F9F6 69F2F3F4
| P 199897241933AINSERT3 ASSEMBLE A1 ADISK 99999991
| KDump 19991993 99999999 99999968 A9CF9949 84BC9691 9F998999 49494949 49494949
| KDump 19992993 99999999 99999928 99999999 99999991 99999999 99999999 99999999
| KDump 19993993 99999999 9999999C 99999991 99999999 99999991 99999999 99919999
| KDump 19993993 99999999 9999999C 99999992 99999999 99999992 99999999 99919999
| KDump 19993993 99999999 9999999C 99999993 99999999 99999993 99999999 99919999
| KDump 19993993 99999999 9999999C 99999994 99999999 99999994 99999999 99919999
| KDump 19993993 99999999 9999999C 99999995 99999999 99999995 99999999 99919999
| KDump 19993993 99999999 9999999C 99999996 99999999 99999996 99999999 99919999
| KDump 19994293 99999999 9999992A 99999991 9999999F 91D19999 99919991 99999999
| KDump 19994493 99999999 9999991D 99989999 999F9991 49999999 99999999 C1C9D5E3
| KDump 19996993 99999999 9999993B 9992999D 9999FFFF 99969999 9999D7D9 C9D4C1D9
| M PRIMARY INPUT AINSERT_TEST_MACRO
| M PRIMARY INPUT MAC1
| KDump 19996993 99999999 99999939 99929914 99959991 99969999 9999E3C5 E2E34949
| L TEST MACLIB A1 XIT1 ADISK
| L TEST MACLIB A1 XIT3 ADISK
| KDump 19996993 99999999 99999933 99919914 99959992 99969999 9999C4E2 C5C3E349
| L DSECT MACLIB A1 XIT2 ADISK
| KDump 19996293 99999999 999999A6 99999999 99999993 D7499999 99999999 9999C1C9
| KDump 19996293 99999999 999999A6 99999999 9999991C D7499999 99999999 9999D4C1
| KDump 19996293 99999999 999999A6 99999992 99999999 D3499999 99999999 9999E7C9
| KDump 19996293 99999999 999999A6 99999993 99999999 D3499999 99999999 9999E7C9
| KDump 19996293 99999999 999999A6 99999992 99999999 D3499999 99999999 9999E7C9
| KDump 19999993 99999999 999999B9 99999DF3 999999C8 99999912 99999999 99999999
| KDump 19999293 99999999 99999998 99919999 9999993D 99999999 99999999 99999999
| K ASMAXFLU Filter Trailer Record

Figure 102. Sample Output Data Set from ASMAXFLU

Error Messages: When ASMAXFLU detects an error, it writes an error message
to the XFLUOUT data set. The following messages might be written:

� ASMAXFLU called with unknown ADATA Definition Level.

Check the value of ADATA_LEVEL in the ADATA record header.

� ASMAXFLU called for other than Assembler ADATA?

Check the value of ADATA_VERSION in the ADATA record header.

� ASMAXFLU library record has no member names?

Check the value of ADMXREF_NUM in the X'0060' ADATA record.

� ASMAXFLU library record missing member data?

Check the value of the member name length in the X'0060' ADATA record.

� ASMAXFLU Job-ID record has no file names?

Check the value of ADJID_NUM_INPUT_FILES in the X'0000' ADATA record.

362 HLASM V1R3 Programmer’s Guide

� ASMAXFLU called with unrecognized action code.

The action code is not 0, 1, or 3.

� ASMAXFLU called with unrecognized exit type.

The exit_type is not 4.

Assembling and Link-Editing ASMAXFLU: You must assemble and link-edit
ASMAXFLU, placing the load module in a library in the standard search order.

| ASMAXFLU, as supplied, has the following attributes: non-reusable,
| non-reenterable, amode(24), rmode(24). See page 358 for details about preparing

filter modules.

Invoking the Exit
To invoke the exit, specify the EXIT assembler option as follows:

 EXIT(ADEXIT(ASMAXADT))

If you don't want to use the default filter management table ASMAXFMT, you can
specify a different name as follows:

 EXIT(ADEXIT(ASMAXADT(fmt_name))

where fmt_name is the load module name of the filter management table. See
Figure 99 on page 358, which shows you how to generate an alternative filter
management table.

 Appendix I. Sample ADATA User Exit (MVS and CMS) 363

Appendix J. Sample LISTING User Exit (MVS and CMS)

ASMAXPRT is a sample LISTING exit supplied with High Level Assembler.

 Function
The sample LISTING exit suppresses printing of the High Level Assembler Options
Summary, or the Diagnostic Cross Reference and Assembler Summary, or both. It
can also print the Options Summary page at the end of the listing, instead of its
normal position at the beginning of the listing.

Preparing the Exit
Before the exit can be used it must be assembled and link-edited, and the load
module (phase) placed in a library in the standard search order. ASMAXPRT, as

| supplied, has the following attributes: reusable, reenterable, amode(31),
| rmode(any).

Refer to Chapter 4, “Providing User Exits” on page 76 for further information about
coding and preparing user exits.

Invoking the Exit
To invoke the exit, specify the EXIT assembler option as follows:

 EXIT(PRTEXIT(ASMAXPRT(parameter-string)))

where parameter-string controls what action the exit performs.

 Parameter String

 ┌ ┐─,───────────
��─ ──(───+ ┴┬ ┬─NOOPTION──) ─��
 ├ ┤─NOSUMMARY─
 └ ┘─OPTEND────

Default
None. At least one keyword is required.

Abbreviations
NOOP, NOSUM

The abbreviations shown here are the minimum number of characters allowed.
You can, for example, specify NOOPTI or NOSUMM.

NOOPTION
Suppress the Options Summary

NOSUMMARY
Suppress the Diagnostic Cross Reference and Assembler Summary

OPTEND
Print the Options Summary at the end of the assembler listing, instead of at the
beginning.

364  Copyright IBM Corp. 1982, 1998

 Messages
ASMAXPRT might issue message ASMA701W as follows:

KK ASMA791W LISTING: ASMAXPRT - Invalid Option Specified: xxxxxxxx

This message is issued because the value xxxxxxxx, specified as an exit string
of the EXIT assembler option, is not recognized by ASMAXPRT.

The exit uses the keyword options processed until the error was detected. Any
values in the exit string after xxxxxxxx are ignored.

KK ASMA791W LISTING: ASMAXPRT - No options specified

This message is issued because ASMAXPRT expects one or more keyword
options in the exit string of the EXIT assembler option.

KK ASMA791W LISTING: ASMAXPRT - Exit buffer is full

This message is issued because ASMAXPRT, as supplied, only supports a
maximum of 60 lines for the Options Summary page. To increase this value, or
change it to allow an unlimited number of lines, modify the exit source then
assemble and link-edit it.

This error might cause an incomplete Options Summary page.

 Appendix J. Sample LISTING User Exit (MVS and CMS) 365

Appendix K. Sample SOURCE User Exit (MVS and CMS)

ASMAXINV is a sample SOURCE exit supplied with High Level Assembler.

 Function
The sample SOURCE exit reads variable-length source data sets. Each record that
is read is passed to the assembler as an 80-byte source statement. If any record in
the input data set is longer than 71 characters, the remaining part of the record is
converted into continuation records.

The exit also reads a data set with a fixed record length of 80 bytes.

Preparing the Exit
Before the exit can be used it must be assembled and link-edited, and the load
module (phase) placed in a library in the standard search order. ASMAXINV, as

| supplied, has the following attributes: reusable, reenterable, amode(24), rmode(24).

Refer to Chapter 4, “Providing User Exits” on page 76 for further information about
coding and preparing user exits.

Invoking the Exit
To invoke the exit specify the EXIT assembler option as follows:

 EXIT(INEXIT(ASMAXINV))

366  Copyright IBM Corp. 1982, 1998

Appendix L. How to Generate a Translation Table

High Level Assembler uses the EBCDIC character set to represent characters
contained in character (C-type) data constants (DCs) and literals. The
TRANSLATE assembler option lets you specify a module containing a translation
table which the assembler uses to convert these characters into another character
set.

High Level Assembler provides an ASCII translation table; however, you can supply
your own translation table. The translation table module must be named
ASMALTxx, where xx is the suffix specified in the TRANSLATE assembler option.
See “TRANSLATE” on page 71.

Preparing the Translation Table: The user-supplied translation table must be
assembled and link-edited into a library in the standard load module search order.
The full name of the translation table load module name must occupy bytes 257 to
264 of the module. The first byte of the module must be the first byte of the
translation table.

A sample translation table to convert a subset of EBCDIC characters into ASCII
characters is shown in Figure 103 on page 368. Specify the TRANSLATE(U1)
assembler option to use this translation table.

 Copyright IBM Corp. 1982, 1998 367

< SETC 'ASMALTU1'
< CSECT
 DC 256X'99'
 ORG <+64

DC X'29' EBCDIC: X'49' blank
 ORG <+75
 DC X'2E3C282B' EBCDIC: .<(+
 ORG <+89
 DC X'26' EBCDIC: &
 ORG <+99

DC X'21242A293B' EBCDIC: !$K);
 ORG <+96
 DC X'2D2F' EBCDIC: -/
 ORG <+196
 DC X'7C2C255F3E3F' EBCDIC:],%_>?
 ORG <+121
 DC X'693A23492C3D' EBCDIC: :#@'=
 ORG <+127
 DC X'22' EBCDIC: "
 ORG <+129
 DC X'616263646566' EBCDIC: abcdef
 ORG <+135
 DC X'676869' EBCDIC: ghi
 ORG <+145
 DC X'6A6B6C6D6E6F' EBCDIC: jklmno
 ORG <+151
 DC X'797172' EBCDIC: pqr
 ORG <+161
 DC X'7E7374757677' EBCDIC: ˜stuvw
 ORG <+167
 DC X'78797A' EBCDIC: xyz
 ORG <+192

DC X'7B41424344' EBCDIC: {ABCD
 ORG <+197

DC X'4546474849' EBCDIC: EFGHI
 ORG <+298

DC X'7D4A4B4C4D' EBCDIC: }JKLM
 ORG <+213

DC X'4E4F595152' EBCDIC: NOPQR
 ORG <+224
 DC X'5C' EBCDIC: \
 ORG <+226
 DC X'53545556' EBCDIC: STUV
 ORG <+239
 DC X'5758595A' EBCDIC: WXYZ
 ORG <+249

DC X'3931323334' EBCDIC: 91234
 ORG <+245

DC X'3536373839' EBCDIC: 56789
 ORG <+256

DC CL8'<' Table name = Module name
 END

Figure 103. Sample Translation Table

368 HLASM V1R3 Programmer’s Guide

 Glossary

 Glossary

This glossary defines terms that are used in the High
Level Assembler publications. Some of these terms
might not be used in this publication.

This glossary has three main types of definitions that
apply:

� To the assembler language in particular (usually
distinguished by reference to the words
“assembler,” “assembly,” etc.)

� To programming in general

� To data processing as a whole

If you do not understand the meaning of a data
processing term used in any of the definitions below,
refer to Vocabulary for Data Processing,
Telecommunications, and Office Systems, GC20-1699.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing, which was prepared by
Subcommittee X3K5 on Terminology and Glossary of
American National Standards Committee X3. ANSI
definitions are preceded by an asterisk (*).

absolute expression. An expression is absolute if its
value does not change upon program relocation.

absolute value. Is the value of a term when that value
does not change upon program relocation.

addressing mode (24-bit). A System/370 addressing
mode (AMODE) of the extended architecture that allows
a program to run using 24-bit addresses. When
operating in 24-bit mode, S/370 addressing architecture
is applied. Other facilities of the extended architecture
(see below) may be utilized. Only the low-order 24 bits
of an address are used; the high-order bits are ignored.

addressing mode (31-bit). An extended architecture
addressing mode (AMODE) that allows a program to
run using 31-bit addresses, other facilities of the
extended architecture, or both. When operating in
31-bit mode, extended architecture addressing is
applied, and all but the high-order bit of an address are
used to address storage.

assemble. To prepare a machine language program
from a symbolic language program by substituting
machine operation codes for symbolic operation codes
and absolute or relocatable addresses for symbolic
addresses.

*assembler. A computer program that assembles.

assembler instruction. An assembler language
source statement that causes the assembler to do a
specific operation. Assembler instructions are not
translated into machine instructions.

assembler language. A source language that includes
symbolic machine language statements in which there
is a one-to-one correspondence with the instruction
formats and data formats of the computer. The
assembler language also contains statements that
represent assembler instructions and macro
instructions.

automatic library call. The process by which the
linkage editor or binder resolves external references by
including additional members from the automatic call
library.

bimodal program execution. A function of the
extended architecture (see “addressing mode (31-bit)”)
that allows a program to run in 24-bit or 31-bit
addressing mode. The addressing mode is under
program control.

binder. The component of DFSMS/MVS which is
responsible for linking and editing programs, to create
either record format load modules or program objects.
The DFSMS/MVS binder is a functional replacement for
the MVS/DFP linkage editor.

bracketed DBCS. DBCS characters enclosed with a
shift-out (SO) character and a shift-in character (SI) to
identify them from SBCS, and containing no SBCS
characters except SO and SI.

conditional assembly language. A programming
language that the assembler processes during
conditional assembly. The conditional assembly
language can be used to perform general arithmetic and
logical computations, generate machine and assembler
instructions from model statements, and provide
variable symbols to represent data and vary the content
of model statements during generation. It can be used
in macro definitions, and in open code.

control program. A program that is designed to
schedule and supervise the performance of data
processing work by a computing system; an operating
system.

control section (CSECT). That part of a program
specified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining main
storage locations.

 Copyright IBM Corp. 1982, 1998 369

 Glossary

data attributes. Values assigned by the assembler
which describe the characteristics of ordinary symbols
and variable symbols that represent data.

*diagnostic. Pertaining to the detection and isolation
of a malfunction or mistake.

double-byte character set (DBCS). DBCS is a means
of providing support for Ideographic Languages which
contain too many symbols to be represented by a single
byte character set such as EBCDIC. A valid
double-byte character is defined as either DBCS blank
(X'4040'), or a pair of bytes, each of which must be in
the range X'41' to X'FE', inclusive.

double-byte data. Double-byte character strings are
commonly referred to as double-byte data.

dummy control section (DSECT). A control section
that an assembler can use to map an area of storage
without producing any object code or data for that area.
Synonymous with dummy section.

edited text. Source statements modified by the
assembler for internal use. The initial processing of the
assembler is referred to as editing.

enterprise systems architecture. A hardware
architecture for the IBM 3090 processor. A major
characteristic is 31-bit addressing. See also
“addressing mode (31-bit).”

*entry point. A location in a module to which control
can be passed from another module or from the control
program.

extended architecture. A hardware architecture for
the IBM 3081 processor. A major characteristic is
31-bit addressing. See also “addressing mode (31-bit).”

external symbol dictionary (ESD). Control
information associated with an object or load module
which identifies the external symbols in the module.

global dictionary. An internal table used by the
assembler during macro generation to contain the
current values of all unique global SETA, SETB, and
SETC variables from all text segments.

global vector table. A table of pointers in the skeleton
dictionary of each text segment showing where the
global variables are located in the global dictionary.

hierarchical file system. In MVS/ESA OpenEdition, a
Hierarchical File System (HFS) is a collection of files
organized in a hierarchy, as in a UNIX system. All files
are members of a directory, and each directory is in
turn a member of another directory at a higher level in
the hierarchy. The highest level of the hierarchy is the
root directory. MVS views an entire file hierarchy as a
collection of hierarchical file system data sets (HFS data

sets). Each HFS data set is a mountable file system.
The Hierarchical File System is described in the
MVS/ESA OpenEdition MVS User's Guide, SC23-3013.

instruction. *(1) A statement that specifies an
operation and the values and locations of its operands.
(2) See also “assembler instruction,” “machine
instruction,” and “macro instruction.”

job control language (JCL). A language used to code
job control statements.

*job control statement. A statement in a job that is
used in identifying the job or describing its requirements
to the operating system.

language. A set of representations, conventions, and
rules used to convey information.

*language translator. A general term for any
assembler, compiler, or other routine that accepts
statements in one language and produces equivalent
statements in another language.

library macro definition. A macro definition that is
stored in a macro library. The IBM-supplied supervisor
and data management macro definitions are examples
of library macro definitions.

linkage editor. A processing program that prepares
the output of language translators to enable it to run. It
combines separately produced object or load modules;
resolves symbolic cross references among them;
replaces, deletes, and adds control sections; generates
overlay structures on request; and produces executable
code (a load module) that is ready to be fetched into
main storage and run.

linker. Used in this publication as collective term for
binder and linkage editor.

load module. The output of a single linkage editor run.
A load module is in a format suitable for loading into
virtual storage and running.

loader. A processing program that does the basic
editing functions of the linkage editor, and also fetches
and gives control to the processed program. It accepts
object modules and load modules created by the
linkage editor and generates executable code directly in
storage. The loader does not produce load modules for
program libraries.

local dictionary. An internal table used by the
assembler during macro generation to contain the
current values of all local SET symbols. There is one
local dictionary for open code, and one for each macro
definition.

location counter. A counter whose value indicates the
assembled address of a machine instruction or a

370 HLASM V1R3 Programmer’s Guide

 Glossary

constant or the address of an area of reserved storage,
relative to the beginning of the control section.

*machine instruction. An instruction that a machine
can recognize and execute.

*machine language. A language that is used directly
by the machine.

macro definition. A set of statements that defines the
name of, format of, and conditions for generating a
sequence of assembler language statements from a
single source statement. This statement is a macro
instruction that calls the definition. (See also “library
macro definition” and “source macro definition.”)

macro generation (macro expansion). An operation
in which the assembler generates a sequence of
assembler language statements from a single macro
instruction, under conditions described by a macro
definition.

macro instruction (macro call). An assembler
language statement that causes the assembler to
process a predefined set of statements (called a macro
definition). The statements normally produced from the
macro definition replace the macro instruction in the
source program.

macro library. A library containing macro definitions.
The supervisor and data management macro definitions
supplied by IBM (GET, LINK, etc.) are contained in the
system macro library. Private macro libraries can be
concatenated with the system macro library.

macro prototype statement. An assembler language
statement that specifies the mnemonic operation code
and the format of all macro instructions that are used to
call a macro definition.

MACRO statement. An assembler language statement
that indicates the beginning of a macro definition. (Also
known as a macro definition header).

main storage. All program addressable storage from
which instructions may be executed and from which
data can be loaded directly into registers.

MEND statement. An assembler language statement
that indicates the end of a macro definition. (Also known
as a macro definition trailer).

model statement. A statement from which assembler
language statements are generated during conditional
assembly.

object module. The machine-language output of a
single run of an assembler or a compiler. An object
module is used as input to the linkage editor, loader, or
binder.

open code. The portion of a source module that lies
outside of and after any source macro definitions that
may be specified.

*operating system. Software that controls the running
of computer programs and which may provide
scheduling, debugging, input/output control, accounting,
compilation, storage assignment, data management,
and related services. (see “control program.”)

ordinary symbol attribute reference dictionary. A
dictionary used by the assembler. The assembler puts
an entry in it for each ordinary symbol encountered in
the name field of a statement. The entry contains the
attributes (type, length, etc.) of the symbol.

partitioned data set (PDS). A data set on direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

PDSE (partitioned data set extended). A
system-managed data set that contains an indexed
directory and members that are similar to the directory
and members of partitioned data sets.

phase. The output of a single VSE linkage editor run.
A phase is in a format suitable for loading into virtual
storage

processing program. (1) A general term for any
program that is not a control program. (2) Any program
capable of operating in the problem program state.
This includes IBM-distributed language translators,
application programs, service programs, and
user-written programs.

program. A general term for any combination of
statements that can be interpreted by a computer or
language translator, and that serves to do a specific
function.

program fetch. A program that prepares programs for
execution by loading them at specific storage locations
and readjusting each (relocatable) address constant.

| program library. A partitioned data set or PDSE
| (MVS), or Librarian library (VSE), that always contains

named members.

program management binder. See binder.

program module. Used in this publication as
collective term for load module and program object.

program object. All or part of a computer program in
a form suitable for loading into main storage for
execution. Program objects are stored in PDSE
program libraries, and are produced by the Program
Management Binder.

 Glossary 371

 Glossary

pure DBCS. DBCS characters not delimited by SO
and SI. These characters must be known to be DBCS
by some other method, such as the position in a record,
or a field type descriptor in a database environment.

real storage. The storage of a System/370 computer
from which the central processing unit can directly
obtain instructions and data, and to which it can directly
return results.

read-only control section (RSECT). That part of a
program specified by the programmer to be a read-only
executable control section. The assembler automatically
checks the control section for possible coding violations
of program reenterability, regardless of the setting of the
RENT assembler option.

reenterable. An attribute that allows a program to be
used concurrently by more than one task. This attribute
is sometimes called reentrant.

refreshable. An attribute that allows a program to be
replaced with a new copy without affecting its operation.

reusability. An attribute of a program that defines the
scope to which it can be reused or shared by multiple
tasks within an address space.

relocatable expression. An expression is relocatable
if its value changes because the control section in
which it appears is relocated.

relocatable value. Is the value of a term when that
value changes because the control section in which it
appears is relocated.

*relocation dictionary. The part of an object or load
module that identifies all addresses that must be
adjusted when a relocation occurs.

residence mode. An extended architecture addressing
mode (RMODE) that allows a program to specify the
residence mode (below 16 megabytes or anywhere) to
be associated with a control section.

return code. A value placed in the return code register
at the completion of a program. The value is
established by the user and may be used to influence
the running of succeeding programs or, in the case of
an abnormal end of task, may simply be printed for
programmer analysis.

severity code. A code assigned by the assembler to
each error detected in the source code. The highest
code encountered during assembly becomes the return
code of the assembly step.

shift-in (SI). The shift-in (SI) EBCDIC character
(X'0F') delimits the end of double-byte data.

shift-out (SO). The shift-out (SO) EBCDIC character
(X'0E') delimits the start of double-byte data.

skeleton dictionary. A dictionary built by the
assembler for each text segment. It contains the global
vector table, the sequence symbol reference dictionary,
and the local dictionary.

source macro definition. A macro definition included
in a source module, either physically or as the result of
a COPY instruction.

source module. The source statements that constitute
the input to a language translator for a particular
translation.

source statement. A statement written in a
programming language.

*statement. A meaningful expression or generalized
instruction in a programming language.

symbol file. A data set used by the assembler for
symbol definitions and references and literals.

symbolic parameter. In assembler programming, a
variable symbol declared in the prototype statement of a
macro definition.

system macro definition. Loosely, an IBM-supplied
library macro definition which provides access to
operating system facilities.

text segment. The range over which a local dictionary
has meaning. The source module is divided into text
segments with a segment for open code and one for
each macro definition.

*translate. To transform statements from one
language into another without significantly changing the
meaning.

virtual storage. Address space appearing to the user
as real storage from which instructions and data are
mapped into real storage locations. The size of virtual
storage is limited by the addressing scheme of the
computing system and by the amount of auxiliary
storage available, rather than by the actual number of
real storage locations.

ward. A set of DBCS characters which have the same
high-order byte value. The first byte of a double-byte
character is known as the ward byte. A ward contains
190 characters. Ward X'42' defines the double-byte
representation of those EBCDIC characters which are in
the range X'41' to X'FE'.

372 HLASM V1R3 Programmer’s Guide

 Bibliography

 Bibliography

High Level Assembler
Publications

High Level Assembler General Information,
GC26-4943

High Level Assembler Installation and
Customization Guide, SC26-3494

High Level Assembler Language Reference,
SC26-4940

High Level Assembler Licensed Program
Specifications, GC26-4944

High Level Assembler Programmer's Guide,
SC26-4941

Toolkit Feature Publications
High Level Assembler Toolkit Feature User's Guide,
GC26-8710

High Level Assembler Toolkit Feature Debug
Reference Summary, GC26-8712

High Level Assembler Toolkit Feature Interactive
Debug Facility User's Guide, GC26-8709

High Level Assembler Toolkit Feature Installation
and Customization Guide, GC26-8711

 Related Publications
(Architecture)

Enterprise Systems Architecture/390 Principles of
Operation,SA22-7201

Vector Operations, SA22-7207

System/370 Enterprise Systems Architecture
Principles of Operation, SA22-7200

System/370 Principles of Operation, GA22-7000

System/370 Extended Architecture Principles of
Operation, SA22-7085

Related Publications for MVS
 OS/390 MVS:

OS/390 MVS JCL Reference, GC28-1757

OS/390 MVS JCL User's Guide, GC28-1758

OS/390 MVS Assembler Services Guide,
GC28-1757

OS/390 MVS Assembler Services Reference,
GC28-1910

OS/390 MVS Auth Assembler Services Guide,
GC28-1763

OS/390 MVS Auth Assembler Services Reference
ALE-DYN, GC28-1764

OS/390 MVS Auth Assembler Services Reference
ENF-ITT, GC28-1765

OS/390 MVS Auth Assembler Services Reference
LLA-SDU, GC28-1766

OS/390 MVS Auth Assembler Services Reference
SET-WTO, GC28-1767

OS/390 MVS System Codes, GC28-1780

OS/390 MVS System Commands, GC28-1781

OS/390 MVS System Messages, Vol 1 (ABA-ASA),
GC28-1784

OS/390 MVS System Messages, Vol 2 (ASB-EWX),
GC28-1785

OS/390 MVS System Messages, Vol 3 (GDE-IEB),
GC28-1786

OS/390 MVS System Messages, Vol 4 (IEC-IFD),
GC28-1787

OS/390 MVS System Messages, Vol 5 (IGD-IZP),
GC28-1788

MVS/ESA Version 5:

MVS/ESA JCL Reference, GC28-1479

MVS/ESA JCL User's Guide, GC28-1473

MVS/ESA Programming: Assembler Services
Guide, GC28-1466

MVS/ESA Programming: Assembler Services
Guide, GC28-1474

MVS/ESA Programming: Authorized Assembler
Services Guide, GC28-1467

MVS/ESA Programming: Authorized Assembler
Services Reference Volumes 1 - 4, GC28-1475,
GC28-1476, GC28-1477, GC28-1478

MVS/ESA System Codes, GC28-1486

MVS/ESA System Commands, GC28-1442

MVS/ESA System Messages Volumes 1 - 5 ,
GC28-1480, GC28-1481, GC28-1482, GC28-1483,
GC28-1484

MVS/ESA Version 4:

MVS/ESA JCL User's Guide, GC28-1653

 Copyright IBM Corp. 1982, 1998 373

 Bibliography

MVS/ESA Application Development Reference:
Services for Assembler Language Programs,
GC28-1642

MVS/ESA JCL Reference, GC28-1654

MVS/ESA System Codes, GC28-1664

MVS/ESA System Messages Volumes 1 - 5,
GC28-1656, GC28-1657, GC28-1658, GC28-1659,
GC28-1660

 MVS/ESA OpenEdition:

MVS/ESA OpenEdition MVS User's Guide,
SC23-3013

 OS/390 OpenEdition:

OS/390 OpenEdition User's Guide, SC28-1891

 MVS/DFP:

MVS/DFP Version 3.3: Utilities, SC26-4559

MVS/DFP Version 3.3: Linkage Editor and Loader,
SC26-4564

 DFSMS/MVS:

DFSMS/MVS Program Management, SC26-4916

 TSO/E (MVS):

TSO/E Command Reference, SC28-1881

 TSO/E (OS/390):

OS/390 TSO/E Command Reference, SC28-1969

 MVS SMP/E:

SMP/E Messages and Codes, SC28-1108

SMP/E Reference, SC28-1107

SMP/E Reference Summary, SX22-0006

SMP/E User's Guide, SC28-1302

 OS/390 SMP/E:

OS/390 SMP/E Messages and Codes, SC28-1738

OS/390 SMP/E Reference, SC28-1806

OS/390 SMP/E Reference Summary, SX22-0037

OS/390 SMP/E User's Guide, SC28-1740

Related Publications for VM
VM/ESA CMS Application Development Guide,
SC24-5450

VM/ESA CMS Application Development Guide for
Assembler, SC24-5452

VM/ESA CMS Application Development Reference,
SC24-5451

VM/ESA CMS Application Development Reference
for Assembler, SC24-5453

VM/ESA CMS User's Guide, SC24-5460

VM/ESA XEDIT Command and Macro Reference,
SC24-5464

VM/ESA XEDIT User's Guide, SC24-5463

VM/ESA CMS Planning and Administration Guide,
SC24-5445

VM/ESA CP Command and Utility Reference,
SC24-5519

VM/ESA CP Planning and Administration,
SC24-5521

VMSES/E Introduction and Reference, SC24-5444

VM/ESA Service Guide, SC24-5527

VM/ESA CMS Command Reference, SC24-5461

VM/ESA SFS and CRR Planning, Administration,
and Operation, SC24-5649

VM/ESA System Messages and Codes Reference,
SC24-5529

VMSES/E 1.5 370 Feature Introduction and
Reference, SC24-5680

VM/ESA 1.5 370 Feature Service Guide for 370,
SC24-5429

Related Publications for VSE
VSE/ESA Administration, SC33-6505

VSE/ESA Guide to System Functions, SC33-6511

VSE/ESA Installation, SC33-6504

VSE/ESA Planning, SC33-6503

VSE/ESA System Control Statements, SC33-6513

 General Publications
BRIEF OS/390 Software Management Cookbook,
SG24-4775

374 HLASM V1R3 Programmer’s Guide

 Index

 Index

Special Characters
*PROCESS statements

precedence of assembler options 39
restricted options 39

&SYSNDX system variable symbol, controlling its value
using MHELP 299

Numerics
121-character format, source and object listing 13
121, LIST assembler suboption 57
133-character format, source and object listing 13
133, LIST assembler suboption 57
370, OPTABLE assembler suboption 60

A
abnormal assembly termination 144
accessing the assembler (CMS) 184
active usings

in the assembler listing 19
UHEAD, PCONTROL assembler suboption 61

ADATA assembler option 40, 252
ADATA DC extension record 277
ADATA exit processing 107
ADATA, XOBJECT assembler suboption 252
adding definitions to a macro Library
adding macro definitions to libraries 218

CMS 197
MVS 169

addressing mode 167
ADEXIT installation option 48
ALIGN assembler option 40, 207
ALIGN, FLAG assembler suboption 49
ALIGNWARN installation option 51
AMODE

in ESD section of listing 13
linker option 165
processing option 167

architecture level in ADATA records 259
ASA assembler option 41
ASA assembler option (CMS) 189
ASA assembler option (MVS) 155
ASCII translation table 71
ASMAC, cataloged procedure for assembly 148, 170
ASMACG, cataloged procedure for assembly and run,

using the loader 175
ASMACL, cataloged procedure for assembly and

link 172
ASMACLG, cataloged procedure for assembly, link, and

run 175

ASMADATA macro 252, 356
ASMAEFNP macro 132, 356
ASMAHL command

by FILEDEF for SYSIN 190
error messages 352
with filename of source 190
with the EXIT option 191

ASMAHL command-error messages 306
ASMAPROF, default profile member name 64
ASMAXADT (ADATA user exit) 357
ASMAXFMB macro 356, 357
ASMAXINV (SOURCE user exit) 366
ASMAXITP macro 79, 356
ASMAXPRT (LISTING user exit) 364
assembler

language differences 223
sample program 287

assembler cataloged procedures 170
assembler data sets (MVS)

characteristics of 154
list of 153

assembler diagnostics
abnormal assembly termination 144
cross reference 22
differences 240
error messages 139
facilities 139
macro trace facility (MHELP) 144
MNOTE statements 141
National Language Support 55
reference information for statements in error 143
register cross reference 30
suppression of error messages and MNOTE

statements 143
assembler files

characteristics of 209
IJSYS03 210
librarian 211
SYSADAT 212
SYSIPT 211
SYSLNK 212
SYSLOG 211
SYSLST 211
SYSPCH 212

assembler files (CMS)
characteristics of 188
list of 187

assembler files, list of 208
Assembler H Version 2 compatibility 7
assembler language support 7
assembler listing

*PROCESS statements 9

 Copyright IBM Corp. 1982, 1998 375

 Index

assembler listing (continued)
121-character format 13
133-character format 13
CMS options that affect 9
diagnostic cross reference and assembler

summary 31
differences 238
DSECT cross reference 28
external symbol dictionary 11
general purpose register cross reference 30
macro and copy code cross reference 25
macro and copy code source summary 24
option summary 9
options that affect 8
parts of 8
relocation dictionary 20
source and object 13, 15
source and object, 121 character format 14
source and object, 133 character format 20
symbol and literal cross reference 22
unreferenced symbols defined in CSECTs 24
USING map 29

assembler macros
on CMS 197
on MVS 169

assembler options
ADATA/NOADATA 40, 252
ALIGN/NOALIGN 40, 207
ASA/NOASA 41, 155, 189
BATCH/NOBATCH 41
COMPAT/NOCOMPAT 42
DBCS/NODBCS 43
DECK/NODECK 43, 207
default 39
differences 236
DISK (CMS) 63
DXREF/NODXREF 44
ERASE/NOERASE (CMS) 44
ESD/NOESD 45
EXIT/NOEXIT 46, 76
FLAG 49
FOLD/NOFOLD 51
GOFF/NOGOFF 52
INFO/NOINFO 52
JCL options 207
LANGUAGE 55
LIBMAC/NOLIBMAC 56
LINECOUNT 56
LIST/NOLIST 57, 207
MXREF/NOMXREF 58
OBJECT/NOOBJECT 59, 207
OPTABLE 60
overriding 177
overriding statements in cataloged procedures 177
PCONTROL/NOPCONTROL 61
PESTOP 63

assembler options (continued)
precedence 39
PRINT/NOPRINT (CMS) 63
PROFILE / NOPROFILE 64
RA2/NORA2 65
RENT/NORENT 65
RLD/NORLD 66, 207
RXREF/NORXREF 66
SEG/NOSEG 66
SIZE 67
SYSPARM 69
TERM/NOTERM 70, 207
TEST/NOTEST 71
TRANSLATE/NOTRANSLATE 71
types of 37
USING/NOUSING 72
XOBJECT/NOXOBJECT 74
XREF/NOXREF 75, 207

assembler statistics 35
assembler summary 31
assembling your program 202
assembly abnormal-termination messages 306
assembly and link, JCL for

(see ASMACL)
assembly and run using the loader, JCL for

(see ASMACG)
assembly error diagnostic messages 309
assembly error-diagnostic messages 306
assembly, JCL for

(see ASMAC)
assembly, link, and run, JCL for

(see ASMACLG)
associated data records

ADATA compilation unit start/end record -
X'0002' 262

ADATA identification record - X'0001' 261
architecture level 252, 259
ASMADATA macro 252
common header section 259
DC extension record - X'0035' 277
DC/DS record - X'0034' 271
external symbol dictionary record - X'0020' 267
job identification record - X'0000' 261
library member and macro cross reference record -

X'0062' 281
library record - X'0060' 280
machine instruction record - X'0036' 277
options record - X'0010' 265
output file information record - X'000a' 262
register cross reference record - X'0045' 280
relocation dictionary record - X'0040' 277
source analysis record - X'0030' 268
statistics record - X'0090' 283
symbol cross reference record - X'0044' 279
symbol record - X'0042' 278
user-supplied information record - X'0070' 282

376 HLASM V1R3 Programmer’s Guide

 Index

associated data records (continued)
USING map record - X'0080' 282

ATTACH macro instruction, (MVS) 150
automatic call library

definition 369
secondary data set 163

B
BATCH assembler option 41
batch assembling 206

CMS 186
MVS 152

batch facility on CMS 196
binder

extended object format 74
sample JCL 161

BLKSIZE for assembler files 210
CMS 189
MVS 155

books
related publications 374

books for High Level Assembler 373
books, High Level Assembler xvi

C
CALL linker option 165
CALL macro instruction 206
CALL macro instruction (MVS) 150
calling the assembler from a problem program 206
calling the assembler from program (MVS) 150
CASE, COMPAT assembler suboption 42
cataloged procedures

for assembling (ASMAC) 170
for assembling and linking (ASMACL) 172
for assembling and running using the loader

(ASMACG) 175
for assembling, linking, and run (ASMACLG) 175
invoking 170
overriding 177

CD-ROM publications xvii
CDLOAD macro instruction 206
characteristics of assembler data sets (MVS) 154
characteristics of assembler files 209
characteristics of assembler files (CMS) 188
CLOSE calls to user exit 81
CMS

ASMAHL command error messages 352
assembler macros supported by 197
assembling on 185
batch facility 196
diagnostic messages 352
logical saved segments 66
relationship to assembler 184
running on 194

CMS diagnostic messages 193
CMSBATCH command 196
codes

(see return codes and severity codes)
COMPAT assembler option 42
compatibility with earlier assemblers 7
concatenation of sublibraries 211
concatenation of SYSLIB data sets 156, 191
COND parameter 158, 177
conditional assembly external functions 131
CONT, FLAG assembler suboption 49
CONTWARN installation option 51
create, phase 213
cross reference

See also diagnostic cross reference and assembler
summary

binder (MVS) 165
data variables (MVS) 165
examples 8, 297
linkage editor 216
linkage editor (MVS) 165

cross reference list
DSECT 28

Customization book xvi

D
data

variables, cross reference 165
data sets, assembler (MVS)

characteristics of 154
list of 153

DATA, PCONTROL assembler suboption 61
DBCS assembler option 43
DD statements, overriding in cataloged

procedures 177
ddnames

SYSADATA 157, 192
SYSIN 156, 191
SYSLIB 156, 164, 191
SYSLIN 157, 164, 192
SYSLMOD 164
SYSPRINT 157, 164, 191
SYSPUNCH 157, 192
SYSTERM 157, 164, 192
SYSUT1 164
user-specified 164

DE, LANGUAGE assembler suboption 55
DECK assembler option 43, 207
default options 39
default profile member name 64
diagnostic cross reference and assembler summary 31
diagnostic facilities

See assembler diagnostics
diagnostic messages written by CMS 193, 352

 Index 377

 Index

diagnostic messages, assembly error 309
DISK assembler option (CMS) 63
documentation

High Level Assembler 373
related publications 374

documentation, High Level Assembler xvi
DOS, OPTABLE assembler suboption 60
DOS/VSE assembler compatibility 7
DSECT cross reference listing format 28
DXREF assembler option 44
dynamic invocation of assembler 206
dynamic invocation of assembler (MVS) 150

E
E-Decks, processing 218
EN, LANGUAGE assembler suboption 55
END Record format 248
entry point restatement 182
ERASE assembler option (CMS) 44
erasing files (CMS) 44
error messages

abnormal assembly termination messages 347
ASMAHL command error messages (CMS) 352
assembly error diagnostic messages 139, 309
reference information 143
suppression of 49, 143

error, link-edit 216
error, linker (MVS) 168
ES, LANGUAGE assembler suboption 55
ESA

OPTABLE assembler suboption 60
ESD assembler option 45
ESD Record format 246
ESDID, external symbol dictionary ID

in Ordinary Symbol and Literal Cross Reference 23
in USING Map 29

examples
cataloged procedures coding 177
register saving and restoring coding 220
register saving and restoring coding (CMS) 198
register saving and restoring coding (MVS) 180

EXEC statements, overriding in cataloged
procedures 177

EXIT assembler option 46, 76
EXIT option with the ASMAHL command 191
exit parameter list 79
exit types 76
exit-specific information block 89
EXITCTL assembler instruction 76
exits, user-supplied 76
extended architecture instructions 243
extended object format data set 74
external functions 131
external symbol dictionary (ESD)

entry types 11

external symbol dictionary (ESD) (continued)
examples 12, 288
listing format 11

F
FILEDEF with the ASMAHL command 190
filename with ASMAHL command 190
files, assembler

characteristics of 209
files, assembler (CMS)

characteristics of 188
list of 187

files, linkage editor
SYSIPT 215
SYSLNK 215
SYSLOG 215
SYSLST 215
SYSRDR 215

files, list of assembler 208
filter management table (ADATA user exit) 357
filter modules (ADATA user exit) 357
FIND COPY calls to user exit 81
FIND MACRO calls to user exit 81
FLAG assembler option 49
FOLD assembler option 51
format notation, description xvii—xix
FULL

MXREF assembler suboption 58
XREF assembler suboption 75

function calls, external 131

G
GEN, PCONTROL assembler suboption 61
General Information book xvi
general purpose register cross reference 30
generate a translation table 367
GENMOD command (CMS) 194
GOFF assembler option 52
graphic constants 43

H
hardcopy publications xvi
hierarchical file system

definition 370
object data sets 155

High Level Assembler
publications xvi, 373

High Level Assembler General Information 373
High Level Assembler Installation and Customization

Guide 373
High Level Assembler Language Reference 373
High Level Assembler Licensed Program

Specifications 373

378 HLASM V1R3 Programmer’s Guide

 Index

High Level Assembler messages 306
(see also error messages and assembler

diagnostics)
High Level Assembler option summary 9
High Level Assembler Programmer's Guide 373
HLASM Toolkit publications 373

I
I/O Exit Usage Statistics

in the listing 35
ICCF, assembling on 204
identification-sequence field 17
IF statement 212
IJSYS01 214
IJSYS03 203, 209, 210
INCLUDE control statement 164, 215
INEXIT installation option 48
INFO assembler option 52
input, linkage editor 214
input, linker (MVS) 162
installation and customization

book information xvi
invoking cataloged procedures 170
invoking the assembler from a problem program 206
invoking the assembler from a program (MVS) 150

J
job control language cataloged procedures

(see cataloged procedures)
JP, LANGUAGE assembler suboption 55

L
LANGUAGE assembler option 55
Language Reference xvi
LET linker option 165
LIBEXIT installation option 48
LIBMAC assembler option 56
Librarian 209, 211
LIBRARY control statement 164
LIBRARY exit processing 95
license inquiry xi
Licensed Program Specifications xvii
LIMIT installation option 73
LIMIT, USING assembler suboption 72
LINECOUNT assembler option 56
LINK macro instruction (MVS) 150
linkage conventions for external functions 132
linkage editor

CMS
See GENMOD command (CMS)

control statements 215
errors 216
files 214

linkage editor (continued)
INCLUDE statement 215
input 214
libraries 215
MVS

AMODE option 165
call library 163
CALL option 165
data sets used 164
ddnames 163
errors 168
INCLUDE statement 164
input 162
LET option 165
LIBRARY statement 164
LIST option 165
MAP option 165
output 165
primary 163
PRINT option 165
processing options 165
RMODE option 165
sample 161
secondary 163
TSO LINK command 166
XREF option 165

on TSO 162
output 216
sample 213

linkage, object module 181
linker

definition 370
options (MVS) 165

LIST assembler option 57, 207
LIST linker option 165
listing control instructions, printing of 17
LISTING exit processing 100
listing format 12
LKED command (CMS) 195
LOAD command (CMS) 194
load module

on TSO 162
sample 161

load module modification 182
loader 161
loading user exits 78
LOADLIB (CMS) 195
logical saved segments (CMS) 66
LRECL for assembler files 210

CMS 189
MVS 155

LSEG
See logical saved segments (CMS)

 Index 379

 Index

M
machine instructions, publications 373
macro and copy code cross reference listing format 25
macro and copy code cross reference with LIBMAC

option 26
macro and copy code source summary listing

format 24
macro definition libraries, additions to 218

CMS 197
MVS 169

macro trace facility
(see MHELP)

macro-generated statements
format of 17
in diagnostic messages 309

MACROCASE, COMPAT assembler suboption 42
macros

ASMADATA 252, 356
ASMAEFNP 132, 356
ASMAXFMB 356
ASMAXITP 79, 356

macros, error messages in 139
macros, external function calls 131
manuals

High Level Assembler 373
related publications 374

manuals, High Level Assembler xvi
map

link-edit option 216
linker option (MVS) 165
load module 165
processing option 165

MAP installation option 73
MAP, USING assembler suboption 72
MAX, LIST assembler suboption 57
MCALL, PCONTROL assembler suboption 61
message code format 306
messages

(see assembler diagnostics)
MHELP

description 144
sample program and listing 298

MHELP instruction
format 144
global suppression—operand=32 298
macro AIF dump—operand=4 298
macro branch trace—operand=2 298
macro call trace—operand=1 298
macro entry dump—operand=16 298
macro exit dump—operand=8 298
macro hex dump—operand=64 298
MHELP control on &SYSNDX 299
MHELP suppression—operand=128 298

migration considerations 7

migration to High Level Assembler 223
MNOTE statements 141
MSOURCE, PCONTROL assembler suboption 61
MVS publications 373
MVS/ESA 169

assembler macros supported by 169
assembling on 147
running 168

MXREF assembler option 58

N
National Language Support 55
NLS

See National Language Support
NOADATA assembler option 40
NOALIGN assembler option 40, 207
NOASA assembler option 41
NOASA assembler option (CMS) 189
NOASA assembler option (MVS) 155
NOBATCH assembler option 41
NOCALL link-edit option 165
NOCOMPAT assembler option 42
NODBCS assembler option 43
NODECK assembler option 43, 207
NODXREF assembler option 44
NOERASE assembler option (CMS) 44
NOESD assembler option 45
NOEXIT assembler option 46
NOFOLD assembler option 51
NOGOFF assembler option 52
NOINFO assembler option 52
NOLET linker option 165
NOLIBMAC assembler option 56
NOLIST assembler option 57, 207
NOMAP linker option 165
NOMXREF assembler option 58
NOOBJECT assembler option 59, 207
NOPCONTROL assembler option 61
NOPRINT assembler option (CMS) 63
NOPRINT linker option 165
NOPROFILE assembler option 64
NORA2 assembler option 65
NORENT assembler option 65
NORLD assembler option 66, 207
NORXREF assembler option 66
NOSEG assembler option 66
notation, description xvii—xix
NOTERM assembler option 70, 207
NOTEST assembler option 71
NOTRANSLATE assembler option 71
NOUSING assembler option 72
NOXOBJECT assembler option 74
NOXREF assembler option 75, 207

380 HLASM V1R3 Programmer’s Guide

 Index

O
OBJECT assembler option 59, 207
OBJECT exit processing 104
object module linkage 181
object modules 164, 214, 215, 243
object program migration 7
object, extended format 74
OBJEXIT installation option 48
OFF, PCONTROL assembler suboption 61
ON statement 212
ON, PCONTROL assembler suboption 61
online publications xvii
OPEN calls to user exit 81
OPTABLE assembler option 60
option summary listing format 9
options, assembler

ADATA/NOADATA 40, 252
ALIGN/NOALIGN 40, 207
ASA/NOASA 41, 155, 189
BATCH/NOBATCH 41
COMPAT/NOCOMPAT 42
DBCS/NODBCS 43
DECK/NODECK 43, 207
default 39
differences 236
DISK (CMS) 63
DXREF/NODXREF 44
ERASE/NOERASE (CMS) 44
ESD/NOESD 45
EXIT/NOEXIT 46, 76
FLAG 49
FOLD/NOFOLD 51
GOFF/NOGOFF 52
INFO/NOINFO 52
JCL options 207
LANGUAGE 55
LIBMAC/NOLIBMAC 56
LINECOUNT 56
list of 37
LIST/NOLIST 57, 207
MXREF/NOMXREF 58
OBJECT/NOOBJECT 59, 207
on CMS 186
OPTABLE 60
overriding defaults 39, 177
PCONTROL/NOPCONTROL 61
PESTOP 63
precedence 39
PRINT/NOPRINT (CMS) 63
processing 165
PROFILE / NOPROFILE 64
RA2/NORA2 65
RENT/NORENT 65
RLD/NORLD 66, 207
RXREF/NORXREF 66

options, assembler (continued)
sample of use 288
SEG/NOSEG 66
SIZE 67
SYSPARM 69
TERM/NOTERM 70, 207
TEST/NOTEST 71
TRANSLATE/NOTRANSLATE 71
USING/NOUSING 72
XOBJECT/NOXOBJECT 74
XREF/NOXREF 75, 207

options, linker (MVS) 165
ordinary symbol and literal cross reference 22, 75
organization of this manual xiii
OS/390 MVS

publications 373
OSRUN command (CMS) 195
output format listing 12
output, linkage editor 165, 216
overriding ddname 151
overriding default options 39, 177
overriding statements in cataloged procedures 177

P
PARM field 37
partitioned data set definition 371
PCONTROL assembler option 61
PDSE definition 371
PESTOP assembler option 63
phase

create 213
sample 213

portability
extended architecture instructions 243
object modules 243
system macros 243

primary linker data set 163
PRINT assembler option (CMS) 63
PRINT linker option 165
procedures

(see cataloged procedures)
PROCESS calls to user exit 81
PROCESS COPY calls to user exit 81
PROCESS MACRO calls to user exit 81
PROCESS statements

See *PROCESS statements
processing E-Decks 218
processor time for the assembly 35
PROFILE assembler option 64
PROFMEM, default profile member name 64
program execution 168
program fetch definition 371
program library definition 371
program management binder definition 371

 Index 381

 Index

program module definition 371
program module modification 182
program object definition 371
program termination 220

CMS 198
MVS 180

Programmer's Guide xvii
PRTEXIT installation option 48
publications

general 374
High Level Assembler xvi, 373
HLASM Toolkit 373
machine instructions 373
MVS 373
MVS SMP/E 374
online (CD-ROM) xvii
OS/390 MVS 373
OS/390 SMP/E 374
TSO (MVS) 374
TSO (OS/390) 374
VM 374
VSE 374

PUNCH exit processing 104
PUSH level

in the assembler listing 19

R
RA2 assembler option 65
railroad track format, how to read xvii—xix
range, in USING Map 29
READ calls to user exit 81
RECFM for assembler files 210

CMS 189
MVS 155

RECORD, FLAG assembler suboption 49
RECORDINFO installation option 51
reference information for statements in error 143
register cross reference 30
registers, saving and restoring

CMS 197
MVS 179, 182
VSE 219

related publications 374
relocation dictionary

examples 12, 293
listing format 20

RENT assembler option 65
required items xviii
residency mode 167
restoring registers

CMS 197
MVS 179
VSE 219

return codes 158, 212
(see also FLAG option)

RETURN macro instruction
CMS 197
MVS 179
VSE 219

RLD assembler option 66, 207
RLD Record format 247
RMODE

in ESD section of listing 13
linker option 165
processing option 167

running
CMS 194
MVS/ESA 168
TSO 168
using batch facility 196
using LKED and OSRUN commands 195
using LOAD and START commands 194
using the GENMOD command 194

running programs on CMS 194
running your program 217
RXREF assembler option 66

S
sample ADATA user exit 357
sample LISTING user exit 364
sample program to call the assembler dynamically 206

MVS 152
sample programs and listings

assembler language features, using 287
assembler listing description 9
diagnostic error messages 143
MHELP 298

sample SOURCE user exit 366
SAVE macro instruction

CMS 197
MVS 179
VSE 219

saving registers
CMS 197
MVS 179
VSE 219

SDB
See system-determined blocksize

secondary data set 163
SEG assembler option 66
sequence number 17
severity codes 158, 212

(see also FLAG option)
SHORT, XREF assembler suboption 75
SIZE assembler option 67
SIZE installation option 68
SMP/E (MVS)

publications 374
SMP/E (OS/390)

publications 374

382 HLASM V1R3 Programmer’s Guide

 Index

softcopy publications xvii
source and object assembler listing format 13
source and object listing 13
source and object listing, 121 character format 14
source and object listing, 133 character format 20
SOURCE exit processing 93
source program migration 7
SOURCE, MXREF assembler suboption 58
stacked items xviii
START command (CMS) 194
start time of assembly 35
statistics, assembler 35
stop time of assembly 35
STORAGE installation option 68
SUBLIB JCL option 211
SUBSTR, FLAG assembler suboption 49
suppression of error messages and MNOTE

statements 143
SYM Record format 249
syntax notation, description xvii—xix
SYSADAT 209, 212
SYSADATA data set 154, 157
SYSADATA file 188, 192
SYSIN data set 154, 156
SYSIN file 188, 191
SYSIPT 209, 211, 215
SYSLIB data set 154, 156, 164
SYSLIB file 188, 191
SYSLIN data set 154, 157, 164
SYSLIN file 188, 192
SYSLIST, COMPAT assembler suboption 42
SYSLMOD data set 164
SYSLNK 203, 209, 212, 214, 215
SYSLOG 209, 211, 215
SYSLST 209, 211, 215
SYSPARM assembler option 69
SYSPCH 209, 212
SYSPRINT data set 154, 157, 164
SYSPRINT file 188, 191
SYSPUNCH data set 154, 157
SYSPUNCH file 188, 192
SYSRDR 215
system macros 243
system variable symbols

comparison with earlier assemblers 226
in diagnostic messages 309
MHELP numbering system 299
setting data set information 90

system-determined blocksize 155
SYSTERM data set 154, 157, 164
SYSTERM file 188, 192
SYSUT1 data set 154, 156, 164
SYSUT1 file 188, 189

T
TERM assembler option 70, 207
TERM exit processing 108
termination

abnormal assembly 143, 144
program 220

CMS 198
MVS 180

TEST assembler option 71
Toolkit Customization book xvii
Toolkit installation and customization

book information xvii
TRANSLATE assembler option 71
translation table generation 367
TRMEXIT installation option 48
TSO

assembling on 149
LINK command 166
link-edit options 166
running 168

TSO (MVS)
publications 374

TSO (OS/390)
publications 374

TXT Record format 247

U
UE, LANGUAGE assembler suboption 55
UHEAD, PCONTROL assembler suboption 61
UNI, OPTABLE assembler suboption 60
unreferenced symbols defined in CSECTs 75
unreferenced symbols defined in CSECTs listing

format 24
UNREFS, XREF assembler suboption 75
user exit

ADATA exit processing 107
addressing mode (AMODE) 78
ASMAXADT (ADATA user exit) 357
ASMAXFMB (ADATA user exit) 357
ASMAXFMT (ADATA user exit) 357
ASMAXINV (SOURCE user exit) 366
ASMAXPRT (LISTING user exit) 364
calling 78
coding example 111
error handling 88
EXIT assembler option 46
exit parameter list 79
exit-specific information block 79, 89
failure handling 88
filter management table (ADATA user exit) 357
filter modules (ADATA user exit) 357
LIBRARY exit processing 95
linkage conventions 78
LISTING exit processing 100

 Index 383

 Index

user exit (continued)
loading 78
locating 78
OBJECT exit processing 104
PUNCH exit processing 104
reason codes 84
residency mode (RMODE) 78
return codes 83
sample ADATA user exit 357
sample LISTING user exit 364
sample SOURCE user exit 366
samples 111
SOURCE exit processing 93
specifying 77
TERM exit processing 108
types 76
user error handling 88

user-specified data set 164
USING assembler option 72
USING map listing format 29
using the assembler 202

CMS 184
MVS 147
TSO 149
VSE 202

using the assembler (ICCF) 204
usings, active

in the assembler listing 19
UHEAD, PCONTROL assembler suboption 61

utility data set 154
utility file 188, 209

V
variable symbols, system

comparison with earlier assemblers 226
VM publications 374
VSE

relationship to assembler 202
VSE publications 374
VSE/ESA

JCL options 207
running your program 217

W
WARN installation option 73
WARN, USING assembler suboption 72
WRITE calls to user exit 81

X
XA, OPTABLE assembler suboption 60
XCTL macro instruction (MVS) 150
XOBJADATA installation option 74

XOBJECT assembler option 74
XREF assembler option 75, 207
XREF linker option (MVS) 165
XREF, MXREF assembler suboption 58

384 HLASM V1R3 Programmer’s Guide

We'd Like to Hear from You

High Level Assembler for MVS & VM & VSE
Programmer’s Guide
Release 3

Publication No. SC26-4941-02

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMMail: USIB2VVG at IBMMAIL
– IBMLink: HLASMPUB at STLVM27

 – Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

High Level Assembler for MVS & VM & VSE
Programmer’s Guide
Release 3

Publication No. SC26-4941-02

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-4941-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department J58
International Business Machines Corporation
PO BOX 49023
SAN JOSE CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-4941-02

IBM

Program Number: 5696-234

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

High Level Assembler Publications

SC26-4941 High Level Assembler Programmer's Guide
GC26-4943 High Level Assembler General Information
GC26-4944 High Level Assembler Licensed Program Specifications
SC26-4940 High Level Assembler Language Reference
SC26-3494 High Level Assembler Installation and Customization Guide

High Level Assembler Toolkit Feature Publications

GC26-8709 High Level Assembler Toolkit Feature Interactive Debug Facility User's Guide
GC26-8710 High Level Assembler Toolkit Feature User's Guide
GC26-8711 High Level Assembler Toolkit Feature Installation and Customization Guide
GC26-8712 High Level Assembler Toolkit Feature Debug Reference Summary

SC26-4941-92

S
pine inform

ation:

IB
M

H
L

A
SM

P
rogram

m
er’s G

uide
R

elease 3

	Contents
	Notices
	Trademarks

	About this Manual
	Who Should Use this Manual
	Programming Interface Information
	Organization of this Manual
	IBM High Level Assembler for MVS & VM & VSE Publications
	Hardcopy Publications
	Online Publications
	Related Publications
	Syntax Notation

	Summary of Changes
	Part 1. Understanding and Using the Assembler
	Chapter 1. Introduction
	Requirements
	System Requirements
	Machine Requirements
	Storage Requirements

	Compatibility
	Assembler Language Support
	Migration Considerations

	Chapter 2. Using the Assembler Listing
	High Level Assembler Option Summary
	External Symbol Dictionary (ESD)
	Source and Object
	Relocation Dictionary (RLD)
	Ordinary Symbol and Literal Cross Reference
	Unreferenced Symbols Defined in CSECTs
	Macro and Copy Code Source Summary
	Macro and Copy Code Cross Reference
	Effects of LIBMAC and PCONTROL(MCALL) Options

	DSECT Cross Reference
	USING Map
	General Purpose Register Cross Reference
	Diagnostic Cross Reference and Assembler Summary

	Chapter 3. Controlling your Assembly with Options
	Specifying Assembler Options
	Default Options
	Precedence of Assembler Options
	Assembler Options
	ADATA
	ALIGN
	ASA (MVS and CMS)
	BATCH
	COMPAT
	DBCS
	DECK
	DISK (CMS Only)
	DXREF
	ERASE (CMS Only)
	ESD
	EXIT
	FLAG
	FOLD
	GOFF (MVS and CMS)
	INFO
	LANGUAGE
	LIBMAC
	LINECOUNT
	LIST
	MXREF
	OBJECT
	OPTABLE
	PCONTROL
	PESTOP
	PRINT (CMS Only)
	PROFILE
	RA2
	RENT
	RLD
	RXREF
	SEG (CMS Only)
	SIZE
	SYSPARM
	TERM
	TEST
	TRANSLATE
	USING
	XOBJECT (MVS and CMS)
	XREF

	Chapter 4. Providing User Exits
	Exit Types
	Specifying User Exits
	Loading User Exits
	Calling User Exits
	Exit Parameter List
	Request Info Pointer
	Parameter List Version
	Exit Type
	Request Type
	Options
	EXITCTLn
	Return Code
	Reason Code
	Buffer Length
	Error Buffer Length
	Error Severity
	User-Defined Field
	Common User Field

	Buffer Pointer
	Error Buffer Pointer
	Exit-Specific Information Pointer
	DCB Pointer

	Error Handling
	Exit-Specific Information Block
	Member Name
	Member Type
	Data Set Name
	Volume Serial
	Relative Record Number
	Absolute Record Number
	Linecount
	Current Page Number

	SOURCE Exit Processing
	OPEN
	CLOSE
	READ
	PROCESS

	LIBRARY Exit Processing
	OPEN
	CLOSE
	READ
	PROCESS MACRO or PROCESS COPY
	FIND MACRO or FIND COPY
	END OF MEMBER

	LISTING Exit Processing
	OPEN
	CLOSE
	WRITE
	PROCESS

	OBJECT (MVS and CMS) and PUNCH Exit Processing
	OPEN
	CLOSE
	WRITE
	PROCESS

	ADATA Exit Processing
	OPEN
	CLOSE
	PROCESS

	TERM Exit Processing
	OPEN
	CLOSE
	WRITE
	PROCESS

	Sample User Exits
	User Exit Coding Example

	Chapter 5. Providing External Functions
	External Function Processing
	Linkage Conventions
	External Function Parameter List
	Request Information List
	Parameter List Version
	Function Type
	Number of Parameters
	Return Code
	Flag Byte
	Reserved
	Msg Length
	Msg Severity
	Return Value (SETAF Only)
	Parm Value n (SETAF Only)
	Return String Length (SETCF Only)
	Parm String n Length (SETCF Only)

	Ptr to User Work Area
	Ptr to Msg Buffer
	Ptr to Return String (SETCF Only)
	Ptr to Parm String n (SETCF Only)

	Chapter 6. Diagnosing Assembly Errors
	Assembly Error Diagnostic Messages
	MNOTE Statements
	Suppression of Error Messages and MNOTE Statements
	Reference Information for Statements in Error
	Abnormal Assembly Termination
	MHELP—Macro Trace Facility

	Part 2. Developing Assembler Programs on MVS
	Chapter 7. Assembling Your Program on MVS
	Input to the Assembler
	Output from the Assembler
	Invoking the Assembler on MVS
	Invoking the Assembler on TSO
	Invoking the Assembler Dynamically
	Batch Assembling
	Input and Output Data Sets
	Work Data Set: SYSUT1
	Specifying the Source Data Set: SYSIN
	Specifying Macro and Copy Code Libraries: SYSLIB
	Specifying the Listing Data Set: SYSPRINT
	Directing Assembler Messages to Your Terminal: SYSTERM
	Specifying Object Code Data Sets: SYSLIN and SYSPUNCH
	Specifying the Associated Data Data Set: SYSADATA

	Return Codes

	Chapter 8. Linking and Running Your Program on MVS
	The Program Management Binder
	The Loader
	Creating a Load Module
	Creating a Load Module on MVS
	Creating a Load Module on TSO

	Input to the Linker
	Data Sets for Linker Processing
	Additional Object Modules as Input

	Output from the Linker
	Linker Processing Options
	Specifying Linker Options Through JCL
	Specifying Linker Options Using the TSO LINK Command
	AMODE and RMODE Attributes
	Overriding the Defaults
	Detecting Linker Errors

	Running Your Assembled Program
	Running Your Assembled Program in Batch
	Running Your Assembled Program on TSO

	Chapter 9. MVS System Services and Programming Considerations
	Adding Definitions to a Macro Library
	Using Cataloged Procedures
	Cataloged Procedure for Assembly (ASMAC)
	Cataloged Procedure for Assembly and Link (ASMACL)
	Cataloged Procedure for Assembly, Link, and Run (ASMACLG)
	Cataloged Procedure for Assembly and Run (ASMACG)
	Overriding Statements in Cataloged Procedures
	EXEC Statements
	DD Statements

	Examples of Cataloged Procedures

	Operating System Programming Conventions
	Saving and Restoring General Register Contents
	Ending Program Execution
	Accessing Execution Parameters
	Object Module Linkage

	Modifying Program Modules

	Part 3. Developing Assembler Programs on CMS
	Chapter 10. Assembling Your Program on CMS
	Input to the Assembler
	Output from the Assembler
	Accessing the Assembler
	Invoking the Assembler on CMS
	Batch Assembling
	Controlling Your Assembly
	Input and Output Files
	Work file: SYSUT1
	Specifying the Source File: SYSIN
	Specifying Macro and Copy Code Libraries: SYSLIB
	Specifying the Listing File: SYSPRINT
	Directing Assembler Messages to Your Terminal: SYSTERM
	Specifying Object Code Files: SYSLIN and SYSPUNCH
	Specifying the Associated Data File: SYSADATA

	Return Codes
	Diagnostic Messages Written by CMS

	Chapter 11. Running Your Program on CMS
	Using the CMS LOAD and START Commands
	Using the CMS GENMOD Command
	Using the CMS LKED and OSRUN Commands
	Using the CMS Batch Facility

	Chapter 12. CMS System Services and Programming Considerations
	Using Macros
	Assembler Macros Supported by CMS
	Adding Definitions to a Macro Library

	Operating System Programming Conventions
	Saving and Restoring General Register Contents
	Ending Program Execution
	Passing Parameters to Your Assembler Language Program

	Part 4. Developing Assembler Programs on VSE
	Chapter 13. Assembling Your Program on VSE
	Input to the Assembler
	Output from the Assembler
	Invoking the Assembler in Batch
	Invoking the Assembler on ICCF
	Invoking the Assembler Dynamically
	Batch Assembling
	Controlling Your Assembly
	Input and Output Files
	Work File: IJSYS03
	Specifying the Source File: SYSIPT
	Specifying Macro and Copy Code Libraries: LIBDEF Job Control Statement
	Specifying the Listing File: SYSLST
	Directing Assembler Messages to Your Console Log: SYSLOG
	Specifying Object Code Files: SYSLNK and SYSPCH
	Specifying the Associated Data File: SYSADAT

	Return Codes

	Chapter 14. Link-Editing and Running Your Program on VSE
	The Linkage Editor
	Creating a Phase
	Input to the Linkage Editor
	Inputting Object Modules
	Files for Linkage Editor Processing
	Inputting additional Object Modules
	Linkage Editor Control Statements

	Output from the Linkage Editor
	Running your Assembled Program

	Chapter 15. VSE System Services and Programming Considerations
	Adding Definitions to a Macro Library
	Processing E-Decks
	Operating System Programming Conventions
	Saving and Restoring General Register Contents
	Ending Program Execution
	Accessing Execution Parameters

	Appendixes
	Appendix A. Earlier Assembler Compatibility and Migration
	Comparison of Instruction Set and Assembler Instructions
	Comparison of Macro and Conditional Assembly Statements
	Comparison of Macro and Conditional Assembly
	Comparison of Language Features
	Comparison of Assembler Options
	Comparison of Assembler Listing
	Comparison of Diagnostic Features
	Other Assembler Differences

	Appendix B. Cross-System Portability Considerations
	Using Extended Architecture Instructions
	Using System Macros
	Migrating Object Programs

	Appendix C. Object Deck Output
	ESD Record Format
	TXT Record Format
	RLD Record Format
	END Record Format
	SYM Record Format

	Appendix D. Associated Data File Output
	Record Types
	Macro-only Assemblies

	ADATA Record Layouts
	Common Header Section
	Job Identification Record—X'0000'
	ADATA Identification Record—X'0001'
	ADATA Compilation Unit Start/End Record—X'0002'
	System 370/390 Output File Information Record—X'000A'
	Options Record—X'0010'
	External Symbol Dictionary Record—X'0020'
	Source Analysis Record—X'0030'
	Source Error Record—X'0032'
	DC/DS Record—X'0034'
	DC Extension Record—X'0035'
	Machine Instruction Record—X'0036'
	Relocation Dictionary Record—X'0040'
	Symbol Record—X'0042'
	Symbol Cross Reference Record—X'0044'
	Register Cross Reference Record—X'0045'
	Library Record—X'0060'
	Library Member and Macro Cross Reference Record - X'0062'
	User-supplied Information Record - X'0070'
	USING Map Record—X'0080'
	Statistics Record—X'0090'

	Appendix E. Sample Program
	Appendix F. MHELP Sample Macro Trace and Dump
	Appendix G. High Level Assembler Messages
	Message Code Format
	Message Descriptions
	Message Number and Text
	Explanation of Message
	Supplemental Information
	System Action
	Programmer Response
	Severity Code

	Assembly Error Diagnostic Messages
	Message Not Known
	Messages

	Abnormal Assembly Termination Messages
	Messages

	ASMAHL Command Error Messages (CMS Only)

	Appendix H. User Interface Macros
	Appendix I. Sample ADATA User Exit (MVS and CMS)
	Function
	Preparing the Exit
	Preparing the Filter Management Table
	Preparing the Filter Modules
	Preparing the Sample Filter Module ASMAXFLU
	Invoking the Exit

	Appendix J. Sample LISTING User Exit (MVS and CMS)
	Function
	Preparing the Exit
	Invoking the Exit
	Messages

	Appendix K. Sample SOURCE User Exit (MVS and CMS)
	Function
	Preparing the Exit
	Invoking the Exit

	Appendix L. How to Generate a Translation Table
	Glossary
	Bibliography
	High Level Assembler Publications
	Toolkit Feature Publications
	Related Publications (Architecture)
	Related Publications for MVS
	Related Publications for VM
	Related Publications for VSE
	General Publications

	Index

