

OS/390 IBM

MVS Programming: Assembler Services
Guide

 GC28-1762-06

OS/390 IBM

MVS Programming: Assembler Services
Guide

 GC28-1762-06

 Note

Before using this information and the product it supports, be sure to read the general information under Appendix C, “Notices”
on page C-1.

Seventh Edition, September 1999

This is a major revision of GC28-1762-05.

This edition applies to Version 2 Release 8 of OS/390 (5647-A01) and to all subsequent releases and modifications until otherwise
indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road

 Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+914+432-9405
FAX (Other Countries):

Your International Access Code +1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/s390/os390/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book

� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1988, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . xvii
Who Should Use This Book . xvii
How to Use This Book . xvii
Where to Find More Information . xviii

Summary of Changes . xix

Chapter 1. Introduction . 1-1

Chapter 2. Linkage Conventions . 2-1
Saving the Calling Program's Registers . 2-2

Caller-Provided Save Area . 2-2
Linkage Convention for Floating Point Registers 2-2
Linkage Convention for the Floating Point Control Register 2-2
System-Provided Linkage Stack . 2-3

Using the Linkage Stack . 2-3
Example of Using the Linkage Stack . 2-3

Using a Caller-Provided Save Area . 2-4
Example of Using the Caller-Provided Save Area 2-5

Establishing a Base Register . 2-6
Linkage Procedures for Primary Mode Programs 2-6

Primary Mode Programs Receiving Control 2-6
Primary Mode Programs Returning Control . 2-7
Primary Mode Programs Calling Another Program 2-8

Linkage Procedures for AR Mode Programs . 2-8
AR Mode Programs Receiving Control . 2-8
AR Mode Programs Returning Control . 2-9
AR Mode Programs Calling Another Program 2-9

Conventions for Passing Information Through a Parameter List 2-9
Program in Primary Mode . 2-9
Programs in AR Mode . 2-10

Chapter 3. Subtask Creation and Control . 3-1
Creating the Task . 3-1
Priorities . 3-1

Address Space Priority . 3-2
Task Priority . 3-2
Subtask Priority . 3-2
Assigning and Changing Priority . 3-3

Stopping and Restarting a Subtask (STATUS Macro) 3-3
Task and Subtask Communications . 3-3

Chapter 4. Program Management . 4-1
Residency and Addressing Mode of Programs 4-1

Residency Mode Definitions . 4-2
Addressing Mode Definitions . 4-2

Linkage Considerations . 4-2
Floating Point Considerations . 4-3
Passing Control Between Programs with the Same AMODE 4-3
Passing Control Between Programs with Different AMODEs 4-3

 Copyright IBM Corp. 1988, 1999 iii

Passing Control Between Programs with All Registers Intact 4-4
Load Module Structure Types . 4-6

Simple Structure . 4-7
Dynamic Structure . 4-7

Load Module Execution . 4-7
Passing Control in a Simple Structure . 4-7

Passing Control without Return . 4-8
Passing Control with Return . 4-10

Passing Control in a Dynamic Structure . 4-16
Bringing the Load Module into Virtual Storage 4-16
Passing Control with Return . 4-22
Passing Control without Return . 4-26

APF-authorized Programs and Libraries . 4-29
Additional Entry Points . 4-29
Entry Point and Calling Sequence Identifiers as Debugging Aids 4-30
Retrieving Information About Loaded Modules 4-30

Using the CSVINFO Macro . 4-30
Coding a MIPR for the CSVINFO Macro . 4-33

Using CSVRTLS to Request Run-Time Library Services (RTLS) 4-34

Chapter 5. Understanding 31-Bit Addressing 5-1
Virtual Storage . 5-1

Addressing Mode and Residency Mode . 5-1
Requirements for Execution in 31-Bit Addressing Mode 5-4
Rules and Conventions for 31-Bit Addressing 5-4
Mode Sensitive Instructions . 5-4
Branching Instructions . 5-5
Use of 31-Bit Addressing . 5-6

Planning for 31-Bit Addressing . 5-6
Converting Existing Programs . 5-7
Writing New Programs That Use 31-Bit Addressing 5-9
Writing Programs for MVS/370 and MVS Systems with 31-Bit Addressing . 5-11

Addressing Mode and Residency Mode . 5-12
Addressing Mode - AMODE . 5-12
Residency Mode - RMODE . 5-13
AMODE and RMODE Combinations . 5-13
AMODE and RMODE Combinations at Execution Time 5-13
Determining the AMODE and RMODE of a Load Module 5-14
Assembler H Support of AMODE and RMODE 5-14
DFP Linkage Editor Support of AMODE and RMODE 5-15
DFP Loader Support for AMODE and RMODE 5-19
MVS Support of AMODE and RMODE . 5-20
How to Change Addressing Mode . 5-22

Establishing Linkage . 5-23
Using the BASSM and BSM Instructions . 5-26
Using Pointer-Defined Linkage . 5-28
Using Supervisor-Assisted Linkage . 5-31
Linkage Assist Routines . 5-33
Using Capping - Linkage Using a Prologue and Epilogue 5-37

Performing I/O in 31-Bit Addressing Mode . 5-38
Using the EXCP Macro . 5-39
Using EXCPVR . 5-39

Understanding the Use of Central Storage . 5-49
Central Storage Considerations for User Programs 5-50

iv OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 6. Resource Control . 6-1
Synchronizing Tasks (WAIT, POST, and EVENTS Macros) 6-2

| Synchronizing Tasks (Pause, Release, and Transfer) 6-4
| Pause Elements and Pause Element Tokens 6-4
| Using the Services . 6-5

Serializing Access to Resources (ENQ and DEQ Macros) 6-9
Naming the Resource . 6-10
Defining the Scope of a Resource . 6-11
Requesting Exclusive or Shared Control . 6-12
Limiting Concurrent Requests for Resources 6-12
Processing the Requests . 6-12
Serializing Access to Resources through the RESERVE Macro 6-17

Collecting Information about Resources and Their Requestors (GQSCAN
Macro) . 6-17

How GQSCAN Returns Resource Information 6-18

Chapter 7. Program Interruption Services . 7-1
Specifying User Exit Routines . 7-1

Using the SPIE Macro . 7-2
Using the ESPIE Macro . 7-3
Environment Upon Entry to User's Exit Routine 7-4
Functions Performed in User Exit Routines . 7-5

Chapter 8. Providing Recovery . 8-1
Understanding General Recovery Concepts . 8-2

Deciding Whether to Provide Recovery . 8-3
Understanding Errors in MVS . 8-4
Understanding Recovery Routine States . 8-5
Understanding the Various Routines in a Recovery Environment 8-6
Choosing the Appropriate Recovery Routine 8-7
Understanding Recovery Routine Options . 8-9
Understanding How Routines in a Recovery Environment Interact 8-9

Writing Recovery Routines . 8-11
Understanding What Recovery Routines Do 8-12
Understanding the Means of Communication 8-19
Special Considerations for ESTAE-Type Recovery Routines 8-26

Understanding the Recovery Environment . 8-30
Register Contents . 8-31
Other Environmental Factors in Recovery 8-37

Understanding Recovery through a Coded Example 8-42
Understanding Advanced Recovery Topics . 8-45

Invoking RTM (ABEND Macro) . 8-45
Providing Multiple Recovery Routines . 8-46
Providing Recovery for Recovery Routines 8-47
Providing Recovery for Multitasking Programs 8-47

Using STAE/STAI Routines. 8-48

Chapter 9. Dumping Virtual Storage (ABEND, SNAPX, SNAP, and
IEATDUMP Macros) . 9-1

ABEND Dumps . 9-2
Obtaining a Symptom Dump . 9-2
Suppressing Dumps That Duplicate Previous Dumps 9-2

SNAP Dumps . 9-9
Finding Information in a SNAP Dump . 9-9

 Contents v

Obtaining a Summary Dump for an ABEND or SNAP Dump 9-9
Transaction Dumps . 9-10

Chapter 10. Reporting Symptom Records (SYMRBLD and SYMREC
Macros) . 10-1

Writing Symptom Records to Logrec Data Set 10-1
The Format of the Symptom Record . 10-2

Symptom Strings — SDB Format . 10-3
Building a Symptom Record Using the SYMRBLD Macro 10-3
Building a Symptom Record Using the ADSR and SYMREC Macros 10-4

Programming Notes for Section 1 . 10-4
Programming Notes for Section 2 . 10-5
Programming Notes for Section 2.1 . 10-6
Programming Notes for Section 3 . 10-7
Programming Notes for Section 4 . 10-8
Programming Notes for Section 5 . 10-8

Chapter 11. Virtual Storage Management 11-1
Explicit Requests for Virtual Storage . 11-1

Obtaining Storage Through the GETMAIN Macro 11-2
Obtaining Storage Through the STORAGE Macro 11-4
Using the CPOOL Macro . 11-6
Subpool Handling . 11-6

Implicit Requests for Virtual Storage . 11-11
Reenterable Load Modules . 11-11
Reenterable Macros . 11-11
Non-reenterable Load Modules . 11-13
Freeing of Virtual Storage . 11-13

Chapter 12. Callable Cell Pool Services . 12-1
Comparison of CPOOL Macro and Callable Cell Pool Services 12-1

Storage Considerations . 12-2
Link-editing Callable Cell Pool Services . 12-4

Using Callable Cell Pool Services . 12-4
Handling Return Codes . 12-6
Callable Cell Pool Services Coding Example 12-6

Chapter 13. Data-in-Virtual . 13-1
When to Use Data-in-Virtual . 13-2

Factors Affecting Performance . 13-2
Creating a Linear Data Set . 13-3

Using the Services of Data-in-Virtual . 13-4
Identify . 13-4
Access . 13-4
Map . 13-4
Save, Savelist, and Reset . 13-6
Unmap . 13-6
Unaccess . 13-7
Unidentify . 13-7

The IDENTIFY Service . 13-7
The ACCESS Service . 13-8
The MAP Service . 13-10
The SAVE Service . 13-15
The SAVELIST Service . 13-17

vi OS/390 V2R8.0 MVS Assembler Services Guide

The RESET Service . 13-18
Effect of RETAIN mode on RESET . 13-18

The UNMAP Service . 13-20
The UNACCESS and UNIDENTIFY Services 13-21
Sharing Data in an Object . 13-21
Miscellaneous Restrictions for Using Data-in-Virtual 13-22
DIV Macro Programming Examples . 13-22

General Program Description . 13-22
Data-in-Virtual Sample Program Code . 13-23
Executing the Program . 13-29

Chapter 14. Using Access Registers . 14-1
Access Lists . 14-3

Types of Access Lists . 14-3
Writing Programs in AR Mode . 14-5
Coding Instructions in AR Mode . 14-6
Manipulating the Contents of ARs . 14-7

Loading an ALET into an AR . 14-8
Loading the Value of Zero into an AR . 14-8

The ALESERV Macro . 14-9
Adding an Entry to an Access List . 14-9
Deleting an Entry from an Access List . 14-10

Issuing MVS Macros in AR Mode . 14-10
Example of Using SYSSTATE . 14-10
Using X-Macros . 14-11

Formatting and Displaying AR Information . 14-11

Chapter 15. Data Spaces and Hiperspaces 15-1
What are Data Spaces and Hiperspaces? . 15-1
What Can a Program Do With a Data Space or a Hiperspace? 15-2

How Does a Program Obtain a Data Space and a Hiperspace? 15-2
How Does a Program Move Data into a Data Space or Hiperspace? . . . 15-2
Who Owns a Data Space or Hiperspace? 15-2
Can an Installation Limit the Use of Data Spaces and Hiperspaces? 15-3
How Does a Program Manage the Storage in a Data Space or

Hiperspace? . 15-3
Differences Between Data Spaces and Hiperspaces 15-4

Comparing Data Space and Hiperspace Use of Physical Storage 15-5
Which One Should Your Program Use? . 15-6

An Example of Using a Data Space . 15-6
An Example of Using a Hiperspace . 15-6

Creating and Using Data Spaces . 15-7
Manipulating Data in a Data Space . 15-7
Rules for Creating, Deleting, and Managing Data Spaces 15-7
Creating a Data Space . 15-8
Establishing Addressability to a Data Space 15-12
Examples of Moving Data into and out of a Data Space 15-12
Extending the Current Size of a Data Space 15-14
Releasing Data Space Storage . 15-16
Paging Data Space Storage Areas into and out of Central Storage 15-16
Deleting a Data Space . 15-17
Using Callable Cell Pool Services to Manage Data Space Areas 15-17
Sharing Data Spaces among Problem-State Programs with PSW Keys 8 -

F . 15-19

 Contents vii

Sharing Data Spaces through the PASN-AL 15-21
Example of Mapping a Data-in-Virtual Object to a Data Space 15-22
Using Data Spaces Efficiently . 15-23
Example of Creating, Using, and Deleting a Data Space 15-23
Dumping Storage in a Data Space . 15-25

Using Checkpoint/Restart . 15-25
Creating and Using Hiperspaces . 15-25

Standard Hiperspaces . 15-26
Creating a Hiperspace . 15-28
Transferring Data To and From Hiperspaces 15-29
Extending the Current Size of a Hiperspace 15-34
Releasing Hiperspace Storage . 15-34
Deleting a Hiperspace . 15-35
Example of Creating a Standard Hiperspace and Using It 15-35
Using Data-in-Virtual with Hiperspaces . 15-37

Using Checkpoint/Restart . 15-41

Chapter 16. Window Services . 16-1
Data Objects . 16-1

Permanent . 16-1
Temporary Data Objects . 16-1
Structure of a Data Object . 16-1
What Does Window Services Provide? . 16-2
The Ways That Window Services Can Map an Object 16-3
Access to Permanent Data Objects . 16-6
Access to Temporary Data Objects . 16-7

Using Window Services . 16-8
Obtaining Access to a Data Object . 16-9
Defining a View of a Data Object . 16-11
Defining the Expected Reference Pattern . 16-12
Defining Multiple Views of an Object . 16-14
Saving Interim Changes to a Permanent Data Object 16-15
Updating a Temporary Data Object . 16-16
Refreshing Changed Data . 16-16
Updating a Permanent Object on DASD . 16-17
Changing a View in a Window . 16-17
Terminating Access to a Data Object . 16-19
Link-editing Callable Window Services . 16-19

Window Services Coding Example . 16-20

Chapter 17. Sharing Application Data (Name/Token Callable Services) . 17-1
Understanding Name/Token Pairs and Levels 17-1

Name/Token Pairs . 17-1
Levels for Name/Token Pairs . 17-2
Determining What Your Program Can Do with Name/Token Pairs 17-3

Deciding What Name/Token Level You Need 17-3
Task-Level Name/Token Pair . 17-3
Home-Level Name/Token Pair . 17-4

Owning and Deleting Name/Token Pairs . 17-6
Using Checkpoint/Restart with Name/Token Pairs 17-6
Link-Editing Name/Token Services . 17-6

Chapter 18. Processor Storage Management 18-1
Freeing Virtual Storage . 18-2

viii OS/390 V2R8.0 MVS Assembler Services Guide

Releasing Storage . 18-2
Protecting a Range of Virtual Storage Pages 18-3
Loading/Paging Out Virtual Storage Areas . 18-3
Virtual Subarea List (VSL) . 18-4
Page Service List (PSL) . 18-5
Defining the Reference Pattern (REFPAT) . 18-5

How Does the System Handle the Data in an Array? 18-6
Using the REFPAT Macro . 18-10
Examples of Using REFPAT to Define a Reference Pattern 18-14
Removing the Definition of the Reference Pattern 18-15

Chapter 19. Sharing Data in Virtual Storage (IARVSERV Macro) 19-1
Understanding the Concepts of Sharing Data with IARVSERV 19-2
Storage You Can Use with IARVSERV . 19-2
Obtaining Storage for the Source and Target 19-3
Defining Storage for Sharing Data and Access 19-3
Changing Storage Access . 19-4
How to Share and Unshare Data . 19-6
Accessing Data in a Sharing Group . 19-7
Example of Sharing Storage with IARVSERV 19-7
Use with Data-in-Virtual (DIV Macro) . 19-8
Diagnosing Problems with Shared Data . 19-9
Converting a Central to Virtual Storage Address (IARR2V Macro) 19-9

Chapter 20. Timing and Communication . 20-1
Checking for Timer Synchronization . 20-1
Obtaining Time of Day and Date . 20-1
Converting Between Time of Day and Date and TOD Clock Formats 20-2
Interval Timing . 20-2
Obtaining Accumulated Processor Time . 20-4
Writing and Deleting Messages (WTO, WTOR, DOM, and WTL) 20-5

Routing the Message . 20-6
Writing a Multiple-Line Message . 20-10
Embedding Label Lines in a Multiple-Line Message 20-10

Communicating in a Sysplex Environment . 20-10
Writing to the Programmer . 20-10
Writing to the System Log . 20-11

Deleting Messages Already Written . 20-11
Retrieving Console Information (CONVCON Macro) 20-12

Determining the Name or ID of a Console 20-12
Validating a Console Name or ID and Checking if a Console Is Active . . . 20-13
Validating a Console Area ID . 20-14

Chapter 21. Translating Messages . 21-1
Allocating Data Sets for an Application . 21-3
Creating Install Message Files . 21-4

Creating a Version Record . 21-4
Creating Message Skeletons . 21-4
Message Skeleton Format . 21-5
Message Text in a Skeleton . 21-6

Validating Message Skeletons . 21-7
Allocating Storage for Validation Run-Time Message Files 21-8
Compiling Message Files . 21-9
Checking the Message Compiler Return Codes 21-12

 Contents ix

Updating the System Run-Time Message Files 21-13
Using MMS Translation Services in an Application 21-13

Determining which Languages are Available (QRYLANG Macro) 21-14
Retrieving Translated Messages (TRANMSG Macro) 21-14
Example of Displaying Messages . 21-16

Using Message Parameter Blocks for New Messages (BLDMPB and
UPDTMPB Macros) . 21-17

Support for Additional Languages . 21-18
Example of an Application that Uses MMS Translation Services 21-19

Chapter 22. Data Compression and Expansion Services 22-1
Services Provided by CSRCESRV . 22-1

Running under an MVS/ESA System . 22-2
Running under an MVS/XA System . 22-3

Services Provided by CSRCMPSC . 22-4
Compression and Expansion Dictionaries 22-5
Building the CSRYCMPS Area . 22-5
Determining if the CSRCMPSC Macro Can Be Issued on a System 22-8
Compression Processing . 22-9
Expansion Processing . 22-10
Dictionary Entries . 22-10

Chapter 23. Accessing Unit Control Blocks (UCBs) 23-1
Detecting I/O Configuration Changes . 23-1
Scanning UCBs . 23-2
Obtaining UCB Information for a Specified Device 23-3
Obtaining Eligible Device Table Information . 23-4

Using the EDTINFO Macro . 23-4

Chapter 24. The Internal Reader . 24-1
Setting Up and Using an Internal Reader . 24-1

Allocating the Internal Reader Data Set . 24-2
Opening the Internal Reader Data Set . 24-2
Sending Job Output to the Internal Reader 24-3
Closing the Internal Reader Data Set . 24-3

Chapter 25. Using the Symbol Substitution Service 25-1
What Are Symbols? . 25-1

Types of Symbols . 25-1
Examples of User Symbols . 25-2

Calling the ASASYMBM Service . 25-3
Setting Up the ASASYMBP Mapping Macro 25-3
Providing a Symbol Table to ASASYMBM 25-4
Using Symbols in Programs . 25-10

Chapter 26. Using System Logger Services 26-1
What is System Logger? . 26-1

The Log Stream . 26-2
The System Logger Configuration . 26-4

The System Logger Component . 26-6
The LOGR Couple Data Set (LOGR Policy) 26-7
Log Data on The Coupling Facility . 26-8
Log Data on DASD Log Data Sets . 26-8
Duplexing Log Data . 26-9

x OS/390 V2R8.0 MVS Assembler Services Guide

Overview of System Logger Services . 26-10
Summary of System Logger Services . 26-10
Define Authorization to System Logger Resources 26-11
Synchronous and Asynchronous Processing 26-11
Coding a System Logger Complete Exit for IXGBRWSE, IXGWRITE, and

IXGDELET . 26-13
How System Logger Handles Gaps in the Log Stream 26-15

| Dumping on Data Loss (804–type) Conditions 26-16
Using the System Logger Answer Area (ANSAREA parameter) 26-18
Using ENF Event Code 48 in System Logger Applications 26-19

IXGINVNT: Managing the LOGR Policy . 26-20
Defining a Model Log Stream in the LOGR Couple Data Set 26-21
Defining a Log Stream as DASD-Only . 26-22
Upgrading a Log Stream From DASD-Only to Coupling Facility 26-22

IXGCONN: Connecting to and Disconnecting From a Log Stream 26-22
Examples of Ways to Connect to the Log Stream 26-23
How System Logger Allocates Structure Space For a New Log Stream at

Connection Time . 26-24
Connect Process and Staging Data Sets . 26-24
Requesting Authorization to the Log Stream for an Application 26-24
Connecting as a Resource Manager . 26-25
Requesting a Write or Import Connection - IMPORTCONNECT parameter 26-26
Specifying User Data for a Log Stream . 26-27
Using ENF Event 48 When a Connect Request is Rejected 26-27
System Logger Processing at Disconnection 26-27
Coding a Resource Manager Exit for IXGCONN 26-28

IXGWRITE: Writing to a Log Stream . 26-32
The Log Block Buffer . 26-32
Ensuring Chronological Sequence of Log Blocks 26-32
When is Data Committed to the Log Stream? 26-33
When the Log Stream Coupling Facility Storage Limit Is Reached 26-33
When the Staging Data Set Storage Limit is Reached 26-34
When the Staging Data Set is Formatting 26-34

IXGBRWSE: Browsing/Reading a Log Stream 26-34
IXGBRWSE Terminology . 26-34
IXGBRWSE Requests . 26-35
Browsing Both Active and Inactive Data . 26-35
Browsing for a Log Block by Time Stamp 26-36
Using IXGBRWSE and IXGWRITE . 26-37
Using IXGBRWSE and IXGDELET Requests Together 26-37

IXGDELET: Deleting Log Blocks from a Log Stream 26-38
Using the BLOCKS parameter . 26-38
Delete Requests and Resource Manager Exit Processing 26-39

IXGIMPRT: Import Log Blocks . 26-39
Making Sure Log Blocks are Imported in Sequence - Understanding Log

Block Identifiers . 26-40
Making Sure Log Data is Safe to Import . 26-41

IXGQUERY: Get Information About a Log Stream 26-41
The Safe Import Point: Using IXGQUERY and IXGIMPRT Together 26-41
The Coupling Facility List Structure Version Number 26-44

IXGOFFLD: Initiate Offload to DASD Log Data Sets 26-45
Managing a Target Log Stream: Using IXGIMPRT, IXGOFFLD, and

IXGQUERY Together . 26-46
IXGUPDAT: Modify Log Stream Control Information 26-46

 Contents xi

Rebuilds and IXGUPDAT processing . 26-47
Setting Up the System Logger Configuration 26-47

Writing an ENF Event 48 Listen Exit . 26-47
Reading Data From Log Streams in Data Set Format 26-49

Is My Application Eligible for the LOGR Subsystem? 26-49
Using the LOGR Subsystem . 26-51
JCL for the LOGR Subsystem . 26-51

When Things Go Wrong - Recovery Scenarios for System Logger 26-53
When a System Logger Application Fails . 26-53
When an MVS System or Sysplex Fails . 26-54
Recovery Performed for DASD-Only Log Streams 26-54
When the System Logger Address Space Fails 26-54
When the Coupling Facility Structure Fails 26-55
When the Coupling Facility Space for a Log Stream Becomes Full 26-57
When a Staging Data Set Becomes Full . 26-57
When a Log Stream is Damaged . 26-58
When DASD Log Data Set Space Fills . 26-58
When Unrecoverable DASD I/O Errors Occur 26-59
When A Resource Manager Fails . 26-60

Appendix A. Using the Unit Verification Service A-1
Functions of Unit Verification . A-1

Check Groups - Function Code 0 . A-1
Check Units - Function Code 1 . A-1
Return Unit Name - Function Code 2 . A-2
Return Unit Control Block (UCB) Addresses - Function Code 3 A-2
Return Group ID - Function Code 4 . A-2
Indicate Unit Name is a Look-up Value - Function Code 5 A-2
Return Look-up Value - Function Code 6 . A-2
Convert Device Type to Look-up Value - Function Code 7 A-2
Return Attributes - Function Code 8 . A-2
Specify Subpool for Returned Storage - Function Code 10 A-2
Return Unit Names for a Device Class - Function Code 11 A-3

Appendix B. Using the Virtual Fetch Service B-1
Functions of Virtual Fetch . B-1

Considerations . B-2
Programming Conventions for Using Virtual Fetch B-4
Requesting Dumps When Using Virtual Fetch B-4
Return Codes from the BUILD Request for Virtual Fetch B-5
Return Codes from the FIND Request for Virtual Fetch B-5
Return Codes from the GET Request for Virtual Fetch B-5

Appendix C. Notices . C-1
Programming Interface Information . C-2
Trademarks . C-2

Index . X-1

xii OS/390 V2R8.0 MVS Assembler Services Guide

 Figures

2-1. Format of the Save Area . 2-4
2-2. Primary Mode Parameter List . 2-10
2-3. AR Mode Parameter List . 2-11
3-1. Levels of Tasks in a Job Step . 3-4
4-1. Assembler Definition of AMODE/RMODE 4-1
4-2. Example of Addressing Mode Switch 4-4
4-3. Characteristics of Load Modules . 4-7
4-4. Passing Control in a Simple Structure 4-9
4-5. Passing Control With a Parameter List 4-9
4-6. Passing Control With Return . 4-11
4-7. Passing Control With CALL . 4-11
4-8. Test for Normal Return . 4-13
4-9. Return Code Test Using Branching Table 4-13

4-10. Establishing a Return Code . 4-14
4-11. Using the RETURN Macro . 4-15
4-12. RETURN Macro with Flag . 4-15
4-13. Search for Module, EP or EPLOC Parameter With DCB=0 or DCB

Parameter Omitted . 4-18
4-14. Search for Module, EP or EPLOC Parameters With DCB Parameter

Specifying Private Library . 4-19
4-15. Search for Module Using DE Parameter 4-21
4-16. Use of the LINK Macro with the Job or Link Library 4-24
4-17. Use of the LINK Macro with a Private Library 4-24
4-18. Use of the BLDL Macro . 4-24
4-19. The LINK Macro with a DE Parameter 4-24
4-20. Misusing Control Program Facilities Causes Unpredictable Results 4-28
4-21. Processing Flow for the CSVINFO Macro and the Caller's MIPR . . 4-32
4-22. CSVINFO Recovery . 4-33

5-1. Two Gigabyte Virtual Storage Map . 5-2
5-2. Maintaining Correct Interfaces to Modules that Change to AMODE 31 5-7
5-3. Establishing Correct Interfaces to Modules That Move Above 16

Megabytes . 5-8
5-4. AMODE and RMODE Combinations 5-14
5-5. AMODE and RMODE Processing by the Linkage Editor 5-17
5-6. AMODE and RMODE Processing by the Loader 5-20
5-7. Mode Switching to Retrieve Data from Above 16 Megabytes 5-23
5-8. Linkage Between Modules with Different AMODEs and RMODEs . 5-25
5-9. BRANCH and SAVE and Set Mode Description 5-26

5-10. Branch and Set Mode Description . 5-27
5-11. Using BASSM and BSM . 5-28
5-12. Example of Pointer-Defined Linkage 5-30
5-13. Example of Supervisor-Assisted Linkage 5-32
5-14. Example of a Linkage Assist Routine 5-34
5-15. Cap for an AMODE 24 Module . 5-38
5-16. Performing I/O While Residing Above 16 Megabytes 5-41

| 6-1. Task Synchronization Techniques . 6-1
6-2. Event Control Block (ECB) . 6-2
6-3. Using LINKAGE=SYSTEM on the WAIT and POST Macros 6-3

| 6-4. Pause Element (PE) and Event Control Block (ECB) 6-4
| 6-5. Pause and Release Example . 6-6

 Copyright IBM Corp. 1988, 1999 xiii

| 6-6. Release and Pause Example . 6-7
| 6-7. Transfer without Pause Example . 6-9

6-8. ENQ Macro Processing . 6-13
6-9. Interlock Condition . 6-16

6-10. Two Requests For Two Resources 6-16
6-11. One Request For Two Resources . 6-16
6-12. GQSCAN Results with a Scope of STEP, SYSTEM, SYSTEMS, or

ALL . 6-19
6-13. Work Area Contents for GQSCAN with a Scope of STEP, SYSTEM,

SYSTEMS, or ALL . 6-20
7-1. Using the SPIE Macro . 7-3
8-1. Summary of Recovery Routine States 8-9
8-2. Mainline Routine with One Recovery Routine 8-10
8-3. Mainline Routine with Several Recovery Routines 8-11
8-4. Contents of GPR 0 on Entry to a Retry Routine 8-18
8-5. Key Fields in the SDWA . 8-23
8-6. Restoring Quiesced Restorable I/O Operations 8-29
8-7. Where to Find Register Content Information 8-32
8-8. Register Contents—ESTAE-Type Recovery Routine With an SDWA 8-33
8-9. Register Contents—ESTAE-Type Recovery Routine Without an

SDWA . 8-34
8-10. Register Contents—Retry from an ESTAE-Type Recovery Routine

Without an SDWA . 8-35
8-11. Register Contents—Retry from an ESTAE-Type Recovery Routine

With an SDWA, RETREGS=NO, and FRESDWA=NO 8-36
8-12. Register Contents—Retry from an ESTAE-Type Recovery Routine

With an SDWA, RETREGS=NO, and FRESDWA=YES 8-36
8-13. Register Contents—Retry from an ESTAE-Type Recovery Routine

With an SDWA and RETREGS=YES 8-37
8-14. Environments of ESTAE-type Recovery Routines and their Retry

Routines . 8-40
9-1. Reasons for Selecting the Type of Dump 9-1

11-1. Example of Using the GETMAIN Macro 11-4
11-2. Virtual Storage Control . 11-7
11-3. Using the List and the Execute Forms of the DEQ Macro 11-12
12-1. Cell Pool Storage . 12-3
13-1. Mapping from an Address Space 13-11
13-2. Mapping from a Data Space or Hiperspace 13-11
13-3. Multiple Mapping . 13-13
14-1. Using an ALET to Identify an Address Space or a Data Space . . . 14-2
14-2. An Illustration of a DU-AL . 14-4
14-3. Characteristics of DU-ALs and PASN-ALs 14-5
14-4. Using Instructions in AR Mode . 14-6
14-5. Base and Index Register Addressing in AR Mode 14-7
15-1. Accessing Data in a Data Space . 15-4
15-2. Accessing Data in a Hiperspace . 15-5
15-3. Rules for How Problem State Programs with Key 8-F Can Use Data

Spaces . 15-8
15-4. Example of Specifying the Size of a Data Space 15-11
15-5. Example of Extending the Current Size of a Data Space 15-16
15-6. Example of Using Callable Cell Pool Services for Data Spaces . . 15-19
15-7. Two Problem Programs Sharing a SCOPE=SINGLE Data Space 15-20
15-8. Example of Scrolling through a Standard Hiperspace 15-27
15-9. Facts about a Non-shared Standard Hiperspace 15-28

xiv OS/390 V2R8.0 MVS Assembler Services Guide

15-10. Illustration of the HSPSERV Write and Read Operations 15-30
15-11. Example of Creating a Standard Hiperspace and Transferring Data 15-36
15-12. Example of Mapping a Data-in-Virtual Object to a Hiperspace . . 15-38
15-13. A Standard Hiperspace as a Data-in-Virtual Object 15-40
16-1. Structure of a Data Object . 16-2
16-2. Mapping a Permanent Object That Has No Scroll Area 16-3
16-3. Mapping a Permanent Object That Has A Scroll Area 16-4
16-4. Mapping a Temporary Object . 16-4
16-5. Mapping an Object To Multiple Windows 16-5
16-6. Mapping Multiple Objects . 16-6
17-1. Using the Name and the Token . 17-1
17-2. Summary of What Programs Do with Name/Token Pairs 17-3
17-3. Using the Task Level in a Single Address Space 17-4
17-4. Using Home-Level and Task-Level Name/Token Pairs 17-5
18-1. Releasing Virtual Storage . 18-3
18-2. Example of using REFPAT with a Large Array 18-7
18-3. Illustration of a Reference Pattern with a Gap 18-8
18-4. Illustration of Forward Direction in a Reference Pattern 18-10
18-5. Illustration of Backward Direction in a Reference Pattern 18-11
18-6. Two Typical Reference Patterns . 18-11
19-1. Data Sharing with IARVSERV . 19-2
19-2. Allowed Source/Target View Combinations for Share 19-5
19-3. Sharing Storage with IARVSERV . 19-8
20-1. Interval Processing . 20-4
20-2. Characters Printed or Displayed on an MCS Console 20-5
20-3. Descriptor Code Indicators . 20-8
20-4. Writing to the Operator . 20-8
20-5. Writing to the Operator With a Reply 20-9
21-1. Preparing Messages for Translation 21-3
21-2. Format of Version Record Fields . 21-4
21-3. Version Record Example . 21-4
21-4. Message Skeleton Fields . 21-5
21-5. Sample job to invoke IDCAMS to obtain a data set for the run-time

message files . 21-9
21-6. Using JCL to Invoke the Compiler with a single PDS as input 21-9
21-7. Using JCL to Invoke the Compiler with a concatenation of

partitioned Data Sets as input . 21-10
21-8. Using a TSO/E CLIST to Invoke the Compiler with a single PDS

input . 21-10
21-9. Using a TSO/E CLIST to Invoke the Compiler with a concatenation

of partitioned Data Set as input . 21-10
21-10. Using a REXX exec to Invoke the Compiler with a single PDS as

input . 21-11
21-11. Using a REXX exec to Invoke the Compiler with a concatenation of

partitioned Data Sets as input . 21-11
21-12. Using the TRANMSG Macro . 21-16
21-13. Languages Available to MVS Message Service 21-18
22-1. Summary of Data Compression and Expansion Services 22-2
22-2. Testing the Level of the MVS System at Execution Time 22-3
25-1. Contiguous Symbol Table . 25-8
25-2. Non-contiguous Symbol Table . 25-9
26-1. System Logger Log Stream . 26-2
26-2. Log Stream Data on the Coupling Facility and DASD 26-3
26-3. Log Stream Data in Local Storage Buffers and DASD Log Data Sets 26-4

 Figures xv

26-4. A Complete Coupling Facility Log Stream Configuration 26-5
26-5. A DASD-Only Configuration . 26-6
26-6. Defining SAF Authorization For System Logger Resources 26-11
26-7. How IXGBRWSE Requests Handle Gaps in a Log Stream 26-15
26-8. How IXGDELET Requests Handle Gaps in a Log Stream 26-16
26-9. Issuing ENFREQ to Listen for ENF Event Code 48 26-20

26-10. Define a Log Stream as a Model and then Model a Log Stream
After It . 26-21

26-11. Searching for a Log Block by Time 26-37
26-12. Deleting a Range of Log Blocks . 26-39
26-13. How Source and Target Log Streams Can Get Out of Sync 26-43
26-14. Log Stream SUBSYS Data Set Specification 26-51

A-1. Input Parameter List . A-4
A-2. Requesting Function Code 0 (Check Groups) A-5
A-3. Requesting Function Code 1 (Check Units) A-6
A-4. Requesting Function Code 2 (Return Unit Name) A-6
A-5. Output from Function Code 2 (Return Unit Name) A-6
A-6. Requesting Function Code 3 (Return UCB Addresses) A-7
A-7. Output from Function Code 3 (Return UCB Addresses) A-7
A-8. Requesting Function Code 4 (Return Group ID) A-8
A-9. Output from Function Code 4 (Return Group ID) A-8

A-10. Requesting Function Code 5 (Indicate Unit Name is a Look-up Value) A-9
A-11. Requesting Function Code 6 (Return Look-up Value) A-9
A-12. Output from Function Code 6 (Return Look-up Value) A-10
A-13. Requesting Function Code 7 (Convert Device Type to Look-up

Value) . A-10
A-14. Output from Function Code 7 (Convert Device Type to Look-up

Value) . A-10
A-15. Requesting Function Code 8 (Return Attributes) A-11
A-16. Requesting Function Code 10 (Specify Subpool for Returned

Storage) . A-12
A-17. Requesting Function Code 11 (Return Unit Names for a Device

Class) . A-12
A-18. Output from Function Code 11 (Return Unit Names for a Device

Class) . A-12
A-19. Input for Function Codes 0 and 1 . A-13
A-20. Output from Function Codes 0 and 1 A-13
A-21. Input for Function Codes 3 and 10 A-14
A-22. Output from Function Codes 3 and 10 A-14
A-23. Input for Function Codes 1 and 5 . A-14
A-24. Output from Function Codes 1 and 5 A-15

B-1. Virtual Fetch Parameter List . B-3
B-2. A Program Using Virtual Fetch . B-6

xvi OS/390 V2R8.0 MVS Assembler Services Guide

About This Book

This book describes the operating system services that an unauthorized program
can use. An unauthorized program is one that does not run in supervisor state, or
have PSW key 0-7, or reside on an APF-authorized library. To use a service, the
program issues a macro. A companion book, OS/390 MVS Programming:
Assembler Services Reference, provides the detailed information for coding the
macros.

Some of the topics discussed in this book are also discussed in OS/390 MVS
Programming: Authorized Assembler Services Guide and in the following other
books:

� OS/390 MVS Programming: Authorized Assembler Services Reference
ALE-DYN

� OS/390 MVS Programming: Authorized Assembler Services Reference
ENF-IXG

� OS/390 MVS Programming: Authorized Assembler Services Reference
LLA-SDU

� OS/390 MVS Programming: Authorized Assembler Services Reference
SET-WTO

However, the services and macros in those books are for authorized programs.

Who Should Use This Book
This book is for the programmer who is coding in assembler language, and who
needs to become familiar with the operating system and the services that programs
running under it can invoke.

The book assumes that the reader understands system concepts and writes
programs in assembler language.

Assembler language programming is described in the following books:

� HLASM Programmer's Guide

� HLASM Language Reference

Using this book also requires you to be familiar with the operating system and the
services that programs running under it can invoke.

How to Use This Book
This book is one of the set of programming books for MVS. This set describes how
to write programs in assembler language or high-level languages, such as C,
FORTRAN, and COBOL. For more information about the content of this set of
books, see OS/390 Information Roadmap.

 Copyright IBM Corp. 1988, 1999 xvii

Where to Find More Information
Where necessary, this book references information in other books, using shortened
versions of the book title. The following table contains a partial list of reference
books. For complete titles, and order numbers of the books for all products
associated with of OS/390 see OS/390 Information Roadmap.

xviii OS/390 V2R8.0 MVS Assembler Services Guide

Summary of Changes

| Summary of Changes
| for GC28-1762-06
| OS/390 Version 2 Release 8

| The book contains information previously presented in GC28-1762-05, which
| supports OS/390 Version 2 Release 6.

| New Information

| � Information about Parallel Access Volume (PAV) is added to Accessing Unit
| Control Blocks (UCBs) .

| Support for the following APAR is included:

 � OW36830

| This book includes terminology, maintenance, and editorial changes. Technical
| changes or additions to the text and illustrations are indicated by a vertical line to
| the left of the change.

Summary of Changes
for GC28-1762-05
OS/390 Version 2 Release 6

This book contains information previously presented in Assembler Services Guide,
GC28-1762-04, which supports OS/390 Version 2 Release 5.

New Information

� IEEE floating point support, and the handling of the Floating Point registers and
Floating Point Control register are explained.

Complete support for IEEE floating point require PTFs to OS/390 Release 6 and
specific releases of some software. See OS/390 Planning for Installation for the
software requirements for IEEE floating point.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1762-04
OS/390 Version 2 Release 5

This book contains information previously presented in GC28-1762-03, which
supports OS/390 Version 2 Release 4.

New Information

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

 Copyright IBM Corp. 1988, 1999 xix

Summary of Changes
for GC28-1762-03
OS/390 Version 2 Release 4

This book contains information previously presented in GC28-1762-02, which
supports OS/390 Version 1 Release 3.

New Information

� Chapter 26, “Using System Logger Services” on page 26-1 contains new
information about using system logger services with a DASD-only log stream
application. Changes include:

– A new field in the system logger answer area (IXGANSAA).

– Using the new DASDONLY parameter on the IXGINVNT service to indicate
if a log stream is a DASD-only one.

– Upgrading a log stream from DASD-only to coupling facility based.

– Connecting to and disconnecting from (IXGCONN) a DASD-only log
stream.

– DASD-only log streams and the safe import point (IXGQUERY).

– Recovery performed for a DASD-only log stream.

– Recovery for when DASD log data set space fills.

 � Transaction dump

� CSVRTLS is added to request functions of run-time library services (RTLS).

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1762-02
OS/390 Version 1 Release 3

This book contains information previously presented in GC28-1762-01, which
supports OS/390 Version 1 Release 2.

New Information

� Chapter 26, “Using System Logger Services” on page 26-1 contains new
function for system logger services, including:

– New services: IXGIMPRT, IXGQUERY, IXGOFFLD, and IXGUPDAT.

– New complete exit for IXGBRWSE, IXGWRITE, and IXGDELET.

– Guidance for new keywords on existing system logger services.

– Guidance for coding a system logger resource manager.

– New resource manager exit for IXGCONN.

– New ENF event 48 events.

� Adds CSRPRGT1 and CSRPRGT1 to the description of how to allocate cells.

� Adds CSRPRFR1 and CSRPRFR1 to the description of how to free cells.

xx OS/390 V2R8.0 MVS Assembler Services Guide

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for GC28-1762-01
OS/390 Release 2

This book contains information previously presented in OS/390 MVS Programming:
Assembler Services Guide, GC28-1762-00, which supports OS/390 Release 1.

Summary of Changes
for GC28-1762-00
OS/390 Release 1

This book contains information previously presented in MVS/ESA Programming:
Assembler Services Guide, GC28-1466, which supports MVS/ESA System Product
Version 5.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

 Summary of Changes xxi

xxii OS/390 V2R8.0 MVS Assembler Services Guide

 Chapter 1. Introduction

The system controls the flow of work through the computer so that all programs
obtain a fair share of the processing. To make efficient use of the system, you must
understand the services that the system provides and observe the programming
conventions for their use.

The chapters in this book discuss the following topics:

Linkage Conventions — A program must follow register and save area
conventions when it is called by another program or when it calls another program.
These conventions ensure that the programs can successfully pass control to each
other while preserving the register contents and the parameter data required for
successful execution.

Subtask Creation and Control — Because the system can handle small programs
easier than large ones, a large program might execute faster if you divide it into
parts, called tasks. By following the appropriate conventions, you can break your
programs into tasks that compete more efficiently for the resources of the system.

Program Management — Program residence and addressing modes are
discussed in this chapter, as well as the linkage between programs. Save areas,
addressability, and conventions for passing control from one program to another
are also discussed.

Understanding 31-Bit Addressing — 31-bit addressing terms are defined in this
chapter. Read this chapter before modifying existing programs to use 31-bit
addresses.

Resource Control — Anything necessary for program execution, such as a table,
a storage device, or another program, can be considered a resource. If a program
depends on an event that occurs in another program, it might need to defer part of
its execution until the event, which is considered a resource, is completed. Because
many programs might need the same resource, and because some resources can
only be used by one program at a time, synchronization is often necessary.
Resource control helps to regulate access to the resources that your programs
depend on for successful execution. By using the GQSCAN macro, you can obtain
information about resources and their requestors.

Program Interruption Services — The system offers many services to detect and
process abnormal conditions during system processing. Some conditions
encountered in a program cause program interruptions or program exceptions. This
topic includes how to specify user exit routines, using the SPIE or ESPIE macros,
and function performed in user exit routines.

Providing Recovery — When your program encounters an error, the program
might end abnormally unless you provide recovery. To recover from errors, you can
write recovery routines that get control when the error occurs. These routines can
attempt to correct the error and allow your program to resume normal processing.
This topic explains recovery concepts and how to write recovery routines.

Dumping Virtual Storage (ABEND, SNAPX, and SNAP Macros) — If your
program makes serious errors, the system terminates it. If you request it, the

 Copyright IBM Corp. 1988, 1999 1-1

system generates a dump to accompany the termination, and the resulting dump is
called an abend dump. You can also request another type of dump, called a SNAP
dump. Programs can request a SNAP dump at any time, and they can specify the
source, the format, and the destination of the information in the dump.

Reporting Symptom Records (SYMRBLD and SYMREC Macros) — An
application can write a symptom record for each error to the logrec data set, the
online repository where MVS collects error information. The unit of information
stored in the logrec data set is called a symptom record. The data in the symptom
record is a description of some programming failure combined with a description of
the environment where the failure occurred. An application can build and write
symptom records in the logrec data set by invoking either the SYMRBLD or
SYMREC macro.

Virtual Storage Management — The system combines central storage and
auxiliary storage to make the addressable memory appear larger than it really is.
The apparent memory capacity is called virtual storage. By managing storage in
this way, the system relaxes the size limit on programs and data. The storage that
the system gives to each related group of programs is called an address space. As
a program executes, its storage requirements might vary. Conventions described in
this chapter allow a program to obtain any extra storage it might require, and to
return storage that is no longer required.

Callable Cell Pool Services — Callable cell pool services manage user-obtained
areas of virtual storage efficiently, provide high performance service, and allow you
to use storage in both address spaces and data spaces. This chapter describes
callable cell pool services and helps you make the decision between using the
CPOOL macro or callable cell pool services.

Data-In-Virtual — By using a simple technique that lets you create, read, or update
external storage data without the traditional GET and PUT macros, you can write
programs that use very large amounts of this type of data. The data, which is not
broken up into individual records, appears in your virtual storage all at once. This
technique also provides better performance than the traditional access methods for
many applications.

Using Access Registers — If you need to access data in a data space, you need
to use the set of registers called “access registers” and be in the address space
control (ASC) mode called “AR mode”. This chapter helps you access data in data
spaces and use the system services while you are in AR mode.

Data Spaces and Hiperspaces — If you need more virtual storage than a single
address space allows, and if you want to prevent other users from accessing this
storage, you can use data spaces and hiperspaces.

Window Services — Window services enable assembler language programs to
access or create permanent or temporary data objects. By invoking the service
programs provided by window services, a program can:

� Read or update an existing data-in-virtual object
� Create and save a new permanent data-in-virtual object
� Create and use a temporary data-in-virtual object

Sharing Application Data (Name/Token Callable Services) — Name/token
callable services allow a user to share data between two programs running under

1-2 OS/390 V2R8.0 MVS Assembler Services Guide

the same task, or between two or more tasks or address spaces. This topic
includes understanding what a name/token pair is, descriptions of the levels of
name/token pairs, ownership and deletion of the pairs, using checkpoint/restart with
name/token pairs, and an example of JCL that can link-edit a reentrant program
with linkage-assist routines.

Processor Storage Management — The system administers the use of processor
storage (that is, central and expanded storage) and directs the movement of virtual
pages between auxiliary storage and central storage in page-size blocks. You can
release virtual storage contents, load virtual storage areas into central storage,
make virtual storage pages read-only or modifiable, and page out virtual storage
areas from central storage. Reference pattern services allow programs to define a
reference pattern for a specified area that the program is about to reference.

Sharing Data in Virtual Storage (IARVSERV Macro) — This topic describes the
IARVSERV macro, which provides services that allow programs to share virtual
storage in address spaces or data spaces. The topic also includes a section for the
IARR2V macro, which converts a central storage address to a virtual storage
address.

Timing and Communication — The system has an internal clock. Your program
can use it to obtain the date and time, or use it as an interval timer. You can set a
time interval, test how much time is left in an interval, or cancel it. Communication
services let you send a message to the system operator, to a TSO/E terminal, or to
the system log.

Translating Messages — The MVS message service (MMS) enables you to
display MVS or MVS-based application messages that have been translated from
U.S. English into a foreign language. The service also allows application programs
to store messages in and retrieve them from the MMS run-time message file.

Using Data Compression and Expansion Services — Data compression and
expansion services allow you to compress certain types of data so that the data
occupies less space while you are not using it. You can then restore the data to its
original state when you need it.

Accessing Unit Control Blocks (UCBs) — Each device in a configuration is
represented by a unit control block (UCB). This chapter contains information about
scanning UCBs and detecting I/O configuration changes.

The Internal Reader — The internal reader facility is a logical device similar to a
card reader, a tape drive, or a TSO/E terminal that allows you to submit jobs to
JES. This chapter describes how to set up and use an internal reader, allocating
the internal reader data set, opening and closing the internal reader data set, and
sending job output to the internal reader.

Using the Symbol Substitution Service — This topic describes types of symbols
you can use in application and vendor programs, and describes how to call the
ASASYMBM service, which substitutes text for those symbols.

Using System Logger Services — System logger services allow an application to
manage log data in a sysplex environment. This topic describes how to plan the
system logger configuration, plan and set up a system logger application, and plan
for recovery for system logger applications.

 Chapter 1. Introduction 1-3

Appendixes — This book also contains an appendix for each of the following
topics:

� Using the Unit Verification Service

� Using the Virtual Fetch Service .

IMPORTANT -------- READ THIS

As you read the book, keep in mind how the book uses the following terms:

� The term registers means general purpose registers. In sections where
general purpose registers might be confused with other kinds of registers
(such as access registers), the book uses the longer term general purpose
registers .

� Unless otherwise specified, the address space control (ASC) mode of a
program is primary mode.

1-4 OS/390 V2R8.0 MVS Assembler Services Guide

 Chapter 2. Linkage Conventions

Linkage conventions are the register and save area conventions a program must
follow when it receives control from another program or when it calls another
program. It is important that all programs follow the linkage conventions described
here to ensure that the programs can successfully pass control from one to the
other while preserving register contents and parameter data that they need to run
successfully.

One program can invoke another program through any one of the following branch
instructions or macros:

� BALR, BASR, or BASSM instructions
� LINK, LINKX, XCTL, XCTLX, and CALL macros

The program that issues the branch instruction or the macro is the calling
program . The program that receives control is the target program . A program
should follow these conventions when it:

� Receives control from a calling program
� Returns control to the calling program
� Calls another program

The PC instruction provides another means of program linkage. Linkage
conventions for the PC instruction are described in OS/390 MVS Programming:
Extended Addressability Guide.

In this chapter, programs are classified by their address space control (ASC) mode
as follows:

� A primary mode program is one that executes all its instructions in primary
ASC mode and does not change the contents of ARs 2 through 13.

� An AR mode program is one that executes one or more instructions in AR
mode or it changes the contents of ARs 2 through 13. A program that switches
from one mode to another is considered to be an AR mode program. A
program that runs in AR mode can access data that is outside its primary
address space.

The ASC mode at the time a program issues the call determines whether
addresses passed by the program must be qualified by access list entry tokens
(ALETs). An ALET identifies the address space or data space that contains the
passed addresses. An ALET-qualified address is an address for which the calling
program has provided an ALET. The ASC mode at the time of the call also
determines whether the program can call a primary mode program or an AR mode
program.

� A calling program that is in primary mode at the time of the call can call either
another primary mode program or an AR mode program. Addresses passed by
the calling program are not ALET-qualified.

� A calling program that is in AR mode at the time of the call can call only
another AR mode program. Addresses passed by the calling program are
ALET-qualified.

 Copyright IBM Corp. 1988, 1999 2-1

An AR mode program can call a primary mode program, but the calling program
must first switch to primary mode and then follow the linkage conventions for a
primary mode caller. Addresses passed by the calling program cannot be
ALET-qualified.

When one program calls another, the target program receives control in the caller's
ASC mode at the time the call was made. If the calling program is in AR mode at
the time of the call, the target program receives control in AR mode. If the calling
program is in primary mode at the time of the call, the target program receives
control in primary mode. After a target program receives control, it can switch its
ASC mode by issuing the Set Address Control (SAC) instruction. For more
information on ASC mode, see Chapter 14, “Using Access Registers” on
page 14-1.

Saving the Calling Program's Registers
At entry, all target programs save the caller's registers; at exit, they restore those
registers. The two places where a program can save registers are in a
caller-provided save area or in a system-provided linkage stack . The ASC
mode of the target program determines how the target program saves the registers.
A primary mode program can use the linkage stack or the save area its calling
program provides. An AR mode program must use the linkage stack.

Caller-Provided Save Area
A primary mode calling program must provide its target program an 18-word
register save area. Likewise, an AR mode program that switches to primary mode
and then makes a call must provide a register save area. In both cases, the calling
program obtains storage for the save area from its primary address space. The
save area must begin on a word boundary. Before invoking the target program, the
calling program loads the address of the save area into general purpose register
13.

Linkage Convention for Floating Point Registers
With 16 Floating Point Registers (FPRs), registers 0 to 7 are volatile, and registers
8 to 15 are non-volatile. That is, if a called routine uses any of FPRs 8 to 15, it
must save the caller's data in those FPRs before use and restore them before
returning to the caller. The called routine can use any of FPRs 0 to 7 without
saving and restoring the caller's data. If the caller wants to keep data in FPRs 0 to
7, it must save those FPRs before the call and restore them afterward.

Linkage Convention for the Floating Point Control Register
The Floating Point Control (FPC) Register is non-volatile across calls with the
exception of two fields: the IEEE exception flags and the DXC, which are volatile.
That is, if a called routine changes any fields in the FPC register other than the
IEEE exception flags and the DXC, it must save the caller's values before making
the change and restore them before returning to the caller. The called routine may
change the IEEE exception flags and DXC, explicitly or by triggering exception
conditions, without saving and restoring the caller's values.

Note: A program can rely on the FPC register being zero (IEEE default) ONLY
when it determines that the MVS task under which it is running is not
enabled to use the AFP and FPC registers.

2-2 OS/390 V2R8.0 MVS Assembler Services Guide

System-Provided Linkage Stack
The system provides the linkage stack where a target program can save the calling
program's access registers and general purpose registers (AR/GPRs). Use of the
linkage stack has the following advantages:

� The linkage stack saves both ARs and GPRs; the caller-provided save area
saves only GPRs.

� The system provides the linkage stack for use by all programs. The stack
eliminates the need for the AR mode calling program to obtain storage for a
save area and then pass the address to its target program.

� The save areas are located in one place, rather than chained throughout the
user's address space.

� User programs cannot accidentally make changes to the linkage stack.

Using the Linkage Stack
To add an entry to the linkage stack, the target program issues the BAKR
instruction. The BAKR instruction stores all GPRs and ARs on the linkage stack.
The target program must then indicate that it used the linkage stack, which is useful
information for anyone who later needs to trace the program linkages. The
procedure for indicating use of the linkage stack is described in:

� “Primary Mode Programs Receiving Control” on page 2-6
� “AR Mode Programs Receiving Control” on page 2-8

When the target program is ready to return to the calling program, it issues the PR
instruction. The PR instruction restores the calling program's AR/GPRs 2 - 14,
removes the entry from the linkage stack, and returns control to the calling
program.

Example of Using the Linkage Stack
In this example, an AR mode target program receives control from another
program, either in primary mode or AR mode. The calling program can make the
call through the following two instructions:

L 15,=V(PGM)
BALR 14,15

The target program uses the linkage stack to save the calling program's registers. It
uses the STORAGE macro to obtain storage for its own save area. The code is in
31-bit addressing mode and is reentrant.

 Chapter 2. Linkage Conventions 2-3

PGM CSECT
PGM AMODE 31
PGM RMODE ANY

BAKR 14,ð SAVE CALLER'S ARS AND GPRS
\ ON LINKAGE STACK

SAC 512 SWITCH TO AR ADDRESSING MODE
LAE 12,ð(15,ð) SET UP PROGRAM BASE REGISTER

\ AND ADDRESSING REGISTER
 USING PGM,12

STORAGE OBTAIN,LENGTH=72 GET MY REENTRANT SAVEAREA
LAE 13,ð(ð,1) PUT MY SAVEAREA ADDRESS IN AR/GPR13
MVC 4(4,13),=C'F1SA' PUT ACRONYM INTO MY SAVEAREA BACKWARD

\ POINTER INDICATING REGS SAVED ON STACK
\ END OF ENTRY CODE, BEGIN PROGRAM CODE HERE
...
\ BEGIN EXIT CODE

LAE 1,ð(ð,13) COPY MY SAVEAREA ADDRESS
STORAGE RELEASE,ADDR=(1),LENGTH=72 FREE MY REENTRANT SAVEAREA
SLR 15,15 SET RETURN CODE OF ZERO
PR RESTORE CALLER'S ARs AND

\ GPRS 2-14 AND RETURN TO CALLER
 END

Using a Caller-Provided Save Area
When it receives control, the target program saves the GPRs in the 18-word
caller-provided save area pointed to by GPR 13. The format of this area is shown
in Figure 2-1. As indicated by this figure, the contents of each GPR, except GPR
13, must be saved in a specific location within the save area. GPR 13 is not saved;
it holds the address of the save area.

Word Contents

0 Used by language products

1 Address of previous save area (stored by calling program)

2 Address of next save area (stored by target program)

3 GPR 14 (return address)

4 GPR 15 (entry address)

5 - 17 GPRs 0 - 12

Figure 2-1. Format of the Save Area

You can save GPRs either with a store-multiple (STM) instruction or with the SAVE
macro. Use the following STM instruction to place the contents of all GPRs except
GPR 13 in the proper words of the save area:

STM 14,12,12(13)

The SAVE macro stores GPRs in the save area. Code the GPRs to be saved in the
same order as in an STM instruction. The following example of the SAVE macro
places the contents of all GPRs except GPR 13 in the proper words of the save
area.

2-4 OS/390 V2R8.0 MVS Assembler Services Guide

PROGNAME SAVE (14,12)

Later, the program can use the RETURN macro to restore GPRs and return to the
caller.

Whether or not the target program obtains its own save area for another program, it
must save the address of the calling program's save area (which it used). If the
target program is creating a save area for another program, it:

1. Stores the address of the calling program's save area (the address passed in
register 13) in the second word of its own save area.

2. Stores the address of its own save area (the address the target program will
pass to another program in register 13) in the third word of the calling
program's save area.

These two steps enable the target program to find the save area when it needs it to
restore the registers, and they enable a trace from save area to save area should
one be necessary while examining a dump.

If the target program is not providing a save area for another program, it can keep
the address of the calling program's save area in GPR 13 or store it in a location in
virtual storage.

If you choose not to use the SAVE and RETURN macros, you can use the
IHASAVER macro to map the fields in the standard save area.

Example of Using the Caller-Provided Save Area
In this example, a primary mode target program receives control in primary mode
from either a primary mode or AR mode calling program. The calling program
provided an 18-word save area pointed to by GPR 13. The calling program can
make the call through the following two instructions:

L 15,=V(PGM)
BALR 14,15

The target program saves its calling program's registers in the save area that the
calling program provides. It uses the GETMAIN macro to obtain storage for its own
save area. The code is in 31-bit addressing mode and is reentrant.

 Chapter 2. Linkage Conventions 2-5

PGM CSECT
PGM AMODE 31
PGM RMODE ANY

STM 14,12,12(13) SAVE CALLER'S REGISTERS IN CALLER-
\ PROVIDED R13 SAVE AREA

LR 12,15 SET UP PROGRAM BASE REGISTER
 USING PGM,12

GETMAIN RU,LV=72 GET MY REENTRANT SAVEAREA
ST 13,4(,1) SAVE CALLER'S SAVEAREA ADDRESS IN MY

\ SAVEAREA (BACKWARD CHAIN)
ST 1,8(,13) SAVE MY SAVEAREA ADDRESS IN CALLER'S

\ SAVEAREA (FORWARD CHAIN)
LR 13,1 PUT MY SAVEAREA ADDRESS IN R13

\ END OF ENTRY CODE, BEGIN PROGRAM CODE HERE
...
\ BEGIN EXIT CODE

LR 1,13 COPY MY SAVEAREA ADDRESS
L 13,4(,13) RESTORE CALLER'S SAVEAREA ADDRESS
FREEMAIN RU,A=(1),LV=72 FREE MY REENTRANT SAVEAREA
SLR 15,15 SET RETURN CODE OF ZERO
L 14,12(,13) RESTORE CALLER'S R14
LM 2,12,28(13) RESTORE CALLER'S R2-R12
BR 14 RETURN TO CALLER

 END

Establishing a Base Register
Each program must establish a base register immediately after it saves the calling
program's registers. When selecting a base register, keep in mind that:

� Some instructions alter register contents (for example, TRT alters register 2). A
complete list of instructions and their processing is available in Principles of
Operation.

� Registers 13 through 1 are used during program linkage.

Register 12 is generally a good choice for base register.

Linkage Procedures for Primary Mode Programs
A primary mode program can call primary mode programs or AR mode programs.
A primary mode program can be called by other primary mode programs or by an
AR mode program that has switched to primary mode. The following sections
summarize the linkage procedures a primary mode program follows when it
receives control, when it returns control to a caller, and when it calls another
program.

Primary Mode Programs Receiving Control
When a primary mode program receives control after being called, it can save the
calling program's registers on the linkage stack or in the caller-provided save area.

A primary mode program that uses the linkage stack must :

� Issue a BAKR instruction to save the caller's GPRs and ARs on the linkage
stack.

2-6 OS/390 V2R8.0 MVS Assembler Services Guide

� Establish a GPR as a base register.

� Set GPR 13 to indicate that the caller's registers are saved on the linkage
stack:

– If the program intends to call another program, obtain an 18-word save
area on a word boundary in the primary address space. Set the second
word of the save area to the character string ‘F1SA’ and load GPR 13 with
the save area address.

– If the program does not intend to call another program, do one of following:

- Obtain an 18-word save area on a word boundary in the primary
address space. Set the second word of the save area to the character
string ‘F1SA’ and load the save area address into GPR 13.

- Load 0 into GPR 13.

- Set the second word of a two-word area in the primary address space
to the character string ‘F1SA’. Load the address of the two-word area
into GPR 13.

A primary mode program that uses the caller-provided save area must :

� Save GPRs 0 - 12, 14, and 15 in the caller-provided save area pointed to by
GPR 13.

� Establish a base register.

� Obtain an 18-word save area on a word boundary in the primary address
space.

� Store the address of the caller's save area and the forward and back chains of
its own save area, as the comments in “Example of Using the Caller-Provided
Save Area” on page 2-5 indicate.

Note that the linkage conventions assume that a primary mode program does not
use ARs. By leaving the contents of the ARs untouched, the program preserves the
ARs across program linkages.

Primary Mode Programs Returning Control
The method that a primary mode program uses to return control to a caller depends
on whether the primary mode program used the linkage stack or the caller-provided
save area.

A primary mode program that uses the linkage stack must :

� Place parameter information to return to the caller, if any, into GPR 0, 1, or
both. For information about passing information through a parameter list, see
“Conventions for Passing Information Through a Parameter List” on page 2-9.

� Load the return code, if any, into GPR 15.

� Issue the PR instruction. The PR instruction restores the caller's AR/GPRs 2 -
14 from the linkage stack, removes the entry from the linkage stack, and
returns control to the caller.

A primary mode program that uses the caller-provided save area must :

 Chapter 2. Linkage Conventions 2-7

� Place parameter information to return to the caller, if any, into GPR 0, 1, or
both. For information about passing information through a parameter list, see
“Conventions for Passing Information Through a Parameter List” on page 2-9.

� Load GPR 13 with the address of the save area that the program passed when
it made the call.

� Load the return code, if any, into GPR 15. Otherwise, restore GPR 15 to the
value it had when the program was called.

� Restore GPRs 2 - 12 and 14.

� Return to the calling program.

Primary Mode Programs Calling Another Program
When a primary mode program calls another program, the calling program must:

� Place the address of its 18-word save area into GPR 13.
� Load parameter information, if any, into GR 0, GR 1, or both.
� Place the entry point address of the target program into GPR 15.
� Call the target program.

Linkage Procedures for AR Mode Programs
An AR mode program can be called by other AR mode programs or by primary
mode programs. The following sections summarize the linkage procedures an AR
mode program must follow when it receives control, when it returns control to a
caller, and when it calls another program.

AR Mode Programs Receiving Control
When an AR mode program receives control, it must:

� Issue a BAKR instruction to save the caller's GPRs and ARs on the linkage
stack. (Although a primary mode caller provides a save area, an AR mode
target program does not use the area.

� Establish a GPR as a base register and load an ALET of 0 into the
corresponding AR. An ALET of 0 causes the system to reference an address
within the primary address space.

� Set GPR 13 to indicate that the caller's registers are saved on the linkage
stack:

– If the program intends to switch to primary mode and call another program,
obtain an 18-word save area on a word boundary in the primary address
space. Set the second word of the save area to the character string ‘F1SA’
and load GPR 13 with the save area address. Set AR 13 to zero to indicate
that the storage resides in the primary address space.

– If the program does not intend to switch to primary mode and call a
program, do one of following:

- Obtain an 18-word save area on a word boundary in the primary
address space. Set the second word of the save area to the character
string ‘F1SA’ and load the save area address into GPR 13.

- Load 0 into GPR 13.

2-8 OS/390 V2R8.0 MVS Assembler Services Guide

- Set the second word of a two word area in the primary address space
to the character string ‘F1SA’. Load the address of the two word area
into GPR 13.

AR Mode Programs Returning Control
To return control to the calling program, an AR mode program must:

� Place parameter information to return to the caller, if any, into AR/GPR 0,
AR/GPR 1, or both. For information about passing information through a
parameter list, see “Conventions for Passing Information Through a Parameter
List.”

� Load the return code, if any, into GPR 15.

� Issue the PR instruction. The PR instruction restores the caller's AR/GPRs 2 -
14 from the linkage stack, removes the entry from the linkage stack, and
returns control to the caller.

AR Mode Programs Calling Another Program
The definition of an AR mode program, as stated in the beginning of this chapter,
includes the fact that such a program might switch from one ASC mode to another.
Procedures for an AR mode program calling another program differ depending on
whether the AR mode program is in primary mode or AR mode at the time of the
call.

To make the call while it is in AR mode , an AR mode program must:

� Load parameter information, if any, into AR/GPR 0, AR/GPR 1, or both. For
information about passing information through a parameter list, see
“Conventions for Passing Information Through a Parameter List.”

� Place the entry point address of the target program into GPR 15. There is no
need to load an ALET into AR 15.

� Call the target program.

To make the call while it is in primary mode , an AR mode program must follow
the linkage conventions described in “Primary Mode Programs Calling Another
Program” on page 2-8.

Conventions for Passing Information Through a Parameter List
The ASC mode of a calling program at the time it makes a call determines whether
addresses that the program passes are ALET-qualified. The following two sections
describe how programs in primary mode and AR mode pass parameters through a
parameter list.

Program in Primary Mode
If the calling program is in primary mode, the parameter list must be in the primary
address space. All addresses passed by the programs must be contained in the
primary address space and must not be ALET-qualified. The program that passes
parameter data can use GPRs 0 and 1, or both. To pass the address of a
parameter list, the program should use GPR 1.

 Chapter 2. Linkage Conventions 2-9

For a good example of how your primary mode programs can pass parameters,
consider the way the system uses a register to pass information in the PARM field
of an EXEC statement to your program. When your program receives control from
the system, register 1 contains the address of a fullword on a fullword boundary in
your program's address space (see Figure 2-2). The high-order bit (bit 0) of this
word is set to 1. The system uses this convention to indicate the last word in a
variable-length parameter list. Bits 1-31 of the fullword contain the address of a
two-byte length field on a halfword boundary. The length field contains a binary
count of the number of bytes in the PARM field, which immediately follows the
length field. If the PARM field was omitted in the EXEC statement, the count is set
to zero. To prevent possible errors, always use the count as a length attribute in
acquiring the information in the PARM field.

4 Bytes

2 Bytes 0 to 100 Bytes

GPR1

@

1 @

Length Field PARM Field

Full-Word
Boundary

Half-Word
Boundary

Figure 2-2. Primary Mode Parameter List

Programs in AR Mode
If the calling program is in AR mode, all addresses that it passes, whether they are
in a GPR or in a parameter list, must be ALET-qualified. A parameter list can be in
an address space other than the calling program's primary address space or in a
data space, but it cannot be in the calling program's secondary address space.

Figure 2-3 on page 2-11 shows one way to format addresses and ALETs in a
parameter list. The addresses passed to the called program are at the beginning of
the list and their associated ALETs follow the addresses. Notice that the third
address has the high order bit set on to indicate the size of the list.

2-10 OS/390 V2R8.0 MVS Assembler Services Guide

@

ALET

@A

@B

@C

ALET A

ALET B

ALET C

GPR1
AR1

0

0

1

Figure 2-3. AR Mode Parameter List

All addresses that an AR mode target program returns to an AR mode caller,
whether the address is in GPR 0 or 1 or in a parameter list, must be
ALET-qualified.

 Chapter 2. Linkage Conventions 2-11

2-12 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 3. Subtask Creation and Control

The control program creates one task in the address space as a result of initiating
execution of the job step (the job step task). You can create additional tasks in your
program. However, if you do not, the job step task is the only task in the address
space being executed. The benefits of a multiprogramming environment are still
available even with only one task in the job step; work is still being performed for
other address spaces when your task is waiting for an event, such as an input
operation, to occur.

The advantage in creating additional tasks within the job step is that more tasks are
competing for control. When a wait condition occurs in one of your tasks, it is not
necessarily a task from some other address space that gets control; it may be one
of your tasks, a portion of your job.

The general rule is that you should choose parallel execution of a job step (that is,
more than one task in an address space) only when a significant amount of overlap
between two or more tasks can be achieved. You must take into account the
amount of time taken by the control program in establishing and controlling
additional tasks, and your increased effort to coordinate the tasks and provide for
communications between them.

Creating the Task
A new task is created by issuing an ATTACH, or, if your program runs in access
register ASC mode, an ATTACHX macro. The task that is active when the ATTACH
or ATTACHX is issued is the originating task; the newly created task is the subtask
of the originating task. The subtask competes for control in the same manner as
any other task in the system, on the basis of priority (both address space priority
and task priority within the address space) and the current ability to use a
processor. The address of the task control block for the subtask is returned in
register 1.

If the ATTACH or ATTACHX executes successfully, control returns to the user with
a return code of 0 in register 15.

The entry point in the load module to be given control when the subtask becomes
active is specified as it is in a LINK or LINKX macro, that is, through the use of the
EP, EPLOC, and DE parameters. The use of these parameters is discussed in
Chapter 4, Program Management. You can pass parameters to the subtask using
the PARAM and VL parameters, also described under the LINK macro. Additional
parameters deal with the priority of the subtask, provide for communication between
tasks, specify libraries to be used for program linkages, and establish an error
recovery environment for the new subtask.

 Priorities
This section considers three priorities: address space priorities, task priorities, and
subtask priorities.

 Copyright IBM Corp. 1988, 1999 3-1

Address Space Priority
When a job is initiated, the control program creates an address space. All
successive steps in the job execute in the same address space. The address space
has a dispatching priority, which is normally determined by the control program.
The control program will select, and alter, the priority in order to achieve the best
load balance in the system, that is, in order to make the most efficient use of
processor time and other system resources.

You might want some jobs to execute at a different address space priority than the
default priority assigned by the system. To assign a priority, code
DPRTY=(value1,value2) on the EXEC statement. The address space priority is then
determined as follows:

address space dispatching priority = (value1 x 16) + value2

Once the address space dispatching priority is set, only the control program can
change it. (Thus, there is no limit priority associated with an address space.)
However, you can set a new address space priority for succeeding job steps by
specifying different values in the DPRTY parameter on the EXEC statement.

The IEAIPSxx and IEAICSxx members of SYS1.PARMLIB can override the
dispatching priority specified by the DPRTY parameter. The control program
assigns the priority obtained from IEAIPSxx to jobsteps that request a dispatching
priority falling within specific installation defined limits. IEAICSxx directs jobs into
specific performance groups thereby affecting their priority. See OS/390 MVS
Initialization and Tuning Guide for additional information.

 Task Priority
Each task in an address space has a limit priority and a dispatching priority
associated with it. The control program sets these priorities when a job step is
initiated. When you use the ATTACH or ATTACHX macro to create other tasks in
the address space, you can use the LPMOD and DPMOD parameters to give them
different limit and dispatching priorities.

The dispatching priorities of the tasks in an address space do not affect the order in
which the control program selects jobs for execution because that order is selected
on the basis of address space dispatching priority. Once the control program
selects an address space for dispatching, it selects from within the address space
the highest priority task awaiting execution. Thus, task priorities may affect
processing within an address space. Note, however, that in a multiprocessing
system, task priorities cannot guarantee the order in which the tasks will execute
because more than one task may be executing simultaneously in the same address
space on different processors. Page faults may alter the order in which the tasks
execute.

 Subtask Priority
When a subtask is created, the limit and dispatching priorities of the subtask are
the same as the current limit and dispatching priorities of the originating task except
when the subtask priorities are modified by the LPMOD and DPMOD parameters of
the ATTACH and ATTACHX macro. The LPMOD parameter specifies the signed
number to be subtracted from the current limit priority of the originating task. The
result of the subtraction is assigned as the limit priority of the subtask. If the result
is zero or negative, zero is assigned as the limit priority. The DPMOD parameter

3-2 OS/390 V2R8.0 MVS Assembler Services Guide

specifies the signed number to be added to the current dispatching priority of the
originating task. The result of the addition is assigned as the dispatching priority of
the subtask, unless the number is greater than the limit priority or less than zero. In
that case, the limit priority or 0, respectively, is used as the dispatching priority.

Assigning and Changing Priority
Assign tasks with a large number of I/O operations a higher priority than tasks with
little I/O, because the tasks with much I/O will be in a wait condition for a greater
amount of time. The lower priority tasks will be executed when the higher priority
tasks are in a wait condition. As the I/O operations are completed, the higher
priority tasks get control, so that more I/O can be started.

You can change the priorities of subtasks by using the CHAP macro. The CHAP
macro changes the dispatching priority of the active task or one of its subtasks by
adding a positive or negative value. The dispatching priority of an active task can
be made less than the dispatching priority of another task. If this occurs and the
other task is dispatchable, it would be given control after execution of the CHAP
macro.

You can also use the CHAP macro to increase the limit priority of any of an active
task's subtasks. An active task cannot change its own limit priority. The dispatching
priority of a subtask can be raised above its own limit priority, but not above the
limit of the originating task. When the dispatching priority of a subtask is raised
above its own limit priority, the subtask's limit priority is automatically raised to
equal its new dispatching priority.

Stopping and Restarting a Subtask (STATUS Macro)
To stop a subtask means to change its dispatchability status from ready to not
ready. You might need to stop a subtask that is currently ready or running, and
then to restart, or make ready, that subtask. Stopping a subtask is a programming
technique to control the dispatchability of other related tasks or subtasks in a
multi-tasking environment when the tasks are in problem state.

To stop all subtasks of an originating task, issue the STATUS macro with the STOP
parameter. To stop a specific subtask, issue the STATUS macro with the
STOP,TCB parameter, which identifies a specific subtask.

To restart the stopped subtask or subtasks, issue STATUS START. As with
STATUS STOP, use the TCB parameter to restart a specific subtask.

Task and Subtask Communications
The task management information in this section is required only for establishing
communications among tasks in the same job step. The relationship of tasks in a
job step is shown in Figure 3-1. The horizontal lines in Figure 3-1. separate
originating tasks and subtasks; they have no bearing on task priority. Tasks A, A1,
A2, A2a, B, B1 and B1a are all subtasks of the job-step task; tasks A1, A2, and
A2a are subtasks of task A. Tasks A2a and B1a are the lowest level tasks in the
job step. Although task B1 is at the same level as tasks A1 and A2, it is not
considered a subtask of task A.

 Chapter 3. Subtask Creation and Control 3-3

Task A is the originating task for both tasks A1 and A2, and task A2 is the
originating task for task A2a. A hierarchy of tasks exists within the job step.
Therefore the job step task, task A, and task A2 are predecessors of task A2a,
while task B has no direct relationship to task A2a.

Job
Step
Task

Task A Task B

Task A1 Task A2 Task B1

Task A2a Task B1a

Figure 3-1. Levels of Tasks in a Job Step

All of the tasks in the job step compete independently for processor time; if no
constraints are provided, the tasks are performed and are terminated
asynchronously. However, since each task is performing a portion of the same job
step, some communication and constraints between tasks are required, such as
notifying each other when a subtask completes. If a predecessor task attempts to
terminate before all of its subtasks are complete, those subtasks and the
predecessor task are abnormally terminated.

Two parameters, the ECB and ETXR parameters, are provided in the ATTACH or
ATTACHX macro to assist in communication between a subtask and the originating
task. These parameters are used to indicate the normal or abnormal termination of
a subtask to the originating task. If you coded the ECB or ETXR parameter, or
both, in the ATTACH or ATTACHX macro, the task control block of the subtask is
not removed from the system when the subtask is terminated. The originating task
must remove the task control block from the system after termination of the subtask
by issuing a DETACH. If you specified the ECB parameter in the ATTACH or
ATTACHX macro, the ECB must be in storage addressable by the attaching task
and control program so that the issuer of ATTACH can wait on it (using the WAIT
macro) and the control program can post it on behalf of the terminating task. The

3-4 OS/390 V2R8.0 MVS Assembler Services Guide

task control blocks for all subtasks must be removed before the originating task can
terminate normally.

The ETXR parameter specifies the address of an end-of-task exit routine in the
originating task, which is to be given control when the subtask being created is
terminated. The end-of-task routine is given control asynchronously after the
subtask has terminated and must therefore be in virtual storage when it is required.
After the control program terminates the subtask, the end-of-task routine specified
is scheduled to be executed. It competes for CPU time using the priority of the
originating task and of its address space and can receive control even though the
originating task is in the wait condition. Although the DETACH does not have to be
issued in the end-of-task routine, this is a good place for it.

The ECB parameter specifies the address of an event control block (discussed
under “Task Synchronization”), which is posted by the control program when the
subtask is terminated. After posting occurs, the event control block contains the
completion code specified for the subtask.

If you specified neither the ECB nor the ETXR parameter in the ATTACH or
ATTACHX macro, the task control block for the subtask is removed from the
system when the subtask terminates. Its originating task does not have to issue a
DETACH. A reference to the task control block in a CHAP or a DETACH macro in
this case is as risky as task termination. Since the originating task is not notified of
subtask termination, you may refer to a task control block that has been removed
from the system, which would cause the active task to be abnormally terminated.

Note: The originating task is abended if it attempts to normally terminate when it
has active subtasks.

 Chapter 3. Subtask Creation and Control 3-5

3-6 OS/390 V2R8.0 MVS Assembler Services Guide

 Chapter 4. Program Management

This chapter discusses facilities that will help you to design your programs. It
includes descriptions of the residency mode and addressing mode of programs,
linkage considerations, load module structures, facilities for passing control between
programs, and the use of the associated macro. This chapter also includes a
description of the macro used to request services from run-time library services
(RTLS), a function that eases installation by allowing you to eliminate STEPLIBs
from the JCL that runs your applications. In place of STEPLIBs, the new macro
connects to and loads from a given RTLS logical library.

Residency and Addressing Mode of Programs
The control program ensures that each load module is loaded above or below 16
megabytes virtual as appropriate and that it is invoked in the correct addressing
mode (24-bit or 31-bit). The placement of the module above or below 16
megabytes depends on the residency mode (RMODE) that you define for the
module. Whether a module executes in 24-bit or 31-bit addressing mode depends
on the addressing mode (AMODE) that you define for the module.

When a program is executing in 24-bit addressing mode, the system treats both
instruction and data addresses as 24-bit addresses. This allows programs
executing in 24-bit addressing mode to address 16 megabytes (16,777,216 bytes)
of storage. Similarly, when a program is executing in 31-bit addressing mode, the
system treats both instruction and data addresses as 31-bit addresses. This allows
a program executing in 31-bit addressing mode to address 2 gigabytes
(2,147,483,648 bytes or 128 x 16 megabytes) of storage.

You can define the residency mode and the addressing mode of a program in the
source code. Figure 4-1 shows an example of the definition of the AMODE and
RMODE attributes in the source code. This example defines the addressing mode
of the load module as 31-bit and the residency mode of the load module as 24-bit.
Therefore, the program will receive control in 31-bit addressing mode and will
reside below 16 megabytes.

SAMPLE CSECT
SAMPLE AMODE 31
SAMPLE RMODE 24

Figure 4-1. Assembler Definition of AMODE/RMODE

The assembler places the AMODE and RMODE in the external symbol dictionary
(ESD) of the output object module for use by the linkage editor. The linkage editor
passes this information on to the control program through the directory entry for the
partitioned data set (PDS) that contains the load module and the composite
external symbol dictionary (CESD) record in the load module. You can also specify
the AMODE/RMODE attributes of a load module by using linkage editor control
cards. Chapter 5, “Understanding 31-Bit Addressing” on page 5-1 contains
additional information about residency and addressing mode; DFSMS/MVS
Program Management contains information about the linkage editor control cards.

 Copyright IBM Corp. 1988, 1999 4-1

Residency Mode Definitions
The control program uses the RMODE attribute from the PDS directory entry for the
module to load the program above or below 16 megabytes. The RMODE attribute
can have one of the following values:

24 specifies that the program must reside in 24-bit addressable virtual storage.

ANY specifies that the program can reside anywhere in virtual storage because
the code has no virtual storage residency restrictions.

Note: The default value for RMODE is 24.

Addressing Mode Definitions
The AMODE attribute, located in the PDS directory entry for the module, specifies
the addressing mode that the module expects at entry. Bit 32 of the program status
word (PSW) indicates the addressing mode of the program that is executing. The
system supports programs that execute in either 24-bit or 31-bit addressing mode.
The AMODE attribute can have one of the following values:

24 specifies that the program is to receive control in 24-bit addressing mode.

31 specifies that the program is to receive control in 31-bit addressing mode.

ANY specifies that the program is to receive control in either 24-bit or 31-bit
addressing mode.

Note: The default value for AMODE is 24.

 Linkage Considerations
The system supports programs that execute in either 24-bit or 31-bit addressing
mode. The following branch instructions take addressing mode into consideration:

Branch and link (BAL)
Branch and link, register form (BALR)
Branch and save (BAS)
Branch and save, register form (BASR)
Branch and set mode (BSM)
Branch and save and set mode (BASSM)
Branch and stack (BAKR)

See Principles of Operation for a complete description of how these instructions
function. The following paragraphs provide a general description of these branch
instructions.

The BAL and BALR instructions are unconditional branch instructions (to the
address in operand 2). BAL and BALR function differently depending on the
addressing mode in which you are executing. The difference is in the linkage
information passed in the link register when these instructions execute. In 31-bit
addressing mode, the link register contains the AMODE indicator (bit 0) and the
address of the next sequential instruction (bits 1-31); in 24-bit addressing mode, the
link register contains the instruction length code, condition code, program mask,
and the address of the next sequential instruction.

BAS and BASR perform the same function that BAL and BALR perform when BAL
and BALR execute in 31-bit addressing mode.

4-2 OS/390 V2R8.0 MVS Assembler Services Guide

The BSM instruction provides problem programs with a way to change the AMODE
bit in the PSW. BSM is an unconditional branch instruction (to the address in
operand 2) that saves the current AMODE in the high-order bit of the link register
(operand 1), and sets the AMODE indicator in the PSW to agree with the AMODE
of the address to which you are transferring control (that is, the high order bit of
operand 2).

The BASSM instruction functions in a manner similar to the BSM instruction. In
addition to saving the current AMODE in the link register, setting the PSW AMODE
bit, and transferring control, BASSM also saves the address of the next sequential
instruction in the link register thereby providing a return address.

BASSM and BSM are used for entry and return linkage in a manner similar to
BALR and BR. The major difference from BALR and BR is that BASSM and BSM
can save and change addressing mode.

The BAKR instruction is an unconditional branch to the address in operand 2. In
addition to the branching action, it adds an entry to the linkage stack.

For more information on the linkage stack, see “System-Provided Linkage Stack” on
page 2-3.

Floating Point Considerations
The application program and run-time environment are responsible for managing
the contents of the Floating Point Control (FPC) register. The system will normally
not change the FPC register settings of an existing MVS task or SRB.

The S/390 linkage convention for the Floating Point Registers and the FPC register
in described in Chapter 2, “Linkage Conventions” on page 2-1. To summarize the
convention, FPRs 0 to 7 are volatile and FPRs 8 to 15 are non-volatile across a
call. The FPC register is non-volatile except for two fields: the IEEE exception flags
and the DXC, which are volatile.

Passing Control Between Programs with the Same AMODE
If you are passing control between programs that execute in the same addressing
mode, there are several combinations of instructions that you can use. Some of
these combinations are:

Transfer Return

BAL/BALR BR

BAS/BASR BR

Passing Control Between Programs with Different AMODEs
If you are passing control between programs executing in different addressing
modes, you must change the AMODE indicator in the PSW. The BASSM and BSM
instructions perform this function for you. You can transfer to a program in another
AMODE using a BASSM instruction and then return by means of a BSM instruction.
This sequence of instructions ensures that both programs execute in the correct
AMODE.

Figure 4-2 shows an example of passing control between programs with different
addressing modes. In the example, TEST executes in 24-bit AMODE and EP1

 Chapter 4. Program Management 4-3

executes in 31-bit AMODE. Before transferring control to EP1, the TEST program
loads register 15 with EPA, the pointer defined entry point address (that is, the
address of EP1 with the high order bit set to 1 to indicate 31-bit AMODE). This is
followed by a BASSM 14,15 instruction, which performs the following functions:

� Sets the high-order bit of the link register (register 14) to 0 (because TEST is
currently executing in 24-bit AMODE) and puts the address of the next
sequential instruction into bits 1-31.

� Sets the PSW AMODE bit to 1 to agree with bit 0 of register 15.

� Transfers to EP1 (the address in bits 1-31 of register 15).

The EP1 program executes in 31-bit AMODE. Upon completion, EP1 sets a return
code in register 15 and executes a BSM 0,14 instruction, which performs the
following functions:

� Sets the PSW AMODE bit to 0 to correspond to the high-order bit of register
14.

� Transfers control to the address following the BASSM instruction in the TEST
program.

TEST CSECT
TEST AMODE 24
TEST RMODE 24
 .
 .

L 15,EPA OBTAIN TRANSFER ADDRESS
BASSM 14,15 SWITCH AMODE AND TRANSFER

 .
 .
 EXTRN EP1
EPA DC A(X'8ððððððð'+EP1) POINTER DEFINED ENTRY POINT ADDRESS
 .
 .
 END

EP1 CSECT
EP1 AMODE 31
EP1 RMODE ANY
 .
 .

SLR 15,15 SET RETURN CODE ð
BSM ð,14 RETURN TO CALLER'S AMODE AND TRANSFER

 END

Figure 4-2. Example of Addressing Mode Switch

Passing Control Between Programs with All Registers Intact
The CSRL16J callable service allows you to transfer control to another program
running under the same request block (RB) as the calling program. The CSRL16J
callable service functions much like a branch instruction except that you can specify
the contents of all 16 registers when you transfer control. You do not have to use
one register to specify the address of the target routine, as you do with a branch
instruction.

4-4 OS/390 V2R8.0 MVS Assembler Services Guide

When you transfer control to the other routine, use the CSRL16J callable service
to:

� Define the entry characteristics and register contents for the target routine.
� Optionally free dynamic storage associated with the calling program.

When the CSRL16J callable service is successful, control transfers to the target
routine. After the target routine runs, it can transfer control to any program running
under the same RB, including the calling program.

Defining the Entry Characteristics of the Target Routine
Before calling CSRL16J, you must build the L16J data area to form a parameter list
that defines the entry characteristics and register contents for the target routine.
Include the CSRYL16J mapping macro to map data area L16J. To build the L16J
parameter list, first initialize the parameter list with zeroes and then fill in the
desired fields. This processing ensures that all fields requiring zeroes are correct.
You can specify the following characteristics for the target routine in the indicated
fields of data area L16J:

L16JLENGTH Length of the L16J parameter list. Initialize this field
with constant L16J_LEN.

L16JGRS General purpose registers (GPRs) 0-15 on entry to
the target routine.

L16JARS Access registers (ARs) 0-15 on entry to the target
routine, if you set the L16JPROCESSARS bit on.

L16JPSW Includes the following PSW information for the
target routine. See Principles of Operation for more
information about the contents of the PSW.

� PSW address and AMODE
� PSW ASC mode — primary or AR
� PSW program mask
� PSW condition code

APF-authorized callers, callers in supervisor state,
PSW key 0-7, or PKM allowing key 0-7, can
specify:

� PSW state - problem or supervisor
 � PSW key.

For unauthorized callers, the PSW state and key of
the calling program are used for the target routine.

L16JPROCESSARS A bit indicating whether or not you want to specify
the contents of the access registers (ARs) for the
target routine. Set the bit on if you want to specify
the contents of the ARs. If you set the bit off, the
access registers (ARs) contents are determined by
the system.

When CSRL16J passes control to the target routine, the GPRs contain:

Register Contents

0-15 Values specified by the caller

 Chapter 4. Program Management 4-5

If the L16JPROCESSARS bit is set on, when CSRL16J passes control to the target
routine the access registers (ARs) contain:

Register Contents

0-15 Values specified by the caller

If the L16JPROCESSARS bit is set off, when CSRL16J passes control to the target
routine the access registers (ARs) contain:

Register Contents

0-1 Do not contain any information for use by the routine

2-13 The contents are the same as they were when the caller issued the
CSRL16J callable service.

14-15 Do not contain any information for use by the routine

Freeing Dynamic Storage Associated with the Caller
If the calling program has a dynamic storage area associated with it, you can
specify that CSRL16J free some or all of this storage area before it transfers
control to the target routine. In the L16J parameter list, specify the following fields:

L16JSUBPOOL Specify the subpool of the area that you want the
system to free.

L16JLENGTHTOFREE Specify the length, in bytes, of the dynamic storage
area you want the system to free.

L16JAREATOFREE Specify the address of the dynamic storage area
you want the system to free.

Make sure that the address is on a doubleword
boundary. Otherwise, the service ends with an
abend code X'978'. See OS/390 MVS System
Codes for information on abend code X'978'.

The system frees the storage only when the CSRL16J callable service is
successful.

Load Module Structure Types
Each load module used during a job step can be designed in one of three load
module structures: simple, planned overlay, or dynamic. A simple structure does
not pass control to any other load modules during its execution, and comes into
virtual storage all at one time. A planned overlay structure may, if necessary, pass
control to other load modules during its execution, and it does not come into virtual
storage all at one time. Instead, segments of the load module reuse the same area
of virtual storage. A dynamic structure comes into virtual storage all at one time,
and passes control to other load modules during its execution. Each of the load
modules to which control is passed can be one of the three structure types.
Characteristics of the load module structure types are summarized in Figure 4-3.

Because the large capacity of virtual storage eliminates the need for complex
overlay structures, planned overlays will not be discussed further.

4-6 OS/390 V2R8.0 MVS Assembler Services Guide

Figure 4-3. Characteristics of Load Modules

Structure Type Loaded All at One Time Passes Control to Other Load
Modules

Simple Yes No

Planned Overlay No Optional
Dynamic Yes Yes

 Simple Structure
A simple structure consists of a single load module produced by the linkage editor.
The single load module contains all of the instructions required and is paged into
central storage by the control program as it is executed. The simple structure can
be the most efficient of the two structure types because the instructions it uses to
pass control do not require control-program assistance. However, you should
design your program to make most efficient use of paging.

 Dynamic Structure
A dynamic structure requires more than one load module during execution. Each
required load module can operate as either a simple structure or another dynamic
structure. The advantages of a dynamic structure over a simple structure increase
as the program becomes more complex, particularly when the logical path of the
program depends on the data being processed. The load modules required in a
dynamic structure are paged into central storage when required, and can be
deleted from virtual storage when their use is completed.

Load Module Execution
Depending on the configuration of the operating system and the macros used to
pass control, execution of the load modules is serial or in parallel. Execution is
serial in the operating system unless you use an ATTACH or ATTACHX macro to
create a new task. The new task competes for processor time independently with
all other tasks in the system. The load module named in the ATTACH or ATTACHX
macro is executed in parallel with the load module containing the ATTACH or
ATTACHX macro. The execution of the load modules is serial within each task.

The following paragraphs discuss passing control for serial execution of a load
module. For information on creating and managing new tasks, see “Creating the
Task” on page 3-1.

Passing Control in a Simple Structure
There are certain procedures to follow when passing control to an entry point in the
same load module. The established conventions to use when passing control are
also discussed. These procedures and conventions are the framework for all
program interfaces.

 Chapter 4. Program Management 4-7

Passing Control without Return
Some control sections pass control to another control section of the load module
and do not receive control back. An example of this type of control section is a
housekeeping routine at the beginning of a program that establishes values,
initializes switches, and acquires buffers for the other control sections in the
program. Use the following procedures when passing control without return.

Preparing to Pass Control
� Restore the contents of register 14.

Because control will not be returned to this control section, you must restore
the contents of register 14. Register 14 originally contained the address of the
location in the calling program (for example, the control program) to which
control is to be passed when your program is finished. Since the current control
section does not make the return to the calling program, the return address
must be passed on to the control section that does make the return.

� Restore the contents of registers 2-12.

In addition, the contents of registers 2-12 must be unchanged when your
program eventually returns control, so you must also restore these registers.

If control were being passed to the next entry point from the control program,
register 15 would contain the entry address. You should use register 15 in the
same way, so that the called routine remains independent of the program that
passed control to it.

� Use register 1 to pass parameters.

Establish a parameter list and place the address of the list in register 1. The
parameter list should consist of consecutive fullwords starting on a fullword
boundary, each fullword containing an address to be passed to the called
control section. When executing in 24-bit AMODE, each address is located in
the three low-order bytes of the word. When executing in 31-bit AMODE, each
address is located in bits 1-31 the word. In both addressing modes, set the
high-order bit of the last word to 1 to indicate that it is the last word of the list.
The system convention is that the list contain addresses only. You may, of
course, deviate from this convention; however, when you deviate from any
system convention, you restrict the use of your programs to those programmers
who know about your special conventions.

� Pass the address of the save area in register 13 just as it was passed to you.

Since you have reloaded all the necessary registers, the save area that you
received on entry is now available, and should be reused by the called control
section. By passing the address of the old save area, you save the 72 bytes of
virtual storage for a second, unnecessary, save area.

Note: If you pass a new save area instead of the one received on entry,
errors could occur.

 Passing Control
� Load register 15 with a V-type address constant for the name of the external

entry point, then branch to the address in register 15.

This is the common way to pass control between one control section and an
entry point in the same load module. The external entry point must have been

4-8 OS/390 V2R8.0 MVS Assembler Services Guide

identified using an ENTRY instruction in the called control section if the entry
point is not the same as the control section's CSECT name.

Figure 4-4 shows an example of loading registers and passing control. In this
example, no new save area is used, so register 13 still contains the address of the
old save area. It is also assumed for this example that the control section will pass
the same parameters it received to the next entry point. First, register 14 is
reloaded with the return address. Next, register 15 is loaded with the address of the
external entry point NEXT, using the V-type address constant at the location
NEXTADDR. Registers 0-12 are reloaded, and control is passed by a branch
instruction using register 15. The control section to which control is passed contains
an ENTRY instruction identifying the entry point NEXT.

 .
 .

L 14,12(13) LOAD CALLER'S RETURN ADDRESS
 L 15,NEXTADDR ENTRY NEXT

LM ð,12,2ð(13) RETURN CALLER's REGISTERS
BR 15 NEXT SAVE (14,12)

 .
 .
NEXTADDR DC V(NEXT)

Figure 4-4. Passing Control in a Simple Structure

Figure 4-5 shows an example of passing a parameter list to an entry point with the
same addressing mode. Early in the routine the contents of register 1 (that is, the
address of the fullword containing the PARM field address) were stored at the
fullword PARMADDR. Register 13 is loaded with the address of the old save area,
which had been saved in word 2 of the new save area. The contents of register 14
are restored, and register 15 is loaded with the entry address.

 .
 .
 USING \,12 Establish addressability
EARLY ST 1,PARMADDR Save parameter address
 .
 .

L 13,4(13) Reload address of old save area
 L ð,2ð(13)

L 14,12(13) Load return address
L 15,NEXTADDR Load address of next entry point
LA 1,PARMLIST Load address of parameter list
OI PARMADDR,X'8ð' Turn on last parameter indicator
LM 2,12,28(13) Reload remaining registers

 BR 15 Pass control
 .
 .
PARMLIST DS ðA
DCBADDRS DC A(INDCB)
 DC A(OUTDCB)
PARMADDR DC A(ð)
NEXTADDR DC V(NEXT)

Figure 4-5. Passing Control With a Parameter List

 Chapter 4. Program Management 4-9

The address of the list of parameters is loaded into register 1. These parameters
include the addresses of two data control blocks (DCBs) and the original register 1
contents. The high-order bit in the last address parameter (PARMADDR) is set to 1
using an OR-immediate instruction. The contents of registers 2-12 are restored.
(Since one of these registers was the base register, restoring the registers earlier
would have made the parameter list unaddressable.) A branch register instruction
using register 15 passes control to entry point NEXT.

Passing Control with Return
The control program passed control to your program, and your program will return
control when it is through processing. Similarly, control sections within your
program will pass control to other control sections, and expect to receive control
back. An example of this type of control section is a monitoring routine; the monitor
determines the order of execution of other control sections based on the type of
input data. Use the following procedures when passing control with return.

Preparing to Pass Control
� Use registers 15 and 1 in the same manner they are used to pass control

without return.

Register 15 contains the entry address in the new control section and register 1
is used to pass a parameter list.

� Ensure that register 14 contains the address of the location to which control is
to be returned when the called control section completes execution.

The address can be the instruction following the instruction which causes
control to pass, or it can be another location within the current control section
designed to handle all returns.

Registers 2-12 are not involved in the passing of control; the called control
section should not depend on the contents of these registers in any way.

� Provide a new save area for use by the called control section as previously
described, and pass the address of that save area in register 13.

Note that the same save area can be reused after control is returned by the
called control section. One new save area is ordinarily all you will require
regardless of the number of control sections called.

 Passing Control
You may use two standard methods for passing control to another control section
and providing for return of control. One is an extension of the method used to pass
control without a return, and requires a V-type address constant and a branch, a
branch and link, or a branch and save instruction provided both programs execute
in the same addressing mode. If the addressing mode changes, use a branch and
save and set mode instruction. The other method uses the CALL macro to provide
a parameter list and establish the entry and return addresses. With either method,
you must identify the entry point by an ENTRY instruction in the called control
section if the entry name is not the same as the control section CSECT name.
Figure 4-6 and Figure 4-7 illustrate the two methods of passing control; in each
example, assume that register 13 already contains the address of a new save area.

Figure 4-6 also shows the use of an inline parameter list and an answer area. The
address of the external entry point is loaded into register 15 in the usual manner. A
branch and link instruction is then used to branch around the parameter list and to

4-10 OS/390 V2R8.0 MVS Assembler Services Guide

load register 1 with the address of the parameter list. An inline parameter list, such
as the one shown in Figure 4-6, is convenient when you are debugging because
the parameters involved are located in the listing (or the dump) at the point they are
used, instead of at the end of the listing or dump. Note that the high-order bit of the
last address parameter (ANSWERAD) is set to 1 to indicate the end of the list. The
area pointed to by the address in the ANSWERAD parameter is an area to be used
by the called control section to pass parameters back to the calling control section.
This is a possible method to use when a called control section must pass
parameters back to the calling control section. Parameters are passed back in this
manner so that no additional registers are involved. The area used in this example
is twelve words. The size of the area for any specific application depends on the
requirements of the two control sections involved.

 .
 .

L 15,NEXTADDR Entry address in register 15
 CNOP ð,4

BAL 1,GOOUT Parameter list address in register 1
PARMLIST DS ðA Start of parameter list
DCBADDRS DC A(INDCB) Input DCB address

DC A(OUTDCB) Output DCB address
ANSWERAD DC A(AREA+X'8ððððððð') Answer area address with

high-order bit on
NEXTADDR DC V(NEXT) Address of entry point
GOOUT BALR 14,15 Pass control; register 14 contains

return address and current AMODE
RETURNPT ...
AREA DC 12F'ð' Answer area from NEXT

Note: This example assumes that you are passing control to a program that
executes in the same addressing mode as your program. See “Linkage
Considerations” on page 4-2 for information on how to handle branches
between programs that execute in different addressing modes.

Figure 4-6. Passing Control With Return

 CALL NEXT,(INDCB,OUTDCB,AREA),VL
RETURNPT ...
AREA DC 12F'ð'

Note: You cannot use the CALL macro to pass control to a program that executes
in a different addressing mode.

Figure 4-7. Passing Control With CALL

The CALL macro in Figure 4-7 provides the same functions as the instructions in
Figure 4-6. When the CALL macro is expanded, the parameters cause the
following results:

NEXT - A V-type address constant is created for NEXT, and the address is
loaded into register 15.

(INDCB,OUTDCB,AREA) - A-type address constants are created for the three
parameters coded within parentheses, and the address of the first A-type
address constant is placed in register 1.

 Chapter 4. Program Management 4-11

VL - The high-order bit of the last A-type address constant is set to 1.

Control is passed to NEXT using a branch and link instruction. The address of the
instruction following the CALL macro is loaded into register 14 before control is
passed.

In addition to the results described above, the V-type address constant generated
by the CALL macro requires the load module with the entry point NEXT to be link
edited into the same load module as the control section containing the CALL
macro. The DFSMS/MVS Program Management publication tells more about this
service.

The parameter list constructed from the CALL macro in Figure 4-7, contains only
A-type address constants. A variation on this type of parameter list results from the
following coding:

CALL NEXT,(INDCB,(6),(7)),VL

In the above CALL macro, two of the parameters to be passed are coded as
registers rather than symbolic addresses. The expansion of this macro again results
in a three-word parameter list; in this example, however, the expansion also
contains instructions that store the contents of registers 6 and 7 in the second and
third words, respectively, of the parameter list. The high-order bit in the third word
is set to 1 after register 7 is stored. You can specify as many address parameters
as you need, and you can use symbolic addresses or register contents as you see
fit.

Analyzing the Return
When the control program returns control to a caller after it invokes a system
service, the contents of registers 2-13 are unchanged. When control is returned to
your control section from the called control section, registers 2-14 contain the same
information they contained when control was passed, as long as system
conventions are followed. The called control section has no obligation to restore
registers 0 and 1; so the contents of these registers may or may not have been
changed.

When control is returned, register 15 can contain a return code indicating the
results of the processing done by the called control section. If used, the return code
should be a multiple of four, so a branching table can be used easily, and a return
code of zero should be used to indicate a normal return. The control program
frequently uses this method to indicate the results of the requests you make using
system macros; an example of the type of return codes the control program
provides is shown in the description of the IDENTIFY macro.

The meaning of each of the codes to be returned must be agreed upon in advance.
In some cases, either a “good” or “bad” indication (zero or nonzero) will be
sufficient for you to decide your next action. If this is true, the coding in Figure 4-8
could be used to analyze the results. Many times, however, the results and the
alternatives are more complicated, and a branching table, such as shown in
Figure 4-9 could be used to pass control to the proper routine.

Note: Explicit tests are required to ensure that the return code value does not
exceed the branch table size.

4-12 OS/390 V2R8.0 MVS Assembler Services Guide

RETURNPT LTR 15,15 Test return code for zero
BNZ ERRORTN Branch if not zero to error routine

 .
 .

Figure 4-8. Test for Normal Return

RETURNPT B RETTAB(15) Branch to table using return code
RETTAB B NORMAL Branch to normal routine

B COND1 Branch to routine for condition 1
B COND2 Branch to routine for condition 2
B GIVEUP Branch to routine to handle impossible situations.

 .
 .

Figure 4-9. Return Code Test Using Branching Table

How Control is Returned
In the discussion of the return under “Analyzing the Return” on page 4-12, it was
indicated that the control section returning control must restore the contents of
registers 2-14. Because these are the same registers reloaded when control is
passed without a return, refer to the discussion under “Passing Control without
Return” for detailed information and examples. The contents of registers 0 and 1 do
not have to be restored.

Register 15 can contain a return code when control is returned. As indicated
previously, a return code should be a multiple of four with a return code of zero
indicating a normal return. The return codes other than zero that you use can have
any meaning, as long as the control section receiving the return codes is aware of
that meaning.

The return address is the address originally passed in register 14; you should
always return control to that address. If an addressing mode switch is not involved,
you can either use a branch instruction such as BR 14, or you can use the
RETURN macro. An example of each of these methods of returning control is
discussed in the following paragraphs. If an addressing mode switch is involved,
you can use a BSM 0,14 instruction to return control. See Figure 4-2 for an
example that uses the BSM instruction to return control.

Figure 4-10 shows a portion of a control section used to analyze input data cards
and to check for an out-of-tolerance condition. Each time an out-of-tolerance
condition is found, in addition to some corrective action, one is added to the
one-byte value at the address STATUSBY. After the last data card is analyzed, this
control section returns to the calling control section, which bases its next action on
the number of out-of-tolerance conditions encountered. The coding shown in
Figure 4-10 loads register 14 with the return address. The contents of register 15
are set to zero, and the value at the address STATUSBY (the number of errors) is
placed in the low-order eight bits of the register. The contents of register 15 are
shifted to the left two places to make the value a multiple of four. Registers 2-12
are reloaded, and control is returned to the address in register 14.

 Chapter 4. Program Management 4-13

 .
 .

L 13,4(13) Load address of previous save area
L 14,12(13) Load return address
SR 15,15 Set register 15 to zero
IC 15,STATUSBY Load number of errors
SLA 15,2 Set return code to multiple of 4
LM 2,12,28(13) Reload registers 2-12

 BR 14 Return
 .
 .
STATUSBY DC X'ðð'

Note: This example assumes that you are returning to a program with the same
AMODE. If not, use the BSM instruction to transfer control.

Figure 4-10. Establishing a Return Code

The RETURN macro saves coding time. The expansion of the RETURN macro
provides instructions that restore a designated range of registers, load a return
code in register 15, and branch to the address in register 14. If T is specified, the
RETURN macro flags the save area used by the returning control section (that is,
the save area supplied by the calling routine). It does this by setting the low-order
bit of word four of the save area to one after the registers have been restored. The
flag indicates that the control section that used the save area has returned to the
calling control section. The flag is useful when tracing the flow of your program in a
dump. For a complete record of program flow, a separate save area must be
provided by each control section each time control is passed.

You must restore the contents of register 13 before issuing the RETURN macro.
Code the registers to be reloaded in the same order as they would have been
designated for a load-multiple (LM) instruction. You can load register 15 with the
return code before you write the RETURN macro, you can specify the return code
in the RETURN macro, or you can reload register 15 from the save area.

The coding shown in Figure 4-11 provides the same result as the coding shown in
Figure 4-10. Registers 13 and 14 are reloaded, and the return code is loaded in
register 15. The RETURN macro reloads registers 2-12 and passes control to the
address in register 14. The save area used is not flagged. The RC=(15) parameter
indicates that register 15 already contains the return code, and the contents of
register 15 are not to be altered.

4-14 OS/390 V2R8.0 MVS Assembler Services Guide

 .
 .

L 13,4(13) Restore save area address
L 14,12(13) Return address in register 14
SR 15,15 Zero register 15
IC 15,STATUSBY Load number of errors
SLA 15,2 Set return code to multiple of 4
RETURN (2,12),RC=(15) Reload registers and return

 .
 .
STATUSBY DC X'ðð'

Note: You cannot use the RETURN macro to pass control to a program that
executes in a different addressing mode.

Figure 4-11. Using the RETURN Macro

Figure 4-12 illustrates another use of the RETURN macro. The correct save area
address is again established, and then the RETURN macro is issued. In this
example, registers 14 and 0-12 are reloaded, a return code of 8 is placed in
register 15, the save area is flagged, and control is returned. Specifying a return
code overrides the request to restore register 15 even though register 15 is within
the designated range of registers.

 .
 .
 L 13,4(13)
 RETURN (14,12),T,RC=8

Figure 4-12. RETURN Macro with Flag

Return to the Control Program
The discussion in the preceding paragraphs has covered passing control within one
load module, and has been based on the assumption that the load module was
brought into virtual storage because of the program name specified in the EXEC
statement. The control program established only one task to be performed for the
job step. When the logical end of the program is reached, control passes to the
return address passed (in register 14) to the first control section in the control
program. When the control program receives control at this point, it terminates the
task it created for the job step, compares the return code in register 15 with any
COND values specified on the JOB and EXEC statements, and determines whether
or not subsequent job steps, if any are present, should be executed.

When your program returns to the control program, your program should use a
return code between 0 and 4095 (X'0FFF'). A return code of more than 4095
might make return code testing, message processing, and report generation
inaccurate.

 Chapter 4. Program Management 4-15

Passing Control in a Dynamic Structure
The discussion of passing control in a simple structure provides the background for
the discussion of passing control in a dynamic structure. Within each load module,
control should be passed as in a simple structure. If you can determine which
control sections will make up a load module before you code the control sections,
you should pass control within the load module without involving the control
program. The macros discussed in this section provide increased linkage capability,
but they require control program assistance and possibly increased execution time.

Bringing the Load Module into Virtual Storage
The control program automatically brings the load module containing the entry
name you specified on the EXEC statement into virtual storage. Each load module
or program object resides in a library, either a partitioned data set (PDS) or
partitioned data set extended (PDSE). A load module resides in a PDS, and a
program object resides in a PDSE. In most cases, references in this book to load
modules apply to both load modules and program objects. Any exceptions are
specifically noted. As the control program brings the load module into virtual
storage, it places the load module above or below 16 megabytes according to its
RMODE attribute. Any other load modules you require during your job step are
brought into virtual storage by the control program when requested. Make these
requests by using the LOAD, LINK, LINKX, ATTACH, ATTACHX, XCTL, and
XCTLX macros. The LOAD macro sets the high-order bit of the entry point address
to indicate the addressing mode of the load module. The ATTACH, ATTACHX,
LINK, LINKX, XCTL, and XCTLX macros use this information to set the addressing
mode for the module that gets control. If the AMODE is ANY, the module will get
control in the same addressing mode as the program that issued the ATTACH,
ATTACHX, LINK, LINKX, XCTL, or XCTLX macro. If a copy of the load module
must be brought into storage, the control program places the load module above or
below 16 megabytes according to its RMODE attribute. The following paragraphs
discuss the proper use of these macros.

Location of the Load Module
Load modules and program objects can reside in the link library, the job or step
library, the task library, or a private library.

� The link library (defined by the LNKLSTxx member of SYS1.PARMLIB) is
always present and is available to all job steps of all jobs. The control program
provides the data control block for the library and logically connects the library
to your program, making the members of the library available to your program.
For more information, see OS/390 MVS Initialization and Tuning Guide.

� The job and step libraries are explicitly established by including //JOBLIB and
//STEPLIB DD statements in the input stream. The //JOBLIB DD statement is
placed immediately after the JOB statement, while the //STEPLIB DD statement
is placed among the DD statements for a particular job step. The job library is
available to all steps of your job, except those that have step libraries. A step
library is available to a single job step; if there is a job library, the step library
replaces the job library for the step. For either the job library or the step library,
the control program provides the data control block and issues the OPEN
macro to logically connect the library to your program.

Authorization : If an authorized program (supervisor state, APF-authorized,
PSW key 0 - 7, or PKM allowing key 0 - 7) invokes an unauthorized program,
the unauthorized program must reside in an APF-authorized library. See

4-16 OS/390 V2R8.0 MVS Assembler Services Guide

“APF-authorized Programs and Libraries” on page 4-29 for more information
about APF-authorized libraries.

� Unique task libraries can be established by using the TASKLIB parameter of
the ATTACH or ATTACHX macro. The issuer of the ATTACH or ATTACHX
macro is responsible for providing the DD statement and opening the data set
or sets. If the TASKLIB parameter is omitted, the task library of the attaching
task is propagated to the attached task. In the following example, task A's job
library is LIB1. Task A attaches task B, specifying TASKLIB=LIB2 in the
ATTACH or ATTACHX macro. Task B's task library is therefore LIB2. When
task B attaches task C, LIB2 is searched for task C before LIB1 or the link
library. Because task B did not specify a unique task library for task C, its own
task library (LIB2) is propagated to task C and is the first library searched when
task C requests that a module be brought into virtual storage.

Task A ATTACH EP=B,TASKLIB=LIB2
Task B ATTACH EP=C

� Including a DD statement in the input stream defines a private library that is
available only to the job step in which it is defined. You must provide the data
control block and issue the OPEN macro for each data set. You may use more
than one private library by including more than one DD statement and an
associated data control block.

A library can be a single partitioned data set, or a collection of such data sets.
When it is a collection, you define each data set by a separate DD statement, but
you assign a name only to the statement that defines the first data set. Thus, a job
library consisting of three partitioned data sets would be defined as follows:

//JOBLIB DD DSNAME=PDS1,...
// DD DSNAME=PDS2,...
// DD DSNAME=PDS3...

The three data sets (PDS1, PDS2, PDS3) are processed as one, and are said to
be concatenated. Concatenation and the use of partitioned data sets is discussed
in more detail in DFSMS/MVS Using Data Sets.

Some of the load modules from the link library may already be in virtual storage in
an area called the link pack area. The contents of these areas are determined
during the nucleus initialization process and will vary depending on the
requirements of your installation. The link pack area contains all reenterable load
modules from the LPA library, along with installation selected modules from the
SVC and link libraries. These load modules can be used by any job step in any job.

With the exception of those load modules contained in this area, copies of all of the
reenterable load modules you request are brought into your area of virtual storage
and are available to any task in your job step. The portion of your area containing
the copies of the load modules is called the job pack area.

The Search for the Load Module
In response to your request for a copy of a load module, the control program
searches the job pack area, the task's load list, and the link pack area. If a copy of
the load module is found in one of the pack areas, the control program determines
whether that copy can be used (see “Using an Existing Copy”). If an existing copy
can be used, the search stops. If it cannot be used, the search continues until the
module is located in a library. The load module is then brought into the job pack
area or the load list area.

 Chapter 4. Program Management 4-17

The order in which the control program searches the libraries and pack areas
depends on the parameters used in the macro (LINK, LINKX, LOAD, XCTL,
XCTLX, ATTACH or ATTACHX) requesting the load module. The parameters that
define the order of the search are EP, EPLOC, DE, DCB, and TASKLIB.

Use the TASKLIB parameter only for ATTACH or ATTACHX. If you know the
location of the load module, you should use parameters that eliminate as many of
these searches as possible, as indicated in Figure 4-13, Figure 4-14, and
Figure 4-15.

The EP, EPLOC, or DE parameter specifies the name of the entry point in the load
module. Code one of the three every time you use a LINK, LINKX, LOAD, XCTL,
XCTLX, ATTACH, or ATTACHX macro. The optional DCB parameter indicates the
address of the data control block for the library containing the load module.
Omitting the DCB parameter or using the DCB parameter with an address of zero
specifies the data control block for the task libraries, the job or step library, or the
link library. If you specified TASKLIB and if the DCB parameter contains the
address of the data control block for the link library, the control program searches
no other library.

To avoid using “system copies” of modules resident in LPA and LINKLIB, you can
specifically limit the search for the load module to the job pack area and the first
library on the normal search sequence by specifying the LSEARCH parameter on
the LINK, LOAD, or XCTL macro with the DCB for the library to be used.

The following paragraphs discuss the order of the search when the entry name
used is a member name.

The EP and EPLOC parameters require the least effort on your part; you provide
only the entry name, and the control program searches for a load module having
that entry name. Figure 4-13 shows the order of the search when EP or EPLOC is
coded, and the DCB parameter is omitted or DCB=0 is coded.

The control program searches:

The job pack area for an available copy.
The requesting task's task library and all the unique task libraries
of its preceding tasks.

(Note: For the ATTACH or ATTACHX macro, the attached task's library
and all the unique task libraries of its preceding tasks are searched.)

The step library; if there is no step library, the job library (if any).
The link pack area.
The link library.

Figure 4-13. Search for Module, EP or EPLOC Parameter With DCB=0 or DCB Parameter
Omitted

When used without the DCB parameter, the EP and EPLOC parameters provide
the easiest method of requesting a load module from the link, job, or step library.
The control program searches the task libraries before the job or step library,
beginning with the task library of the task that issued the request and continuing
through the task libraries of all its antecedent tasks. It then searches the job or
step library, followed by the link library.

A job, step, or link library or a data set in one of these libraries can be used to hold
one version of a load module, while another can be used to hold another version

4-18 OS/390 V2R8.0 MVS Assembler Services Guide

with the same entry name. If one version is in the link library, you can ensure that
the other will be found first by including it in the job or step library. However, if both
versions are in the job or step library, you must define the data set that contains
the version you want to use before the data set that contains the other version. For
example, if the wanted version is in PDS1 and the unwanted version is in PDS2, a
step library consisting of these data sets should be defined as follows:

//STEPLIB DD DSNAME=PDS1,...
// DD DSNAME=PDS2,...

Use extreme caution when specifying duplicate module names. Even if you code
the DCB parameter, the wrong module can still receive control. For example,
suppose there are two modules with the same name you want to invoke, one after
the other. To distinguish between them in this example they are called PROG2 and
PROG2'. PROG1 issues a LOAD for PROG2 and BALRs to it. PROG2 issues a
LINK specifying a DCB for the library with the other copy of PROG2 (which we are
calling PROG2'). The LINK will find a useable copy of PROG2 in the Job Pack
Area and invoke it again, regardless of the DCB parameter. PROG2 again issues a
LINK for PROG2'. This time the copy of PROG2 in the Job Pack Area is marked
"not reusable" and PROG2' is loaded using the DCB parameter and given control.

The problem encountered in the example above could be avoided by any one of
the following sequences:

� PROG1 links to PROG2 and PROG2 links to PROG2'

� PROG1 loads and branches to PROG2. PROG2 loads and branches to
PROG2'

� PROG1 links to PROG2 and PROG2 loads and branches to PROG2'

Once a module has been loaded from a task library, the module name is known to
all tasks in the address space and may be used as long as the module is
considered usable. Generally speaking, reenterable modules are always usable.
Serially reusable modules are usable when they are currently in use.
Non-reentrant, non-serially reusable modules are considered usable for LOAD if the
use count is zero. A module is considered usable for ATTACH, LINK, or XCTL if it
has not been marked NOT REUSABLE by a previous ATTACH, LINK, or XCTL.
The use count is not considered.

If you know that the load module you are requesting is a member of one of the
private libraries, you can still use the EP or EPLOC parameter, this time in
conjunction with the DCB parameter. Specify the address of the data control block
for the private library in the DCB parameter. The order of the search for EP or
EPLOC with the DCB parameter is shown in Figure 4-14.

The control program searches:

The job pack area for an available copy.
The specified library.
The link pack area.
The link library.

Figure 4-14. Search for Module, EP or EPLOC Parameters With DCB Parameter
Specifying Private Library

 Chapter 4. Program Management 4-19

Searching a job or step library slows the retrieval of load modules from the link
library; to speed this retrieval, you should limit the size of the job and step libraries.
You can best do this by eliminating the job library altogether and providing step
libraries where required. You can limit each step library to the data sets required by
a single step. Some steps (such as compilation) do not require a step library and
therefore do not require searching and retrieving modules from the link library. For
maximum efficiency, you should define a job library only when a step library would
be required for every step, and every step library would be the same.

The DE parameter requires more work than the EP and EPLOC parameters, but it
can reduce the amount of time spent searching for a load module. Before you can
use this parameter, you must use the BLDL macro to obtain the directory entry for
the module. The directory entry is part of the library that contains the module. See
DFSMS/MVS Macro Instructions for Data Sets for more information about the BLDL
macro.

To save time, the BLDL macro must obtain directory entries for more than one
entry name. Specify the names of the load modules and the address of the data
control block for the library when using the BLDL macro; the control program places
a copy of the directory entry for each entry name requested in a designated
location in virtual storage. If you specify the link library and the job or step library,
the directory information indicates from which library the directory entry was taken.
The directory entry always indicates the relative track and block location of the load
module in the library. If the load module is not located on the library you indicate, a
return code is given. You can then issue another BLDL macro specifying a different
library.

To use the DE parameter, provide the address of the directory entry and code or
omit the DCB parameter to indicate the same library specified in the BLDL macro.
The task using the DE parameter should be the same as the one which issued the
BLDL or one which has the same job, step, and task library structure as the task
issuing the BLDL. The order of the search when the DE parameter is used is
shown in Figure 4-15 for the link, job, step, and private libraries.

The preceding discussion of the search is based on the premise that the entry
name you specified is the member name. The control program checks for an alias
entry point name when the load module is found in a library. If the name is an alias,
the control program obtains the corresponding member name from the library
directory, and then searches to determine if a usable copy of the load module
exists in the job pack area. If a usable copy does not exist in a pack area, a new
copy is brought into the job pack area. Otherwise, the existing copy is used,
conserving virtual storage and eliminating the loading time.

4-20 OS/390 V2R8.0 MVS Assembler Services Guide

Directory Entry Indicates Link Library and DCB=0 or DCB Parameter Omitted.
The job pack area is searched for an available copy.
The link pack area is searched.
The module is obtained from the link library.

Directory Entry Indicates Job, Step, or Task Library and DCB=0 or DCB
Parameter Omitted.

The job pack area is searched for an available copy.
The module is obtained from the task library designated by the ‘Z’
byte of the DE operand.

DCB Parameter Indicates Private Library
The job pack area is searched for an available copy.
The module is obtained from the specified private library.

Figure 4-15. Search for Module Using DE Parameter

As the discussion of the search indicates, you should choose the parameters for
the macro that provide the shortest search time. The search of a library actually
involves a search of the directory, followed by copying the directory entry into
virtual storage, followed by loading the load module into virtual storage. If you know
the location of the load module, you should use the parameters that eliminate as
many of these unnecessary searches as possible, as indicated in Figure 4-13,
Figure 4-14, and Figure 4-15. Examples of the use of these figures are shown in
the following discussion of passing control.

Using an Existing Copy
The control program uses a copy of the load module already in the job pack area if
the copy can be used. Whether the copy can be used or not depends on the
reusability and current status of the load module, that is, the load module attributes,
as designated using linkage editor control statements, and whether the load module
has already been used or is in use. The status information is available to the
control program only when you specify the load module entry name on an EXEC
statement, or when you use ATTACH, ATTACHX, LINK, LINKX, XCTL, or XCTLX
macros to transfer control to the load module. The control program protects you
from obtaining an unusable copy of a load module if you always “formally” request
a copy using these macros (or the EXEC statement). If you pass control in any
other manner (for instance, a branch or a CALL macro), the control program,
because it is not informed, cannot protect your copy. If your program is in AR
mode, and the SYSSTATE ASCENV=AR macro has been issued, use the
ATTACHX, LINKX, and XCTLX macros instead of ATTACH, LINK, and XCTL. The
macros whose names end with "X" generate code and addresses that are
appropriate for AR mode.

All reenterable modules (modules designated as reenterable using the linkage
editor) from any library are completely reusable. Only one copy is ever placed in
the link pack area or brought into your job pack area, and you get immediate
control of the load module. If the module is serially reusable, only one copy is ever
placed in the job pack area; this copy is always used for a LOAD macro. If the copy
is in use, however, and the request is made using a LINK, LINKX, ATTACH,
ATTACHX, XCTL, or XCTLX macro, the task requiring the load module is placed in
a wait condition until the copy is available. You should not issue a LINK or LINKX
macro for a serially reusable load module currently in use for the same task; the
task will be abnormally terminated. (This could occur if an exit routine issued a
LINK or LINKX macro for a load module in use by the main program.)

 Chapter 4. Program Management 4-21

If the load module is not reusable, a LOAD macro will always bring in a new copy
of the load module; an existing copy is used only if you issued a LINK, LINKX,
ATTACH, ATTACHX XCTL or XCTLX macro and the copy has not been used
previously. Remember, the control program can determine if a load module has
been used or is in use only if all of your requests are made using LINK, LINKX,
ATTACH, ATTACHX, XCTL or XCTLX macros.

Using the LOAD Macro
If a copy of the specified load module is not already in the link pack area, use the
LOAD macro to place a copy in the address space. When you issue a LOAD
macro, the control program searches for the load module as discussed previously
and brings a copy of the load module into the address space if required. Normally,
you should use the LOAD macro only for a reenterable or serially reusable load
module, because the load module is retained even though it is not in use.

The control program places the copy of the load module in subpool 251, unless the
following three conditions are true:

� The module is reentrant
� The library is authorized
� You are not running under TSO/E test.

In this case, the control program places the module in subpool 252. Subpool 251 is
fetch protected and has a storage key equal to your PSW key. Subpool 252 is not
fetch protected and has storage key 0.

The use count for the copy is lowered by one when you issue a DELETE macro
during the task which was active when the LOAD macro was issued. When a task
is terminated, the count is lowered by the number of LOAD macros issued for the
copy when the task was active minus the number of deletions. When the use count
for a copy in a job pack area reaches zero, the virtual storage area containing the
copy is made available.

Passing Control with Return
Use the LINK or LINKX macro to pass control between load modules and to
provide for return of control. You can also pass control using branch, branch and
link, branch and save, or branch and save and set mode instructions or the CALL
macro. However, when you pass control in this manner, you must protect against
multiple uses of non-reusable or serially reusable modules. You must also be
careful to enter the routine in the proper addressing mode. The following
paragraphs discuss the requirements for passing control with return in each case.

Using the LINK or LINKX Macro
When you use the LINK or LINKX macro, you are requesting the system to assist
you in passing control to another load module. There is some similarity between
passing control using a LINK or LINKX macro and passing control using a CALL
macro in a simple structure. These similarities are discussed first.

The convention regarding registers 2-12 still applies; the control program does not
change the contents of these registers, and the called load module should restore
them before control is returned. Unless you are an AR mode program calling an AR
mode program that uses the linkage stack, you must provide the address in register
13 of the save area for use by the called load module; the system does not use this
save area. You can pass address parameters in a parameter list to the load module

4-22 OS/390 V2R8.0 MVS Assembler Services Guide

using register 1. The LINK or LINKX macro provides the same facility for
constructing this list as the CALL macro. Register 0 is used by the control program
and the contents may be modified. In certain cases, the contents of register 1 may
be altered by the LINK or LINKX macro.

There is also some difference between passing control using a LINK or LINKX
macro and passing control using a CALL macro. When you pass control in a simple
structure, register 15 contains the entry address and register 14 contains the return
address. When the called load module gets control, that is still what registers 14
and 15 contain, but when you use the LINK or LINKX macro, it is the control
program that establishes these addresses. When you code the LINK or LINKX
macro, you provide the entry name and possibly some library information using the
EP, EPLOC, or DE, and DCB parameters, but you have to get this entry name and
library information to the control program. The expansion of the LINK or LINKX
macro does this by creating a control program parameter list (the information
required by the control program) and passing its address to the control program.
After the control program finds the entry name, it places the address in register 15.

The return address in your control section is always the instruction following the
LINK or LINKX; that is not, however, the address that the called load module
receives in register 14. The control program saves the address of the location in
your program in its own save area, and places in register 14 the address of a
routine within the control program that will receive control. Because control was
passed using the control program, return must also be made using the control
program. The control program also handles all switching of addressing mode when
processing the LINK or LINKX macro.

Note: A program that is LINKed to will get control with the caller's Floating Point
Registers and Floating Point Control register. The S/390 linkage convention
applies. For more information, see Chapter 2, Linkage Conventions.

The control program establishes a use count for a load module when control is
passed using the LINK or LINKX macro. This is a separate use count from the
count established for LOAD macros, but it is used in the same manner. The count
is increased by one when a LINK or LINKX macro is issued and decreased by one
when return is made to the control program or when the called load module issues
an XCTL or XCTLX macro.

Figure 4-16 and Figure 4-17 show the coding of a LINK or LINKX macro used to
pass control to an entry point in a load module. In Figure 4-16, the load module is
from the link, job, or step library; in Figure 4-17, the module is from a private
library. Except for the method used to pass control, this example is similar to
Figures 10 and 11. A problem program parameter list containing the addresses
INDCB, OUTDCB, and AREA is passed to the called load module; the return point
is the instruction following the LINK or LINKX macro. A V-type address constant is
not generated, because the load module containing the entry point NEXT is not to
be edited into the calling load module. Note that the EP parameter is chosen, since
the search begins with the job pack area and the appropriate library as shown in
Figure 4-13.

 Chapter 4. Program Management 4-23

 LINK EP=NEXT,PARAM=(INDCB,OUTDCB,AREA),VL=1
RETURNPT ...
AREA DC 12F'ð'

Figure 4-16. Use of the LINK Macro with the Job or Link Library

 OPEN (PVTLIB)
 .
 .
 LINK EP=NEXT,DCB=PVTLIB,PARAM=(INDCB,OUTDCB,AREA),VL=1
 .
 .
PVTLIB DCB DDNAME=PVTLIBDD,DSORG=PO,MACRF=(R)

Figure 4-17. Use of the LINK Macro with a Private Library

Figure 4-18 and Figure 4-19 show the use of the BLDL and LINK macros to pass
control. Assuming that control is to be passed to an entry point in a load module
from the link library, a BLDL macro is issued to bring the directory entry for the
member into virtual storage. (Remember, however, that time is saved only if more
than one directory entry is requested in a BLDL macro. Only one is requested here
for simplicity.)

 BLDL ð,LISTADDR
 .
 .

DS ðH List description field:
LISTADDR DC H'ð1' Number of list entries

DC H'6ð' Length of each entry
NAMEADDR DC CL8'NEXT' Member name

DS 26H Area required for directory information

Figure 4-18. Use of the BLDL Macro

The first parameter of the BLDL macro is a zero, which indicates that the directory
entry is on the link, job, step, or task library. The second parameter is the address
in virtual storage of the list description field for the directory entry. The second two
bytes at LISTADDR indicate the length of each entry. A character constant is
established to contain the directory information to be placed there by the control
program as a result of the BLDL macro. The LINK macro in Figure 4-19 can now
be written. Note that the DE parameter refers to the name field, not the list
description field, of the directory entry.

LINK DE=NAMEADDR,DCB=ð,PARAM=(INDCB,OUTDCB,AREA),VL=1

Figure 4-19. The LINK Macro with a DE Parameter

4-24 OS/390 V2R8.0 MVS Assembler Services Guide

Using CALL or Branch and Link
When a module is reenterable, you can save time by passing control to a load
module without using the control program. Pass control without using the control
program as follows.

� Issue a LOAD macro to obtain a copy of the load module, preceded by a BLDL
macro if you can shorten the search time by using it.

The control program returns the address of the entry point and the addressing
mode in register 0 and the length in doublewords in register 1.

� Load this address into register 15.

The linkage requirements are the same when passing control between load
modules as when passing control between control sections in the same load
module: register 13 must contain a save area address, register 14 must contain
the return address, and register 1 is used to pass parameters in a parameter
list. A branch instruction, a branch and link instruction, a branch and save
instruction, a branch and save and set mode instruction (BASSM), or a CALL
macro can be used to pass control, using register 15. Use BASSM only if there
is to be an addressing mode switch. The return will be made directly to your
program.

Notes:

1. You must use a branch and save and set mode instruction if passing control to
a module in a different addressing mode.

2. When control is passed to a load module without using the control program,
you must check the load module attributes and current status of the copy
yourself, and you must check the status in all succeeding uses of that load
module during the job step, even when the control program is used to pass
control.

The reason you have to keep track of the usability of the load module has been
discussed previously; you are not allowing the control program to determine
whether you can use a particular copy of the load module. The following
paragraphs discuss your responsibilities when using load modules with various
attributes. You must always know what the reusability attribute of the load module
is. If you do not know, you should not attempt to pass control yourself.

If the load module is reenterable, one copy of the load module is all that is ever
required for a job step. You do not have to determine the status of the copy; it can
always be used. You can pass control by using a CALL macro, a branch, a branch
and link instruction, a branch and save instruction, or a branch and save and set
mode instruction (BASSM). Use BASSM only if there is to be an addressing mode
switch.

If the load module is serially reusable, one use of the copy must be completed
before the next use begins. If your job step consists of only one task, make sure
that the logic of your program does not require a second use of the same load
module before completion of the first use. This prevents simultaneous use of the
same copy. An exit routine must not require the use of a serially reusable load
module also required in the main program.

Preventing simultaneous use of the same copy when you have more than one task
in the job step requires more effort on your part. You must still be sure that the

 Chapter 4. Program Management 4-25

logic of the program for each task does not require a second use of the same load
module before completion of the first use. You must also be sure that no more than
one task requires the use of the same copy of the load module at one time. You
can use the ENQ macro for this purpose. Properly used, the ENQ macro prevents
the use of a serially reusable resource, in this case a load module, by more than
one task at a time. For information on the ENQ macro, see Chapter 6, “Resource
Control” on page 6-1 You can also use a conditional ENQ macro to check for
simultaneous use of a serially reusable resource within one task.

If the load module is non-reusable, each copy can only be used once; you must be
sure that you use a new copy each time you require the load module. You can
ensure that you always get a new copy by using a LINK macro or by doing the
following:

1. Issue a LOAD macro before you pass control.

2. Pass control using a branch, branch and link, branch and save, branch and
save and set mode instruction, or a CALL macro.

3. Issue a DELETE macro as soon as you are through with the copy.

How Control is Returned
The return of control between load modules is the same as return of control
between two control sections in the same load module. The program in the load
module returning control is responsible for restoring registers 2-14, possibly loading
a return code in register 15, passing control using the address in register 14 and
possibly setting the correct addressing mode. The program in the load module to
which control is returned can expect registers 2-13 to be unchanged, register 14 to
contain the return address, and optionally, register 15 to contain a return code.
Control can be returned using a branch instruction, a branch and set mode
instruction or the RETURN macro. If control was passed without using the control
program, control returns directly to the calling program. However, if control was
originally passed using the control program, control returns first to the control
program, then to the calling program.

Passing Control without Return
Use the XCTL or XCTLX macro to pass control to a target load module when return
of control is not required. You can also pass control using a branch instruction.
However, when you pass control in this manner, you must ensure that multiple
uses of non-reusable or serially reusable modules does not occur . The following
paragraphs discuss the requirements for passing control without return in each
case.

Passing Control Using a Branch Instruction
The same requirements and procedures for protecting against reuse of a
non-reusable copy of a load module apply when passing control without return as
were stated under “Passing Control With Return.” The procedures for passing
control are as follows.

Issue a LOAD macro to obtain a copy of the load module. The entry address and
addressing mode returned in register 0 are loaded into register 15. The linkage
requirements are the same when passing control between load modules as when
passing control between control sections in the same load module; register 13 must
be reloaded with the old save area address, then registers 14 and 2-12 restored
from that old save area. Register 1 is used to pass parameters in a parameter list.

4-26 OS/390 V2R8.0 MVS Assembler Services Guide

If the addressing mode does not change, a branch instruction is issued to pass
control to the address in register 15; if the addressing mode does change, a branch
and save and set mode macro is used.

Note: Mixing branch instructions and XCTL or XCTLX macros is hazardous. The
next topic explains why.

Using the XCTL or XCTLX Macro
The XCTL or XCTLX macro, in addition to being used to pass control, is used to
indicate to the control program that this use of the load module containing the
XCTL or XCTLX macro is completed. Because control will not be returned, the
XCTL issuer must load the address of the old save area into register 13 prior to
issuing the XCTL. The return address must be loaded into register 14 from the old
save area, as must the contents of registers 2-12. The XCTL or XCTLX macro can
be written to request the loading of registers 2-12, or you can do it yourself. If you
restore all registers yourself, do not use the EP parameter. This creates an inline
parameter list that can only be addressed using your base register, and your base
register is no longer valid. If EP is used, you must have XCTL or XCTLX restore
the base register for you.

Note: A program that is XCTLed to will get control with the caller's Floating Point
Registers and Floating Point Control register. The program that issued the
XCTL macro is not returned to, instead the XCTLed program will return to
the program that caused the issuer of the XCTL macro to run. The S/390
linkage convention applies except that the non-volatile FPRs and FPC
register that must be restored are different. The issuer of the XCTL macro
must restore its caller's non-volatile FPRs and FPC register before issuing
the XCTL (just as if it were returning to its caller). For more information on
linkage conventions, please refer to Chapter 2, Linkage Conventions.

When using the XCTL or XCTLX macro, pass parameters to the target module in a
parameter list. In this case, however, the parameter list (or the parameter data)
must be established in remote storage, a portion of virtual storage outside the
current load module containing the XCTL or XCTLX macro. This is because the
copy of the current load module may be deleted before the called load module can
use the parameters, as explained in more detail below.

The XCTL or XCTLX macro is similar to the LINK macro in the method used to
pass control: control is passed by the control program using a control parameter
list. The control program loads a copy of the target load module, if necessary, loads
the entry address in register 15, saves the address passed in register 14, and
passes control to the address in register 15. The control program adds one to the
use count for the copy of the target load module and subtracts one from the use
count for the current load module. The current load module in this case is the load
module last given control using the control program in the performance of the active
task. If you have been passing control between load modules without using the
control program, chances are the use count will be lowered for the wrong load
module copy. And remember, when the use count of a copy reaches zero, that
copy may be deleted, causing unpredictable results if you try to return control to it.

Figure 4-20 shows how this could happen. Control is given to load module A,
which passes control to the load module B (step 1) using a LOAD macro and a
branch and link instruction. Register 14 at this time contains the address of the
instruction following the branch and link. Load module B then executes,
independently of how control was passed, and issues an XCTL or XCTLX macro

 Chapter 4. Program Management 4-27

when it is finished (step 2) to pass control to target load module C. The control
program knowing only of load module A, lowers the use count of A by one,
resulting in its deletion. Load module C is executed and returns to the address
which used to follow the branch and link instruction. Step 3 of Figure 4-20 indicates
the result.

Control Program

Control
Program

Control
Program

Control
Program

To routine which
last issued a BALR
instruction.

A

LOAD B
BALR B

B

A

BALR B

XCTL C

B

XCTL C

C

RETURN

C

Step 1

Step 2

Step 3

Figure 4-20. Misusing Control Program Facilities Causes Unpredictable Results

Two methods are available for ensuring that the proper use count is lowered. One
way is to always use the control program to pass control with or without return. The
other method is to use only LOAD and DELETE macros to determine whether or
not a copy of a load module should remain in virtual storage.

Note: The control program abnormally terminates the task if the XCTL issuer
added entries to the linkage stack and did not remove them before issuing
the XCTL.

4-28 OS/390 V2R8.0 MVS Assembler Services Guide

APF-authorized Programs and Libraries
The authorized program facility (APF) helps your installation protect the system.
APF-authorized programs can access system functions that can affect the security
and integrity of the system. APF-authorized programs must reside in
APF-authorized libraries, which are defined in an APF list.

Unauthorized programs can issue the CSVAPF macro to:

� Determine whether or not a library is in the APF list
� Determine the current format (dynamic or static) of the APF list
� Obtain a list of all library entries in the APF list.

APF also prevents authorized programs (supervisor state, APF-authorized, PSW
key 0-7, or PKM 0-7) from accessing a load module that is not in an
APF-authorized library. The application development books for programmers who
use authorized programs provide more information about APF authorization.

Additional Entry Points
Through the use of linkage editor facilities you can specify as many as 17 different
names (a member name and 16 aliases) and associated entry points within a load
module. It is only through the use of the member name or the aliases that a copy of
the load module can be brought into virtual storage. Once a copy has been brought
into virtual storage, however, additional entry points can be provided for the load
module, subject to one restriction. The load module copy to which the entry point is
to be added must be one of the following:

� A copy that satisfied the requirements of a LOAD macro issued during the
same task

� The copy of the load module most recently given control through the control
program in performance of the same task.

Add the entry point by using the IDENTIFY macro. The IDENTIFY macro cannot be
issued by supervisor call routines, SRBs, or asynchronous exit routines established
using other supervisor macros.

When you use the IDENTIFY macro, you specify the name to be used to identify
the entry point, and the virtual storage address of the entry point in the copy of the
load module. The address must be within a copy of a load module that meets the
requirements listed above; if it is not, the entry point will not be added, and you will
be given a return code of 0C (hexadecimal). The name can be any valid symbol of
up to eight characters, and does not have to correspond to a name or symbol
within the load module. You are responsible for not duplicating a member name or
an alias in any of the libraries. Duplicate names cause the system to return a return
code of 8.

The IDENTIFY service sets the addressing mode of the alias entry point equal to
the addressing mode of the major entry point.

If an authorized program creates an alias for a module in the pageable link pack
area or active link pack area, the IDENTIFY service places an entry for the alias on
the active link pack area queue. If an unauthorized user creates an alias for a

 Chapter 4. Program Management 4-29

module in the pageable link pack area or active link pack area, the IDENTIFY
service places an entry for the alias on the job pack queue of the requesting job.

Entry Point and Calling Sequence Identifiers as Debugging Aids
An entry point identifier is a character string of up to 70 characters that can be
specified in a SAVE macro. The character string is created as part of the SAVE
macro expansion.

A calling sequence identifier is a 16-bit binary number that can be specified in a
CALL, LINK, or LINKX macro. When coded in a CALL, LINK, or LINKX macro, the
calling sequence identifier is located in the two low-order bytes of the fullword at
the return address. The high-order two bytes of the fullword form a NOP instruction.

Retrieving Information About Loaded Modules
Both the CSVINFO and CSVQUERY macros return information about loaded
modules. A loaded module is a load module that has been loaded into storage.
Use CSVQUERY if you need information about a particular loaded module or if
your program is running in access register (AR) mode. Use CSVINFO to obtain
information about a group of loaded modules or when you want information about
the loaded module associated with a particular program request block (PRB) or
information that the CSVQUERY macro does not provide.

The following information is available only through the CSVINFO macro:

� Whether the entry point is an alias created using the IDENTIFY macro.

� The starting address of every extent and the number of extents for loaded
modules with multiple extents. (CSVQUERY provides only the entry point
address and the total module length.)

� The load count, system count, and total use count for the loaded module.

� The name of the major entry point, if the entry point is an alias.

� The full entry point name for modules with names longer than 8 characters.

In addition to the information you request, the CSVINFO macro returns the file
name for modules in the OpenMVS file system.

Using the CSVINFO Macro
The CSVINFO macro provides information about loaded modules associated with a
job step or a task. You can invoke CSVINFO from a program or an IPCS exit.

Note: IBM recommends that you use the CSVINFO macro rather than write your
own program to scan control blocks for information about loaded modules.
Using the CSVINFO macro enables you to retrieve module information
without depending on the details or structures of data areas.

The CSVINFO service requires a user-written module information processing
routine (MIPR). The CSVINFO service obtains information about loaded modules
and uses the CSVMODI data area to pass that information to the MIPR. The MIPR
examines this data and returns control to CSVINFO, either requesting information
about an additional loaded module or indicating that no more information is needed.

4-30 OS/390 V2R8.0 MVS Assembler Services Guide

This loop continues until the CSVINFO service has returned to the MIPR all
requested information or all available information.

For example, if you request information about all loaded modules in your job pack
area (JPA), the CSVINFO service uses the CSVMODI data area to pass
information about the first loaded module to the MIPR. The MIPR processes the
information and returns control to CSVINFO to obtain information about the next
loaded module in the JPA. Processing continues until CSVINFO indicates that all
information has been obtained or until the MIPR determines that no more
information is required.

When you issue the CSVINFO macro, use the FUNC parameter to specify the
information you want, and the ENV parameter to specify whether CSVINFO is
being issued from a program or from an IPCS exit. Use the MIPR parameter to
pass the address of your MIPR. You can pass 16 bytes of information to the MIPR
using the USERDATA parameter. Information could include register contents,
parameter list addresses, or other information your MIPR requires. CSVINFO
places your user data into the CSVMODI data area.

 References

The CSVMODI data area serves as the interface between the CSVINFO service
and the MIPR. For more information about the CSVMODI mapping macro, see
OS/390 MVS Data Areas, Vol 1 (ABEP-DALT).

OS/390 MVS IPCS Commands explains how to verify the correct use of the
CSVINFO macro in an IPCS exit. See the TRAPON, TRAPOFF, and
TRAPLIST subcommand descriptions.

OS/390 MVS IPCS Customization provides information about writing IPCS exits.

Figure 4-21 on page 4-32 shows the processing that occurs when your program or
exit issues the CSVINFO macro. The numbered steps are explained below:

1. The application or IPCS exit invokes the CSVINFO macro.

2. CSVINFO retrieves the module information you want.

3. CSVINFO places the information into the CSVMODI data area.

4. CSVINFO passes control to your MIPR.

5. The MIPR reads the information that is in the CSVMODI data area.

6. The MIPR places the information into your storage or otherwise processes the
information.

7. The MIPR sets a return code for CSVINFO:

� A return code of zero to request information about another loaded module
� A nonzero return code to indicate that no more information is needed.

8. The MIPR returns control to CSVINFO.

9. Steps 2 through 8 are repeated until the MIPR indicates to CSVINFO that no
more information is needed, or CSVINFO indicates to the MIPR that all
information has been retrieved.

 Chapter 4. Program Management 4-31

10. CSVINFO sets a return code and returns control to your program when the
MIPR passes CSVINFO a return code indicating that no more information is
needed, or when CSVINFO has passed all the information to the MIPR.

11. The application or IPCS exit continues processing.

Some processing

Application or
IPCS Exit Code

MIPR

1. Call CSVINFO

11. Check the
return code
and continue
processing

CSVINFO

2. Retrieve requested
information

3. Place information
into CSVMODI
data area

4. Pass control to the
MIPR

5. Obtain information
from CSVMODI
data area

6. Process the
information from
CSVMODI

7. Set return code

8. Return control to
CSVINFO

9. Repeat steps 2
through 8 until the
MIPR indicates no
more information
is needed or all
information has
been passed to
the MIPR.

10. Return control
to the caller.

Figure 4-21. Processing Flow for the CSVINFO Macro and the Caller's MIPR

 Serialization
Information about loaded modules in common storage is serialized by the LOCAL
and CMS locks. Information about other loaded modules is serialized by the LOCAL
lock. When the CSVINFO service runs with serialization, you are guaranteed that
the information CSVINFO obtains is not in the process of being updated.

If your program runs in problem state and invokes the CSVINFO macro, your
program cannot hold the appropriate locks and the CSVINFO service does not
obtain them. Thus, the CSVINFO service retrieves information without serializing on
it. If you are requesting information about loaded modules in common storage or if
multi-tasking is taking place in your address space, the module information you
request might be changing while the CSVINFO service is retrieving information. In
rare instances, the CSVINFO service could return incorrect information or end
abnormally.

If your program runs in supervisor state and invokes the CSVINFO macro, the
CSVINFO service obtains the appropriate locks if your program does not already
hold them.

4-32 OS/390 V2R8.0 MVS Assembler Services Guide

Coding a MIPR for the CSVINFO Macro
This section contains information about coding a MIPR.

Installing the MIPR
You can either link-edit your MIPR with the program that invokes the CSVINFO
macro or include the MIPR in mainline code.

 MIPR Environment
The MIPR receives control running under the unit of work that invoked the
CSVINFO macro, in the following environment:

Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=SASN=HASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Control parameters: Control parameters must be in the primary address space.

Recovery for MIPR Provided by CSVINFO
Figure 4-22 shows the recovery environment that the CSVINFO service establishes
for itself and the MIPR.

Figure 4-22. CSVINFO Recovery

ENV Keyword Caller State/Key Recovery Provided

ENV=MVS Supervisor state The caller's MIPR gets control with
CSVINFO's FRR in effect.

Problem state The caller's MIPR gets control with
CSVINFO's ESTAE routine in effect.

ENV=IPCS Problem or
supervisor state

No recovery provided

 Entry Specifications
The MIPR gets control through standard branch entry linkage. Input to the MIPR is
the address of the CSVMODI data area, containing information from the CSVINFO
service.

Registers at Entry
When the MIPR receives control, the general purpose registers (GPRs) contain the
following information:

GPR Contents

0 Does not contain any information for use by the routine

1 Address of the CSVMODI data area

2 - 12 Does not contain any information for use by the routine

13 Address of a standard 72-byte save area

14 Return address to the CSVINFO service

15 Entry point address of MIPR

 Chapter 4. Program Management 4-33

 Return Specifications
Upon return from MIPR processing, you must ensure that the register contents are
as follows:

Registers at Exit
GPR Contents

0-1 The MIPR does not have to place any information into these
registers, and does not have to restore their contents to what they
were when the MIPR received control.

2-13 The MIPR must restore the register contents to what they were
when the MIPR received control.

14 Return address to the CSVINFO service

15 Return code from the MIPR

Note: The CSVINFO service continues processing until either of the following
occurs:

� It receives a non-zero return code from the MIPR.
� It has returned all available data

When CSVINFO receives a non-zero return code, it returns control to the program
that invoked the CSVINFO macro.

CSVINFO Service Coding Example
The CSVSMIPR member of SAMPLIB contains a coded example of the use of the
CSVINFO service and its associated MIPR. The sample program is a reentrant
program that has its MIPR included within the same module.

Using CSVRTLS to Request Run-Time Library Services (RTLS)
Run-time library services (RTLS) enables you to eliminate STEPLIBs from the JCL
that runs your applications. By eliminating STEPLIBs, you reduce the installation
management your applications require, as well as the system overhead involved in
searching STEPLIB data sets when loading modules into storage. In place of
STEPLIBs, the CSVRTLS macro connects to and loads from a given RTLS logical
library.

Both authorized and unauthorized programs can use CSVRTLS, but only
authorized programs can use the TCBADDR parameter or connect to more than 32
libraries per address space. See the minimum authorization requirements listed in
OS/390 MVS Programming: Assembler Services Reference for options available to
authorized programs.

Language Environment applications currently can exploit RTLS by using the
Language Environment run-time options RTLS(ON), LIBRARY(le_run-time_lib), and
VERSION(version), which identify the RTLS logical library to be connected. During
application startup, the Language Environment element connects to the specified
library using the macro CSVRTLS REQUEST=CONNECT, loads from the specified
library using CSVRTLS REQUEST=LOAD, and disconnects from the logical library
using CSVRTLS REQUEST=DISCONNECT. Language Environment runs as an
extension to the application, allowing it to load from any library the application is
authorized to access.

4-34 OS/390 V2R8.0 MVS Assembler Services Guide

An operator command, SET RTLS=xx, allows dynamic configuration of the RTLS
library definitions. Each of these library definitions, or logical libraries, identifies a
load library search order that is to be used when an application connects to and
loads from a specific logical library. Each logical library search order definition
contains one or more physical library definitions that can consist of one or more
load library data sets. Caching to common storage is performed on a physical
library basis to provide optimal performance for commonly used libraries. Each
physical library is either authorized or unauthorized. This determination is made
when the library is added or replaced; it is not changed or affected by changes to
the APF status of individual data sets.

The SET RTLS=xx command, like the RTLS system parameter at IPL, uses the
CSVRTLxx parmlib members. The SET command allows for the introduction of new
physical and logical libraries, removal of physical and logical libraries, or the
replacement of libraries. The DISPLAY RTLS command displays the current status
of the RTLS environment. The information supplied through DISPLAY RTLS
optionally includes the physical and logical libraries in use, the users of the logical
libraries, and the cache utilization for a given library or for all libraries.

The contents supervision services XCTL, LINK, ATTACH, IDENTIFY, CSVQUERY,
and CSVINFO all work with modules loaded through the CSVRTLS
REQUEST=LOAD service.

For more information about the CSVRTLS macro, see OS/390 MVS Programming:
Assembler Services Reference.

 Chapter 4. Program Management 4-35

4-36 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 5. Understanding 31-Bit Addressing

 Note

This chapter documents the programming considerations for running 31-bit
addressing mode programs on previous versions and releases of MVS.
Because this information might be useful for programmers who maintain or
update legacy programs, the chapter is preserved to reflect the programming
environment of previous MVS versions. If you intend to design and code a new
program to run on OS/390 MVS releases, consider the following:

� Always design a program to run in 31-bit addressing mode, to take full
advantage of the virtual storage capacity of MVS.

� Use the IBM High Level Assembler, instead of Assembler H, to assemble
the new program. As of MVS/SP 5.2, Assembler H is not supported.

� Use the DFSMS/MVS program management binder, instead of the
MVS/DFP linkage editor and loader, to prepare the program for execution.

Enterprise Systems Architecture, like 370/Extended Architecture, supports 31-bit
real and virtual addresses, which provide a maximum real and virtual address of
two gigabytes minus one. For compatibility with existing programs, MVS/ESA and
MVS/XA also support 24-bit real and virtual addresses. The basic changes in the
system that provide for both 31-bit addresses and the continued use of 24-bit
addresses are:

� A virtual storage map of two gigabytes with MVS services to support programs
executing or residing anywhere in virtual storage.

� Two program attributes that specify expected address length on entry and
intended location in virtual storage.

� Bimodal operation , a capability of the processor that permits the execution of
programs with 24-bit addresses as well as programs with 31-bit addresses.

� Instructions that are sensitive to addressing mode.

 Virtual Storage
In the MVS virtual storage map:

� Each address space has its own two gigabytes of virtual storage.

� Each private area has a portion below 16 megabytes and an extended portion
above 16 megabytes but, logically, these areas can be thought of as one area.

Figure 5-1 shows the virtual storage map.

Addressing Mode and Residency Mode
In MVS/ESA and MVS/XA, the processor can treat addresses as having either 24
or 31 bits. Addressing mode (AMODE) describes whether the processor is using
24-bit or 31-bit addresses. In MVS/ESA and MVS/XA, programs can reside in 24-bit
addressable areas or beyond the 24-bit addressable area (above 16 megabytes).
Residency mode (RMODE) specifies whether the program must reside in the 24-bit
addressable area or can reside anywhere in 31-bit addressable storage.

 Copyright IBM Corp. 1988, 1999 5-1

Addressing mode (AMODE) and residency mode (RMODE) are program
attributes specified (or defaulted) for each CSECT, load module, and load module
alias. These attributes are the programmer's specification of the addressing mode
in which the program is expected to get control and where the program is expected
to reside in virtual storage.

AMODE defines the addressing mode (24, 31, or ANY) in which a program expects
to receive control. Addressing mode refers to the address length that a program is
prepared to handle on entry: 24-bit addresses, 31-bit addresses, or both (ANY).
Programs with an addressing mode of ANY have been designed to receive control
in either 24- or 31-bit addressing mode.

ELSQA/ESWA 229/230

ECSA

EPLPA/EFLPA/EMLPA

ESQA

Extended Nucleus

Nucleus

SQA

PLPA/FLPA/MLPA/BLDL

CSA

LSQA/SWA/229/230

PSA

Extended
Private

Extended

Common

Common

Private

Common

2 gigabytes

24-Bit
Addressing
Range

31-Bit
Addressing
Range

0

Figure 5-1. Two Gigabyte Virtual Storage Map

A 370-XA or 370-ESA processor can operate with either 24-bit addresses (16
megabytes of addressability) or 31-bit addresses (2 gigabytes of addressability).
This ability of the processor to permit the execution of programs in 24-bit
addressing mode as well as programs in 31-bit addressing mode is called bimodal
operation . A program's AMODE attribute determines whether the program is to
receive control with 24-bit or 31-bit addresses. Once a program gets control, the
program can change the AMODE if necessary.

In 24-bit addressing mode, the processor treats all virtual addresses as 24-bit
values. This makes it impossible for a program in 24-bit addressing mode to

5-2 OS/390 V2R8.0 MVS Assembler Services Guide

address virtual storage with an address greater than 16,777,215 (16 megabytes)
because that is the largest number that a 24-bit binary field can contain.

In 31-bit addressing mode, the processor treats all virtual addresses as 31-bit
values.

The processor supports bimodal operation so that both new programs and most old
programs can execute correctly. Bimodal operation is necessary because certain
coding practices in existing programs depend on 24-bit addresses. For example:

� Some programs use a 4-byte field for a 24-bit address and place flags in the
high-order byte.

� Some programs use the LA instruction to clear the high-order byte of a register.
(In 24-bit addressing mode, LA clears the high-order byte; in 31-bit addressing
mode, it clears only the high-order bit.)

� Some programs depend on BAL and BALR to return the ILC (instruction length
code), the CC (condition code), and the program mask. (BAL and BALR return
this information in 24-bit addressing mode. In 31-bit addressing mode they do
not.)

Each load module and each alias entry has an AMODE attribute.

A CSECT can have only one AMODE, which applies to all its entry points.
Different CSECTs in a load module can have different AMODEs.

RMODE specifies where a program is expected to reside in virtual storage. The
RMODE attribute is not related to central storage requirements. (RMODE 24
indicates that a program is coded to reside in virtual storage below 16 megabytes.
RMODE ANY indicates that a program is coded to reside anywhere in virtual
storage.)

Each load module and each alias entry has an RMODE attribute. The alias entry is
assigned the same RMODE as the main entry.

The following kinds of programs must reside in the range of addresses below 16
megabytes (addressable by 24-bit callers):

� Programs that have the AMODE 24 attribute
� Programs that have the AMODE ANY attribute
� Programs that use system services that require their callers to be AMODE 24
� Programs that use system services that require their callers to be RMODE 24
� Programs that must be addressable by 24-bit addressing mode callers

Programs without these characteristics can reside anywhere in virtual storage.

“Addressing Mode and Residency Mode” on page 5-12 describes AMODE and
RMODE processing and 31-bit addressing support of AMODE and RMODE in
detail.

 Chapter 5. Understanding 31-Bit Addressing 5-3

Requirements for Execution in 31-Bit Addressing Mode
In general, to execute in 31-bit addressing mode a program must:

� Be assembled using Assembler H Version 2 or an assembler that provides
equivalent function, and the MVS/XA or MVS/ESA macro library.

� Be link edited using the linkage editor supplied with Data Facility Product (DFP)
or be loaded using the loader supplied with DFP.

� Execute on an MVS/XA or MVS/ESA system.

Rules and Conventions for 31-Bit Addressing
It is important to distinguish the rules from the conventions when describing 31-bit
addressing. There are only two rules, and they are associated with hardware:

1. The length of address fields is controlled by the A-mode bit (bit 32) in the PSW.
When bit 32=1, addresses are treated as 31-bit values. When bit 32=0,
addresses are treated as 24-bit values.

Any data passed from a 31-bit addressing mode program to a 24-bit addressing
mode program must reside in virtual storage below 16 megabytes. (A 24-bit
addressing mode program cannot reference data above 16 megabytes without
changing addressing mode.)

2. The A-mode bit affects the way some instructions work.

The conventions, on the other hand, are more extensive. Programs using system
services must follow these conventions.

� A program must return control in the same addressing mode in which it
received control.

� A program expects 24-bit addresses from 24-bit addressing mode programs
and 31-bit addresses from 31-bit addressing mode programs.

� A program should validate the high-order byte of any address passed by a
24-bit addressing mode program before using it as an address in 31-bit
addressing mode.

Mode Sensitive Instructions
The processor is sensitive to the addressing mode that is in effect (the setting of
the PSW A-mode bit). The current PSW controls instruction sequencing. The
instruction address field in the current PSW contains either a 24-bit address or a
31-bit address depending on the current setting of the PSW A-mode bit. For those
instructions that develop or use addresses, the addressing mode in effect in the
current PSW determines whether the addresses are 24 or 31 bits long.

Principles of Operation contains a complete description of the 370-XA and 370-ESA
instructions. The following topics provide an overview of the mode sensitive
instructions.

BAL and BALR
BAL and BALR are addressing-mode sensitive. In 24-bit addressing mode, BAL
and BALR work the same way as they do when executed on a processor running in
370 mode. BAL and BALR put link information into the high-order byte of the first
operand register and put the return address into the remaining three bytes before
branching.

5-4 OS/390 V2R8.0 MVS Assembler Services Guide

First operand register (24-bit addressing mode)

0 2 4 8 31

ILC CC PGM next sequential instruction address
Mask

ILC - instruction length code
CC - condition code
PGM Mask - program mask

In 31-bit addressing mode, BAL and BALR put the return address into bits 1
through 31 of the first operand register and save the current addressing mode in
the high-order bit. Because the addressing mode is 31-bit, the high-order bit is
always a 1.
First operand register (31-bit addressing mode)

0 1 31

1 next sequential instruction address

When executing in 31-bit addressing mode, BAL and BALR do not save the
instruction length code, the condition code, or the program mask. IPM (insert
program mask) can be used to save the program mask and the condition code.

LA: The LA (load address) instruction, when executed in 31-bit addressing mode,
loads a 31-bit value and clears the high-order bit. When executed in 24-bit
addressing mode, it loads a 24-bit value and clears the high-order byte (as in
MVS/370 mode).

LRA: The LRA (load real address) instruction always results in a 31-bit real
address regardless of the issuing program's AMODE. The virtual address specified
is treated as a 24-bit or 31-bit address based on the value of the PSW A-mode bit
at the time the LRA instruction is executed.

 Branching Instructions
BASSM (branch and save and set mode) and BSM (branch and set mode) are
branching instructions that manipulate the PSW A-mode bit (bit 32). Programs can
use BASSM when branching to modules that might have different addressing
modes. Programs invoked through a BASSM instruction can use a BSM instruction
to return in the caller's addressing mode. BASSM and BSM are described in more
detail in “Establishing Linkage” on page 5-23.

BAS (branch and save) and BASR:

� Save the return address and the current addressing mode in the first operand.
� Replace the PSW instruction address with the branch address.

The high-order bit of the return address indicates the addressing mode. BAS and
BASR perform the same function that BAL and BALR perform in 31-bit addressing
mode. In 24-bit mode, BAS and BASR put zeroes into the high-order byte of the
return address register.

 Chapter 5. Understanding 31-Bit Addressing 5-5

Use of 31-Bit Addressing
In addition to providing support for the use of 31-bit addresses by user programs,
MVS includes many system services that use 31-bit addresses.

Some system services are independent of the addressing mode of their callers.
These services accept callers in either 24-bit or 31-bit addressing mode and use
31-bit parameter address fields. They assume 24-bit addresses from 24-bit
addressing mode callers and 31-bit addresses from 31-bit addressing mode callers.
Most supervisor macros are in this category.

Other services have restrictions with respect to address parameter values. Some
of these services accept SVC callers and allow them to be in either 24-bit or 31-bit
addressing mode. However, the same services might require branch entry callers to
be in 24-bit addressing mode or might require one or more parameter addresses to
be less than 16 megabytes.

Some services do not support 31-bit addressing at all. To determine a service's
addressing mode requirements, see the documentation that explains how to invoke
the service. (VSAM accepts entry by a program that executes in either 24-bit or
31-bit addressing mode.)

MVS provides instructions that support 31-bit addressing mode and bimodal
operation. These instructions are supported only by Assembler H Version 2
installed with the ADV or UNIV instruction set specified. The linkage editor functions
that support MVS are provided in Data Facility Storage Management (DFSMSdfp).

Planning for 31-Bit Addressing
Most programs that run on MVS/370 will run on MVS/XA or MVS/ESA in 24-bit
addressing mode without change. Some programs need to be modified to execute
in 31-bit addressing mode to provide the same function. Still other programs need
to be modified to run in 24-bit addressing mode.

The MVS conversion notebook helps you identify programs that need to be
changed. You will need to consult one or more versions of the MVS conversion
notebook. The versions you need depend on your current version of MVS and the
version of MVS to which you are migrating. See the appropriate version of the MVS
conversion notebook for your migration.

Planning for 31-Bit Addressing helps you determine what changes to make to a
module you are converting to 31-bit addressing and indicates 31-bit address
considerations when writing new code.

Some reasons for converting to 31-bit addressing mode are:

� The program can use more virtual storage for tables, arrays, or additional logic.

� The program needs to reference control blocks that have been moved above
16 megabytes.

� The program is invoked by other 31-bit addressing mode programs.

� The program must run in 31-bit addressing mode because it is a user exit
routine that the system invokes in 31-bit mode.

5-6 OS/390 V2R8.0 MVS Assembler Services Guide

� The program needs to invoke services that expect to get control in 31-bit
addressing mode.

Converting Existing Programs
Keeping in mind that 31-bit addressing mode programs can reside either below or
above 16 megabytes, you can convert existing programs as follows:

1. Converting the program to use 31-bit addresses - a change in addressing
mode only.

� You can change the entire module to use 31-bit addressing.

� You can change only that portion that requires 31-bit addressing mode
execution.

Be sure to consider whether or not the code has any dependencies on 24-bit
addresses. Such code does not produce the same results in 31-bit mode as it
did in 24-bit mode. See “Mode Sensitive Instructions” on page 5-4 for an
overview of instructions that function differently depending on addressing mode.

Figure 5-2 summarizes the things that you need to do to maintain the proper
interface with a program that you plan to change to 31-bit addressing mode.

Calling Module Invoked Module

Parameters are passed

AMODE 24
RMODE 24

(intends to switch to AMODE 31)

CALL or BALR
to another CSECT

Requires indicated changes:

AMODE 24
RMODE 24

AMODE 31
RMODE 24

Minor recoding at the source
level to zero bits 1-7 of the
high-order bytes of addresses
used by AMODE 31 module
that point to locations below
16 megabytes.

Minor recoding at the source
level to switch addressing
modes and to zero bits 1-7 of
the high-order bytes of
addresses used by AMODE 31
module that point to locations
below 16 megabytes.

LINKX, XCTLX, ATTACHX,
LINK, XCTL, or ATTACH

AMODE 24
RMODE 24

Figure 5-2. Maintaining Correct Interfaces to Modules that Change to AMODE 31

2. Moving the program above 16 megabytes - a change in both addressing
mode and residency mode

In general, you move an existing program above 16 megabytes because there is
not enough room for it below 16 megabytes. For example:

� An existing program or application is growing so large that soon it will not fit
below 16 megabytes.

� An existing application that now runs as a series of separate programs, or that
executes in an overlay structure, would be easier to manage as one large
program.

 Chapter 5. Understanding 31-Bit Addressing 5-7

� Code is in the system area, and moving it would provide more room for the
private area below 16 megabytes.

The techniques used to establish proper interfaces to modules that move above 16
megabytes depend on the number of callers and the ways they invoke the module.
Figure 5-3 summarizes the techniques for passing control. The programs involved
must ensure that any addresses passed as parameters are treated correctly.
(High-order bytes of addresses to be used by a 31-bit addressing mode program
must be validated or zeroed.)

Figure 5-3. Establishing Correct Interfaces to Modules That Move Above 16 Megabytes

Means of Entry to Moved Module
(AMODE 31,RMODE ANY) Few AMODE 24,RMODE 24 Callers Many AMODE 24,RMODE 24 Callers

LOAD macro and BALR � Have caller use LINK OR LINKX

 or

� Have caller use LOAD macro and
BASSM (invoked program returns
via BSM)

 or

� Change caller to AMODE
31,RMODE 24 before BALR

Create a linkage assist routine
(described in “Establishing Linkage” on
page 5-23). Give the linkage assist
routine the name of the moved module.

BALR using an address in a common
control block

� Have caller switch to AMODE 31
when invoking

 or

� Change the address in the control
block to a pointer-defined value
(described in “Establishing Linkage”
on page 5-23) and use BASSM.
(The moved module will use BSM
to return.)

Create a linkage assist routine
(described in “Establishing Linkage” on
page 5-23).

ATTACH, ATTACHX, LINK, LINKX,
XCTL, or XCTLX

No changes required. No changes required.

SYNCH or SYNCHX in AMODE 24 � Have caller use SYNCH or
SYNCHX with AMODE=31
parameter

 or

� Have caller switch to AMODE 31
before issuing SYNCH or SYNCHX.

� Change address in the control
block to a pointer-defined value and
use SYNCH or SYNCHX with
AMODE=DEFINED.

Create a linkage assist routine
(described in “Establishing Linkage” on
page 5-23).

In deciding whether or not to modify a program to execute in 31-bit addressing
mode either below or above 16 megabytes, there are several considerations:

1. How and by what is the module entered?

2. What system and user services does the module use that do not support 31-bit
callers or parameters?

3. What kinds of coding practices does the module use that do not produce the
same results in 31-bit mode as in 24-bit mode?

4. How are parameters passed? Can they reside above 16 megabytes?

Among the specific practices to check for are:

5-8 OS/390 V2R8.0 MVS Assembler Services Guide

1. Does the module depend on the instruction length code, condition code, or
program mask placed in the high order byte of the return address register by a
24-bit mode BAL or BALR instruction? One way to determine some of the
dependencies is by checking all uses of the SPM (set program mask)
instruction. SPM might indicate places where BAL or BALR were used to save
the old program mask, which SPM might then have reset. The IPM (insert
program mask) instruction can be used to save the condition code and the
program mask.

2. Does the module use an LA instruction to clear the high-order byte of a
register? This practice will not clear the high-order byte in 31-bit addressing
mode.

3. Are any address fields that are less than 4 bytes still appropriate? Make sure
that a load instruction does not pick up a 4-byte field containing a 3-byte
address with extraneous data in the high-order byte. Make sure that bits 1-7
are zero.

4. Does the program use the ICM (insert characters under mask) instruction? The
use of this instruction is sometimes a problem because it can put data into the
high-order byte of a register containing an address, or it can put a 3-byte
address into a register without first zeroing the register. If the register is then
used as a base, index, or branch address register in 31-bit addressing mode, it
might not indicate the proper address.

5. Does the program invoke 24-bit addressing mode programs? If so, shared data
must be below 16 megabytes.

6. Is the program invoked by 24-bit or 31-bit addressing mode programs? Is the
data in an area addressable by the programs that need to use it? (The data
must be below 16 megabytes if used by a 24-bit addressing mode program.)

Writing New Programs That Use 31-Bit Addressing
You can write programs that execute in either 24-bit or 31-bit addressing mode.
However, to maintain an interface with existing programs and with some system
services, your 31-bit addressing mode programs need subroutines or portions of
code that execute in 24-bit addressing mode. If your program resides below 16
megabytes, it can change to 24-bit addressing mode when necessary.

If your program resides above 16 megabytes, it needs a separate load module to
perform the linkage to an unchanged 24-bit addressing mode program or service.
Such load modules are called linkage assist routines and are described in
“Establishing Linkage” on page 5-23.

When writing new programs, there are some things you can do to simplify the
passing of parameters between programs that might be in different addressing
modes. In addition, there are functions that you should consider and that you might
need to accomplish your program's objectives. Following is a list of suggestions for
coding programs to run on MVS/XA or MVS/ESA:

� Use fullword fields for addresses even if the addresses are only 24 bits in
length.

� When obtaining addresses from 3-byte fields in existing areas, use SR
(subtract register) to zero the register followed by ICM (insert characters under
mask) in place of the load instruction to clear the high-order byte. For example:

 Chapter 5. Understanding 31-Bit Addressing 5-9

Rather than: L 1,A

 use: SR 1,1
 ICM 1,7,A+1

The 7 specifies a 4-bit mask of 0111. The ICM instruction shown inserts bytes
beginning at location A+1 into register 1 under control of the mask. The bytes
to be filled correspond to the 1 bits in the mask. Because the high-order byte in
register 1 corresponds to the 0 bit in the mask, it is not filled.

� If the program needs storage above 16 megabytes, obtain the storage using
the STORAGE macro or the VRU, VRC, RU, and RC forms of GETMAIN and
FREEMAIN, or the corresponding functions on STORAGE. In addition, you can
obtain storage above 16 megabytes by using CPOOL services. These are the
only forms that allow you to obtain and free storage above 16 megabytes. Do
not use storage areas above 16 megabytes for save areas and parameters
passed to other programs.

� Do not use the STAE macro; use ESTAE or ESTAEX. STAE has 24-bit
addressing mode dependencies.

� Do not use SPIE; use ESPIE. SPIE has 24-bit addressing mode dependencies.

� Do not use previous paging services macros; use PGSER.

� To make debugging easier, switch addressing modes only when necessary.

� Identify the intended AMODE and RMODE for the program in a prologue.

� 31-bit addressing mode programs should use ESTAE, ESTAEX or the ESTAI
parameter on the ATTACH, or ATTACHX macro rather than STAE or STAI.
STAI has 24-bit addressing mode dependencies. When recovery routines refer
to the SDWA for PSW-related information, they should refer to SDWAEC1 (EC
mode PSW at the time of error) and SDWAEC2 (EC mode PSW of the program
request block (PRB) that established the ESTAE-type recovery.

When writing new programs, you need to decide whether to use 24-bit
addressing mode or 31-bit addressing mode.

The following are examples of kinds of programs that you should write in 24-bit
addressing mode:

– Programs that must execute on MVS/370 as well as MVS/XA or MVS/ESA
and do not require any new MVS functions.

– Service routines, even those in the common area, that use system services
requiring entry in 24-bit addressing mode or that must accept control
directly from unchanged 24-bit addressing mode programs.

When you use 31-bit addressing mode, you must decide whether the new
program should reside above or below 16 megabytes (unless it is so large that
it will not fit below). Your decision depends on what programs and system
services the new program invokes and what programs invoke it.

New Programs Below 16 Megabytes
The main reason for writing new 31-bit addressing mode programs that reside
below 16 megabytes is to be able to address areas above 16 megabytes or to
invoke 31-bit addressing mode programs while, at the same time, simplifying
communication with existing 24-bit addressing mode programs or system services,
particularly data management. For example, VSAM macros accept callers in 24-bit
or 31-bit addressing mode.

5-10 OS/390 V2R8.0 MVS Assembler Services Guide

Even though your program resides below 16 megabytes, you must be concerned
about dealing with programs that require entry in 24-bit addressing mode or that
require parameters to be below 16 megabytes. Figure 5-8 in “Establishing Linkage”
on page 5-23 contains more information about parameter requirements.

New Programs Above 16 Megabytes
When you write new programs that reside above 16 megabytes, your main
concerns are:

� Dealing with programs that require entry in 24-bit addressing mode or that
require parameters to be below 16 megabytes. Note that these are concerns of
any 31-bit addressing mode program no matter where it resides.

� How routines that remain below 16 megabytes invoke the new program.

Writing Programs for MVS/370 and MVS Systems with 31-Bit
Addressing

You can write new programs that will run on both MVS/370 and MVS systems that
use 31-bit addressing. If these programs do not need to use any new MVS
functions, the best way to avoid errors is to assemble the programs on MVS/370
with macro libraries from a 31-bit addressing system (MVS/XA or MVS/ESA). You
can also assemble these programs on 31-bit addressing systems with macro
libraries from MVS/370, but you must generate MVS/370-compatible macro
expansions by specifying the SPLEVEL macro at the beginning of the programs.

If the program needs to use new MVS functions, your programming task is more
difficult because most MVS/XA functions are not supported on MVS/370. You need
to use dual paths in your program so that on each system your program uses the
services or macros that are supported on that system.

Programs designed to execute on either 24 or 31-bit addressing systems must use
fullword addresses where possible and use no new functions on macros except the
LOC parameter on GETMAIN. These programs must also be aware of downward
incompatible macros and use SPLEVEL as needed.

 SPLEVEL Macro
Some macros are downward incompatible . The level of the macro expansion
generated during assembly depends on the value of an assembler language global
SET symbol. When the SET symbol value is 1, the system generates MVS/370
expansions. When the SET symbol value is 2 or greater, the system generates
MVS/XA or MVS/ESA expansions.

The SPLEVEL macro allows programmers to change the value of the SET symbol.
The SPLEVEL macro shipped with OS/390 MVS sets a default value of 5 for the
SET symbol. Therefore, unless a program or installation specifically changes the
default value, the macros generated are MVS/ESA macro expansions.

You can, within a program, issue the SPLEVEL SET=1 macro to obtain MVS/370
(MVS/System Product Version 1 Release 3.0) expansions, or SPLEVEL SET=2 to
obtain MVS/XA expansions, or SPLEVEL=3, 4, or 5 to obtain MVS/ESA
expansions. The SPLEVEL macro sets the SET symbol value for that program's
assembly only and affects only the expansions within the program being
assembled. A single program can include multiple SPLEVEL macros to generate
different macro expansions. The following example shows how to obtain different

 Chapter 5. Understanding 31-Bit Addressing 5-11

macro expansions within the same program by assembling both expansions and
making a test at execution time to determine which expansion to execute.

\ DETERMINE WHICH SYSTEM IS EXECUTING
TM CVTDCB,CVTMVSE (CVTMVSE is bit ð in the
BO SP2 CVTDCB field. If bit ð=1,

it indicates that MVS/XA
 is executing.)
\ INVOKE THE MVS/37ð VERSION OF THE WTOR MACRO
 SPLEVEL SET=1
 WTOR
 B CONTINUE
SP2 EQU \
\ INVOKE THE MVS/XA VERSION OF THE WTOR MACRO
 SPLEVEL SET=2
 WTOR
CONTINUE EQU \

OS/390 MVS Programming: Assembler Services Guide and OS/390 MVS
Programming: Assembler Services Reference describe the SPLEVEL macro.

Certain macros produce a “map” of control blocks or parameter lists. These
mapping macros do not support the SPLEVEL macro. Mapping macros for different
levels of MVS systems are available only in the macro libraries for each system.
When programs use mapping macros, a different version of the program may be
needed for each system.

 Dual Programs
Sometimes two programs may be required, one for each system. In this case, use
one of the following approaches:

� Keep each in a separate library

� Keep both in the same library but under different names

Addressing Mode and Residency Mode
Every program that executes in MVS/XA or MVS/ESA is assigned two program
attributes: an addressing mode (AMODE) and a residency mode (RMODE).
Programmers can specify these attributes for new programs. Programmers can also
specify these attributes for old programs through reassembly, linkage editor PARM
values, linkage editor MODE control statements, or loader PARM values. MVS
assigns default attributes to any program that does not have AMODE and RMODE
specified.

Addressing Mode - AMODE
AMODE is a program attribute that can be specified (or defaulted) for each CSECT,
load module, and load module alias. AMODE states the addressing mode that is
expected to be in effect when the program is entered. AMODE can have one of the
following values:

� AMODE 24 - The program is designed to receive control in 24-bit addressing
mode.

� AMODE 31 - The program is designed to receive control in 31-bit addressing
mode.

5-12 OS/390 V2R8.0 MVS Assembler Services Guide

� AMODE ANY - The program is designed to receive control in either 24-bit or
31-bit addressing mode.

Residency Mode - RMODE
RMODE is a program attribute that can be specified (or defaulted) for each CSECT,
load module, and load module alias. RMODE states the virtual storage location
(either above 16 megabytes or anywhere in virtual storage) where the program
should reside. RMODE can have the following values:

� RMODE 24 - The program is designed to reside below 16 megabytes in virtual
storage. MVS places the program below 16 megabytes.

� RMODE ANY - The program is designed to reside at any virtual storage
location, either above or below 16 megabytes. MVS places the program above
16 megabytes unless there is no suitable virtual storage above 16 megabytes.

AMODE and RMODE Combinations
Figure 5-4 shows all possible AMODE and RMODE combinations and indicates
which are valid.

AMODE and RMODE Combinations at Execution Time
At execution time, there are only three valid AMODE/RMODE combinations:

1. AMODE 24, RMODE 24, which is the default
2. AMODE 31, RMODE 24
3. AMODE 31, RMODE ANY

The ATTACH, ATTACHX, LINK, LINKX, XCTL, and XCTLX macros give the
invoked module control in the AMODE previously specified. However, specifying a
particular AMODE does not guarantee that a module that gets control by other
means will receive control in that AMODE. For example, an AMODE 24 module can
issue a BALR to an AMODE 31, RMODE 24 module. The AMODE 31 module will
get control in 24-bit addressing mode.

 Chapter 5. Understanding 31-Bit Addressing 5-13

AMODE 24

AMODE 31

AMODE ANY

RMODE 24

Valid

Valid

Valid 2

Invalid 1

Valid

It Depends 3

RMODE ANY

1. This combination is invalid because an AMODE 24 module cannot reside above 16
megabytes.

2. This is a valid combination in that the assembler, linkage editor, and loader accept it from
all sources. However, the combination is not used at execution time. Specifying ANY is a
way of deferring a decision about the actual AMODE until the last possible moment before
execution. At execution time, however, the module must execute in either 24-bit or 31-bit
addressing mode.

3. The attributes AMODE ANY/RMODE ANY take on a special meaning when used together.
(This meaning might seem to disagree with the meaning of either taken alone.) A module
with the AMODE ANY/RMODE ANY attributes will execute on either an MVS/370 or a
system that uses 31-bit addressing (MVS/XA or MVS/ESA) if the module is designed to:

� Use no facilities that are unique to MVS/XA or MVS/ESA.

� Execute entirely in 31-bit addressing mode on a system that uses 31-bit addressing
and return control to its caller in 31-bit addressing mode. (The AMODE could be
different from invocation to invocation.)

� Execute entirely in 24-bit addressing mode on an MVS/370 system.

The linkage editor and loader accept this combination from the object module or load
module but not from the PARM field of the linkage editor EXEC statement or the linkage
editor MODE control statement. The linkage editor converts AMODE ANY/RMODE ANY to
AMODE 31/RMODE ANY.

Figure 5-4. AMODE and RMODE Combinations

Determining the AMODE and RMODE of a Load Module
Use the AMBLIST service aid to find out the AMODE and RMODE of a load
module. The module summary produced by the LISTLOAD control statement
contains the AMODE of the main entry point and the AMODE of each alias, as well
as the RMODE specified for the load module. Refer to OS/390 MVS Diagnosis:
Tools and Service Aids for information about AMBLIST.

You can look at the source code to determine the AMODE and RMODE that the
programmer intended for the program. However, the linkage editor or the loader
can override these specifications.

Assembler H Support of AMODE and RMODE
Assembler H Version 2 supports AMODE and RMODE assembler instructions.
Using AMODE and RMODE assembler instructions, you can specify an AMODE
and an RMODE to be associated with a control section, an unnamed control
section, or a named common control section.

AMODE and RMODE in the Object Module
The only combination of AMODE and RMODE that is not valid is AMODE 24/
RMODE ANY.

The following errors will keep your program from assembling:

� Multiple AMODE/RMODE statements for a single control section

5-14 OS/390 V2R8.0 MVS Assembler Services Guide

� An AMODE/RMODE statement with an incorrect or missing value

� An AMODE/RMODE statement whose name field is not that of a valid control
section in the assembly.

AMODE and RMODE Assembler Instructions
The AMODE instruction specifies the addressing mode to be associated with a
CSECT in an object module. The format of the AMODE instruction is:

The name field associates the addressing mode with a control section. If there is a
symbol in the name field of an AMODE statement, that symbol must also appear in
the name field of a START, CSECT, or COM statement in the assembly. If the
name field is blank, there must be an unnamed control section in the assembly.

Similarly, the name field associates the residency mode with a control section. The
RMODE statement specifies the residency mode to be associated with a control
section. The format of the RMODE instruction is:

Both the RMODE and AMODE instructions can appear anywhere in the assembly.
Their appearance does not initiate an unnamed CSECT. There can be more than
one RMODE (or AMODE) instruction per assembly, but they must have different
name fields.

The defaults when AMODE, RMODE, or both are not specified are:

Name Operation Operand

Any symbol or blank AMODE 24/31/ANY

Name Operation Operand

Any symbol or blank RMODE 24/ANY

Specified Defaulted

Neither AMODE 24 RMODE 24

AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE ANY RMODE 24

RMODE 24 AMODE 24

RMODE ANY AMODE 31

DFP Linkage Editor Support of AMODE and RMODE
The linkage editor accepts AMODE and RMODE specifications from any or all of
the following:

 � Object modules.

 � Load modules.

� PARM field of the linkage editor EXEC statement. For example:

//LKED EXEC PGM=name,PARM='AMODE=31,RMODE=ANY,.....'

PARM field input overrides object module and load module input.

 Chapter 5. Understanding 31-Bit Addressing 5-15

� Linkage editor MODE control statements in the SYSLIN data set. For example:

MODE AMODE(31),RMODE(24)

MODE control statement input overrides object module, load module and
PARM input.

Linkage editor processing results in two sets of AMODE and RMODE indicators
located in:

� The load module

� The PDS entry for the member name and any PDS entries for alternate names
or alternate entry points that were constructed using the linkage editor ALIAS
control statement.

These two sets of indicators might differ because they can be created from different
input. The linkage editor creates indicators in the load module based on input from
the input object module and load module. The linkage editor creates indicators in
the PDS directory based not only on input from the object module and load module
but also on the PARM field of the linkage editor EXEC statement, and the MODE
control statements in the SYSLIN data set. The last two sources of input override
indicators from the object module and load module. Figure 5-5 shows linkage editor
processing of AMODE and RMODE.

5-16 OS/390 V2R8.0 MVS Assembler Services Guide

Assemble Input Linkage Editor Input

For each CSECT,
AMODE/RMODE
specified by
assembler statements
or defaulted to
24/24

Assembler H
Version 2

Optional AMODE/
RMODE PARM
values from JCL
EXEC statement
and/or MODE
control statement.

Linkage Editor Processing

Object module -
contains AMODE/
RMODE.

Processes optional PARM values
and/or MODE control statements
that override object module and
load module values. Puts
AMODE/RMODE in the PDS.

Processes AMODE/RMODE
values from object module
and load module. Puts
AMODE/RMODE into output
load module. (The linkage
editor does not use
AMODE/RMODE values from
the PDS.)

System obtains AMODE and RMODE
from PDS.

Contains AMODE/RMODE of each
executable control section and
named common control second
(derived from object module and
load module input values.)

PDS contains AMODE/RMODE
value from object module or
load module or from overriding
PARM values or MODE control
statements.

PARM values or MODE control
statements.

Load Module:

Figure 5-5. AMODE and RMODE Processing by the Linkage Editor

The linkage editor uses default values of AMODE 24/RMODE 24 for:

� Object modules produced by assemblers other than Assembler H Version 2

� Object modules produced by Assembler H Version 2 where source statements
did not specify AMODE or RMODE

� Load modules produced by linkage editors other than the DFP linkage editor

 Chapter 5. Understanding 31-Bit Addressing 5-17

� Load modules produced by the DFP linkage editor that did not have AMODE or
RMODE specified from any input source

� Load modules in overlay structure.

MVS/XA and MVS/ESA treat programs in overlay structure as AMODE 24, RMODE
24 programs. Putting a program into overlay structure destroys any AMODE and
RMODE specifications contained in the load module.

The linkage editor recognizes as valid the following combinations of AMODE and
RMODE:

AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE 31 RMODE ANY

AMODE ANY RMODE 24

AMODE ANY RMODE ANY

The linkage editor accepts the ANY/ANY combination from the object module or
load module and places AMODE 31, RMODE ANY into the PDS (unless overridden
by PARM values or MODE control statements). The linkage editor does not accept
ANY/ANY from the PARM value or MODE control statement.

Any AMODE value specified alone in the PARM field or MODE control statement
implies an RMODE of 24. Likewise, an RMODE of ANY specified alone implies an
AMODE of 31. However, for RMODE 24 specified alone, the linkage editor does
not assume an AMODE value. Instead, it uses the AMODE value specified in the
CSECT in generating the entry or entries in the PDS.

When the linkage editor creates an overlay structure, it assigns AMODE 24,
RMODE 24 to the resulting program.

Linkage Editor RMODE Processing
In constructing a load module, the linkage editor frequently is requested to combine
multiple CSECTs, or it may process an existing load module as input, combining it
with additional CSECTs or performing a CSECT replacement.

The linkage editor determines the RMODE of each CSECT. If the RMODEs are all
the same, the linkage editor assigns that RMODE to the load module. If the
RMODEs are not the same (ignoring the RMODE specification on common
sections), the more restrictive value, RMODE 24, is chosen as the load module's
RMODE.

The RMODE chosen can be overridden by the RMODE specified in the PARM field
of the linkage editor EXEC statement. Likewise, the PARM field RMODE can be
overridden by the RMODE value specified on the linkage editor MODE control
statement.

The linkage editor does not alter the RMODE values obtained from the object
module or load module when constructing the new load module. Any choice that
the linkage editor makes or any override processing that it performs affects only the
PDS.

5-18 OS/390 V2R8.0 MVS Assembler Services Guide

DFP Loader Support for AMODE and RMODE
The loader's processing of AMODE and RMODE is similar to the linkage editor's.
The loader accepts AMODE and RMODE specifications from:

 Object modules
 Load modules

PARM field of the JCL EXEC statement

Unlike the linkage editor, the loader does not accept MODE control statements from
the SYSLIN data set, but it does base its loading sequence on the sequence of
items in SYSLIN.

The loader passes the AMODE value to MVS. The loader processes the RMODE
value as follows. If the user specifies an RMODE value in the PARM field, that
value overrides any previous RMODE value. Using the value of the first RMODE it
finds in the first object module or load module it encounters that is not for a
common section, the loader obtains virtual storage for its output. As the loading
process continues, the loader may encounter a more restrictive RMODE value. If,
for example, the loader begins loading based on an RMODE ANY indicator and
later finds an RMODE 24 indicator in a section other than a common section, it
issues a message and starts over based on the more restrictive RMODE value.
Figure 5-6 shows loader processing of AMODE and RMODE.

 Chapter 5. Understanding 31-Bit Addressing 5-19

Loader Input

For each CSECT,
AMODE/RMODE
specified by
assembler
statements or
defaulted to 24/24.

Assembler H
Version 2

Optional AMODE/
RMODE PARM
values from JCL
EXEC statement.

Load Module:

Loader Processing

Object module -
contains AMODE/
RMODE.

Contains AMODE/RMODE
of each CSECT (derived
from object module or load
module input values.)

PDS information is not
used.

Processes object module and
load module AMODE/RMODE
values.

Processes optional AMODE/
RMODE PARM values that
override object module
and load module values.

Loader constructs program in virtual
storage with AMODE/RMODE from object
module, load module, or overriding
PARM values.

Assembler Input

Figure 5-6. AMODE and RMODE Processing by the Loader

MVS Support of AMODE and RMODE
The following are examples of MVS support of AMODE and RMODE:

� MVS obtains storage for the module as indicated by RMODE.

� ATTACH, ATTACHX, LINK, LINKX, XCTL, and XCTLX give the invoked module
control in the addressing mode specified by its AMODE.

� LOAD brings a module into storage based on its RMODE and sets bit 0 in
register 0 to indicate its AMODE.

� CALL passes control in the AMODE of the caller.

� SYNCH or SYNCHX has an AMODE parameter that you can use to specify the
AMODE of the invoked module.

� For SVCs, the system saves and sets the addressing mode.

� SRBs are dispatched in the addressing mode indicated by the SRB specified to
the SCHEDULE macro.

5-20 OS/390 V2R8.0 MVS Assembler Services Guide

� The cross memory instructions PC and PT establish the addressing mode for
the target program.

� DFP access methods, except VSAM macros and OPEN and CLOSE macros,
support AMODE 24 RMODE 24 callers only. VSAM macros and OPEN and
CLOSE macros support all addressing and residency mode callers.

� Dumping is based on the AMODE specified in the error-related PSW.

Program Fetch
The system uses RMODE information from the PDS to determine whether to
obtain storage above or below 16 megabytes.

ATTACH, ATTACHX, LINK, LINKX, XCTL, and XCTLX
Issuing an ATTACH or ATTACHX macro causes the control program to create
a new task and indicates the entry point to be given control when the new task
becomes active. If the entry point is a member name or an alias in the PDS.
ATTACH or ATTACHX gives it control in the addressing mode specified in the
PDS or in the mode specified by the loader. If the invoked program has the
AMODE ANY attribute, it gets control in the AMODE of its caller.

The LINK, LINKX, XCTL, and XCTLX macros also give the invoked program
control in the addressing mode indicated by its PDS for programs brought in by
fetch or in the AMODE specified by the loader. The entry point specified must
be a member name or an alias in the PDS passed by the loader, or specified in
an IDENTIFY macro. If the entry point is an entry name specified in an
IDENTIFY macro, IDENTIFY sets the addressing mode of the entry name equal
to the addressing mode of the main entry point.

LOAD
Issuing the LOAD macro causes MVS to bring the load module containing the
specified entry point name into virtual storage (if a usable copy is not already
there). LOAD sets the high-order bit of the entry point address in register 0 to
indicate the module's AMODE (0 for 24, 1 for 31), which LOAD obtains from
the module's PDS entry. If the module's AMODE is ANY, LOAD sets the
high-order bit in register 0 to correspond to the caller's AMODE.

LOAD places the module in virtual storage either above or below 16 megabytes
as indicated by the module's RMODE, which is specified in the PDS for the
module.

Specifying the ADDR parameter indicates that you want the module loaded at a
particular location. If you specify an address above 16 megabytes, be sure that
the module being loaded has the RMODE ANY attribute. If you do not know the
AMODE and RMODE attributes of the module, specify an address below 16
megabytes or omit the ADDR parameter.

CALL
The CALL macro passes control to an entry point via BALR. Thus control is
transferred in the AMODE of the caller. CALL does not change AMODE.

SYNCH or SYNCHX
Using the AMODE parameter on the SYNCH or SYNCHX macro, you can
specify the addressing mode in which the invoked module is to get control.
Otherwise, SYNCH or SYNCHX passes control in the caller's addressing mode.

 Chapter 5. Understanding 31-Bit Addressing 5-21

SVC
For SVCs (supervisor calls), MVS saves and restores the issuer's addressing
mode and makes sure that the invoked service gets control in the specified
addressing mode.

SRB
When an SRB (service request block) is dispatched, MVS sets the addressing
mode based on the high-order bit of the SRBEP field. This bit, set by the issuer
of the SCHEDULE macro, indicates the addressing mode of the routine
operating under the dispatched SRB.

PC and PT
For a program call (PC), the entry table indicates the target program's
addressing mode. The address field in the entry table must be initialized by
setting the high-order bit to 0 for 24-bit addressing mode or to 1 for 31-bit
addressing mode.

The PC instruction sets up register 14 with the return address and AMODE for
use with the PT (program transfer) instruction. If PT is not preceded by a PC
instruction, the PT issuer must set the high-order bit of the second operand
register to indicate the AMODE of the program being entered (0 for 24-bit
addressing mode or 1 for 31-bit addressing mode).

Data Management Access Methods
User programs must be in AMODE 24, RMODE 24 when invoking DFP access
methods other than VSAM. All non-VSAM access methods require parameter
lists, control blocks, buffers, and user exit routines to reside in virtual storage
below 16 megabytes.

VSAM request macros accept callers in AMODE 31, RMODE ANY. VSAM
allows parameter lists and control blocks to reside above 16 megabytes; for
details on addressing and residence requirements for VSAM parameter lists,
control blocks, buffers, and exit routines, see DFSMS/MVS Using Data Sets.

AMODE's Effect on Dumps
The only time AMODE has an effect on dumps is when data on either side of
the address in each register is dumped. If the addresses in registers are
treated as 24-bit addresses, the data dumped may come from a different
storage location than when the addresses are treated as 31-bit addresses. If a
dump occurs shortly after an addressing mode switch, some registers may
contain 31-bit addresses and some may contain 24 bit addresses, but dumping
services does not distinguish among them. Dumping services uses the AMODE
from the error-related PSW. For example, in dumping the area related to the
registers saved in the SDWA, dumping services uses the AMODE from the
error PSW stored in the SDWA.

How to Change Addressing Mode
To change addressing mode you must change the value of the PSW A-mode bit.
The following list includes all the ways to change addressing mode.

� The mode setting instructions BASSM and BSM.

� Macros (ATTACH, ATTACHX, LINK, LINKX, XCTL, or XCTLX). The system
makes sure that routines get control in the specified addressing mode. Users
need only ensure that parameter requirements are met. MVS restores the
invoker's mode on return from LINK or LINKX.

5-22 OS/390 V2R8.0 MVS Assembler Services Guide

� SVCs. The supervisor saves and restores the issuer's addressing mode and
ensures that the service routine receives control in the addressing mode
specified in its SVC table entry.

� SYNCH or SYNCHX with the AMODE parameter to specify the addressing
mode in which the invoked routine is to get control.

� The CIRB macro and the stage 2 exit effector. The CIRB macro is described in
OS/390 MVS Programming: Authorized Assembler Services Guide and OS/390
MVS Programming: Authorized Assembler Services Reference ALE-DYN.

� A PC, PT, or PR instruction. These three instructions establish the specified
addressing mode.

� An LPSW instruction (not recommended).

The example in Figure 5-7 illustrates how a change in addressing mode in a 24-bit
addressing mode program enables the program to retrieve data from the ACTLB
control block, which might reside above 16 megabytes. The example works
correctly whether or not the control block is actually above 16 megabytes. The
example uses the BSM instruction to change addressing mode. In the example, the
instruction L 2,4(,15) must be executed in 31-bit addressing mode. Mode setting
code (BSM) before the instruction establishes 31-bit addressing mode and code
following the instruction establishes 24-bit addressing mode.

USER CSECT
USER RMODE 24
USER AMODE 24
 L 15,ACTLB

L 1,LABEL1 SET HIGH-ORDER BIT OF REGISTER 1 TO 1
AND PUT ADDRESS INTO BITS 1-31

BSM ð,1 SET AMODE 31 (DOES NOT PRESERVE AMODE)
LABEL1 DC A(LABEL2 + X'8ððððððð')
LABEL2 DS ðH

L 2,4(,15) OBTAIN DATA FROM ABOVE 16 MEGABYTES
LA 1,LABEL3 SET HIGH-ORDER BIT OF REGISTER 1 TO ð

AND PUT ADDRESS INTO BITS 1-31
BSM ð,1 SET AMODE 24 (DOES NOT PRESERVE AMODE)

LABEL3 DS ðH

Figure 5-7. Mode Switching to Retrieve Data from Above 16 Megabytes

 Establishing Linkage
This section describes the mechanics of correct linkage in 31-bit addressing mode.
Keep in mind that there are considerations other than linkage, such as locations of
areas that both the calling module and the invoked module need to address.

Linkage in MVS systems that use 31-bit addressing (MVS/XA, MVS/ESA and
OS/390) is the same as in MVS/370 for modules whose addressing modes are the
same. As shown in Figure 5-8, it is the linkage between modules whose
addressing modes are different that is an area of concern. The areas of concern
that appear in Figure 5-8 fall into two basic categories:

� Addresses passed as parameters from one routine to another must be
addresses that both routines can use.

 Chapter 5. Understanding 31-Bit Addressing 5-23

– High-order bytes of addresses must contain zeroes or data that the
receiving routine is programmed to expect.

– Addresses must be less than 16 megabytes if they could be passed to a
24-bit addressing mode program.

� On transfers of control between programs with different AMODEs, the receiving
routine must get control in the AMODE it needs and return control to the calling
routine in the AMODE the calling routine needs.

5-24 OS/390 V2R8.0 MVS Assembler Services Guide

AMODE 31

AMODE 31 AMODE 31

AMODE 31

AMODE 31 AMODE 31

AMODE 24

AMODE 24 AMODE 24

AMODE 24

ok

16 megabytes ok
Possible

of
Area
Concern

Definite
of

Area
Concern

Possible
of

Area
Concern

ok

ok

1.

2.

3.

4.

4 1 2

3

4

AMODE 31

When an AMODE 31 module that resides above 16 megabytes invokes an AMODE 24 module, the concerns are:

The AMODE 24 program needs to receive control 24-bit mode.

The location of shared data (including control blocks, register save areas, and parameters). Can the AMODE 24
module address the data?

The AMODE 24 module cannot return control unless an addressing mode change occurs.

An AMODE 24 module cannot invoke an AMODE 31 module that resides above the line unless the AMODE 24
module changes its addressing mode either directly or using supervisor-assisted linkage.

When both modules are below 16 megabytes the concerns are:

Which module cleans out bits 1-7 of the high-order bytes of 24-bit values used as addresses?

Can both modules address shared data?

While there are no restrictions on the mechanics of linkage between two AMODE 31 modules, there might be
restrictions on parameter values.

Figure 5-8. Linkage Between Modules with Different AMODEs and RMODEs

There are a number of ways of dealing with the areas of concern that appear in
Figure 5-8:

� Use the branching instructions (BASSM and BSM)

� Use pointer-defined linkage

 Chapter 5. Understanding 31-Bit Addressing 5-25

� Use supervisor-assisted linkage (ATTACH, ATTACHX, LINK, LINKX, XCTL,
and XCTLX)

� Use linkage assist routines

 � Use “capping.”

Using the BASSM and BSM Instructions
The BASSM (branch and save and set mode) and the BSM (branch and set mode)
instructions are branching instructions that set the addressing mode. They are
designed to complement each other. (BASSM is used to call and BSM is used to
return, but they are not limited to such use.)

The description of BASSM appears in Figure 5-9. (See Principles of Operation for
more information.)

R ,R
1 2

BASSM RR

’0C’ R R1 2

0 8 12 15

Bits 32-63 of the current PSW, including the updated instruction address, are saved as link
information in the general register designated by R1. Subsequently, the addressing mode and
instruction address in the current PSW are replaced from the second operand. The action
associated with the second operand is not performed if the R2 field is zero.

The contents of the general register designated by the R2 field specify the new addressing mode
and branch address; however when the R2 field is zero, the operation is performed without
branching and without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the register
specifies the new addressing mode and replaces bit 32 of the current PSW, and the branch address
is generated from the contents of the register under the control of the new addressing mode. The
new value for the PSW is computed before the register designated by R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions: Trace (R2 field is not zero).

Figure 5-9. BRANCH and SAVE and Set Mode Description

The description of BSM appears in Figure 5-10. (See Principles of Operation for
more information.)

5-26 OS/390 V2R8.0 MVS Assembler Services Guide

R ,R
1 2

RR

R R1 2

0 8 12 15

BSM

’0B’

Bit 32 of the current PSW, the addressing mode, is inserted into the first operand. Subsequently the
addressing mode and instruction address in the current PSW are replaced from the second
operand. The action associated with an operand is not performed if the associated R field is zero.

The value of bit 32 of the PSW is placed in bit position 0 of the general register designated by R1,
and bits 1-31 of the register remain unchanged; however, when the R1 field is zero, the bit is not
inserted, and the contents of general register 0 are not changed.

The contents of the general register designated by the R2 field specify the new addressing mode
and branch address; however, when the R2 field is zero, the operation is performed without
branching and without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the register
specifies the new addressing mode and replaces bit 32 of the current PSW, and the branch address
is generated from the contents of the register under the control of the new addressing mode. The
new value for the PSW is computed before the register designated by R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions : None.

Figure 5-10. Branch and Set Mode Description

Calling and Returning with BASSM and BSM
In the following example, a module named BELOW has the attributes AMODE 24,
RMODE 24. BELOW uses a LOAD macro to obtain the address of module ABOVE.
The LOAD macro returns the address in register 0 with the addressing mode
indicated in bit 0 (a pointer-defined value). BELOW stores this address in location
EPABOVE. When BELOW is ready to branch to ABOVE, BELOW loads ABOVE's
entry point address from EPABOVE into register 15 and branches using BASSM
14,15. BASSM places the address of the next instruction into register 14 and sets
bit 0 in register 14 to 0 to correspond to BELOW's addressing mode. BASSM
replaces the PSW A-mode bit with bit 0 of register 15 (a 1 in this example) and
replaces the PSW instruction address with the branch address (bits 1-31 of register
15) causing the branch.

ABOVE uses a BSM 0,14 to return. BSM 0,14 does not save ABOVE's addressing
mode because 0 is specified as the first operand register. It replaces the PSW
A-mode bit with bit 0 of register 14 (BELOW's addressing mode set by BASSM)
and branches.

 Chapter 5. Understanding 31-Bit Addressing 5-27

16 megabytes

ABOVE CSECT
ABOVE AMODE 31
ABOVE RMODE ANY

.

.

.

.

.
BSM 0, 14

BELOW CSECT
BELOW AMODE 24
BELOW RMODE 24

.

.
LOAD EP=ABOVE
ST 0,EPABOVE
.

.
L 15,EPABOVE
BASSM 14,15

Figure 5-11. Using BASSM and BSM

Using Pointer-Defined Linkage
Pointer-defined linkage is a convention whereby programs can transfer control
back and forth without having to know each other's AMODEs. Pointer-defined
linkage is simple and efficient. You should use it in new or modified modules where
there might be mode switching between modules.

Pointer-defined linkage uses a pointer-defined value , which is a 4-byte area that
contains both an AMODE indicator and an address. The high-order bit contains the
AMODE; the remainder of the word contains the address. To use pointer-defined
linkage, you must:

� Use a pointer-defined value to indicate the entry point address and the entry
point's AMODE. (The LOAD macro provides a pointer-defined value.)

� Use the BASSM instruction specifying a register that contains the
pointer-defined value. BASSM saves the caller's AMODE and next the address
of the next sequential instruction, sets the AMODE of the target routine, and
branches to the specified location.

� Have the target routine save the full contents of the return register and use it in
the BSM instruction to return to the caller.

5-28 OS/390 V2R8.0 MVS Assembler Services Guide

Using an ADCON to Obtain a Pointer-Defined Value
The following method is useful when you need to construct pointer-defined values
to use in pointer-defined linkages between control sections or modules that will be
link edited into a single load module. You can also use this method when the
executable program is prepared in storage using the loader.

The method requires the use of an externally-defined address constant in the
routine to be invoked that identifies its entry mode and address. The address
constant must contain a pointer-defined value. The calling program loads the
pointer-defined value and uses it in a BASSM instruction. The invoked routine
returns using a BSM instruction.

In Figure 5-12, RTN1 obtains pointer-defined values from RTN2 and RTN3. RTN1,
the invoking routine does not have to know the addressing modes of RTN2 and
RTN3. Later, RTN2 or RTN3 could be changed to use different addressing modes,
and at that time their address constants would be changed to correspond to their
new addressing mode. RTN1, however, would not have to change the sequence of
code it uses to invoke RTN2 and RTN3.

You can use the techniques that the previous example illustrates to handle routines
that have multiple entry points (possibly with different AMODE attributes). You need
to construct a table of address constants, one for each entry point to be handled.

 Chapter 5. Understanding 31-Bit Addressing 5-29

RTN1 CSECT
 EXTRN RTN2AD
 EXTRN RTN3AD
 .
 .

L 15,=A(RTN2AD) LOAD ADDRESS OF POINTER-DEFINED VALUE
L 15,ð(,15) LOAD POINTER-DEFINED VALUE
BASSM 14,15 GO TO RTN2 VIA BASSM

 .
 .

L 15,=A(RTN3AD) LOAD ADDRESS OF POINTER-DEFINED VALUE
L 15,ð(,15) LOAD POINTER DEFINED-VALUE
BASSM 14,15 GO TO RTN3 VIA BASSM

 .

RTN2 CSECT
RTN2 AMODE 24
 ENTRY RTN2AD
 .

BSM ð,14 RETURN TO CALLER IN CALLER'S MODE
RTN2AD DC A(RTN2) WHEN USED AS A POINTER-DEFINED VALUE,

INDICATES AMODE 24 BECAUSE BIT ð IS ð

RTN3 CSECT
RTN3 AMODE 31
 ENTRY RTN3AD
 .

BSM ð,14 RETURN TO CALLER IN CALLER'S MODE
RTN3AD DC A(X'8ððððððð'+RTN3) WHEN USED AS A POINTER-DEFINED VALUE

INDICATES AMODE 31 BECAUSE BIT ð IS 1

Figure 5-12. Example of Pointer-Defined Linkage

As with all forms of linkage, there are considerations in addition to the linkage
mechanism. These include:

� Both routines must have addressability to any parameters passed.

� Both routines must agree which of them will clean up any 24-bit addresses that
might have extraneous information bits 1-7 of the high-order byte. (This is a
consideration only for AMODE 31 programs.)

When a 24-bit addressing mode program invokes a module that is to execute in
31-bit addressing mode, the calling program must ensure that register 13 contains
a valid 31-bit address of the register save area with no extraneous data in bits 1-7
of the high-order byte. In addition, when any program invokes a 24-bit addressing
mode program, register 13 must point to a register save area located below 16
megabytes.

5-30 OS/390 V2R8.0 MVS Assembler Services Guide

Using the LOAD Macro to Obtain a Pointer-Defined Value
LOAD returns a pointer-defined value in register 0. You can preserve this
pointer-defined value and use it with a BASSM instruction to pass control without
having to know the target routine's AMODE.

Using Supervisor-Assisted Linkage
Figure 5-13 shows a “before” and “after” situation involving two modules, MOD1
and MOD2. In the BEFORE part of the figure both modules execute in 24-bit
addressing mode. MOD1 invokes MOD2 using the LINK or LINKX macro. The
AFTER part of the figure shows MOD2 moving above 16 megabytes and outlines
the steps that were necessary to make sure both modules continue to perform their
previous function.

 Chapter 5. Understanding 31-Bit Addressing 5-31

BEFORE

MOD1 CSECT

LINK EP=MOD2

AFTER MOD2 moves above 16 megabytes.

MOD2 CSECT

MOD2 AMODE 31

MOD2 RMODE ANY

line

4.

3.

2.

1.

5.

MOD1 CSECT

LINK EP=MOD2

AMODE 24

RMODE 24
by default

MOD1 links to MOD2. Both MOD1 and MOD2 reside below 16 megabytes and have the
attributes AMODE 24, RMODE 24 by default.

MOD2 CSECT

When MOD2 moves above 16 megabytes, you must make sure it will execute
correctly. Specifically, you must:

Review any mode-sensitive instructions to be sure they perform as intended in
AMODE 31, RMODE ANY.

Review system services used to be sure they can be invoked in AMODE 31,
RMODE ANY and make the any necessary changed. (For example, change SPIE
to ESPIE). Review the Conversion Notebook chapters on incompatibilities,
coexistence considerations, and programming considerations. Move any services
that do not permit callers to be in 31-bit mode to modules residing below 16
megabytes.

Make sure all parameters and control blocks needed by MOD1 reside below 16
megabytes.

Make sure all addresses passed by MOD1 have high-order bytes that are free of
extraneous data or code MOD2 to clean up the high-order bytes to any address
shared with MOD1.

Make sure that all fields containing addresses of areas above 16 megabytes are
fullword fields.

16 megabytes

LINK or LINKX handles the mode switching between MOD1 and MOD2 as
follows:

1. LINK or LINKX obtains MOD2’s AMODE from the PDS directory entry.
2. LINK or LINKX ensures that MOD2 is entered in the specified AMODE.
3. On completion, LINK or LINKX restores MOD1’s AMODE by default and

returns control.

Figure 5-13. Example of Supervisor-Assisted Linkage

5-32 OS/390 V2R8.0 MVS Assembler Services Guide

Linkage Assist Routines
A linkage assist routine , sometimes called an addressing mode interface routine,
is a module that performs linkage for modules executing in different addressing or
residency modes. Using a linkage assist routine, a 24-bit addressing mode module
can invoke a 31-bit addressing mode module without having to make any changes.
The invocation results in an entry to a linkage assist routine that resides below 16
megabytes and invokes the 31-bit addressing mode module in the specified
addressing mode.

Conversely, a 31-bit addressing mode module, such as a new user module, can
use a linkage assist routine to communicate with other user modules that execute
in 24-bit addressing mode. The caller appears to be making a direct branch to the
target module, but branches instead to a linkage assist routine that changes modes
and performs the branch to the target routine.

The main advantage of using a linkage assist routine is to insulate a module from
addressing mode changes that are occurring around it.

The main disadvantage of using a linkage assist routine is that it adds overhead to
the interface. In addition, it takes time to develop and test the linkage assist routine.
Some alternatives to using linkage assist routines are:

� Changing the modules to use pointer-defined linkage (described in “Using
Pointer-Defined Linkage” on page 5-28).

� Adding a prologue and epilogue to a module to handle entry and exit mode
switching, as described later in this chapter under “Capping.”

Example of Using a Linkage Assist Routine
Figure 5-14 shows a “before” and “after” situation involving modules USER1 and
USER2. USER1 invokes USER2 by using a LOAD and BALR sequence. The
“before” part of the figure shows USER1 and USER2 residing below 16 megabytes
and lists the changes necessary if USER2 moves above 16 megabytes. USER1
does not change.

The “after” part of the figure shows how things look after USER2 moves above 16
megabytes. Note that USER2 is now called USER3 and the newly created linkage
assist routine has taken the name USER2.

The figure continues with a coding example that shows all three routines after the
move.

 Chapter 5. Understanding 31-Bit Addressing 5-33

BEFORE
Existing Application - USER1 invokes USER2 repeatedly

USER1 USER2

LOAD EP=USER2

BALR
RETURN

AFTER

Changed Application

USER1 USER2 (NEW)

USER2 CSECT
USER2 AMODE 24
USER2 RMODE 24
LOAD USER3

BASSM
BSM TO
NEXT
SEQUENTIAL
INSTRUCTION

RETURN

USER3 (formerly USER2)

USER3 CSECT
USER3 AMODE 31
USER3 RMODE ANY

RETURN

Change Reason

USER1 CSECT
LOAD EP=USER2

BALR

Change name of USER2 TO USER3.

Write a linkage assist routine called USER2.

Change USER3 (formerly USER2) as follows:

- Make sure all control blocks and parameters needed
by USER1 and USER2 are located below
16 megabytes line.

- Check mode-sensitive instructions to be sure they
perform the intended function in AMODE 31,
REMODE ANY.

- Check system services used to be sure they can be
invoked in AMODE 31, RMODE ANY and make any
necessary changes. (For example, change SPIE to
ESPIE.) Review the Conversion Notebook chapters
on incompatibilities, coexistence considerations, and
programming considerations.

- Make sure that all fields containing addresses
of areas above 16 megabytes are fullword fields.

USER1 does not have to change the LOAD
USER2 macro.

USER1 remains unchanged; new USER2 switches
AMODEs and branches to USER3 (the former
USER).

- USER1 and USER2 are AMODE 24; they cannot
access parameters or data above 16 megabytes.

- USER3 was moved above 16 megabytes and
has the attributes AMODE 31, REMODE ANY.

- USER3 has the attributes AMODE 31, RMODE
ANY. SPIE and some other system services will
not work in AMODE 31.

Figure 5-14 (Part 1 of 5). Example of a Linkage Assist Routine

5-34 OS/390 V2R8.0 MVS Assembler Services Guide

USER1 (This module will not change)
\ USER MODULE USER1 CALLS MODULE USER2 ððððð1ðð
USER1 CSECT ððððð2ðð
BEGIN SAVE (14,12),,\ (SAVE REGISTER CONTENT, ETC.) ððððð3ðð
\ ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL ððððð4ðð
\ ENTRY CODING) ððððð5ðð
 .
 .
\ ISSUE LOAD FOR MODULE USER2 ððððð7ðð

LOAD EP=USER2 ISSUE LOAD FOR MODULE "USER2" ððððð8ðð
\ In the MVS/XA environment, the LOAD macro returns a
\ pointer-defined value. However, because module USER1
\ has not been changed and executes in AMODE 24, the
\ pointer-defined value has no effect on the BALR
\ instruction used to branch to module USER2.

ST ð,EPUSER2 PRESERVE ENTRY POINT ððððð9ðð
 .
\ MAIN PROCESS BEGINS ðððð1ððð
PROCESS DS ðH ðððð11ðð
 .
 .
 .
 .
 .
 .
\ PREPARE TO GO TO MODULE USER2 ðððð2ððð

L 15,EPUSER2 LOAD ENTRY POINT ðððð21ðð
 BALR 14,15 ðððð22ðð
 .
 .
 .
 .

TM TEST FOR END ðððð3ððð
BC PROCESS CONTINUE IN LOOP ðððð31ðð

 .
 DELETE EP=USER2
 L 13,4(13)

RETURN (14,12),T,RC=ð MODULE USER1 COMPLETED ðððð5ððð
EPUSER2 DC F'ð' ADDRESS OF ENTRY POINT TO USER2 ðððð7ððð
 END BEGIN ðððð71ðð

Figure 5-14 (Part 2 of 5). Example of a Linkage Assist Routine

USER2 (Original application module)
\ USER MODULE USER2 (INVOKED FREQUENTLY FROM USER1) ððððð1ðð
USER2 CSECT ððððð2ðð

SAVE (14,12),,\ SAVE REGISTER CONTENT, ETC. ððððð3ðð
\ ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL ððððð4ðð
\ ENTRY CODING)
 .
 .
 .
 .
 .
 L 13,4(13)

RETURN (14,12),T,RC=ð MODULE USER2 COMPLETED ðððð81ðð
 END ðððð82ðð

Figure 5-14 (Part 3 of 5). Example of a Linkage Assist Routine

 Chapter 5. Understanding 31-Bit Addressing 5-35

USER2 (New linkage assist routine)
\ THIS IS A NEW LINKAGE ASSIST ROUTINE ðððð1ðð
\ (IT WAS NAMED USER2 SO THAT MODULE USER1 WOULD NOT ðððð2ðð
\ HAVE TO BE CHANGED) ðððð3ðð
USER2 CSECT ðððð4ðð
USER2 AMODE 24 ðððð5ðð
USER2 RMODE 24 ðððð6ðð

SAVE (14,12),,\ (SAVE REGISTER CONTENT, ETC.) ðððð7ðð
\ ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL ðððð8ðð
\ ENTRY CODING)
 .
\ FIRST TIME LOGIC, PERFORMED ON INITIAL ENTRY ONLY, ððð2ððð
\ (AFTER INITIAL ENTRY, BRANCH TO PROCESS (SHOWN BELOW)) ððð21ðð
 .
 GETMAIN NEW REGISTER SAVE AREA ððð3ððð
 .
 LOAD EP=USER3 ððð4ððð
\ USER2 LOADS USER3 BUT DOES NOT DELETE IT. USER2 CANNOT
\ DELETE USER3 BECAUSE USER2 DOES NOT KNOW WHICH OF ITS USES
\ OF USER3 IS THE LAST ONE.

ST ð,EPUSER3 PRESERVE POINTER DEFINED VALUE ððð41ðð
 .
\ PROCESS (PREPARE FOR ENTRY TO PROCESSING MODULE) ððð5ððð
 .

(FOR EXAMPLE, VALIDITY CHECK REGISTER CONTENTS)
 .
 .
\ PRESERVE AMODE FOR USE DURING RETURN SEQUENCE ððð7ððð

LA 1,XRETURN SET RETURN ADDRESS ððð8ððð
BSM 1,ð PRESERVE CURRENT AMODE ððð81ðð

 ST 1,XSAVE PRESERVE ADDRESS ððð82ðð
L 15,EPUSER3 LOAD POINTER DEFINED VALUE ððð9ððð

\ GO TO MODULE USER3 ððð91ðð
BASSM 14,15 TO PROCESSING MODULE ððð92ðð

\ RESTORE AMODE THAT WAS IN EFFECT ððð93ðð
L 1,XSAVE LOAD POINTER DEFINED VALUE ððð94ðð
BSM ð,1 SET ADDRESSING MODE ððð95ðð

XRETURN DS ðH ððð96ðð
 L 13,4(13)
 .

RETURN (14,12),T,RC=ð MODULE USER2 HAS COMPLETED ðð1ðððð
EPUSER3 DC F'ð' POINTER DEFINED VALUE ðð1ð1ðð
XSAVE DC F'ð' ORIGINAL AMODE AT ENTRY ðð1ð2ðð
 END ðð1ð5ðð

� Statements 8000 through 8200: These instructions preserve the AMODE
in effect at the time of entry into module USER2.

� Statement 9200: This use of the BASSM instruction:
– Causes the USER3 module to be entered in the specified AMODE (AMODE 31 in

this example). This occurs because the LOAD macro returns a pointer-defined
value that contains the entry point of the loaded routine, and the specified
AMODE of the module.

– Puts a pointer-defined value for use as the return address into Register
14.

� Statement 9400: Module USER3 returns to this point.
� Statement 9500: Module USER2 re-establishes the AMODE that was in

effect at the time the BASSM instruction was issued (STATEMENT 9200).

Figure 5-14 (Part 4 of 5). Example of a Linkage Assist Routine

5-36 OS/390 V2R8.0 MVS Assembler Services Guide

USER3 (New Application Module)
\ MODULE USER3 (PERFORMS FUNCTIONS OF OLD MODULE USER2) ððððð1ðð
USER3 CSECT ððððð2ðð
USER3 AMODE 31 ððððð3ðð
USER3 RMODE ANY ððððð4ðð

SAVE (14,12),,\ (SAVE REGISTER CONTENT, ETC.) ððððð5ðð
\ ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA ððððð6ðð
 .
 .
 .
 .
 .
 .
\ RESTORE REGISTERS AND RETURN ðððð8ððð
 .
 RETURN (14,12),T,RC=ð ðððð81ðð
 END ðððð82ðð

� Statements 300 and 400 establish the AMODE and RMODE values for this
module. Unless they are over-ridden by linkage editor PARM values or MODE
control statements, these are the values that will be placed in the PDS for
this module.

� Statement 8100 returns to the invoking module.

Figure 5-14 (Part 5 of 5). Example of a Linkage Assist Routine

Using Capping - Linkage Using a Prologue and Epilogue
An alternative to linkage assist routines is a technique called capping . You can add
a “cap” (prologue and epilogue) to a module to handle entry and exit addressing
mode switching. The cap accepts control in either 24-bit or 31-bit addressing mode,
saves the caller's registers, and switches to the addressing mode in which the
module is designed to run. After the module has completed its function, the
epilogue portion of the cap restores the caller's registers and addressing mode
before returning control.

For example, when capping is used, a module in 24-bit addressing mode can be
invoked by modules whose addressing mode is either 24-bit or 31-bit; it can
perform its function in 24-bit addressing mode and can return to its caller in the
caller's addressing mode. Capped modules must be able to accept callers in either
addressing mode. Modules that reside above 16 megabytes cannot be invoked in
24-bit addressing mode. Capping, therefore, can be done only for programs that
reside below 16 megabytes.

Figure 5-15 shows a cap for a 24-bit addressing mode module.

 Chapter 5. Understanding 31-Bit Addressing 5-37

MYPROG CSECT
MYPROG AMODE ANY
MYPROG RMODE 24
 USING \,15

STM 14,12,12(13) SAVE CALLER'S REGISTERS BEFORE SETTING AMODE
LA 1ð,SAVE SET FORWARD ADDRESS POINTER IN CALLER'S

 ST 1ð,8(13) SAVE AREA
LA 12,MYMODE SET AMODE BIT TO ð AND ESTABLISH BASE
LA 11,RESETM GET ADDRESS OF EXIT CODE
BSM 11,12 SAVE CALLER'S AMODE AND SET IT TO AMODE 24

 USING \,12
MYMODE DS ðH
 DROP 15

ST 13,SAVE+4 SAVE CALLER'S SAVE AREA
LR 13,1ð ESTABLISH OWN SAVE AREA

This is the functional part of the original module.
This example assumes that register 11 retains its
original contents throughout this portion of the program.

L 13,4(13) GET ADDRESS OF CALLER'S SAVE AREA
BSM ð,11 RESET CALLER'S AMODE

RESETM DS ðH
LM 14,12,12(13) RESTORE CALLER'S REGISTERS IN CALLER'S AMODE

 BR 14 RETURN
 SAVE DS ðF
 DC 18F'ð'

Figure 5-15. Cap for an AMODE 24 Module

Performing I/O in 31-Bit Addressing Mode
Programs in 31-bit addressing mode usually need to use 24-bit addressing mode
programs to perform an I/O operation because all I/O control blocks, IDAWs
(indirect data address words), and CCWs must reside below 16 megabytes and all
I/O requests must be made by programs executing in 24-bit addressing mode
(except for VSAM). Generally, data buffers must be below 16 megabytes as well.

A 31-bit addressing mode program can perform an I/O operation by:

� Using VSAM services that accept callers in either 24-bit or 31-bit addressing
mode. (DFSMS/MVS Using Data Sets describes VSAM services.)

� Using the EXCP macro. All parameter lists, control blocks, CCWs, virtual
IDAWs, and EXCP appendage routines must reside in virtual storage below 16
megabytes. See “Using the EXCP Macro” on page 5-39 for a description of
using EXCP to perform I/O.

� Using the EXCPVR macro. All parameter lists, control blocks, CCWs, IDALs
(indirect data address lists), and appendage routines must reside in virtual
storage below 16 megabytes. See “Using EXCPVR” on page 5-39 for a
description of using EXCPVR to perform I/O.

� Invoking a routine that executes in 24-bit addressing mode as an interface to
non-VSAM access methods, which accept callers executing in 24-bit

5-38 OS/390 V2R8.0 MVS Assembler Services Guide

addressing mode only. See “Establishing Linkage” on page 5-23 for more
information about this method.

� Using the method shown in Figure 5-16 on page 5-41.

To perform I/O to buffers located in virtual storage above 16 megabytes, programs
must use either:

� The EXCP macro and virtual IDAWs
� The EXCPVR macro
� The VSAM access method.

Using the EXCP Macro
EXCP macro users can perform I/O to virtual storage areas above 16 megabytes.
By using virtual IDAW support, CCWs in the EXCP channel program can, using a
24-bit address, point to a virtual IDAW that contains the 31-bit virtual address of an
I/O buffer. The CCWs and IDAWs themselves must reside in virtual storage below
16 megabytes. The EXCP service routine supports only format 0 CCWs, the CCW
format used in MVS/370.

CCW (Format 0)

Address of
an IDAW

IDAW

Virtual address of
an I/O buffer

Any CCW that causes data to be transferred can point to a virtual IDAW. Virtual
IDAW support is limited to non-VIO data sets.

Although the I/O buffer can be in virtual storage above 16 megabytes, the virtual
IDAW that contains the pointer to the I/O buffer and all the other areas related to
the I/O operation (CCWs, IOBs, DEBs, and appendages) must reside in virtual
storage below 16 megabytes.

 Using EXCPVR
The EXCPVR interface supports only format 0 CCWs. Format 0 CCWs support only
24-bit addresses. All CCWs and IDAWs used with EXCPVR must reside in virtual
or central storage below 16 megabytes. The largest virtual or central storage
address you can specify directly in your channel program is 16 megabytes minus
one. However, using IDAWs (indirect data address words) you can specify any
central storage address and therefore you can perform I/O to any location in real or
virtual storage. EXCPVR channel programs must use IDAWs to specify buffer
addresses above 16 megabytes in central storage.

The format 0 CCW may contain the address of an IDAL (indirect address list),
which is a list of IDAWs (indirect data address words).

 Chapter 5. Understanding 31-Bit Addressing 5-39

CCW (Format 0)

Address of
IDAL

0 8 32 48 63

IDAL

IDAW

IDAW

IDAW

I/O buffer
address

You must assume that buffers obtained by data management access methods have
real storage addresses above 16 megabytes.

Example of Performing I/O While Residing Above 16 Megabytes
Figure 5-16 shows a “before” and “after” situation that involves two functions,
USER1 and USER2. In the BEFORE part of the example, USER1 contains both
functions and resides below 16 megabytes. In the AFTER part of the example
USER1 has moved above 16 megabytes. The portion of USER1 that requests data
management services has been removed and remains below 16 megabytes.

The figure includes a detailed coding example that shows both USER1 and
USER2.

5-40 OS/390 V2R8.0 MVS Assembler Services Guide

BEFORE

AFTER

USER1

USER2 CSECT
USER2 AMODE 24
USER2 RMODE 24

USER1 CSECT
USER1 AMODE 31
USER1 RMODE ANY

Data Management
Services

Data Management
Services

(AMODE 24, RMODE 24
by default)

16 megabytes

USER1 is an application program that occasionally requests data management services to
perform data base I/O. USER1 and data management services reside below 16 megabytes.

USER1 moves above 16 megabytes and moves its interface to data management into a new module, USER2.
USER2 remains below 16 megabtyes because data management services must be invoked 24-bit addressing
mode (except for VSAM). The following coding example shows USER1 and USER2 after USER1 has moved.

Figure 5-16 (Part 1 of 9). Performing I/O While Residing Above 16 Megabytes

 Chapter 5. Understanding 31-Bit Addressing 5-41

USER1 Application Module
\Module USER1 receives control in 31-bit addressing mode, resides in
\storage above 16 megabytes, and calls module USER2 to perform data
\management services.
\In this example, note that no linkage assist routine is needed.
USER1 CSECT
USER1 AMODE 31
USER1 RMODE ANY
\
\ Save the caller's registers in save area provided
\
#1ðð SAVE (14,12) Save registers
 BASR 12,ð Establish base
 USING \,12 Addressability

Storage will be obtained via GETMAIN for USER2's work area (which will also contain the save area that module USER2 will
store into as well as parameter areas in which information will be passed.) Since module USER2 must access data in the
work area, the work area must be obtained below 16 megabytes.

LA ð,WORKLNTH Length of the work area
\ required for USER2
#2ðð GETMAIN RU,LV=(ð),LOC=BELOW Obtain work area storage

LR 6,1 Save address of obtained
\ storage to be used for
\ a work area for module
\ USER2

USING WORKAREA,6 Work area addressability

The SAVE operation at statement #100 may save registers into a save area that exists in storage either below or above 16
megabytes. If the save area supplied by the caller of module USER1 is in storage below 16 megabytes, it is assumed that the
high-order byte of register 13 is zero.

The GETMAIN at statement #200 must request storage below 16 megabytes for the following reasons:

1. The area obtained via GETMAIN will contain the register save area in which module USER2 will save registers. Because module
USER2 runs in 24-bit addressing mode, it must be able to access the save area.

2. Because module USER2 will extract data from the work area to determine what function to perform, the area must be below 16
megabytes, otherwise, USER2 would be unable to access the parameter area.

LA ð,GMLNTH Get dynamic storage for
\ module USER1 (USER1 resides
\ above 16 megabytes)
#3ðð GETMAIN RU,LV=(ð),LOC=RES Get storage above 16
\ megabytes

LR 8,1 Copy address of storage
\ obtained via GETMAIN

USING DYNAREA,8 Base register for dynamic
\ work area
#4ðð ST 13,SAVEBKWD Save address of caller's
\ save area

LR 9,13 Save caller's save area
\ address

LA 13,SAVEAREA USER1's save area address
\ Note - save area is below
\ 16 megabytes

ST 13,8(9) Have caller's save area
\ point to my save area

LOAD EP=IOSERV Load address of data
\ management service
\ Entry point address
\ returned will be pointer-defined

ST ð,EPA Save address of loaded
\ routine.

The GETMAIN at statement #300 requests that the storage to be obtained match the current residency mode of module USER1.
Because the module resides above 16 megabytes, the storage obtained will be above 16 megabytes.

At statement #400, the address of the caller's save area is saved in storage below 16 megabytes.

Figure 5-16 (Part 2 of 9). Performing I/O While Residing Above 16 Megabytes

5-42 OS/390 V2R8.0 MVS Assembler Services Guide

Prepare to open input and output data base files

MVC FUNCTION,OPEN1 Indicate open file 1
\ for input

LA 1,COMMAREA Set up register 1 to
\ point to the parameter
\ area
#5ðð L 15,EPA Get pointer-defined address
\ of the I/O service
\ routine
#6ðð BASSM 14,15 Call the service routine
\ Note: AMODE will change
#65ð MVC FUNCTION,OPEN2 Indicate open file 2
\ for output

LA 1,COMMAREA Setup register 1 to
\ point to the parameter
\ area
#7ðð L 15,EPA Get pointer-defined address
\ of the I/O service
\ routine

BASSM 14,15 Call the service routine
\ Note: AMODE will change

The entry point address loaded at statements #500 and #700 is pointer-defined, as returned by the LOAD service routine. That is,
the low-order three bytes of the symbolic field EPA will contain the virtual address of the loaded routine while the high order bit (bit 0)
will be zero to indicate the loaded module is to receive control in 24-bit addressing mode. The remaining bits (1-7) will also be zero in
the symbolic field EPA.

The BASSM at statement #600 does the following:

� Places into bit positions 1-31 of register 14 the address of statement #650.
� Sets the high-order bit of register 14 to one to indicate the current addressing mode.
� Replaces bit positions 32-63 of the current PSW with the contents of register 15 (explained above)

The BSM instruction used by the called service routine USER2 to return to USER1 will reestablish 31-bit addressing mode.

Prepare to read a record from data base file 1.

READRTN DS ðH
MVC FUNCTION,READ1 Indicate read to file 1
XC BUFFER,BUFFER Clear input buffer
LA 1,COMMAREA Set up register 1 to

\ point to the parameter area
L 15,EPA Get pointer-defined address

\ of the I/O service routine
BASSM 14,15 Call the service routine

\ Note: The BASSM will change
\ the AMODE to 24-bit. The
\ BSM issued in the service
\ routine will reestablish
\ 31-bit addressing mode.
#9ðð CLC STATUS,ENDFILE End of file encountered
\ by module USER2 ?

BE EODRTN Close files and exit
MVC BUFFR31A,BUFFER Move record returned to

\ storage above 16 megabytes

At statement #900, a check is made to determine if called module USER2 encountered the end of file. The end of file condition in
this example can only be intercepted by USER2 because the EOD exit address specified on the DCB macro must reside below 16
megabytes. The end of file condition must then be communicated to module USER1.

Figure 5-16 (Part 3 of 9). Performing I/O While Residing Above 16 Megabytes

 Chapter 5. Understanding 31-Bit Addressing 5-43

Call a record analysis routine that exists above 16 megabytes.

LA 1,BUFFR31A Get address of first buffer
ST 1,BUFPTR+ð Store into parameter list
LA 1,UPDATBFR Get address of output

\ buffer
ST 1,BUFPTR+4 Store into parameter list
LA 1,BUFPTR Set up pointers to work

\ buffers for the analysis
\ routine

L 15,ANALYZE Address of analysis routine
#1ððð BASR 14,15 Call analysis routine

MVC BUFFER,UPDATBFR Move updated record to
\ storage below 16 megabytes
\ so that the updated record can
\ be written back to the data base

At statement #1000 a BASR instruction is used to call the analysis routine since no AMODE switching is required. A BALR could
also have been used. A BALR executed while in 31-bit addressing mode performs the same function as a BASR instruction. The
topic “Mode Sensitive Instructions” describes the instruction differences.

MVC FUNCTION,WRITE1 Indicate write to file 1
LA 1,COMMAREA Set up register 1 to

\ point to the parameter area
L 15,EPA Get pointer-defined address

\ of the I/O service routine
\ routine

BASSM 14,15 Call the service routine
\ Note: The BASSM will set
\ the AMODE to 24-bit. The
\ BSM issued in the service
\ routine will reestablish
\ 31-bit addressing mode

B READRTN Get next record to process

Prepare to close input and output data base files

EODRTN DS ðH End of data routine
MVC FUNCTION,CLOSE1 Indicate close file 1
LA 1,COMMAREA Set up register 1 to

\ point to the parameter area
L 15,EPA Get pointer-defined address

\ of the I/O service routine
BASSM 14,15 Call the service routine

\ Note: The BASSM sets
\ the AMODE to 24-bit. The
\ BSM issued in the service
\ routine will reestablish
\ 31-bit addressing mode

MVC FUNCTION,CLOSE2 Indicate close file 2
LA 1,COMMAREA Set up register 1 to

\ point to the parameter area
L 15,EPA Get pointer-defined address

\ of the I/O service routine
BASSM 14,15 Call the service routine

\ Note: The BASSM sets
\ the AMODE to 24-bit. The
\ BSM issued in the service
\ routine will reestablish
\ 31-bit addressing mode

Figure 5-16 (Part 4 of 9). Performing I/O While Residing Above 16 Megabytes

5-44 OS/390 V2R8.0 MVS Assembler Services Guide

Prepare to return to the caller

L 13,SAVEBKWD Restore save area address
\ of the caller of module
\ USER1

LA ð,WORKLNTH Length of work area and
\ parameter area used by
\ module USER2
 FREEMAIN RC,LV=(ð),A=(6) Free storage
 DROP 6

LA ð,GMLNTH Length of work area used
\ by USER1
 FREEMAIN RC,LV=(ð),A=(8) Free storage
 DROP 8

XR 15,15 Set return code zero
 RETURN (14,12),RC=(15)

Define DSECTs and constants for module to module communication . Define constants used to communicate the function
module USER2 is to perform.

 DS ðF
READ1 DC C'R1' Read from file 1 opcode
WRITE1 DC C'W1' Write to file 1 opcode
OPEN1 DC C'O1' Open file 1 opcode
OPEN2 DC C'O2' Open file 2 opcode
CLOSE1 DC C'C1' Close file 1 opcode
CLOSE2 DC C'C2' Close file 2 opcode
ANALYZE DC V(ANALYSIS) Address of record
\ analysis routine
ENDFILE DC C'EF' End of file indicator
WORKAREA DSECT
SAVEREGS DS ðF This storage exists
\ below 16 megabytes
SAVEAREA EQU SAVEREGS
SAVERSVD DS F Reserved
SAVEBKWD DS F
SAVEFRWD DS F
SAVE1412 DS 15F Save area for registers 14-12
COMMAREA DS ðF Parameter area used to
\ communicate with module
\ USER2
FUNCTION DS CL2 Function to be performed
\ by USER2
STATUS DS CL2 Status of read operation
BUFFER DS CL8ð Input/output buffer
WORKLNTH EQU \-WORKAREA Length of this DSECT

Define DSECT work area for module USER1

DYNAREA DSECT This storage exists
\ above 16 megabytes
EPA DS F Address of loaded routine
BUFFR31A DS CL8ð Buffer - above 16
\ megabytes
BUFPTR DS ðF

DS A Address of input buffer
DS A Address of updated buffer

UPDATBFR DS CL8ð Updated buffer returned
\ by the analysis routine
GMLNTH EQU \-DYNAREA Length of dynamic area
 END

Figure 5-16 (Part 5 of 9). Performing I/O While Residing Above 16 Megabytes

 Chapter 5. Understanding 31-Bit Addressing 5-45

USER2 Service Routine

\Module USER2 receives control in 24-bit addressing mode, resides below
\16 megabytes, and is called by module USER1 to perform data
\management services.

USER2 CSECT
USER2 AMODE 24
USER2 RMODE 24
\
\ Save the caller's registers in save area provided
\
 SAVE (14,12) Save registers
 BASR 12,ð Establish base
 USING \,12 Addressability

LR 1ð,1 Save parameter area pointer
\ around GETMAINs

USING COMMAREA,1ð Establish parameter area
\ addressability

Storage will be obtained via GETMAIN for a save area that module USER2 can pass to external routines it calls.

LA ð,WORKLNTH Length of the work area
\ required

GETMAIN RU,LV=(ð),LOC=RES Obtain save area storage,
\ which must be below
\ 16 megabytes

LR 6,1 Save address of obtained
\ storage to be used for
\ a save area for module
\ USER2

USING SAVEREGS,6 Save area addressability
LA ð,GMLNTH Get dynamic storage for

\ module USER2 below
\ 16 megabytes.

Note: This GETMAIN will only be done on the initial call to this module.

#2ððð GETMAIN RU,LV=(ð),LOC=RES Obtain storage below
\ 16 megabytes

LR 8,1 Copy address of storage
\ obtained via GETMAIN

USING DYNAREA,8 Base register for the
\ dynamic work area

ST 13,SAVEBKWD Save address of caller's
\ save area

LR 9,13 Save caller's save area
\ address
 LA 13,SAVEAREA USER1's save area address
\ Note - save area is
\ below 16 megabytes

The GETMAIN at statement #2000 requests that storage be obtained to match the current residency mode of module USER2.
Because the module resides below 16 megabytes, storage obtained will be below 16 megabytes.

Figure 5-16 (Part 6 of 9). Performing I/O While Residing Above 16 Megabytes

5-46 OS/390 V2R8.0 MVS Assembler Services Guide

Note: The following store operation is successful because module USER1 obtained save area storage below 16 megabytes.

ST 13,8(9) Have caller's save area
\ point to my save area
 .
 .
 .
 .
\ Process input requests
 .
 .
 .
 .
READ1 DS ðH Read a record routine
 .
 L 13,SAVEBKWD

LM 14,12,12(13) Reload USER1's registers
BSM ð,14 Return to caller - this

\ instruction sets AMODE 31
WRITE1 DS ðH Write a record routine
 .
 L 13,SAVEBKWD

LM 14,12,12(13) Reload USER1's registers
BSM ð,14 Return to caller - this

\ instruction sets AMODE 31
OPEN1 DS ðH Open file 1 for input
 .
 L 13,SAVEBKWD

LM 14,12,12(13) Restore caller's registers
BSM ð,14 Return to caller - this

\ instruction sets AMODE 31
CLOSE1 DS ðH Close file 1 for input
 .
 L 13,SAVEBKWD

LM 14,12,12(13) Restore caller's registers
BSM ð,14 Return to caller - this

\ instruction sets AMODE 31
OPEN2 DS ðH Open file 2 for input
 .
 L 13,SAVEBKWD

LM 14,12,12(13) Restore caller's registers
BSM ð,14 Return to caller - this

\ instruction sets AMODE 31
CLOSE2 DS ðH Close file 2 for input
 .
 L 13.SAVEBKWD

LM 14,12,12(13) Restore caller's registers
BSM ð,14 Return to caller - this

\ instruction sets AMODE 31
 .
 .

Figure 5-16 (Part 7 of 9). Performing I/O While Residing Above 16 Megabytes

 Chapter 5. Understanding 31-Bit Addressing 5-47

Note: This FREEMAIN will only be done on the final call to this module.

LA ð,GMLNTH Length of work area used
\ by USER2
 FREEMAIN RC,LV=(ð),A=(8) Free storage
 .
 .
 .

DCB END OF FILE and ERROR ANALYSIS ROUTINES

ENDFILE DS ðH End of file encountered
 .
 .

MVC STATUS,ENDFILE Indicate end of file to
\ module USER1
 .
 L 13,SAVWBKWD

LM 14,12,12(13) Reload USER1's registers
BSM ð,14 Return to USER1

\ indicating end of file
\ has been encountered
 .
 .
 .
 .
ERREXIT1 DS ðH SYNAD error exit one
 .
 .

MVC STATUS,IOERROR Indicate I/O error to
\ module 'USER1'
 .
 L 13,SAVWBKWD

LM 14,12,12(13) Reload USER1's registers
BSM ð,14 Return to USER1

\ indicating an I/O error
\ has been encountered
 .
 .
 .
 .
ERREXIT2 DS ðH SYNAD error exit two
 .
 .

MVC STATUS,IOERROR Indicate I/O error to
\ module 'USER1'
 .
 L 13,SAVWBKWD

LM 14,12,12(13) Reload USER1's registers
BSM ð,14 Return to USER1

\ indicating an I/O error
\ has been encountered

Figure 5-16 (Part 8 of 9). Performing I/O While Residing Above 16 Megabytes

5-48 OS/390 V2R8.0 MVS Assembler Services Guide

Note: Define the required DCBs that module USER2 will process. The DCBs exist in storage below 16 megabytes. The END
OF DATA and SYNAD exit routines also exist in storage below 16 megabytes.

INDCB DCB DDNAME=INPUT1,DSORG=PS,MACRF=(GL),EODAD=ENDFILE, x
 SYNAD=ERREXIT1
OUTDCB DCB DDNAME=OUTPUT1,DSORG=PS,MACRF=(PL),SYNAD=ERREXIT2
\ Work areas and constants for module USER2
IOERROR DC C'IO' Constant used to indicate
\ an I/O error
ENDFILE DC C'EF' Constant used to indicate
\ end of file encountered
SAVEREGS DSECT This storage exists
\ below 16 megabytes
SAVEAREA EQU SAVEREGS
SAVERSVD DS F Reserved
SAVEBKWD DS F
SAVEFRWD DS F
SAVE1412 DS 15F Save area for registers 14-12
WORKLNTH EQU \-SAVEREGS Length of dynamic area
 .
 .
 .
 .
 .
COMMAREA DSECT Parameter area used to
\ communicate with module
\ USER1
FUNCTION DS CL2 Function to be performed
\ by USER2
STATUS DS CL2 Status of read operation
BUFFER DS CL8ð Input/output buffer
 .
 .
DYNAREA DSECT This storage exists
\ below 16 megabytes
 .
 .
 .
 .
 .
 .
GMLNTH EQU \-DYNAREA Length of dynamic area
 .
 .
 END

Figure 5-16 (Part 9 of 9). Performing I/O While Residing Above 16 Megabytes

Understanding the Use of Central Storage
MVS programs and data reside in virtual storage that, when necessary, is backed
by central storage. Most programs and data do not depend on their real addresses.
Some MVS programs, however, do depend on real addresses and some require
these real addresses to be less than 16 megabytes. MVS reserves as much central
storage below 16 megabytes as it can for such programs and, for the most part,
handles their central storage dependencies without requiring them to make any
changes.

The system uses the area of central storage above 16 megabytes to back virtual
storage with real frames whenever it can. All virtual areas above 16 megabytes can
be backed with real frames above 16 megabytes. In addition, the following virtual
areas below 16 megabytes can also be backed with real frames above 16
megabytes:

 � SQA

 Chapter 5. Understanding 31-Bit Addressing 5-49

 � LSQA
 � Nucleus
� Pageable private areas

 � Pageable CSA
 � PLPA
 � MLPA
 � Resident BLDL

The following virtual areas are always backed with real frames below 16
megabytes:

 � V=R regions
 � FLPA
 � Subpool 226
� Subpools 227 and 228 (unless specified otherwise by the GETMAIN macro with

the LOC parameter)

When satisfying page-fix requests, MVS backs pageable virtual pages that reside
below 16 megabytes with central storage below 16 megabytes, unless the
GETMAIN macro specifies LOC=(BELOW,ANY) or the PGSER macro specifies the
ANYWHER parameter. If the GETMAIN or STORAGE macro specifies or implies a
real location of ANY, MVS backs pageable virtual pages with real frames above 16
megabytes even when the area is page fixed.

Central Storage Considerations for User Programs
Among the things to think about when dealing with central storage in 31-bit
addressing mode are the use of the load real address (LRA) instruction, the use of
the LOC parameter on the GETMAIN macro, the location of the DAT-off portion of
the nucleus, and using EXCPVR to perform I/O. (EXCPVR was described in the
section Performing I/O in 31-Bit Addressing Mode.)

Load Real Address (LRA) Instruction
The LRA instruction always results in a 31-bit real address regardless of the issuing
program's addressing mode. All programs that issue an LRA instruction must be
prepared to handle a 31-bit result if the virtual storage address specified could have
been backed with central storage above 16 megabytes. Issue LRA only against
areas that are fixed.

 GETMAIN Macro
The LOC parameter on the RU, RC, VRU, and VRC forms of the GETMAIN macro
specifies not only the virtual storage location of the area to be obtained, but also
the central storage location when the storage is page fixed.

LOC=BELOW indicates that the virtual storage is to be located below 16
megabytes. When the area is page fixed, it is to be backed with central storage
below 16 megabytes.

LOC=(BELOW,ANY) indicates that virtual storage is to be located below 16
megabytes but that central storage can be located either above or below 16
megabytes.

LOC=ANY and LOC=(ANY,ANY) indicate that both virtual and central storage
can be located either above or below 16 megabytes.

LOC=RES indicates that the location of virtual and central storage depends on
the location (RMODE) of the GETMAIN issuer. If the issuer has an RMODE of

5-50 OS/390 V2R8.0 MVS Assembler Services Guide

24, LOC=RES indicates the same thing as LOC=BELOW; if the issuer has an
RMODE of ANY, LOC=RES indicates the same thing as LOC=ANY.

LOC=(RES,ANY) indicates that the location of virtual storage depends on the
location of the issuer but that central storage can be located anywhere.

Note: There is exception to the meaning of LOC=RES and LOC=(RES,ANY). A
caller residing below 16 megabytes but running with 31-bit addressing can
specify LOC=RES (either explicitly or by taking the default) or
LOC=(RES,ANY) to obtain storage from a subpool supported only above 16
megabytes. In this case, the caller's AMODE determines the location of the
virtual storage.

LOC is optional except in the following case: A program that resides above 16
megabytes and uses the RU, RC, VRU, and VRC forms of GETMAIN must specify
either LOC=BELOW or LOC=(BELOW,ANY) on GETMAIN requests for storage that
will be used by programs running in 24-bit addressing mode. Otherwise, virtual
storage would be assigned above 16 megabytes and 24-bit addressing mode
programs could not use it.

The location of virtual storage can also be specified on the PGSER (page services)
macro. The ANYWHER parameter on PGSER specifies that a particular virtual
storage area can be placed either above or below 16 megabytes on future
page-ins. This parameter applies to virtual storage areas where
LOC=(BELOW,ANY) or LOC=(ANY,ANY) was not specified on GETMAIN.

 DAT-Off Routines
The MVS/370 nucleus is mapped so that its virtual storage addresses are equal to
its central storage addresses. MVS/370 has a V=R (virtual=real) nucleus. In
contrast, the MVS/XA, MVS/ESA and OS/390 nucleus is mapped and fixed in
central storage without attempting to make its virtual storage addresses equal to its
real addresses. MVS systems that use 31-bit addressing (MVS/XA, MVS/ESA and
OS/390 save a V=F (virtual=fixed) nucleus.

Because the MVS/370 is V=R, nucleus code can turn DAT off, and the next
instruction executed is the same as it would be if DAT was still on. Because the
MVS/XA, MVS/ESA and OS/390 nucleus is not V=R, their nucleus code cannot turn
DAT-off and expect the next instruction executed to be the same as if DAT was on.

To allow for the execution of DAT-off nucleus code, the MVS nucleus consists of
two load modules, one that runs with DAT on and one that runs with DAT off.
Nucleus code that needs to run with DAT off must reside in the DAT-off portion of
the nucleus.

When the system is initialized, the DAT-off portion of the nucleus is loaded into the
highest contiguous central storage. Therefore, you must modify any user modules
in the nucleus that run with DAT off so that they operate correctly above 16
megabytes. Among the things you may have to consider are:

� All modules in the DAT-off portion of the nucleus have the attributes AMODE
31, RMODE ANY. They may reside above 16 megabytes.

� These modules must return control via a BSM 0,14.

� Register 0 must not be destroyed on return.

To support modules in the DAT-off nucleus:

 Chapter 5. Understanding 31-Bit Addressing 5-51

� Move the DAT-off code to a separate module with AMODE 31, RMODE ANY
attributes. Use as its entry point, IEAVEURn where n is a number from 1 to 4.
(MVS reserves four entry points in the DAT-off nucleus for users.) Use BSM
0,14 as the return instruction. Do not destroy register 0.

� Code a DATOFF macro to invoke the DAT-off module:

 DATOFF INDEX=INDUSRn

The value of n in INDUSRn must be the same as the value of n in IEAVEURn,
the DAT-off module's entry point.

� Link edit the DAT-off module (IEAVEURn) into the IEAVEDAT member of
SYS1.NUCLEUS (the DAT-off nucleus).

See OS/390 MVS Programming: Authorized Assembler Services Guide and OS/390
MVS Programming: Authorized Assembler Services Reference ALE-DYN for more
information about modifying the DAT-off portion of the nucleus and the DATOFF
macro.

5-52 OS/390 V2R8.0 MVS Assembler Services Guide

 Chapter 6. Resource Control

When your program executes, other programs are executing concurrently in the
MVS multiprogramming environment. Each group of programs, including yours, is a
competitor for resources available at execution time. A resource is anything that a
program needs as it executes — such as processor time, a data set, another
program, a table, or a hardware device, etc. The competitor for resources is
actually the task that represents the program.

If you subdivide a program into separate logical parts, and code it as several small
programs instead of one large program, you can make the parts execute as
separate tasks and with greater efficiency. However, you must ensure that each
part executes in correct order relative to the others:

� The WAIT, POST, and EVENTS macros introduce a strategic delay in the
| running of a program. This delay forces a program to wait using an event
| control block (ECB), for a particular event to occur. When the event occurs, the

program can run once again. The event can be the availability of a necessary
resource.

| � Pause, Release, and Transfer are services you can call, using a pause element
| (PE), to synchronize task processing with minimal overhead.

| Figure 6-1 compares the use of the Pause, Release, and Transfer services with the
| WAIT and POST macros.

This chapter also describes how your program can run in an environment in which
it must share resources with other programs.

� The ENQ and DEQ macros allow many programs to serialize use of resources,
such as data sets. The sharing of resources often requires that a program, or
many programs, enter a wait state until a requested resource becomes
available.

Under certain circumstances, you might want to use the RESERVE macro
instead of ENQ to serialize use of resources.

� The GQSCAN macro allows you to obtain information about the use of
resources.

| Figure 6-1 (Page 1 of 2). Task Synchronization Techniques

| Pause, Release, and Transfer| WAIT and POST

| Can change the dispatchability of a task.| Can change the dispatchability of a task.

| Can release a task before it is paused.| Can post a task before it waits.

| An unauthorized caller can pause and release any task
| in the caller's home address space.
| An unauthorized caller can WAIT and POST any task
| in the caller's home address space.

| A task can only pause on a single PE at a time.| A task may wait on multiple ECBs. If the wait count
| numbers are posted, the task is made dispatchable.

| The Transfer service can simultaneously pause one
| task and release another.
| There is no single service with comparable capability
| for WAIT and POST.

| The Transfer service can release a task and
| immediately pass control to the released task.
| There is no single service with comparable capability
| for WAIT and POST.

 Copyright IBM Corp. 1988, 1999 6-1

| Figure 6-1 (Page 2 of 2). Task Synchronization Techniques

| Pause, Release, and Transfer| WAIT and POST

| The system ensures the Pause Elements are not
| reused improperly, thus avoiding improper releases
| caused by unexpected termination or asynchronous
| ABENDs.

| Ability to pass control directly from one task to another
| paused task.

| High performance. No local lock contentions effects.| Lower performance, possible local lock contention.

| Callers may use ECBLIST or EVENTS service to wait
| on multiple ECBs.

Synchronizing Tasks (WAIT, POST, and EVENTS Macros)
Some planning on your part is required to determine what portions of one task are
dependent on the completion of portions of all other tasks. The POST macro is
used to signal completion of an event; the WAIT and EVENTS macros are used to
indicate that a task cannot proceed until one or more events have occurred. An
event control block (ECB) is used with the WAIT, EVENTS or POST macros; it is a
fullword on a fullword boundary, as shown in Figure 6-2.

An ECB is also used when the ECB parameter is coded in an ATTACH or
ATTACHX macro (see the OS/390 MVS Programming: Assembler Services
Reference for information on how to use the ATTACH or ATTACHX macro create a
new task and indicate the entry point in the program to be given control when the
new task becomes active). In this case, the control program issues the POST
macro for the event (subtask termination). Either the 24-bit (bits 8 to 31) return
code in register 15 (if the task completed normally) or the completion code
specified in the ABEND macro (if the task was abnormally terminated) is placed in
the ECB as shown in Figure 6-2. The originating task can issue a WAIT macro or
EVENTS macro with WAIT=YES parameter specifying the ECB; the task will not
regain control until after the event has taken place and the ECB is posted (except if
an asynchronous event occurs, for example, timer expiration).

completion codeW P

0 1 2 31

Figure 6-2. Event Control Block (ECB)

When an ECB is originally created, bits 0 (wait bit) and 1 (post bit) must be set to
zero. If an ECB is reused, bits 0 and 1 must be set to zero before a WAIT,
EVENTS ECB= or POST macro can be specified. If, however, the bits are set to
zero before the ECB has been posted, any task waiting for that ECB to be posted
will remain in the wait state. When a WAIT macro is issued, bit 0 of the associated
ECB is set to 1. When a POST macro is issued, bit 1 of the associated ECB is set
to 1 and bit 0 is set to 0. For an EVENTS type ECB, POST also puts the completed
ECB address in the EVENTS table.

6-2 OS/390 V2R8.0 MVS Assembler Services Guide

A WAIT macro can specify more than one event by specifying more than one ECB.
(Only one WAIT macro can refer to an ECB at a time, however.) If more than one
ECB is specified in a WAIT macro, the WAIT macro can also specify that all or only
some of the events must occur before the task is taken out of the wait condition.
When a sufficient number of events have taken place (ECBs have been posted) to
satisfy the number of events indicated in the WAIT macro, the task is taken out of
the wait condition.

An optional parameter, LONG=YES or NO, allows you to indicate whether the task
is entering a long wait or a regular wait. A long wait should never be considered for
I/O activity. However, you might want to use a long wait when waiting for an
operator response to a WTOR macro.

Through the LINKAGE parameter, POST and WAIT allow you to specify how the
macro passes control to the control program. You can specify that control is to be
passed by an SVC or a PC instruction.

When you issue the WAIT or POST macro and specify LINKAGE=SVC (or use the
default), your program must not be in cross memory mode. The primary,
secondary, and home address spaces must be the same, your program must be in
primary ASC mode, and it must not have an enabled unlocked task (EUT)
functional recovery routine (FRR) established. You may use WAIT and POST when
the primary and the home address spaces are different by specifying
LINKAGE=SYSTEM. This option generates a PC interface to the WAIT or POST
service and requires that the program be enabled, unlocked, in primary ASC mode
and, for WAIT only, in task mode. For POST, the control program assumes that the
ECB is in the primary address space. For WAIT, it assumes that the ECB is in the
home address space.

Figure 6-3 shows an example of using LINKAGE=SYSTEM. The program that runs
under TCB1 in ASN1 PCs to a program in ASN2. Now the primary address space
is ASN2 and home address space is ASN1. When the PC routine posts ECB2, it
uses LINKAGE=SYSTEM because home and primary are different. The PC routine
waits on ECB1 using LINKAGE=SYSTEM because home and primary are still
different. Note that ECB1 is in the home address space.

PR

ASN1 ASN2

home address space

TCB1

PC

ECB1 ECB2

POST ECB2,LINKAGE=SYSTEM

WAIT ECB1,LINKAGE=SYSTEM

Figure 6-3. Using LINKAGE=SYSTEM on the WAIT and POST Macros

 Chapter 6. Resource Control 6-3

| Synchronizing Tasks (Pause, Release, and Transfer)
| Pause, Release, and Transfer are callable services that enable you to synchronize
| task processing with minimal overhead. If you have, for example, an application
| that requires two or more tasks to trade control back and forth, these services
| provide efficient transfers of control.

| These services, which are available to both unauthorized and authorized callers in
| Assembler as well as C or C++, use a system-managed object called a pause
| element to synchronize processing of tasks. The services provide the following
| functions:

| � Pause the current task (Pause service)

| � Release a paused task (Release service)

| � Simultaneously release a paused task and pass control to it (Transfer service)

| � Simultaneously release one paused task and pause the current work unit
| (Transfer service)

| The services use a system-managed pause element (PE) rather than an
| application-managed control block, such as an event control block (ECB), thus
| reducing the possibility of error that might come from improper reuse of the control
| block.

| As a PE is much like an ECB, the Pause service is much like the WAIT macro, and
| the Release service is much like the POST macro. Just as you can use POST to
| keep a task from waiting by preposting, you can use Release to keep a task from
| pausing by prereleasing.

| The Transfer service can both release a paused task and pass control directly to
| the released task. The Transfer service can also pause the task that calls the
| service. Thus, Transfer enables quick dispatches, saving the overhead of work
| search. It also allows two tasks to trade control back and forth with minimal
| overhead.

| To understand how to use the services, you need to know more about pause
| elements, (PEs) and the pause element tokens (PETs) that identify them.

| Pause Elements and Pause Element Tokens
| A pause element (PE) is a system-managed object used to pause and release a
| task. Like an ECB, a PE is used by the system to control whether or not a task is
| dispatchable. You can use a PE, like an ECB, to prerelease a task before it is
| paused. There are, however, significant differences between an ECB and a PE
| Figure 6-4 compares the two:

| Figure 6-4 (Page 1 of 2). Pause Element (PE) and Event Control Block (ECB)

| Pause Element (PE)| Event Control Block (ECB)

| Managed by the system.| Managed by application programs.

| Identified by a pause element token (PET).| Identified by a simple address.

6-4 OS/390 V2R8.0 MVS Assembler Services Guide

| Figure 6-4 (Page 2 of 2). Pause Element (PE) and Event Control Block (ECB)

| Pause Element (PE)| Event Control Block (ECB)

| Cannot be reused once invalidated by an
| asynchronous ABEND.
| Can be reused after a task is removed from the wait
| state by an asynchronous ABEND, although reuse
| requires very complicated programming.

| To prevent errors related to reuse, a PET can be used
| only once to identify a PE. Once a task is paused and
| released, an updated PET is needed to identify the
| PE. The system returns the updated PET to the caller
| through the Pause or Transfer service.

| There is no control on the reuse of an ECB; the same
| ECB address can be used over and over.

| PEs are allocated and deallocated through calls to
| system services.
| ECBs are allocated by application programs.

| The maximum number of PEs available to an
| unauthorized program is limited; an unauthorized
| program in a single address space can allocate no
| more than 1024 PEs at any given time

| The system imposes no limits on the number of ECBs.

| PEs are not directly addressable through PETs. The
| user of a PE does not know its actual address and
| cannot modify it except through the use of system
| services.

| ECBs can be modified at will by application programs.

| A PE allocated by an unauthorized caller can be used to pause and release any
| task in the caller's home address space. An unauthorized caller cannot pause or
| release using a PE allocated by a fully—authorized caller.

| A PE can be used to pause only one task at a time; the system does not allow
| more then one dispatchable unit to be paused under a single PE.

| Using the Services
| There are five callable services available for task synchronization:

| � Allocate_Pause_Element

| � Pause

| � Release

| � Transfer

| � Deallocate_Pause_Element

| To use Pause, Release, and Transfer, a program must first allocate a PE by calling
| the Allocate_Pause_Element service. In response, the system allocates a PE and
| returns a pause element token (PET) that identifies the pause element (PE).

| You use the PET returned from Allocate_Pause_Element to identify the allocated
| PE until either:

| � The PE has been used to pause (through Pause or Transfer) and release
| (through Release or Transfer) a task.

| � A paused task has been released through an asynchronous ABEND.

| When you are finished with the PE, call the Deallocate_Pause_Element service to
| return the PE to the system. If a task is asynchronously ABENDed while it is
| paused, the system itself invalidates the PE, and it cannot be reused for pause

 Chapter 6. Resource Control 6-5

| requests. Thus, return an invalidated PE to the system as soon as possible by a
| call to Deallocate_Pause_Element.

| Though the PE remains allocated until you deallocate it, you can use a PET for
| only one pair of calls, which result in a pause and a release of a task. When you
| specify a PET on a successful call to the Pause service or to pause a task through
| a successful call to the Transfer service, the system invalidates the input PET and
| returns an updated PET to identify the PE. Use the updated PET to reuse the PE
| or to deallocate the PE.

| Figure 6-5 shows, in pseudocode, the sequence of calls to allocate a PE, pause
| the current task, release the task, and deallocate the PE.

| /\ Common variables \/ |
| |
| Dcl PET char(16); |
| |
| Workunit #1 | Workunit #2
| |
| /\ Workunit #1 variables \/ | /\ Workunit #2 variables \/
| Dcl Auth1 char(4); | Dcl Auth2 char(4);
| Dcl RC1 fixed(32); | Dcl RC2 fixed(32;
| Dcl Updated_pet char(16); | Dcl RelCode binary(24);
| Dcl RetRelCode binary(24); |
| |
| Auth1 = IEA_UNAUTHORIZED; | Auth2 = IEA_UNAUTHORIZED;
| . | .
| . | .
| . | .
| /\ Allocate a Pause Element \/ |
| Call IEAVAPE (RC1,Auth1,PET); |
| |
| /\ Pause Workunit #1 \/ |
| Call IEAVPSE (RC1,Auth1,PET, |
| Updated_PET,RetRelCode); |
| |
| /\processing pauses until released\/ | RelCode = '123';
| | /\ Release Workunit #1 \/
| | Call IEAVRLS (RC2,Auth2,PET,
| . | RelCode);
| . |
| . |
| PET = UPET; |
| Call IEAVPSE (RC1,Auth1,PET); |
| Updated_PET,RetRelCode); |
| |
| /\processing pauses until released\/ | RelCode = '345';
| . | /\ Release Workunit #1 \/
| . | Call IEAVRLS (RC2,Auth2,PET,
| . | RelCode);
| /\ Deallocate the pause element \/ |
| Call IEAVDPE (RC1,Auth1, |
| Updated_PET) |

| Figure 6-5. Pause and Release Example

6-6 OS/390 V2R8.0 MVS Assembler Services Guide

| The Pause, Release, and Transfer services also provide a release code field that
| programs can use to communicate, to indicate, for example, the reason for a
| release.The program that calls the Release service can set a release code.

| The release code is particularly useful when a task might be released before it is
| paused (prereleased). When a subsequent call to the Pause service occurs, the
| system does not pause the task; instead, it returns control immediately to the
| calling program and provides the release code specified on the release call.

| Figure 6-6 shows, in pseudocode, the sequence of calls needed to allocate a PE,
| prerelease a task , and deallocate the PE

| /\ Common variables \/ |
| |
| Dcl PET char(16); |
| |
| Workunit #1 | Workunit #2
| |
| /\ Workunit #1 variables \/ | /\ Workunit #2 variables \/
| Dcl Auth1 fixed(32); | Dcl Auth2 fixed(32);
| Dcl RC1 fixed(32); | Dcl RC2 fixed(32);
| Dcl Updated_PET char(16); | Dcl RelCode binary(24);
| Dcl RetRelCode binary(24); |
| |
| Auth1 = IEA_UNAUTHORIZED; |
| |
| /\ Allocate a Pause Element \/ |
| Call IEAVAPE (RC1,Auth1,PET); |
| . | Auth2 = IEA_UNAUTHORIZED;
| . | RelCode ='123';
| . |
| | /\ Release Workunit #1 \/
| | Call IEAVRLS (RC2,Auth2,PET,
| | RelCode);
| /\ Pause Workunit #1 \/ | .
| Call IEAVPSE (RC1,Auth1,PET, | .
| Updated_PET,RetRelCode); | .
| |
| /\check release code and continue \/ |
| . |
| . |
| . |
| /\ Deallocate the pause element \/ |
| Call IEAVDPE (RC1,Auth1, |
| Updated_PET); |

| Figure 6-6. Release and Pause Example

| If you make a release request (through Release or Transfer) specifying a PET that
| identifies a PE that has not yet been used to pause a task, the system marks the
| PE as a prereleased PE. If a program tries to pause a task using a prereleased PE,
| the system returns control immediately to the caller; it does not pause the task.
| Instead, it resets the PE. As soon as a PE is reset, it can be reused for another
| Pause and Release, but, as stated earlier, you use the returned updated PET for
| the next reused PE.

 Chapter 6. Resource Control 6-7

| The Pause and Release services are very similar to the WAIT and POST macros,
| but the Transfer service provides new function. You can use Transfer to either:

| � Release a paused task and transfer control directly to the released task

| � Pause the current task, release a paused task, and transfer control directly to
| the released task

| Figure 6-7 shows an example of using the Transfer service to release a task
| without pausing the current task.

| Because the Transfer service can affect multiple units of work, using Transfer
| requires you to work with three PETs:

| 1. The current pause element token (CurrentDuPet in Figure 6-7) identifies the
| allocated pause element that Transfer is to use to pause the current task (the
| caller of the Transfer service). When you do not need to pause the current task
| , you set this token to binary zeros, as shown in Figure 6-7.

| 2. The updated pause element token (UPET2 in Figure 6-7), which the system
| returns when you specify a current pause element token. You need this
| updated token to reuse the pause element on a subsequent Pause or Transfer
| or to deallocate the pause element. If you set the current token to binary zeros,
| as done in Figure 6-7, the contents of the updated pause element token are
| not meaningful.

| 3. The target token (TargetDuPET in Figure 6-7) identifies the allocated pause
| element that Transfer is to use to release a task. In Figure 6-7, it contains the
| PET that identifies the PE used to pause Workunit #1.

| A current release code and a target release code are also available on the call to
| Transfer. Whether or not each code contains valid data depends on conventions
| set by the different parts of your program

6-8 OS/390 V2R8.0 MVS Assembler Services Guide

| /\ Common variables \/ |
| |
| Dcl PET char(16); |
| |
| Workunit #1 | Workunit #2
| |
| /\ Workunit #1 variables \/ | /\ Workunit #2 variables \/
| Dcl Auth1 char(4); | Dcl Auth2 char(4);
| Dcl RC1 char(4); | Dcl RC2 char(4);
| Dcl UPET1 char(16); | Dcl CurrentDuRelCode binary(24);
| Dcl RetRelCode binary(24); | Dcl CurrentDuPET char(16);
| . | Dcl UPET2 char(16);
| . | Dcl TargetDuPET char(16);
| . | Dcl TargetDuRelCode char(3);
| Auth1 = IEA_UNAUTHORIZED; |
| /\ Allocate a Pause Element \/ | Auth2 = IEA_UNAUTHORIZED;
| Call IEAVAPE (RC1,Auth1,PET); | .
| | .
| /\ Pause Workunit #1 \/ | .
| Call IEAVPSE (RC1,Auth1,PET,UPET1, | TargetDuRelCode = '123';
| RetRelCode); | /\ no pause-set token to zeros \/
| | CurrentDuPet =''B;
| | TargetDuPET = PET
| /\processing pauses until transfer\/ |
| | /\ Transfer to Workunit #1 \/
| | Call IEAVXFR (RC2,Auth2,
| | CurrentDuPET,UPET2,
| | CurrentDuRelCode,
| | TargetDuPET,
| | TargetDuRelCode);
| /\processing continues \/ | .
| | .
| /\ Deallocate the Pause Element \/ | .
| Call IEAVDPE (RC1,Auth1,UPET1); |

| Figure 6-7. Transfer without Pause Example

Serializing Access to Resources (ENQ and DEQ Macros)
When one or more programs using a serially reusable resource modify the
resource, they must not use the resource simultaneously with other programs.
Consider a data area in virtual storage that is being used by programs associated
with several tasks of a job step. Some of the programs are only reading records in
the data area; because they are not updating the records, they can access the data
area simultaneously. Other programs using the data area, however, are reading,
updating, and replacing records in the data area. Each of these programs must
serially acquire, update, and replace records by locking out other programs. In
addition, none of the programs that are only reading the records want to use a
record that another program is updating until after the record has been replaced.

If your program uses a serially reusable resource, you must prevent incorrect use
of the resource. You must ensure that the logic of your program does not require
the second use of the resource before completion of the first use. Be especially
careful when using a serially reusable resource in an exit routine; because exit

 Chapter 6. Resource Control 6-9

routines get control asynchronously with respect to your program logic, the exit
routine could obtain a resource already in use by the main program. When more
than one task is involved, using the ENQ and DEQ macros correctly can prevent
simultaneous use of a serially reusable resource.

The ENQ macro assigns control of a resource to the current task. The control
program determines the status of the resource and does one of the following:

� If the resource is available, the control program grants the request by returning
control to the active task.

� If the resource has been assigned to another task, the control program delays
assignment of control by placing the active task in a wait condition until the
resource becomes available.

� Passes back a return code indicating the status of the resource.

� Abends the caller on unconditional requests that would otherwise result in a
non-zero return code.

When the status of the resource changes so that the waiting task can get control,
the task is taken out of the wait condition and placed in the ready condition.

The ENQ and DEQ macros work together. If used properly, ENQ/DEQ can protect
serially reusable resources. The rules for proper use of ENQ/DEQ are as follows:

� Everyone must use ENQ/DEQ.
� Everyone must use the same names and scope values for the same resources.
� Everyone must use consistent ENQ/DEQ protocol.

Naming the Resource
The ENQ and DEQ macros identify the resource by two names known as the
qname and the rname, and by a scope value. The qname and rname need not
have any relation to any actual name of the resource. The control program does
not associate a name with an actual resource; it merely processes requests having
the same qname, rname, and scope on a first-in, first-out basis. It is up to you to
associate the names with the resource by ensuring that all users of the resource
use the same qname, rname, and scope value to represent the same resource.
The control program treats requests having different qname, rname, and scope
combinations as requests for different resources. Because the control program
cannot determine the actual name of the resource from the qname, rname, and
scope, a task could use the resource by specifying a different qname, rname, and
scope combination or by accessing the resource without using ENQ. In this case,
the control program cannot provide any protection.

Choose qnames and rnames carefully. Because the control program uses SYSZ for
its qnames, the task abends if you use SYSZ as the first four characters of a
qname unless your program is APF-authorized, or in PSW keys 0-7, or in
supervisor state. Avoid using SYSA through SYSY because the control program
sometimes uses these characters for its qnames as well. Either check with your
system programmer to see which of the SYSA through SYSY combinations you can
use or avoid using SYSx (where x is alphabetic) to begin qnames.

6-10 OS/390 V2R8.0 MVS Assembler Services Guide

Defining the Scope of a Resource
You can request a scope of STEP, SYSTEM, or SYSTEMS on the ENQ and DEQ
macros.

� Use a scope of STEP if the resource is used only in your address space. The
control program uses the address space identifier to make your resource
unique in case someone else in another address space uses the same qname
and rname and a scope of STEP.

� Use a scope of SYSTEM if the resource is available to more than one address
space in the same system. All programs on that system that serialize on the
resource must use the same qname and rname and a scope of SYSTEM. For
example, to prevent two jobs from using a named resource simultaneously, use
SYSTEM.

� Use a scope of SYSTEMS if the resource is available to more than one
system. All programs that serialize on the resource must use the same qname
and rname and a scope of SYSTEMS. For example, to prevent two processors
from using a named resource simultaneously, use SYSTEMS. Note that the
control program considers a resource with a SYSTEMS scope to be different
from a resource represented by the same qname and rname but with a scope
of STEP or SYSTEM.

Local and Global Resources
The ENQ and DEQ macros recognize two types of resources: local resources and
global resources.

A local resource is a resource identified on ENQ or DEQ by a scope of STEP or
SYSTEM. A local resource is recognized and serialized only within the requesting
operating system. The local resource queues are updated to reflect each request
for a local resource. If a system is not operating under global resource serialization
(that is, the system is not part of a global resource serialization complex), all
resources requested are treated as local resources.

If a system is part of a global resource serialization complex, a global resource is
identified on the ENQ or DEQ macro by a scope of SYSTEMS. A global resource is
recognized and serialized by all systems in the global resource serialization
complex.

If your system is part of a global resource serialization complex, global resource
serialization might change the scope value during its resource name list (RNL)
processing. If the resource appears in the SYSTEM inclusion RNL, a resource with
a scope of SYSTEM can have its scope converted to SYSTEMS. If the resource
appears in the SYSTEMS exclusion RNL, a scope of SYSTEMS can have its scope
changed to SYSTEM. This important procedure is described in OS/390 MVS
Planning: Global Resource Serialization.

Through the RNL parameter on ENQ and DEQ, you can request that global
resource serialization not perform RNL processing and, therefore, not change the
scope value of a resource. It is recommended that you use RNL=YES, the default,
which tells global resource serialization to perform RNL processing. Use RNL=NO
only when you are sure that you never want the scope value to change. An
example of the use of RNL=NO is in a cross-system coupling facility (XCF)
complex, where you can be certain that certain data sets always need a scope
value of SYSTEMS and other data sets always need a scope value of SYSTEM. In

 Chapter 6. Resource Control 6-11

a sense, RNL=NO overrides decisions your system programmer makes when that
programmer places resource names in the RNLs.

Because the RNL parameter affects the scope value of a resource, be consistent in
specifying the RNL parameter on both ENQ and DEQ. If you use the default value
on ENQ, use the default value also on DEQ.

Requesting Exclusive or Shared Control
On ENQ and DEQ, you specify either exclusive or shared control of a resource.

To request exclusive control of the resource, code E on ENQ. When your program
has exclusive control of a resource, it is the only one that can use that resource; all
other programs that issue ENQs for the resource (either for exclusive or shared
control) must wait until your program issues DEQ to release the resource. If your
program will change the resource, it should request exclusive control.

To request shared control of the resource, code S on the ENQ macro. At the same
time your program has access to the resource, other programs can have concurrent
use of the resource. If another program requests exclusive control over the
resource during the time your program has shared use of the resource, that
program will have to wait until all the current users have issued DEQ to release the
resource. If your program will not change the resource, it should request shared
control.

For an example of how the control program processes requests for exclusive and
shared control of a resource, see “Processing the Requests.”

Limiting Concurrent Requests for Resources
To prevent any one job, started task, or TSO/E user from generating too many
concurrent requests for resources, the control program counts and limits the
number of ENQs in each address space. When a user issues an ENQ, the control
program increases the count of outstanding requests for that address space by one
and decreases the count by one when the user issues a DEQ.

When the computed count reaches the threshold value or limit, the control program
processes subsequent requests as follows:

� Unconditional requests (ENQs that use the RET=NONE option) are abnormally
ended with a system code of X'538'.

� Conditional requests (ENQs that specify the RET=HAVE or RET=USE option)
are rejected and the user receives a return code of X'18'.

Processing the Requests
The control program constructs a unique list for each qname, rname, and scope
combination it receives. When a task makes a request, the control program
searches the existing lists for a matching qname, rname, and scope. If it finds a
match, the control program adds the task's request to the end of the existing list;
the list is not ordered by the priority of the tasks on it. If the control program does
not find a match, it creates a new list, and adds the task's request as the first (and
only) element. The task gets control of the resource based on the following:

� The position of the task's request on the list
� Whether or not the request was for exclusive or shared control

6-12 OS/390 V2R8.0 MVS Assembler Services Guide

The best way to describe how the control program processes the list of requests for
a resource is through an example. Figure 6-8 shows the status of a list built for a
qname, rname, and scope combination. The S or E next to the entry indicates that
the request was for either shared or exclusive control. The task represented by the
first entry on the list always gets control of the resource, so the task represented by
ENTRY1 (Figure 6-8, Step 1) is assigned the resource. The request that
established ENTRY2 (Figure 6-8, Step 1) was for exclusive control, so the
corresponding task is placed in the wait condition, along with the tasks represented
by all the other entries in the list.

ENTRY1 (S)

ENTRY2 (E) ENTRY2 (E)

ENTRY6 (S) ENTRY6 (S) ENTRY6 (S)

ENTRY5 (E) ENTRY5 (E) ENTRY5 (E)

ENTRY4 (S) ENTRY4 (S) ENTRY4 (S)

Step 1 Step 2 Step 3

ENTRY3 (S) ENTRY3 (S) ENTRY3 (S)

Figure 6-8. ENQ Macro Processing

Eventually, the task represented by ENTRY1 uses DEQ to release control of the
resource, and the ENTRY1 is removed from the list. As shown in Figure 6-8, Step
2, ENTRY2 is now first on the list, and the corresponding task is assigned control
of the resource. Because the request that established ENTRY2 was for exclusive
control, the tasks represented by all the other entries in the list remain in the wait
condition.

Figure 6-8, Step 3, shows the status of the list after the task represented by
ENTRY2 releases the resource. Because ENTRY3 is now at the top of the list, the
task represented by ENTRY3 gets control of the resource. ENTRY3 indicates that
the resource can be shared, and, because ENTRY4 also indicates that the
resource can be shared, ENTRY4 also gets control of the resource. In this case,
the task represented by ENTRY5 does not get control of the resource until both the
tasks represented by ENTRY3 and ENTRY4 release control because ENTRY5
indicates exclusive use.

The control program uses the following general rules in manipulating the lists:

� The task represented by the first entry in the list always gets control of the
resource.

� If the request is for exclusive control, the task is not given control of the
resource until its request is the first entry in the list.

� If the request is for shared control, the task is given control either when its
request is first in the list or when all the entries before it in the list also indicate
a shared request.

� If the request is for several resources, the task is given control when all of the
entries requesting exclusive control are first in their respective lists and all the
entries requesting shared control are either first in their respective lists or are
preceded only by entries requesting shared control.

 Chapter 6. Resource Control 6-13

Duplicate Requests for a Resource
A duplicate request occurs when a task issues an ENQ macro to request a
resource that the task already controls. With the second request, the system
recognizes the contradiction and returns control to the task with a non-zero return
code (for a conditional request) or abnormally ends the task (for an unconditional
request). You should design your program to ensure that a second request for a
resource made by the same task is not issued as an unconditional request until
control of the resource is released for the first use. Be especially careful when
using an ENQ macro in an exit routine.

Two specific reasons why the use of ENQ in an exit routine must be carefully
planned are:

� The exit may be entered more than once for the same task.

� An exit routine may request resources already obtained by some other process
associated with the task.

For more information on this topic, see “Conditional and Unconditional Requests.”

Releasing the Resource
Use the DEQ macro to release a serially reusable resource that you obtained by
using an ENQ macro. If a task tries to release a resource which it does not control,
the control program either returns a non-zero return code or abends the task. The
control program might place many tasks in a wait condition while it assigns control
of the resource to one task. Having many tasks in the wait state might reduce the
amount of work being done by the system, therefore, you should issue a DEQ
macro as soon as possible to release the resource, so that other tasks can use it. If
a task terminates without releasing a resource, the control program releases the
resource automatically.

Conditional and Unconditional Requests
Up to this point, only unconditional requests have been considered. You can,
however, use the ENQ and DEQ macros to make conditional requests by using the
RET parameter. One reason for making a conditional request is to avoid the
abnormal termination that occurs if you issue two ENQ macros for the same
resource within the same task or when a DEQ macro is issued for a resource for
which you do not have control.

The RET parameter of ENQ provides the following options:

RET=TEST Indicates the availability of the resource is to be tested, but control
of the resource is not requested.

RET=USE Indicates control of the resource is to be assigned to the active task
only if the resource is immediately available. If any of the resources
are not available, the active task is not placed in a wait condition.

RET=CHNG Indicates the status of the resource specified is changed from
shared to exclusive control.

RET=HAVE Indicates that control of the resource is requested conditionally; that
is, control is requested only if the same task does not already have
control of or an outstanding request for the same resource.

6-14 OS/390 V2R8.0 MVS Assembler Services Guide

For the following descriptions, the term “active task” means the task issuing the
ENQ macro. No reference is intended to other tasks that might be active in other
processors of a multiprocessor.

Use RET=TEST to test the status of the corresponding qname, rname, and scope
combination, without changing the list in any way or waiting for the resource.
RET=TEST is most useful for determining if the task already has control of the
resource. It is less useful for determining the status of the list and taking action
based on that status. In the interval between the time the control program checks
the status and the time your program checks the return code and issues another
ENQ macro, another task could have been made active, and the status of the list
could have changed.

Use RET=USE if you want your task to receive control of the resource only if the
resource is immediately available. If the resource is not immediately available, no
entry will be made on the list and the task will not be made to wait. RET=USE is
most useful when there is other processing that can be done without using the
resource. For example, by issuing a preliminary ENQ with RET=USE in an
interactive task, you can attempt to gain control of a needed resource without
locking your terminal session. If the resource is not available, you can do other
work rather than enter a long wait for the resource.

Use RET=CHNG to change a previous request from shared to exclusive control.

Use RET=HAVE to specify a conditional request for control of a resource when you
do not know whether you have already requested control of that resource. If the
resource is owned by another task, you will be put in a wait condition until the
resource becomes available.

The RET=HAVE parameter on DEQ allows you to release control and prevents the
control program from abnormally ending the active task if a DEQ attempts to
release a resource not held. If ENQ and DEQ are used in an asynchronous exit
routine, code RET=HAVE to avoid possible abnormal termination.

 Avoiding Interlock
An interlock condition happens when two tasks are waiting for each other's
completion, but neither task can get the resource it needs to complete. Figure 6-9
shows an example of an interlock. Task A has exclusive access to resource M, and
task B has exclusive access to resource N. When task B requests exclusive access
to resource M, B is placed in a wait state because task A has exclusive control of
resource M.

The interlock becomes complete when task A requests exclusive control of
resource N. The same interlock would have occurred if task B issued a single
request for multiple resources M and N prior to task A's second request. The
interlock would not have occurred if both tasks had issued single requests for
multiple resources. Other tasks requiring either of the resources are also in a wait
condition because of the interlock, although in this case they did not contribute to
the conditions that caused the interlock.

 Chapter 6. Resource Control 6-15

 Task A Task B
ENQ (M,A,E,8,SYSTEM)
 ENQ (N,B,E,8,SYSTEM)
 ENQ (M,A,E,8,SYSTEM)
ENQ (N,B,E,8,SYSTEM)

Figure 6-9. Interlock Condition

The above example involving two tasks and two resources is a simple example of
an interlock. The example could be expanded to cover many tasks and many
resources. It is imperative that you avoid interlock. The following procedures
indicate some ways of preventing interlocks.

� Do not request resources that you do not need immediately. If you can use the
serially reusable resources one at a time, request them one at a time and
release one before requesting the next.

� Share resources as much as possible. If the requests in the lists shown in
Figure 6-9 had been for shared control, there would have been no interlock.
This does not mean you should share a resource that you will modify. It does
mean that you should analyze your requirements for the resources carefully,
and not request exclusive control when shared control is enough.

� If you need concurrent use of more than one resource, use the ENQ macro to
request control of all such resources at the same time. The requesting program
is placed in a wait condition until all of the requested resources are available.
Those resources not being used by any other program immediately become
exclusively available to the waiting program. For example, instead of coding the
two ENQ macros shown in Figure 6-10, you could code the one ENQ macro
shown in Figure 6-11. If all requests were made in this manner, the interlock
shown in Figure 6-9 could not occur. All of the requests from one task would
be processed before any of the requests from the second task. The DEQ
macro can release a resource as soon as it is no longer needed; multiple
resources requested in a single ENQ invocation can be released individually
through separate DEQ instructions.

ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM)
ENQ (NAME3ADD,NAME4ADD,E,1ð,SYSTEM)

Figure 6-10. Two Requests For Two Resources

ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM,NAME3ADD,NAME4ADD,E,1ð,SYSTEM)

Figure 6-11. One Request For Two Resources

� If the use of one resource always depends on the use of a second resource,
then you can define the pair of resources as one resource. On the ENQ and
DEQ macros, define the pair with a single rname and qname. You can use this
procedure for any number of resources that are always used in combination.
However, the control program cannot then protect these resources if they are
also requested independently. Any requests must always be for the set of
resources.

6-16 OS/390 V2R8.0 MVS Assembler Services Guide

� If there are many users of a group of resources and some of the users require
control of a second resource while retaining control of the first resource, it is
still possible to avoid interlocks. In this case, each user should request control
of the resources in the same order. For instance, if resources A, B, and C are
required by many tasks, the requests should always be made in the order of A,
B, and then C. An interlock situation will not develop, since requests for
resource A will always precede requests for resource B.

Serializing Access to Resources through the RESERVE Macro
When different systems in your installation access data sets on shared DASD, you
can use the ENQ macro with a scope of SYSTEMS to serialize access to those
resources. However, you might want to use the RESERVE macro to serialize
access when:

� Global resource serialization is not active

� Your installation is not using SMS to manage the shared data sets.

The RESERVE macro provides many of the same functions as ENQ, but can
increase contention for resources and the possibility of interlocks. If you use the
RESERVE macro to serialize access to data sets on shared DASD, use the DEQ
macro to release the resource.

Collecting Information about Resources and Their Requestors
(GQSCAN Macro)

Global resource serialization enables an installation to share symbolically named
resources. Programs issue the ENQ and RESERVE macros to request access to
resources; global resource serialization adds information about each requestor to
the appropriate resource queue. The only way you can extract information from the
resource queues is by using the GQSCAN macro.

Using GQSCAN, you can inquire about a particular scope of resources (such as
STEP, SYSTEM, or SYSTEMS), a specific resource by name, a specific system's
resources, a specific address space's resources, or resources requested through
the RESERVE macro. The system collects the information you request from the
resource queues and consolidates that information before returning it. The
information returned might not reflect changes in the resource queue that occur
while the system collects the information.

The system returns the information you request in an area whose location and size
you specify using the AREA parameter. The size of the area, the scope of the
resource, and whether you code the TOKEN parameter determine the information
you receive from GQSCAN. Use the TOKEN parameter when you design your
program to issue repeated calls to GQSCAN for the same request. For example, if
you request information about a resource that is shared across systems, the
amount of information might be more than will fit in the area that you provide. Using
the TOKEN parameter allows you to issue subsequent calls to receive additional
information about that resource.

 Chapter 6. Resource Control 6-17

How GQSCAN Returns Resource Information
GQSCAN returns the information in the form of resource information blocks (RIB)
and resource information block extensions (RIBE), as shown below. The RIB and
the RIBE are described in OS/390 MVS Data Areas, Vol 4 (RD-SRRA).

RIB
A

Resource Information block (RIB) describes a resource

RIB extension (RIBE) describes resource requestorRIBE
A1

RIBE
A2

RIBE
A3

RIBE
B2

RIBE
B1

RIB
B

In the RIB, the following fields contain information on RIBEs:

� RIBTRIBE contains the total number of RIBEs associated with this RIB.

� RIBNRIBE contains the total number of RIBEs associated with this RIB that
GQSCAN could fit into the area specified on the AREA parameter.

� RIBEDEVN contains a 4-digit EBCDIC device number for RESERVEs issued
on the system. For RESERVEs issued on other systems, RIBEDEVN contains
zero.

If the value in RIBNRIBE is less than the value in RIBTRIBE, you may need to
specify a larger area with the AREA parameter. <! %comment; Moved reference
to Data Areas to intro paragraph before RIB graphic Rewrote passages from here
to figure 5-2 for CDPI Phase 2 ‘‘>

The number of RIBs and RIBEs you receive for a particular resource depends on
the size of the area you provide, and the scope and token values you specify on
the GQSCAN macro.

How Area Size Determines the Information GQSCAN Returns
The size of the area you provide must be large enough to hold one RIB and at
least one of its associated RIBEs; otherwise, you might lose information about
resource requestors, or you might have to call GQSCAN repeatedly to receive all of
the information you requested. To determine whether you have received all RIBEs
for a particular RIB, check the values in the RIBTRIBE and RIBNRIBE fields. To
determine whether you have received all of the information on the resource queue,
check the return code from GQSCAN.

IBM recommends that you use a minimum area size of 1024 bytes.

6-18 OS/390 V2R8.0 MVS Assembler Services Guide

The information that GQSCAN returns in the area also depends on what values you
specify for the SCOPE and TOKEN parameters.

How Scope and Token Values Determine the Information
GQSCAN Returns
Figure 6-12 summarizes the possible values and the information returned for a
GQSCAN request.

The example in Figure 6-13 shows the area contents for three requests. For each
request, the caller specified the TOKEN parameter and one of the following for the
scope value: STEP, SYSTEM, SYSTEMS, or ALL. Assume that the resource queue
contains information about four resources: A, which has three requestors; B, which
has six; C, which has two; and D, which has one.

Figure 6-12. GQSCAN Results with a Scope of STEP, SYSTEM, SYSTEMS, or ALL

GQSCAN
Invocation

TOKEN
Parameter
Coded? Information Returned

Initial call No At least the first RIB that represents the first
requestor on the resource queue, and as many
of that RIB's associated RIBEs as will fit. Any
RIBEs that do not fit are not returned to the
caller.

If all of the RIBEs fit, GQSCAN returns the
next RIB on the resource queue, as long as
the remaining area is large enough to hold that
RIB and at least one of its RIBEs.

Yes; value is
zero

At least the first RIB that represents the first
requestor on the resource queue, and as many
of that RIB's associated RIBEs as will fit. Any
RIBEs that do not fit are not returned to the
caller.

If all of the RIBEs fit, GQSCAN returns the
next RIB on the resource queue, as long as
the remaining area is large enough to hold that
RIB and all of its RIBEs.

Subsequent call No At least the first RIB that represents the first
requestor on the resource queue, and as many
of that RIB's associated RIBEs as will fit. Any
RIBEs that do not fit are not returned to the
caller.

If all of the RIBEs fit, GQSCAN returns the
next RIB on the resource queue, as long as
the remaining area is large enough to hold that
RIB and at least one of its RIBEs.

Yes; value is
the token value
returned by
GQSCAN on
the preceding
call

At least the next RIB on the resource queue,
with as many of that RIB's associated RIBEs
as will fit. Any RIBEs that do not fit are not
returned to the caller.

If all of the RIBEs fit, GQSCAN returns the
next RIB on the resource queue, as long as
the remaining area is large enough to hold that
RIB and all of its RIBEs.

 Chapter 6. Resource Control 6-19

First return Second return Third return

3 RIBEs total
3 here

6 RIBEs total
5 here

2 RIBEs total
2 here

1 RIBEs total
1 here

RIBE B1 RIBE C1

RIBE C2

RIBE D1

RIB D

RIBE A1

RIBE A2

RIBE A3

RIB B RIB BRIB B

RIBE B2

RIBE B3

RIBE B4

RIBE B5

Figure 6-13. Work Area Contents for GQSCAN with a Scope of STEP, SYSTEM,
SYSTEMS, or ALL

Note that, because the specified area is not large enough, the caller cannot receive
all of the RIBEs associated with resource B, even though the caller coded the
TOKEN parameter. To receive all of those RIBEs, the caller has to specify a larger
area and reissue the GQSCAN request.

When scanning the information returned, you must use the size of the fixed portion
of the RIB and the RIBE that is returned in register 0. The size of the fixed portion
of the RIB (RIBLEN) is in the high-order half of register 0, and the size of the RIBE
(RIBELEN) is in the low-order half.

The first RIB starts at the beginning of the workarea you specify on the AREA
parameter. To find the first RIBE, add the value of RIBLEN and the variable portion
of RIB (as found in the RIBVLEN field of the RIB) to the address of the workarea.
To find the second RIBE, add the value of RIBELEN to the address of the first
RIBE.

To find the second RIB, add the following to the location of the first RIB:

RIBLEN + RIBVLEN + (the number of RIBEs × RIBELEN)

6-20 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 7. Program Interruption Services

Some conditions encountered in a program cause a program interruption. These
conditions include incorrect parameters and parameter specifications, as well as
exceptional results, and are known generally as program exceptions. The program
status word's (PSW) program mask provide bits to control certain program
exceptions. When MVS gives control to programs, these bits are usually off,
disabling the program exceptions. However, MVS also provides the ESPIE and
SPIE services to enable program exceptions and to allow a user exit routine to
receive control when those exceptions occur. This chapter describes the use of
ESPIE and SPIE services.

Specifying User Exit Routines
By issuing the SPIE1 or ESPIE macro, you can specify your own exit routine to be
given control for one or more types of program exceptions. If you issue an ESPIE
macro, you can also pass the address of a parameter list to the exit routine. When
one of the specified program exceptions occurs in a problem state program being
executed in the performance of a task, the exit routine receives control in the key of
the active task and in the addressing mode in effect when the SPIE or ESPIE was
issued. (If a SPIE macro was issued, this is 24-bit addressing mode.) For other
program interruptions, part of the system, the recovery termination manager (RTM),
gets control. If the SPIE or ESPIE macro specifies an exception for which the
interruption has been disabled, the system enables the interruption when the macro
is issued.

If a program interruption occurs, the exit routine receives control on interrupt codes
0 through F. For the SPIE macro, the exit routine receives control only if the
interrupted program is in primary address space control (ASC) mode. For the
ESPIE macro, the exit routine receives control if the interrupted program is in either
primary or access register (AR) ASC mode. For both the SPIE and ESPIE macros,
the exit routine receives control only for interrupts that occur when the primary,
home, and secondary address spaces are the same.

The environment established by an ESPIE macro exists for the entire task, until the
environment is changed by another SPIE/ESPIE macro, or until the program
creating the ESPIE returns. Each succeeding SPIE or ESPIE macro completely
overrides specifications in the previous SPIE or ESPIE macro. You can intermix
SPIE and ESPIE macros in one program. Only one SPIE or ESPIE environment is
active at a time. If an exit routine issues an ESPIE macro, the new ESPIE
environment does not take effect until the exit routine completes.

The system automatically deletes the SPIE/ESPIE exit routine when the request
block (RB) that established the exit terminates. If a caller attempts to delete a
specific SPIE/ESPIE environment established under a previous RB, the caller is
abended with a system completion code of X'46D'. A caller can delete all previous
SPIE and ESPIE environments (regardless of the RB under which they were
established) by specifying a token of zero with the RESET option of the ESPIE
macro or an exit address of zero with the SPIE macro.

1 The ESPIE macro is the preferred programming interface.

 Copyright IBM Corp. 1988, 1999 7-1

A program, executing in either 24-bit or 31-bit addressing mode in the performance
of a task, can issue the ESPIE macro. If your program is executing in 31-bit
addressing mode, you cannot issue the SPIE macro. The SPIE macro is restricted
in use to callers executing in 24-bit addressing mode in the performance of a task.
The following topics describe how to use the SPIE and ESPIE macros.

Using the SPIE Macro
The program interruption control area (PICA) and the program interruption element
(PIE) contain the information that enables the system to intercept user-specified
program interruptions established using the SPIE macro. You can modify the
contents of the active PICA to change the active SPIE environment. The PICA and
the PIE are described in the following topics.

Program Interruption Control Area
The expansion of each standard or list form of the SPIE macro contains a system
parameter list called the program interruption control area (PICA). The PICA
contains the new program mask for the interruption types that can be disabled in
the PSW, the address of the exit routine to be given control when one of the
specified interruptions occurs, and a code for interruption types (exceptions)
specified in the SPIE macro. See PICA in OS/390 MVS Data Areas, Vol 3
(IVT-RCWK) for the mapping provided by the IHAPICA mapping macro.

The system maintains a pointer (in the PIE) to the PICA referred to by the last
SPIE macro executed. This PICA might have been created by the last SPIE or
might have been created previously and referred to by the last SPIE. Before
returning control to the calling program or passing control to another program
through an XCTL or XCTLX macro, each program that issues a SPIE macro must
cause the system to adjust the SPIE environment to the condition that existed
previously or to eliminate the SPIE environment if one did not exist on entry to the
program. When you issue the standard or execute form of the SPIE macro to
establish a new SPIE environment, the system returns the address of the previous
PICA in register 1. If no SPIE/ESPIE environment existed when the program was
entered, the system returns zeroes in register 1.

You can cancel the effect of the last SPIE macro by issuing a SPIE macro with no
parameters. This action does not reestablish the effect of the previous SPIE; it does
create a new PICA that contains zeroes, thus indicating that you do not want an
exit routine to process interruptions. You can reestablish any previous SPIE
environment, regardless of the number or type of subsequent SPIE macros issued,
by using the execute form of the SPIE specifying the PICA address that the system
returned in register 1. The PICA whose address you specify must still be valid (not
overlaid). If you specify zeroes as the PICA address, the SPIE environment is
eliminated.

Figure 7-1 shows how to restore a previous PICA. The first SPIE macro designates
an exit routine called FIXUP that is to be given control if fixed-point overflow
occurs. The address returned in register 1 is stored in the fullword called HOLD. At
the end of the program, the execute form of the SPIE macro is used to restore the
previous PICA.

7-2 OS/390 V2R8.0 MVS Assembler Services Guide

 .
 .

SPIE FIXUP,(8) Provide exit routine for fixed-point overflow
ST 1,HOLD Save address returned in register 1

 .
 .

L 5,HOLD Reload returned address
SPIE MF=(E,(5)) Use execute form and old PICA address

 .
 .
HOLD DC F'ð'

Figure 7-1. Using the SPIE Macro

Program Interruption Element
The first time you issue a SPIE macro during the performance of a task, the system
creates a program interruption element (PIE) in the virtual storage area assigned to
your job step. The system also creates a PIE whenever you issue a SPIE macro
and no PIE exists. See PIE in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for the
format of the PIE.

The PICA address in the PIE is the address of the program interruption control area
used in the last execution of the SPIE macro for the task. When control is passed
to the routine indicated in the PICA, the BC (basic control) mode old program
status word contains the interruption code in bits 16-31 (the first byte is the
exception extension code and the second is the exception code); you can test
these bits to determine the cause of the program interruption. See ESA/370
Principles of Operation for an explanation of the format of the old program status
word. The system stores the contents of registers 14, 15, 0, 1, and 2 at the time of
the interruption as indicated.

Using the ESPIE Macro
The ESPIE macro extends the functions of the SPIE macro to callers in 31-bit
addressing mode. The options that you can specify using the ESPIE macro are:

� SET to establish an ESPIE environment (that is, specify the interruptions for
which the user-exit routine will receive control)

� RESET to delete the current ESPIE environment and restore the SPIE/ESPIE
environment specified

� TEST to determine the active SPIE/ESPIE environment

If you specify ESPIE SET, you pass the following information to the system:

� A list of the program interruptions to be handled by the exit routine
� The location of the exit routine
� The location of a user-defined parameter list

The system returns either a token representing the previously active SPIE or ESPIE
environment, or a token of zeroes if there was none.

If you code ESPIE RESET, you pass the token, which was returned when the
ESPIE environment was established, back to the system. The SPIE or ESPIE

 Chapter 7. Program Interruption Services 7-3

environment corresponding to the token is restored. If you pass a token of zero with
RESET, all SPIE and ESPIE environments are deleted.

If you specify ESPIE TEST, you will be able to determine the active SPIE or ESPIE
environment. ESPIE TEST sets return codes to indicate which type of exit is active,
if any, and if one or the other is active, provides information about the exit in a
parameter list. Refer to the TEST parameter on the ESPIE macro for a description
of the return codes, and the information that is returned in the parameter list.

If an ESPIE environment is active and you issue a SPIE macro to specify
interruptions for which a SPIE exit routine is to receive control, the system returns
the address of a system-generated PICA in register 1. Do not modify the contents
of the system-generated PICA; use the address to restore the previous ESPIE
environment.

For a data exception,an ESPIE routine will receive the DXC value in its parameter
area, and should use this value rather than the value in the Floating Point Control
(FPC) register.

If a retry is to be done, an ESPIE routine can manually change the value(s) of the
FPR(s) and FPC register. Changes to the non-volatile fields (i.e., the IEEE settings)
in the FPC register must be made carefully since this could affect the processing of
the rest of the current program, and possibly subsequent programs.

The Extended Program Interruption Element (EPIE)
The system creates an EPIE the first time you issue an ESPIE macro during the
performance of a task or whenever you issue an ESPIE macro and no EPIE exists.
The EPIE is freed when you eliminate the ESPIE environment.

The EPIE contains the information that the system passes to the ESPIE exit routine
when it receives control after a program interrupt. When the exit routine receives
control, register 1 contains the address of the EPIE. (See the topic “Environment
Upon Entry to User's Exit Routine” for the contents of the other registers.) The
format of the EPIE is shown in OS/390 MVS Data Areas, Vol 2 (DCCB-ITTCTE).

Environment Upon Entry to User's Exit Routine
When control is passed to your routine, the register contents are as follows:

Register 0: Used as a work register by the system.

Register 1: Address of the PIE or EPIE for the task that caused
the interruption.

Registers 2-13: Unchanged.

Register 14: Return address.

Register 15: Address of the exit routine.

The access registers and linkage stack have the values that were current at the
time of the program interruption. Both SPIE and ESPIE exits always receive control
in primary ASC mode.

7-4 OS/390 V2R8.0 MVS Assembler Services Guide

Functions Performed in User Exit Routines
Your exit routine must determine the type of interruption that occurred before taking
corrective action. Determining the type of interruption depends on whether the exit
is associated with an ESPIE or a SPIE macro.

� For an ESPIE, your exit routine can check the two-byte interruption code (the
first byte is the exception extension code and the second is the exception code)
in the second halfword of the EPIEINT field in the EPIE.

� For a SPIE, your exit routine can test bits 16 through 31 (the first byte is the
exception extension code and the second is the exception code) of the old
program status word (OPSW in BC mode)in the PIE.

Note: For both ESPIE and SPIE – If you are using vector instructions and an
exception of 8, 12, 13, 14, or 15 occurs, your exit routine can check the
exception extension code (the first byte of the two-byte interruption code in
the EPIE or PIE) to determine whether the exception was a vector or scalar
type of exception.

For more information about the exception extension code, see IBM System/370
Vector Operations.

Your exit routine can alter the contents of the registers when control is returned to
the interrupted program. The procedure for altering the registers also depends on
whether the exit is associated with an ESPIE or a SPIE.

� For an ESPIE exit, the exit routine can alter the contents of general purpose
and access registers 0 through 15 in the save area in the EPIE.

� For a SPIE exit, the exit routine can alter general purpose registers 14 through
2 in the register save area in the PIE. To change registers 3 through 13, the
exit routine must alter the contents of the registers themselves.

The exit routine can also alter the last four bytes of the OPSW in the PIE or EPIE.
For an ESPIE, the exit routine alters the condition code and program mask starting
at the third byte in the OPSW. By changing the OPSW, the routine can select any
return point in the interrupted program. In addition, for ESPIE exits, the routine
must set the AMODE bit of this four-byte address to indicate the addressing mode
of the interrupted program.

ESPIE exit routines can alter the ASC mode when control is returned to the
interrupted program if the EPIEVERS field in the EPIE contains a value greater
than zero. This value is set by the system. To alter the ASC mode of the
interrupted program, the exit must do the following:

� Set bit 17 of the EPIEPSW field in the EPIE. If this bit is 0 when control is
returned to the interrupted program, the program receives control in primary
ASC mode. If this bit is 1 when control is returned to the interrupted program,
the program receives control in AR ASC mode.

� Set the EPIERCTL bit in the EPIE to indicate that the ASC mode for the
interrupted program has been set by the exit routine.

 Chapter 7. Program Interruption Services 7-5

7-6 OS/390 V2R8.0 MVS Assembler Services Guide

 Chapter 8. Providing Recovery

In an ideal world, the programs you write would run perfectly, and never encounter
an error, either software or hardware. In the real world, programs do encounter
errors that can result in the premature end of the program's processing. These
errors could be caused by something your program does, or they could be beyond
your program's control.

MVS allows you to provide something called recovery for your programs; that
means you can anticipate and possibly recover from software errors that could
prematurely end a program. To recover from these errors, you must have one or
more user-written routines called recovery routines . The general idea is that,
when something goes wrong, you have a recovery routine standing by to take over,
fix the problem, and return control to your program so that processing can complete
normally; if the problem cannot be fixed, the recovery routine would provide
information about what went wrong. If correctly set up, your recovery should, at the
very least, provide you with more information about what went wrong with your
program than you would have had otherwise.

Part of recovery is also the "cleaning up" of any resources your program might
have acquired. By "clean up" of resources, we mean that programs might need to
release storage that was obtained, release ENQs, close data sets, and so on. If
your program encounters an error before it has the opportunity to clean up
resources, your recovery routine can do the clean up.

MVS provides the recovery termination manager (RTM) to handle the process by
which recovery routines and resource managers receive control.

This chapter is devoted to explaining why you might want to provide recovery for
your programs in anticipation of encountering one or more errors, and how you go
about doing that. An important point to note is that providing recovery is something
to be considered at the design stage of your program . You should make the
decision about whether to provide recovery before you begin designing the
program. Trying to provide recovery for an existing program is much more difficult
because recovery must be an integral part of your program.

The following table provides a roadmap to the information in this chapter. If you
already understand recovery concepts you might want to skip directly to those
sections of specific interest to you.

 Copyright IBM Corp. 1988, 1999 8-1

To find out about: Consult the following section:

General recovery concepts, including:

� Why you would want to provide
recovery.

� What software errors result in your
recovery getting control.

� What we mean when we say a
program abnormally ends .

� The different states for a recovery
routine.

� The different types of routines in a
recovery environment, and how to
choose, define, and activate the right
recovery routine.

� The basic options available to a
recovery routine.

� How routines in a recovery
environment interact.

“Understanding General Recovery
Concepts” on page 8-2.

How to write a recovery routine, including:

� What recovery routines do.
� How recovery routines communicate

with other routines and with the
system.

� Special considerations when writing
different types of recovery routines.

“Writing Recovery Routines” on
page 8-11.

The recovery environment, including:

� Register contents at various times
during recovery processing.

� Other environmental factors such as
program authorization, dispatchable
unit mode, ASC mode, and so on.

“Understanding the Recovery
Environment” on page 8-30.

Coding the various routines in a typical
recovery environment.

“Understanding Recovery through a
Coded Example” on page 8-42.

Advanced recovery topics, including:

� Intentionally invoking RTM.
� Providing multiple recovery routines.
� Providing recovery for recovery

routines.
� Providing recovery for multitasking

programs

“Understanding Advanced Recovery
Topics” on page 8-45.

Understanding General Recovery Concepts
This section provides a general overview of recovery concepts. After reading this
section, you should understand the following:

� Why you would want to provide recovery for your programs.

� What software errors result in your recovery getting control, if you provide
recovery.

� What we mean when we say a program abnormally ends .

� The different states for a recovery routine.

8-2 OS/390 V2R8.0 MVS Assembler Services Guide

� The difference between a mainline routine , a recovery routine , and a retry
routine .

� What an extended specify task abnormal exit (ESTAE-type)recovery
routine is and how to choose, define, and activate the appropriate one.

� The difference between what it means to retry and what it means to percolate .

� How routines in a recovery environment interact.

Deciding Whether to Provide Recovery
MVS does all that it can to ensure the availability of programs, and to protect the
integrity of system resources. However, MVS cannot provide effective recovery for
every individual application program, so programs need recovery routines of their
own.

To decide whether you need to provide recovery for a particular program, and the
amount of recovery to provide, you should:

� Determine what the consequences will be if the program encounters an error
and ends.

� Compare the cost of tolerating those consequences to the cost of providing
recovery.

In general, if you have a large, complex program upon which a great number of
users depend, such as a subsystem, a database manager, or any application that
provides an important service to many other programs or end users, you will almost
certainly want to provide recovery. For small, simple programs upon which very few
users depend, you might not get enough return on your investment. Between these
two extremes is a whole spectrum of possibilities.

Consider the following points in making your decision. Providing recovery :

� Increases your program's availability .

Depending on the nature of the error, your recovery routine might successfully
correct the error and allow your program to continue processing normally.
Maintaining maximum availability is one of the major objectives of providing
recovery.

� Is a way to protect both system and application resources .

In general, recovery routines should clean up any resources your program is
holding that might be requested by another program, or another user of your
program. The purpose of clean up is to:

– Allow your program to run again successfully without requiring a re-IPL

– Allow the system to continue to run other work (consider especially other
work related to the failing program).

Virtual storage and ENQs are examples of important resources shared by other
programs. A program should provide for the release of these resources if an
error occurs so that other programs can access them.

Note: ENQs are used for serialization. See Chapter 6, “Resource Control” on
page 6-1 for more information about serialization.

Recovery routines should also ensure the integrity of any data being accessed.
Consider the case of a database application that is responsible for protecting its

 Chapter 8. Providing Recovery 8-3

database resources. The application must ensure the integrity and consistency
of the data in the event an error occurs. Data changes that were made prior to
the error might have to be backed out from the database.

� Provides for communication between different processes.

An example of this would be a task that sends a request to another task. If the
second task encounters an error, a recovery routine could inform the first task
that its request will not be fulfilled.

When dealing with a multi-tasking environment, you must plan your recovery in
terms of the multiple tasks involved. You must have a cohesive scheme that
provides recovery for the set of tasks rather than thinking only in terms of a
single task.

� Is a way to help you determine what went wrong when an error occurs in
your program.

Recovery routines can do such things as save serviceability data and request
dumps to help determine what went wrong in your program. These actions are
explained in greater detail later in this chapter.

� Facilitates validity checking of user parameters.

Consider the case of a program that must verify input from its callers. The
program does parameter validation, but might not catch all variations. For
example, the caller might pass the address of an input data area that appears
to be valid; however, the caller did not have access to that storage. When the
program attempts to update the data area, a protection exception occurs. A
recovery routine could intercept this error, and allow the program to pass back
a return code to the caller indicating the input was not valid.

Providing recovery in a case like this improves the reliability of your program.

If you do not provide recovery for your program, and your program encounters an
error, MVS handles the problem to some extent, but the result is that your program
ends before you expected it to, and application resources might not be cleaned up.

Understanding Errors in MVS
Certain errors, which your program or the system can detect, trigger the system to
interrupt your program and pass control to your recovery routine (or routines) if you
have any; if you do not have any recovery routines, the system abnormally ends
your program. This chapter uses the term abnormal end when your program ends
for either of the following reasons:

� Your program encounters an error for which it has no recovery routines

� Your program encounters an error for which its recovery routines are not
successful.

The errors for which you, or the system, might want to interrupt your program are
generally those that might degrade the system or destroy data.

The following are some examples of errors that would cause your recovery routine
(if you have one) to get control:

� Unanticipated program checks (except those resolved by SPIE or ESPIE
routines; see Chapter 7, “Program Interruption Services” on page 7-1 for
information about SPIE and ESPIE routines.)

8-4 OS/390 V2R8.0 MVS Assembler Services Guide

� Machine checks (such as a storage error that occurs while your program is
running)

� Various types of CANCEL (such as operator or time out)

� An error when issuing an MVS macro or callable service (for example,
specifying parameters that are not valid)

Each of the above errors has associated with it one or more system completion
codes . All system completion codes are described in OS/390 MVS System Codes.
You can write your recovery routine to specifically handle one or more of these
system completion codes, or define your own user completion codes and handle
one or more of them. Completion codes associated with errors are also referred to
as abend codes .

As stated earlier, the system can detect errors, but your program also can detect
errors and request that the system pass control to recovery routines. To do so,
your program can issue the ABEND macro.

Use the ABEND macro to request recovery processing on behalf of the current unit
of work. Your program might choose to issue the ABEND macro if it detects an
impossible or illogical situation and cannot proceed further. For example, your
program might be passed parameters that are not valid, or might detect something
in the environment that is not valid. Your program might also choose to issue the
ABEND macro so that its recovery routine can get control to save serviceability
information.

Understanding Recovery Routine States
In this chapter we talk about recovery routines being in one of the following states:

 � Defined

A recovery routine is defined when you make it known to the system. For
example, you might issue a macro on which you specify a particular recovery
routine. At the point of issuing that macro, the recovery routine is defined to the
system.

 � Activated

A recovery routine is activated when it is available to receive control; if an error
occurs, the system can pass control to an activated recovery routine.
Depending on the type of recovery routine, it might be defined to the system
but not yet activated. Some recovery routines are both defined and activated by
issuing a single macro.

 � In control

A recovery routine is in control when it is running; an error has occurred and
the system passed control to the recovery routine.

� No longer in control

A recovery routine is no longer in control when it returns control to the
system. The recovery routine returns control either by requesting to percolate
or retry (terms defined later in this chapter) and issuing a BR 14 instruction, or
by encountering an error itself.

 � Deactivated

 Chapter 8. Providing Recovery 8-5

A recovery routine is deactivated when it is no longer available to receive
control; if an error occurs, the system will not pass control to a deactivated
recovery routine. Depending on the type of recovery routine, it might be
deactivated but still defined to the system. For some recovery routines, issuing
a single macro results in the routine becoming both deactivated and no longer
defined.

� No longer defined

A recovery routine is no longer defined when it is no longer known to the
system. The routine might still exist and be in virtual storage, but the system no
longer recognizes it as a recovery routine.

Understanding the Various Routines in a Recovery Environment
This chapter discusses the following different types of routines that interact in a
recovery environment:

 � Mainline routine
 � Recovery routine
� Retry routine (also known as a retry point)

All of these routines are user-written routines. The following section provides you
with a description of each of these routines.

 Mainline Routine
The mainline routine is that portion of your program that does the work, or provides
the required function. In general, the mainline routine defines and activates the
recovery routine. Before returning to its caller, the mainline should also deactivate
the recovery routine and request that it be no longer defined. When an error occurs
in the mainline routine, the system passes control to the recovery routine.

 Recovery Routine
A recovery routine is the routine to which the system passes control when an error
occurs in the mainline routine. The recovery routine's objective is to intercept the
error and potentially perform one or more of the following tasks:

� Eliminate or minimize the effects of the error
� Allow the mainline routine to resume normal processing
� Clean up resources
� Communicate with other programs as appropriate
� Provide serviceability data
� Request a dump
� Validate user parameters
� Provide one or more recovery routines for itself.

The recovery routine can be an entry point in your program that processes only
when an error occurs, or it can be a separate routine that gets control when the
error occurs.

 Retry Routine
A retry routine is essentially an extension of the mainline routine. When an error
occurs, the system passes control to your recovery routine, which can then request
the system to pass control back to the mainline routine to resume processing. That
portion of the mainline that gets control back is referred to as the retry routine.
When the retry routine gets control, it is as if the mainline routine branched there

8-6 OS/390 V2R8.0 MVS Assembler Services Guide

after encountering the error; to the mainline routine, it appears as though the error
never occurred.

The retry routine does whatever processing your mainline routine would continue
doing at that point.

Once the retry routine is running, if another error occurs, the system again passes
control to your recovery routine, just as it did when the mainline routine
encountered an error.

Choosing the Appropriate Recovery Routine
The recovery routines you can provide are called ESTAE-type recovery routines .
This section describes the different types of ESTAE-type recovery routines, and for
each type, describes how you define it, activate it, deactivate it, and request that it
no longer be defined. A summary of this information is in Figure 8-1 on page 8-9.

When you provide one or more recovery routines for your program, you have the
opportunity to identify a user parameter area for the system to pass from the
mainline routine to the recovery routine. Creating such a parameter area with
information for the recovery routine is a very important part of providing recovery.
See “Setting Up, Passing, and Accessing the Parameter Area” on page 8-19 for
more information about what this parameter area should contain, and how to pass
it.

Define ESTAE-type recovery routines in the following ways:

� STAE, ESTAE, and ESTAEX macros
� ATTACH and ATTACHX macros with STAI and ESTAI parameters

The following describes the recovery routines you can define with each of the
above macros:

� STAE, ESTAE, and ESTAEX macros

To provide recovery to protect itself and any other programs running under the
same task, a program can issue either the STAE, ESTAE, or ESTAEX macro
with the CT parameter. Each of these macros both defines and activates the
recovery routine. The recovery routine is defined and activated until one of the
following events occurs:

– You deactivate it and request that it be no longer defined (issue STAE 0,
ESTAE 0, or ESTAEX 0).

– The recovery routine fails to or chooses not to retry (explained under
“Understanding Recovery Routine Options” on page 8-9).

– The request block (RB) under which the caller of the macro is running
terminates.

A program cannot protect other tasks with recovery routines defined through
these macros.

IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, in which case, you should use
ESTAE. ESTAE and ESTAEX provide the same function, except that ESTAEX
can be issued in AR ASC mode. STAE is the pre-MVS/XA version of ESTAE.

 Chapter 8. Providing Recovery 8-7

The remainder of this chapter refers to the recovery routines you define and
activate through the ESTAE and ESTAEX macros as ESTAE routines or
ESTAEX routines , respectively.

� ATTACH and ATTACHX macros with STAI and ESTAI parameters

To attach a task and provide recovery to protect the attached task and all of its
subtasks, a program can issue either the ATTACH or the ATTACHX macro with
either the STAI or the ESTAI parameter. You define the recovery routine when
you issue the macro. The recovery routine is not activated until the attached
task gets control. The recovery routine remains activated as long as the
attached task is still running, or until the recovery routine fails to or chooses not
to retry. The system deactivates the recovery routine when the attached task
ends. At that point, the recovery routine is no longer defined.

The program attaching the task is not protected by the recovery defined in this
manner. Only the attached task and its subtasks are protected.

IBM recommends you always use the ESTAI, rather than the STAI, parameter
on ATTACHX, rather than ATTACH. ATTACH and ATTACHX provide the same
function, except that ATTACHX can be issued in AR ASC mode. STAI is the
pre-MVS/XA version of ESTAI.

The remainder of this chapter refers to the recovery routines you define through
ATTACHX with ESTAI as ESTAI routines . All references to the ATTACHX
macro apply also to the ATTACH macro.

In summary, ESTAE-type recovery routines include ESTAE and ESTAEX
routines , and ESTAI routines .

Note: Another ESTAE-type recovery routine that you can write is the
associated recovery routine (ARR). ARRs are associated with stacking
PC routines. Only authorized programs can create the environment
required to use these routines. For information about coding ARRs, see
the application development books that are available to the
programmers in your installation that use authorized macros.

Floating Point Implications
When working under the FRR recovery routine state, the first recovery routine will
normally see the time-of-error Floating Point Registers (FPRs) and the Floating
Point Control (FPC) register. The DXC value is provided in the SDWA. It is this
value that should be used rather than the copy in the Floating Point Control
register.

If control can pass to other recovery routines, and the first recovery routine modifies
any of the FPRs or FPC register, it is responsible to save and restore the
time-of-error FPRs and FPC register.

If retry is to be done, a recovery routine can (manually) change the value(s) of the
FPR(s) and FPC register. Changes to the non-volatile fields (i.e., the IEEE settings)
in the FPC register must be made carefully since this could affect the processing of
the rest of the current program, and possibly subsequent programs.

8-8 OS/390 V2R8.0 MVS Assembler Services Guide

Summary of Recovery Routine States
The following table summarizes, for each type of recovery routine, when the
recovery routine is defined, activated, deactivated, and no longer defined.

Figure 8-1. Summary of Recovery Routine States

Recovery
routine Defined Activated Deactivated

No longer
defined

ESTAE ESTAE CT ESTAE CT ESTAE 0 ESTAE 0

ESTAEX ESTAEX CT ESTAEX CT ESTAEX 0 ESTAEX 0

ESTAI ATTACHX
ESTAI

Attached task
gets control

Attached task
ends

Attached task
ends

Understanding Recovery Routine Options
A recovery routine has two basic options: the routine can either retry or it can
percolate .

Retry is the attempt to resume processing at some point in the unit of work that
encountered the error. The recovery routine does something to circumvent or repair
the error, and requests that the system pass control to a retry routine to attempt to
continue with normal processing.

Percolate is the opposite of retry . To percolate means to continue with error
processing. A recovery routine percolates under one of the following circumstances:

� The system does not allow a retry

� The recovery routine chooses not to retry, perhaps because the environment is
so damaged that the routine cannot circumvent or repair the error, or perhaps
because the recovery routine was designed only to capture serviceability data,
and is not intended to retry.

When a recovery routine percolates, the system checks to see if any other recovery
routines are activated. If so, the system passes control to that recovery routine,
which then has the option to either retry or percolate. Think of the process of
percolation, then, as the system passing control to one recovery routine after
another.

The system gives control to ESTAE-type recovery routines in the following order:

1. ESTAE-type recovery routines that are not ESTAI routines, in last-in-first-out
(LIFO) order, which means the most recently activated routine gets control first

2. ESTAI routines, in LIFO order.

Once all routines have percolated, the system proceeds to abnormally end your
program. See “Providing Multiple Recovery Routines” on page 8-46 for more
information about having multiple recovery routines.

Understanding How Routines in a Recovery Environment Interact
Figure 8-2 on page 8-10 is a very simplified illustration of how routines in a
recovery environment interact. In this figure, only one recovery routine exists, and it
is an ESTAE-type recovery routine. The following sequence of events might occur:

1. The mainline routine encounters an error.

 Chapter 8. Providing Recovery 8-9

2. The system gets control.

3. The system looks for recovery routines and finds an ESTAE-type recovery
routine called ESTAEX.

4. The ESTAEX routine either retries or percolates.

a. If the ESTAEX routine retries, it returns control to a retry point in the
mainline routine. The mainline routine continues processing.

b. If the ESTAEX routine percolates, the system gets control and abnormally
ends the mainline routine.

Mainline
Routine

Retry Point

Error occurs -
The system gets control

The system abnormally
ends the mainline routine

End
Normally

ESTAEX
Routine

Retry

Percolate

Figure 8-2. Mainline Routine with One Recovery Routine

Figure 8-3 on page 8-11 shows a more complex situation. Several recovery
routines exist, and each one that is entered has the opportunity to retry or to
percolate. The following sequence of events might occur if all recovery routines
percolate:

1. The mainline routine encounters an error.

2. The system looks for recovery routines, and finds that ESTAEX(3) was the last
one created.

3. The system gives control to ESTAEX(3) first.

4. ESTAEX(3) percolates to ESTAE(2), which percolates to ESTAI(1).

5. ESTAI(1) also percolates, and no other recovery routines are activated, so the
system abnormally ends the mainline routine.

Had any of the recovery routines decided to retry, the system would have returned
control to the retry point, and the mainline routine might have ended normally.

8-10 OS/390 V2R8.0 MVS Assembler Services Guide

ESTAI(1)

ESTAI(1)

Mainline
Routine
.
.
Retry Point
.
.
End
Normally

The system
gives control

to ESTAE-type
routines

Error occurs
The system gets control

Retry

All ESTAE-type routines percolate -
The system abnormally ends the mainline routine

ESTAI(1)

ESTAE(2)

ESTAEX(3)

Figure 8-3. Mainline Routine with Several Recovery Routines

Writing Recovery Routines
So far, this chapter has discussed general recovery concepts, including how to
decide what type of recovery you need, and how to provide that recovery. But you
have to write the recovery routines that you provide. To do so, you must
understand all of the following. Each item is described in greater detail in the
sections that follow.

� What a recovery routine is supposed to do.

So far we talked about how recovery routines can either retry or percolate.
But, they do a lot more than that. We also talked about recovery routines
correcting or repairing errors, but we have not said how exactly they go about
doing that.

� How the recovery routine communicates with the mainline routine, the
retry routine, and the system.

The means of communication available to a recovery routine are:

– A user parameter area, built by the mainline routine and passed to the
recovery routine.

– A data area called the system diagnostic work area (SDWA), which is
provided by the system. The recovery routine communicates with the
system, with other recovery routines, and with the retry routine through the
SDWA. The recovery routine uses the SETRP macro to update information
in the SDWA.

– Registers, when no SDWA is provided.

 Chapter 8. Providing Recovery 8-11

� The special considerations you must make when writing an ESTAE-type
recovery routine.

One important consideration is the presence of an SDWA. The case where an
SDWA is not provided is rare; nevertheless, when you design an ESTAE-type
recovery routine, you must allow for the possibility of not receiving an SDWA.

Special considerations for ESTAE-type recovery routines also include RB
considerations, linkage stack considerations, and outstanding I/Os at time of
failure.

Note: When an error occurs for which the system passes control to your recovery
routine, the recovery routine must be in virtual storage. It can either be an
entry point in your program, or a separate routine. You are responsible for
ensuring that the recovery routine is in virtual storage when needed.

Understanding What Recovery Routines Do
The following is a list of some of the things a recovery routine should do if the
recovery is to be effective. Each item is explained in greater detail in the sections
that follow.

The items are arranged in a way that suggests the order in which you might do
them; however, you must decide yourself the order that would work best for your
particular routine.

� Preserve the return address to the system.

� Check for the presence of an SDWA.

� Establish addressability to the parameter area passed by the mainline routine.
How you do that depends on whether an SDWA is present.

� Check the contents of important fields in the SDWA.

– Determine the location of the parameter area.
– Determine why the routine was entered.
– Determine if this is the first recovery routine to get control.

� Check the contents of the parameter area passed by the mainline.

– Determine if this is a repeated error (to avoid recursion).
– Determine when and where the error occurred.

� Provide information to help determine the cause of the error:

– Save serviceability data in the SDWA.
– Request a dump of storage.

� Try to correct or minimize the effects of the error.

� Determine whether the recovery routine can retry, decide whether to retry or
percolate, and take the appropriate actions (such as cleaning up resources).

Saving the Return Address to the System
When writing a recovery routine, you must save the return address to the system,
which you find in general purpose register (GPR) 14. The system sets up the return
address so that the recovery routine can return, at the appropriate time, using a BR
14 instruction.

8-12 OS/390 V2R8.0 MVS Assembler Services Guide

Checking for the SDWA
For an ESTAE-type recovery routine, if the system cannot obtain storage for an
SDWA, the system does not provide one. The case where an SDWA is not
provided is rare. Nevertheless, when you design an ESTAE-type recovery routine,
you must allow for the possibility of not receiving an SDWA; almost every action an
ESTAE-type recovery routine takes must be set up differently to handle the two
possibilities.

To check for the presence of the SDWA, the recovery routine checks the contents
of GPR 0. If GPR 0 contains 12 (X'0C') the system could not obtain an SDWA.
When GPR 0 contains any value other than 12, an SDWA is present, and its
address is in GPR 1. When the system provides an SDWA, the system also
provides a register save area whose address is in GPR 13.

If an SDWA was not provided GPR 13 does not point to a save area, and your
routine must not use the area pointed to by GPR 13.

Establishing Addressability to the Parameter Area
The recovery routine also must establish addressability to the parameter area
passed by the mainline routine. To determine the location of the parameter area:

� If an SDWA is present, the recovery routine checks either the contents of
SDWAPARM or the contents of GPR/AR 2. GPR 2 contains the address of the
parameter area, and for AR-mode callers, AR 2 contains the ALET.

� If no SDWA is present, the recovery routine checks the contents of GPR/AR 2.
GPR 2 contains the address of the parameter area, and for AR-mode callers,
AR 2 contains the ALET.

The following are examples of information a mainline routine can pass to a
recovery routine through the parameter area:

� A dynamic storage area

� An input parameter list (that is, a parameter list that might have been passed to
the mainline routine)

� The addresses of important data areas.

Checking Important Fields in the SDWA
Assuming an SDWA is present, your routine can obtain a great deal of information
from this data area. Some of the key information a recovery routine can check for
in the SDWA includes:

� Why the routine was entered.

The routine can check the SDWACMPC field, which contains the completion
code that existed when the system gave control to the routine, and the
SDWACRC field, which contains the reason code associated with the
completion code. SDWACRC contains a reason code only if the SDWARCF bit
is on.

� The location of the parameter area that was passed by the mainline.

The routine can check the SDWAPARM field, which provides the information
the routine needs to locate the parameter area. The contents of this field vary
depending on the way in which the recovery was defined.

� Whether this is the first recovery routine to get control.

 Chapter 8. Providing Recovery 8-13

If the SDWAPERC bit is off, this recovery routine is the first to get control. If the
SDWAPERC bit is on, percolation has occurred.

The first recovery routine to get control usually has a more direct relationship
with the error; being the first recovery routine to get control for an error can be
an indication that the error occurred in the mainline routine that activated this
particular recovery routine, rather than in a routine that was subsequently
called.

This information can be useful in determining what action the recovery routine
should take. A recovery routine is more likely to take corrective action or
capture serviceability data if it is the first to get control for an error. Subsequent
recovery routines are further removed from the error, and might limit their
activities to releasing resources, or attempting a retry if possible.

See “Important Fields in the SDWA” on page 8-23 for a list of some of the fields in
the SDWA, and an explanation of their contents.

Checking the Contents of the Parameter Area
Generally the mainline routine sets up a parameter area containing information for
use by the recovery routine. Key information that a recovery routine might
determine from the parameter area includes:

� When and where the error occurred
� Whether this is a repeated error.

The recovery routine can tell when and where the error occurred through
“footprints,” a technique explained under “Deciding What to Include in the
Parameter Area” on page 8-19. Footprints can help the recovery routine to avoid
getting into a loop in which the routine requests a retry, and the same error occurs
again (recursion). For example, if the recovery routine supplies a bad retry address
to the system, and the processing of the first instruction at the given address
causes a program check, the first recovery routine to get control is the one that just
requested the retry. If the recovery routine requests another retry at the same
address, the loop is created.

See “Setting Up, Passing, and Accessing the Parameter Area” on page 8-19 for
more information about what the parameter area can contain, and the techniques
you can use to provide the most useful information to the recovery routine.

Saving Serviceability Data
One of the objectives of providing recovery is to obtain as much information as
possible to help you determine what went wrong. The SDWA has certain areas
where the recovery routine can save such information. Your recovery routine can
update the SDWA with serviceability information in three different ways:

� By issuing the SETRP macro with the RECPARM parameter. Use the
RECPARM parameter to supply the load module name, the active CSECT
name, and the recovery routine CSECT name. See “Using the SETRP Macro to
Update the SDWA” on page 8-22 for more information about using SETRP.

� By issuing the VRADATA macro to update the SDWA variable recording area.
See the VRADATA macro in OS/390 MVS Programming: Assembler Services
Reference for more information.

8-14 OS/390 V2R8.0 MVS Assembler Services Guide

� By directly manipulating other fields in the SDWA. Important fields to fill in are
SDWACID, SDWASC, SDWAMLVL, and SDWARRL. See “Important Fields in
the SDWA” on page 8-23 for a description of each of these fields.

Part of saving serviceability data includes providing information for dump analysis
and elimination (DAE). DAE depends on information that users provide in recovery
routines to construct symptom strings needed to describe software failures. DAE
uses these symptom strings to analyze dumps and suppress duplicate dumps as
requested. You should provide information for DAE prior to requesting a dump of
storage. See “Suppressing Dumps That Duplicate Previous Dumps” on page 9-2
for more information about DAE and dump suppression.

Requesting a Dump
Your recovery routine can also request a dump of storage to help determine the
cause of the error. In most cases, the system does not automatically request
dumps on behalf of your program. To request an ABEND dump, the recovery
routine can issue the SETRP macro with the DUMP=YES parameter.

For more information about requesting dumps, see Chapter 9, “Dumping Virtual
Storage (ABEND, SNAPX, SNAP, and IEATDUMP Macros)” on page 9-1.

Before requesting a dump of storage, the recovery routine should check the
SDWAEAS bit. The SDWAEAS bit is on when a previous recovery routine has
provided sufficient diagnostic data related to this error. The recovery routine that
analyzes the problem and captures sufficient diagnostic data is responsible for
setting the SDWAEAS bit so that subsequent recovery routines know they do not
have to capture any further data.

Note that if your program calls a system service (by issuing a macro or callable
service), that system service might encounter a user-induced error and end
abnormally. Generally, the system does not take dumps for user-induced errors. If
you require such a dump, then it is your responsibility to request one in your
recovery routine.

Correcting or Minimizing the Error
Another important activity for a recovery routine is to attempt to correct or minimize
the error. What the recovery routine actually does to correct or minimize the error
depends on what the mainline routine is doing and what the error is. Some
examples of possible situations where the recovery routine could take action are
the following:

� The mainline routine might be working with a queue of data areas. The
recovery routine might be able to scan the queue and determine if one or more
of the data areas contains information that is not valid.

For example, one of the data areas might contain an address that is not valid.
Or, the mainline routine might have set up the data areas with some sort of
validating information that could be checked, and possibly corrected. Certain
data areas might have to be deleted from the queue, or the entire queue might
have to be deleted and rebuilt.

� The mainline routine might be running under a task that is communicating with
another task when an error occurs. The recovery routine might then take the
action of alerting the other task that a problem exists, so the other task does
not wait for any further communication.

 Chapter 8. Providing Recovery 8-15

� The mainline routine might have initiated I/O, and the recovery routine might
have to ensure that the I/O completes to protect the integrity of the I/O
resources.

� The recovery routine might back out changes made to a database to ensure its
integrity.

Deciding to Retry or Percolate
Under certain circumstances (such as CANCEL), the system does not allow a retry.
The SDWACLUP bit is on when the system prohibits a retry, and off when the
system allows a retry.

If a recovery routine requests retry when it is not allowed, the system ignores the
request and continues with percolation.

A recovery routine must determine whether it will attempt a retry. The determination
might be very simple: if the SDWACLUP bit is on, retry is not even an option. But if
retry is an option, the routine must make the decision based on the information it
has gathered in the preceding steps.

By no means is a recovery routine required to attempt a retry, even when one is
permitted. The recovery routine might decide not to retry if no SDWA is present,
going on the assumption that serious problems probably exist. The routine might
make the decision based on the particular completion code it finds in SDWACMPC,
or based on information in the parameter area, or based on how successful the
routine was in determining the cause of the error and fixing it. Perhaps the
environment is so badly damaged that repair is beyond the scope of the recovery
routine.

Once the decision is made, the recovery routine now does different things
depending on whether it will retry or percolate.

Note: If the recovery routine does not specify retry or percolate, the default is to
percolate.

Recovery Routines that Retry: When a recovery routine decides to retry, it
should do the following:

� Eliminate or minimize the cause of the error with complete or partial repair, as
explained above under “Correcting or Minimizing the Error” on page 8-15.

� Ensure that the retry routine's environment is restored. For example, restore
registers and re-establish addressability to mainline resources. See “Register
Contents on Entry to a Retry Routine” on page 8-35 for details about how a
recovery routine can control the register contents on entry to the retry routine.

� Know the condition of resources being held by the mainline. For example, the
routine might have to repair data structures, back out changes to data sets, and
so on.

� Indicate to the system that a retry is to be attempted. If an SDWA is present,
the recovery routine issues the SETRP macro with the RC=4 parameter to
indicate retry, and the RETADDR parameter to specify the address of the retry
routine. You can specify RC=4 even when the SDWACLUP bit is on, indicating
that retry is not allowed. If you do so, however, the system ignores the retry
request.

8-16 OS/390 V2R8.0 MVS Assembler Services Guide

If no SDWA is present, the recovery routine has to set a return code of 4 in
GPR 15, and place the address of the retry routine in GPR 0.

� Decide whether to pass the SDWA to the retry routine, and so indicate on the
SETRP macro with the FRESDWA parameter.

What the Retry Routine Does: Once the retry routine gets control, it continues
with mainline processing, and can free resources, deactivate recovery routines, and
so on. As stated earlier, the retry routine is really an extension of the mainline
routine, and its purpose is to re-establish the mainline environment.

When the retry routine gets control, the following are true:

� The retry routine runs under the same unit of work that activated the recovery
routine. See “Special Considerations for ESTAE-Type Recovery Routines” on
page 8-26 for further details related to ESTAE-type recovery routines.

� The retry routine might or might not have access to the SDWA, and the
recovery routine might or might not have directed that register contents be
restored for the retry routine.

For ESTAE-type recovery routines that specify FRESDWA=YES on SETRP, the
system frees the SDWA before entering the retry routine. For ESTAE-type
recovery routines that specify RETREGS=YES, the system restores the
registers from the SDWA.

For ESTAE-type recovery routines that specify FRESDWA=NO on SETRP, the
system does not free the SDWA, and the retry routine can access it. In that
case, the retry routine also has the responsibility of freeing the storage
for the SDWA when it is no longer needed. The subpool number and length
to use to free the storage are in the SDWA, in fields SDWASPID and
SDWALNTH, respectively.

Note: IBM recommends that the recovery routine use FRESDWA=YES on
the SETRP macro, thus alleviating the retry routine's responsibility to
free the SDWA. If your recovery routine retries multiple times and the
SDWA is not freed, out-of-storage failures can result.

The retry routine can determine what action the recovery routine took in regard
to freeing the SDWA and restoring registers by examining the contents of GPR
0:

 Chapter 8. Providing Recovery 8-17

For complete details about register contents see “Understanding the Recovery
Environment” on page 8-30.

� The recovery routine that requested the retry is still activated and can be
entered again, so be aware of the possibility of looping back to the same
recovery routine. That recovery routine remains activated and can be entered
again unless the recovery routine issued SETRP with REMREC=YES. If the
recovery routine specified REMREC=YES, the system deactivated that recovery
routine before giving control to the retry routine.

� Any previous recovery routines (those that percolated to the recovery routine
that requested the retry) are deactivated.

Notes:

1. You can have as many retry points in your program as needed, and you can
change the designated retry point as your mainline processing continues.

2. The retry routine can be a separate routine. The only requirement is that it
must be in virtual storage. You are responsible for ensuring that the retry
routine is in virtual storage when needed.

Recovery Routines that Percolate: When a recovery routine decides to
percolate (or takes the default), it should do the following:

� Release resources that were acquired by the mainline, such as ENQs.

� Repair the cause of the error, if possible.

� Indicate the percolate option to the system. If an SDWA is present, the
recovery routine issues the SETRP macro with the RC=0 parameter to indicate
percolation. If no SDWA is present, the recovery routine has to set a return
code of 0 in register 15.

Figure 8-4. Contents of GPR 0 on Entry to a Retry Routine

GPR 0 Contents Meaning

0 The system provided an SDWA. The recovery routine specified
RETREGS=NO and FRESDWA=NO. Registers are not restored from the
SDWA, and the retry routine must free the SDWA. GPR 1 contains the
address of the SDWA.

12 (X'0C') The system did not provide an SDWA.

20 (X'14') The system provided an SDWA. The recovery routine specified
RETREGS=NO and FRESDWA=YES. Registers are not restored from
the SDWA, and the retry routine does not have to free the SDWA.

Value restored from
SDWA (field
SDWASR00)

The system provided an SDWA. The recovery routine specified
RETREGS=YES, and either FRESDWA=NO or FRESDWA=YES. If the
recovery routine specifies FRESDWA=NO, the recovery routine must alert
the retry routine to free the SDWA. Some sort of protocol must be
established between the recovery routine and the retry routine. For
example, the recovery routine can set a unique value in SDWASR00 (the
field that represents GPR 0 in SDWASRSV) to distinguish this case from
those above where GPR 0 contains either 0, 12, or 20. The recovery
routine can pass the address of the SDWA to the retry routine in a
parameter area (use the parameter area pointed to by SDWAPARM) or in
a register (consider using register 0).

8-18 OS/390 V2R8.0 MVS Assembler Services Guide

Notes:

1. Once a recovery routine percolates, it is no longer activated ; it cannot receive
control again for this error.

2. An ESTAI routine can request that the system not give control to any further
ESTAI routines by specifying RC=16 on the SETRP macro. The system then
abnormally ends the task.

Understanding the Means of Communication
An important aspect of writing a recovery routine is understanding how the recovery
routine communicates with the mainline routine, the retry routine, and the system.
This section discusses the following means of communication:

 � Parameter area

The parameter area is set up by the mainline routine and passed to the
recovery routine. See “Setting Up, Passing, and Accessing the Parameter
Area.”

 � SDWA

The SDWA provides information to the recovery routine, and the recovery
routine can communicate with the system, and with subsequent recovery
routines, by placing information into the SDWA. See “Using the SDWA” on
page 8-21.

 � Registers

When a recovery routine gets control, GPR 0 indicates whether an SDWA is
available. When an SDWA is not available, the recovery routine can
communicate its recovery options to the system only through registers. Aside
from this circumstance, the recovery routine cannot use registers to
communicate with the system; the routine must use the SDWA. Also, the
mainline routine should not place information in registers and expect that
information to be in the registers when the recovery routine gets control.
Complete details about registers are in the section entitled “Understanding the
Recovery Environment” on page 8-30.

You should understand that communications are handled differently depending on
the following circumstances:

� Whether your recovery routine received an SDWA

� Whether the communication is with the recovery routine or with the retry
routine.

Setting Up, Passing, and Accessing the Parameter Area
The primary means of communication between the mainline routine and the
recovery routine is the parameter area that the mainline sets up and passes to the
recovery routine. This section discusses:

� What your mainline routine should put into the parameter area
� How your mainline passes the parameter area to the recovery routine
� How your recovery routine accesses the parameter area.

Deciding What to Include in the Parameter Area: Your mainline routine can put
whatever information it wants in the parameter area. Remember that the object is to
provide the recovery routine with as much useful information as possible so the

 Chapter 8. Providing Recovery 8-19

recovery routine can be effective. Here are some suggestions for important
information to place in the parameter area:

� The base registers for the mainline. The recovery routine must be able to
establish addressability to whatever resources the mainline is holding.

� The addresses of all dynamically acquired storage.

� The location of a workarea for use by the recovery routine.

� Indications of what resources are held or serialized, such as ENQs, data sets,
and so on.

� Footprints indicating the processing being performed by the mainline when the
error occurred. Using footprints is a technique whereby the mainline sets bits as
it goes through its processing. When the recovery routine gets control, it can
check the parameter area to see which bits have been turned on, and thus can
tell how far along the mainline was. The recovery routine can pinpoint what the
mainline was doing at the time of error. If the mainline was done with its
processing when the error occurred, the recovery routine might not need to
retry, but might just clean up resources.

� An indication of whether a retry is desired.

� The input parameter list to the mainline. When the mainline received control, it
might have received an input parameter list. The mainline can preserve this in
the parameter area intended for use by the recovery routine. The recovery
routine can then inspect the input parameter list to determine if the mainline
received input that was not valid.

� Whatever register contents (both GPRs and ARs) the mainline wants to save
(they might need to be restored upon retry).

� The location of important data areas used by the mainline. Errors often occur
because of damage to information in a data area. The recovery routine might
need to repair one or more of these data areas, and so must be able to access
them. The recovery routine might also want to include these data areas when it
specifies the areas of storage to dump.

� The addresses of any user-written routines available to repair damage. You
might have separate routines designed to scan and repair queues, repair data
areas, and so on. The recovery routine might want to call these other routines
for assistance.

Passing the Parameter Area: When you provide a recovery routine, you have the
opportunity to identify to the system the parameter area you want passed to the
recovery routine. Here are the ways to accomplish that:

� ESTAE and ESTAEX routines

Use the PARAM parameter on the ESTAE or ESTAEX macro to specify the
address of the parameter area you have constructed.

 � ESTAI routines

Use the ESTAI parameter on the ATTACHX macro to specify both the address
of the recovery routine to get control, and the address of the parameter area
you have constructed.

8-20 OS/390 V2R8.0 MVS Assembler Services Guide

Accessing the Parameter Area: Once the recovery routine gets control, the
routine must know how to access the parameter area. That varies according to
whether the system provided an SDWA, and according to how the recovery routine
was defined:

� SDWA is present

 – ESTAE macro

SDWAPARM and GPR 2 contain the address of the parameter area you
specified on the PARAM parameter on ESTAE.

 – ESTAEX macro

SDWAPARM contains the address of an 8-byte field, which contains the
address and ALET of the parameter area you specified on the PARAM
parameter on ESTAEX, and GPR 2 contains the address of the parameter
area you specified on the PARAM parameter on ESTAEX. AR 2 contains
the ALET qualifying the address in GPR 2.

– ATTACHX macro with ESTAI parameter

SDWAPARM and GPR 2 contain the address of the parameter area you
specified on the ESTAI parameter on ATTACHX. The parameter area
specified on ATTACHX is always assumed to be in the primary address
space, so for AR-mode callers, the ALET is always zero.

� SDWA is not present

 – ESTAE macro

GPR 2 contains the address of the parameter area you specified on the
PARAM parameter on ESTAE.

 – ESTAEX macro

GPR 2 contains the address of the parameter area you specified on the
PARAM parameter on ESTAEX. AR 2 contains the ALET qualifying the
address in GPR 2.

– ATTACHX macro with ESTAI parameter

GPR 2 contains the address of the parameter area you specified on the
ESTAI parameter on ATTACHX. The parameter area specified on
ATTACHX is always assumed to be in the primary address space, so for
AR-mode callers, the ALET is always zero.

Using the SDWA
The SDWA is both a means by which the recovery routine can provide information
to the system and to subsequent recovery routines, and a provider of information to
the recovery routine. To access and update the SDWA, the recovery routine must
include the IHASDWA mapping macro as a DSECT. For complete information
about the SDWA, see SDWA in OS/390 MVS Data Areas, Vol 4 (RD-SRRA). The
SDWA is always in the primary address space.

Updating the SDWA: A recovery routine can update the SDWA in various ways:

� By issuing the SETRP macro (See “Using the SETRP Macro to Update the
SDWA” on page 8-22.)

 Chapter 8. Providing Recovery 8-21

� By issuing the VRADATA macro (See the VRADATA macro in OS/390 MVS
Programming: Assembler Services Reference and use of the VRADATA macro
in “Symptoms Provided by a Recovery Routine” on page 9-6.)

� By directly updating specific fields (see “Important Fields in the SDWA” on
page 8-23).

Using the SETRP Macro to Update the SDWA: Recovery routines issue the
SETRP macro to communicate recovery options to the system, and to save
serviceability data. The routine must have an SDWA to issue SETRP. The following
are some of the things a recovery routine can do using the SETRP macro:

� Indicate retry or percolate

Use the RC parameter on SETRP to let the system know whether the recovery
routine wants to percolate (RC=0) or retry (RC=4). If attempting a retry, the
routine must also specify a retry address on the RETADDR parameter.

For ESTAI routines, you can also specify RC=16 to ask the system not to give
control to any further ESTAI routines.

� Specify register contents for the retry routine and free the SDWA

ESTAE-type recovery routines can use parameters on the SETRP macro to
restore registers from the SDWA (RETREGS=YES), and to free the SDWA
before control is given to the retry routine (FRESDWA=YES). See “Register
Contents on Entry to a Retry Routine” on page 8-35 for information about using
the RETREGS and FRESDWA parameters.

� Save serviceability data

Use the RECPARM parameter to supply the load module name, the active
CSECT name, and the recovery routine CSECT name.

� Change the completion and reason codes

You can specify both completion and reason code values on the ABEND
macro. The system passes these values to recovery routines in the SDWA.
Recovery routines can change the values of the completion code and the
reason code by using the SETRP macro. The COMPCOD parameter allows
you to specify a new completion code; the REASON parameter allows you to
specify a new reason code.

The reason code has no meaning by itself, but must be used together with a
completion code. To maintain meaningful completion and reason codes, the
system propagates changes to these values according to the following rules:

– If a user changes both the completion code and the reason code, the
system accepts both new values.

– If a user changes the reason code but not the completion code, the system
accepts the new reason code and uses the unchanged completion code.

– If a user changes the completion code but not the reason code, the system
accepts the new completion code and uses a zero for the reason code.

Symptom Data Required in the SDWA for Dump Suppression: If the
installation is using DAE to suppress duplicate dumps, the recovery routine must
provide the following minimum data to enable dump suppression. See
“Suppressing Dumps That Duplicate Previous Dumps” on page 9-2 for more
information about dump suppression.

8-22 OS/390 V2R8.0 MVS Assembler Services Guide

Important Fields in the SDWA: The following table summarizes some of the key
fields in the SDWA. Note that certain fields are in an extension of the SDWA called
SDWARC1, which is a different DSECT. Here is how to access SDWARC1:

� SDWAXPAD in the SDWA contains the address of SDWAPTRS.

� SDWAPTRS is a DSECT which contains SDWASRVP.

� SDWASRVP contains the address of SDWARC1.

The fields described below that are in SDWARC1 are:

 � SDWACRC
 � SDWAARER
 � SDWAARSV
 � SDWACID
 � SDWASC
 � SDWAMLVL
 � SDWARRL

SDWA Field Data Example

SDWAMODN Failing module name IEAVTCXX
SDWACSCT Failing CSECT name IEAVTC22
SDWACID Product or component identifier SCDMP
SDWACIB
SDWACIDB Component identifier base 5655
SDWAREXN Recovery routine name IEAVTC2R
SDWASC Subcomponent or module subfunction RSM-PGFIX

Figure 8-5 (Page 1 of 4). Key Fields in the SDWA

Field Name Use

SDWAPARM This 4-byte field contains the address of the user parameter area that
you supply for an ESTAE-type recovery routine.

For routines defined by the ESTAEX macro, this field contains the
address of an 8-byte area. The first four bytes of this 8-byte area
contain the address of the parameter area you specified on the
ESTAEX macro; the next four bytes contain the ALET for the
parameter area.

SDWACMPC This 3-byte field contains the completion code that existed when the
system gave control to the recovery routine. The recovery routine can
change the completion code by issuing the SETRP macro with the
COMPCOD parameter. The system completion code appears in the
first twelve bits, and the user completion code appears in the second
twelve bits.

SDWARPIV This bit tells the recovery routine that the registers and PSW at the
time of error are not available. When this bit is on, the contents of
SDWAGRSV, SDWAARER, and SDWAEC1 are unpredictable.

 Chapter 8. Providing Recovery 8-23

Figure 8-5 (Page 2 of 4). Key Fields in the SDWA

Field Name Use

SDWACRC This 4-byte field contains the reason code associated with the
completion code in SDWACMPC. The reason code is set through the
REASON parameter of the ABEND macro, and is valid only when bit
SDWARCF is on. The recovery routine may change this reason code
by specifying a new value for the REASON parameter of the SETRP
macro.

Note: This reason code is not the same as the return code that
programs may set in GPR 15 before they issue the ABEND
macro.

SDWARCF If on, this bit indicates that SDWACRC contains a reason code.

SDWAGRSV This field contains the contents of the general purpose registers
(GPRs) 0-15 as they were at the time of the error.

SDWAARER This field contains the contents of the access registers (ARs) 0-15 as
they were at the time of the error.

SDWAEC1 This field contains the PSW that existed at the time of the error.

SDWAEC2 The contents of this field vary according to the type of recovery
routine:

� For ESTAE-type recovery routines (except for ESTAI routines): If
a program establishes an ESTAE routine, and subsequently
performs a stacking operation while running under the same RB
as when it established the ESTAE routine, SDWAEC2 contains
the PSW from the linkage stack entry immediately following the
entry that was current when the ESTAE routine was established.
Otherwise, SDWAEC2 contains the current RBOPSW from the
RB that activated the recovery routine, and the PSW is the one
from the time of the last interruption of that RB that occurred while
the RB was unlocked and enabled. Bit SDWAINTF in
SDWAXFLG indicates whether the contents of SDWAEC2 are
from the linkage stack (SDWAINTF is 1) or from an RB
(SDWAINTF is 0).

� For an ESTAI routine, this field contains zero.

8-24 OS/390 V2R8.0 MVS Assembler Services Guide

Figure 8-5 (Page 3 of 4). Key Fields in the SDWA

Field Name Use

SDWASRSV The contents of this field vary according to the type of recovery
routine:

� For ESTAE-type recovery routines (except for ESTAI routines): If
a program establishes an ESTAE routine, and subsequently
performs a stacking operation while running under the same RB
as when it established the ESTAE routine, SDWASRSV contains
GPRs 0-15 from the linkage stack entry immediately following the
entry that was current when the ESTAE routine was established.
Otherwise, SDWASRSV contains GPRs 0-15 from the RB that
activated the recovery routine, and the GPRs are the same as
they were at the time of the last interruption of that RB that
occurred while the RB was unlocked and enabled. Bit
SDWAINTF in SDWAXFLG indicates whether the contents of
SDWASRSV are from the linkage stack (SDWAINTF is 1) or from
an RB (SDWAINTF is 0).

� For an ESTAI routine, this field contains zeros.

If the recovery routine requests a retry, the system might use the
contents of this field to load the GPRs for the retry routine. See the
RETREGS parameter description in the SETRP macro in OS/390
MVS Programming: Assembler Services Reference for details. To
change the contents of the GPRs for the retry routine, you must make
the changes to SDWASRSV and then issue SETRP with
RETREGS=YES. You can update the registers directly or with the
RUB parameter on SETRP.

SDWAARSV The contents of this field depend on the type of recovery routine:

� For ESTAE-type recovery routines (except for ESTAI routines): If
a program establishes an ESTAE routine, and subsequently
performs a stacking operation while running under the same RB
as when it established the ESTAE routine, SDWAARSV contains
ARs 0-15 from the linkage stack entry immediately following the
entry that was current when the ESTAE routine was established.
Otherwise, SDWAARSV contains ARs 0-15 from the RB that
activated the recovery routine, and the ARs are the same as they
were at the time of the last interruption of that RB that occurred
while the RB was unlocked and enabled. Bit SDWAINTF in
SDWAXFLG indicates whether the contents of SDWAARSV are
from the linkage stack (SDWAINTF is 1) or from an RB
(SDWAINTF is 0).

� For an ESTAI routine, this field contains zeros.

If the recovery routine requests a retry, the system might use the
contents of this field to load the ARs for the retry routine. See the
RETREGS parameter description in the SETRP macro in OS/390
MVS Programming: Assembler Services Reference for details. To
change the contents of the ARs for the retry routine, you must make
the changes in SDWAARSV, and then issue SETRP with
RETREGS=YES.

SDWASPID This field contains the subpool ID of the storage used to obtain the
SDWA, for use whenever the retry routine is responsible for freeing
the SDWA.

 Chapter 8. Providing Recovery 8-25

Figure 8-5 (Page 4 of 4). Key Fields in the SDWA

Field Name Use

SDWALNTH This field contains the length, in bytes, of this SDWA, the SDWA
extensions, and the variable recording area, for use whenever the
retry routine is responsible for freeing the SDWA. (This allows the
retry routine to free the extensions along with the SDWA.)

SDWACOMU The recovery routines can use this 8-byte field to communicate with
each other when percolation occurs. The system copies this field from
one SDWA to the next on all percolations. When the field contains all
zeros, either no information is passed or the system has not been
able to pass the information.

SDWATRAN This field contains one of the following if a translation exception
occurred:

� The valid translation exception address if the SDWATEAV bit is 1.

� The ASID of the address space in which the translation exception
occurred if the SDWATEIV bit is 1.

If both the SDWATEAV and SDWATEIV bits are 0, ignore the
SDWATRAN field.

SDWATEAR For translation exceptions that occur in AR mode, this 1-byte field
identifies the number of the AR that the program was using when the
translation exception occurred.

SDWACLUP If on, this bit indicates that the recovery routine cannot retry.

SDWAPERC If on, this bit indicates that a recovery routine has already percolated
for this error.

SDWAEAS If on, this bit indicates that a previous recovery routine provided
sufficient diagnostic information pertaining to this error. The recovery
routine providing the information is responsible for setting the bit.

SDWACID The recovery routine can use this 5-byte field to provide the
component ID of the component involved in the error.

SDWASC The recovery routine can use this 23-byte field to provide the name of
the component and a description of the function or subfunction
involved in the error.

SDWAMLVL The recovery routine can use this 16-byte field to indicate the level of
the module involved in the error. The first 8 bytes contains the date
(SDWAMDAT) and the second 8 bytes contains the version
(SDWAMVRS).

SDWARRL The recovery routine can use this 8-byte field to indicate the recovery
routine's entry point label.

SDWALSLV The recovery routine can use this 2-byte field to control the linkage
stack state upon retry. See “Linkage Stack at Time of Retry” on
page 8-41 for additional information.

Special Considerations for ESTAE-Type Recovery Routines
This section discusses some special considerations for writing ESTAE-type
recovery routines:

 � RB considerations
� Linkage stack considerations
� Outstanding I/Os at time of failure
� Other considerations for ESTAE-type recovery routines

8-26 OS/390 V2R8.0 MVS Assembler Services Guide

 RB Considerations
A program must activate and deactivate ESTAE-type recovery routines under the
same RB level. If you try to deactivate an ESTAE-type recovery routine that is not
associated with your RB, you get a return code that indicates your request is not
valid.

ESTAE-type recovery routines are deactivated when their associated RBs
terminate. This is important because a program expects one of its own ESTAE-type
recovery routines to get control rather than one left behind by a called program. A
program might, however, invoke a service routine that does not create an RB. If
that routine then issues an ESTAEX or ESTAE macro and fails to deactivate the
resulting ESTAE-type recovery routine, a problem could develop if the original
program encounters an error. The ESTAE-type recovery routine left behind by the
service routine would receive control rather than the ESTAE-type recovery routine
associated with the program, because the recovery routine specified by the most
recently issued ESTAE or ESTAEX macro gets control.

IBM recommends that every program that activates an ESTAE-type recovery
routine also deactivate it.

For retry from an ESTAE-type recovery routine, the retry routine runs as a
continuation of the code that activated the recovery routine. That is, the retry
routine runs under the same RB that defined the ESTAE-type recovery routine, and
the system purges all RBs created after the retry RB before giving control to the
retry routine.

Note that ESTAI is an exception; a retry request from a recovery routine defined by
the ESTAI parameter of the ATTACHX macro must run under a program request
block (PRB). The retry routine cannot run under the PRB of the routine that defined
the ESTAI routine, because that PRB is associated with a different task. The
system scans the RB queue associated with the task under which the retry is to
occur, starting with the RB that was interrupted (the newest RB). The system then
uses the following rules to select a PRB for the retry routine:

� If one or more PRBs exist that represent an ESTAE-type recovery routine, use
the newest one.

� If no PRBs exist that represent ESTAE-type recovery routines, use the newest
PRB that does not have any non-PRBs (such as SVRBs) that are older.

If the RB queue contains no PRBs at all, retry is suppressed.

Linkage Stack Considerations
Consider the following information about the linkage stack when writing an
ESTAE-type recovery routine or a retry routine, or when deactivating an
ESTAE-type recovery routine:

Recovery Routine: IBM recommends that your recovery routine not modify or
extract from the linkage stack entry that is current when the routine is entered. In
some cases, the system might prevent an ESTAE-type recovery routine from
modifying or extracting from that linkage stack entry. If your recovery routine
attempts to modify or extract from the linkage stack entry when the system does
not allow it, the result is a linkage stack exception.

 Chapter 8. Providing Recovery 8-27

IBM recommends that if your recovery routine adds entries to the linkage stack,
through a stacking PC or BAKR instruction, it should also remove them. If the
recovery routine adds entries to the stack and does not remove them, the system
recognizes an error when the recovery routine returns control. If the recovery
routine retries, the additional entries are not given to the retry routine. If the
recovery routine percolates, subsequent recovery routines receive a linkage stack
with entries more recent than the entry that was current at the time of error.

Retry Routine: When the system gives control to your retry routine, the linkage
stack level is set to the level that was current when your program activated the
recovery routine, unless the recovery routine sets the SDWALSLV field.

Deactivating an ESTAE-Type Recovery Routine: A program may deactivate an
ESTAE-type recovery routine only under the same linkage stack level as the level
that existed when the program activated the recovery routine. This rule affects
programs that add entries to the linkage stack either through the BAKR or PC
instruction. Failure to follow this rule results in an error return code of 36 from the
ESTAE or ESTAEX macro.

When you issue a PR, the system automatically deactivates all ESTAE-type
recovery routines that were previously activated under that current linkage stack
entry.

Outstanding I/Os at the Time of Failure
Before the most recently activated ESTAE-type recovery routine receives control,
the system can handle outstanding I/Os at the time of the failure. You request this
through the macro that defines the routine (that is, through the PURGE parameter
on ESTAE, ESTAEX, or ATTACHX). The system performs the requested I/O
processing only for the first ESTAE-type recovery routine that gets control.
Subsequent routines that get control receive an indication of the I/O processing
previously done, but no additional processing is performed.

Note: You should understand PURGE processing before using this parameter. For
information on where PURGE processing is documented, see DFSMS/MVS
General Information for the version of DFP you have installed.

If there are quiesced restorable I/O operations (because you specified
PURGE=QUIESCE on the macro for the most recently defined ESTAE-type
recovery routine), the retry routine can restore them as follows:

� If the recovery routine specified FRESDWA=YES and RETREGS=NO on the
SETRP macro, or the system did not provide an SDWA, the system supplies
the address of the purged I/O restore list in GPR 2 on entry to the retry routine.

� If the recovery routine specified FRESDWA=NO and RETREGS=NO on the
SETRP macro, GPR 1 contains the address of the SDWA, and the address of
the purged I/O restore list is in the SDWAFIOB field on entry to the retry
routine.

� If the recovery routine specified FRESDWA=NO and RETREGS=YES on the
SETRP macro, the recovery routine must pass the address of the SDWA to the
retry routine (in the user parameter area, or in GPR 0). The address of the
purged I/O restore list is in the SDWAFIOB field on entry to the retry routine.

� If the recovery routine specified FRESDWA=YES and RETREGS=YES on the
SETRP macro, the retry routine cannot access the purged I/O restore list,

8-28 OS/390 V2R8.0 MVS Assembler Services Guide

unless the recovery routine saves the address of the purged I/O restore list
from SDWAFIOB, and passes the address to the retry routine.

The following table provides a summary of how the retry routine can access
quiesced restorable I/O operations:

You can use the RESTORE macro to have the system restore all I/O requests on
the list. For information about where the RESTORE macro is documented, see
DFSMS/MVS General Information for the version of DFP you have installed.

Figure 8-6. Restoring Quiesced Restorable I/O Operations

Parameter on SETRP Macro RETREGS=NO RETREGS=YES

FRESDWA=YES GPR 2 contains the address
of the purged I/O restore list
(see note below)

Retry routine cannot access
the purged I/O restore list,
unless the recovery routine
saves the address from
SDWAFIOB and passes the
address to the retry routine

FRESDWA=NO GPR 1 contains the address
of the SDWA; SDWAFIOB
contains the address of the
purged I/O restore list

The recovery routine must
pass the address of the
SDWA to the retry routine;
SDWAFIOB contains the
address of the purged I/O
restore list.

Note: If the system did not provide an SDWA and RETREGS=NO, then GPR 2 contains the
address of the purged I/O restore list.

Additional Considerations Specific to ESTAE-Type Recovery
Routines
The following are additional things you should consider that are specific to
ESTAE-type recovery routines:

� During processing of the first and all subsequent recovery routines, the system
allows or disallows asynchronous processing (such as a timer exit) depending
on how you specify the ASYNCH parameter when you define the routine (that
is, through the ASYNCH parameter on ESTAE, ESTAEX, and ATTACHX).

� The following list describes what the system does when it is done processing a
particular recovery routine (either because the recovery routine percolates, or
because the recovery routine itself encounters an error and has no recovery
routine of its own that retries):

– Accumulates dump options

– Resets the asynchronous exit indicator according to the request of the next
recovery routine

– Ignores the I/O options for the next recovery routine

– Initializes a new SDWA

– Gives control to the next recovery routine.

If all recovery routines fail or percolate, the task is terminated.

� If a non-job step task issues an ABEND macro with the STEP parameter, the
system gives control to recovery routines for the non-job step task. If the
recovery routines do not request a retry, the job step is terminated with the
specified completion code. Subsequent recovery routines for the job step task
get control only when you specify TERM=YES on the macros that defined

 Chapter 8. Providing Recovery 8-29

those recovery routines. You can specify TERM=YES on ESTAE, ESTAEX,
and ATTACHX.

If the recovery routines for the job step task do not retry, subsequent recovery
routines for any other non-job step tasks get control in the same way they
would if the job step task itself encountered the error and then did not retry.

� For some situations, the system gives control to ESTAE-type recovery routines
only when the TERM=YES parameter was specified. The situations are:

 – System-initiated logoff

– Job step timer expiration

– Wait time limit for job step exceeded

– DETACH macro was issued from a higher level task (possibly by the
system if the higher level task encountered an error)

 – Operator cancel

– Error occurred on a higher level task

– Error in the job step task when a non-job step task issued the ABEND
macro with the STEP parameter

– OpenMVS is canceled and the user's task is in a wait in the OpenMVS
kernel.

When the system gives control to the recovery routines defined with the
TERM=YES parameter as a result of the above errors, the system takes the
following actions:

– Sets the SDWACLUP bit
– Gives control to all such routines in LIFO order
– Does not enter any ESTAI routine previously suppressed by a return code

of 16, or any previously entered recovery routine that requested percolation
– Ignores any request for retry.

Understanding the Recovery Environment
When you write a recovery routine, you must take into consideration a number of
environmental factors that are present when the recovery routine gets control, and
that are present when a retry routine gets control. This section discusses
environmental factors in two broad categories, distinguishing register contents from
all other environmental factors:

 � Register contents.

Recovery routines are interested in register contents at the following times:

– When the error occurs

When the recovery routine gets control, certain fields in the SDWA contain
the register contents at the time the error occurs. SDWAGRSV contains the
contents of the GPRs; SDWAARER contains the contents of the ARs.

– On entry to and return from the recovery routine

See “Register Contents on Entry to a Recovery Routine” on page 8-32 and
“Register Contents on Return from a Recovery Routine” on page 8-34 for
details.

– On entry to the retry routine

8-30 OS/390 V2R8.0 MVS Assembler Services Guide

See “Register Contents on Entry to a Retry Routine” on page 8-35 for
details.

� All other environmental factors.

The other environmental factors important in a recovery environment are:

– Authorization: problem state or supervisor state, PSW key, and PSW key
mask (PKM)

– SDWA storage key

– Dispatchable unit mode

 – AMODE

 – ASC mode

 – Interrupt status

 – DU-AL

 – Program mask

– Condition of the linkage stack

This section discusses each of the environmental factors, and makes distinctions,
where necessary, that depend on the following:

� Whether the system provided an SDWA
� Whether you are dealing with the recovery routine or the retry routine.

 Register Contents
This section describes register contents for the following:

� On entry to a recovery routine

� On return from a recovery routine (see “Register Contents on Return from a
Recovery Routine” on page 8-34)

� On entry to a retry routine.

The following table provides a roadmap to all the tables containing register content
information on entry to a recovery routine or on entry to a retry routine :

 Chapter 8. Providing Recovery 8-31

Figure 8-7. Where to Find Register Content Information

Registers Described For:
Table and Page
Number:

ESTAE-type recovery routine with an SDWA Figure 8-8 on
page 8-32

ESTAE-type recovery routine without an SDWA Figure 8-9 on
page 8-34

Retry from an ESTAE-type recovery routine without an SDWA Figure 8-10 on
page 8-35

Retry from an ESTAE-type recovery routine with an SDWA,
RETREGS=NO, and FRESDWA=NO

Figure 8-11 on
page 8-35

Retry from an ESTAE-type recovery routine with an SDWA,
RETREGS=NO, and FRESDWA=YES

Figure 8-12 on
page 8-36

Retry from an ESTAE-type recovery routine with an SDWA and
RETREGS=YES

Figure 8-13 on
page 8-37

Register Contents on Entry to a Recovery Routine
The register contents on entry to an ESTAE-type recovery routine are different
depending on whether the system supplied and SDWA. The following tables
describe the register contents on entry to the recovery routine for both situations.

8-32 OS/390 V2R8.0 MVS Assembler Services Guide

Figure 8-8. Register Contents—ESTAE-Type Recovery Routine With an SDWA

Register Contents

General Purpose Registers

GPR 0 A code indicating the type of I/O processing performed:

0 Active I/O has been quiesced and is restorable.

4 Active I/O has been halted and is not restorable.

8 No I/O was active when the abend occurred.

16 (X'10') No I/O processing was performed.

GPR 1 Address of the SDWA.

GPR 2 One of the following:

� If you specified the PARAM parameter on ESTAE, ESTAEX, or
ATTACHX, the address of the user-supplied parameter area

� If you issued ESTAE, ESTAEX, or ATTACHX without the PARAM
parameter, zero.

GPRs 3 -
12

Do not contain any information for use by the routine.

GPR 13 Address of a 72-byte register save area.

GPR 14 Return address to the system.

GPR 15 Entry point address of the ESTAE-type recovery routine.

Access Registers

ARs 0 - 1 Zero

AR 2 One of the following:

� If you issued the ESTAEX macro in AR ASC mode, an ALET that
qualifies the address in GPR 2.

� Otherwise, this register does not contain any information for use by
the routine.

ARs 3 - 15 Zero.

 Chapter 8. Providing Recovery 8-33

Figure 8-9. Register Contents—ESTAE-Type Recovery Routine Without an SDWA

Register Contents

General Purpose Registers

GPR 0 12 (X'0C'). The system could not obtain an SDWA.

GPR 1 Completion code in bytes 1-3. The system completion code appears in
the first 12 bits, and the user completion code appears in the second 12
bits.

GPR 2 One of the following:

� If you specified the PARAM parameter on ESTAE, ESTAEX, or
ATTACHX, the address of the user-supplied parameter area

� If you issued ESTAE, ESTAEX, or ATTACHX without the PARAM
parameter, zero.

GPRs 3 -
13

Do not contain any information for use by the routine.

Note: When the system does not provide an SDWA, GPR 13 does not
contain the address of a standard 72-byte save area. In this case,
your ESTAE-type recovery routine must save the address from
GPR 14 and use it as the return address to the system.

GPR 14 Return address to the system.

GPR 15 Entry point address of the ESTAE-type recovery routine.

Access Registers

ARs 0 - 1 Zero

AR 2 One of the following:

� If you issued the ESTAEX macro in AR ASC mode, an ALET that
qualifies the address in GPR 2.

� Otherwise, this register does not contain any information for use by
the routine.

ARs 3 - 15 Zero.

Register Contents on Return from a Recovery Routine
The register contents on return from a recovery routine depend on whether the
system provided an SDWA. ESTAE-type recovery routines that receive an SDWA
can use any register without saving its contents, except GPR 14. The routines must
maintain the return address supplied in GPR 14. The routines do not have to place
any information in the registers for use by the system.

ESTAE-type recovery routines that do not receive an SDWA must set one of the
following return codes in GPR 15:

Return Code Meaning

0 The recovery routine requests percolation.

4 The recovery routine requests a retry. The recovery routine must
then place the address of the retry routine in GPR 0.

16 (X'10') Valid only for an ESTAI recovery routine. The system should not
give control to any further ESTAI routines, and should abnormally
end the task.

8-34 OS/390 V2R8.0 MVS Assembler Services Guide

Register Contents on Entry to a Retry Routine
The register contents on entry to a retry routine vary according to the following:

� Whether an SDWA is present.

� If an SDWA is present, what the recovery routine specifies on the SETRP
macro.

The parameters on SETRP that affect register contents on entry to the retry routine
from an ESTAE-type recovery routine are the following:

� The RETREGS parameter controls whether registers are restored from the
SDWA. If you specify RETREGS=NO, registers are not restored from the
SDWA.

If you specify RETREGS=YES, GPRs are restored from SDWASRSV, and ARs
are restored from SDWAARSV. If you specify RETREGS=YES,RUB, you can
manipulate the contents of SDWASRSV to whatever you wish the GPRs to be
before they are restored. Or, you can directly manipulate the contents of both
SDWASRSV and SDWAARSV.

See the description of the SETRP macro in OS/390 MVS Programming:
Assembler Services Reference for complete details.

� The FRESDWA parameter controls whether the system frees the SDWA before
giving control to the retry routine. FRESDWA=YES instructs the system to free
the SDWA; FRESDWA=NO instructs the system not to free the SDWA. This
has an affect on the register contents on entry to the retry routine.

The following tables describe the register contents under various circumstances on
entry to a retry routine from an ESTAE-type recovery routine:

Figure 8-10. Register Contents—Retry from an ESTAE-Type Recovery Routine
Without an SDWA

Register Contents

General Purpose Registers

GPR 0 12 (X'0C').

GPR 1 Address of the user parameter area.

GPR 2 Address of the purged I/O restore list if I/O was quiesced and is
restorable; otherwise, zero.

GPRs 3 -
14

Do not contain any information for use by the routine.

GPR 15 Entry point address of the retry routine.

Access Registers

AR 0 Zero.

AR 1 One of the following:

� If the recovery routine was defined using ESTAEX and the caller was
in AR ASC mode, the ALET of the user parameter area.

� Otherwise, this register does not contain any information for use by
the routine.

ARs 2 - 13 Do not contain any information for use by the routine.

ARs 14 -
15

Zero.

 Chapter 8. Providing Recovery 8-35

Figure 8-11. Register Contents—Retry from an ESTAE-Type Recovery Routine With
an SDWA, RETREGS=NO, and FRESDWA=NO

Register Contents

General Purpose Registers

GPR 0 Zero.

GPR 1 Address of the SDWA.

GPRs 2 -
14

Do not contain any information for use by the routine.

GPR 15 Entry point address of the retry routine.

Access Registers

ARs 0 - 1 Zero.

ARs 2 - 13 Do not contain any information for use by the routine.

ARs 14 -
15

Zero.

Figure 8-12. Register Contents—Retry from an ESTAE-Type Recovery Routine With
an SDWA, RETREGS=NO, and FRESDWA=YES

Register Contents

General Purpose Registers

GPR 0 20 (X'14').

GPR 1 Address of the user parameter area.

GPR 2 Address of the purged I/O restore list, if I/O was quiesced and is
restorable; otherwise, zero.

GPRs 3 -
14

Do not contain any information for use by the routine.

GPR 15 Entry point address of the retry routine.

Access Registers

AR 0 Zero.

AR 1 One of the following:

� If the recovery routine was defined using ESTAEX and the caller was
in AR ASC mode, the ALET of the user parameter area.

� Otherwise, this register does not contain any information for use by
the routine.

ARs 2 - 13 Do not contain any information for use by the routine.

ARs 14 -
15

Zero.

8-36 OS/390 V2R8.0 MVS Assembler Services Guide

Figure 8-13. Register Contents—Retry from an ESTAE-Type Recovery Routine With
an SDWA and RETREGS=YES

Register Contents

General Purpose Registers

GPRs 0 -
15

Restored from SDWASRSV, regardless of whether the recovery routine
specified FRESDWA=NO or FRESDWA=YES.

Note that register 15 does not contain the entry point address of the retry
routine unless the recovery routine sets it up that way.

Access Registers

ARs 0 - 15 Restored from SDWAARSV, regardless of whether the recovery routine
specified FRESDWA=NO or FRESDWA=YES.

Other Environmental Factors in Recovery
As mentioned previously, the other environmental factors to be concerned about in
a recovery environment are:

� Authorization: problem state or supervisor state, PSW key, and PKM
� SDWA storage key
� Dispatchable unit mode

 � AMODE
 � ASC mode
 � Interrupt status
 � DU-AL
 � Program mask
� Condition of the linkage stack

These environmental factors differ depending on whether you are dealing with the
recovery routine or the retry routine.

Environment on Entry to an ESTAE-Type Recovery Routine
The following is a description of each environmental factor on entry to an
ESTAE-type recovery routine.

 Authorization:

� Problem or supervisor state

The ESTAE-type recovery routines you can write are entered in problem state.

 � PSW key

An ESTAE-type recovery routine is entered with the PSW key that existed at
the time the recovery routine was defined.

 � PKM

An ESTAE-type recovery routine is entered with the PKM that existed at the
time the recovery routine was defined.

SDWA Storage Key: An ESTAE-type recovery routine receives an SDWA in the
same storage key as the TCB key at the time the related task made the first
storage request from subpool 0.

Dispatchable Unit Mode: All ESTAE-type recovery routines receive control in
task mode.

 Chapter 8. Providing Recovery 8-37

AMODE: A recovery routine defined through the ESTAE macro, or the ESTAI
parameter on ATTACHX, has the addressing mode of the caller at the time the
macro was issued. ESTAEX routines are always entered in 31-bit addressing
mode.

ASC Mode: A recovery routine defined through the ESTAE macro is entered in
primary ASC mode. A recovery routine defined through the ESTAEX macro or the
ESTAI parameter on ATTACHX is entered in the ASC mode that existed at the time
the macro was issued.

Interrupt Status: All ESTAE-type recovery routines are entered enabled for I/O
and external interrupts.

DU-AL: ESTAE-type recovery routines receive control with the DU-AL that was
current at the time of the error, as modified by any previous recovery routines, with
the following exception. For an ESTAE-type recovery routine activated by an IRB,
or activated by an IRB's ESTAE-type recovery routine, the ESTAE-type recovery
routine receives the IRB's DU-AL (IRBs get control with their own DU-AL). The
system does not modify the contents of the DU-AL during recovery processing.

Program Mask: The program mask on entry to an ESTAE-type recovery routine is
the same as the program mask at the time of error.

Condition of the Linkage Stack: On entry to an ESTAE-type recovery routine,
the current linkage stack entry is the same as it was at the time of the error, unless
a previous recovery routine added entries to the linkage stack through a PC or
BAKR instruction and did not remove them. In such a case, when percolation
occurs and the recovery routine gets control, the linkage stack contains additional
entries beyond what was the current entry at the time of the error for which the
recovery routine received control. IBM recommends that any recovery routines that
add entries to the linkage stack also remove them.

Restricted Environments: During normal task termination, a resource manager
might end abnormally; its own recovery routines, if any exist, will receive control. If
they do not retry, or if the resource manager has no recovery routines, the system
now considers this situation to be an abnormal termination, and passes control to
the newest ESTAI routine. Because the abending resource manager, and any
previous resource managers, might have completed some processing, the ESTAI
routine will run in an unpredictable environment. In this situation, IBM recommends
that you restrict the ESTAI routine's processing. For the ESTAI routine to run in this
environment, design it to:

1. Check the STCBRMET field in the STCB; if the bit is on, the ESTAI routine is
running after a resource manager has ended abnormally and its recovery
routines have not retried. In this situation, the ESTAI routine does not need to
hold a lock to check the STCBRMET field. See OS/390 MVS Data Areas, Vol 5
(SSAG-XTLST) for the mapping of the STCB.

2. Do as little processing as possible, and nothing that might depend on a
resource that might have been cleaned up already.

3. Do not request to retry. The system will not allow a retry in this situation.

Note that no other ESTAE-type routines receive control in this situation; only those
established through the ATTACHX macro still exist at this point in termination
processing.

8-38 OS/390 V2R8.0 MVS Assembler Services Guide

Environment on Entry to a Retry Routine from an ESTAE-Type
Recovery Routine
The following is a description of each environmental factor on entry to a retry
routine that was specified by an ESTAE-type recovery routine.

 Authorization:

� Problem or supervisor state

The retry routine from an ESTAE-type recovery routine that you can write is
entered in problem state.

 � PSW key

If the recovery routine was defined by an ESTAE or ESTAEX macro, the retry
routine is entered with the same PSW key that existed when the macro was
issued.

If the recovery routine was defined by the ESTAI parameter of the ATTACHX
macro, the retry routine is entered with the same PSW key as the one in
RBOPSW of the retry RB, if the RBOPSW of the retry RB has a key greater
than or equal to 8 and is in problem state, and the PKM of that RB does not
have authority to keys less than 8. Otherwise, the PSW key of the retry routine
is that of the task in error.

 � PKM

If the recovery routine was defined through the ESTAE or ESTAEX macro, the
retry routine is entered with the PKM that existed when the macro was issued.

If the recovery routine was defined through the ESTAI parameter of the
ATTACHX macro, the retry routine is entered with the PKM from the retry RB if
the RBOPSW of the retry RB has a key greater that or equal to 8 and is in
problem state, and the PKM of that RB does not have authority to keys less
than 8. Otherwise, the PKM of the retry routine has authority that is equivalent
to that of the task in error.

SDWA Storage Key: If the recovery routine does not request that the system free
the SDWA, the retry routine receives the SDWA in the same storage key as that
which the recovery routine received.

Dispatchable Unit Mode: The retry routine is always entered in task mode.

AMODE: Retry routines are entered in the same addressing mode that existed
when the recovery routine was entered. Remember that ESTAEX routines are
always entered in 31-bit addressing mode. The recovery routine cannot change the
addressing mode of the retry routine.

ASC Mode: For recovery routines defined through the ESTAE macro, the retry
routine is entered in primary ASC mode. For recovery routines defined through the
ESTAEX macro or through the ESTAI parameter on ATTACHX, the retry routine is
entered with the ASC mode of the caller when the macro was issued.

Interrupt Status: The retry routine is always entered enabled for I/O and external
interrupts.

DU-AL: The retry routine is entered with the same DU-AL that the ESTAE-type
recovery routine received, as modified by the ESTAE-type recovery routine. The
system does not modify the contents of the DU-AL during recovery processing.

 Chapter 8. Providing Recovery 8-39

Program Mask: When the retry routine receives control, the program mask is the
one in the RBOPSW for the retry RB, saved at the time of the last interruption of
that RB that occurred while the RB was unlocked and enabled.

Condition of the Linkage Stack: For recovery routines defined through the
ESTAE or ESTAEX macro, on entry to the retry routine, the current linkage stack
entry is the same as it was at the time the macro was issued, unless the recovery
routine has set the SDWALSLV field.

For recovery routines defined through the ESTAI parameter on ATTACHX, on entry
to the retry routine, the current linkage stack entry is the same as it was at the time
the selected retry RB was entered, unless the recovery routine has set the
SDWALSLV field.

Summary of Environment on Entry to an ESTAE-Type Recovery
Routine and Its Retry Routine
Figure 8-14 summarizes some of the environmental factors for ESTAE-type
recovery routines under different conditions. Specifically, the table lists the status
information of:

� The caller at the time of issuing the macro
� The recovery routine at entry
� The retry routine at entry.

Figure 8-14. Environments of ESTAE-type Recovery Routines and their Retry Routines

Type of
Recovery

Environment

When macro was issued At entry to recovery routine At entry to retry routine

ESTAE ASC mode=primary ASC mode=primary

Linkage stack at time of error (see
Note 1)

PKM at time macro was issued

ASC mode=primary

Linkage stack at time macro was
issued (see Note 2)

PKM at time macro was issued

ESTAEX ASC mode=primary or AR ASC mode at time macro was
issued

Linkage stack at time of error (see
Note 1)

PKM at time macro was issued

ASC mode at time macro was
issued

Linkage stack at time macro was
issued (see Note 2)

PKM at time macro was issued

ESTAI
(through
ATTACHX)

ASC mode=primary or AR ASC mode at time macro was
issued

Linkage stack at time of error (see
Note 1)

PKM at time macro was issued

For possible environment
restrictions, see “Restricted
Environments” on page 8-38.

ASC mode at time macro was
issued

Linkage stack at time the retry RB
was entered (see Note 2)

For PKM, see the complete
description on page 8-39

Notes:

1. The linkage stack presented to the recovery routine might have additional entries, beyond what was the current entry at the
time of the error, if a previous recovery routine added entries through a PC or BAKR instruction and did not remove them.

2. The linkage stack presented to the retry routine might have additional entries, beyond what was current at the time that the
routine was activated, when the recovery routine set the SDWALSLV field.

3. At time of entry to the recovery routine, the AMODE will be the same as the time of invocation, except for ESTAEX routines,
which are always given control in AMODE 31.

4. The AMODE at the retry point will be the same as the AMODE on entry to the recovery routine.

5. An ESTAE-type recovery routine is entered with the PSW key that existed at the time it was defined.

8-40 OS/390 V2R8.0 MVS Assembler Services Guide

Linkage Stack at Time of Retry
There is one retry situation you must avoid: the situation where the retry routine
runs with a linkage stack entry that is inappropriate. Consider the following
example, where PGM1 activates an ESTAEX routine that handles recovery for
PGM1, PGM2, and PGM3.

caller ---> PGM1
 BAKR
 :
 ESTAEX
 :
 BALR --------> PGM2
 BAKR
 :
 BALR --------> PGM3
 BAKR
 \\\abend\\\
 :
 retry point
 :
 <-------- PR

Both PGM2 and PGM3 use the BAKR instruction to save status; each BAKR adds
an entry to the linkage stack. Within PGM3, “retry point” indicates the location
where the ESTAEX routine is to retry. After PGM3 issues the BAKR instruction, the
last entries in the linkage stack are:

� Entry 1 -- caused by PGM1's BAKR
� Entry 2 -- caused by PGM2's BAKR
� Entry 3 -- caused by PGM3's BAKR

When the abend occurs in PGM3, unless you take special measures, the linkage
stack level is reset to the level that was current when PGM1 activated the ESTAEX
recovery routine. However, retry from the abend in PGM3 occurs within PGM3. The
linkage stack level and the retry routine are not “in synch.” Measures you take to
avoid this situation involve:

1. Passing the recovery routine a value that represents the difference between the
level of the linkage stack that the retry routine in PGM3 needs and the level of
the stack at the time PGM1 activated the ESTAEX routine. (In our example, the
difference is 2 entries.)

2. Having the recovery routine set the value “2” in the SDWALSLV field in the
SDWA.

At a retry, the system uses the value in SDWALSLV to adjust the linkage stack. In
this way, the retry routine has the appropriate current linkage stack entry.

Two ways your program can track the entries in the linkage stack are:

� Count the number of entries added to the stack through BAKRs since PGM1
activated the ESTAEX routine. Subtract from that total the number of entries
taken from the stack through corresponding PRs.

� Issue the IEALSQRY macro, which returns the number as output.

 Chapter 8. Providing Recovery 8-41

In either case, the recovery routine must receive the value and must place it in
SDWALSLV. In summary, the value in SDWALSLV is the difference between the
number of linkage stack entries present when the retry routine gets control and the
number that were present when the recovery routine was activated. The system
preserves the additional entries on the linkage stack for use by the retry routine.
These linkage stack entries must exist at the time of the error; the system does not
create any new entries.

The following rules apply to the value in SDWALSLV, as it pertains to linkage stack
entries:

� The system ignores the SDWALSLV field when retry is from a STAE or STAI
recovery routine.

� The value must not reflect entries that were placed on the linkage stack
through a PC instruction.

� The value must reflect only those entries associated with programs that are
problem state and running with the same PSW key as the program that
activated the ESTAE-type recovery routine.

� For ESTAE-type routines, the value must reflect only those entries associated
with programs that have been established by a program running under the RB
of the retry routine. See “RB Considerations” on page 8-27.

If any of these rules are broken, retry still occurs but the system ignores the entry
that did not conform and all subsequent entries.

Understanding Recovery through a Coded Example
This section provides a coded example illustrating a mainline routine with both a
recovery routine and a retry routine as entry points in the mainline code.

The code in this example does not contain any real function. The mainline code
does little more than save status, establish addressability, obtain a dynamic area
(making the code reentrant), define a recovery routine, and issue the ABEND
macro to pass control to the system.

The purpose of the example is just to illustrate how you might code a program that
contains both a recovery routine and a retry routine, and how the three routines
interact. The example also illustrates how you design an ESTAE-type recovery
routine to allow for the possibility that the system might not provide an SDWA.

8-42 OS/390 V2R8.0 MVS Assembler Services Guide

EXAMPLE CSECT \ SAMPLE PROGRAM THAT USES ESTAEX
EXAMPLE AMODE 31
EXAMPLE RMODE ANY

USING EXAMPLE,15 \ ESTABLISH TEMPORARY ADDRESSABILITY
B @PROLOG \ BRANCH AROUND EYE CATCHER
DC CL24'EXAMPLE ð4/1ð/92.ð1' \ EYE CATCHER

\
\ USE THE LINKAGE STACK TO SAVE STATUS ON ENTRY TO THE PROGRAM.
\
@PROLOG BAKR 14,ð \ SAVE REGISTER/PSW STATUS
\
\ ESTABLISH ADDRESSABILITY FOR THIS PROGRAM.
\

LR 12,15 \ REG 12 BECOMES BASE REGISTER
 DROP 15 \

USING EXAMPLE,12 \ ESTABLISH ADDRESSABILITY
\
\ OBTAIN DYNAMIC STORAGE AREA FOR THIS REENTRANT PROGRAM.
\

L 2,DYNSIZE \ LENGTH TO OBTAIN
 STORAGE OBTAIN,ADDR=(1),SP=ð,LENGTH=(2)

LR 13,1 \ SAVE DYNAMIC AREA ADDRESS
USING DYNAREA,13 \ ADDRESSABILITY TO DYNAMIC AREA

\
\ SET UP THE REMOTE PARAMETER LIST FOR THE ESTAEX MACRO.
\
 MVC RMTESTAEX(@LSTSIZE),LSTESTAEX
\
\ DEFINE AND ACTIVATE AN ESTAEX RECOVERY ROUTINE AT LABEL 'RECOVERY'.
\
 ESTAEX RECOVERY,PARAM=DYNAREA,MF=(E,RMTESTAEX)
\\\
\
\ CODE FOR THE MAINLINE ROUTINE FUNCTION CAN BE INSERTED HERE
\
\ IF AN ERROR OCCURS IN THE MAINLINE ROUTINE, THEN THE SYSTEM WILL
\ PASS CONTROL TO RECOVERY.
\
\\\
\
RETRYPT DS ðH
\\\
\
\ CODE FOR THE RETRY ROUTINE FUNCTION CAN BE INSERTED HERE
\
\\\

ESTAEX ð \ DELETE THE ESTAEX
LR 1,13 \ FREE DYNAMIC AREA, ADDRESS TO FREE
L 2,DYNSIZE \ LENGTH TO FREE

 STORAGE RELEASE,ADDR=(1),SP=ð,LENGTH=(2)
PR \ RESTORE STATUS & RETURN TO CALLER

\\\
\
\ RECOVERY ROUTINE
\
\\\
RECOVERY DS ðH \ ENTRY POINT FOR ESTAEX RECOVERY ROUTINE
\

 Chapter 8. Providing Recovery 8-43

\ HANDLE INPUT FROM THE SYSTEM AND RE-ESTABLISH ADDRESSABILITY FOR
\ BASE REGISTER (12) AND DYNAMIC AREA REGISTER (13)
\
 PUSH USING

DROP , \ ENSURE NO SPURIOUS USING REFERENCES
USING RECOVERY,15 \ TEMPORARY ADDRESSABILITY
L 12,#BASE \ RELOAD THE BASE REGISTER
DROP 15 \ RELEASE TEMPORARY ADDRESSABILITY
USING EXAMPLE,12 \ USE THE BASE REGISTER
USING DYNAREA,13 \ DYNAMIC AREA ADDRESSABILITY
C ð,TESTNOSDWA \ IS THERE AN SDWA PRESENT?
BE NOSDWA \ NO, DO NOT USE THE SDWA

HAVESDWA DS ðH
USING SDWA,1 \ ADDRESSABILITY TO SDWA
L 13,SDWAPARM \ ADDRESS OF PARAMETER ADDRESS
L 13,ð(13) \ PARAMETER ADDRESS (DYNAREA)
MVC SAVE_ABCC,SDWAABCC \ SAVE THE COMPLETION CODE
B RECOV1 \ CONTINUE WITH COMMON RECOVERY

NOSDWA LR 13,2 \ PARAMETER ADDRESS (DYNAREA)
ST 1,SAVE_ABCC \ SAVE THE COMPLETION CODE
SR 1,1 \ NO SDWA IS AVAILABLE, CLEAR REGISTER

\
\ COMMON RECOVERY PROCESSING
\
RECOV1 DS ðH \ COMMON RECOVERY PROCESSING

ST 1,SAVE_SDWA \ SAVE THE SDWA ADDRESS
ST 14,SAVE_RETURNR14 \ RETURN ADDRESS TO THE SYSTEM

\
\\\
\
\ CODE FOR THE RECOVERY ROUTINE FUNCTION SHOULD BE INSERTED HERE
\
\\\
\
\ IF THERE IS NO SDWA, THEN SET UP FOR PERCOLATION
\

L 1,SAVE_SDWA \ RESTORE SDWA REGISTER (1)
LTR 1,1 \ IS THERE AN SDWA?
BZ NORETRY \ NO, DO NOT ATTEMPT TO RETRY

\
\ CHECK SDWACLUP TO SEE IF RETRY IS ALLOWED
\

TM SDWAERRD,SDWACLUP \ IS RETRY ALLOWED?
BNZ NORETRY \ NO, DO NOT ATTEMPT TO RETRY

\
\ SET UP THE RETURN PARAMETERS TO THE SYSTEM. THE SETRP MACRO UPDATES
\ THE SDWA. NOTE: THE WKAREA PARAMETER DEFAULTS TO REGISTER 1, WHICH
\ HAS THE ADDRESS OF THE SDWA. ALSO NOTE THAT OTHER REGISTERS MIGHT
\ NEED TO BE UPDATED TO MEET THE NEEDS OF DIFFERENT PROGRAMS.
\

ST 12,SDWASR12 \ BASE REGISTER 12 FOR RETRY
ST 13,SDWASR13 \ DYNAMIC AREA REGISTER 13 FOR RETRY

 SETRP RETREGS=YES,RC=4,RETADDR=RETRYPT,FRESDWA=YES
B RECOV2 \ CONTINUE WITH COMMON RECOVERY

NORETRY DS ðH \ BRANCH HERE WHEN NOT GOING TO RETRY
LA 15,ð \ RETURN CODE TO INDICATE PERCOLATION

RECOV2 DS ðH \ COMPLETE THE RETURN TO THE SYSTEM
L 14,SAVE_RETURNR14 \ SET THE RETURN ADDRESS TO THE SYSTEM

8-44 OS/390 V2R8.0 MVS Assembler Services Guide

BR 14 \ RETURN TO THE SYSTEM
\
\ STATIC STORAGE AREA
\
TESTNOSDWA DC F'12' \ TEST FOR NO SDWA CONDITION
#BASE DC A(EXAMPLE) \ BASE REGISTER VALUE
DYNSIZE DC AL4(@DYNSIZE) \ DYNAMIC AREA SIZE
LSTESTAEX ESTAEX RECOVERY,MF=L \ LIST FORM OF ESTAEX PARAMETER LIST
@LSTSIZE EQU \-LSTESTAEX \ SIZE OF ESTAEX PARAMETER LIST
\
\ DYNAMIC AREA STORAGE FOR REENTRANT PROGRAM
\
DYNAREA DSECT \ DYNAMIC STORAGE
SAVEAREA DS 18F \ REGISTER SAVE AREA
SAVE_SDWA DS F \ SDWA ADDRESS ON ENTRY TO RECOVERY
SAVE_ABCC DS F \ COMPLETION CODE
SAVE_RETURNR14 DS F \ RETURN ADDR. TO SYSTEM FROM RECOVERY
RMTESTAEX DS CL(@LSTSIZE) \ REMOTE ESTAEX PARAMETER LIST
STATUS DS F \ MAINLINE STATUS INDICATOR
@ENDDYN DS ðX \ USED TO CALCULATE DYNAMIC AREA SIZE
@DYNSIZE EQU ((@ENDDYN-DYNAREA+7)/8)\8 \ DYNAMIC AREA SIZE
\
\ INCLUDE MACROS
\
 IHASDWA
 END

Understanding Advanced Recovery Topics
This section contains information about the following advanced recovery topics:

� “Invoking RTM (ABEND Macro)”
� “Providing Multiple Recovery Routines” on page 8-46
� “Providing Recovery for Recovery Routines” on page 8-47
� “Providing Recovery for Multitasking Programs” on page 8-47.

Invoking RTM (ABEND Macro)
Any routine can issue the ABEND macro to direct the recovery termination services
to itself (cause entry into its recovery routine) or to its callers. The issuer of
ABEND should remove its own recovery routine if it wishes its caller to be ended
abnormally or to enter recovery. Control does not return to the issuer of the macro
(except as a result of a retry).

The position within the job step hierarchy of the task for which the ABEND macro is
issued determines the exact function of the abnormal termination routine. If an
ABEND macro is issued when the job step task (the highest level or only task) is
active, or if the STEP parameter is coded in an ABEND macro issued during the
performance of any task in the job step, all the tasks in the job step are terminated.
For example, if the STEP parameter is coded in an ABEND macro under TSO/E,
the TSO/E job is terminated. An ABEND macro (without a STEP parameter) that is
issued in performance of any task in the job step task usually causes only that task
and its subtasks to be abnormally terminated. However, if the abnormal termination
cannot be fulfilled as requested, it might be necessary for the system to end the job
step task abnormally.

 Chapter 8. Providing Recovery 8-45

If you have provided a recovery routine for your program, the system passes
control to your routine. If you have not provided a recovery routine, the system
handles the problem. The action the system takes depends on whether the job step
is going to be terminated.

If the job step is not going to be terminated, the system:

� Releases the resources owned by the terminating task and all of its subtasks,
starting with the lowest level task.

� Places the system or user completion code specified in the ABEND macro in
the task control block (TCB) of the active task (the task for which the ABEND
macro was issued).

� Posts the event control block (ECB) with the completion code specified in the
ABEND macro, if the ECB parameter was coded in the ATTACHX macro
issued to create the active task.

� Schedules the end-of-task exit routine to be given control when the originating
task becomes active, if the ETXR parameter was coded in the ATTACHX
macro issued to create the active task.

� Calls a routine to free the storage of the terminating task's TCB, if neither the
ECB nor ETXR parameter were specified by the ATTACHX macro.

If the job step is to be terminated, the system:

� Releases the resources owned by each task, starting with the lowest level task,
for all tasks in the job step. The system does not give control to any
end-of-task exit.

� Writes the system or user completion code specified in the ABEND macro on
the system output device.

The remaining steps in the job are skipped unless you can define your own
recovery routine to perform similar functions and any other functions that your
program requires. Use either the ESTAE or ESTAEX macro, or the ATTACHX
macro with the ESTAI option to provide a recovery routine that gets control
whenever your program issues an ABEND macro. If your program is running in AR
ASC mode, use the ESTAEX or ATTACHX macro.

Providing Multiple Recovery Routines
A single program can activate more than one ESTAE-type recovery routine by
issuing the ESTAE or ESTAEX macro more than once with the CT parameter. The
program can also overlay recovery routines by issuing ESTAE or ESTAEX with the
OV parameter, or deactivate recovery routines by issuing ESTAE or ESTAEX with
an address of zero.

ESTAE-type recovery routines get control in LIFO order, so the last ESTAE-type
recovery routine activated is the first to get control. Remember that ESTAE-type
recovery routines include ESTAE and ESTAEX routines, and ESTAI routines.
ESTAI routines are entered after all other ESTAE-type recovery routines that exist
for a given task have received control and have either failed or percolated.

MVS functions provide their own recovery routines; thus, percolation can pass
control to both installation-written and system-provided recovery routines. If all

8-46 OS/390 V2R8.0 MVS Assembler Services Guide

recovery routines percolate -- that is, no recovery routine can recover from the error
-- then the task is terminated.

When a recovery routine gets control and cannot recover from the error (that is, it
does not retry), it must free the resources held by the mainline routine and request
that the system continue with error processing (percolate). Note that a recovery
routine entered with the SDWACLUP bit set to one, indicating that retry is not
permitted, has no choice but to percolate. When the recovery routine requests
percolation, the previously activated recovery routine gets control. When a retry is
not requested and the system has entered all possible recovery routines, the task
ends abnormally.

When a recovery routine requests percolation, it is deactivated; that is, it can no
longer get control for this error. A deactivated recovery routine is not entered again
unless that recovery routine is activated again after a retry.

Providing Recovery for Recovery Routines
In some situations, the function a recovery routine performs is so essential that you
should provide a recovery routine to recover from errors in the recovery routine.
Two examples of such situations are:

1. The availability of some resources can be so critical to continued system or
subsystem operation that it might be necessary to provide a recovery routine
for the recovery routine, thus ensuring the availability of the critical resources.

2. A recovery routine might perform a function that is, in effect, an extension of
the mainline routine's processing. For example, a system service might elect to
check a caller's parameter list for fetch or store protection. The service
references the user's data in the user's key and, as a result of protection,
suffers a program check. The recovery routine gets control and requests a retry
to pass a particular return code to the mainline routine. If this recovery routine
ends abnormally and does not provide its own recovery, then the caller's
recovery routine gets control, and the caller does not get an opportunity to
check the return code that it was expecting.

You can activate an ESTAE-type recovery routine from another ESTAE-type
recovery routine. Any recovery routine activated from a recovery routine is called a
nested recovery routine. Nested ESTAE or ESTAEX routines can retry; the retry
routine runs under the RB of the ESTAE-type recovery routine that activated the
nested recovery routine.

Providing Recovery for Multitasking Programs
There are situations where the system does not provide serialization between
recovery routines for different TCBs in an address space. When possible you
should write your recovery routines so that serialization is not required.

When a recovery routine requires serialization with other TCBs in the address
space then the recovery routine must provide its own serialization. Serialization
must be carefully designed to avoid causing deadlock situations.

One serialization technique to ensure the order of termination processing is to use
the DETACH macro. Issuing DETACH ensures that the detached task and its
recovery routines complete before processing for the issuing task proceeds.

 Chapter 8. Providing Recovery 8-47

DETACH can only be used for tasks that were directly attached by the recovery
routine's TCB.

Another important aspect of recovery is releasing resources. Releasing serialization
resources (locks, ENQs, latches) in ESTAE-type recovery routines, rather than
leaving them to be released by a resource manager, helps avoid deadlocks in
recovery processing.

Using STAE/STAI Routines.
Notes:

1. IBM recommends you use the ESTAEX or ESTAE macro, or the ESTAI
parameter on ATTACHX.

2. Under certain circumstances, STAE or STAI routines might receive control in a
restricted environment. See “Restricted Environments” on page 8-38 for more
information.

The STAE macro causes a recovery routine address to be made known to the
system. This recovery routine is associated with the task and the RB that issued
STAE. Use of the STAI option on the ATTACH macro also causes a recovery
routine to be made known to the system, but the routine is associated with the
subtask created through ATTACH. Furthermore, STAI recovery routines are
propagated to all lower-level subtasks of the subtask created with ATTACH that
specified the STAI parameter.

If a task is scheduled for abnormal termination, the recovery routine specified by
the most recently issued STAE macro gets control and runs under a program
request block created by the SYNCH service routine. Only one STAE routine
receives control. The STAE routine must specify, by a return code in register 15,
whether a retry routine is to be scheduled. If no retry routine is to be scheduled
(return code = 0) and this is a subtask with STAI recovery routines, the STAI
recovery routine is given control. If there is no STAI recovery routine, abnormal
termination continues.

If there is more than one STAI recovery routine existing for a task, the newest one
receives control first. If it requests that termination continue (return code = 0), the
next STAI routine receives control. This continues until either all STAI routines have
received control and requested that the termination continue, a STAI routine
requests retry (return code = 4 or 12), or a STAI routine requests that the
termination continue but no further STAI routines receive control (return code = 16).

Programs running under a single TCB can issue more than one STAE macro with
the CT parameter to define more than one STAE routine. Each issuance
temporarily deactivates the previous STAE routine. The previous STAE routine
becomes active when the current STAE routine is deactivated.

A STAE routine is deactivated (it cannot receive control again for this error) under
any of the following circumstances:

� When the RB that activated it goes away (unless it issued XCTL and specified
the XCTL=YES parameter on the STAE macro)

� When the STAE macro is issued with an address of 0

� When the STAE routine receives control.

8-48 OS/390 V2R8.0 MVS Assembler Services Guide

If a STAE routine receives control and requests retry, the retry routine reissues the
STAE macro if it wants continued STAE protection.

A STAI routine is deactivated if the task completes or if the STAI routine requests
that termination continue and no further STAI processing be done. In the latter
case, all STAI recovery routines for the task are deactivated.

STAE and STAI Routine Environment:

Prior to entering a STAE or STAI recovery routine, the system attempts to obtain
and initialize a work area that contains information about the error. The first 4 bytes
of the SDWA contains the address of the user parameter area specified on the
STAE macro or the STAI parameter on the ATTACH macro.

Upon entry to the STAE or STAI routine, the GPRs contain the following:

If an SDWA was obtained:

GPR Contents
0 A code indicating the type of I/O processing performed:

0 Active I/O has been quiesced and is restorable.
4 Active I/O has been halted and is not restorable.
8 No active I/O at abend time.
16 (X'10') Active I/O, if any, was allowed to continue.

1 Address of the SDWA.
2 Address of the parameter area you specified on the PARAM parameter.
3 - 12 Do not contain any information for use by the routine.
13 Save area address.
14 Return address.
15 Address of STAE recovery routine.

If no SDWA was available:

GPR Contents
0 12 (X'0C') to indicate that no SDWA was obtained.
1 Completion code.
2 Address of user-supplied parameter list.
3 - 13 Do not contain any information for use by the routine.
14 Return address.
15 Address of STAE recovery routine.

When the STAE or STAI routine has completed, it should return to the system
through the contents of GPR 14. GPR 15 should contain one of the following return
codes:

Return Code Action

0 Continue the termination. The next STAI, ESTAI, or ESTAE
routine will be given control. No other STAE routines will
receive control.

4,8,12 A retry routine is to be scheduled.

Note: These values are not valid for STAI/ESTAI routines
that receive control when a resource manager fails
during normal termination of a task. See “Restricted
Environments” on page 8-38 for more information.

 Chapter 8. Providing Recovery 8-49

16 No further STAI/ESTAI processing is to occur. This code may
be issued only by a STAI/ESTAI routine

For the following situations, STAE/STAI routines are not entered:

� If the abnormal termination is caused by an operator's CANCEL command, job
step timer expiration, or the detaching of an incomplete task without the
STAE=YES option.

� If the failing task has been in a wait state for more than 30 minutes.

� If the STAE macro was issued by a subtask and the attaching task abnormally
terminates.

� If the recovery routine was specified for a subtask, through the STAI parameter
of the ATTACH macro, and the attaching task abnormally terminates.

� If a problem other than those above arises while the system is preparing to
give control to the STAE routine.

� If another task in the job step terminates without the step option.

STAE and STAI Retry Routines:

If the STAE retry routine is scheduled, the system automatically deactivates the
active STAE routine; the preceding STAE routine, if one exists, then becomes
activated. Users wanting to maintain STAE protection during retry must reactivate a
STAE routine within the retry routine, or must issue multiple STAE requests prior to
the time that the retry routine gains control.

Like the STAE/STAI recovery routine, the STAE/STAI retry routine must be in
storage when the recovery routine determines that retry is to be attempted. If not
already resident in your program, the retry routine may be brought into storage
through the LOAD macro by either the mainline routine or the recovery routine.

If the STAE/STAI routine indicates that a retry routine has been provided (return
code = 4, 8, or 12), register 0 must contain the address of the retry routine. The
STAE routine that requested retry is deactivated and the request block queue is
purged up to, but not including, the RB of the program that issued the STAE macro.
In addition, open DCBs that can be associated with the purged RBs are closed and
queued I/O requests associated with the DCBs being closed are purged.

The RB purge is an attempt to cancel the effects of partially run programs that are
at a lower level in the program hierarchy than the program under which the retry
occurs. However, certain effects on the system are not canceled by this RB purge.
Generally, these effects are TCB-related and are not identifiable at the RB level.
Examples of these effects are as follows:

� Subtasks created by a program to be purged. Subtasks cannot be associated
with an RB; the structure is defined through TCBs.

� Resources allocated by the ENQ macro. ENQ resources are associated with
the TCB and are not identifiable at the RB level.

� DCBs that exist in dynamically acquired virtual storage. Only DCBs in the
program, as defined by the RB through the CDE itself, are closed.

If there are quiesced restorable input/output operations (as specified by
PURGE=QUIESCE on the macro invocation), the retry routine can restore them in

8-50 OS/390 V2R8.0 MVS Assembler Services Guide

the same manner as the retry routine from an ESTAE routine. See “Outstanding
I/Os at the Time of Failure” on page 8-28.

If an SDWA was obtained upon entry to the STAE/STAI retry routine, the contents
of the GPRs are as follows:

GPR Contents
0 0
1 Address of the first 104 bytes of the SDWA.
2 - 14 Do not contain any information for use by the routine.
15 Address of the STAE/STAI retry routine.

When the storage is no longer needed, the retry routine should use the FREEMAIN
macro with the default subpool to free the first 104 bytes of the SDWA.

If the system was not able to obtain storage for the work area, GPR contents are
as follows:

GPR Contents
0 12 (X'0C')
1 Completion code.
2 Address of purged I/O restore list or 0 if I/O is not restorable.
3 - 14 Do not contain any information for use by the routine.
15 Address of the STAE/STAI retry routine.

The retry routine is entered with the same PSW key as the one in the RBOPSW of
the retry RB if the RBOPSW of the retry RB has a key greater than or equal to 8
and is in problem program state, and the PKM of that RB does not have authority
to keys less than 8.

Otherwise, the PSW key of the retry routine is that of the task in error.

 Chapter 8. Providing Recovery 8-51

8-52 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 9. Dumping Virtual Storage (ABEND, SNAPX, SNAP,
and IEATDUMP Macros)

A problem-state and PSW key 8-15 program can request three types of storage
dumps:

� An ABEND dump obtained through the DUMP parameter in the ABEND macro,
or the DUMP=YES parameter on the SETRP macro in a recovery exit

� A SNAP dump obtained through the SNAPX macro.

� A Transaction dump obtained througfh the IEATDUMP macro.

Figure 9-1 summarizes reasons for selecting an ABEND, SNAP, or Transaction
dump.

Figure 9-1. Reasons for Selecting the Type of Dump

Type of Dump Reasons for Selecting the Type of Dump

ABEND dumps Use an ABEND dump when abnormally ending a program because of an unpredictable
error. The DD statement in the program's job step determines the type of ABEND dump
and the dump contents, as follows:

SYSUDUMP ABEND dumps

These are the smallest of the ABEND dumps, containing data and areas only about
the failing program. You can either print or view the dump if it's in a SYSOUT data set
or on a tape or direct access data set (DASD).

SYSABEND ABEND dumps

These are the largest of the ABEND dumps, containing all the areas in a SYSUDUMP
dump and system areas that are used to analyze the processing in the failing
program. You can either print or view the dump if it's in a SYSOUT data set or on a
tape or DASD.

SYSMDUMP ABEND dumps

These contain data and areas in the failing program, plus some system areas. The
SYSMDUMP dumps can be more useful for diagnosis than other ABEND dumps
because you can use IPCS to gather diagnostic information. Use IPCS to format,
view, and print dumps.

SNAP dumps Use a SNAP dump to show one or more user-specified areas in the problem-state
program while it is running. A series of SNAP dumps can show a storage area at different
stages to display a program's processing. For example, you can use SNAP dumps to
show fields holding calculations and the counter in a loop to check processing in the loop.

Transaction dumps
(IEATDUMP)

Use Transaction dump to show one or more user-specified areas in the problem-state
program while it is running. Transaction dump can be more useful for diagnosis than
SNAP dumps because you can use IPCS to gather diagnostic information. Use IPCS to
format, view, and print dumps.

OS/390 MVS Diagnosis: Tools and Service Aids shows, in detail, the contents of
dumps. OS/390 MVS IPCS User's Guide describes how to use IPCS. OS/390 MVS
Programming: Authorized Assembler Services Guide describes macros that
authorized programs can use to dump virtual storage.

 Copyright IBM Corp. 1988, 1999 9-1

 ABEND Dumps
An ABEND macro initiates error processing for a task. The DUMP option of ABEND
requests a dump of storage and the DUMPOPT or DUMPOPX option may be used
to specify the areas to be displayed. These dump options may be expanded by an
ESTAE or ESTAI routine. The system usually requests a dump for you when it
issues an ABEND macro. However, the system can provide an ABEND dump only
if you include a DD statement (SYSABEND, SYSMDUMP, or SYSUDUMP) in the
job step. The DD statement determines the type of dump provided and the system
dump options that are used. When the dump is taken, the dump options that you
requested (specified in the ABEND macro or by recovery routines) are added to the
installation-selected options.

When writing an ESTAE-type recovery routine, note that the system accumulates
the SYSABEND/SYSUDUMP/SYSMDUMP dump options specified by means of the
SETRP macro and places them in the SDWA. During percolation, these options are
merged with any dump options specified on an ABEND or CALLRTM macro or by
other recovery routines. Also, the CHNGDUMP operator command can add to or
override the options. The system takes one dump as specified by the accumulated
options. If the recovery routine requests a retry, the system processes the dump
before the retry. If the recovery routine does not request a retry, the system
percolates through all recovery routines before processing the dump.

Note: If your program calls a system service (by issuing a macro or callable
service), that system service might encounter a user-induced error and end
abnormally. Generally, the system does not take dumps for user-induced
errors. If you require such a dump, then it is your responsibility to request
one in your recovery routine. See Chapter 8, “Providing Recovery” on
page 8-1 for information about writing recovery routines.

Obtaining a Symptom Dump
With all ABEND dumps, you will automatically receive a symptom dump through
message IEA995I. This symptom dump provides a summary of error information,
which will help you to identify duplicate problems. For more information about
message IEA995I, see OS/390 MVS System Messages, Vol 3 (GDE-IEB).

You will receive this dump even without a DD statement unless your installation
changes the default via the CHNGDUMP operator command or the dump parmlib
member for SYSUDUMP.

Suppressing Dumps That Duplicate Previous Dumps
If your installation is using dump analysis and elimination (DAE), code your
program to provide symptom data that DAE can compare with the symptom data
from previous dumps. Through this comparison, DAE can reduce the number of
duplicate dumps. Another benefit is that the symptom data, which is stored in the
DAE data set, provides a consistent set of data for identifying a failure.

DAE suppresses dumps that match a dump you already have. Each time DAE
suppresses a duplicate dump, the system does not collect data for the duplicate or
write the duplicate to a data set. In this way, DAE can improve dump management
by only dumping unique situations and by minimizing the number of dumps.

9-2 OS/390 V2R8.0 MVS Assembler Services Guide

To perform dump suppression, DAE builds a symptom string, if the data for it is
available. If the symptom string contains the minimum problem data, DAE uses the
symptom string to recognize a duplicate SVC dump, SYSMDUMP dump, or
Transaction dump requested for a software error. When installation parameters
request suppression, DAE suppresses the duplicate dump. The following describes
DAE processing.

1. DAE obtains problem data . DAE receives the data in the system diagnostic
work area (SDWA) or from values in a SYMREC parameter on the SDUMP,
SDUMPX or IEATDUMP macro that requested the dump.

� The system supplies system-level data, such as the abend and reason
codes, the failing instruction, and the register/PSW difference.

� The ESTAE routine or the functional recovery routine (FRR) of the failing
program supplies module-level information, such as the failing load module
name and the failing CSECT name.

2. DAE forms a symptom string. DAE adds a descriptive keyword to each field
of problem data to form a symptom. DAE forms MVS symptoms, rather than
RETAIN symptoms. DAE combines the symptoms for a requested dump into a
symptom string.

The following tables show the required and optional symptoms. SDWA field
names are given for the symptoms the failing program must provide to enable
dump suppression. The tables have both MVS and RETAIN symptoms so that
you can relate the MVS symptoms DAE uses to the RETAIN symptoms you
might use to search the RETAIN data base. An MVS symptom string must
contain at least five symptoms that are not null. DAE places symptoms into
strings in the order shown in the tables.

Required symptoms are first and must be present.

Symptom SDWA Field MVS Keyword
RETAIN
Keyword

Name of the failing load module SDWAMODN MOD/name RIDS/name#L

Name of the failing CSECT SDWACSCT CSECT/name RIDS/name

Optional symptoms must follow the required symptoms. DAE needs at least
three of these optional symptoms to make a useful symptom string.

 Chapter 9. Dumping Virtual Storage (ABEND, SNAPX, SNAP, and IEATDUMP Macros) 9-3

Symptom SDWA Field MVS Keyword
RETAIN
Keyword

Product/component identifier with the component
identifier base

SDWACID,
SDWACIDB

PIDS/name PIDS/name

System completion (abend) code AB/S0hhh AB/S0hhh

User completion (abend) code AB/Udddd AB/Udddd

Recovery routine name SDWAREXN REXN/name RIDS/name#R

Failing instruction area FI/area VALU/Harea

PSW/register difference REGS/hhhhh REGS/hhhhh

Reason code, accompanying the abend code or from
the REASON parameter of the macro that requests the
dump

HRC1/nnnn PRCS/nnnn

Subcomponent or module subfunction SDWASC SUB1/name VALU/Cname

3. DAE tries to match the symptom string from the dump to a symptom
string for a previous dump of the same type, that is, SVC dumps, with SVC
dumps and SYSMDUMP, or Transaction dumps with a previous SYSMDUMP
or Transaction dump. When DAE finds a match, DAE considers the dump to be
a duplicate.

Previous symptom strings are kept by DAE in virtual storage. When DAE is
started, usually during IPL, DAE selects from the DAE data set symptom strings
that were active in the last 180 days; either the string was created for a unique
dump within the last 180 days or its dump count was updated within the last
180 days. The selected symptom strings are placed in virtual storage.

The systems in a sysplex can share the DAE data set to suppress duplicate
dumps across the sysplex. While each system in a sysplex can use its own
DAE data set, IBM recommends that systems in a sysplex share a DAE data
set so that:

� DAE can write a dump on one system and suppress duplicates on other
systems in the sysplex.

� Only one DAE data set is required, rather than a data set for each system.

4. DAE updates the symptom strings in storage and, later, in the DAE data
set , if updating is requested.

� For a unique symptom string, DAE adds a new record. The record contains
the symptom string, the dates of the first and last occurrences, the
incidence count for the number of occurrences, and the name of the
system that provided the string.

� For a duplicate symptom string, DAE updates the incidence count for the
string, the last-occurrence date, and the name of the last system that found
the string.

In a sysplex, changes to the in-storage strings are propagated to the in-storage
strings throughout the sysplex.

5. DAE suppresses a duplicate dump , if DAE is enabled for dump suppression.

Note that, if you specify an ACTION of SVCD, TRDUMP, NOSUP, or
RECOVERY on a SLIP command, the command overrides DAE suppression

9-4 OS/390 V2R8.0 MVS Assembler Services Guide

and the system writes the dump. Also, dumps requested by the DUMP operator
command are not eligible for suppression.

When DAE does not suppress a dump, the symptom string is in the dump
header; you can view it with the IPCS VERBEXIT DAEDATA subcommand.
DAE also issues informational messages to indicate why the dump was not
suppressed.

DAE suppresses a dump when all of the following are true:

� DAE located in the dump the minimum set of symptoms.

� The symptom string for the dump matches a symptom string for a previous
dump of the same type.

� Either of the following is true:

– The current ADYSETxx parmlib member specifies SUPPRESS for the
type of dump being requested and the VRADAE key is present in the
SDWA. To set the VRADAE key, a recovery routine issues the
following macro:

VRADATA KEY=VRADAE

– A VRADATA VRAINIT must be done prior to any VRADATA KEY=
request in order for the VRA data to be properly processed by both
DAE and the SDWA formatter.

– The current ADYSETxx parmlib member specifies SUPPRESSALL for
the type of dump being requested and the VRANODAE key is absent
from the SDWA. The VRANODAE key specifies that the dump is not to
be suppressed.

The following table shows the effect of the VRADAE and VRANODAE keys on
dump suppression when SUPPRESS and SUPPRESSALL keywords are
specified in the ADYSETxx parmlib member. For SUPPRESS, the VRANODAE
key can be present or absent; the system does not check it. The table assumes
that the symptom string from the dump has matched a previous symptom
string.

The only way to ensure that a dump is not suppressed, regardless of the
contents of the ADYSETxx parmlib member, is to specify the VRANODAE key
in the SDWA, or DAE=NO on SYMRBLD used to build a symptom record
passed to the SDUMPX or IEATDUMP macro with the SYMREC keyword.

References:

� See OS/390 MVS Diagnosis: Reference for symptoms and symptom strings.

ADYSETxx
Option

VRADAE Key in
SDWA

VRANODAE Key
in SDWA

Dump
 Suppressed?

SUPPRESS Yes N/A Yes

SUPPRESS No N/A No

SUPPRESSALL Yes No Yes

SUPPRESSALL No Yes No

SUPPRESSALL No No Yes

SUPPRESSALL Yes Yes No

 Chapter 9. Dumping Virtual Storage (ABEND, SNAPX, SNAP, and IEATDUMP Macros) 9-5

� See OS/390 MVS Initialization and Tuning Reference for the ADYSETxx and
IEACMD00 parmlib members.

� See OS/390 MVS IPCS Commands for the VERBEXIT DAEDATA
subcommand.

Symptoms Provided by a Recovery Routine
DAE attempts to construct a unique symptom string using specific data that your
recovery routine can provide in the SDWA or through a symptom record. For an
SVC dump, or a Transaction dump, the symptom record is passed in the SDUMPX
or IEATDUMP macro. For a SYSMDUMP, place the symptom record in the
ABDUMP symptom area.

To provide symptoms for an SVC dump, do one or more of the following in a
recovery routine:

� Place data in the SDWA, which is mapped by the IHASDWA mapping macro.

� In an authorized program, provide a symptom record through a SYMREC
parameter on the SDUMPX or SDUMP macro. The symptom record is built
using SYMRBLD and mapped by the ADSR mapping macro.

� In an authorized or unauthorized program, provide a symptom record through a
SYMREC parameter on the IEATDUMP macro. The symptom record is built
using SYMRBLD and mapped by the ADSR mapping macro.

� Use a VRADATA macro to place information in the SDWA variable recording
area (VRA), which is mapped by the IHAVRA mapping macro. The VRA is
used:

– To supply additional symptoms for the symptom string.

– To provide secondary symptoms that give problem data not given in the
SDWA; for example, the identity of the caller of a service.

Use VRADATA when the standard symptom data is insufficient to determine if
a dump for the program is a duplicate.

For information about coding the VRADATA macro to add data to the SDWA, see
OS/390 MVS Programming: Assembler Services Reference. For more information
about symptom records, see Chapter 10, Reporting Symptom Records (SYMRBLD
and SYMREC Macros). For more information about recovery routines, see “Writing
Recovery Routines” on page 8-11.

VRADATA Macro: Use the VRAREQ key to tell DAE that the symptom is required
and the VRAOPT key to tell DAE that the symptom is optional.

A VRADATA macro with VRAREQ adds a symptom following the two required
symptoms (see the previous table). For example, to add a symptom, in this case
the name of a data set, and to define the symptom as required:

VRADATA KEY=VRAREQ,DATA=TAG1,LEN=L'TAG1
VRADATA KEY=VRADSN,DATA=MYDSN,LEN=L'MYDSN
...
TAG1 DC AL2(VRADSN)
MYDSN DC C'DEPT27.PAYROLL'

9-6 OS/390 V2R8.0 MVS Assembler Services Guide

A VRADATA macro with VRAOPT adds an optional symptom following the optional
symptoms (see the previous table). For example, to add an optional symptom with
the data at the address in register 5, and to define the symptom as optional:

LA R5,VRAOPTKEY
VRADATA KEY=VRAOPT,LEN=2,DATA=(5)
VRADAYA KEY=VRACA,DATA=PGMCALLR
...
VRAOPTKEY DC AL2(VRACA)
PGMCALLR DS A

If the symptom is to be the caller's address, the data pointed to would consist of
X'003C', which represents the key VRACA.

See OS/390 MVS Diagnosis: Reference for the VRADATA keys.

Required Symptom Data: The recovery routine must provide the following
minimum data to enable dump suppression by DAE:

To obtain the failing module name, the failing CSECT name, and the recovery
module name, the recovery routine can set up a RECPARM parameter list and
specify it on a SETRP macro. For information, see the RECPARM parameter of the
SETRP macro in OS/390 MVS Programming: Authorized Assembler Services
Reference SET-WTO.

Correct Module and CSECT Names: Obtaining the correct module and CSECT
names may be difficult, especially when the PSW does not point within the program
areas. Problems can also occur when the program uses the following:

� User exits: When the program calls a user exit, which in turn invokes system
services, such as getting a lock, the recovery routine often cannot identify the
exit as the failing module and CSECT. To avoid this problem, the program
should save the name of the user exit, so that the recovery routine can use the
saved name.

� Common recovery routines: The program should maintain footprints or require
that all modules using a common recovery routine update a common parameter
list with the name of the current module, CSECT, subfunction, and so on. The
recovery routine can obtain data from the common parameter list when filling in
the SDWA.

Symptoms: When you provide symptom information, select each symptom
carefully. If a symptom is too precise, no other failure will have that symptom; if the
symptom is too general, many failures will have the same symptom. For example,
do not use addresses as symptoms; instead, use names of modules and
components.

DAE accumulates up to 20 specified required and optional symptoms and up to 20
additional symptoms, if specified. The maximum string length is 150, so that not all

SDWA Field Data Example

SDWAMODN Failing module name IEAVTCXX
SDWACSCT Failing CSECT name IEAVTC22
SDWACID Product or component identifier SCDMP
SDWACIB Component identifier base 5655
SDWAREXN Recovery routine name IEAVTC2R
SDWASC Subcomponent or module subfunction RSM-PGFIX

 Chapter 9. Dumping Virtual Storage (ABEND, SNAPX, SNAP, and IEATDUMP Macros) 9-7

of the additional symptoms may appear in the string. A recovery routine can
change the minimum number of symptoms and the minimum string lengths that
DAE is to use for symptom matching for a particular dump. To make these
changes, code the following VRADATA macro keys in the recovery routine:

� The VRAMINSC key controls the minimum number of symptoms.
� The VRAMINSL key controls the minimum string length.

Control of Suppression: When the ADYSETxx parmlib member being used by the
installation contains SUPPRESS, a recovery routine must indicate that enough data
is available to suppress a duplicate dump. To indicate to DAE that the SDWA
contains enough data, set the VRADAE indicator in the SDWA variable recording
area by issuing the following:

VRADATA KEY=VRADAE

If the recovery routine cannot provide enough data in the SDWA suppression, the
recovery routine should indicate that its dump is not eligible for suppression, even
when the ADYSETxx member contains SUPPRESSALL. The routine should set the
VRANODAE indicator by issuing the following:

VRADATA KEY=VRANODAE

The VRANODAE key is useful for error environments that generate identical
symptoms but represent different problems.

When a Dump is Not Suppressed
When DAE is active but does not suppress a dump, DAE adds the reason that the
dump is not suppressed to the dump header record. When viewing a dump online
or printing a dump, specify the IPCS VERBEXIT DAEDATA subcommand to see
the reason that a dump was not suppressed.

Some reasons for not suppressing a dump are:

� The dump is unique. DAE found no match for the symptom string.

� The current ADYSETxx member does not specify SUPPRESS or
SUPPRESSALL for the type of dump being requested.

� A SLIP operator command specifies that the dump is not to be suppressed. A
SLIP command with ACTION=SVCD, ACTION=SYNCSVCD,
ACTION=STDUMP, ACTION=RECOVERY, or ACTION=TRDUMP always
produces a dump. ACTION=NOSUP stops suppression.

� DAE could not find all required symptoms.

� DAE could not find the minimum number of symptoms.

� The symptom string built by DAE was shorter than the minimum length.

� DAE found certain errors. For example, a required symptom had a key that was
not valid.

� The VRADAE key in the SDWA is absent, signifying that the dump should not
be suppressed, and the DAE parameter of the ADYSETxx parmlib member
does not specify SUPPRESSALL.

� The VRANODAE key is present in the SDWA, specifying that the dump should
not be suppressed.

9-8 OS/390 V2R8.0 MVS Assembler Services Guide

 SNAP Dumps
A program can request a SNAP dump at any time during its processing by issuing
a SNAPX or SNAP macro. For a SNAP dump, the DD statement can have any
name except SYSABEND, SYSMDUMP, and SYSUDUMP.

If your program is in AR ASC mode, use the SNAPX macro instead of SNAP.
Ensure that the SYSSTATE ASCENV=AR macro has been issued to tell the macro
to generate code and addresses appropriate for callers in AR mode.

Like the ABEND dump, the data set containing the dump can reside on any device
that is supported by BSAM. The dump is placed in the data set described by the
DD statement you provide. If you select a printer, the dump is printed immediately.
However, if you select a direct access or tape device, you must schedule a
separate job to obtain a listing of the dump, and to release the space on the
device.

To obtain a dump using the SNAP macro, you must provide a data control block
(DCB) and issue an OPEN macro for the data set before issuing any SNAP
macros. If the standard dump format is requested, 120 characters per line are
printed. The DCB must contain the following parameters: DSORG=PS,
RECFM=VBA, MACRF=W, BLKSIZE=882 or 1632, and LRECL=125. (The DCB is
described in DFSMS/MVS Using Data Sets, and DFSMS/MVS Macro Instructions
for Data Sets). If a high-density dump is to be printed on a 3800 Printing
Subsystem, 204 characters per line are printed. To obtain a high-density dump,
code CHARS=DUMP on the DD statement describing the dump data set. The
BLKSIZE= must be either 1470 or 2724, and the LRECL= must be 209.
CHARS=DUMP can also be coded on the DD statement describing a dump data
set that will not be printed immediately. If CHARS=DUMP is specified and the
output device is not a 3800, print lines are truncated and print data is lost. If your
program is to be processed by the loader, you should also issue a CLOSE macro
for the SNAP DCB.

Finding Information in a SNAP Dump
You will obtain a dump index with each SNAP dump. The index will help you find
information in the dump more quickly. Included in the information in the dump index
is an alphabetical list of the active load modules in the dump along with the page
number in the dump where each starts.

Obtaining a Summary Dump for an ABEND or SNAP Dump
You can request a summary dump for an abending task by coding the SUM option
of the SNAP macro. You can also obtain a summary dump by coding the
DUMPOPT option on the ABEND or SETRP macro and specifying a list form of
SNAP that contains the SUM option. Use the DUMPOPX parameter on ABEND or
SETRP to obtain an ABEND dump that contains data space storage. When you
use DUMPOPX, specify a list form of SNAPX that contains the SUM option.

If SUM is the only option that you specify, the dump will contain a dump header,
control blocks, and certain other areas. The contents of the summary dump are
described in OS/390 MVS Recovery and Reconfiguration Guide.

 Chapter 9. Dumping Virtual Storage (ABEND, SNAPX, SNAP, and IEATDUMP Macros) 9-9

 Transaction Dumps
Transaction dump is a service used to request an unformatted dump of virtual
storage to a data set, similar to a SYSMDUMP. It is invoked with the IEATDUMP
assembler macro which issues SVC 51. You can request that the dump be written
to a data set that is either pre- allocated or automatically allocated. To request a
pre-allocated data set, specify an open MACRF=W DCB that contains sufficient
space in one or more extents for the entire dump to be written. If you don't provide
a large enough data set, you will receive a partial dump. To request automatic
allocation, ensure a dump will not be truncated due to space constraints and
specify a data set name pattern. Automatic allocation is done to SYSALLDA.

When a Transaction dump is written, a dump directory record describing the dump
may be written. Specify the dump directory to be used with the IDX keyword on the
dump request. If you do not specify a dump directory, the directory allocated to
IPCSDDIR in the current job step will be used. If no dump directory is specified and
IPCSDDIR is not allocated, no record describing the dump will be written.

Dump suppression occurs using symptoms available in the current SDWA or a
symptom string may be provided (via the SYMREC keyword). If you provide a
symptom string, and an SDWA exists, the symptom string is used for suppression
purposes. Statistics for dump suppression are contained in the DAE data set and
are not differentiated from SYSMDUMPs.

Authorized users may specify the REMOTE keyword on the IEATDUMP macro to
request other address spaces on the current or other MVS images (in the same
sysplex) be dumped. When you request remote dumps, automatic allocation must
also be used.

Transaction dump uses an incident token to associate this dump with other
diagnostic information. Automatic allocation also uses this incident token for symbol
substitution in the data set name pattern. You can generate an incident token using
the IEAINTKN macro and providing the INTOKEN keyword on the dump request. If
you do not provide an incident token, one will be generated and used internally.
While an incident token may always be specified, it may be especially important
when remote dumps are requested.

An asynchronous dump may be requested by specifying ASYNC=YES on the dump
request. It is recommended that an ECB be specified for asynchronous dumps to
ensure that any volatile resources are captured before being freed.

9-10 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 10. Reporting Symptom Records (SYMRBLD and
SYMREC Macros)

An installation's programmers can write authorized or unauthorized applications that
detect and collect information about errors in their processing. Through the
SYMRBLD or SYMREC macro, the applications can write a symptom record for
each error to the logrec data set, the online repository where MVS collects error
information. Programmers can analyze the records in the logrec data set to
diagnose and debug problems in the installation's applications.

The unit of information stored in the logrec data set is called a symptom record.
The data in the symptom record is a description of some programming failure
combined with a description of the environment where the failure occurred. Some of
the information in the symptom record is in a special format called the structured
data base (SDB) format.

An installation's programmers can do the following:

� Build the symptom records using the SYMRBLD macro.

� Record the symptom records on the logrec data set using SYMRBLD or
SYMREC.

� Format the symptom records into various reports using EREP and IPCS.

Writing Symptom Records to Logrec Data Set
Your application can build and write symptom records to the logrec data set one of
two ways:

� Through invoking the SYMRBLD macro services
� By filling in fields of the ADSR mapping macro, then invoking SYMREC.

Using the SYMRBLD Macro: SYMRBLD services use both the ADSR mapping
macro and SYMREC, thus decreasing the amount of code your application requires
to write symptom records. IBM recommends that you use SYMRBLD rather than
coding your application to use ADSR and SYMREC directly.

By invoking the SYMRBLD macro multiple times, you can generate code to build
the symptom record. After storing all symptoms into the symptom record by using
the SYMRBLD macro, invoke the SYMRBLD macro with the INVOKE=YES
parameter one last time to write the data from the symptom record to the logrec
data set.

For more information about SYMRBLD and SYMREC, see OS/390 MVS
Programming: Assembler Services Reference.

Using EREP or IPCS: The Environmental Record Editing and Printing (EREP)
program processes and presents software error records in the following reports:

� Detail edit report for an abend
� Detail edit report for a symptom record
� System summary report
� Event history report
� Detail summary report

 Copyright IBM Corp. 1988, 1999 10-1

EREP User's Guide describes how to use EREP.

IPCS formats the software error records. You can use the IPCS VERBEXIT
LOGDATA subcommand to format and print or view the logrec data set records in a
dump. For more information about the subcommand, see OS/390 MVS IPCS
Commands.

The Format of the Symptom Record
The symptom record consists of six sections that are structured according to the
format of the ADSR DSECT. These sections are numbered 1 through 5, including
an additional section that is numbered 2.1. Because sections 2.1, 3, 4, and 5 of
the symptom record are non-fixed, they do not need to be sequentially ordered
within the record. In section 2, the application supplies the offset and the length of
the non-fixed sections. The ADSR format is described in the OS/390 MVS Data
Areas, Vol 1 (ABEP-DALT), and the purpose of each section is as follows:

Section 1 (Environmental Data): Section 1 contains the record header with basic
environmental data. The environmental data provides a system context within which
the software errors can be viewed. The SYMREC caller initializes this area to zero
and stores the characters "SR" into the record header. The environmental data of
section 1 is filled in automatically when you invoke the SYMREC macro. Section 1
includes items such as:

� CPU model and serial number
� Date and time, with a time zone conversion factor
� Customer assigned system name
� Product ID of the control program

Section 2 (Control Data): Section 2 contains control information with the lengths
and offsets of the sections that follow. The application must initialize the control
information before invoking SYMREC for the first time. You can initialize the control
information by using SYMRBLD with the INITIAL parameter. Section 2 immediately
follows section 1 in the symptom record structure.

Section 2.1 (Component Data): Section 2.1 contains the name of the component
in which the error occurred, as well as other specific component-related data. The
application must also initialize section 2.1 before invoking SYMREC. You can
initialize the control information by using SYMRBLD with the INITIAL parameter.

Section 3 (Primary SDB Symptoms): Section 3 contains the primary string of
problem symptoms, which may be used to perform tasks such as duplicate problem
recognition. When an application detects an error, it must store a string of
symptoms in section 3, and this string becomes the primary symptom for the error.
This string should be a unique and complete description of the error. All incidences
of that error should produce the same string in section 3. When problems are
analyzed, problems that have identical strings in section 3 represent the same
error. Note that an application does not store any primary symptom string or invoke
SYMREC unless it detects an error in its own processing. You can invoke
SYMRBLD with the PRIMARY parameter to store symptoms into section 3.

Section 4 (Secondary SDB Symptoms): Section 4 contains an optional secondary
symptom string. The purpose of the secondary string is to provide additional
symptoms that might supplement the symptoms in section 3.

10-2 OS/390 V2R8.0 MVS Assembler Services Guide

Section 5 (Free-Format Data): Section 5 contains logical segments of optional
problem-related data to aid in problem diagnosis. However, the data in section 5 is
not in the SDB format, which is found in only sections 3 and 4. Each logical
segment in section 5 is structured in a key-length-data format.

Symptom Strings — SDB Format
The symptom strings placed in sections 3 and 4 of the symptom record must be in
the SDB (structured data base) format. In this format, the individual symptoms in
sections 3 and 4 consist of a prefix and its associated data. Examples of typical
prefixes are:

Prefix Data
PIDS/ A component name
RIDS/ A routine name
AB/ An abend code
PRCS/ A return code

For more information about the prefixes and all valid SDB key names, see OS/390
MVS Programming: Assembler Services Reference. For a full explanation of
symptom strings and how to format and print the four basic symptom record
reports, see OS/390 MVS Diagnosis: Procedures and OS/390 MVS Diagnosis:
Tools and Service Aids.

Building a Symptom Record Using the SYMRBLD Macro
Input to the SYMRBLD macro is a storage area for the symptom record, and the
diagnostic data for sections 2.1, 3, 4, and 5 of the symptom record. The SYMRBLD
macro must be invoked several times to build a complete symptom record. The
following describes the sequence:

1. Invoke SYMRBLD with the INITIAL parameter to initialize sections 1 and 2, and
provide application data for section 2.1.

2. Invoke SYMRBLD with the PRIMARY parameter to store symptoms into section
3. You may invoke this parameter more than once for one error.

3. Optionally invoke SYMRBLD with the SECONDARY parameter to store
symptoms into section 4.

4. Optionally invoke SYMRBLD with the VARIABLE parameter to store data into
section 5.

5. Invoke SYMRBLD with the COMPLETE parameter to set the lengths of
sections 3, 4, and 5 in section 2.1 and optionally code SYMRBLD to invoke the
SYMREC macro for recording to the logrec data set. If you do not code
SYMRBLD to invoke the SYMREC macro, your records will not be recorded to
the logrec data set.

6. Invoke SYMRBLD with the RESET parameter to rebuild the symptom record
using the same storage and application information that was specified using the
INITIAL parameter. The RESET parameter is useful when the primary,
secondary, and variable sections of the symptom record are to be changed but
the application information in section 2.1 remains the same.

 Chapter 10. Reporting Symptom Records (SYMRBLD and SYMREC Macros) 10-3

Building a Symptom Record Using the ADSR and SYMREC Macros
This section contains programming notes on how the various fields of the ADSR
data area (symptom record) are set. Some fields of the ADSR data area (symptom
record) must be set by the caller of the SYMREC macro, and other fields are set by
the system when the application invokes the SYMREC service. The fields that the
SYMREC caller must always set are indicated by an RC code in the following
sections. The fields that are set by SYMREC are indicated by an RS code.

The RA code designates certain flag fields that need to be set only when certain
kinds of alterations and substitutions are made in the symptom record after the
incident occurs. These alterations and substitutions must be obvious to the user
who interprets the data. Setting these flag fields is the responsibility of the program
that alters or substitutes the data. If a program changes a symptom record that is
already written on the repository, it should set the appropriate RA-designated
flag-bit fields as an indication of how the record has been altered.

The remaining fields, those not marked by RC, RS, or RA, are optionally set by the
caller of the SYMREC macro. When SYMREC is invoked, it checks that all the
required input fields in the symptom record are set by the caller. If the required
input fields are not set, SYMREC issues appropriate return and reason codes.

Programming Notes for Section 1
Notes in this section pertain to the following fields, which are in section 1 of the
ADSR data area.

ADSRID Record header (RC)
ADSRGMT Local Time Conversion Factor
ADSRTIME Time stamp (RS)
ADSRTOD Time stamp (HHMMSSTH)
ADSRDATE Date (YYMMDD)
ADSRSID Customer Assigned System/Node Name (RS)
ADSRSYS Product ID of Base System (BCP) (RS)
ADSRCML Feature and level of Symrec Service (RS)
ADSRTRNC Truncated flag (RS)
ADSRPMOD Section 3 modified flag (RA)
ADSRSGEN Surrogate record flag (RA)
ADSRSMOD Section 4 modified flag
ADSRNOTD ADSRTOD & ADSRDATE not computed flag (RS)
ADSRASYN Asynchronous event flag (RA)
ADSRDTP Name of dump

Notes:

1. SYMREC stores the TOD clock value into ADSRTIME when the incident
occurs. However, it does not compute ADSRTOD and ADSRDATE when the
incident occurs, but afterwards, when it formats the output. When the incident
occurs, SYMREC also sets ADSRNOTD to 1 as an indication that ADSRTOD
and ADSRDATE have not been computed.

2. SYMREC stores the customer-assigned system node name into ADSRSID.

3. SYMREC stores the first four digits of the base control program component id
into ADSRSYS. The digits are 5752, 5759 and 5745 respectively for MVS, VM
and DOS/VSE.

4. The ADSRDTP field is not currently used by the system.

10-4 OS/390 V2R8.0 MVS Assembler Services Guide

5. If some application creates the record asynchronously, that application should
set ADSRASYN to 1. 1 means that the data is derived from sources outside the
normal execution environment, such as human analysis or some type of
machine post-processing.

6. If SYMREC truncates the symptom record, it sets ADSRTRNC to 1. This can
happen when the size of the symptom record provided by the invoking
application exceeds SYMREC's limit.

7. ADSRSGEN indicates that the symptom record was not provided as ‘first time
data capture’ by the invoking application. Another program created the
symptom record. For instance, the system might have abended the program,
and created a symptom record for it because the failing program never
regained control. Setting the field to 1 means that another program surrogate
created the record. The identification of the surrogate might be included with
other optional information, for example, in section 5.

8. The application invoking SYMREC must provide the space for the entire
symptom record, and initialize that space to hex zeroes. The application must
also store the value SR into ADSRID.

9. The fields ADSRCPM through ADSRFL2, which appear in the record that is
written to the logrec data set, are also written back into the input symptom
record as part of the execution of SYMREC.

Programming Notes for Section 2
Notes in this section pertain to the following fields, which are in section 2 of the
ADSR data area.

ADSRARID Architectural level designation (RS)
ADSRL Length of section 2 (RC)
ADSRCSL Length of section 2.1 (RC)
ADSRCSO Offset of section 2.1 (RC)
ADSRDBL Length of section 3 (RC)
ADSRDBO Offset of section 3 (RC)
ADSRROSL Length of section 4
ADSRROSA Offset of section 4
ADSRRONL Length of section 5
ADSRRONA Offset of section 5
ADSRRISL Length of section 6
ADSRRISA Offset of section 6
ADSRSRES Reserved for system use

Notes:

1. The invoking application must ensure that the actual lengths of supplied data
agree with the lengths indicated in the ADSR data area. The application should
not assume that the SYMREC service validates these lengths and offsets.

2. The lengths and offsets in section 2 are intended to make the indicated
portions of the record indirectly addressable. Invoking applications should not
program to a computed absolute offset, which may be observed from the byte
assignments in the data area.

3. The value of the ADSRARID field is the architectural level at which the
SYMREC service is operating. The architecture level is always 10.

 Chapter 10. Reporting Symptom Records (SYMRBLD and SYMREC Macros) 10-5

4. Section 2 has a fixed length of 48 bytes. Optional fields (not marked with RC,
RS, or RA) will contain zeroes when the invoking application provides no values
for them.

Programming Notes for Section 2.1
Notes in this section pertain to the following fields, which are in section 2.1 of the
ADSR data area.

ADSRC C'SR21' Section 2.1 Identifier (RC)
ADSRCRL Architectural Level of Record (RC)
ADSRCID Component identifier
ADSRFLC Component Status Flags
ADSRFLC1 Non-IBM program flag (RC)
ADSRLVL Component Release Level (RC)
ADSRPTF Service Level
ADSRPID PID number (RC)
ADSRPIDL PID release level (RC)
ADSRCDSC Text description
ADSRRET Return Code (RS)
ADSRREA Reason Code (RS)
ADSRPRID Problem Identifier
ADSRID Subsystem identifier

Notes:

1. This section has a fixed length of 100 bytes, and cannot be truncated. Optional
fields (not marked with RC, RS, or RA) will appear as zero if no values are
provided.

2. ADSRCID is the component ID of the application that incurred the error.

Under some circumstances, there can be more than one component ID
involved. For ADSRCID, select the component ID that is most indicative of the
source of the error. The default is the component ID of the detecting program.
In no case should the component ID represent a program that only
administratively handles the symptom record. Additional and clarifying data
(such as, other component ID involved) is optional, and may be placed in
optional entries such as ADSRCDSC of section 2.1, section 4, or section 5.

For example: if component A receives a program check; control is taken by
component B, which is the program check handler. Component C provides a
service to various programs by issuing SYMREC for them. In this case, the
component ID of A should be given. Component B is an error handler that is
unrelated to the source of the error. Component C is only an administrator.
Note that, in this example, it was possible for B to know A was the program in
control and the source of the program check. This precise definition is not
always possible. B is the detector, and the true source of the symptom record.
If the identity of A was unknown, then B would supply, as a default, its own
component ID.

ADSRCID is not a required field in this section, although it is required in section
3 after the PIDS/ prefix of the symptom string. Repeating this value in section
2.1 is desirable but not required. Where the component ID is not given in
section 2.1, this field must contain zeroes.

ADSRPID is the program identification number assigned to the program that
incurred the error. ADSRPID must be provided only by IBM programs that do

10-6 OS/390 V2R8.0 MVS Assembler Services Guide

not have an assigned component ID. Therefore, ADSRCID contains hex zeroes
if ADSRPID is provided.

3. ADSRLVL is the release level of the component indicated in ADSRCID.

4. ADSRPIDL is the release level of the program designated by ADSRPID, and it
should be formatted using the characters, V, R, and M as separators, where V,
R, and M represent the version, release, and modification level respectively.
For example, V1R21bbbbb is Version 1 Release 2.1 without any modification.
No punctuation can appear in this field, and ADSRPIDL must be provided only
when ADSRPID is provided.

5. ADSRPTF is the service level. It may differ from ADSRLVL because the
program may be at a higher level than the release. ADSRPTF can contain any
number indicative of the service level. For example, a PTF, FMID, APAR
number, or user modification number. This field is not required, but it should be
provided if possible.

6. ADSRCDSC is a 32-byte area that contains text, and it is only provided at the
discretion of the reporting component. It provides clarifying information.

7. ADSRREA is the reason code, and ADSRRET is the return code from the
execution of SYMREC. SYMREC places these values in registers 0 and 15 and
in these two fields as part of its execution. The fields are right justified, and
identical to the contents of registers 0 and 15.

8. ADSRCRL is the architectural level of the record, which is always 10. Note that
ADSRARID (section 2) is the architectural level of the SYMREC service.

9. ADSRPRID is a value that can be used to associate the symptom record with
other symptom records. This value must be in EBCDIC, but it is not otherwise
restricted.

10. ADSRNIBM is a flag indicating that a non-IBM program originated the symptom
record.

11. ADSRSSID is the name of a subsystem. The primary purpose of this field is to
allow subsystems to intercept the symptom record from programs that run on
the subsystem. They may then add their own identification in this field as well
as additional data in sections 4 and 5. The subsystem can then pass the
symptom record to the system via SYMREC. A zero value is interpreted as no
name.

Programming Notes for Section 3
Section 3 of the symptom record contains the primary symptoms associated with
the error, and is provided by the application that incurred the error, or some
program that acts on its behalf. The internal format of the data in section 3 is the
SDB format, with a blank separating each entry. Once this data has been passed to
SYMREC by the invoker, it may not be added to or modified without setting
ADSRPMOD to '1'. The data in this section is EBCDIC, and no hex zeros may
appear. The symptoms are in the form K/D where K is a keyword of 1 to 8
characters and D is at least 1 character. D can only be an alphanumeric or @, $,
and #.

 Chapter 10. Reporting Symptom Records (SYMRBLD and SYMREC Macros) 10-7

Notes:

1. The symptom K/D can have no imbedded blanks, but the '#' can be used to
substitute for desired blanks. Each symptom (K/D) must be separated by at
least one blank. The first symptom may start at ADSRRSCS with no blank, but
the final symptom must have at least one trailing blank. The total length of each
symptom (K/D combination) can not exceed 15 characters.

2. This section is provided by the component that reports the failure to the
system. Once a SYMREC macro is issued, the reported information will not be
added to or modified, even if the information is wrong. It is the basis for
automated searches, and even poorly chosen information will compare correctly
in such processing because the component consistently produces the same
symptoms regardless of what information was chosen.

3. The PIDS/ entry is required, with the component ID following the slash. It is
required from all programs that originate a symptom record and have
component a ID assigned. Further, it must be identical to the value in
ADSRCID (section 2.1) if that is provided. (ADSRCID is not a required field.)

Programming Notes for Section 4
Section 4 of the symptom record contains the secondary symptoms associated with
the error incident, and it is provided by the application that incurred the error, or
some program that acts in its behalf. The internal format of the data in section 4 is
the SDB format, with a single blank separating each entry. Once this data has been
passed to SYMREC by the invoker, it may not be added to or modified without
setting ADSRSMOD to 1.

Programming Notes for Section 5
Section 5 of the symptom record contains logical segments of data that are
provided by the component or some program that acts in its behalf. The component
stores data in section 5 before SYMREC is invoked.

Notes:

1. The first segment must be stored at symbolic location ADSR5ST. In each
segment, the first two characters are a hex key value, and the second two
characters are the length of the data string, which must immediately follow the
two-byte length field. Adjacent segments must be packed together. The length
of section 5 is in the ADSRRONL field in section 2, and this field should be
correctly updated as a result of all additions or deletions to section 5.

2. There are 64K key values grouped in thirteen ranges representing thirteen
potential SYMREC user categories. The data type (that is, hexadecimal,
EBCDIC, etc.) of section 5 is indicated by the category of the key value. Thus,
the key value indicates both the user category and the data type that are
associated with the information in section 5. Because the component ID is a
higher order qualifier of the key, it is only necessary to control the assignment
of keys within each component ID or, if a component ID not assigned, within
each PID number.

Key Value User Category and Data Type
0001-00FF Reserved
0100-0FFF MVS system programs
1000-18FF VM system programs
1900-1FFF DOS/VSE system programs

10-8 OS/390 V2R8.0 MVS Assembler Services Guide

2000-BFFF Reserved
C000-CFFF Product programs and non-printable hex data
D000-DFFF Product programs and printable EBCDIC data
E000-EFFF Reserved
F000 Any program and printable EBCDIC data
F001-F0FFN Not assignable
F100-FEFF Reserved
FF00 Any program and non-printable hex data
FF01-FFFF Not assignable

 Chapter 10. Reporting Symptom Records (SYMRBLD and SYMREC Macros) 10-9

10-10 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 11. Virtual Storage Management

You use the virtual storage area assigned to your job step by making implicit and
explicit requests for virtual storage. (In addition to the virtual storage requests that
you make, the system also can request virtual storage to contain the control blocks
required to manage your tasks.)

Some macros represent implicit requests for storage. For example, when you
invoke LINK to pass control to another load module, the system allocates storage
before bringing the load module into your job pack area.

The GETMAIN or STORAGE macro is an explicit request for virtual storage. When
you make an explicit storage request, the system allocates to your task the number
of virtual storage bytes that you request. The macros also allow you to specify
where the central storage that backs the virtual storage resides; either above or
below 16 megabytes.

The CPOOL macro and callable cell pool services are also explicit requests for
storage. The macro and the services provide an area called a cell pool from which
you can obtain cells of storage. “Using the CPOOL Macro” on page 11-6 and
Chapter 12, Callable Cell Pool Services describe how you can create and manage
cell pools.

The DSPSERV macro is an explicit request for virtual storage that is not part of
your address space. It is available for storing data, but not executing code. The two
kinds of data-only spaces are data spaces and hiperspaces . For information on
how to obtain and manage these virtual storage areas, see Chapter 15, Data
Spaces and Hiperspaces.

Note : If your job step is to be executed as a non-pageable (V=R) task, the
REGION parameter value specified on the JOB or EXEC statement determines the
amount of virtual (real) storage reserved for the job step. If you run out of storage,
increase the REGION parameter size.

This chapter describes techniques you can use to obtain and release virtual storage
and make efficient use of the virtual storage area reserved for your job step.

Explicit Requests for Virtual Storage
To explicitly request virtual storage, issue a GETMAIN or a STORAGE macro.
When you make an explicit request, the system satisfies the request by allocating a
part of the virtual storage area reserved for the job step. The virtual storage area is
usually not set to zero when allocated. (The system sets storage to zero only when
it initially assigns a frame to a virtual storage page.)

You explicitly release virtual storage by issuing a FREEMAIN macro or a
STORAGE macro. For information about using these macros, see “Releasing
Storage Through the FREEMAIN and STORAGE Macros” on page 11-5.

Specifying the Size of the Area: Virtual storage areas are always allocated to the
task in multiples of eight bytes and may begin on either a doubleword or page
boundary. You request virtual storage in bytes; if the number you specify is not a
multiple of eight, the system rounds it up to the next higher multiple of eight. You

 Copyright IBM Corp. 1988, 1999 11-1

can make repeated requests for a small number of bytes as you need the area, or
you can make one large request to completely satisfy the requirements of the task.
There are two reasons for making one large request. First, it is the only way you
can be sure to get contiguous virtual storage and avoid fragmenting your address
space. Second, you make only one request, and thus minimize the amount of
system overhead.

Obtaining Storage Through the GETMAIN Macro
There are several methods of explicitly requesting virtual storage using the
GETMAIN macro. Each method, which you select by coding a parameter, has
certain advantages.

You can specify the location, above or below 16 megabytes, of the virtual area
allocated by using the LOC parameter. (LOC is valid only with the RU, RC, VRU,
and VRC parameters.)

To request virtual storage that can be above 16 megabytes, use LOC=ANY. To
request virtual storage below 16 megabytes, use LOC=BELOW.

If you code LOC=ANY and indicate a subpool that is supported above 16
megabytes, GETMAIN tries to allocate the virtual storage area above 16
megabytes. If it cannot, and if the subpool is supported below 16 megabytes,
GETMAIN allocates the area from virtual storage below 16 megabytes.

The element, variable, and list type of methods do not produce reenterable coding
unless coded in the list and execute forms. (See “Implicit Requests for Virtual
Storage” on page 11-11 for additional information.) When you use the last three
types, you can allocate storage below 16 megabytes only.

The methods and the characters associated with them follow:

1. Register Type : There are several kinds of register requests. In each case the
address of the area is returned in register 1. All of the register requests
produce reenterable code because the parameters are passed to the system in
registers, not in a parameter list. The register requests are as follows:

R specifies a request for a single area of virtual storage of a
specified length, located below 16 megabytes.

RU or RC specifies a request for a single area of virtual storage of a
specified length, located above or below 16 megabytes
according to the LOC parameter.

VRU or VRC specifies a request for a single area of virtual storage with
length between two values that you specify, located above or
below 16 megabytes according to the LOC parameter.
GETMAIN attempts to allocate the maximum length you
specify. If not enough storage is available to allocate the
maximum length, GETMAIN allocates the largest area with a
length between the two values that you specified. GETMAIN
returns the length in register 0.

2. Element Type: EC or EU specifies a request for a single area of virtual
storage, below 16 megabytes, of a specified length. GETMAIN places the
address of the allocated area in a fullword that you supply.

11-2 OS/390 V2R8.0 MVS Assembler Services Guide

3. Variable Type: VC or VU specifies a request for a single area of virtual storage
below 16 megabytes with a length between two values you specify. GETMAIN
attempts to allocate the maximum length you specify; if not enough storage is
available to allocate the maximum length, the largest area with a length
between the two values is allocated. GETMAIN places the address of the area
and the length allocated in two consecutive fullwords that you supply.

4. List Type: LC or LU specifies a request for one or more areas of virtual
storage, below 16 megabytes, of specified lengths.

The LOC parameter also allows you to indicate whether the real frames that back
the virtual storage are above or below 16 megabytes.

To request virtual storage at a specific address, use LOC with the EXPLICIT
parameter and specify the address desired on the INADDR parameter. When you
specify EXPLICIT on a request for storage from the same virtual page as previously
requested storage, you must request it in the same key, subpool, and central
storage areas as on the previous storage request. For example, if you request
virtual storage backed with central storage below 16 megabytes, any subsequent
requests for storage in that virtual page must be specified as
LOC=(EXPLICIT,BELOW).

The virtual storage address specified on INADDR and the central storage backing
specified on LOC=EXPLICIT must be a valid combination. For example, if the
address specified on INADDR is for storage above 16 megabytes, you must specify
LOC=EXPLICIT or LOC=(EXPLICIT,ANY). The following combinations are valid:

� virtual any, central any
� virtual below, central below
� virtual below, central any

For more information, see the description of the GETMAIN macro in OS/390 MVS
Programming: Assembler Services Reference.

In combination with these methods of requesting virtual storage, you can designate
the request as conditional or unconditional. If the request is unconditional and
sufficient virtual storage is not available to fill the request, the active task is
abnormally terminated. If the request is conditional, however, and insufficient virtual
storage is available, a return code of 4 is provided in register 15; a return code of 0
is provided if the request was satisfied.

Figure 11-1 shows an example of using the GETMAIN macro. The example
assumes a program that operates most efficiently with a work area of 16,000 bytes,
with a fair degree of efficiency with 8,000 bytes or more, inefficiently with less than
8,000 bytes. The program uses a reentrant load module having an entry name of
REENTMOD, and will use it again later in the program; to save time, the load
module was brought into the job pack area using a LOAD macro so that it will be
available when it is required.

 Chapter 11. Virtual Storage Management 11-3

 .
 .

GETMAIN EC,LV=16ððð,A=ANSWADD Conditional request for 16,ððð
bytes in central storage

LTR 15,15 Test return code
BZ PROCEED1 If 16,ððð bytes allocated, proceed
DELETE EP=REENTMOD If not, delete module and try
GETMAIN VU,LA=SIZES,A=ANSWADD to get less virtual storage
L 4,ANSWADD+4 Load and test allocated length
CH 4,MIN If 8,ððð or more, use procedure 1
BNL PROCEED1 If less than 8,ððð use procedure 2

PROCEED2 ...
PROCEED1 ...
MIN DC H'8ððð' Min. size for procedure 1
SIZES DC F'4ððð' Min. size for procedure 2

DC F'16ððð' Size of area for maximum efficiency
ANSWADD DC F'ð' Address of allocated area

DC F'ð' Size of allocated area

Figure 11-1. Example of Using the GETMAIN Macro

The code shown in Figure 11-1 makes a conditional request for a single element of
storage with a length of 16,000 bytes. The return code in register 15 is tested to
determine if the storage is available; if the return code is 0 (the 16,000 bytes were
allocated), control is passed to the processing routine. If sufficient storage is not
available, an attempt to obtain more virtual storage is made by issuing a DELETE
macro to free the area occupied by the load module REENTMOD. A second
GETMAIN macro is issued, this time an unconditional request for an area between
4,000 and 16,000 bytes in length. If the minimum size is not available, the task is
abnormally terminated. If at least 4,000 bytes are available, the task can continue.
The size of the area actually allocated is determined, and one of the two
procedures (efficient or inefficient) is given control.

Note: If you issue GETMAIN for less than a single page and you then issue the
PGSER macro with the PROTECT option, the entire page is made
read-only, whether you have issued GETMAIN for it or not. IBM
recommends that you use PROTECT for full pages only. This usage
avoids making other areas of storage read-only unintentionally. If you
update the page using real addresses after the page has been protected,
the page must be fixed until it is unprotected; otherwise data might be lost.

Obtaining Storage Through the STORAGE Macro
There are several ways of requesting virtual storage through the STORAGE macro
with the OBTAIN parameter. In the most simple request, you issue the macro giving
the length of storage you want and accepting the defaults for the optional
parameters. This request is as follows:

STORAGE OBTAIN,LENGTH=length

When you issue this macro, the system uses certain defaults. The following list
summarizes the defaults for optional parameters and identifies the parameters that
override the system defaults.

� After STORAGE completes, you will find the address of the storage in register
1 (ADDR parameter).

11-4 OS/390 V2R8.0 MVS Assembler Services Guide

� The storage is located in subpool 0 (SP parameter).

� The storage is aligned on a doubleword boundary (BNDRY parameter).

� After the macro executes, you will find the return code in register 15 (RTCD
parameter).

� Whether the storage is located above or below 16 megabytes depends on the
location of the caller (LOC parameter). For example, if the caller is above 16
megabytes, the virtual storage and the real frames that back the virtual storage
will also be above 16 megabytes.

� The request for storage is unconditional (COND parameter). If the request is
unconditional and sufficient virtual storage is not available to fill the request, the
system abends the active task.

The SP, BNDRY, and COND parameters on STORAGE OBTAIN provide the same
function as the SP, BNDRY and COND parameters on GETMAIN.

To make a variable length request for storage , use the LENGTH=(maximum
length, minimum length) parameter. The maximum, which is limited by the REGION
parameter on the JOB or EXEC JCL statement, is the storage amount you would
prefer. The minimum is the smallest amount you can tolerate.

To specify where the virtual and central storage come from , use the LOC
parameter. You can specify that the storage be above or below 16 megabytes or in
the same location as the caller. You can request virtual storage at a specific
address by using EXPLICIT on the LOC parameter and specifying the address on
the INADDR parameter. The LOC parameter on STORAGE is similar to the LOC
parameter on GETMAIN with the RU and RC parameters that are described in
“Obtaining Storage Through the GETMAIN Macro” on page 11-2.

To request storage conditionally , use COND =YES. If the request is conditional
and insufficient virtual storage is available, the system returns a code of 4 in
register 15 or the location you specify on the RTCD parameter. If the system is
able to satisfy the request, it returns a code of 0.

The system returns the address of the storage in the location specified by the
ADDR parameter or, by default, to register 1.

The STORAGE macro is described in OS/390 MVS Programming: Assembler
Services Reference. The macro description includes several examples of how to
use the STORAGE macro.

Releasing Storage Through the FREEMAIN and STORAGE
Macros
You release virtual storage by issuing a FREEMAIN macro or a STORAGE macro
with the RELEASE parameter. Neither request releases the area from control of the
job step but does make the area available to satisfy the requirements of additional
requests for any task in the job step. The virtual storage assigned to a task is also
released when the task terminates, except as indicated under “Subpool Handling”
on page 11-6. Implicit releasing of virtual storage is described under “Freeing of
Virtual Storage” on page 11-13.

To release storage with the STORAGE macro, specify the amount, the address,
and the subpool (SP parameter). If you are releasing all of the storage in a

 Chapter 11. Virtual Storage Management 11-5

subpool, you can issue the SP parameter without specifying the length and the
address. Releasing all of the storage in a subpool is called a subpool release.

Note: FREEMAIN can free a page that has been protected through the PGSER
macro with the PROTECT option.

Using the CPOOL Macro
The cell pool macro (CPOOL) provides programs with another way of obtaining
virtual storage. This macro provides centralized, high-performance cell management
services.

What is a cell pool? A cell pool is a block of virtual storage that is divided into
smaller, fixed-size blocks of storage, called cells. You specify the size of the cells.
You then can request cells of storage from this cell pool as you need them. If the
request for cells exceeds the storage available in the cell pool, you can increase
the size of the cell pool.

The CPOOL macro allows you to:

� Create a cell pool (BUILD), where all cells have the size you specify

� Obtain a cell from a cell pool if storage is available (GET,COND)

� Obtain a cell from a cell pool and extend the cell pool if storage is not available
(GET,UNCOND)

� Return a cell to the cell pool (FREE)

� Free all storage for a cell pool (DELETE)

� Place the starting and ending addresses of the cell pool extents in a buffer
(LIST)

You can also create and manage cell pools by using callable cell pool services.
These services offer advantages over using CPOOL in some cases. Chapter 12,
Callable Cell Pool Services describes these services. “Comparison of CPOOL
Macro and Callable Cell Pool Services” on page 12-1 can help you decide whether
to use the callable cell pool services or the CPOOL macro.

 Subpool Handling
The system provides subpools of virtual storage to help you manage virtual storage
and communicate between tasks in the same job step. Because the use of
subpools requires some knowledge of how the system manages virtual storage, a
discussion of virtual storage control is presented here.

Virtual Storage Control: When the job step is given a region of virtual storage in
the private area of an address space, all of the storage area available for your use
within that region is unassigned. Subpools are created only when a GETMAIN,
STORAGE, or CPOOL macro is issued designating a subpool number (other than
0) not previously specified. If no subpool number is designated, the virtual storage
is allocated from subpool 0, which is created for the job step by the system when
the job-step task is initiated.

For purposes of control and virtual storage protection, the system considers all
virtual storage within the region in terms of 4096-byte blocks. These blocks are
assigned to a subpool, and space within the blocks is allocated to a task by the
system when requests for virtual storage are made. When there is sufficient

11-6 OS/390 V2R8.0 MVS Assembler Services Guide

unallocated virtual storage within any block assigned to the designated subpool to
fill a request, the virtual storage is allocated to the active task from that block. If
there is insufficient unallocated virtual storage within any block assigned to the
subpool, a new block (or blocks, depending on the size of the request) is assigned
to the subpool, and the storage is allocated to the active task. The blocks assigned
to a subpool are not necessarily contiguous unless they are assigned as a result of
one request. Only blocks within the region reserved for the associated job step can
be assigned to a subpool.

Figure 11-2 is a simplified view of a virtual storage region containing four 4096-byte
blocks of storage. All the requests are for virtual storage from subpool 0. The first
request from some task in the job step is for 1008 bytes; the request is satisfied
from the block shown as Block A in the figure. The second request, for 4000 bytes,
is too large to be satisfied from the unused portion of Block A, so the system
assigns the next available block, Block B, to subpool 0, and allocates 4000 bytes
from Block B to the active task. A third request is then received, this time for 2000
bytes. There is enough area in Block A (blocks are checked in the order first in, first
out), so an additional 2000 bytes are allocated to the task from Block A. All blocks
are searched for the closest fitting free area which will then be assigned. If the
request had been for 96 bytes or less, it would have been allocated from Block B.
Because all tasks may share subpool 0, Request 1 and Request 3 do not have to
be made from the same task, even though the areas are contiguous and from the
same 4096 byte block. Request 4, for 6000 bytes, requires that the system allocate
the area from 2 contiguous blocks which were previously unassigned, Block D and
Block C. These blocks are assigned to subpool 0.

As indicated in the preceding example, it is possible for one 4096-byte block in
subpool 0 to contain many small areas allocated to many different tasks in the job
step, and it is possible that numerous blocks could be split up in this manner. Areas
acquired by a task other than the job step task are not released automatically on
task termination. Even if FREEMAIN or STORAGE RELEASE macros were issued
for each of the small areas before a task terminated, the probable result would be
that many small unused areas would exist within each block while the control
program would be continually assigning new blocks to satisfy new requests. To
avoid this situation, you can define subpools for exclusive use by individual tasks.

Request 1
1008 bytes

Request 3
2000 bytes

Request 2
4000 bytes

Request 4
6000 bytes

Block A Block B Block C Block D

Figure 11-2. Virtual Storage Control

 Chapter 11. Virtual Storage Management 11-7

Any subpool can be used exclusively by a single task or shared by several tasks.
Each time that you create a task, you can specify which subpools are to be shared.
Unlike other subpools, subpool 0 is shared by a task and its subtask, unless you
specify otherwise. When subpool 0 is not shared, the system creates a new
subpool 0 for use by the subtask. As a result, both the task and its subtask can
request storage from subpool 0 but both will not receive storage from the same
4096-byte block. When the subtask terminates, its virtual storage areas in subpool
0 are released; since no other tasks share this subpool, complete 4096-byte blocks
are made available for reallocation.

Note: If the storage is shared, it is not released until the owning task terminates.

When there is a need to share subpool 0, you can define other subpools for
exclusive use by individual tasks. When you first request storage from a subpool
other than subpool 0, the system assigns new 4096-byte blocks to that subpool,
and allocates storage from that block. The task that is then active is assigned
ownership of the subpool and, therefore, of the block. When additional requests are
made by the same task for the same subpool, the requests are satisfied by
allocating areas from that block and as many additional blocks as are required. If
another task is active when a request is made with the same subpool number, the
system assigns a new block to a new subpool, allocates storage from the new
block, and assigns ownership of the new subpool to the second task.

FREEMAIN or STORAGE RELEASE macros can be issued to release any
complete subpool except subpool 0, thus releasing complete 4096-byte blocks.

Subpool Characteristics: Problem-state programs running under PSW key 8-15
can specify subpool numbers 0-127, 131, and 132. Subpools 0-127 are task
related, meaning that when a task terminates, the system automatically releases
any of the subpools from 0 through 127 that are unshared and are associated with
the task. Subpools 131 and 132 are job-step related; the system does not release
these subpools until the job-step task terminates, even if the task that created these
subpools has terminated. All the subpools are pageable, and all are fetch protected
except subpool 132.

Storage Keys for Subpools: The storage key for storage in subpools 0-127 is
from the TCB associated with the first GETMAIN, STORAGE OBTAIN, or CPOOL
BUILD request. All subsequent requests use this key, regardless of the key
currently in the TCB.

For subpools 131 and 132, the system assigns storage keys differently, depending
on which macros and parameters you use to allocate or free storage. The following
table shows how the storage keys are assigned for subpools 131 and 132:

11-8 OS/390 V2R8.0 MVS Assembler Services Guide

A program can issue a request to obtain or release storage from subpool 131 or
132 in a storage key that does not match the PSW key under which the program is
running. However, the system will accept the storage request only if the requesting
program is authorized to access the storage. To access storage in subpool 131 or
132, a problem-state program that is not APF-authorized and is running under PSW
key 8-15 must be able to switch its PSW key to match the storage key. Such a
program can switch its PSW key only if a supervisor-state program has previously
set up the PSW-key mask (PKM) to enable the PSW key switch. For STORAGE
RELEASE or FREEMAIN requests to release all the storage in subpool 131 or 132,
the requesting program must be able to switch its PSW key to match all the storage
keys that exist in the subpool. For information about the function and structure of
the PSW key-mask, and information about switching the PSW key, see Principles
of Operation.

Owning and Sharing Subpools: A subpool is initially owned by the task that was
active when the subpool was created. The subpool can be shared with other tasks,
and ownership of the subpool can be assigned to other tasks. The macros used to
handle subpools are STORAGE, GETMAIN, ATTACH and ATTACHX. In the
GETMAIN and STORAGE macros, you can specify the SP parameter to request
storage from subpools 0-127, 131, or 132. If you omit the SP parameter, the
system assumes subpool 0. The parameters that deal with subpools in the
ATTACH and ATTACHX macros are:

� GSPV and GSPL, which give ownership of one or more subpools (other than
subpool 0) to the task being created.

� SHSPV and SHSPL, which share ownership of one or more subpools (other
than subpool 0) with the new subtask.

� SZERO, which determines whether subpool 0 is shared with the subtask.

All of these parameters are optional. If they are omitted, no subpools are given to
the subtask, and only subpool 0 is shared.

Creating a Subpool: If the subpool specified does not exist for the active task, a
new subpool is created whenever SHSPV or SHSPL is coded on ATTACH or
ATTACHX, or when a GETMAIN or STORAGE macro is issued. A new subpool
zero is created for the subtask if SZERO=NO is specified on ATTACH or
ATTACHX. If one of the ATTACH or ATTACHX parameters that specifies shared
ownership of a subpool causes the subpool to be created, the subpool number is
entered in the list of subpools owned by the task, but no blocks are assigned and

Macros and Parameters Storage Key

� GETMAIN with LC, LU, VC, VU, EC, EU, or
R

� FREEMAIN with LC, LU, L, VC, VU, V, EC,
EU, E, or R

� STORAGE OBTAIN or RELEASE;
CALLRKY=YES is specified

The storage key equals the caller's PSW key.
(The KEY parameter is ignored.)

� GETMAIN with RC, RU, VRC, VRU

� FREEMAIN with RC, RU

 � CPOOL BUILD

The storage key is the key specified by caller
on the KEY parameter. If KEY is not specified,
the default equals the caller's PSW key.

� STORAGE OBTAIN or RELEASE;
CALLRKY=YES is omitted or
CALLRKY=NO is specified

The storage key is the key specified by the
caller on the KEY parameter. If KEY is not
specified, the default is storage key 0.

 Chapter 11. Virtual Storage Management 11-9

no storage is actually allocated. If a GETMAIN or STORAGE macro results in the
creation of a subpool, the subpool number is assigned to one or more 4096-byte
blocks, and the requested storage is allocated to the active task. In either case,
ownership of the subpool belongs to the active task; if the subpool is created
because of an ATTACH or ATTACHX macro, ownership is transferred or retained
depending on the parameter used.

Transferring Ownership: An owning task gives ownership of a subpool to a direct
subtask by using the GSPV or GSPL parameters on ATTACH or ATTACHX issued
when that subtask is created. Ownership of a subpool can be given to any subtask
of any task, regardless of the control level of the two tasks involved and regardless
of how ownership was obtained. A subpool cannot be shared with one or more
subtasks and then transferred to another subtask, however; an attempt to do this
results in abnormal termination of the active task. Ownership of a subpool can only
be transferred if the active task has sole ownership; if the active task is sharing a
subpool and an attempt is made to transfer it to a subtask, the subtask receives
shared control and the originating task relinquishes the subpool. Once ownership is
transferred to a subtask or relinquished, any subsequent use of that subpool
number by the originating task results in the creation of a new subpool. When a
task that has ownership of one or more subpools terminates, all of the virtual
storage areas in those subpools are released. Therefore, the task with ownership of
a subpool should not terminate until all tasks or subtasks sharing the subpool have
completed their use of the subpool.

If GSPV or GSPL specifies a subpool that does not exist for the active task, no
action is taken.

Sharing a Subpool: A task can share ownership of a subpool with a subtask that it
attaches. Subtasks cannot share ownership of a subpool with the task that caused
the attach. A program shares ownership by specifying the SHSPV or SHSPL
parameters on the ATTACH or ATTACHX macro issued when the subtask is
created. Any task with ownership or shared control of the subpool can add to or
reduce the size of the subpool through the use of the GETMAIN, FREEMAIN, or
STORAGE macros. When a task that has shared control of the subpool
terminates, the subpool is not affected.

Subpools in Task Communication: The advantage of subpools in virtual storage
management is that, by assigning separate subpools to separate subtasks, the
breakdown of virtual storage into small fragments is reduced. An additional benefit
from the use of subpools can be realized in task communication. A subpool can be
created for an originating task and all parameters to be passed to the subtask
placed in the subpool. When the subtask is created, the ownership of the subpool
can be passed to the subtask. After all parameters have been acquired by the
subtask, a FREEMAIN or STORAGE RELEASE macro can be issued, under
control of the subtask, to release the subpool virtual storage areas. In a similar
manner, a second subpool can be created for the originating task, to be used as an
answer area in the performance of the subtask. When the subtask is created, the
subpool ownership would be shared with the subtask. Before the subtask is
terminated, all parameters to be passed to the originating task are placed in the
subpool area; when the subtask is terminated, the subpool is not released, and the
originating task can acquire the parameters. After all parameters have been
acquired for the originating task, a FREEMAIN or STORAGE RELEASE macro
again makes the area available for reuse.

11-10 OS/390 V2R8.0 MVS Assembler Services Guide

Implicit Requests for Virtual Storage
You make an implicit request for virtual storage every time you issue LINK, LINKX,
LOAD, ATTACH, ATTACHX, XCTL or XCTLX. In addition, you make an implicit
request for virtual storage when you issue an OPEN macro for a data set. This
section discusses some of the techniques you can use to cut down on the amount
of central storage required by a job step, and the assistance given you by the
system.

Reenterable Load Modules
A reenterable load module does not modify itself. Only one copy of the load module
is loaded to satisfy the requirements of any number of tasks in a job step. This
means that even though there are several tasks in the job step and each task
concurrently uses the load module, the only central storage needed is an area large
enough to hold one copy of the load module (plus a few bytes for control blocks).
The same amount of central storage would be needed if the load module were
serially reusable; however, the load module could not be used by more than one
task at a time.

Note: If your module is reenterable or serially reusable, the load module must be
link edited, with the desired attribute, into a library. The default linkage
editor attributes are non-reenterable and non-reusable.

 Reenterable Macros
All of the macros described in this manual can be written in reenterable form.
These macros are classified as one of two types: macro that pass parameters in
registers 0 and 1, and macros that pass parameters in a list. The macros that pass
parameters in registers present no problem in a reenterable program; when the
macro is coded, the required parameter values should be contained in registers.
For example, the POST macro requires that the ECB address be coded as follows:

POST ecb address

One method of coding this in a reenterable program would be to require this
address to refer to a portion of storage that has been allocated to the active task
through the use of a GETMAIN macro. The address would change for each use of
the load module. Therefore, you would load one of the general registers 2-12 with
the address, and designate that register when you code the macro. If register 4
contains the ECB address, the POST macro is written as follows:

POST (4)

The macros that pass parameters in a list require the use of special forms of the
macro when used in a reenterable program. The macros that pass parameters in a
list are identified within their descriptions in OS/390 MVS Programming: Assembler
Services Reference. The expansion of the standard form of these macros results in
an in-line parameter list and executable instructions to branch around the list, to
save parameter values in the list, to load the address of the list, and to pass control
to the required system routine. The expansions of the list and execute forms of the
macro simply divide the functions provided in the standard form expansion: the list
form provides only the parameter list, and the execute form provides executable
instructions to modify the list and pass control. You provide the instructions to load
the address of the list into a register.

 Chapter 11. Virtual Storage Management 11-11

The list and execute forms of a macro are used in conjunction to provide the same
services available from the standard form of the macro. The advantages of using
list and execute forms are as follows:

� Any parameters that remain constant in every use of the macro can be coded
in the list form. These parameters can then be omitted in each of the execute
forms of the macro which use the list. This can save appreciable coding time
when you use a macro many times. (Any exceptions to this rule are listed in the
description of the execute form of the applicable macro.)

� The execute form of the macro can modify any of the parameters previously
designated. (Again, there are exceptions to this rule.)

� The list used by the execute form of the macro can be located in a portion of
virtual storage assigned to the task through the use of the GETMAIN macro.
This ensures that the program remains reenterable.

Figure 11-3 shows the use of the list and execute forms of a DEQ macro in a
reenterable program. The length of the list constructed by the list form of the macro
is obtained by subtracting two symbolic addresses; virtual storage is allocated and
the list is moved into the allocated area. The execute form of the DEQ macro does
not modify any of the parameters in the list form. The list had to be moved to
allocated storage because the system can store a return code in the list when
RET=HAVE is coded. Note that the coding in a routine labeled MOVERTN is valid
for lengths up to 256 bytes only. Some macros do produce lists greater than 256
bytes when many parameters are coded (for example, OPEN and CLOSE with
many data control blocks, or ENQ and DEQ with many resources), so in actual
practice a length check should be made. The move long instruction (MVCL) should
be considered for moving large data lists.

 .
 .

LA 3,MACNAME Load address of list form
LA 5,NSIADDR Load address of end of list
SR 5,3 Length to be moved in register 5
BAL 14,MOVERTN Go to routine to move list
DEQ ,MF=(E,(1)) Release allocated resource

 .
 .
\ The MOVERTN allocates storage from subpool ð and moves up to 256
\ bytes into the allocated area. Register 3 is from address,
\ register 5 is length. Area address returned in register 1.
MOVERTN GETMAIN R,LV=(5)

LR 4,1 Address of area in register 4
BCTR 5,ð Subtract 1 from area length
EX 5,MOVEINST Move list to allocated area

 BR 14 Return
MOVEINST MVC ð(ð,4),ð(3)
 .
 .
MACNAME DEQ (NAME1,NAME2,8,SYSTEM),RET=HAVE,MF=L
NSIADDR
NAME1 DC CL8'MAJOR'
NAME2 DC CL8'MINOR'

Figure 11-3. Using the List and the Execute Forms of the DEQ Macro

11-12 OS/390 V2R8.0 MVS Assembler Services Guide

Non-reenterable Load Modules
The use of reenterable load modules does not automatically conserve virtual
storage; in many applications it will actually prove wasteful. If a load module is not
used in many jobs and if it is not employed by more than one task in a job step,
there is no reason to make the load module reenterable. The allocation of virtual
storage for the purpose of moving coding from the load module to the allocated
area is a waste of both time and virtual storage when only one task requires the
use of the load module.

You do not need to make a load module reenterable or serially reusable if
reusability is not really important to the logic of your program. Of course, if
reusability is important, you can issue a LOAD macro to load a reusable module,
and later issue a DELETE macro to release its area.

Notes:

1. If your module is reenterable or serially reusable, the load module must be link
edited, with the desired attribute, into a library. The default linkage editor
attributes are non-reenterable and non-reusable.

2. A module that does not modify itself (a refreshable module) reduces paging
activity because it does not need to be paged out.

Freeing of Virtual Storage
The system establishes two responsibility counts for every load module brought into
virtual storage in response to your requests for that load module. The responsibility
counts are lowered as follows:

� If the load module was requested in a LOAD macro, that responsibility count is
lowered when using a DELETE macro.

� If the load module was requested on LINK, LINKX, ATTACH, ATTACHX, XCTL,
or XCTLX, that responsibility count is lowered when using XCTL or XCTLX or
by returning control to the system.

� When a task is terminated, the responsibility counts are lowered by the number
of requests for the load module made by LINK, LINKX, LOAD, ATTACH,
ATTACHX, XCTL, or XCTLX during the performance of that task, minus the
number of deletions indicated above.

The virtual storage area occupied by a load module is released when the
responsibility counts reach zero. When you plan your program, you can design the
load modules to give you the best trade-off between execution time and efficient
paging. If you use a load module many times in the course of a job step, issue a
LOAD macro to bring it into virtual storage; do not issue a DELETE macro until the
load module is no longer needed. Conversely, if a load module is used only once
during the job step, or if its uses are widely separated, issue LINK or LINKX to
obtain the module and issue an XCTL or XCTLX from the module (or return control
to the system) after it has been executed.

There is a minor problem involved in the deletion of load modules containing data
control blocks (DCBs). An OPEN macro instruction must be issued before the DCB
is used, and a CLOSE macro issued when it is no longer needed. If you do not
issue a CLOSE macro for the DCB, the system issues one for you when the task is
terminated. However, if the load module containing the DCB has been removed
from virtual storage, the attempt to issue the CLOSE macro causes abnormal

 Chapter 11. Virtual Storage Management 11-13

termination of the task. You must either issue the CLOSE macro yourself before
deleting the load module, or ensure that the data control block is still in virtual
storage when the task is terminated (possibly by issuing a GETMAIN and creating
the DCB in the area that had been allocated by the GETMAIN).

11-14 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 12. Callable Cell Pool Services

Callable cell pool services manage areas of virtual storage in the primary address
space, in data spaces and in address spaces other than the primary address
space. A cell pool is an area of virtual storage that is subdivided into fixed-sized
areas of storage called cells , where the cells are the size you specify. A cell pool
contains:

 � An anchor
� At least one extent
� Any number of cells, all having the same size.

The anchor is the starting point or foundation on which you build a cell pool. Each
cell pool has only one anchor. An extent contains information that helps callable
cell pool services manage cells and provides information you might request about
the cell pool. A cell pool can have up to 65,536 extents, each responsible for its
own cell storage. Your program determines the size of the cells and the cell
storage. Figure 12-1 on page 12-3 illustrates the three parts of a cell pool.

Through callable cell pool services, you build the cell pool. You can then obtain
cells from the pool. When there are no more cells available in a pool, you can use
callable cell pool services to enlarge the pool.

To use callable cell pool services, your program issues the CALL macro to invoke
one of the following services:

� Build a cell pool and initialize an anchor (CSRPBLD service)
� Expand a cell pool by adding an extent (CSRPEXP service)
� Connect cell storage to an extent (CSRPCON service)
� Activate previously connected storage (CSRPACT service)
� Deactivate an extent (CSRPDAC service)
� Disconnect the cell storage for an extent (CSRPDIS service)
� Allocate a cell from a cell pool (CSRPGET/CSRPGT1 and

CSRPRGT/CSRPRGT1 services)
� Return a cell to the cell pool (CSRPFRE/CSRPFR1 and CSRPRFR/CSRPRFR1

services)
� Query the cell pool (CSRPQPL service)
� Query a cell pool extent (CSRPQEX service)
� Query a cell (CSRPQCL service).

Comparison of CPOOL Macro and Callable Cell Pool Services
Callable cell pool services are similar to the CPOOL macro, but with some
additional capabilities. A program executing in any state or mode (disabled, locked,
AR mode, SRB mode, etc.) can use the services to manage storage in data spaces
as well as address spaces. The services allow you to define cell boundaries and to
expand and contract cell pools. Another difference is in how CPOOL and the
callable cell pool services handle the requests to free cells. CPOOL corrupts
storage if you try to free a cell that has not been obtained (through CPOOL GET),
or if you try to free a cell for a second time. Callable cell pool services accept the
request, but do no processing except to return a code to your program.

 Copyright IBM Corp. 1988, 1999 12-1

The following table describes other differences; it can help you decide between the
two ways to manage cell pools.

In some ways, callable cell pool services require more work from the caller than
CPOOL does. For example, the services require the following actions that the
CPOOL macro does not require:

� Use the GETMAIN, STORAGE OBTAIN, or DSPSERV macro to obtain the
storage area for the cell pool.

� Provide the beginning addresses of the anchor, the extents, and cell storage
areas.

� Provide the size of each extent and the cell storage that the extent is
responsible for.

If your program: Use:

Is in AR mode Cell pool services. (CPOOL has mode
restrictions.)

Needs to reduce the size of a cell pool Cell pool services. (CPOOL supports
expansion but not contraction.)

Needs data space storage Cell pool services. (CPOOL supports only
the primary address space.)

Needs storage in an address space other
than the primary

Cell pool services. (CPOOL supports only
primary address space storage.)

Must define cell boundaries Cell pool services. (CPOOL supports only
8-byte boundaries.)

Requires high performance on GETs and
FREEs

CPOOL.

 Storage Considerations
The virtual storage for the cell pool must reside in an address space or a data
space.

� The anchor and extents must reside within the same address space or data
space.

� The cells must reside within one address space or data space; that space can
be different from the one that contains the anchor and extents.

Figure 12-1 on page 12-3 illustrates the anchor and extents in Data/Address
Space A and the cell storage in Data/Address Space B.

Before you can obtain the first cell from a cell pool, you must plan the location of
the anchor, the extents, and the cell storage. You must obtain the storage for the
following areas and pass the following addresses to the services:

� The anchor, which requires 64 bytes of storage

� The extent, which requires 128 bytes plus one byte for every eight cells of cell
storage

� The cell storage.

12-2 OS/390 V2R8.0 MVS Assembler Services Guide

Extent
1

Extent
2

Extent
3

Extent
4

Anchor

Data/Address
Space A

Data/Address
Space B

Cell
Storage

Cell
Storage

Cell
Storage

Cell
Storage

Figure 12-1. Cell Pool Storage

When you plan the size of the cell storage, consider the total requirements of your
application for this storage and some performance factors. Although a single extent
may contain any number of cells (up to 2òô bytes, or 16,777,216), you might wish
to have multiple extents for performance purposes. Avoid having a large number of
extents, where each extent is responsible for a small number of cells. In general, a
greater requirement for cells should mean a proportionately smaller number of
extents. The following two examples illustrate this point.

If you have 10,000 cells in the pool, a good extent size is 2,500 cells per
extent.

If you have 100,000 cells in the pool, a good extent size is 10,000 cells per
extent.

“Using Callable Cell Pool Services to Manage Data Space Areas” on page 15-17
contains an example of using callable cell pool services with data spaces. It also
describes some storage considerations.

 Chapter 12. Callable Cell Pool Services 12-3

Link-editing Callable Cell Pool Services
Any program that invokes callable cell pool services must be link-edited with an
IBM-provided linkage-assist routine. The linkage-assist routine provides the logic
needed to locate and invoke the callable services. The linkage-assist routine
resides in SYS1.CSSLIB. The following example shows the JCL needed to link-edit
a program with the linkage-assist routine.

//LINKJOB JOB 'accountinfo','name',CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4ð96K
//LINKSTP1 EXEC PGM=HEWL,PARM='LIST,LET,XREF,REFR,RENT,NCAL,
// SIZE=(18ððK,128K)'
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSNAME=userid.LOADLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD \
 INCLUDE OBJDD1(userpgm)
 INCLUDE OBJDD2(CSRCPOOL)
 NAME userpgm(R)
//OBJDD1 DD DSN=userid.OBJLIB,DISP=SHR
//OBJDD2 DD DSN=SYS1.CSSLIB,DISP=SHR

The example JCL assumes that the program you are link-editing is reentrant.

Using Callable Cell Pool Services
The following topics describe how you can use callable cell pool services to control
storage and request information about the cell pools. The discussion of creating a
cell pool and adding an extent assumes that you have already obtained the storage
for these areas.

To create a cell pool , call the CSRPBLD service. This service initializes the
anchor for the cell pool, assigns the name of the pool, and establishes the size of
the cells.

To add an extent and connect it to the cell storage , call the CSRPEXP service.
You need at least one extent in a cell pool. Each extent is responsible for one cell
storage area. You can add an extent to increase the numbers of cells; the
maximum number of extents in a cell pool is 65,536. The CSRPEXP service
initializes an extent for the cell pool, connects the cell storage area to the extent,
and activates the cell storage for the extent.

Having activated the cell storage for an extent, you can now process GET requests
from the cells that the extent represents.

To contract a cell pool, deactivate its extents, and disconnect its storage , use
the CSRPDAC and CSRPDIS services. CSRPDAC deactivates an extent and
prevents the processing of any further GET requests from the storage that the
extent represents. Cell FREE requests are unaffected. (You can use the CSRPACT
service to reactivate an inactive extent; reactivating undoes the effect of using
CSRPDAC.)

CSRPDIS disconnects the cell storage from an extent and makes cell storage
unavailable. After you disconnect an extent, you can free the cell storage

12-4 OS/390 V2R8.0 MVS Assembler Services Guide

associated with the extent. Do not free the extent itself until you have finished using
the entire pool.

To reuse a deactivated, disconnected extent , call the CSRPCON and CSRPACT
services, not CSRPEXP. This is generally the only time you will need to use these
two services. CSRPCON reconnects an extent to cell pool storage that you have
not explicitly freed or that connects the extent to cells in newly-obtained storage. If
you reconnect the extent to new cell storage, be sure that the extent is large
enough to support the size of the cell storage. (CSRPCON undoes the effects of
using CSRPDIS.) CSRPACT activates the cell storage for the extent. You can now
issue GET requests for the cells.

To allocate (that is, obtain) cells and deallocate (that is, free) previously
allocated cells , you have a choice of two forms of the same services. One service
form supports the standard CALL interface. The other supports a register interface
and is appropriate for programs that cannot obtain storage for a parameter list. The
two service functions are identical; however, the calling interface is different.

The CSRPGET (standard CALL interface) and CSRPRGT (register interface)
services allocate a cell from the cell pool. You can allocate cells only from extents
that have not been deactivated. Such an extent is called an active extent . The
services return to the caller the address of the allocated cell. The CSRPGT1
(standard CALL interface) and CSRPRGT1 (register interface) services provide the
same function with slightly improved performance.

The CSRPFRE (standard CALL interface) and CSRPRFR (register interface)
services return a previously allocated cell to a cell pool. They return a code to the
caller if they cannot find the cell associated with an extent. If you free the last
allocated cell in an inactive extent, you will receive a unique code. You may use
this information to initiate cell pool contraction. The CSRPFR1 (standard CALL
interface) and CSRPRFR1 (register interface) services provide the same function
with slightly improved performance.

To obtain status about a cell pool , use one of three services. These services do
not prevent the cell pool from changing during a status query. They return status as
it is at the time you issue the CALL.

The CSRPQPL service returns information about the entire cell pool. It returns the
following:

 � Pool name
 � Cell size
� Total number of cells in active extents
� Total number of available cells associated with active extents
� Number of extents in the cell pool.

The CSRPQEX service returns information about a specific extent. It returns the
following:

� Address and length of the extent
� Address and length of the cell storage area
� Total number of cells associated with the extent
� Number of available cells associated with the extent.

The CSRPQCL service returns information about a cell. It returns the following:

 Chapter 12. Callable Cell Pool Services 12-5

� Number of the extent that represents the cell
� Cell allocation status.

Handling Return Codes
Each time you call a service, you receive a return code. The return code indicates
whether the service completed successfully, encountered an unusual condition, or
was unable to complete successfully.

Standard CALL interface services pass return codes in both the parameter list and
register 15.

When you receive a return code that indicates a problem or an unusual condition,
your program can either attempt to correct the problem, or can terminate its
processing.

Callable Cell Pool Services Coding Example
The code in this example invokes callable cell pool services. The anchor, the one
extent, and the cell storage are all in a data space. The caller obtains a cell from
the cell storage area and requests information about the pool, the extent, and the
cell. Use the example to supplement and reinforce information that is presented
elsewhere in this chapter.

CSRCPASM INVOKE CELL POOL SERVICES ASSEMBLER DECLARES
SAC 512 SET AR ASC MODE

 SYSSTATE ASCENV=AR
\
\ Establish addressability to code. \
\
 LAE AR12,ð
 BASR R12,ð
 USING \,R12
\
\ Get data space for the cell pool. \
\
GETDSP DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
\
\ Add the data space to caller's access list. \
\
GETALET ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT

L 2,DSPCORG ORIGIN OF SPACE IN GR2
ST 2,DSPCMARK DSPCMARK IS MARK FOR DATA SPACE

\
\ Copy ALET to ANCHALET for calls to cell pool services. \
\
 MVC ANCHALET(4),DSPCALET
\
\ Set address and size of the anchor
\
 L R4,DSPCMARK
 ST R4,ANCHADDR
 A R4,ANCHSIZE
 ST R4,DSPCMARK
\

12-6 OS/390 V2R8.0 MVS Assembler Services Guide

\ Call the build service. \
\
 CALL CSRPBLD,(ANCHALET,ANCHADDR,USERNAME,CELLSIZE,RTNCODE)
\
\ Set address and size of the extent and connect extent to cells \
\
 L R4,DSPCMARK RESERVES
 ST R4,XTNTADDR

A R4,XTNTSIZE SETS SIZE OF EXTENT
 ST R4,CELLSTAD

A R4,CELLSTLN SETS SIZE OF CELL STORAGE
 ST R4,DSPCMARK DATA
 CALL CSRPEXP,(ANCHALET,ANCHADDR,XTNTADDR,XTNTSIZE, X
 CELLSTAD,CELLSTLN,EXTENT,RTNCODE)
\
\ Get a cell. CELLADDR receives the address of the cell. \
\
 CALL CSRPGET,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
\
\ The program uses the cells.
\
\ Query the pool, the extent, and the cell. \
\
 CALL CSRPQPL,(ANCHALET,ANCHADDR,QNAME,QCELLSZ,QTOT_CELLS, X
 QAVAIL_CELLS,QNUMEXT,QRTNCODE)
 CALL CSRPQEX,(ANCHALET,ANCHADDR,EXTENT,QEXSTAT,QXTNT_ADDR, X
 QXTNT_LEN,QCELL_ADDR,QCELL_LEN,QTOT_CELLS, X
 QAVAIL_CELLS,QRTNCODE)
 CALL CSRPQCL,(ANCHALET,ANCHADDR,CELLADDR,QCLAVL,QCLEXT, X
 QRTNCODE)
\
\ Free the cell. \
\
 CALL CSRPFRE,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
\
\ Deactivate the extent. \
\
 CALL CSRPDAC,(ANCHALET,ANCHADDR,EXTENT,RTNCODE)
\
\ Disconnect the extent. \
\
 CALL CSRPDIS,(ANCHALET,ANCHADDR,EXTENT,QCELL_ADDR,QCELL_LEN, X
 QRTNCODE)
\
\ Remove the data space from the access list. \
\
 ALESERV DELETE,ALET=DSPCALET
\
\ Delete the data space. \
\
 DSPSERV DELETE,STOKEN=DSPCSTKN
\
\ Return to caller.
\
 BR 14

 Chapter 12. Callable Cell Pool Services 12-7

\\\
\ Constants and data areas used by cell pool services \
\\\
\
CELLS_PER_EXTENT EQU 512
EXTENTS_PER_POOL EQU 1ð
CELLSIZE_EQU EQU 256
CELLS_PER_POOL EQU CELLS_PER_EXTENT\EXTENTS_PER_POOL
XTNTSIZE_EQU EQU 128+(((CELLS_PER_EXTENT+63)/64)\8)
STORSIZE_EQU EQU CELLS_PER_EXTENT\CELLSIZE_EQU
CELLS_IN_POOL DC A(CELLS_PER_POOL)
ANCHALET DS F
ANCHADDR DS F
CELLSIZE DC A(CELLSIZE_EQU)
USERNAME DC CL8'MYCELLPL'
ANCHSIZE DC F'64'
XTNTSIZE DC A(XTNTSIZE_EQU)
XTNTADDR DS F
CELLSTAD DS F
CELLSTLN DC A(STORSIZE_EQU)
CELLADDR DS F
EXTENT DS F
STATUS DS F
RTNCODE DS F
\
\\\
\ Constant data and areas for data space \
\\\
\
 DS ðD
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU STORSIZE_EQA\EXTENTS_PER_POOL 1.28MEG DATA SPACE
DSPBLCKS DC A((DSPCSIZE+4ð95)/4ð96) BLOCKS FOR 1ðK DATA SPACE
DSPCALET DS F
DSPCMARK DS F HIGH WATER MARK FOR DATA SPACE
DSPCNAME DC CL8'DATASPC1' DATA SPACE NAME
\

12-8 OS/390 V2R8.0 MVS Assembler Services Guide

\\\
\ Values returned by queries \
\\\
\
QNAME DS CL8
QCELLSZ DS F
QNUMEXT DS F
QEXTNUM DS F
QEXSTAT DS F
QXTNT_ADDR DS F
QXTNT_LEN DS F
QCELL_ADDR DS F
QCELL_LEN DS F
QTOT_CELLS DS F
QAVAIL_CELLS DS F
QRTNCODE DS F
RC DS F
QCLADDR DS F
QCLEXT DS F
QCLAVL DS F

 Chapter 12. Callable Cell Pool Services 12-9

12-10 OS/390 V2R8.0 MVS Assembler Services Guide

 Chapter 13. Data-in-Virtual

Data-in-virtual simplifies the writing of applications that use large amounts of data
from permanent storage. Applications can create, read, and update data without the
I/O buffer, blocksize, and record considerations that the traditional GET and PUT
types of access methods require.

By using the services of data-in-virtual, certain applications that access large
amounts of data can potentially improve their performance and their use of system
resources. Such applications have an accessing pattern that is non-sequential and
unpredictable. This kind of pattern is a function of conditions and values that are
revealed only in the course of the processing. In these applications, the sequential
record subdivisions of conventional access methods are meaningless to the central
processing algorithm. It is difficult to adapt this class of applications to conventional
record management programming techniques, which require all permanent storage
access to be fundamentally record-oriented. Through the DIV macro, data-in-virtual
provides a way for these applications to manipulate the data without the constraints
of record-oriented processing.

An application written for data-in-virtual views its permanent storage data as a
seamless body of data without internal record boundaries. By using the
data-in-virtual MAP service, the application can make any portion of the object
appear in virtual storage in an area called a virtual storage window . The window
can exist in an address space, a data space, or a shared or non-shared standard
hiperspace. (See “Example of Mapping a Data-in-Virtual Object to a Data Space”
on page 15-22 and “Using Data-in-Virtual with Hiperspaces” on page 15-37 for
more information.) When the window is in a data space, the application can
reference and update the data in the window by using assembler instructions.
When the window is in a hiperspace, the application uses the HSPSERV macro to
reference and update the data. To copy the updates to the object, the application
uses the data-in-virtual SAVE service.

An application written for data-in-virtual might also benefit by using the IARVSERV
macro to share virtual storage, when that storage is in an address space or data
space. For information about sharing data in virtual storage through IARVSERV,
particularly the restrictions for using the data-in-virtual MAP and UNMAP services,
see Chapter 19, “Sharing Data in Virtual Storage (IARVSERV Macro)” on
page 19-1.

The data-in-virtual services process the application data in 4096-byte (4K-byte)
units on 4K-byte boundaries called blocks. The application data resides in what is
called a data-in-virtual object, a data object, or simply an object . The
data-in-virtual object is a continuous string of uninterrupted data. The data object
can be either a VSAM linear data set or a non-shared standard hiperspace.
Choosing a linear data set as an object or a non-shared standard hiperspace as an
object depends on your application. If your application requires the object to retain
data, choose a linear data set, which provides permanent storage on DASD. A
hiperspace object provides temporary storage.

 Copyright IBM Corp. 1988, 1999 13-1

When to Use Data-in-Virtual
When an application reads more input and writes more output data than necessary,
the unnecessary reads and writes impact performance. You can expect improved
performance from data-in-virtual because it reduces the amount of unnecessary I/O.

As an example of unnecessary I/O, consider the I/O performed by an interactive
application that requires immediate access to several large data sets. The program
knows that some of the data, although not all of it, will be accessed. However, the
program does not know ahead of time which data will be accessed. A possible
strategy for gaining immediate access to all the data is to read all the data ahead of
time, reading each data set in its entirety insofar as this is possible. Once read into
processor storage, the data can be accessed quickly. However, if only a small
percentage of the data is likely to be accessed during any given period, the I/O
performed on the unaccessed data is unnecessary.

Furthermore, if the application changes some data in main storage, it might not
keep track of the changes. Therefore, to guarantee that all the changes are
captured, the application must then write entire data sets back onto permanent
storage even though only relatively few bytes are changed in the data sets.

Whenever such an application starts up, terminates, or accesses different data sets
in an alternating manner, time is spent reading data that is not likely to be
accessed. This time is essentially wasted, and the amount of it is proportional to
the amount of unchanged data for which I/O is performed. Such applications are
suitable candidates for a data-in-virtual implementation.

Factors Affecting Performance
When you write applications using the techniques of data-in-virtual, the I/O takes
place only for the data referenced and saved. If you run an application using
conventional access methods, and then run it a second time using data-in-virtual
techniques, you will notice a difference in performance. This difference depends on
two factors: the size of the data set and its access pattern (or reference pattern).
Size refers to the magnitude of the data sets that the application must process. The
access pattern refers to how the application references the data.

In order to improve performance by using the data-in-virtual application, your data
sets must be large and the pattern must be scattered throughout the data set.

Engineering and scientific applications often use data access patterns that are
suitable for data-in-virtual. Among the applications that can be considered for a
data-in-virtual implementation are:

� Applications that process large arrays
� VSAM relative record applications
� BDAM fixed length record applications

Commercial applications sometimes use data access patterns that are not suitable
because they are predictable and sequential. If the access pattern of a proposed
application is fundamentally sequential or if the data set is small, a conventional
VSAM (or other sequential access method) implementation may perform better than
a data-in-virtual implementation. However, this does not rule out commercial
applications as data-in-virtual candidates. If the performance factors are favorable,

13-2 OS/390 V2R8.0 MVS Assembler Services Guide

any type of application, commercial or scientific, is suitable for a data-in-virtual
implementation.

Before you can use the DIV macro to process a linear data set object or a
hiperspace object, you must create either the data set or the hiperspace.
Chapter 15, “Data Spaces and Hiperspaces” on page 15-1 explains how to create
a hiperspace. The following section explains how to create a linear data set.

Creating a Linear Data Set
To create the data set, you need to specify the DEFINE CLUSTER function of
IDCAMS with the LINEAR parameter. When you code the SHAREOPTIONS
parameter for DEFINE CLUSTER, the cross-system value must be 3; that is, you
may code SHAREOPTIONS as (1,3), (2,3), (3,3), or (4,3). Normally, you should use
SHAREOPTIONS (1,3).

When creating a linear data set for DIV, you can use the LOCVIEW parameter of
the DIV macro in conjunction with the other SHAREOPTIONS. LOCVIEW is
described on page 13-9. For a complete explanation of SHAREOPTIONS, see
DFSMS/MVS Using Data Sets.

The following is a sample job that invokes Access Method Services (IDCAMS) to
create the linear data set named DIV.SAMPLE on the volume called DIVPAK.
When IDCAMS creates the data set, it creates it as an empty data set. Note that
there is no RECORDS parameter; linear data sets do not have records.

//JNAME JOB 'ALLOCATE LINEAR',MSGLEVEL=(1,1),
// CLASS=R,MSGCLASS=D,USER=JOHNDOE
//\
//\ ALLOCATE A VSAM LINEAR DATASET
//\
//CLUSTPG EXEC PGM=IDCAMS,REGION=4ð96K
//SYSPRINT DD SYSOUT=\
//DIVPAK DD UNIT=338ð,VOL=SER=DIVPAK,DISP=OLD
//SYSIN DD \

DEFINE CLUSTER (NAME(DIV.SAMPLE) -
 VOLUMES(DIVPAK) -
 TRACKS(1,1) -
 SHAREOPTIONS(1,3) -
 LINEAR)
/\

For further information on creating linear VSAM data sets and altering
entry-sequenced VSAM data sets, see DFSMS/MVS Access Method Services for
ICF or DFSMS/MVS Summary of Access Method Services for ICF.

 Chapter 13. Data-in-Virtual 13-3

Using the Services of Data-in-Virtual
Each invocation of the DIV macro requests any one of the services provided by
data-in-virtual:

 � IDENTIFY
 � ACCESS
 � MAP
 � SAVE
 � SAVELIST
 � RESET
 � UNMAP
 � UNACCESS
 � UNIDENTIFY

 Identify
An application must use IDENTIFY to tell the system which data-in-virtual object it
wants to process. IDENTIFY generates a unique ID, or token, that uniquely
represents an application's request to use the given data object. The system
returns this ID to the application. When the application requests other kinds of
services with the DIV macro, the application supplies this ID to the system as an
input parameter. Specify DDNAME for a linear data set object and STOKEN for a
hiperspace object.

 Access
To gain the right to view or update the object, an application must use the ACCESS
service. You normally invoke ACCESS after you invoke IDENTIFY and before you
invoke MAP. ACCESS is similar to the OPEN macro of VSAM. It has a mode
parameter of READ or UPDATE, and it gives your application the right to read or
update the object.

If the object is a data set and if the SHAREOPTIONS parameter used to allocate
the linear data set implies serialization, the system automatically serializes your
access to the object. If access is not automatically serialized, you can serialize
access to the object by using the ENQ, DEQ, and the RESERVE macros. If you do
not serialize access to the object, you should consider using the LOCVIEW
parameter to protect your window data against the unexpected changes that can
occur when access to the object is not serialized. LOCVIEW is described on page
13-9.

If the object is a hiperspace, DIV ensures that only one program can write to the
object and that multiple users can only read the object. Only the task that owns the
corresponding ID can issue ACCESS.

 Map
The data object is stored in units of 4096-byte blocks. An application uses the MAP
service to specify the part of the object that is to be processed in virtual storage. It
can specify the entire object (all of the blocks), or a part of the object (any
continuous range of blocks). Because parts of the same object can be viewed
simultaneously through several different windows, the application can set up
separate windows on the same object. However, a specific page of virtual storage
cannot be in more than one window at a time.

13-4 OS/390 V2R8.0 MVS Assembler Services Guide

After ACCESS, the application obtains a virtual storage area large enough to
contain the window. The size of the object, which ACCESS optionally returns, can
determine how much virtual storage you need to request. After requesting virtual
storage, the application invokes MAP. MAP establishes a one to one
correspondence between blocks in the object and pages in virtual storage. A
continuous range of pages corresponds to a continuous range of blocks. This
correspondence is called a virtual storage window , or a window .

After MAP, the application can look into the virtual storage area that the window
contains. When it looks into this virtual storage area, it sees the same data that is
in the object. When the application references this virtual storage area, it is
referencing the data from the object. To reference the area in the window, the
application simply uses any conventional processor instructions that access
storage.

Although the object data becomes available in the window when the application
invokes MAP, no actual movement of data from the object into the window occurs
at that time. Actual movement of data from the object to the window occurs only
when the application refers to data in the window. When the application references
a page in the window for the first time, a page fault occurs. When the page fault
occurs, the system reads the permanent storage block into central storage.

When the system brings data into central storage, the data movement involves only
the precise block that the application references. The system updates the contents
of the corresponding page in the window with the contents of the linear data set
object. Thus, the system brings in only the blocks that an application references
into central storage. The sole exception to the system bringing in only the
referenced blocks occurs when the application specifies LOCVIEW=MAP with the
ACCESS service for a data set object.

Notes:

1. If the application specifies LOCVIEW=MAP with ACCESS, the entire window is
immediately filled with object data when the application invokes MAP.

2. If, when an application invokes MAP, it would rather keep in the window the
data that existed before the window was established (instead of having the
object data appear in the window), it can specify RETAIN=YES. Specifying
RETAIN=YES is useful when creating an object or overlaying the contents of
an object.

3. An important concept for data-in-virtual is the concept of freshly obtained
storage. When virtual storage has been obtained and not subsequently
modified, the storage is considered to be freshly-obtained . The storage is also
in this state when it has been obtained as a data space by using a DSPSERV
CREATE and not subsequently modified. After a DSPSERV RELEASE, the
storage is still considered freshly obtained until it has been modified. When
referring to this storage or any of its included pages, this book uses “freshly
obtained storage” and “freshly obtained pages”. If a program stores into a
freshly obtained page, only that page loses its freshly obtained-status, while
other pages still retain it.

4. You can map virtual storage pages that are protected only when you specify
RETAIN=YES. When the system establishes the virtual window, you can use
the PGSER PROTECT macro to protect the data in the window. However, you

 Chapter 13. Data-in-Virtual 13-5

must ensure that the data in the window is not protected when you issue the
RESET form of the DIV macro.

Save, Savelist, and Reset
After using the MAP service, the application can access the data inside the window
directly through normal programming techniques. When the application changes
some data in the window, however, the data on the object does not consequently
change. If the application wants the data changes in the window to appear in the
object, it must use the SAVE service. SAVE writes all changed blocks within the
range to be saved inside the window to the object. It does not write unchanged
blocks. When SAVE completes, the object contains any changes that the
application made inside the virtual storage window. If a SAVE is preceded by
another SAVE, the second SAVE will pick up only the changes that occurred since
the previous SAVE.

Optionally, SAVE accepts a user list as input. To provide a user list, the application
uses the SAVELIST service. SAVELIST returns the addresses of the first and last
changed pages in each range of changed pages within the window. The application
can then use these addresses as the user list for SAVE. The SAVE operation can
be more efficient when using the list of addresses, so an application can improve
its performance by using SAVELIST and then SAVE.

When specifying a user list and when a data space or hiperspace contains the
window, the caller must use an STOKEN with SAVE to identify the data space or
hiperspace.

If the application changes some data in a virtual storage window but then decides
not to keep those changes, it can use the RESET service to reload the window with
data from the object. RESET reloads only the blocks that have been changed
unless you specify or have specified RELEASE=YES.

 Unmap
When the application is finished processing the part of the object that is in the
window, it eliminates the window by using UNMAP. To process a different part of
the object, one not already mapped, the application can use the MAP service
again. The SAVE, RESET, MAP, and UNMAP services can be invoked repeatedly
as required by the processing requirements of the application.

If you issued multiple MAPs to different STOKENs, use STOKEN with UNMAP to
identify the data space or hiperspace you want to unmap.

Note: If you do not want to retain the data in the virtual window, use the PGSER
UNPROTECT macro to “unprotect” any protected pages in the window,
before you use the UNMAP service.

If you issue UNMAP with RETAIN=NO and there are protected pages in the
virtual storage window, the system loses the data in the protected pages
and preserves the protection status. If you try to reference the protected
pages, the system issues abend X'028'. To access the protected pages
again, remove the protection status. Then issue the PGSER RELEASE or
DSPSERV RELEASE macro to release all physical paging resources.

13-6 OS/390 V2R8.0 MVS Assembler Services Guide

 Unaccess
If the application has temporarily finished processing the object but still has other
processing to perform, it uses UNACCESS to relinquish access to the object. Then
other programs can access the object. If the application needs to access the same
object again, it can regain access to the object by using the ACCESS service again
without having to use the IDENTIFY service again.

 Unidentify
UNIDENTIFY ends the use of a data-in-virtual object under a previously assigned
ID that the IDENTIFY service returned.

The IDENTIFY Service
Your program uses IDENTIFY to select the data-in-virtual object that you want to
process. IDENTIFY has four parameters: ID, TYPE, DDNAME, and STOKEN.

The following examples show two ways to code the IDENTIFY service.

Hiperspace object:

 DIV IDENTIFY,ID=DIVOBJID,TYPE=HS,STOKEN=HSSTOK

Data set object:

 DIV IDENTIFY,ID=DIVOBJID,TYPE=DA,DDNAME=DDAREA

ID: The ID parameter specifies the address where the IDENTIFY service returns a
unique eight-byte name that connects a particular user with a particular object. This
name is an output value from IDENTIFY, and it is also a required input value to all
other services.

Simultaneous requests for different processing activities against the same
data-in-virtual object can originate from different tasks or from different routines
within the same task or the same routine. Each task or routine requesting
processing activity against the object must first invoke the identify service. To
correlate the various DIV macro invocations and processing activities, the eight-byte
IDs generated by IDENTIFY are sufficiently unique to reflect the individuality of the
IDENTIFY request, yet they all reflect the same data-in-virtual object.

TYPE: The TYPE parameter indicates the type of data-in-virtual object, either a
linear data set (TYPE=DA) or a hiperspace (TYPE=HS).

DDNAME: When you specify TYPE=DA for a data set object, you must specify
DDNAME to identify your data-in-virtual object. If you specify TYPE=HS with
IDENTIFY, do not specify DDNAME. (Specify STOKEN instead.)

STOKEN: When you specify TYPE=HS for a hiperspace object, you must specify
STOKEN to identify that hiperspace. The STOKEN must be addressable in your
primary address space. The hiperspace must be a non-shared standard hiperspace
and must be owned by the task issuing the IDENTIFY. The system does not verify
the STOKEN until your application uses the associated ID to access the object.

 Chapter 13. Data-in-Virtual 13-7

The ACCESS Service
Your program uses the ACCESS service to request permission to read or update
the object. ACCESS has two required parameters: ID and MODE, and two optional
parameters: SIZE and LOCVIEW.

The following example shows one way to code the ACCESS service.

 DIV ACCESS,ID=DIVOBJID,MODE=UPDATE,SIZE=OBJSIZE

ID: When you issue a DIV macro that requests the ACCESS service, you must also
specify, on the ID parameter, the identifier that the IDENTIFY service returned. The
ID parameter tells the system what object you want access to. When you request
permission to access the object under a specified ID, the system checks the
following conditions before it grants the access:

� You previously established the ID specified with your ACCESS request by
invoking IDENTIFY.

� You have not already accessed the object under the same unique eight-byte
ID. Before you can reaccess an already-accessed object under the same ID,
you must first invoke UNACCESS for that ID.

� If your installation uses RACF and the object is a linear data set, you must
have the proper RACF authorization to access the object.

� If you are requesting read access, the object must not be empty. Use the
MODE parameter to request read or update access.

� If the data object is a hiperspace, the system rejects the request if the
hiperspace:

– Has ever been the target of an ALESERV ADD
– Has one or more readers and one updater. (That is, the hiperspace can

have readers and it can have one updater, but it can't have both.)

MODE: The MODE parameter specifies how your program will access the object.
You can specify a mode parameter of READ or UPDATE. They are described as
follows:

� READ lets you read the object, but prevents you from using SAVE, to change
the object.

� UPDATE, like READ, lets you read the object, but it also allows you update the
object with SAVE.

Whether you specify READ or UPDATE, you can still make changes in the window,
because the object does not change when you change the data in the window.

SIZE: The SIZE parameter specifies the address of the field where the system
stores the size of the object. The system returns the size in this field whenever you
specify SAVE or ACCESS with SIZE. If you omit SIZE or specify SIZE=*, the
system does not return the size.

If you specified TYPE=DA with IDENTIFY for a data set object, SIZE specifies the
address of a four-byte field. When control is returned to your program after the
ACCESS service executes, the four-byte field contains the current size of the
object. The size is the number of blocks that the application must map to ensure
the mapping of the entire object.

13-8 OS/390 V2R8.0 MVS Assembler Services Guide

If you specified TYPE=HS with IDENTIFY for a hiperspace object, ACCESS returns
two sizes. The first is the current size of the hiperspace (in blocks). The second is
the maximum size of the hiperspace (also in blocks). When specifying SIZE with
an ID associated with a hiperspace object, you must provide an eight-byte field in
which the system can return the sizes (4 bytes each).

LOCVIEW: The LOCVIEW parameter allows you to specify whether the system is
to create a local copy of the data-in-virtual object.

If your object is a hiperspace, you cannot specify LOCVIEW=MAP.

If your object is a data set, you can code the LOCVIEW parameter two ways:

 � LOCVIEW=MAP
� LOCVIEW=NONE (the default if you do not specify LOCVIEW)

If another program maps the same block of a data-in-virtual object as your program
has mapped, a change in the object due to a SAVE by the other program can
sometimes appear in the virtual storage window of your program. The change can
appear when you allocate the data set object with a SHAREOPTIONS(2,3),
SHAREOPTIONS(3,3), or SHAREOPTIONS(4,3) parameter, and when the other
program is updating the object while your program is accessing it.

If the change appears when your program is processing the data in the window,
processing results might be erroneous because the window data at the beginning of
your processing is inconsistent with the window data at the end of your processing.
The relationship between SHAREOPTIONS and LOCVIEW is as follows:

� When you allocate the data set object by SHAREOPTIONS(2,3),
SHAREOPTIONS(3,3), or SHAREOPTIONS(4,3), the system does not serialize
the accesses that programs make to the object. Under these options, if the
programs do not observe any serialization protocol, the data in your virtual
storage window can change when other programs invoke SAVE. To ensure that
your program has a consistent view of the object, and protect your window from
changes that other programs make on the object, use LOCVIEW=MAP. If you
do not use LOCVIEW=MAP when you invoke ACCESS, the system provides a
return code of 4 and a reason code of hexadecimal 37 as a reminder that no
serialization is in effect even though the access was successful.

� When you allocate the object by SHAREOPTIONS(1,3), object changes made
by the other program cannot appear in your window because the system
performs automatic serialization of access. Thus, when any program has
update access to the object, the system automatically prevents all other
access. Use LOCVIEW=NONE when you allocate the data set by
SHAREOPTIONS(1,3).

Note: The usual method of programming data-in-virtual is to use
LOCVIEW=NONE and SHAREOPTIONS(1,3). LOCVIEW=MAP is
provided for programs that must access a data object simultaneously.
Those programs would not use SHAREOPTIONS(1,3).

LOCVIEW=MAP requires extra processing that degrades performance. Use
LOCVIEW=NONE whenever possible although you can use LOCVIEW=MAP for
small data objects without significant performance loss. When you write a program
that uses LOCVIEW=MAP, be careful about making changes in the object size.
Consider the following:

 Chapter 13. Data-in-Virtual 13-9

� When a group of programs, all using LOCVIEW=MAP, have simultaneous
access to the same object, no program should invoke any SAVE or MAP that
extends or truncates the object unless it informs the other programs by some
coding protocol of a change in object size. When the other programs are
informed, they can adjust their processing based on the new size.

� All the programs must create their maps before any program changes the
object size. Subsequently, if any program wants to reset the map or create a
new map, it must not do so without observing the protocol of a size check. If
the size changed, the program should invoke UNACCESS, followed by
ACCESS to get the new size. Then the program can reset the map or create
the new map.

The MAP Service
The MAP service makes an association between part or all of an object, the portion
being specified by the OFFSET and SPAN parameters, and your program's virtual
storage. This association, which is called a virtual storage window, takes the form
of a one-to-one correspondence between specified blocks on the object and
specified pages in virtual storage. After the MAP is complete, your program can
then process the data in the window. The RETAIN parameter specifies whether
data that is in the window when you issue MAP is to remain or be replaced by the
data from the associated object.

Note: You cannot map virtual storage pages that are page-fixed into a virtual
storage window. Once the window exists, you can page-fix data inside the
window so long as it is not fixed when you issue SAVE, UNMAP, or
RESET.

If your window is in an address space, you can map either a linear data set or a
hiperspace object. See Figure 13-1 on page 13-11.

13-10 OS/390 V2R8.0 MVS Assembler Services Guide

Hiperspace

Temporary Object
Address Space

Linear Data Set

Permanent Object
Address Space

window

window

OR

Figure 13-1. Mapping from an Address Space

If your window is in a data space or a hiperspace, you can map only a linear data
set. See Figure 13-2.

Data Space
or Hiperspace

Permanent Object

window
Linear Data Set

Figure 13-2. Mapping from a Data Space or Hiperspace

If your window is in a data space or hiperspace, you can issue multiple MAPs
under the same ID to different data spaces or hiperspaces. You cannot mix data
space maps or hiperspace maps with address space maps under the same ID at
any one time. However, you can mix data space maps and hiperspace maps. See
Figure 13-3 on page 13-13.

The MAP service has two required parameters: ID and OFFSET, and five optional
parameters: SPAN, AREA, RETAIN, STOKEN, and PFCOUNT.

The following examples show two ways to code the MAP service.

 Chapter 13. Data-in-Virtual 13-11

Hiperspace or data set object:

DIV MAP,ID=DIVOBJID,AREA=MAPPTR1,SPAN=SPANVAL,OFFSET=\,PFCOUNT=7

Data set object:

DIV MAP,ID=DIVOBJID,AREA=MAPPTR1,SPAN=SPANVAL,OFFSET=\,STOKEN=DSSTOK,PFCOUNT=7

ID: The ID parameter specifies the storage location containing the unique eight-byte
value that was returned by IDENTIFY. The map service uses this value to
determine which object is being mapped under which request.

If you specify the same ID on multiple invocations of the MAP service, you can
create simultaneous windows corresponding to different parts of the object.
However, an object block that is mapped into one window cannot be mapped into
any other window created under the same ID. If you use different IDs, however, an
object block can be included simultaneously in several windows.

OFFSET and SPAN: The OFFSET and SPAN parameters indicate a range of
blocks on the object. Blocks in this range appear in the window. OFFSET indicates
the first object block in the range, while SPAN indicates how many contiguous
blocks make up the range. An offset of zero indicates the beginning of the object.
For example, an offset of zero and a span of ten causes the block at the beginning
of the object to appear in the window, together with the next nine object blocks.
The window would then be ten pages long.

13-12 OS/390 V2R8.0 MVS Assembler Services Guide

window

window

Permanent Object

Linear Data Set

Data Space
or Hiperspace

Data Space
or Hiperspace

Data Space
or Hiperspace

window

Figure 13-3. Multiple Mapping

Specifying OFFSET=* or omitting OFFSET causes the system to use a default
OFFSET of zero. Specifying SPAN=0, SPAN=*, or omitting SPAN results in a
default SPAN of the number of blocks needed to MAP the entire object, starting
from the block indicated by OFFSET. Specifying both OFFSET=* and SPAN=* or
omitting both causes the entire object to appear in the window.

You may use the OFFSET and SPAN parameters to specify a range spanning any
portion of the object, the entire object, or extending beyond the object. Specifying
a range beyond the object enables a program to add data to the object, increasing
the size of the object. If data in a mapped range beyond the object is saved (using
the SAVE service), the size of the object is updated to reflect the new size.

To use the OFFSET parameter, specify the storage location containing the block
offset of the first block to be mapped. The offset of the first block in the data object
is zero. To use the SPAN parameter, specify the storage location containing the
number of blocks in the mapped range.

Note: Data-in-virtual always allocates an extra block beyond the requested block
number range to ensure that there is enough space for an end-of-file (EOF)

 Chapter 13. Data-in-Virtual 13-13

record. Therefore, when a DIV object is created without extents, the largest
possible span value is the total number of blocks contained in the DIV
object minus one.

AREA: When you specify MAP, you must also specify an AREA parameter. AREA
indicates the beginning of a virtual storage space large enough to contain the entire
window. Before invoking MAP, you must ensure that your task owns this virtual
storage space. The storage must belong to a single, pageable private area subpool.
It must begin on a 4096-byte boundary (that is, a page boundary) and have a
length that is a multiple of 4096 bytes.

Note that any virtual storage space assigned to one window cannot be
simultaneously assigned to another window. If your MAP request specifies a virtual
storage location, via the AREA parameter, that is part of another window, the
system rejects the request.

You cannot free virtual storage that is mapped into a window as long as the map
exists. Attempts to do this will cause your program to abend. Subsequent attempts
to reference the mapped virtual space will cause an ABEND.

RETAIN: The RETAIN parameter determines what data you can view in the
window. It can be either the contents of the virtual storage area (that corresponds
to the window) the way it was before you invoked MAP, or it can be the contents of
the object. The following table shows how using the RETAIN parameter with MAP
affects the contents of the window.

If you specify RETAIN=NO, or do not specify the RETAIN parameter at all (which
defaults to RETAIN=NO), the contents of the object replace the contents of the
virtual storage whenever your program references a page in the window. Virtual
storage that corresponds to a range beyond the end of the object appears as
binary zeroes when referenced. You can use RETAIN=NO to change some data
and save it back to the object.

If you specify RETAIN=YES, the window retains the contents of virtual storage. The
contents of the window are not replaced by data from the object. If you issue a
subsequent SAVE, the data in the window replaces the data on the object. If the
window extends beyond the object and your program has not referenced the pages
in the extending part of the window, the system does not save the extending pages.
However, if your program has referenced the extending pages, the system does
save them on the object, extending the object so it can hold the additional data.

You can also use RETAIN=YES to reduce the size of (truncate) the object. If the
part you want to truncate is mapped with RETAIN=YES and the window consists of
freshly obtained storage, the data object size is reduced at SAVE time.

If you want to have zeroes written at the end of the object, the corresponding virtual
storage must be explicitly set to zero prior to the SAVE.

RETAIN= Window view

NO (default) Contents of mapped object

YES Contents of virtual storage

13-14 OS/390 V2R8.0 MVS Assembler Services Guide

STOKEN: To reference an entire linear data set through a single window, a
program might require a considerable amount of virtual storage. In this case, the
program can use a data space or hiperspace to contain the window. If you want the
virtual storage window to be in a data space or hiperspace, specify STOKEN when
you invoke MAP. When you specify STOKEN, you provide an eight-byte input
parameter that identifies the data space or hiperspace, and that was returned from
DSPSERV CREATE.

However, do not place the window in a data space or hiperspace under the
following circumstances:

� If the data space is a disabled reference (DREF) data space.

� If the object is accessed with LOCVIEW=MAP.

� If the data space or hiperspace belongs to another task. However, if your
program is in supervisor state or has a system storage key, it can use a data
space or hiperspace that belongs to another task provided that the other task is
in the same primary address space as your program.

PFCOUNT: PFCOUNT is useful for referencing sequential data. Because you get a
page fault the first time you reference each page, preloading successive pages
decreases the number of page faults.

The PFCOUNT parameter (nnn) is an unsigned decimal number up to 255. When
an application references a mapped object, PFCOUNT tells the system that the
program will be referencing this object in a sequential manner. PFCOUNT might
improve performance because it asks the system to preload nnn pages, if possible.
The system reads in nnn successive pages only to the end of the virtual range of
the mapped area containing the originally referenced page, and only as resources
are available.

You can use REFPAT INSTALL to define a reference pattern for the mapped area.
In response to REFPAT, the system brings multiple pages into central storage
when referenced. In this case, the PFCOUNT value you specify on DIV is not in
effect as long as the reference pattern is in effect. When REFPAT REMOVE
removes the definition of the reference pattern, the PFCOUNT you specify on DIV
is again in effect. For information on the REFPAT macro, see “Defining the
Reference Pattern (REFPAT)” on page 18-5.

The SAVE Service
The SAVE service writes changed pages from the window to the object if the
changed pages are within the range to be saved. When you invoke SAVE, you
specify one of the following:

� A single and continuous range of blocks in the data-in-virtual object with the
use of OFFSET and SPAN. Any virtual storage windows inside this range are
eligible to participate in the save.

� A user list supplied through the use of LISTADDR and LISTSIZE. The list must
contain the addresses of the first and last changed pages for each range of
changed pages within the window. The SAVELIST service can provide these
addresses for the user list.

For a SAVE request to be valid, the object must currently be accessed with
MODE=UPDATE, under the same ID as the one specified on this SAVE request.

 Chapter 13. Data-in-Virtual 13-15

Because you can map an object beyond its current end, the object might be
extended when the SAVE completes if there are changed pages beyond the current
end at the time of the ACCESS. On the other hand, the SAVE truncates the object
if freshly obtained pages are being saved that are mapped in a range that extends
to or beyond the end of the object and additional non-freshly obtained pages
beyond the object area are not also being saved. In either case, the new object
size is returned to your program if you specify the SIZE parameter.

When the system writes the pages from the window to the object, it clears (sets to
zeroes) blocks in the object that are mapped to freshly obtained pages in the
window if either one of the following conditions is true:

� There are subsequent pages in the range being saved that are not freshly
obtained

� The blocks mapped to the freshly obtained pages are not at the end of the
object. That is, they are imbedded in the object somewhere before the last
block of the object. If the blocks mapped to freshly obtained pages do extend to
the end of the object and no subsequent non-freshly obtained pages are being
saved, then the object is truncated by that number of blocks.

If you specified RETAIN=YES with MAP, SAVE treats pages in the window that you
have not previously saved as changed pages and will write them to the object.

Notes:

1. Do not specify SAVE for a storage range that contains DREF or page fixed
storage.

2. If data to be saved has not changed since the last SAVE, no I/O will be
performed. The performance advantages of using data-in-virtual are primarily
because of the automatic elimination of unnecessary read and write I/O
operations.

3. The range specified with SAVE can extend beyond the end of the object.

4. The system does not save pages of an object that is not mapped to any
window.

5. The system does not save pages in a window that lies outside the specified
range.

The following example shows how to code the SAVE service for a hiperspace or
data set object.

 DIV SAVE,ID=DIVOBJID,SPAN=SPAVAL,OFFSET=\,SIZE=OBJSIZE

ID: The ID parameter tells the SAVE service which data object the system is writing
to under which request. Use ID to specify the storage location containing the
unique eight-byte name that was returned by IDENTIFY. You must have previously
accessed the object with MODE=UPDATE under the same ID as the one specified
for SAVE.

OFFSET and SPAN: Use the OFFSET and SPAN parameters to select a
continuous range of object blocks within which the SAVE service can operate.
OFFSET indicates the first block and SPAN indicates the number of blocks in the
range. As in the MAP service, the offset and span parameters refer to object
blocks; they do not refer to pages in the window. You cannot specify OFFSET and
SPAN when you specify LISTADDR and LISTSIZE.

13-16 OS/390 V2R8.0 MVS Assembler Services Guide

Specifying OFFSET=* or omitting OFFSET causes the system to use the default
offset (zero). The zero offset does not omit or skip over any of the object blocks,
and it causes the range to start right at the beginning of the object. Specifying
SPAN=0, SPAN=*, or omitting SPAN gives you the default span. The default span
includes the first object block after the part skipped by the offset, and it includes the
entire succession of object blocks up to and including the object block that
corresponds to the last page of the last window.

When SAVE executes, it examines each virtual storage window established for the
object. In each window, it detects every page that corresponds to an object block in
the selected range. Then, if the page has changed since the last SAVE, the system
writes the page on the object. (If the page has not changed since the last SAVE, it
is already identical to the corresponding object block and there is no need to save
it.) Although SAVE discriminates between blocks on the basis of whether they have
changed, it has the effect of saving all window pages that lie in the selected range.
Specifying both OFFSET=* and SPAN=* or omitting both causes the system to
save all changed pages in the window without exceptions.

To use the OFFSET parameter, specify the storage location containing the block
offset of the first block to be saved. The offset of the first block in the object is zero.
To use the SPAN parameter, specify the storage location containing the number of
blocks in the range to be saved.

SIZE: When you specify SIZE after the SAVE completes, the system returns the
size of the data object in the virtual storage location specified by the SIZE
parameter. If you omit SIZE or specify SIZE=*, the system does not return the size
value. If TYPE=DA, invoking SAVE can change the size of the object. If TYPE=HS,
invoking SAVE has no effect on the size of the object.

LISTADDR: The LISTADDR parameter specifies the address of the first entry in the
user list. Use this parameter and the LISTSIZE parameter when you specify a user
list as input for SAVE.

LISTSIZE: The LISTSIZE parameter specifies the number of entries in the user list.
Use this parameter and the LISTADDR parameter when you specify a user list as
input for SAVE.

STOKEN: If you specify a user list as input for SAVE and a data space or
hiperspace contains the window, you must specify STOKEN when you invoke
SAVE. When you specify STOKEN, you provide an eight-byte input parameter that
identifies the data space or hiperspace, and that was returned from DSPSERV
CREATE.

The SAVELIST Service
The advantage of using SAVELIST with SAVE is improved performance, especially
for applications that manipulate graphic images. The SAVELIST service allows the
application to inspect and verify data only in pages that have been changed. In a
user list provided by the application, SAVELIST returns the addresses of the first
and last page in each range of changed pages within the window. The mapped
ranges may be either address spaces, data spaces or hiperspaces. If more than
one data space or hiperspace is mapped onto a DIV object, the selected range
must be contained within a single data space or hiperspace.

 Chapter 13. Data-in-Virtual 13-17

The application must set up a user list before issuing SAVELIST. Upon return from
SAVELIST, the first word of each list entry holds the virtual storage address of the
first page in a range of changed pages. The second word of the entry holds the
virtual storage address of the last changed page in that range. In the last valid
entry of the user list, the high-order bit of the first word is set to one.

If the reason code indicates that there are more changed pages that can fit in this
list, the first word of the last entry in the list contains an offset (in block number
format) into the DIV object from which more changed pages might exist. The
second word of the last entry contains the span from the new offset to the block
pointed to by the original OFFSET/SPAN combination. If more changed pages can
fit in the user list, you can issue SAVE with the current list, and then issue
SAVELIST and SAVE again to obtain the additional changed pages and to save
them.

ID: Use ID to specify the storage location containing the unique eight-byte name
that was returned by IDENTIFY, which connects a particular user with a particular
object.

LISTADDR: The LISTADDR parameter specifies the address of the first entry in the
user list.

LISTSIZE: The LISTSIZE parameter specifies the number of entries in the list. The
size of the list must be a minimum of three entries and a maximum of 255 entries.
The SAVELIST service can place addresses in all but the last two entries, which
the macro uses as a work area.

The RESET Service
At times during program processing, your program might have made changes to
pages in the virtual storage window, and might no longer want to keep those
changes. RESET, which is the opposite of SAVE, replaces data in the virtual
storage window with data from the object. As with SAVE and MAP, the range to be
reset refers to the object rather than the virtual storage. RESET resets only
windows that are within the specified range, and it resets all the windows in the
range that your program changed.

Do not specify RESET for a storage range that contains DREF storage.

Effect of RETAIN mode on RESET
You actually specify RETAIN on MAP, not on RESET, but the RETAIN mode of
each individual window affects how the system resets the window. The following
table shows the effect that issuing RETAIN with MAP has on RESET.

The system resets the window as follows:

RETAIN= RESET results

NO (default) The data in the window matches the object data as of the last
SAVE.

YES Unless saved, the data in the window become freshly obtained.
Any pages previously saved re-appear in their corresponding
window. All other pages appear freshly obtained.

13-18 OS/390 V2R8.0 MVS Assembler Services Guide

� If you specified RETAIN=NO with MAP, after the RESET, the data in the
window matches the object data as of the last SAVE. This applies to all the
pages in the window.

� If you specified RETAIN=YES with MAP, the pages in the window acquire a
freshly obtained status after the RESET unless you have been doing SAVE
operations on this window. Individual object blocks changed by those SAVE
operations re-appear after the RESET in their corresponding window pages,
together with the other pages. However, the other pages appear freshly
obtained.

Note: Regardless of the RETAIN mode of the window, any window page that
corresponds to a block beyond the end of the object appears as a freshly
obtained page.

The following example shows how to code the RESET service for a hiperspace or
data set object:

 DIV RESET,ID=DIVOBJID,SPAN=SPANVAL,OFFSET=\,RELEASE=YES

ID: The ID parameter tells the RESET service what data object is being written to.
Use ID to specify the storage location containing the unique eight-byte name that
was returned by IDENTIFY and used with previous MAP requests. You must have
previously accessed the object (with either MODE=READ or MODE=UPDATE)
under the same ID as the one currently specified for RESET.

OFFSET and SPAN: The OFFSET and SPAN parameters indicate the RESET
range, the part of the object that is to supply the data for the RESET. As with MAP
and SAVE, OFFSET indicates the first object block in the range, while SPAN
indicates how many contiguous blocks make up the range, starting from the block
indicated by OFFSET. The first block of the object has an offset of zero.

To use OFFSET, specify the storage location containing the block offset of the first
block to be reset. To use SPAN, specify the storage location containing the number
of blocks in the range to be RESET. Specifying OFFSET=* or omitting OFFSET
causes the system to use a default OFFSET of zero. Specifying SPAN=* or
omitting SPAN sets the default to the number of blocks needed to reset all the
virtual storage windows that are mapped under the specified ID starting only with
the block number indicated by OFFSET. Specifying both OFFSET=* and SPAN=*
or omitting both resets all windows that are currently mapped under the specified
ID.

RELEASE: RELEASE=YES tells the system to release all pages in the reset range.
RELEASE=NO does not replace unchanged pages in the window with a new copy
of pages from the object. It replaces only changed pages. Another ID might have
changed the object itself while you viewed data in the window. Specify
RELEASE=YES to reset all pages. Any subsequent reference to these pages
causes the system to load a new copy of the data page from the object.

 Chapter 13. Data-in-Virtual 13-19

The UNMAP Service
Your program uses the UNMAP service to remove the association between a
window in virtual storage and the object. Each UNMAP request must correspond to
a previous MAP request. Note that UNMAP has no effect on the object. If you
made changes in virtual storage but have not yet saved them, the system does not
save them on the object when you issue UNMAP. UNMAP has two required
parameters: ID and AREA, and two optional parameters: RETAIN and STOKEN.

The following examples show two ways to code the UNMAP service.

Hiperspace or data set object:

 DIV UNMAP,ID=DIVOBJID,AREA=MAPPTR1

Data set object:

 DIV UNMAP,ID=DIVOBJID,AREA=MAPPTR1,STOKEN=DSSTOK

ID: The ID parameter you specify is the address of an eight-byte field in storage.
That field contains the identifier associated with the object. The identifier is the
same value that the IDENTIFY service returned, which is also the same value you
specified when you issued the corresponding MAP request.

AREA: The AREA parameter specifies the address of a four-byte field in storage
that contains a pointer to the start of the virtual storage to be unmapped. This
address must point to the beginning of a window. It is the same address that you
provided when you issued the corresponding MAP request.

RETAIN: RETAIN specifies the state that virtual storage is to be left in after it is
unmapped, that is, after you remove the correspondence between virtual storage
and the object.

Specifying RETAIN=NO with UNMAP indicates that the data in the unmapped
window is to be freshly obtained.

If your object is a hiperspace, you cannot specify RETAIN=YES. If your object is a
data set, you can specify RETAIN=YES.

Specifying RETAIN=YES on the corresponding UNMAP transfers the data of the
object into the unchanged pages in the window. In this case, RETAIN=YES with
UNMAP specifies that the virtual storage area corresponding to the unmapped
window is to contain the last view of the object. After UNMAP, your program can
still reference and change the data in this virtual storage but can no longer save it
on the object unless the virtual area is mapped again.

Notes:

1. If you issue UNMAP with RETAIN=NO, and there are unsaved changes in the
virtual storage window, those changes are lost.

2. If you issue UNMAP with RETAIN=YES, and there are unsaved changes in the
window, they remain in the virtual storage.

3. Unmapping with RETAIN=YES has certain performance implications. It causes
the system to read unreferenced pages, and maybe some unchanged ones,

13-20 OS/390 V2R8.0 MVS Assembler Services Guide

from the object. You must not unmap with RETAIN=YES if your object is a
hiperspace.

4. If the window is in a deleted data space, UNMAP works differently depending
on whether you specify RETAIN=YES or RETAIN=NO. If you specify
RETAIN=YES, the unmap fails and the program abends. Otherwise, the unmap
is successful.

STOKEN: If you issued multiple maps under the same ID with different STOKENs,
use STOKEN with UNMAP. If you do not specify STOKEN in this case, the system
will scan the mapped ranges and unmap the first range that matches the specified
virtual area regardless of the data space it is in. Issuing UNACCESS or
UNIDENTIFY automatically unmaps all mapped ranges.

The UNACCESS and UNIDENTIFY Services
Use UNACCESS to terminate your access to the object for the specified ID.
UNACCESS automatically includes an implied UNMAP. If you issue an
UNACCESS with outstanding virtual storage windows, any windows that exist for
the specified ID are unmapped with RETAIN=NO. The ID parameter is the sole
parameter of the UNACCESS service, and it designates the same ID that you
specified in the corresponding ACCESS. As in the other services, use ID to specify
the storage location containing the unique eight-byte name that was returned by
IDENTIFY.

Use UNIDENTIFY to notify the system that your use of an object under the
specified ID has ended. If the object is still accessed as an object under this ID,
UNIDENTIFY automatically includes an implied UNACCESS. The UNACCESS, in
turn, issues any necessary UNMAPs using RETAIN=NO. The ID parameter is the
only parameter for UNIDENTIFY, and it must designate the same ID as the one
specified in the corresponding ACCESS. As in the other services, use ID to specify
the storage location containing the unique eight-byte name that was returned by
IDENTIFY.

The following example shows how to code the UNACCESS and UNIDENTIFY
services for a hiperspace or data set object:

 DIV UNACCESS,ID=DIVOBJID
 DIV UNIDENTIFY,ID=DIVOBJID

Sharing Data in an Object
When a user issues IDENTIFY, the system returns an ID and establishes an
association between the ID and the user's task. All data-in-virtual services for a
specific ID must be requested by the task that issued the IDENTIFY and obtained
the ID.

Any task can reference or change the data in a mapped virtual storage window,
even if the window was mapped by another task, and even if the object was
identified and accessed by another task. Any task that has addressability to the
window can reference or change the included data. However, only the task that
issued the IDENTIFY can issue the SAVE to change the object.

When more than one user has the ability to change the data in a storage area, take
the steps necessary to serialize the use of the shared area.

 Chapter 13. Data-in-Virtual 13-21

Miscellaneous Restrictions for Using Data-in-Virtual
� When you attach a new task, you cannot pass ownership of a mapped virtual

storage window to the new task. That is, you cannot use the GSPV and GSPL
parameters on ATTACH and ATTACHX to pass the mapped virtual storage.

� You cannot invoke data-in-virtual services in cross memory mode. There are no
restrictions, however, against referencing and updating a mapped virtual
storage window in cross memory mode.

� You cannot specify a non-shared standard hiperspace as a DIV object (DIV
ACCESS) if you have issued ALESERV ADD for that hiperspace. You cannot
issue ALESERV ADD for a non-shared standard hiperspace while it is a DIV
object.

DIV Macro Programming Examples
The programming examples in this section illustrate how to code and execute a
program that processes a data-in-virtual object. You can find additional examples,
including illustrations, in:

� “Example of Mapping a Data-in-Virtual Object to a Data Space” on page 15-22
� “Using Data-in-Virtual with Hiperspaces” on page 15-37

General Program Description
This is a description of the program shown in “Data-in-Virtual Sample Program
Code” on page 13-23.

1. The program issues a DIV IDENTIFY and DIV ACCESS for the data-in-virtual
object. The ACCESS returns the current size of the object in units of 4K bytes.

2. If the object contains any data (the size returned by ACCESS is non-zero), the
program issues a DIV MAP to associate the object with storage the program
acquires using GETMAIN. The size of the MAP (and the acquired storage area)
is the same as the size of the object.

3. The program now processes the input statements from SYSIN. The processing
depends upon the function requests (S, D, or E). If the program encounters an
end-of-file, it treats it as if an “E” function was requested.

S function — Set a character in the object

4. If the byte to change is past the end of the mapped area, the user asked to
increase the size of the object. Therefore:

a. If any changes have been made in the mapped virtual storage area but not
saved to the object, the program issues a DIV SAVE. This save writes the
changed 4K pages in the mapped storage to the object.

b. The program issues a DIV UNMAP for the storage area acquired with
GETMAIN, and then releases that area using FREEMAIN. The program
skips this is step if the current object size is 0.

c. The program acquires storage using GETMAIN to hold the increased size
of the object, and issues a DIV MAP for this storage.

5. The program changes the associated byte in the mapped storage. Note that
this does not change the object. The program actually writes the changes to
the object when you issue a DIV SAVE.

13-22 OS/390 V2R8.0 MVS Assembler Services Guide

D function — Display a character in the object

6. If the requested location is within the MAP size, the program references the
specified offset into the storage area. If the data is not already in storage, a
page fault occurs. Data-in-virtual processing brings the required 4K block from
the object into storage. Then the storage reference is re-executed. The
contents of the virtual storage area (i.e. the contents of the object) are
displayed.

E function — End the program

7. If the program has made any changes in the mapped virtual storage area but
has not saved them to the object, the program issues a DIV SAVE.

8. The program issues a DIV UNIDENTIFY to terminate usage of the object.
Note that data-in-virtual processing internally generates a DIV UNMAP and
DIV UNACCESS.

9. The program terminates.

Data-in-Virtual Sample Program Code
The first part of DIVSAMPL identifies the linear data set and accesses the object. If
the object is not empty, the program obtains the virtual storage required to view
(MAP) the entire object. Then it opens the input and message sequential data sets.

 Chapter 13. Data-in-Virtual 13-23

DIV TITLE 'Data-in-Virtual Sample Program'
DIVSAMP CSECT ,
DIVSAMP AMODE 31 Program runs in 31-bit mode
DIVSAMP RMODE 24 Program resides in 24-bit storage

SAVE (14,12),,'DIVSAMP -- Sample Program'
LR R11,R15 Establish base register

 USING DIVSAMP,R11 \
LA R2,VSVEAREA Chain save areas together

 ST R13,4(,R2) \
 ST R2,8(,R13) \
 LR R13,R2 \
\ IDENTIFY and ACCESS the object pointed to by DD 'DIVDD'.
\ Save the object's token in VTOKEN, and its size in VSIZEP.

DIV IDENTIFY,TYPE=DA,ID=VTOKEN,DDNAME=CDIVDD Specify DDNAME
 LA R2,1 Error code

LTR R15,R15 IDENTIFY work ok ?
BNZ LERROR \ No -- quit
DIV ACCESS,ID=VTOKEN,MODE=UPDATE,SIZE=VSIZEP Open the object

 LA R2,2 Error code
LTR R15,R15 ACCESS work ok ?
BNZ LERROR \ No -- quit

\ If object not empty (VSIZEP > ð), get workarea to hold the object,
\ and issue a MAP to it. The area must start on page boundary.
\ Referencing byte "n" of this workarea gets byte "n" of the object.

L R2,VSIZEP Current size (in 4K blocks)
SLA R2,12 Current size (in bytes)
ST R2,VSIZEB VSIZEB = object size in bytes
BZ LEMPTY If object not empty, get MAP area =
GETMAIN RU,LV=(R2),LOC=(ANY,ANY),BNDRY=PAGE object size
ST R1,VAREAPTR Save MAP area

 DIV MAP,ID=VTOKEN,AREA=VAREAPTR,SPAN=VSIZEP
 LA R2,3 Error code

LTR R15,R15 MAP work ok ?
BNZ LERROR \ No -- quit

LEMPTY EQU \ Mapped, unless empty
\ OPEN the SYSIN input data set, and SYSPRINT listing data set.
\ Must be in 24-bit mode for this. Then return to 31-bit mode.

LA R4,L31Bð1 Return to L31Bð1 in 31-bit mode
LA R1,L24Bð1 Go to L24Bð1 in 24-bit mode
BSM R4,R1 R4 = A(X'8ððððððð'+L31Bð1)

L24Bð1 OPEN (VSYSIN,(INPUT),VSYSPRT,(OUTPUT)) OPEN SYSIN/SYSPRINT
BSM ð,R4 Return to 31-bit mode at next instr

L31Bð1 LA R2,4 Error code from SYSIN OPEN
LTR R15,R15 OPEN ok ?
BNZ LERROR \ No -- quit

Data-in-Virtual Sample Program Code (continued)
The program reads statements from SYSIN until it reaches end-of-file, or
encounters a statement with an “E” in column 1. The program validates the location
in the object to set or display, and branches to the appropriate routine to process
the request.

13-24 OS/390 V2R8.0 MVS Assembler Services Guide

\
\ Loop reading from SYSIN. Process the statements.
\ Treat EOF as if the user specified "E" as the function to perform.
\
LREAD EQU \ Read first/next card

MVI VCARDF,C'E' EOF will appear as "E" function
LA R4,L31Bð2 Return to L31Bð2 in 31-bit mode
LA R1,L24Bð2 Go to L24Bð2 in 24-bit mode
BSM R4,R1 R4 = A(X'8ððððððð'+L31Bð2)

L24Bð2 GET VSYSIN,VCARD Get the next input request.
LEOF EQU \ End-of-file branches here

BSM ð,R4 Return to 31-bit mode at next instr
L31Bð2 EQU \ Get here in 31-bit mode
\
\ Process request:
\ E - End processing
\ S aaaaaaaa v - Set location X'aaaaaaaa' to v
\ D aaaaaaaa - Display location X'aaaaaaaa'
\

CLI VCARDF,C'E' EOF function or EOF on data set ?
BE LCLOSE \ Yes -- go cleanup and terminate
TRT VCARDA,CTABTRT Ensure A-F, ð-9
BNZ LINVADDV \ If not, is error

 MVC VTEMP8,VCARDA Save address
TR VTEMP8,CTABTR Convert to X'ðA'-X'ðF', X'ðð'-X'ð9'
PACK VCHGADDR(5),VTEMP8(9) Make address

 L R1,VCHGADDR Address
 LA R1,ð(,R1) Clear hi-bit

ST R1,VCHGADDR Save address to change/display
CLI VCARDF,C'D' Display requested ?
BE LDISP \ Yes -- go process
CLI VCARDF,C'S' Set requested ?
BNE LINVFUNC \ No -- is invalid statement

Data-in-Virtual Sample Program Code (continued)
For a set request, the program determines whether the location to change does not
extend past the maximum object size allowed. If the location is past the end of the
current window, the program saves any existing changes to the object, and creates
a window containing the page to be changed. It then changes the data in storage
(but not in the linear data set).

For a display request, the program ensures the location to display is in the linear
object (that is, within the mapped area).

 Chapter 13. Data-in-Virtual 13-25

\ SET: See if the location to change is within the range of the current
\ MAP. If not, save any changes, get a larger area and issue a new MAP.

C R1,VSIZEB Area to change within current MAP?
BL LGUPDCHR \ Yes -- continue
C R1,CSIZEMX Area to change within max allowed?
BNL LINVADDR \ No -- is error
CLI VSWUPDT,ð Any updates to current MAP ?
BE LNOSVE1 \ Yes -- then
DIV SAVE,ID=VTOKEN Save any changes
LA R2,5 Error code from SAVE
LTR R15,R15 SAVE ok ?
BNZ LERROR \ No -- quit
MVI VSWUPDT,ð Clear update flag

LNOSVE1 L R3,VSIZEB Eliminate old map and storage
LTR R3,R3 Any to free ?
BZ LNOFREE \ Yes -- then
DIV UNMAP,ID=VTOKEN,AREA=VAREAPTR Release the MAP
LA R2,6 Error code from UNMAP
LTR R15,R15 UNMAP ok ?
BNZ LERROR \ No -- quit
L R1,VAREAPTR R1 -> acquired storage
FREEMAIN RU,A=(1),LV=(R3) Free the storage

LNOFREE L R2,VCHGADDR Address of byte to change
SRL R2,12 R2 = page number - 1
LA R2,1(,R2) R2 = page number to use
ST R2,VSIZEP VSIZEP = MAP area in 4K units
SLL R2,12 R2 = size in bytes
ST R2,VSIZEB VSIZEB = MAP area in bytes
GETMAIN RU,LV=(R2),LOC=(ANY,ANY),BNDRY=PAGE get MAP area
ST R1,VAREAPTR Save MAP area

 DIV MAP,ID=VTOKEN,AREA=VAREAPTR,SPAN=VSIZEP
 LA R2,3 Error code

LTR R15,R15 MAP work ok ?
BNZ LERROR \ No -- quit

LGUPDCHR L R1,VCHGADDR R1 = byte to change
A R1,VAREAPTR R1 -> byte to change
MVC ð(1,R1),VCARDV Change the byte
MVI VSWUPDT,X'FF' Show change made
B LGOODINP Go print accept message

LDISP EQU \ Display location contents
L R1,VCHGADDR R1 = location to display
C R1,VSIZEB Ensure within current MAP
BNL LINVADDR \ If not, is error
A R1,VAREAPTR R1 -> location to display
MVC VCARDV,ð(R1) Put into the card

Data-in-Virtual Sample Program Code (continued)
For both the set and display requests, the program displays the character at the
specified location. For an invalid request, the program displays an error message.
For all requests, the program then goes to process another statement.

When requested to terminate, the program saves any changes in the linear data
set, terminates its use of the object (using UNIDENTIFY), and returns to the
operating system.

13-26 OS/390 V2R8.0 MVS Assembler Services Guide

LGOODINP EQU \
 MVC M1A,VCARDA Address changed/displayed
 MVC M1B,VCARDV Storage value

CLI M1B,X'ðð' If X'ðð' (untouched),
BNE LGOODIN1 \ change to "?".

 MVI M1B,C'?' \
LGOODIN1 LA R2,M1 R2 -> message to print

B LTELL Go tell user status
LINVFUNC LA R2,M2 Unknown function

B LTELL Go tell user status
LINVADDV LA R2,M3 Invalid address

B LTELL Go tell user status
LINVADDR LA R2,M4 Address out of range
LTELL EQU \ R2 -> message to print

LA R4,L31Bð3 Return to L31Bð3 in 31-bit mode
LA R1,L24Bð3 Go to L24Bð3 in 24-bit mode
BSM R4,R1 R4 = A(X'8ððððððð'+L31Bð3)

L24Bð3 PUT VSYSPRT,(R2) Print the message
BSM ð,R4 Return to 31-bit mode at next instr

L31Bð3 B LREAD Continue
\ End-of-file on SYSIN, or "E" function requested.
\ Save any changes (DIV SAVE). Then issue UNIDENTIFY, which internally
\ issues UNMAP and UNIDENTIFY.
LCLOSE EQU \

CLI VSWUPDT,ð Any updates outstanding ?
BE LCLOSE1 \ No -- skip SAVE
DIV SAVE,ID=VTOKEN Save any changes
LA R2,5 Error code from SAVE
LTR R15,R15 SAVE ok ?
BNZ LERROR \ No -- quit

LCLOSE1 DIV UNIDENTIFY,ID=VTOKEN All done with object
LA R2,6 Error code from UNIDENTIFY
LTR R15,R15 UNIDENTIFY ok ?
BNZ LERROR \ No -- quit
L R13,4(,R13) Unchain save areas and return

 LM R14,R12,12(R13) \
 SR R15,R15 \
 BR R14 \
LERROR ABEND (R2),DUMP Take a dump

Data-in-Virtual Sample Program Code (continued)
These are the program's variables.

 Chapter 13. Data-in-Virtual 13-27

\ Variables and constants for the program
VSVEAREA DC 18A(ð) Save area
VTOKEN DC XL8'ðð' Object token
VAREAPTR DC A(\-\) -> MAP area
VSIZEP DC F'ð' Size of MAP area, in pages (4K)
VSIZEB DC F'ð' Size of MAP area, in bytes
VSWUPDT DC X'ðð' X'FF' -> map area updated
VCHGADDR DC A(\-\),C' ' Address of byte to change/display
VTEMP8 DC CL8' ',C' ' Temp area with buffer
VCARD DC CL8ð' ' Input card
VCARDF EQU VCARD+ð,1 + Function (E/S/D)
VCARDA EQU VCARD+2,8 + Address to change/display
VCARDV EQU VCARD+11,1 + Character to change
CDIVDD DC X'5',C'DIVDD' Linear Data Set DD pointer
\ CTABTRT to verify string only has A thru F and ð thru 9 (hex chars)
CTABTRT DC (C'A')X'FF',6X'ðð',(C'ð'-C'F'-1)X'FF',1ðX'ðð',6X'FF'
\ CTABTR & next line convert chars A:F,ð:9 -> X'ðAðB...ðFððð1ð2...ð9'
CTABTR EQU \-C'A'
 DC X'ðAðBðCðDðEðF',(C'ð'-C'F')X'ðð',X'ð1ð2ð3ð4ð5ð6ð7ð8ð9'
CSIZEMX DC A(4ð96\1ððð) Max size allowed for the DIV object
M1 DC Y(M1E-\,ð),C' Location '
M1A DC CL8' ',C' contains: '
M1B DC C' '
M1E EQU \
M2 DC Y(M2E-\,ð),C' Unknown function (not E/S/D)'
M2E EQU \
M3 DC Y(M3E-\,ð),C' Address not 8 hex characters'
M3E EQU \
M4 DC Y(M4E-\,ð),C' Address too big to set or display'
M4E EQU \
VSYSIN DCB MACRF=GM,DSORG=PS,RECFM=FB,LRECL=8ð,DDNAME=SYSIN, \
 EODAD=LEOF
VSYSPRT DCB MACRF=PM,DSORG=PS,RECFM=VA,LRECL=133,DDNAME=SYSPRINT
Rð EQU ð Registers
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R1ð EQU 1ð
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END ,

13-28 OS/390 V2R8.0 MVS Assembler Services Guide

Executing the Program
The following JCL executes the program called DIVSAMPL. The function of
DIVSAMPL is to change and display bytes (characters) in the data-in-virtual object,
DIV.SAMPLE, that was allocated in “Creating a Linear Data Set” on page 13-3.

//DIV JOB
//DIV EXEC PGM=DIVSAMPL
//STEPLIB DD DISP=SHR,DSN=DIV.LOAD
//DIVDD DD DISP=OLD,DSN=DIV.SAMPLE
//SYSABEND DD SYSOUT=\
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
S ðððð1ððð A Changes byte X'1ððð' to “A”
D ðððððFðð Displays “?” since byte X'Fðð' contains X'ðð'
S ðððððFðð B Changes byte X'Fðð' to “B”
S ððð1ðððð C Saves previous changes, gets new map,

changes byte X'1ðððð'
D ðððð1ððð Displays “A” which was set by first statement
D ðððððFðð Displays “B” which was set by third statement
E Saves changes since last save (stmt 4), and terminates pgm
/\

DIVSAMPL reads statements from SYSIN that tell the program what to do. The
format of each statement is f aaaaaaaa v , where:

f Function to perform:
 S Set a character in the object.
 D Display a character in the object.
 E End the program.

aaaaaaaa The hexadecimal address of the storage to set or display. Leading
0s are required. The value must be less than X'003E8000'.

v For Set, the character to put into the object.

Note: The program actually saves the change requested by the S function when
either the user asks to change a byte past the current size of the object, or
the user asks to terminate the program (E function).

 Chapter 13. Data-in-Virtual 13-29

13-30 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 14. Using Access Registers

For storing data, MVS offers a program the use of a virtual storage area called a
data space. Assembler instructions (such as Load, Store, Add, and Move
Character) manipulate the data in a data space. When you use instructions to
manipulate data in a data space, your program must use the set of general purpose
registers (GPRs) plus another set of registers called access registers. This chapter
describes how to use access registers to manipulate data in data spaces.

Through access registers, your program can use assembler instructions to perform
basic data manipulation, such as:

� Moving data into and out of a data space, and within a data space
� Performing arithmetic operations with values that are located in data spaces

To fully understand how to use the macros and instructions that control data
spaces and access registers, you must first understand some concepts.

What is an access register (AR)? An AR is a hardware register that a program
uses to identify an address space or a data space. Each processor has 16 ARs,
numbered 0 through 15, and they are paired one-to-one with the 16 GPRs. When
your program uses ARs, it must be in the address space control mode called
access register (AR) mode.

Access
Registers

General
Purpose
Registers

Identify locations within an address or data space0 1

0 1

14 15

14 15Identify address spaces or data spaces

ARs are used when fetching and storing data, but they are not used when doing
branches.

What is address space control (ASC) mode ? The ASC mode controls where the
system looks for the data that the program is manipulating. Two ASC modes are
available for your use: primary mode and access register (AR) mode.

� In primary mode , your program can access data that resides in the program's
primary address space. When it resolves the addresses in data-referencing
instructions, the system does not use the contents of the ARs.

� In AR mode , your program can access data that resides in the address space
or data space that the ARs indicate. For data-referencing instructions, the
system uses the AR and the GPR together to locate an address in an address
space or data space.

How does your program switch ASC mode ? Use the SAC instruction to change
ASC modes:

� SAC 512 sets the ASC mode to AR mode.
� SAC 0 sets the ASC mode to primary mode.

 Copyright IBM Corp. 1988, 1999 14-1

What does an AR contain? An AR contains a token, an access list entry token
(ALET). An ALET is an index to an entry on the access list. An access list is a
table of entries, each one of which points to an address space, data space, or
hiperspace to which a program has access.

Figure 14-1 shows an ALET in the AR and the access list entry that points to an
address space or a data space. It also shows the address in the GPR that points to
the data within the address/data space.

@

Address/Data Space

Access List

Data

ALET

GPR

AR

Figure 14-1. Using an ALET to Identify an Address Space or a Data Space

For programs in AR mode, when the GPR is used as a base register in an
instruction, the corresponding AR must contain an ALET. Conversely, when the
GPR is not used as a base register, the corresponding AR is ignored.

By placing an entry on an access list and obtaining an ALET for the entry, a
program builds the connection between the program and an address space, data
space, or hiperspace. The process of building this connection is called
establishing addressability to an address space, data space, or hiperspace. To
add the entry to the access list, your program uses the ALESERV macro, which is
described in “The ALESERV Macro” on page 14-9.

A program adds an entry to an access list so that it can:

� Gain access to a data space or an address space through assembler
instructions.

� Obtain the ALET for a hiperspace . With that ALET, the program can use the
HSPALET parameter on HSPSERV to:

– Gain additional performance from the transfer of data to and from
expanded storage. Information on when and how you use an access list
entry for hiperspaces is described in “Obtaining Additional HSPSERV
Performance” on page 15-31.

– Improve its ability to share hiperspaces with other programs. The subject of
sharing hiperspaces is described in “Shared and Non-shared Standard
Hiperspaces” on page 15-28.

For the rest of this chapter, assume that entries in access lists point to data
spaces, not hiperspaces or address spaces.

14-2 OS/390 V2R8.0 MVS Assembler Services Guide

� The subject of inter-address space communication, appropriate only for
programs in supervisor state or with PSW key 0 - 7, is described in OS/390
MVS Programming: Extended Addressability Guide.

� Because a program cannot use ARs to directly manipulate data in a
hiperspace, the subject of how a program uses ARs and access lists to access
hiperspaces differs from the discussion in the rest of this chapter.

 Access Lists
When the system creates an address space, it gives that address space an access
list (PASN-AL) that is empty. Programs add entries to the DU-AL and the
PASN-AL. The entries represent the data spaces and hiperspaces that the
programs want to access.

Types of Access Lists
An access list can be one of two types:

� A dispatchable unit access list (DU-AL), the access list that is associated with
the TCB

� A primary address space access list (PASN-AL), the access list that is
associated with the primary address space

Figure 14-2 on page 14-4 shows PGM1 that runs in AS1 under TCB A. The figure
shows TCB A's DU-AL. It is available to PGM1 (and to other programs that TCB A
might represent). The DU-AL has an entry for Data Space X, and PGM1 has the
ALET for Data Space X. Therefore, PGM1 has access to Data Space X. PGM1
received an ALET for Space Y from another program. The PASN-AL has the entry
for Space Y. Therefore, PGM1 also has access to Data Space Y. Because it does
not have the ALET for Space Z, PGM1 cannot access data in Space Z.

 Chapter 14. Using Access Registers 14-3

Space Z
Space Y

ALETX DC F
ALETY DC F

Space Z

Space Y

DU-AL

Data
Space X

TCB A
PGM1

PASN-AL

Data Space X

Figure 14-2. An Illustration of a DU-AL

The differences between a DU-AL and a PASN-AL are significant and you need to
understand them. The following table summarizes the characteristics of DU-ALs
and PASN-ALs as they relate to problem state programs with PSW key 8 - F .

14-4 OS/390 V2R8.0 MVS Assembler Services Guide

Figure 14-3. Characteristics of DU-ALs and PASN-ALs

DU-AL PASN-AL

Each work unit (TCB and SRB) has its
own unique DU-AL. All programs
associated with that work unit can use its
DU-AL.

Each address space has its own unique
PASN-AL. All programs that run in the
primary address space can use its
PASN-AL.

A program that the work unit represents
can add and delete entries on the work
unit's DU-AL for the data spaces it
created or owns.

A program can add entries for the data
spaces it owns or created to the
PASN-AL, providing an entry for the data
space is not already on the PASN-AL
through the actions of another problem
state program with PSW 8 - F. A program
can delete entries for data spaces it owns
or created.

A program cannot pass its task's DU-AL
to a program running under another task,
with one exception: when a program
issues an ATTACH macro, it can pass a
copy of its DU-AL to the subtask. This
allows the subtask to start with a copy of
the attaching task's DU-AL. After the
attach, the attaching task and the subtask
can add and delete entries on their own
DU-ALs.

A PASN-AL cannot be passed from one
address space to another.

A DU-AL can have up to 253 entries. A PASN-AL can have up to 254 entries,
some of which are reserved for the type
of space called SCOPE=COMMON.

When the work unit terminates, the DU-AL
is purged.

When the owning jobstep task terminates,
the PASN-AL is purged.

Writing Programs in AR Mode
After your program has an entry on an access list and the ALET that indexes the
entry, it must place a value in an AR before it can use the data space. To
understand how the system resolves addresses in instructions for programs in AR
mode, see Figure 14-4 on page 14-6. This figure shows how an MVC instruction in
AR mode moves data from location B in one data space to location A in another
data space:

 Chapter 14. Using Access Registers 14-5

Space Y

Space X

Address Space

Space Y

B

A

Space X

Access List

AR

GPR

. . .

. . .
MVC A(LEN,1),B(2)

GPR 1 is used as a base register to
locate the destination of the MVC and
AR 1 is used to identify Space X.

GPR 2 is used to locate the data to
be moved and AR 2 identifies Space Y
that contains the data.

ALET ALET
X Y

Figure 14-4. Using Instructions in AR Mode

GPR 1 is used as a base register to locate the destination of the data, and AR 1 is
used to identify space X. GPR 2 is used to locate the source of the data, and AR 2
identifies Space Y. In AR mode, a program can use a single MVC instruction to
move data from one address/data space to another. Note that the address space
that contains the MVC instruction does not have to be either Space X or Space Y.

In similar ways, you can use instructions that compare, test-under-mask, copy,
move, and perform arithmetic operations.

When the instructions reference data in the primary address space, the ALET in the
AR must indicate that the data is in that address space. For this purpose, the
system provides a special ALET with a value of zero. Other than using this value to
identify the primary address space, a program should never depend on the value of
an ALET.

An ALET of zero designates the primary address space.

“Loading the Value of Zero into an AR” on page 14-8 shows several examples of
loading a value of zero in an AR.

Coding Instructions in AR Mode
As you write your AR mode programs, use the advice and warnings in this section.

� For an instruction that references data, the system uses the contents of an AR
to identify the address/data space that contains the data that the associated
GPR points to.

� Use ARs only for data reference; do not use them with branching instructions.

14-6 OS/390 V2R8.0 MVS Assembler Services Guide

� Just as you do not use GPR 0 as a base register, do not use AR/GPR 0 for
addressing.

� An AR should contain only ALETs; do not store any other kinds of data in an
AR.

Because ARs that are associated with index registers are ignored, when you code
assembler instructions in AR mode, place the commas very carefully. In those
instructions that use both a base register and an index register, the comma that
separates the two values is very important. Figure 14-5 shows four examples of
how a misplaced comma can change how the processor resolves addresses on the
load instruction.

For the first two entries in Figure 14-5:

In primary mode, the examples of the load instruction give the same result.

In AR mode, the data is fetched using different ARs. In the first entry, data is
fetched from the address/data space represented by the ALET in AR 3. In the
second entry, data is fetched from the primary address space (because
AR/GPR 0 is not used as a base register).

For the last two entries in Figure 14-5:

In primary mode, the examples of the load instruction give the same result.

In AR mode, the first results in a fetch from the address/data space
represented by AR 8, while the second results in a fetch from the address/data
space represented by AR 6.

Figure 14-5. Base and Index Register Addressing in AR Mode

Instruction Address Resolution

L 5,4(,3) or
 L 5,4(0,3)

There is no index register. GPR 3 is the base register. AR 3
indicates the address/data space.

L 5,4(3) or
 L 5,4(3,0)

GPR 3 is the index register. Because there is no base register,
data is fetched from the primary address space.

L 5,4(6,8) GPR 6 is the index register. GPR 8 is the base register. AR 8
indicates the address/data space.

L 5,4(8,6) GPR 8 is the index register. GPR 6 is the base register. AR 6
indicates the address/data space.

Manipulating the Contents of ARs
Whether the ASC mode of a program is primary or AR, it can use assembler
instructions to save, restore, and modify the contents of the 16 ARs. The set of
instructions that manipulate ARs include:

� CPYA — Copy the contents of an AR into another AR.

� EAR — Copy the contents of an AR into a GPR.

� LAE — Load a specified ALET and address into an AR/GPR pair.

� SAR — Place the contents of a GPR into an AR.

� LAM — Load the contents of one or more ARs from a specified storage
location.

 Chapter 14. Using Access Registers 14-7

� STAM — Store the contents of one or more ARs to a specified storage
location.

For their syntax and help with how to use these instruction, see Principles of
Operation.

Loading an ALET into an AR
An action that is very important when a program is in AR mode, is the loading of an
ALET into an AR. The following example shows how the LAM instruction loads an
ALET into AR 2:

LAM 2,2,DSALET LOAD ALET OF DATA SPACE INTO AR2
\
DSALET DS F DATA SPACE ALET

Loading the Value of Zero into an AR
When the code you are writing is in AR mode, you must be very conscious of the
contents of the ARs. For instructions that reference data, the ARs must always
contain the ALET that identifies the data space that contains the data. When the
data is in the primary address space, the AR that accompanies the GPR that has
the address of the data must contain the value zero.

The following examples show several ways of placing the value zero in an AR.

Example 1: Set AR 5 to value of zero, when GPR 5 can be changed.

SLR 5,5 SET GPR 5 TO ZERO
SAR 5,5 LOAD GPR 5 INTO AR 5

Example 2: Set AR 5 to value of zero, without changing value in GPR 5.

LAM 5,5,=F'ð' LOAD AR 5 WITH A VALUE OF ZERO

Another way of doing this is the following:

 LAM 5,5,ZERO
ZERO DC F'ð'

Example 3: Set AR 5 to value of zero, when AR 12 is already zero.

CPYA 5,12 COPY AR 12 INTO AR 5

Example 4: Set AR 12 to zero and set GPR 12 to the address contained in GPR
15. This sequence is useful to establish a program's base register GPR and AR
from an entry point address contained in register 15.

 PGMA CSECT ENTRY POINT
 .
 .

LAE 12,ð(15,ð) ESTABLISH PROGRAM'S BASE REGISTER
 USING PGMA,12

Another way to establish AR/GPR module addressability through register 12 is as
follows:

 LAE 12,ð
 BASR 12,ð
 USING \,12

14-8 OS/390 V2R8.0 MVS Assembler Services Guide

Example 5: Set AR 5 and GPR 5 to zero.

LAE 5,ð(ð,ð) Set GPR and AR 5 to zero

The ALESERV Macro
Use the ALESERV macro to add an entry to an access list and delete that entry.
The following sections describe the parameters on the ALESERV macro and give
examples of its use.

Adding an Entry to an Access List
The ALESERV ADD macro adds an entry to the access list. Two parameters are
required: STOKEN, an input parameter, and ALET, an output parameter.

� STOKEN - the eight-byte STOKEN of the address/data space represented by
the entry. You might have received the STOKEN from DSPSERV or from
another program.

� ALET - index to the entry that ALESERV added to the access list. The system
returns this value at the address you specify on the ALET parameter.

The best way to describe how you add an entry to an access list is through an
example. The following code adds an entry to a DU-AL. Assume that the
DSPSERV macro has created the data space and has returned the STOKEN of the
data space in DSPCSTKN and the origin of the data space in DSPCORG.
ALESERV ADD returns the ALET in DSPCALET. The program then establishes
addressability to the data space by loading the ALET into AR 2 and the origin of
the data space into GPR 2.

\ ESTABLISH ADDRESSABILITY TO THE DATA SPACE
 .
 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET
 .

LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GR2

 USING DSPCMAP,2 INFORM ASSEMBLER
 .

L 5,DSPWRD1 GET FIRST WORD FROM DATA SPACE
USES AR/GPR 2 TO MAKE THE REFERENCE

 .
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCMAP DSECT DATA SPACE STORAGE MAPPING
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3

Using the DSECT that the program established, the program can easily manipulate
data in the data space.

It is possible to use ALESERV ADD to obtain an entry for a hiperspace. For
information on how hiperspaces use ALETs, see “Obtaining Additional HSPSERV
Performance” on page 15-31. Do not use ALESERV ADD for hiperspaces unless
the move-page facility feature is installed on the processor.

 Chapter 14. Using Access Registers 14-9

Deleting an Entry from an Access List
Use ALESERV DELETE to delete an entry on an access list. The ALET parameter
identifies the specific entry. It is a good programming practice to delete entries from
an access list when the entries are no longer needed.

The following example deletes the entry that was added in the previous example.

ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS

 .
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

If the program does not delete an entry, the entry remains on the access list until
the work unit terminates. At that time, the system frees the access list entry.

Issuing MVS Macros in AR Mode
Many MVS macro services support callers in both primary and AR modes. When
the caller is in AR mode, the macro service must generate larger parameter lists at
assembly time. The increased size of the list reflects the addition of ALET-qualified
addresses. At assembly time, a macro service that needs to know whether a caller
is in AR mode checks the global bit that SYSSTATE ASCENV=AR sets. Therefore,
it is good programming practice to issue SYSSTATE ASCENV=AR when a program
changes to AR mode and issues macros while in that mode. Then, when the
program returns to primary mode, issue SYSSTATE ASCENV=P to reset the global
bit.

When your program is in AR mode, keep in mind these two facts:

� Before you use a macro in AR mode, check the description of the macro in
OS/390 MVS Programming: Assembler Services Reference. If the description of
the macro does not specifically state that the macro supports callers in AR
mode, use the SAC instruction to change the ASC mode and use the macro in
primary mode.

� ARs 14 through 1 are volatile across all macro calls, whether the caller is in AR
mode or primary mode. Don't count on the contents of these ARs being the
same after the call as they were before.

Example of Using SYSSTATE
Consider that a program changes ASC mode from primary to AR mode and, while
in AR mode, issues the LINKX and STORAGE macros. When it changes ASC
mode, it should issue the following:

SAC 512
SYSSTATE ASCENV=AR

The LINKX macro generates different code and addresses, depending on the ASC
mode of the caller. During the assembly of LINKX, the LINKX macro service checks
the setting of the global bit. Because the global bit indicates that the caller is in AR
mode, LINKX generates code and addresses that are appropriate for callers in AR
mode.

14-10 OS/390 V2R8.0 MVS Assembler Services Guide

The STORAGE macro generates the same code and addresses whether the caller
is in AR mode or primary mode. Therefore, the STORAGE macro service does not
check the global bit.

When the program changes back to primary mode, it should issue the following:

SAC ð
SYSSTATE ASCENV=P

 Using X-Macros
Some macro services, such as LINK and LINKX, offer two macros, one for callers
in primary mode and one for callers in either primary or AR mode. The names of
the two macros are the same, except the macro that supports both primary and AR
mode caller ends with an “X.” This book refers to these macros as “X-macros.” The
rules for using all X-macros, except ESTAEX, are:

� Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary
mode. Some parameters on the non X-macros are not valid for callers in AR
mode. Check the macro descriptions in OS/390 MVS Programming: Assembler
Services Reference for these exceptions.

� Callers in AR mode should issue the X-macro after issuing the SYSSTATE
ASCENV=AR macro.

If a caller in AR mode issues the non X-macro, the system substitutes the
X-macro and issues a message during assembly that informs you of the
substitution.

IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, in which case, you should use
ESTAE.

If your program issues macros while it is in AR mode, make sure the macros
support AR mode callers and that SYSSTATE ASCENV=AR is coded.

If you rewrite programs and use the X-macro instead of the non X-macro, you must
change both the list and execute forms of the macro. If you change only the
execute form of the macro, the system will not generate the longer parameter list
that the X-macro requires.

Note that an X-macro generates a larger parameter list than the corresponding non
X-macro. A program using the X-macros must provide a larger parameter list than if
it used the non X-macro.

Formatting and Displaying AR Information
The interactive problem control system (IPCS) can format and display AR data. Use
the ARCHECK subcommand to:

� Display the contents of an AR
� Display the contents of an access list entry

See OS/390 MVS IPCS Commands for more information about the ARCHECK
subcommand.

 Chapter 14. Using Access Registers 14-11

14-12 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 15. Data Spaces and Hiperspaces

For storing data, MVS offers a program a choice of two kinds of virtual storage
areas for data only: data spaces and hiperspaces. In making the decision whether
to use a hiperspace or data space, you might have the following questions:

� Does my program need virtual storage outside the address space?
� Which kind of virtual storage is appropriate for my program?

The first part of the chapter helps you make these decisions. Then, if you decide
that one of these virtual storage areas would benefit your program, turn to one of
the following sections for the information you need to create, use, and delete the
area:

� “Creating and Using Data Spaces” on page 15-7
� “Creating and Using Hiperspaces” on page 15-25

What are Data Spaces and Hiperspaces?
Data spaces and hiperspaces are similar in that both are areas of virtual storage
that the program can ask the system to create. The size of this space can range
from four kilobytes to two gigabytes, according to the user's request. Unlike an
address space, a data space or hiperspace contains only user data or user
programs stored as data. Program code cannot run in a data space or a
hiperspace.

The following diagram shows, at an overview level, the difference between an
address space and a data space or hiperspace.

Address Space

4 kilobytes
to

2 gigabytes

User programs
and data

System programs
and data

User programs
and data

User data2 gigabytes

Data Space
or

Hiperspace

The major difference between a data space and a hiperspace is the way your
program accesses data in the two areas. This difference is described later in this
chapter. But before you can understand the differences, you need to understand
what your program can do with these virtual storage areas.

 Copyright IBM Corp. 1988, 1999 15-1

What Can a Program Do With a Data Space or a Hiperspace?
Programs can use data spaces and hiperspaces to:

� Obtain more virtual storage than a single address space gives a user.

� Isolate data from other tasks in the address space.

Data in an address space is accessible to all programs executing in that
address space. You might want to move some data to a data space or
hiperspace for security or integrity reasons. Use this space as a way to
separate your data logically by its own particular use.

� Provide an area in which to map a data-in-virtual object.

You can place all types of data in a data space or hiperspace, rather than in an
address space or on DASD. Examples of such data include:

� Tables, arrays, or matrixes
� Data base buffers
� Temporary work files
� Copies of permanent data sets

Because data spaces and hiperspaces do not include system areas, the cost of
creating and deleting them is less than that of an address space.

To help you decide whether you need this additional storage area, some important
questions are answered in the following sections. These same topics are addressed
in greater detail later in the chapter.

How Does a Program Obtain a Data Space and a Hiperspace?
Data spaces and hiperspaces are created through the same system service: the
DSPSERV macro. On this macro, you request either a data space (TYPE=BASIC)
or a hiperspace (TYPE=HIPERSPACE). You also specify some characteristics of
the space, such as its size and its name.

The DSPSERV macro service gives you contiguous 31-bit addressable virtual
storage of the size you specify and initializes the storage to binary zeroes.

OS/390 MVS Programming: Assembler Services Reference contains the syntax and
parameter descriptions for the macros that are mentioned in this chapter.

How Does a Program Move Data into a Data Space or Hiperspace?
One way to move data into a data space or a hiperspace is through buffers in the
program's address space. Another way avoids using address space virtual storage
as an intermediate buffer area: through data-in-virtual services, a program can
move data into a data space or hiperspace directly. This second way reduces the
amount of I/O.

Who Owns a Data Space or Hiperspace?
Although programs create data spaces and hiperspaces, they do not own them.
When a program creates the space, the system assigns ownership to the TCB that
represents the program, or to the TCB of the job step task of the program, if you
choose. You can assign ownership of the data space to the job step TCB by
specifying the TTOKEN option on the DSPSERV CREATE macro. All storage within

15-2 OS/390 V2R8.0 MVS Assembler Services Guide

a data space or hiperspace is available to programs that run under that TCB and,
in some cases, the storage is available to other users. When the TCB terminates,
the system deletes any data spaces or hiperspaces the TCB owns. If you want the
data space to exist after the creating TCB terminates, assign the space to the job
step TCB. The job step will continue to be active beyond the termination of the
creating TCB.

Because data spaces and hiperspaces belong to TCBs, keep in mind the
relationship between the program and the TCB under which it runs. For simplicity,
however, this chapter describes hiperspaces and data spaces as if they belong to
programs. For example, “a program's data space” means “the data space that
belongs to the TCB under which a program is running.”

Can an Installation Limit the Use of Data Spaces and Hiperspaces?
The use of data spaces and hiperspaces consumes system resources such as
expanded and auxiliary storage. Programmers responsible for tuning and
maintaining MVS can set limits on the amount of virtual storage that programs in
each address space can use for data spaces and hiperspaces. They can limit:

� The size of a single hiperspace or data space. (The default is 956K bytes, or
239 blocks.)

� The amount of storage available per address space for all hiperspaces and
data spaces with a storage key of 8 - F. (The default is 2òô - 1 megabytes, or
16777215 megabytes.)

� The combined number of hiperspaces and data spaces with storage key 8 - F
that can exist per address space at one time. (The default is 50 data spaces
and hiperspaces.)

You should know the limits your installation establishes and the return codes that
you can check to learn why the DSPSERV macro might not create the data space
or hiperspace you requested.

How Does a Program Manage the Storage in a Data Space or
Hiperspace?

Managing storage in data spaces or hiperspaces differs from managing storage in
address spaces. Keep the following advisory notes in mind when you handle your
data space storage:

� When you create a data space or hiperspace, use the DSPSERV macro to
request a large enough size to handle your application.

The amount of storage you specify when you create a data space or a
hiperspace is the maximum amount the system will allow you to use in that
space.

� You are responsible for keeping track of the allocating and freeing of data
space and hiperspace storage. You cannot use the services of virtual storage
management (VSM), such as the STORAGE, GETMAIN, or FREEMAIN
macros, to manage this area. You can, however, use callable cell pool services
to define a cell pool within a data space. You can then obtain the cells, as well
as expand and contract the cell pool. “Using Callable Cell Pool Services to
Manage Data Space Areas” on page 15-17 describes the use of callable cell
pool services for data spaces. Information on how to code the services is in
Chapter 12, Callable Cell Pool Services.

 Chapter 15. Data Spaces and Hiperspaces 15-3

� If you are not going to use an area of a data space or hiperspace again,
release that area.

� When you are finished using a data space or hiperspace, delete it.

Differences Between Data Spaces and Hiperspaces
Up to this point, the chapter has focused on similarities between data spaces and
hiperspaces. By now, you should know whether your program needs the kind of
virtual storage that a data space or hiperspace offers. Only by understanding the
differences between the two types of spaces, can you decide which one most
appropriately meets your program's needs, or whether the program can use them
both.

The main difference between data spaces and hiperspaces is the way a program
references data. A program references data in a data space directly , in much the
same way it references data in an address space. It addresses the data by the
byte, manipulating, comparing, and performing arithmetic operations. The program
uses the same instructions (such as load, compare, add, and move character) that
it would use to access data in its own address space. To reference the data in a
data space, the program must be in the ASC mode called access register (AR)
mode. Pointers that associate the data space with the program must be in place
and the contents of ARs that the instructions use must identify the specific data
space.

Figure 15-1 shows a program in AR ASC mode using the data space. The CLC
instruction compares data at two locations in the data space; the MVC instruction
moves the data at location D in the data space to location C in the address space.

C

Address Space Data Space

A
B

D

Program

CLC A,B
MVC C,D

CLC and MVC access data
while data is in data space.

Figure 15-1. Accessing Data in a Data Space

In contrast, a program does not directly access data in a hiperspace. MVS provides
a system service, the HSPSERV macro, to transfer the data between an address
space and a hiperspace in 4K byte blocks. The HSPSERV macro read operation
transfers the blocks of data from a hiperspace into an address space buffer where

15-4 OS/390 V2R8.0 MVS Assembler Services Guide

the program can manipulate the data. The HSPSERV write operation transfers the
data from the address space buffer area to a hiperspace for storage. You can think
of hiperspace storage as a high-speed buffer area where your program can store
4K byte blocks of data.

Figure 15-2 shows a program in an address space using the data in a hiperspace.
The program uses the HSPSERV macro to transfer an area in the hiperspace to
the address space, compares the values at locations A and B, and uses the MVC
instruction to move data at location D to location C. After it finishes using the data
in those blocks, the program transfers the area back to the hiperspace. The
program could be in either primary or AR ASC mode.

C

Address Space Hiperspace

HSPSERV re
ad operatio

n

HSPSERV w
rite

 opera
tio

n

A

D

B

HSPSERV...
Program

CLC A,B
MVC C,D

HSPSERV...

CLC and MVC access data
only after data has been
transferred from hiperspace
to address space.

Figure 15-2. Accessing Data in a Hiperspace

On one HSPSERV macro, the program can transfer the data in more than one area
between the hiperspace and the address space.

Comparing Data Space and Hiperspace Use of Physical Storage
To compare the performance of manipulating data in data spaces with the
manipulating of data in hiperspaces, you should understand how the system
“backs” these two virtual storage areas. (That is, what kind of physical storage the
system uses to maintain the data in virtual storage.) The system uses the same
resources to back data space virtual storage as it uses to back address space
virtual storage: a combination of central and expanded storage (if available) frames,
and auxiliary storage slots. The system can release low-use pages of data space
storage to auxiliary storage and bring them in again when your program references
those pages. The paging activity for a data space includes I/O between auxiliary
storage paging devices and central storage.

The system backs hiperspace virtual storage with expanded storage, and auxiliary
storage when expanded storage is not available. When you create a hiperspace,
the system knows that the space will not be the target of assembler instructions
and therefore will not need the backing of real frames. Therefore, data movement

 Chapter 15. Data Spaces and Hiperspaces 15-5

through HSPSERV does not include I/O activity between DASD and the expanded
storage that backs the hiperspace pages. For this reason, hiperspaces are very
efficient.

Which One Should Your Program Use?
If your program needs to manipulate or access data often by the byte, data spaces
might be the answer. Use a data space if the program frequently addresses data at
a byte level, such as you would in a workfile.

If your program can easily handle the data in 4K byte blocks, a hiperspace might
give you the best performance. Use a hiperspace if the program needs a place to
store data, but not to manipulate data. A hiperspace has other advantages:

� The program can stay in primary mode and ignore the access registers.
� The program can benefit from the high-speed access.
� The system can use the unused processor storage for other needs.

An Example of Using a Data Space
Suppose an existing program updates several rate tables that reside on DASD.
Updates are random throughout the tables. The tables are too large and too many
for your program to keep in contiguous storage in its address space. When the
program updates a table, it reads that part of the table into a buffer area in the
address space, updates the table, and writes the changes back to DASD. Each
time it makes an update, it issues instructions that cause I/O operations.

If the tables were to reside in data spaces, one table to each data space, the tables
would then be accessible to the program through assembler instructions. The
program could move the tables to the data spaces (through buffers in the address
space) once at the beginning of the update operations and then move them back
(through buffers in the address space) at the end of the update operations.

If the tables are VSAM linear data sets, data-in-virtual can map the tables and
move the data into the data space where a program can access the data.
Data-in-virtual can then move the data from the data space to DASD. With
data-in-virtual, the program does not have to move the data into the data space
through address space buffers, nor does it have to move the data to DASD through
address space buffers.

An Example of Using a Hiperspace
Suppose an existing program uses a data base that resides on DASD. The data
base contains many records, each one containing personnel information about one
employee. Access to the data base is random and programs reference but do not
update the records. Each time the program wants to reference a record, it reads
the record in from DASD.

If the data base were to exist in a hiperspace, the program would still bring one
record into its address space at a time. Instead of reading from DASD, however,
the program would bring in the records from the hiperspace on expanded storage
(or auxiliary storage, when expanded storage is not available.) In effect, this
technique can eliminate many I/O operations and reduce execution time.

15-6 OS/390 V2R8.0 MVS Assembler Services Guide

Creating and Using Data Spaces
A data space is an area of virtual storage that a program can ask the system to
create. Its size can range from 4K bytes to 2 gigabytes, according to the program's
request. Unlike an address space, a data space contains only user data. Program
code cannot run in a data space.

The DSPSERV macro manages data spaces. The TYPE=BASIC parameter (the
default) tells the system that it is to manage a data space rather than a hiperspace.
Use DSPSERV to:

� Create a data space
� Release an area in a data space
� Delete a data space
� Expand the amount of storage in a data space currently available to a program
� Load an area of a data space into central storage
� Page an area of a data space out of central storage

Before it describes how your program can perform these actions, this chapter
describes how your program will reference data in the data space it creates.

Manipulating Data in a Data Space
Assembler instructions (such as load, store, add, and move character) manipulate
the data in a data space. When you use instructions to manipulate data in a data
space, your program must use the set of general purpose registers (GPRs) plus
another set of registers called access registers. Chapter 14, “Using Access
Registers” on page 14-1 describes how to use access registers to manipulate data
in data spaces.

Rules for Creating, Deleting, and Managing Data Spaces
The SCOPE parameter determines what kind of data space a program creates. The
three kinds of data spaces are SCOPE=SINGLE, SCOPE=ALL, and
SCOPE=COMMON:

� SCOPE=SINGLE data spaces

All programs can create, use, and delete SCOPE=SINGLE data spaces. Your
program would use data spaces in much the same way as it uses private
storage in an address space.

� SCOPE=ALL and SCOPE=COMMON data spaces

Supervisor state or PSW key 0 - 7 programs can create, use, and delete data
spaces that they can share with other programs. These data spaces have uses
similar to MVS common storage.

To protect data in data spaces, the system places certain restrictions on problem
state programs with PSW key 8 - F. The problem state programs with PSW key 8 -
F can use SCOPE=ALL and SCOPE=COMMON data spaces, but they cannot
create or delete them. They use them only under the control of supervisor state or
PSW key 0 - 7 programs. This chapter assumes that the data spaces your program
creates, uses, and deletes are SCOPE=SINGLE data spaces.

The following figure summarizes the rules for problem state programs with PSW
key 8 - F:

 Chapter 15. Data Spaces and Hiperspaces 15-7

There are other things that programs can do with data spaces. To do them,
however, your program must be supervisor state or have a PSW key 0 - 7. For
information on how these programs can use data spaces, see OS/390 MVS
Programming: Extended Addressability Guide.

Figure 15-3. Rules for How Problem State Programs with Key 8-F Can Use Data
Spaces

Function Rules

CREATE Can create SCOPE=SINGLE data spaces.

DELETE Can delete the data spaces it creates or owns, provided the PSW
key of the program matches the storage key of the data space.

RELEASE Can release storage in the data spaces it creates or owns,
provided the PSW key of the program matches the storage key
of the data space.

EXTEND Can extend the current size of the data spaces it owns.

Add entries to the
DU-AL

Can add entries to its DU-AL for the data spaces it created or
owns.

Add entries to the
PASN-AL

Can add entries to the PASN-AL for the data spaces it created or
owns, providing an entry is not already on the PASN-AL as a
result of an ALESERV ADD by a problem state program with
PSW key 8 - F. If the ALET is already on the PASN-AL, the
system does not create a duplicate entry, but the program can
still access the data space using the ALET that already exists.

Access a data
space through a
DU-AL or
PASN-AL

Can access a data space through its DU-AL and PASN-AL. The
entry for a SCOPE=ALL or SCOPE=COMMON data space
accessed through the PASN-AL must have been added to the
PASN-AL by a program in supervisor state or PSW key 0 - 7.
This program would have passed an ALET to the problem state
PSW key 8 - F program.

LOAD Can page areas into central storage from a data space created
by any other task in that address space.

OUT Can page areas out of central storage to a data space created by
any other task in that address space.

Creating a Data Space
To create a data space, issue the DSPSERV CREATE macro. MVS gives you
contiguous 31-bit virtual storage of the size you specify and initializes the storage to
hexadecimal zeroes.

On the DSPSERV macro, you are required to specify:

� The name of the data space (NAME parameter).

To ask DSPSERV to generate a data space name unique to the address
space, use the GENNAME parameter. DSPSERV will return the name it
generates at the location you specify on the OUTNAME parameter. See
“Choosing the Name of a Data Space” on page 15-9.

� A location where DSPSERV can return the STOKEN of the data space
(STOKEN parameter).

DSPSERV CREATE returns a STOKEN that you can use to identify the data
space to other DSPSERV services and to the ALESERV and DIV macros.

15-8 OS/390 V2R8.0 MVS Assembler Services Guide

Other information you might specify on the DSPSERV macro is:

� The maximum size of the data space and its initial size (BLOCKS parameter). If
you do not code BLOCKS, the data space size is determined by defaults set by
your installation. In this case, use the NUMBLKS parameter to tell the system
where to return the size of the data space. See “Specifying the Size of a Data
Space” on page 15-10.

� A location where DSPSERV can return the address (either 0 or 4096) of the
first available block of the data space (ORIGIN parameter). See “Identifying the
Origin of a Data Space” on page 15-11.

� The TTOKEN of the caller's job step task. If you want the data space to exist
after your task terminates, or to be made concurrently available to any existing
task in the job step as well as the creating task, assign ownership of the data
space to the job step task. “Sharing Data Spaces among Problem-State
Programs with PSW Keys 8 - F” on page 15-19 describes a program that
requests the TTOKEN of the job step task and then assigns ownership of a
data space to the job step task. To request the TTOKEN of the job step task,
issue the TCBTOKEN macro using the TYPE=JOBSTEP option.

Choosing the Name of a Data Space
The names of data spaces and hiperspaces must be unique within an address
space. You have a choice of choosing the name yourself or asking the system to
generate a unique name. To keep you from choosing names that it uses, MVS has
some specific rules for you to follow. These rules are listed in the DSPSERV
description under the NAME parameter in OS/390 MVS Programming: Assembler
Services Reference.

Use the GENNAME parameter to ask the system to generate a unique name.
GENNAME=YES generates a unique name that has, as its last one to three
characters, the first one to three characters of the name you specify on the NAME
parameter.

Example 1: If PAY␣␣␣␣␣ is the name you supply on the NAME parameter and you
code GENNAME=YES, the system generates the following name:

nccccPAY

where the system generates the digit n and the characters cccc, and appends the
characters PAY that you supplied.

Example 2: If J␣␣␣␣␣␣␣ is the name you supply on the NAME parameter and you
code GENNAME=YES, the system generates the following name:

nccccJ

GENNAME=COND checks the name you supply on the NAME parameter. If it is
already used for a data space or a hiperspace, DSPSERV supplies a name with
the format described for the GENNAME=YES parameter.

To learn the unique name that the system generates for the data space or
hiperspace you are creating, use the OUTNAME parameter.

 Chapter 15. Data Spaces and Hiperspaces 15-9

Specifying the Size of a Data Space
When you create a data space or hiperspace, you tell the system on the BLOCKS
parameter how large to make that space, the largest size being 524,288 blocks.
(The product of 524288 times 4K bytes is 2 gigabytes.) The addressing range for
the data space or hiperspace depends on the processor. If your processor does not
support an origin of zero, the limit is actually 4096 bytes less than 2 gigabytes.
Before you code BLOCKS, you should know two facts about how an installation
controls the use of virtual storage for data spaces and hiperspaces.

� An installation can set limits on the amount of storage available for each
address space for all data spaces and hiperspaces with a storage key of 8
through F. If your request for this kind of space (either on the DSPSERV
CREATE or DSPSERV EXTEND) would cause the installation limit to be
exceeded, the system rejects the request with a nonzero return code and a
reason code.

� An installation sets a default size for data spaces and hiperspaces; you should
know this size. If you do not use the BLOCKS parameter, the system creates a
data space with the default size. (The IBM default size is 239 blocks.)

The data spaces and hiperspaces your programs create have a storage key greater
than 7. The system adds the initial size of these spaces to the cumulative total of
all data spaces and hiperspaces for the address space and checks this total
against the installation limit. For information on the IBM defaults, see “Can an
Installation Limit the Use of Data Spaces and Hiperspaces?” on page 15-3.

The BLOCKS parameter allows you to specify a maximum size and initial size
value.

� The maximum size identifies the largest amount of storage you will need in the
data space.

� An initial size identifies the amount of the storage you will immediately use.

As you need more space in the data space or hiperspace, you can use the
DSPSERV EXTEND macro to increase the available storage. The amount of
available storage is called the current size . (At the creation of a data space or
hiperspace, the initial size is the same as the current size.) When it calculates the
cumulative total of data space and hiperspace storage, the system uses the current
size.

If you know the default size and want a data space or hiperspace smaller than or
equal to that size, use the BLOCKS=maximum size or omit the BLOCKS
parameter.

If you know what size data space or hiperspace you need and are not concerned
about exceeding the installation limit, set the maximum size and the initial size the
same. BLOCKS=0, the default, establishes a maximum size and initial size both set
to the default size.

If you do not know how large a data space or hiperspace you will eventually need
or you are concerned with exceeding the installation limit, set the maximum size to
the largest size you might possibly use and the initial size to a smaller amount, the
amount you currently need.

15-10 OS/390 V2R8.0 MVS Assembler Services Guide

Use the NUMBLKS parameter to request that the system return the size of the
space it creates for you. You would use NUMBLKS, for example, if you did not
specify BLOCKS and do not know the default size.

Figure 15-4 shows an example of using the BLOCKS parameter to request a data
space with a maximum size of 100,000 bytes of space and a current size (or initial
size) of 20,000 bytes. You would code the BLOCKS parameter on DSPSERV as
follows:

DSPSERV CREATE,. . .,BLOCKS=(DSPMAX,DSPINIT)
 .
DSPMAX DC A((1ððððð+4ð95)/4ð96) DATA SPACE MAXIMUM SIZE
DSPINIT DC A((2ðððð+4ð95)/4ð96) DATA SPACE INITIAL SIZE

Current size
20,000 bytes

Data Space

Maximum size
100,000 bytes

Not available for immediate
use by the program

Available for immediate
use by the program

Figure 15-4. Example of Specifying the Size of a Data Space

As your program uses more of the data space storage, it can use DSPSERV
EXTEND to extend the current size. “Extending the Current Size of a Data Space”
on page 15-14 describes extending the current size and includes an example of
how to extend the current size of the data space in Figure 15-4.

Identifying the Origin of a Data Space
Some processors do not allow the data space or hiperspace to start at zero; these
spaces start at address 4096 bytes. When you use DSPSERV CREATE, you can
count on the origin of the data space or hiperspace staying the same within the
same IPL. To learn the starting address, either:

� Create a data space 1 block larger than you need and then assume that the
space starts at address 4096, or

� Use the ORIGIN parameter.

If you use ORIGIN, the system returns the beginning address of the data space or
hiperspace at the location you specify.

Unless you specify a size of 2 gigabytes and the processor does not support an
origin of zero, the system gives you the size you request, regardless of the location
of the origin.

 Chapter 15. Data Spaces and Hiperspaces 15-11

An example of the problem you want to avoid in addressing data space storage is
as follows:

Suppose a program creates a data space of 1 megabyte and assumes the data
space starts at address 0 when it really begins at the address 4096. Then, if
the program uses an address lower than 4096 in the data space, the system
abends the program.

Example of Creating a Data Space
In the following example, a program creates a data space named TEMP. The
system returns the origin of the data space (either 0 or 4096) at location
DSPCORG.

 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
 .
DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 1ððððððð 1ð MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4ð95)/4ð96) NUMBER OF BLOCKS NEEDED FOR
\ A 1ð MILLION BYTE DATA SPACE

Establishing Addressability to a Data Space
Creating a data space does not give you access to the data space. You must use
the ALESERV macro and issue certain assembler instructions before you can use
the data space. The ALESERV macro adds an entry to an access list, either the
DU-AL or the PASN-AL. The STOKEN parameter identifies the data space and the
ALET parameter tells ALESERV where to return the access list entry token (that is,
the ALET).

Your program can add entries for the data spaces it created or owns to either the
DU-AL or the PASN-AL. Programs that the work unit represents can use the
DU-AL. All programs running in the primary address space can use the PASN-AL
for that address space. If you want all programs in the address space to have
access to the data space entries, your program should put the entries on the
PASN-AL. If you want to restrict the use of the entries, your program should put the
entries on the DU-AL. When you add an entry to the PASN-AL, however, the
system checks to see if an entry for that data space already exists on the
PASN-AL. If the ALET is already on the PASN-AL, the system does not create a
duplicate entry, but the program can still access the data space.

When your program wants to manipulate data in the data space, it places the ALET
in an AR and changes its ASC mode to AR mode. For examples of how to
establish addressability to data spaces and manipulate data in those data spaces,
see Chapter 14, Using Access Registers. “The ALESERV Macro” on page 14-9
describes how to add access list entries and gives an example.

Examples of Moving Data into and out of a Data Space
When using data spaces, you sometimes have large amounts of data to transfer
between the address space and the data space. This section contains examples of
two subroutines, both named COPYDATA, that show you how to use the Move
(MVC) and Move Long (MVCL) instructions to move a variable number of bytes into
and out of a data space. (You can also use the examples to help you move data

15-12 OS/390 V2R8.0 MVS Assembler Services Guide

within an address space.) The two examples perform exactly the same function;
both are included here to show you the relative coding effort required to use each
instruction.

The use of registers for the two examples is as follows:

 Input: AR/GR 2 Target area location
AR/GR 3 Source area location
GR 4 Signed 32-bit length of area

(Note: A negative length is treated as zero.)
 GR 14 Return address
 Output: AR/GR 2-14 Restored

GR 15 Return code of zero

The routines can be called in either primary or AR mode; however, during the time
they manipulate data in a data space, they must be in AR mode. The source and
target locations are assumed to be the same length (that is, the target location is
not filled with a padding character).

Example 1: Using the MVC Instruction: The first COPYDATA example uses the
MVC instruction to move the specified data in groups of 256 bytes:

COPYDATA DS ðD
BAKR 14,ð SAVE CALLER'S STATUS
LAE 12,ð(ð,ð) BASE REG AR
BALR 12,ð BASE REG GR

 USING \,12 ADDRESSABILITY
 .

LTR 4,4 IS LENGTH NEGATIVE OR ZERO?
BNP COPYDONE YES, RETURN TO CALLER

 .
S 4,=F'256' SUBTRACT 256 FROM LENGTH
BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO

\ THEN GO COPY LAST PART

 .
COPYLOOP DS ðH

MVC ð(256,2),ð(3) COPY 256 BYTES
LA 2,256(,2) ADD 256 TO TARGET ADDRESS
LA 3,256(,3) ADD 256 TO SOURCE ADDRESS
S 4,=F'256' SUBTRACT 256 FROM LENGTH
BP COPYLOOP IF LENGTH STILL GREATER THAN

\ ZERO, THEN LOOP BACK

COPYLAST DS ðH
LA 4,255(,4) ADD 255 TO LENGTH
EX 4,COPYINST EXECUTE A MVC TO COPY THE

\ LAST PART OF THE DATA
B COPYDONE BRANCH TO EXIT CODE

COPYINST MVC ð(ð,2),ð(3) EXECUTED INSTRUCTION
COPYDONE DS ðH
 .
\ EXIT CODE

LA 15,ð SET RETURN CODE OF ð
PR RETURN TO CALLER

Example 2: Using the MVCL Instruction: The second COPYDATA example uses
the MVCL instruction to move the specified data in groups of 1048576 bytes:

 Chapter 15. Data Spaces and Hiperspaces 15-13

COPYDATA DS ðD
BAKR 14,ð SAVE CALLER'S STATUS
LAE 12,ð(ð,ð) BASE REG AR
BALR 12,ð BASE REG GR

 USING \,12 ADDRESSABILITY
 .

LA 6,ð(,2) COPY TARGET ADDRESS
LA 7,ð(,3) COPY SOURCE ADDRESS
LTR 8,4 COPY AND TEST LENGTH
BNP COPYDONE EXIT IF LENGTH NEGATIVE OR ZERO

 .
LAE 4,ð(ð,3) COPY SOURCE AR/GR
L 9,COPYLEN GET LENGTH FOR MVCL
SR 8,9 SUBTRACT LENGTH OF COPY
BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO

\ THEN GO COPY LAST PART
 .
COPYLOOP DS ðH

LR 3,9 GET TARGET LENGTH FOR MVCL
LR 5,9 GET SOURCE LENGTH FOR MVCL

 MVCL 2,4 COPY DATA
ALR 6,9 ADD COPYLEN TO TARGET ADDRESS
ALR 7,9 ADD COPYLEN TO SOURCE ADDRESS
LR 2,6 COPY NEW TARGET ADDRESS
LR 4,7 COPY NEW SOURCE ADDRESS
SR 8,9 SUBTRACT COPYLEN FROM LENGTH
BP COPYLOOP IF LENGTH STILL GREATER THAN

\ ZERO, THEN LOOP BACK
 .
COPYLAST DS ðH
 AR 8,9 ADD COPYLEN

LR 3,8 COPY TARGET LENGTH FOR MVCL
LR 5,8 COPY SOURCE LENGTH FOR MVCL
MVCL 2,4 COPY LAST PART OF THE DATA
B COPYDONE BRANCH TO EXIT CODE

COPYLEN DC F'1ð48576' AMOUNT TO MOVE ON EACH MVCL
COPYDONE DS ðH
 .
\ EXIT CODE

LA 15,ð SET RETURN CODE OF ð
PR RETURN TO CALLER

Programming Notes for Example 2:

� The MVCL instruction uses GPRs 2, 3, 4, and 5.

� The ALR instruction uses GPRs 6, 7, 8, and 9.

� The maximum amount of data that one execution of the MVCL instruction can
move is 2òô-1 bytes (16777215 bytes).

Extending the Current Size of a Data Space
When you create a data space and specify a maximum size larger than the initial
size, you can use DSPSERV EXTEND to increase the current size as your program
uses more storage in the data space. The BLOCKS parameter specifies the
amount of storage you want to add to the current size of the data space.

15-14 OS/390 V2R8.0 MVS Assembler Services Guide

The system increases the data space by the amount you specify, unless that
amount would cause the system to exceed one of the following:

� The data space maximum size, as specified by the BLOCKS parameter on
DSPSERV CREATE when the data space was created

� The installation limit for the combined total of data space and hiperspace
storage with storage key 8 -F per address space. These limits are either the
system default or are set in the installation exit IEFUSI.

If one of those limits would be exceeded, the VAR parameter tells the system how
to satisfy the EXTEND request.

� VAR=YES (the variable request) tells the system to extend the data space as
much as possible, without exceeding the limits set by the data space maximum
size or the installation limits. In other words, the system extends the data space
to one of the following sizes, depending on which is smaller:

– The maximum size specified on the BLOCKS parameter

– The largest size that would still keep the combined total of data space and
hiperspace storage within the installation limit.

� VAR=NO (the default) tells the system to:

– Abend the caller, if the extended size would exceed the maximum size
specified at the creation of the data space

– Reject the request, if the data space has storage key 8 - F and the request
would exceed the installation limits.

If you use VAR=YES when you issue the EXTEND request, use the NUMBLKS
parameter to find out the size by which the system extended the data space.

Figure 15-4 on page 15-11 is an example of using the EXTEND request, where
the current (and initial) size is 20,000 bytes and the maximum size is 100,000
bytes. If you want to increase the current size to 50,000 bytes, adding 30,000
blocks to the current size, you could code the following:

 DSPSERV EXTEND,STOKEN=DSSTOK,BLOCKS=DSPDELTA
 .
DSPDELTA DC A((3ðððð+4ð95)/4ð96) DATA SPACE ADDITIONAL SIZE
DSSTOK DS CL8 DATA SPACE STOKEN

The program can now use 50,000 bytes in the 100,000-byte data space, as shown
in Figure 15-5 on page 15-16:

 Chapter 15. Data Spaces and Hiperspaces 15-15

Current size
50,000 bytes

Data Space

Maximum size
100,000 bytes

Figure 15-5. Example of Extending the Current Size of a Data Space

Because the example did not include the VAR parameter, the system uses the
default, VAR=NO.

Releasing Data Space Storage
Your program needs to release storage when it used a data space for one purpose
and wants to reuse it for another purpose, or when your program is finished using
the area. To release the virtual storage of a data space, use the DSPSERV
RELEASE macro. (Data space release is similar to PGSER RELEASE for an
address space.) Specify the STOKEN to identify the data space and the START
and BLOCKS parameters to identify the beginning and the length of the area you
need to release.

Releasing storage in a data space requires that a problem state program with PSW
key 8 - F be the owner or creator of the data space and have the PSW key that
matches the storage key of the data space.

Use DSPSERV RELEASE instead of the MVCL instruction to clear large areas of
data space storage because:

� DSPSERV RELEASE is faster than MVCL for very large areas.

� Pages released through DSPSERV RELEASE do not occupy space in real,
expanded, or auxiliary storage.

Paging Data Space Storage Areas into and out of Central Storage
If you expect to be processing through one or more 4K blocks of data space
storage, you can use DSPSERV LOAD to load these pages into central storage. By
loading an area of a data space into central storage, you reduce the number of
page faults that occur while you sequentially process through that area. DSPSERV
LOAD requires that you specify the STOKEN of the data space (on the STOKEN
parameter), the beginning address of the area (on the START parameter), and the
size of the area (on the BLOCKS parameter). The beginning address has to be on
a 4K-byte boundary, and the size has to be an increment of 4K blocks. (Note that

15-16 OS/390 V2R8.0 MVS Assembler Services Guide

DSPSERV LOAD performs the same action for a data spaces as the PGSER
macro with the LOAD parameter does for an address space.)

Issuing DSPSERV LOAD does not guarantee that the pages will be in central
storage; the system honors your request according to the availability of central
storage. Also, after the pages are loaded, page faults might occur elsewhere in the
system and cause the system to move those pages out of central storage.

If you finish processing through one or more 4K blocks of data space storage, you
can use DSPSERV OUT to page the area out of central storage. The system will
make these real storage frames available for reuse. DSPSERV OUT requires that
you specify the STOKEN, the beginning address of the area, and the size of the
area. (Note that DSPSERV OUT corresponds to the PGSER macro with the OUT
parameter.)

Any task in an address space can page areas into (and out of) central storage from
(or to) a data space created by any other task in that address space. Therefore,
you can attach a subtask that can preload pages from a data space into central
storage for use by another subtask.

When your program has no further need for the data in a certain area of a data
space, it can use DSPSERV RELEASE to free that storage.

Deleting a Data Space
When a program does not need the data space any more, it should free the virtual
storage and remove the entry from the access list. The required parameter on the
DSPSERV DELETE macro specifies the STOKEN of the data space to be deleted.
A problem-state program with PSW key 8 - F must be the owner or creator of the
data space and have a PSW key that matches the storage key of the data space.

IBM recommends that you explicitly delete a data space before the owning task
terminates to free resources as soon as they are no longer needed, and to avoid
excess processing at termination time. However, if you do not delete the data
space, the system does it for you.

Using Callable Cell Pool Services to Manage Data Space Areas
You can use the callable cell pool services to manage the virtual area in a data
space. Callable cell pool services allow you to divide data space storage into areas
(cells) of the size you choose. Specifically, you can:

� Create cell pools within a data space
� Expand a cell pool, or make it smaller
� Make the cells available for use by your program or by other programs.

A cell pool consists of one anchor, up to 65,536 extents, and areas of cells, all of
which are the same size. The anchor and the extents allow callable cell pool
services to keep track of the cell pool.

This section gives an example of one way a program would use the callable cell
pool services. This example has only one cell pool with one extent. In the example,
you will see that the program has to reserve storage for the anchor and the extent
and get their addresses. For more information on how to use the services and an
example that includes assembler instructions, see Chapter 12, Callable Cell Pool
Services.

 Chapter 15. Data Spaces and Hiperspaces 15-17

Example of Using Callable Cell Pool Services with a Data Space: Assume that you
have an application that requires up to 4,000 records 512 bytes in length. You have
decided that a data space is the best place to hold this data. Callable cell pool
services can help you build a cell pool, each cell having a size of 512 bytes. The
steps are as follows:

1. Create a data space (DSPSERV CREATE macro)

Specify a size large enough to hold 2,048,000 bytes of data (4000 times 512)
plus the data structures that the callable cell pool services need.

2. Add the data space to an access list (ALESERV macro)

The choice of DU-AL or PASN-AL depends on how you plan to share the data
space.

3. Reserve storage for the anchor and obtain its address

The anchor (of 64 bytes) can be in the address space or the data space. For
purposes of this example, the anchor is in the data space.

4. Initialize the anchor (CSRPBLD service) for the cell pool

Input to CSRPBLD includes the ALET of the data space, the address of the
anchor, the name you assign to the pool, and the size of each cell (in this case,
512 bytes). Because the anchor is in the data space, the caller must be in AR
mode.

5. Reserve storage for the extent and obtain the address of the extent

The size of the extent is 128 bytes plus 1 byte for every eight cells. 128 bytes
plus 500 (4000 ÷ 8) bytes equals 628 bytes. Callable cell pool services rounds
this number to the next doubleword — 632 bytes.

6. Obtain the address of the beginning of the cell storage

Add the size of the anchor (64 bytes) and the size of the extent (628 bytes) to
get the location where the cell storage can start. You might want to make this
starting address on a given boundary, such as a doubleword or page.

7. Add an extent for the cell pool and establish a connection between the extent
and the cells (CSRPEXP service)

Input to CSRPEXP includes the ALET for the data space, the address of the
anchor, the address of the extent, the size of the extent (in this case, 632
bytes), and the starting address of the cell storage. Because the extent is in the
data space, the caller must be in AR mode.

At this point, the cell pool structures are in place and users can begin to request
cells. Figure 15-6 on page 15-19 describes the areas you have defined in the data
space.

15-18 OS/390 V2R8.0 MVS Assembler Services Guide

AR

ALET

anchor

Access List

Data Space

632 bytes

64 bytes

extent

The pool of
4000 cells,
each 512
bytes in size

2048000 bytes

Figure 15-6. Example of Using Callable Cell Pool Services for Data Spaces

A program that has addressability to the data space can then obtain a cell (or cells)
through the CSRPGET service. Input to CSRPGET includes the ALET of the space
and the address of the anchor. CSRPGET returns the address of the cell (or cells)
it allocates.

Programming Notes for the Example:

� The origin of the data space might not be zero for the processor the program is
running on. To allow the program to run on more than one processor, use an
origin of 4K bytes or use the ORIGIN parameter on DSPSERV to obtain the
address of the origin.

� If you need more than one extent, you might have a field that contains the
ending address of the last cell pool storage. A program then could use that
address to set up another extent and more cells.

� To use callable cell pool services, the caller must be executing in a state or
mode or key in which it can write to the storage containing the anchor and the
extent data areas.

� The anchor and the extents must be in the same address space or data space.
The cells can be in another space.

Sharing Data Spaces among Problem-State Programs with PSW Keys
8 - F

Problem-state programs with PSW key 8 - F can share data spaces with other
programs in several ways:

� A problem-state program with PSW key 8 - F can create a data space and
place an entry for the data space on its DU-AL. Then the program can attach a
subtask and pass a copy of its DU-AL to this subtask, and pass the ALET.
However, no existing task in the job step can use this new ALET value.

� A problem-state program with PSW key 8 - F can create a data space, add an
entry to the PASN-AL, and pass the ALET to other problem-state programs
running under any task in the job step.

� A problem-state program with PSW key 8 - F can create a data space and
pass the STOKEN to a program in supervisor state. The supervisor-state
program can add the entry to either of its access lists.

 Chapter 15. Data Spaces and Hiperspaces 15-19

By attaching a subtask and passing a copy of the DU-AL, a program can share its
existing data spaces with a program that runs under the subtask. In this way, the
two programs can share the SCOPE=SINGLE data spaces that were represented
on the DU-AL at the time of the attach. The ALCOPY=YES parameter on the
ATTACH or ATTACHX macro allows a problem-state program to pass a copy of its
DU-AL to the subtask the problem-state program is attaching. Passing only a part
of the DU-AL is not possible.

A program can use the ETXR option on ATTACH or ATTACHX to specify the
address of an end-of-task routine to be given control after the new task is normally
or abnormally terminated. The exit routine receives control when the originating
task becomes active after the subtask is terminated. The routine runs
asynchronously under the originating task. Upon entry, the routine has an empty
dispatchable unit access list (DU-AL). To establish addressability to a data space
created by the originating task and shared with the terminating subtask, the routine
can use the ALESERV macro with the ADD parameter, and specify the STOKEN of
the data space.

In the following example, shown in Figure 15-7, assume that program PGM1
(running under TCBA) has created a SCOPE=SINGLE data space DS1 and
established addressability to it. PGM1's DU-AL has several entries on it, including
one for DS1. PGM1 uses the ATTACHX macro with the ALCOPY=YES parameter
to attach subtask TCBB and pass a copy of its DU-AL to TCBB. It can also pass
ALETs in a parameter list to PGM2. Upon return from ATTACHX, PGM1 and PGM2
have access to the same data spaces.

The figure shows the two programs, PGM1 and PGM2, sharing the same data
space.

Address Space
DS1

DS1

TCBA

TCBB

PGM1

PGM2

ATTACHX..ALCOPY=YES

ALETDS1DSF

DU-AL

DU-AL

DS1

SCOPE=SINGLE

Figure 15-7. Two Problem Programs Sharing a SCOPE=SINGLE Data Space

An example of the code that attaches TCBB and passes a copy of the DU-AL is as
follows:

15-20 OS/390 V2R8.0 MVS Assembler Services Guide

 DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK, \
 ORIGIN=DSORG
 ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET
 ATTACHX EP=PGM2,ALCOPY=YES
 .
 .
DSNAME DC CL8'TEMP ' DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F ORIGIN RETURNED
DSSIZE DC F'256ð' DATA SPACE 1ð MEGABYTES IN SIZE

The DU-ALs do not necessarily stay identical. After the attach, PGM1 and PGM2
can add and delete entries on their own DU-ALs; these changes are not made to
the other DU-AL.

If TCBA terminates, the system deletes the data space that belonged to TCBA and
terminates PGM2.

Sharing Data Spaces through the PASN-AL
One way many problem-state programs with PSW key 8 - F can share the data in a
data space is by placing the entry for the data space on the PASN-AL and
obtaining the ALET. In this way, the programs can pass the ALET to other
problem-state programs in the address space, allowing them to share the data in
the data space.

The following example describes a problem-state program with PSW key 8 - F
creating a data space and sharing the data in that space with other programs in the
address space. Additionally, the program assigns ownership of the data space to its
job step task. This assignment allows the data space to be used by other programs
even after the creating program's task terminates. In the example, PGM1 creates a
10-megabyte data space named SPACE1. It uses the TTOKEN parameter on
DSPSERV to assign ownership to its job step task. Before it issued the DSPSERV
CREATE, however, it had to find out the TTOKEN of its job step task. To do this, it
issued the TCBTOKEN macro.

TCBTOKEN TTOKEN=JSTTTOK,TYPE=JOBSTEP
 .
DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK,ORIGIN=DSORG,
 TTOKEN=JSTTTOK
ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET,AL=PASN
 .
 .
DSNAME DC CL8'SPACE1 ' DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F ORIGIN RETURNED
DSSIZE DC F'256ð' DATA SPACE 1ð MEGABYTES IN SIZE
JSTTTOK DS CL8 TTOKEN OF JOB STEP TASK

Unless PGM1 or a program running under the job step TCB explicitly deletes the
data space, the system deletes the data space when the job step task terminates.

Note that when PGM1 issues the ALESERV ADD to add the entry for DS1 to the
PASN-AL, the system checks to see if an entry for DS1 already exists on the
PASN-AL. If an entry already exists, and a problem-state program with PSW key 8

 Chapter 15. Data Spaces and Hiperspaces 15-21

- F added the entry, the system rejects the ALESERV ADD request. However,
PGM1 can still access the data space. The system will simply not create a
duplicate entry.

Example of Mapping a Data-in-Virtual Object to a Data Space
Through data-in-virtual, your program can map a VSAM linear data set to a data
space. Use DIV macros to set up the relationship between the object and the data
space. Setting up this relationship is called “mapping.” In this case, the virtual
storage area through which you view the object (called the “window”) is in the data
space. The STOKEN parameter on the DIV MAP macro identifies the data space.

The task that issues the DIV IDENTIFY owns the pointers and structures
associated with the ID that DIV returns. Any program can use DIV IDENTIFY;
however, the system checks the authority of programs that try to use subsequent
DIV services for the same ID.

For problem-state programs with PSW key 8 - F, data-in-virtual allows only the
issuer of the DIV IDENTIFY to use other DIV services for the ID. That means, for
example, that if a problem-state program with PSW key 8 issues the DIV
IDENTIFY, another problem-state program with PSW key 8 cannot issue DIV MAP
for the same ID. The issuer of DIV IDENTIFY can use DIV MAP to map a VSAM
linear data set to a data space window, providing the program owns or created the
data space.

Your program can map one data-in-virtual object into more than one data space.
Or, it can map several data-in-virtual objects within a single data space. In this way,
data spaces can provide large reference areas available to your program.

Mapping a Data-in-Virtual Object to a Data Space
The following example maps a data-in-virtual object in a data space. The size of
the data space is 10 megabytes, or 2560 blocks. (A block is 4K bytes.)

\ CREATE A DATA SPACE, ADD AN ACCESS LIST ENTRY FOR IT
\ AND MAP A DATA-IN-VIRTUAL OBJECT INTO DATA SPACE STORAGE
 .
 DSPSERV CREATE,NAME=DSNAME,STOKEN=DSSTOK,BLOCKS=DSSIZE,ORIGIN=DSORG
 ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET,AL=WORKUNIT,ACCESS=PUBLIC
 .
\ EQUATE DATA SPACE STORAGE TO OBJAREA
 .
 L 4,DSORG
 LAM 4,4,DSALET
 USING OBJAREA,4
 .

\ MAP THE OBJECT
 .
 DIV IDENTIFY,ID=OBJID,TYPE=DA,DDNAME=OBJDD
 DIV ACCESS,ID=OBJID,MODE=UPDATE
 DIV MAP,ID=OBJID,AREA=OBJAREA,STOKEN=DSSTOK
 .
\ USE THE ALET IN DSALET TO REFERENCE THE
\ DATA SPACE STORAGE MAPPING THE OBJECT.

15-22 OS/390 V2R8.0 MVS Assembler Services Guide

 .
\ SAVE ANY CHANGES TO THE OBJECT WITH DIV SAVE
 .
 DIV SAVE,ID=OBJID
 DIV UNMAP,ID=OBJID,AREA=DSORG
 DIV UNACCESS,ID=OBJID
 DIV UNIDENTIFY,ID=OBJID
 .

\ DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE
 .
 ALESERV DELETE,ALET=DSALET
 DSPSERV DELETE,STOKEN=DSSTOK
 .
DSNAME DC CL8'MYSPACE ' DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F DATA SPACE ORIGIN
DSSIZE DC F'256ð' DATA SPACE 1ð MEGABYTES IN SIZE
OBJID DS CL8 DIV OBJECT ID
OBJDD DC AL1(7),CL7'MYDD ' DIV OBJECT DDNAME
OBJAREA DSECT WINDOW IN DATA SPACE
OBJWORD1 DS F
OBJWORD2 DS F

Using Data Spaces Efficiently
Although a task can own many data spaces, it is important that it reference these
data spaces carefully. It is much more efficient for the system to reference the
same data space ten times than it is to reference each of ten data spaces one
time. For example, an application might have a master application region that has
many users, each one having a data space. If each program completes its work
with one data space before it starts work with another data space, performance is
optimized.

Example of Creating, Using, and Deleting a Data Space
This section contains an example of a problem state program creating, establishing
addressability to, using, and deleting the data space named TEMP. The first lines
of code create the data space and establish addressability to the data space. To
keep the example simple, the code does not include the checking of the return
code from the DSPSERV macro or the ALESERV macro. You should, however,
always check return codes.

The lines of code in the middle of the example illustrate how, with the code in AR
mode, the familiar assembler instructions store, load, and move a simple character
string into the data space and move it within the data space. The example ends
with the program deleting the data space entry from the access list, deleting the
data space, and returning control to the caller.

DSPEXMPL CSECT
DSPEXMPL AMODE 31
DSPEXMPL RMODE ANY

BAKR 14,ð SAVE CALLER'S STATUS ON STACK
SAC 512 SWITCH INTO AR MODE
SYSSTATE ASCENV=AR ENSURE PROPER CODE GENERATION

 .

 Chapter 15. Data Spaces and Hiperspaces 15-23

LAE 12,ð SET BASE REGISTER AR
BASR 12,ð SET BASE REGISTER GPR

 USING \,12
 .
 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 .
\ ESTABLISH ADDRESSABILITY TO THE DATA SPACE
 .

LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GPR2

 USING DSPCMAP,2 INFORM ASSEMBLER
 .
\ MANIPULATE DATA IN THE DATA SPACE
 .
 L 3,DATAIN

ST 3,DSPWRD1 STORE INTO DATA SPACE WRD1
 .

MVC DSPWRD2,DATAIN COPY DATA FROM PRIMARY SPACE
\ INTO THE DATA SPACE

MVC DSPWRD3,DSPWRD2 COPY DATA FROM ONE LOCATION
\ IN THE DATA SPACE TO ANOTHER

MVC DATAOUT,DSPWRD3 COPY DATA FROM DATA SPACE
\ INTO THE PRIMARY SPACE
 .
\ DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE
 .

ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS

 .
PR RETURN TO CALLER

 .

 DS ðD
DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 1ððððððð 1ð MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4ð95)/4ð96) NUMBER OF BLOCKS NEEDED FOR
\ A 1ð MILLION BYTE DATA SPACE
DATAIN DC CL4'ABCD'
DATAOUT DS CL4
 .
DSPCMAP DSECT MAPPING OF DATA SPACE STORAGE
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3
 END

Note that you cannot code ACCESS=PRIVATE on the ALESERV macro when you
request an ALET for a data space; all data space entries are public.

15-24 OS/390 V2R8.0 MVS Assembler Services Guide

Dumping Storage in a Data Space
On the SNAPX macro, use the DSPSTOR parameter to dump storage from any
addressable data space that the caller can access.

For the syntax of SNAPX, see OS/390 MVS Programming: Assembler Services
Reference.

 Using Checkpoint/Restart
A program can use checkpoint/restart while it has one or more entries for a data
space on its access list (DU-AL or PASN-AL). If the program has specified on the
ALESERV macro that the system is to ignore entries made to the access list for the
data space for checkpoint/restart processing (CHKPT=IGNORE), the CHKPT macro
processes successfully.

A program that specifies CHKPT=IGNORE assumes full responsibility for managing
the data space storage. Managing the data space storage includes the following:

� If any program depends on the contents of the data space and the data cannot
be recreated or obtained elsewhere, the responsible program must save the
contents of the data space prior to the checkpoint operation.

� Once the checkpoint operation has completed, the responsible program must
perform the following during restart processing to successfully manage the data
space storage.

1. Ensure that the data space exists. The original data space might or might
not exist. If the original data space does not exist, the responsible program
must issue DSPSERV CREATE to recreate the data space.

2. Issue ALESERV ADD of the data space, original or recreated, to the
program's access list to obtain a new ALET.

3. If, in addition to having a dependency on the data space, any program also
depends on the contents of the data space storage, the responsible
program must refresh the contents of the data space storage. The program
must use the new ALET to reference the data space.

4. The responsible program must make the new ALET available to any
program that has a dependency on the data space. The STOKEN, changed
or unchanged, must be made available to any program that needs to issue
ALESERV ADD to access the data space.

See DFSMS/MVS Checkpoint/Restart information about the CHKPT macro.

Creating and Using Hiperspaces
A hiperspace is a range of up to two gigabytes of contiguous virtual storage
addresses that a program can use as a buffer. Like a data space, a hiperspace
holds only data, not common areas or system data; code does not execute in a
hiperspace. Unlike data in a data space, data in a hiperspace is not directly
addressable.

The DSPSERV macro manages hiperspaces. The TYPE=HIPERSPACE parameter
tells the system that it is to manage a hiperspace rather than a data space. Use
DSPSERV to:

 Chapter 15. Data Spaces and Hiperspaces 15-25

� Create a hiperspace
� Release an area in a hiperspace
� Delete a hiperspace
� Expand the amount of storage in a hiperspace currently available to a program.

To manipulate data in a hiperspace, your program brings the data, in blocks of 4K
bytes, into a buffer area in the address space. The program can use the data only
while it is in the address space. You can think of this buffer area as a “view” into
the hiperspace. The HSPSERV macro read operation manages the transfer of the
data to the address space buffer area. If you make updates to the data, you can
write it back to the hiperspace through the HSPSERV write operation.

Address Space Hiperspace

HSPSERV...

HSPSERV...

buffer area

data area

write
 operatio

n

read operatio
n

The data in the hiperspace and the buffer area in the address space must both
start on a 4K byte boundary.

Use this section to help you create, use, and delete hiperspaces. It describes some
of the characteristics of hiperspaces, how to move data in and out of a hiperspace;
and how data-in-virtual can help you control data in hiperspaces. In addition,
OS/390 MVS Programming: Assembler Services Reference contains the syntax and
parameter descriptions for the macros that are mentioned in this section.

 Standard Hiperspaces
Your program can create a standard hiperspace, one that is backed with expanded
storage and auxiliary storage, if necessary. Through the buffer area in the address
space, your program can view or “scroll” through the hiperspace. Scrolling allows
you to make interim changes to data without changing the data on DASD.
HSTYPE=SCROLL on DSPSERV creates a standard hiperspace. HSPSERV
SWRITE and HSPSERV SREAD transfer data to and from a standard hiperspace.

The data in a standard hiperspace is predictable; that is, your program can write
data to a standard hiperspace and count on retrieving it.

The best way to describe how your program can scroll through a standard
hiperspace is through an example. Figure 15-8 on page 15-27 shows a hiperspace

15-26 OS/390 V2R8.0 MVS Assembler Services Guide

that has four scroll areas, A, B, C, and D. After the program issues an HSPSERV
SREAD for hiperspace area A, it can make changes to the data in the buffer area
in its address space. HSPSERV SWRITE then saves those changes. In a similar
manner, the program can read, make changes, and save the data in areas B, C,
and D. When the program reads area A again, it finds the same data that it wrote
to the area in the previous HSPSERV SWRITE to that area.

Address Space Hiperspace

buffer area

HSPSERV SREAD...

HSPSERV SREAD...
HSPSERV SWRITE...

HSPSERV SWRITE...

area A

area B

area C

area D

Figure 15-8. Example of Scrolling through a Standard Hiperspace

A standard hiperspace gives your program an area where it can:

� Store data, either generated by your program or moved (through the address
space buffers) from DASD

� Scroll through large amounts of data

After you finish using the hiperspace, you can:

� Move the changed data (through address space buffers) to DASD, making the
hiperspace data permanent

� Delete the hiperspace data with the deletion of the hiperspace or the
termination of the owner of the hiperspace, treating the hiperspace data as
temporary.

If your application wants to save a permanent copy of the data in the hiperspace,
consider using the services of data-in-virtual. See “Using Data-in-Virtual with
Hiperspaces” on page 15-37.

A second type of hiperspace, the expanded storage only (ESO) hiperspace is
backed with expanded storage only and is available to supervisor-state programs or
programs with PSW key 0 - 7. These hiperspaces are described in the books that
are available to writers of authorized programs.

 Chapter 15. Data Spaces and Hiperspaces 15-27

Shared and Non-shared Standard Hiperspaces
Standard hiperspaces are either non-shared or shared. Your program can create
and delete non-shared standard hiperspaces ; it can use HSPSERV to access the
non-shared standard hiperspaces that it owns. With help from a supervisor-state
program or a program with PSW key 0 - 7, your program can also access a
non-shared standard hiperspace that it does not own. Shared standard
hiperspaces can be shared among programs in many address spaces. Although
your programs can use the shared standard hiperspaces, they cannot create and
delete them. Therefore, the sharing of hiperspaces must be done under the control
of supervisor-state programs or programs with PSW key 0 - 7. Shared standard
hiperspaces and the subject of sharing hiperspaces are described in the application
development books that are available to writers of authorized programs. The
chapter in this book describes how you create and delete the non-shared standard
hiperspaces and use these hiperspaces for your own program.

Figure 15-9 shows some important facts about non-shared standard hiperspaces:

Figure 15-9. Facts about a Non-shared Standard Hiperspace

Can it map a VSAM linear data set? Yes

Can it be a data-in-virtual object? Yes, if the hiperspace has not
been the target of ALESERV
ADD.

How do you write data to the hiperspace? By using HSPSERV SWRITE

How do you read data from the hiperspace? By using HSPSERV SREAD

What happens to the data in the hiperspace when
the system swaps the owning address space out?

The system preserves the
data.

Creating a Hiperspace
To create a non-shared standard hiperspace, issue the DSPSERV CREATE macro
with the TYPE=HIPERSPACE and HSTYPE=SCROLL parameters. The HSTYPE
parameter tells the system you want a standard hiperspace. HSTYPE=SCROLL is
the default. MVS allocates contiguous 31-bit virtual storage of the size you specify
and initializes the storage to hexadecimal zeroes. The entire hiperspace has the
storage key 8. Because many of the same rules that apply to creating data spaces
also apply to creating hiperspaces, this section sometimes refers you to sections
earlier in Creating a Data Space.

On the DSPSERV macro, you are required to specify:

� The name of the hiperspace (NAME parameter)

To ask DSPSERV to generate a hiperspace name unique to the address
space, use the GENNAME parameter. DSPSERV will return the name it
generates at the location you specify on the OUTNAME parameter. Specifying
a name for a hiperspace follows the same rules as specifying a name for a
data space. See “Choosing the Name of a Data Space” on page 15-9.

� A location where DSPSERV is to return the STOKEN of the hiperspace
(STOKEN parameter)

DSPSERV CREATE returns a STOKEN that you can use to identify the
hiperspace to other DSPSERV services and to the HSPSERV and DIV macros.

Other information you might specify on the DSPSERV macro is:

15-28 OS/390 V2R8.0 MVS Assembler Services Guide

� The maximum size of the hiperspace and its initial size (BLOCKS parameter). If
you do not code BLOCKS, the hiperspace size is determined by defaults set by
your installation. In this case, use the NUMBLKS parameter to tell the system
where to return the size of the hiperspace. Specifying the size of a hiperspace
follows the same rules as specifying the size of a data space. See “Specifying
the Size of a Data Space” on page 15-10.

� A location where DSPSERV can return the address (either 0 or 4096) of the
first available block of the hiperspace (ORIGIN parameter). Locating the origin
of a hiperspace is the same as locating the origin of a data space. See
“Identifying the Origin of a Data Space” on page 15-11.

Example of Creating a Standard Hiperspace
The following example creates a non-shared standard hiperspace, 20 blocks in
size, named SCROLLHS.

\
 DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
 BLOCKS=2ð,STOKEN=HSSTOKEN
\
HSNAME DC CL8'SCROLLHS' \ NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 \ STOKEN OF THE HIPERSPACE

Transferring Data To and From Hiperspaces
Before it can reference data or manipulate data in a hiperspace, the program must
bring the data into the address space. The HSPSERV macro performs the transfer
of data between the address space and the hiperspace.

On the HSPSERV macro, the write operation transfers data from the address
space to the hiperspace. The read operation transfers the data from the
hiperspace to the address space. HSPSERV allows multiple reads and writes to
occur at one time. This means that one HSPSERV request can read more than one
data area in a hiperspace to an equal number of data areas in an address space.
Likewise, one HSPSERV request can write data from more than one buffer area in
an address space to an equal number of areas in a hiperspace.

Figure 15-10 shows three virtual storage areas that you identify on the HSPSERV
macro when you request a data transfer:

 � The hiperspace

� The buffer area in the address space that is the source of the write operation
and the target of the read operation

� The data area in the hiperspace that is the target of the write operation and the
source of the read operation.

 Chapter 15. Data Spaces and Hiperspaces 15-29

Address Space Hiperspace

HSPSERV...

HSPSERV...

buffer area

data area

write
 operatio

n

read operatio
n

After a read operation,
the data is preserved
unless you specify
RELEASE=YES.

After a write operation,
the data is unpredictable.
The buffer area is
available for reuse.

Figure 15-10. Illustration of the HSPSERV Write and Read Operations

On the HSPSERV macro, you identify the hiperspace and the areas in the address
space and the hiperspace:

� STOKEN specifies the STOKEN of the hiperspace.

� NUMRANGE specifies the number of data areas the system is to read or write.

� RANGLIST specifies a list of ranges that indicate the boundaries of the buffer
areas in the address space and the data area in the hiperspace.

HSPSERV has certain restrictions on these areas. Two restrictions are that the
data areas must start on a 4K byte boundary and their size must be in multiples of
4K bytes. Other requirements are listed in the description of HSPSERV in OS/390
MVS Programming: Assembler Services Reference. Read the requirements
carefully before you issue the macro.

The system does not always preserve the data in the areas that are the source for
the read and write operations. Figure 15-10 tells you what the system does with
the areas after it completes the transfer.

Read and Write Operations for Standard Hiperspaces
After the write operation for standard hiperspaces, the system does not preserve
the data in the address space. It assumes that you have another use for that buffer
area, such as using it as the target of another HSPSERV SREAD operation.

After the read operation for standard hiperspaces, the system gives you a choice of
saving the source data in the hiperspace. If you will use the data in the hiperspace
again, ask the system to preserve the data; specify RELEASE=NO on HSPSERV
SREAD. Unless a subsequent SWRITE request changes the data in the source
area, that same data will be available for subsequent SREAD requests.
RELEASE=NO provides your program with a backup copy of the data in the
hiperspace.

15-30 OS/390 V2R8.0 MVS Assembler Services Guide

If you specify RELEASE=YES on HSPSERV SREAD, the system releases the
hiperspace pages after the read operation and returns the expanded storage (or
auxiliary storage) that backs the source area in the hiperspace. RELEASE=YES
tells the system that your program does not plan to use the source area in the
hiperspace as a copy of the data after the read operation.

See “Example of Creating a Standard Hiperspace and Using It” on page 15-35 for
an example of the HSPSERV SREAD and HSPSERV SWRITE macros.

Obtaining Additional HSPSERV Performance
If your processor has the move-page facility installed, you can use HSPSERV to
improve the performance of data transfer between central and expanded storage.
Specify the ALET of the hiperspace on the HSPALET parameter on HSPSERV. If
the data is in expanded storage, HSPSERV takes advantage of the move-page
facility. If the data is in auxiliary storage, the data transfer still occurs, but without
the benefit of the move-page facility.

To obtain the ALET, issue the following:

ALESERV ADD,ALET=. . .,STOKEN=. . .

STOKEN is the eight-byte identifier of the hiperspace, and ALET is the four-byte
index into the DU-AL, the access list that is associated with the task. The STOKEN
is input to ALESERV ADD; the ALET is output.

Before you issue the HSPSERV macro with the HSPALET parameter, obtain a
144-byte workarea for the HSPSERV macro service and place the address of this
area in GPR 13 and a zero in AR 13.

Note: When the HSPALET parameter is specified, the application's RANGLIST
data may be modified by the system.

Do not specify RELEASE=YES with the HSPALET parameter.

Programming Notes for Obtaining ALETs for Hiperspaces:

� Using ALESERV ADD to obtain an ALET for a hiperspace without having the
move-page facility installed causes the program to abend.

� A program never uses an ALET to directly access data in a hiperspace as it
would use the ALET to access the data in a data space.

� To use hiperspaces, you do not need to switch into AR mode.

� When you are finished using the hiperspace, use ALESERV DELETE to delete
the entry on the DU-AL.

� The system places certain restrictions on the combined use of hiperspaces and
data-in-virtual. These restrictions are listed in “Using Data-in-Virtual with
Hiperspaces” on page 15-37.

� By obtaining an ALET, you can share a hiperspace with a subtask in the same
way you share a data space. Use the ALCOPY parameter on the ATTACHX
macro to pass a copy of your DU-AL to the subtask. Follow the procedure
suggested in “Sharing Data Spaces among Problem-State Programs with PSW
Keys 8 - F” on page 15-19.

Example of a HSPSERV with the HSPALET Parameter: The following example
creates a non-shared hiperspace. To get additional performance from HSPSERV,

 Chapter 15. Data Spaces and Hiperspaces 15-31

the program obtains an ALET from the ALESERV macro and uses that ALET as
input to HSPSERV. The example assumes the ASC mode is primary.

...
\ DSPSERV CREATES A NON-SHARED STANDARD HIPERSPACE OF 2ð 4ð96-BYTE BLOCKS
\
 DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,BLOCKS=2ð, X
 STOKEN=HSSTOKEN,ORIGIN=HSORIG1
\
\ ALESERV RETURNS AN ALET ON THE DU-AL FOR THE HIPERSPACE
\
 ALESERV ADD,STOKEN=HSSTOKEN,ALET=HSALET,AL=WORKUNIT
\
\ THE STORAGE MACRO OBTAINS FOUR PAGES OF ADDRESS SPACE STORAGE,
\ THE BNDRY=PAGE PARAMETER ALIGNS PAGES ON A 4K BOUNDARY
\ - THE FIRST AND SECOND PAGES ARE THE SWRITE SOURCE
\ - THE THIRD AND FOURTH PAGES ARE THE SREAD TARGET
\ COPY INTO FIRST AND SECOND PAGES THE DATA TO BE WRITTEN TO HIPERSPACE
 .
 STORAGE OBTAIN,LENGTH=4ð96\4,BNDRY=PAGE

ST 1,ASPTR \ SAVE ADDR SPACE STORAGE ADDRESS
MVC ð(2ð,1),SRCTEXT1 \ INIT FIRST ADDR SPACE PAGE
A 1,ONEBLK \ COMPUTE PAGE TWO ADDRESS
MVC ð(2ð,1),SRCTEXT2 \ INIT SECOND ADDR SPACE PAGE

 .
\ SET UP THE SWRITE RANGE LIST TO WRITE FROM THE FIRST AND SECOND
\ ADDRESS SPACE PAGES INTO THE HIPERSPACE
 .

L 1,ASPTR \ GET FIRST ADDR PAGE ADDRESS
ST 1,ASPTR1 \ PUT ADDRESS INTO RANGE LIST

 .
\ SAVE CONTENTS OF AR/GPR 13 BEFORE RESETTING THEM FOR HSPSERV
 .

ST 13,SAVER13 \ SAVE THE CONTENTS OF GPR 13
EAR 13,13 \ LOAD GPR 13 FROM AR 13
ST 13,SAVEAR13 \ SAVE THE CONTENTS OF AR 13

 .
\ ESTABLISH ADDRESS OF 144-BYTE SAVE AREA, AS HSPALET ON HSPSERV REQUIRES
\ AND WRITE TWO PAGES FROM THE ADDRESS SPACE TO THE HIPERSPACE
 .

SLR 13,13 \ SET GPR 13 TO ð
SAR 13,13 \ SET AR 13 TO ð
LA 13,WORKAREA \ SET UP AR/GPR 13 TO WORKAREA ADDR

 HSPSERV SWRITE,STOKEN=HSSTOKEN,RANGLIST=RANGPTR1,HSPALET=HSALET
 .
\ AFTER THE SWRITE, THE FIRST TWO ADDRESS SPACE PAGES MIGHT BE OVERLAID
 .

15-32 OS/390 V2R8.0 MVS Assembler Services Guide

\ RESTORE ORIGINAL CONTENTS OF AR/GPR 13
 .

L 13,SAVEAR13 \ SET GPR 13 TO SAVED AR 13
SAR 13,13 \ RESET AR 13
L 13,SAVER13 \ RESET GPR 13

 .
\ SET UP THE SREAD RANGE LIST TO READ INTO THE THIRD AND FOURTH
\ ADDRESS SPACE PAGES WHAT WAS PREVIOUSLY WRITTEN TO THE HIPERSPACE
 .

MVC HSORIG2,HSORIG1 \ COPY ORIGIN OF HIPERSPACE TO HSORIG2
L 1,ASPTR \ GET FIRST ADDR PAGE ADDRESS
A 1,TWOBLKS \ COMPUTE THIRD PAGE ADDRESS
ST 1,ASPTR2 \ PUT ADDRESS INTO RANGE LIST

 .
\ SAVE CONTENTS OF AR/GPR 13
 .

ST 13,SAVER13 \ SAVE THE CONTENTS OF GPR 13
EAR 13,13 \ LOAD GPR 13 FROM AR 13
ST 13,SAVEAR13 \ SAVE THE CONTENTS OF AR 13

 .
\ ESTABLISH ADDRESS OF 144-BYTE SAVE AREA, AS HSPALET ON HSPSERV REQUIRES,
\ AND READ TWO BLOCKS OF DATA FROM THE HIPERSPACE INTO THE
\ THIRD AND FOURTH PAGES IN THE ADDRESS SPACE STORAGE USING HSPALET
 .

SLR 13,13 \ SET GPR 13 TO ð
SAR 13,13 \ SET AR 13 TO ð
LA 13,WORKAREA \ SET UP AR/GPR 13 TO WORKAREA ADDR

 HSPSERV SREAD,STOKEN=HSSTOKEN,RANGLIST=RANGPTR2,HSPALET=HSALET
 .
\ RESTORE ORIGINAL CONTENTS OF AR/GPR 13
 .

L 13,SAVEAR13 \ SET GPR 13 TO SAVED AR 13
SAR 13,13 \ RESET AR 13
L 13,SAVER13 \ RESET GPR 13

 .
\ FREE THE ALET, FREE ADDRESS SPACE STORAGE, AND DELETE THE HIPERSPACE
...
\ DATA AREAS AND CONSTANTS
 .
HSNAME DC CL8'SCROLLHS' \ NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 \ STOKEN FOR THE HIPERSPACE
HSALET DS CL4 \ ALET FOR THE HIPERSPACE
ASPTR DS 1F \ LOCATION OF ADDR SPACE STORAGE
SAVER13 DS 1F \ LOCATION TO SAVE GPR 13
SAVEAR13 DS 1F \ LOCATION TO SAVE AR 13
WORKAREA DS CL144 \ WORK AREA FOR HSPSERV
ONEBLK DC F'4ð96' \ LENGTH OF ONE BLOCK OF STORAGE
TWOBLKS DC F'8192' \ LENGTH OF TWO BLOCKS OF STORAGE
SRCTEXT1 DC CL2ð' INVENTORY ITEMS '
SRCTEXT2 DC CL2ð' INVENTORY SURPLUSES'
 DS ðF
RANGPTR1 DC A(SWRITLST) \ ADDRESS OF SWRITE RANGE LIST
RANGPTR2 DC A(SREADLST) \ ADDRESS OF SREAD RANGE LIST
 DS ðF

 Chapter 15. Data Spaces and Hiperspaces 15-33

SWRITLST DS ðCL12 \ SWRITE RANGE LIST
ASPTR1 DS F \ START OF ADDRESS SPACE SOURCE
HSORIG1 DS F \ TARGET LOCATION IN HIPERSPACE
NUMBLKS1 DC F'2' \ NUMBER OF 4K BLOCKS IN SWRITE
 DS ðF
SREADLST DS ðCL12 \ SREAD RANGE LIST
ASPTR2 DS F \ TARGET LOCATION IN ADDR SPACE
HSORIG2 DS F \ START OF HIPERSPACE SOURCE
NUMBLKS2 DC F'2' \ NUMBER OF 4K BLOCKS IN SREAD
 DS ðF

Extending the Current Size of a Hiperspace
When you create a hiperspace and specify a maximum size larger than the initial
size, you can use DSPSERV EXTEND to increase the current size as your program
uses more storage in the hiperspace. The BLOCKS parameter specifies the amount
of storage you want to add to the current size of the hiperspace. The VAR
parameter tells the system whether the request is variable. For information about a
variable request and help in using DSPSERV EXTEND, see “Extending the Current
Size of a Data Space” on page 15-14.

Releasing Hiperspace Storage
Your program needs to release storage when it used a hiperspace for one purpose
and wants to reuse it for another purpose, or when your program is finished using
the area. To release the virtual storage of a hiperspace, use the DSPSERV
RELEASE macro. (Hiperspace release is similar to a PGSER RELEASE for an
address space.) Specify the STOKEN to identify the hiperspace and the START
and BLOCKS parameters to identify the beginning and the length of the area you
need to release.

Releasing storage in a hiperspace requires that a program have the following
authority:

� The program must be the owner of the hiperspace.

� The program's PSW key must equal the storage key of the hiperspace the
system is to release. Otherwise, the system abends the caller.

After the release, a released page does not occupy expanded (or auxiliary) storage
until your program references it again. When you again reference a page you have
released, the page contains hexadecimal zeroes.

Use DSPSERV RELEASE instead of the MVCL instruction to clear 4K byte blocks
of storage to zeroes because:

� DSPSERV RELEASE is faster than MVCL for very large areas.

� Pages released through DSPSERV RELEASE do not occupy space in
expanded or auxiliary storage.

15-34 OS/390 V2R8.0 MVS Assembler Services Guide

Deleting a Hiperspace
When a program doesn't need the hiperspace any more, it can delete it. Your
program can delete only the hiperspaces it owns, providing the program's PSW key
matches the storage key of the hiperspace.

Example of Deleting a Hiperspace: The following example shows you how to delete
a hiperspace:

DSPSERV DELETE,STOKEN=HSSTKN DELETE THE HS
 .
HSSTKN DS CL8 HIPERSPACE STOKEN

IBM recommends that you explicitly delete a hiperspace before the owning task
terminates to free resources as soon as they are no longer needed, and to avoid
excess processing at termination time. However, if you do not delete the
hiperspace, the system automatically does it for you.

Example of Creating a Standard Hiperspace and Using It
The following example creates a standard hiperspace named SCROLLHS. The size
of the hiperspace is 20 blocks. The program:

� Creates a standard hiperspace 20 blocks in size

� Obtains four pages of address space storage aligned on a 4K byte address

� Sets up the SWRITE range list parameter area to identify the first two pages of
the address space storage

� Initializes the first two pages of address space storage that will be written to the
hiperspace

� Issues the HSPSERV SWRITE macro to write the first two pages to locations
4096 through 12287 in the hiperspace

Later on, the program:

� Sets up the SREAD range list parameter area to identify the last two pages of
the four-page address space storage

� Issues the HSPSERV SREAD macro to read the blocks at locations 4096
through 12287 in the hiperspace to the last two pages in the address space
storage

Figure 15-11 on page 15-36 shows the four-page area in the address space and
the two block area in the hiperspace. Note that the first two pages of the address
space virtual storage are unpredictable after the SWRITE operation.

 Chapter 15. Data Spaces and Hiperspaces 15-35

Address Space

PROG1

HSPSERV SWRITE

HSPSERV SREAD

SWRITE range list

SREAD range list

SWRITE

SREAD

Standard
Hiperspace

DSPSERV

Figure 15-11. Example of Creating a Standard Hiperspace and Transferring Data

\ DSPSERV CREATES A STANDARD TYPE HIPERSPACE OF 2ð 4ð96-BYTE BLOCKS
 .
 DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
 BLOCKS=2ð,STOKEN=HSSTOKEN
 .
\ THE STORAGE MACRO OBTAINS FOUR PAGES OF ADDRESS SPACE STORAGE.
\ THE BNDRY=PAGE PARAMETER ALIGNS PAGES ON A 4K BOUNDARY
\ - THE FIRST AND SECOND PAGES ARE THE SWRITE SOURCE
\ - THE THIRD AND FOURTH PAGES ARE THE SREAD TARGET
 .
 STORAGE OBTAIN,LENGTH=4ð96\4,BNDRY=PAGE

ST 1,ASPTR1 \ SAVES THE SWRITE SOURCE ADDRESS
MVC ð(2ð,1),SRCTEXT1 \ INITIALIZES SOURCE PAGE ONE
A 1,ONEBLOCK \ COMPUTES SOURCE PAGE TWO ADDRESS
MVC ð(2ð,1),SRCTEXT2 \ INITIALIZES SOURCE PAGE TWO

 .

\ HSPSERV WRITES TWO PAGES FROM THE ADDRESS SPACE TO THE HIPERSPACE
 .
 HSPSERV SWRITE,STOKEN=HSSTOKEN,RANGLIST=RANGPTR1
 .
\ AFTER THE SWRITE, THE FIRST TWO ADDRESS SPACE PAGES MIGHT BE OVERLAID
 .

 .
\ SET UP THE SREAD RANGE LIST TO READ INTO THE THIRD AND FOURTH
\ ADDRESS SPACE PAGES
 .

L 2,ASPTR1 \ OBTAINS THE ADDRESS OF PAGE 1
A 2,ONEBLOCK \ COMPUTES THE SREAD TARGET ADDRESS
A 2,ONEBLOCK \ COMPUTES THE SREAD TARGET ADDRESS
ST 2,ASPTR2 \ SAVES IN SREAD RANGE LIST

 .

\ HSPSERV READS TWO BLOCKS OF DATA FROM THE HIPERSPACE TO THE
THIRD AND FOURTH PAGES IN THE ADDRESS SPACE STORAGE

 .
 HSPSERV SREAD,STOKEN=HSSTOKEN,RANGLIST=RANGPTR2
 .

15-36 OS/390 V2R8.0 MVS Assembler Services Guide

\ DATA AREAS AND CONSTANTS
\
HSNAME DC CL8'SCROLLHS' \ NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 \ STOKEN FOR THE HIPERSPACE
ONEBLOCK DC F'4ð96' \ LENGTH OF ONE BLOCK OF STORAGE
SRCTEXT1 DC CL2ð' INVENTORY ITEMS '
SRCTEXT2 DC CL2ð' INVENTORY SURPLUSES'
 DS ðF
RANGPTR1 DC A(SWRITLST) \ ADDRESS OF THE SWRITE RANGE LIST
RANGPTR2 DC A(SREADLST) \ ADDRESS OF THE SREAD RANGE LIST
 DS ðF

SWRITLST DS ðCL12 \ SWRITE RANGE LIST
ASPTR1 DS F \ START OF ADDRESS SPACE SOURCE
HSPTR1 DC F'4ð96' \ TARGET LOCATION IN HIPERSPACE
NUMBLKS1 DC F'2' \ NUMBER OF 4K BLOCKS IN SWRITE
 DS ðF
SREADLST DS ðCL12 \ SREAD RANGE LIST
ASPTR2 DS F \ TARGET LOCATION IN ADDRESS SPACE
HSPTR2 DC F'4ð96' \ START OF HIPERSPACE SOURCE
NUMBLKS2 DC F'2' \ NUMBER OF 4K PAGES IN SREAD

Using Data-in-Virtual with Hiperspaces
Data-in-virtual allows you to map a large amount of data into a virtual storage area
and then deal with the portion of the data that you need. The virtual storage
provides a “window” through which you can “view” the object and make changes, if
you want. The DIV macro manages the data object, the window, and the movement
of data between the window and the object.

You can use standard hiperspaces with data-in-virtual in two ways:

� You can map a VSAM linear data set to hiperspace virtual storage.

� You can map a non-shared hiperspace to virtual storage in an address space.

The task that issues the DIV IDENTIFY owns the pointers and structures
associated with the ID that DIV returns. Any program can use DIV IDENTIFY.
However, the system checks the authority of programs that try to use the other DIV
services for the same ID. For problem-state programs with PSW key 8 - F,
data-in-virtual allows only the issuer of the DIV IDENTIFY to use subsequent DIV
services for the same ID. That means, for example, that if a problem-state program
with PSW key 8 issues the DIV IDENTIFY, another problem-state program with
PSW key 8 cannot issue DIV MAP for the same ID.

Problem-state programs with PSW key 8 - F can use DIV MAP to:

� Map a VSAM linear data set to a window in a hiperspace, providing the
program owns the hiperspace.

� Map a non-shared hiperspace object to an address space window, providing:

– The program owns the hiperspace,
– The program or its attaching task obtained the storage for the window, and
– No program has ever issued ALESERV ADD for the hiperspace

The rules for using data-in-virtual and HSPSERV with the HSPALET parameter (for
additional performance) are as follows:

 Chapter 15. Data Spaces and Hiperspaces 15-37

� Your program can use HSPSERV with the HSPALET parameter with
non-shared hiperspaces when a data-in-virtual object is mapped to a
hiperspace, providing a DIV SAVE is not in effect.

� Once any program issues ALESERV ADD for a hiperspace, that hiperspace
cannot be a data-in-virtual object.

� If a program issues ALESERV ADD for a hiperspace that is currently a data
object, the system rejects the request.

For information on the use of ALETs with hiperspaces, see “Obtaining Additional
HSPSERV Performance” on page 15-31.

The following two sections describe how your program can use the data-in-virtual
services with hiperspaces.

Mapping a Data-in-Virtual Object to a Hiperspace
Through data-in-virtual, a program can map a VSAM linear data set residing on
DASD to a hiperspace. The program uses the read and write operations of the
HSPSERV macro to transfer data between the address space buffer area and the
hiperspace window.

When a program maps a data-in-virtual object to a standard hiperspace, the system
does not bring the data physically into the hiperspace; it reads the data into the
address space buffer when the program uses HSPSERV SREAD for that area that
contains the data.

Your program can map a single data-in-virtual object to several hiperspaces. Or, it
can map several data-in-virtual objects to one hiperspace.

An Example of Mapping a Data-in-Virtual Object to a Hiperspace: The
following example shows how you would create a standard hiperspace with a
maximum size of one gigabyte and an initial size of 4K bytes. Figure 15-12 shows
the hiperspace with a window that begins at the origin of the hiperspace.

Address Space

Permanent Object

VSAM linear
data set

window

Standard Hiperspace

Program

DSPSERV...

DIV IDENTIFY...
DIV ACCESS...
DIV MAP...

HSPSERV SWRITE...

HSPSERV SREAD...

HSPSERV SREAD

HSPSERV SWRITE

Figure 15-12. Example of Mapping a Data-in-Virtual Object to a Hiperspace

Initially, the window in the hiperspace and the buffer area in the address space are
both 4K bytes. (That is, the window takes up the entire initial size of the
hiperspace.) The data-in-virtual object is a VSAM linear data set on DASD.

15-38 OS/390 V2R8.0 MVS Assembler Services Guide

\ CREATE A STANDARD HIPERSPACE
 .
 DSPSERV CREATE,TYPE=HIPERSPACE,HSTYPE=SCROLL,NAME=HS1NAME, X
 STOKEN=HS1STOK,BLOCKS=(ONEGIG,FOURK),ORIGIN=HS1ORG
 .

\ MAP THE HIPERSPACE TO THE OBJECT
 .
 DIV IDENTIFY,ID=OBJID,TYPE=DA,DDNAME=OBJDD
 DIV ACCESS,ID=OBJID,MODE=UPDATE
 DIV MAP,ID=OBJID,AREA=HS1ORG,STOKEN=HS1STOK
 .
\ OBTAIN A 4K BUFFER AREA IN ADDRESS SPACE TO BE
\ USED TO UPDATE THE DATA IN THE HIPERSPACE WINDOW
 .
\ DECLARATION STATEMENTS
 .
HS1NAME DC CL8'MYHSNAME' HIPERSPACE NAME
HS1STOK DS CL8 HIPERSPACE STOKEN
HS1ORG DS F HIPERSPACE ORIGIN
ONEGIG DC F'262144' MAXIMUM SIZE OF 1G IN BLOCKS
FOURK DC F'1' INITIAL SIZE OF 4K IN BLOCKS
OBJID DS CL8 DIV OBJECT ID
OBJDD DC AL1(7),CL7'MYDD ' DIV OBJECT DDNAME

The program can read the data in the hiperspace window to a buffer area in the
address space through the HSPSERV SREAD macro. It can update the data and
write changes back to the hiperspace through the HSPSERV SWRITE macro. For
an example of these operations, see “Example of Creating a Standard Hiperspace
and Using It” on page 15-35.

Continuing the example, the following code saves the data in the hiperspace
window on DASD and terminates the mapping.

\ SAVE THE DATA IN THE HIPERSPACE WINDOW ON DASD AND END THE MAPPING
 .
 DIV SAVE,ID=OBJID
 DIV UNMAP,ID=OBJID,AREA=HS1ORG
 DIV UNACCESS,ID=OBJID
 DIV UNIDENTIFY,ID=OBJID
 .
\ PROGRAM FINISHES USING THE DATA IN THE HIPERSPACE
 .
\ DELETE THE HIPERSPACE
 .
 DSPSERV DELETE,STOKEN=HS1STOK
 .

Using a Hiperspace as a Data-in-Virtual Object
Your program can identify a non-shared standard hiperspace as a temporary
data-in-virtual object, providing the hiperspace has never been the target of an
ALESERV ADD. In this case, the window must be in an address space. Use the
hiperspace for temporary storage of data, such as intermediate results of a
computation. The movement of data between the window in the address space and
the hiperspace object is through the DIV MAP and DIV SAVE macros. The data in
the hiperspace is temporary.

 Chapter 15. Data Spaces and Hiperspaces 15-39

Figure 15-13 on page 15-40 shows an example of a hiperspace as a data-in-virtual
object.

Address Space

window

Program
DSPSERV...
DIV MAP...
DIV SAVE...

temporary
object

Non-shared
Standard Hiperspace

Figure 15-13. A Standard Hiperspace as a Data-in-Virtual Object

When the hiperspace is a data-in-virtual object, data-in-virtual services transfer data
between the hiperspace object and the address space window. In this case, your
program does not need to use, and must not use, HSPSERV SREAD and
HSPSERV SWRITE.

An Example of a Hiperspace as a Data-in-Virtual Object: The program in this
section creates a hiperspace for temporary storage of a table of 4K bytes that the
program generates and uses. The program cannot save this table permanently.

The following code creates a standard hiperspace and identifies it as a
data-in-virtual object.

\ CREATE A HIPERSPACE
 .
 DSPSERV CREATE,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
 NAME=HS2NAME,STOKEN=HS2STOK,BLOCKS=ONEBLOCK
 .
\ IDENTIFY THE HIPERSPACE AS A DATA-IN-VIRTUAL OBJECT
 .
 DIV IDENTIFY,ID=OBJID,TYPE=HS,STOKEN=HS2STOK
 DIV ACCESS,ID=OBJID,MODE=UPDATE
 DIV MAP,ID=OBJID,AREA=OBJAREA
 .

HS2NAME DC CL8'MHSNAME ' HIPERSPACE NAME
HS2STOK DS CL8 HIPERSPACE STOKEN
ONEBLOCK DC F'1' HIPERSPACE SIZE OF 1 BLOCK
OBJID DS CL8 DIV OBJECT ID
OBJAREA DS CL8 WINDOW IN ADDRESS SPACE

When the hiperspace is a data-in-virtual object, your program does not need to
know the origin of the hiperspace. All addresses refer to offsets within the
hiperspace. Note that the example does not include the ORIGIN parameter on
DSPSERV.

15-40 OS/390 V2R8.0 MVS Assembler Services Guide

After you finish making changes to the data in the address space window, you can
save the changes back to the hiperspace as follows:

\ SAVE CHANGES TO THE OBJECT
 .
 DIV SAVE,ID=OBJID

The following macro refreshes the address space window. This means that if you
make changes in the window and want a fresh copy of the object (that is, the copy
that was saved last with the DIV SAVE macro), you would issue the following:

 DIV RESET,ID=OBJID

When you finish using the hiperspace, use the DSPSERV macro to delete the
hiperspace.

\ DELETE THE HIPERSPACE
 .
 DSPSERV DELETE,STOKEN=HS2STOK

 Using Checkpoint/Restart
A program can use checkpoint/restart while it has one or more entries for a
hiperspace on its access list (DU-AL or PASN-AL). If the program has specified on
the ALESERV macro that the system is to ignore entries made to the access list for
the hiperspace for checkpoint/restart processing (CHKPT=IGNORE), the CHKPT
macro processes successfully.

A program that specifies CHKPT=IGNORE assumes full responsibility for managing
the hiperspace storage. Managing the hiperspace storage includes the following:

� If any program depends on the contents of the hiperspace and the data cannot
be recreated or obtained elsewhere, the responsible program must save the
contents of the hiperspace prior to the checkpoint operation.

� Once the checkpoint operation has completed, the responsible program must
perform the following during restart processing to successfully manage the
hiperspace storage.

1. Ensure that the hiperspace exists. The original hiperspace might or might
not exist. If the original hiperspace does not exist, the responsible program
must issue DSPSERV CREATE TYPE=HIPERSPACE to recreate the
hiperspace.

2. Issue ALESERV ADD of the hiperspace, original or recreated, to the
program's access list to obtain a new ALET.

3. If, in addition to having a dependency on the hiperspace, any program also
depends on the contents of the hiperspace storage, the responsible
program must refresh the contents of the hiperspace storage. The program
must use the new ALET to reference the hiperspace.

4. The responsible program must make the new ALET available to any
program that has a dependency on the hiperspace. The STOKEN, changed
or unchanged, must be made available to any program that needs to issue
ALESERV ADD to access the hiperspace.

See DFSMS/MVS Checkpoint/Restart information about the CHKPT macro.

 Chapter 15. Data Spaces and Hiperspaces 15-41

15-42 OS/390 V2R8.0 MVS Assembler Services Guide

 Chapter 16. Window Services

Callable window services enables assembler language programs to use the CALL
macro to access data objects. By calling the appropriate window services program,
an assembler language program can:

� Read or update an existing permanent data object
� Create and save a new permanent data object
� Create and use a temporary data object

Window services enable your program to access data objects without your program
performing any input or output (I/O) operations. All your program needs to do is
issue a CALL to the appropriate service program. The service performs any I/O
operations that are required to make the data object available to your program.
When you want to update or save a data object, window services again performs
any required I/O operations.

 Data Objects

 Permanent
A permanent data object is a virtual storage access method (VSAM) linear data set
that resides on DASD. (This type of data set is also called a data-in-virtual object.)
You can read data from an existing permanent object and also update the content
of the object. You can create a new permanent object and when you are finished,
save it on DASD. Because you can save this type of object on DASD, window
services calls it a permanent object. Window services can handle very large
permanent objects that contain as many as four gigabytes (4294967296 bytes).

Note: Installations whose high level language programs, such as FORTRAN, used
data-in-virtual objects prior to MVS/SP 3.1.0 had to write an Assembler
language interface program to allow the FORTRAN program to invoke the
data-in-virtual program. Window services eliminates the need for this
interface program.

Temporary Data Objects
A temporary data object is an area of expanded storage that window services
provides for your program. You can use this storage to hold temporary data, such
as intermediate results of a computation, instead of using a DASD workfile. Or you
might use the storage area as a temporary buffer for data that your program
generates or obtains from some other source. When you finish using the storage
area, window services deletes it. Because you cannot save the storage area,
window services calls it a temporary object. Window services can handle very large
temporary objects that contain as many as 16 terabytes (17592186044416 bytes).

Structure of a Data Object
Think of a data object as a contiguous string of bytes organized into blocks, each
4096 bytes long. The first block contains bytes 0 to 4095 of the object, the second
block contains bytes 4096 to 8191, and so forth.

Your program references data in the object by identifying the block or blocks that
contain the desired data. Window services makes the blocks available to your

 Copyright IBM Corp. 1988, 1999 16-1

program by mapping a window in your program storage to the blocks. A window is
a storage area that your program provides and makes known to window services.
Mapping the window to the blocks means that window services makes the data
from those blocks available in the window when you reference the data. You can
map a window to all or part of a data object depending on the size of the object
and the size of the window. You can examine or change data that is in the window
by using the same instructions that you use to examine or change any other data in
your program storage.

The following figure shows the structure of a data object and shows a window
mapped to two of the object's blocks.

window

data object

1st block

3rd block

4th block

last block

2nd block

2nd block

1st block

4096 bytes

4096 bytes

4096 bytes

4096 bytes

4096 bytes

/ /

/ /

.

.

.

your address
space

Figure 16-1. Structure of a Data Object

What Does Window Services Provide?
Window services allows you to view and manipulate data objects in a number of
ways. You can have access to one or more data objects at the same time. You can
also define multiple windows for a given data object. You can then view a different
part of the object through each window. Before you can access any data object,
you must request access from window services.

When you request access to a permanent data object, you must indicate whether
you want a scroll area. A scroll area is an area of expanded storage that window
services obtains and maps to the permanent data object. You can think of the
permanent object as being available in the scroll area. When you request a view of
the object, window services maps the window to the scroll area. If you do not
request a scroll area, window services maps the window directly to the object on
DASD.

A scroll area enables you to save interim changes to a permanent object without
changing the object on DASD. Also, when your program accesses a permanent
object through a scroll area, your program might attain better performance than it
would if the object were accessed directly on DASD.

When you request a temporary object, window services provides an area of
expanded storage. This area of expanded storage is the temporary data object.

16-2 OS/390 V2R8.0 MVS Assembler Services Guide

When you request a view of the object, window services maps the window to the
temporary object. Window services initializes a temporary object to binary zeroes.

Notes:

1. Window services does not transfer data from the object on DASD, from the
scroll area, or from the temporary object until your program references the data.
Then window services transfers the blocks that contain the data your program
requests.

2. The expanded storage that window services uses for a scroll area or for a
temporary object is called a hiperspace. A hiperspace is a range of contiguous
virtual storage addresses that a program can use like a buffer. Window services
uses as many hiperspaces as needed to contain the data object.

The Ways That Window Services Can Map an Object
Window services can map a data object a number of ways. The following examples
show how window services can:

� Map a permanent object that has no scroll area
� Map a permanent object that has a scroll area
� Map a temporary object
� Map an object to multiple windows
� Map multiple objects

Example 1 — Mapping a Permanent Object that has no Scroll
Area
If a permanent object has no scroll area, window services maps the object from
DASD directly to your window. In this example, your window provides a view of the
first and second blocks of an object.

window
1st block

2nd block

1st block

2nd block

3rd block

.

.

last block

your address
space

permanent object
on DASD

Figure 16-2. Mapping a Permanent Object That Has No Scroll Area

 Chapter 16. Window Services 16-3

Example 2 — Mapping a Permanent Object that has a Scroll Area
If the object has a scroll area, window services maps the object from DASD to the
scroll area. Window services then maps the blocks that you wish to view from the
scroll area to your window. In this example, your window provides a view of the
third and fourth blocks of an object.

1st block

DIV
object

3rd block

4th block

2nd block

4th block

scroll area

window
3rd block

last block

/ /

/ /

.

.

.

your address
space

permanent object
on DASD

Figure 16-3. Mapping a Permanent Object That Has A Scroll Area

Example 3 — Mapping a Temporary Object
Window services uses a hiperspace as a temporary object. In this example, your
window provides a view of the first and second blocks of a temporary object.

your address
space

1st block

2nd block

temporary object

window

1st block

3rd block

4th block

2nd block

/ /

/ /

.

.

.

last block

Figure 16-4. Mapping a Temporary Object

16-4 OS/390 V2R8.0 MVS Assembler Services Guide

Example 4 — Mapping Multiple Windows to an Object
Window services can map multiple windows to the same object. In this example,
one window provides a view of the second and third blocks of an object, and a
second window provides a view of the last block.

temporary object

1st block

3rd block

4th block

last block

2nd block

first
window

2nd block

3rd block

last blocksecond
window / /

/ /

.

.

.

.

your address
space

Figure 16-5. Mapping an Object To Multiple Windows

Example 5 — Mapping Multiple Objects
Window services can map multiple objects to windows in the same address space.
The objects can be temporary objects, permanent objects, or a combination of
temporary and permanent objects. In this example, one window provides a view of
the second block of a temporary object, and a second window provides a view of
the fourth and fifth blocks of a permanent object.

 Chapter 16. Window Services 16-5

1st block

3rd block

4th block

2nd block

scroll area

5th block

1st block

3rd block

4th block

2nd block

temporary object

second
window

first
window

your address
space

2nd block

4th block

5th block

Permanent object
on DASD

/ /

/ /

.

.

.

last block

last block

/ /

/ /

.

.

DIV
object

Figure 16-6. Mapping Multiple Objects

Access to Permanent Data Objects
When you have access to a permanent data object, you can:

� View the object through one or more windows — Depending on the object
size and the window size, a single window can view all or part of a permanent
object. If you define multiple windows, each window can view a different part of
the object. For example, one window might view the first block of the
permanent object and another window might view the second block. You can
also have several windows view the same part of the object or have views in
multiple windows overlap. For example, one window might view the first and
second blocks of a data object while another window views the second and
third blocks.

� Change data that appears in a window — You can examine or change data
that is in a window by using the same instructions you use to examine or
change any other data in your program's storage. These changes do not alter
the object on DASD or in the scroll area.

� Save interim changes in a scroll area — After changing data in a window,
you can have window services save the changed blocks in a scroll area, if you
have requested one. Window services replaces blocks in the scroll area with

16-6 OS/390 V2R8.0 MVS Assembler Services Guide

corresponding changed blocks from the window. Saving changes in the scroll
area does not alter the object on DASD or alter data in the window.

� Refresh a window or the scroll area — After you change data in a window or
save changes in the scroll area, you may discover that you no longer need
those changes. In that case, you can have window services refresh the
changed data. To refresh the window or the scroll area, window services
replaces changed data with data from the object as it appears on DASD.

� Replace the view in a window — After you finish using data that's in a
window, you can have window services replace the view in the window with a
different view of the object. For example, if you are viewing the third, fourth,
and fifth blocks of an object and are finished with those blocks, you might have
window services replace that view with a view of the sixth, seventh, and eighth
blocks.

� Update the object on DASD — If you have changes available in a window or
in the scroll area, you can save the changes on DASD. Window services
replaces blocks on DASD with corresponding changed blocks from the window
and the scroll area. Updating an object on DASD does not alter data in the
window or in the scroll area.

Access to Temporary Data Objects
When you have access to a temporary data object, you can:

� View the object through one or more windows — Depending on the object
size and the window size, a single window can view all or part of a temporary
object. If you define multiple windows, each window can view a different part of
the object. For example, one window might view the first block of the temporary
object and another window might view the second block. Unlike a permanent
object, however, you cannot define multiple windows that have overlapping
views of a temporary object.

� Change data that appears in a window — This function is the same for a
temporary object as it is for a permanent object: you can examine or change
data that is in a window by using the same instructions you use to examine or
change any other data in your address space. These changes do not alter the
object on DASD or in the scroll area.

� Update the temporary object — After you have changed data in a window,
you can have window services update the object with those changes. Window
services replaces blocks in the object with corresponding changed blocks from
the window. The data in the window remains as it was.

� Refresh a window or the object — After you change data in a window or
save changes in the object, you may discover that you no longer need those
changes. In that case, you can have window services refresh the changed
data. To refresh the window or the object, window services replaces changed
data with binary zeroes.

� Change the view in a window — After you finish using data that's in a
window, you can have window services replace the view in the window with a
different view of the object. For example, if you are viewing the third, fourth,
and fifth blocks of an object and are finished with those blocks, you might have
window services replace that view with a view of the sixth, seventh, and eighth
blocks.

 Chapter 16. Window Services 16-7

Using Window Services
To use, create, or update a data object, you call a series of programs that window
services provides. These programs enable you to:

� Access an existing object, create and save a new permanent object, or create
a temporary object

� Obtain a scroll area where you can make interim changes to a permanent
object

� Define windows and establish views of an object in those windows

� Change or terminate the view in a window

� Update a scroll area or a temporary object with changes you have made in a
window

� Refresh changes that you no longer need in a window or a scroll area

� Update a permanent object on DASD with changes that are in a window or a
scroll area

� Terminate access to an object

The window services programs that you call and the sequence in which you call
them depends on your use of the data object. For descriptions of the window
services, see OS/390 MVS Programming: Assembler Services Reference. For an
example of invoking window services from an assembler language program, see
“Window Services Coding Example” on page 16-20.

The first step in using any data object is to gain access to the object. To gain
access, you call CSRIDAC. The object can be an existing permanent object, or a
new permanent or temporary object you want to create. For a permanent object,
you can request an optional scroll area. A scroll area enables you to make interim
changes to an object's data without affecting the data on DASD. When CSRIDAC
grants access, it provides an object identifier that identifies the object. You use that
identifier to identify the object when you request other services from window service
programs.

After obtaining access to an object, you must define one or more windows and
establish views of the object in those windows. To establish a view of an object,
you tell window services which blocks you want to view and in which windows. You
can view multiple objects and multiple parts of each object at the same time. To
define windows and establish views, you call CSRVIEW or CSREVW. After
establishing a view, you can examine or change data that is in the window using
the same instructions you use to examine or change other data in your program's
storage.

After making changes to the part of an object that is in a window, you will probably
want to save those changes. How you save changes depends on whether the
object is permanent, is temporary, or has a scroll area.

If the object is permanent and has a scroll area, you can save changes in the scroll
area without affecting the object on DASD. Later, you can update the object on
DASD with changes saved in the scroll area. If the object is permanent and has no
scroll area, you can update it on DASD with changes that are in a window. If the
object is temporary, you can update it with changes that are in a window. To

16-8 OS/390 V2R8.0 MVS Assembler Services Guide

update an object on DASD, you call CSRSAVE. To update a temporary object or a
scroll area, you call CSRSCOT.

After making changes in a window and possibly saving them in a scroll area or
using them to update a temporary object, you might decide that you no longer need
those changes. In this case, you can refresh the changed blocks. After refreshing a
block of a permanent object or a scroll area to which a window is mapped, the
refreshed block contains the same data that the corresponding block contains on
DASD. After refreshing a block of a temporary object to which a window is mapped,
the block contains binary zeroes. To refresh a changed block, you call CSRREFR.

After finishing with a view in a window, you can use the same window to view a
different part of the object or to view a different object. Before changing the view in
a window, you must terminate the current view. If you plan to view a different part
of the same object, you terminate the current view by calling CSRVIEW. If you plan
to view a different object or will not reuse the window, you can terminate the view
by calling CSRIDAC.

When you finishing using a data object, you must terminate access to the object by
calling CSRIDAC.

The following restrictions apply to using window services:

1. When you attach a new task, you cannot pass ownership of a mapped virtual
storage window to the new task. That is, you cannot use the ATTACH or
ATTACHX keywords GSPV and GSPL to pass the mapped virtual storage.

2. While your program is in cross-memory mode, your program cannot invoke
data-in-virtual services; however, your program can reference and update data
in a mapped virtual storage window.

3. The task that obtains the ID (through DIV IDENTIFY) is the only one that can
issue other DIV services for that ID.

4. When you identify a data-in-virtual object using the IDENTIFY service, you
cannot request a checkpoint until you invoke the corresponding UNIDENTIFY
service.

Obtaining Access to a Data Object
To obtain access to a permanent or temporary data object, call CSRIDAC. Indicate
that you want to access an object, by specifying BEGIN as the value for op_type.

Identifying the Object
You must identify the data object you wish to access. How you identify the object
depends on whether the object is permanent or temporary.

Permanent Object: For a permanent object, object_name and object_type work
together. For object_name you have a choice: specify either the data set name of
the object or the DDNAME to which the object is allocated. The object_type
parameter must then indicate whether object_name is a DDNAME or a data set
name:

� If object_name is a DDNAME, specify DDNAME as the value for object_type.

� If object_name is a data set name, specify DSNAME as the value for
object_type.

 Chapter 16. Window Services 16-9

If you specify DSNAME for object_type, indicate whether the object already exists
or whether window services is to create it:

� If the object already exists, specify OLD as the value for object_state.

� If window services is to create the object, specify NEW as the value for
object_state.

Requirement for NEW Objects:

If you specify NEW as the value for object_state, your system must include SMS,
and SMS must be active.

Temporary Object: To identify a temporary object, specify TEMPSPACE as the
value for object_type. Window services assumes that a temporary object is new
and must be created. Therefore, window services ignores the value assigned to
object_state.

Specifying the Object's Size
If the object is permanent and new or is temporary, you must tell window services
the size of the object. You specify object size through the object_size parameter.
The size specified becomes the maximum size that window services will allow for
that object. You express the size as the number of 4096-byte blocks needed to
contain the object. If the number of blocks needed to contain the object is not an
exact multiple of 4096, round object_size to the next whole number. For example:

� If the object size is to be less than 4097 bytes, specify 1.
� If the object size is 5000 bytes, specify 2.
� If the object size is 410,000 bytes, specify 101.

Specifying the Type of Access
For an existing (OLD) permanent object you must specify how you intend to access
the object. You specify your intentions through the access_mode parameter:

� If you intend to only read the object, specify READ for access_mode.
� If you intend to update the object, specify UPDATE for access_mode.

For a new permanent object and for a temporary object, window services assumes
you will update the object. In these cases, window services ignores the value
assigned to access_mode.

Obtaining a Scroll Area
A scroll area is storage that window services provides for your use. This storage is
outside your program's storage area and is accessible only through window
services.

For a permanent object, a scroll area is optional. A scroll area allows you to make
interim changes to a permanent object without altering the object on DASD. Later, if
you want, you can update the object on DASD with the interim changes. A scroll
area might also improve performance when your program accesses a permanent
object.

For a temporary object, the scroll area is the object. Therefore, for a temporary
object, a scroll area is required.

16-10 OS/390 V2R8.0 MVS Assembler Services Guide

To indicate whether you want a scroll area, provide the appropriate value for
scroll_area:

� To request a scroll area, supply a value of YES. YES is required for a
temporary object.

� To indicate you do not want a scroll area, supply a value of NO.

Defining a View of a Data Object
To view all or part of a data object, you must provide window services with
information about the object and how you want to view it. You must provide window
services with the following information:

� The object identifier

� Where the window is in your address space

� Window disposition — that is, whether window services is to initialize the
window the first time you reference data in the window

� Whether you intend to reference blocks of data sequentially or randomly

� The blocks of data that you want to view

� Whether you want to extend the size of the object

To define a view of a data object, call CSRVIEW or CSREVW. To determine which
service you should use, see “Defining the Expected Reference Pattern” on
page 16-12. Specify BEGIN as the value for operation_type.

Identifying the Data Object
To identify the object you want to view, specify the object identifier as the value for
object_id. Use the same value CSRIDAC returned in object_id when you requested
access to the object.

Identifying a Window
You must identify the window through which you will view the object. The window is
a virtual storage area in your address space. You are responsible for obtaining the
storage, which must meet the following requirements:

� The storage must not be page fixed.

� Pages in the window must not be page loaded (must not be loaded by the
PGLOAD macro).

� The storage must start on a 4096 byte boundary and must be a multiple of
4096 bytes in length.

To identify the window, use the window_name parameter. The value supplied for
window_name must be the symbolic name you assigned to the window storage
area in your program.

Defining a window in this way provides one window through which you can view the
object. To define multiple windows that provide simultaneous views of different
parts of the object, see “Defining Multiple Views of an Object” on page 16-14.

 Chapter 16. Window Services 16-11

Defining the Disposition of a Window's Contents
You must specify whether window services is to replace or retain the window
contents. You do this by selecting either the replace or retain option. This option
determines how window services handles the data that is in the window the first
time you reference the data. You select the option by supplying a value of
REPLACE or RETAIN for disposition.

Replace Option: If you specify the replace option, the first time you reference a
block to which a window is mapped, window services replaces the data in the
window with corresponding data from the object. For example, assume you have
requested a view of the first block of a permanent object and have specified the
replace option. The first time you reference the window, window services replaces
the data in the window with the first 4096 bytes (the first block) from the object.

If you've selected the replace option and then call CSRSAVE to update a
permanent object, or call CSRSCOT to update a scroll area, or call CSRSCOT to
update a temporary object, window services updates only the specified blocks that
have changed and to which a window is mapped.

Select the replace option when you want to examine, use, or change data that's
currently in an object.

Retain Option: If you select the retain option, window services retains data that is
in the window. When you reference a block in the window the first time, the block
contains the same data it contained before the reference.

When you select the retain option, window services considers all of the data in the
window as changed. Therefore, if you call CSRSCOT to update a scroll area or a
temporary object, or call CSRSAVE to update a permanent object, window services
updates all of the specified blocks to which a window or scroll area are mapped.

Select the retain option when you want to replace data in an object without regard
for the data that it currently contains. You also use the retain option when you want
to initialize a new object.

Defining the Expected Reference Pattern
You must tell window services whether you intend to reference the blocks of an
object sequentially or randomly. An intention to access randomly tells window
services to transfer one block (4096 bytes) of data into the window at a time. An
intention to access sequentially tells window services to transfer more than one
block into your window at one time. The performance gain is in having blocks of
data already in central storage at the time the program needs to reference them.
You specify the intent on either CSRVIEW or CSREVW, two services that differ on
how to specify sequential access.

� CSRVIEW allows you a choice between random or sequential access.

If you specify RANDOM, when you reference data that is not in your window,
window services brings in one block — the one that contains the data your
program references.

If you specify SEQ for sequential, when you reference data that is not in your
window, window services brings in up to 16 blocks — the one that contains the
data your program requests, plus the next 15 consecutive blocks. The number
of consecutive blocks varies, depending on the size of the window and

16-12 OS/390 V2R8.0 MVS Assembler Services Guide

availability of central storage. Use CSRVIEW if you are going to do one of the
following:

 – Access randomly

– Access sequentially, and you are satisfied with a maximum of 16 blocks
coming into the window at a time.

� CSREVW is for sequential access only. It allows you to specify the maximum
number of consecutive blocks that window services brings into the window at
one time. The number ranges from one block through 256 blocks. Use
CSREVW if you want fewer than 16 blocks or more than 16 blocks at one time.
Programs that benefit from having more than 16 blocks come into a window at
one time reference arrays that are greater than one megabyte. Often these
programs perform significant amounts of numerically intensive computations.

To specify the reference pattern on CSRVIEW, supply a value of SEQ or RANDOM
for usage.

To specify the reference pattern on CSREVW, supply a number from 0 through 255
for pfcount. pfcount represents the number of blocks window services will bring into
the window, in addition to the one that it always brings in.

Note that window services brings in multiple pages differently depending on
whether your object is permanent or temporary and whether the system has moved
pages of your data from central storage to make those pages of central available
for other programs. The rule is that SEQ on CSRVIEW and pfcount on CSREVW
apply to:

� A permanent object when movement is from the object on DASD to central
storage

� A temporary object when your program has scrolled the data out and
references it again.

SEQ and pfcount do not apply after the system has moved data (either changed or
unchanged) to auxiliary or expanded storage, and your program again references it,
requiring the system to bring the data back to central storage.

End the view whether established with CSRVIEW or CSREVW, with CSRVIEW
END.

Identifying the Blocks You Want to View
To identify the blocks of data you want to view, use offset and span. The values
you assign to offset and span, together, define a contiguous string of blocks that
you want to view:

� The value assigned to offset specifies the relative block at which to start the
view. An offset of 0 means the first block; an offset of 1 means the second
block; an offset of 2 means the third block, and so forth.

� The value assigned to span specifies the number of blocks to view. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it means the view is to start at the specified offset and extend
until the currently defined end of the object.

The following table shows examples of several offset and span combinations and
the resulting view in the window.

 Chapter 16. Window Services 16-13

Offset Span Resulting view in the window

0 0 view the entire object
0 1 view the first block only
1 0 view the second block through the last block
1 1 view the second block only
2 2 view the third and fourth blocks only

Extending the Size of a Data Object
You can use offset and span to extend the size of an object up to the previously
defined maximum size for the object. You can extend the size of either permanent
objects or temporary objects. For objects created through CSRIDAC, the value
assigned to object_size defines the maximum allowable size. When you call
CSRIDAC to gain access to an object, CSRIDAC returns a value in high_offset that
defines the current size of the object.

For example, assume you have access to a permanent object whose maximum
allowable size is four 4096-byte blocks. The object is currently two blocks long. If
you define a window and specify an offset of 1 and a span of 2, the window
contains a view of the second block and a view of a third block which does not yet
exist in the permanent object. When you reference the window, the content of the
second block, as seen in the window, depends on the disposition you selected,
replace or retain. The third block, as seen in the window, initially contains binary
zeroes. If you later call CSRSAVE to update the permanent object with changes
from the window, window services extends the size of the permanent object to
three blocks by appending the new block of data to the object.

Defining Multiple Views of an Object
You might need to view different parts of an object at the same time. For a
permanent object, you can define windows that have non-overlapping views as well
as windows that have overlapping views. For a temporary object, you can define
windows that have only non-overlapping views.

� A non-overlapping view means that no two windows view the same block of the
object. For example, a view is non-overlapping when one window views the first
and second blocks of an object and another window views the ninth and tenth
blocks of the same object. Neither window views a common block.

� An overlapping view means that two or more windows view the same block of
the object. For example, the view overlaps when the second window in the
previous example views the second and third blocks. Both windows view a
common block, the second block.

 Non-Overlapping Views
To define multiple windows that have a non-overlapping view, call CSRIDAC once
to obtain the object identifier. Then call CSRVIEW or CSREVW once to define each
window. On each call, specify BEGIN to define the type of operation, and specify
the same object identifier for object_id, and a different value for window_name.
Define each window's view by specifying values for offset and span that create
windows with non-overlapping views.

16-14 OS/390 V2R8.0 MVS Assembler Services Guide

 Overlapping Views
To define multiple windows that have an overlapping view of a permanent object,
define each window as though it were viewing a different object. That is, define
each window under a different object identifier. To obtain the object identifiers, call
CSRIDAC once for each identifier you need. Only one of the calls to CSRIDAC can
specify an access mode of UPDATE. Other calls to CSRIDAC must specify an
access mode of READ.

After calling CSRIDAC, call CSRVIEW or CSREVW once to define each window.
On each call, specify BEGIN to define the operation, and specify a different object
identifier for object_id, and a different value for window_name. Define each
window's view by specifying values for offset and span that create windows with the
required overlapping views.

To define multiple windows that have an overlapping view, define each window as
though it were viewing a different object. That is, define each window under a
different object identifier. To obtain the object identifiers, call CSRIDAC once for
each identifier you need. Then call CSRVIEW or CSREVW once to define each
window. On each call, specify the value BEGIN for the operation type, and specify
a different object identifier for object_id, and a different value for window_name.
Define each window's view by specifying values for offset and span that create
windows with the required overlapping views.

Saving Interim Changes to a Permanent Data Object
Window services allows you to save interim changes you make to a permanent
object. You must have previously requested a scroll area for the object, however.
You request a scroll area when you call CSRIDAC to gain access to the object.
Window services saves changes by replacing blocks in the scroll area with
corresponding changed blocks from a window. Saving changes in the scroll area
does not alter the object on DASD.

After you have a view of the object and have made changes in the window, you
can save those changes in the scroll area. To save changes in the scroll area, call
CSRSCOT. To identify the object, you must supply an object identifier for object_id.
The value supplied for object_id must be the same value CSRIDAC returned in
object_id when you requested access to the object.

To identify the blocks in the object that you want to update, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:

� The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; an offset of 1 means the second block; an
offset of 2 means the third block, and so forth.

� The value assigned to span specifies the number of blocks to save. A span of
1 means one block; a span of 2 means two blocks, and so forth. A span of 0
has special meaning: it requests that window services save all changed blocks
to which a window is mapped.

Window services replaces each block within the range specified by offset and span
providing the block has changed and a window is mapped to the block.

 Chapter 16. Window Services 16-15

Updating a Temporary Data Object
After making changes in a window to a temporary object, you can update the object
with those changes. You must identify the object and must specify the range of
blocks that you want to update. To be updated, a block must be mapped to a
window and must contain changes in the window. Window services replaces each
block within the specified range with the corresponding changed block from a
window.

To update a temporary object, call CSRSCOT. To identify the object, you must
supply an object identifier for object_id. The value you supply for object_id must be
the same value CSRIDAC returned in object_id when you requested access to the
object.

To identify the blocks in the object that you want to update, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:

� The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; a offset of 1 means the second block; an
offset of 2 means the third block, and so forth.

� The value assigned to span specifies the number of blocks to save. A span of
1 means one block; a span of 2 means two blocks, and so forth. A span of 0
has special meaning: it requests that window services update all changed
blocks to which a window is mapped.

Window services replaces each block within the range specified by offset and span
providing the block has changed and a window is mapped to the block.

Refreshing Changed Data
You can refresh blocks that are mapped to either a temporary object or to a
permanent object. You must identify the object and specify the range of blocks you
want to refresh. When you refresh blocks mapped to a temporary object, window
services replaces, with binary zeros, all changed blocks that are mapped to the
window. When you refresh blocks mapped to a permanent object, window services
replaces specified changed blocks in a window or in the scroll area with
corresponding blocks from the object on DASD.

To refresh an object, call CSRREFR. To identify the object, you must supply an
object identifier for object_id. The value supplied for object_id must be the same
value CSRIDAC returned in object_id when you requested access to the object.

To identify the blocks of the object that you want to refresh, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:

� The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; an offset of 1 means the second block; an
offset of 2 means the third block, and so forth.

� The value assigned to span specifies the number of blocks to save. A span of
1 means one block; a span of 2 means two blocks, and so forth. A span of 0
has special meaning: it requests that window services refresh all changed
blocks to which a window is mapped, or refresh all changed blocks that have
been saved in a scroll area.

16-16 OS/390 V2R8.0 MVS Assembler Services Guide

Window services refreshes each block within the range specified by offset and span
providing the block has changed and a window or a scroll area is mapped to the
block. At the completion of the refresh operation, blocks from a permanent object
that have been refreshed appear the same as the corresponding blocks on DASD.
Refreshed blocks from a temporary object contain binary zeroes.

Updating a Permanent Object on DASD
You can update a permanent object on DASD with changes that appear in a
window or in the object's scroll area. You must identify the object and specify the
range of blocks that you want to update.

To update an object, call CSRSAVE. To identify the object, you must supply an
object identifier for object_id. The value you provide for object_id must be the same
value CSRIDAC returned when you requested access to the object.

To identify the blocks of the object that you want to update, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:

� The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; an offset of 1 means the second block; an
offset of 2 means the third block, and so forth.

� The value assigned to span specifies the number of blocks to save. A span of
1 means one block; a span of 2 means two blocks, and so forth. A span of 0
has special meaning: it requests that window services update all changed
blocks to which a window is mapped, or update all changed blocks that have
been saved in the scroll area.

When There is a Scroll Area
When the object has a scroll area, window services first updates blocks in the scroll
area with corresponding blocks from windows. To be updated, a scroll area block
must be within the specified range, a window must be mapped to the block, and the
window must contain changes. Window services next updates blocks on DASD with
corresponding blocks from the scroll area. To be updated, a DASD block must be
within the specified range and have changes in the scroll area. Blocks in the
window remain unchanged.

When There is No Scroll Area
When there is no scroll area, window services updates blocks of the object on
DASD with corresponding blocks from a window. To be updated, a DASD block
must be within the specified range, mapped to a window, and have changes in the
window. Blocks in the window remain unchanged.

Changing a View in a Window
To change the view in a window so you can view a different part of the same object
or view a different object, you must first terminate the current view. To terminate
the view, whether the view was established by CSRVIEW or CSREVW, call
CSRVIEW and supply a value of END for operation_type. You must also identify
the object, identify the window, identify the blocks you are currently viewing, and
specify a disposition for the data that is in the window.

To identify the object, supply an object identifier for object_id. The value supplied
for object_id must be the value you supplied when you established the view.

 Chapter 16. Window Services 16-17

To identify the window, supply the window name for window_name. The value
supplied for window_name must be the same value you supplied when you
established the view.

To identify the blocks you are currently viewing, supply values for offset and span.
The values you supply must be the same values you supplied for offset and span
when you established the view.

To specify a disposition for the data you are currently viewing, supply a value for
disposition. The value determines what data will be in the window after the CALL to
CSRVIEW completes.

� For a permanent object that has no scroll area:

– To retain the data that's currently in the window, supply a value of RETAIN
for disposition.

– To discard the data that's currently in the window, supply a value of
REPLACE for disposition. After the operation completes, the window
contents are unpredictable.

For example, assume that a window is mapped to one block of a permanent
object that has no scroll area. The window contains the character string
AAA......A and the block to which the window is mapped contains BBB......B. If
you specify a value of RETAIN, upon completion of the CALL, the window still
contains AAA......A, and the mapped block contains BBB......B. If you specify a
value of REPLACE, upon completion of the CALL, the window contents are
unpredictable and the mapped block still contains BBB......B.

� For a permanent object that has a scroll area or for a temporary object:

– To retain the data that's currently in the window, supply a value of RETAIN
for disposition. CSRVIEW or CSREVW also updates the mapped blocks of
the scroll area or temporary object so that they contain the same data as
the window.

– To discard the data that's currently in the window, supply a value of
REPLACE for disposition. Upon completion of the operation, the window
contents are unpredictable.

For example, assume that a window is mapped to one block of a temporary
object. The window contains the character string AAA......A and the block to
which the window is mapped contains BBB......B. If you specify a value of
RETAIN, upon completion of the CALL, the window still contains AAA......A and
the mapped block of the object also contains AAA......A. If you specify a value
of REPLACE, upon completion of the CALL, the window contents are
unpredictable and the mapped block still contains BBB......B.

CSRVIEW ignores the values you assign to the other parameters.

When you terminate the view of an object, the type of object that is mapped and
the value you specify for disposition determine whether CSRVIEW updates the
mapped blocks. CSRVIEW updates the mapped blocks of a temporary object or a
permanent object's scroll area if you specify a disposition of RETAIN. In all other
cases, to update the mapped blocks, call the appropriate service before terminating
the view:

� To update a temporary object, or to update the scroll area of a permanent
object, call CSRSCOT.

16-18 OS/390 V2R8.0 MVS Assembler Services Guide

� To update an object on DASD, call CSRSAVE.

Upon successful completion of the CSRVIEW operation, the content of the window
depends on the value specified for disposition. The window is no longer mapped to
a scroll area or to an object, however. The storage used for the window is available
for other use, perhaps to use as a window for a different part of the same object or
to use as a window for a different object.

Terminating Access to a Data Object
When you finish using a data object, you must terminate access to the object.
When you terminate access, window services returns to the system any virtual
storage it obtained for the object: storage for a temporary object or storage for a
scroll area. If the object is temporary, window services deletes the object. If the
object is permanent and window services dynamically allocated the data set when
you requested access to the object, window services dynamically unallocates the
data set. Your window is no longer mapped to the object or to a scroll area.

When you terminate access to a permanent object, window services does not
update the object on DASD with changes that are in a window or the scroll area.
To update the object, call CSRSAVE before terminating access to the object.

To terminate access to an object, call CSRIDAC and supply a value of END for
operation_type. To identify the object, supply an object identifier for object_id. The
value you supply for object_id must be the same value CSRIDAC returned when
you obtained access to the object.

Upon successful completion of the call, the storage used for the window is available
for other use, perhaps as a window for viewing a different part of the same object
or to use as a window for viewing a different object.

Link-editing Callable Window Services
Any program that invokes window services must be link-edited with an
IBM-provided linkage-assist routine. The linkage-assist routine provides the logic
needed to locate and invoke the callable services. The linkage-assist routine
resides in SYS1.CSSLIB. The following example shows the JCL needed to link-edit
a program with the linkage-assist routine.

//LINKJOB JOB 'accountinfo','name',CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4ð96K
//LINKSTP1 EXEC PGM=HEWL,PARM='LIST,LET,XREF,REFR,RENT,NCAL,
// SIZE=(18ððK,128K)'
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSNAME=userid.LOADLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD \
 INCLUDE OBJDD1(userpgm)
 LIBRARY OBJDD2(CSRIDAC,CSRREFR,CSREVW,CSRSCOT,CSRSAVE,CSRVIEW)
 NAME userpgm(R)
//OBJDD1 DD DSN=userid.OBJLIB,DISP=SHR
//OBJDD2 DD DSN=SYS1.CSSLIB,DISP=SHR

The example JCL assumes that the program you are link-editing is reentrant.

 Chapter 16. Window Services 16-19

Window Services Coding Example
This example shows the code needed to invoke window services from an
assembler language program. Use this example to supplement and reinforce
information that is presented elsewhere in this chapter.

EXAMPLE1 CSECT
STM 14,12,12(13) Save caller's registers in caller's

\ save area
LR 12,15 Set up R12 as the base register

 USING EXAMPLE1,12
\ .
\ .
\ .
\\
\ Set up save area \
\\

LA 15,SAVEAREA Load address of save area into R15
ST 13,4(15) Save address of caller's save area

\ into this program's save area
ST 15,8(13) Save address of this program's save

\ area into caller's save area
LR 13,15 Load address of save area into R13

\ .
\ . Program continues....
\ .
\\
\ Call CSRIDAC to identify and access an old data object, request \
\ a scroll area, and get update access. \
\\
 CALL CSRIDAC,(OPBEGIN,DDNAME,OBJNAME,YES,OLD,ACCMODE, \
 OBJSIZE,OBJID1,LSIZE,RC,RSN)
\ .
\ . Program continues....
\ .
\\
\ Get 5ð pages of virtual storage to use as a window \
\\
 STORAGE OBTAIN,LENGTH=GSIZE,BNDRY=PAGE,ADDR=WINDWPTR

L R3,WINDWPTR Move the address of the window into
\ register 3

USING WINDOW,R3 Sets up WINDOW as based off of reg 3
\\
\ Call CSRVIEW to set up a map of 5ð blocks between the virtual \
\ storage obtained through the STORAGE macro and the data object. \
\\

LA R4,ZERO LOAD A ZERO INTO REGISTER 4
ST R4,OFFSET1 Initialize offset to ð to indicate

\ the beginning of the data object
 CALL CSRVIEW,(OPBEGIN,OBJID1,OFFSET1,SPAN1,(R3),ACCSEQ, \
 REPLACE,RC,RSN)
\ .
\ . Program continues....
\ . write data in the window
\ .

16-20 OS/390 V2R8.0 MVS Assembler Services Guide

\\
\ Call CSRSAVE to write data in the window to the first 5ð blocks \
\ of the data object \
\\
 CALL CSRSAVE,(OBJID1,OFFSET1,SPAN1,LSIZE,RC,RSN)
\ .
\ . Program continues....
\ . change data in the window
\ .
\\
\ Call CSRSCOT to write new data in the window to the first 5ð \
\ blocks of the scroll area \
\\
 CALL CSRSCOT,(OBJID1,OFFSET1,SPAN1,RC,RSN)
\ .
\ . Program continues....
\ . change data in the window
\ .
\\
\ Call CSRREFR to refresh the window, that is, get back the last \
\ SAVEd data in the data object \
\\
 CALL CSRREFR,(OBJID1,OFFSET1,SPAN1,RC,RSN)
\ .
\ . Program continues....
\ .
\\
\ Call CSRIDAC to unidentify and unaccess the data object \
\\
 CALL CSRIDAC,(OPEND,DDNAME,OBJNAME,YES,OLD,ACCMODE, \
 OBJSIZE,OBJID1,LSIZE,RC,RSN)
\ .
\ . Program continues....
\ .
 L 13,SAVEAREA+4
 LM 14,12,12(13)

BR 14 End of EXAMPLE1
ZERO EQU ð Constant zero
GSIZE EQU 2ð48ðð Storage for window of 5ð pages (blocks)
R3 EQU 3 Register 3
R4 EQU 4 Register 4
 DS ðD
OPBEGIN DC CL5'BEGIN' Operation type BEGIN
OPEND DC CL4'END ' Operation type END
DDNAME DC CL7'DDNAME ' Object type DDNAME
OBJNAME DC CL8'MYDDNAME' DDNAME of data object
YES DC CL3'YES' Yes for a scroll area
OLD DC CL3'OLD' Data object already exists
ACCSEQ DC CL4'SEQ ' Sequential access
ACCMODE DC CL6'UPDATE' Update mode

 Chapter 16. Window Services 16-21

REPLACE DC CL7'REPLACE' Replace data in window on a map
OBJSIZE DC F'524288' Size of data object is 2 gig
SPAN1 DC F'5ð' Set up a span of 5ð blocks
OBJID1 DS CL8 Object identifier
LSIZE DS F Logical size of data object
OFFSET1 DS F Offset into data object
RC DS F Return code from service
RSN DS F Reason code from service
SAVEAREA DS 18F This program's save area
WINDWPTR DS F Address of window's storage
WINDOW DSECT Mapping of window to view the
 DS 2ð48ððC object data
 END

16-22 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 17. Sharing Application Data (Name/Token Callable
Services)

Name/token callable services allow you to share data between two programs
running under the same task, or between two or more tasks or address spaces. To
share data, programs often need to locate data or data structures acquired and
built by other programs. These data structures and the programs using them need
not reside in the same address space. Name/token callable services provide a way
for programs to save and retrieve the information needed to locate this data.

Both unauthorized (problem state and PSW key 8-15) and authorized programs
(supervisor state or PSW key 0-7) can use name/token callable services.
Name/token callable services provide additional function that is available to
authorized programs only. For a description of those functions, see OS/390 MVS
Programming: Authorized Assembler Services Guide.

Understanding Name/Token Pairs and Levels
Name/token callable services enable programs to save and retrieve 16 bytes of
application-related data. A program can associate a 16-byte character string (the
name) with 16 bytes of user data (the token). Later, the same or a different
program can retrieve the token by using the name and calling a name/token
service.

By using the appropriate name/token callable service, a program can:

� Create a name/token pair (IEANTCR)
� Retrieve a token from a name/token pair (IEANTRT)
� Delete a name/token pair (IEANTDL).

 Name/Token Pairs
A name/token pair consists of a 16-byte character string (name) with 16 bytes of
user data (token). One program creates the name/token pair, assigns the name,
and initializes the token field. Typically, the token is an address of a data structure.

Figure 17-1 shows the name/token pair and indicates its intended use.

Name chosen by
program Program data

Name

16 bytes 16 bytes

Token

A program can use
the name to retrieve
the application data.

An application can store
data, such as addresses
and PC numbers, in the
token.

Figure 17-1. Using the Name and the Token

 Copyright IBM Corp. 1988, 1999 17-1

The bytes of the name can have any hexadecimal value and consist of alphabetic
or numeric characters. The name may contain blanks, integers, or addresses.

Names must be unique within a level. Here are some examples.

� Two task-level name/token pairs owned by the same task cannot have the
same name. However, two task-level name/token pairs owned by different tasks
can have the same name.

� Two home-address-space-level name/token pairs in the same address space
cannot have the same name. However, two home-address-space-level
name/token pairs in different address spaces can have the same name.

Because of these unique requirements you must avoid using the same names that
IBM uses for name/token pairs. Do not use the following names:

� Names that begin with A through I
� Names that begin with X'00'.

The token can have any value.

Levels for Name/Token Pairs
Name/token pairs have a level attribute associated with them. The level defines the
relationship of the creating program (that is, the program that creates the
name/token pair) to the retrieving program (that is, the program that retrieves the
data). Depending on the level you select, the retrieving program can run under the
same task as the creating program, or in the same home address space, in the
same primary address space, or in the same system.

� A task-level name/token pair allows the creating program and retrieving
program to run under the same task.

� A home-address-space-level name/token pair allows the creating program
and the retrieving program to run in the same home address space.

� A primary-address-space-level name/token pair allows the creating program
and the retrieving program to run in the same primary address space.

� A system-level name/token pair allows the creating program and the
retrieving program to run in the same system. That is, the two programs run in
separate address spaces.

The various name/token levels allow for sharing data between programs that run
under a single task, between programs that run within an address space, and
between programs that run in different address spaces. Some examples of using
name/token levels are:

� Different programs that run under the same task can share data through the
use of a task-level pair.

� Any number of tasks that run within an address space can share data through
the use of an address-space pair.

17-2 OS/390 V2R8.0 MVS Assembler Services Guide

Determining What Your Program Can Do with Name/Token Pairs
The following table shows the name/token callable services your program can use
to manipulate different levels of name/token pairs:

Note: The primary-address-space-level and system-level name/token pairs are
intended to be used in a cross-memory environment established by
authorized programs. For this reason, this book does not contain complete
descriptions of these pairs. For complete descriptions of the primary-level
and system-level name/token pairs, see OS/390 MVS Programming:
Authorized Assembler Services Guide.

Figure 17-2. Summary of What Programs Do with Name/Token Pairs

Service Level of pairs

Create (IEANTCR) � Task
 � Home
 � Primary

Retrieve (IEANTRT) � Task
 � Home
 � Primary
 � System

Delete (IEANTDL) � Task
 � Home
 � Primary

Note: Unauthorized programs cannot delete any
pairs created by authorized programs.

Deciding What Name/Token Level You Need
To determine the level to use, consider the relationship between the code that
creates the pair and the code that retrieves the pair:

� If the retrieving code will be running under the same task as the creator's code,
use the task level

� If the retrieving code will have the same home address space but run under a
different task, use the home address space level.

Task-Level Name/Token Pair
A task-level name/token pair can be used to anchor data that relates to only one
task. Your application program can create and retrieve the data as often as
needed.

Figure 17-3 shows the task-level name/token pair for TASK 1.

 Chapter 17. Sharing Application Data (Name/Token Callable Services) 17-3

N1 T1

TASK 1

ADDRESS SPACE

TASK-LEVEL NAME/TOKEN PAIR

CALL IEANTCR, (TASKLEV, N1, T1, NOPERSIST, RC)

CALL IEANTRT, (TASKLEV, N1, T1, RC)

CALL IEANTDL, (TASKLEV, N1, RC)

Figure 17-3. Using the Task Level in a Single Address Space

In a single address space, TASK 1:

1. Creates the task-level name/token pair (N1,T1) using the IEANTCR callable
service.

2. Retrieves the token at a later time by calling its name (N1) using the IEANTRT
callable service.

3. Deletes the name/token pair by calling its name (N1) using the IEANTDL
callable service.

Home-Level Name/Token Pair
A home-level name/token pair can anchor data for use by programs running in the
creating program's home address space.

Figure 17-4 shows the name/token pairs associated with TASK 1 and TASK 2
running in the address space.

17-4 OS/390 V2R8.0 MVS Assembler Services Guide

N1 T1

TASK 1

TASK 2

TASK-LEVEL NAME/TOKEN PAIR

ADDRESS SPACE NAME/TOKEN PAIR

CALL IEANTCR, (TASKLEV, N1, T1, NOPERSIST, RC)
CALL IEANTCR, (HOMELEV,N2,T2,NOPERSIST,RC)

CALL IEANTRT, (TASKLEV, N1, T1, RC)

CALL IEANTRT, (HOMELEV, N2, T2, TC)

CALL IENTCR, (HOMELEV, N3, T3, NOPERSIST, RC)

N1

N3

T2

T3

Figure 17-4. Using Home-Level and Task-Level Name/Token Pairs

In Figure 17-4, TASK 1:

1. Creates a task-level name/token pair (N1,T1) and a home-level name/token pair
(N2,T2) using the IEANTCR callable service. The home-level name/token pair
is associated with the address space.

2. Retrieves the token from N1,T1 any time during the task's processing.

TASK 2 does the following:

1. Retrieves the home-level token from N2,T2 that was created by TASK 1. TASK
2 can retrieve that token because both tasks are running in the same home
address space.

2. Creates its own home-level name/token pair (N3,T3) that other tasks running in
the home address space can access.

 Chapter 17. Sharing Application Data (Name/Token Callable Services) 17-5

Owning and Deleting Name/Token Pairs
Name/token pairs created by a program are automatically deleted by the system.
The level of the pair determines when the system deletes the pair:

Note: The words job step in this topic refers to the cross memory resource owning
(CRMO) task. While the CRMO task is generally the main job step task, at
times it may be either the initiator task or started task control task (such as
between jobs).

� Task-level pairs are owned by the task that created them and are
deleted when the owning task terminates.

� Home-address-space-level name/token pairs are owned by the job step
task of the home address space that created them and are deleted
when the job step task, rather than the creating task, in the address
space terminates; that is, home-level pairs created by subtasks of a
task are not automatically deleted when the subtask terminates.

� Primary-address-space-level name/token pairs are owned by the job
step task of the primary address space that created them and are
deleted when the job step task, rather than the creating task, in the
address space terminates; that is, primary-level pairs created by
subtasks of a task are not automatically deleted when the subtask
terminates.

Using Checkpoint/Restart with Name/Token Pairs
A program cannot complete a checkpoint operation, by issuing the CHKPT macro,
if certain name/token pairs are owned by the program at the time of the checkpoint.
The pairs are:

� Task-level name/token pairs owned by the task issuing the CHKPT macro.

� Home- or primary-address-space-level name/token pairs owned by the job step
task of the home address space of the task issuing the CHKPT macro.

A checkpoint fails if task- or address-space-level pairs exist because the
information in the pairs is not saved in the checkpoint data set when the checkpoint
is taken. Because the pair information is not saved, the program cannot be restored
when the restart occurs. For more information about checkpoint/restart, see
DFSMS/MVS Checkpoint/Restart.

Link-Editing Name/Token Services
A program that calls the name/token services must be link-edited with IBM-provided
name/token linkage-assist routines. The linkage-assist routines reside in
SYS1.CSSLIB. The following example shows the JCL that can link-edit a reentrant
program with the linkage-assist routines:

17-6 OS/390 V2R8.0 MVS Assembler Services Guide

//userid JOB 'accounting-info','name',CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4ð96K
//LINKSTEP EXEC PGM=HEWL,
// PARM='LIST,LET,XREF,REFR,RENT,SIZE=(18ððK,128K)'
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSN=userid.LOADLIB,DISP=OLD
//SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJLIB DD DSN=userid.OBJLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD \
 INCLUDE OBJLIB(userpgm)
 ENTRY userpgm
 NAME userpgm(R)
/\

 Chapter 17. Sharing Application Data (Name/Token Callable Services) 17-7

17-8 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 18. Processor Storage Management

The system administers the use of processor storage (that is, central and expanded
storage) and it directs the movement of virtual pages between auxiliary, expanded,
and central storage in page size (4096-byte or 4K-byte) blocks. It makes all
addressable virtual storage in each address space and data space or hiperspace
appear as central storage. Virtual pages necessary for program execution are kept
in processor storage as long as:

� The program references the pages frequently enough
� Other programs do not need that same central storage.

The system performs the paging I/O necessary to transfer pages in and out of
central storage and also provides DASD allocation and management for paging I/O
space on auxiliary storage.

The system assigns real frames upon request from a pool of available real frames,
thereby associating virtual addresses with real addresses. Frames are repossessed
upon termination of use, when freed by a user, when a user is swapped-out, or
when needed to replenish the available pool. While a virtual page occupies a real
frame, the page is considered pageable unless specified otherwise as a system
page that must be resident in central storage. The system also allocates virtual
equals central (V=R) regions upon request by those programs that cannot tolerate
dynamic relocation. Such a region is allocated contiguously from a predefined area
of central storage and is non-pageable. Programs in this region do run in dynamic
address translation (DAT) mode, although real and virtual addresses are equivalent.

This chapter describes how you can:

� Free the virtual storage in your address space and the virtual storage in any
data space that you might have access to

– FREEMAIN and STORAGE RELEASE frees specific portions of virtual
storage in address spaces.

– DSPSERV DELETE frees all of the virtual storage in a data space or
hiperspace.

� Release the central and expanded storage that actually holds the data that your
program has in virtual storage.

– PGRLSE or PGSER RELEASE releases specified portions of virtual
storage contents of an address space.

– DSPSERV RELEASE releases specified portions of virtual storage contents
of a data space or hiperspace.

� Request that a range of virtual storage pages be made read-only or be made
modifiable.

– PGSER PROTECT allows the caller to request that a range of virtual
storage pages be made read-only.

– PGSER UNPROTECT allows the caller to request that a range of virtual
storage pages be made modifiable.

� Request that the system preload or page out central storage

 Copyright IBM Corp. 1988, 1999 18-1

– PGLOAD or PGSER LOAD loads specified virtual storage areas of an
address space into central storage.

– PGOUT or PGSER OUT pages out specified virtual storage areas of an
address

space from central storage.

– DSPSERV LOAD loads specified virtual storage areas of a data space into
central storage.

– DSPSERV OUT pages out specified virtual storage areas of a data space
from central storage.

� Request that the system preload multiple pages on a page fault.

– REFPAT causes the system to preload pages according to a program's
reference pattern. REFPAT is intended for numerically intensive programs.

Freeing Virtual Storage
All storage obtained for your program by GETMAIN, STORAGE OBTAIN, or
DSPSERV CREATE is automatically freed by the system when the job step
terminates. Freeing storage in this manner requires no action on your part.

FREEMAIN or STORAGE RELEASE perform the equivalent of a page release for
any resulting free page. The page is no longer available to the issuer. FREEMAIN
can free a page that has been protected through the PGSER macro with the
PROTECT option. DSPSERV DELETE performs the same action for a data space
that FREEMAIN and STORAGE RELEASE do for address space virtual storage
except that for a data space or hiperspace, all of the storage is released.

 Releasing Storage
When your program is finished using an area of virtual storage, it can release the
storage to make the central, expanded, or auxiliary storage that actually holds the
data available for other uses. The decision to release the storage depends on the
size of the storage and when the storage will be used again:

� For large areas (over 100 pages, for example) that will not be used for five or
more seconds of processor time, consider releasing the storage. If you do not
release those pages after you are finished using them:

– Your program might be using central storage that could better be used for
other purposes.

– Your program might have delays later when the system moves your pages
from central storage to expanded or auxiliary storage.

� Generally, for smaller amounts of storage that will be used again in five
seconds or less, do not release the storage.

Note that releasing storage does not free the virtual storage.

When releasing storage for an address space , use PGRLSE or PGSER with the
RELEASE parameter. As shown in Figure 18-1, if the specified addresses are not
on page boundaries, the low address is rounded up and the high address is
rounded down; then, the pages contained between the addresses are released.

18-2 OS/390 V2R8.0 MVS Assembler Services Guide

1 page

address 1
(low)

address 2
(high)

Released virtual storage

Figure 18-1. Releasing Virtual Storage

When releasing storage for a data space or hiperspace , use the DSPSERV
RELEASE macro to release the central, expanded or auxiliary storage that actually
holds the data. PGSER RELEASE rejects any attempt to release protected storage,
including storage that is dynamically protected through PGSER PROTECT. The
starting address must be on a 4K-byte boundary and you can release data space
storage only in increments of 4K bytes.

For both address spaces and data spaces, the virtual space remains, but its
contents are discarded. When the using program can discard the contents of a
large virtual area (one or more complete pages) and reuse the virtual space without
the necessity of paging operations, the page release function may improve
operating efficiency.

Protecting a Range of Virtual Storage Pages
The PROTECT option of PGSER makes a range of virtual storage pages read-only
and helps to improve data integrity. The UNPROTECT option of PGSER makes a
range of virtual storage pages modifiable. You can protect private storage both
above and below 16 megabytes.

IBM recommends that you use PGSER PROTECT only for full pages of storage
on page boundaries. This usage avoids making other areas of storage read-only
unintentionally. For instance, if you obtain a virtual storage area smaller than a
page and then issue PGSER PROTECT, the entire page is made read-only,
including the portion of the page that is not part of your storage area.

The system does not keep track of how many times a page has been protected or
unprotected. One UNPROTECT cancels all PROTECTs for a given page.

Loading/Paging Out Virtual Storage Areas
The PGLOAD, PGSER LOAD, and DSPSERV LOAD essentially provide a
page-ahead function. By loading specified address space and data space areas
into central storage, you can attempt to ensure that certain pages will be in central
storage when needed. Page faults can still occur, however, because these pages
may be paged out if not referenced soon enough.

Loading and paging for address spaces: With the page load function, you have the
option of specifying that the contents of the virtual area is to remain intact or be
released. If you specify RELEASE=Y with PGLOAD or PGSER LOAD, the current
contents of entire virtual 4K pages to be brought in may be discarded and new real

 Chapter 18. Processor Storage Management 18-3

frames assigned without page-in operations; if you specify RELEASE=N, the
contents are to remain intact and be used later. If you specify RELEASE=Y, the
page release function will be performed before the page load function. That is, no
page-in is needed for areas defining entire virtual pages since the contents of those
pages are expendable.

Loading and paging for data spaces: DSPSERV LOAD requests the starting
address of the data space area to be loaded and the number of pages that the
system is to load. It does not offer a RELEASE=Y or a RELEASE=N function.

PGOUT, PGSER OUT, and DSPSERV OUT initiate page-out operations for
specified virtual areas that are in central storage. For address spaces, the real
frames will be made available for reuse upon completion of the page-out operation
unless you specify the KEEPREL parameter in the macro. An area that does not
encompass one or more complete pages will be copied to auxiliary storage, but the
real frames will not be freed. DSPSERV LOAD does not have the KEEPREL
function.

The proper use of the page load and page out functions tend to decrease system
overhead by helping the system keep pages currently in use, or soon to be in use,
in central storage. An example of the misuse of the page load function is to load
ten pages and then use only two.

For more information on DSPSERV LOAD and DSPSERV OUT, see “Paging Data
Space Storage Areas into and out of Central Storage” on page 15-16.

Virtual Subarea List (VSL)
The virtual subarea list provides the basic input to the page service functions that
use a 24-bit interface: PGLOAD, PGRLSE, and PGOUT. The list consists of one or
more doubleword entries, each entry describing an area of virtual storage. The list
must be non-pageable and contained in the address space of the subarea to be
processed.

Each subarea list entry has the format shown below. The flag bits that are
described are the only flag bits intended for customer use.

Byte 0 1 2 3 4 5 6 7
 FLAGS START

ADDRESS
 FLAGS END

ADDRESS + 1

Byte 0 Flags:
 Bit 0 (1...) This bit indicates that bytes 1-3 are a chain pointer to

the next VSL entry to be processed; bytes 4-7 are
ignored. This feature allows several parameter lists to
be chained as a single logical parameter list.

Start Address:

The address of the origin of the virtual area to be processed.
Byte 4 Flags:
 Bit 0 (1...) This flag indicates the last entry of the list. It is set in

the last doubleword entry in the list.
 Bit 1 (.1..) When this flag is set, the entry in which it is set is

ignored.
 Bit 3 (...1) This flag indicates that a return code of 4 was issued

from a page service function other than PGRLSE.
End Address + 1:

The address of the byte immediately following the end of the virtual area.

18-4 OS/390 V2R8.0 MVS Assembler Services Guide

Page Service List (PSL)
The page services list provides the basic input to the page service function for the
PGSER macro. Specify 31-bit addresses in the PSL entries. Within a PSL entry,
you can also nullify a service on a range of addresses by indicating that you do not
want to perform the service for that range.

Each 12-byte PSL entry has the following form:

Bytes Meaning

0-3 Bit 0 of byte 0 must be 0. Each PSL entry specifies the range of
addresses for which a service is to be performed or points to the
first PSL entry in a new list of concatenated PSL entries that are to
be processed.

4-7 Bit 0 of byte 4 must be 0. If bytes 0-3 contain the starting address,
these bytes contain the address of the last byte for which the page
service is to be performed. You do not need to do anything with
bytes 4-7 if you supplied a pointer in bytes 0-3.

8 Flags set by the caller as follows. The flag bits that are described
are the only flag bits intended for customer use.

Bit Meaning

0 Set to 1 to indicate that this is the last PSL entry in a
concatenation of PSL entries.

1 Set to 1 to indicate that no services are to be performed for
the range of addresses specified.

2 Set to 1 to indicate that bytes 0-3 contain a pointer to the
next PSL.

9-11 For IBM use only.

Defining the Reference Pattern (REFPAT)
The REFPAT macro allows a program to define a reference pattern for a specified
area that the program is about to reference. Additionally, the program specifies how
much data it wants the system to attempt to bring into central storage on a page
fault. The system honors the request according to the availability of central storage.
By bringing in more data at a time, the system takes fewer page faults; fewer page
faults means possible improvement in performance.

Programs that benefit from REFPAT are those that reference amounts of data that
are greater than one megabyte. The program should reference the data in a
sequential manner, either forward or backward. In addition, if the program “skips
over” certain areas, and these areas are of uniform size and are repeated at
regular intervals, REFPAT might provide additional performance improvement.
Although REFPAT affects movement of pages from auxiliary and expanded
storage, the greatest gain is for movement of pages from auxiliary storage.

There are two REFPAT services:

� REFPAT INSTALL identifies the data area and the reference pattern, and
specifies the number of bytes that the system is to try to bring into central
storage at one time. These activities are called “defining the reference pattern.”

 Chapter 18. Processor Storage Management 18-5

� REFPAT REMOVE removes the definition; it tells the system that the program
has stopped using the reference pattern for the specified data area.

A program might have a number of different ways of referencing a particular area.
In this case, the program can issue multiple pairs of REFPAT INSTALL and
REFPAT REMOVE macros for that area.

Each pattern, as defined on REFPAT INSTALL, is associated with the task that
represents the caller. A task can have up to 100 reference patterns defined for
multiple data areas at one time, but cannot have more than one pattern defined for
the same area. Other tasks can specify a different reference pattern for the same
data area. REFPAT REMOVE removes the association between the pattern and
the task.

The data area can be in the primary address space or in a data space owned by a
task that was dispatched in the primary address space. If the data area is in a data
space, identify the data space through its STOKEN. You received the STOKEN
either from DSPSERV or from another program.

Although REFPAT can be used for data structures other than arrays, for simplicity,
examples in this chapter use REFPAT for an array or part of an array.

Reference pattern services for high-level language (HLL) and assembler language
programs provide function similar to what REFPAT offers. For information about
these services, see OS/390 MVS Programming: Callable Services for HLL.

How Does the System Handle the Data in an Array?
To evaluate the performance advantage REFPAT offers, you need to understand
how the system handles a range of data that a program references. Consider the
two-dimensional array in Figure 18-2 on page 18-7 that is shown in row-major
order and in order of increasing addresses. This array has 1024 columns and 1024
rows and each element is eight bytes in size. Each number in Figure 18-2
represents one element. The size of the array is 1048576 elements for a total of
8388608 bytes. For simplicity, assume the array is aligned on a page boundary.
Assume, also, that the array is not already in central storage. The program
references each element in the array in a forward direction (that is, in order of
increasing addresses) starting with the first element in the array.

18-6 OS/390 V2R8.0 MVS Assembler Services Guide

1025 1026 1027 1028

2049 2050 2051

3073

1024

2048

3072

1048576.
.
.
.
.
.
.

.

.

.
.

.
.

.

.

.

1 2 3 4 5 6 7 8 9

Figure 18-2. Example of using REFPAT with a Large Array

First, consider how the system brings data into central storage without using the
information REFPAT provides. At the first reference of the array, the system takes
a page fault and brings into central storage the page (of 4096 bytes) that contains
the first element. After the program finishes processing the 512th element (4096÷8)
in the array, the system takes another page fault and brings in a second page. To
provide the data for this program, the system takes two page faults for each row.
The following linear representation shows the elements in the array and the page
faults the system takes as the program processes through the array.

0 512th 1024th . . .

. . .

element element

. . .

1 page fault each 512 elements (1 page)

1048576th
element

1st row 2nd row 3rd row 4th row last row

By bringing in one page at a time, the system takes 2048 page faults
(8388608÷4096), each page fault adding to the elapsed time of the program.

Suppose, through REFPAT, the system knew in advance that a program would be
using the array in a consistently forward direction. The system could then assume
that the program's use of the pages of the array would be sequential. To decrease
the number of page faults, each time the program requested data that was not in
central storage, the system could bring in more than one page at a time. Suppose
the system brought the next 20 consecutive pages (81920 bytes) of the array into
central storage on each page fault. In this case, the system takes not 2048 page
faults, but 103 (8388608÷81920=102.4). Page faults occur in the array as follows:

. . .
rows 1-10 rows 21-30 rows 31-40 rows 1021-1024rows 11-20

1 page fault each 10240 elements

 Chapter 18. Processor Storage Management 18-7

The system brings in successive pages only to the end of the array.

Consider another way of referencing this same array. The program references the
first twenty elements in each row, then skips over the last 1004 elements, and so
forth through the array. REFPAT allows you to tell the system to bring in only the
pages that contain the data in the first 20 columns of the array, and not the pages
that contain only data in columns 21 through 1024. In this case, the reference
pattern includes a repeating gap of 8032 bytes (1004×8) every 8192 bytes
(1024×8). The pattern looks like this:

skip skip skip

. . .

skip

309330732069204910451025
elements ...

211

The grouping of consecutive bytes that the program references is called a
reference unit . The grouping of consecutive bytes that the program skips over is
called a gap . Reference units and gaps alternate throughout the data area. The
reference pattern is as follows:

� The reference unit is 20 elements in size — 160 consecutive bytes that the
program references.

� The gap is 1004 elements in size — 8032 consecutive bytes that the program
skips over.

Figure 18-3 illustrates this reference pattern and shows the pages that the system
does not bring into central storage.

What Pages Does the System Bring in When a Gap Exists?
When no gap exists, the system brings into central storage all the pages that
contain the data in the range you specify on REFPAT. When there is a gap, the
answer depends on the size of the gap, the size of the reference unit, and the
alignment of reference units and gaps on page boundaries. The following examples
illustrate those factors.

Example 1: The following illustration shows the 1024-by-1024 array of eight-byte
elements, where the program references the first 20 elements in each row and
skips over the next 1004 elements. The reference pattern, therefore, includes a
reference unit of 160 bytes and a gap of 8032 bytes. The reference units begin on
every other page boundary.

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

all pages brought into central storage

reference units

page
2048th

Figure 18-3. Illustration of a Reference Pattern with a Gap

18-8 OS/390 V2R8.0 MVS Assembler Services Guide

Every other page of the data does not come into central storage; those pages
contain only the “skipped over” data.

Example 2: The reference pattern includes a reference unit of 4800 bytes and a
gap of 3392 bytes. The example assumes that the area to be referenced starts on
a page boundary.

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

all pages brought into central storage

reference units

page
2048th

Because each page contains data that the program references, the system brings
in all pages.

Example 3: The area to be referenced does not begin on a page boundary. The
reference pattern includes a reference unit of 2000 bytes and a gap of 5000 bytes.
Because the reference pattern includes a gap, the first byte of the reference pattern
must begin a reference unit, as the following illustration shows:

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

most pages brought into central storage

Start of
reference
pattern

Because the gap is larger than 4095 bytes, some pages do not come into central
storage. Notice that the system does not bring in the fifth page.

Summary of how the size of the gap affects the pages the system brings into
central storage :

� If the gap is less than 4096 bytes, the system has to bring into central storage
all pages of the array. (See Example 2.)

� If the gap is greater than 4095 bytes and less than 8192, the system might not
have to bring in certain pages. Pages that contain only data in the gap are not
brought in. (See Examples 1 and 3.)

� If the gap is greater than 8191 bytes, the system definitely does not have to
bring in certain pages that contain the gap.

 Chapter 18. Processor Storage Management 18-9

Using the REFPAT Macro
On the REFPAT macro, you tell the system:

� The starting and ending addresses of the data area to be referenced

� The reference pattern

� The number of reference units the system is to bring into central storage on a
page fault.

Specify the reference pattern carefully on REFPAT. If you identify a pattern and do
not adhere to it, the system will have to work harder than if you had not issued the
macro. “Defining the Reference Pattern” on page 18-11 can help you define the
reference pattern.

The system will not process the REFPAT macro unless the values you specify can
result in a performance gain for your program. To make sure the system processes
the macro, ask the system to bring in more than three pages (that is, 12288 bytes)
on each page fault. “Choosing the Number of Bytes on a Page Fault” on
page 18-12 can help you meet that requirement.

Identifying the Data Area and Direction of Reference
On the PSTART and PEND parameters, you specify the starting and ending
addresses of the area to be referenced. If the reference is in a backward direction,
the ending address will be smaller than the starting address.

PSTART identifies the first byte of the data area that the program references with
the defined pattern; PEND identifies the last byte.

When a gap exists, define PSTART and PEND according to the following rules:

� If direction is forward, PSTART must be the first byte (low-address end) of a
reference unit; PEND can be any part of a reference unit or a gap.

� If direction is backward, PSTART must be the last byte (high-address end) of a
reference unit; PEND can be any part of a reference unit or a gap.

Figure 18-4 illustrates a reference pattern that includes a reference unit of 2000
bytes and a gap of 5000 bytes. When direction is forward, PSTART must be the
beginning of a reference unit. PEND can be any part of a gap or reference unit.

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

PSTART PEND

forward direction

low address of range

Figure 18-4. Illustration of Forward Direction in a Reference Pattern

Figure 18-5 on page 18-11 illustrates the same reference pattern and the same
area; however, the direction is backward. Therefore, PSTART must be the last byte
of a reference unit and PEND can be any part of a gap or reference unit.

18-10 OS/390 V2R8.0 MVS Assembler Services Guide

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

PSTARTPEND

backward direction

high address of range

Figure 18-5. Illustration of Backward Direction in a Reference Pattern

If the data area is in a data space, use the STOKEN parameter to identify the data
space. You received the STOKEN of the data space from another program or from
the DSPSERV macro when you created the data space. STOKEN=0, the default,
tells the system that the data is in the primary address space.

Defining the Reference Pattern
This section assumes that your program's reference pattern meets the basic
requirement of consistent direction. Figure 18-6 identifies two reference patterns
that characterize most of the reference patterns that REFPAT applies to. The marks
on the line indicate referenced elements.

Pattern #1:

0 4096 8192 12288 16384 20480

. . .

Uniform gap

0 20 5020 10040 10060 15080
bytes bytes bytes bytes bytes bytes bytes bytes

. . .

xxx xxxxxxxxxxxxxxxxxxxxxxxx

Pattern #2:

No uniform gap

5040 15060 20080

xxxxx xxxxx xxxxxxxxxx

Characteristics of pattern:
- Gaps of uniform size
- Reference units, uniform in size, that occur in a repeating pattern

Characteristics of pattern:
- No uniform gap
- Reference in regular intervals (such as every element) or in irregular intervals

Figure 18-6. Two Typical Reference Patterns

How you define the reference pattern depends on whether your program's
reference pattern is like Pattern #1 or Pattern #2.

� With Pattern #1 where no uniform gap exists , the program uses every
element, every other element, or at least most elements on each page of array
data. No definable gap exists. Do not use REFPAT if the reference pattern is
irregular and includes skipping over many areas larger than a page.

 Chapter 18. Processor Storage Management 18-11

– The UNITSIZE parameter alone identifies the reference pattern. (Either omit
the GAP parameter or take the default, GAP=0.) UNITSIZE indicates the
number of bytes you want the system to use as a reference unit. Look at
logical groupings of bytes, such as one row, a number of rows, or one
element, if the elements are large in size. Or, you might choose to divide
up the total area, bringing in all the data on a certain number of page
faults.

– The UNITS parameter tells the system how many reference units to try to
bring in on a page fault. For a reference pattern that begins on a page
boundary and has no gap, the total number of bytes the system tries to
bring into central storage at a time is the value on UNITSIZE times the
number on UNITS, rounded up to the nearest multiple of 4096. See
“Choosing the Number of Bytes on a Page Fault” for more information on
how to choose the total number of bytes.

� With Pattern #2 where a uniform gap exists , you tell the system the sizes of
reference units and gaps.

– UNITSIZE and GAP parameters identify the reference pattern. Pattern #2 in
Figure 18-6 on page 18-11 includes a reference unit of 20 bytes and a gap
of 5000 bytes. Because the gap is greater than 4095, some pages of the
array might not come into central storage.

– The UNITS parameter tells the system how many reference units to try to
bring into central storage at a time. “What Pages Does the System Bring in
When a Gap Exists?” on page 18-8 can help you understand how many
bytes come into central storage at one time.

Although the system brings in pages 4096 bytes at a time, you do not have to
specify GAP, UNITS, and UNITSIZE values in increments of 4096.

Choosing the Number of Bytes on a Page Fault
An important consideration in using REFPAT is how many bytes to ask the system
to bring in on a page fault. To determine this, you need to understand some factors
that affect the performance of your program.

Pages do not stay in central storage if they are not referenced frequently enough
and other programs need that central storage. The longer it takes for a program to
begin referencing a page in central storage, the greater the chance that the page
has been moved out to auxiliary storage before being referenced. When you tell
the system how many bytes it should try to bring into central at one time, you have
to consider the following:

1. Contention for central storage

Your program contends for central storage along with all other submitted jobs.
The greater the size of central storage, the more bytes you can ask the system
to bring in on a page fault. The system responds to REFPAT with as much of
the data you request as possible, given the availability of central storage.

2. Contention for processor time

Your program contends for the processor's attention along with all other
submitted jobs. The more competition, the less the processor can do for your
program and the smaller the number of bytes you should request.

3. The elapsed time of processing one page of your data

18-12 OS/390 V2R8.0 MVS Assembler Services Guide

How long it takes a program to process a page depends on the number of
references per page and the elapsed time per reference. If your program uses
only a small percentage of elements on a page and references them only once
or twice, the program completes its use of pages quickly. If the processing of
each referenced element includes processor-intensive operations or a
time-intensive operation, such as I/O, the time the program takes to process a
page gets longer.

Conditions might vary between the peak activity of the daytime period and the low
activity of other periods. For example, you might be able to request a greater
number in the middle of the night than during the day.

What if you specify too many bytes? What if you ask the system to bring in so
many pages that, by the time your program needs to use some of those pages,
they have left central storage? The answer is that the system will have to bring
them in again. This action causes an extra page fault and extra system overhead
and reduces the benefit of reference pattern services.

For example, suppose you ask the system to bring in 204800 bytes, or 50 pages,
at a time. But, by the time your program begins referencing the data on the 30th
page, the system has moved that page and the ones after it out of central storage.
(It moved them out because the program did not use them soon enough.) In this
case, your program has lost the benefit of moving the last 21 pages in. Your
program would get more benefit by requesting fewer than 30 pages.

What if you specify too few bytes? If you specify too small a number, the system
will take more page faults than it needs to and you are not taking full advantage of
reference pattern services.

For example, suppose you ask the system to bring in 40960 bytes (10 pages) at a
time. Your program's use of each page is not time-intensive, meaning that the
program finishes using the pages quickly. The program can request a number
greater than 10 without causing additional page faults.

IBM recommends that you use one of the following approaches, depending on
whether you want to involve your system programmer in the decision.

� The first approach is the easier one. Choose a conservative number of bytes,
around 81920 (20 pages), and run the program. Look for an improvement in
the elapsed time. If you like the results, you might increase the number of
bytes. If you continue to increase the number, at some point you will notice a
diminishing improvement or even an increase in elapsed time. Do not ask for
so much that your program or other programs suffer from degraded
performance.

� A second approach is for the program that needs very significant performance
improvements — those programs that require amounts in excess of 50 pages.
If you have such a program, you and your system programmer must examine
the program's elapsed time, paging speeds, and processor execution times. In
fact, the system programmer can tune the system with your program in mind
and provide needed paging resources. See OS/390 MVS Initialization and
Tuning Guide for information on tuning the system.

REFPAT affects movement of pages from auxiliary and your system
programmer will need the kind of information that the SMF Type 30 record
provides. A Type 30 record reports counts of pages moved (between expanded

 Chapter 18. Processor Storage Management 18-13

and central and between auxiliary and central) in anticipation of your program's
use of those pages. It also provides elapsed time values. Use this information
to calculate rates of movement in determining whether to specify a very large
number of bytes — for example, an amount greater than 204800 bytes (50
pages).

Examples of Using REFPAT to Define a Reference Pattern
To clarify the relationships between the UNITSIZE, UNITS, and GAP parameters,
this section contains three examples of defining a reference pattern. So that you
can compare the three examples with what the system does without information
from REFPAT, the following REFPAT invocation approximates the system's normal
paging operation:

REFPAT INSTALL,PSTART=. . .,PEND=. . .,UNITSIZE=4ð96,GAP=ð,UNITS=1

Each time the system takes a page fault, it brings in 4096 bytes, the system's
reference unit. It brings in one reference unit at a time.

Example 1: The program processes an array in a consistently forward direction
from one reference unit to the next. The processing of each element is fairly simple.
The program runs during the peak hours and many programs compete for
processor time and central storage. A reasonable value to choose for the number
of bytes to be brought into central storage on a page fault might be 80000 bytes
(around 20 pages). A logical grouping of bytes (the UNITSIZE parameter) is 4000
bytes. The following REFPAT macro communicates this pattern to the system:

REFPAT INSTALL,PSTART=FIRSTB,PEND=LASTB,UNITSIZE=4ððð,GAP=ð,UNITS=2ð

Example 2: The program performs the same process as in the first example, except
the program references few elements on each page. The program runs during the
night hours when contention for the processor and for central storage is light. In this
case, a reasonable value to choose for the number of bytes to come into central
storage on a page fault might be 200000 bytes (around 50 pages). UNITSIZE can
be 4000 bytes and UNITS can be 500. The following REFPAT macro
communicates this pattern:

REFPAT INSTALL,PSTART=FIRSTB,PEND=LASTB,UNITSIZE=4ððð,GAP=ð,UNITS=5ðð

Example 3: The program references in a consistently forward direction through the
same large array as in the second example. The pattern of reference includes a
gap. The program references 8192 bytes, then skips the next 4096 bytes,
references the next 8192 bytes, skips the next 4096 bytes, and so forth throughout
the array. The program chooses to bring in data eight pages at a time. Because of
the size of the gap and the placement of reference units and gaps on page
boundaries, the system does not bring in the data in the gaps. The following
illustration shows this reference pattern:

12288
bytes

20480
bytes

24576
bytes

32768
bytes

36864
bytes

0
bytes

. . .8192
bytes

FIRSTB LASTB

The following REFPAT macro reflects this reference pattern:

18-14 OS/390 V2R8.0 MVS Assembler Services Guide

REFPAT INSTALL,PSTART=FIRSTB,PEND=LASTB,UNITSIZE=8192,GAP=4ð96,UNITS=4

where the system is to bring into central storage 32768 (4×8192) bytes on a page
fault.

Removing the Definition of the Reference Pattern
When a program is finished referencing the data area in the way you specified on
the REFPAT INSTALL macro, use REFPAT REMOVE to tell the system to return to
normal paging. On the PSTART and PEND parameters, you specify the same
values that you specified on the PSTART and PEND parameters that defined the
reference pattern for the area. If you used the STOKEN parameter on REFPAT
INSTALL, use it on REFPAT REMOVE.

The following REFPAT invocation removes the reference pattern that was defined
in Example 3 in Examples of Using REFPAT to Define a Reference Pattern:

REFPAT REMOVE,PSTART=FIRSTB,PEND=LASTB

 Chapter 18. Processor Storage Management 18-15

18-16 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 19. Sharing Data in Virtual Storage (IARVSERV
Macro)

With the shared pages function, which is available through the IARVSERV macro,
you can define virtual storage areas through which data can be shared by
programs within or between address spaces or data spaces. Also, the type of
storage access can be changed.

Sharing reduces the amount of processor storage required and the I/O necessary
to support data applications that require access to the same data. For example,
IARVSERV provides a way for a program running below 16 megabytes, in 24-bit
addressing mode, to access data above 16 megabytes that it shares with 31-bit
mode programs. IARVSERV allows the sharing of data without the central storage
constraints and processor overhead of other existing methods of sharing data.

The sharing of data benefits many types of applications, because data is available
to all sharing applications with no increase in storage usage. This function is useful
for applications in either a sysplex environment or a single-system environment.
Additionally, IARVSERV allows you to control whether a sharing program:

� Has read access only

� Has both read and write access and receives updates immediately

� Can modify the data without modifying the original, and without allowing the
sharing programs to view the updates

� Can modify the original while sharing programs see the change, but without
allowing the sharing programs to change the data

� Can change the current storage access

An additional macro, IARR2V, is provided as an aid to converting central storage
addresses to virtual storage addresses. See “Converting a Central to Virtual
Storage Address (IARR2V Macro)” on page 19-9 for information on the IARR2V
macro.

The IARVSERV topics described in this chapter are:

� Understanding the concepts of sharing data with IARVSERV

� Storage you can use with IARVSERV

� Obtaining storage for the source and target

� Defining storage for sharing data and access

� Changing storage access

� How to share and unshare data

� Accessing data in a sharing group

� Example of sharing storage with IARVSERV

� Use with data-in-virtual (DIV macro)

� Diagnosing problems with shared data

For coding information about the IARVSERV and IARR2V macros, see OS/390
MVS Programming: Assembler Services Reference.

 Copyright IBM Corp. 1988, 1999 19-1

Understanding the Concepts of Sharing Data with IARVSERV
As you read this section, refer to Figure 19-1 for an illustration of the sharing data
through the IARVSERV macro.

Addr Space
A

Addr Space
B

data1

source

data1

target

Data Space
X

data1

target

S
H
A
R
E SHARE

Figure 19-1. Data Sharing with IARVSERV

Suppose that Addr Space A contains data that is required by programs in Addr
Space B. A program in Addr Space A can use IARVSERV to define that data to be
shared; that data and the storage it resides in are called the source . The program
also defines storage in Addr Space B to receive a copy of the source; that storage
and its copy of source data are called the target .

The source and its corresponding target form a sharing group . A sharing group
can consist of several target areas and one source. For example, suppose another
program in Addr Space A defines a portion of data1 (in Addr Space A) as source,
and defines a target in Data Space X. That target becomes a member of the
sharing group established previously.

All sharing of data is done on a page (4K) basis. If the source page is already a
member of an existing sharing group, the target becomes a member of that existing
sharing group. A page is called a sharing page if it is a member of a sharing
group.

Programs that access the source or targets are called sharing programs . Each
sharing program accesses the shared virtual storage as it would any other storage,
and may not need to know that the storage is being shared. So, you can allow
programs to share data through IARVSERV without having to rewrite existing
programs.

Storage You Can Use with IARVSERV
You can share data in address spaces and data spaces. You can use any storage
to which you have valid access, except for a hiperspace, a VIO window, a V=R
region, or PSA.

The maximum number of shared pages for a program in problem state with PSW
key 8-15 is 32, unless this number is modified by your installation. This number
includes both the source and targets, so the actual number of unique pages is 16.

19-2 OS/390 V2R8.0 MVS Assembler Services Guide

Obtaining Storage for the Source and Target
Before you can issue IARVSERV to define storage as shared, you must obtain or
create both the source and target areas. For address space storage, use the
GETMAIN or STORAGE macro; for data space storage, use the DSPSERV macro.
The source and target areas must be as follows:

� Start on a page boundary,

� Have the same storage protect key and fetch-protection status (except for
TARGET_VIEW=UNIQUEWRITE or TARGET_VIEW=LIKESOURCE and the
source has UNIQUEWRITE view),

� Meet one of the following requirements:

– Reside within pageable private storage of an address space.

– Reside within the valid size of an existing data space and be pageable
storage.

The source and the target must be two different storage areas. They must be
different virtual storage addresses or reside in different address or data spaces.

Then initialize the source with data. Make sure any storage you obtain or data
space you create can be accessed by the intended sharing programs. For example,
if you want to allow sharing programs to both read and modify a target, the
programs' PSW key value must match or override the target's storage protection
key. For information on data spaces, see Chapter 15, “Data Spaces and
Hiperspaces” on page 15-1.

Defining Storage for Sharing Data and Access
With the IARVSERV macro, you can define multiple types of data sharing and
access. As you read this section, use Figure 19-1 on page 19-2 to see how each
IARVSERV parameter acts on the current state of the data. Each type of data
sharing access is called a specific view of the source data. A view is the way your
program accesses, or sees, the data. You define the view in the TARGET_VIEW
parameter on IARVSERV, by specifying one of the following:

� Read-only view (READONLY value) — where the target data may not be
modified.

� Shared-write view (SHAREDWRITE value) — where the target data can be
read and modified through the view.

� Copy-on-write view (UNIQUEWRITE value) — where the source data
modifications are not seen by other source - sharing programs. Any attempt to
modify the shared source data in this view causes MVS to create a unique
target copy of the affected page for that address or data space.

An example of two different cases:

– If the shared data is modified through a SHAREDWRITE view, the
UNIQUEWRITE view gets an unmodified copy of the data. Any remaining
views sharing that data see the modified data.

– If the shared data is modified through a UNIQUEWRITE view, the
UNIQUEWRITE view gets the modified copy of the data. Any remaining
views sharing that data see the unmodified data.

 Chapter 19. Sharing Data in Virtual Storage (IARVSERV Macro) 19-3

� Copy-on-write target view (TARGETWRITE value) — where the target data
may be read and modified through the source view. Any modification of a
shared target page causes MVS to create a unique target copy of the affected
page for that address or data space.

An example for two different cases:

– If the shared data is modified through a SHAREDWRITE view, the
TARGETWRITE view sees the modified data.

– If the shared data is modified through a TARGETWRITE view, the
TARGETWRITE view sees the modified copy of the data. Any remaining
views sharing that data see the unmodified data.

� Like source view (LIKESOURCE value) — where the target data is given the
current view type of the source data. If the source data is currently not shared,
then its current storage attribute is given to the target.

� Hidden view (HIDDEN value) — where the target will share the source data,
but any attempt to access the target data (HIDDEN value) will cause a program
check. To access the target, the view type must be changed to READONLY,
SHAREDWRITE, UNIQUEWRITE, or TARGETWRITE.

When you specify a value for TARGET_VIEW, keep the following in mind:

� The execution key (PSW key) of the caller must be sufficient for altering the
target area. If TARGET_VIEW=SHAREDWRITE is specified, the execution key
must be sufficient for altering the source area also.

� For TARGET_VIEW=UNIQUEWRITE, if the input source area is address space
storage, and the storage has not been obtained by GETMAIN or STORAGE
OBTAIN, or the storage and fetch protect keys do not match, then the SHARE
is not performed for that area. The target will be all zeros (first reference), or it
will remain as pages that were not obtained by GETMAIN.

� For target views created with LIKESOURCE on IARVSERV SHARE, the system
propagates explicit page protection from the source to the target view.

� Page-fixed pages and DREF pages cannot be made TARGETWRITE,
UNIQUEWRITE, or HIDDEN.

Changing Storage Access
With the IARVSERV macro, the SHARE and CHANGEACCESS parameters can
change the views type of storage access. For SHARE, the current storage attribute
of the source data affects the outcome of the target. Figure 19-2 shows the
permitted target views for different combinations with the source. A NO in the table
means that an abend will occur if you request that target view with the current
source view. For CHANGEACCESS, all combinations are permitted.

19-4 OS/390 V2R8.0 MVS Assembler Services Guide

Figure 19-2. Allowed Source/Target View Combinations for Share

Current Requested Target View

Source View READONLY SHAREDWRITE UNIQUEWRITE TARGETWRITE HIDDEN LIKESOURCE

READONLY Yes No Yes Yes Yes Yes

SHAREDWRITE Yes Yes Yes Yes Yes Yes

UNIQUEWRITE Yes Yes Yes Yes Yes Yes

TARGETWRITE No No Yes No No Yes

HIDDEN (Shared) No No No No No Yes

Non-Shared Yes Yes Yes Yes Yes Yes

HIDDEN
(Non-Shared)

No No No No No Yes

The following apply when using IARVSERV SHARE when changing storage
access:

� For source views to be either UNIQUEWRITE or TARGETWRITE, the
processor must have the Suppression-On-Protection (SOP) hardware feature,
and a previous IARVSERV SHARE must have created a view of
UNIQUEWRITE or TARGETWRITE.

� For target views to be TARGETWRITE, the processor must have the SOP
hardware feature. If a request is made to create a TARGETWRITE view and
the SOP feature is not installed, the request fails with a return code of 8.

� For target views to be UNIQUEWRITE, the SOP hardware feature must be
installed. Also, the request must not specify COPYNOW. If the request
specifies COPYNOW, or the SOP feature is not installed, a UNIQUEWRITE
view is not established, and a separate copy of the data is made.

� For target views created with LIKESOURCE on IARVSERV SHARE, the system
propagates explicit page protection from the source to the target view.

� For source pages that are not shared, if the page is page-protected, the view
created for that page is a SHAREDWRITE view, but the view is flagged as an
explicitly protected view (one that cannot be modified).

The following apply when changing the storage access with IARVSERV
CHANGEACCESS:

� To remove hidden status, you must use an IARVSERV CHANGEACCESS,
FREEMAIN, or DSPSERV DELETE macro.

� To remove explicit read-only protection status, you must use an IARVSERV
CHANGEACCESS, FREEMAIN, DSPSERV DELETE, or PGSER UNPROTECT
macro.

� If a hidden page is hidden because of loss of access to 'mapped' data (such as
through DIV UNMAP), and, if the page is changed from hidden, the data in the
page might be lost.

� Hidden pages cannot be released via a PGSER RELEASE or DSPSERV
RELEASE macro. An attempt would result in an abend with the same reason
code as is used for protected pages.

� Issuing an IARVSERV UNSHARE macro for the original mapped page causes
the data to be retained for that page. The data for the other sharing pages is
lost. References to hidden pages cause an X'0C4' abend, and references to
lost pages cause in a X'028' abend.

 Chapter 19. Sharing Data in Virtual Storage (IARVSERV Macro) 19-5

� Page-fixed pages and DREF pages cannot be made TARGETWRITE,
UNIQUEWRITE, or HIDDEN.

How to Share and Unshare Data
With the IARVSERV macro, use the SHARE parameter to initiate sharing of data;
use the UNSHARE parameter to end sharing for the issuing program. This section
discusses the additional IARVSERV parameters that you can specify with SHARE
or UNSHARE.

The RANGLIST parameter is always required for both SHARE and UNSHARE. It
gives IARVSERV information about the source and target addresses. The
RANGLIST value is actually the address of the list of addresses you must create
using the mapping macro IARVRL. See OS/390 MVS Data Areas, Vol 2
(DCCB-ITTCTE) for the details of IARVRL. The following table lists the required
IARVRL fields that you must supply for SHARE or UNSHARE.

For IARVSERV SHARE, if the target area contains pages that belong to an existing
sharing group, MVS performs an implicit UNSHARE to pull those pages out of the
existing sharing group before proceeding. Also, MVS automatically performs an
UNSHARE on any sharing page when the page is being freed by FREEMAIN,
STORAGE RELEASE, or DSPSERV DELETE, or when the page's address space
is ended.

Also, when MVS finds that one page of a range is not acceptable for sharing, MVS
will not complete the SHARE request for that page, nor the rest of the range or
ranges not already processed. You can assume that all pages up to that point were
processed successfully. An abend will be issued and GPR 2 and 3 will contain the
address range list associated with the error page and the storage address of the
page in error, respectively. To remove the SHARE on the successful pages, issue
IARVSERV UNSHARE for the storage ranges up to, but excluding, the error page.

The parameter TARGET_VIEW is required with SHARE only, to tell IARVSERV
how you plan to share the data contained in the source. You have three choices
described in “Defining Storage for Sharing Data and Access” on page 19-3.

� READONLY does not allow any program accessing the target area to write to
it. An abend results if a program attempts to write to a READONLY target.

� SHAREDWRITE allows any sharing program to write to the target. All those
sharing the target area instantly receive the updates. This view could be very
useful as a communication method for programs.

� UNIQUEWRITE has the property of copy-on-write, which means that MVS
creates a copy of a page for the updating program once the program writes to

IARVRL Fields That You Must Initialize
for SHARE

IARVRL Fields That You Must Initialize
for UNSHARE

VRLSVSA
VRLSSTKN (for STOKEN)
VRLSALET (for ALET)
VRLNUMPG
VRLTVSA
VRLTSTKN (for STOKEN)
VRLTALET (for ALET)

VRLNUMPG
VRLTVSA
VRLTSTKN (for STOKEN)
VRLTAKET (for ALET)

19-6 OS/390 V2R8.0 MVS Assembler Services Guide

that page. The only program that has the change is the program that changed
it; all others continue to use the original page unmodified. This is true whether
the program writes to a source or target page.

A copy-on-write hardware facility is provided for additional performance
improvement. If you need to determine if your processor has the feature, you
can use the CVT mapping macro, and test the CVTSOPF bit. See OS/390
MVS Data Areas, Vol 1 (ABEP-DALT) for details on the CVT mapping macro.

RETAIN is a parameter available only with UNSHARE. RETAIN=NO requests that
MVS remove the target from sharing. The target data is lost. RETAIN=YES
requests that MVS leave the data in the target untouched.

Accessing Data in a Sharing Group
Data is accessed in a sharing group just as it would be if sharing did not exist.
Trying to write to a READONLY view will cause an abend.

You can create a sharing group that permits programs in 24-bit addressing mode to
access data above 16 megabytes. To do this, you would define the source in
storage above 16 megabytes, and obtain a target in storage below 16 megabytes.
Then initialize the source with data, so programs in 24-bit mode can share the data
through the target.

Example of Sharing Storage with IARVSERV
Suppose you are updating a program called PGMA, that controls all the account
deposits for a savings bank. Your program must work with two older programs that
are complex and do not have source code available. The first program, called
SUBPGMA, was updated six years ago and runs in 31-bit addressing mode; it
records deposits in money market accounts. It cannot use data spaces. The other
program, SUBPGMB, is much older and records deposits in standard savings
accounts. It runs in 24-bit addressing mode. See Figure 19-3 on page 19-8 for a
representation of the storage.

Program PGMA, the main program, was written to keep all of its data in one large
data space. PGMA must continually obtain appropriate storage in the address
space that is addressed by SUBPGMA and SUBPGMB. After SUBPGMA and
SUBPGMB finish, PGMA must copy all the updated data back to the data space.
This is degrading performance and needs to be fixed. By using IARVSERV, you
can eliminate the copying, and reduce the complexity of PGMA.

Your update to PGMA would cause the programs to work together this way:

1. PGMA creates a data space and initializes it with data.

2. Before PGMA calls SUBPGMA to do a money market deposit, PGMA issues
GETMAIN for storage in the private area for a buffer. This buffer is BUFFER31.

3. PGMA issues IARVSERV SHARE to share the source in the data space with
the target, BUFFER31. Use TARGET_VIEW=SHAREDWRITE so updates can
be made directly into the data space.

4. PGMA now calls SUBPGMA to update the data, passing the address of
BUFFER31 as the area to be updated.

 Chapter 19. Sharing Data in Virtual Storage (IARVSERV Macro) 19-7

5. Once SUBPGMA updates the data in BUFFER31, PGMA issues IARVSERV
UNSHARE followed by FREEMAIN to release the storage.

6. When PGMA needs to call SUBPGMB to do a savings account deposit, the
only difference is that PGMA must obtain storage below 16 megabytes for the
buffer. This buffer is BUFFER24.

7. PGMA again issues IARVSERV SHARE with
TARGET_VIEW=SHAREDWRITE, but identifies the target as BUFFER24.

8. PGMA calls SUBPGMB to update the data, passing the address of BUFFER24
as the area to be updated.

9. Once SUBPGMB updates the data in BUFFER24, PGMA issues IARVSERV
UNSHARE and FREEMAIN to release the storage as before.

Note that all three programs could share the data in the data space at the same
time. Sharing continues until PGMA issues IARVSERV UNSHARE for that buffer
area.

Addr Space

data

target

target

data

Buffer31

Buffer24

16 meg

Data Space

data

source

0

Figure 19-3. Sharing Storage with IARVSERV

Use with Data-in-Virtual (DIV Macro)
There are several restrictions for programs that use data-in-virtual MAP service with
data shared using the IARVSERV SHARE service:

� A sharing page must reside in non-swappable storage and have a
SHAREDWRITE view mode.

� Only one member of a sharing group can be mapped. Any attempt to map
another member of the same sharing group results in a X'08B' abend.

� You cannot use the IARVSERV macro to share data mapped to a hiperspace
object.

� You cannot map a sharing page whose sharing group contains a page that is
currently a fixed or disabled reference page.

19-8 OS/390 V2R8.0 MVS Assembler Services Guide

� If the owning address space of a sharing page that was mapped by DIV MAP
terminates prior to a DIV UNMAP, the data is lost. Any further reference to the
shared data results in a X'028' abend.

There are also restrictions for programs that use the data-in-virtual UNMAP
function.

If a sharing page is currently mapped, and the owner of the map issues DIV
UNMAP with RETAIN for that page, the value of RETAIN affects all sharing group
members as follows:

� For RETAIN=NO, all pages of the target become unpredictable in content.

� For RETAIN=YES, all pages of the target get the data as it last appeared within
the sharing page. This can be useful for saving an instance of data, such as a
check point. Use of RETAIN=YES can affect performance if it consumes large
amounts of central storage by repeated retaining of the storage.

Diagnosing Problems with Shared Data
You can use IPCS reports to see how data is being shared through IARVSERV.
The IPCS RSMDATA subcommand with the SHRDATA parameter provides a
detailed report on the status of IARVSERV data sharing. The following RSMDATA
reports also provide shared data information: ADDRSPACE, EXPFRAME,
REALFRAME, RSMREQ, SUMMARY, and VIRTPAGE. See OS/390 MVS IPCS
Commands for more information about the SHRDATA subcommand.

You may also collect information about data shared through IARVSERV by issuing
the DISPLAY command, and by specifying certain optional parameters on the
IARR2V macro. See OS/390 MVS System Commands and “Converting a Central to
Virtual Storage Address (IARR2V Macro)” for more information.

Converting a Central to Virtual Storage Address (IARR2V Macro)
The IARR2V macro provides a simple method to obtain a virtual storage address
from a central storage address. This conversion can be useful, for example, when
you are working with an I/O or diagnostic program that provides central storage
addresses, but you want to use virtual storage addresses.

The details of the syntax and parameters of IARR2V are in OS/390 MVS
Programming: Assembler Services Reference. In its simplest form, the IARR2V
macro requires only the RSA parameter. The RSA parameter specifies the central
storage address that you want to convert.

The system returns the virtual storage address in a register or in a storage location
you specify through the VSA parameter. Also, you can request the system to return
the ASID or STOKEN of the address space or data space associated with the
address.

If you require knowledge of whether the central storage address you have is being
shared through the IARVSERV macro, you can get that information using the
WORKREG, NUMVIEW, and NUMVALID parameters. To use the NUMVIEW and
NUMVALID parameters, you must use the WORKREG parameter to specify the
work register for the system to use. The NUMVIEW parameter requests the total

 Chapter 19. Sharing Data in Virtual Storage (IARVSERV Macro) 19-9

number of pages sharing the view of your central storage address. NUMVALID
requests the number of pages currently addressable (accessed), which is called the
number of valid views. With NUMVIEW and NUMVALID, you can check how
effectively programs are using shared storage. Pages that are not accessed have
not been read or updated by any program.

19-10 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 20. Timing and Communication

This chapter describes timing services and communication services. Use timing
| services to determine whether the basic or extended time-of-day (TOD) clock is

synchronized with an External Time Reference hardware facility (ETR1), obtain the
present date and time, convert date and time information to various formats, or for
interval timing. Interval timing lets you set a time interval, test how much time is left
in the interval, or cancel the interval. Use communication services to send
messages to the system operator, to TSO/E terminals, and to the system log.

Checking for Timer Synchronization
Several processors can share work in a data processing complex. Each of these
processors has access to a TOD clock. Thus, when work is shared among different
processors, multiple TOD clocks can be involved. However, these clocks might not
be synchronized with one another. The External Time Reference (ETR) is a single
external time source that can synchronize the TOD clocks of all processors in a
complex.

For programs that are dependent upon synchronized TOD clocks in a multi-system
environment, it is important that the clocks are in ETR synchronization. Use the
STCKSYNC macro to obtain the TOD clock contents and determine if the clock is
synchronized with an ETR. STCKSYNC also provides an optional parameter,
ETRID, that returns the ID of the ETR source with which the TOD clock is currently
synchronized.

Note: IBM recommends the use of the STCKSYNC macro instead of the STCK
instruction for all multi-system programs that are dependent upon
synchronized clocks.

Obtaining Time of Day and Date
When an ETR is used, the time of day and date are set automatically at system
initialization. In other configurations, the operator is responsible for initially
supplying the correct time of day and date in terms of a 24-hour clock.

You can use the TIME macro to obtain the time of day and date for programs that
require this information. If you specify ZONE=GMT with TIME, the returned time of
day and date will be for Greenwich Mean Time. If you specify ZONE=LT or omit the
ZONE parameter, the TIME macro returns the local time of day and date. However,

| if you specify STCK or STCKE , the ZONE parameter has no meaning. When you
specify LINKAGE=SYSTEM with the TIME macro, you can select the format for the
returned date by using the DATETYPE parameter.

| All references to time of day use the time-of-day (TOD) clock, either the basic
| format (unsigned 64-bit binary number) or the extended format (unsigned 128-bit
| binary number). The TOD clock runs continuously while the power is on, and the

clock is not affected by system-stop conditions. Normally, the clock is reset only
when an interruption of processor power has caused the clock to stop, and

1 External time reference (ETR) is the MVS generic name for the IBM Sysplex Timer.

 Copyright IBM Corp. 1988, 1999 20-1

restoration of power has restarted the clock at a later time. When an ETR is used,
the clock reset happens automatically; in other configurations, the operator resets
the clock. (For more information about the TOD clock, see Principles of Operation.)

Converting Between Time of Day and Date and TOD Clock Formats
You can use the STCKCONV macro to convert a TOD clock value to time of day
and date, specifying the format in which the information will be returned. This
conversion is useful, for example, for producing a report that requires the time and
date to be printed in a certain format.

You can use the CONVTOD macro to convert a time of day and date value to TOD
| or ETOD clock format. The macro accepts a time of day and date value in any of

the formats returned by the STCKCONV and TIME macros, and converts that value
to either TOD clock format.

| It is recommended that you begin to convert your applications to using the ETOD
| format. The extended time-of-day format was required both to address the time
| wrapping problem that would occur in the year 2042 and also to provide inproved
| resolution necessary for the faster processors as they become available.

| Note that if you request ETOD information and your processor is not configured
| with the 128-bit extended time-of-day clock, timer services will return the contents
| of the 64-bit TOD and will simulate the remaining 64 bits of the ETOD. Conversely,
| if you request TOD information and your processor is configured with the extended
| time-of-day clock, timer services will return only that portion of the 128-bit ETOD
| that corresponds to the 64-bit TOD.

 Interval Timing
Time intervals can be established for any task in the job step through the use of the
STIMER or STIMERM SET macros. The time remaining in an interval established
via the STIMER macro can be tested or cancelled through the use of TTIMER
macro. The time remaining in an interval established via the STIMERM SET macro
can be cancelled or tested through the use of the STIMERM CANCEL or STIMERM
TEST macros.

The value of the CPU timer can be obtained by using the CPUTIMER macro. The
CPU timer is used to track task-related time intervals.

The TASK, REAL, or WAIT parameters of the STIMER macro and the
WAIT=YES|NO parameter of the STIMERM SET macro specify the manner in
which the time interval is to be decreased. REAL and WAIT indicate the interval is
to be decreased continuously, whether the associated task is active or not. TASK
indicates the interval is to be decreased only when the associated task is active.
STIMERM SET can establish real time intervals only.

If REAL or TASK is specified on STIMER or WAIT=NO is specified on STIMERM
SET, the task continues to compete with the other ready tasks for control; if WAIT
is specified on STIMER, or WAIT=YES is specified on STIMERM SET, the task is
placed in a WAIT condition until the interval expires, at which time the task is
placed in the ready condition.

20-2 OS/390 V2R8.0 MVS Assembler Services Guide

When TASK or REAL is specified on STIMER or WAIT=NO is specified on
STIMERM SET, the address of an asynchronous timer completion exit routine can
also be specified. This routine is given control sometime after the time interval
completes. The delay is dependent on the system's work load and the relative
dispatching priority of the associated task. If an exit routine is not specified, there is
no notification of the completion of the time interval. The exit routine must be in
virtual storage when specified, must save and restore registers as well as return
control to the address in register 14.

Timing services does not serialize the use of asynchronous timer completion
routines.

When you cancel a timer request that specified a timer exit:

1. Specify the TU or MIC parameters to determine whether the cancel operation
was successful. If the STIMERM or TTIMER macro returns a value of zero to
the storage area designated by TU or MIC, then the asynchronous timer
completion exit routine has run or will run because its interval expired before
the cancel operation completed.

2. It is your responsibility to set up a program to determine whether the timer exit
has run; you can have the exit set an indicator to tell you that it has run.

If the STIMERM or TTIMER macro returns a non-zero value to the storage area
designated by TU or MIC, then the time interval was cancelled and the
asynchronous exit will not run.

Figure 20-1 shows the use of a time interval when testing a new loop in a program.
The STIMER macro sets a time interval of 5.12 seconds, which is to be decreased
only when the task is active, and provides the address of a routine called FIXUP to
be given control when the time interval expires. The loop is controlled by a BXLE
instruction.

 Chapter 20. Timing and Communication 20-3

 .
 .

STIMER TASK,FIXUP,BINTVL=TIME Set time interval
LOOP ...

TM TIMEXP,X'ð1' Test if FIXUP routine entered
BC 1,NG Go out of loop if time interval expired
BXLE 12,6,LOOP If processing not complete, repeat loop
TTIMER CANCEL If loop completes, cancel remaining time

 .
 .
NG ...
 .
 .
 USING FIXUP,15 Provide addressability
FIXUP SAVE (14,12) Save registers

OI TIMEXP,X'ð1' Time interval expired, set switch in loop
 .
 .
 RETURN (14,12) Restore registers
 .
 .
TIME DC X'ððððð2ðð' Timer is 5.12 seconds
TIMEXP DC X'ðð' Timer switch

Figure 20-1. Interval Processing

The loop continues as long as the value in register 12 is less than or equal to the
value in register 6. If the loop stops, the TTIMER macro causes any time remaining
in the interval to be canceled; the exit routine is not given control. If, however, the
loop is still in effect when the time interval expires, control is given to the exit
routine FIXUP. The exit routine saves registers and turns on the switch tested in
the loop. The FIXUP routine could also print out a message indicating that the loop
did not go to completion. Registers are restored and control is returned to the
control program. The control program returns control to the main program and
execution continues. When the switch is tested this time, the branch is taken out of
the loop. Caution should be used to prevent a timer exit routine from issuing an
STIMER specifying the same exit routine. An infinite loop may occur.

The priorities of other tasks in the system may also affect the accuracy of the time
interval measurement. If you code REAL or WAIT, the interval is decreased
continuously and may expire when the task is not active. (This is certain to happen
when WAIT is coded.) After the time interval expires, assuming the task is not in
the wait condition for any other reason, the task is placed in the ready condition
and then competes for CPU time with the other tasks in the system that are also in
the ready condition. The additional time required before the task becomes active
will then depend on the relative dispatching priority of the task.

Obtaining Accumulated Processor Time
The TIMEUSED macro enables you to record execution times and to measure
performance. TIMEUSED returns the amount of processor or vector time a task has
used since being created (attached).

Example of measuring performance with TIMEUSED macro:

20-4 OS/390 V2R8.0 MVS Assembler Services Guide

Use TIMEUSED to measure the efficiency of a routine or other piece of code. If
you need to sort data, you may now code several different sorting algorithms, and
then test each one. The logic for a test of one algorithm might look like this:

 1. Issue TIMEUSED
2. Save old time
3. Run sort algorithm

 4. Issue TIMEUSED
5. Save new time
6. Calculate time used (new time - old time)
7. Issue a WTO with the time used and the algorithm used.

After running this test scenario for all of the algorithms available, you can determine
which algorithm has the best performance.

Note: The processor time provided by TIMEUSED does not include any activity for
execution in SRB mode (such as I/O interrupt processing).

Writing and Deleting Messages (WTO, WTOR, DOM, and WTL)
The WTO and the WTOR macros allow you to write messages to the operator. The
WTOR macro also allows you to request a reply from the operator. The DOM
macro allows you to delete a message that is already written to the operator. Only
standard, printable EBCDIC characters, shown in Figure 20-2, appear on the MCS
console. All other characters are replaced by blanks. If the terminal does not have
dual-case capability, it prints lowercase characters as uppercase characters.

Figure 20-2. Characters Printed or Displayed on an MCS Console

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

40 (space) 7B # 99 r D5 N
4A ¢ 7C @ A2 s D6 O
4B . 7D ’ A3 t D7 P
4C < 7E = A4 u D8 Q
4D (7F " A5 v D9 R
4E + 81 a A6 w E2 S
4F | 82 b A7 x E3 T
50 & 83 c A8 y E4 U
5A ! 84 d A9 z E5 V
5B $ 85 e C1 A E6 W
5C * 86 f C2 B E7 X
5D) 87 g C3 C E8 Y
5E ; 88 h C4 D E9 Z
5F ¬ 89 i C5 E F0 0
60 - 91 j C6 F F1 1
61 / 92 k C7 G F2 2
6B , 93 l C8 H F3 3
6C % 94 m C9 I F4 4
6D — 95 n D1 J F5 5
6E > 96 o D2 K F6 6
6F ? 97 p D3 L F7 7
7A : 98 q D4 M F8 8

 Chapter 20. Timing and Communication 20-5

Notes:

1. If the display device or printer is managed by JES3, the following characters
are also translated to blanks:

| ! ; ¬ : "

2. The system recognizes the following hexadecimal representations of the U.S.
national characters: @ as X'7C'; $ as X'5B'; and # as X'7B'. In countries
other than the U.S., the U.S. national characters represented on terminal
keyboards might generate a different hexadecimal representation and cause an
error. For example, in some countries the $ character generates a X'4A'.

There are two basic forms of the WTO macro: the single-line form, and the
multiple-line form.

The following should be considered when issuing multiple-line WTO messages
(MLWTO).

� By default, only the first line of a multiple-line WTO message is passed to the
installation-written WTO exit routine. The user exit can request to see all
subsequent lines of a multi-line message.

� When a console switch takes place, unended multiple-line WTO messages and
multiple-line WTO messages in the process of being written to the original
console are not moved to the new console.

� When a hardcopy switch takes place from the system log to an active
operator's console, MLWTO messages in the process of being written to the
system log are not moved to the new hard copy device.

� If register 0 contains a value other than 0, the value is a console ID, if you
specified MCSFLAG=REG0 without specifying CONSNAME or CONSID.

� When the system hard copy log is an active operator's console, only the hard
copy versions of multiple-line messages are written to the console.

See OS/390 MVS Programming: Assembler Services Reference for an explanation
of the parameters in the single-line and multiple-line forms of the WTO macro.

Routing the Message
You can route a WTO or WTOR message to a console by specifying one or more
of the following keywords:

� ROUTCDE to route messages by routing code
� CONSID to route messages by console ID
� CONSNAME to route messages by console name
� MCSFLAG to route messages by message type.

The ROUTCDE parameter allows you to specify the routing code or codes for a
WTO or WTOR message. The routing codes determine which console or consoles
receive the message. Each code represents a predetermined subset of the
consoles that are attached to the system, and that are capable of displaying the
message. The installation must define which routing codes are being received by
each console.

You can also use either the CONSID or CONSNAME parameter to route
messages. These mutually exclusive parameters let you specify a 4-byte field or
register that contains the ID or the pointer to a name of the console that is to

20-6 OS/390 V2R8.0 MVS Assembler Services Guide

receive the message. When you issue a WTO or WTOR macro that uses either the
CONSID or CONSNAME parameters with the ROUTCDE parameter, the message
or messages will go to all of the consoles specified by both parameters.

The MCSFLAG parameter specifies various attributes of the message, such as
whether the message is:

� For a particular console
� For all active consoles
� A command response
� For the hard-copy log.

Specifying MCSFLAG=BUSYEXIT will terminate WTO processing if either of the
following conditions occur:

� No console buffers for either MCS or JES3 are available
� There is a JES3 staging area shortage.

Control is returned to the issuer with a return code of X‘20’ and a reason code in
register 0. The reason code is equal to the number of active WTO buffers for the
issuer's address space. If you do not specify BUSYEXIT, WTO processing may
place the WTO invocation in a wait state until WTO buffers are again available.

Note: For the convenience of the operator, you can associate messages with
individual keynames. A keyname consists of 1 to 8 alphanumeric
characters, and it appears with the message on the console. The keyname
can be used as an operand in the DISPLAY R console command, which
operators can issue at the console. Use the KEY parameter on the WTO or
WTOR macro for this purpose.

During system initialization, each operator's console in the system is assigned
routing codes that correspond to the functions that the installation wants that
console to perform. When any of the routing codes assigned to a message match
any of the routing codes assigned to a console, the message is sent to that
console.

Disposition of the message is indicated through the descriptor codes specified in
the WTO macro. Descriptor codes classify WTO messages so that they can be
properly presented on, and deleted from, display devices. The descriptor code is
not printed or displayed as part of the message text.

If the user supplies a descriptor code in the WTO macro, an indicator is inserted at
the start of the message. The indicators are: a blank, an at sign (@), an asterisk
(*), or a blank followed by a plus sign (+). The indicator inserted in the message
depends on the descriptor code that the user supplies and whether the user is a
privileged or APF-authorized program or a non-authorized problem program.
Figure 20-3 shows the indicator that is used for each descriptor code.

 Chapter 20. Timing and Communication 20-7

A critical eventual action is an action that the operator must perform, as soon as
possible, in response to a critical situation during the operation of the system. For
example, if the dump data set is full, the operator is notified to mount a new tape
on a specific unit. This is considered a critical action because no dumps can be
taken until the tape is mounted; it is eventual rather than immediate because the
system continues to run and processes jobs that do not require dumps.

Action messages to the operator, which are identified by the @ or * indicator, can
be individually suppressed by the installation. When a program invokes WTO or
WTOR to send a message, the system determines if the message is to be
suppressed. If the message is to be suppressed, the system writes the message to
the hardcopy log and the operator does not receive it on the screen. For more
information on suppressing messages, see OS/390 MVS Planning: Operations.

If a program issues a message with descriptor code of 1 or 2, the message is
deleted at address space or task termination. For more information concerning
routing and descriptor codes, see OS/390 MVS Routing and Descriptor Codes.

If an application that uses WTO needs to alter a message each time the message
is issued, the list form of the WTO macro may be useful. You can alter the
message area, which is referenced by the WTO parameter list, before you issue
the WTO. The message length, which appears in the WTO parameter list, does not
need to be altered if you pad out the message area with blanks.

A sample WTO macro is shown in Figure 20-4.

Figure 20-3. Descriptor Code Indicators

Descriptor Code Non-Authorized
Problem Program

1 @
2 @
3-10 blank+
11 @
12-13 blank+

Single-line WTO 'BREAKOFF POINT REACHED. TRACKING COMPLETED.',
format ROUTCDE=14,DESC=7

Multiple- WTO ('SUBROUTINES CALLED',C),
line format ('ROUTINE TIMES CALLED',L),('SUBQUER',D),
(list form) ('ENQUER',D),('WRITER',D),
 ('DQUER',DE),
 ROUTCDE=(2,14),DESC=(7,8,9),MF=L

Figure 20-4. Writing to the Operator

Altering Message Text
If an application that uses WTO needs to alter the same message or numerous
messages repetitively, using the TEXT parameter on the WTO macro may be
useful. You can alter the message or messages in one of two ways:

� If you issue 3 different messages, all with identical parameters other than
TEXT, you can create a list form of the macro, move the text into the list form,

20-8 OS/390 V2R8.0 MVS Assembler Services Guide

then execute the macro. Using the TEXT parameter you can use the standard
form of the macro, and specify the address of the message text. By reducing
the number of list and execute forms of the WTO macro in your code, you
reduce the storage requirements for your program.

� If you need to modify a parameter in message text, using the TEXT parameter
enables you to modify the parameter in the storage that you define in your
program to contain the message text, rather than modify the WTO parameter
list.

Using the TEXT parameter on WTO can reduce your program's storage
requirements because of fewer lines of code or fewer list forms of the WTO macro.

To use the WTOR macro, code the message exactly as designated in the
single-line WTO macro. (The WTOR macro cannot be used to pass multiple-line
messages.) When the message is written, the system adds a message identifier
before the message to associate the reply with the message. The system also
inserts an indicator as the first character of all WTOR messages, thereby informing
the operator that immediate action is required. You must, however, indicate the
response desired. In addition, you must supply the address of the area in which the
system is to place the reply, and you must indicate the maximum length of the
expected reply. The length of the reply may not be zero. You also supply the
address of an event control block which the system posts after the reply has been
placed, left-adjusted, in your designated area.

You can also supply a command and response token, or CART, with any message.
You may have received a CART as input in cases where you issued a message in
response to a command. In these cases, you should specify this CART on any
messages you issue. Using the CART guarantees that these messages are
associated with the command.

A sample WTOR macro is shown in Figure 20-5. The reply is not necessarily
available at the address you specified until the specified ECB has been posted.

 .
 .
 XC ECBAD,ECBAD Clear ECB

WTOR 'STANDARD OPERATING CONDITIONS? REPLY YES OR NO',
 REPLY,3,ECBAD,ROUTCDE=(1,15)
 WAIT ECB=ECBAD
 .
 .
ECBAD DC F'ð' Event control block
REPLY DC C'bbb' Answer area

Figure 20-5. Writing to the Operator With a Reply

When a WTOR macro is issued, any console receiving the message has the
authority to reply. The first reply received by the system is returned to the issuer of
the WTOR, providing the syntax of the reply is correct. If the syntax of the reply is
not correct, another reply is accepted. The WTOR is satisfied when the system
moves the reply into the issuer's reply area and posts the event control block. Each
console that received the original WTOR also receives the accepted reply unless it
is a security message. A security message is a WTO or WTOR message with
routing code 9. No console receives the accepted reply to a security message. A

 Chapter 20. Timing and Communication 20-9

console with master authority may answer any WTOR, even if it did not receive the
original message.

Writing a Multiple-Line Message
To write a multiple-line message to one or more operator consoles, issue WTO or
WTOR with all lines of text.

Embedding Label Lines in a Multiple-Line Message
Label lines provide column headings in tabular displays. You can change the
column headings used to describe different sections of a tabular display by
embedding label lines in the existing multiple-line WTO message for a tabular
display.

Note: You cannot use the WTO macro to embed label lines. The WTO macro
handles label lines at the beginning of the message only.

Communicating in a Sysplex Environment
The WTO macro allows applications to send messages to consoles within a
sysplex, without having to be aware that more than one system is up and running.

You can direct a WTO message to a specific console by specifying the console ID
or name when issuing the message. For example, you can use the CONSID or
CONSNAME parameter on the WTO macro to direct the WTO message to
consoles defined by those parameters. If the console is not active anywhere within
the sysplex, the system writes the message to the system log unless it is an
important information message, an action message or WTOR message. An
important information message is a WTO or WTOR message with descriptor codes
1, 2, 3, 11, or 12. Action messages, messages with descriptor code 12, and
WTORs are written to the system log and then directed to consoles having the UD
(undelivered) attribute for display.

You can also broadcast WTOs to all active consoles using MCSFLAG=BRDCST on
the WTO macro. Unsolicited messages are directed by routing code, message
level, and message type to the appropriate consoles anywhere within the sysplex.
There may be some unsolicited messages that will not be queued to any console at
a receiving system. In this case, all of the messages are written to the system log,
and action messages are sent to the consoles with the UD attribute.

Writing to the Programmer
The WTO and the WTOR macros allow you to write messages to a programmer
who is logged onto a TSO/E terminal, as well as to the operator. However, only the
operator can reply to a WTOR message.

To write a message to the programmer, you must specify ROUTCDE=11 in the
WTO or the WTOR macro.

20-10 OS/390 V2R8.0 MVS Assembler Services Guide

Writing to the System Log
The system log consists of one SYSOUT data set on which the communication
between the operator and the system is recorded. You can send a message to the
system log by coding the information that you wish to log in the “text” parameter of
the WTL macro.

The WTO macro with the MCSFLAG=HRDCPY parameter also writes messages to
the system log. Because WTO allows you to supply more information on the macro
invocation than WTL, IBM recommends that you use WTO instead of WTL.

The system writes the text of your WTL macro on the master console instead of on
the system log if the system log is not active.

Although when using the WTL macro you code the message within apostrophes,
the written message does not contain the apostrophes. The message can include
any character that is valid for the WTO macro and is assembled and written the
same way as the WTO macro.

Note: The exact format of the output of the WTL macro varies depending on the
job entry system (JES2 or JES3) that is being used, the output class that is
assigned to the log at system initialization, and whether DLOG is in effect
for JES3. If JES3 DLOG is being used, system log entries are preceded by
a prefix that includes a time stamp and routing information. If the combined
prefix and message exceeds 126 characters, the log entry is split at the first
blank or comma encountered when scanning backward from the 126th
character of the combined prefix and message. See OS/390 JES3
Commands for information about the DLOG format of the log entry when
using JES3.

Deleting Messages Already Written
The DOM macro deletes the messages that were created using the WTO or WTOR
macros. Depending on the timing of a DOM macro relative to the WTO or WTOR,
the message may or may not have already appeared on the operator's console.

� When a message already exists on the operator screen, it has a format that
indicates to the operator whether the message still requires that some action be
taken. When the operator responds to a message, the message format
changes to remind the operator that a response was already given. When DOM
deletes a message, it does not actually erase the message. It only changes its
format, displaying it like a non-action message.

� If the message is not yet on the screen, DOM deletes the message before it
appears. The DOM processing does not affect the logging action. That is, if the
message is supposed to be logged, it will be, regardless of when or if a DOM is
issued. The message is logged in the format of a message that is waiting for
operator action.

The program that generates an action message is responsible for deleting that
message. To delete a message, identify the message by using the MSG,
MSGLIST, or TOKEN parameters on the DOM macro, and issue DOM.

When you issued WTO or WTOR to write the message, the system returned a
message ID in general purpose register 1. Use this ID as input on the MSG or
MSGLIST parameters on the DOM macro. MSGLIST (message list) associates

 Chapter 20. Timing and Communication 20-11

several message IDs with the delete request. The number of message IDs in the
message list is defined by the COUNT parameter or it is defined by a 1 in the
high-order bit position of the last message ID in the list. The COUNT parameter
cannot exceed 60. If you specified the TOKEN parameter on WTO to generate your
own message ID, use the same value on the TOKEN parameter on DOM to delete
that message.

Retrieving Console Information (CONVCON Macro)
Programs that either process commands or issue messages might need information
about MCS or extended MCS consoles. CONVCON obtains information about
these consoles.

Use the CONVCON macro to:

� Determine the name of a console when you supply the ID.
� Determine the ID of a console when you specify the name.
� Validate a console name or console ID.
� Validate a console area ID.
� Check if a console is active.

You must set up a parameter list, called CONV, before invoking the CONVCON
macro. Depending upon the information you want, you must initialize certain fields
in the CONVCON parameter list. CONVCON returns information in other fields of
the parameter list. See OS/390 MVS Data Areas, Vol 1 (ABEP-DALT) for more
information on the CONV parameter list, which is mapped by IEZVG200.

The following topics describe possible uses for the CONVCON macro, and tell you
how to fill in the parameter list for each use. The parameter list values are
discussed in OS/390 MVS Programming: Assembler Services Reference.

Determining the Name or ID of a Console
Installation operators and programmers previously referred to MVS consoles only
by console IDs, which are defined in the CONSOLxx member of SYS1.PARMLIB.
IBM strongly recommends that you use names when referring to MCS consoles.
Using names can help operators and programmers:

� Remember which console they want to reference in commands or programs.
For example, if your installation establishes one console to receive information
about tapes, and uses the console name TAPE, operators and programmers
can more easily remember TAPE than a console ID such as 03.

� Connect information in messages and the hardcopy log to the correct console.
If your installation uses console IDs, operators and programmers might have
difficulty identifying the console to which messages and hardcopy log
information applies, because the system uses console names in messages and
the hardcopy log.

Using console names rather than IDs can also avoid confusion when a console ID
might change. If your installation has set up a sysplex environment, and uses
console IDs to identify consoles, those IDs can change from one IPL to the next, or
when systems are added or removed from the sysplex. A console ID is not
guaranteed to be associated with one console for the life of a sysplex.

To determine the name of a console when you supply the ID, do the following:

20-12 OS/390 V2R8.0 MVS Assembler Services Guide

1. Clear the CONVCON parameter list by setting it to zeros.

2. Initialize the following fields in the parameter list:

� The version ID (CONVVRSN)
� The acronym (CONVACRO)
� The console ID (CONVID)
� The flag indicating that you are supplying the console ID (flag CONVPID in

CONVFLGS)

3. Issue the CONVCON macro.

When CONVCON completes, the console name is in the parameter list field
CONVNAME, and register 15 contains a return code.

To determine the ID of a console when you supply the name, do the following:

1. Clear the CONVCON parameter list by setting it to zeros.

2. Initialize the following fields in the parameter list:

� The version ID (CONVVRSN)

� The acronym (CONVACRO)

� The console name (CONVFLD)

� The flag bit indicating that you are supplying the console name (flag
CONVPFLD in CONVFLGS)

If the console name in CONVFLD is less than 10 characters, pad the name
with blanks.

The installation defines console names at initialization time in the CONSOLxx
member of SYS1.PARMLIB. You can use the DISPLAY command to receive a
list of defined names.

3. Issue the CONVCON macro.

When CONVCON completes, the console ID will be in the parameter field CONVID.

Validating a Console Name or ID and Checking if a Console Is Active
Before issuing a message to a specific console, you may want to determine
whether that console is defined by using CONVCON to validate the console name
or ID.

You can use CONVCON to check if the console to which you are sending a
command response is active. An active console is one that is defined and running.
An application processing a command could use CONVCON to perform this check.

To check if a console is active, or to validate a console name or ID, do the
following:

1. Clear the CONVCON parameter list by setting it to zeros.

2. Initialize the following fields in the parameter list:

� The version ID (CONVVRSN)

� The acronym (CONVACRO)

� Either the console name (CONVFLD) or the console ID (CONVID)
depending on what information you currently have. The installation defines

 Chapter 20. Timing and Communication 20-13

console names at initialization time in the CONSOLxx member of
SYS1.PARMLIB. You can use the DISPLAY command to receive a list of
defined names.

� The appropriate flag in CONVFLGS indicating whether you are specifying
the console name (CONVPFLD) or the ID (CONVPID) as input.

3. Issue the CONVCON macro.

When CONVCON completes, CONVSYSN contains the name of the system to
which the console is attached, if the console you specified is active. If the console
is not active, CONVSYSN contains blanks. Register 15 contains a return code. If
you receive the following return codes, check the reason code in CONVRSN for an
explanation.

� Return code 0 indicates that the console name or ID is valid and the console is
active.

� Return code 4 indicates that the name or ID is valid, but the console is not
active.

� Return code 8 indicates that the console name is incorrect.

� Return code 0C indicates that the console ID is incorrect.

See OS/390 MVS Programming: Assembler Services Reference for an explanation
of all return codes.

Validating a Console Area ID
An area ID defines an out-of-line display area. An out-of-line display area is a
predefined number of lines on a screen to which you can direct command
responses, such as a response to a DISPLAY command. The area is for static
displays, rather than in-line displays that roll on the screen.

If you want to issue a multi-line WTO to a specific out-of-line area on a console,
and you want to know if the console and that area are available, you can use
CONVCON to validate the console area ID. CONVCON validates that this area is
available for use and that it does not already have a message in it.

To validate a console area ID, do the following:

1. Clear the CONVCON parameter list by setting it to zeros.

2. Initialize the following fields:

� The version ID (CONVVRSN)

� The CONVCON acronym (CONVACRO)

� One of the following:

– the console name with the area ID (CONVFLD-a)
– the console ID and the area ID (CONVID and CONVAREA)
– the console name and the area ID (CONVFLD and CONVAREA)

The area ID can be one alphabetic character from A through J or Z.

� The appropriate flag (CONVPID or CONVPFLD in CONVFLGS)

3. Issue the CONVCON macro.

20-14 OS/390 V2R8.0 MVS Assembler Services Guide

When CONVCON completes, register 15 contains a return code. If the return code
is 0 or 4, the reason code in the CONVRSN field of the parameter list indicates the
validity of the area ID.

 Chapter 20. Timing and Communication 20-15

20-16 OS/390 V2R8.0 MVS Assembler Services Guide

 Chapter 21. Translating Messages

The MVS message service (MMS) provides a method of translating message text,
and provides a convenient method of storing message text.

� MMS enables you to translate U.S. English messages into other languages.
These messages can be IBM-supplied messages or application messages. An
application can format message text for any language, including English, by
issuing the TRANMSG macro.

� MMS enables you to store message text in MMS message files rather than in
the application code. By using MMS to store message text, you eliminate the
need to include the message text as part of the application code. Any program
that needs to issue a particular message can get it from one place: a run-time
message file . A run-time message file contains messages in a format that
MMS can use. You can also update your messages in the install message
files rather than in the source code. An install message file is a partitioned data
set (PDS) that contains message skeletons . A message skeleton contains
message text and substitution data.

Applications running on TSO/E can have their messages translated automatically if
the primary language associated with the TSO/E session is the same language as
the language of the run-time message file. A primary language is one that is
defined in your TSO/E profile. Therefore, even if you are issuing messages by
using the WTO macro, you can present a message in the primary language
associated with the TSO/E session. If you are routing system messages to a
TSO/E extended MCS console, and MMS is active, users of extended MCS
consoles on TSO/E can select available languages for message translation and the
system will display translated messages on the user's screen.

Applications based on products not already using MMS must translate their own
messages by invoking the TRANMSG macro.

MMS can handle multi-line and multiple format messages. Multi-line messages are
messages displayed over a number of lines on an output device. Multiple format
messages are messages that have the same message ID, but have differing text
content depending on the circumstances under which they are issued.

Preparing IBM-Supplied Messages for Translation: To prepare IBM messages
for translation, perform the following tasks:

1. Ensure that the appropriate IBM-supplied system install message files have
been installed on your system.

For MVS messages (MVS, JES2, TSO/E), IBM provides an install message file
for U.S. English messages. IBM will also supply Japanese versions of those
messages, if requested. When you install MVS, these messages are
automatically put into install message files. The U.S. English file is called
SYS1.MSGENU.

2. Create a system run-time message file for each language by running the
system's install message files through the message compiler. See “Compiling
Message Files” on page 21-9 for details on using the compiler.

 Copyright IBM Corp. 1988, 1999 21-1

Preparing Application Messages for Translation: To prepare an application's
messages for translation, perform the following tasks.

1. Create a PDS for the English version, and a PDS for the translated version of
the application's messages. To make it easy to locate and update messages,
group messages for each program, component, or other category into separate
PDS members. These data sets are the application's install message files. The
logical record length of the data set should be variable length of 259, and the
block size 23476. IBM recommends that you put IBM messages first in a PDS
concatenation. If you are not translating IBM messages, you can still use the
same recommended logical record length and block size.

2. Validate the application's install message files by running each PDS through
the message compiler. See “Compiling Message Files” on page 21-9 for details
on using the compiler. The MMS message compiler replaces the entire run-time
message file, so create a test run-time message file for each language, using
names different from those containing IBM-supplied messages. Creating a test
run-time message file enables you to verify the new messages without
disturbing the existing system run-time message files and current message
translation.

3. After a clean compile, add your PDS members into the system's install
message files as new members.

4. Update the system run-time message files by running the system's install
message files through the message compiler. See “Updating the System
Run-Time Message Files” on page 21-13 for details on updating the system
run-time message files.

Figure 21-1 on page 21-3 illustrates the process of preparing messages for
translation.

21-2 OS/390 V2R8.0 MVS Assembler Services Guide

PDS PDS

Eng
Msgs

JPN
Msgs

Error
Report

(Sysout
data set)

PDS PDS

Eng
Msgs

JPN
Msgs

Lang
X

Lang
X

Lang
X

PDS

IBM
Install message files

MMS
message
compiler

formatted
messages

Application
install message files

Install
MVS

Tape

IBM messages

Run-time
message files

Eng
Msgs

JPN
Msgs

PDS

Figure 21-1. Preparing Messages for Translation

Translating Application Messages Using the MVS Message Service: To use
MMS in an application, modify the application to exploit the translation service that
MMS provides:

� Use the QRYLANG macro to determine which languages are currently available
at your installation. For more information on QRYLANG, see “Determining
which Languages are Available (QRYLANG Macro)” on page 21-14.

� Use the TRANMSG macro to obtain from MMS the translated version or the
complete U.S. English message text of an application's message or messages.
For more information on TRANMSG, see “Retrieving Translated Messages
(TRANMSG Macro)” on page 21-14.

The installation can translate messages into more than one language. See “Support
for Additional Languages” on page 21-18.

Allocating Data Sets for an Application
For an application whose messages will be translated, you must allocate a PDS for
each language in which the messages might appear. For example, if you want the
messages to be available in both English and Japanese, you must allocate two
data sets: one to contain the English message skeletons, and one to contain the
Japanese.

 Chapter 21. Translating Messages 21-3

See OS/390 MVS JCL User's Guide and OS/390 MVS JCL Reference for
information about allocating data sets.

Creating Install Message Files
Each install message file must contain a version record and one or more message
skeletons, and may contain any number of comment records throughout. The
message compiler treats any record with the characters “.*” in columns 1 and 2 as
a comment line and ignores it.

Creating a Version Record
The version record must be the first non-comment record in each install message
file, and have the format shown in Figure 21-2. If you are translating MVS
messages, you can use the contents of the version record fields for informational
purposes. If you are creating messages for an application program, you need only
to supply input to columns 1 through 6. Columns 7 through 38 can be blanks.

The following is an example of a version record.

 .VENUNJBB44N1 5695-ð47ðð5

Figure 21-3 explains the previous example of the version record.

Figure 21-2. Format of Version Record Fields

Columns Contents and Description

1 & 2 “.V” Identifies this record as a version record.

3-5 Three-character language code of the messages.

6 Character field containing a Y or N, indicating whether this language
contains a double-byte character set (DBCS).

7-14 Field maintenance identifier (FMID) applicable to the messages within the
member, padded on the right with blanks.

15-22 Product identifier applicable to the messages within the member, padded
on the right with blanks.

23-38 Service level applicable to the member, padded on the right with blanks.

Figure 21-3. Version Record Example

Columns Example Description

1 & 2 .V Version record

3-5 ENU Three-character language code

6 N DBCS indicator

7-14 JBB44N1␣ FMID

15-22 5695-047 Product identifier

23-38 005 Service level information

Creating Message Skeletons
The rest of each install message file consists of message skeletons.

Each message requires one or more message skeletons. A message skeleton
consists of a message key and message text, which can include substitution

21-4 OS/390 V2R8.0 MVS Assembler Services Guide

tokens. A message key consists of a message identifier, format number, and line
number.

Note: If the message skeleton you are creating contains a TIME, DATE, or DAY
substitution token, the format must be defined in the system configuration
member, CNLcccxx, for the language. See OS/390 MVS Initialization and
Tuning Reference for more information on these substitution tokens.

Message Skeleton Format
Each message skeleton must follow the column format shown in Figure 21-4.

Figure 21-4 (Page 1 of 2). Message Skeleton Fields

Columns Contents and Description

1-10 Message identifier (msgid). A message identifier can be 1 to 10 characters long, padded with EBCDIC
blanks, if necessary, so that it totals ten characters. The first character must be alphabetic. A message
identifier cannot contain double-byte characters and cannot contain embedded blanks.

Ensure that the message identifiers for your application program messages do not conflict with existing
MVS message identifiers. To avoid conflict, do not begin a message identifier with the letters A through I.

See OS/390 MVS System Messages, Vol 1 (ABA-ASA) for more information on MVS message identifiers.

Examples of message identifiers are:

 � IKJ52301I
 � IEF12345W
 � HASP000
 � IEF123I
 � OLDMSGID

Note that MMS will remove the first character of any message identifier in the form xmsgid before
processing, and will replace it after processing. “x” is any character that is not uppercase alphabetic, such
as $ or 1.

11 & 12 Line number (ll). If the message is a single-line message, leave columns 11 and 12 blank. For a multi-line
message, assign line numbers sequentially within the message. Line numbers do not have to be
contiguous. Valid numbers are 01 to 99.

Ensure that message line numbers for a translated skeleton match the line numbers of the corresponding
U.S. English message skeleton.

Note: Ensure that corresponding skeletons (same message identifier and line number) of multi-line
messages contain the same substitution tokens. For example, if substitution tokens &1. and
&2=date. are on line 01 of a two-line U.S. English message skeleton, these tokens must appear
on line 01 of a translated skeleton. The following is an example of a multi-line message skeleton:

MSGIDð1 ð1 THIS IS LINE ONE OF THIS MULTI-LINE MESSAGE
MSGIDð1 ð2 THIS IS LINE TWO OF THIS MULTI-LINE MESSAGE
MSGIDð1 ð3 THIS IS LINE THREE OF THIS MULTI-LINE MESSAGE

13-15 Format number (fff). If only one format is defined for a particular message identifier, leave columns 13-15
blank.

Use format numbers to maintain compatibility with existing messages. Using format numbers for new
messages is not recommended.

Format numbers distinguish among message skeletons that have one message identifier but have several
different text strings or substitution tokens. The message identifier alone cannot identify the message as
unique in these cases. The format number, together with the message identifier, identifies the message.

If more than one format is defined for a particular message identifier, assign a unique format number to
each skeleton for that message identifier. Valid numbers are 001 to 999. You do not have to assign the
numbers sequentially. Ensure that the format number in the translated skeleton matches the format
number in the U.S. English message skeleton.

Each message ID might have several format numbers if that message has variable text.

16 Blank (␣). Column 16 must contain an EBCDIC blank.

 Chapter 21. Translating Messages 21-5

Figure 21-4 (Page 2 of 2). Message Skeleton Fields

Columns Contents and Description

17 & 18 Translated line number (mm).

If one line of a U.S. English message translates into more than one line of text in another language, you
must provide additional lines for the translated version. Create one or more skeletons in the other
language and assign a translated line number to each translated line. Valid translated line numbers are 01
to 99.

Example:

IEFPððð1 MAXIMUM PASSWORD ATTEMPTS BY SPECIAL
USER &1. AT TERMINAL &2.

IEFPððð1 ð1 LE USER SPECIALE &1. A TERMINAL &2.
ð2 ONT ENTRER PASSWORD TROP DE TEMPS

You can also use translated line numbers for English message skeletons if your input to the TRANMSG
macro is an MPB (message parameter block). In this case, TRANMSG will return all message lines in
English for a given message ID.

If a line of a U.S. English message translates to only one line, leave the translated line number blank.

19 Not part of the intended programming interface.

20 + Message text. See “Message Text in a Skeleton” on page 21-6

The following are examples of message skeletons.

msgid llfff␣mm text

HASPðð1 ACCESS TO DATASET &DSN DENIED

IACTðð12W ðð1 DATASET &DSN1 NOT FOUND
IACTðð12W ðð2 COULD NOT FIND DATASET &FILE

HASP999I ð1 ACCESS TO DATASET &X-1 DENIED:
HASP999I ð2 USER INFORMED AT &2;=DATEð2. ON TERMINAL &X-3
HASP999I ð3 LEADING BLANKS ARE OK

IEFAðð3F ðð1 USER &USERID VIOLATED ACCESS RIGHTS TO
DATASET &X-2 AT &3;=TIME.

IEFAðð3F ðð2 &1;=TIME.: USER &X-2 VIOLATED ACCESS RIGHTS TO DATASET &X-3

Message Text in a Skeleton
Message text in a message skeleton must conform to certain format standards. The
standards are as follows:

� Message text can be up to 255 bytes long including the message identifier, line
number, and other fields.

� Message text can be upper-, lower-, or mixed case.

� Message text can be all single-byte character set (SBCS), all double-byte
character set (DBCS), or a combination of both. Blanks are valid characters,
and are acceptable as any part of the message text. Message text can contain
substitution tokens.

A substitution token is a “place marker,” identifying substitution data to MMS. MMS
does not translate substitution tokens in the target language skeleton, but rather
replaces them with actual substitution data.

21-6 OS/390 V2R8.0 MVS Assembler Services Guide

Both &DSN1 and &FILE in the following examples are substitution tokens.

IACTðð12W ðð1 DATASET &DSN1. NOT FOUND
IACTðð12W ðð2 COULD NOT FIND DATASET &FILE;

Substitution tokens indicate substitution, or variable, data, such as a data set name
or a date in the message text. Substitution tokens must start with a token start
trigger character, an ampersand (&), and end with a token end trigger character, a
period (.). These characters are part of the token and are not included in the
message text display. You may include an ampersand (&) in the text as long as it
does not have a period following it in the format of a substitution token. Substitution
tokens must be SBCS characters and follow the form &name[=format] where:

name is the name of the substitution token. This name is an
alphanumeric SBCS string. The name must not contain imbedded
blanks or DBCS characters.

format is an optional format descriptor for the substitution token. Format
descriptors are:

� TEXT for tokens other than dates and times (default format)
� DATExxxxxx for dates
� TIMExxxxxx for times
� DAY for the day of the week

If you use these format descriptors, you must also define them in
the CNLcccxx parmlib member for the language. See OS/390 MVS
Initialization and Tuning Reference for more information on format
descriptors.

The total length of name and =format must not be greater than 16 bytes.

If you do not include a format descriptor for a particular substitution token, the MVS
message service treats the token as TEXT.

The date and time tokens are formatted according to the language. There are no
defaults. You must supply your own formats in the CNLcccxx member.

Examples of substitution tokens are:

&1.
&USERID.
&1=DATE1.
&5=TIMESHORT.

Validating Message Skeletons
After creating message skeletons for both the U.S. English and translated version
of each message, validate the skeletons. To validate the skeletons, run each of the
application's install message files through the message compiler for syntax
checking. Otherwise you might be adding incorrect skeletons to the files that MMS
uses, and your messages might be either incorrectly translated or untranslatable.
You should also validate skeletons when you add or change skeletons in an
existing install message file.

To make sure your message skeletons are valid, complete the following process for
each install message file:

 Chapter 21. Translating Messages 21-7

1. Allocate storage for run-time message files, which the compiler produces as
output.

2. Compile the install message file by invoking the compiler.

3. Check the return code from the message compiler.

If the return code does not indicate a clean compile, use the compiler error
messages to correct any errors in the skeletons. The compiler writes its error
messages to the SYSPRINT data set. Then compile the install message file again.

The return code and error messages from the compiler are the only output you
need to determine whether the message skeletons are correct. However, compiling
an application's install message file also produces formatted run-time message
files. Before invoking the compiler, you must allocate storage for these run-time
files, but you cannot use them as input for MMS. To make your application's
messages available for translation, you must add your PDS to the system's install
message files, and run those files through the compiler again.

Allocating Storage for Validation Run-Time Message Files
The data set you create for the run-time message files must be a linear VSAM data
set that can be used as a data-in-virtual object. You must create one run-time file
for each install message file for your application.

The amount of storage you will need to allocate for a validation run-time message
file cannot be determined exactly. The amount of storage depends on the number
of skeletons, the size of the skeletons, the number of substitution tokens within the
skeletons, and the types of messages represented by the skeletons (single-line,
multi-line, or multi-format). IBM recommends that, for a validation run-time
message file, you allocate twice the amount of storage required for the install
message file you are compiling. In most cases, this storage should be adequate.

To create the data set for the run-time message files, you need to specify the
DEFINE CLUSTER function of access method services (IDCAMS) with the LINEAR
parameter. When you code the SHAREOPTIONS parameter for DEFINE
CLUSTER, use SHAREOPTIONS (1,3). For a complete explanation of
SHAREOPTIONS, see DFSMS/MVS Using Data Sets.

The following is a sample job that invokes IDCAMS to create the linear data set
named SYS1.ENURMF on the volume called MMSPK1. When IDCAMS creates the
data set, it is empty. Note that there is no RECORDS parameter; linear data sets
do not have records.

21-8 OS/390 V2R8.0 MVS Assembler Services Guide

//DEFCLUS JOB MSGLEVEL=(2,ð),USER=IBMUSER
//\
//\ DEFINE DIV CLUSTER
//\
//DCLUST EXEC PGM=IDCAMS,REGION=4ð96K
//SYSPRINT DD SYSOUT=\
//MMSPK1 DD UNIT=338ð,VOL=SER=MMSPK1,DISP=OLD
//SYSIN DD \

DELETE (SYS1.ENURMF) CL PURGE
DEFINE CLUSTER (NAME(SYS1.ENURMF) -

 VOLUMES(MMSPK1) -
CYL(1 1) -

 SHAREOPTIONS(1,3) -
 LINEAR) -
 DATA (NAME(SYS1.ENURMF.DATA))
/\

Figure 21-5. Sample job to invoke IDCAMS to obtain a data set for the run-time message
files

Compiling Message Files
The message compiler creates run-time message files from an install message file.
You need to run the message compiler once for each language you install and
each time you update the application's install message files. The compiler expects
a PDS or a concatenation of PDSs as input. If the compiler cannot process a
message skeleton, it issues an error message. It also sets a return code. See
“Checking the Message Compiler Return Codes” on page 21-12 for a description of
compiler return codes.

Invoking the Message Compiler
The message compiler is an executable program. You can use JCL, a TSO/E
CLIST, or a REXX EXEC to invoke the message compiler. The syntax for each
type of invocation follows. The meaning of the variables (shown in lowercase in the
examples) follows the examples.

 //COMPILE EXEC PGM=CNLCCPLR,
 // PARM=(lang,dbcs)
 //SYSUT1 DD DSN=msg_pds,DISP=SHR
 //SYSUT2 DD DSN=msg_div_obj,DISP=(OLD,KEEP,KEEP)
 //SYSPRINT DD SYSOUT=\

Figure 21-6. Using JCL to Invoke the Compiler with a single PDS as input

 Chapter 21. Translating Messages 21-9

 //COMPILE EXEC PGM=CNLCCPLR,
 // PARM=(lang,dbcs)
 //SYSUT1 DD DSN=msg_pds1,DISP=SHR
 // DD DSN=msg_pds2,DISP=SHR
 :
 :
 // DD DSN=msg_pdsn,DISP=SHR
 //SYSUT2 DD DSN=msg_div_obj,DISP=(OLD,KEEP,KEEP)
 //SYSPRINT DD SYSOUT=\

Figure 21-7. Using JCL to Invoke the Compiler with a concatenation of partitioned Data Sets
as input

 PROC ð
FREE DD(SYSUT1,SYSUT2,SYSPRINT) /\ FREE DD'S \/
ALLOC DD(SYSUT1) DSN('msg_pds') SHR /\ ALLOC INPUT FILE \/
ALLOC DD(SYSUT2) DSN('msg_div_obj') OLD /\ ALLOC OUTPUT FILE \/
ALLOC DD(SYSPRINT) DSN(\) /\ ALLOC SYSPRINT \/
CALL 'SYS1.LINKLIB(CNLCCPLR)' 'lang,dbcs'

/\ CALL MESSAGE COMPILER \/
SET &RCODE = &LASTCC /\ SET RETURN CODE \/
FREE DD(SYSUT1,SYSUT2,SYSPRINT) /\ FREE FILES \/

 EXIT CODE(&RCODE) /\ EXIT \/

Figure 21-8. Using a TSO/E CLIST to Invoke the Compiler with a single PDS input

 PROC ð
FREE DD(SYSUT1,SYSUT2,SYSPRINT) /\ FREE DD'S \/
ALLOC DD(SYSUT1) DSN('msg_pds1' + /\ ALLOC INPUT FILE \/
ALLOC DD(SYSUT1) DSN 'msg_pds1' + /\ ALLOC INPUT FILE \/

 :
 :
ALLOC DD(SYSUT1) DSN 'msg_pdsn') SHR /\ ALLOC INPUT FILE \/
ALLOC DD(SYSUT2) DSN('msg_div_obj') OLD /\ ALLOC OUTPUT FILE \/
ALLOC DD(SYSPRINT) DSN(\) /\ ALLOC SYSPRINT \/
CALL 'SYS1.LINKLIB(CNLCCPLR)' 'lang,dbcs'

/\ CALL MESSAGE COMPILER \/
SET &RCODE = &LASTCC /\ SET

 RETURN CODE \/
FREE DD(SYSUT1,SYSUT2,SYSPRINT) /\ FREE FILES \/

 EXIT CODE(&RCODE) /\ EXIT \/

Figure 21-9. Using a TSO/E CLIST to Invoke the Compiler with a concatenation of
partitioned Data Set as input

21-10 OS/390 V2R8.0 MVS Assembler Services Guide

/\ MESSAGE COMPILER INVOCATION EXEC \/

MSGCMPLR:

"FREE DD(SYSUT1,SYSUT2,SYSPRINT)"

"ALLOC DD(SYSUT1) DSN('"msg_pds"') SHR"
"ALLOC DD(SYSUT2) DSN('"msg_div_obj"') OLD"
"ALLOC DD(SYSPRINT) DSN(\)"

"CALL 'SYS1.LINKLIB(CNLCCPLR)' 'lang,dbcs'"

compiler_rc=rc

"FREE DD(SYSUT1,SYSUT2,SYSPRINT)"

return(compiler_rc)

Figure 21-10. Using a REXX exec to Invoke the Compiler with a single PDS as input

/\ MESSAGE COMPILER INVOCATION EXEC \/

MSGCMPLR:

"FREE DD(SYSUT1,SYSUT2,SYSPRINT)"

"ALLOC DD(SYSUT1) DSN('msg_pds1',",
 "'msg_pds2',",
 :
 :
 "'msg_pdsn') SHR"

"ALLOC DD(SYSUT2) DSN('"msg_div_obj"') OLD"
"ALLOC DD(SYSPRINT) DSN(\)"

"CALL 'SYS1.LINKLIB(CNLCCPLR)' 'lang,dbcs'"

compiler_rc=rc

"FREE DD(MSGIN,MSGOUT,SYSPRINT)"

return(compiler_rc)

Figure 21-11. Using a REXX exec to Invoke the Compiler with a concatenation of partitioned
Data Sets as input

The lowercase variables used in the preceding examples are defined as follows:

msg_pds
is the name of the install message file containing all the application's message
skeletons for a specific language. msg_pds must be a partitioned data set.

 Chapter 21. Translating Messages 21-11

msg_pds1
is the name of the install message file containing the the first application's
message skeletons for a specific language. msg_pds1 must be a partitioned
data set.

msg_pds2
is the name of the install message file containing the the second application's
message skeletons for a specific language. msg_pds2 must be a partitioned
data set.

msg_pdsn
is the name of the install message file containing the the last application's
message skeletons, in the message skeleton PDS concatenation, for a specific
language. msg_pdsn must be a partitioned data set.

Note: When you specify a concatenation of partitioned data set as input to the
MVS message service (MMS) compiler, all members within the
partitioned data set will be processed. The MMS compiler will process
all members within the concatenation of partitioned data sets without
regard to uniqueness of member names. If two partitioned data sets
specified in the concatenation have members with the same name, both
members will be processed by the MMS compiler.

msg_div_obj
specifies the name of the run-time message file that is to contain the compiled
message skeletons for the language. msg_div_obj must be a linear VSAM data
set suitable for use as a data-in-virtual object.

lang,dbcs
specifies two parameters. lang is the 3-character language code of the
messages contained in the install message file. dbcs indicates whether this
language contains double-byte characters. The values for dbcs are y for yes
and n for no.

After creating run-time message files by compiling the install message file,
determine the amount of storage the run-time message files used. This calculation
is necessary when compiling these messages in the system's run-time message
files. The following JCL example shows you how to run a report showing the
storage used.

//LISTCAT JOB MSGLEVEL=(1,1)
//MCAT EXEC PGM=IDCAMS,REGION=4ð96K
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
 LISTCAT LEVEL(msg_div_obj) ALL
/\

Checking the Message Compiler Return Codes
The message compiler generates a return code in register 15. The return codes are
as follows:

Code Meaning

0 Successful completion.

4 Processing complete. Run-time message files are complete but the
compiler generated warnings.

21-12 OS/390 V2R8.0 MVS Assembler Services Guide

You should correct all errors and recompile if you receive any return code other
than 0.

Code Meaning

8 Processing complete. The run-time message files are usable but
incomplete.

12 Processing ended prematurely. The run-time message files are unusable.

Updating the System Run-Time Message Files
After validating your application install message files, update the system run-time
message files. The TRANMSG macro can retrieve messages from the run-time
message files. You need to do the following:

� Add the application's install message files to the system's install message files,
or add a DD statement to the JCL used to compile the system's install
message files.

� Allocate a data set for the new system run-time message files. Assign unique
names to the run-time message files, ensuring that the names are different
from those your installation is currently using. Use the storage requirements
you received from running the IDCAMS report.

� Compile the system's install message files into new system run-time message
files using the message compiler for each install message file. See “Compiling
Message Files” on page 21-9.

� Identify your new run-time message files to the system by creating a new
MMSLSTxx parmlib member. See OS/390 MVS Initialization and Tuning
Reference for information on creating a parmlib member.

� Activate your new parmlib member and run-time message files by issuing the
SET MMS=xx command. See OS/390 MVS System Commands for information
on the SET MMS=xx command.

You are using the same invocations to update the system run-time message files
as you do to verify message skeletons. The difference is that the resulting system
run-time message files are what MMS can use to translate messages for the
system and applications.

Using MMS Translation Services in an Application
After you have compiled the translated messages and updated the system run-time
message files, your program can use MMS services to retrieve translated message
text from the system run-time message files. You need to do the following:

� Determine the language in which you want the application's messages
translated, and use the QRYLANG macro to check its availability.

� Retrieve translated messages using the TRANMSG macro.

You must also determine the action the application will take if the requested
function does not complete, or if an output device cannot support the language.

 Chapter 21. Translating Messages 21-13

Determining which Languages are Available (QRYLANG Macro)
You need to determine if the language in which you want to issue messages is
available to MMS. The message query function (QRYLANG) allows you to verify
that the language you want is active, and also to receive a list of all available
languages.

QRYLANG returns the information you request in the language query block (LQB),
mapped by CNLMLQB. This block contains the following:

� The standard 3-character code for the language
� The name of the language
� A flag indicating whether the language contains double-byte characters

If you ask for a list of all available languages, QRYLANG returns an LQB with one
language entry for each language.

You need to define storage for an LQB before issuing QRYLANG. To determine
how much storage you need for the LQB if you want a list of all active languages:

� Calculate the length of the header section in mapping macro CNLMLQB.

� Determine the total number of languages by looking in the MCAALCNT (active
language count) field of the MCA, mapped by CNLMMCA. Your program must
be in 31-bit addressing mode to reference the MCA.

� Multiply the total number of languages you intend to query by the LQBEBL (the
length of one entry). This will give you the length of the LQB substitution data
area.

� Add the length of the LQB substitution data area to the length of the header.

To determine how much storage you need for the LQB if you want to query one
language:

� Calculate the length of the header section in mapping macro CNLMLQB.

� Add the length of the LQB substitution data area to the length of the header.

Retrieving Translated Messages (TRANMSG Macro)
TRANMSG takes the application messages that you provide, and retrieves the
corresponding translated messages from the system run-time message files.
TRANMSG returns the translated message in a message text block (MTB).

If the requested language is not available, TRANMSG returns the message
unchanged. To check the availability of specific languages, use the QRYLANG
macro described in “Determining which Languages are Available (QRYLANG
Macro).”

In your application, call TRANMSG as close to the point of message presentation
as possible to avoid presenting a translated version of the message to MVS
functions (for example, installation exits, automation CLISTs, MCS consoles) that
expect English text.

A message input/output block (MIO), mapped by CNLMMIO, serves as both input
to and output from TRANMSG. You can either build the MIO yourself or have
TRANMSG do it for you. If you do not supply a formatted MIO, TRANMSG
constructs one by using the information you supply through the macro parameters.

21-14 OS/390 V2R8.0 MVS Assembler Services Guide

Build the MIO yourself if you are translating multi-line messages that have
continuation lines. You will need to set the MIOCONT flag in the MIO.

If you build the MIO yourself, the MIO must contain the following when you issue
TRANMSG:

� The code of the language into which you want the message translated
� The addresses of the messages you want translated
� The address of an output buffer in the calling program's address space where

TRANMSG is to return the translated message or messages.

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for a mapping of the MIO.

The application's input messages can be in one of the following forms:

� Message text blocks (MTBs, mapped by CNLMMTB)
� Message parameter blocks (MPBs, mapped by CNLMMPB)
� Self-defined text (a 2-byte length field followed by message text)
� A combination of any of the three.

When TRANMSG completes, the MIO contains the address of the translated
message in the output buffer. The translated message is in the form of an MTB.

Translating a multi-line message is a little different from translating a single-line
message. You must take one of the following steps in preparing the multi-line
message for translation:

� Add the message identifier to the beginning of the message text for each line
subsequent to the first. You can invoke TRANMSG once for all message lines,
or once for each message line. For the example above, the modified message
would appear as follows:

MSGIDð1 THIS IS LINE ONE OF THIS MULTI-LINE MESSAGE
MSGIDð1 THIS IS LINE TWO OF THIS MULTI-LINE MESSAGE
MSGIDð1 THIS IS LINE THREE OF THIS MULTI-LINE MESSAGE

When you invoke TRANMSG, MMS will process this message as three
separate lines of text.

� Set the MIOCONT flag on the MIO message entry structure for lines
subsequent to the first (lines two and three in the following example). The
MIOCONT flag informs MMS that a specific line of text is associated with the
previous line of text. MMS associates the message identifier of the first line with
the message text of the subsequent lines. OS/390 MVS Programming:
Assembler Services Reference provides a coding example that translates a
multi-line message.

The following is an example of a multi-line message that contains continuation
lines, that is, only the first line contains a message identifier in the skeleton.
You must include all lines in the TRANMSG invocation.

MSGIDð1 THIS IS LINE ONE OF THIS MULTI-LINE MESSAGE
THIS IS LINE TWO OF THIS MULTI-LINE MESSAGE
THIS IS LINE THREE OF THIS MULTI-LINE MESSAGE

Figure 21-12 on page 21-16 shows how an application program uses the
TRANMSG macro.

 Chapter 21. Translating Messages 21-15

Formatted
messages

System run-time
message fileApplication Program

MPBs
MTBs
Self-defined
text

MIO

Japanese messages

TRANMSG

MIO

MTB

Language
code

English messages

Address of
English
messages

Address of
output buffer

Address of
Japanese
Messages

Figure 21-12. Using the TRANMSG Macro

Example of Displaying Messages
The following table shows two ways a general application program (a program not
using WTO to issue messages) can display messages.

21-16 OS/390 V2R8.0 MVS Assembler Services Guide

Displaying a message without using
MMS

Displaying a message using MMS

� Build a buffer for an English message
containing a message ID, fixed text,
and substitution data.

� Display the English message (for
example, by using TSO/E PUTLINE).
The application supports only English.

� Build a buffer for an English message.
You must match the message format
of the English message buffer to the
format of the English message
skeleton.

� Issue the TRANMSG macro using the
English message buffer as input, and
getting a translated message buffer
as output.

� Present the translated message,
ensuring that your output device
supports the chosen language. By
“presenting” a message, you might
choose to write the message to a
data set, or write it to a screen.

OR

� Build an MPB. See “Using Message
Parameter Blocks for New Messages
(BLDMPB and UPDTMPB Macros)”
on page 21-17 for information on
creating and MPB.

� Issue the TRANMSG macro using an
MPB as input. TRANMSG will format
the substitution data contained in the
MPB. The output is a Japanese
message buffer (if language code is
JPN). You should not use WTO to
issue the translated message.

Using Message Parameter Blocks for New Messages (BLDMPB and
UPDTMPB Macros)

You can create message parameter blocks (MPBs) instead of storing messages in
your application code. MPBs contain a message identifier, and, if needed, a format
number, line number, and any substitution data. The actual message text resides
only in the message skeletons in the run-time message file. Using MPBs provides
the convenience of having to modify only the install message file if any of your
message text requires a change. It also allows you to have a single repository for
message text.

| If you use message text blocks (MTBs) or self-defined text as input to the
| TRANMSG macro, and your message text requires a change, you will have to
| change it in both the message skeleton and the MTB or self-defined text.
| Modifying just the existing run-time message files to adapt changed message text
| can result in unpredictable errors when using the TRANSMSG service.

To build a message parameter block (MPB), allocate storage for the MPB, and
issue BLDMPB and UPDTMPB. BLDMPB initializes the MPB and adds the fixed
message data (called the message header), and UPDTMPB adds one substitution
token to the MPB for each invocation.

 Chapter 21. Translating Messages 21-17

Issue BLDMPB once for each MPB you will build and before you issue UPDTMPB.
Issue UPDTMPB once for each substitution token in the message. You can also
use UPDTMPB to replace or change the value of a particular substitution token in
an existing MPB. However, you must ensure that the new value is not longer than
the original value to maintain the integrity of the MPB. You might use UPDTMPB if
you want to invoke TRANMSG several times with one MPB. For example, if you
have an MPB associated with a message that you will translate in several
languages, you can change only the language code in the MIO, and issue
TRANMSG.

Once you have built an MPB for a message, you can issue TRANMSG to return
the text of the message in a message text block (MTB). If the requested language
is not available, TRANMSG returns the message number and its substitution data
as a text string in the output area.

Support for Additional Languages
You can also translate messages into languages not currently available through
IBM. You can do this in the following way:

� Select the language code in Figure 21-13 that matches the language into
which you plan to translate messages. Though you may supply your own
language code, IBM recommends that you use these codes. You will need that
language code for the version record. Figure 21-13 is not an all-inclusive list of
languages.

� If the messages you want to translate are MVS system messages, there may
already be U.S. English skeletons for them, so all you need to supply are the
translated skeletons. If the messages are from an application you have written,
you need to supply both the English and translated skeletons. Follow the
procedures described in “Creating Install Message Files” on page 21-4,
“Validating Message Skeletons” on page 21-7, and “Updating the System
Run-Time Message Files” on page 21-13.

� Ask the installation's system programmer to:

– Modify the parmlib member, MMSLSTxx, adding the language code.
– Create a new config member, CNLcccxx, for the new language.
– Restart MMS using the SET MMS command.

See OS/390 MVS Initialization and Tuning Reference for more information on
setting up config members, and parmlib members.

Figure 21-13 (Page 1 of 2). Languages Available to MVS Message Service. These
languages may not necessarily be available to your installation.

Code Language Name Principal Country

CHT Traditional Chinese R.O.C.

CHS Simplified Chinese P.R.C.

DAN Danish Denmark

DEU German Germany

DES Swiss German Switzerland

ELL Greek Greece

ENG UK English United Kingdom

21-18 OS/390 V2R8.0 MVS Assembler Services Guide

For more information on translation, see NLS Reference Manual.

Figure 21-13 (Page 2 of 2). Languages Available to MVS Message Service. These
languages may not necessarily be available to your installation.

Code Language Name Principal Country

ENU US English United States

ESP Spanish Spain

FIN Finnish Finland

FRA French France

FRB Belgian French Belgium

FRC Canadian French Canada

FRS Swiss French Switzerland

ISL Icelandic Iceland

ITA Italian Italy

ITS Swiss Italian Switzerland

JPN Japanese Japan

KOR Korean Korea

NLD Dutch Netherlands

NLB Belgian Dutch Belgium

NOR Norwegian Norway

PTG Portuguese Portugal

PTB Brazil Portuguese Brazil

RMS Rhaeto-Romanic Switzerland

RUS Russian USSR

SVE Swedish Sweden

THA Thai Thailand

TRK Turkish Turkey

Example of an Application that Uses MMS Translation Services
The following example builds and updates and MPB, then invokes the MMS
translate function to obtain the translated message. There are more examples for
each MMS macro (BLDMPB, QRYLANG, TRANMSG, UPDTMPB) in the OS/390
MVS Programming: Assembler Services Reference.

TRANSMPB CSECT
TRANSMPB AMODE 31
TRANSMPB RMODE ANY
 STM 14,12,12(13)
 BALR 12,ð
 USING \,12
 ST 13,SAVE+4
 LA 15,SAVE
 ST 15,8(13)
 LR 13,15
\
\\\

 Chapter 21. Translating Messages 21-19

\ OBTAIN WORKING STORAGE AREA \
\\\
 GETMAIN RU,LV=STORLEN,SP=SP23ð
 LR R4,R1
\
\\\
\ CREATE MPB HEADER SECTION \
\\\
\
 BLDMPB MPBPTR=(R4),MPBLEN=MPBL,MSGID=MSGID, C
 MSGIDLEN=MIDLEN
\
\\\
\ ADD SUBSTITUTION DATA TO MPB FOR DAY 3, TUESDAY \
\\\
\
 LR R2,R4
 A R2,MPBL
 USING VARS,R2
\
 UPDTMPB MPBPTR=(R4),MPBLEN=MPBL,SUBOOFST=VARS, C
 TOKEN=TOKN,TOKLEN=TOKL,TOKTYPE=TOKT, C
 SUBSDATA=SDATA,SUBSLEN=SDATAL
\
 USING MIO,R3

LA R3,VARSLEN OBTAIN LENGTH OF VARS AREA
AR R3,R2 CALCULATE ADDRESS MIO
LA R5,MLEN GET LENGTH OF MIO
AR R5,R3 CALCULATE ADDRESS OF OUTPUT BUFFER
ST R4,VARSINBF CREATE ADDRESS LIST

\
\\\
\ ISSUE TRANSLATE TO OBTAIN MESSAGE TEXT REPRESENTED BY THE \
\ CREATED MPB \
\\\
\
 TRANMSG MIO=MIO,MIOL=MIOLEN,INBUF=(VARSINBF,ONE), C
 OUTBUF=(R5),OUTBUFL=OUTAREAL,LANGCODE=LC
\
\\\
\ FREE STORAGE AREA \
\\\
\
 FREEMAIN RU,LV=STORLEN,SP=SP23ð,A=(4)
\
 L 13,SAVE+4
 LM 14,12,12(13)
 BR 14
 DROP
\\\
MPBL DC A(MPBLEN)
MSGID DC CL1ð'MSGID2'
MIDLEN DC A(MIDL)
TOKN DC CL3'DAY'
TOKL DC F'3'
TOKT DC CL1'3'
SDATA DC CL1'3'
SDATAL DC A(SDL)

21-20 OS/390 V2R8.0 MVS Assembler Services Guide

MIOLEN DC A(MLEN)
OUTAREAL DC A(STORLEN-(MPBLEN+VARSLEN+MLEN))
ONE DC F'1'
LC DC CL3'JPN'
SAVE DC 18F'ð'
SP23ð EQU 23ð
STORLEN EQU 512
SDL EQU 6
MIDL EQU 6
MPBLEN EQU (MPBVDAT-MPB)+(MPBMID-MPBMSG)+(MPBSUB-MPBSB)+MIDL+SDL
MLEN EQU (MIOVDAT-MIO)+MIOMSGL
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
\\\
 DSECT
 CNLMMPB
 CNLMMCA
 CNLMMIO
VARS DSECT
VARSINBF DS F
VARSAREA DS CL24
VARSLEN EQU \-VARS
 END TRANSMPB

 Chapter 21. Translating Messages 21-21

21-22 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 22. Data Compression and Expansion Services

MVS/ESA supports compression using two different algorithms. The first algorithm
exploits the occurrence of repeated characters in a data stream. Encoded data
contains a combination of symbols that represent strings of repeated characters
and the original characters that are not repeated. The CSRCESRV service of
MVS/ESA uses this algorithm to compress data.

Data that contains many repeat characters can exploit these services most
effectively. Examples include:

� Data sets with fixed field lengths that might contain many blanks
� 80-byte source code images of assembler language programs.

Using these services with other types of data might not result in appreciable data
volume reduction. In some cases, data volume might even be increased.

The second algorithm encodes data by replacing strings of characters with shorter
fixed-length symbols. A key component of this technique is the symbol table,
usually referred to as a dictionary. Encoded data contains symbols that correspond
to entries in the dictionary. The CSRCMPSC service uses this algorithm to
compress data.

This service requires more storage than the CSRCESRV services but is a good
choice if you know what your data looks like and storage is not a concern.

Services Provided by CSRCESRV
Data compression and expansion services, which your program invokes through the
CSRCESRV macro, are described as follows:

� Data Compression Service

This service compresses a block of data that you identify, and stores that data
in compressed form in an output area. The service uses an algorithm called run
length encoding which is a compression technique that compresses repeating
characters, such as blanks. In some cases, the service uses an interim work
area. Only programs running under MVS/ESA can use the data compression
service.

� Data Expansion Service

This service expands a block of data that you identify; the data must have been
compressed by the data compression service. The data expansion service
reverses the algorithm that the data compression service used, and stores the
data in its original form in an output area. In some cases, the service uses an
interim work area.

The data expansion service is available in an MVS/ESA version and an
MVS/XA version. Programs running under MVS/ESA can use either version.
Programs running under MVS/XA can use only the MVS/XA version, and there
are certain restrictions. See “Running under an MVS/XA System” on page 22-3
for further details.

 � Query Service

This service queries the system to determine the following:

 Copyright IBM Corp. 1988, 1999 22-1

– Whether data compression is supported by the system currently installed

– The size of the work area required by the compression or expansion
service.

To use the data compression and data expansion services, you need the
information that the query service provides. Invoke the query service before
invoking either the data compression or data expansion services.

The query service is available in an MVS/ESA version and an MVS/XA version.
Programs running under MVS/ESA can use either version. Programs running
under MVS/XA can use only the MVS/XA version, and there are certain
restrictions. See “Running under an MVS/XA System” on page 22-3 for further
details.

Figure 22-1 summarizes the services available, and the systems under which these
services can run.

Note: These services do not provide a recovery routine (for example, ESTAE or
FRR) because it would not contribute to reliability or availability.

Figure 22-1. Summary of Data Compression and Expansion Services

SYSTEM MVS/ESA
Version of Service

MVS/XA
Version of Service

MVS/ESA Compression
Expansion
Query

Expansion
Query

MVS/XA Not applicable Expansion
Query

Running under an MVS/ESA System
Programs running under MVS/ESA can access the MVS/ESA version of the data
compression, data expansion, and query services. Programs running under
MVS/ESA can also access the MVS/XA version of the data expansion and query
services.

Using the MVS/ESA Version of the Services
The MVS/ESA version of the data compression, data expansion, and query
services resides in SYS1.LPALIB. Your program can invoke these services by
using the CSRCESRV macro.

See OS/390 MVS Programming: Assembler Services Reference for complete
instructions on how to use the CSRCESRV macro.

To invoke the data compression or data expansion services, follow these steps:

1. Invoke the query service by coding the CSRCESRV macro specifying
SERVICE=QUERY. The macro returns the information you need to invoke the
data compression or data expansion service.

2. If you plan to compress data, check the information returned to ensure that
compression is supported.

3. Invoke the data compression service (or the data expansion service) by coding
the CSRCESRV macro specifying SERVICE=COMPRESS (or
SERVICE=EXPAND).

22-2 OS/390 V2R8.0 MVS Assembler Services Guide

Using the MVS/XA Version of the Services
Programs running under MVS/ESA can invoke the MVS/XA version of the query
service and the data expansion service. You might use the MVS/XA version if you
write a program that must expand data on both MVS/ESA and MVS/XA. You can
invoke the MVS/XA version in the same manner when running under MVS/ESA as
you do when running under MVS/XA. See “Running under an MVS/XA System” for
details on invoking the MVS/XA version.

An alternative approach for a program that must expand data on both MVS/ESA
and MVS/XA is to test the level of the MVS system at execution time to determine
which version of the services to use. Figure 22-2 provides an example of the code
you might use to conduct this test.

...
 \
 \ TEST FOR MVS/ESA
 \
 TM CVTDCB,CVTOSEXT
 BNO SP2CHK
 TM CVTOSLVð,CVTXAX
 BNO SP2CHK
...

 \
 \ TEST FOR MVS/XA
 \
 SP2CHK TM CVTDCB,CVTMVSE
 BNO SP1
...

 \
 \ CONTINUE CODING
 \
 SP1 ...
...

 \
 \ MAP THE COMMUNICATIONS VECTOR TABLE (CVT)
 \
 CVT DSECT=YES
...

 \

Figure 22-2. Testing the Level of the MVS System at Execution Time

Running under an MVS/XA System
Programs running under MVS/XA can use the MVS/XA version of the query service
and the data expansion service, but there is no MVS/XA version of the data
compression service. Therefore, to expand data under MVS/XA, the data must
have been compressed by a program running under MVS/ESA. Programs running
under MVS/XA must also adhere to the following restrictions:

� To assemble, include the correct level (Version 3 Release 1.3 or later) of
SYS1.MACLIB in the SYSLIB concatenation for the assembly step.

� To execute, include the correct level (Version 3 Release 1.3 or later) of
SYS1.MIGLIB in the STEPLIB (or JOBLIB) of the JCL to execute the program.

 Chapter 22. Data Compression and Expansion Services 22-3

(See OS/390 MVS JCL User's Guide for further information about STEPLIB and
JOBLIB DD statements.)

Programs running under MVS/XA may use the CSRCESRV macro, but the macro
will not automatically locate the entry point address for the service requested. Your
program must supply that information. To expand data on an MVS/XA system, here
are the steps you must follow. (See OS/390 MVS Programming: Assembler
Services Reference for complete instructions on how to use the CSRCESRV
macro.)

1. Load the CSRCEXA load module from SYS1.MIGLIB, using the LOAD macro.
You must do so while your program is in task mode. See OS/390 MVS
Programming: Assembler Services Reference for LOAD macro syntax.

2. Save the entry point address and place it in a general purpose register (GPR)
so you can pass it to the CSRCESRV macro.

3. Invoke the query service by coding the CSRCESRV macro specifying
SERVICE=QUERY and VECTOR=(reg), where reg is the GPR containing the
entry point address of CSRCEXA. The macro returns the information you need
to invoke the data expansion service.

4. Invoke the data expansion service by coding the CSRCESRV macro specifying
SERVICE=EXPAND and VECTOR=(reg), where reg is the GPR containing the
entry point address of CSRCEXA.

Services Provided by CSRCMPSC
Compression takes an input string of data and, using a data area called a
dictionary, produces an output string of compression symbols. Each symbol
represents a string of one or more characters from the input.

Expansion takes an input string of compression symbols and, using a dictionary,
produces an output string of the characters represented by those compression
symbols.

Parameters for the CSRCMPSC macro are in an area mapped by DSECT CMPSC
of the CSRYCMPS macro and specified by the CBLOCK parameter of the
CSRCMPSC macro. This area contains such information as:

� The address, ALET, and length of a source area. The source area contains the
data to be compressed for a compression operation, or to be expanded for an
expansion operation.

� The address, ALET, and length of a target area. After the macro runs, the
target area contains the compressed data for a compression operation, or the
expanded data for an expansion operation.

� An indication of whether to perform compression or expansion.

� The address and format of a dictionary to be used to perform the compression
or expansion. The dictionary must be in the same address space as the source
area.

Compressing and expanding data is described in the following topics:

� “Compression and Expansion Dictionaries” on page 22-5
� “Building the CSRYCMPS Area” on page 22-5

22-4 OS/390 V2R8.0 MVS Assembler Services Guide

� “Determining if the CSRCMPSC Macro Can Be Issued on a System” on
page 22-8

To help you use the compression services, the SYS1.SAMPLIB system library
contains the following REXX execs:

� CSRBDICT for building example dictionaries

� CSRCMPEX for measuring the degree of compression that the dictionaries
provide

When running on VM, two analogous macros are available:

� CSRBDICV for building example dictionaries

� CSRCMPEV for measuring the degree of compression that the dictionaries
provide

The prologs of the execs tell how to use them. For additional information about
compression and using the execs, see Enterprise Systems Architecture/390 Data
Compression.

Compression and Expansion Dictionaries
To accomplish compression and expansion, the macro uses two dictionaries: the
compression dictionary and the expansion dictionary. These dictionaries are
related logically and physically. When you expand data that has been compressed,
you want the result to match the original data. Thus the dictionaries are
complementary. When compression is done, the expansion dictionary must
immediately follow the compression dictionary, because the compression algorithm
examines entries in the expansion dictionary.

Each dictionary consists of 512, 1024, 2048, 4096, or 8192 8-byte entries and
begins on a page boundary. When the system determines or uses a compression
symbol, the symbol is 9, 10, 11, 12, or 13 bits long, with the length corresponding
to the number of entries in the dictionary. Specify the size of the dictionary in the
CMPSC_SYMSIZE field of the CSRYCMPS mapping macro:

SYMSIZE Meaning
1 Symbol size 9 bits, dictionary has 512 entries
2 Symbol size 10 bits, dictionary has 1024 entries
3 Symbol size 11 bits, dictionary has 2048 entries
4 Symbol size 12 bits, dictionary has 4096 entries
5 Symbol size 13 bits, dictionary has 8192 entries

The value of CMPSC_SYMSIZE represents the size of the compression and
expansion dictionaries. For example, if CMPSC_SYMSIZE is 512, then the size of
the compression dictionary is 512 and the size of the expansion dictionary is 512.

Building the CSRYCMPS Area
The CSRYCMPS area is mapped by the CSRYCMPS mapping macro and is
specified in the CBLOCK parameter of the CSRCMPSC macro. The area consists
of 7 words that should begin on a word boundary. Unused bits in the first word
must be set to 0.

 Chapter 22. Data Compression and Expansion Services 22-5

� Set 4-bit field CMPSC_SYMSIZE in byte CMPSC_FLAGS_BYTE2 to a number
from 1 to 5 to indicate both the number of entries in the dictionary and the size
of a compressed symbol.

� If expanding, turn on bit CMPSC_EXPAND in byte CMPSC_FLAGS_BYTE2.
Otherwise, make sure that the bit is off.

� Set field CMPSC_DICTADDR to the address of the necessary dictionary. If
compressing, this should be the compression dictionary, which must be
immediately followed by the expansion dictionary. If expanding, this should be
the expansion dictionary. In either case, the dictionary must begin on a page
boundary, as the low order 12 bits of the address are assumed to be 0 when
determining the address of the dictionary.

If running in AR mode, set field CMPSC_SOURCEALET to the ALET of the
necessary dictionary. Note that the input area is also accessed using this
ALET. If not in AR mode, make sure that the field contains 0.

Using the linkage editor can help you get the dictionary on the proper
boundary. For example, you may have an object deck for each compression
dictionary (CD), and expansion dictionary (ED), and a DD statement for file
OBJS, which represents the library containing the object decks. The following
instructions linkage editor control statements define a dictionary with the name
DICT that, when loaded, will have the compression dictionary followed by the
expansion dictionary, and will begin on a page boundary.

ORDER CD(P),ED
INCLUDE OBJS(CD)
INCLUDE OBJS(ED)
NAME DICT(R)

� In most cases, make sure that 3-bit field CMPSC_BITNUM in byte
CMPSC_DICTADDR_BYTE3 is zero. This field has the following meaning:

– If compressing, place the first compression symbol at this bit in the leftmost
byte of the target operand. Normally this field should be set to 0 for the
start of compression.

– If expanding, expand beginning with the compression symbol that begins
with this bit in the leftmost byte of the source operand. Normally this field
should be set to the value used for the start of compression.

� Set word CMPSC_TARGETADDR to the address of the output area. For
compression, the output area contains the compressed data; for expansion, it
contains the expanded data.

If running in AR mode, set field CMPSC_TARGETALET to the ALET of the
output area. If not in AR mode, make sure that the field contains 0.

� Set word CMPSC_TARGETLEN to the length of the output area.

� Set word CMPSC_SOURCEADDR to the address of the input area. For
compression, the input area contains the data to be compressed; for
expansion, it contains the compressed data.

If running in AR mode, set field CMPSC_SOURCEALET to the ALET of the
input area. Note that the dictionary will also be accessed using this ALET. If not
in AR mode, make sure that the field contains 0.

� Set word CMPSC_SOURCELEN to the length of the input area. For expansion,
the length should be the difference between CMPSC_TARGETLEN at the
completion of compression and CMPSC_TARGETLEN at the start of

22-6 OS/390 V2R8.0 MVS Assembler Services Guide

compression, increased by 1 if field CMPSC_BITNUM was nonzero upon
completion of compression.

� Set word CMPSC_WORKAREAADDR to the address of a 192-byte work area
for use by the CSRCMPSC macro. The work area should begin on a
doubleword boundary. This area does not need to be provided and the field
does not have to be set if your code has verified that the hardware CMPSC
instruction is present. The program can do the verification by checking that bit
CVTCMPSH in mapping macro CVT is on.

When the CSRCMPSC service returns, it has updated the input CSRYCMPS area
as follows:

� CMPSC_FLAGS is unchanged.

� CMPSC_DICTADDR is unchanged, but bits CMPSC_BITNUM in field
CMPSC_DICTADDR_BYTE3 are set according to the last-processed
compression symbol.

� CMPSC_TARGETADDR is increased by the number of output bytes processed.

� CMPSC_TARGETLEN is decreased by the number of output bytes processed.

� CMPSC_SOURCEADDR is increased by the number of input bytes processed.

� CMPSC_SOURCELEN is decreased by the number of input bytes processed.

� CMPSC_WORKAREA is unchanged.

The target/source address and length fields are updated analogously to the
corresponding operands of the MVCL instruction, so that you can tell upon
completion of the operation how much data was processed and where you might
want to resume if you wanted to continue the operation.

Suppose that you had compressed a large area but wanted to expand it back into a
small area of 80-byte records. You might do the expansion as follows:

 Chapter 22. Data Compression and Expansion Services 22-7

 LA 2,MYCBLOCK
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC
 OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_1
 OI CMPSC_FLAGS_BYTE2,CMPSC_EXPAND

L 3,EDICTADDR Address of expansion dictionary
ST 3,CMPSC_DICTADDR Set dictionary address

 L 3,EXPADDR
ST 3,CMPSC_SOURCEADDR Set compression area

 L 3,EXPLEN
ST 3,CMPSC_SOURCELEN Set compression length

 LA 3,WORKAREA
ST 3,CMPSC_WORKAREAADDR Set work area address

MORE DS ðH Label to continue
\
\ Your code to allocate an 8ð-byte output area would go here
\

ST x,CMPSC_TARGETADDR Save target expansion area
LA 3,8ð Set its length
ST 3,CMPSC_TARGETLEN Set expansion length

 CSRCMPSC CBLOCK=CMPSC Expand
C 15,=AL4(CMPSC_RETCODE_TARGET) Not done, target used up
BE MORE Continue with operation

 DROP 2
 .
 .

DS ðF Align parameter on word boundary
MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK Parameter
EXPADDR DS A Input expansion area
EXPLEN DS F Length of expansion area
EDICTADDR DS A Address of expansion dictionary

DS ðD Doubleword align work area
WORKAREA DS CL192 Work area

CSRYCMPS , Get mapping and equates

Note that this code loops while the operation is not complete, allocating a new
80-byte output record. It does not have to update the CMPSC_BITNUM,
CMPSC_SOURCEADDR, or CMPSC_SOURCELEN fields, because the service
sets them up for continuation of the original operation.

If running in AR mode, the example would also have set the
CMPSC_TARGETALET and CMPSC_SOURCEALET fields. The XC instruction
zeroed those fields as needed when running in primary ASC mode.

Determining if the CSRCMPSC Macro Can Be Issued on a System
Do the following to tell if the system contains the software or hardware to run a
CSRCMPSC macro:

1. Determine if CSRCMPSC is available , by running the following:

22-8 OS/390 V2R8.0 MVS Assembler Services Guide

L 15,16 Get CVT address
USING CVT,15 Set up addressability to the CVT
TM CVTFLAG2,CVTCMPSC Is CSRCMPSC available?
BZ NO_CSRCMPSC Branch if not available

\ Compression feature is available
 .
 .
NO_CSRCMPSC DS ðH

2. Determine if the CMPSC hardware instruction is available , by running the
following:

L 15,16 Get CVT address
USING CVT,15 Set up addressability to the CVT
TM CVTFLAG2,CVTCMPSH Is CMPSC hardware available?
BZ NO_CMPSC_HARDWARE Branch if not available

\ CMPSC hardware is available
 .
 .
NO_CMPSC_HARDWARE DS ðH

The remaining three topics in this chapter describe compression and expansion
processing and the dictionary entries in much greater detail. If you plan to use the
CSRBDICT exec to build your dictionary, you do not need to read these topics. If
you plan to build your own dictionary, you will want to read:

 � “Compression Processing”
� “Expansion Processing” on page 22-10
� “Dictionary Entries” on page 22-10

 Compression Processing
The compression dictionary consists of a specified number of 8-byte entries. The
first 256 dictionary entries correspond to the 256 possible values of a byte and are
referred to as alphabet entries. The remaining entries are arranged in a downward
tree, with the alphabet entries being the topmost entries in the tree. That is, an
alphabet entry may be a parent entry and contain the index of the first of one or
more contiguous child entries. A child entry may, in turn, be a parent and point to
its own children. Each entry may be identified by its index, meaning the positional
number of the entry in the dictionary; the first entry has an index of 0.

An alphabet entry represents one character. A nonalphabet entry represents all of
the characters represented by its ancestors and also one or more additional
characters called extension characters. For compression, the system uses the first
character of an input string as an index to locate the corresponding alphabet entry.
Then the system compares the next character or characters of the string against
the extension character or characters represented by each child of the alphabet
entry until a match is found. The system repeats this process using the children of
the last matched entry, until the last possible match is found, which might be a
match on only the alphabet entry. The system uses the index of the last matched
entry as the compression symbol.

The first extension character represented by a child entry exists as either a child
character in the parent or as a sibling character. A parent can contain up to four or
five child characters. If the parent has more children than the number of child
characters that can be in the parent, a dictionary entry named a sibling descriptor
follows the entry for the last child character in the parent. The sibling descriptor can

 Chapter 22. Data Compression and Expansion Services 22-9

contain up to six additional child characters, and a dictionary entry named a sibling
descriptor extension can contain eight more child characters for a total of fourteen.
These characters are called sibling characters. The corresponding additional child
entries follow the sibling descriptor. If necessary, another sibling descriptor follows
the additional child entries, and so forth. The dictionary entries that are not sibling
descriptors or sibling descriptor extensions are called character entries.

If a nonalphabet character entry represents more than one extension character, the
extension characters after the first are in the entry; they are called additional
extension characters. The first extension character exists as a child character in the
parent or as a sibling character in a sibling descriptor or sibling descriptor
extension. The nonalphabet character entries represent either:

� If the entry has no children or one child, from one to five extension characters.

� If the entry has more than one child, one or two extension characters. If the
entry represents one extension character, it can contain five child characters. If
it represents two extension characters, it can contain four child characters.

 Expansion Processing
The dictionary used for expansion also consists of a specified number of 8-byte
entries. The two types of entries used for expansion are:

 � Unpreceded entries
 � Preceded entries

The compression symbol, which is an index into the dictionary, locates that index's
dictionary entry. The symbol represents a character string of up to 260 characters.
If the entry is an unpreceded entry, the expansion process places at offset 0 from
the current processing point the characters designated by that entry. Note that the
first 256 correspond to the 256 possible values of a byte and are assumed to
designate only the single character with that byte value.

If the entry is a preceded entry, the expansion process places the designated
characters at the specified offset from the current processing point. It then uses the
information in that entry to locate the preceding entry, which may be either an
unpreceded or a preceded entry, and continues as described previously.

The sibling descriptor extension entries described earlier are also physically located
within the expansion dictionary.

 Dictionary Entries
The following notation is used in the diagrams of dictionary entries:

{cc} Character may be present

... The preceding field may be repeated

Compression Dictionary Entries
Compression entries are mapped by DSECTs in macro CSRYCMPD.

The first four entries that follow give the possible values for bits 0-2, which are
designated CCT.

22-10 OS/390 V2R8.0 MVS Assembler Services Guide

Character Entry Generic Form (DSECT CMPSCDICT_CE)

CCT

1 8 16 24 4032 48 56 63

CCT A 3-bit field (CMPSCDICT_CE_CHILDCT) specifying the number of
children. The total number of children plus additional extension characters
is limited to 5. If this field plus the number of additional characters is 6, it
indicates that, in addition to the maximum number of children for this entry,
there is a sibling descriptor entry that describes additional children. The
sibling descriptor entry is located at dictionary entry
CMPSCDICT_CE_FIRSTCHILDINDEX plus the value of
CMPSCDICT_CE_CHILDCT. The value of CMPSCDICT_CE_CHILDCT
plus the number of additional extension characters must not exceed 6.

Character Entry CCT=0 (DSECT CMPSCDICT_CE)

000 ACT {EC}

0 8 113 24 4032 48 56 63

ACT A 3-bit field (CMPSCDICT_CE_AECCT) indicating the number of additional
extension characters in the entry. Its value must not exceed 4. This field
must be 0 in an alphabet entry.

EC An additional extension character. The 5-character field
CMPSCDICT_CE_CHILDCHAR is provided to hold the additional extension
characters followed by the child characters.

Character Entry CCT=1 (DSECT CMPSCDICT_CE)

001 XXXXX ACT CINDEX {EC} CC

0 8 113 24 n 63

XXXXX
A 5-bit field (CMPSCDICT_CE_EXCHILD) with the first bit indicating
whether it is necessary to examine the character entry for the child
character (looking either for additional extension characters or more
children). The other bits are ignored when CCT=1.

ACT A 3-bit field (CMPSCDICT_CE_AECCT) indicating the number of additional
extension characters. Its value must not exceed 4. This field must be 0 in
an alphabet entry.

CINDEX
A 13-bit field (CMPSCDICT_CE_FIRSTCHILDINDEX) indicating the index
of the first child. The index for child n is then
CMPSCDICT_CE_FIRSTCHILDINDEX + n-1.

 Chapter 22. Data Compression and Expansion Services 22-11

EC An additional extension character. The 5-character field
CMPSCDICT_CE_CHILDCHAR is provided to hold the additional extension
characters followed by the child characters.

CC Child character, at bit n = 24 + (ACT * 8). The 5-character field
CMPSCDICT_CE_CHILDCHAR is provided to hold the additional extension
characters followed by the child characters.

Character Entry CCT>1 (DSECT CMPSCDICT_CE)

CCT XXXXX YY D CINDEX {EC} CCCC

0 8 10113 24 n n+8 63

CCT A 3-bit field (CMPSCDICT_CE_CHILDCT) specifying the number of
children. For this case, because CCT>1, the range for CCT is 2 to 6 if D=0
or 2 to 5 if D=1. If this field plus the value of D is 6, it indicates that, in
addition to the maximum number of children for this entry (4 if D=1, 5 if
D=0), there is a sibling descriptor entry that describes additional children.
The sibling descriptor entry is located at dictionary entry
CMPSCDICT_CE_FIRSTCHILDINDEX plus the value of
CMPSCDICT_CE_CHILDCT.

XXXXX
A 5-bit field (CMPSCDICT_CE_EXCHILD) with a bit for each child in the
entry. The field indicates whether it is necessary to examine the character
entry for the child character (looking either for additional extension
characters or more children). The bit is ignored if the child does not exist.

YY A 2-bit field (CMPSCDICT_CE_EXSIB) providing examine-child bits for the
13th and 14th siblings designated by the first sibling descriptor for children
of this entry. The bit is ignored if the child does not exist. Note that this is a
subfield of CMPSCDICT_CE_AECCT. Do not set both this field and field
CMPSCDICT_CE_AECCT in a character entry.

D A 1-bit field (CMPSCDICT_CE_ADDEXTCHAR) indicating whether there is
an additional extension character. Note that this is a subfield of
CMPSCDICT_CE_AECCT. Do not set both this field and field
CMPSCDICT_CE_AECCT in a character entry. This bit must be 0 in an
alphabet entry.

CINDEX
A 13-bit field (CMPSCDICT_CE_FIRSTCHILDINDEX) indicating the index
of the first child. The index for child n is
CMPSCDICT_CE_FIRSTCHILDINDEX + n-1.

EC An additional extension character. The 5-character field
CMPSCDICT_CE_CHILDCHAR is provided to hold the additional extension
character followed by the child characters. There is no additional extension
character if D=0.

CC Child character. The 5-character field CMPSCDICT_CE_CHILDCHAR is
provided to hold the additional extension characters followed by the child
characters. The first child character is at bit n = 24 + (D * 8).

22-12 OS/390 V2R8.0 MVS Assembler Services Guide

Alphabet Entries (DSECT CMPSCDICT_CE)
The alphabet entries have the same mappings as character entries but without the
additional extension characters. The character entries are “Character Entry Generic
Form (DSECT CMPSCDICT_CE)” on page 22-11, “Character Entry CCT=0
(DSECT CMPSCDICT_CE)” on page 22-11, “Character Entry CCT=1 (DSECT
CMPSCDICT_CE)” on page 22-11, and “Character Entry CCT>1 (DSECT
CMPSCDICT_CE)” on page 22-12.

Format 1 Sibling Descriptor (DSECT CMPSCDICT_SD)

SCT YYYYYYYYYYYY SC {SC}

0 164 24 32 40 48 56 63

SCT A 4-bit field (CMPSCDICT_SD_SIBCT) specifying the number of sibling
characters. The number of sibling characters is limited to 14. If this field is
15, it indicates that there are 14 sibling characters associated with this
entry and that there is another sibling descriptor entry, which describes
additional children. That sibling descriptor entry is located at dictionary
entry this-sibling-descriptor-index + 15. If there are 1 to 6 sibling characters,
they are contained in this entry, and the dictionary entries for those
characters are located at this-sibling-descriptor-index + n, where n is 1 to 6.
If there are 7 to 14 sibling characters, the first 6 are as described above,
and characters 7 through 14 are located in the expansion dictionary entry.
(See “Sibling Descriptor Extension Entry (DSECT CMPSCDICT_SDE)” on
page 22-14.) The index of the character entry is
this-sibling-descriptor-index. The number of sibling characters should not be
0.

YYYYYYYYYYYY
A 12-bit field (CMPSCDICT_SD_EXSIB), one for each sibling character,
indicating whether to examine the character entries for sibling characters 1
through 12. Recall that the examine-sibling indicator for sibling characters
13 and 14 for the first sibling descriptor is in the character entry field
CMPSCDICT_CE_EXSIB. If this is not the first sibling descriptor for the
child entry, then the character entries for sibling characters 13 and 14 are
examined irregardless. The bit is ignored if the sibling does not exist.

SC Sibling character. Sibling characters 8 through 14 are in the expansion
dictionary. (See “Sibling Descriptor Extension Entry (DSECT
CMPSCDICT_SDE)” on page 22-14.) The 6-character field
(CMPSCDICT_SD_CHILDCHAR) is provided to contain the sibling
characters. The index of the character entry for sibling character n is
this-sibling-descriptor-index + n-1.

Expansion Dictionary Entries
Expansion entries are mapped by DSECTs in macro CSRYCMPD.

 Chapter 22. Data Compression and Expansion Services 22-13

Unpreceded Entry (DSECT CMPSCDICT_UE)

000 CSL EC {EC}

0 168 32 405 24 48 56 63

CSL A 3-bit field (CMPSCDICT_UE_COMPSYMLEN) indicating the number of
characters contained in CMPSCDICT_UE_CHARS. These characters will
be placed at offset 0 in the expanded output. This field should not have a
value of 0.

EC Expansion character. The 7-character field (CMPSCDICT_UE_CHARS) is
provided to contain the expansion characters.

Preceded Entry (DSECT CMPSCDICT_PE)

PSL PrecIndex EC {EC} Offset

0 16 32 403 24 48 56 63

PSL A 3-bit field (CMPSCDICT_PE_PARTSYMLEN) indicating the number of
characters contained in CMPSCDICT_PE_CHARS. These characters will
be placed at the offset indicated by CMPSCDICT_PE_OFFSET in the
expanded output. This field must not be 0, because 0 indicates an
unpreceded entry.

PrecIndex
A 13-bit field (CMPSCDICT_UE_PRECENTINDEX) indicating the index of
the dictionary entry with which processing is to continue.

EC Expansion character. The 5-character field (CMPSCDICT_PE_CHARS) is
provided to contain the expansion characters.

Offset A 1-byte field (CMPSCDICT_PE_OFFSET) indicating the offset in the
expanded output for characters in CMPSCDICT_PE_CHARS.

Sibling Descriptor Extension Entry (DSECT CMPSCDICT_SDE)

{SC}

0 16 32 408 24 48 56 63

SC Sibling character. The 8-character field (CMPSCDICT_SDE_CHARS) is
provided to contain the sibling characters. The nth sibling character in this
entry is actually overall sibling character number 6 + n, because the first 6
characters were contained in the corresponding sibling descriptor entry.
The index of the character entry for the nth character is
this-sibling-descriptor-index + 6 + n-1.

22-14 OS/390 V2R8.0 MVS Assembler Services Guide

 Dictionary Restrictions
Set up the compression dictionary so that:

� The algorithm does not create a compression symbol that represents a string of
more than 260 characters.

� No character entry has more than 260 total children, including all sibling
descriptors for that character entry.

� No character entry has a child count greater than 6.

� No character entry has more than 4 additional extension characters when there
are 0 or 1 child characters.

� No sibling descriptor indicates 0 sibling characters.

Set up the expansion dictionary so that:

� Expansion of a compression symbol does not use more than 127 dictionary
entries.

 Other Considerations
If the first child character matches, but its additional extension characters do not
match and the next child character is the same as the first, the system continues
compression match processing to try to find a compression symbol that contains
that child character. If, however, the next child character is not the same,
compression processing uses the current compression symbol as the result. You
can set up the child characters for an entry to take advantage of this processing.

If a parent entry does not have the examine child bit (CMPSCDICT_CE_EXCHILD)
on for a particular child character, then the child character entry should not have
any additional extension characters or children. The system will not check the entry
itself for additional extension characters or children.

If a parent or sibling descriptor entry does not have the examine sibling bit
(CMPSCDICT_CE_EXSIB) on for a particular sibling character, then the character
entry for that sibling character should not to have any additional extension
characters or children. The system will not check the entry itself for additional
extension characters or children.

Compression Dictionary Examples
In the following examples, most fields contain their hexadecimal values. However,
for clarity, the examine-child bit fields are displayed with their bit values.

 Example 1
Suppose the dictionary looks like the following:

Hexadecimal Entry Description

C1 Alphabet entry for character A; 2 child characters B and C.
The first child index is X'100'.

100 Entry for character B; no additional extension characters; no
children.

101 Entry for character C; additional extension character 1; 2
child characters D and E. The first child index is X'200'.

 Chapter 22. Data Compression and Expansion Services 22-15

200 Entry for character D; 2 additional extension characters 1 and
2; no children.

201 Entry for character E; 4 additional extension characters 1, 2,
3, and 4; no children.

CCT
2

CCT
2

CCT
0

CCT
0

YY
00

YY
00

ACT
2

ACT
4

CC
’B’

EC
’1’

EC
’1’

EC
’1’

CC
’C’

CC
’D’’

CC
’D’’

EC
’2’

EC
’3’

EC
’4’

CC
’E’

D
0

D
1

XXXXX
01000

Child character B entry contents irrelevant; examine child bit is off.

XXXXX
11000

XXXXX
00000

XXXXX
00000

CINDEX
100

CINDEX
200

0

0

0

0

1011

1011

11

11

3

3

C1

Hexadecimal
Entry

100

101

200

201

3

3

24

24

24

24

8

8

8

8

32

32

32

32

40

40

40

40

48

48

56

56

63

63

63

63

If the input string is AD, the output string will consist of 2 compression symbols:
one for A and one for D. When examining the dictionary entry for character A, the
system determines that none of A's children match the next input character, D, and
so returns the compression symbol for A. When examining the dictionary entry for
character D, the system determines that it has no children, and so returns the
compression symbol for D.

If the input string is AB, the output string will consist of 1 compression symbol for
both input characters. When examining the dictionary input for character A, the
system determines that A's first child character matches the next input character, B,
and so looks at entry X'100'. Because that entry has no additional extension
characters, a match is determined. Because there are no further input characters,
the scan concludes.

If the input string is AC, the output string will consist of 2 compression symbols:
one for A and one for C. When examining the dictionary input for character A, the
system determines that A's second child character matches the next input
character, C, and so looks at entry X'101'. Because that entry has an additional
extension character, but the input string does not contain this character, no match
is made, and the output is the compression symbol for A. Processing character C
results in the compression symbol for C.

22-16 OS/390 V2R8.0 MVS Assembler Services Guide

If the input string is AC1, the output string will consist of 1 compression symbol.
When examining the dictionary input for character A, the system determines that
A's second child character matches the next input character, C, and so looks at
entry X'101'. Because that entry has an additional extension character, and the
input string does contain this character, 1, a match is made, and the output is the
compression symbol for AC1.

Similarly, the set of input strings longer than one character compressed by this
dictionary are:

Hexadecimal Symbol String

100 AB

101 AC1

200 AC1D12

201 AC1E1234

The compression symbol is the index of the dictionary entry. Based on this, you
can see that the expansion dictionary must result in the reverse processing; for
example, if a compression symbol of X'201' is found, the output must be the string
AC1E1234. See “Expansion Dictionary Example” on page 22-20 for expansion
dictionary processing.

Example 2 for More than 5 Children
Suppose the dictionary looks like the following:

Hexadecimal Entry Description

C2 Alphabet entry for character B; child count of 6 (indicating 5
children plus a sibling descriptor); first child index is X'400',
children are 1, 2, 3, 4, and 5.

400 Entry for character 1; no additional extension characters; no
children.

401-404 Entries for characters 2 through 5; no additional extension
characters; no children.

405 Sibling descriptor; child count of 15, which indicates 14
children plus another sibling descriptor; sibling characters A,
B, C, D, E, and F.

405 Sibling descriptor extension. In the expansion dictionary
entry X '405', the sibling characters are G, H, I, J, K, L, M,
and N.

406 Entry for character A; no additional extension characters; no
children.

407-413 Entries for characters B through N; no additional extension
characters; no children.

414 Next sibling descriptor; child count of 2; child characters O
and P.

415 Entry for character O; no additional extension characters; no
children.

416 Entry for character P; no additional extension characters; no
children.

 Chapter 22. Data Compression and Expansion Services 22-17

CCT
6

SCT
15

SC
’G’

SCT
2

YY
11

SC
’O’

SC
’P’

CC
’1’

CC
’3’

CC
’4’

CC
’5’

SC
’B’

SC
’I’

SC
’K’

CC
’2’

SC
’C’

SC
’J’

SC
’L’

SC
’N’

SC
’M’

SC
’D’

SC
’E’

SC
’F’

D
0

XXXXX
00000

YYYYYYYYYYYY
111111111111

SC
’H’

YYYYYYYYYYYY
000000000000

CINDEX
400

SC
’A’

0

0

0

0

1011

16

16

3

4

C2

Hexadecimal
Entry

400
401
402
403
404

405

405E

414

415
416

4

4

24

24

24

24

8

16

8

32

32

32

32

40

40

40

40

48

48

48

56

56

56

63

63

63

63

Child character 1 entry contents irrelevant; examine child bit is
off.
Child character 2 entry contents irrelevant; examine child bit is
off.
Child character 3 entry contents irrelevant; examine child bit is

Child character A entry contents irrelevant; examine child bit is off.
Child character B entry contents irrelevant; examine child bit is off.
Child character C entry contents irrelevant; examine child bit is off.
Child character C entry contents irrelevant; examine child bit is off.
Child character E entry contents irrelevant; examine child bit is off.
Child character F entry contents irrelevant; examine child bit is off.
Child character G entry contents irrelevant; examine child bit is off.
Child character H entry contents irrelevant; examine child bit is off.
Child character I entry contents irrelevant; examine child bit is off.
Child character K entry contents irrelevant; examine child bit is off.
Child character L entry contents irrelevant; examine child bit is off.
Child character M entry contents irrelevant; examine child bit is off.

Child character O entry contents irrelevant; examine child bit is off.
Child character P entry contents irrelevant; examine child bit is off.

406
407
408
409
40A
40B
40C
40D
40E
40F
410
411
412

The set of input strings longer than one character compressed by this dictionary
are:

Hexadecimal Symbol String

400-404 B1, B2, B3, B4, B5

406-40B BA, BB, BC, BD, BE, BF

40C-413 BG, BH, BI, BJ, BK, BL, BM, BN

415-416 BO, BP

22-18 OS/390 V2R8.0 MVS Assembler Services Guide

There are no compression symbols for 405 and 414. These are the sibling
descriptor entries. Because their sibling descriptor extensions are located at those
indices in the expansion dictionary (not the preceded or unpreceded entries
required for expansion), it is important that no compression symbol have that value.

Example 3 for Children with the Same Value
Suppose the dictionary looks like the following:

Hexadecimal Entry Description

C3 Alphabet entry for character C; child count of 4. The first
child index is X'600' and the child characters are 1, 1, 1,
and 2.

600 Entry for character 1; 4 additional extension characters A, B,
C, and D; no children.

601 Entry for character 1; 3 additional extension characters A, B,
and C; no children.

602 Entry for character 1; 2 additional extension characters A and
B; no children.

603 Entry for character 2; no additional extension characters; no
children.

CCT
4

YY
00

CC
’1’

CC
’1’

CC
’2’

CC
’1’

D
0

XXXXX
00000

CINDEX
600

0 10113

C3

600
601
602
603

248 32 40 63

Child character 1 entry contents irrelevant; examine child bit is off.
Second child character 1 entry contents irrelevant; examine child bit is off.
Third child character 1 entry contents irrelevant; examine child bit is off.
Child character 2 entry contents irrelevant; examine child bit is off.

The set of input strings longer than one character compressed by this dictionary
are:

Hexadecimal Symbol String

600 C1ABCD

601 C1ABC

602 C1AB

603 C2

By taking advantage of the special processing when the second and subsequent
child characters match the first, you can reduce the number of dictionary entries
searched to determine the compression symbols. For example, to find that X'601'
is the compression symbol for the characters C1ABC, the processing examines
entry X'C3', then entry X'600', then entry X'601'. Entry X'600' does not match
because the input string does not have all 4 extension characters. There are
alternate ways of setting up the dictionary to compress the same set of input strings
handled by this dictionary.

 Chapter 22. Data Compression and Expansion Services 22-19

Expansion Dictionary Example
Suppose the expansion dictionary looks like the following:

Hexadecimal Entry Description

C1 Alphabet entry for character A. This by definition is an
unpreceded entry.

101 A preceded entry, with characters C and 1; with preceding
entry index of X'C1'; offset of 1.

201 A preceded entry, with characters E, 1, 2, 3, and 4; with
preceding entry index of X'101'; offset of 3.

PSL
2

EC
’1’

Offset
1

PrecIndex
C1

EC
’C’

0 3 2416 32 40 48

48 56

56 63

PSL
5

EC
’1’

EC
’2’

EC
’3’

EC
’4’

Offset
3

PrecIndex
1 0 1

EC
’E’

0 3 2416 32 40 48 56 63

000
000

EC {EC}CSL
0

0 8 16

C1

Hexadecimal
Entry

101

201

245 32 40 63

When processing an input compression symbol of X'201':

� Characters E1234 are placed at offset 3, and processing continues with entry
X'101'.

� Characters C1 are placed at offset 1, and processing continues with entry
X'C1'.

� Character A is placed at offset 0.

The expansion results in the 8 characters A, C, 1, E, 1, 2, 3, and 4 placed in the
output string.

22-20 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 23. Accessing Unit Control Blocks (UCBs)

Each device in a configuration is represented by a unit control block (UCB). In a
dynamic configuration environment, a service obtaining UCB information needs to
be able to detect any changes in the configuration that could affect the returned
information. The MVS I/O configuration token provides this capability. You can scan
UCBs with the UCBSCAN macro to obtain information about the devices in the
configuration. You can also use the UCBINFO macro to obtain device information
from a UCB.

The eligible device table (EDT) contains the definitions for the installation's device
groups. The EDTINFO macro allows you to obtain information from the EDT.

Detecting I/O Configuration Changes
You can use the MVS I/O configuration token to detect I/O configuration changes.
The MVS I/O configuration token is a 48-byte token that uniquely identifies an I/O
configuration to the system. The token will change whenever the software
configuration definition changes. Thus, if your program obtains the current MVS I/O
configuration token and compares it to one previously obtained, the program can
determine whether there has been a change in the I/O configuration: If the tokens
do not match, the I/O configuration has changed.

An optional parameter, IOCTOKEN, is available with the UCBSCAN macro.
Specifying IOCTOKEN ensures that the system will notify the caller through a
return code and will not return any data if the current I/O configuration is not
consistent with the configuration represented by the token specified as input by the
caller.

Use the following ways to obtain the current MVS I/O configuration token:

� Issue the IOCINFO macro.

� Issue the UCBSCAN macro, setting the input specified by the IOCTOKEN
parameter to binary zeroes. The macro will then return the current I/O
configuration token at the start of the scan.

� Issue EDTINFO macro, setting the input specified by the IOCTOKEN parameter
to binary zeroes.

Use of the MVS I/O configuration token can help prevent data inconsistencies that
might occur if the I/O configuration changes between the time the caller obtained
the token and the time the service returns the information. For example, you can
use the configuration token to determine whether the I/O configuration changes
during a UCB scan. If the IOCTOKEN parameter is specified with UCBSCAN, the
caller will be notified through a return code if the set of UCBs changes while the
scan is in progress. Checking for this return code allows the caller to restart the
scan to ensure that copies of all UCBs in the current configuration are obtained.

An unauthorized program can use the MVS I/O configuration token to regularly
check whether a configuration change has occurred, as in the following example:

� The program issues the IOCINFO macro to obtain the MVS I/O configuration
token.

 Copyright IBM Corp. 1988, 1999 23-1

� The program sets a time interval that is to expire in 10 minutes, using the
STIMER macro.

� When the time interval expires, the user-specified timer exit routine gets control
and issues the IOCINFO macro to obtain the MVS I/O configuration token that
is current at this later time.

� The program compares the newly-obtained token with the original one.

� If the tokens match, no I/O configuration change has occurred, and the
program resets the time interval for another 10 minutes to check again at that
time.

� If the tokens do not match, a configuration change has occurred. The program
then rebuilds its control structures by using the UCBSCAN macro, specifying
the IOCTOKEN parameter to check for any further I/O configuration changes
while the rebuilding process is in progress. After the control structures are
rebuilt for the new I/O configuration, the program resets the time interval for 10
minutes to check again for I/O configuration changes.

 Scanning UCBs
You can use the UCBSCAN macro with the COPY keyword to scan UCBs. On
each invocation, UCBSCAN may return, in caller-supplied storage areas, a copy of
one or more of the following UCB segments:

� UCB common segment
� UCB common extension segment
� UCB prefix extension segment
� UCB device class extension segment

The scan can include all UCBs in the system, or be restricted to a specific device
class. For example, you could use UCBSCAN to find all DASD devices currently
defined to the configuration. It is also possible to restrict the scan to UCBs for static
and installation-static devices, or to include UCBs for dynamic devices as well.

Example of a Program That Obtains Copies of All the UCBs: This example
program obtains copies of all UCBs, including those for devices defined as
dynamic. It uses the MVS I/O configuration token to determine if the I/O
configuration changes during the scan, and it restarts the scan if the I/O
configuration has changed. On each invocation of UCBSCAN, the system returns a
copy of a UCB at the address specified by UCBAREA and return the current MVS
I/O configuration token.

23-2 OS/390 V2R8.0 MVS Assembler Services Guide

SCANEXMP CSECT
SCANEXMP AMODE 31
SCANEXMP RMODE ANY
 DS ðH

BAKR R14,ð Save regs on linkage stack
LR R12,R15 Set up code reg

 USING SCANEXMP,R12
LA R13,SAVEAREA Get save area address
MVC SAVEAREA+4(4),FIRSTSAV First save area in chain

\
\ ...
\
RESCANLP DS ðH

IOCINFO IOCTOKEN=TOKEN Get current IOCTOKEN
XC SCANWORK,SCANWORK Clear scan work area

SCANLOOP DS ðH
 UCBSCAN UCBAREA=UCBCOPY,WORKAREA=SCANWORK,DYNAMIC=YES, +
 RANGE=ALL,IOCTOKEN=TOKEN

LTR R15,R15 Was a UCB returned?
BNZ SCANDONE No, either a configuration

\ change has occurred
\ or no more UCBs
\
\ Process UCB
\
 B SCANLOOP
SCANDONE DS ðH

LA Rð2,12 Return code for a
\ configuration change

CR R15,Rð2 Did a configuration change
\ occur?

BE RESCANLP Yes, start scan again
FINISHED DS ðH
\
\ ...
\
ENDIT DS ðH

PR Return to caller
 EJECT
\
\ Register equates
\
Rð2 EQU 2
Rð3 EQU 3
Rð9 EQU 9
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 DS ðF
FIRSTSAV DC CL4'F1SA' First save area ID
SAVEAREA DS 18F Save area
TOKEN DS 48C IOCTOKEN area
UCBCOPY DS 48C UCB Copy returned by
\ SCAN
SCANWORK DS CL1ðð Work area for SCAN
 END SCANEXMP

Obtaining UCB Information for a Specified Device
You can use the UCBINFO macro to obtain information from a UCB for a specified
device. You can use UCBINFO to obtain:

� A count of the UCBs for a device class
� Reasons why a device is offline
� Device path information
� Channel path type information
� A copy of the UCB prefix extension

 Chapter 23. Accessing Unit Control Blocks (UCBs) 23-3

| � Information about the alias UCBs for a parallel access volume.

When you call UCBINFO, you provide the device number of the device for which
you want the information.

Obtaining Eligible Device Table Information
The installation's device groups are defined in the eligible device table (EDT). An
EDT is an installation-defined and named representation of the devices that are
eligible for allocation. This table also defines the relationship of generic device
types and esoteric group names. The term “generic device type” refers to the
general identifier IBM gives a device; for example, 3380. An esoteric device group
is an installation-defined and named collection of I/O devices; TAPE is an example
of an esoteric group name. See OS/390 HCD Planning for further information on
the EDT.

Using the EDTINFO Macro
The EDTINFO macro enables you to obtain information from the EDT and to check
your device specification against the information in the EDT. You can use the
EDTINFO macro to perform the following functions:

� Check groups. The EDTINFO macro determines whether the input device
numbers constitute a valid allocation group. The device numbers are a valid
allocation group if either of the following is true:

– For any allocation group in the EDT that contains at least one of the device
numbers specified in the input device number list, all of the device numbers
in that group in the EDT are contained in the input device number list

– None of the allocation groups in the EDT contain any of the numbers
specified in the input device number list.

If neither of these is the case, the device numbers are not a valid allocation
group.

� Check units. The EDTINFO macro determines whether the input device
numbers correspond to the specified unit name. The unit name is the EBCDIC
representation of the IBM generic device type or esoteric group name.

� Return unit name. The EDTINFO macro returns the unit name associated with
the UCB device type provided as input.

� Return unit control block (UCB) addresses. The EDTINFO macro returns a list
of UCB addresses associated with the unit name or device type provided as
input.

Note: The EDTINFO macro returns UCB addresses only for below 16
megabyte UCBs for static and installation-static devices with 3-digit
device numbers. However, you can use the RTNDEVN keyword with
the EDTINFO macro to return a device number list for devices that are
dynamic, 4-digit or described by UCBs residing above the 16-megabyte
line.

The UCBINFO macro, described earlier in this section, can then be
used to obtain device number information for a specific device number.

If your program is authorized, running in supervisor state or with a
program key mask of 0-7, you can use the UCBLOOK macro to the

23-4 OS/390 V2R8.0 MVS Assembler Services Guide

obtain the actual UCB address from a given device number. See,
OS/390 MVS Programming: Authorized Assembler Services Reference
SET-WTO, and OS/390 MVS Programming: Authorized Assembler
Services Guide for the UCBLOOK macro.

� Return group ID. The EDTINFO macro returns the allocation group ID
corresponding to each UCB address specified as input.

� Return attributes. The EDTINFO macro returns general information about the
unit name or device type specified as input.

� Return unit names for a device class. The EDTINFO macro returns a list of
generic device types or esoteric group names associated with the device class
specified as input.

� Return UCB device number list. The EDTINFO macro returns the UCB device
number list associated with the unit name or UCB device type specified as
input. You can also specify that the following be included in the list:

– Devices defined to the system as dynamic
– Devices defined with 4-digit device numbers
– Devices with UCBs defined above 16 megabytes

� Return maximum eligible device type. The EDTINFO macro returns the
maximum eligible device type (for the allocation and cataloging of a data set)
associated with the unit name or device type, recording mode, and density
provided as input. The maximum eligible device type is the tape device type
that contains the greatest number of eligible devices compatible with the
specified recording mode and density.

 Chapter 23. Accessing Unit Control Blocks (UCBs) 23-5

23-6 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 24. The Internal Reader

The internal reader is a software substitute for a card punch and a card reader, a
tape drive, or a TSO/E terminal. Instead of entering a job into the system (through
JES) on punched cards, or through tape, you can use the output of one job or step
as the input to another job, which JES will process directly.

The internal reader facility is useful for several kinds of applications:

� You can use it to generate another job or a series of jobs from an
already-executing job. An online application program may submit another job to
produce a report, for example, so it does not have to do it itself.

� A job that produces a series of jobs can put its output to an internal reader for
immediate execution. For example, a job that updates data bases and starts
other applications based upon some input parameters or real-time events, can
use the internal reader for its output.

� The operator can start utility programs to read jobs from disk or tape files and
submit them to the system. The IBM-supplied procedure ‘RDR’ is an example
of a program that does this (see OS/390 JES2 Initialization and Tuning Guide).

� The operating system itself uses internal readers for submitting the JCL to start
up started tasks or TSO/E logons.

Following is a discussion of the batch job internal reader, which is the facility you
can use to submit a job from within another job.

Setting Up and Using an Internal Reader
The process of setting up and using an internal reader involves five tasks:

� Creating and allocating a data set
� Opening the data set
� Putting records into the data set
� Closing/deallocating the data set
� Passing the data set/records to the job entry subsystem for processing

Started tasks that run under the MSTR subsystem have the ability to set up an
internal reader. To accomplish this they must first successfully invoke the Request
Job ID SSI call, and then perform allocation. For more information on the Request
Job ID call (SSI function code 20), see OS/390 MVS Using the Subsystem
Interface.

| Note: The VSAM interface and all data management macros and routines reside
| below 16Mb and operate in 24-bit addressing mode. Therefore, your internal
| reader data sets will be allocated storage below the 16Mb line. (See
| OS/390 MVS Programming: Assembler Services Reference for more
| information.)

 Copyright IBM Corp. 1988, 1999 24-1

Allocating the Internal Reader Data Set
You can allocate an internal reader data set, in any address space, either with JCL
or dynamically, as follows:

� Define the data set in the JCL for a job:

//JOBJCL DD SYSOUT=(A,INTRDR)

Notes:

1. “INTRDR” is an IBM-reserved name identifying the internal reader as the
program to process this data set after it is created and written to.

2. The SYSOUT class on this DD statement becomes the message class for
the submitted job unless you specify MSGCLASS on the JOB statement.

� Use the following dynamic allocation text unit keys to dynamically
allocate an internal reader data set:

– DALSYSOU — define the SYSOUT data set and its class.

– DALSPGNM — specify the SYSOUT program name (INTRDR).

– DALCLOSE — request that INTRDR be deallocated at close.

– DALRTDDN — request the return of the ddname assigned by dynamic
allocation.

– DALLRECL — specify the record length of any instream data set.

– DALRECFM — specify the record format of any instream data set.

Note: DALCLOSE, DALRTDDN, DALLRECL and DALRECFM are optional
dynamic allocation text unit keys.

For the format details of dynamic allocation text unit keys, see OS/390 MVS
Programming: Authorized Assembler Services Guide.

Notes:

1. An INTRDR data set can contain any number of jobs.

2. The output destination of the INTRDR data set becomes the default print/punch
routing of all jobs contained within it.

3. INTRDR data sets contain sequential, fixed-length, or variable-length records.
Instream data records can be up to 254 bytes long. Note, however, that JCL
images in the data sets must be exactly 80 bytes long.

Opening the Internal Reader Data Set
Note that if DALRTDDN was used, the returned DDNAME needs to be moved from
the DALRTDDN text unit to the DCB before the OPEN macro is issued. Open the
internal reader data set with the OPEN macro, specifying DSORG=PS. For
information on using the OPEN macro, see DFSMS/MVS Macro Instructions for
Data Sets.

Opening the INTRDR data set identifies it to the JES and prepares it to receive
records.

Opening an internal reader that is already open has no effect. Multiple tasks cannot
have the same internal reader open at the same time.

24-2 OS/390 V2R8.0 MVS Assembler Services Guide

Sending Job Output to the Internal Reader
Code a WRITE (BSAM), PUT (QSAM) or PUT(VSAM) macro to send records to the
internal reader.

Obtaining a Job Identifier
If you want to obtain the job identifier for a job, you must use VSAM data
management macros. Issue an ENDREQ macro after writing a complete job to the
internal reader. The job identifier is returned in the RPLRBAR field of the request
parameter list (RPL). See OS/390 JES2 Commands or OS/390 JES3 Commands
for details about the job identifier. RPLRBAR is an 8 byte field with a format of
xxxnnnnn. The first 3 bytes, xxx, are the characters JOB, TSU or STC. The
remaining 5 bytes, nnnnn, represent the five digits of the job number. See OS/390
JES2 Initialization and Tuning Guide or OS/390 JES3 Initialization and Tuning
Guide for more information. If you submit JCL, and JES does not recognize it as a
job, RPLRBAR contains blanks or a job id from an earlier job submitted through the
internal reader. Note that the RPL cannot have records longer than 80 bytes.
Specify the following options on the RPL macro when creating an RPL:

 OPTCD=(ADR,SEQ,SYN,NUP),RECLEN=8ð

Where:

ADR Specifies addressed data processing with no index references.

SEQ Specifies sequential processing.

SYN Specifies a synchronous request and that control should be returned after
completion of the request.

NUP Specifies non-update mode (records retrieved are not updated or deleted).

RECLEN=80
Specifies that the submitted JCL records are 80 bytes.

Note that you must issue a CLOSE macro after the last ENDREQ.

Closing the Internal Reader Data Set
While your program is writing records to the internal reader data set, the internal
reader facility is writing them into a buffer in your address space. Issue the CLOSE
macro to close the internal reader data set, and to send the contents of the buffer
to JES.

Filling the buffer in your address space sends the records to the JES for
processing. JES considers a closed data set to be a completed job stream and
treats it as input. You can also send an internal reader data set to the JES for
processing by coding one of the following:

1. Code /*EOF as the last record in the job.

This control statement delimits the current job and makes it eligible for
immediate processing by the JES2 input service. The internal reader data set
remains open.

2. Code /*DEL as the last record in the job.

This control statement cancels the job, and requests the output from the job.
The job is immediately scheduled for output processing. The output will consist

 Chapter 24. The Internal Reader 24-3

of any JCL submitted so far, followed by a message indicating that the job has
been deleted before execution.

3. Code /*PURGE as the last record in the job.

This control statement is used only by JES2 internal readers. It cancels the
current job and schedules it for purge processing; no output is generated for
the job.

4. Code /*SCAN as the last record in the job.

This statement also applies only to JES2 internal readers. It requests that the
current job be scanned for JCL errors, but not executed.

You can put several groups of output records into the internal reader data set
simply by starting each group with another JCL JOB statement. The following
example illustrates this.

//JOBA JOB D58ELM1,MORRIS
//GENER EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=A,DEST=2NDFLOOR
//SYSUT2 DD SYSOUT=(M,INTRDR)
//SYSUT1 DD DATA
//JOBB JOB D58ELM1,MORRIS,MSGLEVEL=(1,1)
//REPORT1 EXEC PGM=SUMMARY
//OUTPUT DD SYSOUT=\
//INPUT DD DSN=REPORTA,DISP=OLD
//JOBC JOB D58ELM1,MORRIS,MSGLEVEL=(1,1)
//REPORT2 EXEC PGM=SUMMARY
//OUTPUT DD SYSOUT=A,DEST=3RDFLOOR
//INPUT DD DSN=REPORTB,DISP=OLD
/\EOF

In the preceding example, the IBM-supplied utility program IEBGENER is executed
by job A. It reads from SYSUT1, and submits to the internal reader, jobs B and C,
which are report-producing programs. Note that the message class for jobs B and
C will be M, the SYSOUT class on the internal reader DD statement. Also, the
OUTPUT data set from job B, because it specifies “*” (defaulting to the job's
message class), will be class M.

The /*EOF control statement following the JCL indicates that the preceding jobs
can be sent immediately to the job entry subsystem for input processing. Coding
the CLOSE macro would have the same effect.

See OS/390 JES2 Initialization and Tuning Guide or OS/390 JES3 Initialization and
Tuning Guide for more information about setting up and using internal readers.

24-4 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 25. Using the Symbol Substitution Service

The ASASYMBM service substitutes text for symbols in character strings. This
chapter explains how to explicitly call ASASYMBM to substitute text for symbols
that you specify in application and vendor programs. It:

� Describes what symbols are

� Lists the symbols that the system provides

� Describes how to call ASASYMBM to substitute text for symbols.

Note: The system automatically substitutes text for symbols in dynamic
allocations, parmlib members, system commands, and job control language
(JCL). The system does not provide automatic support for other interfaces,
such as application and vendor programs. Those interfaces must call
ASASYMBM to perform symbolic substitution.

What Are Symbols?
Symbols are elements that allow the system to use the same source code for two
or more unique instances of the same program. Symbols represent the variable
information in a program. The program calls the ASASYMBM macro to substitute
text for the symbols.

For example, suppose you define the following data set name, with the &TCASEID.
symbol as the low-level qualifier:

 TEST.&TCASEID.

Then suppose that two different instances of a program each call ASASYMBM, one
with TEST001 as the substitution text for &TCASEID and the other with TEST002
as the substitution text. The resulting data set names are:

 TEST.TESTðð1
 TEST.TESTðð2

Notice that one data set definition produces two unique instances of data sets to be
used in the programs.

Types of Symbols
There are two types of symbols that you can specify in application or vendor
programs:

� System symbols are defined to the system at initialization. Your installation
specifies substitution texts for system symbols or accepts their default values.
When a program calls ASASYMBM, it can accept the installation-defined
substitution texts or override them. There are two types of system symbols:

– Static system symbols have substitution texts that are defined at system
initialization and remain fixed for the life of an IPL. Static system symbols
represent fixed values such as system names and sysplex names.

The DISPLAY SYMBOLS command displays the static system symbols and
associated substitution texts that are currently in effect. See OS/390 MVS
System Commands or OS/390 MVS System Commands for details about
DISPLAY SYMBOLS.

 Copyright IBM Corp. 1988, 1999 25-1

– Dynamic system symbols have substitution texts that can change at any
point in an IPL. They represent values that can change often, such as
dates and times. A set of dynamic system symbols is defined to the
system; your installation cannot provide additional dynamic system
symbols.

See the section on using system symbols in OS/390 MVS Initialization and
Tuning Reference for lists of dynamic and static system symbols.

� User symbols are symbols that a caller defines on a call to ASASYMBM. They
are valid only for the specific call. The caller specifies the names and
substitution texts for user symbols in a symbol table. If the names of user
symbols are the same as the names of system symbols, the substitution texts
for the user symbols override the substitution texts for the system symbols.

If your program accepts the substitution texts for the installation-defined system
symbols, there is no need to specify those system symbols in the symbol table that
you provide to ASASYMBM; substitution for those system symbols is performed
automatically. However, if your program wants to override the installation-defined
substitution texts for system symbols, you must specify those system symbols in
the symbol table. The symbol table is the only place where you can specify user
symbols.

Examples of User Symbols
Like system symbols, user symbols can represent any type of variable information
in a program. When planning to define user symbols, you should first determine if
the system symbols provided by the system, and their associated substitution texts,
meet your needs. Define user symbols only if you need additional values.

Suppose you are writing a program that is to access several data sets each time it
runs. The user is to provide the name of the specific data set to be used.

Your first step is to create a pattern, or “skeleton,” for the data set name. You
decide to use the name of the system on which the program runs as a high-level
qualifier, and the name of the data set that the user provides as a low-level
qualifier.

You decide to use the &SYSNAME system symbol to identify the system on which
the program runs. Because &SYSNAME is already defined to the system, and you
do not want to override its substitution text, you do not need to provide it to
ASASYMBM. Because the system does not define a symbol to identify the input
from the user, you provide the following user symbol to ASASYMBM:

 TESTDATA DC C'&&DATAID.' Define the symbol &DATAID

You begin by specifying, in your program, references to three data sets:

 &SYSNAME..&DATAID..DS1
 &SYSNAME..&DATAID..DS2
 &SYSNAME..&DATAID..DS3

You then specify that the user is to provide, as input to the program, the
substitution text for the &DATAID user symbol. For example:

 EXEC PGM=MYPGM,PARM='DATA1'

25-2 OS/390 V2R8.0 MVS Assembler Services Guide

Your program provides, as input to ASASYMBM, a symbol table that contains the
&DATAID user symbol, with the substitution text that the user provided as input to
the program:

 DATAIDSUBTEXT DC C'DATA1' Substitution text for &DATAID

To determine the data set name to be used, your program also provides to
ASAYSMBM the pattern for the data set name, including the symbols for which
substitution is to occur. For example:

 SYS1.&SYSNAME..&DATAID..DS1
 SYS1.&SYSNAME..&DATAID..DS2
 SYS1.&SYSNAME..&DATAID..DS3

The data set names resolve to the following names after symbolic substitution:

 SYS1.DATA1.DS1
 SYS1.DATA1.DS2
 SYS1.DATA1.DS3

The following section explains how to call ASASYMBM to perform the substitution
described in the example above.

Calling the ASASYMBM Service
A call to ASASYMBM:

1. Defines, to the system, the system symbols that ASASYMBM is to use.

2. Defines, to the system, user symbols that are specified in the symbol table (as
described later).

3. Substitutes values for the symbols in the symbol table, based on an input
character string (pattern).

4. Places the results of the substitution in an output buffer that the caller specifies.

5. Places the length of the output buffer in a field.

6. Provides a return code to the calling program.

You must include the ASASYMBP mapping macro to build the user parameter area
(SYMBP) for ASASYMBM. The following sections describe how to set up
ASASYMBP to enable the desired functions.

Setting Up the ASASYMBP Mapping Macro
Before calling ASASYMBM to substitute text for a symbol, the caller must provide
the symbol pattern and its length, an output buffer and its length, and an area in
which to place the return code from ASASYMBM. The caller can optionally provide
a symbol table and a timestamp.

The caller must code the following fields in the ASASYMBP mapping macro:

Field Description

SYMBPPATTERN@ Specifies the address of the input character string
(pattern) that contains symbols to be resolved.

SYMBPPATTERNLENGTH Specifies the length of the input pattern specified in
the PATTERN@ field.

 Chapter 25. Using the Symbol Substitution Service 25-3

SYMBPTARGET@ Specifies the address of the buffer that is to contain
the output from ASASYMBM (the results of the
symbolic substitution).

SYMBPTARGETLENGTH@ Specifies the address of a fullword that:

� On input, contains the length of the output
buffer specified in the TARGET@ field

� On output, contains the length of the
substituted text within the output buffer.

SYMBPRETURNCODE@ Specifies the address of a fullword that is to contain
the return code from ASASYMBM.

Before calling ASASYMBM, you can optionally code the following fields in the
ASASYMBP mapping macro:

Field Description

SYMBPSYMBOLTABLE@ Specifies the address of a symbol table mapped by
the SYMBT DSECT. Specify an address in this field
if you want to do one or both of the following:

� Provide symbols in addition to the system
symbols that are defined to the system, or
override the system symbols that are defined to
the system.

� Use additional functions of ASASYMBM, which
are described in “Providing a Symbol Table to
ASASYMBM.”

Otherwise, specify an address of 0 in this field.

SYMBPTIMESTAMP@ Specifies the address of an eight-character area
that contains the time stamp to be used. Specify an
address of zero to have the system use the current
timestamp when substituting for system symbols
that relate to the time or date.

After the call to ASASYMBM, the caller can examine the following:

� The fullword pointed to by the SYMBPRETURNCODE@ field

� The fullword pointed to by the SYMBPTARGETLENGTH@ field

� The area pointed to by the SYMBPTARGET@ field.

Providing a Symbol Table to ASASYMBM
A program that calls ASASYMBM can optionally provide user symbols and their
associated substitution texts in a symbol table. The SYMBPSYMBOLTABLE@
field, in the user parameter area of the ASASYMBP mapping macro, specifies the
address of a symbol table, which is mapped by the SYMBT DSECT.

25-4 OS/390 V2R8.0 MVS Assembler Services Guide

Setting Up the Symbol Table
When you provide a symbol table to the ASASYMBM service (that is, when you
specify a non-zero address in the SYMBPSYMBOLTABLE@ field), code the
following fields in the ASASYMBP mapping macro:

Field Description

SYMBTNUMBEROFSYMBOLS Specifies the number of entries in the symbol
table. The number can be zero.

SYMBTTABLEENTRIES Specifies the beginning of the entries in the
symbol table. If the
SYMBTINDIRECTSYMBOLAREA bit (described
later in this section) is off, the symbol table entries
must be contiguous to the header, beginning at
this field. Otherwise, place the
SYMBTESYMBOLAREAADDR field in this field;
SYMBTESYMBOLAREAADDR must point to an
area that contains the symbol table entries.
SYMBTESYMBOLAREAADDR is a field in the
SYMBTE structure; see the ASASYMBP mapping
in OS/390 MVS Data Areas, Vol 1 (ABEP-DALT)
for details.

SYMBTE Specifies an entry in the symbol table. Code one
symbol table entry (SYMBTE) for each symbol in
the symbol table. The number of entries is
specified in the SYMBTNUMBEROFSYMBOLS
field. If the SYMBTINDIRECTSYMBOLAREA bit is
off, the symbol table entries must be contiguous
to the header, beginning at the
SYMBTTABLEENTRIES field. Otherwise, the
symbol table entries begin at the area pointed to
by the SYMBTESYMBOLAREAADDR field.

Each symbol table entry (SYMBTE) must set the
following fields:

� SYMBTESYMBOLPTR, when the
SYMBTPTRSAREOFFSETS flag is off ; it
specifies the address of the area that contains
the name of the symbol

� SYMBTESYMBOFFSET, when the
SYMBTPTRSAREOFFSETS flag is on ; it
specifies the offset to the symbol from the
beginning of the symbol area; you must also
set up the area pointed to by the offset

� SYMBTESYMBOLLENGTH, which specifies
the length of the symbol

� SYMBTESUBTEXTPTR, when the
SYMBTPTRSAREOFFSETS flag is off ; it
specifies the address of the area that contains
the substitution text for the symbol

� SYMBTESUBTEXTOFFSET, when the
SYMBTPTRSAREOFFSETS flag is on ; it

 Chapter 25. Using the Symbol Substitution Service 25-5

specifies the offset to the substitution text
from the beginning of the symbol area; you
must also set up the area pointed to by the
offset

� SYMBTESUBTEXTLENGTH, which specifies
the length of the substitution text.

If you specify an address in the SYMBPSYMBOLTABLE@ field, you must also
provide a symbol table header (SYMBTHEADER). Optionally set one or more of the
flags in the symbol table header, listed in this section, to indicate that ASASYMBM
is to perform additional functions.

Note: The field and bit names in the following section are all prefixed by the
characters SYMBT in the ASASYMBP mapping macro. The SYMBT prefix
is not used in this section out of consideration for readability.

Flag Function

CHECKNULLSUBTEXT Specifies that ASASYMBM is to return a return
code of X'0C' if the substitution text for a symbol
is a null string (has a length of zero).

The default is to not check if the substitution text
for a symbol is a null string.

INDIRECTSYMBOLAREA Specifies that the symbol area is not contiguous; it
is pointed to by the SYMBTESYMBOLAREAADDR
field. For an example of a symbol area that is not
contiguous, see Figure 25-2 on page 25-9.

The default is that the symbol area is contiguous.

NODEFAULTSYMBOLS Specifies that ASASYMBM is not to use the default
set of system symbols. In other words,
ASASYMBM uses only the symbols that are
defined in the user-provided symbol table.

When you do not set this flag,
ONLYDYNAMICSYMBOLS, or
ONLYSTATICSYMBOLS to on , the default is to
use both dynamic and static system symbols.

ONLYDYNAMICSYMBOLS Specifies that ASASYMBM is not to substitute text
for the static system symbols.

ONLYSTATICSYMBOLS Specifies that ASASYMBM is not to substitute text
for the dynamic system symbols.

PTRSAREOFFSETS Specifies that the pointer fields in the symbol table
are offsets. The system adds the offset to the
address of the symbol area to obtain the actual
address of the operand.

The default is to indicate that the pointer fields in
the symbol table are pointers.

MIXEDCASESYMBOLS Specifies that the system is to recognize, within an
input pattern, symbols that contain:

� All upper-case characters, and

� Both upper-case and lower-case characters.

25-6 OS/390 V2R8.0 MVS Assembler Services Guide

The default is to recognize symbols that match the
symbols in the symbol table.

TIMESTAMPISGMT Specifies that the input time stamp is Greenwich
Mean Time (GMT). TIMESTAMPISGMT is the
default when you provide a timestamp (in the area
pointed to by SYMBPTIMESTAMP@) and you do
not set this flag, TIMESTAMPISLOCAL, or
TIMESTAMPISSTCK to on .

TIMESTAMPISLOCAL Specifies that the input timestamp is local time.

TIMESTAMPISSTCK Specifies that the input timestamp is obtained from
the system time of day (TOD) clock.

WARNNOSUB Specifies that ASASYMBM is to return a X'10'
return code when the system does not perform
symbolic substitution.

The default is to not return a return code when the
system does not perform symbolic substitution.

WARNSUBSTRINGS Specifies that ASASYMBM is to return a X'04'
return code when the system finds a substring
error. See the section on using symbols in OS/390
MVS Initialization and Tuning Reference for
information about how the system performs
symbolic substitution when errors occur in
substringing.

The default is to not return a return code when the
system finds a substring error.

The following is an example of a symbol table that is contiguous:

 Chapter 25. Using the Symbol Substitution Service 25-7

SYMBP

10

0

04

0

SYMBPSYMBOLTABLE@

SYMBTHEADERSYMBTFLAGS

SYMBTE

SYMBTE

o
o

o

(Entry 2)

(Entry 1)

SYMBTNUMBEROFSYMBOLS

Symbol Table (Contiguous)

Figure 25-1. Contiguous Symbol Table

The following is an example of a symbol table that is not contiguous:

25-8 OS/390 V2R8.0 MVS Assembler Services Guide

SYMBP

10

0

02

04

0

SYMBPSYMBOLTABLE@

SYMBTHEADER

SYMBOL TABLE

SYMBTFLAGS

SYMBTE

SYMBTE

o

o

o

o

(Entry 2)

(Entry 1)

SYMBTNUMBEROFSYMBOLS

SYMBTESYMBOLAREAADDR

SYMBTINDIRECTSYMBOLAREA = ON

Symbol Table (Not Contiguous)

Figure 25-2. Non-contiguous Symbol Table

Rules for Entering Symbols in the Symbol Table
Follow these rules when specifying entries in the symbol table:

1. The names of the symbols must:

� Begin with an ampersand (&)

� End with a period (.)

� Contain 1-253 additional characters (in other words, you cannot create the
symbol “&.”).

Note: It is important that all symbols end with a period. If a symbol does not
end with a period, syntax errors could result.

2. Specify the names of system symbols only if you want to override the
installation-defined substitution texts for those system symbols. Ask the
operator to enter a DISPLAY SYMBOLS command to display the system
symbols and associated substitution texts that are currently in effect.

3. Do not begin the names of user symbols with the characters &SYS. The &SYS
prefix is reserved for system symbols; use the &SYS prefix only when
overriding substitution texts for system symbols.

4. The length of the substitution text cannot exceed the length of the symbol
name plus the ampersand (&).

 Chapter 25. Using the Symbol Substitution Service 25-9

This restriction prevents the flow of characters beyond established limits for text
entry. For example, assume that the limit for text entry is column 71. If a line
that contains a four-character symbol extends to column 70, a substitution text
of greater than six characters would force the text beyond column 71.

Using Symbols in Programs
Your program can call ASASYMBM to substitute text for the symbols that are
specified in the program. The following examples show how to call ASASYMBM in
various situations.

 Example 1
Operation: Set up the area that is to contain the substitution text. The caller does
not provide a symbol table or timestamp.

 LA 3,MYSYMBP
 USING SYMBP,3

XC SYMBP(SYMBP_LEN),SYMBP Initialize to zero
LA 4,PATTERN Address of pattern
ST 4,SYMBPPATTERN@ Save in SYMBP area
LA 4,L'PATTERN Length of pattern
ST 4,SYMBPPATTERNLENGTH Save in SYMBP area
LA 4,TARGET Address of target
ST 4,SYMBPTARGET@ Save in SYMBP area
MVC TARGETLENGTH,=A(L'TARGET) Set length of target
LA 4,TARGETLENGTH Address of target length
ST 4,SYMBPTARGETLENGTH@ Save in SYMBP area

\
\ Because the caller did not provide a symbol table, we know that
\ we are using only the system symbols provided by MVS. Since we have
\ initialized the entire SYMBP area to ð, we do not have to
\ set up the SYMBPSYMBOLTABLE@ field.
\
\ Because the caller did not provide a timestamp, and because we
\ have initialized the entire SYMBP area to ð, we do not have to
\ set up the SYMBPTIMESTAMP@ field.
\

LA 4,RETURNCODE Address of return code
ST 4,SYMBPRETURNCODE@ Save in SYMBP area

 DROP 3
...
\
\ Note that to avoid the assembler substituting
\ for &SYSNAME, &YYMMDD, &HHMMSS, two ampersands are specified.
\ The resulting pattern, then, is actually
\ USERID.&SYSNAME..D&YYMMDD..T&HHMMSS
\
PATTERN DC C'USERID.&&SYSNAME..D&&YYMMDD..T&&HHMMSS'
DYNAREA DSECT
 DS ðF
MYSYMBP DS CL(SYMBP_LEN) SYMBP area
RETURNCODE DS F Return code
TARGETLENGTH DS F Length of target
TARGET DS CL8ð An area big enough to hold the target no
\ matter what is substituted. Since &DATE
\ and &TIME are not used, it need be no
\ longer than the pattern area.

ASASYMBP , Mapping of SYMBP area

25-10 OS/390 V2R8.0 MVS Assembler Services Guide

 Example 2
Operation: Set up the SYMBP area. Provide a symbol table and a timestamp.

 LA 3,MYSYMBP
 USING SYMBP,3

XC SYMBP(SYMBP_LEN),SYMBP Initialize to zero
LA 4,PATTERN Address of pattern
ST 4,SYMBPPATTERN@ Save in SYMBP area
LA 4,L'PATTERN Length of pattern
ST 4,SYMBPPATTERNLENGTH Save in SYMBP area
LA 4,TARGET Address of target
ST 4,SYMBPTARGET@ Save in SYMBP area
MVC TARGETLENGTH,=A(L'TARGET) Set length of target
LA 4,TARGETLENGTH Address of target length
ST 4,SYMBPTARGETLENGTH@ Save in SYMBP area
LA 5,MYSYMBT Address of symbol table
ST 5,SYMBPSYMBOLTABLE@ Save in SYMBP area

\
\ Initialize symbol table to indicate that the input timestamp
\ is local time, not GMT, and to contain two system symbols.
\
 USING SYMBT,5

XC SYMBTHEADER,SYMBTHEADER Clear symbol table header
 OI SYMBTFLAGS,SYMBTTIMESTAMPISLOCAL Local timestamp

LA 6,2 Number of symbols
STH 6,SYMBTNUMBEROFSYMBOLS Save in SYMBT area
LA 5,SYMBTTABLEENTRIES Address of first symbol entry
USING SYMBTE,5 A symbol table entry

\
\ Initialize first entry in symbol table.
\

LA 6,SYMBOL1 Address of first symbol
ST 6,SYMBTESYMBOLPTR Save in SYMBTE area
LA 6,L'SYMBOL1 Length of first symbol
ST 6,SYMBTESYMBOLLENGTH Save in SYMBTE area
LA 6,SYMBOL1SUBTEXT Address of substitution text
ST 6,SYMBTESUBTEXTPTR Save in SYMBTE area
LA 6,L'SYMBOL1SUBTEXT Length of substitution text
ST 6,SYMBTESUBTEXTLENGTH Save in SYMBTE area

\
\ Move to next entry in symbol table.
\

LA 5,SYMBTE_LEN(,5) Address of next symbol entry
\
\ Initialize second entry in symbol table.
\

LA 6,SYMBOL2 Address of symbol
ST 6,SYMBTESYMBOLPTR Save in SYMBTE area
LA 6,L'SYMBOL2 Length of symbol
ST 6,SYMBTESYMBOLLENGTH Save in SYMBTE area
LA 6,SYMBOL2SUBTEXT Address of substitution text
ST 6,SYMBTESUBTEXTPTR Save in SYMBTE area
LA 6,L'SYMBOL2SUBTEXT Length of substitution text
ST 6,SYMBTESUBTEXTLENGTH Save in SYMBTE area
DROP 5 No longer need addressability

 Chapter 25. Using the Symbol Substitution Service 25-11

\
\ Complete parameter area initialization.
\

LA 4,MYTIMESTAMP Address of timestamp
ST 4,SYMBPTIMESTAMP@ Save in SYMBP area
LA 4,RETURNCODE Address of return code
ST 4,SYMBPRETURNCODE@ Save in SYMBP area
DROP 3 No longer need addressability

...
\
\ Note that in order to avoid the assembler's substituting
\ for &YYMMDD, &HHMMSS, &S1, &S2, two ampersands are specified.
\ The resulting pattern, then, is actually
\ USERID.&YYMMDD..&S1..&S2
\ Similarly, the resulting symbol names are
\ &S1; and &S2;
\
PATTERN DC C'USERID.D&&YYMMDD..T&&HHMMSS..&&S1..&&S2'
SYMBOL1 DC C'&&S1.' First symbol is &S1
SYMBOL1SUBTEXT DC C'S1V' Substitution text for &S1
SYMBOL2 DC C'&&S2.' Second symbol is &S2
SYMBOL2SUBTEXT DC C'S2V' Substitution text for &S2
\ Note that the substitution text values above are no longer than
\ the symbol names (counting the "&" but not the "."). This
\ helps to ensure that the substituted length is not greater
\ than the pre-substitution length.
\
DYNAREA DSECT
 DS ðF
MYSYMBP DS CL(SYMBP_LEN) SYMBP area
 DS ðF
MYSYMBT DS CL(SYMBT_LEN+2\SYMBTE_LEN) Symbol table with
\ room for two symbol entries
MYTIMESTAMP DS CL8 Time stamp that was set previously
\ Assume it represents local time
RETURNCODE DS F Return code
TARGETLENGTH DS F Input/Output Target Length
TARGET DS CL8ð An area big enough to hold the target no
\ matter what is substituted

ASASYMBP , Mapping of SYMBP, SYMBT, SYMBTE

 Example 3
Operation: Use the LINK macro to invoke the ASASYMBM service:

\ Set up MYSYMBP as in previous examples.
...
 LINK EP=ASASYMBM,MF=(E,MYSYMBP)
...
DYNAREA DSECT
 DS ðF
MYSYMBP DS CL(SYMBP_LEN) SYMBP area

ASASYMBP , Mapping of SYMBP area

 Example 4
Operation: Use the LINKX macro to invoke the ASASYMBM service:

25-12 OS/390 V2R8.0 MVS Assembler Services Guide

\ Set up MYSYMBP as in previous examples.
...

MVC MYLIST(MYSLIST_LEN),MYSLIST Initialize execute form
 LINKX EP=ASASYMBM,MF=(E,MYSYMBP),SF=(E,MYLIST) call service
...
MYSLIST LINKX SF=L Initialized list form
MYSLIST_LEN EQU \-MYSLIST Length of list form
DYNAREA DSECT
MYLIST LINKX SF=L List form in dynamic area
 DS ðF
MYSYMBP DS CL(SYMBP_LEN) SYMBP area

ASASYMBP , Mapping of SYMBP area

 Chapter 25. Using the Symbol Substitution Service 25-13

25-14 OS/390 V2R8.0 MVS Assembler Services Guide

Chapter 26. Using System Logger Services

This chapter covers the information you need to write a system logger application,
including the following topics:

� “What is System Logger?”

� “The System Logger Configuration” on page 26-4.

� “Overview of System Logger Services” on page 26-10.

� “IXGINVNT: Managing the LOGR Policy” on page 26-20.

� “IXGCONN: Connecting to and Disconnecting From a Log Stream” on
page 26-22.

� “IXGWRITE: Writing to a Log Stream” on page 26-32.

� “IXGBRWSE: Browsing/Reading a Log Stream” on page 26-34.

� “IXGDELET: Deleting Log Blocks from a Log Stream” on page 26-38.

� “IXGIMPRT: Import Log Blocks” on page 26-39.

� “IXGQUERY: Get Information About a Log Stream” on page 26-41.

� “IXGOFFLD: Initiate Offload to DASD Log Data Sets” on page 26-45.

� “IXGUPDAT: Modify Log Stream Control Information” on page 26-46.

� “Setting Up the System Logger Configuration” on page 26-47.

� “Reading Data From Log Streams in Data Set Format” on page 26-49.

� “When Things Go Wrong - Recovery Scenarios for System Logger” on
page 26-53.

What is System Logger?
System logger is a set of services that allows an application to write, browse, and
delete log data. You can use system logger services to merge data from multiple
instances of an application, including merging data from different systems across a
sysplex.

For example, suppose you are concurrently running multiple instances of an
application in a sysplex, and each application instance can update a common
database. It is important for your installation to maintain a common log of all
updates to the database from across the sysplex, so that if the database should be
damaged, it can be restored from the backup copy. You can merge the log data
from applications across the sysplex into a log stream , which is simply a collection
of data in log blocks residing in the coupling facility and on DASD (see
Figure 26-1 on page 26-2).

 Copyright IBM Corp. 1988, 1999 26-1

Application
Instance

2

Application
Instance 1

log block
4

Log stream

log block
3

log block
2

log block
1

Figure 26-1. System Logger Log Stream

The Log Stream
A log stream is an application specific collection of data that is used as a log. The
data is written to and read from the log stream by one or more instances of the
application associated with the log stream. A log stream can be used for such
purposes as a transaction log, a log for re-creating databases, a recovery log, or
other logs needed by applications.

A system logger application can write log data into a log stream , which is simply a
collection of data. Data in a log stream spans two kinds of storage:

� Interim storage , where data can be accessed quickly without incurring DASD
I/O.

� DASD log data set storage , where data is hardened for longer term access.
When the interim storage medium for a log stream reaches a user-defined
threshold, the log data is offloaded to DASD log data sets.

There are two types of log streams; coupling facility log streams and DASD-only log
streams. The main difference between the two types of log streams is the storage
medium system logger uses to hold interim log data:

� In a coupling facility log stream, interim storage for log data is in coupling
facility list structures. See “Coupling Facility Log Stream” on page 26-3.

� In a DASD-only log stream interim storage for log data is contained in local
storage buffers on the system. Local storage buffers are data space areas
associated with the system logger address space, IXGLOGR. See “DASD-Only
Log Stream” on page 26-3.

Your installation can use just coupling facility log streams, just DASD-only log
streams, or a combination of both types of log streams. The requirements and
preparation steps for the two types of log streams are somewhat different; see
“Setting Up the System Logger Configuration” on page 26-47.

26-2 OS/390 V2R8.0 MVS Assembler Services Guide

Coupling Facility Log Stream
Figure 26-2 shows how a coupling facility log stream spans two levels of storage;
the coupling facility for interim storage and DASD log data sets for more permanent
storage. When the coupling facility space for the log stream fills, the data is
offloaded to DASD log data sets. A coupling facility log stream can contain data
from multiple systems, allowing a system logger application to merge data from
systems across the sysplex.

DASD log data sets

Sys 1

Application

Structure

Coupling Facility

Youngest data Oldest data

Log stream

Figure 26-2. Log Stream Data on the Coupling Facility and DASD

When a system logger application writes a log block to a coupling facility log
stream, system logger writes it first to a coupling facility list structure. System
logger requires that a coupling facility list structure be associated with each log
stream. When the coupling facility structure space allocated for the log stream
reaches the installation-defined threshold, system logger moves (offloads) the log
blocks from the coupling facility structure to VSAM linear DASD data sets, so that
the coupling facility space for the log stream can be used to hold new log blocks.
From a user's point of view, the actual location of the log data in the log stream is
transparent.

DASD-Only Log Stream
Figure 26-3 on page 26-4 shows a DASD-only log stream spanning two levels of
storage; local storage buffers for interim storage, which is then offloaded to DASD
log data sets for more permanent storage.

A DASD-only log stream has a single-system scope; only one system at a time can
connect to DASD-only log stream. Multiple applications from the same system can,
however, simultaneously connect to a DASD-only log stream.

 Chapter 26. Using System Logger Services 26-3

DASD log data sets

Sys 1

Application

SYS1 local
storage buffers

Youngest data Oldest data

Log stream

Figure 26-3. Log Stream Data in Local Storage Buffers and DASD Log Data Sets

When a system logger application writes a log block to a DASD-only log stream,
system logger writes it first to the local storage buffers for the system and duplexes
it to a DASD staging data set associated with the log stream. When the staging
data set space allocated for the log stream reaches the installation-defined
threshold, system logger offloads the log blocks from local storage buffers to VSAM
linear DASD data sets. From a user's point of view, the actual location of the log
data in the log stream is transparent.

Both a DASD-only log stream and a coupling facility log stream can have data in
multiple DASD log data sets; as a log stream fills log data sets on DASD, system
logger automatically allocates new ones for the log stream.

The System Logger Configuration
The system logger configuration you use depends on whether or not you use a
coupling facility.

Coupling Facility Log Stream Configuration : Figure 26-4 on page 26-5 shows
all the parts involved when a system logger application writes to a coupling facility
log stream. In this example, a system logger application runs on two systems in a
sysplex. Both instances of the application write data to the same log stream,
TRANSLOG. Each system contains a system logger address space. A system
logger application uses system logger services to access the system logger
capabilities.

When a system logger application writes data to a coupling facility log stream,
system logger writes the data to a coupling facility list structure associated with the
log stream. Then, when the coupling facility structure fills with data, system logger
offloads the data to DASD log data sets.

26-4 OS/390 V2R8.0 MVS Assembler Services Guide

You can optionally elect to have coupling facility data duplexed to DASD staging
data sets for a coupling facility log stream.

Sysplex

Coupling Facility Structure
DASD log data sets

LOGR
couple

data set

SYS2/TRANSLOG
staging
data set

Sys 1

Application
1

Application
2

Local
Storage
buffers

Local
Storage
buffers

Sy

s
t
e
m

S
y
s
t
e
m

l
o
g
g
e
r

l
o
g
g
e
r

Sys 2

TRANSLOG Log Stream

SYS1/TRANSLOG
Staging

Data Set

Figure 26-4. A Complete Coupling Facility Log Stream Configuration

DASD-Only Log Stream Configuration : Figure 26-5 on page 26-6 shows all the
parts involved when a system logger application writes to a DASD-only log stream.
System logger writes the data to the local storage buffers on the system, duplexing
it at the same time to the DASD staging data sets associated with the log stream.
Then, when the staging data set fills with data, system logger offloads the data to
DASD log data sets. Note that where duplexing to DASD staging data sets is an
option for a coupling facility log stream, it is a required automatic part of a
DASD-only log stream. A system logger application uses system logger services to
access the system logger capabilities.

 Chapter 26. Using System Logger Services 26-5

Application

Local
Storage
buffers

S
y
s
t
e
m

l
o
g
g
e
r

DASD
staging

data sets

Sysplex

Sys 1

LOGR
couple

data set

SYS1
staging

data
set

Figure 26-5. A DASD-Only Configuration

The System Logger Component
The system logger component resides in its own address space on each system in
a sysplex. Some of the component processing will differ, depending on whether a
given log stream is a coupling facility log stream or a DASD-only log stream. The
system logger component does the following:

� Provides a set of system services that allows a system logger application to
use the system logger component. See OS/390 MVS Programming: Assembler
Services Guide and OS/390 MVS Programming: Assembler Services
Reference.

� Maintains information in the LOGR policy about the current use of log streams
and if used, coupling facility list structures.

� For coupling facility log streams, system logger interacts with cross-system
extended services (XES) to connect to and use the coupling facility for system
logger applications.

� Obtains local storage buffer space. For a coupling facility log stream, local
storage buffers can be used for duplexing log data. For a DASD-only log
stream, local storage buffers are used as interim storage for log data before it
is offloaded to DASD log data sets.

� Offloads data to DASD log data sets as follows:

For coupling facility log streams , system logger offloads log data from the
coupling facility to DASD log data sets as the coupling facility structure space
associated with the log stream reaches the installation-defined thresholds.

For DASD-only log streams , system logger offloads log data from the local
storage buffers to DASD log data sets as the DASD staging data set space
reaches the installation-defined thresholds.

� Automatically allocates new DASD log data sets for log streams.

26-6 OS/390 V2R8.0 MVS Assembler Services Guide

� Maintains a backup copy of (duplexes) log data that is in interim storage for
recovery. Log data in interim storage is vulnerable to loss due to system or
sysplex failure because it has not yet been hardened to DASD log data sets.
System logger duplexes interim storage log data for both coupling facility and
DASD-only log streams.

� Produces SMF record type 88 for system logger accounting on a single system.
Record type 88 focuses on the usage of interim storage (coupling facility or
local storage buffers) and log stream data for a system in the sysplex. Using
the record can help an installation avoid the STRUCTURE FULL or STAGING
DATA SET FULL exceptions, and perform other tuning and/or capacity planning
analysis.

See OS/390 MVS System Management Facilities (SMF) for more information
on record type 88 and system logger accounting. Sample program IXGRPT1 in
SYS1.SAMPLIB shows an example of producing a report from SMF record type
88.

 � Ensures that:

– When the last connection from a system disconnects from the log stream,
all log data written by that system to the log stream is offloaded to DASD
log data sets.

System logger also deletes any staging data sets in use for a system at
this time.

– When the last connection to a coupling facility log stream in the sysplex
disconnects, all coupling facility log data is offloaded to DASD log data sets
and the coupling facility space is returned to XES for reallocation.

� Provides recovery support in the event of application, system, sysplex, or
coupling facility structure failure for coupling facility log streams. (See
“Recovery Performed for DASD-Only Log Streams” on page 26-54 for
information about recovery for DASD-only log streams.)

The LOGR Couple Data Set (LOGR Policy)
The system logger component manages log streams based on the policy
information that installations place in the LOGR couple data set. The LOGR couple
data set must:

� Be accessible by all the systems in the sysplex.

� Be formatted using the IXCL1DSU utility.

� Contain policy information, which is defined using the IXCMIAPU utility (or the
IXGINVNT service, see OS/390 MVS Programming: Assembler Services Guide
for information).

You can only have one LOGR policy for the sysplex, even if you have primary and
alternate LOGR couple data sets. System logger will only use the policy information
contained in the primary LOGR couple data set. Because there is only one LOGR
policy allowed for a sysplex, you cannot specify the DEFINE POLICY NAME
parameter in the LOGR policy, nor can you issue the SETXCF START,POLICY
command to activate a policy. Updates made to the LOGR policy are made in the
primary LOGR couple data set. If you switch to your alternate LOGR couple data
set, system logger copies the LOGR policy from the old primary couple data set
into the new one.

 Chapter 26. Using System Logger Services 26-7

The LOGR policy includes the following:

� Log stream definitions.

� Coupling facility list structure definitions, if applicable.

� Data containing the current state of a log stream (for example, whether a log
stream is currently connected to the coupling facility structure).

Formatting a LOGR couple data set and defining the LOGR policy are steps an
installation must take to prepare for using a system logger application. See “Setting
Up the System Logger Configuration” on page 26-47.

Log Data on The Coupling Facility
For a coupling facility log stream, system logger requires that a coupling facility list
structure be assigned for each log stream as interim storage. When an application
writes data to a coupling facility log stream, it is first written to the coupling facility
list structure for that log stream. System logger manages connections to the
coupling facility, but the installation must define coupling facility structures
dedicated to log streams in the LOGR policy as part of the planning process for
system logger applications. More than one log stream can share space in a single
structure.

System logger will dynamically manage the entry-to-element ratio for log stream
coupling facility structures if you are using a LOGR primary couple data set
formatted at the OS/390 Release 3 level or above. The installation defines an initial
average buffer size for a structure on the AVGBUFSIZE parameter in the LOGR
policy using the IXGINVNT service or the IXCMIAPU utility. System logger uses this
value to determine the initial entry-to-element ratio for the structure. After that,
system logger will dynamically manage the entry-to-element ratio for the structure
based on actual structure usage. The most current entry-to-element ratio is used on
any subsequent allocations of the structure.

Log Data on DASD Log Data Sets
System logger uses VSAM linear data sets to store log stream data that has been
moved from the coupling facility when the coupling facility structure space allocated
for the log stream reaches its installation defined threshold. See OS/390 MVS
Setting Up a Sysplex for more information on this topic.

A log stream can have data in multiple DASD log data sets; as a log stream fills log
data sets on DASD, system logger automatically allocates new ones for the log
stream. System logger increments the sequence number in the log stream data set
name as new data sets are added for a particular log stream. See the system
logger chapter in OS/390 MVS Setting Up a Sysplex for information on planning
naming conventions for system logger resources.

IBM recommends that DASD log data sets be managed by System Managed
Storage (SMS). You can manage log stream data sets by either:

� Modifying automatic class selection (ACS) routines.

� Defining the SMS data class, storage class, and management classes explicitly
in the log stream definition using the IXCMIAPU utility or the IXGINVNT service.

System logger will tolerate use of DFHSM or another product to migrate DASD log
data sets.

26-8 OS/390 V2R8.0 MVS Assembler Services Guide

Duplexing Log Data
Every time a system logger application writes a log block to a log stream, system
logger automatically makes a duplicate copy of the data as insurance against data
loss due to coupling facility, system failure, or system logger failure. System logger
keeps a duplex copy of data in log stream interim storage only. The duplicate copy
is kept until the data is offloaded from interim storage to DASD log data sets.

The way system logger duplexes log data depends on whether the log stream is a
coupling facility or a DASD-only log stream.

Duplexing Log Data on a Coupling Facility Log Stream
System logger allows the installation to choose between two methods of duplexing
coupling facility log data for a coupling facility log stream:

� Maintain a copy of coupling facility resident log data in local storage buffers on
each system.

This option is the default, and occurs automatically if you do not specifically
request duplexing on staging data sets in the log stream definition in the LOGR
policy.

� Maintain a copy of coupling facility resident log data in DASD staging data
sets , one per log stream on a system.

This option provides hardening of the data on failure independent, persistent
media.

You can request the duplexing options for a coupling facility log stream in the log
stream definition in the LOGR policy.

You can request duplexing to staging data sets either conditionally, so that a
connection will have a staging data set when it contains a single point of failure, or
unconditionally, so that every connection to a log stream duplexes to staging data
sets. This means that the number of staging data sets active at any given time will
depend on the status of each connection and the duplexing method selected for
each log stream.

If you request duplexing using staging data sets for a coupling facility log stream in
the LOGR policy, system logger uses VSAM linear DASD staging data sets to hold
a back-up copy of coupling facility log data for log streams that specify it.

IBM recommends that you plan for DASD staging data sets even if you do not
request duplexing to staging data sets. If the primary LOGR couple data set for the
sysplex is at Release 3 level or above, system logger will automatically allocate a
staging data set for a log stream under specific error conditions where the log data
exists only in a volatile configuration. System logger does this to help safeguard
log data against data loss.

Duplexing for a DASD-Only Log Stream
For a DASD-only log stream, system logger automatically duplexes log data from
the system's local storage buffers to DASD staging data sets. System logger uses
VSAM linear DASD data sets for staging data sets. Note that the staging data set
naming convention is different for DASD-only and coupling facility log streams.

 Chapter 26. Using System Logger Services 26-9

Overview of System Logger Services
This section provides an overview of general information about system logger
services, including:

� “Summary of System Logger Services.”

� “Define Authorization to System Logger Resources” on page 26-11.

� “Synchronous and Asynchronous Processing” on page 26-11.

� “Coding a System Logger Complete Exit for IXGBRWSE, IXGWRITE, and
IXGDELET” on page 26-13.

� “How System Logger Handles Gaps in the Log Stream” on page 26-15.

� “Using the System Logger Answer Area (ANSAREA parameter)” on
page 26-18.

� “Using ENF Event Code 48 in System Logger Applications” on page 26-19.

Summary of System Logger Services
System logger provides the following set of services:

IXGINVNT Define and maintain log stream and coupling facility structure
information in the LOGR policy dynamically. See page 26-20.

You can also use the IXCMIAPU utility to specify log stream and
structure definitions in the LOGR policy. IXCMIAPU also enables
you to request a report of current log stream definitions.

IXGCONN Connect and disconnect an application to and from a log stream.
See page 26-22.

IXGWRITE Write user-defined log data to a log stream. See page 26-32.

IXGBRWSE Browse (read) data from a log stream. See page 26-34.

IXGDELET Delete data from a log stream. See page 26-38.

IXGIMPRT Import (write) log blocks to a log stream, with a log block identifier
and timestamp. See page 26-39.

IXGQUERY Retrieve information from a log stream. See page 26-41.

IXGOFFLD Initiate an offload of log data from the coupling facility structure for
coupling facility log streams and from local storage buffers for
DASD-only log streams to DASD log data sets. See page 26-45.

IXGUPDAT Modify the GMT time stamp maintained in the control information
for a log stream. See page 26-46.

The following services contain parameters for both authorized and unauthorized
programs: IXGCONN, IXGBRWSE, IXGWRITE, and IXGDELET. All other system
logger services and their parameters can be used by any program. All the
guidance for system logger, authorized and unauthorized, is contained in this
chapter.

26-10 OS/390 V2R8.0 MVS Assembler Services Guide

Define Authorization to System Logger Resources
Installations need to define authorization to system logger resources for both the
system logger address space and logging functions and applications using the
system logger services:

� For information on authorization for the system logger address space, see the
chapter on planning for system logger functions in OS/390 MVS Setting Up a
Sysplex.

� If you are using the IXCMIAPU utility to update the LOGR couple data set, you
must define authorization to system logger resources for IXCMIAPU users.
See the chapter on planning for system logger functions in OS/390 MVS
Setting Up a Sysplex.

� To define authorization for system logger application programs, see
“Authorization for System Logger Application Programs.”

Authorization for System Logger Application Programs
IBM recommends that installations use Security Authorization Facility (SAF) to
control access to system logger resources such as log streams or coupling facility
structures associated with log streams.

Define access for applications to the following classes and resources for each
service. Note that only applications writing to coupling facility log streams need
access to coupling facility structures:

Figure 26-6. Defining SAF Authorization For System Logger Resources

System Logger Service Access
type

SAF class and Resource

IXGINVNT REQUEST=DEFINE TYPE=LOGSTREAM

IXGINVNT REQUEST=UPDATE TYPE=LOGSTREAM

IXGINVNT REQUEST=DELETE TYPE=LOGSTREAM

ALTER RESOURCE(log_stream_name) CLASS(LOGSTRM)

IXGINVNT REQUEST=DEFINE TYPE=LOGSTREAM
STRUCTNAME=structname

ALTER

UPDATE

RESOURCE(log_stream_name) CLASS(LOGSTRM)

RESOURCE(IXLSTR.structure_name) CLASS(FACILITY)

IXGINVNT REQUEST=DEFINE TYPE=LOGSTREAM
LIKE=like_log_stream_name

ALTER

UPDATE

RESOURCE(log_stream_name) CLASS(LOGSTRM)

RESOURCE(like_log_stream) CLASS(LOGSTRM)

RESOURCE(IXLSTR.like_structure_name)
CLASS(FACILITY)

IXGINVNT REQUEST=DEFINE TYPE=STRUCTURE

IXGINVNT REQUEST=DELETE TYPE=STRUCTURE

ALTER RESOURCE(MVSADMIN.LOGR) CLASS(FACILITY)

IXGCONN REQUEST=CONNECT AUTH=WRITE UPDATE RESOURCE(log_stream_name) CLASS(LOGSTRM)

IXGCONN REQUEST=CONNECT AUTH=READ READ RESOURCE(log_stream_name) CLASS(LOGSTRM)

Synchronous and Asynchronous Processing
Depending on the operating environment, an event control block (ECB) can be
resident in one of two places: the home address space (in private storage) or in
common storage. The following section provides examples of where the ECB might
appear in an environment that includes a caller address space, a server address
space, and the system logger address space. In these examples, the server
provides services to the caller.

 Chapter 26. Using System Logger Services 26-11

Use the MODE parameter on the IXGWRITE, IXGBRWSE, and IXGDELET
services to choose one of the following:

 � MODE=SYNC
 � MODE=SYNCECB
 � MODE=SYNCEXIT
 � MODE=ASYNCNORESPONSE

 � Choosing MODE=SYNC

Choose MODE=SYNC to specify that the request be processed synchronously.
When control returns to the caller, all processing on behalf of the request is
complete.

 � Choosing MODE=SYNCECB

Choose MODE=SYNCECB to specify that the request be processed
synchronously, if possible . If the system logger request cannot be completed
synchronously, processing on behalf of the request might still be in progress
when control returns to the caller. When processing for the request completes,
the ECB specified on the system logger request is posted. Once the ECB is
posted, the caller can examine the answer area to verify whether the request
completed successfully.

 � Choosing MODE=SYNCEXIT

Choose MODE=SYNCEXIT to specify that the request be processed
synchronously, if possible . If the request cannot be completed synchronously,
control returns to the caller with a return and reason code indicating that
processing of the request is not complete. When processing of the request
completes, the exit routine specified at connect time gets control. (The exit
routine is specified on the COMPLETEEXIT parameter on the IXGCONN
request.)

You can use the REQDATA parameter with MODE=SYNCEXIT to specify
user-defined information relating to the request. For example, you can use
REQDATA to specify information about control blocks needed by the complete
exit.

Your application must be in supervisor state, system key to use the
MODE=SYNCEXIT and REQDATA parameters.

 � Choosing MODE=ASYNCNORESPONSE

Choose MODE=ASYNCNORESPONSE on the IXGWRITE and IXGDELET
requests to specify that the request be processed asynchronously. The caller
will not be informed when the request completes. The answer area returned in
the ANSAREA parameter and mapped by IXGANSAA is not valid when you
specify MODE=ASYNCNORESPONSE.

When a system logger request cannot be completed synchronously, system logger
schedules an SRB to complete processing of the request before it returns control to
the caller. While the SRB runs independent of the requesting task, the SRB might
encounter an error from which it cannot recover. The SRB ensures that the error
condition is percolated to the task that issued the system logger request.

Note: Depending on the exploiter's structure, this task might not be the same task
that originally issued the IXGCONN request to connect to a log stream.

26-12 OS/390 V2R8.0 MVS Assembler Services Guide

Prior to percolating the error to the requesting task, system logger issues the
SETRP macro, specifying SERIAL=YES. System logger also places additional
diagnostic information in the SDWA, as follows:

SDWACMPC
The completion code, set to X'1C5'.

SDWACRC
The reason code, set to X'85F'.

SDWACOMU
The ECB address specified on the ECB keyword when system logger was
invoked.

If the caller receives a return code indicating that system logger will process the
request asynchronously, the application cannot free certain storage areas.

Reference: See OS/390 MVS Programming: Assembler Services Reference for the
specific service's return code.

Coding a System Logger Complete Exit for IXGBRWSE, IXGWRITE,
and IXGDELET

Your complete exit provides a mechanism for system logger services to let you
know when your asynchronously processed system logger IXGBRWSE,
IXGDELET, or IXGWRITE request completes. You provide the address of your
complete exit using the COMPLETEEXIT parameter when you issue the IXGCONN
REQUEST=CONNECT macro to connect to the log stream. You will be informed of
request completion through your complete exit if you specify MODE=SYNCEXIT
and the system processes your request asynchronously.

You must be running in supervisor state and a system key to specify
MODE=SYNCEXIT on a IXGBRWSE, IXGDELET, or IXGWRITE system logger
service request.

Information Passed to the Complete Exit.
When the complete exit gains control, it receives the following information about the
system logger request in the complete exit parameter list (CMPL), mapped by the
IXGCMPL macro:

CMPLREQDATA Information passed to the complete exit by the issuer of
the system logger service request. The use of this
optional field is user-defined.

CMPLRETCODE Return code from the system logger service request.

CMPLRSNCODE Reason code from the system logger service request.

CMPLANSAREA@ Answer area address. The answer area is mapped by
IXGANSAA macro.

CMPLSTREAMTOKEN Log stream connector's stream token.

 Chapter 26. Using System Logger Services 26-13

 Environment
The complete exit receives control in the following environment:

Authorization: Supervisor state, and PSW key 0
Dispatchable unit mode: SRB
Cross memory mode: PASN=HASN=SASN. PASN, HASN

and SASN are equal to the PASN at
the time of the connect to the log
stream.

AMODE: 31-bit
ASC mode: Primary ASC mode
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held.
Control parameters: None.

 Input Specifications
System logger services pass information to the complete exit in registers.

Registers at Entry: When the complete exit receives control, the GPRs contain
the following information:

Register Contents

0 Does not contain any information for use by the complete exit.

1 Address of a fullword containing the address of the CMPL

2-12 Do not contain any information for use by the complete exit.

13 Address of a standard 72-byte save area.

14 Return address to system logger services.

15 Entry point address.

When the complete exit receives control, the ARs contain no information for use by
the complete exit.

Return specification: Your exit must return control to the system by branching to
the address provided on entry in register 14. There are no requirements for the
GPRs or ARs to contain any particular value.

 Programming Considerations
If you have more than one outstanding system logger request being processed
asynchronously, multiple instances of your complete exit might run concurrently as
system logger services process your request completions. Therefore, you should
consider coding your complete exit as a reentrant program.

You can access the input parameter data area only while your complete exit is
running. If you want to save the parameter information for later processing, make a
copy of it before your complete exit returns control to the system.

In certain instances, the system must quiesce the activity of user exits in order to
perform cleanup processing. The following illustrates scenarios where this
processing occurs:

 � Connection Termination

26-14 OS/390 V2R8.0 MVS Assembler Services Guide

When a user disconnects while a MODE=SYNCEXIT request is outstanding,
the complete exit will not be called.

If the connecting task terminates, the system will issue a PURGEDQ against
SRB that are associated with the connection. Since all complete exit SRBs are
associated with the connecting task's TCB, any complete exits that are active
when the connecting task terminates could be interrupted with an ABEND
x'47B' reason code 0.

� System Logger Termination

When the system logger address space terminates, it attempts to inform active
requests of logger termination. If the complete exit has not been scheduled, it is
scheduled at this time with a return code and reason code indicating that the
system logger address space has terminated.

The system logger initializes a recovery environment before it calls the complete
exit. Should the complete exit fail and percolate to the system logger's recovery
routine, the task that did the corresponding connection to the log stream is abended
and retry is not permitted. The abend code will be 1C5 and the abend reason code
00030006.

How System Logger Handles Gaps in the Log Stream
System logger might find data unexpectedly missing from or inaccessible in a log
stream. These areas of missing information are called gaps and result from the
following:

� System, sysplex, or coupling facility failure where the data could not be
recovered.

� A DASD log stream data set being deleted.

� DASD I/O errors occurring during processing of an IXGBRWSE request to read
log data.

If system logger encounters a gap during the processing of an IXGBRWSE or
IXGDELET service, it returns a return and reason code to the caller of the system
logger service to report the condition and indicate whether the service completed
successfully. The other system logger services, IXGINVNT, IXGCONN, and
IXGWRITE, are not affected by gaps in the log stream data.

See Figure 26-7 and Figure 26-8 on page 26-16 for a summaries of how
IXGBRWSE and IXGDELET services handle gaps in the log stream.

Figure 26-7 (Page 1 of 2). How IXGBRWSE Requests Handle Gaps in a Log Stream

IXGBRWSE Request Request Results

START SEARCH=search

READBLOCK SEARCH=search

Request completes with a non-zero return code and reason
code. System logger positions the cursor at or reads the next
youngest log block or a block with an identical time stamp, if
there is one.

START STARTBLOCKID=startblockid Request completes with a non-zero return code and reason
code. System logger positions the cursor at or reads the next
youngest log block, if one exists.

READBLOCK BLOCKID=blockid Request fails with a non-zero return and reason code. No block
is returned.

 Chapter 26. Using System Logger Services 26-15

Figure 26-7 (Page 2 of 2). How IXGBRWSE Requests Handle Gaps in a Log Stream

IXGBRWSE Request Request Results

READCURSOR Request completes with a non-zero return code and reason
code. System logger reads the next valid block after the gap in
the specified direction, if there is one.

START OLDEST

RESET POSITION=OLDEST

When the oldest log block is within a gap of log data, the
request completes with a non-zero return code and reason
code. System logger positions or resets the cursor to the oldest
valid block in the log stream.

START YOUNGEST

RESET POSITION=YOUNGEST

The service completes without errors.

Figure 26-8. How IXGDELET Requests Handle Gaps in a Log Stream

IXGDELET Request Request Results

BLOCKS=ALL This request is unaffected by gaps in the log stream. The
service completes successfully.

BLOCKS=RANGE If the block specified is at the start of the range specified, the
service fails with a non-zero return and reason code. No data is
deleted.

System logger returns the block identifier of the first accessible
block toward the young end of the log stream.

If the block specified is not within a gap, the service completes
successfully.

| Dumping on Data Loss (804–type) Conditions
| The new DIAG option on the IXGINVNT service and IXCMIAPU TYPE(LOGR) utility
| along with the new DIAG options on the IXGCONN, IXGDELET and IXGBRWSE
| services allow additional diagnostic data to be obtained when a log stream loss of
| data condition is encountered.

| The following shows the default settings for all the services and the relationship
| between the service specifications in terms of whether or not Logger will request a
| dump for certain loss of data type conditions.

| Default settings:

| DEFINE LOG STREAM DIAG(NO)
| IXGCONN (CONNECT) DIAG(NO_DIAG)
| IXGBRWSE (START) DIAG(NO_DIAG)
| IXGDELET DIAG(NO_DIAG)

| Assuming a data loss (804) type condition was encountered on an IXGDELET
| request or on any IXGBRWSE request for a browse session, the following shows
| whether or not a dump would be taken by Logger for this condition, where:

| No No dump is taken for the condition.

| Yes Dump is taken for the condition.

26-16 OS/390 V2R8.0 MVS Assembler Services Guide

| DEFINE LOG STREAM NO YES
| ----------------- -----------------
IXGCONN CONNECT NO_DIAG NO YES NO_DIAG NO YES

| IXGBRWSE START NO_DIAG no no no no no yes
| NO no no no no no no
| YES no no no yes no yes

| IXGDELET NO_DIAG no no no no no yes
| NO no no no no no no
| YES no no no yes no yes

| Define a Log Stream to Allow Additional Dumping
| � IXGINVNT

| Specify IXGINVNT REQUEST=DEFINE,TYPE=LOGSTREAM,...,DIAG=YES

| � IXCMIAPU Utility Program

| Specify DEFINE LOGSTREAM ... DIAG(YES)

| Define a Log Stream to Allow Additional Dumping Using LIKE
| � IXGINVNT

| Specify IXGINVNT
| REQUEST=DEFINE,TYPE=LOGSTREAM,NAME=like.log.stream,...,DIAG=YES

| Then IXGINVNT
| REQUEST=DEFINE,TYPE=LOGSTREAM,LIKE=like.log.stream

| � IXCMIAPU Utility Program

| Specify DEFINE LOGSTREAM NAME (like.log.stream) ... DIAG(YES)

| Then DEFINE LOGSTREAM LIKE(like.log.stream)

| Update a Log Stream to Allow Additional Dumping
| � IXGINVNT

| Specify IXGINVNT REQUEST=UPDATE,TYPE=LOGSTREAM,...,DIAG=YES

| � IXCMIAPU Utility Program

| Specify UPDATE LOGSTREAM ... DIAG(YES)

| The update will take affect as each system obtains its first connection to the log
| stream. For example, assume there are two systems in an installation's sysplex,
| SYSA and SYSB, and SYSA had a connection to the log stream prior to the update
| request and SYSB did not have any connections to the log stream. If SYSB
| establishes a new (first) connection to the log stream, then the DIAG options will be
| in affect on SYSB. The DIAG settings prior to the update request will remain in
| affect on SYSA even if there is another connection to the log stream on SYSA.
| However, if all the connections to the log stream on SYSA are disconnected and
| then a new (first) connection is established to the logstream on SYSA, then the
| new DIAG options would then be in affect on SYSA.

 Chapter 26. Using System Logger Services 26-17

| Connect to a Log Stream and Request Additional Dumping
| � IXGCONN

| Specify IXGCONN REQUEST=CONNECT,...,DIAG=YES

| Assuming the log stream that is being connected has been defined as DIAG(YES),
| then Logger will provide a dump when a loss of data condition is encountered on
| browse and delete requests, unless the specific browse (start) or delete request
| specifies otherwise.

| Browsing a Log Stream and Request Additional Dumping
| � IXGBRWSE

| Specify IXGBRWSE REQUEST=START,...,DIAG=YES when IXGCONN
| REQUEST=CONNECT,...,DIAG=NO_DIAG

| � IXGCONN

| Specify IXGCONN REQUEST=CONNECT,...,DIAG=YES then no specific DIAG
| options need to be coded on the IXGBRWSE REQUEST=START invocation.

| Assuming the log stream that is being browsed has been defined as DIAG(YES),
| then Logger will provide a dump when a loss of data condition is encountered on
| any browse for this browse session.

| Deleting Log Data From a Log Stream and Request Additional
| Dumping
| � IXGDELET

| Specify IXGDELET,...,DIAG=YES when IXGCONN
| REQUEST=CONNECT,...,DIAG=NO_DIAG

| � IXGCONN

| Specify IXGCONN REQUEST=CONNECT,...,DIAG=YES then no specific DIAG
| options need to be coded on the IXGDELET invocation.

| Assuming the log stream that is having log data deleted has been defined as
| DIAG(YES), then Logger will provide a dump when a loss of data condition is
| encountered on this delete request.

Using the System Logger Answer Area (ANSAREA parameter)
Every system logger service issued must include an answer area output field
specified on the ANSAREA parameter. In this answer area, mapped by the
IXGANSAA macro, system logger returns status and diagnostic data.

Some answer area fields include:

ANSAA_PREFERRED_SIZE
The optimal size for the answer area field specified on the ANSAREA
parameter. IXGCONN REQUEST=CONNECT returns this value.

The answer area must be at least 40 bytes long. If you specify a field that is
less than that, the service fails with a non-zero return code. To ascertain the
optimal answer area size, look at the ANSAA_PREFERRED_SIZE field of the
answer area returned by the first system logger service your application issues,
either the IXGINVNT or IXGCONN REQUEST=CONNECT service.

26-18 OS/390 V2R8.0 MVS Assembler Services Guide

ANSAA_DYNMGMTOFENTRYTOELACTIVE
Indicates that system logger is dynamically managing the entry-to-element ratio
for the coupling facility structure. The structure was defined in a LOGR couple
data set at an OS/390 Release 3 level or higher.

ANSAA_ASYNCH_RETCODE
For asynchronously processed requests, system logger returns the return code
in this field.

ANSAA_ASYNCH_RSNCODE
For asynchronously processed requests, system logger returns the reason code
in this field.

ANSAA_DIAGx
Diagnostic data. The content of these fields depend on any return and reason
codes returned for a request.

ANSAA_DASDONLYLOGSTREAM
This flag in ANSAA_FLAGS1 indicates whether a log stream is DASD-only. It is
output from an IXGCONN REQUEST=CONNECT service.

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for a complete description of the
IXGANSAA macro.

Using ENF Event Code 48 in System Logger Applications
System logger issues ENF event code 48 to broadcast status changes in the
system logger address space, log streams, and coupling facility structures. Since
these status changes can affect the outcome of system logger service requests,
IBM recommends that you use ENF event code 48 to receive notification of these
status changes, using the ENFREQ service to listen for event 48. Note that your
program must be authorized to use the ENFREQ service. Applications should
issue the ENFREQ service to listen for event 48 before connecting to a log stream.

For example, suppose an IXGWRITE request fails with a return and reason code
indicating that some system logger resource is unavailable, perhaps because the
system logger address space has failed or because a structure rebuild is in
progress for the coupling facility structure for the log stream. Before the application
can resume issuing system logger service requests. it must listen for the event
code 48 notification that the resource is available again.

In order to listen for ENF code 48 events, you must code an SRB-type listen exit
for event code 48 events to scan the event 48 parameter list for status information
on the system logger component, log streams, and coupling facility structures
associated with log streams. The listen exit must be in place before system logger
applications are activated.

If you use ENF event code 48 to receive information about system logger events,
make sure that you take into account the asynchronous nature of the ENF exit. You
might get notified of events out of sequence, being notified for instance, that a
problem has been resolved before you get a return and reason code describing a
problem.

For example, if you issue IXGWRITE to write data to the log stream while the
coupling facility structure space allocated for the log stream is full, you might get an

 Chapter 26. Using System Logger Services 26-19

ENF 48 notification that the structure is no longer full before you get the return and
reason code from IXGWRITE to say that the structure is full.

Applications that do not want to use ENF event code 48 or that are unauthorized
and cannot use ENFREQ will still receive logger service return and reason codes
indicating failure or resource shortages. These applications can then simply set a
timer and then retry the requests to see if the problem has resolved itself.

References:

� See “Writing an ENF Event 48 Listen Exit” on page 26-47 for information on
ENF 48 events, and coding your ENF event 48 listen exit.

� See OS/390 MVS Programming: Assembler Services Guide for guidance about
using the ENFREQ macro.

� See OS/390 MVS Programming: Authorized Assembler Services Reference
ENF-IXG for reference information on the ENFREQ macro.

Figure 26-9 shows an example of how to issue the ENFREQ service to listen for
ENF event code 48 and specify a listen exit to analyze the event 48 parameter list:

ENFREQ ACTION=LISTEN,
 CODE=ENFPCð48,
 ESTBNME=THISMOD,
 EXITNME=LOGLISTEN,
 SRBEXIT=(Rð2),
 EOM=YES,
 DTOKEN=ENFREQ_DTOKEN,
 RETCODE=ENFREQ_RETCODE

Figure 26-9. Issuing ENFREQ to Listen for ENF Event Code 48

IXGINVNT: Managing the LOGR Policy
The IXGINVNT service allows your application program to manage and update the
LOGR policy dynamically. You can also use the IXCMIAPU utility to manage the
LOGR policy (see OS/390 MVS Setting Up a Sysplex). The reason and return
codes for both the IXGINVNT service and the IXCMIAPU utility are documented
with the reference information on the IXGINVNT service in OS/390 MVS
Programming: Assembler Services Reference.

For guidance on specifying information in the LOGR couple data set using
IXGINVNT or IXCMIAPU, see the system logger chapter of OS/390 MVS Setting
Up a Sysplex.

Using IXGINVNT, your application program can:

� Define and update log streams definitions using REQUEST=DEFINE or
REQUEST=UPDATE with TYPE=LOGSTREAM.

� Define a coupling facility structure associated with a log stream using
REQUEST=DEFINE with TYPE=STRUCTURE.

� Delete log stream and coupling facility structure definitions using
REQUEST=DELETE.

26-20 OS/390 V2R8.0 MVS Assembler Services Guide

Defining a Model Log Stream in the LOGR Couple Data Set
Use the MODEL parameter on the IXGINVNT REQUEST=DEFINE service to define
a dummy log stream that other log stream definitions can reference. Using a model
allows you to specify common log stream characteristics for many log streams only
once.

This can streamline the process of defining new log streams in the LOGR policy,
because you can specify the name of the model log stream on the LIKE keyword
when you issue the IXGINVNT service to define a new log stream. Note that any
explicit definitions for the log stream you are defining override the definitions of the
model log stream.

Figure 26-10 shows how you can use the IXGINVNT service to define a log stream
as a model and then define a log stream modeled after it. The LS_DATACLAS
parameter specifying the data class for the log data sets for log stream STREAM1
overrides the LS_DATACLAS specified in the IXGINVNT request for log stream
MODEL1.

IXGINVNT REQUEST=DEFINE
 TYPE=LOGSTREAM,
 STREAMNAME=MODEL1,
 STRUCTNAME=STRUCT1,
 MODEL=YES,
 HLQ=SYSPLEX1,
 STG_DUPLEX=YES,
 DUPLEXMODE=COND,
 STG_DATACLAS=STGDATA,
 STG_MGMTCLAS=STGMGMT,
 STG_STORCLAS=STGSTOR,
 LS_MGMTCLAS=LSMGMT,
 LS-STORCLAS=LSSTOR,
 LS_DATACLAS=LSDATA,
 STG_MGMTCLAS=LSMGMT,
 STG_STORCLAS=LSSTOR,
 ANSAREA=ANSAREA,
 ANSLEN=ANSLEN,
 RETCODE=RETCODE,
 RSNCODE=RSNCODE

IXGINVNT REQUEST=DEFINE
 TYPE=LOGSTREAM,
 STREAMNAME=STREAM1,
 LS_DATACLAS=LSDATA1
 LIKE=MODEL1,
 ANSAREA=ANSARE1,
 ANSLEN=ANSLE1,
 RETCODE=RETCDE,
 RSNCODE=RSNCDE

Figure 26-10. Define a Log Stream as a Model and then Model a Log Stream After It

You cannot connect to a model log stream or use it to store log data. It is strictly
for use as a model to streamline the process of defining log streams.

You can use the LIKE parameter to reference a log stream that has not been
defined as a model log stream using the MODEL parameter. Any log stream can be
referenced on the LIKE parameter.

 Chapter 26. Using System Logger Services 26-21

Defining a Log Stream as DASD-Only
You can define a log stream as either a coupling facility log stream or DASD-only
log stream using the DASDONLY parameter on the IXGINVNT REQUEST=DEFINE
TYPE=LOGSTREAM service (see “The Log Stream” on page 26-2).

Specify or default to DASDONLY=NO, to define a coupling facility log stream. You
must also specify a structure name on the STRUCTNAME parameter in the log
stream definition for a coupling facility log stream.

Specify DASDONLY=YES, to define a DASD-only log stream, which is not
associated with a coupling facility structure. When you define a DASD-only log
stream, you can also specify MAXBUFSIZE to define the maximum buffer size that
can be written to the DASD-only log stream. (For a coupling facility log stream,
MAXBUFSIZE is specified on the IXGINVNT REQUEST=DEFINE
TYPE=STRUCTURE request to define the maximum log block size that can be
written to the log stream.)

Note that a DASD-only log stream is single-system in scope - only one system may
write to a DASD-only log stream.

For set up steps for a DASD-only log stream, see the system logger chapter in
OS/390 MVS Setting Up a Sysplex.

Upgrading a Log Stream From DASD-Only to Coupling Facility
You can upgrade a log stream defined as DASD-only (DASDONLY=YES parameter
on the log stream definition) to a coupling facility log stream. Do this by issuing the
IXGINVNT REQUEST=UPDATE service with the STRUCTNAME parameter to
associate a structure with the log stream.

To upgrade a log stream from DASD-only to coupling facility, the following must be
true:

� The structure specified on the STRUCTNAME parameter must be defined in a
structure definition in the LOGR policy.

� All connections (active or failed) to the log stream must be disconnected.

Before connecting to or issuing any system logger services against an upgraded
log stream, you must also make sure that the structure associated with the log
stream is specified in the CFRM policy couple data set.

For guidance on upgrading a DASD-only log stream to a coupling facility based
one, see the system logger chapter in OS/390 MVS Setting Up a Sysplex.

IXGCONN: Connecting to and Disconnecting From a Log Stream
Use the IXGCONN service to connect to or disconnect from a log stream. An
application must issue IXGCONN with REQUEST=CONNECT before it can read,
write, or delete data in a log stream.

When the IXGCONN REQUEST=CONNECT request completes, it returns a unique
connection identifier, called a STREAMTOKEN , to the calling program. The
application uses the token in subsequent logger service requests to identify its
connection to the log stream.

26-22 OS/390 V2R8.0 MVS Assembler Services Guide

In the answer area (IXGANSAA) returned by IXGCONN, bit
Ansaa_DynMgmtOffEntryToEleActive is on when system logger is dynamically
managing the entry-to-element ratio. See the system logger chapter in OS/390
MVS Setting Up a Sysplex for information about dynamic management of the
entry-to-element ratio.

Examples of Ways to Connect to the Log Stream
An application can connect to the log stream in different ways. Some of these are:

� One Connection per Address Space : Once a program has connected to a log
stream, any task running in the same address space shares the connect status
and can use the same stream token to issue other system logger services. Any
task in the address space can disconnect the entire address space from the log
stream by issuing the IXGCONN REQUEST=DISCONNECT service.

� One Connection Per Program : One or more tasks in a single address space
can issue IXGCONN REQUEST=CONNECT individually to connect to the same
log stream and receive separate stream tokens. Each program must disconnect
from the log stream individually.

� Multiple Systems Connecting to a Log Stream : Multiple address spaces on
one or more MVS systems can connect to a single coupling facility log stream,
but each one must issue IXGCONN individually to connect and then
disconnect from the log stream. Each one receives a unique stream token;
address spaces cannot share a stream token.

When an application issues IXGCONN to connect to a coupling facility log stream,
the system logger address space connects to the coupling facility list structure for
the log stream.

Each task that issues IXGCONN REQUEST=CONNECT to connect to a log stream
must later issue IXGCONN REQUEST=DISCONNECT to disconnect from the log
stream. When a task disconnects from the log stream, the stream token that
identified the connection is invalidated. Any requests that use the stream token
after the disconnect will be rejected.

If a task ends before issuing a disconnect request, system logger will automatically
disconnect the task from the log stream.

Additional Considerations for Connecting to a DASD-Only Log
Stream
If you are writing an application for a DASD-only log stream, you must keep in mind
that a DASD-only log stream is single-system in scope, meaning that only one
system at a time can connect to a DASD-only log stream. (See “The Log Stream”
on page 26-2 for a description of the two different types of log streams.) Multiple
applications from the same system can connect to a DASD-only log stream, but
only from one system at a time. An application trying to connect to a DASD-only log
stream that already has another system connected will fail. A second system
cannot connect to the DASD-only log stream until the first one disconnects.

The ANSAA_DASDONLYLOGSTREAM flag in the IXGANSAA mapping macro
indicates whether a log stream is DASD-only.

When an application issues the IXGCONN request to connect to a DASD-only log
stream, the STUCTNAME, AVGBUFSIZE, and ELEMENTSIZE will be returned

 Chapter 26. Using System Logger Services 26-23

containing hexidecimal zeros, because they are all coupling facility structure related
fields.

How System Logger Allocates Structure Space For a New Log Stream
at Connection Time

The first IXGCONN request in a sysplex issued for a coupling facility log stream
initiates the allocation of coupling facility space for the log stream.

If there are multiple coupling facility log streams assigned to one coupling facility
structure, system logger divides the structure space evenly between each log
stream that has applications connected to it via IXGCONN. This means that the
first log stream that has an IXGCONN service issued against it gets 100% of the
coupling facility structure space available. When a second log stream mapping to
the coupling facility structure has an IXGCONN service issued against it, system
logger divides the structure evenly between the two log streams. The first log
stream's available coupling facility space will be reduced by half to reapportion the
rest of the space to the second log stream. This can result in some of the data
being off-loaded to DASD if the coupling facility space allocated to a log stream
reaches its high threshold as a result of the reapportionment of the structure space.

For example, if an installation defines two log streams to a single structure in the
LOGR policy, but only one of the log streams actually has a connected application,
then that one log stream can use the entire coupling facility structure. When the
second log stream connect occurs against the coupling facility structure, the space
is gradually divided between the two log streams. Likewise, when the last
disconnect is issued against one of the two log streams, all coupling facility
structure space is again available to the first log stream.

Note that this process of reallocation of coupling facility space and subsequent
offloading of coupling facility data might not take place immediately after the log
stream connect. The reallocation of space might occur gradually, with an offloading
taking place some time after the original log stream connect.

Connect Process and Staging Data Sets
Coupling Facility Log Streams : If an installation defines DASD staging data sets
for a coupling facility log stream, the data sets are created, if necessary, during
connection processing for the first IXGCONN request issued against a log stream
from a particular system.

DASD-Only Log Stream: For a DASD-only log stream, the staging data set is
automatically created during the first connect issued against the log stream. A
staging data set is not optional for a DASD-only log stream.

Requesting Authorization to the Log Stream for an Application
Use the AUTH parameter to specify whether the application issuing IXGCONN
should have read or write access to the log stream:

� If you specify AUTH=READ for an application, that application will only be able
to issue IXGCONN, IXGBRWSE, and IXGQUERY requests. For AUTH=READ,
the caller must have SAF read access to RESOURCE(log_stream_name) in
CLASS(LOGSTRM).

26-24 OS/390 V2R8.0 MVS Assembler Services Guide

� If you specify AUTH=WRITE for an application, that application can issue any
system logger service. For AUTH=WRITE, the caller must have SAF UPDATE
access to RESOURCE(log_stream_name) in CLASS(LOGSTRM).

Connecting as a Resource Manager
A resource manager is an application you can write and associate with a log
stream to manage resources and processing for a log stream.

For example, via the resource manager user exit, a resource manager might be
notified of a write or delete request issued against a log stream. The resource
manager can then perform further processing to accept, reject, or override the
delete request with a different log block identifier. A resource manager application
can be helpful to perform any management functions on behalf of a log stream.

Before a resource manager can connect to a log stream, the name of the resource
manager must be specified in the log stream definition in the LOGR couple data
set. You can specify one resource manager name for a log stream in the log
stream definition. See OS/390 MVS Setting Up a Sysplex for setting up a log
stream definition in the LOGR couple data set.

If you specify a resource manager name for a log stream in the LOGR policy, the
resource manager specified must connect to the log stream. If the resource
manager does not connect, system logger will not process any IXGDELET requests
to delete log data. This is so that the resource manager will not miss any
information about deletes issued against the log stream.

The resource manager connects to the log stream it manages using the RMNAME,
RMEXIT, RMDATA, and RMEVENTS parameters on the IXGCONN service. You
must be running in supervisor state and a system key to use these parameters.
The connect request must be issued from the resource manager address space.
The resource manager address space must be non-swappable with an
authorization index (AX) value of 1, or all invocations of the resource manager exit
will fail.

Note that only one resource manager can connect to a log stream from a given
system. The resource manager can connect to multiple log streams.

Use the resource manager parameters as follows:

RMNAME Specifies the name of the resource manager program connecting
to the log stream. This is the same name specified on the
RMNAME parameter in the LOGR couple data set log stream
definition.

RMEXIT Specifies the name of a resource manager user exit. The resource
manager exit is called when write and/or delete requests (as
specified on the RMEVENTS parameter) are issued against the log
stream that the resource manager manages. The RMEXIT
keyword is required with RMNAME. For information on the
resource manager exit, see “Coding a Resource Manager Exit for
IXGCONN” on page 26-28.

 Chapter 26. Using System Logger Services 26-25

RMEVENTS Specifies that write or delete requests issued against the log
stream are to trigger the resource manager exit. RMEVENTS is
required with RMNAME. You can specify RMEVENTS=LBWRITE,
RMEVENTS=LBDELETE, or RMEVENTS=(LBWRITE,LBDELETE).

RMDATA Specifies user-defined data to the resource manager. This data is
then passed to the resource manager user exit when the exit is
called.

RMDATA is required with RMNAME.

Using ENF Event Code 48 With a Resource Manager
System logger issues many ENF event code 48 of use to a resource manager
application.

See:

� “Using ENF Event Code 48 in System Logger Applications” on page 26-19 for
using ENF event code 48 events.

� “Writing an ENF Event 48 Listen Exit” on page 26-47 for ENF event code 48
events and coding an ENF listen exit.

Requesting a Write or Import Connection - IMPORTCONNECT
parameter

Use the IMPORTCONNECT parameter to specify whether a connection is a write
or an import connection. The IMPORTCONNECT parameter is only valid with
AUTH=WRITE.

� A write connection , (AUTH=WRITE IMPORTCONNECT=NO) specifies that
you want to use the IXGWRITE request to write to a log stream. You must
specify or default to IMPORTCONNECT=NO at connect time in order to use
the IXGWRITE request against a log stream.

You can have multiple write connects against a log stream, but only if there is
no import connection established for that log stream anywhere in the sysplex.
Once one or more applications connect to a log stream as a write connection,
any subsequent attempts to connect as an import connection will fail.

You cannot use the IXGIMPRT service against a log stream that has been
connected to as a write connection from anywhere in the sysplex.

An import connection , (AUTH=WRITE IMPORTCONNECT=YES) specifies
that you want to use the IXGIMPRT request to import log data from one log
stream to another, maintaining the same log block identifier and GMT time
stamp. You might do this to create a copy of a log stream. You must specify
IMPORTCONNECT=YES at connect time in order to use the IXGIMPRT
request against a log stream.

You can have only one import connection for a log stream from anywhere in
the sysplex. An import connection cannot coexist with a write connection. Once
an application connects to a log stream as an import connect, all subsequent
AUTH=WRITE IMPORTCONNECT=YES|NO connect requests will fail.

You cannot use the IXGWRITE service against a log stream that has been
connected to as an import connection.

You cannot have both a write and an import connection to a log stream and you
cannot issue both write and import requests to the same log stream.

26-26 OS/390 V2R8.0 MVS Assembler Services Guide

Specifying User Data for a Log Stream
System logger allows 64 bytes of user specified data to be associated with a log
stream and stored in the LOGR policy. The user data can be:

� Specified or changed using the USERDATA parameter on the disconnect
request of IXGCONN.

� Read using the USERDATA output parameter on the connect request of
IXGCONN.

If an application codes the USERDATA parameter on a connect request when there
is no user data associated with the log stream, IXGCONN returns a USERDATA
field containing all zeros.

Only one copy of the log stream user data exists and any application connected to
the log stream can update this copy when they disconnect. If you will have multiple
connectors to a log stream, you should consider using serialization or another
protocol to protect the USERDATA field.

Using ENF Event 48 When a Connect Request is Rejected
If a connect request is rejected applications should listen for ENF 48 event
informing listeners that the condition has changed or the problem has been
resolved. Upon receipt of the ENF 48 event indicating that the problem is resolved,
the application can retry the request.

System Logger Processing at Disconnection

Disconnection for an Application
When an application issues IXGCONN REQUEST=DISCONNECT to disconnect
from a log stream, system logger rejects any new requests from that application.

If the application disconnects with outstanding asynchronous requests, the
disconnect is accepted. Asynchronous requests then complete without notifying the
disconnecting application.

Last Disconnection for Log Stream on a System
System logger rejects any new requests from the system for that log stream. All the
log data from this system is then offloaded to DASD log stream data sets. This may
include log data written from other systems connected to the log stream. For
coupling facility log streams, the coupling facility resident data is offloaded to DASD
log data sets. For DASD-only log streams, the log data in local storage buffers is
written to DASD log data sets.

If the application disconnects with outstanding asynchronous requests, the
disconnect is accepted. Asynchronous requests then complete without notifying the
disconnecting application.

Last Disconnection for a System in the Sysplex
System logger offloads all the log data to DASD log stream data sets.

For coupling facility log streams, the coupling facility resident data is offloaded to
DASD log data sets. Any coupling facility resources allocated for a coupling facility
log stream are released. If a coupling facility structure is being shared among

 Chapter 26. Using System Logger Services 26-27

multiple log streams, the structure space is re-divided evenly among coupling
facility log streams with connected applications at that time.

For DASD-only log streams, the log data in local storage buffers is offloaded to
DASD log data sets. If there are no other log streams allocated to this coupling
facility structure and no failed persistent connections exist, system logger returns
the coupling facility space to XES.

Coding a Resource Manager Exit for IXGCONN
A resource manager exit provides a way for system logger to inform a resource
manager of write and delete requests so that the resource manager can perform
further processing.

When the resource manager connects to the log stream, it specifies:

� The name of the resource manager on the RMNAME parameter.

� The address of the resource manager exit on the RMEXIT parameter.

� User-defined data on the RMDATA parameter.

� The requests that will trigger the resource manager user exit (write and/or
delete requests) on the RMEVENTS parameter.

Note that you must be running in supervisor state and a system key to specify the
RMNAME, RMEXIT, RMDATA, or RMEVENTS parameters on the IXGCONN
request. The resource manager address space must be non-swappable with an AX
value of 1, or all invocations of the resource manager exit will fail.

When a write or delete request occurs against the log stream, system logger gives
control to the resource manager exit, passing a parameter list. The resource
manager exit runs in the resource manager address space.

The resource manager exit is called as follows:

� For a write request, the resource manager exit is called after the write request
completes. If staging data sets are in use for the connection, the exit is called
after the write to the staging data set completes.

� For a delete request, the resource manager exit is called before the delete
request is processed. This allows the resource manager exit to accept, reject,
or override the delete request on behalf of the log stream. See “Overriding
Delete Requests” on page 26-31.

The resource manager exit is always invoked before the request completion is
reported to the system logger application that issued the request.

Information Passed to the Resource Manager Exit.
When the resource manager exit gains control, it receives the following information
in the resource manager exit parameter list (RMEPL) mapped by the IXGRMEPL
macro:

RMEPLDELETEREQUEST
If on, indicates that the request that gave the resource manager exit control
was a delete request.

26-28 OS/390 V2R8.0 MVS Assembler Services Guide

RMEPLWRITEREQUEST
If on, indicates that the request that gave the resource manager exit control
was a write request.

RMEPLGMTTIMESTAMP
Timestamp obtained immediately prior to calling the resource manager.

RMEPLRMNAME
Name of the resource manager the exit belongs to.

RMEPLRMDATA
Data specified in the RMDATA parameter on the resource manager's
IXGCONN request, if specified.

RMEPLIDENTIFICATION
System-uniqueidentification of the connection on whose behalf the exit is being
called

RMEPLLOGSTREAMNAME
Name of the log stream associated with the resource manager.

RMEPLBLOCKSALLSPECIFIED
If on, BLOCKS=ALL was specified on the IXGDELETE request

RMEPLBLOCKSRANGESPECIFIED
If on, BLOCKS=RANGE was specified on the IXGDELETE request.

RMEPLFORCESPECIFIED
If on, FORCE=YES was specified on the IXGDELET request. This delete
request cannot be overridden by the resource manager.

RMEPLDELETEBLOCKID
The block identifier was specified on a IXGDELET BLOCK=RANGE request.

RMEPLDELETEOVERRIDEBLOCKID
Override block identifier. Resource manager places the override block identifier
in this variable to override the block identifier issued on the IXGDELET request.
If FORCE=YES was specified on the IXGDELET request, the content of this
field is ignored and the block identifier specified on IXGDELET is not
overridden.

RMEPLADDEDBYTES
The number of bytes that system logger adds to a user's log block for prefix
and suffix information. The prefix and suffix areas are not seen in the copy of
the user's buffer presented to the resource manager, but if you add together
fields RmeplWriteBlockID, RmeplLogDataLength and RmeplAddedBytes, you
can calculate the next block identifier that will be assigned for a log block
written to the log stream.

RMEPLLOGDATALENGTH
The number of bytes of user log data specified. This is the BLOCKLEN value
specified on the IXGWRITE request.

RMEPLWRITEBUFFERPTR
Pointer to the buffer containing the log data written to the log stream if the
RMEPLWRITEREQUEST bit is set on.

RMEPLWRITEBLOCKID
Block identifier assigned to the log block written to the log stream.

 Chapter 26. Using System Logger Services 26-29

RMEPLWRITEGMTTIMESTAMP
Timestamp assigned to the log block written to the log stream.

RMEPLWRITELOCALTIMESTAMP
Local time stamp assigned to the log block written to the log stream.

RMEPL_RMEXIT_WORK_AREA
256 byte work area for use by the resource manager.

 Environment
The resource manager exit receives control in the following environment:

Authorization: Supervisor state with PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=resource manager address

space, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary ASC mode
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held.
Control parameters: None.

 Input Specifications
System logger services pass information to the resource manager exit in registers.

Registers at Entry
When the resource manager exit receives control, the GPRs contain the following
information:

Register Contents
0 Does not contain any information for use by the resource manager exit.
1 Address of a fullword containing the address of the RMEPL
2-13 Do not contain any information for use by the resource manager exit.
14 Return address to system logger services.
15 Entry point address.

When the resource manager exit receives control, the ARs contain no information
for use by the resource manager exit.

 Return specification
Your exit must return control to the system by branching to the address provided on
entry in register 14. Registers 2-13 must contain the same information at output
that they did on input.

 Programming Considerations
� The resource manager exit is called before write or delete event completion is

reported to the unit of work that initiated the IXGWRITE or IXGDELET service
request. Any additional processing by the exit that results in thread suspension
or affects thread response time should be performed under a different work
unit.

� The resource manager exit must be prepared to receive control in either SRB
or task mode. The exit should run with an EUT FRR for recovery. While the
FRR remains in effect, no SVCs can be issued, no new asynchronous exits are
dispatched, and no vector instructions can be executed. See OS/390 MVS

26-30 OS/390 V2R8.0 MVS Assembler Services Guide

Programming: Authorized Assembler Services Reference SET-WTO for
information on the SETFRR service.

� All storage obtained by the resource manager exit should be associated with
the TCB that owns the cross-memory resources for that address space, whose
address is the ASCBXTCB.

� You can access the input parameter data area only while your resource
manager exit is running. If you want to save the parameter information for later
processing, make a copy of it before your resource manager exit returns control
to the system.

Overriding Delete Requests
Your resource manager can override parameters specified on an IXGDELET
request by manipulating the RMEPLDELETEOVERRIDEBLOCKID field mapped by
the IXGRMEPL mapping macro. The resource manager manipulates the field in the
parameter list (RMEPL) passed to the resource manager exit as follows:

� Proceed with the delete operation as requested on the IXGDELET request.
This is specified by placing a return code of binary zeros in register 15.

� Do not proceed with the delete operation requested on the IXGDELET request.
This results in no log blocks being marked for deletion in the log stream. This is
specified by placing a return code of X'08' in register 15.

� Override the log block identifier specified on the IXGDELET request with one
specified by the resource manager. The overriding log block identifier must be
less than or equal to the log block identifier specified on the IXGDELET
request. This is specified by placing a return code of X'04' in register 15.

If you specify FORCE=YES on a delete request, the resource manager exit is
called, but cannot override the delete request.

If you specify AUTODELETE=YES for a log stream and you also manage that log
stream with a resource manager and a resource manager exit, note that the
automatic deletion processing takes precedence over the delete override
processing performed by the resource manager exit. Log data that is deleted by
automatic deletion does not trigger the resource manager exit, so the exit cannot
override the delete request. IBM recommends AUTODELETE=NO for a log stream
managed by a resource manager that needs to override delete requests.

When the Resource Manager Exit Hangs
If the resource manager exit hangs, the system logger application that issued the
write or delete request that triggered the exit might not be able to complete. Do the
following to resolve the hang:

� Cancel the task that issued the write or delete request.

� Cancel the resource manager's address space.

� Restart the application that issued the write or delete request.

� Correct the hang condition in the resource manager exit.

� Restart the resource manager's address space.

If the resource manager abends and percolates the error back to system logger's
recovery environment, the resource manager is disabled. When a resource
manager is disabled, the exit for the resource manager is no longer called by write
or delete requests against the log stream on the system where the resource

 Chapter 26. Using System Logger Services 26-31

manager abended. An ENF 48 event is issued when the resource manager exit is
disabled.

IXGWRITE: Writing to a Log Stream
Use the IXGWRITE service to write data from the user's buffer to a log stream. The
way system logger processes an IXGWRITE request depends on whether the log
stream is coupling facility or DASD-only:

For coupling facility log streams , system logger writes the data to the coupling
facility structure space associated with the log stream when an IXGWRITE request
is issued. System logger also duplexes the data to either local storage buffers or
staging data sets.

For DASD-only log streams , system logger writes the data to interim storage in
local storage buffers for the system associated with the log stream. It is also
simultaneously duplexed to DASD staging data sets. The safe import point for a
DASD-only log stream is changed for every successful write request.

The Log Block Buffer
Before you issue the IXGWRITE service to write your data to the log stream, you
must place the data in a buffer to form the log block. This buffer must follow these
guidelines:

� The storage key for the buffer, specified on the BUFFKEY parameter, must be
one of the following:

– If the caller is in problem program state, the buffer must be in the same
storage key as the caller's PSW key.

– If the caller is running in supervisor state, the buffer can be in any key (0
through 15).

� The buffer must be either ALET qualified (BUFFALET parameter), or reside in
the caller's primary address space.

� The buffer length specified on the BUFFLEN parameter must not exceed the
maximum buffer size defined in the LOGR policy for the coupling facility
structure.

The format of the data in the log block is entirely the choice of the application;
system logger does not have rules about how data looks in a log block.

For each log block written to the log stream, IXGWRITE returns a unique log block
identifier which can be used on subsequent IXGDELET and IXGBRWSE requests
to search for, delete, read, or set the browse cursor position to that log block.

Ensuring Chronological Sequence of Log Blocks
When an application writes log blocks to a log stream, system logger generates a
time stamp for the block, in both local and Greenwich mean time (GMT), showing
the time that system logger processed the block. The local time stamp is the local
time of the system where the IXGWRITE was issued. Note that local time stamps
can repeat because of daylight savings time. In such a case of duplicate time
stamps, system logger will return the first block with a matching time stamp that it
finds.

26-32 OS/390 V2R8.0 MVS Assembler Services Guide

Log blocks are placed in the log stream in the order they were received by system
logger. System logger generates a GMT timestamp for each log block it receives.
Note that the order in which the log blocks are received is not necessarily the same
order in which log blocks were written, because when multiple applications write to
the same log stream, the log blocks might not be received in the same order that
they were written.

An application imbedded timestamp will not affect the order of the log blocks in the
log stream. If an application needs to ensure that log blocks are received into the
log stream in the order written, IBM recommends that applications serialize on the
log stream before they write to it.

Applications can optionally request that IXGWRITE return the time stamp that
system logger generates for a log block using the TIMESTAMP parameter.

When is Data Committed to the Log Stream?
When you issue the IXGWRITE service to write data to a log stream, you cannot
consider the data committed until system logger returns control to the user with a
successful return code. Particularly when dealing with a coupling facility log stream,
you should never rely on a block ID associated with uncommitted data. For
example, consider the following scenario involving a coupling facility log stream:

1. Application 1 issues an IXGWRITE service, and the data is written to the
coupling facility.

2. Before the data can be duplexed to staging data sets and control returned to
the user, application 2 issues IXGBRWSE for that block of data and
successfully reads the data.

3. Now, suppose the coupling facility fails - the data that application 2 read was
never committed and is now lost! Application 2 is using log data which no
longer exists.

4. At this point, system logger might assign the identical block ID to a different log
block and applications 1 and 2, which are trying to share a log, are now out of
sync.

For a DASD-only log stream there is less likelihood of losing data, because log
data is duplexed automatically to a staging data set. Data is committed when the
log data has been written to local storage buffers and duplexed to the staging data
set. Note that for a DASD-only data set, log data cannot be browsed until it is
committed.

When the Log Stream Coupling Facility Storage Limit Is Reached
An IXGWRITE request will be rejected with return code X'08' and reason code
X'0860' when the storage limit for the coupling facility structure associated with a
coupling facility log stream is reached. Although the data offload to DASD process
generally ensures that data gets written to DASD before the coupling facility
structure fills up, this condition can occur due to sudden bursts of activity or when
another log stream is activated and defined to the coupling facility. When this
happens, system logger will offload data from the coupling facility to DASD
immediately. Applications should not issue any further write requests until receiving
the ENF event 48 signal indicating that the storage problem is resolved. In the
event 48 parameter list mapped by macro IXGENF, bits

 Chapter 26. Using System Logger Services 26-33

IXGENFLogStreamsAvailable and IXGENFLogStreamStorageAvailable will be on
and field IXGENFLogStreamNames will contain the names of affected log streams.

When the Staging Data Set Storage Limit is Reached
If the staging data set storage limit for a coupling facility or DASD-only log stream
connection is reached, an IXGWRITE request will be rejected with a return code of
X'08' and a reason code of X'0865'. When this happens, system logger initiates
the offload process to move log data to DASD log data sets and delete
corresponding staging data set log data immediately. When offload processing
completes, write requests can complete successfully and the staging data set is
available to hold duplexed log data again. Applications should not resume issuing
write requests until receiving the ENF event indicating that the staging data set
storage problem is resolved. In the event 48 parameter list mapped by macro
IXGENF, bit IXGENFStagingDsStorageAvailable bit will be on and field
IXGENFLogStreamNames will contain the names of the affected log streams.

When the Staging Data Set is Formatting
If the staging data is formatting form initial connect for a system, and IXGWRITE
request will be rejected with a return code of X'08' and a reason code of X'0868'.
Applications should not resume issuing write requests until receiving the ENF even
indicating that the staging data set is available, meaning the format is complete. In
the event 48 parameter list mapped by macro IXGENF, indicator
IXGENFStagingSsStorageAvailable bit will be on and field
IXGENFLofStreamNames will contain the names of the affected log streams.

IXGBRWSE: Browsing/Reading a Log Stream
Use the IXGBRWSE macro to read and browse a log stream for log block
information. Applications can:

� Start a browse session and select the initial cursor position -
(REQUEST=START)

� Reset the browse cursor position - (REQUEST=RESET)

� Read consecutive log blocks - (REQUEST=READCURSOR)

� Select and read a specific log block - (REQUEST=READBLOCK)

� End a browse session - (REQUEST=END)

IXGBRWSE reads the specified log block into an output buffer specified by the
application.

 IXGBRWSE Terminology
Before you can read information from the log stream, you start a browse session
using the REQUEST=START request of IXGBRWSE. A browse session lasts from
the time that an application issues IXGBRWSE REQUEST=START until it issues
IXGBRWSE REQUEST=END. A log stream can have multiple browse sessions
occurring at the same time.

The REQUEST=START request returns a browse token , which is a unique 4-byte
identifier for a particular browse session. Subsequent IXGBRWSE requests in a
browse session use the browse token to identify the session to system logger.
Once an application issues the REQUEST=END request, the browse session ends

26-34 OS/390 V2R8.0 MVS Assembler Services Guide

and system logger will no longer accept IXGBRWSE requests with the browse
token for that session.

The browse cursor indicates where in the log stream IXGBRWSE will resume
browsing on the next request. Each browse session has a browse cursor.

 IXGBRWSE Requests
REQUEST=START starts the browse session for the application and sets the
browse cursor to the desired starting point. You can specify the browse cursor
position for a session using one of the following optional parameters:

� OLDEST - which is the default, starts the browse session at the oldest (earliest)
log block.

� YOUNGEST - starts the browse session at the youngest (latest) log block.
Note that the record that is the youngest when the browse session starts might
no longer be the youngest record at the end of the browse session because of
concurrent write activity to the log stream.

� STARTBLOCKID - specifies that the browse session start at a specified log
block identifier. The block identifier for a log block is returned by system logger
when it is written to the log stream (IXGWRITE) in the field specified by the
RETBLOCKID parameter.

� SEARCH - specifies that the browse session start at the log block with the
specified time stamp. See “Browsing for a Log Block by Time Stamp” on
page 26-36 for details on how IXGBRWSE processes time stamps.

REQUEST=RESET positions the browse cursor to either the oldest or youngest
(POSITION=OLDEST or POSITION=YOUNGEST) log block in the log stream.

REQUEST=READBLOCK reads a selected log block in the log stream. You
identify the block you want to read by either the block identifier (BLOCKID
parameter) or the time stamp (SEARCH parameter). The block identifier for a log
block is returned by system logger in the field specified by the RETBLOCKID
parameter when the log block is written to the log stream (IXGWRITE).

REQUEST=READCURSOR reads the next oldest or youngest log block in the log
stream, depending on the direction specified on the request
(DIRECTION=OLDTOYOUNG or YOUNGTOOLD). The block read also depends on
the position of the cursor at the time you issue the request.

Applications must take into account that reading a series of consecutive log blocks
using REQUEST=READCURSOR might not yield blocks in sequence by local time
stamp. This can happen, for example, because of daylight savings time.

Browsing Both Active and Inactive Data
Using the VIEW parameter on IXGBRWSE, you can choose to browse just active
log data or both active and inactive log data. Active data is data that has not been
deleted via IXGDELET. Inactive data is data that has been deleted via IXGDELET
but is still in the log stream because of a retention period specified in the log
stream definition in the LOGR couple data set. See OS/390 MVS Setting Up a
Sysplex for information about the retention period.

 Chapter 26. Using System Logger Services 26-35

VIEW=ACTIVE Specifies that the browse request browse just active data.
VIEW=ACTIVE is the default.

VIEW=ALL Specifies that the browse request browse all data, both active and
inactive.

The VIEW parameter can be specified on both the REQUEST=START and
REQUEST=RESET requests of IXGBRWSE. For the duration of a browse session,
the VIEW specification remains in effect.

Browsing for a Log Block by Time Stamp
System logger generates a time stamp in both local and Greenwich mean time
(GMT) for each log block in the log stream. The time stamp is returned in the
TIMESTAMP output field when the block is written to the log stream using
IXGWRITE. Note that the local time stamp is the local time of the system where the
IXGWRITE was issued.

You can use either the local or GMT time stamp on the SEARCH keyword to
search for a system logger generated timestamp. You can specify the SEARCH
keyword on the following IXGBRWSE requests:

� REQUEST=START, to set the cursor at a particular log block. or
REQUEST=READBLOCK (to read a particular log block),

� REQUEST=START, to set the cursor at a particular log block.

When you use a time stamp as a search criteria, IXGBRWSE searches in the
oldest-to-youngest direction, searching for a log block with a matching time stamp.
If no match is found, IXGBRWSE reads the next latest (younger) time stamp. When
you search by time stamp, the search always starts with the oldest log block in the
log stream. Searches by time are not sensitive to the current browse cursor
position.

See Figure 26-11 on page 26-37 for an example.

If the time stamp specified is older than any time stamp in the log stream, then the
oldest time stamp is returned.

If the time stamp specified is younger than any existing time stamps, the request is
rejected and the caller receives a return code of X'08' and a reason code of
X'0804'.

26-36 OS/390 V2R8.0 MVS Assembler Services Guide

Logstream

Browse direction:

9:00 10:00 11:00

OLDEST YOUNGEST

Figure 26-11. Searching for a Log Block by Time

Given the example log stream in Figure 26-11, system logger would do the
following:

� If you specify 8:00 on the SEARCH keyword, this is older (earlier) than any log
block in the log stream and IXGBRWSE will set the cursor at or returns the
oldest time stamp, in this case, 9:00.

� If you specify 10:30 on the SEARCH keyword, IXGBRWSE sets the cursor at or
returns the next latest (youngest) log block, 11:00.

� If you specify 12:00 on the SEARCH keyword, this time stamp is younger (later)
than any existing log block and IXGBRWSE rejects the request with a return
code of X'08' and a reason code of X'0804'.

Using IXGBRWSE and IXGWRITE
If you have applications issuing IXGWRITE and IXGBRWSE requests concurrently
for the same coupling facility log stream, ensure that the browse requests are
issued only for committed log data. Data is committed to the log stream when
system logger returns control to the application following an IXGWRITE request
with a successful return code. This is important because data can be lost due to
system or coupling facility failure between the time data appears on the structure
associated with the log stream and a commit occurs. If you read uncommitted data
that is subsequently lost, applications sharing the same log stream can have
different versions of log data. See also “When is Data Committed to the Log
Stream?” on page 26-33.

Using IXGBRWSE and IXGDELET Requests Together
If you issue IXGDELET and IXGBRWSE requests concurrently, be careful not to
delete information before you try to read it. An IXGDELET request can also affect a
browse session for a log stream by deleting a requested log block or the log block
where the browse cursor is positioned. When an application issues an IXGBRWSE
request for log data which has been deleted, the IXGBRWSE request will return
non-zero return and reason codes.

 Chapter 26. Using System Logger Services 26-37

Applications might want to provide serialization on the log stream or some other
installation protocol to prevent deletes (IXGDELET service) from being performed
by other applications on the log stream during a browse session.

IXGDELET: Deleting Log Blocks from a Log Stream
Using the IXGDELET service, you can mark some or all of the log blocks in the log
stream for deletion. For a coupling facility log stream, the group of blocks you
specify for deletion can reside on both the coupling facility and DASD log data sets.
For a DASD-only log stream, the group of blocks you specify for deletion can reside
on both the local storage buffers and DASD log data sets. The way system logger
processes log data that is marked for deletion depends on the level of the current
primary LOGR couple data set for the sysplex and whether a retention period and
automatic deletion have been specified for a log stream in the LOGR couple data
set. See the system logger chapter in OS/390 MVS Setting Up a Sysplex for more
information.

Using the BLOCKS parameter
If you specify BLOCKS(ALL) to delete all of the blocks in the log stream, system
logger immediately marks as deleted all the blocks that exist at the time of the
request. If other applications are writing to the log stream concurrently with the
delete request, there might be log blocks in the log stream even after the
IXGDELET BLOCKS(ALL) request is processed.

When you want to delete a subset of log blocks, specify BLOCKS(RANGE) and a
block identifier on the BLOCKID parameter. System logger marks as deleted all the
log blocks older (written earlier) than the specified log block. See
Figure 26-12 on page 26-39 for an illustration of how BLOCKS(RANGE) works.
Note that the block specified in BLOCKID is not deleted.

26-38 OS/390 V2R8.0 MVS Assembler Services Guide

Block ID: 2 Block ID: 3

Log stream

OLDEST YOUNGEST

9:00 10:00 10:30 11:00 12:00

Log blocks:

Block ID: 1 Block ID: 2 Block ID: 3 Block ID: 4 Block ID: 5

Log stream

OLDEST YOUNGEST

9:00 10:00 10:30 11:00 12:00

Log blocks:

Block ID: 1 Block ID: 2 Block ID: 3 Block ID: 4 Block ID: 5

Figure 26-12. Deleting a Range of Log Blocks

Delete Requests and Resource Manager Exit Processing
If you are using a resource manager exit, your resource manager exit can override
certain delete requests (see “Coding a Resource Manager Exit for IXGCONN” on
page 26-28). You can keep the resource manager exit from overriding a delete
request by specifying the FORCE=YES parameter. FORCE=NO, which is the
default, allows a resource manager exit to override the delete request. If the
resource manager overrides a delete request, system logger returns the overridden
block identifier in the OBLOCKID output parameter on IXGDELET.

A resource manager program must connect to the a log stream in order to override
delete requests. See “IXGCONN: Connecting to and Disconnecting From a Log
Stream” on page 26-22 for more information.

IXGIMPRT: Import Log Blocks
Use the IXGIMPRT service to write data to a log stream, specifying a log block
identifier and GMT time stamp for each log block. This service can be used to
import copies of log data from one log stream to another, preserving the GMT time
stamp and log block identifier assigned when the log block was written to the
source log stream. The source log stream is the original log stream, the log
stream are importing blocks from. The log stream you import blocks to is the target
log stream .

 Chapter 26. Using System Logger Services 26-39

In order to use the IXGIMPRT service, the connection to the log stream must be an
import connection, issued with AUTH=WRITE IMPORTCONNECT=YES. Note that
when you specify AUTH=WRITE IMPORTCONNECT=YES for a connection, you
cannot issue the IXGWRITE request against the connected log stream. See
“IXGCONN: Connecting to and Disconnecting From a Log Stream” on page 26-22
for information about the IMPORTCONNECT parameter.

You must be in task mode to issue the IXGIMPRT service or else the request is
rejected.

Making Sure Log Blocks are Imported in Sequence - Understanding
Log Block Identifiers

When you import data to a log stream (using IXGIMPRT), the requests are issued
with a log block identifier and GMT time stamp identical to the matching log block in
the source log stream. The application must make sure to import these log blocks
in ascending log block/GMT time stamp order.

For example, if the importing application has log blocks with identifiers 1, 2, and 4
ready to import, the application might need to wait and check for log block 3 before
importing 1, 2, and 4 into a log stream. Once log block 4 has been imported, log
block 3 can never be imported into the log stream (unless you delete and redefine
the log stream). In order to determine whether it is importing log blocks in the
correct order, the application must understand the way system logger generates log
block identifiers.

The block identifier consists of the logical relative byte address of the log block in
relation to the start of the log stream. The first log block written to a log stream is
assigned a block identifier of one. Whenever a system logger application writes a
log block successfully to the log stream, system logger adds additional control
information to the log block. To generate the sysplex-wide unique block identifier,
system logger uses:

� The block identifier of the last log block written.

� The length of the current log block (specified by the caller).

� The length of control information (determined by system logger).

The formula is as follows:

Length of current log block
 +
length of control information
 +
last log block identifier.

How Do I Know What the Length of the Control Information Is?
Applications can ascertain the length of the control information generated by
system logger using the IXGQUERY service, which returns the information in a
buffer mapped by the IXGQBUF macro (QBUF_CONTROL_INFO_SIZE field).

26-40 OS/390 V2R8.0 MVS Assembler Services Guide

Example: How Log Block Identifiers are Generated
The following is an example of how log block identifiers are generated:

� The log block identifier generated for the first log block is one.

� The first log block is one hundred bytes. The length of the control information
system logger adds to a log block for this log stream is 25 bytes: this
information was found using the IXGQUERY service.

� The block identifier for the second log block is generated by adding the first log
block identifier to the length of the first log block and the length of the control
information: 1+100+25 or 126.

� The 2ND log block is 50 bytes in length, and system logger again added 25
bytes of control information. The block identifier for the third block is
50+25+126 or 201.

Making Sure Log Data is Safe to Import
If your application is using IXGIMPRT to create a duplicate log, copying information
from a source to a target log stream, you must make sure that the data is safe to
import. See “The Safe Import Point: Using IXGQUERY and IXGIMPRT Together.”

IXGQUERY: Get Information About a Log Stream
Use the IXGQUERY service to retrieve information about a log stream in the
sysplex. The information is returned in a buffer mapped by IXGQBUF.

The information returned by IXGQUERY includes:

� Safe import point. See “The Safe Import Point: Using IXGQUERY and
IXGIMPRT Together.”

� Control information size: This value shows the number of bytes that system
logger adds to each log block written to the log stream.

� Structure version number for coupling facility log streams. See “The Coupling
Facility List Structure Version Number” on page 26-44.

For DASD-only log streams, this value shows the STCK format time stamp that
the staging data set for the DASD-only log stream was allocated.

You must be in task mode to issue the IXGQUERY service or else the request is
rejected.

See OS/390 MVS Data Areas, Vol 2 (DCCB-ITTCTE) for information about the
IXGQBUF fields.

The Safe Import Point: Using IXGQUERY and IXGIMPRT Together
If you have an application (a resource manager, for example) that uses the
IXGIMPRT service to import log data from a source log stream to a target log
stream, creating a duplicate or back-up log stream, you can use IXGQUERY to
ascertain the safe import point for a log block before importing it, to make sure the
two log streams are synchronized.

See:

� “Coupling Facility Log Streams and the Safe Import Point” on page 26-42.

 Chapter 26. Using System Logger Services 26-41

� “DASD-Only Log Streams and the Safe Import Point” on page 26-44.

Coupling Facility Log Streams and the Safe Import Point
Keeping the log streams synchronized can be particularly difficult when the situation
involved coupling facility log streams. If the importing application imports data from
a source to a target log stream before it is safely hardened on DASD log data sets
or staging data sets, you might get inconsistencies between the source and target
log streams. For example, if an importing application involves coupling facility log
streams, it is particularly difficult to keep the two log streams synchronized. For
example, Figure 26-13 on page 26-43 illustrates the problem. This figure shows a
source log stream, SOURCE1, that is written to by applications on two systems,
SYS1 and SYS2. SYS1 also contains the coupling facility containing the structure
associated with SOURCE1. That means that SYS1 contains a single point of failure
and is therefore backed up by a staging data set. SYS2 is a failure independent
connection and is not using a staging data set for SOURCE1.

SYS2 has written log blocks 4, 5, and 6 to the log stream coupling facility structure
associated with SOURCE1. SYS1 wrote 1, 2, and 3 to the SOURCE1's coupling
facility structure. The importing application on SYS3 browses log stream
SOURCE1, seeing log blocks 1 through 6 and imports them to log stream
TARGET1.

Meanwhile, on SYS1 log blocks 1 and 2 got duplexed to the staging data set, but
before 3 could be duplexed, a failure in SYS1 knocked out both the MVS system
and the coupling facility. When a rebuild is initiated, only SYS2 can participate to
repopulate the log stream. SYS2 repopulates the new structure with the data it
wrote (log blocks 4, 5, and 6) and gets blocks 1 and 2 from the staging data set for
SYS1. But log block 3 is not repopulated to the rebuilt structure because the data
was not committed to the staging data set. Thus, after the rebuild, log stream
SOURCE1 contains blocks 1, 2, 4, 5, and 6, while TARGET1 contains 1-6. The
source and target log streams are now out of sync.

26-42 OS/390 V2R8.0 MVS Assembler Services Guide

Structure A

Structure B

Structure A

Structure B

SOURCE1 Log stream

TARGET1 Log stream

SOURCE1 Log stream

TARGET1 Log stream

Sys 1

1

1

1

1

1

1

21 3 2

2

2

2

2

2

3

3

3

3 3

4

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

6

6

CPC 1

Coupling Facility

Coupling Facility

Coupling Facility

Coupling Facility

After Rebuild

CPC 4CPC 3

1XG1MPRT

Before Rebuild

CPC 2

Data
Set

Sys 2

Sys 3

SYS2/Source1
Staging

1 2

4

6
5

.

. . .

Figure 26-13. How Source and Target Log Streams Can Get Out of Sync

To prevent this problem, system logger provides the safe import point. This helps
an application ensure that log data is safe to import. The safe import point is the
highest log block identifier that is no longer in the coupling facility structure for a log
stream. Any blocks with a block identifier less than or equal to the safe import point
can be safely imported to the target log stream. In the example shown above, log
streams SOURCE1 and TARGET1 are potentially out of sync unless the importing
application on SYS3 determines the safe import point before importing the data to
the target log stream. An application can determine the safe import by doing one of
the following:

� Issue IXGQUERY, which returns the safe import point.

� Listen for ENF event 48 indicating that the safe import point has been updated,
(field IXGENFWrOffLoadSafeImportPoint in the parameter list mapped by
macro IXGENF contains the latest safe import point.) The ENF is issued when
an offload operation completes. Notification that the offload has completed is
presented on all systems in the sysplex that have a connection to the log
stream.

For example, using the example in Figure 26-13 again, log blocks 1-6 have been
written to log stream SOURCE1. Log blocks 1 and 2 have been offloaded to DASD
log data sets, so log stream SOURCE1 starts with a safe import point of 2. As
before, only blocks 1 and 2 from SYS1 are duplexed to SYS1's staging data set.
Log block 3 has not yet been duplexed. The importing application has browsed log
stream SOURCE 1 and seen blocks 1-6, but this time, before importing them all, it
issues IXGQUERY to find that the safe import point is 2. The resource manager
exit imports only log blocks 1 and 2.

 Chapter 26. Using System Logger Services 26-43

When the rebuild occurs, SYS2 repopulates the new structure with log blocks 1, 2,
4, 5, and 6. Again, log block 3 is not repopulated to the rebuilt structure because
the data was not committed to the staging data sets. When the browsing
application is informed of the rebuild via ENF event (bit
IXGENFStrRebuildComplete is on in the parameter list mapped by macro IXGENF)
it should then do the following to keep the target log stream synchronized with
source log stream SOURCE1:

� Issue IXGQUERY for the new safe import point. Let's say the new safe import
point is 6.

� Browse log stream SOURCE1 from the last safe import point it knew about (2)
to the new safe import point (6). After the rebuild, SOURCE1 contains 4, 5, and
6.

� Import log blocks 4, 5, and 6 to TARGET1.

The end result is that both SOURCE1 and TARGET1 match, containing log blocks
1, 2, 4, 5, and 6.

Note that an application can also try to change the safe import point by initiating an
offload using the IXGOFFLD service.

DASD-Only Log Streams and the Safe Import Point
For a DASD-only log stream data is duplexed to DASD staging data sets as it is
written to the log stream. This means that the chance of losing data because of a
system failure is far less; There is no lag time between a successful write and
hardening of the data on DASD. And of course, a coupling facility failure will not
affect a DASD-only log stream. However, it can be helpful for an application to use
the IXGQUERY service to ensure that log data is safe to import from a DASD-only
source log stream. For a DASD-only log stream, the safe import point is the highest
log block identifier that has been successfully written to the log stream. The safe
import point for a DASD-only is updated with each successful write, because the
log data is simultaneously duplexed to DASD staging data sets. Any log blocks in
the source log stream with a block identifier less than or equal to the safe import
point can be safely imported to the target log stream. An application can determine
the safe import point by doing one of the following:

� Issue IXGQUERY, which returns the safe import point.

� Listen for ENF event 48 indicating that the safe import point has been updated,
(field IXGENFWrOffLoadSafeImportPoint in the parameter list mapped by
macro IXGENF contains the latest safe import point.) The ENF is issued when
an offload operation completes. Notification that the offload has completed is
presented on all systems in the sysplex that have a connection to the log
stream.

The Coupling Facility List Structure Version Number
The buffer returned by IXGQUERY (IXGQBUF) contains a version number. The
meaning varies for DASD-only and coupling facility log streams, but the value is
returned in field QBUF_STRUCT_VERSION_NUMBER for both. An alternate name
for the field is QBUF_INSTANCE_VERSION_NUMBER.

For a DASD-only log stream , the version number is the time stamp in STCK
format when the staging data set for the DASD-only log stream was created.

26-44 OS/390 V2R8.0 MVS Assembler Services Guide

For a coupling facility log stream , the version number is the coupling facility list
structure version number. This value shows the list structure version number of the
coupling facility structure assigned to the log stream. A version number is assigned
when a structure is initially allocated in the coupling facility and increases every
time a structure is rebuilt or reallocated.

Using the Coupling Facility Version Number
The coupling facility list structure version number returned for coupling facility log
streams is helpful in situations where a rebuild occurs while the resource manager
responsible for gathering data for a log stream was inactive at the time of the
rebuild. A browsing application can tell if a rebuild has occurred since it was last
connected by checking to see if the coupling facility list structure version number
has increased since the last browse session. If a browsing application connects to
a log stream and issues IXGQUERY to find that the version number has increased,
it should then begin browsing from the last valid safe import point it knew about for
the most up to date version of the log stream contents.

For example, imagine an application browses log blocks 1 through 6 in a source log
stream in anticipation of importing them. Before importing the log blocks to the
target log stream, the application checks for the safe import point using IXGQUERY
and imports only blocks 1 and 2. Then, the browsing application is cancelled or fails
and disconnects from the log stream, saving the current coupling facility list
structure version number and safe import point it knows about (2).

A rebuild then occurs and the new content of the source log stream consists of 1,
2, 4, 5, and 6. The browsing application then reconnects to the log stream and
issues IXGQUERY for the new list structure version number and safe import point.
Since a rebuild has occurred, the version number will have increased. The
browsing application begins browsing again from the last safe import point (2) to
the new safe import point (6), and only imports log blocks 4, 5, and 6.

IXGOFFLD: Initiate Offload to DASD Log Data Sets
Use the IXGOFFLD service to initiate an offload of log data to DASD log data sets.

For coupling facility log streams log data is offloaded from the coupling facility
structure associated with a log stream to DASD log data sets. Because offloading
hardens log data on DASD log data sets, it updates the safe import point for a log
stream. You can use IXGOFFLD to initiate an offload on a source log stream to
increase the safe import point. This makes more log data available for safe import
from the source to the target log stream.

For DASD-only log streams log data is offloaded from local storage buffers to
DASD log data sets. Offloading does not update the safe import point, because for
DASD-only log streams, when an IXGWRITE service is issued to write data to local
storage buffer, the log data is automatically hardened on DASD staging data sets at
the same time. For DASD-only log streams, the safe import point is updated after
every successful write request.

The number of off-loads initiated via IXGOFFLD are tracked in a field in SMF
record 88.

You must be in task mode to issue the IXGOFFLD service or else the request is
rejected.

 Chapter 26. Using System Logger Services 26-45

Managing a Target Log Stream: Using IXGIMPRT, IXGOFFLD, and
IXGQUERY Together

An application managing a target log stream can monitor the offloads occurring on
the source log stream via ENF event 48 writer offload completion events as an
indication of when there will be more data to import (IXGIMPRT) to the target log
stream. But the application must also check the safe import point of the source log
stream. The application can do this in one of two ways:

� Listen for ENF event 48, notifying them of a change to the safe import point
(field IXGENFWrOffLoadSafeImportPoint in the parameter list mapped by
macro IXGENF contains the latest safe import point).

� Issuing the IXGQUERY service (see “The Safe Import Point: Using IXGQUERY
and IXGIMPRT Together” on page 26-41) to verify that the data is safe to
import to the target log stream.

You must verify the safe import point because it is not always updated for an
IXGOFFLD initiated offload even though the safe import point is tied to offloading.
This is true because of the way system logger manages log data set control
intervals that are not yet full.

IXGUPDAT: Modify Log Stream Control Information
Use the IXGUPDAT service to modify the GMT time stamp control information for a
log stream. Once modified, the next log block written to the log stream will be
assigned a GMT time stamp equal to or greater than the one specified on the
IXGUPDAT request.

For coupling facility log streams , the time stamp for a log stream maintained in
the coupling facility list controls.

for DASD-only log streams the time stamp for a log stream maintained in the
local control blocks for the system associated with the log stream and the staging
data set control records.

On the IXGUPDAT service, you must supply a time stamp that is equal to or
greater than the current time stamp maintained in the Log Stream Control
information. You can obtain the current time stamp for the log stream by issuing the
IXGQUERY service.

You must be in task mode to issue the IXGUPDAT service or else the request is
rejected. The program issuing IXGUPDAT must also have specified AUTH=WRITE
on the IXGCONN request to connect to the log stream to issue this request.

Why Would I Need to Change a Time Stamp on a Log Stream? The
IXGUPDAT service is useful mainly to coupling facility log streams. If an application
writes to multiple coupling facility log streams at the time of a failure necessitating
recovery processing, database recovery processing truncates the log streams to the
latest point consistent across all the log streams. This can mean a loss of data. For
example, let's say an application writes to two log streams. In log stream 1, the last
log block written was at 9 A.M.. In log stream 2, the last log block was written at
9:15 A.M.. The recovery process logically truncates log stream 2 data to 9 A.M., to
be consistent with log stream 1 for recovery. This means that the data written to log
stream 2 between 9:00 and 9:15 is lost.

26-46 OS/390 V2R8.0 MVS Assembler Services Guide

In this situation, you would use IXGUPDAT to update the time stamp for log stream
1 to 9:15 or greater so that all data for both log streams can be recovered. All data
written to the two log streams up until 9:15 A.M can then be recovered. IXGUPDAT
lets you advance the time stamp for a log stream or streams to the latest time
among all the log streams. This ensures that log streams have a consistent time
stamp and include all the data written to any of the log streams.

Rebuilds and IXGUPDAT processing
For a coupling facility log stream, when a rebuild occurs after you update a time
stamp using IXGUPDAT, the time stamp for the log stream will be set for the time
of the last log block written and recovered to the log stream. This will be the last
log block written, unless rebuild processing indicates a loss of data condition for the
log stream.

If the rebuild occurs after one or more successful write requests have occurred
since the IXGUPDAT request, the time stamp is reset for the last post-IXGUPDAT
written and recovered log block time stamp. If however, the rebuild occurs before
any write requests to the log stream since the IXGUPDAT request, the time stamp
for the log stream reverts to the last pre-IXGUPDAT written and recovered write
request.

Setting Up the System Logger Configuration
� To set up a system logger configuration for a logging function or application,

see see the chapter on planning for system logger functions in OS/390 MVS
Setting Up a Sysplex.

� For system logger applications, IBM recommends that you use ENF event
code 48 and write an ENF event code 48 listen exit. See “Writing an ENF
Event 48 Listen Exit.”

Writing an ENF Event 48 Listen Exit
Before activating system logger applications that write to the log stream, you should
set up an exit to listen for and analyze system logger status information broadcast
by ENF as event code 48. Note that your application must be supervisor state,
system key to set up an ENF listen exit. Event 48 includes status information about
log streams, the system logger component, and log stream coupling facility
structures. System logger applications can use the ENF event 48 listen exit to
monitor status and changes.

Some events are single system in scope, while others are broadcast to all the
systems in the sysplex.

Each application registers interest in ENF event code 48 signals using the
ENFREQ macro (see “Using ENF Event Code 48 in System Logger Applications”
on page 26-19). When an application is notified via a return and reason code of a
problem, such as a coupling facility structure rebuild in progress, system logger
address services unavailable, or loss of connectivity to a coupling facility structure,
the application can then listen for an event 48 signal signifying that the problem has
been resolved. Note that a program must be authorized (supervisor state) to use
the ENFREQ service.

 Chapter 26. Using System Logger Services 26-47

Once the application registers interest in event 48 system logger events, system
logger passes the event 48 parameter list containing information about the event to
the listen exit. The parameter list is mapped by macro IXGENF, see OS/390 MVS
Data Areas, Vol 2 (DCCB-ITTCTE). The parameter list contains the specific code
48 events, the reasons associated with them, specific information for some
reasons, and a section of information about log streams and coupling facility
structures affected by the event.

The ENF event code 48 events are:

� System logger address space and services have become available.

� System logger address space and services are not available for the life of this
IPL.

� Log streams associated with the coupling facility structure specified in this
parameter list have become available. The event reasons for this event are:

– A coupling facility structure rebuild in progress has completed.

– The coupling facility structure is no longer too full to accommodate more
log data.

– A staging data set full condition has ended.

� Log streams associated with the coupling facility structure specified in this
parameter list are not available. The event reasons for this event are:

– A rebuild has been started for the coupling facility structure.

– A rebuild for the coupling facility structure has failed. The specific reasons
for this condition in the parameter list are:

- The system lost connectivity to the coupling facility structure.

- The coupling facility structure failed.

� A change in the status of resources for a log stream has occurred. The event
reason for this event is possible loss of log stream data.

� A change in the coupling facility resources available to system logger has
occurred. An event reason for this event indicates that ENF event 35 was
received to report the change. If the change affects a specific coupling facility
structure, the name of the structure is specified in the specific information
section of the parameter list.

� A successful connect to or disconnect from a log stream has occurred. The
scope of this event is multi-system; each system in the sysplex is notified of
this event. The structure version value for DASD-only log streams will be the
STCK value for when the log stream staging data set was allocated.

� A log stream definition in the LOGR couple data set has been created. The
scope of this event is multi-system; each system in the sysplex is notified of
this event.

– The log stream created is a DASD-only log stream.

- For DASD-only log streams, an indicator in the parameter list will be set
on (IXGENFINVENTORYDASDONLYYES) and most structure related
fields will be set to zero.

– A log stream definition has been deleted from the LOGR couple data set.
The scope of this event is multi-system; each system in the sysplex is
notified of this event.

26-48 OS/390 V2R8.0 MVS Assembler Services Guide

– A log stream definition in the LOGR couple data set has been updated. The
scope of this event is multi-system; each system in the sysplex is notified of
this event.

– System logger completed offload processing for a log stream. All systems
with an active connection to the log stream for which the offload was done
are notified of the event.

– The resource manager associated with a log stream is disabled because of
an abend. The system where the resource manager is disabled is notified.

The listen exit should only be used to analyze the IXGENF parameter list for
event code 48 to see whether the particular event applies to the particular
application or connector. IBM recommends that the listen exit then
communicate with the application about the event and let the application react
or take any necessary actions, such as stop issuing services, re-IPL, and so
forth. This is recommended because:

– The application or connector can determine whether the event actually
affects them before taking any action. All connectors are informed of event
48 events, whether they affect their particular log stream or coupling facility
structure or not.

– It ensures that the action needed to address an event will be coordinated
with the application program since the listen exit must be in SRB mode
while the application is in task mode. If you code the exit to actually act on
event code 48 status events, the exit might tie up system logger resources.

Reading Data From Log Streams in Data Set Format
There are two ways that you can read data from log streams:

� Write a new application to read data that supports the log stream data format
using the system logger services, particularly IXGBRWSE. See “IXGBRWSE:
Browsing/Reading a Log Stream” on page 26-34.

� Use the LOGR subsystem to access log stream data in data set format for
existing applications that need to read log data but do not support the log
stream format.

This section describes how to use the LOGR subsystem to access log stream data
in data set format. For example, you might have existing applications that read
logrec data in data set format. The LOGR subsystem interface allows you to use
your existing applications to read log stream output without having to re-write them.

Is My Application Eligible for the LOGR Subsystem?
You can use the LOGR subsystem to access log stream data for programs that
conform to the following:

� Use only BSAM or QSAM access methods .

� Use only record lengths allowed by QSAM or BSAM in the log stream .

QSAM and BSAM access methods support up to approximately 32K record
sizes while a log stream can use a record size up to 64K-4. Make sure that the
log stream uses a record size compatible with the access method if you want to
use the LOGR subsystem to read log stream data. See DFSMS/MVS Macro
Instructions for Data Sets for more information about access methods.

 Chapter 26. Using System Logger Services 26-49

� Use only the following macros to access data:

 – DCB
 – DCBE
 – RDJFCB
 – OPEN
 – GET (QSAM)
 – READ (BSAM)
 – CHECK (BSAM)
 – TRUNC (BSAM)
 – SYNADAF
 – SYNADRLS
 – CLOSE

Your program is NOT eligible for use with the LOGR subsystem if it uses the
NOTE, POINT, and CNTRL macros.

Preparing to use the LOGR Subsystem
If you want use the LOGR subsystem to read log stream data in data set format,
make sure of the following:

� The LOGR subsystem must be activated on each system where you expect to
use it.

Note that you cannot use either the SETSSI ACTIVATE or SETSSI
DEACTIVATE command to activate or deactivate the LOGR subsystem. See
the chapter on system logger functions in OS/390 MVS Setting Up a Sysplex.

Each system must have LOGR defined as a subsystem on the SUBSYS
statement in the job that runs the subsystem.

� The log stream owner must supply an exit that generates a view of its log data.
You can use this to ensure that the new application program is written with the
correct data format in mind. See OS/390 MVS Programming: Assembler
Services Guide.

� The system where the new log data reading application runs on must be in the
same sysplex as the log stream.

� The application must have the appropriate SAF authority (READ/WRITE) to the
log stream, SAF CLASS(LOGSTRM) RESOURCE(log_stream_name).

If there is no log stream class defined to a security product such as RACF, no
access checking is performed.

� Make sure the LOGR subsystem is activated.

References:

� See the chapter on planning for system logger functions in OS/390 MVS
Setting Up a Sysplex.

� See OS/390 MVS Initialization and Tuning Reference for information about the
IEFSSNxx parmlib member.

� See OS/390 MVS System Commands for information about the SETSSI
command.

� See OS/390 MVS Installation Exits for information about the LOGR subsystem
exit.

26-50 OS/390 V2R8.0 MVS Assembler Services Guide

Using the LOGR Subsystem
Do the following to use the LOGR subsystem:

1. Obtain the following information from the log stream owner:

� Name of the log stream.
� Name of the exit routine.

2. Add the exit routine and log stream data to the JCL used to invoke the
application using the SUBSYS statement. See “JCL for the LOGR Subsystem.”

3. Make sure the LOGR subsystem has been activated. See “Preparing to use the
LOGR Subsystem” on page 26-50.

JCL for the LOGR Subsystem
Add the exit routine and log stream data to the JCL used to invoke the application
using the SUBSYS statement. The format and explanation of the SUBSYS
statement for the LOGR subsystem is as follows:

//ddname DD DSNAME=log.stream.name,
// SUBSYS=(LOGR[,exit_routine_name][,'SUBSYS-options1'][,'SUBSYS-options2'])

where:

SUBSYS-options1: [FROM={({[yyyy/ddd][,hh:mm[:ss]]}) | OLDEST}]
[TO={({[yyyy/ddd][,hh:mm[:ss]]}) | YOUNGEST}]
[,DURATION=(nnnn,HOURS)]
[,GMT|LOCAL]

SUBSYS-options2: defined by the log stream owner

Figure 26-14. Log Stream SUBSYS Data Set Specification

Note: Quotation marks around keywords are required when parentheses,
commas, equal signs or blank characters are used within the SUBSYS
keyword.

Other DD keywords will be validated, if specified, but will be ignored in the LOGR
subsystem processing.

DSNAME=log.stream.name
Specifies the name of the log stream to read. The name can be 1 to 26
characters in a data set name format.

SUBSYS=(LOGR[, exit_routine_name][, 'SUBSYS-options1'][, 'SUBSYS-options2'])
Specifies that processing of this DD is to be handled by the LOGR subsystem.

The exit_routine_name is the second positional parameter and specifies the
name of the exit routine to receive control from the LOGR subsystem. If the
exit_routine_name parameter is not specified (null), the default log stream
subsystem exit routine, IXGSEXIT, will be used. To access records from the
logrec log stream, specify IFBSEXIT.

SUBSYS-options1
Specifies options meaningful to all exit routines:

 Chapter 26. Using System Logger Services 26-51

FROM=starting_time
Indicates the starting time of the first log stream block to be processed.
The first block will be the one with a time stamp later than or equal to the
specified time.

OLDEST
Indicates the first block read will be the oldest block on the log stream.
OLDEST is the default.

yyyy/ddd
Specifies the start date. If the date is omitted, the current date is
assumed.

yyyy is a four-digit year number and ddd is a three-digit day number
from 001 through 366 (366 is valid only on leap years). For example,
code February 20, 2000 as 2000/051, and code December 31, 1996 as
1996/366.

hh:mm[:ss]
Specifies the start time. If the time is omitted, the first block written after
midnight will be used.

hh is a two digit hour number from 00 to 23, mm is a two digit minute
number from 00 to 59, and ss is a two digit second number from 00 to
59. The seconds field and associated : delimiter can be omitted if not
required by the log stream owner.

The FROM keyword is mutually exclusive with the DURATION keyword.

TO=ending_time
Indicates the ending time of the last log stream block to be processed. The
last block will be the one with a time stamp earlier than or equal to the
specified time.

YOUNGEST
Indicates the last block read will be the youngest block on the log
stream at the time the allocation for the DD occurs. YOUNGEST is the
default.

yyyy/ddd
Specifies the end date. If the date is omitted, the current date is
assumed.

yyyy is a four-digit year number and ddd is a three-digit day number
from 001 through 366 (366 is valid only on leap years). For example,
code March 7, 2001 as 2001/066, and code November 12, 2000 as
2000/317.

hh:mm[:ss]
Specifies the end time. If the time is omitted, the last block written
before midnight will be used. If the end date is the same as the current
day, then the youngest block on the log stream at the time the
allocation for the DD occurs will be used.

hh is a two digit hour number from 00 to 23, mm is a two digit minute
number from 00 to 59, and ss is a two digit second number from 00 to
59. The seconds field and associated : delimiter can be omitted if not
required by the log stream owner.

26-52 OS/390 V2R8.0 MVS Assembler Services Guide

The TO keyword is mutually exclusive with the DURATION keyword.

Note: If the value specified for the FROM keyword is greater than the
value specified for the TO keyword, the system ends the jobstep
with a JCL error.

DURATION=(nnnn,HOURS)
Specifies which blocks are to be processed. Each n is a numeric from 0 to
9. (nnnn,HOURS) requests the blocks for the "last nnnn hours" up to the
youngest block be processed. The "last nnnn hours" are calculated from
the current time of the allocation for the DD.

The first block will be the one with a time stamp greater than or equal to
the calculated start time. The last block read will be the youngest block on
the log stream at the time the allocation for the DD occurs.

The DURATION keyword is mutually exclusive with the TO and the FROM
keywords.

GMT|LOCAL
Specifies whether the time is local time (based on the time zone offset at
the time the log was written) or GMT time. GMT is the default.

Along with the above general parameters that can be specified for a log stream
subsystem data set, system logger provides additional parameters in the
SUBSYS-options2 specifications. See the section on obtaining records from the
logrec log stream in OS/390 MVS Diagnosis: Tools and Service Aids.

When Things Go Wrong - Recovery Scenarios for System Logger
The following section describes some of the failures that can affect system logger
applications and the action taken by system logger in response.

System logger performs recovery differently for DASD-only versus coupling facility
log streams. Recovery for DASD-only log streams need to be done by the
application. Therefore, most of the information in this section applies to coupling
facility log streams only. For DASD-only log streams, see “Recovery Performed for
DASD-Only Log Streams” on page 26-54. Other recovery information pertinent to
DASD-only log streams are noted under each topic below.

For many of the failures, an application can listen for an ENF 48 event to find out
when problems are resolved or resources are available again.

When a System Logger Application Fails
If a system logger application fails while holding active connections to one or more
log streams, system logger automatically disconnects the application from the log
streams.

If the connection was the last connection to a log stream from a system, all log
data written by that system to the log stream is offloaded to DASD log data sets.

 Chapter 26. Using System Logger Services 26-53

When an MVS System or Sysplex Fails
This section applies to coupling facility log streams only; for DASD-only log
streams, see “Recovery Performed for DASD-Only Log Streams.”

When a system fails, system logger tries to safeguard all the coupling facility log
data for the failed system by offloading it to DASD log data sets so that it is on a
persistent media.

Recovery processing for the failing system is done by a peer connector , which is
another system in the sysplex with a connection to a coupling facility structure that
the failing system was also connected to. Note that a peer connector need only be
connected to the same coupling facility structure, not the same log stream. See the
chapter on planning for system logger functions in OS/390 MVS Setting Up a
Sysplex for more information.

When all the systems in a sysplex fail, there are no peer connectors to perform the
recovery processing for the failing systems, which would consist of offloading the
coupling facility data for log streams to DASD log data sets. Coupling facility
resident log data continues to exist. Further recovery processing depends on
whether or not the coupling facility also failed.

Recovery Performed for DASD-Only Log Streams
Like a coupling facility log stream, a DASD-only log stream is subject to system or
system logger failure. A DASD-only log stream is not subject, however, to coupling
facility or structure failures. When a failure occurs involving a DASD-only log
stream, system logger releases the exclusive ENQ on the log stream name
serializing the log stream for one system. No system-level or peer recovery is
performed for a DASD-only log stream after a failure or as part of system
initialization. System logger does not perform system-level recovery for a
DASD-only log stream because data is already safeguarded on DASD staging data
sets, a non-volatile medium. For a DASD-only log stream, offload of log data to
DASD log data sets is not done as part of recovery processing for the same reason
- log data is already on DASD staging data sets. Peer recovery is both
unnecessary and not possible for a DASD-only log stream, because there are no
peer systems connected to the log stream.

Recovery for a DASD-only log stream only takes place when an application
reconnects to the log stream. As part of connect processing, system logger reads
log data from the staging data set (associated with the last connection to the log
stream) into the local storage buffers of the current connecting system. This allows
the application to control recovery, by selecting which system they wish to have
reconnect to the log stream and when. Note that for another system to connect to
the log stream and perform recovery, the staging data sets must reside on devices
accessible by both systems.

When the System Logger Address Space Fails
This section applies to both coupling facility and DASD-only log streams.

If the system logger address space fails, any system logger requests from the
system where the system logger component failed are rejected. See OS/390 MVS
Programming: Assembler Services Reference for information on system logger
services.

26-54 OS/390 V2R8.0 MVS Assembler Services Guide

When the Coupling Facility Structure Fails
This section applies to coupling facility log streams only.

The following coupling facility problems can occur, resulting in rebuild processing
for the structure:

� Damage to or failure of the coupling facility structure.

� Loss of connectivity to a coupling facility.

� A coupling facility becomes volatile.

For complete information on rebuild processing, see OS/390 MVS Programming:
Sysplex Services Guide.

Damage to or Failure of the Coupling Facility Structure
If a coupling facility fails or is damaged, all systems connected to the coupling
facility structure detect the failure. The first system whose system logger
component detects the failure initiates the structure rebuild process. The structure
rebuild process results in the recovery of one or more of the affected coupling
facility structure's log streams. All the systems in the sysplex that are connected to
the list structure participate in the process of rebuilding the log streams in a new
coupling facility list structure.

When the rebuild starts, system logger issues an event 48 signal to inform
applications that the rebuild is starting and that the log streams associated to the
coupling facility structure that is being rebuilt are not available. Bits
IXGENFStrRebuildStart and IXGENFLogStreamsNotAvailable are on in the event
48 parameter list mapped by macro IXGENF.

While the rebuild is in progress, system logger rejects any system logger service
requests against the log stream. Applications must listen for another ENF event 48
to learn the status of the log stream after rebuild processing is complete. The status
will be one of the following:

� The structure rebuild has completed successfully, the coupling facility structure
and associated log streams are available, and system logger requests will be
accepted. Bits IXGENFLogStreamsAvailable and IXGENFStrRebuildComplete
are on in the event 48 parameter list mapped by macro IXGENF.

� The structure rebuild was unsuccessful and connection to the structure is not
possible because the structure is in a failed state. Log data still resides in
staging data sets if they are used to duplex the log data for the log stream. If
staging data sets were not used, the data persists in the local storage buffers
on each system. All system logger service requests against the log streams will
be rejected. Bits IXGENFLogStreamsNotAvailable, IXGENFStrRebuildFailed,
and IXGENFRebuildFailStrFail are on in the event 48 parameter list mapped by
macro IXGENF.

In this case, applications connected to the affected log streams must wait for
the structure to be rebuilt successfully and the system to issue an ENF 48
event to indicate that the log streams are available.

 Chapter 26. Using System Logger Services 26-55

Loss of Connectivity to the Coupling Facility Structure
If a system loses connectivity to the coupling facility structure due to a hardware
link failure, all the systems connected to the log streams associated with the
coupling facility detect the failure.

Then, based on the rebuild threshold specified, if any, in the structure definition in
the CFRM policy, the system that lost connectivity may initiate a rebuild for the
structure.

If a rebuild is initiated, the event 48 parameter list mapped by macro IXGENF has
bits IXGENFLogStreamsNotAvailable, and IXGENFStrRebuildStart, on, and field
IXGENFStrName contains the name of the coupling facility structure affected.
System logger rejects logger service requests issued during the rebuild process.

If XES cannot allocate a new coupling facility that all the systems affected can
connect to, system logger does one of the following, depending on whether the
system or systems that cannot connect to the new coupling facility structure were
using staging data sets:

� If the system was using staging data sets, the rebuild process continues and
the coupling facility log data for the system is recovered from the staging data
sets.

� If the system was not using staging data sets, the rebuild process is stopped.
The systems go back to using the source structure.

The systems that do not have connectivity to the old coupling facility structure
issue an ENF 48 event indicating that they do not have connectivity to the log
stream.

The systems that can connect to the source structure issue an ENF 48 event
indicating that the log stream is available to that system and can resume use of
the log stream.

The installation should either update the CFRM to make the new coupling
facility structure available to all the systems or else fix the hardware link
problem and then have the operator initiate a rebuild for the structure so that all
the original systems will have connectivity.

Applications must listen for another ENF event 48 to learn the status of the log
stream after rebuild processing is complete. The status will be one of the following:

� The structure rebuild has completed successfully, the coupling facility structure
and associated log streams are available, and system logger requests will be
accepted. Bits IXGENFLogStreamsAvailable and IXGENFStrRebuildComplete
are on in the event 48 parameter list mapped by macro IXGENF.

� The structure rebuild was unsuccessful. Connections to the structure are not
available because the system receiving the ENF event code has lost
connectivity to the structure.

All system logger service requests against the log streams will be rejected. Bits
IXGENFLogStreamsNotAvailable, IXGENFStrRebuildFailed, and
IXGENFRebuildFailLossConn are on in the event 48 parameter list mapped by
macro IXGENF.

26-56 OS/390 V2R8.0 MVS Assembler Services Guide

A Coupling Facility Becomes Volatile
If a coupling facility changes to the volatile state, the system logger on each system
using the coupling facility structure is notified. A dynamic rebuild of the structure is
initiated so that the log data can be moved to a non-volatile coupling facility. During
rebuild processing, system logger rejects any logger service requests.

If there is not a structure available in a non-volatile coupling facility, system logger
will still rebuild the data on a new volatile coupling facility. System logger may then
change the way it duplexes coupling facility data since the volatile coupling facility
constitutes a single point of failure:

� For log streams defined with STG_DUPLEX=YES, system logger will begin
duplexing data to staging data sets, if they were not already in use.

� For log streams defined with STG_DUPLEX=NO, system logger will keep on
duplexing data to local storage buffers on each system.

When the Coupling Facility Space for a Log Stream Becomes Full
This section applies to coupling facility log streams only.

Ordinarily, system logger offloads coupling facility resident log stream data to DASD
log data sets before the coupling facility storage allocated to the log stream is fully
utilized. Occasionally however, the coupling facility storage allocated to a log
stream reaches 100% utilization, for reasons such as a sudden burst of logging
activity or because your coupling facility is sized too small for the volume of log
data.

Applications are notified of a filled log stream by system logger service return code
of 8 and a reason code of IXGRsnCodeCFLogStreamStorFull (X'0860'). System
logger will not accept write requests until offload processing can be completed and
applications receive an ENF signal with bit IXGENFStructureNotFull on.

When a Staging Data Set Becomes Full
This section applies to both coupling facility and DASD-only log streams.

The staging data sets for each system should not fill up. If they do, you probably
have them sized too small for your volume of log data and should enlarge them.

When a DASD staging data set becomes full, IXGWRITE requests from the system
with a staging data set full condition will be rejected with a return code of 8 and a
reason code of IXGRsnCodeStagingDsFull (X'0865').

System logger will immediately begin offloading log data to DASD log data sets. If
your staging data set is too small, you may find that offloading occurs very
frequently.

System logger will not accept write requests from the system associated with the
staging data set until offload processing can be completed and applications receive
an ENF signal indicating that the staging data set full condition has ended.

 Chapter 26. Using System Logger Services 26-57

When a Log Stream is Damaged
This section applies to both coupling facility and DASD-only log streams. damaged
when it cannot recover log data from either DASD staging data sets or the local
storage buffers after a system, sysplex, or coupling facility failure. Applications are
notified of the damage by the following means:

� When they issue IXGCONN, they receive return code, X'04', reason code,
IXGRsnCodePossibleLossOfData

� When they issue IXGBROWSE, they receive return code, X'04', reason code,
IXGRsnCodeWarningGap

� Their listen exit detects ENF event 48.

Applications should do the following to respond to a damaged log stream condition,
depending on how critical a data loss is to the application:

� Applications that absolutely cannot tolerate any data loss whatsoever, some
short term transaction logs for example, should stop issuing system logger
services to the affected log stream, disconnect from the log stream, perform
recovery for the application, and then reconnect to a new log stream.

� Applications that can tolerate some data loss, such as archive logs that do not
read a great deal of data from the log stream, may be able to continue using
the log stream. See “How System Logger Handles Gaps in the Log Stream” on
page 26-15 for a summary of the results of reading a damaged log stream.

When DASD Log Data Set Space Fills
This step applies to both coupling facility and DASD-only log streams.

The number of DASD log data sets available for log streams in a sysplex depends
on whether you use the default (168 per log stream) or have provided additional
directory extents in the LOGR couple data set.

System logger monitors usage of the available log stream directory space, notifying
you as follows if you start to run out of space:

� If you are using the DSEXTENT parameter in the LOGR couple data set
system logger issues messages IXG261E and IXG262A indicating that usage
of directory extents is over 85% and 95% respectively.

� If you are using the default number of log data sets allowed for a log stream
(168), system logger issues message IXG257I indicating that the data set
directory for the log stream is over 90% full.

If you have run out of log stream directory space, offloads may fail. When this
occurs, system logger issues message IXG301I. Offload processing for the log
stream cannot complete until more log stream directory space or directory extents
are made available. If the last disconnect to a log stream occurs and the offload
cannot complete successfully, the log stream is in a failed state. In this case, the
log stream is considered 'in use' and there may be a failed-persistent connection to
a structure associated with the log stream.

You can make more directory space available for a log stream in one of the ways
below. Use the IXCMIAPU utility to run a report of the log stream definitions in the
LOGR couple data set to help you with this step. The LIST LOGSTREAM NAME(*)
DETAIL(YES) statement outputs information showing which log streams might be

26-58 OS/390 V2R8.0 MVS Assembler Services Guide

using large numbers of data sets and directory extents. See LOGR Parameters for
Administrative Data Facility in OS/390 MVS Setting Up a Sysplex for more
information about IXCMIAPU.

� Format another set of LOGR couple data sets with a higher DSEXTENT value
and bringing them into the sysplex as the active primary and alternate LOGR
couple data sets. You must have a LOGR couple data set formatted at the
OS/390 Release 3 level or above to use the DSEXTENT parameter. See
Appendix B: Administrative Data Utility in OS/390 MVS Setting Up a Sysplex for
the IXCL1DSU utility and the DSEXTENT parameter.

� Free directory extents currently in use in one of the following ways:

– Use a program that issues the IXGDELET service to delete enough data
from the log stream to free up space in the log stream data set directory.

Some products provide a program to delete log stream data. See Deleting
Log Data and Log Data Sets in OS/390 MVS Setting Up a Sysplex for
information on deletion programs provided for IBM products. See the
documentation for the product to see if it provides a deletion program.

– Delete log stream definitions from the LOGR couple data set.

Identify and delete the definitions for unused or unnecessary log streams.
This will free the directory space associated with the log streams, which
may free up directory extents for use by other log streams.

Note: Deleting DASD log data sets using a non-system logger method will not
work because system logger will still count the data sets toward the
data set directory entry limit. You cannot, for example:

– Use a TSO/E DELETE command to delete a log data set.

– Use DFHSM to migrate log stream data sets to tape.

When Unrecoverable DASD I/O Errors Occur
This section applies to both coupling facility and DASD-only log streams, with
differences noted.

DASD I/O errors may occur against either log data sets or staging data sets.
System logger tries to recover from the error, but if it cannot, the error is
characterized as an unrecoverable I/O error . See the following:

� “When Unrecoverable DASD I/O Errors Occur During Offload”

� “When Staging Data Set Unrecoverable DASD I/O Errors Occur” on
page 26-60

When Unrecoverable DASD I/O Errors Occur During Offload
DASD I/O errors may occur during offload processing, while log data is being
written to DASD log data sets. When this happens, system logger tries to recover
by closing the current log data set and allocating a new one. If this process fails,
the I/O error is characterized as an unrecoverable I/O error.

In the case of unrecoverable I/O errors, system logger will accept subsequent
IXGWRITE requests as follows:

� For a coupling facility log stream, system logger will accept IXGWRITE
requests if the log stream is connected to a coupling facility where there is still

 Chapter 26. Using System Logger Services 26-59

room for log data. If the coupling facility is full or no coupling facility exists,
system logger rejects IXGWRITE requests.

� For a DASD-only log stream, system logger will accept IXGWRITE requests
until the staging data set for the system writing to the log stream is filled.

IXGBRWSE and IXGDELET requests may continue to work. I/O errors encountered
in the process of completing these requests are reported to the application in return
and reason codes.

To correct an unrecoverable I/O problem, delete the log stream definition in the
LOGR policy and redefine it with different log data set attributes, such as
LS_DATACLAS, in order to get the log stream data set allocated in a usable
location.

When Staging Data Set Unrecoverable DASD I/O Errors Occur
DASD I/O errors may occur when log data is being duplexed to DASD staging data
sets. When this occurs, system logger tries to recover by doing the following:

1. Offload current log data to DASD log data sets.

2. Delete and unallocate the staging data set.

3. Re-allocate a new instance of the staging data set.

In the meantime, system logger continues to accept write and other requests
against the log stream.

If system logger cannot re-allocate a new staging data set, the I/O error is
characterized as unrecoverable. In the case of an unrecoverable staging data set
I/O error, system logger does the following:

� For a coupling facility based log stream , system logger switches the
duplexing mode to duplex log data to local storage buffers. The system issues
message IXG255I indicating that the duplexing mode has changed. Normal
system logger processing continues. The log stream may be more vulnerable to
data loss due to system, sysplex, or coupling facility failure.

� For a DASD-only log stream , system logger disconnects connectors from the
log stream. The system issues message IXG216I to indicate that connectors
are being disconnected because a staging data set could not be allocated.

When A Resource Manager Fails
When a resource manager percolates to the recovery environment of system
logger, it is disabled with abend X'x22', regardless of whether it had the
opportunity to retry. When this happens, the resource manager must disconnect
from the log stream and then reconnect in order to activate the resource manager
exit.

When a resource manager is disabled, an ENF 48 event is issued on the system
where it is disabled. If an SDWA is available to system logger's recovery routine,
the abend code is included in the ENF parameter list mapped by macro IXGENF.

The resource manager should examine the abend code and decide whether to
disconnect and terminate or to disconnect and reconnect to the log stream.

26-60 OS/390 V2R8.0 MVS Assembler Services Guide

See “Writing an ENF Event 48 Listen Exit” on page 26-47 for information on ENF
48 events.

 Chapter 26. Using System Logger Services 26-61

26-62 OS/390 V2R8.0 MVS Assembler Services Guide

Appendix A. Using the Unit Verification Service

The information in this appendix describes using the unit verification service to
obtain information from the eligible device table. IBM recommends that you use the
EDTINFO macro instead; EDTINFO provides more services and is easier to use
than the unit verification service.

EDTINFO must be used to obtain information on units that are defined as:

 � Dynamic,

� Have 4-digit device addresses, or

� Are described by unit control blocks (UCBs) that reside above the 16-megabyte
line.

The IEFEB4UV routine interface maybe used, only, to obtain information on units
that are static, have 3-digit device addresses and are described as UCBs residing
below the 16-megabyte line.

Functions of Unit Verification
The unit verification service (IEFEB4UV routine) enables you to obtain information
from the eligible device table (EDT) and to check your device specification against
the information in the EDT. See OS/390 HCD Planning for information on the EDT.

The unit verification service performs the following functions:

 � Check groups
 � Check units
� Return unit name
� Return unit control block (UCB) addresses
� Return group ID
� Indicate unit name is a look-up value
� Return look-up value
� Convert device type to look-up value

 � Return attributes
� Specify subpool for returned storage
� Return unit names for a device class

Check Groups - Function Code 0
This function determines whether the input device numbers make a valid allocation
group. To be valid, the device grouping must include either all the device numbers
being verified, or none of them. If this is not the case, the allocation group is split,
and the input device numbers do not make up a valid allocation group.

Check Units - Function Code 1
This function determines whether the input device numbers correspond to the unit
name in the EDT. In addition to a return code in register 15, it sets to one the
high-order flag bit of any device numbers in the parameter list that are not valid.

 Copyright IBM Corp. 1988, 1999 A-1

Return Unit Name - Function Code 2
This function returns the unit name associated with a look-up value provided as
input. The unit name is the EBCDIC representation of the IBM generic device type
(for example, 3390) or the esoteric group name (for example, TAPE) from the EDT.

A look-up value is an internal representation of the unit name, used as an index
into the EDT. Because teleprocessing devices do not have generic device names,
you cannot use this function to request information about teleprocessing devices.

Note: Do not use this function to determine whether a returned unit name is a
generic CTC device or an esoteric group name that contains CTC devices.
Instead, use the return attributes function (function code 8) for this purpose.

Return Unit Control Block (UCB) Addresses - Function Code 3
This function returns the UCB pointer list associated with the unit name provided as
input.

Return Group ID - Function Code 4
This function returns the allocation group ID corresponding to each UCB address
specified in the input list.

Indicate Unit Name is a Look-up Value - Function Code 5
The input to the check units and return UCB addresses functions can be specified
as a four-byte internal representation of the unit name rather than as the unit name
itself.

Return Look-up Value - Function Code 6
This function returns the four-byte internal representation of the unit name that
serves as an index into the EDT. It is the converse of the return unit name function.

Convert Device Type to Look-up Value - Function Code 7
This function will convert a four-byte UCB device type to an internal representation
of the unit name, to serve as an index into the EDT. The convert device type to
look-up value function allows programs that have only a four-byte UCB device type
to query the EDT. It may be used whenever a look-up value is required as input to
the unit verification service.

Return Attributes - Function Code 8
This function returns general information about the specified unit name.

Specify Subpool for Returned Storage - Function Code 10
This function is used with the return UCB addresses function or with the return unit
names for a device class function. It allows you to specify a particular subpool to
return the requested information in.

A-2 OS/390 V2R8.0 MVS Assembler Services Guide

Return Unit Names for a Device Class - Function Code 11
This function returns a list of IBM generic device types (for example, 3390) and/or
esoteric group names (for example, TAPE) associated with the input device class.

Callers of IEFEB4UV
The unit verification routine, IEFEB4UV, is for both problem program callers and for
authorized callers. It runs in task mode in the caller's key.

To use IEFEB4UV, the calling program must do the following:

� Create the input data structures and parameter list
� Place the address of an 18-word save area in register 13
� Provide a recovery environment
� Pass control to IEFEB4UV using the LINK and LINKX macro.

On return, IEFEB4UV restores all registers except register 15, which contains a
return code.

Input to and Output from Unit Verification Service Routines
You must supply a two-word parameter list when invoking the unit verification
routine (IEFEB4UV).

The first word contains the address of a unit table. The contents vary according to
the function(s) requested.

The second word contains the address of a 2 byte field (FLAGS), in which you
specify the function(s) requested.

The bits in the FLAGS parameter field have the following meanings:

Bit Function Requested
0 Check groups
1 Check units
2 Return unit name
3 Return UCB addresses
4 Return group ID
5 Indicate unit name is a look-up value
6 Return look-up value
7 Convert device name to a look-up value
8 Return attributes
10 Specify subpool for returned storage
11 Return unit names for a device class
12-15 Reserved for IBM use

Input Parameter List
Figure A-1 on page A-4 shows the input parameter list needed to invoke the unit
verification service routine.

 Appendix A. Using the Unit Verification Service A-3

Register 1

Parameter
list

FLAGS

0

4

8

Parameter list

Unit Table

Figure A-1. Input Parameter List

Input and Output Data Structures
The diagrams on the following pages show the input data structures and
parameters needed to invoke the unit verification service routine. The output data
structure returned by the routine is also shown.

You must declare the structures exactly as shown to get the response indicated by
the function(s) you request in FLAGS.

Because many of the input and output data structures are the same, you can
request many of the functions in combinations with other functions. The following
table lists the valid single functions and combinations of functions that you can
request in a single invocation of the unit verification service.

 Code
 0
 0,1
 0,1,5
 1
 1,5
 2
 2,7
 2,8
 2,7,8
 3
 3,5
 3,8
 3,10
 3,5,7
 3,5,10
 3,8,10
 3,5,7,10
 4
 6
 6,8
 7
 8
 10,11
 11

A-4 OS/390 V2R8.0 MVS Assembler Services Guide

Register 15 if Request Fails
On return, register 15 will contain a return code. If the invocation fails, it may be for
one of the following reasons:

1. If you request a function that is not valid or a combination of functions that are
not valid, register 15 contains a return code of 28 and the request fails.

2. If the JES control table (JESCT) does not contain valid pointers, the
environment is incorrect. Register 15 contains a return code of 24. The request
fails.

Requesting Function Code 0 (Check Groups)
Input: Set bit 0 in FLAGS to 1.

The input unit table structure is shown below.

Device Number List

Device Number

Device Number

Device Number

Device Number

.

.

.

4

8

8

12
Device Number
List

Number of
Device Numbers

Unit Table

Figure A-2. Requesting Function Code 0 (Check Groups)

 Output: None.

Register 15 contains one of the following return codes:

Code Meaning
0 The specified input is correct.
12 The device groupings are not valid.
28 The required input is not specified or is not valid.

Requesting Function Code 1 (Check Units)
Input: Set bit 1 in FLAGS to 1.

The input unit table structure is shown below.

 Appendix A. Using the Unit Verification Service A-5

Unit Table
0

Device Number List

.

.

.

12

4

8

8

Unit Name
(EBCDIC)

Number of
Device Numbers

Device Number
List Device Number

Device Number

Device Number

1

1

1

Figure A-3. Requesting Function Code 1 (Check Units)

Output: If a device number is not valid, bit 0 of the FLAG byte is set to 1.

Register 15 contains one of the following return codes:

Code Meaning
0 The specified input is correct.
4 The specified unit name is not valid.
8 Unit name has incorrect units assigned.
20 One or more device numbers are not valid.
28 The required input is not specified or is not valid.

Requesting Function Code 2 (Return Unit Name)
Input: Set bit 2 in FLAGS to 1.

The input unit table structure is shown below.

Unit Table
0

8
Look-Up Value

Figure A-4. Requesting Function Code 2 (Return Unit Name)

Output: The unit table contains the unit name as shown in the following figure.

0
Unit Table

Unit Name
(EBCDIC)

8

Figure A-5. Output from Function Code 2 (Return Unit Name)

A-6 OS/390 V2R8.0 MVS Assembler Services Guide

Register 15 contains one of the following return codes:

Code Meaning
0 The unit table contains the EBCDIC unit name.
4 The look-up value could not be found in the EDT.
28 The required input is not specified or is not valid.

Requesting Function Code 3 (Return UCB Addresses)
Input: Set bit 3 in FLAGS to 1.

The input unit table structure is shown below.

0
Unit Table

Unit Name
(EBCDIC)

8

Figure A-6. Requesting Function Code 3 (Return UCB Addresses)

Output: The unit table contains a pointer to the UCB Pointer List as shown in the
following figure.

Unit Table
0 Unit Name

(EBCDIC)

Returned UCB
Pointer List

UCB Pointer List

Sub
pool

Length

Number of entries

UCB

UCB

.

.

.

12

8

Figure A-7. Output from Function Code 3 (Return UCB Addresses)

For unauthorized callers, the subpool default is 0. See function code 10 for a
description of how to change the default subpool. The caller must free the number
of bytes in the length field from the subpool before exiting.

Register 15 contains one of the following return codes:

Code Meaning
0 The unit table contains the pointer to the UCB pointer list.
4 The unit name could not be found in the EDT.
16 Storage was not available for the UCB pointer list.
28 The required input is not specified or is not valid.

 Appendix A. Using the Unit Verification Service A-7

Requesting Function Code 4 (Return Group ID)
Input: Set bit 4 in FLAGS to 1.

The input unit table structure is shown below.

Unit Table
0

4

0

4

Group ID List

UCB List

UCB List

Number of
entries

UCB

UCB

Group ID List

0

0

.

.

.

.

.

.

Figure A-8. Requesting Function Code 4 (Return Group ID)

Note: One fullword is provided in the group id list for each UCB in the UCB list.
Initialize all entries to zero.

Output: The group id list contains the group id corresponding to each UCB in the
input UCB list.

Group ID List

Group ID

Group ID

.

.

.

Figure A-9. Output from Function Code 4 (Return Group ID)

Note: If the UCB is not in the EDT, the group id for that particular entry remains
zero.

Register 15 contains one of the following return codes:

Code Meaning
0 Processing is successful.
28 The required input is not specified or is not valid.

Requesting Function Code 5 (Indicate Unit Name is a Look-up
Value)
Input: Set bit 5 in FLAGS to 1.

The input unit table structure is shown below.

A-8 OS/390 V2R8.0 MVS Assembler Services Guide

This function is not valid by itself. It must be used in combination with other
functions that require a unit name as input. If you know the look-up value
corresponding to the unit name, you can substitute it for the unit name in the input
unit table. The following figure represents the first two fullwords of the unit table
when function code 5 is requested.

Unit Table
0

4

Look-up Value

0

Figure A-10. Requesting Function Code 5 (Indicate Unit Name is a Look-up Value)

Output: None specifically associated with this function.

Register 15 contains one of the following return codes:

Code Meaning
0 Processing is successful.
4 The input look-up value could not be found in the EDT.
28 The required input is not specified or is not valid.

Requesting Function Code 6 (Return Look-up Value)
Input: Set bit 6 in FLAGS to 1.

The input unit table structure is shown below.

This function is the opposite of the return unit name function (Code 2). The
following figure represents the unit table structure when you request function code
6.

Unit Table
0

8

Unit Name
(EBCDIC)

Figure A-11. Requesting Function Code 6 (Return Look-up Value)

Output: The unit table contains the look-up value.

 Appendix A. Using the Unit Verification Service A-9

Unit Table
0

8

Look-up Value

Figure A-12. Output from Function Code 6 (Return Look-up Value)

Register 15 contains one of the following return codes:

Code Meaning
0 Processing is successful.
4 The unit name could not be found; no look-up value is returned.
28 The required input is not specified or is not valid.

Requesting Function Code 7 (Convert Device Type to Look-up
Value)
Input: Set bit 7 in FLAGS to 1.

The input unit table structure is shown below.

Unit Table

Device Type

8

Figure A-13. Requesting Function Code 7 (Convert Device Type to Look-up Value)

Note: The device type is in the format of the UCBTYP field of the UCB.

Output: The unit table contains the look-up value.

Unit Table

Look-up Value

8

Figure A-14. Output from Function Code 7 (Convert Device Type to Look-up Value)

The conversion of the device type to a look-up value is done in place. There is no
error checking of the device type.

Register 15 contains one of the following return codes:

Code Meaning
0 Processing is successful.

A-10 OS/390 V2R8.0 MVS Assembler Services Guide

4 The input device type is not valid; no look-up value is returned.
28 The required input is not specified or is not valid.

Requesting Function Code 8 (Return Attributes)
Input: Set bit 8 in FLAGS to 1.

The input unit table structure is shown below.

Unit Table

Attribute
Area

0

12

Attribute Area

X ’0A’

0

0

0

0

0

2

4

6

8

10

Unit Name
(EBCDIC)

8

Figure A-15. Requesting Function Code 8 (Return Attributes)

Output: The attribute area contains the following:

Byte Contents

0 Length of the attribute area (X'0A') This must be filled in prior to calling
the unit verification service.

1-2 Flags describing the unit name:

� Bit 0 on — unit name is an esoteric group name
� Bit 1 on — unit name is VIO-eligible
� Bit 2 on — unit name contains 3330V units
� Bit 3 on — unit name contains TP class devices
� Bits 4-7 are not used.

3 Number of device classes in the unit name

4-7 Number of generic device types in the unit name

8-9 Reserved

Register 15 contains one of the following return codes:

Code Meaning
0 The unit name was found; the attributes are returned.
4 The unit name was not found; no attributes are returned.
28 The required input is not specified or is not valid.

Requesting Function Code 10 (Specify Subpool for Returned
Storage)
Input: Set bit 10 in FLAGS to 1. This function is not valid alone and must be used
with either the return UCB addresses function (code 3) or the return unit name
function for a device class (code 11). The input unit table structure is shown in the
following figure.

 Appendix A. Using the Unit Verification Service A-11

Unit Table

Sub-
pool

16

Figure A-16. Requesting Function Code 10 (Specify Subpool for Returned Storage)

Output: See the output from the function that this is invoked in combination with.

The subpool field of the returned list contains the input subpool, and the returned
list resides in that subpool. No error checking of the subpool is performed. If the
subpool is not valid, the unit verification routine fails.

Requesting Function Code 11 (Return Unit Names for a Device
Class)
Input: Set bit 11 in FLAGS to 1.

The following figure shows the input unit table structure.

Unit Table

Device
Class

16

Figure A-17. Requesting Function Code 11 (Return Unit Names for a Device Class)

Output: The unit table contains the pointer to the names list as shown in the
following figure.

Unit Table

Names List

Device
Class

4

16

Names List

Subpool Length

Number of Entries

Unit Name

Unit Name

.

.

.

4

8

16

Figure A-18. Output from Function Code 11 (Return Unit Names for a Device Class)

For unauthorized callers, the default subpool is 0. To change this default, see the
description for function code 10 (specify subpool for returned storage). The caller
must free the number of bytes in the length field from the subpool before exiting.

Register 15 contains one of the following return codes:

A-12 OS/390 V2R8.0 MVS Assembler Services Guide

Code Meaning
0 The pointer to the names list is stored in the unit table.
16 Storage was not available for the names list.
28 The required input is not specified or is not valid.

Requesting Multiple Functions - Examples
The following examples show the input to and output from multiple functions.

Example 1 shows the multiple functions of codes 0 and 1.

Example 2 shows the multiple functions of codes 3 and 10.

Example 3 shows the multiple functions of codes 1 and 5.

Example 1 - Function Codes 0 and 1
 Input

FLAGS

X ’C000

Unit Table

C ’DASD’

3

Device Number
List

8

12
Device Number List

C ’300’

C ’301’

C ’302’

0

0

0

Figure A-19. Input for Function Codes 0 and 1

 Output

Device Number List

C ’300’

C ’301’

C ’302’

0

0

0

Register 15

0

Figure A-20. Output from Function Codes 0 and 1

Note: All input device numbers make up a single allocation group and are
associated with the esoteric unit name DASD.

 Appendix A. Using the Unit Verification Service A-13

Example 2 - Function Codes 3 and 10
 Input

FLAGS

X ’1020’

Unit Table
0

16
252

C ’New tape’

Figure A-21. Input for Function Codes 3 and 10

 Output

Unit Table

C ’New tape’

UCB Pointer List

252

0

8

16

UCB Pointer List

252 28

5

F52800

F528E0

F529C0

F52AA0

F52B80

Register 15

0

Figure A-22. Output from Function Codes 3 and 10

The caller must free the UCB pointer list before exiting.

Example 3 - Function Codes 1 and 5
 Input

FLAGS

X ’4400’
Unit Table

0

8

12

X ’00098000’

4

Device Number
List

Device Number List

C ’510’

C ’511’

C ’512’

C ’00E’ 0

0

0

0

Figure A-23. Input for Function Codes 1 and 5

 Output

A-14 OS/390 V2R8.0 MVS Assembler Services Guide

Device Number List

C ’510’

C ’511’

C ’512’

C ’00E’ X ’80’

0

0

0

Figure A-24. Output from Function Codes 1 and 5

Note: Device 00E did not belong to the unit name that was associated with the
input look-up value.

 Appendix A. Using the Unit Verification Service A-15

A-16 OS/390 V2R8.0 MVS Assembler Services Guide

Appendix B. Using the Virtual Fetch Service

The information in this appendix describes using the virtual fetch service to reduce
the time required to locate a load module and bring it into storage for execution.
IBM recommends that you use the library lookaside (LLA) with the virtual lookaside
facility (VLF). These services also provide improved performance and response
time for many applications. LLA is described in OS/390 MVS Initialization and
Tuning Guide and VLF is described in this book.

The virtual fetch service runs as a started task in its own address space. When
virtual fetch manages a module, it places the module in a VIO data set.

Moving load modules from a DASD data set to a VIO data set can reduce
contention for channels in your installation. At the same time, the VIO data set is
quickly accessible when needed, and virtual fetch relocates the load module's
address constants efficiently.

Thus, you can use virtual fetch to improve the responsiveness of interactive
subsystems or other large-scale processing programs. Using the virtual fetch
service on a system with expanded storage will usually result in greater
responsiveness for those load modules in the virtual fetch data set that are
frequently referenced.

Virtual fetch can handle any load module that is executable and not in overlay
format. However, a load module that virtual fetch is to manage must also be
reentrant (read-only). Because virtual fetch runs as a started task, you must define
these modules to the service by placing DD statements in the JCL procedure that
starts the virtual fetch address space. The DD statements identify the load libraries
that virtual fetch is to manage.

You place the virtual fetch JCL procedure in SYS1.PROCLIB and define this
procedure. You can further control access to the virtual fetch service by placing the
virtual fetch initialization program in a RACF- or password-protected data set.

Functions of Virtual Fetch
Once the service has been initialized, any user can obtain modules from virtual
fetch, regardless of the caller's state or key. See OS/390 MVS Programming:
Authorized Assembler Services Guide for information on initializing the virtual fetch
service.

The virtual fetch functions — build, find, and get — are described in the following
topics.

After the virtual fetch service has been initialized, a problem program can call
virtual fetch to perform three functions:

� To manage a module for the caller (a BUILD request).

The virtual fetch build function identifies the module that the caller wants to
access via the virtual fetch find and get functions.

 Copyright IBM Corp. 1988, 1999 B-1

� To determine if virtual fetch is managing a module for the caller (a FIND
request). The virtual fetch find function locates the named module and makes it
accessible to the caller's address space.

� To pass control to a module (a GET request).

The virtual fetch get function obtains a copy of the named module and passes
control to the named module.

 Considerations
To use the virtual fetch service, the calling program must have only a single jobstep
TCB in its address space and must meet the following environment requirements:

� Be in TCB mode
� Not be in cross-memory mode
� Not have any outstanding FRRs
� Not hold any locks

The virtual fetch routines that CVTVFIND and CVTVFGET point to cannot be called
by an ESTAE-type recovery routine. (In the CVT, the CVTVFIND field points to the
build and find routine, and CVTVFGET points to the get routine.)

In addition:

� The FIND and GET functions cannot be used for modules that reside in a
partitioned data set extended (PDSE) library.

� Modules managed by virtual fetch cannot use the checkpoint/restart facility.
Also, job steps using virtual fetch services cannot use the checkpoint/restart
facility.

� IDENTIFY cannot be used against modules obtained by means of a virtual
fetch GET request.

� Modules that receive control by means of a GET request are not reused: a
fresh copy is obtained for each GET request; only one virtual fetch copy can
exist in an address space, and only one caller at a time can use the virtual
fetch copy.

� When the build, find, and get functions are invoked, register 1 points to the
address of the parameter list (VFPM), which is mapped by macro IHAVFPM
(data area VFPM). The format of the parameter list is shown in Figure B-1.

B-2 OS/390 V2R8.0 MVS Assembler Services Guide

Figure B-1. Virtual Fetch Parameter List

Length Name Description

72 VFPMSAVE 18-word register save area that the caller wants passed to the requested program
(module).

4 VFPMREG1 A value that the caller wants virtual fetch to pass to the requested program in register
1.

8 VFPMNAME Name of the requested program (module to be loaded), left-justified with trailing
blanks.

1 VFPMLVL Release level of parameter list. The caller must set this field to the current parameter
list level (presently, 0).

1 VFPMFUNC Depending upon the function you want to perform, set VFPMFUNC to one of the
following values:

Decimal 1 = BUILD function (VFPMBLD)
Decimal 2 = FIND function (VFPMFIND)
Decimal 3 = GET function (VFPMGET)

1 VFPMFLAG Flag byte.
 Bit Name Meaning When Set
 0 VFPMGETM
 On - Fresh module storage is

obtained through
GETMAIN and released
through FREEMAIN

 Off - GETMAIN is performed for module
storage on the first invocation of the
module only. Virtual fetch performs
additional GETMAINs only when a
refreshed module requires additional
storage. Storage is released by means of
a page release.

 1-7 Reserved.
1 VFPMRTN Return indicator flag byte set by the GET function. If VFPMRTN is zero, the module

specified in VFPMNAME has executed and register 15 contains its return code. If
VFPMRTN is not zero,a single bit will be set, as follows:

 Bit Name Meaning When Set
 0 VFPMBUSY The module is in use. The module does

not receive control. The caller should
retry by invoking the find function.

 1 VFPMRESH GET is not able to obtain the requested
module. The module does not receive
control. The caller should retry by
invoking the find function.

 2 VFPMAPF An authorized user tried to invoke a
module that originally came from a
non-APF-authorized library. The module
does not receive control. The caller
should obtain the module from an
authorized library.

 3 VFPMBADP Virtual fetch detected an invalid
parameter list. Virtual fetch attempts no
further processing. The caller should
examine the VFPM for incorrect values
and retry by invoking the get function.

 4 VFPMBADE Virtual fetch encountered an
environmental error. (GETMAIN failed,
ESTAE failed, etc.). The module does not
receive control. Perform clean-up and
retry by invoking the find function.

 5 VFPMAPPL The requested program abnormally
ended. This bit should be examined
whenever the caller's recovery routine
gains control. Retry by invoking the find
function.

 6-7 Reserved.

 Appendix B. Using the Virtual Fetch Service B-3

Notes:

1. The caller must set to zero all reserved bits in fields VFPMFLAG and
VFPMRTN. Virtual fetch uses the flag bits in VFPMRTN to indicate why a
module did not receive control, or that it did receive control but abnormally
ended. Only one flag bit is on at a time.

2. The VFPMFUNC field of the parameter list communicates to virtual fetch the
function (build, find, or get) that virtual fetch is to perform. You can request only
one function per invocation of virtual fetch. After issuing BUILD requests for the
required modules, a program must invoke virtual fetch twice more (find and get
functions) each time it uses any of the modules.

Programming Conventions for Using Virtual Fetch
� The find and get functions may be invoked in any key, state, or addressing

mode; however, virtual fetch assumes that the PSW key matches the caller's
TCB key and the jobstep TCB key.

� A caller of virtual fetch must provide a standard 18-word save area, pointed to
by register 13; virtual fetch will save the caller's registers in this area. The
virtual fetch parameter list contains another 18-word save area, VFPMSAVE,
where the called module can save its caller's registers on entry.

� A program must ensure the following register contents when it calls virtual fetch
to request that it:

– Manage a module (a BUILD request)
– Find a module (a FIND request)
– Pass control to a program (a GET request).

Register Contents

1 Address of the parameter list (VFPM). Any unused high-order address
bits of register 1 must be zero.

13 Address of a standard 18-word save area. Any unused high-order
address bits of register 13 must be zero.

14 Return address. Any unused high-order address bits of register 14 must
be zero.

15 Entry point address of the exit routine.

Requesting Dumps When Using Virtual Fetch
To get a dump of the in-use modules managed by virtual fetch, specify the JPA (job
pack area) option either on the SNAP or SNAPX macro or in the appropriate
parmlib member.

Note: You may request a certain module from virtual fetch and, concurrently,
invoke the same module via a conventional contents supervision
mechanism (LINK or LINKX macro, for example). If you then request a
dump for that module, both copies will be dumped.

B-4 OS/390 V2R8.0 MVS Assembler Services Guide

Return Codes from the BUILD Request for Virtual Fetch
When virtual fetch returns control, register 15 contains a return code. The return
codes and their meanings are:

Code Meaning

0 Virtual fetch is able to manage the module.

8 Virtual fetch service is not available.

16 Virtual fetch detected an input parameter error.

20 Virtual fetch detected an environmental error.

Note: A subsystem could invoke virtual fetch's build function during its own
initialization processing. The build function does not depend on the prior
initialization of the virtual fetch service address space.

Return Codes from the FIND Request for Virtual Fetch
When virtual fetch returns control, register 15 contains a return code. The return
codes and their meanings are:

Code Meaning

0 Virtual fetch found the requested module.

4 Either the module is not managed by virtual fetch or the virtual fetch
service's copy of the module is not usable.

8 Virtual fetch service is not available.

12 The requested module previously managed by virtual fetch is not found.

16 Virtual fetch detected an input parameter error.

20 Virtual fetch encountered an environmental error.

Requesting the virtual fetch find function causes virtual fetch to locate and validate
the local virtual fetch work area (VFWK) for the requested module. If necessary,
virtual fetch copies the VFDE from the current hash table (in the virtual fetch
service address space) into the VFWK.

Return Codes from the GET Request for Virtual Fetch
When virtual fetch returns control to its caller, the caller should examine field
VFPMRTN in the VFPM. If field VFPMRTN is zero, then the module specified in
VFPMNAME received control, and register 15 contains the return code from the
specified module. If the module received control, it did so in the state and key, and
with the key mask, of the caller of virtual fetch.

If VFPMRTN is not zero, either the named module did not receive control or it
ended abnormally. Examine field VFPMRTN to determine the nature of the error.

Note: Modules that are managed by virtual fetch within the caller's address space
and are in use when a GET request is made are considered busy
(VFPMBUSY is ON) and are not given control. This processing applies to all
modules, regardless of their attributes.

Users of virtual fetch can turn off bit VFPMGETM in the parameter list to keep
virtual fetch from issuing GETMAINs and FREEMAINs for module storage. (See
VFPMFLAG in Figure B-1 on page B-2.) In order to benefit from the performance

 Appendix B. Using the Virtual Fetch Service B-5

gain thus provided, the caller of virtual fetch must be able to tolerate the fact that
virtual storage in the caller's address space, for the modules virtual fetch manages,
is not freed by means of the FREEMAIN macro.

Figure B-2 is a general illustration of the use of virtual fetch.

Let VFPMPTR be the name of register 1, which points to the start of the VFPM area.
 .
 .
 .

XC VFPM(VFPMLEN,VFPMPTR),VFPM(VFPMPTR) \Clear the VFPM area

MVI VFPMFUNC(VFPMPTR),VFPMBLD \Indicate BUILD request.
(For a FIND request use
VFPMFIND. For a GET
request use VFPMGET.)

MVC VFPMNAME(8,VFPMPTR),MODNAME \Move the name of the
desired module into

 the VFPM.

 L R15,CVTVFIND \Set up entry point
address. (For a GET
request use CVTVFGET.)

BALR R14,R15 \Invoke virtual fetch
 function.

LTR R15,R15 \Examine return code.
(For a GET request you
first examine the
VFPMRTN field of the

 VFPM.)

 BZ OK
 .

. (Process any errors.)
 .
 OK (Normal processing continues)
 .
 .
 .

MODNAME DC CL8 \Name of requested module
VFPMPTR EQU 1

Figure B-2. A Program Using Virtual Fetch

B-6 OS/390 V2R8.0 MVS Assembler Services Guide

 Appendix C. Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

 Copyright IBM Corp. 1988, 1999 C-1

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book is intended to help the customer to code macros that are available to all
assembler language programs. This book documents intended Programming
Interfaces that allow the customer to write programs to obtain services of OS/390.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

 � AFP
 � DFSMS/MVS
 � DFSMSdfp
� Enterprise Systems Architecture/390

 � Hiperspace
 � IBM
 � IBMLink
 � Language Environment
 � MVS/DFP
 � MVS/ESA
 � MVS/SP
 � MVS/XA
 � OS/390
 � RACF
 � RMF
 � SP
 � SP1
 � SP2

C-2 OS/390 V2R8.0 MVS Assembler Services Guide

 � Sysplex Timer
 � System/370
 � S/390

 Appendix C. Notices C-3

C-4 OS/390 V2R8.0 MVS Assembler Services Guide

 Index

Special Characters
//JOBLIB DD statement 4-16
//STEPLIB DD statement 4-16
/*DEL statement 24-3
/*EOF statement 24-3
/*PURGE statement 24-4
/*SCAN statement 24-4

Numerics
24-bit addressing mode

description 4-1
SPIE routine consideration 7-1

31-bit addressing mode
description 4-1
SPIE consideration 7-1

46D system completion code 7-1

A
ABDUMP symptom area 9-6
ABEND dump

requesting 9-2
ABEND macro

choosing to issue 8-5
invoking RTM 8-45
STEP parameter 8-29

abnormal condition
detect 7-1
process 7-1

abnormal termination
ways to avoid with ENQ/DEQ 6-14
when deleting a SPIE/ESPIE environment 7-1
when issuing CLOSE 11-14

access list
adding an entry 14-9
adding entry for data space 14-9
adding entry for hiperspace 15-31
definition 14-2
type 14-3

access list entry
adding 14-9
deleting 14-10

access register
use 14-2, 15-7
using 14-1

access to a data object
permanent object 16-6
temporary object 16-7

add an entry to an access list
description 14-9
example 14-9

address space control mode
definition 14-1
switching 14-1

address space priority 3-2
addressing mode

affect on BAL and BALR instruction 4-2
bit in the PSW 4-2
changing

example 4-4
using BSM or BASSM 4-3

considerations when passing control 4-3
indicator

in a PDS entry 4-1
in an entry point address 4-4, 4-16

of alias entry point 4-29
of SPIE routine 7-1
specifying

in source code 4-1
using linkage editor control card 4-1

ALESERV macro
ADD request

example 14-9, 15-31
use 14-9, 15-31

DELETE request
example 14-10

example 15-20
ALET

ALET qualified address 2-1
purpose 2-1
when ALET qualification is required 2-1

ALET (access list entry token)
definition 14-2
example of loading a zero into an AR 14-8
loading into an AR 14-8
use 14-2

ALET (address list entry token)
for primary address space 14-6
with a value of zero 14-6

ALET-qualified address
used in macro parameter list 14-10

algorithm
run length encoding 22-1
used by data compression service 22-1
used by data expansion service 22-1

alias
addressing mode 4-29
establishing 4-29

AMODE program attribute
changing

example 4-3
using BSM or BASSM 4-3

indicator
in a PDS entry 4-1

 Copyright IBM Corp. 1988, 1999 X-1

AMODE program attribute (continued)
indicator (continued)

in an entry point address 4-4, 4-16
purpose 4-1
specifying

in source code 4-1
using linkage editor control card 4-1

value 4-2
anchor 12-1
answer area

system logger
size 26-18

APF-authorization
when needed by problem state program 4-16

application resource
releasing through recovery 8-3

AR (access register)
example of loading an ALET of zero into 14-8
rules for coding 14-6
use 14-2, 15-7
using 14-1

AR information
formatting and displaying 14-11

AR instruction
for manipulating contents of ARs 14-7

AR mode
coding instructions 14-6
description 14-1
example 14-5
importance of comma 14-7
importance of the contents of ARs 14-8
issuing macros 14-10
rules for coding 14-6
use 14-2
writing programs 14-5

AR mode program
call a primary mode program 2-9
call an AR mode program 2-9
defined 2-1
linkage procedure 2-8
pass parameters 2-10
receive control from a caller 2-8
return control to a caller 2-9

ARCHECK subcommand
formatting and displaying AR information 14-11

architecture level 10-1
ARR (associated recovery routine)

choosing 8-8
ASC mode

AR mode program defined 2-1
definition 14-1
primary mode program, defined 2-1
switching 14-1
switching mode 2-2
when control is received 2-2

assembler example
window service 16-20

assembler instruction
examples of use in AR mode 14-8
use in AR mode 14-5, 14-6, 14-8

ATTACH and ATTACHX macros
ASYNCH parameter 8-29
defining a recovery routine 8-8
ECB parameter 8-46
ESTAI parameter 8-8, 8-20
ETXR parameter 8-46
PURGE parameter 8-28
STAI parameter 8-8
TERM parameter 8-30

ATTACH macro
addressing mode consideration 4-16
creating subpools 11-9
DPMOD parameter 3-2
ECB parameter, use 3-4
ETXR parameter, use 3-4
example of sharing DU-ALs 15-20
GSPL parameter 11-9
GSPV parameter 11-9
LPMOD parameter 3-2
requesting subpool ownership 11-9
sharing a DU-AL with subtask 15-20
SHSPL parameter 11-9
SHSPV parameter 11-9
specify subpools 11-9
SZERO parameter 11-9
TASKLIB parameter 4-17, 4-18
use 3-1, 4-7, 4-16

authorization requirements
IXGCONN service 26-24
system logger 26-11
system logger application program 26-11
system logger couple data set 26-11
system logger, IXCMIAPU utility 26-11

availability
increasing through recovery 8-3

B
BAL instruction 4-2
BALR instruction 4-2
BAS (branch and save) instruction 4-2
BAS instruction 4-2
base register

establishing 2-6
BASR (branch and save instruction register

form) 4-2
BASR instruction 4-2
BASSM (branch and save and set mode) 4-3
BASSM instruction 4-3, 4-25
BLDL macro 4-20, 4-24, 4-25

X-2 OS/390 V2R8.0 MVS Assembler Services Guide

BLDMPB macro 21-17
blocks of an object

definition 16-1
identifying blocks to be viewed 16-13
size 16-1
updating blocks in a temporary object 16-16
updating blocks on DASD 16-17

BLOCKS parameter on DSPSERV 15-9, 15-16,
15-29, 15-34

branch instruction
BAL (branch and link) 4-2
BALR (branch and link register) 4-2
BAS instruction 4-2
BASR instruction 4-2
BASSM instruction 4-3
BSM instruction 4-3
use 4-25
use with XCTL, danger 4-27

branching table
use in analyzing return codes 4-12

bring a load module into virtual storage 4-16
BSM (branch and set mode) 4-3
BSM instruction 4-3
build a symptom record 10-3
BUILD request

for virtual fetch B-5

C
CALL macro

use 4-10, 4-11, 4-22, 4-25
callable cell pool service

advantages of using 12-1
compared to the CPOOL macro 12-1
data space 15-17
data space example 15-18

calling program
definition 2-1

calling sequence identifier 4-30
cell 11-6, 12-2

allocating 12-5
deallocating 12-5

cell pool 12-2
activating 12-4
anchor 12-1
contracting 12-4
creating 12-4
deactivating 12-4
disconnecting 12-4
expanding 12-4
extent 12-1
obtaining 11-6
obtaining status about 12-5
size 12-2
storage 12-2

cell pool service
CSRPACT service 12-5
CSRPBLD service 12-4
CSRPCON service 12-5
CSRPDAC service 12-4
CSRPDIS service 12-4
CSRPEXP service 12-4
CSRPFR1 service 12-5
CSRPFRE service 12-5
CSRPGET service 12-5
CSRPGT1 service 12-5
CSRPRFR service 12-5
CSRPRFR1 service 12-5
CSRPRGT service 12-5
CSRPRGT1 service 12-5
query 12-5
return code 12-6
type of service 12-2

control 12-4
cell storage 12-2
central storage

sharing through IARVSERV macro 19-1
CHAP macro

use 3-3
characters printed on an MCS console 20-5
check groups function of unit verification

service A-1
check units function of unit verification

service A-1
checkpoint 17-6
checkpoint/restart

manage storage 15-25, 15-41
CHKPT macro 17-6
CHNGDUMP command 9-2
choose the name of a data space 15-9
code

descriptor 20-7
message routing 20-6

code instructions in AR mode 14-6
comma

careful use of in AR mode 14-7
communication

in a recovery environment 8-19
in a sysplex environment 20-10
provided by recovery 8-4

compiler
message 21-9

invoking 21-9
complete exit

system logger
environment 26-14
information passed to 26-13
inputs 26-14
IXGCONN service 26-13
programming 26-14

 Index X-3

compress data
steps required 22-2
using the data compression service 22-1

compression
of data

description 22-9
symbols 22-5

concatenated data sets 4-17
concurrent request for resource

limiting 6-12
connect

allocating coupling facility space 26-24
to a log stream 26-22

console
CONVCON macro 20-12
determining status 20-13
determining the name or ID 20-12
parameter list

initializing field 20-12
retrieving information 20-12
validating a name or ID 20-13
validating area ID 20-14

control
return 4-13, 4-15, 4-26

control virtual storage 11-6
CONVCON macro

parameter list 20-12
retrieving console information 20-12

convention
for passing control 4-7

convert device type to look-up value function of unit
verification service A-2

converting central to virtual address 19-9
CONVTOD macro

using 20-2
couple data set

LOGR 26-7
system logger 26-7

coupling facility
structure storage limit reached 26-33
system logger

damage 26-55
failure 26-55, 26-57
full condition 26-57
loss of connectivity to 26-56

system logger data on 26-3
coupling facility structure

system logger
storage limit reached 26-33

coupling facility version number
IXGQUERY service 26-44

CPOOL macro
use 11-6

CPUTIMER macro
using 20-2

CPYA instruction
description 14-8
example 14-8

create
hiperspace 15-25
subpool 11-9
task 3-1

create data space
example 14-9, 15-12, 15-23
rules for 15-8

create hiperspace
example 15-28

CSRCESRV macro
using with an MVS/ESA system 22-2
using with an MVS/XA system 22-4

CSRCEXA load module 22-4
CSRCMPSC macro 22-4, 22-9
CSREVW window service

defining a view of an object 16-11
CSRIDAC window service

obtaining access to a data object 16-9
terminating access to an object 16-19

CSRL16J service
passing control with all registers intact 4-4

CSRREFR window service
refreshing changed data 16-16

CSRSAVE window service
updating a permanent object on DASD 16-17

CSRSCOT window service
saving interim changes in a scroll area 16-15
updating a temporary object 16-16

CSRVIEW window service
defining a view of an object 16-11
terminating a view of an object 16-17

CSVINFO macro
Comparison with CSVQUERY 4-30
MIPR 4-30

CSVQUERY macro
Comparison with CSVINFO 4-30

current size of data space 15-10
CVT (communication vector table)

CVTVFIND field for virtual fetch B-2

D
DAE (dump analysis and elimination)

dump not suppressed 9-8
dump suppression 9-2
providing information through recovery 8-15

DASD (direct access storage device)
data transfer from by window services 16-3
updating a permanent object on DASD 16-17

DASD log data set
space 26-58

DASD log data sets
SMS management of 26-8

X-4 OS/390 V2R8.0 MVS Assembler Services Guide

DASD-only
log stream 26-22

DASD-only log stream
system logger data on 26-4

data compression and expansion service
data which can exploit 22-1
recovery routine 22-2
summary table 22-2

data compression and expansion services
using 22-1

data compression service
steps required to compress data 22-2
using 22-1

data control block
deleting load modules that contain 11-13
SNAP dump 9-9

data expansion service
running under an MVS/ESA system 22-2
running under an MVS/XA system 22-3
using 22-1

data object
defining a view 16-11
defining multiple views 16-14
extending the size 16-14
identifying 16-9
mapping 16-1

multiple objects, example 16-5
multiple windows to an object, example 16-5
scroll area to DASD, example 16-4
temporary object, example 16-4
window to a scroll area, example 16-4
window to DASD, example 16-3

obtaining
access to a data object, overview 16-8
access to a data object, procedure for 16-9
scroll area 16-10

refreshing changed data 16-16
saving interim changes 16-15
specifying type of access 16-10
structure 16-1
terminating access to an object 16-19
updating a temporary object 16-16

data set
dump 9-9

data sharing with IARVSERV macro 19-1
data space

access data 15-7
choosing the name for 15-9
compared to address space 15-1
create 15-7
creating 15-8
default size 15-3
definition 15-1, 15-7
delete 15-7
deleting 15-17
dumping storage 15-25

data space (continued)
establish addressability 15-12
example 14-9, 15-2
example of creating 15-23
example of deleting 15-23
example of moving data into and out 15-12
example of using 15-23
extending current size 15-14
identifying the origin 15-11
illustration 15-1
loading pages into central storage 15-16
managing storage 15-3
paging out of central storage 15-16
release storage 15-7
restoring 15-25
rules for using 15-7
saving 15-25
SCOPE=ALL 15-9
SCOPE=COMMON 15-9
SCOPE=SINGLE 15-9
shared between two programs 15-19, 15-20
sharing with IARVSERV macro 19-1
specify size 15-10
storage available for 15-3
use 15-2, 15-7
using efficiently 15-23

data space storage
managing 15-3
release 15-7
releasing 15-16
rules for releasing 15-16

data to be viewed 16-13
data-in-virtual

mapping a hiperspace object to an address space
window 15-39

mapping into hiperspace 15-37, 15-38
data-in-virtual object

definition 13-1, 16-1
mapped into data space storage 15-22

data-in-virtual window
requirements for 13-1

date and time of day
obtaining 20-1

DCB parameter 4-19
DD statements required for dumps 9-2
DE parameter 4-20
debugging aid for call sequence 4-30
default priority 3-2
define multiple views of an object 16-14
define the expected window reference

pattern 16-12
define view of a data object 16-11
define window disposition 16-12
delete

access list entry 14-10
example 14-10

 Index X-5

delete (continued)
data space 15-4

example 14-10
hiperspace 15-4

description 15-35
example 15-41

delete data space
example 15-23

delete data spaces
rules 15-17

DELETE macro
lowering the responsibility count 11-13

delete message 20-5
delete messages already written 20-11
deleting

from a log stream 26-38
illustration 26-39

DEQ macro 6-17
rules for using 6-10
use 6-10, 6-14

descriptor code 20-7
DETACH macro

use 3-4
device

verification A-1
device class

unit name A-3
DFP requirement for window service 16-10
dictionary

compression 22-5
entries 22-10
expansion 22-5

directory entry
PDS (partitioned data set) 4-1

disconnecting
from a log stream 26-22

dispatching priority
assign 3-2

display AR information 14-11
DIV (data-in-virtual) service

restrictions
when using IARVSERV macro 19-8, 19-9

DIV macro
example 15-40
example of mapping object into data space 15-22
mapping a data-in-virtual object to a hiperspace

example 15-38
mapping a hiperspace as a data-in-virtual object

example 15-40
mapping object to a data space 15-22
programming example 13-22
retain mode 13-14, 13-18, 13-20
rules for invoking 13-22
sharing data in a window among tasks 13-21
use 13-4, 15-37

save 13-15
unaccess 13-21

DIV macro (continued)
use (continued)

unidentify 13-21
unmap 13-20

using data-in virtual 13-1
when to use data-in-virtual 13-2

 DOM macro
function 20-11

DPMOD parameter on ATTACH 3-2
DPRTY parameter on the EXEC statement 3-2
DSPSERV macro

CREATE request
example 14-9, 15-12, 15-29, 15-35, 15-38, 15-40

DELETE request
example 14-10, 15-35, 15-39, 15-40
use 18-1

EXTEND request
example 15-15

LOAD service
use 15-16

OUT service
use 15-16

RELEASE request
use 15-34, 18-2

rules 15-16
DU-AL

add entry 15-7
compared with a PASN-AL 14-3
definition 14-3
illustration 14-3

dump
ABEND dump 9-1
data sets for 9-9
index in SNAP dump 9-9
not suppressed 9-8
requesting 9-1
requesting in recovery 8-15
select type 9-1
SNAP dump 9-1, 9-9
summary 9-9
suppression 9-2
symptom 9-2
SYSABEND dump 9-1
SYSMDUMP dump 9-1
SYSUDUMP dump 9-1
Transaction dump 9-1, 9-10
types a problem program can request 9-1

dump service 9-1
dump storage in a data space 15-25
duplicate

names in unique task libraries, 4-19
resource request 6-14

dynamic I/O configuration change
detecting 23-1

dynamic load module structure
advantage 4-7

X-6 OS/390 V2R8.0 MVS Assembler Services Guide

dynamic load module structure (continued)
description 4-6, 4-7

E
EAR instruction

description 14-8
ECB (event control block)

description 6-2
parameter of ATTACH 3-4, 3-5, 6-2

EDT (eligible device table)
description 23-4
obtaining information 23-4
unit verification service

IEFEB4UV routine A-1
EDTINFO macro 23-4
end-of-task exit routine 3-5
ENF event code 48

listen exit
writing 26-47

system logger
connect service 26-27

system logger application 26-19
ENQ macro 6-17

example 6-13
rules for using 6-10
use 4-26, 6-10

entry point
adding 4-29
address

AMODE indicator 4-4
alias use 4-29
identifier 4-30
identify 4-10

EP parameter 4-18
EPIE (extended program interruption element) 7-4
EPLOC parameter 4-18
error

recovering from software 8-1
ESD (external symbol dictionary)

AMODE/RMODE indicator 4-1
ESO hiperspace

definition 15-27
ESPIE environment

deleting 7-1
establishing 7-1

ESPIE macro
option

RESET parameter 7-3
SET parameter 7-3
TEST parameter 7-3

use 7-1
using 7-3

establish addressability to a data space 15-12
definition 14-2
example 15-23

ESTAE and ESTAEX macros
0 parameter 8-7
ASYNCH parameter 8-29
CT parameter 8-7, 8-46
defining a recovery routine 8-7
OV parameter 8-46
PARAM parameter 8-20
PURGE parameter 8-28
TERM parameter 8-30

ESTAE and ESTAEX routine
definition 8-8

ESTAE-type recovery routine (extended specify task
abnormal exit)

See also recovery
providing 8-7

ESTAI routine
definition 8-8

ETR (External Time Reference hardware facility)
checking for TOD-clock synchronization 20-1

ETXR parameter of ATTACH
use 3-4

event
signal completion 6-2

EVENTS macro
use 6-2

example
data object mapped to a window 16-2
mapping

multiple objects 16-5
object to multiple windows 16-5
permanent object that has a scroll area 16-4
permanent object that has no scroll area 16-3
temporary object 16-4

structure of a data object 16-2
window services coding example 16-20

exclusive resource control 6-12
EXEC statement

DPRTY parameter 3-2
exit routine

altering register content 7-5
altering the old PSW 7-5
end-of-task 3-5
functions performed by 7-5
register contents on entry 7-4
specifying 7-1
using serially reusable resources 6-9

expand data
steps required under an MVS/ESA system 22-2
steps required under an MVS/XA system 22-4

expanded data
using the data expansion service 22-1

expansion
of data

description 22-10
explicit requests for virtual storage 11-1

 Index X-7

extend current size of data space
example 15-15
procedure 15-14

extend current size of hiperspace
procedure for 15-34

EXTEND parameter on DSPSERV 15-14, 15-34
extend the size of an object 16-14
extent 12-1

F
find

load module 4-17
FIND request

virtual fetch B-5
format AR information 14-11
frame

assigning 18-1
repossessing 18-1

FREEMAIN macro
use 11-1, 11-5

G
gap in reference pattern service

defining 18-8
definition 18-8

gap in reference pattern services
definition 18-8

GENNAME parameter on DSPSERV 15-8, 15-9,
15-28

GET request
virtual fetch B-5

GETMAIN macro
creating subpools 11-9
LOC parameter 11-2, 11-3
requesting storage at an address 11-3
type 11-2
use 11-2

gigabyte 4-1
global resource 6-11
global resource serialization 6-17
GQSCAN macro

function 6-17
result 6-20
TOKEN parameter 6-17

H
hiperspace

as data-in-virtual object 15-39
compared to address space 15-1
creating 15-25, 15-28
default size 15-3
definition 15-1, 15-25
deleting 15-35

hiperspace (continued)
extending current size 15-34
fast data transfer 15-31
illustration 15-1
managing storage 15-3
manipulating data

illustration 15-26
mapping data-in-virtual object into 15-37, 15-38
referencing data 15-29
releasing storage 15-34
restoring 15-41
saving 15-41
shared between two programs 15-31
specify size 15-10
storage available for 15-3
two types 15-26
window services use 16-3

hiperspace storage
managing 15-3
releasing 15-34
rules for releasing 15-34

HSPALET parameter on HSPSERV macro 15-31
HSPSERV macro

example 15-31
read operation 15-29, 15-30, 15-31
SREAD and SWRITE operation

example 15-35
illustration 15-29

use of move-page facility 15-31
write operation 15-29

HSTYPE parameter on DSPSERV 15-28

I
I/O configuration change

detecting 23-1
I/O configuration token

detecting I/O configuration changes with 23-1
IARR2V macro

ASID parameter 19-9
converting a central storage address to virtual 19-9
IARVSERV sharing effectiveness 19-9
NUMVALID parameter 19-9
NUMVIEW parameter 19-9
RSA parameter 19-9
STOKEN parameter 19-9
VSA parameter 19-9
WORKREG parameter 19-9

IARVSERV macro
CHANGEACCESS parameter 19-4
copy-on-write 19-6

CVT mapping macro hardware check 19-7
data sharing 19-1
diagnostics 19-9
example of use 19-7
IARVRL mapping macro

required fields 19-6

X-8 OS/390 V2R8.0 MVS Assembler Services Guide

IARVSERV macro (continued)
parameters description 19-6
RANGLIST parameter 19-6
READONLY parameter 19-6
restrictions using DIV (data-in-virtual) service 19-9
restrictions using DIV (data-in-virtual) services 19-8
RETAIN parameter 19-7
SHARE parameter 19-4
SHAREDWRITE parameter 19-6
sharing effectiveness 19-9
SHRDATA IPCS subcommand 19-9
TARGET_VIEW parameter 19-6
types of views 19-3
UNIQUEWRITE parameter 19-6

identify a data object 16-9
identify a window 16-11
identify blocks to be viewed 16-13
identify the origin of the data space 15-11
IEALSQRY macro

tracking entries in the linkage stack 8-41
IEANTCR callable service 17-1
IEANTDL callable service 17-1
IEANTRT callable service 17-1
IEFEB4UV routine A-1

authorized caller A-3
caller's function A-3
key A-3
mode A-3
problem program caller A-3

IHAVFPM mapping macro B-2
implicit requests for virtual storage 11-11
import connection

IXGCONN service
IMPORTCONNECT parameter 26-26

import log blocks
IXGIMPRT service 26-39, 26-40, 26-41

INADDR parameter on the GETMAIN macro 11-3
INADDR parameter on the STORAGE macro 11-5
initial size of data space 15-10
initiate offload

IXGOFFLD service 26-45
inline parameter list

use 4-10
installation limit

amount of storage for data space and
hiperspace 15-10

on amount of storage for data space and
hiperspace 15-3

on size of data space and hiperspace 15-3
size of data space 15-10

interlock
avoiding 6-15
illustration 6-16

internal reader facility 24-1
allocating the data set 24-2

through dynamic allocation 24-2
through JCL 24-2

internal reader facility (continued)
closing the data set 24-3

coding /*DEL 24-3
coding /*EOF 24-3
coding /*PURGE 24-4

definition 24-1
example 24-4
opening the data set 24-2
sending records to the data set 24-3
setting up and using 24-1
tasks involved in using 24-1

interval timing, establish 20-2
INTRDR data set 24-2
IOCINFO macro 23-1
IPCS (interactive program control system)

formatting and displaying AR information 14-11
issue macros in AR mode 14-10
IXGANSAA macro

answer area mapping 26-18
IXGBRWSE service

browse cursor 26-35
browse session 26-34
browse token 26-34
read data from a log stream 26-34
REQUEST=READBLOCK 26-35
REQUEST=READCURSOR 26-35
REQUEST=RESET 26-35
REQUEST=START 26-35
searching for a log block by time stamp 26-36

illustration 26-37
with IXGDELET service 26-37
with IXGWRITE service 26-37

IXGCONN service
allocating coupling facility space at

connection 26-24
authorization requirements 26-24
complete exit 26-13

environment 26-14
information passed to 26-13
inputs 26-14
programming 26-14

connect process and staging data sets 26-24
connecting to and disconnection from a log

stream 26-22, 26-23
disconnect from a log stream 26-27
ENF event code 48 and 26-27
import connection 26-26
resource manager

connecting as 26-25
using ENF event 48 with 26-26

resource manager exit 26-28
user data for a log stream

USERDATA parameter 26-27
write connection 26-26

IXGDELET service
and resource manager exit processing 26-39

 Index X-9

IXGDELET service (continued)
delete data from a log stream

illustration 26-39
deleting data from a log stream 26-38

IXGIMPRT service 26-39
import log blocks 26-40, 26-41
manage a target log stream 26-46
safe import point 26-41

IXGINVNT service
DASDONLY parameter 26-22
managing the LOGR policy 26-20
MODEL parameter 26-21

example 26-21
IXGOFFLD service

initiate offload 26-45
manage a target log stream 26-46

IXGQUERY service
coupling facility version number 26-44
log stream information 26-41
manage a target log stream 26-46
safe import point 26-41

IXGUPDAT service
modify log stream control information 26-46
time stamp 26-46

IXGWRITE service
BUFFALET parameter 26-32
log block buffer 26-32

BUFFKEY parameter 26-32
BUFFLEN parameter 26-32

sequence of log blocks 26-32
write to a log stream 26-32

J
JCL

for LOGR subsystem 26-51
JES (job entry subsystem)

and the internal reader 24-1, 24-2, 24-3
job library

reason for limiting size 4-20
use 4-16
when to define 4-20

job output
sending to the internal reader 24-3

job step task
create 3-1

JPA (job pack area) 4-17

L
LAE instruction

description 14-8
example 14-8

LAM instruction
description 14-8
example 14-8, 14-9

language
checking availability 21-14

library
description 4-17
search 4-17

limit priority 3-2
linear data set

creating a 13-3
link library 4-16
LINK macro

addressing mode consideration 4-16
use 4-16, 4-22, 4-24
when to use 11-13

linkage
consideration 4-2
editor 4-1

linkage convention
advantages of using the linkage stack 2-3
AR mode program linkage procedure 2-8
AR mode program, defined 2-1
establish a base register 2-6
for branch instruction 2-1
introduction 2-1
parameter convention 2-9
primary mode program linkage procedure 2-6
primary mode program, defined 2-1
register save area, provide 2-2
register, saving 2-2
using a caller-provided save area 2-4
using the linkage stack 2-3

linkage stack
advantages of using 2-3
at time of retry 8-41
considerations for ESTAE-type recovery

routines 8-27
example of using the 2-3
how to use 2-3

LINKX macro
use 4-22

load
registers and pass control 4-9
virtual storage 18-3

load an ALET into an AR 14-8
load instruction in AR mode

example 14-7
load list area 4-17
LOAD macro

indicating addressing mode 4-16
use 4-16, 4-22, 4-25
when to use 11-13

load module
alias 4-29
characteristic 4-6
execution 4-7
how to avoid getting an unusable copy 4-21
location 4-16

X-10 OS/390 V2R8.0 MVS Assembler Services Guide

load module (continued)
more than one version 4-18
name 4-29
search for 4-17
structure type 4-6
use count 4-23, 4-27
using an existing copy 4-21

load module execution 4-7
loaded module

information 4-30
LOC parameter on the GETMAIN macro 11-2, 11-3
LOC parameter on the STORAGE macro

requesting storage at an address 11-5
local resource 6-11
location of a load module 4-16
log block buffer 26-32

BUFFALET parameter 26-32
BUFFKEY parameter 26-32
BUFFLEN parameter 26-32

log data
on DASD log data sets 26-3, 26-4, 26-8

log data sets 26-3, 26-8
allocation 26-4, 26-8

log stream 26-2
connection to

IXGCONN service 26-22
DASD-only 26-22
definition 26-1
delete data from

illustration 26-39
deleting data from

IXGDELET service 26-38
different ways of connecting to 26-23
disconnection from

IXGCONN service 26-22
gaps in 26-15
illustration 26-1
model 26-21

example 26-21
read from

IXGBRWSE service 26-34
write to

IXGWRITE service 26-32
writing to

sequence of log blocks 26-32
log stream information

IXGQUERY service 26-41
log stream time stamp

IXGUPDAT service 26-46
LOGR

couple data set 26-7
policy 26-7

LOGR couple data set 26-7
LOGR policy 26-7

managing
IXGINVNT service 26-20

LOGR subsystem 26-49
JCL for 26-51
read log data in data set format

eligible applications 26-49
using 26-51

Logrec Data Set
description 10-1

look-up value for the EDT
See also unit verification service
defined A-2
obtaining A-2

LPA (link pack area) 4-17
LPMOD parameter on ATTACH 3-2
LQB (language query block) 21-14

M
macro

form
execute 11-11
list 11-11
standard 11-11

issuing in AR mode 14-10
reenterable form 11-11
way of passing parameters 11-11

mainline routine
definition in a recovery environment 8-6

manage a target log stream 26-46
managing the LOGR policy

IXGINVNT service 26-20
manipulate data in hiperspace 15-26
manipulate the contents of ARs 14-7
map data-in-virtual object into data space

rules for problem state program 15-22
map data-in-virtual object into hiperspace 15-38

example 15-38
rules for problem state program 15-37

map hiperspace as data-in-virtual object 15-39
example 15-40

map object into data space
using DIV macro 15-22

map object to a data space
using DIV macro 15-22

maximum size of data space 15-10
MCS console

characters displayed 20-5
megabyte 4-1
member names

establish 4-29
message

deleting 20-5, 20-11
descriptor code 20-7
disposition 20-7
example of WTO 20-8
identifier 20-9
indicator in first character 20-7

 Index X-11

message (continued)
MLWTO (multiple-line) 20-6
replying 20-9
routing 20-6, 20-7
single-line 20-6
translating 21-1
writing 20-5

message compiler 21-9
invoking 21-9

message file
compiling 21-9

message skeleton
creating 21-4
format 21-5
validating 21-7

message text
format 21-6

MIPR
CSVINFO macro 4-30

MLWTO (multiple-line) message
considerations for using 20-6

MMS (MVS message service) 21-1, 21-21
coding example 21-19
support for additional language 21-18

mode
primary 14-1

MODE parameter 26-11
MODE=ASNYCNORESPONSE parameter 26-12
MODE=SYNCEXIT parameter 26-12
modify log stream control information

IXGUPDAT service 26-46
move data between hiperspace and address

space 15-29
move-page facility 15-31
MPB (message parameter block) 21-17

building 21-17
using BLDMPB and UPDTMPB 21-17

using for new message 21-17
multiple versions of load modules 4-18
MVS macro

issuing in AR mode 14-10

N
name

resource 6-10
name a data space 15-9
NAME parameter on DSPSERV 15-8, 15-9, 15-28
name/token callable service

link-editing with your application 17-6
use of the service 17-1

name/token pair
creating 17-3
deciding which to use 17-3
definition 17-1
deleting 17-3

name/token pair (continued)
home 17-5
level 17-5

home address space 17-2
primary address space 17-2
system 17-2
task 17-2, 17-3

retrieving the token 17-3
non-reenterable load module 11-13
non-shared standard hiperspace

creating 15-28
definition 15-28

Notices C-1
NUMRANGE parameter on HSPSERV 15-30

O
obtain access to a data object 16-9
operator

consoles, characters displayed 20-5
messages, writing 20-5

origin of data space 15-11
originating task 3-1
OUTNAME parameter on DSPSERV 15-8, 15-9
overlay load module structure 4-6

P
page

faults, decreasing 18-5
movement 18-1
size 18-1

page out virtual storage 18-3
page-ahead function 18-3
paging I/O 18-1
paging service

input 18-4
list of services 18-1

parallel execution
when to choose 3-1

parameter convention 2-9
parameter list

description 4-8
example of passing 4-9
indicate end 4-11
inline, use 4-10
location 4-27

parameter list for AR mode program
illustration 2-11

PASN-AL
add entry 15-7
compared with a DU-AL 14-3
definition 14-3

pass control
between control sections 4-8
between programs with all registers intact 4-4

X-12 OS/390 V2R8.0 MVS Assembler Services Guide

pass control (continued)
between programs with different AMODEs 4-3, 4-25
between programs with the same AMODE 4-3
in a dynamic structure 4-16, 4-28

with return 4-22
without return 4-26

in a simple structure 4-7, 4-15
with return 4-10
without return 4-8

preparation 4-8
prepare 4-10
using a branch instruction 4-10, 4-26
using CALL 4-11
using LINK 4-22
using the CSRL16J service 4-4
with a parameter list 4-9
with return 4-10
without control program assistance 4-7, 4-25

pass parameter
list 11-11
register 11-11

pass return address 4-8
PDS directory entry

AMODE indicator 4-1
RMODE indicator 4-1, 4-2

percolate
See also recovery
definition in a recovery environment 8-9

permanent object
accessing an existing object 16-10
creating a new object 16-10
data transfer 16-3
data-in-virtual object, relationship 16-1
defining a view 16-11
defining multiple views 16-14
definition 16-1
extending the size 16-14
functions supported for 16-6
identifying 16-9
mapping a scroll area to a permanent object,

example 16-4
mapping with no scroll area, example 16-3
new object, creating 16-10
obtaining

access to a permanent object, overview 16-8
access to a permanent object, procedure

for 16-9
scroll area 16-10

overview of supported function 16-6
refreshing changed data 16-16
refreshing, overview 16-9
requirements for new object 16-10
saving changes, overview 16-8
saving interim changes 16-15
size, maximum 16-1
specifying new or old status 16-10

permanent object (continued)
specifying type of access for an existing

object 16-10
structure 16-1
terminating access to a permanent object 16-19
updating on DASD 16-17

PGLOAD macro
page-ahead function 18-3
use 18-2

PGOUT macro
use 18-2

PGRLSE macro
use 18-1

PGSER macro
input 18-5
page-ahead function 18-3
protecting a range of virtual storage pages 18-3
use 18-2

PICA (program interruption control area)
pointer 7-2
purpose 7-2
restore previous 7-2

PIE (program interruption element)
purpose 7-2

planned overlay load module structure 4-6
planning

system logger services
writing an ENF event 48 listen exit 26-47

pointer-defined entry point address 4-4
policy

LOGR 26-7
system logger 26-7

post bit 6-2
POST macro

use 6-2
prepare to pass control

with return 4-10
without return 4-8

preparing for
system logger services

writing an ENF event 48 listen exit 26-47
primary mode

description 14-1
primary mode program

call a program 2-8
defined 2-1
linkage procedure 2-6
pass parameters 2-9
receive control from a caller 2-6
return control to a caller 2-7

priority
address space 3-2
assign 3-3
change 3-3
control program's influence 3-2
dispatch 3-2

 Index X-13

priority (continued)
higher, when to assign 3-3
limit 3-2
subtask 3-2
task 3-2

private library 4-16
processor storage management 18-1, 18-15
program availability

increasing through recovery 8-3
program design 4-7
program interruption

cause 7-1
determine cause 7-3
determining the type 7-5

program management 4-1, 4-35
program mask 7-2
program object

definition 4-16
PSL (page service list) 18-5
PSW (program status word)

addressing mode bit 4-2, 4-3
PUT macro 24-3

Q
qname of a resource

purpose 6-10
QRYLANG macro 21-14
query service

running under an MVS/ESA system 22-2
running under an MVS/XA system 22-3
using 22-1

R
range list entry 19-6
RANGLIST parameter on HSPSERV 15-30, 15-36
RB (request block)

considerations for ESTAE-type recovery
routines 8-27

relationship to ESTAE-type recovery routines 8-7
read

from a log stream 26-34
log data in data set format

LOGR subsystem 26-49
LOGR subsystem

eligible applications 26-49
read from a standard hiperspace 15-30, 15-35
read operation

for standard hiperspace 15-29, 15-30, 15-31
recovery 8-1, 8-51

ABEND dump
requesting 8-15

ABEND macro
choosing to issue 8-5
invoking RTM 8-45
STEP parameter 8-29

recovery (continued)
activated

state of recovery routine 8-5
advanced topics 8-45
advantages of providing 8-3
AMODE

ESTAE-type recovery routine 8-38
retry from an ESTAE-type recovery routine 8-39

ARR
choosing 8-8

ASC mode
ESTAE-type recovery routine 8-38
retry from an ESTAE-type recovery routine 8-39

ATTACH and ATTACHX macros
ASYNCH parameter 8-29
ECB parameter 8-46
ESTAI parameter 8-8, 8-20
ETXR parameter 8-46
PURGE parameter 8-28
STAI parameter 8-8
TERM parameter 8-30

attached task 8-8
authorization

ESTAE-type recovery routine 8-37
retry from an ESTAE-type recovery routine 8-39

availability
increasing 8-3

communication
between processes 8-4
means available to recovery routines 8-19
parameter area 8-7, 8-19
registers 8-19
SDWA 8-11, 8-19
SETRP macro 8-11

concepts 8-2
condition of the linkage stack

ESTAE-type recovery routine 8-38
retry from an ESTAE-type recovery routine 8-40

correcting errors 8-15
DAE

providing information 8-15
deactivated

state of recovery routine 8-5
deciding whether to provide 8-3
defined

state of recovery routine 8-5
designing into your program 8-1
dispatchable unit mode

ESTAE-type recovery routine 8-37
retry from an ESTAE-type recovery routine 8-39

DU-AL
ESTAE-type recovery routine 8-38
retry from an ESTAE-type recovery routine 8-39

dump
ABEND dump 8-15
checking for previous 8-15
requesting 8-15

X-14 OS/390 V2R8.0 MVS Assembler Services Guide

recovery (continued)
environment

ESTAE-type recovery routine 8-37
factors other than register contents 8-37
register contents 8-31
retry from an ESTAE-type recovery routine 8-39
STAE and STAI routines 8-49
summary for ESTAE-type recovery routine and its

retry routine 8-40
understanding 8-30

errors 8-4
examples 8-4

ESTAE and ESTAEX macros
0 parameter 8-7
ASYNCH parameter 8-29
CT parameter 8-7, 8-46
defining a recovery routine 8-7
OV parameter 8-46
PARAM parameter 8-20
PURGE parameter 8-28
TERM parameter 8-30

ESTAE and ESTAEX routine
activated 8-7
deactivated 8-7
defined 8-7
definition 8-8
no longer defined 8-7

ESTAE-type recovery routine
additional considerations 8-29
linkage stack considerations 8-27
outstanding I/Os 8-28
providing 8-7
RB considerations 8-27
RB relationship 8-7
return codes 8-34
special considerations 8-26

ESTAI routine
activated 8-8
deactivated 8-8
defined 8-8
definition 8-8
no longer defined 8-8
rules for retry RB 8-27

example
coded 8-42
mainline routine with one recovery routine 8-10
mainline routine with several recovery

routines 8-11
footprints 8-14, 8-20
from software errors 8-1
general concepts 8-2
IEALSQRY macro 8-41
in control

state of recovery routine 8-5
interrupt status

ESTAE-type recovery routine 8-38
retry from an ESTAE-type recovery routine 8-39

recovery (continued)
mainline routine

definition 8-6
minimizing errors 8-15
multiple recovery routines 8-46
MVS-provided 8-3
no longer defined

state of recovery routine 8-6
no longer in control

state of recovery routine 8-5
not providing 8-4
outstanding I/O

restoring quiesced restorable I/O
operations 8-28

outstanding I/Os
controlling 8-28

parameter area
accessing 8-19, 8-21
checking the contents 8-14
contents 8-19
footprints 8-14, 8-20
passing 8-7, 8-19, 8-20
setting up 8-19

percolate
compared with retry 8-16
definition 8-9

program availability
increasing 8-3

program mask
ESTAE-type recovery routine 8-38
retry from an ESTAE-type recovery routine 8-40

quiesced restorable I/O operation
restoring 8-28

recovery routine
choosing 8-7
definition 8-6
nested 8-47
objectives 8-12
options 8-9
order of control 8-9
percolating 8-18
providing 8-1
providing recovery for a recovery routine 8-47
retrying 8-16
states 8-5
summary of states 8-9
writing 8-11

recursion
avoiding 8-14
definition 8-14

register contents 8-31
entry to a recovery routine 8-32
entry to a retry routine 8-35
restoring 8-17
return from a recovery routine 8-34
STAE or STAI retry routines 8-51
STAE routine 8-49

 Index X-15

recovery (continued)
register contents (continued)

summary of where to find information 8-32
retry

compared with percolate 8-16
definition 8-9

retry point
definition 8-6

retry routine
definition 8-6
description 8-17

routines in a recovery environment
definition 8-6
interaction 8-9
mainline routine 8-6
recovery routine 8-6
retry routine 8-6

RTM 8-1
invoking 8-45

SDWA
accessing 8-21
accessing the SDWARC1 DSECT 8-23
checking important fields 8-13
directly manipulating fields 8-15
freeing 8-17
IHASDWA mapping macro 8-21
summary of important fields 8-23
updating 8-11, 8-21
updating through SETRP macro 8-14
updating through VRADATA macro 8-14
using 8-21

SDWA storage key
ESTAE-type recovery routine 8-37
retry from an ESTAE-type recovery routine 8-39

serviceability data
providing 8-4
saving 8-14
updating the SDWA 8-14

SETRP macro
communicating recovery options to the

system 8-22
COMPCOD parameter 8-22
DUMP parameter 8-15
FRESDWA parameter 8-17, 8-35
indicating percolation 8-18
indicating retry 8-16
RC parameter 8-16, 8-18
REASON parameter 8-22
RECPARM parameter 8-14
REMREC parameter 8-18
RETADDR parameter 8-16
RETREGS parameter 8-17, 8-35
supplying a retry address 8-16
updating the SDWA 8-11, 8-22

STAE macro
0 parameter 8-7
CT parameter 8-7

recovery (continued)
STAE macro (continued)

defining a recovery routine 8-7
STAE retry routine 8-50
STAE routine

return codes 8-49
using 8-48
work area 8-49

STAI retry routine 8-50
STAI routine

return codes 8-49
using 8-48
work area 8-49

state of recovery routine
activated 8-5
deactivated 8-5
defined 8-5
in control 8-5
no longer defined 8-6
no longer in control 8-5

system logger 26-53
application failure 26-53
coupling facility failure 26-55
coupling facility full 26-57
DASD log data set space fills 26-58
log stream damage 26-58
peer connector 26-54
staging data set full 26-57
system failure 26-54
system logger address space failure 26-54
unrecoverable I/O errors 26-59

task 8-7
validity checking of user parameters 8-4
VRADATA macro

updating the SDWA variable recording area 8-14
writing recovery routines 8-11

checking for the SDWA 8-13
checking important fields in the SDWA 8-13
checking the parameter area 8-14
comparison of retry and percolate 8-16
correcting or minimizing errors 8-15
determining if the recovery routine can retry 8-16
determining the first recovery routine to get

control 8-13
determining why the routine was entered 8-13
establishing addressability to the parameter

area 8-13
locating the parameter area 8-13
providing information for DAE 8-15
requesting a dump 8-15
saving serviceability data 8-14
saving the return address to the system 8-12

recursion
avoiding in recovery 8-14
definition in recovery 8-14

X-16 OS/390 V2R8.0 MVS Assembler Services Guide

reenterable
load module 4-21, 4-25, 11-11
macro 11-11

reenterable code
use 11-2, 11-5, 11-11

reenterable load module
use 11-3, 11-11

reference pattern service 18-5, 18-15
reference unit in reference pattern service

choosing 18-8
definition 18-8

reference unit in reference pattern services
definition 18-8

REFPAT macro
example 18-14
use 18-5
using 18-10

refresh changed data in an object 16-16
refreshable module 11-13
REGION system parameter 11-1
register

altering the content 7-5
provide a save area 2-2
save 2-2

register 1
pass parameters 4-8

register 14
use 4-10
when to restore 4-8

register 15
use 4-8

registers 2-12 4-10
release

data space and hiperspace storage 15-4
data space storage 15-16

rules 15-16
hiperspace storage 15-34

rules for 15-34
resource 6-14
virtual storage 18-1

RELEASE parameter on HSPSERV macro 15-31
release storage in data spaces

rules 15-16
remove

entry from access list 14-10
REPLACE option for a window 16-12
reply to WTOR message 20-9
request

dump 9-1
request for resource

limit concurrent 6-12
requirements for window service

DFP requirement 16-10
SMS requirement 16-10

RESERVE macro 6-17
compared to the ENQ macro 6-17

RESERVE macro (continued)
using for shared resources 6-17
using with the DEQ macro 6-17

resource
cleaning up 8-1
collecting information 6-17
control 6-1
duplicate request 6-14
global 6-11
local 6-11
name list 6-11
naming 6-10
process request 6-12
protecting

via serialization 6-9
release 6-14
releasing through recovery 8-3
requesting

conditionally 6-14
exclusive control 6-12
pair 6-16
shared control 6-12
unconditionally 6-14

scope 6-17
serially reusable

use 6-9
types that can be shared 6-11

resource manager
and delete requests 26-39
connecting as 26-25
exit

IXGCONN service 26-28
using with ENF event code 48 26-26

resource protection
via serialization 6-9

resource queue
extracting information 6-17

resource serialization
avoiding an interlock 6-15
requesting exclusive control 6-12
requesting shared control 6-12

responsibility count for a loaded module 11-13
restore

data space 15-25
hiperspace 15-41
PICA (program interrupt control area) 7-2
registers upon return 4-13

RETAIN option for a window 16-12
retry

See also recovery
definition in recovery environment 8-9

retry point
definition 8-6

retry routine
definition 8-6
ensure correct level of the linkage stack 8-41

 Index X-17

return
control

in a dynamic structure 4-26
in a simple structure 4-13

return address
pass 4-8

return attributes function of unit verification
service A-2

return code
analyzing 4-12
establish 4-14
for cell pool service 12-6
using 4-12

return group ID function of unit verification
service A-2

return look-up value function of unit verification
service A-2

RETURN macro
use 4-13, 4-14

return UCB addresses function of unit verification
service A-2

return unit name function of unit verification
service A-2

returned storage
specify subpool A-2

reusability attributes of a load module 4-25
reusable module 4-21
reuse of a save area 4-10
RIB (resource information block)

used with GQSCAN macro 6-18
RMODE program attribute

indicator in PDS entry 4-1
purpose 4-1
specifying

in source code 4-1
using linkage editor control card 4-1

use 4-16
value 4-2

route
code 20-6
message 20-6

route message 20-7
route the message 20-7
RTM (recovery termination manager)

See also recovery
MVS component that handles recovery 8-1

run length encoding 22-1
run-time message file

updating 21-13

S
SAC instruction

example 14-9
use 14-1

safe import point
IXGIMPRT service 26-41
IXGQUERY service 26-41

SAR instruction
description 14-8
example 14-8

save
data space 15-25
hiperspace 15-41

save area
example of using a 2-3, 2-5
how to tell if used 4-14
pass address 4-8
reuse 4-10
using a caller-provided save area 2-4
who must provide 2-2

save interim changes to a permanent object 16-15
SAVE macro

example of using 2-4
use 4-30

scope
ALL parameter value on GQSCAN macro 6-20
STEP parameter value on GQSCAN macro 6-17,

6-20
SYSTEM parameter value on GQSCAN

macro 6-17, 6-20
SYSTEMS parameter value on GQSCAN

macro 6-17, 6-20
scope of a resource

changing 6-11
STEP, when to use 6-11
SYSTEM, when to use 6-11
SYSTEMS, when to use 6-11
use 6-11

SCOPE parameter on DSPSERV 15-8
scroll area

data transfer 16-3
definition 16-2
mapping a scroll area to DASD, example 16-4
mapping a window to a scroll area, example 16-4
obtaining a scroll area 16-10
refreshing a scroll area 16-16
saving changes in, overview 16-8
saving interim changes in a 16-15
storage used for 16-2
updating a permanent object from a scroll

area 16-17
updating DASD from, overview 16-8
use 16-2

SCROLL hiperspace 15-26
SDB (structured data base) format

description 10-3
SDWA (system diagnostic work area)

providing symptom data for a dump 9-6
SDWAARER field 8-24
SDWAARSV field 8-25

X-18 OS/390 V2R8.0 MVS Assembler Services Guide

SDWA (system diagnostic work area) (continued)
SDWACID field 8-15, 8-26
SDWACLUP bit 8-16, 8-26
SDWACMPC field 8-13, 8-23
SDWACOMU field 8-26
SDWACRC field 8-13, 8-24
SDWAEAS bit 8-15, 8-26
SDWAEC1 field 8-24
SDWAEC2 field 8-24
SDWAGRSV field 8-24
SDWAINTF bit 8-24, 8-25
SDWALNTH field 8-26
SDWALSLV field 8-26, 8-41
SDWAMLVL field 8-15, 8-26
SDWAPARM field 8-13, 8-23
SDWAPERC bit 8-14, 8-26
SDWARPIV bit 8-23
SDWARRL field 8-15, 8-26
SDWASC field 8-15, 8-26
SDWASPID field 8-25
SDWASR00 field 8-18
SDWASRSV field 8-25
SDWATEAR field 8-26
SDWATEAV bit 8-26
SDWATEIV bit 8-26
SDWATRAN field 8-26
SDWAXFLG field 8-24, 8-25

search for a load module 4-17, 4-21
areas/libraries searched 4-18
limiting 4-18
order 4-18

serially reusable
module

obtaining a copy 4-21
pass control 4-25

resource
using 6-9, 6-17

serviceability data
providing through recovery 8-4
saving in the SDWA 8-14

set up
addressability to a data space

example 14-9
system logger configuration 26-47

SETRP macro
COMPCOD parameter 8-22
DUMP parameter 8-15
FRESDWA parameter 8-17, 8-35
RC parameter 8-16, 8-18
REASON parameter 8-22
RECPARM parameter 8-14
REMREC parameter 8-18
RETADDR parameter 8-16
RETREGS parameter 8-17, 8-35
updating the SDWA 8-11

share subpools 11-8, 11-10
shared pages 19-1
shared resource control

through the ENQ macro 6-12
through the RESERVE macro 6-17

shared standard hiperspace
definition 15-28

shared storage
with IARVSERV macro 19-1

sharing data in virtual storage
summary 1-3

sharing data in virtual storage (IARVSERV
macro) 19-1

sharing data spaces 15-20
simple load module structure 4-6, 4-7
SMS requirement for window service 16-10
SNAP data control block 9-9
SNAP dump

index 9-9
requesting 9-9

SNAP macro
use 9-9

SNAPX macro
use 9-9

software error
recovering 8-1

specify subpool for returned storage A-2
SPIE (specify program interruption exit)

environment
addressing mode 7-1
adjusting 7-2
canceling 7-2
definition 7-2
reestablishing 7-2

SPIE macro
addressing mode restriction 7-1
use 7-1, 7-2

STAE macro
0 parameter 8-7
CT parameter 8-7
defining a recovery routine 8-7

STAE routine
using 8-48

staging data sets 26-9
formatting 26-34
full condition 26-57
storage limit reached 26-34
system logger 26-9

STAI routine
using 8-48

STAM instruction
description 14-8

standard hiperspace
definition 15-26
example of creating 15-29
non-shared 15-28

 Index X-19

standard hiperspace (continued)
read and write operation 15-30
shared 15-28
use 15-27

START parameter on DSPSERV 15-16, 15-34
STATUS macro 3-3
STCKCONV macro

using 20-2
STCKSYNC macro

using 20-1
step library

reason for limiting size 4-20
use 4-16

STIMER macro
using 20-2

STIMERM macro
using 20-2

STOKEN parameter on ALESERV 14-9
STOKEN parameter on DSPSERV 14-9, 15-8, 15-28
STOKEN parameter on HSPSERV 15-30
storage

freshly obtained 13-5
managing data space 15-17
subpool returned storage A-2

storage available for data space and
hiperspace 15-3

STORAGE macro
OBTAIN request

example 15-36
use 11-1, 11-2, 11-4, 11-5

storage request
explicit 11-1
implicit 11-1

storage subpool 11-6
structure of a data object 16-1
subpool

characteristic 11-8
creating 11-9
handling 11-6
in task communication 11-10
ownership 11-9
sharing 11-8, 11-10
storage key for 11-8
transferring ownership 11-10

subpool release
definition 11-6

substitution token 21-4
subtask

communication with tasks 3-3
control 3-1
create 3-1
priority 3-2
starting 3-3
stopping 3-3
terminating 3-4, 6-2

summary dump 9-9
suppression

of dumps 9-2
symbol substitution

summary 1-3
symptom

provided by a recovery routine 9-6
required for dump suppression 8-22

symptom dump 9-2
symptom record 10-3

description 10-1
SYMRBLD macro

building a symptom record 10-1, 10-3
SYMREC macro

symptom recording 10-1
SYSABEND ABEND dump 9-1
SYSMDUMP ABEND dump 9-1
sysplex environment

communication 20-10
SYSSTATE macro

example 14-10, 14-11
use 4-21, 9-9, 14-10

system convention for parameter list 4-8
SYSTEM inclusion resource name list 6-11
system log

writing 20-11
system logger

ANSAREA parameter 26-18
answer area 26-18

size 26-18
answer area mapping

IXGANSAA macro 26-18
authorization requirements 26-11
complete exit 26-13
component 26-6
configuration 26-4

illustration 26-5, 26-6
connecting to and disconnection from a log

stream 26-23
couple data set 26-7
DASD-only log stream 26-4
definition 26-1
delete data from a log stream

illustration 26-39
IXGDELET service 26-38

disconnect service 26-27
duplexing

DASD-only 26-9
duplexing log data 26-9

DASD-only 26-9
from a coupling facility log stream 26-9

entry-to-element ratio 26-8
IXGBRWSE service

REQUEST=READBLOCK 26-35
REQUEST=READCURSOR 26-35
REQUEST=RESET 26-35
REQUEST=START 26-35

X-20 OS/390 V2R8.0 MVS Assembler Services Guide

system logger (continued)
IXGBRWSE service (continued)

searching for a log block by time stamp 26-36
with IXGDELET service 26-37
with IXGWRITE service 26-37

log data on the coupling facility 26-3
log data sets

allocation 26-4, 26-8
SMS management of 26-8

log stream 26-1, 26-2
illustration 26-1

LOGR couple data set 26-7
LOGR policy 26-7
LOGR subsystem 26-49

eligible applications 26-49
JCL for 26-51
using 26-51

managing the LOGR policy
IXGINVNT service 26-20

model log stream
example 26-21

peer connector
in recovery 26-54

planning
writing an ENF event 48 listen exit 26-47

policy 26-7
read

log data in data set format 26-49
read from a log stream

browse cursor 26-35
browse session 26-34
browse token 26-34
IXGBRWSE service 26-34

recovery 26-53
application failure 26-53
coupling facility failure 26-55
coupling facility full 26-57
DASD log data set space fills 26-58
log stream damage 26-58
staging data set full 26-57
system failure 26-54
system logger address space failure 26-54
unrecoverable I/O errors 26-59

resource manager exit 26-28
searching for a log block by time stamp

illustration 26-37
services

overview 26-10
staging data sets 26-9

formatting 26-34
storage limit reached 26-34

status changes
ENF event code 48 26-19

summary 1-3
user data for a log stream 26-27
writing to a log stream

IXGWRITE service 26-32

system logger application
ENF event code 48 26-19
example 26-1

system logger configuration
set up 26-47

system logger services 26-1
authorization requirements 26-11
gaps in the log stream 26-15
IXGBRWSE service 26-34

browse cursor 26-35
browse session 26-34
browse token 26-34
REQUEST=READBLOCK 26-35
REQUEST=READCURSOR 26-35
REQUEST=RESET 26-35
REQUEST=START 26-35
searching for a log block by time stamp 26-36
with IXGDELET service 26-37
with IXGWRITE service 26-37

IXGCONN service 26-22
allocating coupling facility space at

connection 26-24
authorization requirements 26-24
connect process and staging data sets 26-24
disconnect from a log stream 26-27
ENF event code 48 and 26-27
import connection 26-26
resource manager connection 26-25
user data for a log stream 26-27
using ENF event 48 with 26-26
write connection 26-26

IXGDELET service 26-38
illustration 26-39

IXGWRITE service 26-32
BUFFALET parameter 26-32
BUFFKEY parameter 26-32
BUFFLEN parameter 26-32
committing data 26-33
coupling facility structure storage limit

reached 26-33
log block buffer 26-32
sequence of log blocks 26-32
staging data set is formatting 26-34
staging data set storage limit reached 26-34

mode parameter 26-11
MODE=ASYNCNORESPONSE parameter 26-12
MODE=SYNC parameter 26-12
MODE=SYNCECB parameter 26-12
MODE=SYNCEXIT parameter 26-12
overview 26-10
preparing to use

writing an ENF event 48 listen exit 26-47
searching for a log block by time stamp

illustration 26-37
synchronous and asynchronous processing 26-11
system logger applications 26-1

 Index X-21

system resource
releasing through recovery 8-3

system-generated PICA 7-4
SYSUDUMP ABEND dump 9-1

T
target program

definition 2-1
task

advantage of creating additional 3-1
communication with subtasks 3-3
create 3-1
library, establishing 4-17
priority, affect on processing 3-2
synchronization 6-2

TASKLIB parameter of ATTACH 4-17, 4-18
tasks in a job step

illustration 3-4
TCB (task control block)

address 3-1
remove 3-4

temporary object
accessing a temporary object 16-9
creating a temporary object 16-9
data transfer 16-3
defining a view 16-11
defining multiple views 16-14
definition 16-1
extending the size 16-14
functions supported for 16-7
initialized value 16-3
mapping a window, example 16-4
obtaining

access to a temporary object, overview 16-8
access to a temporary object, procedure

for 16-10
scroll area 16-10

overview of supported function 16-7
refreshing changed data 16-16
refreshing, overview 16-9
saving changes, overview 16-8
size of, maximum 16-1
specifying the object size 16-10
storage used for 16-2
structure 16-1
terminating access to a temporary object 16-19
updating a temporary object 16-16

terminate access to an object 16-19
terminate view of an object 16-17
test return codes 4-12
time interval

example of using 20-3
TIME macro

using 20-1

time of day and date
obtaining 20-1

timer synchronization
checking 20-1

TIMEUSED macro
using 20-4

TOD (time-of-day) clock
checking for synchronization with ETR 20-1
converting value 20-2
obtaining content 20-1

token
used with GQSCAN macro 6-18

TRANMSG macro 21-14
Transaction dump 9-1
transfer data between hiperspace and address

space 15-29
translate message 21-1
TTIMER macro

using 20-2

U
UCB (unit control block)

obtaining device information 23-3
scanning 23-2

UCBINFO macro 23-3
UCBSCAN macro 23-2
unit name A-2

device class A-3
is a look-up value function of unit verification

service A-2
unit verification service

description A-1
examples A-13
functions

check groups A-1, A-5
check units A-1, A-5
convert device type to look-up value A-2, A-10
indicate unit name is a look-up value A-2, A-8
return attributes A-2, A-11
return group ID A-2, A-8
return look-up value A-2, A-9
return unit control block (UCB) address A-2, A-7
return unit name A-2, A-6
return unit names for a device class A-3, A-12
specify subpool for returned storage A-2, A-11

IEFEB4UV routine A-3
input and output A-3

data structure A-4
FLAGS parameter field A-3

parameter list required A-3
purpose A-1
requesting multiple functions A-13

update a permanent object on DASD 16-17
update a temporary object 16-16

X-22 OS/390 V2R8.0 MVS Assembler Services Guide

UPDTMPB macro 21-17
use an entry to an access list

example 14-9
use count 4-23
use count for a loaded module 4-27
use data spaces efficiently 15-23
use of data space and hiperspace 15-3
user list 13-6, 13-15, 13-18

use
access 13-8
identify 13-7
map 13-10
reset 13-18
savelist 13-17

V
V-type address constant

use to pass control 4-10
V=R (virtual=central) storage

allocation 18-1
VERBEXIT DAEDATA subcommand

indicating why dump was not suppressed 9-8
verification

device A-1
version record

format 21-4
VFPM parameter list

format and content B-4
notes B-4

virtual fetch service
build function B-1
BUILD request B-1, B-5
considerations when using B-2
defined B-1
description B-1
dumping the managed modules B-4
find function B-2
FIND request B-1
functions B-1
get function B-2
GET request B-1
parameter list B-2
programming considerations B-4

for a BUILD request B-5
for a FIND request B-5
for a GET request B-5
parameters B-4
programming conventions B-4

requesting dumps B-4
starting virtual fetch B-1

using a cataloged procedure B-1
VFPM parameter list B-2
VIO data set B-1

virtual storage
controlling 11-6

virtual storage (continued)
explicit requests for 11-1
freeing 11-13
implicit requests for 11-11
loading 18-2, 18-3
obtaining via CPOOL 11-6
page-ahead function 18-3
paging out 18-3
releasing 18-1, 18-2
sharing with IARVSERV macro 19-1
specifying the amount allocated to a task 11-1
subpool 11-6
using efficiently 11-1

virtual storage window 13-1, 13-5
VRADATA macro

to customize dump suppression 9-6
using in a recovery environment 8-14

VSL (virtual subarea list) 18-4
VSM (virtual storage management) 11-1, 11-14

W
wait

bit 6-2
condition 6-2
long 6-3

WAIT macro
use 6-2

ways that window services can map an object 16-3
window

affect of terminating access to an object 16-19
blocks to be viewed, identifying 16-13
changing a view in a window 16-17
changing the view, overview 16-9
data to be viewed, identifying 16-13
defining>

multiple windows 16-14
window disposition 16-12
window reference pattern 16-12
window, overview 16-8
windows with overlapping view 16-15

definition 16-1
identifying a window 16-11
identifying blocks to be viewed 16-13
mappping

multiple objects, example 16-5
to a window, example 16-3
to multiple windows, example 16-5

refreshing a window 16-16
REPLACE option 16-12
RETAIN option 16-12
size 16-11
storage for 16-11
terminating a view in a window 16-17
updating a permanent object from a window 16-17
use 16-1

 Index X-23

window service
introduction 16-1
overview 16-1
use 16-8

window services
functions provided 16-2
overview 16-1
services provided 16-2
using window services 16-8
ways to map an object 16-3

work area
used by data compression service 22-1
used by data expansion service 22-1

write
to the operator with reply 20-5
to the operator without reply 20-8
to the programmer 20-10
to the system log 20-11

write connection
IXGCONN service

IMPORTCONNECT parameter 26-26
WRITE macro 24-3
write message 20-5
write operation

for standard hiperspace 15-29
write programs in AR mode 14-5
write to a standard hiperspace 15-30, 15-35
writing

to a log stream 26-32
WTL macro

writing to the system log 20-11
WTO macro

descriptor code for 20-7
example 20-8
MLWTO (multiple-line) form 20-6
single-line form 20-6
use 20-5

WTOR macro
example 20-9
use 20-5

X
X-macro

definition 14-11
rules for using 14-11

XCTL macro
addressing mode consideration 4-16
lowering the responsibility count 11-13
use 4-16, 4-26, 4-27
use with branch instructions, danger 4-27

XCTLX macro
use 4-26, 4-27

X-24 OS/390 V2R8.0 MVS Assembler Services Guide

Communicating Your Comments to IBM

OS/390
MVS Programming: Assembler Services
Guide

Publication No. GC28-1762-06

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

1-(914)-432-9405

� If you prefer to send comments electronically, use this network ID:

mhvrcfs@us.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

OS/390
MVS Programming: Assembler Services
Guide

Publication No. GC28-1762-06

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
GC28-1762-06 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

GC28-1762-06

IBM

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC28-1762-ð6

	Contents
	Figures
	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information

	Summary of Changes
	Chapter 1. Introduction
	Chapter 2. Linkage Conventions
	Saving the Calling Program's Registers
	Caller-Provided Save Area
	Linkage Convention for Floating Point Registers
	Linkage Convention for the Floating Point Control Register
	System-Provided Linkage Stack

	Using the Linkage Stack
	Example of Using the Linkage Stack

	Using a Caller-Provided Save Area
	Example of Using the Caller-Provided Save Area

	Establishing a Base Register
	Linkage Procedures for Primary Mode Programs
	Primary Mode Programs Receiving Control
	Primary Mode Programs Returning Control
	Primary Mode Programs Calling Another Program

	Linkage Procedures for AR Mode Programs
	AR Mode Programs Receiving Control
	AR Mode Programs Returning Control
	AR Mode Programs Calling Another Program

	Conventions for Passing Information Through a Parameter List
	Program in Primary Mode
	Programs in AR Mode

	Chapter 3. Subtask Creation and Control
	Creating the Task
	Priorities
	Address Space Priority
	Task Priority
	Subtask Priority
	Assigning and Changing Priority

	Stopping and Restarting a Subtask (STATUS Macro)
	Task and Subtask Communications

	Chapter 4. Program Management
	Residency and Addressing Mode of Programs
	Residency Mode Definitions
	Addressing Mode Definitions

	Linkage Considerations
	Floating Point Considerations
	Passing Control Between Programs with the Same AMODE
	Passing Control Between Programs with Different AMODEs
	Passing Control Between Programs with All Registers Intact
	Defining the Entry Characteristics of the Target Routine
	Freeing Dynamic Storage Associated with the Caller

	Load Module Structure Types
	Simple Structure
	Dynamic Structure

	Load Module Execution
	Passing Control in a Simple Structure
	Passing Control without Return
	Preparing to Pass Control
	Passing Control

	Passing Control with Return
	Preparing to Pass Control
	Passing Control
	Analyzing the Return
	How Control is Returned
	Return to the Control Program

	Passing Control in a Dynamic Structure
	Bringing the Load Module into Virtual Storage
	Location of the Load Module
	The Search for the Load Module
	Using an Existing Copy
	Using the LOAD Macro

	Passing Control with Return
	Using the LINK or LINKX Macro
	Using CALL or Branch and Link
	How Control is Returned

	Passing Control without Return
	Passing Control Using a Branch Instruction
	Using the XCTL or XCTLX Macro

	APF-authorized Programs and Libraries
	Additional Entry Points
	Entry Point and Calling Sequence Identifiers as Debugging Aids
	Retrieving Information About Loaded Modules
	Using the CSVINFO Macro
	Serialization

	Coding a MIPR for the CSVINFO Macro
	Installing the MIPR
	MIPR Environment
	Recovery for MIPR Provided by CSVINFO
	Entry Specifications
	Registers at Entry
	Return Specifications
	Registers at Exit
	CSVINFO Service Coding Example

	Using CSVRTLS to Request Run-Time Library Services (RTLS)

	Chapter 5. Understanding 31-Bit Addressing
	Virtual Storage
	Addressing Mode and Residency Mode
	Requirements for Execution in 31-Bit Addressing Mode
	Rules and Conventions for 31-Bit Addressing
	Mode Sensitive Instructions
	BAL and BALR

	Branching Instructions
	Use of 31-Bit Addressing

	Planning for 31-Bit Addressing
	Converting Existing Programs
	Writing New Programs That Use 31-Bit Addressing
	New Programs Below 16 Megabytes
	New Programs Above 16 Megabytes

	Writing Programs for MVS/370 and MVS Systems with 31-Bit Addressing
	SPLEVEL Macro
	Dual Programs

	Addressing Mode and Residency Mode
	Addressing Mode - AMODE
	Residency Mode - RMODE
	AMODE and RMODE Combinations
	AMODE and RMODE Combinations at Execution Time
	Determining the AMODE and RMODE of a Load Module
	Assembler H Support of AMODE and RMODE
	AMODE and RMODE in the Object Module
	AMODE and RMODE Assembler Instructions

	DFP Linkage Editor Support of AMODE and RMODE
	Linkage Editor RMODE Processing

	DFP Loader Support for AMODE and RMODE
	MVS Support of AMODE and RMODE
	How to Change Addressing Mode

	Establishing Linkage
	Using the BASSM and BSM Instructions
	Calling and Returning with BASSM and BSM

	Using Pointer-Defined Linkage
	Using an ADCON to Obtain a Pointer-Defined Value
	Using the LOAD Macro to Obtain a Pointer-Defined Value

	Using Supervisor-Assisted Linkage
	Linkage Assist Routines
	Example of Using a Linkage Assist Routine

	Using Capping - Linkage Using a Prologue and Epilogue

	Performing I/O in 31-Bit Addressing Mode
	Using the EXCP Macro
	Using EXCPVR
	Example of Performing I/O While Residing Above 16 Megabytes

	Understanding the Use of Central Storage
	Central Storage Considerations for User Programs
	Load Real Address (LRA) Instruction
	GETMAIN Macro
	DAT-Off Routines

	Chapter 6. Resource Control
	Synchronizing Tasks (WAIT, POST, and EVENTS Macros)
	Synchronizing Tasks (Pause, Release, and Transfer)
	Pause Elements and Pause Element Tokens
	Using the Services

	Serializing Access to Resources (ENQ and DEQ Macros)
	Naming the Resource
	Defining the Scope of a Resource
	Local and Global Resources

	Requesting Exclusive or Shared Control
	Limiting Concurrent Requests for Resources
	Processing the Requests
	Duplicate Requests for a Resource
	Releasing the Resource
	Conditional and Unconditional Requests
	Avoiding Interlock

	Serializing Access to Resources through the RESERVE Macro

	Collecting Information about Resources and Their Requestors (GQSCAN Macro)
	How GQSCAN Returns Resource Information
	How Area Size Determines the Information GQSCAN Returns
	How Scope and Token Values Determine the Information GQSCAN Returns

	Chapter 7. Program Interruption Services
	Specifying User Exit Routines
	Using the SPIE Macro
	Program Interruption Control Area
	Program Interruption Element

	Using the ESPIE Macro
	The Extended Program Interruption Element (EPIE)

	Environment Upon Entry to User's Exit Routine
	Functions Performed in User Exit Routines

	Chapter 8. Providing Recovery
	Understanding General Recovery Concepts
	Deciding Whether to Provide Recovery
	Understanding Errors in MVS
	Understanding Recovery Routine States
	Understanding the Various Routines in a Recovery Environment
	Mainline Routine
	Recovery Routine
	Retry Routine

	Choosing the Appropriate Recovery Routine
	Floating Point Implications
	Summary of Recovery Routine States

	Understanding Recovery Routine Options
	Understanding How Routines in a Recovery Environment Interact

	Writing Recovery Routines
	Understanding What Recovery Routines Do
	Saving the Return Address to the System
	Checking for the SDWA
	Establishing Addressability to the Parameter Area
	Checking Important Fields in the SDWA
	Checking the Contents of the Parameter Area
	Saving Serviceability Data
	Requesting a Dump
	Correcting or Minimizing the Error
	Deciding to Retry or Percolate

	Understanding the Means of Communication
	Setting Up, Passing, and Accessing the Parameter Area
	Using the SDWA

	Special Considerations for ESTAE-Type Recovery Routines
	RB Considerations
	Linkage Stack Considerations
	Outstanding I/Os at the Time of Failure
	Additional Considerations Specific to ESTAE-Type Recovery Routines

	Understanding the Recovery Environment
	Register Contents
	Register Contents on Entry to a Recovery Routine
	Register Contents on Return from a Recovery Routine
	Register Contents on Entry to a Retry Routine

	Other Environmental Factors in Recovery
	Environment on Entry to an ESTAE-Type Recovery Routine
	Environment on Entry to a Retry Routine from an ESTAE-Type Recovery Routine
	Summary of Environment on Entry to an ESTAE-Type Recovery Routine and Its Retry Routine
	Linkage Stack at Time of Retry

	Understanding Recovery through a Coded Example
	Understanding Advanced Recovery Topics
	Invoking RTM (ABEND Macro)
	Providing Multiple Recovery Routines
	Providing Recovery for Recovery Routines
	Providing Recovery for Multitasking Programs

	Using STAE/STAI Routines.

	Chapter 9. Dumping Virtual Storage (ABEND, SNAPX, SNAP, and IEATDUMP Macros)
	ABEND Dumps
	Obtaining a Symptom Dump
	Suppressing Dumps That Duplicate Previous Dumps
	Symptoms Provided by a Recovery Routine
	When a Dump is Not Suppressed

	SNAP Dumps
	Finding Information in a SNAP Dump
	Obtaining a Summary Dump for an ABEND or SNAP Dump

	Transaction Dumps

	Chapter 10. Reporting Symptom Records (SYMRBLD and SYMREC Macros)
	Writing Symptom Records to Logrec Data Set
	The Format of the Symptom Record
	Symptom Strings — SDB Format

	Building a Symptom Record Using the SYMRBLD Macro
	Building a Symptom Record Using the ADSR and SYMREC Macros
	Programming Notes for Section 1
	Programming Notes for Section 2
	Programming Notes for Section 2.1
	Programming Notes for Section 3
	Programming Notes for Section 4
	Programming Notes for Section 5

	Chapter 11. Virtual Storage Management
	Explicit Requests for Virtual Storage
	Obtaining Storage Through the GETMAIN Macro
	Obtaining Storage Through the STORAGE Macro
	Releasing Storage Through the FREEMAIN and STORAGE Macros

	Using the CPOOL Macro
	Subpool Handling

	Implicit Requests for Virtual Storage
	Reenterable Load Modules
	Reenterable Macros
	Non-reenterable Load Modules
	Freeing of Virtual Storage

	Chapter 12. Callable Cell Pool Services
	Comparison of CPOOL Macro and Callable Cell Pool Services
	Storage Considerations
	Link-editing Callable Cell Pool Services

	Using Callable Cell Pool Services
	Handling Return Codes
	Callable Cell Pool Services Coding Example

	Chapter 13. Data-in-Virtual
	When to Use Data-in-Virtual
	Factors Affecting Performance
	Creating a Linear Data Set

	Using the Services of Data-in-Virtual
	Identify
	Access
	Map
	Save, Savelist, and Reset
	Unmap
	Unaccess
	Unidentify

	The IDENTIFY Service
	The ACCESS Service
	The MAP Service
	The SAVE Service
	The SAVELIST Service
	The RESET Service
	Effect of RETAIN mode on RESET

	The UNMAP Service
	The UNACCESS and UNIDENTIFY Services
	Sharing Data in an Object
	Miscellaneous Restrictions for Using Data-in-Virtual
	DIV Macro Programming Examples
	General Program Description
	Data-in-Virtual Sample Program Code
	Data-in-Virtual Sample Program Code (continued)
	Data-in-Virtual Sample Program Code (continued)
	Data-in-Virtual Sample Program Code (continued)
	Data-in-Virtual Sample Program Code (continued)

	Executing the Program

	Chapter 14. Using Access Registers
	Access Lists
	Types of Access Lists

	Writing Programs in AR Mode
	Coding Instructions in AR Mode
	Manipulating the Contents of ARs
	Loading an ALET into an AR
	Loading the Value of Zero into an AR

	The ALESERV Macro
	Adding an Entry to an Access List
	Deleting an Entry from an Access List

	Issuing MVS Macros in AR Mode
	Example of Using SYSSTATE
	Using X-Macros

	Formatting and Displaying AR Information

	Chapter 15. Data Spaces and Hiperspaces
	What are Data Spaces and Hiperspaces?
	What Can a Program Do With a Data Space or a Hiperspace?
	How Does a Program Obtain a Data Space and a Hiperspace?
	How Does a Program Move Data into a Data Space or Hiperspace?
	Who Owns a Data Space or Hiperspace?
	Can an Installation Limit the Use of Data Spaces and Hiperspaces?
	How Does a Program Manage the Storage in a Data Space or Hiperspace?

	Differences Between Data Spaces and Hiperspaces
	Comparing Data Space and Hiperspace Use of Physical Storage

	Which One Should Your Program Use?
	An Example of Using a Data Space
	An Example of Using a Hiperspace

	Creating and Using Data Spaces
	Manipulating Data in a Data Space
	Rules for Creating, Deleting, and Managing Data Spaces
	Creating a Data Space
	Choosing the Name of a Data Space
	Specifying the Size of a Data Space
	Identifying the Origin of a Data Space
	Example of Creating a Data Space

	Establishing Addressability to a Data Space
	Examples of Moving Data into and out of a Data Space
	Extending the Current Size of a Data Space
	Releasing Data Space Storage
	Paging Data Space Storage Areas into and out of Central Storage
	Deleting a Data Space
	Using Callable Cell Pool Services to Manage Data Space Areas
	Sharing Data Spaces among Problem-State Programs with PSW Keys 8 - F
	Sharing Data Spaces through the PASN-AL
	Example of Mapping a Data-in-Virtual Object to a Data Space
	Mapping a Data-in-Virtual Object to a Data Space

	Using Data Spaces Efficiently
	Example of Creating, Using, and Deleting a Data Space
	Dumping Storage in a Data Space

	Using Checkpoint/Restart
	Creating and Using Hiperspaces
	Standard Hiperspaces
	Shared and Non-shared Standard Hiperspaces

	Creating a Hiperspace
	Example of Creating a Standard Hiperspace

	Transferring Data To and From Hiperspaces
	Read and Write Operations for Standard Hiperspaces
	Obtaining Additional HSPSERV Performance

	Extending the Current Size of a Hiperspace
	Releasing Hiperspace Storage
	Deleting a Hiperspace
	Example of Creating a Standard Hiperspace and Using It
	Using Data-in-Virtual with Hiperspaces
	Mapping a Data-in-Virtual Object to a Hiperspace
	Using a Hiperspace as a Data-in-Virtual Object

	Using Checkpoint/Restart

	Chapter 16. Window Services
	Data Objects
	Permanent
	Temporary Data Objects
	Structure of a Data Object
	What Does Window Services Provide?
	The Ways That Window Services Can Map an Object
	Example 1 — Mapping a Permanent Object that has no Scroll Area
	Example 2 — Mapping a Permanent Object that has a Scroll Area
	Example 3 — Mapping a Temporary Object
	Example 4 — Mapping Multiple Windows to an Object
	Example 5 — Mapping Multiple Objects

	Access to Permanent Data Objects
	Access to Temporary Data Objects

	Using Window Services
	Obtaining Access to a Data Object
	Identifying the Object
	Specifying the Object's Size
	Specifying the Type of Access
	Obtaining a Scroll Area

	Defining a View of a Data Object
	Identifying the Data Object
	Identifying a Window
	Defining the Disposition of a Window's Contents

	Defining the Expected Reference Pattern
	Identifying the Blocks You Want to View
	Extending the Size of a Data Object

	Defining Multiple Views of an Object
	Non-Overlapping Views
	Overlapping Views

	Saving Interim Changes to a Permanent Data Object
	Updating a Temporary Data Object
	Refreshing Changed Data
	Updating a Permanent Object on DASD
	When There is a Scroll Area
	When There is No Scroll Area

	Changing a View in a Window
	Terminating Access to a Data Object
	Link-editing Callable Window Services

	Window Services Coding Example

	Chapter 17. Sharing Application Data (Name/Token Callable Services)
	Understanding Name/Token Pairs and Levels
	Name/Token Pairs
	Levels for Name/Token Pairs
	Determining What Your Program Can Do with Name/Token Pairs

	Deciding What Name/Token Level You Need
	Task-Level Name/Token Pair
	Home-Level Name/Token Pair

	Owning and Deleting Name/Token Pairs
	Using Checkpoint/Restart with Name/Token Pairs
	Link-Editing Name/Token Services

	Chapter 18. Processor Storage Management
	Freeing Virtual Storage
	Releasing Storage
	Protecting a Range of Virtual Storage Pages
	Loading/Paging Out Virtual Storage Areas
	Virtual Subarea List (VSL)
	Page Service List (PSL)
	Defining the Reference Pattern (REFPAT)
	How Does the System Handle the Data in an Array?
	What Pages Does the System Bring in When a Gap Exists?

	Using the REFPAT Macro
	Identifying the Data Area and Direction of Reference
	Defining the Reference Pattern
	Choosing the Number of Bytes on a Page Fault

	Examples of Using REFPAT to Define a Reference Pattern
	Removing the Definition of the Reference Pattern

	Chapter 19. Sharing Data in Virtual Storage (IARVSERV Macro)
	Understanding the Concepts of Sharing Data with IARVSERV
	Storage You Can Use with IARVSERV
	Obtaining Storage for the Source and Target
	Defining Storage for Sharing Data and Access
	Changing Storage Access
	How to Share and Unshare Data
	Accessing Data in a Sharing Group
	Example of Sharing Storage with IARVSERV
	Use with Data-in-Virtual (DIV Macro)
	Diagnosing Problems with Shared Data
	Converting a Central to Virtual Storage Address (IARR2V Macro)

	Chapter 20. Timing and Communication
	Checking for Timer Synchronization
	Obtaining Time of Day and Date
	Converting Between Time of Day and Date and TOD Clock Formats
	Interval Timing
	Obtaining Accumulated Processor Time
	Writing and Deleting Messages (WTO, WTOR, DOM, and WTL)
	Routing the Message
	Altering Message Text

	Writing a Multiple-Line Message
	Embedding Label Lines in a Multiple-Line Message

	Communicating in a Sysplex Environment
	Writing to the Programmer
	Writing to the System Log
	Deleting Messages Already Written

	Retrieving Console Information (CONVCON Macro)
	Determining the Name or ID of a Console
	Validating a Console Name or ID and Checking if a Console Is Active
	Validating a Console Area ID

	Chapter 21. Translating Messages
	Allocating Data Sets for an Application
	Creating Install Message Files
	Creating a Version Record
	Creating Message Skeletons
	Message Skeleton Format
	Message Text in a Skeleton

	Validating Message Skeletons
	Allocating Storage for Validation Run-Time Message Files
	Compiling Message Files
	Invoking the Message Compiler

	Checking the Message Compiler Return Codes

	Updating the System Run-Time Message Files
	Using MMS Translation Services in an Application
	Determining which Languages are Available (QRYLANG Macro)
	Retrieving Translated Messages (TRANMSG Macro)
	Example of Displaying Messages

	Using Message Parameter Blocks for New Messages (BLDMPB and UPDTMPB Macros)
	Support for Additional Languages
	Example of an Application that Uses MMS Translation Services

	Chapter 22. Data Compression and Expansion Services
	Services Provided by CSRCESRV
	Running under an MVS/ESA System
	Using the MVS/ESA Version of the Services
	Using the MVS/XA Version of the Services

	Running under an MVS/XA System

	Services Provided by CSRCMPSC
	Compression and Expansion Dictionaries
	Building the CSRYCMPS Area
	Determining if the CSRCMPSC Macro Can Be Issued on a System
	Compression Processing
	Expansion Processing
	Dictionary Entries
	Compression Dictionary Entries
	Character Entry Generic Form (DSECT CMPSCDICT_CE)
	Character Entry CCT=0 (DSECT CMPSCDICT_CE)
	Character Entry CCT=1 (DSECT CMPSCDICT_CE)
	Character Entry CCT>1 (DSECT CMPSCDICT_CE)
	Alphabet Entries (DSECT CMPSCDICT_CE)
	Format 1 Sibling Descriptor (DSECT CMPSCDICT_SD)
	Expansion Dictionary Entries
	Unpreceded Entry (DSECT CMPSCDICT_UE)
	Preceded Entry (DSECT CMPSCDICT_PE)
	Sibling Descriptor Extension Entry (DSECT CMPSCDICT_SDE)
	Dictionary Restrictions
	Other Considerations
	Compression Dictionary Examples
	Example 1
	Example 2 for More than 5 Children
	Example 3 for Children with the Same Value
	Expansion Dictionary Example

	Chapter 23. Accessing Unit Control Blocks (UCBs)
	Detecting I/O Configuration Changes
	Scanning UCBs
	Obtaining UCB Information for a Specified Device
	Obtaining Eligible Device Table Information
	Using the EDTINFO Macro

	Chapter 24. The Internal Reader
	Setting Up and Using an Internal Reader
	Allocating the Internal Reader Data Set
	Opening the Internal Reader Data Set
	Sending Job Output to the Internal Reader
	Obtaining a Job Identifier

	Closing the Internal Reader Data Set

	Chapter 25. Using the Symbol Substitution Service
	What Are Symbols?
	Types of Symbols
	Examples of User Symbols

	Calling the ASASYMBM Service
	Setting Up the ASASYMBP Mapping Macro
	Providing a Symbol Table to ASASYMBM
	Setting Up the Symbol Table
	Rules for Entering Symbols in the Symbol Table

	Using Symbols in Programs
	Example 1
	Example 2
	Example 3
	Example 4

	Chapter 26. Using System Logger Services
	What is System Logger?
	The Log Stream
	Coupling Facility Log Stream
	DASD-Only Log Stream

	The System Logger Configuration
	The System Logger Component
	The LOGR Couple Data Set (LOGR Policy)
	Log Data on The Coupling Facility
	Log Data on DASD Log Data Sets
	Duplexing Log Data
	Duplexing Log Data on a Coupling Facility Log Stream
	Duplexing for a DASD-Only Log Stream

	Overview of System Logger Services
	Summary of System Logger Services
	Define Authorization to System Logger Resources
	Authorization for System Logger Application Programs

	Synchronous and Asynchronous Processing
	Coding a System Logger Complete Exit for IXGBRWSE, IXGWRITE, and IXGDELET
	Information Passed to the Complete Exit.
	Environment
	Input Specifications
	Programming Considerations

	How System Logger Handles Gaps in the Log Stream
	Dumping on Data Loss (804–type) Conditions
	Define a Log Stream to Allow Additional Dumping
	Define a Log Stream to Allow Additional Dumping Using LIKE
	Update a Log Stream to Allow Additional Dumping
	Connect to a Log Stream and Request Additional Dumping
	Browsing a Log Stream and Request Additional Dumping
	Deleting Log Data From a Log Stream and Request Additional Dumping

	Using the System Logger Answer Area (ANSAREA parameter)
	Using ENF Event Code 48 in System Logger Applications

	IXGINVNT: Managing the LOGR Policy
	Defining a Model Log Stream in the LOGR Couple Data Set
	Defining a Log Stream as DASD-Only
	Upgrading a Log Stream From DASD-Only to Coupling Facility

	IXGCONN: Connecting to and Disconnecting From a Log Stream
	Examples of Ways to Connect to the Log Stream
	Additional Considerations for Connecting to a DASD-Only Log Stream

	How System Logger Allocates Structure Space For a New Log Stream at Connection Time
	Connect Process and Staging Data Sets
	Requesting Authorization to the Log Stream for an Application
	Connecting as a Resource Manager
	Using ENF Event Code 48 With a Resource Manager

	Requesting a Write or Import Connection - IMPORTCONNECT parameter
	Specifying User Data for a Log Stream
	Using ENF Event 48 When a Connect Request is Rejected
	System Logger Processing at Disconnection
	Disconnection for an Application
	Last Disconnection for Log Stream on a System
	Last Disconnection for a System in the Sysplex

	Coding a Resource Manager Exit for IXGCONN
	Information Passed to the Resource Manager Exit.
	Environment
	Input Specifications
	Registers at Entry
	Return specification
	Programming Considerations
	Overriding Delete Requests
	When the Resource Manager Exit Hangs

	IXGWRITE: Writing to a Log Stream
	The Log Block Buffer
	Ensuring Chronological Sequence of Log Blocks
	When is Data Committed to the Log Stream?
	When the Log Stream Coupling Facility Storage Limit Is Reached
	When the Staging Data Set Storage Limit is Reached
	When the Staging Data Set is Formatting

	IXGBRWSE: Browsing/Reading a Log Stream
	IXGBRWSE Terminology
	IXGBRWSE Requests
	Browsing Both Active and Inactive Data
	Browsing for a Log Block by Time Stamp
	Using IXGBRWSE and IXGWRITE
	Using IXGBRWSE and IXGDELET Requests Together

	IXGDELET: Deleting Log Blocks from a Log Stream
	Using the BLOCKS parameter
	Delete Requests and Resource Manager Exit Processing

	IXGIMPRT: Import Log Blocks
	Making Sure Log Blocks are Imported in Sequence - Understanding Log Block Identifiers
	How Do I Know What the Length of the Control Information Is?
	Example: How Log Block Identifiers are Generated

	Making Sure Log Data is Safe to Import

	IXGQUERY: Get Information About a Log Stream
	The Safe Import Point: Using IXGQUERY and IXGIMPRT Together
	Coupling Facility Log Streams and the Safe Import Point
	DASD-Only Log Streams and the Safe Import Point

	The Coupling Facility List Structure Version Number
	Using the Coupling Facility Version Number

	IXGOFFLD: Initiate Offload to DASD Log Data Sets
	Managing a Target Log Stream: Using IXGIMPRT, IXGOFFLD, and IXGQUERY Together

	IXGUPDAT: Modify Log Stream Control Information
	Rebuilds and IXGUPDAT processing

	Setting Up the System Logger Configuration
	Writing an ENF Event 48 Listen Exit

	Reading Data From Log Streams in Data Set Format
	Is My Application Eligible for the LOGR Subsystem?
	Preparing to use the LOGR Subsystem

	Using the LOGR Subsystem
	JCL for the LOGR Subsystem

	When Things Go Wrong - Recovery Scenarios for System Logger
	When a System Logger Application Fails
	When an MVS System or Sysplex Fails
	Recovery Performed for DASD-Only Log Streams
	When the System Logger Address Space Fails
	When the Coupling Facility Structure Fails
	Damage to or Failure of the Coupling Facility Structure
	Loss of Connectivity to the Coupling Facility Structure
	A Coupling Facility Becomes Volatile

	When the Coupling Facility Space for a Log Stream Becomes Full
	When a Staging Data Set Becomes Full
	When a Log Stream is Damaged
	When DASD Log Data Set Space Fills
	When Unrecoverable DASD I/O Errors Occur
	When Unrecoverable DASD I/O Errors Occur During Offload
	When Staging Data Set Unrecoverable DASD I/O Errors Occur

	When A Resource Manager Fails

	Appendix A. Using the Unit Verification Service
	Functions of Unit Verification
	Check Groups - Function Code 0
	Check Units - Function Code 1
	Return Unit Name - Function Code 2
	Return Unit Control Block (UCB) Addresses - Function Code 3
	Return Group ID - Function Code 4
	Indicate Unit Name is a Look-up Value - Function Code 5
	Return Look-up Value - Function Code 6
	Convert Device Type to Look-up Value - Function Code 7
	Return Attributes - Function Code 8
	Specify Subpool for Returned Storage - Function Code 10
	Return Unit Names for a Device Class - Function Code 11
	Callers of IEFEB4UV
	Input to and Output from Unit Verification Service Routines
	Input Parameter List
	Input and Output Data Structures
	Register 15 if Request Fails
	Requesting Function Code 0 (Check Groups)
	Requesting Function Code 1 (Check Units)
	Requesting Function Code 2 (Return Unit Name)
	Requesting Function Code 3 (Return UCB Addresses)
	Requesting Function Code 4 (Return Group ID)
	Requesting Function Code 5 (Indicate Unit Name is a Look-up Value)
	Requesting Function Code 6 (Return Look-up Value)
	Requesting Function Code 7 (Convert Device Type to Look-up Value)
	Requesting Function Code 8 (Return Attributes)
	Requesting Function Code 10 (Specify Subpool for Returned Storage)
	Requesting Function Code 11 (Return Unit Names for a Device Class)
	Requesting Multiple Functions - Examples
	Example 1 - Function Codes 0 and 1
	Example 2 - Function Codes 3 and 10
	Example 3 - Function Codes 1 and 5

	Appendix B. Using the Virtual Fetch Service
	Functions of Virtual Fetch
	Considerations
	Programming Conventions for Using Virtual Fetch
	Requesting Dumps When Using Virtual Fetch
	Return Codes from the BUILD Request for Virtual Fetch
	Return Codes from the FIND Request for Virtual Fetch
	Return Codes from the GET Request for Virtual Fetch

	Appendix C. Notices
	Programming Interface Information
	Trademarks

	Index

