
DB2 Universal Database for z/OS

Utility Guide and Reference

Version 8

SC18-7427-05

���

DB2 Universal Database for z/OS

Utility Guide and Reference

Version 8

SC18-7427-05

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

901.

Sixth Edition, Softcopy Only (February 2008)

This edition applies to Version 8 of IBM DB2 Universal Database for z/OS (DB2 UDB for z/OS), product number

5625-DB2, and to any subsequent releases until otherwise indicated in new editions. Make sure you are using the

correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed

version by vertical bars. Additional changes made to this softcopy version of the book since the hardcopy book was

published are indicated by the hash (#) symbol in the left-hand margin. Editorial changes that have no technical

significance are not noted.

This and other books in the DB2 UDB for z/OS library are periodically updated with technical changes. These

updates are made available to licensees of the product on CD-ROM and on the Web (currently at

www.ibm.com/software/data/db2/zos/library.html). Check these resources to ensure that you are using the most

current information.

© Copyright International Business Machines Corporation 1983, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book . ix

Who should read this book . ix

Conventions and terminology used in this book . ix

How to read the syntax diagrams . xiii

Accessibility . xiv

How to send your comments . xiv

Summary of changes to this book . xvii

Part 1. Introduction . 1

Chapter 1. Basic information about the DB2 utilities 3

Types of DB2 utilities . 3

Privileges and authorization IDs . 3

Utilities that can be run on declared temporary objects . 4

The effect of utilities on objects that have the DEFINE NO attribute 4

The effect of utilities on encrypted data . 5

Chapter 2. DB2 utilities packaging . 7

SMP/E jobs for DB2 utility products . 7

The operation of DB2 utilities in a mixed-release data sharing environment 8

Part 2. DB2 online utilities . 11

Chapter 3. Invoking DB2 online utilities . 15

Creating utility control statements . 15

Data sets that online utilities use . 19

Required authorizations for invoking online utilities on tables that have multilevel security with row-level

granularity . 23

Using the DB2 Utilities panel in DB2I . 23

Using the DSNU CLIST command in TSO . 26

Using the supplied JCL procedure (DSNUPROC) . 33

Creating the JCL data set yourself by using the EXEC statement 36

Chapter 4. Monitoring and controlling online utilities 37

Monitoring utilities with the DISPLAY UTILITY command 37

Running utilities concurrently . 39

Running online utilities in a data sharing environment . 39

Terminating an online utility with the TERM UTILITY command 40

Restarting an online utility . 41

Chapter 5. BACKUP SYSTEM . 47

Syntax and options of the BACKUP SYSTEM control statement 48

Instructions for running BACKUP SYSTEM . 48

Concurrency and compatibility for BACKUP SYSTEM . 50

Sample BACKUP SYSTEM control statements . 51

Chapter 6. CATENFM . 53

Chapter 7. CATMAINT . 55

Chapter 8. CHECK DATA . 57

© Copyright IBM Corp. 1983, 2008 iii

##

||

|
||

||
||
||
||
||

||

Syntax and options of the CHECK DATA control statement 58

Instructions for running CHECK DATA . 63

Concurrency and compatibility for CHECK DATA . 72

Sample CHECK DATA control statements . 73

Chapter 9. CHECK INDEX . 77

Syntax and options of the CHECK INDEX control statement 78

Instructions for running CHECK INDEX . 81

Concurrency and compatibility for CHECK INDEX . 90

Sample CHECK INDEX control statements . 91

Chapter 10. CHECK LOB . 95

Syntax and options of the CHECK LOB control statement . 96

Instructions for running CHECK LOB . 97

Concurrency and compatibility for CHECK LOB . 100

Sample CHECK LOB control statements . 100

Chapter 11. COPY . 101

Syntax and options of the COPY control statement . 102

Instructions for running COPY . 112

Concurrency and compatibility for COPY . 126

Sample COPY control statements . 128

Chapter 12. COPYTOCOPY . 141

Syntax and options of the COPYTOCOPY control statement 142

Instructions for running COPYTOCOPY . 147

Concurrency and compatibility for COPYTOCOPY . 153

Sample COPYTOCOPY control statements . 154

Chapter 13. DIAGNOSE . 159

Syntax and options of the DIAGNOSE control statement . 159

Instructions for running DIAGNOSE . 163

Concurrency and compatibility for DIAGNOSE . 164

Sample DIAGNOSE control statements . 164

Chapter 14. EXEC SQL . 167

Syntax and options of the EXEC SQL control statement . 167

Terminating or restarting EXEC SQL . 168

Concurrency and compatibility for EXEC SQL . 169

Sample EXEC SQL control statements . 169

Chapter 15. LISTDEF . 171

Syntax and options of the LISTDEF control statement . 171

Instructions for using LISTDEF . 179

Concurrency and compatibility for LISTDEF . 185

Sample LISTDEF control statements . 186

Chapter 16. LOAD . 191

Syntax and options of the LOAD control statement . 193

Instructions for running LOAD . 231

Concurrency and compatibility for LOAD . 264

After running LOAD . 266

Effects of running LOAD . 270

Sample LOAD control statements . 271

Chapter 17. MERGECOPY . 285

Syntax and options of the MERGECOPY control statement 286

Instructions for running MERGECOPY . 288

Concurrency and compatibility for MERGECOPY . 292

iv Utility Guide and Reference

Sample MERGECOPY control statements . 292

Chapter 18. MODIFY RECOVERY . 295

Syntax and options of the MODIFY RECOVERY control statement 296

Instructions for running MODIFY RECOVERY . 298

Concurrency and compatibility for MODIFY RECOVERY . 301

The effect of MODIFY RECOVERY on version numbers . 301

Sample MODIFY RECOVERY control statements . 302

Chapter 19. MODIFY STATISTICS . 305

Syntax and options of the MODIFY STATISTICS control statement 306

Instructions for running MODIFY STATISTICS . 308

Concurrency and compatibility for MODIFY STATISTICS . 309

Sample MODIFY STATISTICS control statements . 310

Chapter 20. OPTIONS . 313

Syntax and options of the OPTIONS control statement . 313

Instructions for using OPTIONS . 316

Concurrency and compatibility for OPTIONS . 317

Sample OPTIONS control statements . 317

Chapter 21. QUIESCE . 321

Syntax and options of the QUIESCE control statement . 322

Instructions for running QUIESCE . 323

Concurrency and compatibility for QUIESCE . 326

Sample QUIESCE control statements . 327

Chapter 22. REBUILD INDEX . 331

Syntax and options of the REBUILD INDEX control statement 331

Instructions for running REBUILD INDEX . 337

Concurrency and compatibility for REBUILD INDEX . 345

The effect of REBUILD INDEX on index version numbers 346

Sample REBUILD INDEX control statements . 347

Chapter 23. RECOVER . 351

Syntax and options of the RECOVER control statement . 352

Instructions for running RECOVER . 359

Terminating or restarting RECOVER . 380

Concurrency and compatibility for RECOVER . 380

Effects of running RECOVER . 382

Sample RECOVER control statements . 382

Chapter 24. REORG INDEX . 385

Syntax and options of the REORG INDEX control statement 386

Instructions for running REORG INDEX . 398

Concurrency and compatibility for REORG INDEX . 409

Reviewing REORG INDEX output . 410

The effect of REORG INDEX on index version numbers . 411

Sample REORG INDEX control statements . 411

Chapter 25. REORG TABLESPACE . 413

Syntax and options of the REORG TABLESPACE control statement 416

Instructions for running REORG TABLESPACE . 445

Concurrency and compatibility for REORG TABLESPACE 475

Reviewing REORG TABLESPACE output . 479

After running REORG TABLESPACE . 479

Effects of running REORG TABLESPACE . 480

Sample REORG TABLESPACE control statements . 481

Contents v

||

||

Chapter 26. REPAIR . 493

Syntax and options of the REPAIR control statement . 494

Instructions for running REPAIR . 508

Concurrency and compatibility for REPAIR . 513

Reviewing REPAIR output . 515

After running REPAIR . 516

Sample REPAIR control statements . 516

Chapter 27. REPORT . 519

Syntax and options of the REPORT control statement . 520

Instructions for running REPORT . 524

Concurrency and compatibility for REPORT . 527

Reviewing REPORT output . 527

Sample REPORT control statements . 534

Chapter 28. RESTORE SYSTEM . 539

Syntax and options of the RESTORE SYSTEM control statement 540

Instructions for running RESTORE SYSTEM . 540

Concurrency and compatibility for RESTORE SYSTEM . 542

After running RESTORE SYSTEM . 542

Sample RESTORE SYSTEM control statements . 542

Chapter 29. RUNSTATS . 545

Syntax and options of the RUNSTATS control statement . 546

Instructions for running RUNSTATS . 558

Concurrency and compatibility for RUNSTATS . 564

Reviewing RUNSTATS output . 565

After running RUNSTATS . 576

Sample RUNSTATS control statements . 576

Chapter 30. STOSPACE . 581

Syntax and options of the STOSPACE control statement . 581

Instructions for running STOSPACE . 582

Concurrency and compatibility for STOSPACE . 585

Reviewing STOSPACE output . 585

Sample STOSPACE control statement . 585

Chapter 31. TEMPLATE . 587

Syntax and options of the TEMPLATE control statement . 587

Instructions for using TEMPLATE . 600

Concurrency and compatibility for TEMPLATE . 603

Sample TEMPLATE control statements . 603

Chapter 32. UNLOAD . 607

Syntax and options of the UNLOAD control statement . 608

Instructions for running UNLOAD . 641

Concurrency and compatibility for UNLOAD . 654

Sample UNLOAD control statements . 656

Part 3. DB2 stand-alone utilities . 663

Chapter 33. Invoking stand-alone utilities . 665

Creating utility control statements . 665

Specifying options by using the JCL EXEC PARM parameter 665

Effects of invoking stand-alone utilities on tables that have multilevel security with row-level granularity . . . 666

Chapter 34. DSNJCNVB . 667

Before running DSNJCNVB . 667

vi Utility Guide and Reference

||
||
||
||
||
||

||

Running DSNJCNVB . 668

Sample DSNJCNVB control statement . 668

DSNJCNVB output . 668

Chapter 35. DSNJLOGF (preformat active log) 669

Before running DSNJLOGF . 669

Sample DSNJLOGF control statement . 669

DSNJLOGF output . 670

Chapter 36. DSNJU003 (change log inventory) 671

Syntax and options of the DSNJU003 control statement . 671

Before running DSNJU003 . 681

Using DSNJU003 to modify the BSDS . 683

Sample DSNJU003 control statements . 688

Chapter 37. DSNJU004 (print log map) . 691

Syntax and options of the DSNJU004 control statement . 691

Before running DSNJU004 . 692

Sample DSNJU004 control statement . 693

DSNJU004 (print log map) output . 693

Chapter 38. DSN1CHKR . 703

Syntax and options of the DSN1CHKR control statement . 703

Before running DSN1CHKR . 705

Sample DSN1CHKR control statements . 706

DSN1CHKR output . 709

Chapter 39. DSN1COMP . 711

Syntax and options of the DSN1COMP control statement . 711

Before running DSN1COMP . 713

Using DSN1COMP to estimate space savings from DB2 data compression 715

Sample DSN1COMP control statements . 717

DSN1COMP output . 719

Chapter 40. DSN1COPY . 721

Syntax and options of the DSN1COPY control statement . 722

Before running DSN1COPY . 727

Using DSN1COPY to copy data sets . 734

Sample DSN1COPY control statements . 737

DSN1COPY output . 739

Chapter 41. DSN1LOGP . 741

Syntax and options of the DSN1LOGP control statement . 742

Before running DSN1LOGP . 748

Using DSN1LOGP to format the contents of the recovery log 750

Sample DSN1LOGP control statements . 751

DSN1LOGP output . 753

Chapter 42. DSN1PRNT . 761

Syntax and options of the DSN1PRNT control statement . 762

Before running DSN1PRNT . 768

Sample DSN1PRNT control statements . 770

DSN1PRNT output . 771

Chapter 43. DSN1SDMP . 773

Syntax and options of the DSN1SDMP control statement . 773

Before running DSN1SDMP . 778

Using DSN1SDMP to force dumps and write trace records 779

Sample DSN1SDMP control statements . 780

Contents vii

DSN1SDMP output . 784

Part 4. Appendixes . 785

Appendix A. Limits in DB2 UDB for z/OS . 787

Appendix B. DB2-supplied stored procedures 793

Invoking utilities as a stored procedure (DSNUTILS) . 795

DSNUTILU stored procedure . 805

The Control Center table space and index information stored procedure (DSNACCQC) 808

The Control Center partition information stored procedure (DSNACCAV) 816

The DB2 real-time statistics stored procedure . 826

Appendix C. Advisory or restrictive states . 849

Auxiliary CHECK-pending status . 849

Auxiliary warning status . 850

CHECK-pending status . 850

COPY-pending status . 851

Group buffer pool RECOVER-pending status . 852

Informational COPY-pending status . 852

REBUILD-pending status . 852

RECOVER-pending status . 853

REFRESH-pending status . 854

REORG-pending status . 854

Restart-pending status . 855

Appendix D. Running the productivity-aid sample programs 857

Running DSNTIAUL . 858

Running DSNTIAD . 862

Running DSNTEP2 and DSNTEP4 . 864

Appendix E. Real-time statistics tables . 869

Setting up your system for real-time statistics . 869

Contents of the real-time statistics tables . 871

Operating with real-time statistics . 883

Appendix F. Delimited file format . 895

Restrictions . 896

Delimited data types . 896

Examples of delimited files . 897

Appendix G. How to use the DB2 library . 899

Notices . 901

Programming interface information . 902

Trademarks . 903

Glossary . 905

Bibliography . 939

Index .X-1

viii Utility Guide and Reference

||

||
||
||
||

About this book

This book contains usage information for the tasks of system administration,

database administration, and operation. It presents detailed information about

using utilities, specifying syntax (including keyword and parameter descriptions),

and starting, stopping, and restarting utilities. This book also includes job control

language (JCL) and control statements for each utility.

Unless it is stated otherwise, this information assumes that DB2® is running in

new-function mode (as opposed to compatibility mode or enabling-new-function

mode).

Important

In this version of DB2 UDB for z/OS, the DB2 Utilities Suite is available as an

optional product. You must separately order and purchase a license to such

utilities, and discussion of those utility functions in this publication is not

intended to otherwise imply that you have a license to them. See Chapter 2,

“DB2 utilities packaging,” on page 7 for packaging details.

The DB2 Utilities Suite is designed to work with the DFSORT program, which

you are licensed to use in support of the DB2 utilities even if you do not

otherwise license DFSORT for general use. If your primary sort product is not

DFSORT, consider the following informational APARs mandatory reading:

v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES

v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.

Who should read this book

This book is intended for system administrators, database administrators, system

operators, and application programmers of DB2 online and stand-alone utilities.

Recommendation: Familiarize yourself with DB2 UDB for z/OS prior to using this

book.

Conventions and terminology used in this book

This section provides information about terms and conventions in this book.

Terminology and citations

In this information, DB2 Universal Database™ for z/OS® is referred to as "DB2

UDB for z/OS." In cases where the context makes the meaning clear, DB2 UDB for

z/OS is referred to as "DB2." When this information refers to titles of books in this

library, a short title is used. (For example, "See DB2 SQL Reference" is a citation to

IBM® DB2 Universal Database for z/OS SQL Reference.)

When referring to a DB2 product other than DB2 UDB for z/OS, this information

uses the product’s full name to avoid ambiguity.

© Copyright IBM Corp. 1983, 2008 ix

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON

Refers to any of the following products:

v IBM Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS

v IBM DB2 Performance Expert for Multiplatforms and Workgroups

v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language

Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS or CICS Transaction Server

for OS/390®.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is

equivalent to the Base Control Program (BCP) component of the z/OS

operating system.

RACF®

Represents the functions that are provided by the RACF component of the

z/OS Security Server.

Naming conventions used in this book

This section describes naming conventions that are unique to commands and

utilities.

When you use a parameter for an object that is created by SQL statements (for

example, tables, table spaces, and indexes), identify the object by following the

SQL syntactical naming conventions. See the description for naming conventions in

DB2 SQL Reference.

In this book, characters are classified as letters, digits, or special characters.

v A letter is any one of the uppercase characters A through Z (including the three

characters that are reserved in the United States as alphabetic extenders for

national languages, #, @, and $.).

v A digit is any one of the characters 0 through 9.

v A special character is any character other than a letter or a digit.

See Chapter 2 of DB2 SQL Reference for an additional explanation of long

identifiers, short identifiers, and location identifiers.

authorization-id

A short identifier of one to eight letters, digits, or the underscore that identifies

a set of privileges. An authorization ID must begin with a letter.

connection-name

An identifier of one to eight characters that identifies an address space

connection to DB2. A connection identifier is one of the following values:

v TSO (for DSN processes that run in TSO foreground).

v BATCH (for DSN processes that run in TSO batch).

v DB2CALL (for the call attachment facility (CAF)).

v The system identification name (for IMS and CICS processes).

x Utility Guide and Reference

#
#
#
#
#
#

See Part 4 (Volume 1) of DB2 Administration Guide for more information about

managing DB2 connections.

correlation-id

An identifier of 1 to 12 characters that identifies a process within an address

space connection. A correlation ID must begin with a letter.

 A correlation ID can be one of the following values:

v The TSO logon identifier (for DSN processes that run in TSO foreground

and for CAF processes).

v The job name (for DSN processes that run in TSO batch).

v The PST#.PSBNAME (for IMS processes).

v The entry identifier.thread_number.transaction_identifier (for CICS

processes).

See Part 4 (Volume 1) of DB2 Administration Guide for more information about

correlation IDs.

cursor-name

An identifier that designates a result set. Cursor names that are specified with

the EXEC SQL and LOAD utilities cannot be longer than eight characters.

database-name

A short identifier that identifies a database. The identifier must start with a

letter and must not include special characters.

data-set-name

An identifier of 1 to 44 characters that identifies a data set.

dbrm-member-name

An identifier of one to eight letters or digits that identifies a member of a

partitioned data set.

 A DBRM member name should not begin with DSN because of a potential

conflict with DB2-provided DBRM member names. If you specify a DBRM

member name that begins with DSN, DB2 issues a warning message.

dbrm-pds-name

An identifier of 1 to 44 characters that identifies a partitioned data set.

ddname

An identifier of one to eight characters that identifies the name of a DD

statement.

hexadecimal-constant

A sequence of digits or any of the letters from A to F (uppercase or lowercase).

hexadecimal-string

An X followed by a sequence of characters that begins and ends with the

string delimiter, an apostrophe. The characters between the string delimiters

must be a hexadecimal number.

index-name

A qualified or unqualified name that identifies an index.

 A qualified index name is a short identifier, followed by a period and a long

identifier. The short identifier is the authorization ID that owns the index.

An unqualified index name is a long identifier with an implicit qualifier. The

implicit qualifier is an authorization ID that is determined by the rules in

Chapter 2 of DB2 SQL Reference.

About this book xi

|
|
|

If the index name contains a blank, the name must be enclosed in quotation

marks when specified in a utility control statement.

location-name

A location identifier of 1 to 16 letters (but excluding the alphabetic extenders),

digits, or the underscore that identifies an instance of a database management

system. A location name must begin with a letter.

luname

An SQL short identifier of one to eight characters that identifies a logical unit

name. A LU name must begin with a letter.

member-name

An identifier of one to eight letters (including the three alphabetic extenders)

or digits that identifies a member of a partitioned data set.

 A member name should not begin with DSN because of a potential conflict

with DB2-provided member names. If you specify a member name that begins

with DSN, DB2 issues a warning message.

qualifier-name

An SQL short identifier of one to eight letters, digits, or the underscore that

identifies the implicit qualifier for unqualified table names, views, indexes, and

aliases.

string

A sequence of characters that begins and ends with an apostrophe.

subsystem-name

An identifier that specifies the DB2 subsystem as it is known to the operating

system.

table-name

A qualified or unqualified name that identifies a table.

 A fully qualified table name is a three-part name. The first part is a location

name that identifies the DBMS at which the table is stored. The second part is

the authorization ID that identifies the owner of the table. The third part is a

long identifier. A period must separate each of the parts.

A two-part table name is implicitly qualified by the location name of the

current server. The first part is the authorization ID that identifies the owner of

the table. The second part is an SQL long identifier. A period must separate the

two parts.

A one-part or unqualified table name is a long identifier with two implicit

qualifiers. The first implicit qualifier is the location name of the current server.

The second implicit qualifier is an authorization ID, which is determined by

the rules in Chapter 2 of DB2 SQL Reference.

If the table name contains a blank, the name must be enclosed in quotation

marks when specified in a utility control statement.

table-space-name

A short identifier that identifies a table space of an identified database. The

identifier must start with a letter and must not include special characters. If a

database is not identified, a table space name specifies a table space of

database DSNDB04.

utility-id

An identifier of 1 to 16 characters that uniquely identifies a utility process

xii Utility Guide and Reference

within DB2. A utility ID must begin with a letter. The remaining characters can

be uppercase and lowercase letters, numbers 0 through 9, and the following

characters: #, $, ., ¢, !, ¬, and @.

How to read the syntax diagrams

The following rules apply to the syntax diagrams that are used in this book:

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next

line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the

execution of the statement and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path and the

remaining choices are shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be

repeated.

About this book xiii

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can repeat the items in the

stack.

v Keywords appear in uppercase (for example, FROM). They must be spelled exactly

as shown. Variables appear in all lowercase letters (for example, column-name).

They represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products. The major accessibility

features in z/OS products, including DB2 UDB for z/OS, enable users to:

v Use assistive technologies such as screen reader and screen magnifier software

v Operate specific or equivalent features by using only a keyboard

v Customize display attributes such as color, contrast, and font size

Assistive technology products, such as screen readers, function with the DB2 UDB

for z/OS user interfaces. Consult the documentation for the assistive technology

products for specific information when you use assistive technology to access these

interfaces.

Online documentation for Version 8 of DB2 UDB for z/OS is available in the

Information management software for z/OS solutions information center, which is

an accessible format when used with assistive technologies such as screen reader

or screen magnifier software. The Information management software for z/OS

solutions information center is available at the following Web site:

http://publib.boulder.ibm.com/infocenter/dzichelp

How to send your comments

Your feedback helps IBM to provide quality information. Please send any

comments that you have about this book or other DB2 UDB for z/OS

documentation. You can use the following methods to provide comments:

v Send your comments by e-mail to db2zinfo@us.ibm.com and include the name

of the product, the version number of the product, and the number of the book.

If you are commenting on specific text, please list the location of the text (for

example, a chapter and section title or a help topic title).

v You can send comments from the Web. Visit the library Web site at:

www.ibm.com/software/db2zos/library.html

xiv Utility Guide and Reference

This Web site has a an online reader comment form that you can use to send

comments.

v You can also send comments by using the feedback link at the footer of each

page in the Information Management Software for z/OS Solutions Information

Center at http://publib.boulder.ibm.com/infocenter/db2zhelp.

About this book xv

xvi Utility Guide and Reference

Summary of changes to this book

DB2 UDB for z/OS, Version 8 includes several new online utilities. The new online

utilities and their corresponding utility control statements are described in the

following chapters:

 Chapter 5, “BACKUP SYSTEM,” on page 47

 Chapter 6, “CATENFM,” on page 53

 Chapter 28, “RESTORE SYSTEM,” on page 539

DB2 UDB for z/OS, Version 8 changes to online utilities are included in the

following chapters:

 Chapter 9, “CHECK INDEX,” on page 77

 Chapter 10, “CHECK LOB,” on page 95

 Chapter 11, “COPY,” on page 101

 Chapter 16, “LOAD,” on page 191

 Chapter 18, “MODIFY RECOVERY,” on page 295

 Chapter 22, “REBUILD INDEX,” on page 331

 Chapter 23, “RECOVER,” on page 351

 Chapter 24, “REORG INDEX,” on page 385

 Chapter 25, “REORG TABLESPACE,” on page 413

 Chapter 26, “REPAIR,” on page 493

 Chapter 27, “REPORT,” on page 519

 Chapter 29, “RUNSTATS,” on page 545

 Chapter 32, “UNLOAD,” on page 607

DB2 UDB for z/OS, Version 8 includes one new stand-alone utility, which is

described in the following chapter:

 Chapter 34, “DSNJCNVB,” on page 667

DB2 UDB for z/OS, Version 8 changes to stand-alone utilities are included in the

following chapters:

 Chapter 36, “DSNJU003 (change log inventory),” on page 671

 Chapter 37, “DSNJU004 (print log map),” on page 691

 Chapter 40, “DSN1COPY,” on page 721

 Chapter 42, “DSN1PRNT,” on page 761

The following appendix is new for DB2 UDB for z/OS, Version 8:

 Appendix F, “Delimited file format,” on page 895

The following appendixes have changed for DB2 UDB for z/OS, Version 8:

 Appendix A, “Limits in DB2 UDB for z/OS,” on page 787.

 Appendix B, “DB2-supplied stored procedures,” on page 793

 Appendix C, “Advisory or restrictive states,” on page 849

 Appendix D, “Running the productivity-aid sample programs,” on page 857

In addition, editorial changes have been made to the book.

All technical changes to the text are indicated by vertical bars (|) in the left

margin.

© Copyright IBM Corp. 1983, 2008 xvii

xviii Utility Guide and Reference

Part 1. Introduction

Chapter 1. Basic information about the DB2

utilities 3

Types of DB2 utilities 3

Description of online utilities 3

Description of stand-alone utilities 3

Privileges and authorization IDs 3

Utilities that can be run on declared temporary

objects 4

The effect of utilities on objects that have the

DEFINE NO attribute 4

The effect of utilities on encrypted data 5

Chapter 2. DB2 utilities packaging 7

SMP/E jobs for DB2 utility products 7

The operation of DB2 utilities in a mixed-release data

sharing environment 8

© Copyright IBM Corp. 1983, 2008 1

#
##

||

2 Utility Guide and Reference

Chapter 1. Basic information about the DB2 utilities

This chapter introduces the DB2 online and stand-alone utilities. This chapter also

explains the authorization rules for coding utility control statements and the data

sets that the utilities use.

The following topics provide additional information:

v “Types of DB2 utilities”

v “Privileges and authorization IDs ”

v “Utilities that can be run on declared temporary objects” on page 4

v “The effect of utilities on objects that have the DEFINE NO attribute” on page 4

v “The effect of utilities on encrypted data” on page 5

Types of DB2 utilities

The two types of DB2 utilities are online utilities and stand-alone utilities.

Description of online utilities

DB2 online utilities run as standard batch jobs or stored procedures, and they

require DB2 to be running. They do not run under control of the terminal monitor

program (TMP); they have their own attachment mechanisms. They invoke DB2

control facility services directly. See Chapter 3, “Invoking DB2 online utilities,” on

page 15 for information about the ways to run these utilities.

Description of stand-alone utilities

The stand-alone utilities run as batch jobs that are independent of DB2. The only

way to run these utilities is to use JCL. See the chapters on the individual utilities

in Chapter 33, “Invoking stand-alone utilities,” on page 665 for information about

the ways to run these utilities.

Privileges and authorization IDs

A command or a utility job can be issued by an individual user, by a program that

runs in batch mode, or by an IMS or CICS transaction. The term process describes

any of these initiators.

A process is represented to DB2 by a set of identifiers (IDs). What the process can

do with DB2 is determined by privileges and privileges that can be held by its

identifiers. The phrase ″privilege set of a process″ means the entire set of privileges

and authorities that can be used by the process in a specific situation.

Three types of identifiers exist: primary authorization IDs, secondary authorization

IDs, and SQL authorization IDs.

v Generally, the primary authorization ID identifies a specific process. For example,

in the process that is initiated through the TSO attachment facility, the primary

authorization ID is identical to the TSO logon ID. A trace record identifies the

process by that ID.

v Secondary authorization IDs, which are optional, can hold additional privileges

that are available to the process. A secondary authorization ID is often a

SecureWay Security Server Resource Access Control Facility (RACF) group ID.

© Copyright IBM Corp. 1983, 2008 3

For example, a process can belong to a RACF group that holds the LOAD

privilege on a particular database. Any member of the group can run the LOAD

utility to load table spaces in the database.

DB2 commands that are entered from a z/OS console are not associated with

any secondary authorization IDs.

v An SQL authorization ID (SQL ID) holds the privileges that are exercised when

issuing certain dynamic SQL statements. Generally, this book does not discuss

the SQL ID.

Within DB2, a process can be represented by a primary authorization ID and

possibly one or more secondary IDs. For detailed instructions on how to associate

a process with one or more IDs, and how to grant privileges to those IDs, see

information about processing connections and sign-ons in Part 3 (Volume 1) of DB2

Administration Guide.

An administrator can grant or revoke a privilege or authority for an identifier by

executing an SQL GRANT or a REVOKE statement. For the complete syntax of

those statements, see Chapter 5 of DB2 SQL Reference.

If you use the access control authorization exit routine, that exit routine might

control the authorization rules, rather than the exit routines that are documented

for each utility.

Utilities that can be run on declared temporary objects

You can run the following two utilities on declared temporary objects:

v You can use the REPAIR DBD utility on declared temporary tables, which must

be created in a database that is defined with the AS TEMP clause.

v You can use the STOSPACE utility on storage groups that have objects within

temporary databases.

No other DB2 utilities can be used on a declared temporary table, its indexes, or its

table spaces.

For detailed information about target object support, see the “Concurrency and

compatibility” section in each utility chapter.

The effect of utilities on objects that have the DEFINE NO attribute

With DB2 Version 7 or above, you can run certain online utilities on table spaces or

index spaces that were defined with the DEFINE NO attribute. When you specify

this attribute, the table space or index space is defined, but DB2 does not allocate

the associated data sets until a row is inserted or loaded into a table in that table

space. For more information about the DEFINE NO attribute, see DB2

Administration Guide.

You can populate table spaces whose data sets are not yet defined by using the

LOAD utility with either the RESUME keyword, the REPLACE keyword, or both.

Using LOAD to populate these table spaces results in the following actions:

1. DB2 allocates the data sets.

2. DB2 updates the SPACE column in the catalog table to show that data sets

exist.

3. DB2 loads the specified table space.

4 Utility Guide and Reference

#

#
#

For a partitioned table space, all partitions are allocated even if the LOAD utility is

loading only one partition. Avoid attempting to populate a partitioned table space

with concurrent LOAD PART jobs until after one of the jobs has caused all the data

sets to be created.

The following online utilities issue informational message DSNU185I when a table

space or index space with the DEFINE NO attribute is encountered. The object is

not processed.

v CHECK DATA

v CHECK INDEX

v COPY

v MERGECOPY

v MODIFY RECOVERY

v QUIESCE

v REBUILD INDEX

v RECOVER

v REORG INDEX

v REORG TABLESPACE

v REPAIR, but not REPAIR DBD

v RUNSTATS TABLESPACE INDEX(ALL)

1

v RUNSTATS INDEX

1

v UNLOAD

Notes:

1. RUNSTATS recognizes DEFINE NO objects and updates the catalog’s access

path statistics to reflect the empty objects.

Online utilities that encounter an undefined target object might issue informational

message DSNU185I, but processing continues.

You cannot use stand-alone utilities on objects whose data sets have not been

defined.

The effect of utilities on encrypted data

You can copy and recover encrypted data. You can also move encrypted data

between systems. Data remains encrypted throughout these processes.

However, running any of the following utilities on encrypted data might produce

unexpected results:

v CHECK DATA

v LOAD

v REBUILD INDEX

v REORG TABLESPACE

v REPAIR

v RUNSTATS

v UNLOAD

v DSN1PRNT

For more information about how each of these utilities processes encrypted data,

see the individual chapters for each utility.

Chapter 1. Basic information about the DB2 utilities 5

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|

|

|

|

|

|

|

|

|
|

6 Utility Guide and Reference

Chapter 2. DB2 utilities packaging

The following utilities are core utilities, which are included (at no extra charge)

with Version 8 of DB2 UDB for z/OS:

v CATENFM

v CATMAINT

v DIAGNOSE

v LISTDEF

v OPTIONS

v QUIESCE

v REPAIR

v REPORT

v TEMPLATE

v All DSN stand-alone utilities

All other utilities are available as a separate product called the DB2 Utilities Suite

(5655-K61, FMIDs JDB881K and JDB881M), which includes the following utilities:

v BACKUP SYSTEM

v CHECK DATA

v CHECK INDEX

v CHECK LOB

v COPY

v COPYTOCOPY

v EXEC SQL

v LOAD

v MERGECOPY

v MODIFY RECOVERY

v MODIFY STATISTICS

v REBUILD INDEX

v RECOVER

v REORG INDEX

v REORG TABLESPACE

v RESTORE SYSTEM

v RUNSTATS

v STOSPACE

v UNLOAD

All DB2 utilities operate on catalog, directory, and sample objects, without

requiring any additional products.

The following topics provide additional information:

v “SMP/E jobs for DB2 utility products”

v “The operation of DB2 utilities in a mixed-release data sharing environment” on

page 8

SMP/E jobs for DB2 utility products

To load the DB2 utility products, use System Modification Program Extended

(SMP/E). SMP/E processes the installation tapes or cartridges and creates DB2

distribution target libraries.

© Copyright IBM Corp. 1983, 2008 7

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DB2 provides several jobs that invoke SMP/E. These jobs are on the tape or

cartridge that you received with the utility product. The job prologues in these jobs

contain directions on how to tailor the job for your site. Follow these directions

carefully to ensure that your DB2 UDB for z/OS SMP/E process works correctly.

To copy the jobs from the tapes, submit the copy job that is listed in DB2 Program

Directory.

The SMP/E RECEIVE job, DSNRECVS, loads the DB2 Diagnostic and Recovery

Utilities program modules, macros, and procedures into temporary data sets

(SMPTLIBs). The SMP/E RECEIVE job, DSNRECVK, loads the DB2 Operational

Utilities program modules, macros, and procedures into temporary data sets

(SMPTLIBs). If these jobs fail or abnormally terminate, correct the problem and

rerun the jobs. Use job DSNRECV1, which is described in DB2 Installation Guide, as

a guide to help you with the RECEIVE job.

The SMP/E APPLY job, DSNAPPLS, copies and link-edits the program modules,

macros, and procedures for both the DB2 Diagnostic and Recovery Utilities and the

DB2 Operational Utilities into the DB2 target libraries. Use job DSNAPPL1, which

is described in DB2 Installation Guide, as a guide to help you with the APPLY job.

The SMP/E ACCEPT job, DSNACCPS, copies the program modules, macros, and

procedures for both the DB2 Diagnostic and Recovery Utilities and the DB2

Operational Utilities into the DB2 distribution libraries. Use job DSNACEP1, which

is described in DB2 Installation Guide, as a guide to help you with the ACCEPT job.

The operation of DB2 utilities in a mixed-release data sharing

environment

The utilities batch module, DSNUTILB, is split into multiple parts: a

release-independent module called DSNUTILB and multiple release-dependent

modules, DSNUT810 and the utility-dependent load modules that are listed in

Table 1. To operate in a mixed-release data sharing environment, you must have

the release-dependent modules from both releases and all applicable

utility-dependent modules available to the utility jobs that operate across the data

sharing group. The procedure for sharing utility modules is explained in Chapter 4

of DB2 Data Sharing: Planning and Administration. Use the information in Table 1

and the procedures that are outlined in Chapter 4 of DB2 Data Sharing: Planning

and Administration to implement a mixed-release data sharing environment.

With Version 7 and subsequent releases, each utility has separate load modules and

aliases. Table 1. lists the alias name and load module name or names for each

utility.

 Table 1. Relationship between utility names, aliases, and load modules

Utility name Alias name Load module name

BACKUP SYSTEM and

RESTORE SYSTEM

DSNU81AV DSNU8RLV

CATMAINT and CATENFM

1 DSNU81AA DSNU8CLA

CHECK DSNU81AB DSNU8RLB

COPY DSNU81AC DSNU8OLC or DSNU8RLC

COPYTOCOPY DSNU81AT DSNU8RLT

DIAGNOSE DSNU81AD DSNU8CLD

EXEC SQL DSNU81AU DSNU8OLU

8 Utility Guide and Reference

||

|||

|
|
||

|||

|||

|||

|||

|||

|||

Table 1. Relationship between utility names, aliases, and load modules (continued)

Utility name Alias name Load module name

LISTDEF DSNU81AE DSNU8CLE

LOAD DSNU81AF DSNU8OLF

MERGECOPY DSNU81AG DSNU8RLG

MODIFY RECOVERY and

MODIFY STATISTICS

DSNU81AH DSNU8RLH

OPTIONS DSNU81AI DSNU8CLI

QUIESCE DSNU81AJ DSNU8CLJ

REBUILD INDEX DSNU81AK DSNU8OLK or DSNU8RLK

RECOVER DSNU81AL DSNU8OLL or DSNU8RLL

REORG INDEX and REORG

TABLESPACE

DSNU81AM DSNU8OLM

REPAIR DSNU81AN DSNU8CLN

REPORT DSNU81AO DSNU8CLO

RUNSTATS DSNU81AP DSNU8OLP

STOSPACE DSNU81AQ DSNU8OLQ

TEMPLATE DSNU81AR DSNU8CLR

UNLOAD DSNU81AS DSNU8OLS

Note:

1 The code for CATENFM is in the load module for CATMAINT.

Chapter 2. DB2 utilities packaging 9

|

|||

|||

|||

|||

|
|
||

|||

|||

|||

|||

|
|
||

|||

|||

|||

|||

|||

|||

|
|

10 Utility Guide and Reference

Part 2. DB2 online utilities

Chapter 3. Invoking DB2 online utilities 15

Creating utility control statements 15

Control statement coding rules 16

Unicode character strings 17

Tips for using multi-byte character sets 17

Using the concatenation operator 18

Descriptions of utility options 18

Data sets that online utilities use 19

Data set concatenation 22

Controlling data set disposition 22

Preventing unauthorized access to data sets . . 23

Required authorizations for invoking online utilities

on tables that have multilevel security with

row-level granularity 23

Using the DB2 Utilities panel in DB2I 23

Using the DSNU CLIST command in TSO 26

DSNU CLIST command syntax 27

DSNU CLIST option descriptions 27

DSNU CLIST command output 31

Editing the generated JCL data set 32

Examples 32

Using the supplied JCL procedure (DSNUPROC) . . 33

DSNUPROC syntax 33

DSNUPROC option descriptions 33

Sample DSNUPROC listing 34

Creating the JCL data set yourself by using the

EXEC statement 36

Chapter 4. Monitoring and controlling online

utilities 37

Monitoring utilities with the DISPLAY UTILITY

command 37

Determining the status of a utility 37

Determining which utility phase is currently

executing 38

Determining why a utility failed to complete . . 38

Running utilities concurrently 39

Running online utilities in a data sharing

environment 39

Terminating an online utility with the TERM

UTILITY command 40

Restarting an online utility 41

Using the RESTART parameter 42

Adding or deleting utility statements 43

Modifying utility control statements 43

Restarting after the output data set is full . . . 43

Restarting with templates 43

Restarting with lists 44

Other restart hints 44

Chapter 5. BACKUP SYSTEM 47

Syntax and options of the BACKUP SYSTEM control

statement 48

Syntax diagram 48

Option descriptions 48

Instructions for running BACKUP SYSTEM 48

Before running BACKUP SYSTEM 49

Data sets that BACKUP SYSTEM uses 49

Creating the control statement 50

Instructions for specific tasks 50

Terminating or restarting BACKUP SYSTEM . . 50

Concurrency and compatibility for BACKUP

SYSTEM 50

Sample BACKUP SYSTEM control statements . . . 51

Chapter 6. CATENFM 53

Chapter 7. CATMAINT 55

Chapter 8. CHECK DATA 57

Syntax and options of the CHECK DATA control

statement 58

Syntax diagram 59

Option descriptions 59

Instructions for running CHECK DATA 63

Before running CHECK DATA 63

Data sets that CHECK DATA uses 67

Creating the control statement 68

Instructions for specific tasks 68

Terminating or restarting CHECK DATA . . . 71

Concurrency and compatibility for CHECK DATA 72

Sample CHECK DATA control statements 73

Chapter 9. CHECK INDEX 77

Syntax and options of the CHECK INDEX control

statement 78

Syntax diagram 78

Option descriptions 78

Instructions for running CHECK INDEX 81

Data sets that CHECK INDEX uses 81

Creating the control statement 84

Instructions for specific tasks 84

Terminating or restarting CHECK INDEX . . . 89

Concurrency and compatibility for CHECK INDEX 90

Sample CHECK INDEX control statements 91

Chapter 10. CHECK LOB 95

Syntax and options of the CHECK LOB control

statement 96

Syntax diagram 96

Option descriptions 96

Instructions for running CHECK LOB 97

Before running CHECK LOB 98

Data sets that CHECK LOB uses 98

Creating the control statement 98

Instructions for specific tasks 98

Terminating or restarting CHECK LOB 99

Concurrency and compatibility for CHECK LOB 100

Sample CHECK LOB control statements 100

Chapter 11. COPY 101

© Copyright IBM Corp. 1983, 2008 11

##
##
##

|
|
||

||
|
||
||
||
||

 | |
 | |
 | |
 | |
 | |
 |
 | |
 | |

 | |

Syntax and options of the COPY control statement 102

Syntax diagram 103

Option descriptions 105

Instructions for running COPY 112

Before running COPY 112

Data sets that COPY uses 112

Creating the control statement 114

Instructions for specific tasks 114

Terminating or restarting COPY 125

Concurrency and compatibility for COPY 126

Sample COPY control statements 128

Chapter 12. COPYTOCOPY 141

Syntax and options of the COPYTOCOPY control

statement 142

Syntax diagram 142

Option descriptions 144

Instructions for running COPYTOCOPY 147

Before running COPYTOCOPY 147

Data sets that COPYTOCOPY uses 147

Creating the control statement 149

Instructions for specific tasks 149

Terminating or restarting COPYTOCOPY . . . 152

Concurrency and compatibility for COPYTOCOPY 153

Sample COPYTOCOPY control statements 154

Chapter 13. DIAGNOSE 159

Syntax and options of the DIAGNOSE control

statement 159

Syntax diagram 159

Option descriptions 161

Instructions for running DIAGNOSE 163

Data sets that DIAGNOSE uses 163

Instructions for specific tasks: Forcing a utility

abend 164

Terminating or restarting DIAGNOSE 164

Concurrency and compatibility for DIAGNOSE . . 164

Sample DIAGNOSE control statements 164

Chapter 14. EXEC SQL 167

Syntax and options of the EXEC SQL control

statement 167

Syntax diagram 167

Option descriptions 168

Terminating or restarting EXEC SQL 168

Concurrency and compatibility for EXEC SQL . . 169

Sample EXEC SQL control statements 169

Chapter 15. LISTDEF 171

Syntax and options of the LISTDEF control

statement 171

Syntax diagram 172

Option descriptions 173

Instructions for using LISTDEF 179

Creating the control statement 179

Including objects in a list 179

Previewing the contents of a list 183

Creating LISTDEF libraries 183

Using lists in other utility jobs 183

Using the TEMPLATE utility with LISTDEF . . 185

Using the OPTIONS utility with LISTDEF . . . 185

Terminating or restarting LISTDEF 185

Concurrency and compatibility for LISTDEF . . . 185

Sample LISTDEF control statements 186

Chapter 16. LOAD 191

Syntax and options of the LOAD control statement 193

Syntax diagram 194

Option descriptions 196

INTO-TABLE-spec 210

Option descriptions for INTO TABLE 213

Instructions for running LOAD 231

Before running LOAD 231

Data sets that LOAD uses 232

Instructions for specific tasks 236

Terminating or restarting LOAD 261

Concurrency and compatibility for LOAD 264

After running LOAD 266

Copying the loaded table space or partition . . 266

Resetting COPY-pending status 266

Resetting REBUILD-pending status 267

Resetting the CHECK-pending status 267

Running CHECK INDEX after loading a table

that has indexes 269

Recovering a failed LOAD job 269

Reorganizing an auxiliary index after LOAD 269

Effects of running LOAD 270

The effect of LOAD on index version numbers 270

The effect of LOAD REPLACE on the control

interval 270

The effect of LOAD on SYSIBM.SYSCOPY . . . 270

Sample LOAD control statements 271

Chapter 17. MERGECOPY 285

Syntax and options of the MERGECOPY control

statement 286

Syntax diagram 286

Option descriptions 286

Instructions for running MERGECOPY 288

Data sets that MERGECOPY uses 288

Creating the control statement 289

Instructions for specific tasks 290

Terminating or restarting MERGECOPY . . . 292

Concurrency and compatibility for MERGECOPY 292

Sample MERGECOPY control statements 292

Chapter 18. MODIFY RECOVERY 295

Syntax and options of the MODIFY RECOVERY

control statement 296

Syntax diagram 296

Option descriptions 296

Instructions for running MODIFY RECOVERY . . 298

Before running MODIFY RECOVERY 298

Data sets that MODIFY RECOVERY uses . . . 298

Creating the control statement 299

Instructions for specific tasks 299

Terminating or restarting MODIFY RECOVERY 300

Concurrency and compatibility for MODIFY

RECOVERY 301

The effect of MODIFY RECOVERY on version

numbers 301

Sample MODIFY RECOVERY control statements 302

12 Utility Guide and Reference

 | |
 |
 | |
 # #

 | |

 |
 | |

Chapter 19. MODIFY STATISTICS 305

Syntax and options of the MODIFY STATISTICS

control statement 306

Syntax diagram 306

Option descriptions 306

Instructions for running MODIFY STATISTICS . . 308

Data sets that MODIFY STATISTICS uses . . . 308

Creating the control statement 308

Instructions for specific tasks 308

Terminating or restarting MODIFY STATISTICS 309

Concurrency and compatibility for MODIFY

STATISTICS 309

Sample MODIFY STATISTICS control statements 310

Chapter 20. OPTIONS 313

Syntax and options of the OPTIONS control

statement 313

Syntax diagram 313

Option descriptions 314

Instructions for using OPTIONS 316

Executing statements in preview mode 316

Specifying LISTDEF and TEMPLATE libraries 317

Overriding standard utility processing behavior 317

Using Multiple OPTIONS control statements 317

Terminating or restarting OPTIONS 317

Concurrency and compatibility for OPTIONS . . . 317

Sample OPTIONS control statements 317

Chapter 21. QUIESCE 321

Syntax and options of the QUIESCE control

statement 322

Syntax diagram 322

Option descriptions 322

Instructions for running QUIESCE 323

Before running QUIESCE 323

Data sets that QUIESCE uses 324

Creating the control statement 324

Instructions for specific tasks 324

Terminating or restarting QUIESCE 326

Concurrency and compatibility for QUIESCE . . . 326

Sample QUIESCE control statements 327

Chapter 22. REBUILD INDEX 331

Syntax and options of the REBUILD INDEX control

statement 331

Syntax diagram 332

Option descriptions 333

Instructions for running REBUILD INDEX 337

Before running REBUILD INDEX 337

Data sets that REBUILD INDEX uses 338

Creating the control statement 339

Instructions for specific tasks 339

Terminating or restarting REBUILD INDEX . . 345

Concurrency and compatibility for REBUILD

INDEX 345

The effect of REBUILD INDEX on index version

numbers 346

Sample REBUILD INDEX control statements . . . 347

Chapter 23. RECOVER 351

Syntax and options of the RECOVER control

statement 352

Syntax diagram 353

Option descriptions 354

Instructions for running RECOVER 359

Before running RECOVER 360

Data sets that RECOVER uses 360

Instructions for specific tasks 361

Terminating or restarting RECOVER 380

Terminating RECOVER 380

Restarting RECOVER 380

Concurrency and compatibility for RECOVER . . 380

Effects of running RECOVER 382

Sample RECOVER control statements 382

Chapter 24. REORG INDEX 385

Syntax and options of the REORG INDEX control

statement 386

Syntax diagram 387

Option descriptions 389

Instructions for running REORG INDEX 398

Before running REORG INDEX 398

Data sets that REORG INDEX uses 399

Shadow data sets 401

Creating the control statement 402

Instructions for specific tasks 402

Terminating or restarting REORG INDEX . . . 407

Concurrency and compatibility for REORG INDEX 409

Reviewing REORG INDEX output 410

The effect of REORG INDEX on index version

numbers 411

Sample REORG INDEX control statements . . . 411

Chapter 25. REORG TABLESPACE 413

Syntax and options of the REORG TABLESPACE

control statement 416

Syntax diagram 417

Option descriptions 422

Instructions for running REORG TABLESPACE . . 445

Before running REORG TABLESPACE 445

Data sets that REORG TABLESPACE uses . . . 449

Shadow data sets 452

Creating the control statement 456

Instructions for specific tasks 456

Terminating or restarting REORG TABLESPACE 471

Concurrency and compatibility for REORG

TABLESPACE 475

Reviewing REORG TABLESPACE output 479

After running REORG TABLESPACE 479

Effects of running REORG TABLESPACE 480

The effect of REORG TABLESPACE on index

version numbers and the version of the data . . 480

The effect of REORG TABLESPACE on the

control interval 481

Sample REORG TABLESPACE control statements 481

Chapter 26. REPAIR 493

Syntax and options of the REPAIR control

statement 494

REPAIR syntax diagram 494

REPAIR option descriptions 495

Part 2.DB2 online utilities 13

|| | |

 | |

 |
 | |
 |
 | |

SET statement syntax 496

SET statement option descriptions 497

LOCATE block syntax 499

LOCATE TABLESPACE statement option

descriptions 500

LOCATE INDEX statement and LOCATE

INDEXSPACE statement option descriptions . . 501

VERIFY statement syntax 502

VERIFY statement option descriptions 502

REPLACE statement syntax 503

REPLACE statement option descriptions . . . 503

DELETE statement syntax and description . . . 504

DUMP statement syntax 504

DUMP statement option descriptions 505

DBD statement syntax 506

DBD statement option descriptions 506

Instructions for running REPAIR 508

Before running REPAIR 508

Data sets that REPAIR uses 508

Creating the control statement 509

Instructions for specific tasks 509

Terminating or restarting REPAIR 513

Concurrency and compatibility for REPAIR . . . 513

Reviewing REPAIR output 515

After running REPAIR 516

Sample REPAIR control statements 516

Chapter 27. REPORT 519

Syntax and options of the REPORT control

statement 520

Syntax diagram 520

Option descriptions 521

Instructions for running REPORT 524

Data sets that REPORT uses 524

Creating the control statement 524

Instructions for specific tasks 525

Terminating or restarting REPORT 527

Concurrency and compatibility for REPORT . . . 527

Reviewing REPORT output 527

Sample REPORT control statements 534

Chapter 28. RESTORE SYSTEM 539

Syntax and options of the RESTORE SYSTEM

control statement 540

Syntax diagram 540

Option descriptions 540

Instructions for running RESTORE SYSTEM . . . 540

Before running RESTORE SYSTEM 541

Data sets that RESTORE SYSTEM uses 541

Instructions for specific tasks 541

Terminating and restarting RESTORE SYSTEM 542

Concurrency and compatibility for RESTORE

SYSTEM 542

After running RESTORE SYSTEM 542

Sample RESTORE SYSTEM control statements . . 542

Chapter 29. RUNSTATS 545

Syntax and options of the RUNSTATS control

statement 546

RUNSTATS TABLESPACE syntax diagram . . 547

RUNSTATS TABLESPACE option descriptions 548

RUNSTATS INDEX syntax diagram 554

RUNSTATS INDEX option descriptions 554

Instructions for running RUNSTATS 558

Before running RUNSTATS 558

Data sets that RUNSTATS uses 559

Creating the control statement 560

Instructions for specific tasks 561

Terminating or restarting RUNSTATS 564

Concurrency and compatibility for RUNSTATS . . 564

Reviewing RUNSTATS output 565

Access path statistics 567

Space statistics (columns for tuning information) 570

After running RUNSTATS 576

Sample RUNSTATS control statements 576

Chapter 30. STOSPACE 581

Syntax and options of the STOSPACE control

statement 581

Syntax diagram 582

Option descriptions 582

Instructions for running STOSPACE 582

Data sets that STOSPACE uses 582

Creating the control statement 583

Instructions for specific tasks 583

Terminating or restarting STOSPACE 585

Concurrency and compatibility for STOSPACE . . 585

Reviewing STOSPACE output 585

Sample STOSPACE control statement 585

Chapter 31. TEMPLATE 587

Syntax and options of the TEMPLATE control

statement 587

Syntax diagram 588

Option descriptions 590

Instructions for using TEMPLATE 600

Key TEMPLATE operations 600

Default space calculations 602

Working with TAPE 602

Working with GDGs 603

Terminating or restarting TEMPLATE 603

Concurrency and compatibility for TEMPLATE . . 603

Sample TEMPLATE control statements 603

Chapter 32. UNLOAD 607

Syntax and options of the UNLOAD control

statement 608

Syntax diagram 608

Option descriptions 609

FROM-TABLE-spec 617

Option descriptions for FROM TABLE 621

Instructions for running UNLOAD 641

Before running UNLOAD 641

Data sets that UNLOAD uses 641

Instructions for specific tasks 642

Terminating or restarting UNLOAD 654

Concurrency and compatibility for UNLOAD . . 654

Sample UNLOAD control statements 656

14 Utility Guide and Reference

|
||

||
|
||
||
||
||
||
||
||
||
|
||
||
||

 # #

 | |

Chapter 3. Invoking DB2 online utilities

This chapter contains procedures and guidelines for creating utility control

statements and describes five methods for invoking the DB2 utilities.

Creating utility control statements is the first step that is required to run an online

utility.

After creating the utility statements, use one of the following methods for invoking

the online utilities:

1. “Using the DB2 Utilities panel in DB2I” on page 23

2. “Using the DSNU CLIST command in TSO” on page 26

3. “Using the supplied JCL procedure (DSNUPROC)” on page 33

4. “Creating the JCL data set yourself by using the EXEC statement” on page 36

5. “Invoking utilities as a stored procedure (DSNUTILS)” on page 795 or

“DSNUTILU stored procedure” on page 805

Requirement: In the JCL for all utility jobs, specify a load library that is at a

maintenance level that is compatible with the DB2 system. Otherwise, errors can

occur.

For the least involvement with JCL, use either the first or second method, and then

edit the generated JCL to alter or add necessary fields on the JOB or ROUTE cards

before submitting the job. Both of these methods require TSO, and the first method

also requires access to the DB2 Utilities Panel in DB2 Interactive (DB2I).

If you want to work with JCL or create your own JCL, choose the third or fourth

method.

To invoke online utilities from a DB2 application program, use the fifth method.

For more information about these stored procedures and other stored procedures

that are supplied by DB2, see Appendix B, “DB2-supplied stored procedures,” on

page 793.

The following topics provide additional information:

v “Creating utility control statements”

v “Data sets that online utilities use” on page 19

v “Required authorizations for invoking online utilities on tables that have

multilevel security with row-level granularity” on page 23

v “Using the DB2 Utilities panel in DB2I” on page 23

v “Using the DSNU CLIST command in TSO” on page 26

v “Using the supplied JCL procedure (DSNUPROC)” on page 33

v “Creating the JCL data set yourself by using the EXEC statement” on page 36

Creating utility control statements

Utility control statements define the function that the utility job performs.

Create the utility control statements with the ISPF/PDF edit function. Use the rules

that are listed in “Control statement coding rules” on page 16.

© Copyright IBM Corp. 1983, 2008 15

|
|

#
#
#

After the utility control statements are created, save them in a sequential or

partitioned data set.

Control statement coding rules

DB2 typically reads utility control statements from the SYSIN data set. DB2 can

read LISTDEF control statements from the SYSLISTD data set and TEMPLATE

control statements from the SYSTEMPL data set. The statements in these data sets

must obey the following rules:

v If the records are 80-character fixed-length records, DB2 ignores columns 73

through 80.

v The records are concatenated before they are parsed; therefore, a statement or

any of its syntactical constructs can span more than one record. No continuation

character is necessary.

v All control statements in a given data set must be written entirely in a single

character set. Two character sets are supported, EBCDIC (code page 500) or

Unicode UTF-8 (code page 1208). DB2 automatically detects and processes

Unicode UTF-8 control statements if the first character of the data set is:

– A Unicode UTF-8 blank (x’20’)

– A Unicode UTF-8 dash (x’2D’)

– A Unicode UTF-8 upper case A through Z (x’41’ through x’5A’)

In all other cases, the control statement data set is processed as EBCDIC. An

informational message is issued to identify the character set that is being

processed. If UTF-8 is used, quoted strings may not print correctly in utility

error messages because all messages are printed in EBCDIC while the quoted

strings remain in UTF-8.

v The control statements must begin with one of the following online utility or

control statement names, and at least one blank must follow the name:

– BACKUP SYSTEM

– CATENFM

– CATMAINT

– CHECK DATA

– CHECK INDEX

– CHECK LOB

– COPY

– COPYTOCOPY

– DIAGNOSE

– EXEC SQL

– LISTDEF

– LOAD

– MERGECOPY

– MODIFY RECOVERY

– MODIFY STATISTICS

– OPTIONS

– QUIESCE

– REBUILD INDEX

– RECOVER

– REORG INDEX

– REORG TABLESPACE

– REPAIR

– REPORT

– RESTORE SYSTEM

– RUNSTATS

– STOSPACE

16 Utility Guide and Reference

|
|
|
|

|

|

|

|
|
|
|
|

|
|

|

– TEMPLATE

– UNLOAD
v Other syntactical constructs in the utility control statement describe options; you

can separate these constructs with an arbitrary number of blanks.

v The SYSIN stream can contain multiple utility control statements.

The options that you can specify after the online utility name depend on which

online utility you use. To specify a utility option, specify the option keyword,

followed by its associated parameter or parameters, if any. The parameter value

can be a keyword. You need to enclose the values of some parameters in

parentheses. The syntax diagrams for utility control statements that are included in

this book show parentheses where they are required.

You can specify more than one utility control statement in the SYSIN stream.

However, if any of the control statements returns a return code of 8 or greater, the

subsequent statements in the job step are not executed.

When specifying in a utility control statement multiple numeric values that are

meant to be delimited, you must delimit these values with a comma (″,″),

regardless of the definition of DECIMAL in DSNHDECP. Likewise, when

specifying a decimal number in a utility control statement, you must use a period

(″.″), regardless of the definition of DECIMAL in DSNHDECP.

You can enter comments within the SYSIN stream. Comments must begin with two

hyphens (--) and are subject to the following rules:

v You must use two hyphens on the same line with no space between them.

v You can start comments wherever a space is valid, except within a delimiter

token.

v The end of a line terminates a comment.

Two comments are shown in the following statement:

// SYSIN DD *

RUNSTATS TABLESPACE DSNDB06.SYSDBASE -- COMMENT HERE

-- COMMENT HERE

/*

Unicode character strings

When control statements are submitted in UNICODE they are translated into

EBCDIC before processing. Quoted strings, however, are not translated and are

processed exactly as they are entered. Depending on how the character string is

being used, this may or may not be the desired behavior. To enter an EBCDIC

character string in a UNICODE control statement you must use hexadecimal

notation. This is often required when working with DATE, TIME and TIMESTAMP

literals since they contain special characters and must be enclosed in quotes. For

example:

v A DATE literal may be entered as X’20050901’ which represents ’yyyy-mm-dd’

packed

v A TIME literal may be entered as X’123059’ which represents ’hh:mm:ss’ packed

v A TIMESTAMP literal may be entered as X’20050901123059123456’ which

represents ’yyyy-mm-dd-hh.mm.ss.mmmmmm’ packed

Tips for using multi-byte character sets

Multi-byte character sets can be difficult to work with in fixed 80-byte SYSIN data

sets. Long object names and long character literals might not fit on a single line.

Chapter 3. Invoking DB2 online utilities 17

#
#
#
#
#

#

#
#
#
#
#
#
#
#

#
#

#

#
#

#

#
#

Where possible, avoid having to break object names or character literals:

v Use a SYSIN with variable length records or sufficiently large record length.

v Use shorter object names. The longer the name, the more likely there will be

continuation issues.

v If possible, process the object by space name (tablespace or indexspace) and

avoid using long multi-byte table and index names in utility syntax.

If necessary, use a continuation technique:

v Shift the starting point of the string left or right within the input record such

that a complete multi-byte character ends in column 72. Continue with the next

character in column 1 of the next input record.

v Separate qualified object names into two parts following the dot ″.″ which

separates the qualifiers. Separating long names into multiple parts makes it

easier to follow the continuation rules This technique can not be used in the

EXEC SQL utility, which must follow both utility and SQL syntax rules.

v Use the || concatenation operator to divide long identifiers into two or more

parts that fit properly into each SYSIN record .

Using the concatenation operator

Utility control statements support the || concatenation operator. The operator is

allowed between two non-delimited character strings or two quoted character

strings. The result is a character string consisting of the string following the

operator concatenated after the string preceding the operator. The operation is

shown in the following statement:

string1 || string2

Both string1 and string2 must be syntactically correct within each SYSIN input

record. Quotes must be balanced within each string. If DBCS characters are used,

shift-out and shift-in characters must be balanced within each string. Any one

multi-byte character must be contained entirely within a single SYSIN record.

The || operator must be entered as a stand-alone token, with one or more blanks

preceding and following it. It may be entered on the same input record as

"string1", alone or on an input record, or on the same input record with "string2".

This operator functions at the token level before any context is detected or

semantic meaning is applied. An example utility statement is shown in the

following statement:

COPY INDEX

 "A" ||

 "B"

results in:

 COPY INDEX "AB"

The utility || operator is ignored in an EXEC SQL control statement by utility

processing since the operator has an existing SQL meaning. The operators remain

part of the SQL statement for subsequent processing by SQL.

Descriptions of utility options

Where the syntax of each utility control statement is described, parameters are

indented under the option keyword that they must follow. The following option is

a typical example:

WORKDDN ddname

Specifies a temporary work file.

18 Utility Guide and Reference

#

#

#
#

#
#

#

#
#
#

#
#
#
#

#
#

#

#
#
#
#
#

#

#
#
#
#

#
#
#
#
#
#

#
#
#
#
#

#
#
#

ddname is the data set name of the temporary file. The default is SYSUT1.

 In the example, WORKDDN is an option keyword, and ddname is a variable

parameter. As noted previously, you can enclose parameter values in parentheses,

but parentheses are not always required. You can specify the temporary work file

as either WORKDDN SYSUT1 or WORKDDN (SYSUT1).

Data sets that online utilities use

Every online utility job requires a SYSIN DD statement to describe an input data

set; some utilities also require other data sets. Table 2 lists the name of each DD

statement that might be needed, the online utilities that use it, and the purpose of

the corresponding data sets. If a DD name other than one specified in the table is

allowed, you specify it as a parameter in a utility option. Table 2 also lists the

option keywords that you can use. DCB attributes that you specify on the DD

statement are referred to as user-specified values.

 Table 2. Data sets that online utilities use

DD name Used by Purpose Option keyword

DATAWKnn REORG A work data set for sorting data,

where nn is a two-digit number.

You can use several data sets. To

estimate the size of the data set

that is needed, see “Data sets that

REORG TABLESPACE uses” on

page 449.

All REORGs

except for

REORGs of

catalog and

directory objects

with links

ddname COPY1 A single data set that DB2 uses

when you specify the FILTERDDN

option in the utility control

statement; contains a list of VSAM

data set names that are used

during COPY jobs that use the

CONCURRENT and FILTERDDN

options.

FILTERDDN

DSSPRINT COPY An output data set for messages;

required when CONCURRENT

copy is used and the SYSPRINT

DD card points to a data set.

CONCURRENT

RNPRIN01 RUNSTATS A data set that contains messages

from DFSORT (usually, SYSOUT or

DUMMY). This data set is used

when distribution statistics are

collected for column groups.

COLGROUP

SORTOUT CHECK DATA2,3

LOAD3,4,5

A data set that holds sorted keys

(sort output) and allows the SORT

phase to be restarted.

WORKDDN

SORTWKnn6 CHECK DATA,

CHECK INDEX,

CHECK LOB,

LOAD, REBUILD

INDEX, REORG

A work data set for sorting

indexes, where nn is a two-digit

number. You can use several data

sets. To estimate the size of the

data set that is needed, see 67 for

CHECK DATA, 82 for CHECK

INDEX, 234 for LOAD, 338 for

REBUILD INDEX, or 452 for

REORG.

None

Chapter 3. Invoking DB2 online utilities 19

|

||
|
|
|
|
|

||
|
|
|
|

|
|

Table 2. Data sets that online utilities use (continued)

DD name Used by Purpose Option keyword

ST01WKnn LOAD, REBUILD

INDEX, REORG

INDEX, REORG

TABLESPACE,

RUNSTATS

A temporary data set for sort input

and output when collecting

statistics on at least one

data-partitioned secondary index.

Also used with STATWK01 for

RUNSTATS with COLGROUP and

FREQVAL option.

STATISTICS

7

STATWK01 RUNSTATS A temporary data set for sort input

and output when collecting

distribution statistics for column

groups.

COLGROUP

STPRIN01 LOAD, REBUILD

INDEX, REORG

INDEX, REORG

TABLESPACE

A data set that contains messages

from DFSORT (usually, SYSOUT or

DUMMY). This data set is used

when statistics are collected on at

least one data-partitioned

secondary index.

STATISTICS

SWmmWKnn6 LOAD, REBUILD

INDEX, REORG

An optional work data sets for

sorting index keys by using the

SORTKEYS keyword, where mm

and nn are two-digit numbers. You

can use several data sets. To

estimate the size of the data set

that is needed, see “Estimating the

sort work file size” on page 257 for

LOAD, “Estimating the sort work

file size” on page 343 for

REBUILD INDEX, or “Estimating

the sort work file size” on page

469 for REORG.

None

SYSCOPY COPY

MERGECOPY

LOAD8

REORG8

An output data set for copies. COPYDDN,

RECOVERYDDN

SYSDISC LOAD, REORG

DISCARD,

optional for

REORG

A data set that contains discarded

records (optional).

DISCARDDN

SYSERR CHECK DATA2

LOAD

A data set that contains

information about errors that are

encountered during processing.

ERRDDN

SYSIN All utilities An input data set for utility

statements.

None

SYSMAP LOAD5 A data set that contains

information about which input

records violated a constraint.

MAPDDN

SYSPRINT All utilities A data set for messages and

printed output (usually SYSOUT).

None

20 Utility Guide and Reference

|#
#
#
#
#
#
#

||
|
|
|

|

Table 2. Data sets that online utilities use (continued)

DD name Used by Purpose Option keyword

SYSPUNCH REORG,

UNLOAD

A data set that contains a LOAD

statement that is generated by

REORG or UNLOAD. For REORG,

the LOAD statement loads records

that REORG DISCARD or REORG

UNLOAD EXTERNAL wrote to

the DISCARD or UNLOAD data

sets.

PUNCHDDN

SYSREC LOAD2

REORG9

UNLOAD2

A data set that contains the input

data set of LOAD, unloaded

records for REORG, or UNLOAD.

INDDN,

UNLDDN

SYSUT1 CHECK DATA3

CHECK INDEX2

LOAD3,4,5

MERGECOPY

A temporary work data set that

holds sorted keys for input to the

SORT phase; for MERGECOPY,

this data set holds intermediate

merged output.

WORKDDN

UTPRINmm LOAD, REBUILD

INDEX, REORG

Optional print message data sets,

which are used when the

SORTKEYS keyword is specified,

where mm is a two-digit number.

None

UTPRINT CHECK DATA,

CHECK INDEX,

CHECK LOB,

LOAD, REORG,

REBUILD INDEX

A data set that contains messages

from DFSORT (usually, SYSOUT or

DUMMY).

None

Notes:

1 If you specify FILTERDDN, you must supply a name; no default DD name exits.

2 Required.

3 Data sets cannot be shared between SORTOUT and SYSUT1. Sharing these data sets

can cause unpredictable results.

4 Required for tables with indexes.

5 When referential constraints exist and ENFORCE(CONSTRAINTS) is specified.

6 If tape is specified, the minimum key length of all indexes that are involved in the sort

phase must be at least 6 bytes. This length, when added to the internally assigned

12-byte header, must be at least 18 bytes, as required by DFSORT.

7 STATISTICS keyword does not apply to the RUNSTATS utility.

8 Required for LOAD with COPYDDN or RECOVERYDDN and for REORG with

COPYDDN, RECOVERYDDN, SHRLEVEL REFERENCE, or SHRLEVEL CHANGE.

9 Required unless you specify NOSYSREC or SHRLEVEL CHANGE.

For input data sets, the online utilities use the logical record length (LRECL), the

record format (RECFM) and the block size (BLKSIZE) with which the data set was

created. Variable-spanned (VS) or variable-blocked-spanned (VBS) record formats

are not allowed for utility input data sets. The only exception is for the LOAD

utility, which accepts unloaded data in VBS format.

For output data sets, the online utilities determine both the logical record length

and the record format. Any specified values for LRECL or RECFM are ignored. If

you supply block size, that size is used; otherwise, the utility chooses a block size

that is appropriate for the storage device. DB2 supports the large block interface

Chapter 3. Invoking DB2 online utilities 21

|

|

|
|
|
|

|

|

|
|
|
#

(LBI) that allows block sizes that are greater than 32 KB on certain tape drives.

Partitioned data sets (PDS) are not allowed for output data sets.

For both input and output data sets, the online utilities use the value that you

supply for the number of buffers (BUFNO), with a maximum of 99 buffers. The

default number of buffers is 20. The utilities set the number of channel programs

equal to the number of buffers. The parameters that specify the buffer size

(BUFSIZE) and the number of channel programs (NCP) are ignored. If you omit

any DCB parameters, the utilities choose default values.

Increasing the number of buffers (BUFNO) can result in an increase in real storage

utilization and page fixing below the 16-MB line.

Restriction: DB2 does not support the undefined record format (RECFM=U) for

any data set.

Data set concatenation

DB2 utilities let you concatenate unlike input data sets. Therefore, the data sets in a

concatenation list can have different block sizes, logical record lengths, and record

formats. If you want to concatenate variable and fixed-blocked data sets, the logical

record length must be 8 bytes smaller than the block size.

You cannot concatenate output data sets.

Controlling data set disposition

Most data sets need to exist only during utility execution (for example, during

reorganization). However, you must keep several data sets in certain

circumstances:

v Retain the image copy data sets until you no longer need them for recovery.

v Retain the unload data sets if you specify UNLOAD PAUSE, UNLOAD ONLY,

UNLOAD EXTERNAL, or DISCARD for the REORG utility.

v Retain the SYSPUNCH data set if you specify UNLOAD EXTERNAL or

DISCARD for the REORG utility until you no longer need the contents for

subsequent loads.

v Retain the discard data set until you no longer need the contents for subsequent

loads.

Because you might need to restart a utility, take the following precautions when

defining the disposition of data sets:

v Use DISP=(NEW,CATLG,CATLG) or DISP=(MOD,CATLG) for data sets that you

want to retain.

v Use DISP=(MOD,DELETE,CATLG) for data sets that you want to discard after

utility execution.

v Use DISP=(NEW,DELETE) for DFSORT SORTWKnn data sets, or refer to

DFSORT Application Programming: Guide for alternatives.

v Do not use temporary data set names.

See Table 150 on page 796 and Table 151 on page 797 for information about the

default data dispositions that are specified for dynamically allocated data sets.

22 Utility Guide and Reference

#
#

Preventing unauthorized access to data sets

To prevent unauthorized access to data sets (for example, image copies), you can

protect the data sets with the Resource Access Control Facility (RACF) licensed

program. To use a utility with a data set that is protected by RACF, you must be

authorized to access the data set.

Required authorizations for invoking online utilities on tables that have

multilevel security with row-level granularity

If you use RACF access control with multilevel security, you need additional

authorizations to run certain LOAD, UNLOAD, and REORG TABLESPACE jobs on

tables that have multilevel security with row-level granularity. These authorizations

are explained in the authorization section of each utility chapter. In z/OS V1R3

and z/OS V1R4, you cannot run these utilities on tables that have multilevel

security with row-level granularity.

All other utilities ignore the row-level granularity. They check only for

authorization to operate on the table space; they do not check row-level

authorization. For more information about multilevel security, see Part 3 of DB2

Administration Guide.

Using the DB2 Utilities panel in DB2I

If you do not have much JCL knowledge, using the DB2 Utilities panel is probably

the best way to execute the DB2 online utilities.

Restriction: You cannot use the DB2 Utilities panel in DB2I to submit a BACKUP

SYSTEM job, a COPYTOCOPY job, a RESTORE SYSTEM job, or a COPY job for a

list of objects (with or without the CONCURRENT keyword).

If your site does not have default JOB and ROUTE statements, you must edit the

JCL to define them. If you edit the utility job before submitting it, you must use

the ISPF editor and submit your job directly from the editor. Use the following

procedure:

 1. Create the utility control statement for the online utility that you intend to

execute, and save it in a sequential or partitioned data set.

For example, the following utility control statement specifies that the COPY

utility is to make an incremental image copy of table space

DSN8D81A.DSN8S81D with a SHRLEVEL value of CHANGE:

COPY TABLESPACE DSN8D81A.DSN8S81D

 FULL NO

 SHRLEVEL CHANGE

For the rest of this example, suppose that you save the statement in the

default data set, UTIL.

 2. From the ISPF Primary Option menu, select the DB2I menu.

 3. On the DB2I Utilities panel, select the UTILITIES option. Items that you must

specify are highlighted on the DB2 Utilities panel, as shown in Figure 1.

Chapter 3. Invoking DB2 online utilities 23

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|

4. Fill in field 1 with the function that you want to execute. In this example, you

want to submit the utility job, but you want to edit the JCL first, so specify

EDITJCL. After you edit the JCL, you do not need to return to this panel to

submit the job. Instead, type SUBMIT on the editor command line.

 5. Ensure that Field 2 is a unique identifier for your utility job. The default value

is TEMP. In this example, that value is satisfactory; leave it as is.

 6. Fill in field 3 with the utility that you want to run. To indicate REORG

TABLESPACE of a LOB table space, specify REORG LOB.

In this example, specify COPY.

 7. Fill in field 4 if you want to use an input data set other than the default data

set. Unless you enclose the data set name between apostrophes, TSO adds

your user identifier as a prefix. In this example, specify UTIL, which is the

default data set.

 8. Change field 5 if this job restarts a stopped utility or if you want to execute a

utility in PREVIEW mode. In this example, leave the default value, NO.

 9. Specify in field 6 whether you are using LISTDEF statements or TEMPLATE

statements in this utility. If you specify YES for LISTDEF or TEMPLATE, DB2

displays the Control Statement Data Set Names panel, but the field entries are

optional.

10. Press Enter.

If you specify COPY, LOAD, MERGECOPY, REORG TABLESPACE, or UNLOAD

as the utility in field 3, you must complete the fields on the Data Set Names panel,

as shown in Figure 2 on page 25. In this example, COPY was specified.

If LISTDEF YES or TEMPLATE YES is specified, the Control Set Data Set Names

panel is displayed, as shown in Figure 3 on page 26.

DSNEUP01 DB2 UTILITIES

 ===>

 Select from the following:

 1 FUNCTION ===> EDITJCL (SUBMIT job, EDITJCL, DISPLAY, TERMINATE)

 2 JOB ID ===> TEMP (A unique job identifier string)

 3 UTILITY ===> COPY (CHECK DATA, CHECK INDEX, CHECK LOB,

 COPY, DIAGNOSE, LOAD, MERGE, MODIFY,

 QUIESCE, REBUILD, RECOVER, REORG INDEX,

 REORG LOB, REORG TABLESPACE, REPORT,

 REPAIR, RUNSTATS, STOSPACE, UNLOAD.)

 4 STATEMENT DATA SET ===> UTIL

 Specify restart or preview option, otherwise specify NO.

 5 RESTART ===> NO (NO, CURRENT, PHASE or PREVIEW)

 6 LISTDEF? (YES|NO) ===> TEMPLATE? (YES|NO) ===>

 * The data set names panel will be displayed when required by a utility.

 PRESS: ENTER to process END to exit HELP for more information

Figure 1. DB2 Utilities panel

24 Utility Guide and Reference

If the Data Set Names panel is displayed, complete the following steps. If you do

not specify COPY, LOAD, MERGECOPY, REORG TABLESPACE, or UNLOAD in

field 3 of the DB2 Utilities panel, the Data Set Names panel is not displayed; skip

this procedure and continue with Figure 3 on page 26.

1. Fill in field 1 if you are running LOAD, REORG, or UNLOAD. For LOAD, you

must specify the data set name that contains the records that are to be loaded.

For REORG or UNLOAD, you must specify the unload data set. In this

example, you do not need to fill in field 1, because you are running COPY.

2. Fill in field 2 if you are running LOAD or REORG with discard processing, in

which case you must specify a discard data set. In this example, you do not

need to fill in field 2, because you are running COPY.

3. Fill in field 3 with the primary output data set name for the local site if you are

running COPY, LOAD, or REORG, or with the current site if you are running

MERGECOPY. The DD name that the panel generates for this field is SYSCOPY.

This is an optional field for LOAD and for REORG with SHRLEVEL NONE;

this field is required for COPY, for MERGECOPY, and for REORG with

SHRLEVEL REFERENCE or CHANGE. In this example, the primary output

data set name for the local site is ABC.

4. Fill in field 4 with the backup output data set name for the local site if you are

running COPY, LOAD, or REORG, or the current site if you are running

MERGECOPY. The DD name that the panel generates for this field is

SYSCOPY2. This is an optional field. In this example, you do not need to fill in

field 4.

5. Fill in field 5 with the primary output data set for the recovery site if you are

running COPY, LOAD, or REORG. The DD name that the panel generates for

this field is SYSRCOPY1. This is an optional field. In this example, the primary

output data set name for the recovery site is ABC1.

6. Fill in field 6 with the backup output data set for the recovery site if you are

running COPY, LOAD, or REORG. The DD name that the panel generates for

this field is SYSRCOPY2. This field is optional. In this example, you do not

need to fill in field 6.

7. Fill in field 7 with the output data set for the generated LOAD utility control

statements if you are running REORG UNLOAD EXTERNAL, REORG

DISCARD, or UNLOAD. The DD name that the panel generates for this field is

SYSPUNCH. In this example, you do not need to fill in field 7.

DSNEUP02 DATA SET NAMES

 ===>

 Enter data set name for LOAD or REORG TABLESPACE:

1 RECDSN ==>

 Enter data set name for

LOAD, REORG TABLESPACE or UNLOAD:

2 DISCDSN ==>

 Enter output data sets for local/current site for COPY, MERGECOPY,

 LOAD, or REORG:

3 COPYDSN ==> ABC

4 COPYDSN2 ==>

 Enter output data sets for recovery site for COPY, LOAD, or REORG:

5 RCPYDSN1 ==> ABC1

6 RCPYDSN2 ==>

 Enter output data sets for REORG or UNLOAD:

7 PUNCHDSN ==>

 PRESS: ENTER to process END to exit HELP for more information

Figure 2. Data Set Names panel

Chapter 3. Invoking DB2 online utilities 25

8. Press Enter.

The Control Statement Data Set Names panel, which is shown in Figure 3, is

displayed if either LISTDEF YES or TEMPLATE YES is specified on the DB2

Utilities panel.

1. Fill in field 1 to specify the data set that contains a LISTDEF control statement.

The default is the SYSIN data set. This field is ignored if you specified NO in

the LISTDEF? field in the DB2 Utilities panel.

For information about using a LISTDEF control statement, see Chapter 15,

“LISTDEF,” on page 171.

2. Fill in field 2 to specify the data set that contains a TEMPLATE. The default is

the SYSIN data set. This field is ignored if you specified NO in the

TEMPLATE? field in the DB2 Utilities panel.

For information about using TEMPLATE, see Chapter 31, “TEMPLATE,” on

page 587.

Using the DSNU CLIST command in TSO

You can initiate a DB2 online utility by invoking the DSNU CLIST command under

TSO. The CLIST command generates the JCL data set that is required to execute

the DSNUPROC procedure and to execute online utilities as batch jobs. When you

use the CLIST command, you do not need to be concerned with details of the JCL

data set.

Restriction: You cannot use the DSNU CLIST command to submit a COPY job for

a list of objects (with or without the CONCURRENT keyword).

The CLIST command creates a job that performs only one utility operation.

However, you can invoke the CLIST command for each utility operation that you

need, and then edit and merge the outputs into one job or step.

To use the DSNU CLIST command, follow these steps:

1. Create a file containing the required utility statements and control statements.

DB2 uses the file to create the SYSIN data set in the generated job stream. Do

not include double-byte character set (DBCS) data in this file.

2. Ensure that the DB2 CLIST library is allocated to the DD name SYSPROC.

3. Execute the command procedure by using the syntax in “DSNU CLIST

command syntax” on page 27.

4. Edit the generated JCL data set to alter or add DD statements as needed.

DSNEUP03 CONTROL STATEMENT DATA SET NAMES SSID:

===>

Enter the data set name for the LISTDEF data set (SYSLISTD DD):

 1 LISTDEF DSN ===>

 OPTIONAL or IGNORED

Enter the data set name for the TEMPLATE data set (SYSTEMPL DD):

 2 TEMPLATE DSN ===>

 OPTIONAL or IGNORED

PRESS: ENTER to process END to exit HELP for more information

Figure 3. Control Statement Data Set Names panel

26 Utility Guide and Reference

This last step is optional. “Editing the generated JCL data set” on page 32

explains how to edit the JCL data set.

You can execute the DSNU CLIST command from the TSO command processor or

from the DB2I Utilities panel.

DSNU CLIST command syntax

��

%
 DSNU UTILITY(utility-name) INDSN(data-set-name)

(member-name)
 �

�

�

 CONTROL (NONE)

:

CONTROL

(

control-option

)

 DB2I (NO)

DB2I

(

YES

)

DISCDSN(data-set-name)

�

�
COPYDSN(data-set-name)

COPYDSN2(data-set-name)

 �

�
RCPYDSN1(data-set-name)

RCPYDSN2(data-set-name)

RECDSN(data-set-name)
 �

�

PUNCHDSN

(

data-set-name

)

 EDIT (NO)

EDIT

(

SPF

)

TSO

 RESTART (NO)

RESTART

(

CURRENT

)

PHASE

PREVIEW

�

�
 SUBMIT (NO)

SUBMIT

(

YES

)

PROMPT

 SYSTEM (DSN)

SYSTEM

(

subsystem-name

)

group-attach

UID(utility-id)

�

�
 UNIT (SYSDA)

UNIT

(

unit-name

)

VOLUME(vol-ser)

��

DSNU CLIST option descriptions

The parentheses that are shown in the following descriptions are required. If you

make syntax errors or omit parameter values, TSO prompts you for the correct

parameter spelling and omitted values.

% Identifies DSNU as a member of a command procedure library. Specifying this

parameter is optional; however, it does improve performance.

UTILITY (utility-name)

Specifies the utility that you want to execute. Select the name from the

following list:

v CHECK DATA

Chapter 3. Invoking DB2 online utilities 27

v CHECK INDEX

v CHECK LOB

v COPY

v DIAGNOSE

v LOAD

v MERGE

v MODIFY

v QUIESCE

v REBUILD

v RECOVER

v REORG INDEX

v REORG LOB

v REORG TABLESPACE

v REPAIR

v REPORT

v RUNSTATS

v STOSPACE

v UNLOAD

DB2 places the JCL in a data set that is named DSNUxxx.CNTL, where

DSNUxxx is a control file name. The control file contains the statements that

are necessary to invoke the DSNUPROC procedure which, in turn, executes the

utility. If you execute another job with the same utility name, the first job is

deleted. See “UID” on page 30 for a list of the online utilities and the control

file name that is associated with each utility.

INDSN(data-set-name(member-name))

Specifies the data set that contains the utility statements and control

statements. Do not specify a data set that contains double-byte character set

data.

(data-set-name)

Specifies the name of the data set. If you do not specify a data set

name, the default command procedure prompts you for the data set

name.

(member-name)

Specifies the member name. You must specify the member name if the

data set is partitioned.

CONTROL(control-option: ...)

Specifies whether to trace the CLIST command execution.

NONE

Omits tracing. The default is NONE.

control-option

Lists one or more of the following options. Separate items in the list by

colons (:). To abbreviate, specify only the first letter of the option.

LIST Displays TSO commands after symbolic substitution and before

command execution.

CONLIST

Displays CLIST commands after symbolic substitution and

before command execution.

SYMLIST

Displays all executable statements (TSO commands and CLIST

statements) before the scan for symbolic substitution.

28 Utility Guide and Reference

NONE

Generates a CONTROL statement with the options NOLIST,

NOCONLIST, and NOSYMLIST.

DB2I

Indicates the environment from which the DSNU CLIST command is called.

(NO) Indicates that DSNU CLIST command is not being called from the

DB2I environment. The default is NO.

(YES) Indicates that DSNU CLIST command is called from the DB2I

environment. Only the utility panels should execute the CLIST

command with DB2I(YES).

DISCDSN (data-set-name)

The name of the cataloged data set that LOAD and REORG use for a discard

data set. For LOAD, this data set holds records that are not loaded; for

REORG, it holds records that are not reloaded.

COPYDSN(data-set-name)

The name of the cataloged data set that DB2 utilities use as a target (output)

data set. If you do not supply this information, the CLIST command prompts

you for it. This keyword is optional for LOAD and for REORG with

SHRLEVEL NONE; it is required for COPY, for MERGECOPY, and for REORG

with SHRLEVEL REFERENCE or CHANGE.

COPYDSN2 (data-set-name)

The name of the cataloged data set that DB2 utilities use as a target (output)

data set for the backup copy. This keyword is optional for COPY,

MERGECOPY, LOAD, and REORG.

RCPYDSN1 (data-set-name)

The name of the cataloged data set that DB2 utilities use as a target (output)

data set for the remote-site primary copy. This keyword is optional for COPY,

LOAD, and REORG.

RCPYDSN2 (data-set-name)

The name of the cataloged data set that DB2 utilities use as a target (output)

data set for the remote-site backup copy. This keyword is optional for COPY,

LOAD, and REORG.

RECDSN (data-set-name)

The name of the cataloged data set that LOAD uses for input or that REORG

TABLESPACE or UNLOAD use as the unload data set. If you do not supply

this information, the CLIST command prompts you for it. This keyword is

required for LOAD and REORG TABLESPACE only.

PUNCHDSN (data-set-name)

The name of the cataloged data set that REORG or UNLOAD use to hold the

generated LOAD utility control statements for UNLOAD EXTERNAL or

DISCARD.

EDIT

Specifies whether to invoke an editor to edit the temporary file that the CLIST

command generates.

(NO)

Does not invoke an editor. The default is NO.

(SPF)

Invokes the ISPF editor.

Chapter 3. Invoking DB2 online utilities 29

(TSO)

Invokes the TSO editor.

RESTART

Specifies whether this job restarts a current utility job, and, if so, at what point

it is to be restarted.

(NO)

Indicates that the utility is a new job, not a restarted job. The utility

identifier (UID) must be unique for each utility job step. The default is

NO.

(CURRENT)

Restarts the utility at the most recent commit point.

(PHASE)

Restarts the utility at the beginning of the current stopped phase. You can

determine the current stopped phase by issuing the DISPLAY UTILITY

command.

(PREVIEW)

Restarts the utility in PREVIEW mode. While in PREVIEW mode, the

utility checks for syntax errors in all utility control statements, but normal

utility execution does not take place.

SUBMIT

Specifies whether to submit the generated JCL for processing.

(NO)

Does not submit the JCL data set for processing. The default is NO.

(YES)

Submits the JCL data set for background processing, using the TSO

SUBMIT command.

(PROMPT)

Prompts you, after the data set is processed, to specify whether to submit

the JCL data set for batch processing. You cannot use PROMPT when the

CLIST command is executed in the TSO batch environment.

SYSTEM (subsystem-name)

Specifies the DB2 subsystem or group attach name. The default is DSN.

UID (utility-id)

Provides a unique identifier for this utility job within DB2. Do not reuse the

utility ID of a stopped utility that has not yet been terminated, unless you

want to restart that utility. If you do use the same utility ID to invoke a

different utility, DB2 tries to restart the original stopped utility with the

information that is stored in the SYSUTIL directory table.

 The default is tso-userid.control-file-name, where control-file-name for each of the

utilities is listed Table 3.

 Table 3. Control-file name for each utility

Utility control-file-name

CHECK INDEX DSNUCHI

CHECK DATA DSNUCHD

CHECK LOB DSNUCHL

COPY DSNUCOP

DIAGNOSE DSNUDIA

30 Utility Guide and Reference

Table 3. Control-file name for each utility (continued)

Utility control-file-name

LOAD DSNULOA

MERGECOPY DSNUMER

MODIFY DSNUMOD

QUIESCE DSNUQUI

REBUILD INDEX DSNUREB

RECOVER DSNUREC

REORG INDEX DSNURGI

REORG LOB DSNURGL

REORG TABLESPACE DSNURGT

REPAIR DSNUREP

REPORT DSNURPT

RUNSTATS DSNURUN

STOSPACE DSNUSTO

UNLOAD DSNUUNL

UNIT (unit-name)

Assigns a unit address, a generic device type, or a user-assigned group name

for a device on which a new temporary or permanent data set resides. When

the CLIST command generates the JCL, it places unit-name after the UNIT

clause of the generated DD statement. The default is SYSDA.

VOLUME (vol-ser)

Assigns the serial number of the volume on which a new temporary or

permanent data set resides. When the CLIST command generates the JCL, it

places vol-ser after the VOL=SER clause of the generated DD statement. If you

omit VOLUME, the VOL=SER clause is omitted from the generated DD

statement.

DSNU CLIST command output

DSNU builds a one-step job stream. The JCL data set consists of a JOB statement,

an EXEC statement that executes the DB2 utility processor, and the required DD

statements. This JOB statement also includes the SYSIN DD * job stream, as shown

in Figure 4. You can edit any of these statements.

 The following list describes the required JCL data set statements:

Statement Description

//DSNUCOP JOB your-job-statement-parameters

// USER=userid,PASSWORD=password

//*ROUTE PRINT routing-information

//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID=TEMP,UTPROC=’

//SYSCOPY DD DSN=MYCOPIES.DSN8D81A.JAN1,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSIN DD *

 COPY TABLESPACE DSN8D81A.DSN8S81D

 FULL NO

 SHRLEVEL CHANGE

/*

Figure 4. Control file DSNUCOP.CNTL. This is an example of the JCL data set before editing.

Chapter 3. Invoking DB2 online utilities 31

JOB The CLIST command uses any JOB statements that you saved

when using DB2I. If no JOB statements exist, DB2 produces a

skeleton JOB statement that you can modify. The job name is

DSNU, followed by the first three letters of the name of the utility

that you are using.

EXEC The CLIST command builds the EXEC statement. The values that

you specified for SYSTEM (DSN, by default), UID(TEMP), and

RESTART (none) become the values of SYSTEM, UID, and

UTPROC for the DSNUPROC.

The CLIST command builds the necessary JCL DD statements. Those statements

vary depending on the utility that you execute. Data sets that might be required

are listed under “Data sets that online utilities use” on page 19. The following DD

statements are generated by the CLIST command:

SYSPRINT DD SYSOUT=A

Defines OUTPUT, SYSPRINT as SYSOUT=A. Utility messages are sent to the

SYSPRINT data set. You can use the TSO command to control the disposition

of the SYSPRINT data set. For example, you can send the data set to your

terminal. For more information, see z/OS TSO/E Command Reference.

UTPRINT DD SYSOUT=A

Defines UTPRINT as SYSOUT=A. If any utility requires a sort, it executes

DFSORT. Messages from that program are sent to UTPRINT.

SYSIN DD *

Defines SYSIN. To build the SYSIN DD * job stream, DSNU copies the data set

that is named by the INDSN parameter. The INDSN data set does not change,

and you can reuse it when the DSNU procedure has finished running.

Editing the generated JCL data set

You can edit the data set before you process it by using the EDIT parameter on the

command procedure. Use the editor to add a JCL statement to the job stream, to

change JCL parameters (such as ddnames), or to change utility control statements.

If you use a ddname that is not the default on a utility statement that you use, you

must change the ddname in the JCL that is generated by the DSNU procedure. For

example, in the REORG TABLESPACE utility, the default option for UNLDDN is

SYSREC, and DSNU builds a SYSREC DD statement for REORG TABLESPACE. If

you use a different value for UNLDDN, you must edit the JCL data set and change

SYSREC to the ddname that you used.

When you finish editing the data set, you can either save changes to the data set

(by issuing SAVE), or instruct the editor to ignore all changes.

The SUBMIT parameter specifies whether to submit the data set statement as a

background job. The temporary data set that holds the JCL statement is reused. If

you want to submit more than one job that executes the same utility, you must

rename the JCL data sets and submit them separately.

Examples

Example 1: The following CLIST command statement generates a data set that is

called authorization-id.DSNURGT.CNTL and that contains JCL statements that

invoke the DSNUPROC procedure.

32 Utility Guide and Reference

%DSNU UTILITY(REORG TABLESPACE) INDSN(MYREOR.DATA)

 RECDSN(MYREOR.WORK) RESTART(NO)

 EDIT(TSO) SUBMIT(YES)

The DSNUPROC procedure invokes the REORG TABLESPACE utility. The

MYREOR.DATA data set is merged into the JCL data set as SYSIN input.

MYREOR.WORK is a temporary data set that is required by REORG

TABLESPACE. The TSO editor is invoked to allow editing of the JCL data set,

authorization-id.DSNURGT.CNTL. The TSO editor then submits the JCL data set as

a batch job. This JCL data set is not modified by this CLIST command statement

until a new request is made to execute the REORG TABLESPACE utility.

Example 2: The following example shows how to invoke the CLIST command for

the COPY utility.

%DSNU

 UTILITY (COPY)

 INDSN (’MYCOPY(STATEMNT)’)

 COPYDSN (’MYCOPIES.DSN8D81A.JAN1’)

 EDIT (TSO)

 SUBMIT (YES)

 UID (TEMP)

 RESTART (NO)

Using the supplied JCL procedure (DSNUPROC)

Another method of invoking a DB2 online utility uses the supplied JCL procedure,

DSNUPROC, which is shown in Figure 5 on page 35. This procedure uses the

parameters that you supply to build an appropriate EXEC statement that executes

an online utility.

To execute the DSNUPROC procedure, write and submit a JCL data set like the

one that the DSNU CLIST command builds (An example is shown in Figure 4 on

page 31.) In your JCL, the EXEC statement executes the DSNUPROC procedure.

DSNUPROC syntax

��

DSNUPROC
 LIB=prefix.SSPGM

LIB=DB2library-name

 ,SIZE=OM

,SIZE=region-size

 ,SYSTEM=DSN

,SYSTEM=subsytem-name

�

�
 ,UID=' '

,UID=utility-qualifier

 ,UTPROC=' '

,UTPROC=

’RESTART’

’RESTART(CURRENT)’

’RESTART(PHASE)’

’PREVIEW’

��

DSNUPROC option descriptions

The following list describes all the parameters. For example, in Figure 4 on page

31, you need to use only one parameter, UID=TEMP; for all others, you can use the

default values.

LIB= Specifies the data set name of the DB2 subsystem library. The default is

prefix.SSPGM.

Chapter 3. Invoking DB2 online utilities 33

SIZE=

Specifies the region size of the utility execution area; that is, the value

represents the number of bytes of virtual storage that are allocated to this

utility job. The default is 0M.

SYSTEM=

Specifies the DB2 subsystem or group attach name. The default is DSN.

UID= Specifies the unique identifier for your utility job. The maximum name

length is 16 characters. If the name contains special characters, enclose the

entire name between apostrophes (for example, 'PETERS.JOB'). Do not

reuse the utility ID of a stopped utility that has not yet been terminated. If

you do use the same utility ID to invoke a different utility, DB2 tries to

restart the original stopped utility with the information that is stored in the

SYSUTIL directory table.

 The default is an empty string.

UTPROC=

Controls restart processing. The default is an empty string. Use the default

if you do not want to restart a stopped job.

 To restart the utility, specify:

'RESTART'

To restart at the most recent commit point. This option has the

same meaning as ’RESTART(CURRENT).’

'RESTART(CURRENT)'

To restart at the most recent commit point. This option has the

same meaning as ’RESTART.’

'RESTART(PHASE)'

To restart at the beginning of the phase that executed most

recently.

'PREVIEW'

To restart in preview mode. While in PREVIEW mode, the utility

checks for syntax errors in all utility control statements, but normal

utility execution does not take place.

The DSNUPROC procedure provides the SYSPRINT and UTPRINT DD statements

for printed output. You must provide DD statements for SYSIN and other data sets

that your job needs. See “Data sets that online utilities use” on page 19 for a

description of data sets that you might need.

Sample DSNUPROC listing

Figure 5 on page 35 is the DSNUPROC procedure that was executed by the JCL

example in Figure 4 on page 31.

34 Utility Guide and Reference

//DSNUPROC PROC LIB=’DSN!!0.SDSNLOAD’,

// SYSTEM=DSN,

// SIZE=0K,UID=’’,UTPROC=’’

//**

//* PROCEDURE-NAME: DSNUPROC *

//* *

//* DESCRIPTIVE-NAME: UTILITY PROCEDURE *

//* *

//* FUNCTION: THIS PROCEDURE INVOKES THE ADMF UTILITIES IN THE *

//* BATCH ENVIRONMENT *

//* *

//* PROCEDURE-OWNER: UTILITY COMPONENT *

//* *

//* COMPONENT-INVOKED: ADMF UTILITIES (ENTRY POINT DSNUTILB). *

//* *

//* ENVIRONMENT: BATCH *

//* *

//* INPUT: *

//* PARAMETERS: *

//* LIB = THE DATA SET NAME OF THE DB2 PROGRAM LIBRARY. *

//* THE DEFAULT LIBRARY NAME IS PREFIX.SDSNLOAD, *

//* WITH PREFIX SET DURING INSTALLATION. *

//* SIZE = THE REGION SIZE OF THE UTILITIES EXECUTION AREA.*

//* THE DEFAULT REGION SIZE IS 2048K. *

//* SYSTEM = THE SUBSYSTEM NAME USED TO IDENTIFY THIS JOB *

//* TO DB2. THE DEFAULT IS "DSN". *

//* UID = THE IDENTIFIER WHICH WILL DEFINE THIS UTILITY *

//* JOB TO DB2. IF THE PARAMETER IS DEFAULTED OR *

//* SET TO A NULL STRING, THE UTILITY FUNCTION WILL *

//* USE ITS DEFAULT, USERID.JOBNAME. EACH UTILITY *

//* WHICH HAS STARTED AND IS NOT YET TERMINATED *

//* (MAY NOT BE RUNNING) MUST HAVE A UNIQUE UID. *

//* UTPROC = AN OPTIONAL INDICATOR USED TO DETERMINE WHETHER *

//* THE USER WISHES TO INITIALLY START THE REQUESTED*

//* UTILITY OR TO RESTART A PREVIOUS EXECUTION OF *

//* THE UTILITY. IF OMITTED, THE UTILITY WILL *

//* BE INITIALLY STARTED. OTHERWISE, THE UTILITY *

//* WILL BE RESTARTED BY ENTERING THE FOLLOWING *

//* VALUES: *

//* RESTART(PHASE) = RESTART THE UTILITY AT THE *

//* BEGINNING OF THE PHASE EXECUTED *

//* LAST. *

//* RESTART = RESTART THE UTILITY AT THE LAST *

//* OR CURRENT COMMIT POINT. *

//* *

//* OUTPUT: NONE. *

//* *

//* EXTERNAL-REFERENCES: NONE. *

//* *

//* CHANGE-ACTIVITY: *

//* *

//**

//DSNUPROC EXEC PGM=DSNUTILB,REGION=&SIZE,

// PARM=’&SYSTEM,&UID,&UTPROC’

//STEPLIB DD DSN=&LIB,DISP=SHR

//**

//* *

//* THE FOLLOWING DEFINE THE UTILITIES’ PRINT DATA SETS *

//* *

//**

//*

//SYSPRINT DD SYSOUT=*

//UTPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//*DSNUPROC PEND REMOVE * FOR USE AS INSTREAM PROCEDURE

Figure 5. Sample listing of supplied JCL procedure DSNUPROC

Chapter 3. Invoking DB2 online utilities 35

Creating the JCL data set yourself by using the EXEC statement

DB2 online utilities execute as standard z/OS jobs. To execute the utility, you must

supply the JOB statement that is required by your installation and the JOBLIB or

STEPLIB DD statements that are required to access DB2. You must also include an

EXEC statement and a set of DD statements. The EXEC statement and the DD

statements that you might need are described in “Data sets that online utilities

use” on page 19.

Recommendation: Use DSNUPROC to invoke a DB2 online utility, rather than

creating the JCL yourself. For more information, see “Using the supplied JCL

procedure (DSNUPROC)” on page 33.

The EXEC statement can be a procedure that contains the required JCL, or it can be

of the following form:

//stepname EXEC PGM=DSNUTILB,PARM=’system,[uid],[utproc]’

The brackets, [], indicate optional parameters. The parameters have the following

meanings:

DSNUTILB

Specifies the utility control program. The program must reside in an

APF-authorized library.

system Specifies the DB2 subsystem.

uid The unique identifier for your utility job. Do not reuse the utility ID of a

stopped utility that has not yet been terminated. If you do use the same

utility ID to invoke a different utility, DB2 tries to restart the original

stopped utility with the information that is stored in the SYSUTIL directory

table.

utproc The value of the UTPROC parameter in the DSNUPROC procedure.

Specify this option only when you want to restart the utility job. Specify:

'RESTART'

To restart at the most recent commit point. This option has the

same meaning as ’RESTART(CURRENT).’

'RESTART(CURRENT)'

To restart the utility at the most recent commit point. This option

has the same meaning as ’RESTART.’

'RESTART(PHASE)'

To restart at the beginning of the phase that executed most

recently.

'RESTART(PREVIEW)'

To restart the utility in preview mode. While in PREVIEW mode,

the utility checks for syntax errors in all utility control statements,

but normal utility execution does not take place.

For the example in Figure 5 on page 35 you can use the following EXEC statement:

//stepname

 EXEC PGM=DSNUTILB,PARM=’DSN,TEMP’

36 Utility Guide and Reference

Chapter 4. Monitoring and controlling online utilities

This section contains procedures and guidelines for monitoring utilities, running

utilities concurrently, terminating utilities, and restarting utilities.

The following topics provide additional information:

v “Monitoring utilities with the DISPLAY UTILITY command”

v “Running utilities concurrently” on page 39

v “Running online utilities in a data sharing environment” on page 39

v “Terminating an online utility with the TERM UTILITY command” on page 40

v “Restarting an online utility” on page 41

Monitoring utilities with the DISPLAY UTILITY command

The information under this heading, up to “Running utilities concurrently” on

page 39 is General-use Programming Interface and Associated Guidance

Information, as defined in “Notices” on page 901.

Use the DB2 DISPLAY UTILITY command to check the current status of online

utilities. Figure 6 shows an example of the output that the DISPLAY UTILITY

command generates. In the example output, DB2 returns a message that indicates

the member name (�A�), utility identifier (�B�), utility name (�C�), utility phase

(�D�), the number of pages or records that are processed by the utility1 (�E�), the

number of objects in the list (�F�), the last object that started (�G�), and the utility

status (�H�). The output might also report additional information about an

executing utility, such as log phase estimates or utility subtask activity.

Determining the status of a utility

To determine the status of an online utility, look at the status part (�H�) of the

DISPLAY UTILITY output. An online utility can have one of these statuses:

Status Description

Active The utility has started execution.

Stopped The utility has abnormally stopped executing before completion,

but the table spaces and indexes that were accessed by the utility

1. In a data sharing environment, the number of records is current when the command is issued from the same member on which

the utility is executing. When the command is issued from a different member, the count might lag substantially. When the

command is issued from a different member, the count might lag substantially. For some utilities in some phases, the count

number is not updated when the command is issued from a different member.

DSNU100I - DSNUGDIS - USERID = SAMPID

 �A� MEMBER = DB1G

 �B� UTILID = RUNTS

 PROCESSING UTILITY STATEMENT 1

 �C�UTILITY = RUNSTATS

 �D� PHASE = RUNSTATS �E� COUNT = 0

 �F� NUMBER OF OBJECTS IN LIST = n

 �G� LAST OBJECT STARTED = m

 �H� STATUS = STOPPED

DSN9022I - DSNUGCC ’-DISPLAY UTILITY’ NORMAL COMPLETION

Figure 6. DISPLAY UTILITY command sample output

© Copyright IBM Corp. 1983, 2008 37

remain under utility control. To make the data available again, you

must take one of the following actions:

v Correct the condition that stopped the utility, and restart the

utility so that it runs to termination.

v Terminate the utility with the DB2 TERM UTILITY command.

(This command is described in “Terminating an online utility

with the TERM UTILITY command” on page 40.)

Terminated The utility has been requested to terminate by the DB2 TERM

UTILITY command. If the utility has terminated, no message is

issued.

Determining which utility phase is currently executing

DB2 online utility execution is divided into phases. Each utility starts with the

UTILINIT phase, which performs initialization and set up. Each utility finishes

with a UTILTERM phase, which cleans up after processing has completed. The

other phases of online utility execution differ, depending on the utility. See the

“Execution Phases” section in the descriptions of each utility. To determine which

utility phase is currently executing, look at the output from the DISPLAY UTILITY

command. The example output in Figure 6 on page 37 shows the current phase

(�D�).

Determining why a utility failed to complete

If an online utility job completes normally, it issues return code 0. If it completes

with warning messages, it issues return code 4. Return code 8 means that the job

failed to complete. Return code 12 means that an authorization error occurred.

To determine why a utility failed to complete, consider the following problems that

can cause a failure during execution of the utility:

v Problem: DB2 terminates the utility job step and any subsequent utility steps.

Solution: Submit a new utility job to execute the terminated steps. Use the same

utility identifier for the new job to ensure that no duplicate utility job is running.

v Problem: DB2 does not execute the particular utility function, but prior utility

functions are executed.

Solution: Submit a new utility step to execute the function.

v Problem: DB2 places the utility function in the stopped state.

Solution: Restart the utility job step at either the last commit point or the

beginning of the phase by using the same utility identifier. Alternatively, use a

TERM UTILITY (uid) command to terminate the job step and resubmit it.

v Problem: DB2 terminates the utility and issues return code 8.

Solution: One or more objects might be in a restrictive or advisory status. See

Appendix C, “Advisory or restrictive states,” on page 849 for more information

on resetting the status of an object.

Alternatively, a DEADLINE condition in online REORG might have terminated

the reorganization.

For more information about the DEADLINE condition, see the description of this

option in Chapter 24, “REORG INDEX,” on page 385 or in Chapter 25, “REORG

TABLESPACE,” on page 413.

38 Utility Guide and Reference

Running utilities concurrently

Some online utilities allow other utilities and SQL statements to run concurrently

on the same target object. To determine if utilities can be run concurrently, look in

the compatibility and concurrency section in each online utility chapter. Each

concurrency and compatibility section includes the following information:

v For each target object on which the utility acts, the section outlines the claim

classes that the utility must claim or drain. The section also outlines the

restrictive state that the utility sets on the target object.

v For other online utilities, the section summarizes the compatibility of the utility

with the same target object. If two actions are compatible on a target object, they

can run simultaneously on that object in separate applications. If compatibility

depends on particular options of a utility, that dependency is also shown.

If the utility supports parallelism, it can use additional threads to support the

parallel subtasking. Consider increasing the values of subsystem parameters that

control threads, such as MAX BATCH CONNECT and MAX USERS. These

parameters are on installation panel DSNTIPE and are described in DB2 Installation

Guide.

See Part 5 (Volume 2) of DB2 Administration Guide for a description of the claim

classes and the use of claims and drains by online utilities.

Running online utilities in a data sharing environment

This section discusses considerations for running online utilities in a data sharing

environment.

Submitting online utility jobs: When you submit a utility job, you must specify the

name of the DB2 subsystem to which the utility is to attach or the group attach

name. If you do not use the group attach name, the utility job must run on the

z/OS system where the specified DB2 subsystem is running. Ensure that the utility

job runs on the appropriate z/OS system. You must use one of several z/OS

installation-specific statements to make sure this happens. These include:

v For JES2 multi-access spool (MAS) systems, insert the following statement into

the utility JCL:

/*JOBPARM SYSAFF=cccc

v For JES3 systems, insert the following statement into the utility JCL:

//*MAIN SYSTEM=(main-name)

The preceding JCL statements are described in z/OS MVS JCL Reference. Your

installation might have other mechanisms for controlling where batch jobs run,

such as by using job classes.

Stopping and restarting utilities: In a data sharing environment, you can terminate

an active utility by using the TERM UTILITY command only on the DB2

subsystem on which it was started. If a DB2 subsystem fails while a utility is in

progress, you must restart that DB2 subsystem, and then you can terminate the

utility from any system.

You can restart a utility only on a member that is running the same DB2 release

level as the member on which the utility job was originally submitted. The same

utility ID (UID) must be used to restart the utility. That UID is unique within a

Chapter 4. Monitoring and controlling online utilities 39

data sharing group. However, if DB2 fails, you must restart DB2 on either the same

or another z/OS system before you restart the utility.

Terminating an online utility with the TERM UTILITY command

The information under this heading, up to “Restarting an online utility” on page

41 is General-use Programming Interface and Associated Guidance Information, as

defined in “Notices” on page 901.

Use the TERM UTILITY command to terminate the execution of an active utility or

to release the resources that are associated with a stopped utility.

Restriction: If the utility was started in a previous release of DB2, issue the TERM

UTILITY command from that release.

After you issue the TERM UTILITY command, you cannot restart the terminated

utility job. The objects on which the utility was operating might be left in an

indeterminate state. In many cases, you cannot rerun the same utility without first

recovering the objects on which the utility was operating. The situation varies,

depending on the utility and the phase that was in process when you issued the

command. These considerations about the state of the object are particularly

important when terminating the COPY, LOAD, and REORG utilities.

In a data sharing environment, TERM UTILITY is effective for active utilities when

the command is submitted from the DB2 subsystem that originally issued the

command. You can terminate a stopped utility from any active member of the data

sharing group.

Restriction: In a data sharing coexistence environment, you can terminate a utility

only on the same release in which the utility was started.

If the utility is active, TERM UTILITY terminates it at the next commit point. It

then performs any necessary cleanup operations.

You might choose to put TERM UTILITY in a conditionally executed job step; for

example, if you never want to restart certain utility jobs. Figure 7 shows a sample

job stream.

 Alternatively, consider specifying the TIMEOUT TERM parameter for some Online

REORG situations.

//TERM EXEC PGM=IKJEFT01,COND=((8,GT,S1),EVEN)

//*

//**

//* IF THE PREVIOUS UTILITY STEP, S1, ABENDS, ISSUE A

//* TERMINATE COMMAND. IT CANNOT BE RESTARTED.

//**

//*

//SYSPRINT DD SYSOUT=A

//SYSTSPRT DD SYSOUT=A

//SYSOUT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSTSIN DD *

DSN SYSTEM(DSN)

-TERM UTILITY(TEMP)

END

/*

Figure 7. Example of conditionally executed TERM UTILITY

40 Utility Guide and Reference

#
#

#
#

Restarting an online utility

If a utility finishes abnormally, you might be able to restart it. With the autonomic

restart procedure, you avoid repeating much of the work that the utility has

already done.

Before you restart a job, correct the problem that caused the utility job to stop.

Then resubmit the job. DB2 recognizes the utility ID and restarts the utility job if

possible. DB2 retrieves information about the stopped utility from the SYSUTIL

directory table.

Do not reuse the utility ID of a stopped utility that has not yet been terminated,

unless you want to restart that utility. If you do use the same utility ID to invoke a

different utility, DB2 tries to restart the original stopped utility with the

information that is stored in the SYSUTIL directory table.

Two different methods of restart are available:

v You can do a phase restart from the beginning of the phase that was being

processed. This method is indicated by the value RESTART(PHASE).

v You can do a current restart from the last checkpoint that was taken during the

execution of the utility phase. If the utility phase does not take any checkpoints

or has not reached the first checkpoint, current restart is equivalent to phase

restart. This method is indicated by the value RESTART or

RESTART(CURRENT).

For each utility, DB2 uses the default RESTART value that is specified in Table 4.

For a complete description of the restart behavior for an individual utility,

including any phase restrictions, refer to the restart section for that utility.

You can override the default RESTART value by specifying the RESTART

parameter in the original JCL data set. DB2 ignores the RESTART parameter if you

are submitting the utility job for the first time. For instructions on how to specify

this parameter, see “Using the RESTART parameter” on page 42.

 Table 4. Default RESTART values for each utility

Utility Default RESTART value

BACKUP SYSTEM RESTART(CURRENT)

CATMAINT No restart

CHECK DATA RESTART(CURRENT)

CHECK INDEX RESTART(CURRENT)

CHECK LOB RESTART(CURRENT)

COPY RESTART(CURRENT)

COPYTOCOPY RESTART(CURRENT)

DIAGNOSE Restarts from the beginning

EXEC SQL Restarts from the beginning

LISTDEF Restarts from the beginning

LOAD RESTART(CURRENT) or RESTART(PHASE)1

MERGECOPY RESTART(PHASE)

MODIFY RECOVERY RESTART(CURRENT)

MODIFY STATISTICS RESTART(CURRENT)

Chapter 4. Monitoring and controlling online utilities 41

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 4. Default RESTART values for each utility (continued)

Utility Default RESTART value

OPTIONS Restarts from the beginning

QUIESCE RESTART(CURRENT)

REBUILD INDEX RESTART(PHASE)

RECOVER RESTART(CURRENT)

REORG INDEX RESTART(CURRENT) or RESTART(PHASE)1

REORG TABLESPACE RESTART(CURRENT) or RESTART(PHASE)1

REPAIR No restart

REPORT RESTART(CURRENT)

RESTORE SYSTEM RESTART(CURRENT)

RUNSTATS RESTART(CURRENT)

STOSPACE RESTART(CURRENT)

TEMPLATE Restarts from the beginning

UNLOAD RESTART(CURRENT)

Notes:

1. The RESTART value that DB2 uses for these utilities depends on the situation.

Refer to the restart section for each utility for a complete explanation.

If you cannot restart a utility job, you might have to terminate it to make the data

available to other applications. To terminate a utility job, issue the DB2 TERM

UTILITY command. Use the command only if you must start the utility from the

beginning.

Using the RESTART parameter

You do not need to use the RESTART parameter to restart a utility job. When you

resubmit a job that finished abnormally and has not been terminated, DB2

automatically recognizes the utility ID from the SYSUTIL directory table and

restarts the utility job if possible. However, if you want to override the default

RESTART value (as listed in Table 4 on page 41), you can update the original JCL

data set by adding the RESTART parameter. Any RESTART values that you specify

always override the default values. DB2 ignores the RESTART parameter if you are

submitting the utility job for the first time.

To add the RESTART parameter, you can use one of the following three methods:

v Using DB2I. Add the RESTART parameter by following these steps:

1. Access the DB2 Utilities panel.

2. Fill in the panel fields, as documented in Figure 2 on page 25, except for field

5.

3. Change field 5 to CURRENT or PHASE, depending on the desired method of

restart.

4. Press Enter.
v Using the DSNU CLIST command. When you invoke the DSNU CLIST

command, as described in “Using the DSNU CLIST command in TSO” on page

26, change the value of the RESTART parameter by specifying either RESTART,

RESTART (CURRENT), or RESTART(PHASE).

42 Utility Guide and Reference

|

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|
|
|
|
|
|
|

v Creating your own JCL. If you create your own JCL, you can specify RESTART

(CURRENT) or RESTART(PHASE) to override the default RESTART value. You

must also check the DISP parameters on the DD statements. For example, for

DD statements that have DISP=NEW and need to be reused, change DISP to

OLD or MOD. If generation data groups (GDGs) are used and any (+1)

generations were cataloged, ensure that the JCL is changed to GDG (+0) for such

data sets.

Automatically generated JCL normally has DISP=MOD. DISP=MOD allows a

data set to be allocated during the first execution and then reused during a

restart.

When restarting a job that involves templates, DB2 automatically changes the

disposition from NEW to MOD. Therefore, you do not need to change template

specifications for restart.

Adding or deleting utility statements

During restart processing, DB2 remembers the relative position of the stopped

utility statement in the input stream. Therefore, you must include all the original

utility statements when restarting any online utility; however, you can add or

delete DIAGNOSE statements.

Modifying utility control statements

When restarting a utility job, do not change any EXEC SQL or OPTIONS utility

control statements that have been executed prior to the stopped utility, if possible.

If you must change these utility control statements, use caution; any changes can

cause the restart processing to fail. For example, if you specify a valid OPTIONS

statement in the initial invocation, and then on restart, specify OPTIONS

PREVIEW, the restart fails.

Use caution when changing LISTDEF lists prior to a restart. When DB2 restarts list

processing, it uses a saved copy of the list. Modifying the LISTDEF list that is

referred to by the stopped utility has no effect. Only control statements that follow

the stopped utility are affected.

Do not change the position of any other utilities that have been executed.

Restarting after the output data set is full

If a utility job terminates with an out-of-space condition on the output data set and

you want to restart the job at the last commit point, follow these steps:

1. Copy the output data set to a temporary data set. Use the same DCB

parameters. Use z/OS utilities that do not reblock the data set during the copy

operation (for example, DFDSS ADRDSSU or DFSORT ICEGENER). Avoid

using the IEBGENER or ISPF 3.3 utilities.

2. Delete or rename the output data set. Ensure that you know the current DCB

parameters, and then redefine the data set with additional space. Use the same

VOLSER (if the data set is not cataloged), the same DSNAME, and the same

DCB parameters.

3. Copy the data from the temporary data set into the new, larger output data set.

Use z/OS utilities that do not reblock the data set during the copy operation

(for example, DFDSS ADRDSSU or DFSORT ICEGENER).

Restarting with templates

Unlike most other utility control statements, TEMPLATE control statements can be

modified before restarting a utility, and, in some cases, they must be modified in

Chapter 4. Monitoring and controlling online utilities 43

|
|

|
|
|
|

order to correct a prior failure. However, use caution when modifying templates.

In some cases, modifications can cause restart processing to fail. For example, if

you change the template name of a temporary work data set that was opened in

an earlier phase and closed but is to be used later, restart processing fails.

TEMPLATE allocation during a restart automatically adjusts data set dispositions

to reallocate the data sets from the prior execution. No modification to the

TEMPLATE DISP is required. If the prior failure was due to space problems on a

data set, the same restart considerations apply as if DD statements were being

used. If the prior failure was due to insufficient space on a volume, you can alter

the TEMPLATE statement. How the TEMPLATE statement needs to be altered

depends on whether the SPACE keyword was specified. If SPACE was specified,

specify a different volume or alter the primary and secondary space quantities. If

SPACE was not specified, specify a different volume or add the PCTPRIME and

NBRSECND keywords. Lower PCTPRIME to decrease the size of the primary

allocation, and increase NBRSECND to decrease the size of the secondary

allocation. DB2 takes checkpoints for the values that are used for TEMPLATE DSN

variables, and the old values are reused on restart.

Restarting with lists

Unlike other utility control statements, LISTDEF control statements can be

modified before restarting a utility. However, the modification does not affect the

currently running utility. It affects only those utilities that follow it.

If the utility that you are restarting was processing a LIST, you will see a list size

that is greater than 1 on the DSNU100 or DSNU105 message. DB2 checkpoints the

expanded, enumerated list contents prior to executing the utility. DB2 uses this

checkpointed list to restart the utility at the point of failure. After a successful

restart, the LISTDEF is re-expanded before subsequent utilities in the same job step

use it.

Other restart hints

The following guidelines provide additional information about restarting utilities:

v If the data set is not dynamically allocated, ensure that the DD name that is

specified in the restart JCL matches the DD name for the original job; don’t

change DD names on a restart job. If the data set is dynamically allocated, the

file sequence numbers must match for the restart and the original run. In either

case, if the data set is not cataloged, any explicit specification of VOLSERs must

match for the restart and the original job. If you copy a work data set, such as

SYSUT1, after an ABENDB37, and the number of volumes changes, do not

specify RESTART CURRENT. If you do, ABEND 413-1C occurs. To prevent this

abend, start the utility in RESTART(PHASE).

v When restarting a utility with cataloged data sets, do not specify VOLSER. Let

DB2 determine the VOLSER of the data sets from the system catalog.

v Based on the specific scenario in a RESTART job, the processing is different

when using TAPE STACK(YES). If the data set has not been allocated in the first

invocation of the job, the remaining inline copy data sets will be copied to a new

tape volume with the file sequence numbers starting at one. When a mount

request is issued for a private tape, ensure that a new volume is mounted so

that the existing files on tape are not overwritten. You can use the expiration

date to enforce this process. If the data set has already been allocated in the first

invocation of the job, the remaining inline copy data sets will be copied to the

tape volume that was used for the initial job with the file sequence numbers

continuing from the setting that was valid when the initial job was terminated

44 Utility Guide and Reference

|
|
|
|
|
|
|
|
|

#
#
#
#
#
#
#
#
#
#

abnormally. In this case, the mount requests the VOLSER from the original job

and does not ask for a PRIVATE volume. This is consistent with how restart

works for the COPY utility when the output image copies are stacked on tape.

v Do not change the utility function that is currently stopped and the DB2 objects

on which it is operating. However, you can change other parameters that are

related to the stopped step and to subsequent utility steps.

v Do not specify z/OS automatic step restart.

v If a utility is restarted in the UTILINIT phase, it is re-executed from the

beginning of the phase.

v Run the RUNSTATS utility after the completion of a restarted LOAD, REBUILD

INDEX, or REORG job with the STATISTICS option. When you restart these jobs,

DB2 does not collect inline statistics. The exception is REORG UNLOAD PAUSE;

when restarted after the pause, REORG UNLOAD PAUSE collects statistics.

v Ensure that the required data sets are properly defined. The recommended data

dispositions for data sets on RESTART are listed in Table 125 on page 596.

Recommendation: Allocate the data sets by using TEMPLATE statements that

do not specify the DISP and SPACE parameter values. When these parameters

are not specified, DB2 determines the correct disposition and size of these data

sets.

v When using the DSNUTILS stored procedure, specify NONE or ANY for the

utility-name parameter. These values suppress the dynamic allocation that is

normally performed by DSNUTILS. You can then specify TEMPLATE statements

(in the utstmt parameter) to allocate the necessary data sets.

Restart is not always possible. The restrictions applying to the phases of each

utility are discussed under the description of each utility.

Chapter 4. Monitoring and controlling online utilities 45

#
#
#

|
|
|
|
|
|

|
|
|
|

46 Utility Guide and Reference

Chapter 5. BACKUP SYSTEM

The online BACKUP SYSTEM utility invokes z/OS DFSMShsm (Version 1 Release

5 or above) to copy the volumes on which the DB2 data and log information

resides for either a DB2 subsystem or data sharing group. You can use BACKUP

SYSTEM to copy all data for a single application (for example, when DB2 is the

database server for a resource planning solution). All data sets that you want to

copy must be SMS-managed data sets. You can subsequently run the RESTORE

SYSTEM utility to recover the data.

In a data sharing environment, if any failed or abnormally quiesced members exist,

the BACKUP SYSTEM request fails.

The BACKUP SYSTEM utility uses copy pools, which are new constructs in z/OS

DFSMShsm V1R5. A copy pool is a defined set of storage groups that contain data

that DFSMShsm can backup and recover collectively. For more information about

copy pools, see z/OS DFSMSdfp Storage Administration Reference.

Each DB2 subsystem can have up to two copy pools, one for databases and one for

logs. BACKUP SYSTEM copies the volumes that are associated with these copy

pools at the time of the copy.

Output: The output for BACKUP SYSTEM is the copy of the volumes on which the

DB2 data and log information resides. The BACKUP SYSTEM history is recorded

in the bootstrap data sets (BSDSs).

Related information: For information about the use of BACKUP SYSTEM in

point-of-time recovery, see Part 4 of DB2 Administration Guide.

Authorization required: To execute this utility, you must use a privilege set that

includes SYSCTRL or SYSADM authority.

Execution phases of BACKUP SYSTEM: The BACKUP SYSTEM utility operates in

these phases:

Phase Description

UTILINIT Performs initialization and setup

COPY Copies data

UTILTERM Performs cleanup

The following topics provide additional information:

v “Syntax and options of the BACKUP SYSTEM control statement ” on page 48

v “Instructions for running BACKUP SYSTEM” on page 48

v “Concurrency and compatibility for BACKUP SYSTEM” on page 50

v “Sample BACKUP SYSTEM control statements” on page 51

© Copyright IBM Corp. 1983, 2008 47

|

|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

||

||

||

||

|

|

|

|

|

Syntax and options of the BACKUP SYSTEM control statement

The utility control statement defines the function that the utility job performs. Use

the ISPF/PDF edit function to create a control statement and to save it in a

sequential or partitioned data set. When you create the JCL for running the job, use

the SYSIN DD statement to specify the name of the data set that contains the

utility control statement.

When you specify BACKUP SYSTEM, you can specify only the following

statements in the same step:

v DIAGNOSE

v OPTIONS PREVIEW

v OPTIONS OFF

v OPTIONS KEY

v OPTIONS EVENT WARNING

In addition, BACKUP SYSTEM must be the last statement in SYSIN.

Syntax diagram

��
 FULL

BACKUP SYSTEM

DATA ONLY

��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

FULL

Indicates that you want to copy both the database copy pool and the log copy

pool. The default is FULL.

 You must ensure that the database copy pool is set up to contain the volumes

for the databases and the associated integrated catalog facility (ICF) catalogs.

You must also ensure that the log copy pool is set up to contain the volumes

for the BSDSs, the active logs, and the associated catalogs.

Use BACKUP SYSTEM FULL to allow for recovery of both data and logs. You

can use the RESTORE SYSTEM utility to recover the data. However, RESTORE

SYSTEM does not restore the logs; the utility only applies the logs. If you want

to restore the logs, you must use another method to restore them.

DATA ONLY

Indicates that you want to copy only the database copy pool. You must ensure

that the database copy pool is set up to contain the volumes for the databases

and the associated ICF catalogs.

Instructions for running BACKUP SYSTEM

To run BACKUP SYSTEM, you must:

1. Read “Before running BACKUP SYSTEM” on page 49.

BACKUP SYSTEM

48 Utility Guide and Reference

|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

||||||||||||||||

|
||

|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|

2. Prepare the necessary data sets, as described in “Data sets that BACKUP

SYSTEM uses.”

3. Create JCL statements by using one of the methods that are described in either

“Using the supplied JCL procedure (DSNUPROC)” on page 33 or “Creating the

JCL data set yourself by using the EXEC statement” on page 36.

4. Prepare a utility control statement that specifies the options for the tasks that

you want to perform.

5. Check “Concurrency and compatibility for BACKUP SYSTEM” on page 50 if

you want to run other jobs concurrently on the same target objects.

6. Plan for restarting BACKUP SYSTEM if the job doesn’t complete, as described

in “Terminating or restarting BACKUP SYSTEM” on page 50.

7. Run BACKUP SYSTEM by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15.

Before running BACKUP SYSTEM

To run BACKUP SYSTEM, you must ensure that the following conditions are true:

v The data sets that you want to copy are SMS-managed data sets.

v You are running z/OS V1R5 or above.

v You have disk control units that support ESS FlashCopy™.

v You have defined a copy pool for your database data. If you plan to also copy

the logs, define another copy pool for your logs. Use the DB2 naming

convention for both of these copy pools.

v The ICF catalog for the data is on a separate volume than the ICF catalog for the

logs.

v You have defined an SMS backup storage group for each storage group in the

copy pools.

For information about defining copy pools and associated backup storage groups,

see z/OS DFSMSdfp Storage Administration Reference. Use the following DB2 naming

convention when you define these copy pools:

DSN$locn-name$cp-type

The variables that are used in this naming convention have the following

meanings:

DSN The unique DB2 product identifier.

$ A delimiter. You must use the dollar sign character ($).

locn-name

The DB2 location name.

cp-type The copy pool type. Use DB for database and LG for log.

Data sets that BACKUP SYSTEM uses

Table 5 on page 50 lists the data sets that the BACKUP SYSTEM utility uses. The

table lists the DD name that is used to identify the data set, a description of the

data set, and an indication of whether it is required. Include statements in your

JCL for each required data set

BACKUP SYSTEM

Chapter 5. BACKUP SYSTEM 49

|
|

|
|
|

|
|

|
|

|
|

|
|

|

|

|

|

|

|
|
|

|
|

|
|

|
|
|

|

|
|

||

||

|
|

||

|

|
|
|
|

Table 5. Data sets that BACKUP SYSTEM uses

Data sets Description Required?

SYSIN An input data set that contains the utility

control statement

Yes

SYSPRINT An output data set for messages Yes

Creating the control statement

Create the utility control statement for the BACKUP SYSTEM job. See “Syntax

diagram” on page 59 for BACKUP SYSTEM syntax and option descriptions. See

“Sample BACKUP SYSTEM control statements” on page 51 for examples of

BACKUP SYSTEM usage.

Instructions for specific tasks

To use the DISPLAY UTILITY command for BACKUP SYSTEM on a data sharing

group, you must issue the command from the member on which the BACKUP

SYSTEM utility is invoked. Otherwise, the current utility information is not

displayed.

Terminating or restarting BACKUP SYSTEM

You can terminate BACKUP SYSTEM by using the TERM UTILITY command.

BACKUP SYSTEM checks for the TERM UTILITY command before the call to copy

data. TERM UTILITY deletes the copy that is being created through the BACKUP

SYSTEM utility.

To use TERM UTILITY to terminate BACKUP SYSTEM on a data sharing group,

you must issue the command from the member on which the BACKUP SYSTEM

utility is invoked.

You can restart a BACKUP SYSTEM utility job, but it starts from the beginning

again. For guidance in restarting online utilities, see “Restarting an online utility”

on page 41.

Concurrency and compatibility for BACKUP SYSTEM

BACKUP SYSTEM can run concurrently with any other utility; however, it must

wait for the following DB2 events to complete before the copy can begin:

v Extending of data sets

v Writing of 32-KB pages

v Writing close page set control log records (PSCRs)

v Creating data sets (for table spaces, indexes, and so forth)

v Deleting data sets (for dropping tables spaces, indexes, and so forth)

v Renaming data sets (for online reorganizing of table spaces, indexes, and so

forth during the SWITCH phase)

Only one BACKUP SYSTEM job can be running at one time.

BACKUP SYSTEM

50 Utility Guide and Reference

||

|||

||
|
|

|||
|

|

|
|
|
|

|

|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|

|

|

|

|

|
|

|

Sample BACKUP SYSTEM control statements

Example 1: Creating a full backup of a DB2 subsystem or data sharing group. The

following control statement specifies that the BACKUP SYSTEM utility is to create

a full backup copy of a DB2 subsystem or data sharing group. The full backup

includes copies of both the database copy pool and the log copy pool. In this

control statement, the FULL option is not explicitly specified, because it is the

default.

//STEP1 EXEC DSNUPROC,TIME=1440,

// UTPROC=’’,

// SYSTEM=’DSN’

//SYSIN DD *

 BACKUP SYSTEM

/*

Example 2: Creating a data-only backup of a DB2 subsystem or data sharing

group. The following control statement specifies that BACKUP SYSTEM is to create

a backup copy of only the database copy pool for a DB2 subsystem or data sharing

group.

//STEP1 EXEC DSNUPROC,TIME=1440,

// UTPROC=’’,

// SYSTEM=’DSN’

//SYSIN DD *

 BACKUP SYSTEM DATA ONLY

/*

BACKUP SYSTEM

Chapter 5. BACKUP SYSTEM 51

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

52 Utility Guide and Reference

Chapter 6. CATENFM

The CATENFM utility enables a DB2 subsystem to enter DB2 Version 8

enabling-new-function mode and Version 8 new-function mode. All new Version 8

functions are unavailable until the subsystem enters new-function mode. For more

information about CATENFM, including instructions for running it, see DB2

Installation Guide.

© Copyright IBM Corp. 1983, 2008 53

|

|

|
|
|
|
|

54 Utility Guide and Reference

Chapter 7. CATMAINT

The CATMAINT utility updates the catalog; run this utility during migration to a

new release of DB2 or when IBM Software Support instructs you to do so. For

more information about CATMAINT, including instructions for running it, see DB2

Installation Guide.

© Copyright IBM Corp. 1983, 2008 55

56 Utility Guide and Reference

Chapter 8. CHECK DATA

The CHECK DATA utility checks table spaces for violations of referential and table

check constraints, and reports information about violations that it detects. CHECK

DATA also checks for consistency between a base table space and the

corresponding LOB table space. The utility does not check informational referential

constraints.

Run CHECK DATA after a conditional restart or a point-in-time recovery on all

table spaces where parent and dependent tables might not be synchronized or

where base tables and auxiliary tables might not be synchronized. You can run

CHECK DATA against a base table space only, not against a LOB table space.

Restriction: Do not run CHECK DATA on encrypted data. Because CHECK DATA

does not decrypt the data, the utility might produce unpredictable results.

For a diagram of CHECK DATA syntax and a description of available options, see

“Syntax and options of the CHECK DATA control statement” on page 58. For

detailed guidance on running this utility, see “Instructions for running CHECK

DATA” on page 63.

Output: CHECK DATA optionally deletes rows that violate referential or table

check constraints. CHECK DATA copies each row that violates one or more

constraints to an exception table. If a row violates two or more constraints, the row

is copied only once.

If the utility finds any violation of constraints, CHECK DATA puts the table space

that it is checking in the CHECK-pending status.

You can specify that the CHECK-pending status is to be reset when CHECK DATA

execution completes.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v STATS privilege for the database

v DBADM, DBCTRL, or DBMAINT authority for the database

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute CHECK DATA.

However, you cannot use SYSOPR authority to execute CHECK DATA on table

space SYSDBASE in database DSNDB06 or on any object except SYSUTILX in

database DSNDB01.

If you specify the DELETE option, the privilege set must include the DELETE

privilege on the tables that are being checked. If you specify the FOR EXCEPTION

option, the privilege set must include the INSERT privilege on any exception table

that is used. If you specify the AUXERROR INVALIDATE option, the privilege set

must include the UPDATE privilege on the base tables that contain LOB columns.

Execution phases of CHECK DATA:

Phase Description

UTILINIT Performs initialization

© Copyright IBM Corp. 1983, 2008 57

|
|
|
|
|

|
|

SCANTAB Extracts foreign keys; uses foreign key index if it matches exactly;

otherwise scans the table

SORT Sorts foreign keys if they are not extracted from the foreign key

index

CHECKDAT Looks in primary indexes for foreign key parents, and issue

messages to report detected errors

REPORTCK Copies error rows into exception tables, and delete them from

source table if DELETE YES is specified

UTILTERM Performs cleanup

The following topics provide additional information:

v “Syntax and options of the CHECK DATA control statement”

v “Instructions for running CHECK DATA” on page 63

v “Concurrency and compatibility for CHECK DATA” on page 72

v “Sample CHECK DATA control statements” on page 73

Syntax and options of the CHECK DATA control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

CHECK DATA

58 Utility Guide and Reference

Syntax diagram

��

CHECK

DATA

�

table-space-spec

PART

integer

�

�
 SCOPE PENDING AUXERROR REPORT

SCOPE

AUXONLY

AUXERROR

INVALIDATE

ALL

REFONLY

�

�

�

DELETE

NO

FOR

EXCEPTION

IN

table-name1

USE

table-name2

LOG

YES

DELETE

YES

LOG

NO

 �

�
 EXCEPTIONS 0

EXCEPTIONS

integer

 ERRDDN SYSERR

ERRDDN

ddname

 WORKDDN SYSUT1 , SYSUT2

WORKDDN

ddname1

,

ddname2

,

SYSUT2

ddname1

SYSUT1

,

ddname2

�

�
SORTDEVT

device-type

SORTNUM

integer
 ��

table-space-spec:

�� TABLESPACE table-space-name

database-name.
 ��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

DATA Indicates that you want the utility to check referential and table

check constraints. CHECK DATA does not check informational

referential constraints.

CHECK DATA

Chapter 8. CHECK DATA 59

|

|

TABLESPACE database-name.table-space-name

Specifies the table space to which the data belongs.

 database-name is the name of the database and is optional. The

default is DSNDB04.

table-space-name is the name of the table space.

PART integer Identifies which partition to check for constraint violations.

 integer is the number of the partition and must be in the range

from 1 to the number of partitions that are defined for the table

space. The maximum is 4096.

SCOPE Limits the scope of the rows in the table space that are to be

checked.

PENDING

Indicates that the only rows that are to be checked are

those that are in table spaces, partitions, or tables that are

in CHECK-pending status. The referential integrity check,

constraint check, and the LOB check are all performed.

 If you specify this option for a table space that is not in

CHECK-pending status, the CHECK DATA utility does not

check the table space and does not issue an error message.

The default is PENDING.

AUXONLY

Indicates that only the LOB column check is to be

performed for table spaces that have tables with LOB

columns. The referential integrity and constraint checks are

not performed.

ALL Indicates that all dependent tables in the specified table

spaces are to be checked. The referential integrity check,

constraint check, and the LOB check are performed.

REFONLY

Same as the ALL option, except that the LOB column check

is not to be performed.

AUXERROR Specifies the action that CHECK DATA is to perform when it finds

a LOB column check error.

REPORT A LOB column check error is reported with a

warning message. The base table space is set to the

auxiliary CHECK-pending (ACHKP) status.

 The default is REPORT.

INVALIDATE A LOB column check error is reported with a

warning message. The base table LOB column is

set to an invalid status. A LOB column with invalid

status that is now correct is set valid. This action is

also reported with a message. The base table space

is set to the auxiliary warning (AUXW) status if

any LOB column remains in invalid status.

Before using CHECK DATA to check LOBs:

1. Run CHECK LOB to ensure the validity of the LOB table space.

CHECK DATA

60 Utility Guide and Reference

|
|
|

2. Run REBUILD INDEX or CHECK INDEX on the index on the

auxiliary table to ensure its validity.

FOR EXCEPTION

Indicates that any row that is in violation of referential or table

check constraints is to be copied to an exception table. Although

this keyword does not apply to the checking of LOB columns, rows

with LOB columns are moved to the exception tables. If you

specify AUXONLY for LOB checking only, the FOR EXCEPTION

option is ignored.

 If any row violates more than one constraint, that row appears no

more than once in the exception table.

IN table-name1

Specifies the table (in the table space that is specified on the

TABLESPACE keyword) from which rows are to be copied.

 table-name1 is the name of the table. Enclose the table name in

quotation marks if the name contains a blank.

USE table-name2

Specifies the exception table into which error rows are to be

copied.

 table-name2 is the name of the exception table and must be a

base table; it cannot be a view, synonym, or alias. Enclose the

table name in quotation marks if the name contains a blank.

DELETE Indicates whether rows that are in violation of referential or table

check constraints are to be deleted from the table space. You can

use this option only if you specify the FOR EXCEPTION keyword.

NO Indicates that error rows are to remain in the table space.

Primary errors in dependent tables are copied to exception

tables. The default is NO.

 If DELETE NO is specified, and constraint violations are

detected, CHECK DATA places the table space in the

CHECK-pending status.

YES Indicates that error rows are to be deleted from the table

space. Deleted rows from both dependent and descendent

tables are placed into exception tables.

LOG Specifies the logging action that is to be taken when records are

deleted.

YES

Logs all records that are deleted during the REPORTCK

PHASE.

NO

Does not log any records that are deleted during the

REPORTCK phase. If any rows are deleted, CHECK DATA

places the table space in the COPY-pending status, and it

places any indexes that were defined with the COPY YES

attribute in the informational COPY-pending status.

CHECK DATA

Chapter 8. CHECK DATA 61

#
#
#
#
#

Attention: Use the LOG NO option with caution because its

use limits your ability to recover data by using the log. For

example, if you issue the CHECK DATA DELETE YES LOG

NO utility control statement at particular log RBA, you can

recover data that exists on the lob before that point in time or

after the point on the log at which the utility execution

completes.

EXCEPTIONS integer

Specifies the maximum number of exceptions, which are reported

by messages only. CHECK DATA terminates in the CHECKDAT

phase when it reaches the specified number of exceptions; if

termination occurs, the error rows are not written to the

EXCEPTION table.

 Only records that contain primary referential integrity errors or

table check constraint violations are applied toward the exception

limit. The number of records that contain secondary errors is not

limited.

integer is the maximum number of exceptions. The default is 0,

which indicates no limit on the number of exceptions.

ERRDDN ddname

Specifies a DD statement for an error processing data set.

 ddname is either a DD name or a TEMPLATE name specification

from a previous TEMPLATE control statement. If utility processing

detects that the specified name is both a DD name in the current

job step and a TEMPLATE name, the utility uses the DD name. For

more information about TEMPLATE specifications, see Chapter 31,

“TEMPLATE,” on page 587. The default is SYSERR.

WORKDDN (ddname1,ddname2)

Specifies the DD statements for the temporary work file for sort

input and the temporary work file for sort output. A temporary

work file for sort input and output is required.

 You can use the WORKDDN keyword to specify either a DD name

or a TEMPLATE name specification from a previous TEMPLATE

control statement. If utility processing detects that the specified

name is both a DD name in the current job step and a TEMPLATE

name, WORKDDN uses the DD name. For more information about

TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on page

587.

ddname1 is the DD name of the temporary work file for sort input.

The default is SYSUT1.

ddname2 is the DD name of the temporary work file for sort

output. The default is SORTOUT.

SORTDEVT device-type

Specifies the device type for temporary data sets that are to be

dynamically allocated by DFSORT. device-type is the device type

can be any device type that is acceptable to the DYNALLOC

parameter of the SORT or OPTION control statement for DFSORT,

as described in DFSORT Application Programming: Guide.

CHECK DATA

62 Utility Guide and Reference

Do not use a TEMPLATE specification to dynamically allocate sort

work data sets. The presence of the SORTDEVT keyword controls

dynamic allocation of these data sets.

SORTNUM integer

Specifies the number of temporary data sets that are to be

dynamically allocated by the sort program.

 integer is the number of temporary data sets that can range from 2

to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use

SORTDEVT and omit SORTNUM, no value is passed to DFSORT;

DFSORT uses its own default.

You need at least two sort work data sets for each sort. The

SORTNUM value applies to each sort invocation in the utility. For

example, if there are three indexes, SORTKEYS is specified, there

are no constraints limiting parallelism, and SORTNUM is specified

as 8, then a total of 24 sort work data sets will be allocated for a

job.

Each sort work data set consumes both above the line and below

the link virtual storage, so if you specify too high a value for

SORTNUM, the utility may decrease the degree of parallelism due

to virtual storage constraints, and possibly decreasing the degree

down to one, meaning no parallelism.

Important: The SORTNUM keyword will not be considered if

ZPARM UTSORTAL is set to YES and IGNSORTN is

set to YES.

Instructions for running CHECK DATA

To run CHECK DATA, you must:

1. Read “Before running CHECK DATA.”

2. Prepare the necessary data sets, as described in “Data sets that CHECK DATA

uses” on page 67.

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

CHECK DATA, see “Sample CHECK DATA control statements” on page 73.)

4. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

68.

5. Check the compatibility table in “Concurrency and compatibility for CHECK

DATA” on page 72 if you want to run other jobs concurrently on the same

target objects.

6. Plan for restarting CHECK DATA if the job doesn’t complete, as described in

“Terminating or restarting CHECK DATA” on page 71.

7. Run CHECK DATA by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15.

Before running CHECK DATA

This section describes the actions that you must take before you can run the

CHECK DATA utility.

CHECK DATA

Chapter 8. CHECK DATA 63

#
#
#
#
#
#

#
#
#
#
#

#
#
#

For a table with no LOB columns

Before running CHECK DATA, you should run CHECK INDEX on primary key

indexes and foreign key indexes to ensure that the indexes that CHECK DATA

uses are valid. This action is especially important before using CHECK DATA with

the DELETE YES or PART options.

For a table with LOB columns

If you plan to run CHECK DATA on a base table space that contains at least one

LOB column, complete the following steps prior to running CHECK DATA:

1. Run CHECK LOB on the LOB table space.

2. Run CHECK INDEX on the index on the auxiliary table to ensure the validity

of the LOB table space and the index on the auxiliary table.

3. Run CHECK INDEX on the indexes on the base table space.

The relationship between a base table with a LOB column and the LOB table space

is shown in Figure 8. The LOB column in the base table points to the auxiliary

index on the LOB table space, as illustrated in the figure. For more information

about LOBs and auxiliary tables, see Part 2 of DB2 Administration Guide.

If the LOB table space is in either the CHECK-pending or RECOVER-pending

status, or if the index on the auxiliary table is in REBUILD-pending status, CHECK

DATA issues an error message and fails.

Create exception tables

An exception table is a user-created table that duplicates the definition of a

dependent table. The CHECK DATA utility checks the dependent table, which

consists of at least n columns, where n is the number of columns of the dependent

table. The CHECK DATA utility copies the deleted rows from the dependent table

to the exception table. Table 6 describes the contents of an exception table. This

table lists the columns, a description of the column content, whether or not the

column is required, the data type and length of the column value, and whether or

not the column has the NULL attribute.

Figure 8. Relationship between a base table with a LOB column and the LOB table space

CHECK DATA

64 Utility Guide and Reference

|

|
|
|

|
|
|
|
|

Table 6. Contents of exception tables

Column Description Required?

Data type and

length NULL attribute

1 to n Corresponds to columns in the table

that is being checked. These

columns hold data from table rows

that violate referential or table check

constraints.

Yes The same as the

corresponding

columns in the

table that is being

checked.

The same as the

corresponding

columns in the

table that is being

checked.

n+1 Identifies the RIDs of the invalid

rows of the table that is being

checked.

No CHAR(4);

CHAR(5)1 for

table spaces that

are defined with

LARGE or DSSIZE

options

Anything

n+2 Starting time of the CHECK DATA

utility.

No TIMESTAMP Anything

≥ n+2 Additional columns that the

CHECK DATA utility does not use.

No Anything Anything

Notes:

1. You can use CHAR(5) for any type of table space, but you must use it for table spaces that are defined with the

LARGE or DSSIZE options.

If you delete rows by using the CHECK DATA utility with SCOPE ALL, you must

create exception tables for all tables that are named in the table spaces and for all

their descendents. All descendents of any row are deleted.

When creating or using exception tables, be aware of the following guidelines:

v The exception tables should not have any unique indexes or referential or table

check constraints that might cause errors when CHECK DATA inserts rows into

them.

v You can create a new exception table before you run CHECK DATA, or you can

use an existing exception table. The exception table can contain rows from

multiple invocations of CHECK DATA.

v If column n+2 is of type TIMESTAMP, CHECK DATA records the starting time.

Otherwise, it does not use column n+2.

v You must have DELETE authorization on the dependent table that is being

checked.

v You must have INSERT authorization on the exception table.

v Column names in the exception table can have any name.

v Any change to the structure of the dependent table (such as a dropped column)

is not automatically recorded in the exception table. You must make that change

in the exception table.

Exception processing a table with a LOB column

If you use exception tables, the exception table for the base table must have a

similar LOB column and a LOB table space for each LOB column. If an exception

is found, DB2 moves the base table row with its LOB column to the exception

table. Then DB2 moves the LOB column into the exception table’s LOB table space.

If you specify DELETE YES, DB2 deletes the base table row and the LOB column.

CHECK DATA

Chapter 8. CHECK DATA 65

An auxiliary table cannot be an exception table. A LOB column check error is not

included in the exception count. A row with only a LOB column check error does

not participate in exception processing.

Example: creating an exception table for the project activity table

General-use Programming Interface

You can create an exception table for the project activity table by using the

following SQL statements:

EXEC SQL

CREATE TABLE EPROJACT

 LIKE DSN8810.PROJACT

 IN DATABASE DSN8D81AENDEXEC

EXEC SQL

ALTER TABLE EPROJACT

 ADD RID CHAR(4)

ENDEXEC

EXEC SQL

ALTER TABLE EPROJACT

 ADD TIME TIMESTAMP NOT NULL WITH DEFAULT

ENDEXEC

The first statement requires the SELECT privilege on table DSN8810.PROJACT and

the privileges that are usually required to create a table.

Table EPROJACT has the same structure as table DSN8810.PROJACT, but it can

have two extra columns. The columns in EPROJACT are:

v Its first five columns mimic the columns of the project activity table; they have

exactly the same names and descriptions. Although the column names are the

same, they do not need to be. However, the rest of the column attributes for the

initial columns must be same as those of the table that is being checked.

v The next column, which is added by ALTER TABLE, is optional; CHECK DATA

uses it as an identifier. The name “RID” is an arbitrary choice; if the table

already has a column with that name, use a different name. The column

description, CHAR(4), is required.

v The final timestamp column is also optional. If you define the timestamp

column, a row identifier (RID) column must precede this column. You might

define a permanent exception table for each table that is subject to referential or

table check constraints. You can define it once and use it to hold invalid rows

that CHECK DATA detects. The TIME column allows you to identify rows that

were added by the most recent run of the utility.

Eventually, you correct the data in the exception tables, perhaps with an SQL

UPDATE statement, and transfer the corrections to the original tables by using

statements that are similar to those in the following example:

INSERT INTO DSN8810.PROJACT

 SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE

 FROM EPROJACT

 WHERE TIME > CURRENT TIMESTAMP - 1 DAY;

End of General-use Programming Interface

CHECK DATA

66 Utility Guide and Reference

Complete all LOB column definitions

You must complete all LOB column definitions for a base table before running

CHECK DATA. A LOB column definition is not complete until the LOB table

space, auxiliary table, and index on the auxiliary table have been created. If any

LOB column definition is not complete, CHECK DATA fails and issues error

message DSNU075E.

Data sets that CHECK DATA uses

Table 7 lists the data sets that CHECK DATA uses. The table lists the DD name that

is used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 7. Data sets that CHECK DATA uses

Data set Description Required?

SYSIN An input data set that contains the utility

control statement.

Yes

SYSPRINT An output data set for messages. Yes

Work data sets Two temporary data sets for sort input and

sort output. Specify the DD names by using

the WORKDDN option of the utility control

statement. The default ddname for sort input

is SYSUT1. The default ddname for sort

output is SORTOUT.

To find the approximate size in bytes of the

work data sets, see“Defining work data

sets” on page 67.

Yes

Error data set An output data set that collects information

about violations that are encountered during

the CHECKDAT phase for referential

constraints or the SCANTAB phase for check

constraints. Specify the DD name by using

the ERRDDN parameter of the utility control

statement. The default ddname is SYSERR.

Yes

UTPRINT A data set that contains messages from

DFSORT (usually, SYSOUT or DUMMY).

No

The following objects are named in the utility control statement and do not require

DD statements in the JCL:

Table space

Object that is to be checked. (If you want to check only one partition of a

table space, use the PART option in the control statement.)

Exception table

Table that stores rows that violate any referential constraints. For each table

in a table space that is checked, specify the name of an exception table in

the utility control statement. Any row that violates a referential constraint

is copied to the exception table.

Defining work data sets: Three sequential data sets are required during execution

of CHECK DATA. Two work data sets and one error data set are described by DD

statements in the WORKDDN and ERRDDN options.

CHECK DATA

Chapter 8. CHECK DATA 67

To find the approximate size, in bytes, of the WORKDDN data set:

1. If a table space has a LOB column, count a total of 70 bytes for the LOB

column, and then go to step 3. If a table space does not have a LOB column, go

to step 2.

2. Add 18 to the length of the longest foreign key. For nonpadded indexes, the

length of the longest foreign key is the maximum possible length of the key

with all varying-length columns in the key padded to their maximum length,

plus 2 bytes for each varying-length column.

3. Multiply the sum by the number of keys and LOB columns that are checked.

Create the ERRDDN data set so that it is large enough to accommodate one error

entry (length=60 bytes) per violation that CHECK DATA detects.

 DB2 utilities uses DFSORT to perform sorts. Sort work data sets cannot span

volumes. Smaller volumes require more sort work data sets to sort the same

amount of data; therefore, large volume sizes can reduce the number of needed

sort work data sets. It is recommended that at least 1.2 times the amount of data to

be sorted be provided in sort work data sets on disk. For more information about

DFSORT, see DFSORT Application Programming Guide.

Creating the control statement

Create the utility control statement for the CHECK DATA job. See “Syntax

diagram” on page 59 for CHECK DATA syntax and option descriptions. See

“Sample CHECK DATA control statements” on page 73 for examples of CHECK

DATA usage.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Specifying the scope of CHECK DATA”

 “Checking several table spaces”

 “Finding violations” on page 69

 “Detecting and correcting constraint violations” on page 69

 “Resetting CHECK-pending status” on page 70

 “Interpreting LOB column errors” on page 70

 “Resetting auxiliary CHECK-pending status” on page 71

Specifying the scope of CHECK DATA

Running CHECK DATA with SCOPE PENDING is normally sufficient. DB2 records

which data rows must be checked to ensure the referential integrity of the table

space.

Whenever the scope information is in doubt, run the utility with the SCOPE ALL

option. The scope information is recorded in the DB2 catalog. The scope

information can become indoubt whenever you start the target table space with

ACCESS(FORCE), or when the catalog is recovered to a point in time.

If you want to check only the tables with LOB columns, specify the AUXONLY

option. If you want to check all dependent tables in the specified table spaces

except tables with LOB columns, specify the REFONLY option.

Checking several table spaces

To check several table spaces, you can specify more than one table space in a

CHECK DATA control statement. This technique is useful for checking a complete

CHECK DATA

68 Utility Guide and Reference

|
|
|
|

#
#
#
#
#
#

set of referentially related table spaces. The following example shows a CHECK

DATA control statement that lists more than one table space.

CHECK DATA

 TABLESPACE DBJM1203.TLJM1203

 TABLESPACE DBJM1203.TPJM1204

 FOR EXCEPTION IN TLJM1203.TBJM1203 USE ADMF001.EXCPT3

 IN TPJM1204.TMBJM1204 USE ADMF001.EXCPT4

 DELETE YES

Finding violations

CHECK DATA issues a message for every row that contains a referential or table

check constraint violation. The violation is identified by:

v The RID of the row

v The name of the table that contains the row

v The name of the constraint that is being violated

Figure 9 shows an example of messages that CHECK DATA issues.

Detecting and correcting constraint violations

To avoid problems, you should run CHECK DATA with DELETE NO to detect the

violations before you attempt to correct the errors. If required, use DELETE YES

after you analyze the output and understand the errors.

You can automatically delete rows that violate referential or table check constraints

by specifying CHECK DATA with DELETE YES. However, you should be aware of

the following possible problems:

v The violation might be created by a non-referential integrity error. For example,

the indexes on a table might be inconsistent with the data in a table.

v Deleting a row might cause a cascade of secondary deletes in dependent tables.

The cascade of deletes might be especially inconvenient within referential

integrity cycles.

v The error might be in the parent table.

DSNU0501 DSNUGUTC - CHECK DATA TABLESPACE DBJM1203.TLJM1203

 TABLESPACE DBJM1203.TPJM1204

 FOR EXCEPTION IN TLJM1203.TBJM1203 USE ADMF001.EXCPT3

 IN TPJM1204.TBJM1204 USE ADMF001.EXCPT4 DELETE YES

DSNU7271 = DSNUKINP - TABLESPACE ’DBJM1203.TLJM1203’ IS NOT CHECK PENDING

DSNU7301 DSNUKDST - CHECKING TABLE TPJM1204.TBJM1204

DSNU0421 DSNUGSOR - SORT PHASE STATISTICS -

 NUMBER OF RECORDS=4

 ELAPSED TIME=00:00:00

DSN0733l DSNUKERK - ROW (RID=X’000000020B’) HAS NO PARENT FOR

TPJM1204.TBJM1204.TABFK

DSN0733l DSNUKERK - ROW (RID=X’0010000201’) HAS NO PARENT FOR

TPJM1204.TBJM1204.TABFK

DSN0733l DSNUKERK - ROW (RID=X’002000020B’) HAS NO PARENT FOR

TPJM1204.TBJM1204.TABFK

DSN0733l DSNUKERK - ROW (RID=X’0030000201’) HAS NO PARENT FOR

TPJM1204.TBJM1204.TABFK

DSNU739l DSNUKDAT - CHECK TABLE TPJM1204.TBJM1204 COMPLETE, ELAPSED

TIME=00:00:00

DSNU741l = DSNUKRDY - 4 ROWS DELETED FROM TABLE TPJM1204.TBJM1204

DSNU568l = DSNUGSRX - INDEX TPJM1204.IPJM1204 IS IN INFORMATIONAL COPY PENDING

DSNU568l = DSNUGSRX - INDEX TPJM1204.IXJM1204 IS IN INFORMATIONAL COPY PENDING

DSNU7491 DSNUK001 - CHECK DATA COMPLETE,ELAPSED TIME=00:00:02

DSNU010l DSNUGBAC - UTILTIY EXECTUION COMPLETE, HIGHEST RETURN CODE=4

Figure 9. Example of messages that CHECK DATA issues

CHECK DATA

Chapter 8. CHECK DATA 69

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CHECK DATA uses the primary key index and all indexes that exactly match a

foreign key. Therefore, before running CHECK DATA, ensure that the indexes are

consistent with the data by using the CHECK INDEX utility.

Resetting CHECK-pending status

Take one of the following actions to remove CHECK-pending status:

v Use the DELETE NO option if no tables contain rows that violate referential or

table check constraints.

v Use the DELETE YES option to remove all rows that violate referential or table

check constraints.

If you run CHECK DATA with the DELETE NO option and referential or table

check constraint violations are found, the table space or partition is placed in

CHECK-pending status.

Interpreting LOB column errors

If you run CHECK DATA AUXERROR REPORT or INVALIDATE on a base table

space that contains at least one LOB column, the following errors might be

reported:

Orphan LOBs: An orphan LOB column is a LOB that is found in the LOB table

space but that is not referenced by the base table space. If an orphan error is the

only type of error reported by CHECK DATA, the base table is considered correct.

An orphan can result from the following situations:

v You recover the base table space to a point in time prior to the insertion of the

base table row.

v You recover the base table space to a point in time prior to the definition of the

LOB column.

v You recover the LOB table space to a point in time prior to the deletion of a base

table row.

v A base record ROWID is incorrect, which results in an orphan LOB column error

message and a missing LOB column error message. The missing LOB column

error message identifies the ROWID, VERSION and row in error. The missing

LOB column is handled depending on the value that you specify for the

AUXERROR parameter.

Missing LOBs: A missing LOB column is a LOB that is referenced by the base table

space but that is not in the LOB table space. A missing LOB can result from the

following situations:

v You recover the LOB table space to a point in time prior to the first insertion of

the LOB into the base table.

v You recover the LOB table space to a point in time when the LOB column is null

or has a zero length

Out-of-synch LOBs: An out-of-synch LOB error is a LOB that is found in both the

base table and the LOB table space, but the LOB in the LOB table space is at a

different level. A LOB column is also out-of-synch if the base table is null or has a

zero length, but the LOB is found in the LOB table space. An out-of-synch LOB

can occur anytime you recover the LOB table space or the base table space to a

prior point in time.

Invalid LOBs: An invalid LOB is an uncorrected LOB column error that is found

by a previous execution of CHECK DATA AUXERROR INVALIDATE.

CHECK DATA

70 Utility Guide and Reference

#
#

#
#
#
#
#

Detecting LOB column errors: If you specify either CHECK DATA AUXERROR

REPORT or AUXERROR INVALIDATE and a LOB column check error is detected,

DB2 issues a message that identifies the table, row, column, and type of error. Any

additional actions depend on the option that you specify for the AUXERROR

parameter:

v When you specify the AUXERROR REPORT option, DB2 sets the base table

space to the auxiliary CHECK-pending (ACHKP) status. If CHECK DATA

encounters only invalid LOB columns and no other LOB column errors, the base

table space is set to the auxiliary warning (AUXW) status.

v When you specify the AUXERROR INVALIDATE option, DB2 sets the base table

LOB columns that are in error to an invalid status. DB2 resets the invalid status

of LOB columns that have been corrected. If any invalid LOB columns remain in

the base table, DB2 sets the base table space to auxiliary warning (AUXW)

status. You can use SQL to update a LOB column that is in the AUXW status;

however, any other attempt to access the column results in a -904 SQL return

code.

See Appendix C, “Advisory or restrictive states,” on page 849 for information

about resetting the restrictive table space status.

Resetting auxiliary CHECK-pending status

If a table space has tables with LOB columns and the table space is recovered to a

point in time, RECOVER TABLESPACE sets the auxiliary CHECK-pending

(ACHKP) status on the table space.

Use one of the following actions to remove the auxiliary CHECK-pending status if

DB2 does not find any inconsistencies:

v Use the SCOPE(ALL) option to check all dependent tables in the specified table

space. The checks include referential integrity constraints, table check

constraints, and the existence of LOB columns.

v Use the SCOPE(PENDING) option to check table spaces or partitions with

CHKP status. The checks include referential integrity constraints, table check

constraints, and the existence of LOB columns.

v Use the SCOPE(AUXONLY) option to check for LOB columns.

If you specified the AUXERROR(INVALIDATE) option and DB2 finds

inconsistencies, it places the table space in AUXW status. See Appendix C,

“Advisory or restrictive states,” on page 849 for information about resetting the

restrictive table space status.

Terminating or restarting CHECK DATA

This section explains how to terminate and restart the CHECK DATA utility.

Terminating CHECK DATA

When you terminate CHECK DATA, table spaces remain in the same

CHECK-pending status as they were at the time the utility was terminated. The

CHECKDAT phase places the table space in the CHECK-pending status when

CHECK DATA detects an error; at the end of the phase, CHECK DATA resets the

CHECK-pending status if it detects no errors. The REPORTCK phase resets the

CHECK-pending status if you specify the DELETE YES option.

For instructions on terminating an online utility, see “Terminating an online utility

with the TERM UTILITY command” on page 40.

CHECK DATA

Chapter 8. CHECK DATA 71

Restarting CHECK DATA

You can restart a CHECK DATA utility job, but it starts from the beginning again.

For guidance in restarting online utilities, see “Restarting an online utility” on page

41.

Concurrency and compatibility for CHECK DATA

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

Claims and drains: Table 8 shows which claim classes CHECK DATA claims and

drains and any restrictive status that the utility sets on the target object. The

legend for these claim classes is located at the bottom of the table.

 Table 8. Claim classes of CHECK DATA operations

Target objects

CHECK DATA

DELETE NO

CHECK DATA

DELETE YES

CHECK DATA

PART

DELETE NO

CHECK DATA

PART

DELETE YES

Table space or partition DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Partitioning index or

index partition

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Secondary index DW/UTRO DA/UTUT none DR

Logical partition of

index

none none DW/UTRO DA/UTUT

Primary index DW/UTRO DW/UTRO DW/UTRO DW/UTRO

RI dependent and

descendent table spaces

and indexes

none DA/UTUT none DA/UTUT

RI exception table

spaces and indexes

(FOR EXCEPTION

only)

DA/UTUT DA/UTUT DA/UTUT DA/UTUT

Legend:

v DA: Drain all claim classes, no concurrent SQL access

v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers

v DW: Drain the write claim class, concurrent access for SQL readers

v UTUT: Utility restrictive state, exclusive control

v UTRO: Utility restrictive state, read-only access allowed

v none: Object not affected by this utility

v RI: Referential Integrity

Table 9 shows claim classes on a LOB table space and an index on the auxiliary

table.

 Table 9. Claim classes of CHECK DATA operations on a LOB table space and index on the

auxiliary table

Target objects

CHECK DATA

DELETE NO

CHECK DATA

DELETE YES

LOB table space DW/UTRO DA/UTUT

Index on the auxiliary table DW/UTRO DA/UTUT

CHECK DATA

72 Utility Guide and Reference

|

Table 9. Claim classes of CHECK DATA operations on a LOB table space and index on the

auxiliary table (continued)

Target objects

CHECK DATA

DELETE NO

CHECK DATA

DELETE YES

Legend:

v DW: Drain the write claim class, concurrent access for SQL readers

v DA: Drain all claim classes, no concurrent SQL access

v UTRO: Utility restrictive state, read-only access allowed

v UTUT: Utility restrictive state, exclusive control

When you specify CHECK DATA AUXERROR INVALIDATE, a drain-all is

performed on the base table space, and the base table space is set UTUT.

Compatibility: The following utilities are compatible with CHECK DATA and can

run concurrently on the same target object:

v DIAGNOSE

v MERGECOPY

v MODIFY

v REPORT

v STOSPACE

v UNLOAD (when CHECK DATA DELETE NO)

SQL operations and other online utilities are incompatible.

To run on DSNDB01.SYSUTILX, CHECK DATA must be the only utility in the job

step and the only utility that is running in the DB2 subsystem.

The index on the auxiliary table for each LOB column inherits the same

compatibility and concurrency attributes of a primary index.

Sample CHECK DATA control statements

Example 1: Copying violations into exception tables. The control statement in

Figure 10 specifies that the CHECK DATA utility is to check for and delete any

rows that violate referential and table check constraints in table spaces

DSN8D81A.DSN8S81D and DSN8D81A.DSN8S81E. CHECK DATA copies any rows

that violate these constraints into the exception tables that are specified in the FOR

EXCEPTION clause. For example, CHECK DATA is to copy the violations in table

DSN8810.DEPT into table DSN8810.EDEPT.

CHECK DATA

Chapter 8. CHECK DATA 73

You can create exception tables by using the LIKE clause in the CREATE TABLE

statement. For an example of creating an exception table, see “Example: creating an

exception table for the project activity table” on page 66.

Example 2: Running CHECK DATA on a table space with LOBs. Before you run

CHECK DATA on a table space that contains at least one LOB column, complete

the steps that are listed in “For a table with LOB columns” on page 64.

Assume that table space DBIQUQ01.TPIQU01 contains LOB columns. In Figure 11,

the control statement with the SCOPE ALL option indicates that CHECK DATA is

to check all rows in all dependent tables in table space DBIQUQ01.TPIQU01 for

the following violations:

v Violations of referential constraints

v Violations of table check constraints

v Inconsistencies between the base table space and the corresponding LOB table

space.

The AUXERROR INVALIDATE option indicates that if the CHECK DATA utility

finds a LOB column error in this table space, it is to perform the following actions:

v Issues a warning message

v Sets the base table LOB column to an invalid status

v Sets the base table to auxiliary warning (AUXW) status

//STEP1 EXEC DSNUPROC,UID=’IUIQU1UQ.CHK1’,

// UTPROC=’’,

// SYSTEM=’DSN’

//SYSUT1 DD DSN=IUIQU1UQ.CHK3.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(8000,(200,20),,,ROUND)

//SYSERR DD DSN=IUIQU1UQ.CHK3.SYSERR,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)

//SORTOUT DD DSN=IUIQU1UQ.CHK3.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)

//SYSIN DD *

CHECK DATA TABLESPACE DSN8D81A.DSN8S81D

 TABLESPACE DSN8D81A.DSN8S81E

 FOR EXCEPTION IN DSN8810.DEPT USE DSN8810.EDEPT

 IN DSN8810.EMP USE DSN8810.EEMP

 IN DSN8810.PROJ USE DSN8810.EPROJ

 IN DSN8810.PROJACT USE DSN8810.EPROJACT

 IN DSN8810.EMPPROJACT USE DSN8810.EEPA

 DELETE YES

//*

Figure 10. Example of using the CHECK DATA utility to copy invalid data into exception

tables and to delete the invalid data from the original table.

//STEP11 EXEC DSNUPROC,UID=’IUIQU1UQ.CHK2’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//SYSUT1 DD DSN=IUIQU1UQ.CHK2.STEP5.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SORTOUT DD DSN=IUIQU1UQ.CHK2.STEP5.SORTOUT,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSERR DD DSN=IUIQU1UQ.CHK2.SYSERR,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

 CHECK DATA TABLESPACE DBIQUQ01.TPIQUQ01 SCOPE ALL

 AUXERROR INVALIDATE

/*

Figure 11. Example of running CHECK DATA on a table space with LOBs

CHECK DATA

74 Utility Guide and Reference

|
|
|

Example 3: Specifying the maximum number of exceptions. The control statement in

Figure 12 specifies that the CHECK DATA utility is to check all rows in partition

number 254 in table space DBNC0216.TPNC0216. The EXCEPTIONS 1 option

indicates that the utility is to terminate when it finds one exception. Any

exceptions are to be reported by messages only.

//CKDATA EXEC DSNUPROC,UID=’L450TST3.CHECK’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//SYSREC DD DSN=L450TST3.CHECK.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSERR DD DSN=L450TST3.CHECK.STEP1.SYSERR,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND)

//SYSUT1 DD DSN=L450TST3.CHECK.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SORTOUT DD DSN=L450TST3.CHECK.STEP1.SORTOUT,

// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,

// SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

 CHECK DATA TABLESPACE DBNC0216.TPNC0216 PART 254

 SCOPE ALL EXCEPTIONS 1

/*

Figure 12. Example of specifying the maximum number of exceptions

CHECK DATA

Chapter 8. CHECK DATA 75

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

76 Utility Guide and Reference

Chapter 9. CHECK INDEX

The CHECK INDEX online utility tests whether indexes are consistent with the

data that they index, and issues warning messages when it finds an inconsistency.

Run the CHECK INDEX utility after a conditional restart or a point-in-time

recovery on all table spaces whose indexes might not be consistent with the data.

Also run CHECK INDEX before running CHECK DATA, especially if you specify

DELETE YES. Running CHECK INDEX before CHECK DATA ensures that the

indexes that CHECK DATA uses are valid. When checking an auxiliary table index,

CHECK INDEX verifies that each LOB is represented by an index entry, and that

an index entry exists for every LOB. For more information about running the

CHECK DATA utility on a table space that contains at least one LOB column, see

“For a table with LOB columns” on page 64.

For a diagram of CHECK INDEX syntax and a description of available options, see

“Syntax and options of the CHECK INDEX control statement” on page 78. For

detailed guidance on running this utility, see “Instructions for running CHECK

INDEX” on page 81.

Output: CHECK INDEX generates several messages that show whether the indexes

are consistent with the data. See Part 2 of DB2 Messages for more information

about these messages.

For unique indexes, any two null values are treated as equal values, unless the

index was created with the UNIQUE WHERE NOT NULL clause. In that case, if

the key is a single column, it can contain any number of null values, and CHECK

INDEX does not issue an error message.

CHECK INDEX issues an error message if it finds two or more null values and the

unique index was not created with the UNIQUE WHERE NOT NULL clause.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v STATS privilege for the database

v DBADM, DBCTRL, or DBMAINT authority for the database

v SYSCTRL or SYSADM authority.

An ID with installation SYSOPR authority can also execute CHECK INDEX, but

only on a table space in the DSNDB01 or DSNDB06 databases.

Execution phases of CHECK INDEX:

Phase Description

UTILINIT Performs initialization

UNLOAD Unloads index entries

SORT Sorts unloaded index entries

CHECKIDX Scans data to validate index entries

UTILTERM Performs cleanup

© Copyright IBM Corp. 1983, 2008 77

The following topics provide additional information:

v “Syntax and options of the CHECK INDEX control statement”

v “Instructions for running CHECK INDEX” on page 81

v “Concurrency and compatibility for CHECK INDEX” on page 90

v “Sample CHECK INDEX control statements” on page 91

Syntax and options of the CHECK INDEX control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

Syntax diagram

�� CHECK INDEX �

� LIST listdef-name

(

index-name

)

PART

integer

(

ALL

)

TABLESPACE

table-space-name

database-name.

PART

integer

 �

�
 SHRLEVEL REFERENCE

SHRLEVEL

CHANGE

 DRAIN_WAIT IRLMRWT value

DRAIN_WAIT

integer

 RETRY UTIMOUT value

RETRY

integer

�

�
 RETRY_DELAY computed default value

RETRY_DELAY

integer

 WORKDDN SYSUT1

WORKDDN

ddname

SORTDEVT

device-type

�

�
SORTNUM

integer
 ��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

INDEX Indicates that you are checking for index consistency.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. The

list should contain only index spaces. Do not specify the name of

an index or of a table space. DB2 groups indexes by their related

table space and executes CHECK INDEX once per table space.

CHECK INDEX allows one LIST keyword for each control

statement in CHECK INDEX. For more information about LISTDEF

specifications, see Chapter 15, “LISTDEF,” on page 171.

CHECK INDEX

78 Utility Guide and Reference

||||||||||||

||||

(index-name, ...)

Specifies the indexes that are to be checked. All indexes must

belong to tables in the same table space. If you omit this option,

you must use the (ALL) TABLESPACE option. Then CHECK

INDEX checks all indexes on all tables in the table space that you

specify.

 index-name is the name of an index, in the form creator-id.name. If

you omit the qualifier creator-id., the user identifier for the utility

job is used. If you use a list of names, separate items in the list by

commas. Parentheses are required around a name or list of names.

Enclose the index name in quotation marks if the name contains a

blank.

PART integer Identifies a physical partition of a partitioned index or a logical

partition of a nonpartitioned index that is to be checked for

consistency. If you specify an index on a nonpartitioned table

space, an error occurs.

 integer is the number of the partition and must be in the range

from 1 to the number of partitions that are defined for the table

space. The maximum is 4096.

If the PART keyword is not specified, CHECK INDEX tests the

entire target index for consistency.

(ALL) Specifies that all indexes in the specified table space that are

referenced by the table space are to be checked.

TABLESPACE database-name.table-space-name

Specifies the table space from which all indexes are to be checked.

If an explicit list of index names is not specified, all indexes on all

tables in the specified table space are checked.

 Do not specify TABLESPACE with an explicit list of index names.

database-name is the name of the database that the table space

belongs to. The default is DSNDB04.

table-space-name is the name of the table space from which all

indexes are checked.

SHRLEVEL Indicates the type of access that is to be allowed for the index,

table space, or partition that is to be checked during CHECK

INDEX processing.

REFERENCE

Specifies that applications can read from but cannot write to

the index, table space, or partition that is to be checked. The

default is REFERENCE.

 If you specify SHRLEVEL REFERENCE or use this value as the

default, DB2 unloads the index entries, sorts the index entries,

and scans the data to validate the index entries.

CHANGE

Specifies that applications can read from and write to the

index, table space, or partition that is to be checked.

 If you specify SHRLEVEL CHANGE, DB2 performs the

following actions:

v Drains all writers and forces the buffers to disk for the

specified object and all of its indexes

CHECK INDEX

Chapter 9. CHECK INDEX 79

||
|
|
|

|
|
|

|
|

||
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

v Invokes DFSMSdss™ to copy the specified object and all of

its indexes to shadow data sets

v Enables read-write access for the specified object and all of

its indexes

v Runs CHECK INDEX on the shadow data sets

Note: DFSMSdss uses FlashCopy Version 2 if available.

Otherwise, DFSMSdss might take a long time to copy

the object, and the time during which the data and

indexes have read-only access might increase. You need

STGADMIN.ADR.COPY.TOLERATE.ENQF RACF

authority.

DRAIN_WAIT integer

Specifies the number of seconds that CHECK INDEX is to wait

when draining the table space or index. The specified time is the

aggregate time for objects that are to be checked. This value

overrides the values that are specified by the IRLMRWT and

UTIMOUT subsystem parameters.

 integer can be any integer from 0 to 1800. If you do not specify

DRAIN_WAIT or specify a value of 0, CHECK INDEX uses the

value of the lock timeout subsystem parameter IRLMRWT.

RETRY integer Specifies the maximum number of retries that CHECK INDEX is to

attempt.

 integer can be any integer from 0 to 255. Specifying a value other

than 0 can increase processing costs and result in multiple or

extended periods during which the specified index, table space, or

partition is in read-only access.

If you do not specify RETRY, CHECK INDEX uses the value of the

utility multiplier subsystem parameter UTIMOUT.

RETRY_DELAY integer

Specifies the minimum duration, in seconds, between retries.

integer can be any integer from 1 to 1800.

 If you do not specify RETRY_DELAY, CHECK INDEX uses the

smaller of the following two values:

v DRAIN_WAIT value × RETRY value

v DRAIN_WAIT value × 10

WORKDDN ddname

Specifies a DD statement for a temporary work file.

 You can use the WORKDDN keyword to specify either a DD name

or a TEMPLATE name specification from a previous TEMPLATE

control statement. If utility processing detects that the specified

name is both a DD name in the current job step and a TEMPLATE

name, the utility uses the DD name. For more information about

TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on page

587.

ddname is the DD name. The default is SYSUT1.

SORTDEVT device-type

Specifies the device type for temporary data sets that are to be

dynamically allocated by DFSORT. device-type is the device type

CHECK INDEX

80 Utility Guide and Reference

|
|

|
|

|

#
#
#
#
#
#

|
|
|
|
|
|

|
|
|

||
|

|
|
|
|

|
|

|
|
|

|
|

|

|

and can be any device type that is acceptable to the DYNALLOC

parameter of the SORT or OPTION control statement for DFSORT.

 A TEMPLATE specification does not dynamically allocate sort

work data sets. The SORTDEVT keyword controls dynamic

allocation of these data sets.

SORTNUM integer

Specifies the number of temporary data sets that are to be

dynamically allocated by the sort program.

 integer is the number of temporary data sets that can range from 2

to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use

SORTDEVT and omit SORTNUM, no value is passed to DFSORT;

DFSORT uses its own default.

You need at least two sort work data sets for each sort. The

SORTNUM value applies to each sort invocation in the utility. For

example, if there are three indexes, SORTKEYS is specified, there

are no constraints limiting parallelism, and SORTNUM is specified

as 8, then a total of 24 sort work data sets will be allocated for a

job.

Each sort work data set consumes both above the line and below

the link virtual storage, so if you specify too high a value for

SORTNUM, the utility may decrease the degree of parallelism due

to virtual storage constraints, and possibly decreasing the degree

down to one, meaning no parallelism.

Important: The SORTNUM keyword will not be considered if

ZPARM UTSORTAL is set to YES and IGNSORTN is

set to YES.

Instructions for running CHECK INDEX

To run CHECK INDEX, you must:

1. Prepare the necessary data sets, as described in “Data sets that CHECK INDEX

uses.”

2. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

CHECK INDEX, see “Sample CHECK INDEX control statements” on page 91.)

3. Prepare a utility control statement that specifies the options for the tasks that

you want to perform.

4. Check the compatibility table in “Concurrency and compatibility for CHECK

INDEX” on page 90 if you want to run other jobs concurrently on the same

target objects.

5. Plan for restart if the CHECK INDEX job doesn’t complete, as described in

“Terminating or restarting CHECK INDEX” on page 89.

6. Run CHECK INDEX by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15.

Data sets that CHECK INDEX uses

Table 10 on page 82 lists the data sets that CHECK INDEX uses. The table lists the

DD name that is used to identify the data set, a description of the data set, and an

indication of whether it is required. Include statements in your JCL for each

CHECK INDEX

Chapter 9. CHECK INDEX 81

#
#
#
#
#
#

#
#
#
#
#

#
#
#

required data set and any optional data sets that you want to use.

 Table 10. Data sets that CHECK INDEX uses

Data set Description Required?

SYSIN An input data set that contains the utility

control statement.

Yes

SYSPRINT An output data set for messages. Yes

Work data set A temporary data set for collecting index

key values that are to be checked. Specify its

DD name by using the WORKDDN option

in the utility control statement. The default

DD name is SYSUT1. To find the

approximate size in bytes of the work data

sets, seeDefining the work data set for

CHECK INDEX.

Yes

UTPRINT A data set that contains messages from

DFSORT (usually, SYSOUT or DUMMY).

No

The following object is named in the utility control statement and does not require

a DD statement in the JCL:

Index space

Object that is to be checked. (If you want to check only one partition of an

index, use the PART option in the control statement.)

DB2 utilities uses DFSORT to perform sorts. Sort work data sets cannot span

volumes. Smaller volumes require more sort work data sets to sort the same

amount of data; therefore, large volume sizes can reduce the number of needed

sort work data sets. It is recommended that at least 1.2 times the amount of data to

be sorted be provided in sort work data sets on disk. For more information about

DFSORT, see DFSORT Application Programming Guide.

Defining the work data set for CHECK INDEX

A single sequential data set, which is described by the DD statement in the

WORKDDN option, is required during execution of CHECK INDEX.

To find the approximate size in bytes of the WORKDDN data set:

1. For each table, multiply the number of records in the table by the number of

indexes on the table that need to be checked.

2. Add the products that you obtain in step 1.

3. Add 8 to the length of the longest key. For nonpadded indexes, the length of

the longest key is the maximum possible length of the key with all

varying-length columns in the key padded to their maximum length, plus 2

bytes for each varying-length column.

4. Multiply the sum from step 2 by the sum from step 3.

Another method of estimating the size of the WORKDDN data set is to obtain the

high-used relative byte address (RBA) for each index from a VSAM catalog listing.

Then add the RBAs.

Shadow data sets

When you execute the CHECK INDEX utility with the SHRLEVEL CHANGE

option, the utility uses shadow data sets. For user-managed data sets, you must

preallocate the shadow data sets before you execute CHECK INDEX SHRLEVEL

CHECK INDEX

82 Utility Guide and Reference

#
#
#
#
#
#

|
|
|
|

|
|
|
|

CHANGE. If a table space, partition, or index resides in DB2-managed data sets

and shadow data sets do not already exist when you execute CHECK INDEX, DB2

creates the shadow data sets. At the end of CHECK INDEX processing, the

DB2-managed shadow data sets are deleted.

Shadow data set names: Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y0001.Lnnn

In the preceding name, the variables have the following meanings:

variable meaning

catname The VSAM catalog name or alias

x C or D

dbname Database name

psname Table space name or index name

y I or J

Lnnn Partition identifier. Use one of the following values:

v A001 through A999 for partitions 1 through 999

v B000 through B999 for partitions 1000 through 1999

v C000 through C999 for partitions 2000 through 2999

v D000 through D999 for partitions 3000 through 3999

v E000 through E996 for partitions 4000 through 4096

To determine the names of existing shadow data sets, execute one of the following

queries against the SYSTABLEPART or SYSINDEXPART catalog tables:

SELECT DBNAME, TSNAME, IPREFIX

 FROM SYSIBM.SYSTABLEPART

 WHERE DBNAME = ’dbname’ AND TSNAME = ’psname’;

SELECT DBNAME, IXNAME, IPREFIX

 FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y

 WHERE X.NAME = Y.IXNAME AND X.CREATOR = Y.IXCREATOR

 AND X.DBNAME = ’dbname’ AND X.INDEXSPACE = ’psname’;

For a partitioned table space, DB2 returns rows from which you select the row for

the partitions that you want to check.

Defining shadow data sets: Consider the following actions when you preallocate

the data sets:

v Allocate the shadow data sets according to the rules for user-managed data sets.

v Define the shadow data sets as LINEAR.

v Use SHAREOPTIONS(3,3).

v Define the shadow data sets as EA-enabled if the original table space or index

space is EA-enabled.

v Allocate the shadow data sets on the volumes that are defined in the storage

group for the original table space or index space.

If you specify a secondary space quantity, DB2 does not use it. Instead, DB2 uses

the SECQTY value for the table space or index space.

CHECK INDEX

Chapter 9. CHECK INDEX 83

|
|
|
|

|

|

|

||

||

||

||

||

||

||

|

|

|

|

|

|
|

|
|
|

|
|
|
|

|
|

|
|

|

|

|

|
|

|
|

|
|

Recommendation: Use the MODEL option, which causes the new shadow data set

to be created like the original data set. This method is shown in the following

example:

DEFINE CLUSTER +

 (NAME(’catname.DSNDBC.dbname.psname.x0001.L001’) +

 MODEL(’catname.DSNDBC.dbname.psname.y0001.L001’)) +

 DATA +

 (NAME(’catname.DSNDBD.dbname.psname.x0001.L001’) +

 MODEL(’catname.DSNDBD.dbname.psname.y0001.L001’))

DB2 treats preallocated shadow data sets as DB2-managed data sets.

Creating shadow data sets for indexes: When you preallocate shadow data sets for

indexes, create the data sets as follows:

v Create shadow data sets for the partition of the table space and the

corresponding partition in each partitioning index and data-partitioned

secondary index.

v Create a shadow data set for logical partitions of nonpartitioned secondary

indexes.

Use the same naming scheme for these index data sets as you use for other data

sets that are associated with the base index, except use J0001 instead of I0001. For

more information about this naming scheme, see the information about the shadow

data set naming convention at the beginning of this section, “Shadow data sets” on

page 82.

Estimating the size of shadow data sets: If you have not changed the value of

FREEPAGE or PCTFREE, the amount of required space for a shadow data set is

comparable to the amount of required space for the original data set.

Creating the control statement

Create the utility control statement for the CHECK INDEX job. See “Syntax

diagram” on page 78 for CHECK INDEX syntax and option descriptions. See

“Sample CHECK INDEX control statements” on page 91 for examples of CHECK

INDEX usage.

Instructions for specific tasks

To perform the following tasks, specify the options and values that are

documented with your utility control statement.

Checking a single logical partition

You can run CHECK INDEX on a single logical partition of a secondary index.

However, what CHECK INDEX can detect is limited as follows:

v CHECK INDEX does not detect duplicate unique keys in different logical

partitions. For example, logical partition 1 might have the following keys:

A B E F T Z

Logical partition 2 might have the following keys:

M N Q T V X

In this example, the keys are unique within each logical partition, but both

logical partitions contain the key, T; so for the index as a whole, the keys are not

unique. CHECK INDEX does not detect the duplicates.

v CHECK INDEX does not detect keys that are out of sequence between different

logical partitions. For example, the following keys are out of sequence:

CHECK INDEX

84 Utility Guide and Reference

|
|
|

|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|

1 7 5 8 9 10 12

If keys 1, 5, 9, and 12 belong to logical partition 1 and keys 7, 8, and 10 belong

to logical partition 2, the keys within each partition are in sequence, but the keys

for the index, as a whole, are out of sequence, as shown in the following

example:

LP 1 1 5 9 12

LP 2 7 8 10

When checking a single logical partition, CHECK INDEX does not detect this

out-of-sequence condition.

Checking indexes in parallel

If you specify more than one index to check and the SHRLEVEL CHANGE option,

CHECK INDEX checks the indexes in parallel unless constrained by available

memory or sort work files. Checking indexes in parallel reduces the elapsed time

for a CHECK INDEX job by sorting the index keys and checking multiple indexes

in parallel, rather than sequentially.

CHECK INDEX

Chapter 9. CHECK INDEX 85

|
|
|
|
|
|

Figure 13 shows the flow of a CHECK INDEX job with a parallel index check for a

nonpartitioned table space or a single partition of a partitioned table space.

Table
space

Indexes

Snapshot copy

SW01WKnn SW02WKnn SW03WKnn

Table
space

Unload

Indexes

Sort
Sort
Sort

Check
Check
Check

Figure 13. Parallel index check for a nonpartitioned table space or a single partition of a

partitioned table space

CHECK INDEX

86 Utility Guide and Reference

|

|
|
|

|
|
||

Figure 14 shows the flow of a CHECK INDEX job with a parallel index check for

all partitioning indexes on a partitioned table space.

Index
parts

SW01WKnn SW02WKnn SW03WKnn

Index
parts

Sort
Sort
Sort

Check
Check
Check

Unload
Unload
Unload

Snapshot copy

Table
space
parts

Table
space
parts

Figure 14. Parallel index check for all partitioning indexes on a partitioned table space

CHECK INDEX

Chapter 9. CHECK INDEX 87

|

|
|
|

|
|
||

Figure 15 shows the flow of a CHECK INDEX job with a parallel index check for a

partitioned table space with a single nonpartitioned secondary index.

Index

SW01WKnn SW02WKnn SW03WKnn

Index
Sort
Sort
Sort

Check
Unload
Unload
Unload

Snapshot copy

Table
space
parts

Table
space
parts

Merge

Figure 15. Parallel index check for a partitioned table space with a single nonpartitioned

secondary index

CHECK INDEX

88 Utility Guide and Reference

|

|
|
|

|
|
||

Figure 16 shows the flow of a CHECK INDEX job with a parallel index check for

all indexes on a partitioned table space.

Reviewing CHECK INDEX output

CHECK INDEX indicates whether a table space and its indexes are inconsistent,

but it does not correct any such inconsistencies. If CHECK INDEX detects

inconsistencies, you should analyze the output to determine the problem and then

correct the inconsistency. Perform the following actions to identify the

inconsistency:

1. Examine the error messages that CHECK INDEX issues.

2. Verify the point in time (TOLOGPOINT, TORBA, or TOCOPY) for each object

that is recovered. Use output from REPORT RECOVERY to determine a

consistent point for both the table space and its indexes.

3. If the table space is correct, run the REBUILD INDEX utility to rebuild the

indexes.

4. If the index is correct, determine a consistent point in time for the table space,

and run the RECOVER utility on the table space. Run CHECK INDEX again to

verify consistency.

5. If neither the table space nor its indexes are correct, determine a consistent

point in time, and then run the RECOVER utility job again, including the table

space and its indexes all in the same list.

Terminating or restarting CHECK INDEX

You can terminate CHECK INDEX in any phase without any integrity exposure.

For instructions on terminating a utility job, see “Terminating an online utility with

the TERM UTILITY command” on page 40.

SW01WKnn SW02WKnn SW03WKnn

Sort
Sort
Sort

Check
Check
Check

Unload
Unload
Unload

Snapshot copy

Table
space
parts

Table
space
parts Indexes

Indexes

Figure 16. Parallel index check for all indexes on a partitioned table space

CHECK INDEX

Chapter 9. CHECK INDEX 89

|

|
|
|

|
|
|

You can restart a CHECK INDEX utility job, but it starts from the beginning again.

For guidance in restarting online utilities, see “Restarting an online utility” on page

41.

Concurrency and compatibility for CHECK INDEX

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

Claims and drains: Table 11 shows which claim classes CHECK INDEX claims and

drains and any restrictive state that the utility sets on the target object.

 Table 11. Claim classes of CHECK INDEX operations

Target

CHECK

INDEX

SHRLEVEL

REFERENCE

CHECK

INDEX PART

SHRLEVEL

REFERENCE

CHECK

INDEX

SHRLEVEL

CHANGE

CHECK

INDEX PART

SHRLEVEL

CHANGE

Table space or partition DW/UTRO DW/UTRO DW/UTRW DW/UTRW

Partitioning index or index

partition

DW/UTRO DW/UTRO DW/UTRW DW/UTRW

Secondary index DW/UTRO none DW/UTRW DW/UTRW

Data-partitioned secondary

index or index partition

DW/UTRO DW/UTRO DW/UTRW DW/UTRW

Logical partition of an index none DW/UTRO DW/UTRW DW/UTRW

Legend:

v DW: Drain the write claim class, concurrent access for SQL readers

v UTRO: Utility restrictive state, read only-access allowed

v UTRW: Utility restrictive state, read and write access allowed

v none: Object not affected by this utility

CHECK INDEX does not set a utility restrictive state if the target object is

DSNDB01.SYSUTILX.

Compatibility: Table 12 shows which utilities can run concurrently with CHECK

INDEX on the same target object. The first column lists the other utility and the

second column lists whether or not that utility is compatible with CHECK INDEX.

The target object can be a table space, an index space, or an index partition. If

compatibility depends on particular options of a utility, that information is also

documented in the table.

 Table 12. Compatibility of CHECK INDEX SHRLEVEL REFERENCE with other utilities

Action

Compatible with

CHECK INDEX?

CHECK DATA No

CHECK INDEX. Yes

CHECK LOB Yes

COPY INDEXSPACE Yes

COPY TABLESPACE Yes

DIAGNOSE Yes

LOAD No

CHECK INDEX

90 Utility Guide and Reference

##

#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#####

#
#
####

|####

#
#
####

#####

#
#
#
#
#
#

Table 12. Compatibility of CHECK INDEX SHRLEVEL REFERENCE with other

utilities (continued)

Action

Compatible with

CHECK INDEX?

MERGECOPY Yes

MODIFY Yes

QUIESCE Yes

REBUILD INDEX No

RECOVER INDEX No

RECOVER TABLESPACE No

REORG INDEX No

REORG TABLESPACE UNLOAD CONTINUE or PAUSE No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL Yes

REPAIR DELETE or REPLACE No

REPAIR DUMP or VERIFY Yes

REPORT Yes

RUNSTATS Yes

STOSPACE Yes

UNLOAD Yes

To run on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02, CHECK INDEX must be

the only utility within the job step.

Sample CHECK INDEX control statements

Example 1: Checking all indexes. The control statement in Figure 17 specifies that

the CHECK INDEX utility is to check all indexes in sample table space

DSN8D81A.DSN8S81E.

Example 2: Checking one index. The following control statement specifies that the

CHECK INDEX utility is to check the project-number index (DSN8810.XPROJ1) on

the sample project table. SORTDEVT SYSDA specifies that SYSDA is the device

type for temporary data sets that are to be dynamically allocated by DFSORT.

CHECK INDEX (DSN8810.XPROJ1)

 SORTDEVT SYSDA

//STEP1 EXEC DSNUPROC,UID=’IUIQU1UQ.CHK1’,

// UTPROC=’’,

// SYSTEM=’DSN’

//SYSUT1 DD DSN=IUIQU1UQ.CHK3.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(8000,(200,20),,,ROUND)

//SYSERR DD DSN=IUIQU1UQ.CHK3.SYSERR,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)

//SORTOUT DD DSN=IUIQU1UQ.CHK3.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)

//SYSIN DD *

CHECK INDEX (ALL) TABLESPACE DSN8D81A.DSN8S81E

//*

Figure 17. Example of checking all indexes

CHECK INDEX

Chapter 9. CHECK INDEX 91

Example 3: Checking more than one index. The following control statement

specifies that the CHECK INDEX utility is to check the indexes

DSN8810.XEMPRAC1 and DSN8810.XEMPRAC2 on the employee-to-project-
activity sample table.

CHECK INDEX NAME (DSN8810.XEMPRAC1, DSN8810.XEMPRAC2)

Example 4: Checking partitions of all indexes. In the following control statement,

table space DB0S0301.TP0S0301 has one partitioned index (ADMF001.IP0S0301),

one data-partitioned secondary index (ADMF001.ID0S0302), and one

nonpartitioned secondary index (ADMF001.IX0S0303). The (ALL) option indicates

that all three indexes on the table space are to be checked. PART 3 indicates that

CHECK INDEX is to check the third physical partition of any partitioned indexes

and the third logical partition of any nonpartitioned indexes.

CHECK INDEX(ALL) TABLESPACE DBOS0301.TPOS0301 PART 3 SORTDEVT SYSDA

In this case, CHECK INDEX checks the third physical partition of

ADMF001.IP0S0301, the third physical partition of ADMF001.ID0S0302, and the

third logical partition of ADMF001.IX0S0303, as indicated by the output in

Figure 18.

Example 5: Checking indexes in a list. The LISTDEF control statement in Figure 19

on page 93 defines a list of indexes called CHKIDXB_LIST. For more information

about the options for LISTDEF control statements, see Chapter 15, “LISTDEF,” on

page 171. The CHECK INDEX control statement specifies that CHECK INDEX is to

check all indexes that are included in the CHKIDXB_LIST list. WORKDDN

SYSUT1 specifies that SYSUT1 is the DD name of the temporary work file for sort

input; SYSUT1 is the default. SORTDEVT SYSDA specifies that SYSDA is the

device type for temporary data sets that are to be dynamically allocated by

DFSORT. SORTNUM 4 specifies that four of these data sets are to be dynamically

allocated.

DSNU050I DSNUGUTC- CHECK INDEX(ALL) TABLESPACE DBOS0301.TPOS0301 PART 3 SORTDEVT SYSDA

DSNU700I= DSNUKGET- 10 INDEX ENTRIES UNLOADED FROM INDEX=’ADMF001.IPOS0301’ PARTITION=3

DSNU700I= DSNUKGET- 10 INDEX ENTRIES UNLOADED FROM INDEX=’ADMF001.IDOS0302’ PARTITION=3

DSNU701I= DSNUKGET- 10 INDEX ENTRIES UNLOADED FROM ’ADMF001.IXOS0303’

DSNU705I DSNUK001- UNLOAD PHASE COMPLETE - ELAPSED TIME=00:00:00

DSNU717I= DSNUKTER- 10 ENTRIES CHECKED FOR INDEX ’ADMF001.IPOS0301’ PARTITION=3

DSNU717I= DSNUKTER- 10 ENTRIES CHECKED FOR INDEX ’ADMF001.IDOS0302’ PARTITION=3

DSNU717I= DSNUKTER- 10 ENTRIES CHECKED FOR INDEX ’ADMF001.IXOS0303’ PARTITION=3

DSNU720I DSNUK001- CHECKIDX PHASE COMPLETE, ELAPSED TIME=00:00:00

DSNU010I DSNUGBAC- UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 18. CHECK INDEX output from a job that checks the third partition of all indexes.

CHECK INDEX

92 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

//CHKIDXB EXEC PGM=DSNUTILB,REGION=4096K,PARM=’SSTR,CHKINDX1’

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//UTPRINT DD SYSOUT=A

//DSNTRACE DD SYSOUT=A

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03

//SYSOUT DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03

//SORTLIB DD DISP=SHR,DSN=SYS1.SORTLIB

//SORTOUT DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03

//SORTWK04 DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03

//SYSERR DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03

//SYSIN DD *

LISTDEF CHKIDXB_LIST INCLUDE INDEXSPACE DBOT55*.* ALL

CHECK INDEX LIST CHKIDXB_LIST

 WORKDDN SYSUT1

 SORTDEVT SYSDA

 SORTNUM 4

/*

Figure 19. Example of checking indexes in a list

Chapter 9. CHECK INDEX 93

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

94 Utility Guide and Reference

Chapter 10. CHECK LOB

You can run the CHECK LOB online utility on a LOB table space to identify any

structural defects in the LOB table space and any invalid LOB values.

Run the CHECK LOB utility in the following circumstances:

v Run the utility on a LOB table space that is in CHECK-pending (CHKP) status

to identify structural defects. If none are found, the CHECK LOB utility turns

the CHKP status off.

v Run the utility on a LOB table space that is in auxiliary-warning (AUXW) status

to identify invalid LOBs. If none exist, the CHECK LOB utility turns AUXW

status off.

v Run the utility after a conditional restart or a point-in-time recovery on all table

spaces where LOB table spaces might not be synchronized.

v Run the utility before you run the CHECK DATA utility on a table space that

contains at least one LOB column. For more information about running the

CHECK DATA utility on table spaces with LOB columns, see “For a table with

LOB columns” on page 64.

For a diagram of CHECK LOB syntax and a description of available options, see

“Syntax and options of the CHECK LOB control statement” on page 96. For

detailed guidance on running this utility, see “Instructions for running CHECK

LOB” on page 97.

Output: After successful execution, CHECK LOB resets the CHECK-pending

(CHKP) and auxiliary-warning (AUXW) statuses.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v STATS privilege for the database

v DBADM, DBCTRL, or DBMAINT authority for the database

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute CHECK LOB.

Execution phases of CHECK LOB:

Phase Description

UTILINIT Performs initialization

CHECKLOB Scans all active pages of the LOB table space; generates up to four

records per LOB page; passes records to the SORTIN phase

SORTIN Passes CHECKLOB phase records to SORT

SORT Sorts the records from the CHECKLOB phase

SORTOUT Passes sorted records to the REPRTLOB phase

REPRTLOB Examines records that are produced by the CHECKLOB phase;

issues error messages

UTILTERM Performs cleanup

The following topics provide additional information:

© Copyright IBM Corp. 1983, 2008 95

|
|

||

|

||

|
|

v “Syntax and options of the CHECK LOB control statement”

v “Instructions for running CHECK LOB” on page 97

v “Concurrency and compatibility for CHECK LOB” on page 100

v “Sample CHECK LOB control statements” on page 100

Syntax and options of the CHECK LOB control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

Syntax diagram

��

CHECK

LOB

lob-table-space-spec
 EXCEPTIONS 0

EXCEPTIONS

integer

SORTDEVT

device-type

�

�
SORTNUM

integer
 ��

lob-table-space-spec:

�� TABLESPACE lob-table-space-name

database-name.
 ��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

LOB Indicates that you are checking a LOB table space for defects.

TABLESPACE database-name.lob-table-space-name

Specifies the table space to which the data belongs.

 database-name is the name of the database and is optional. The

default is DSNDB04.

lob-table-space-name is the name of the LOB table space.

EXCEPTIONS integer

Specifies the maximum number of exceptions, which are reported

by messages only. CHECK LOB terminates in the CHECKLOB

phase when it reaches the specified number of exceptions.

 All defects that are reported by messages are applied to the

exception count.

CHECK LOB

96 Utility Guide and Reference

|

||||||||||||||||||||||||||||||||
|

|
||||||||||||||

|

integer is the maximum number of exceptions. The default is 0,

which indicates no limit on the number of exceptions.

SORTDEVT device-type

Specifies the device type for temporary data sets that are to be

dynamically allocated by DFSORT.

 A TEMPLATE specification does not dynamically allocate sort

work data sets. The SORTDEVT keyword controls dynamic

allocation of these data sets.

device-type is the device type and can be any device type that is

acceptable to the DYNALLOC parameter of the SORT or OPTION

control statement for DFSORT, as described in DFSORT Application

Programming: Guide.

SORTNUM integer

Indicates the number of temporary data sets that are to be

dynamically allocated by the sort program.

 integer is the number of temporary data sets that can range from 2

to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use

SORTDEVT and omit SORTNUM, no value is passed to DFSORT,

which then uses its own default.

You need at least two sort work data sets for each sort. The

SORTNUM value applies to each sort invocation in the utility. For

example, if there are three indexes, SORTKEYS is specified, there

are no constraints limiting parallelism, and SORTNUM is specified

as 8, then a total of 24 sort work data sets will be allocated for a

job.

Each sort work data set consumes both above the line and below

the link virtual storage, so if you specify too high a value for

SORTNUM, the utility may decrease the degree of parallelism due

to virtual storage constraints, and possibly decreasing the degree

down to one, meaning no parallelism.

Important: The SORTNUM keyword will not be considered if

ZPARM UTSORTAL is set to YES and IGNSORTN is

set to YES.

Instructions for running CHECK LOB

To run CHECK LOB:

1. Read “Before running CHECK LOB” on page 98.

2. Prepare the necessary data sets, as described in “Data sets that CHECK LOB

uses” on page 98.

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

CHECK LOB, see “Sample CHECK LOB control statements” on page 100.)

4. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

98.

5. Check the compatibility table in “Concurrency and compatibility for CHECK

LOB” on page 100 if you want to run other jobs concurrently on the same

target objects.

CHECK LOB

Chapter 10. CHECK LOB 97

#
#
#
#
#
#

#
#
#
#
#

#
#
#

6. Plan for restarting CHECK LOB if the job doesn’t complete, as described in

“Terminating or restarting CHECK LOB” on page 99.

7. Run CHECK LOB by using one of the methods that are described in Chapter 3,

“Invoking DB2 online utilities,” on page 15.

Before running CHECK LOB

You must first recover a LOB table space that is in RECOVER-pending status

before running CHECK LOB.

Data sets that CHECK LOB uses

Table 13 lists the data sets that CHECK LOB uses. The table lists the DD name that

is used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 13. Data sets that CHECK LOB uses

Data set Description Required?

SYSIN An input data that contains the utility

control statement.

Yes

SYSPRINT An output data set for messages. Yes

UTPRINT A data set that contains messages from

DFSORT (usually, SYSOUT or DUMMY).

No

The following object is named in the utility control statement and does not require

DD statements in the JCL:

Table space

Object that is to be checked.

DB2 utilities uses DFSORT to perform sorts. Sort work data sets cannot span

volumes. Smaller volumes require more sort work data sets to sort the same

amount of data; therefore, large volume sizes can reduce the number of needed

sort work data sets. It is recommended that at least 1.2 times the amount of data to

be sorted be provided in sort work data sets on disk. For more information about

DFSORT, see DFSORT Application Programming Guide.

Creating the control statement

Create the utility control statement for the CHECK LOB job. See “Syntax diagram”

on page 96 for CHECK LOB syntax and option descriptions. See “Sample CHECK

LOB control statements” on page 100 for examples of CHECK LOB usage.

Beginning in Version 8, the CHECK LOB utility does not require SYSUT1 and

SORTOUT data sets. Work records are written to and processed from an

asynchronous SORT phase. The WORKDDN keyword, which provided the DD

names of the SYSUT1 and SORTOUT data sets in earlier versions of DB2, is not

needed and is ignored. You do not need to modify existing control statements to

remove the WORKDDN keyword.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Finding and resolving violations” on page 99

 “Resetting CHECK-pending status for a LOB table space” on page 99

CHECK LOB

98 Utility Guide and Reference

|||

#
#
#
#
#
#

|
|
|
|
|
|

“Resolving media failure”

Finding and resolving violations

CHECK LOB issues message DSNU743I whenever it finds a LOB value that is

invalid. The violation is identified by:

v The row ID and version number of the LOB

v A reason code for the error

v The page number where the error was found

You can resolve LOB violations by using the UPDATE or DELETE SQL statements

to update the LOB column or delete the row that is associated with the LOB. (Use

the row ID from message DSNU743I.) For more information, see UPDATE or

DELETE in Chapter 5 of DB2 SQL Reference.

If CHECK LOB issues either message DSNU785I or DSNU787I, it has detected a

logical inconsistency within the LOB table space. Contact IBM Software Support

for assistance with diagnosing and resolving the problem.

Resetting CHECK-pending status for a LOB table space

If you run CHECK LOB and LOB table space errors are found, the table space is

placed in CHECK-pending status.

Complete the following tasks to remove the CHECK-pending status:

1. Correct any defects that are found in the LOB table space by using the REPAIR

utility.

2. To reset CHECK-pending or auxiliary-warning status, run CHECK LOB again,

or run the REPAIR utility.

Use the REPAIR utility with care, as improper use can further damage the data. If

necessary, contact IBM Software Support for guidance on using the REPAIR utility.

Resolving media failure

Run CHECK LOB on a LOB table space after experiencing a media failure that

leaves LOB pages in the logical page list (LPL).

Terminating or restarting CHECK LOB

This section describes how to terminate and restart the CHECK LOB utility.

Terminating CHECK LOB

If you terminate CHECK LOB during the CHECKLOB phase, LOB table spaces

remain in CHECK-pending status. During normal execution, the CHECKLOB

phase places the LOB table space in CHECK-pending status; at the end of the

phase, the CHECK-pending status is reset if no errors are detected.

For instructions on terminating an online utility, see “Terminating an online utility

with the TERM UTILITY command” on page 40.

Restarting CHECK LOB

You can restart a CHECK LOB utility job, but it starts from the beginning again.

For guidance in restarting online utilities, see “Restarting an online utility” on page

41.

CHECK LOB

Chapter 10. CHECK LOB 99

Concurrency and compatibility for CHECK LOB

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

Claims and drains: Table 14 shows which claim classes CHECK LOB claims and

drains and any restrictive state that the utility sets on the target object.

 Table 14. Claim classes for CHECK LOB operations on a LOB table space and index on the

auxiliary table

Target objects CHECK LOB

LOB table space DW/UTRO

Index on the auxiliary table DW/UTRO

Legend:

v DW: Drain the write claim class, concurrent access for SQL readers

v UTRO: Utility restrictive state, read-only access allowed

Compatibility: Any SQL operation or other online utility that attempts to update

the same LOB table space is incompatible.

Sample CHECK LOB control statements

Example: Checking a LOB table space. The following control statement specifies

that the CHECK LOB utility is to check LOB table space DBIQUG01.TLIQUG02 for

structural defects or invalid LOB values. The EXCEPTIONS 3 option indicates that

the CHECK LOB utility is to terminate when it finds three exceptions. The

SORTDEVT and SORTNUM options provide information about temporary data

sets that are to be dynamically allocated by DFSORT. SORTDEVT SYSDA specifies

that the device type is SYSDA, and SORTNUM 4 indicates that four temporary

data sets are to be dynamically allocated by the sort program.

//STEP1 EXEC DSNUPROC,UID=’IUIQU2UG.CHECKL’,

// UTPROC=’’,

// SYSTEM=’DSN’

//SYSIN DD *

CHECK LOB TABLESPACE DBIQUG01.TLIQUG02

 EXCEPTIONS 3 SORTDEVT SYSDA

 SORTNUM 4

CHECK LOB

100 Utility Guide and Reference

Chapter 11. COPY

The COPY online utility creates up to four image copies of any of the following

objects:

v Table space

v Table space partition

v Data set of a linear table space

v Index space

v Index space partition

The two types of image copies are:

1. A full image copy, which is a copy of all pages in a table space, partition, data

set, or index space.

2. An incremental image copy, which is a copy only of those data pages that have

been modified since the last use of the COPY utility and system pages.

The RECOVER utility uses these copies when recovering a table space or index

space to the most recent time or to a previous time. Copies can also be used by the

MERGECOPY, RECOVER, COPYTOCOPY, and UNLOAD utilities.

You can copy a list of objects in parallel to improve performance. Specifying a list

of objects along with the SHRLEVEL REFERENCE option creates a single recovery

point for that list of objects. Specifying the PARALLEL keyword allows you to

copy a list of objects in parallel, rather than serially.

To calculate the number of threads you need when you specify the PARALLEL

keyword, use the formula (n * 2 + 1), where n is the number of objects that are to

be processed in parallel, regardless of the total number of objects in the list. If you

do not use the PARALLEL keyword, n is one and COPY uses three threads for a

single-object COPY job.

For a diagram of COPY syntax and a description of available options, see “Syntax

and options of the COPY control statement” on page 102. For detailed guidance on

running this utility, see “Instructions for running COPY” on page 112.

Output: Output from the COPY utility consists of:

v Up to four sequential data sets containing the image copy.

v Rows in the SYSIBM.SYSCOPY catalog table that describe the image copy data

sets that are available to the RECOVER utility. Your installation is responsible for

ensuring that these data sets are available if the RECOVER utility requests them.

v If you specify the CHANGELIMIT option, a report on the change status of the

table space.

The COPY-pending status is set off for table spaces if the copy was a full image

copy. However, DB2 does not reset the COPY-pending status if you copy a single

piece of a multi-piece linear data set. If you copy a single table space partition,

DB2 resets the COPY-pending status only for the copied partition and not for the

whole table space. DB2 resets the informational COPY-pending (ICOPY) status

after you copy an index space or index.

Related information: See Part 4 (Volume 1) of DB2 Administration Guide for uses of

COPY in the context of planning for database recovery. For information about

© Copyright IBM Corp. 1983, 2008 101

creating inline copies during LOAD, see “Using inline COPY with LOAD” on page

249. You can also create inline copies during REORG; see “Using inline copy with

REORG TABLESPACE” on page 465 for more information.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v IMAGCOPY privilege for the database

v DBADM, DBCTRL, or DBMAINT authority for the database

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute COPY, but only on a

table space in the DSNDB01 or DSNDB06 database.

The batch user ID that invokes COPY with the option must provide the necessary

authority to execute the DFDSS DUMP command.

Execution phases of COPY: The COPY utility operates in these phases:

Phase Description

UTILINIT Performs initialization and setup

REPORT Reports for CHANGELIMIT option

COPY Copies

UTILTERM Performs cleanup

The following topics provide additional information:

v “Syntax and options of the COPY control statement”

v “Instructions for running COPY” on page 112

v “Concurrency and compatibility for COPY” on page 126

v “Sample COPY control statements” on page 128

Syntax and options of the COPY control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

COPY

102 Utility Guide and Reference

Syntax diagram

��

COPY
 (1)

copy-spec

(2)

concurrent-spec

(3)

filterddn-spec

 SHRLEVEL REFERENCE

SHRLEVEL

CHANGE

��

Notes:

1 Use the copy-spec if you do not want to use the CONCURRENT option.

2 Use the concurrent-spec if you want to use the CONCURRENT option, but not the FILTERDDN

option.

3 Use the filterddn spec if you want to use the CONCURRENT and FILTERDDN options.

copy-spec:

��

�

 FULL YES

LIST

listdef-name

data-set-spec

FULL

NO

changelimit-spec

FULL

YES

DSNUM

ALL

table-space-spec

data-set-spec

index-name-spec

FULL

NO

(1)

changelimit-spec

DSNUM

integer

�

�
PARALLEL

(num-objects)

TAPEUNITS

(

num-tape-units

)

CHECKPAGE
 �

�
 SYSTEMPAGES YES

SYSTEMPAGES

NO

��

Notes:

1 Not valid for nonpartioning indexes.

concurrent-spec:

COPY

Chapter 11. COPY 103

||

��

�

 LIST listdef-name data-set-spec

DSNUM

ALL

table-space-spec

data-set-spec

index-name-spec

(1)

DSNUM

integer

 CONCURRENT ��

Notes:

1 Not valid for nonpartioning indexes.

filterddn-spec:

��

�

 LIST listdef-name

DSNUM

ALL

table-space-spec

index-name-spec

(1)

DSNUM

integer

 data-set spec �

� FILTERDDN (ddname) CONCURRENT ��

Notes:

1 Not valid for nonpartioning indexes.

data-set-spec:

��
 (1)

COPYDDN(

ddname1

)

,ddname2

RECOVERYDDN(

ddname3

)

,ddname2

,ddname4

,ddname4

RECOVERYDDN(

ddname3

)

,ddname4

,ddname4

��

Notes:

1 COPYDDN SYSCOPY is the default for the primary copy, but this default can only be used for

one object in the list.

changelimit-spec:

�� CHANGELIMIT

(percent_value1

)

REPORTONLY

,percent_value2

 ��

COPY

104 Utility Guide and Reference

table-space-spec:

�� TABLESPACE table-space-name

database-name.
 ��

index-name-spec:

��
 (1)

INDEXSPACE

index-space-name

database-name.

INDEX

index-name

creator-id.

��

Notes:

1 INDEXSPACE is the preferred specification.

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name.

LIST specifies one LIST keyword for each COPY control statement.

Do not specify LIST with either the INDEX or the TABLESPACE

keyword. DB2 invokes COPY once for the entire list. For more

information about LISTDEF specifications, see Chapter 15,

“LISTDEF,” on page 171.

TABLESPACEdatabase-name.table-space-name

Specifies the table space (and, optionally, the database it belongs

to) that is to be copied.

 database-name is the name of the database that the table space

belongs to. The default is DSNDB04.

table-space-name is the name of the table space to be copied.

Specify the DSNDB01.SYSUTILX, DSNDB06.SYSCOPY, or

DSNDB01.SYSLGRNX table space by itself in a single COPY

statement. Alternatively, specify the DSNDB01.SYSUTILX,

DSNDB06.SYSCOPY, or DSNDB01.SYSLGRNX table space with

indexes over the table space that were defined with the COPY YES

attribute.

INDEXSPACE database-name.index-space-name

Specifies the qualified name of the index space that is to be copied;

the name is obtained from the SYSIBM.SYSINDEXES table. The

specified index space must be defined with the COPY YES

attribute.

 database-name Optionally specifies the name of the database that the

index space belongs to. The default is DSNDB04.

COPY

Chapter 11. COPY 105

index-space-name specifies the name of the index space that is to be

copied.

INDEX creator-id.index-name

Specifies the index that is to be copied. Enclose the index name in

quotation marks if the name contains a blank.

 creator-id optionally specifies the creator of the index. The default

is the user identifier for the utility.

index-name specifies the name of the index that is to be copied.

COPYDDN (ddname1,ddname2)

Specifies a DD name or a TEMPLATE name for the primary

(ddname1) and backup (ddname2) copy data sets for the image copy

at the local site.

 You can use the COPYDDN keyword to specify either a DD name

or a TEMPLATE name specification from a previous TEMPLATE

control statement. If utility processing detects that the specified

name is both a DD name in the current job step and a TEMPLATE

name, the utility uses the DD name. For more information about

TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on page

587.

ddname is the DD name. The default is SYSCOPY for the primary

copy. You can use the default for only one object in the list. The

first object in the list that does not have COPYDDN specified uses

the default. Any other objects in the list that do not have

COPYDDN specified cause an error.

If you use the CHANGELIMIT REPORTONLY option, you can use

a DD DUMMY statement when you specify the SYSCOPY output

data set. This card prevents a data set from being allocated and

opened.

Recommendation: Catalog all of your image copy data sets.

You cannot have duplicate image copy data sets. If the DD

statement identifies a noncataloged data set with the same name,

volume serial, and file sequence number as one that is already

recorded in the SYSIBM.SYSCOPY catalog table, the COPY utility

issues a message and does not make an image copy. If COPY

identifies a cataloged data set with only the same name, it does not

make an image copy. For cataloged image copy data sets, CATLG

must be specified for the normal termination disposition in the DD

statement, as shown in the following example:

DISP=(MOD,CATLG,CATLG)

The DSVOLSER field of the SYSCOPY entry is blank.

If you use the CONCURRENT and FILTERDDN options, ensure

that the size of the copy data set is large enough to include all of

the objects in the list.

RECOVERYDDN (ddname3,ddname4)

Specifies a DD name or a template name for the primary (ddname3)

and backup (ddname4) copy data sets for the image copy at the

recovery site.

 You can use the RECOVERYDDN keyword to specify either a DD

name or a template name. If utility processing detects that the

COPY

106 Utility Guide and Reference

specified name is both a DD name in the current job step and a

template name, the utility THE uses the DD name. For more

information about template specifications, see Chapter 31,

“TEMPLATE,” on page 587.

ddname3 and ddname4 are DD names.

You cannot have duplicate image copy data sets.

If you use the CONCURRENT and FILTERDDN options, ensure

that the size of the copy data set is large enough to include all of

the objects in the list.

FULL Specifies that COPY is to make either a full or an incremental

image copy.

YES Specifies a full image copy. Making a full image copy

resets the COPY-pending status for the table space or

index, or for the partition if you specify DSNUM. The

default is YES.

NO Specifies only an incremental image copy. Only changes

since the last image copy are to be copied. NO is not valid

for indexes.

 Incremental image copies are not allowed in the following

situations:

v The last full image copy of the table space was taken

with the CONCURRENT option.

v No full image copies exist for the table space or data set

that is being copied.

v After a successful LOAD or REORG operation, unless an

inline copy was made during the LOAD or REORG job.

v You specify one of the following table spaces:

DSNDB01.DBD01, DSNDB01.SYSUTILX, or

DSNDB06.SYSCOPY.

v A previous COPY was terminated with the -TERM UTIL

command, so the most recent SYSIBM.SYSCOPY record

for the object contains ICTYPE = T.

For incremental image copies of partitioned table spaces,

COPY includes the header page for each partition that has

changed pages.

COPY automatically takes a full image copy of a table

space if you specify FULL NO when an incremental image

copy is not allowed.

CHANGELIMIT

Specifies the percentage limit of changed pages in the table space,

partition, or data set at which an incremental or full image copy is

to be taken.

percent_value1

Specifies the first value in the CHANGELIMIT range.

percent_value1 must be an integer or decimal value from 0.0 to

100.0. You do not need to specify leading zeroes, and the

decimal point is not required when specifying a whole integer.

Specify a maximum of one decimal place for a decimal value.

For example, you can specify .5. If you specify this value,

COPY

Chapter 11. COPY 107

#
#
#

|
|
|

COPY takes an incremental image copy if more than one half

of one percent of the pages have changed.

percent_value2

Specifies the second value in the CHANGELIMIT range.

percent_value2 must be an integer or decimal value from 0.0 to

100.0. You do not need to specify leading zeroes, and the

decimal point is not required when specifying a whole integer.

Specify a maximum of one decimal place for a decimal value

(for example, .5).

 COPY CHANGELIMIT accepts values in any order. For example,

you can specify (10,1) or (1,10).

If only one value is specified, COPY CHANGELIMIT:

v Creates an incremental image copy if the percentage of changed

pages is greater than 0 and less than percent_value1.

v Creates a full image copy if the percentage of changed pages is

greater than or equal to percent_value1, or if CHANGELIMIT(0) is

specified.

v Does not create an image copy if no pages have changed, unless

CHANGELIMIT(0) is specified.

If two values are specified, COPY CHANGELIMIT:

v Creates an incremental image copy if the percentage of changed

pages is greater than the lowest specified value and less than the

highest specified value.

v Creates a full image copy if the percentage of changed pages is

equal to or greater than the highest specified value.

v Does not create an image copy if the percentage of changed

pages is less than or equal to the lowest specified value.

v If both values are equal, creates a full image copy if the

percentage of changed pages is equal to or greater than the

specified value.

The default values are (1,10).

You cannot use the CHANGELIMIT option for a table space or

partition that is defined with TRACKMOD NO. If you change the

TRACKMOD option from NO to YES, you must take an image

copy before you can use the CHANGELIMIT option. For

nonpartitioned table spaces, you must copy the entire table space

to allow future CHANGELIMIT requests.

REPORTONLY

Specifies that image copy information is to be displayed. If you

specify the REPORTONLY option, only image copy information is

displayed. Image copies are not taken in this case; they are only

recommended.

DSNUM For a table space, identifies a partition or data set within the table

space to be copied; or it copies the entire table space. For an index

space, DSNUM identifies a partition to be copied, or it copies the

entire index space. This option can specify a partition of a

data-partitioned secondary index if the index is copy-enabled.

 If a data set of a nonpartitioned table space is in the

COPY-pending status, you must copy the entire table space.

COPY

108 Utility Guide and Reference

|
|

ALL Indicates that the entire table space or index space is to be

copied. The default is ALL. You must use ALL for a

nonpartitioned secondary index.

integer Is the number of a partition or data set that is to be copied.

 An integer value is not valid for nonpartitioned secondary

indexes.

For a partitioned table space or index space, the integer is

its partition number. The maximum is 4096.

For a nonpartitioned table space, find the integer at the

end of the data set name as it is cataloged in the ICF

catalog. The data set name has the following format:

catname.DSNDBx.dbname.spacename.y0001.Annn

In this format:

catname Is the ICF catalog name or alias.

x Is C (for VSAM clusters) or D (for VSAM

data components).

dbname Is the database name.

spacename Is the table space or index space name.

y Is I or J, which indicates the data set name

used by REORG with FASTSWITCH.

nnn Is the data set integer.

 If COPY takes an image copy of data sets (rather than on table

spaces), RECOVER, MERGECOPY, or COPYTOCOPY must use the

copies on a data set level. For a nonpartitioned table space, if

COPY takes image copies on data sets and you run MODIFY

RECOVERY with DSNUM ALL, the table space is placed in

COPY-pending status if a full image copy of the entire table space

does not exist.

PARALLEL Specifies the maximum number of objects in the list that are to be

processed in parallel. The utility processes the list of objects in

parallel for image copies being written to or from different disk or

tape devices. If you specify TAPEUNITS with PARALLEL, you

control the number of tape drives that are dynamically allocated

for the copy. If you omit PARALLEL, the list is not processed in

parallel. See “Copying a list of objects” on page 118 for more

information about processing objects in parallel.

 Restriction: Do not specify the PARALLEL keyword if one or more

of the output data sets are defined with DD statements that specify

UNIT=AFF to refer to the same device as a previous DD statement.

This usage is not supported with the PARALLEL keyword and

could result in an abend. Instead, consider using templates to

define your data sets. For more information about TEMPLATE

specifications, see Chapter 31, “TEMPLATE,” on page 587.

(num-objects)

Specifies the number of objects in the list that are to be

processed in parallel. You can adjust this value to a smaller

value if COPY encounters storage constraints.

COPY

Chapter 11. COPY 109

|
|

|
|

|

|

If you specify 0 or do not specify the TAPEUNITS keyword,

COPY determines the optimal number of objects to process in

parallel.

 See “Copying a list of objects” on page 118.

TAPEUNITS Specifies the maximum number of tape drives that the utility

dynamically allocates for the list of objects to be processed in

parallel. TAPEUNITS applies only to tape drives that are

dynamically allocated through the TEMPLATE keyword. It does

not apply to JCL allocated tape drives. The total number of tape

drives allocated for the COPY request is the sum of the JCL

allocated tape drives plus the number of tape drives determined as

follows:

v The value specified for TAPEUNITS

v The value determined by the COPY utility if you omit the

TAPEUNITS keyword

If you omit this keyword, the utility determines the number of tape

drives to dynamically allocate for the copy function.

(num-tape-units)

Specifies the number of tape drives to allocate. If you specify 0

or do not specify a value for num-tape-units, COPY determines

the maximum number of tape drives to be dynamically

allocated for the function.

CHECKPAGE Indicates that each page in the table space or index space is to be

checked for validity. The validity checking operates on one page at

a time and does not include any cross-page checking. If it finds an

error, COPY issues a message that describes the type of error. If

more than one error exists in a given page, only the first error is

identified. COPY continues checking the remaining pages in the

table space or index space after it finds an error.

SYSTEMPAGES

Specifies whether the COPY utility puts system pages at the

beginning of the image copy data set.

 Although the system pages are located at the beginning of many

image copies, this placement is not guaranteed. If system pages

have not been changed since the last image copy, then an

incremental copy will not include them.

YES Ensures that any header, dictionary, and version system

pages are copied at the beginning of the image copy data

set. The version system pages can be copied twice.

 Selecting YES ensures that the image copy contains the

necessary system pages for subsequent UNLOAD utility

jobs to correctly format and unload all data rows.

The default is YES.

NO Does not ensure that the dictionary and version system

pages are copied at the beginning of the image copy data

set. The COPY utility copies the pages in the current order,

including the header pages.

CONCURRENT

Specifies that DFSMSdss concurrent copy is to make the full image

COPY

110 Utility Guide and Reference

#
#
#

|
|
|

#
#
#
#

||
|
|

|
|
|

|

||
|
|
|

copy. The image copy is recorded in the SYSIBM.SYSCOPY catalog

table with ICTYPE=F and STYPE=C or STYPE=J.

 If the SYSPRINT DD statement points to a data set, you must use a

DSSPRINT DD statement.

When you specify SHRLEVEL(REFERENCE), an ICTYPE=Q record

is placed into the SYSIBM.SYSCOPY catalog table after the object

has been quiesced. If COPY fails, this record remains in

SYSIBM.SYSCOPY. When COPY is successful, this ICTYPE=Q

record is replaced with the ICTYPE=F record.

If the page size in the table space matches the control interval for

the associated data set, you can use either the SHRLEVEL

CHANGE option or the SHRLEVEL REFERENCE option with the

CONCURRENT option. If the page size does not match the control

interval, you must use the SHRLEVEL REFERENCE option for

table spaces with a 8-KB, 16-KB, or 32-KB page size.

When you do not specify FILTERDDN, the DFSMSdss dump

statement cannot include more than 255 data sets. When you

request a concurrent copy on an object that exceeds this limitation,

DB2 dynamically allocates a temporary filter data set for you.

FILTERDDN ddname

Specifies the optional DD statement for the filter data set that

COPY is to use with the CONCURRENT option. COPY uses this

data set to automatically build a list of table spaces that are to be

copied by DFSMSdss with one DFSMSdss DUMP statement.

 You can use the FILTERDDN keyword to specify either a DD

name or a TEMPLATE name specification from a previous

TEMPLATE control statement. If utility processing detects that the

specified name is both a DD name in the current job step and a

TEMPLATE name, the utility uses the DD name. For more

information about TEMPLATE specifications, see Chapter 31,

“TEMPLATE,” on page 587.

If you specify FILTERDDN, the SYSCOPY records for all objects in

the list have the same data set name.

ddname is the DD name.

SHRLEVEL Indicates whether other programs can access or update the table

space or index while COPY is running.

REFERENCE

Allows read-only access by other programs. The default is

REFERENCE.

CHANGE

Allows other programs to change the table space or index

space.

 When you specify SHRLEVEL CHANGE, uncommitted

data might be copied.

Recommendation: Do not use image copies that are made

with SHRLEVEL CHANGE when you run RECOVER

TOCOPY.

SHRLEVEL CHANGE is not allowed when you use

DFSMSdss concurrent copy for table spaces that have a

COPY

Chapter 11. COPY 111

|
|
|
|
|
|

|
|
|
|

|
|

page size that is greater than 4 KB and does not match the

control interval size. If the page size in the table space

matches the control interval size for the associated data set,

you can use either the SHRLEVEL CHANGE option or the

SHRLEVEL REFERENCE option.

If you are copying a list and you specify the SHRLEVEL

CHANGE option, you can specify OPTIONS

EVENT(ITEMERROR,SKIP) so that each object in the list is

placed in UTRW status and the read claim class is held

only while the object is being copied. If you do not specify

OPTIONS EVENT(ITEMERROR,SKIP), all of the objects in

the list are placed in UTRW status and the read claim class

is held on all objects for the entire duration of the COPY.

Instructions for running COPY

To run COPY, you must:

1. Read “Before running COPY” in this section.

2. Prepare the necessary data sets, as described in “Data sets that COPY uses.”

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

COPY, see “Sample COPY control statements” on page 128.)

4. Prepare a utility control statement, specifying the options for the tasks you

want to perform, as described in “Instructions for specific tasks” on page 114.

5. Check the compatibility table in “Concurrency and compatibility for COPY” on

page 126 if you want to run other jobs concurrently on the same target objects.

6. Plan for restart if the COPY job doesn’t complete, as described in “Terminating

or restarting COPY” on page 125.

7. Run COPY by using one of the methods that are described in Chapter 3,

“Invoking DB2 online utilities,” on page 15.

Before running COPY

Before running COPY, check that the table spaces and index spaces that you want

to copy are not in any restricted states. See “Concurrency and compatibility for

COPY” on page 126 for a list of restricted states.

Data sets that COPY uses

Table 15 lists the data sets that COPY uses. The table lists the DD name that is

used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 15. Data sets that COPY uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

DSSPRINT Output data set for messages when making

concurrent copies.

No1

COPY

112 Utility Guide and Reference

|
|
|
|
|

|
|
|
|
|
|
|
|

Table 15. Data sets that COPY uses (continued)

Data set Description Required?

Filter A single data set that DB2 uses when you

specify the FILTERDDN option in the utility

control statement. This data set contains a

list of VSAM data set names that DB2

builds, and is used during COPY when you

specify the CONCURRENT and

FILTERDDN options.

No2

Copies From one to four output data sets that

contain the resulting image copy data sets.

Specify their DD names with the COPYDDN

and RECOVERYDDN options of the utility

control statement. The default is one copy to

be written to the data set described by the

SYSCOPY DD statement.

Yes

Notes:

1. Required if you specify CONCURRENT and the SYSPRINT DD statement points to a

data set.

2. Required if you specify the FILTERDDN option.

The following objects are named in the utility control statement and do not require

DD statements in the JCL:

Table space or index space

Object that is to be copied. (If you want to copy only certain data sets in a

table space, you must use the DSNUM option in the control statement.)

DB2 catalog objects

Objects in the catalog that COPY accesses. The utility records each copy in

the DB2 catalog table SYSIBM.SYSCOPY.

Output data set size: Image copies are written to sequential non-VSAM data sets.

Recommendation: Use a template for the image copy data set by specifying a

TEMPLATE statement without the SPACE keyword. When you omit this keyword,

the utility calculates the appropriate size of the data set for you.

Alternatively, you can find the approximate size of the image copy data set for a

table space, in bytes, by either executing COPY with the CHANGELIMIT

REPORTONLY option, or using the following procedure:

1. Find the high-allocated page number, either from the NACTIVEF column of

SYSIBM.SYSTABLESPACE after running the RUNSTATS utility, or from

information in the VSAM catalog data set.

2. Multiply the high-allocated page number by the page size.

Filter data set size:

Recommendation: Use a template for the filter data set by specifying a TEMPLATE

statement without the SPACE keyword. When you omit this keyword, the utility

calculates the appropriate size of the data set for you.

COPY

Chapter 11. COPY 113

|
|
|

|
|
|

|
|
|

Alternatively, you can determine the approximate size of the filter data set size that

is required, in bytes, by using the following formula, where n = the number of

specified objects in the COPY control statement:

(240 + (80 × n))

JCL parameters: You can specify a block size for the output by using the BLKSIZE

parameter on the DD statement for the output data set. Valid block sizes are

multiples of 4096 bytes. You can increase the buffer using the BUFNO parameter;

for example, you might specify BUFNO=30, which creates 30 buffers.

See also “Data sets that online utilities use” on page 19 for information about using

BUFNO.

Cataloging image copies: To catalog your image copy data sets, use the

DISP=(MOD,CATLG,CATLG) parameter in the DD statement or TEMPLATE that is

named by the COPYDDN option. After the image copy is taken, the DSVOLSER

column of the row that is inserted into SYSIBM.SYSCOPY contains blanks.

Duplicate image copy data sets are not allowed. If a cataloged data set is already

recorded in SYSIBM.SYSCOPY with the same name as the new image copy data

set, the COPY utility issues a message and does not make the copy.

When RECOVER locates the SYSCOPY entry, it uses the operating system catalog

to allocate the required data set. If you have uncataloged the data set, the

allocation fails. In that case, the recovery can still go forward; RECOVER searches

for a previous image copy. But even if it finds one, RECOVER must use

correspondingly more of the log during recovery.

Recommendation: Keep the ICF catalog consistent with the information about

existing image copy data sets in the SYSIBM.SYSCOPY catalog table.

Creating the control statement

Create the utility control statement for the COPY job. “Control statement coding

rules” on page 16 provides general information about specifying options for DB2

utilities.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Making full image copies” on page 115

 “Making incremental image copies” on page 116

 “Making multiple image copies” on page 116

 “Copying partitions or data sets in separate jobs” on page 118

 “Copying a list of objects” on page 118

 “Using more than one COPY statement” on page 120

 “Copying segmented table spaces” on page 120

 “Using DFSMSdss concurrent copy” on page 120

 “Specifying conditional image copies” on page 122

 “Preparing for recovery” on page 123

 “Improving performance” on page 124

 “Copying table spaces with mixed volume IDs” on page 124

 “Defining generation data groups” on page 124

 “Using DB2 with DFSMS products” on page 125

 “Putting image copies on tape” on page 125

 “Copying a LOB table space” on page 125

COPY

114 Utility Guide and Reference

Making full image copies

You can make a full image copy of any of the following objects:

v Table space

v Table space partition

v Data set of a linear table space

v Index space

v Index space partition

The following statement specifies that the COPY utility is to make a full image

copy of the DSN8S81E table space in database DSN8D81A:

COPY TABLESPACE DSN8D81A.DSN8S81E

The COPY utility writes pages from the table space or index space to the output

data sets. The JCL for the utility job must include DD statements or have a

template specification for the data sets. If the object consists of multiple data sets

and all are copied in one run, the copies reside in one physical sequential output

data set.

Image copies should be made either by entire page set or by partition, but not by

both.

Recommendations:

v Take a full image copy after any of the following operations:

– CREATE or LOAD operations for a new object that is populated.

– REORG operation for an existing object.

– LOAD RESUME of an existing object.
v Copy the indexes over a table space whenever a full copy of the table space is

taken. More frequent index copies decrease the number of log records that need

to be applied during recovery. At a minimum, you should copy an index when

it is placed in informational COPY-pending (ICOPY) status. For more

information about the ICOPY status, see Appendix C, “Advisory or restrictive

states,” on page 849.

If you create an inline copy during LOAD or REORG, you do not need to execute

a separate COPY job for the table space. If you do not create an inline copy, and if

the LOG option is NO, the COPY-pending status is set for the table space. You

must then make a full image copy for any subsequent recovery of the data. An

incremental image copy is not allowed in this case.

If the LOG option is YES, the COPY-pending status is not set. However, your next

image copy must be a full image copy. Again, an incremental image copy is not

allowed.

The COPY utility automatically takes a full image copy of a table space if you

attempt to take an incremental image copy when it is not allowed.

The catalog table SYSIBM.SYSCOPY and the directory tables SYSIBM.SYSUTIL and

SYSIBM.SYSLGRNX record information from the COPY utility. Copying the catalog

table or the directories can lock out separate COPY jobs that are running

simultaneously; therefore, defer copying the catalog table or directories until the

other copy jobs have completed if possible. However, if you must copy other

objects while another COPY job processes catalog tables or directories, specify

SHRLEVEL (CHANGE) for the copies of the catalog and directory tables.

COPY

Chapter 11. COPY 115

Making incremental image copies

An incremental image copy is a copy of the pages that have been changed since

the last full or incremental image copy. You cannot take an incremental image copy

of an index space. You can make an incremental image copy of a table space if the

following conditions are true:

v A full image copy of the table space exists.

v The COPY-pending status is not on for that table space.

v The last copy was taken without the CONCURRENT option.

Copy by partition or data set: You can make an incremental image copy by

partition or data set (specified by DSNUM) in the following situations:

v A full image copy of the table space exists.

v A full image copy of the same partition or data set exists and the COPY-pending

status is not on for the table space or partition.

In addition, the full image copy must have been made after the most recent use of

CREATE, REORG or LOAD, or it must be an inline copy that was made during the

most recent use of LOAD or REORG.

Sample control statement: To specify an incremental image copy, use FULL NO on

the COPY statement, as in the following example:

COPY TABLESPACE DSN8D81A.DSN8S81E

 FULL NO

 SHRLEVEL CHANGE

Performance advantage: An incremental image copy generally does not require a

complete scan of the table space, with two exceptions:

v The table space is defined with the TRACKMOD NO option.

v You are taking the first copy after you altered a table space to TRACKMOD YES.

Space maps in each table space indicate, for each page, regardless of whether it has

changed since the last image copy. Therefore, making an incremental copy can be

significantly faster than making a full copy if the table space is defined with the

TRACKMOD YES option. Incremental image copies of a table space that is defined

with TRACKMOD NO still saves space, although the performance advantage is

smaller.

Restrictions: You cannot make incremental copies of DSNDB01.DBD01,

DSNDB01.SYSUTILX, or DSNDB06.SYSCOPY in the catalog. For those objects,

COPY always makes a full image copy and places the SYSCOPY record in the log.

Making multiple image copies

In a single COPY job, you can create up to four exact copies of any of the

following objects:

v Table space

v Table space partition

v Data set of a linear table space

v Index space

v Index space partition

Two copies can be made for use on the local DB2 system (installed with the option

LOCALSITE), and two more for offsite recovery (on any system that is installed

with the option RECOVERYSITE). All copies are identical, and all are produced at

the same time from one invocation of COPY. Alternatively you can use

COPYTOCOPY to create the needed image copies. See Chapter 12,

“COPYTOCOPY,” on page 141 for more information.

COPY

116 Utility Guide and Reference

The ICBACKUP column in SYSIBM.SYSCOPY specifies whether the image copy

data set is for the local or recovery system, and whether the image copy data set is

for the primary copied data set or for the backup copied data set. The ICUNIT

column in SYSIBM.SYSCOPY specifies whether the image copy data set is on tape

or disk.

Remote-site recovery: For remote site recovery, DB2 assumes that the system and

application libraries and the DB2 catalog and directory are identical at the local site

and recovery site. You can regularly transport copies of archive logs and database

data sets to a safe location to keep current data for remote-site recovery current.

This information can be kept on tape until needed.

Naming the data sets for the copies: The COPYDDN option of COPY names the

output data sets that receive copies for local use. The RECOVERYDDN option

names the output data sets that receive copies that are intended for remote-site

recovery. The options have the following formats:

COPYDDN (ddname1,ddname2)

RECOVERYDDN (ddname3,ddname4)

The DD names for the primary output data sets are ddname1 and ddname3. The

ddnames for the backup output data sets are ddname2 and ddname4.

Sample control statement: The following statement makes four full image copies of

the table space DSN8S81E in database DSN8D81A. The statement uses LOCALDD1

and LOCALDD2 as DD names for the primary and backup copies that are used on

the local system and RECOVDD1 and RECOVDD2 as DD names for the primary

and backup copies for remote-site recovery:

COPY TABLESPACE DSN8D81A.DSN8S81E

 COPYDDN (LOCALDD1,LOCALDD2)

 RECOVERYDDN (RECOVDD1,RECOVDD2)

You do not need to make copies for local use and for remote-site recovery at the

same time. COPY allows you to use either the COPYDDN or the RECOVERYDDN

option without the other. If you make copies for local use more often than copies

for remote-site recovery, a remote-site recovery could be performed with an older

copy, and more of the log, than a local recovery; hence, the recovery would take

longer. However, in your plans for remote-site recovery, that difference might be

acceptable. You can also use MERGECOPY RECOVERYDDN to create recovery-site

full image copies, and merge local incremental copies into new recovery-site full

copies.

Conditions for making multiple incremental image copies: DB2 cannot make

incremental image copies if any of the following conditions is true:

v The incremental image copy is requested only for a site other than the current

site (the local site from which the request is made).

v Incremental image copies are requested for both sites, but the most recent full

image copy was made for only one site.

v Incremental image copies are requested for both sites and the most recent full

image copies were made for both sites, but between the most recent full image

copy and current request, incremental image copies were made for the current

site only.

If you attempt to make incremental image copies under any of these conditions,

COPY terminates with return code 8, does not take the image copy or update the

SYSIBM.SYSCOPY table, and issues the following message:

COPY

Chapter 11. COPY 117

DSNU404I csect-name

 LOCAL SITE AND RECOVERY SITE INCREMENTAL

 IMAGE COPIES ARE NOT SYNCHRONIZED

To proceed, and still keep the two sets of data synchronized, take another full

image copy of the table space for both sites, or change your request to make an

incremental image copy only for the site at which you are working.

DB2 cannot make an incremental image copy if the object that is being copied is an

index or index space.

Maintaining copy consistency: Make full image copies for both the local and

recovery sites:

v If a table space is in COPY-pending status

v After a LOAD or REORG procedure that did not create an inline copy

v If an index is in the informational COPY-pending status

This action helps to ensure correct recovery for both local and recovery sites. If the

requested full image copy is for one site only, but the history shows that copies

were made previously for both sites, COPY continues to process the image copy

and issues the following warning message:

DSNU406I FULL IMAGE COPY SHOULD BE TAKEN FOR BOTH LOCAL SITE AND

 RECOVERY SITE.

The COPY-pending status of a table space is not changed for the other site when

you make multiple image copies at the current site for that other site. For example,

if a table space is in COPY-pending status at the current site, and you make copies

from there for the other site only, the COPY-pending status is still on when you

bring up the system at that other site.

Copying partitions or data sets in separate jobs

If you have a partitioned table space or partitioning index, you can copy the

partitions independently in separate simultaneous jobs. This can reduce the time it

takes to create an image copy of the total table space.

If a nonpartitioned table space consists of more than one data set, you can copy

several or all of the data sets independently in separate jobs. To do so, run

simultaneous COPY jobs (one job for each data set) and specify SHRLEVEL

CHANGE on each job.

However, creating copies simultaneously does not provide you with a consistent

recovery point unless you subsequently run a QUIESCE for the table space.

Copying a list of objects

Within a single COPY control statement, the COPY utility allows you to process a

list that contains any of the following objects:

v Table space

v Table space partition

v Data set of a linear table space

v Index space

v Index space partition

Specifying objects in a list is useful for copying a complete set of referentially

related table spaces before running QUIESCE. Consider the following information

when taking an image copy for a list of objects:

COPY

118 Utility Guide and Reference

v DB2 copies table spaces and index spaces in the list one at a time, in the

specified order, unless you invoke parallelism by specifying the PARALLEL

keyword.

v Each table space in the list with a CHANGELIMIT specification has a REPORT

phase, so the phase switches between REPORT and COPY while processing the

list.

v If processing completes successfully, any COPY-pending status on the table

spaces and informational COPY-pending status on the indexes are reset.

v If you use COPY with the SHRLEVEL(REFERENCE) option:

– DB2 drains the write claim class on each table space and index in the

UTILINIT phase, which is held for the duration of utility processing.

– Utility processing inserts SYSCOPY rows for all of the objects in the list at the

same time, after all of the objects have been copied.

– All objects in the list have identical RBA or LRSN values for the START_RBA

column for the SYSCOPY rows: the START_RBA is set to the current LRSN at

the end of the COPY phase.
v If you use COPY with the SHRLEVEL(CHANGE) option:

– If you specify OPTIONS EVENT(ITEMERROR,SKIP), each object in the list is

placed in UTRW status and the read claim class is held only while the object

is being copied. If you do not specify OPTIONS EVENT(ITEMERROR,SKIP),

all of the objects in the list are placed in UTRW status and the read claim

class is held on all objects for the entire duration of the COPY.

– Utility processing inserts a SYSCOPY row for each object in the list when the

copy of each object is complete.

– Objects in the list have different LRSN values for the START_RBA column for

the SYSCOPY rows; the START_RBA value is set to the current RBA or LRSN

at the start of copy processing for that object.

When you specify the PARALLEL keyword, DB2 supports parallelism for image

copies on disk or tape devices. You can control the number of tape devices to

allocate for the copy function by using TAPEUNITS with the PARALLEL keyword.

If you use JCL statements to define tape devices, the JCL controls the allocation of

the devices.

When you explicitly specify objects with the PARALLEL keyword, the objects are

not necessarily processed in the specified order. Objects that are to be written to

tape and whose file sequence numbers have been specified in the JCL are

processed in the specified order. If templates are used, you cannot specify file

sequence numbers. In the absence of overriding JCL specifications, DB2 determines

the placement and, thus, the order of processing for such objects. When only

templates are used, objects are processed according to their size, with the largest

objects processed first.

Both the PARALLEL and TAPEUNITS keywords act as constraints on the

processing of the COPY utility. The PARALLEL keyword constrains the amount of

parallelism by restricting the maximum number of objects that can be processed

simultaneously. The TAPEUNITS keyword constrains the number of tape drives

that can be dynamically allocated for the COPY command. The TAPEUNITS

keyword can constrain the amount of parallelism if an object requires a number of

tapes such that the number of remaining tapes is insufficient to service another

object.

COPY

Chapter 11. COPY 119

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

To calculate the number of threads that you need when you specify the PARALLEL

keyword, use the formula (n * 2 + 1), where n is the number of objects that are to

be processed in parallel, regardless of the total number of objects in the list. If you

do not use the PARALLEL keyword, n is 1 and COPY uses three threads for a

single-object COPY job.

The following table spaces cannot be included in a list of table spaces. You must

specify each one as a single object:

v DSNDB01.SYSUTILX

v DSNDB06.SYSCOPY

v DSNDB01.SYSLGRNX

The only exceptions to this restriction are the indexes over these table spaces that

were defined with the COPY YES attribute. You can specify such indexes along

with the appropriate table space.

Using more than one COPY statement

You can use more than one control statement for COPY in one DB2 utility job step.

After each COPY statement executes successfully:

v A row that refers to each image copy is recorded in the SYSIBM.SYSCOPY table.

v The image copy data sets are valid and available for RECOVER, MERGECOPY,

COPYTOCOPY, and UNLOAD.

If a job step that contains more than one COPY statement abends, do not use

TERM UTILITY. Restart the job from the last commit point by using RESTART

instead. Terminating COPY by using TERM UTILITY in this case creates

inconsistencies between the ICF catalog and DB2 catalogs.

Copying segmented table spaces

COPY distinguishes between segmented and nonsegmented table spaces. If you

specify a segmented table space, COPY locates empty and unformatted data pages

in the table space and does not copy them.

Using DFSMSdss concurrent copy

You might be able to gain improved availability by using the concurrent copy

function of the DFSMSdss component of the Data Facility Storage Management

Subsystem (DFSMS). You can subsequently run the DB2 RECOVER utility to

restore those image copies and apply the necessary log records to them to

complete recovery.

The CONCURRENT option of COPY invokes DFSMSdss concurrent copy. The

COPY utility records the resulting DFSMSdss concurrent copies in the catalog table

SYSIBM.SYSCOPY with ICTYPE=F and STYPE=C or STYPE=J. STYPE=C indicates

that the concurrent copy was taken of the ″I″ instance of the table space (which

means that the instance qualifier in the name of the corresponding data set begins

with the letter ″I″). STYPE=J indicates that the concurrent copy was taken of the ″J″

instance of the table space (which means that the instance qualifier in the name of

the corresponding data set begins with the letter ″J″). See “Shadow data sets” on

page 452 for an explanation of data set naming conventions used by REORG

SHRLEVEL CHANGE.

To obtain a consistent offline backup copy outside of DB2:

1. Start the DB2 objects that are being backed up for read-only access by issuing

the following command:

-START DATABASE(database-name) SPACENAM(

tablespace-name) ACCESS(RO)

COPY

120 Utility Guide and Reference

#
#
#
#
#
#
#
#

Allowing read-only access is necessary to ensure that no updates to data occur

during this procedure.

2. Run QUIESCE with the WRITE(YES) option to quiesce all DB2 objects that are

being backed up.

3. Back up the DB2 data sets after the QUIESCE utility completes successfully.

4. Issue the following command to allow transactions to access the data:

-START DATABASE(database-name) SPACENAM(tablespace-name)

If you use the CONCURRENT option:

v You must supply either a COPYDDN DD name, a RECOVERYDDN DD name,

or both.

v You can set the disposition to DISP=(MOD,CATLG,CATLG) if you specify the

new data set for the image copy on a scratch volume (a specific volume serial

number is not specified). You must set the disposition to

DISP=(NEW,CATLG,CATLG) if you specify a specific volume serial number for

the new image copy data set.

v If you are restarting COPY, specify DISP=(MOD,CATLG,CATLG) or

DISP=(NEW,CATLG,CATLG) for the COPYDDN and RECOVERYDDN data sets.

The DFSMSdss DUMP command does not support appending to an existing

data set. Therefore, the COPY utility converts any DISP=MOD data sets to

DISP=OLD before invoking DFSMSdss.

v If the SYSPRINT DD statement points to a data set, you must use a DSSPRINT

DD statement.

v If the page size in the table space matches the control interval for the associated

data set, you can use either the SHRLEVEL CHANGE option or the SHRLEVEL

REFERENCE option. If the page size does not match the control interval, you

must use the SHRLEVEL REFERENCE option for table spaces with a 8-KB,

16-KB, or 32-KB page size.

Restrictions on using DFSMSdss concurrent copy: You cannot use a copy that is

made with DFSMSdss concurrent copy with the PAGE or ERRORRANGE options

of the RECOVER utility. If you specify PAGE or ERROR RANGE, RECOVER

bypasses any concurrent copy records when searching the SYSIBM.SYSCOPY table

for a recovery point.

You can use the CONCURRENT option with SHRLEVEL CHANGE on a table

space if the page size in the table space matches the control interval for the

associated data set.

Also, you cannot run the following DB2 stand-alone utilities on copies that are

made by DFSMSdss concurrent copy:

 DSN1COMP

 DSN1COPY

 DSN1PRNT

You cannot execute the CONCURRENT option from the DB2I Utilities panel or

from the DSNU TSO CLIST command.

Requirements for using DFSMSdss concurrent copy: DFSMSdss concurrent copy is

enabled by specific hardware. Contact IBM or the vendor for your specific storage

product to verify whether your controller or storage server supports the concurrent

copy function.

COPY

Chapter 11. COPY 121

|
|
|
|
|

|
|
|

Table space availability: If you specify COPY SHRLEVEL REFERENCE with the

CONCURRENT option, and if you want to copy all of the data sets for a list of

table spaces to the same dump data set, specify FILTERDDN in your COPY

statement to improve table space availability. If you do not specify FILTERDDN,

COPY might force DFSMSdss to process the list of table spaces sequentially, which

might limit the availability of some of the table spaces that are being copied.

Specifying conditional image copies

Use the CHANGELIMIT option of the COPY utility to specify conditional image

copies. You can use it to get a report of image copy information about a table

space, or you can let DB2 decide whether to take an image copy based on this

information.

You cannot use the CHANGELIMIT option for a table space or partition that is

defined with TRACKMOD NO. If you change the TRACKMOD option from NO to

YES, you must take an image copy before you can use the CHANGELIMIT option.

When you change the TRACKMOD option from NO to YES for a linear table

space, you must take a full image copy by using DSNUM ALL before you can

copy using the CHANGELIMIT option.

Obtaining image copy information about a table space: When you specify COPY

CHANGELIMIT REPORTONLY, COPY reports image copy information for the

table space and recommends the type of copy, if any, to take. The report includes:

v The total number of pages in the table space. This value is the number of pages

that are to be copied if a full image copy is taken.

v The number of empty pages, if the table space is segmented.

v The number of changed pages. This value is the number of pages that are to be

copied if an incremental image copy is taken.

v The percentage of changed pages.

v The type of image copy that is recommended.

Adding conditional code to your COPY job: You can add conditional code to

your jobs so that an incremental or full image copy, or some other step, is

performed depending on how much the table space has changed. For example, you

can add a conditional MERGECOPY step to create a new full image copy if your

COPY job took an incremental copy. COPY CHANGELIMIT uses the following

return codes to indicate the degree that a table space or list of table spaces has

changed:

1 (informational)

If no CHANGELIMIT was met.

2 (informational)

If the percentage of changed pages is greater than the low CHANGELIMIT

and less than the high CHANGELIMIT value.

3 (informational)

If the percentage of changed pages is greater than or equal to the high

CHANGELIMIT value.

If you specify multiple COPY control statements in one job step, that job step

reports the highest return code from all of the imbedded statements. Basically, the

statement with the highest percentage of changed pages determines the return

code and the recommended action for the entire list of COPY control statements

that are contained in the subsequent job step.

COPY

122 Utility Guide and Reference

|
|
|
|
|
|

Using conditional copy with generation data groups (GDGs): When you use

generation data groups (GDGs) and need to make an incremental image copy, take

the following steps to prevent creating an empty image copy:

1. Include in your job a first step in which you run COPY with CHANGELIMIT

REPORTONLY. Set the SYSCOPY DD statement to DD DUMMY so that no

output data set is allocated. If you specify REPORTONLY and use a template,

DB2 does not dynamically allocate the data set.

2. Add a conditional JCL statement to examine the return code from the COPY

CHANGELIMIT REPORTONLY step.

3. Add a second COPY step without CHANGELIMIT REPORTONLY to copy the

table space or table space list based on the return code from the second step.

Preparing for recovery

Read the following topics pertaining to recovery, if you are taking incremental

copies, if you have recently run REORG or LOAD, or if you plan to recover a LOB

table space.

Using incremental copies: The RECOVER TABLESPACE utility merges all

incremental image copies since the last full image copy, and it must have all the

image copies available at the same time. If this requirement is likely to strain your

system resources—for example, by demanding more tape units than are

available—consider regularly merging multiple image copies into one copy.

Even if you do not periodically merge multiple image copies into one copy when

you do not have enough tape units, RECOVER TABLESPACE can still attempt to

recover the object. RECOVER dynamically allocates the full image copy and

attempts to dynamically allocate all the incremental image copy data sets. If every

incremental copy can be allocated, recovery proceeds to merge pages to table

spaces and apply the log. If a point is reached where RECOVER TABLESPACE

cannot allocate an incremental copy, the log RBA of the last successfully allocated

data set is noted. Attempts to allocate incremental copies cease, and the merge

proceeds using only the allocated data sets. The log is applied from the noted RBA,

and the incremental image copies that were not allocated are simply ignored.

After running LOAD or REORG: Recommendation: Create primary and backup

image copies after specifying a LOAD or REORG operation with LOG NO when

an inline copy is not created. Create these copies, so that if the primary image copy

is not available, fallback recovery using the secondary image copy is possible.

Creating a point of recovery: If you use COPY SHRLEVEL REFERENCE to copy a

list of objects that contains all referentially related structures, you do not need to

QUIESCE these objects in order to create a consistent point of recovery.

For LOB data, you should quiesce and copy both the base table space and the LOB

table space at the same time to establish a recovery point of consistency, called a

recovery point. Be aware that QUIESCE does not create a recovery point for a LOB

table space that contains LOBs that are defined with LOG NO.

Setting and clearing the informational COPY-pending status: For an index that

was defined with the COPY YES attribute the following utilities can place the

index in the informational COPY-pending (ICOPY) status:

v REORG INDEX

v REORG TABLESPACE LOG YES or NO

v LOAD TABLE LOG YES or NO

v REBUILD INDEX

COPY

Chapter 11. COPY 123

After the utility processing completes, take a full image copy of the index space so

that the RECOVER utility can recover the index space. If you need to recover an

index of which you did not take a full image copy, use the REBUILD INDEX

utility to rebuild the index from data in the table space.

Improving performance

You can merge a full image copy and subsequent incremental image copies into a

new full copy by running the MERGECOPY utility. After reorganizing a table

space, the first image copy must be a full image copy.

Do not base the decision of whether to run a full image copy or an incremental

image copy on the number of rows that are updated since the last image copy was

taken. Instead, base your decision on the percentage of pages that contain at least

one updated record (not the number of updated records). Regardless of the size of

the table, if more than 50% of the pages contain updated records, use full image

copy (this saves the cost of a subsequent MERGECOPY). To find the percentage of

changed pages, you can execute COPY with the CHANGELIMIT REPORTONLY

option. Alternatively, you can execute COPY CHANGELIMIT to allow COPY to

determine whether a full image copy or incremental copy is required; see

“Specifying conditional image copies” on page 122 for more information.

Using data compression can improve COPY performance because COPY does not

decompress data. The performance improvement is proportional to the amount of

compression.

Copying table spaces with mixed volume IDs

You cannot copy a table space or index space that uses a storage group that is

defined with mixed specific and non-specific volume IDs by using CREATE

STOGROUP or ALTER STOGROUP. If you specify such a table space or index

space, the job terminates and you receive error message DSNU419I.

Defining generation data groups

Recommendation: Use generation data groups to hold image copies, because their

use automates the allocation of data set names and the deletion of the oldest data

set. When you define the generation data group:

v You can specify that the oldest data set is automatically deleted when the

maximum number of data sets is reached. If you do that, make the maximum

number large enough to support all recovery requirements. When data sets are

deleted, use the MODIFY utility to delete the corresponding rows in

SYSIBM.SYSCOPY.

v Make the limit number of generation data sets equal to the number of copies

that you want to keep. Use NOEMPTY to avoid deleting all the data sets from

the integrated catalog facility catalog when the limit is reached.

Attention: Do not take incremental image copies when using generation data

groups unless data pages have changed. When you use generation data groups,

taking an incremental image copy when no data pages have changed causes the

following results:

v The new image copy data set is empty.

v No SYSCOPY record is inserted for the new image copy data set.

v Your oldest image copy is deleted.

See “Using conditional copy with generation data groups (GDGs)” on page 123 for

guidance on executing COPY with the CHANGELIMIT and REPORTONLY options

to ensure that you do not create empty image copy data sets when using GDGs.

COPY

124 Utility Guide and Reference

Recommendation: Use templates when using generation data groups.

Using DB2 with DFSMS products

If image copy data sets are managed by HSM or SMS, all data sets are cataloged.

If you plan to use SMS, catalog all image copies. Never maintain cataloged and

uncataloged image copies that have the same name.

Putting image copies on tape

Do not combine a full image copy and incremental image copies for the same table

space on one tape volume. If you do, the RECOVER TABLESPACE utility cannot

allocate the incremental image copies.

Copying a LOB table space

Both full and incremental image copies are supported for a LOB table space, as

well as SHRLEVEL REFERENCE, SHRLEVEL CHANGE, and the CONCURRENT

options. COPY without the CONCURRENT option does not copy empty or

unformatted data pages of a LOB table space.

Terminating or restarting COPY

This section explains the tasks of terminating and restarting the COPY utility.

Terminating COPY

This section explains the recommended way to terminate the COPY utility.

An active or stopped COPY job may be terminated with the TERM UTILITY

command. However, if you issue TERM UTILITY while COPY is in the active or

stopped state, DB2 inserts an ICTYPE=T record in the SYSIBM.SYSCOPY catalog

table for each object that COPY had started processing, but not yet completed.

(Exception: If the COPY utility is already in the UTILTERM phase, the image copy

is considered completed.) For copies that are made with SHRLEVEL REFERENCE,

some objects in the list might not have an ICTYPE=T record. For SHRLEVEL

CHANGE, some objects might have a valid ICTYPE=F, I, or T record, or no record

at all. The COPY utility does not allow you to take an incremental image copy if

an ICTYPE=T record exists. You must make a full image copy.

Implications of DISP on the DD statement: The result of terminating a COPY

job that uses the parameter DISP=(MOD,CATLG,CATLG) varies as follows:

v If only one COPY control statement exists, no row is written to

SYSIBM.SYSCOPY, but an image copy data set has been created and is cataloged

in the ICF catalog. You should delete that image copy data set.

v If several COPY control statements are in one COPY job step, a row for each

successfully completed copy is written to SYSIBM.SYSCOPY. However, all the

image copy data sets have been created and cataloged. You should delete all

image copy data sets that are not recorded in SYSIBM.SYSCOPY.

Restarting COPY

Recommendation: Use restart current instead, because it:

v Is valid for full image copies and incremental copies

v Is valid for a single job step with several COPY control statements

v Is valid for a list of objects

v Requires a minimum of re-processing

v Keeps the DB2 catalog and the integrated catalog facility catalog synchronized

COPY

Chapter 11. COPY 125

#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#

If you do not use the TERM UTILITY command, you can restart a COPY job.

COPY jobs with the CONCURRENT option restart from the beginning, and other

COPY jobs restart from the last commit point. You cannot use RESTART(PHASE)

for any COPY job. If you are restarting a COPY job with uncataloged output data

sets, you must specify the appropriate volumes for the job in the JCL or on the

TEMPLATE utility statement. Doing so could impact your ability to use implicit

restart. For general instructions on restarting a utility job, see “Restarting an online

utility” on page 41.

Restarting with a new data set: If you define a new output data set for a current

restart, complete the following actions before restarting the COPY job:

1. Copy the failed COPY output to the new data set.

2. Delete the old data set.

3. Rename the new data set to use the old data set name.

Restarting COPY after an out-of-space condition: See “Restarting after the

output data set is full” on page 43 for guidance in restarting COPY from the last

commit point after receiving an out-of-space condition.

Concurrency and compatibility for COPY

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

Restricted states: Do not copy a table space that is in any of the following states:

v CHECK-pending

v RECOVER-pending

v REFRESH-pending

v Logical error range

v Group buffer pool RECOVER-pending

v Stopped

v STOP-pending

Do not copy an index space that is in any of the following states:

v CHECK-pending

v REBUILD-pending

v RECOVER-pending

v REFRESH pending

v Logical error range

v Group buffer pool RECOVER-pending

v Stopped

v STOP-pending

See Appendix C, “Advisory or restrictive states,” on page 849 for information

about resetting CHECK-pending, REBUILD-pending, RECOVER-pending,

REFRESH-pending, and group buffer pool RECOVER-pending statuses. See the

description of message DSNU205I in DB2 Messages for information about correcting

the logical error range. See “Determining the status of a utility” on page 37 for

information about resetting the stopped status.

If a table space is in COPY-pending status, or an index is in informational

COPY-pending status, you can reset the status only by taking a full image copy of

the entire table space, all partitions of the partitioned table space, or the index

space. When you make an image copy of a partition, the COPY-pending status of

COPY

126 Utility Guide and Reference

|
|
|
#
#
#
#
|

the partition is reset. If a nonpartitioned table space is in COPY-pending status,

you can reset the status only by taking a full image copy of the entire table space,

and not of each data set.

Claims and drains: Table 16 shows which claim classes COPY claims and drains

and any restrictive status that the utility sets on the target object.

 Table 16. Claim classes of COPY operations

Target

SHRLEVEL

REFERENCE

SHRLEVEL

CHANGE

Table space, index space, or partition DW

UTRO

CR

UTRW1

Legend:

v DW - Drain the write claim class - concurrent access for SQL readers

v CR - Claim the read claim class

v UTRO - Utility restrictive state, read-only access allowed

v UTRW - Utility restrictive state, read-write access allowed

Notes:

1. If the target object is a segmented table space, SHRLEVEL CHANGE does not allow you

to concurrently execute an SQL DELETE without the WHERE clause.

COPY does not set a utility restrictive state if the target object is

DSNDB01.SYSUTILX.

Compatibility: Table 17 documents which utilities can run concurrently with COPY

on the same target object. The target object can be a table space, an index space, or

a partition of a table space or index space. If compatibility depends on particular

options of a utility, that information is also documented in the table.

 Table 17. Compatibility of COPY with other utilities

Action

COPY

INDEXSPACE

SHRLEVEL

REFERENCE

COPY

INDEXSPACE

SHRLEVEL

CHANGE

COPY

TABLESPACE

SHRLEVEL

REFERENCE1

COPY

TABLESPACE

SHRLEVEL

CHANGE

BACKUP SYSTEM Yes Yes Yes Yes

CHECK DATA Yes Yes No No

CHECK INDEX Yes Yes Yes Yes

CHECK LOB Yes Yes Yes Yes

COPY INDEXSPACE No No Yes Yes

COPY TABLESPACE Yes Yes No No

COPYTOCOPY No No No No

DIAGNOSE Yes Yes Yes Yes

LOAD No No No No

MERGECOPY No No No No

MODIFY No No No No

QUIESCE Yes No Yes No

REBUILD INDEX No No Yes Yes

RECOVER INDEX No No Yes Yes

RECOVER TABLESPACE Yes Yes No No

COPY

Chapter 11. COPY 127

Table 17. Compatibility of COPY with other utilities (continued)

Action

COPY

INDEXSPACE

SHRLEVEL

REFERENCE

COPY

INDEXSPACE

SHRLEVEL

CHANGE

COPY

TABLESPACE

SHRLEVEL

REFERENCE1

COPY

TABLESPACE

SHRLEVEL

CHANGE

REORG INDEX No No Yes Yes

REORG TABLESPACE

UNLOAD CONTINUE or

PAUSE

No No No No

REORG TABLESPACE

UNLOAD ONLY or

EXTERNAL

Yes Yes Yes Yes

REPAIR LOCATE by KEY,

RID, or PAGE DUMP or

VERIFY

Yes Yes Yes Yes

REPAIR LOCATE by KEY

or RID DELETE or

REPLACE

No No No No

REPAIR LOCATE INDEX

PAGE REPLACE

No No Yes No

REPAIR LOCATE

TABLESPACE PAGE

REPLACE

Yes Yes No No

REPORT Yes Yes Yes Yes

RESTORE SYSTEM No No No No

RUNSTATS INDEX Yes Yes Yes Yes

RUNSTATS TABLESPACE Yes Yes Yes Yes

STOSPACE Yes Yes Yes Yes

UNLOAD1 Yes Yes Yes Yes

Notes:

1. If CONCURRENT option is used, contention might be encountered when other utilities

are run on the same object at the same time.

To run on DSNDB01.SYSUTILX, COPY must be the only utility in the job step.

Also, if SHRLEVEL REFERENCE is specified, the COPY job of

DSNDB01.SYSUTILX must be the only utility running in the Sysplex.

COPY on SYSUTILX is an “exclusive” job; such a job can interrupt another job

between job steps, possibly causing the interrupted job to time out.

Sample COPY control statements

In some cases, you might run a COPY utility job more than once. To avoid

duplicate image copy data sets, a DSN qualifier is used in the following examples.

See the description of the COPYDDN parameter in “Option descriptions” on page

105 for further information.

Example 1: Making a full image copy. The following control statement specifies

that the COPY utility is to make a full image copy of table space

COPY

128 Utility Guide and Reference

DSN8D81A.DSN8S81E. The copy is to be written to the data set that is defined by

the SYSCOPY DD statement in the JCL; SYSCOPY is the default.

//STEP1 EXEC DSNUPROC,UID=’IUJMU111.COPYTS’,

// UTPROC=’’,

// SYSTEM=’DSN’,DB2LEV=DB2A

//SYSCOPY DD DSN=COPY001F.IFDY01,UNIT=SYSDA,VOL=SER=CPY01I,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//SYSIN DD *

COPY TABLESPACE DSN8D81A.DSN8S81E

/*

Instead of defining the data sets in the JCL, you can use templates. In the

following example, the preceding job is modified to use a template. In this

example, the name of the template is LOCALDDN. The LOCALDDN template is

identified in the COPY statement by the COPYDDN option.

//STEP1 EXEC DSNUPROC,UID=’IUJMU111.COPYTS’,

// UTPROC=’’,

// SYSTEM=’DSN’,DB2LEV=DB2A

//SYSIN DD *

TEMPLATE LOCALDDN UNIT SYSDA DSN(COPY001F.IFDY01)

 SPACE(15,1) CYL DISP(NEW,CATLG,CATLG)

 COPY TABLESPACE DSN8D81A.DSN8S81E COPYDDN(LOCALDDN)

/*

Recommendation: When possible, use templates to allocate data sets. For more

information about templates, see Chapter 31, “TEMPLATE,” on page 587.

Example 2: Making full image copies for local site and recovery site. The following

COPY control statement specifies that COPY is to make primary and backup full

image copies of table space DSN8D81P.DSN8S81C at both the local site and the

recovery site. The COPYDDN option specifies the output data sets for the local

site, and the RECOVERYDDN option specifies the output data sets for the recovery

site. The PARALLEL option indicates that up to 2 objects are to be processed in

parallel.

The OPTIONS statement at the beginning indicates that if COPY encounters any

errors (return code 8) while making the requested copies, DB2 ignores that

particular item. COPY skips that item and moves on to the next item. For example,

if DB2 encounters an error copying the specified data set to the COPY1 data set,

DB2 ignores the error and tries to copy the table space to the COPY2 data set.

OPTIONS EVENT(ITEMERROR,SKIP)

COPY TABLESPACE DSN8D81P.DSN8S81C

 COPYDDN(COPY1,COPY2)

 RECOVERYDDN(COPY3,COPY4)

 PARALLEL(2)

Example 3: Making full image copies of a list of objects. The control statement in

Figure 20 on page 131 specifies that COPY is to make local and recovery full image

copies (both primary and backup) of the following objects:

v Table space DSN8D81A.DSN8S81D, and its indexes:

– DSN8810.XDEPT1

– DSN8810.XDEPT2

– DSN8810.XDEPT3
v Table space DSN8D81A.DSN8S81E, and its indexes:

– DSN8710.XEMP1

– DSN8710.XEMP2

COPY

Chapter 11. COPY 129

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

These copies are to be written to the data sets that are identified by the COPYDDN

and RECOVERYDDN options for each object. The COPYDDN option specifies the

data sets for the copies at the local site, and the RECOVERYDDN option specifies

the data sets for the copies at the recovery site. The first parameter of each of these

options specifies the data set for the primary copy, and the second parameter

specifies the data set for the backup copy. For example, the primary copy of table

space DSN8D81A.DSN8S81D at the recovery site is to be written to the data set

that is identified by the COPY3 DD statement.

PARALLEL(4) indicates that up to four of these objects can be processed in

parallel. As the COPY job of an object completes, the next object in the list begins

processing in parallel until all of the objects have been processed.

SHRLEVEL REFERENCE specifies that no updates are allowed during the COPY

job. This option is the default and is recommended to ensure the integrity of the

data in the image copy.

COPY

130 Utility Guide and Reference

//STEP1 EXEC DSNUPROC,UID=’IUJMU111.COPYTS’,

// UTPROC=’’,

// SYSTEM=’DSN’,DB2LEV=DB2A

//COPY1 DD DSN=C81A.S20001.D2003142.T155241.LP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY2 DD DSN=C81A.S20001.D2003142.T155241.LB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY3 DD DSN=C81A.S20001.D2003142.T155241.RP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY4 DD DSN=C81A.S20001.D2003142.T155241.RB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY5 DD DSN=C81A.S20002.D2003142.T155241.LP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY6 DD DSN=C81A.S20002.D2003142.T155241.LB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY7 DD DSN=C81A.S20002.D2003142.T155241.RP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY8 DD DSN=C81A.S20002.D2003142.T155241.RB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY1 DD DSN=C81A.S20001.D2003142.T155241.LP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY2 DD DSN=C81A.S20001.D2003142.T155241.LB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY3 DD DSN=C81A.S20001.D2003142.T155241.RP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY4 DD DSN=C81A.S20001.D2003142.T155241.RB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY5 DD DSN=C81A.S20002.D2003142.T155241.LP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY6 DD DSN=C81A.S20002.D2003142.T155241.LB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY7 DD DSN=C81A.S20002.D2003142.T155241.RP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY8 DD DSN=C81A.S20002.D2003142.T155241.RB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY9 DD DSN=C81A.S20003.D2003142.T155241.LP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY10 DD DSN=C81A.S20003.D2003142.T155241.LB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY11 DD DSN=C81A.S20003.D2003142.T155241.RP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY12 DD DSN=C81A.S00003.D2003142.T155241.RB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY13 DD DSN=C81A.S00004.D2003142.T155241.LP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY14 DD DSN=C81A.S00004.D2003142.T155241.LB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY15 DD DSN=C81A.S00004.D2003142.T155241.RP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

Figure 20. Example of making full image copies of multiple objects (Part 1 of 2)

COPY

Chapter 11. COPY 131

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

You can also write this COPY job so that it uses lists and templates, as shown in

Figure 21 on page 133. In this example, the name of the template is COPY. Note

that this TEMPLATE statement does not contain any space specifications for the

dynamically allocated data sets. Instead, DB2 determines the space requirements.

The COPY template is identified in the COPY statement by the COPYDDN and

RECOVERYDDN options. The name of the list is COPYLIST. This list is identified

in the COPY control statement by the LIST option.

//COPY16 DD DSN=C81A.S00004.D2003142.T155241.RB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY17 DD DSN=C81A.S00005.D2003142.T155241.LP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY18 DD DSN=C81A.S00005.D2003142.T155241.LB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY19 DD DSN=C81A.S00005.D2003142.T155241.RP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY20 DD DSN=C81A.S00005.D2003142.T155241.RB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY21 DD DSN=C81A.S00006.D2003142.T155241.LP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY22 DD DSN=C81A.S00006.D2003142.T155241.LB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY23 DD DSN=C81A.S00006.D2003142.T155241.RP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY24 DD DSN=C81A.S00006.D2003142.T155241.RB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY25 DD DSN=C81A.S00007.D2003142.T155241.LP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY26 DD DSN=C81A.S00007.D2003142.T155241.LB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY27 DD DSN=C81A.S00007.D2003142.T155241.RP,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY28 DD DSN=C81A.S00007.D2003142.T155241.RB,

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//SYSIN DD *

 COPY

 TABLESPACE DSN8D81A.DSN8S81D

 COPYDDN (COPY1,COPY2)

 RECOVERYDDN (COPY3,COPY4)

 INDEX DSN8810.XDEPT1

 COPYDDN (COPY5,COPY6)

 RECOVERYDDN (COPY7,COPY8)

 INDEX DSN8810.XDEPT2

 COPYDDN (COPY9,COPY10)

 RECOVERYDDN (COPY11,COPY12)

 INDEX DSN8810.XDEPT3

 COPYDDN (COPY13,COPY14)

 RECOVERYDDN (COPY15,COPY16)

 TABLESPACE DSN8D81A.DSN8S81E

 COPYDDN (COPY17,COPY18)

 RECOVERYDDN (COPY19,COPY20)

 INDEX DSN8810.XEMP1

 COPYDDN (COPY21,COPY22)

 RECOVERYDDN (COPY23,COPY24)

 INDEX DSN8810.XEMP2

 COPYDDN (COPY25,COPY26)

 RECOVERYDDN (COPY27,COPY28)

 PARALLEL(4)

 SHRLEVEL REFERENCE

/*

Figure 20. Example of making full image copies of multiple objects (Part 2 of 2)

COPY

132 Utility Guide and Reference

|

|
|
|
|
|
|
|

Note that the DSN option of the TEMPLATE statement identifies the names of the

data sets to which the copies are to be written. These names are similar to the data

set names in the JCL in Figure 20 on page 131. For more information about using

variable notation for data set names in TEMPLATE statements, see “Creating data

set names” on page 601.

Each of the preceding COPY jobs create a point of consistency for the table spaces

and their indexes. You can subsequently use the RECOVER utility with the

TOLOGPOINT option to recover all of these objects; see 383 for an example.

Example 4: Making full image copies of a list of objects in parallel on tape. The

following COPY control statement specifies that COPY is to make image copies of

the specified table spaces and their associated index spaces in parallel and stack

the copies on different tape devices.

The PARALLEL 2 option specifies that up to two objects can be processed in

parallel. The TAPEUNITS 2 option specifies that up to two tape devices can be

dynamically allocated at one time. The COPYDDN option for each object specifies

the data set that is to be used for the local image copy. In this example, all of these

data sets are dynamically allocated and defined by templates. For example, table

space DSN8D81A.DSN8S81D is copied into a data set that is defined by the A1

template.

The TEMPLATE utility control statements define the templates A1 and A2. For

more information about TEMPLATE control statements, see “Syntax and options of

the TEMPLATE control statement ” on page 587 in the TEMPLATE chapter.

//COPY2A EXEC DSNUPROC,SYSTEM=DSN

//SYSIN DD *

 TEMPLATE A1 DSN(&DB..&SP..COPY1) UNIT CART STACK YES

 TEMPLATE A2 DSN(&DB..&SP..COPY2) UNIT CART STACK YES

COPY PARALLEL 2 TAPEUNITS 2

 TABLESPACE DSN8D81A.DSN8S81D COPYDDN(A1)

 INDEXSPACE DSN8810.XDEPT COPYDDN(A1)

 TABLESPACE DSN8D81A.DSN8S81E COPYDDN(A2)

 INDEXSPACE DSN8810.YDEPT COPYDDN(A2)

Although use of templates is recommended, you can also define the output data

sets by coding JCL DD statements, as in Figure 22 on page 134. This COPY control

//STEP1 EXEC DSNUPROC,UID=’IUJMU111.COPYTS’,

// UTPROC=’’,

// SYSTEM=’DSN’,DB2LEV=DB2A

//SYSIN DD *

TEMPLATE COPY UNIT SYSDA

 DSN ’C&DB(6)..S&SEQ..D&DATE..T&TIME..&LR.&PB.’

 CYL DISP(NEW,CATLG,CATLG)

 LISTDEF COPYLIST

 INCLUDE TABLESPACE DSN8D81A.DSN8S81D

 INCLUDE INDEX DSN8810.XDEPT1

 INCLUDE INDEX DSN8810.XDEPT2

 INCLUDE INDEX DSN8810.XDEPT3

 INCLUDE TABLESPACE DSN8D81A.DSN8S81E

 INCLUDE INDEX DSN8810.XEMP1

 INCLUDE INDEX DSN8810.XEMP2

 COPY LIST COPYLIST COPYDDN(COPY,COPY)

 RECOVERYDDN(COPY,COPY)

 PARALLEL(4) SHRLEVEL REFERENCE

/*

Figure 21. Example of using a list and template to make full image copies of multiple objects

COPY

Chapter 11. COPY 133

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

statement also specifies a list of objects to be processed in parallel, but in this case,

the data sets are defined by DD statements. In each DD statement, notice the

parameters for the VOLUME option. These values show that the data sets are

defined on three different tape devices as follows:

v The first tape device contains data sets that are defined by DD statements DD1

and DD4. (For DD4, the VOLUME option has a value of *.DD1 for the REF

parameter.)

v A second tape device contains data sets that are defined by DD statements DD2

and DD3. (For DD3, the VOLUME option has a value of *.DD3 for the REF

parameter.)

v A third tape device contains the data set that is defined by DD statement DD5.

The following table spaces are to be processed in parallel on two different tape

devices:

v DSN8D81A.DSN8S81D on the device that is defined by the DD1 DD statement

and the device that is defined by the DD5 DD statement

v DSN8D81A.DSN8S81E on the device that is defined by the DD2 DD statement

Copying of the following tables spaces must wait until processing has completed

for DSN8D81A.DSN8S81D and DSN8D81A.DSN8S81E:

v DSN8D81A.DSN8S81F on the device that is defined by the DD2 DD statement

after DSN8D81A.DSN8S81E completes processing

v DSN8D81A.DSN8S81G on the device that is defined by the DD1 DD statement

after DSN8D81A.DSN8S81D completes processing

Example 5: Using both JCL-defined and template-defined data sets to copy a list

of objects on tape: The example in Figure 23 on page 135 uses both JCL DD

statements and utility templates to define four data sets for the image copies. The

JCL defines two data sets (DB1.TS1.CLP and DB2.TS2.CLB.BACKUP), and the

TEMPLATE utility control statements define two data sets that are to be

//COPY1A EXEC DSNUPROC,SYSTEM=DSN

//DD1 DD DSN=DB1.TS1.CLP,

// DISP=(NEW,CATLG,CATLG),

// UNIT=TAPE,LABEL=(1,SL),

// VOLUME=(,RETAIN)

//DD2 DD DSN=DB2.TS2.CLP,

// DISP=(NEW,CATLG,CATLG),

// UNIT=TAPE,LABEL=(1,SL),

// VOLUME=(,RETAIN)

//DD3 DD DSN=DB3.TS3.CLB.BACKUP,

// DISP=(NEW,CATLG,CATLG),

// UNIT=TAPE,LABEL=(2,SL),

// VOLUME=(,RETAIN,REF=*.DD2)

//DD4 DD DSN=DB4.TS4.CLB.BACKUP,

// DISP=(NEW,CATLG,CATLG),

// UNIT=TAPE,LABEL=(2,SL),

// VOLUME=(,RETAIN,REF=*.DD1)

//DD5 DD DSN=DB1.TS1.CLB.BACKUP,

// DISP=(NEW,CATLG,CATLG),

// UNIT=TAPE,LABEL=(1,SL),

// VOLUME=(,RETAIN)

 COPY PARALLEL 2 TAPEUNITS 3

 TABLESPACE DSN8D81A.DSN8S81D COPYDDN(DD1,DD5)

 TABLESPACE DSN8D81A.DSN8S81E COPYDDN(DD2)

 TABLESPACE DSN8D81A.DSN8S81F COPYDDN(DD3)

 TABLESPACE DSN8D81A.DSN8S81G COPYDDN(DD4)

Figure 22. Example of making full image copies of a list of objects in parallel on tape

COPY

134 Utility Guide and Reference

|
|

dynamically allocated (&DB..&SP..COPY1 and &DB..&SP..COPY2). For more

information about TEMPLATE control statements, see “Syntax and options of the

TEMPLATE control statement ” on page 587 in the TEMPLATE chapter.

The COPYDDN options in the COPY control statement specify the data sets that

are to be used for the local primary and backup image copies of the specified table

spaces. For example, the primary copy of table space DSN8D81A.DSN8S71D is to

be written to the data set that is defined by the DD1 DD statement (DB1.TS1.CLP),

and the primary copy of table space DSN8D81A.DSN8S71E is to be written to the

data set that is defined by the A1 template (&DB..&SP..COPY1).

Four tape devices are allocated for this COPY job: the JCL allocates two tape

drives, and the TAPEUNITS 2 option in the COPY statement indicates that two

tape devices are to be dynamically allocated. Note that the TAPEUNITS option

applies only to those tape devices that are dynamically allocated by the

TEMPLATE statement.

Recommendation: Although this example shows how to use both templates and

DD statements, use only templates, if possible.

 Example 6: Using LISTDEF to define a list of objects to copy in parallel to tape.

The following example uses the LISTDEF utility to define a list of objects to be

copied in parallel to different tape sources. The COPY control statement specifies

that the table spaces that are included in the PAYROLL list are to copied. (The

PAYROLL list is defined by the LISTDEF control statement.) The TEMPLATE

control statements define two output data sets, one for the local primary copy

(&DB..©..LOCAL) and one for the recovery primary copy

(&DB..©..REMOTE).

//COPY3A EXEC DSNUPROC,SYSTEM=DSN

//SYSIN DD *

 LISTDEF PAYROLL INCLUDE TABLESPACES TABLESPACE DBPAYROLL.*

 TEMPLATE LOCAL DSN(&DB..©..LOCAL) (+1) UNIT CART STACK YES

 TEMPLATE REMOTE DSN(&DB..©..REMOTE) (+1) UNIT CART STACK YES

 COPY LIST PAYROLL PARALLEL(10) TAPEUNITS(8)

 COPYDDN(LOCAL) RECOVERYDDN(REMOTE)

In the preceding example, the utility determines the number of tape streams to use

by dividing the value for TAPEUNITS (8) by the number of output data sets (2) for

a total of 4 in this example. For each tape stream, the utility attaches one subtask.

The list of objects is sorted by size and processed in descending order. The first

//COPY1D EXEC DSNUPROC,SYSTEM=DSN

//DD1 DD DSN=DB1.TS1.CLP,

// DISP=(,CATLG),

// UNIT=3490,LABEL=(1,SL)

// VOLUME=(,RETAIN)

//DD2 DD DSN=DB2.TS2.CLB.BACKUP,

// DISP=(,CATLG),

// UNIT=3490,LABEL=(2,SL)

// VOLUME=(,RETAIN)

//SYSIN DD *

 TEMPLATE A1 DSN(&DB..&SN..COPY1) UNIT CART STACK YES

 TEMPLATE A2 DSN(&DB..&SN..COPY2) UNIT CART STACK YES

 COPY PARALLEL 2 TAPEUNITS 2

 TABLESPACE DSN8D81A.DSN8S81D COPYDDN(DD1,DD2)

 TABLESPACE DSN8D81A.DSN8S81E COPYDDN(A1,A2)

Figure 23. Example of using both JCL-defined and template-defined data sets to copy a list

of objects on a tape

COPY

Chapter 11. COPY 135

subtask to finish processes the next object in the list. In this example, the

PARALLEL(10) option limits the number of objects to be processed in parallel to 10

and attaches four subtasks. Each subtask copies the objects in the list in parallel to

two tape drives, one for the primary and one for the recovery output data sets.

For more information about LISTDEF control statements, see “Syntax and options

of the LISTDEF control statement” on page 171 in the LISTDEF chapter. For more

information about TEMPLATE control statements, see “Syntax and options of the

TEMPLATE control statement ” on page 587 in the TEMPLATE chapter.

Example 7: Making incremental copies with updates allowed. The FULL NO

option in the following COPY control statement specifies that COPY is to make

incremental image copies of any specified objects. In this case, the objects to be

copied are those objects that are included in the NAME1 list, as indicated by the

LIST option. The preceding LISTDEF utility control statement defines the NAME1

list to include index space DSN8D81A.XEMP1 and table space

DSN8D81A.DSN8S81D. Although one of the objects to be copied is an index space

and COPY does not take incremental image copies of index spaces, the job does

not fail; COPY takes a full image copy of the index space instead. However, if a

COPY FULL NO statement identifies only an index that is not part of a list, the

COPY job fails.

All specified copies (local primary and backup copies and remote primary and

backup copies) are written to data sets that are dynamically allocated according to

the specifications of the COPYDS template. This template is defined in the

preceding TEMPLATE utility control statement. For more information about

templates, see Chapter 31, “TEMPLATE,” on page 587.

The SHRLEVEL CHANGE option in the following COPY control statement

specifies that updates can be made during the COPY job.

TEMPLATE COPYDS DSN &US.2.&SN..&LR.&PB..D&DATE.

 LISTDEF NAME1 INCLUDE INDEXSPACE DSN8D81A.XEMP1

 INCLUDE TABLESPACE DSN8D81A.DSN8S81D

 COPY LIST NAME1 COPYDDN(COPYDS, COPYDS) RECOVERYDDN(COPYDS,COPYDS)

 FULL NO SHRLEVEL CHANGE

Example 8: Making a conditional image copy. The CHANGELIMIT(5) option in the

following control statement specifies the following conditions for making an image

copy of table space DSN8D81P.DSN8S81C:

v Take a full image copy of the table space if the percentage of changed pages is

equal to or greater than 5%.

v Take an incremental image copy of the table space if the percentage of changed

pages is greater than 0 and less than 5%.

v Do not take an image copy if no pages have changed.
COPY TABLESPACE DSN8D81P.DSN8S81C CHANGELIMIT(5)

Example 9: Reporting image copy information for a table space. The

REPORTONLY option in the following control statement specifies that image copy

information is to be displayed only; no image copies are to be made. The

CHANGELIMIT(10,40) option specifies that the following information is to be

displayed:

v Recommendation that a full image copy be made if the percentage of changed

pages is equal to or greater than 40%.

v Recommendation that an incremental image copy be made if the percentage of

changed pages is greater than 10% and less than 40%.

COPY

136 Utility Guide and Reference

v Recommendation that no image copy be made if the percentage of changed

pages is 10% or less.
COPY TABLESPACE DSN8D81P.DSN8S81C CHANGELIMIT(10,40) REPORTONLY

Example 10: Invoking DFSMSdss concurrent copy. The CONCURRENT option in

the following COPY control statement specifies that DFSMSdss concurrent copy is

to make a full image copy of the objects in the COPYLIST list (table space

DSN8D81A.DSN8S81D and table space DSN8D81A.DSN8S81P). The COPYDDN

option indicates that the copy is to be written to the data set that is defined by the

SYSCOPY1 template. The DSSPRINT DD statement specifies the data set for

message output.

 Example 11: Invoking DFSMSdss concurrent copy and using a filter data set. The

control statement in Figure 25 specifies that DFSMSdss concurrent copy is to make

full image copies of the objects in the TSLIST list (table spaces TS1, TS2, and TS3).

The FILTERDDN option specifies that COPY is to use the filter data set that is

defined by the FILT template. All output is sent to the SYSCOPY data set, as

indicated by the COPYDDN(SYSCOPY) option. SYSCOPY is the default. This data

set is defined in the preceding TEMPLATE control statement.

 Example 12: Copying LOB table spaces together with related objects. Assume that

table space TPIQUD01 is a base table space and that table spaces TLIQUDA1,

TLIQUDA2, TLIQUDA3, and TLIQUDA4 are LOB table spaces. The control

statement in Figure 26 on page 138 specifies that COPY is to take the following

actions:

v Take a full image copy of each specified table space if the percentage of changed

pages is equal to or greater than the highest decimal percentage value for the

//COPY EXEC DSNUPROC,SYSTEM=DSN

//SYSPRINT DD DSN=COPY1.PRINT1,DISP=(NEW,CATLG,CATLG),

// SPACE=(4000,(20,20),,,ROUND),UNIT=SYSDA,VOL=SER=DB2CC5

//DSSPRINT DD DSN=COPY1.PRINT2,DISP=(NEW,CATLG,CATLG),

// SPACE=(4000,(20,20),,,ROUND),UNIT=SYSDA,VOL=SER=DB2CC5

//SYSIN DD *

 TEMPLATE SYSCOPY1 DSN &DB..&TS..COPY&IC.&LR.&PB..D&DATE..T&TIME.

 UNIT(SYSDA) DISP (MOD,CATLG,CATLG)

 LISTDEF COPYLIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D

 INCLUDE TABLESPACE DSN8D81A.DSN8S81P

 COPY LIST COPYLIST

 COPYDDN (SYSCOPY1)

 CONCURRENT

Figure 24. Example of invoking DFSMSdss concurrent copy with the COPY utility

LISTDEF TSLIST

 INCLUDE TABLESPACE TS1

 INCLUDE TABLESPACE TS2

 INCLUDE TABLESPACE TS3

TEMPLATE SYSCOPY DSN &DB..&TS..COPY&IC.&LR.&PB..D&DATE..T&TIME.

 UNIT(SYSDA) DISP (MOD,CATLG,CATLG)

TEMPLATE FILT DSN FILT.TEST1.&SN..D&DATE.

 UNIT(SYSDA) DISP (MOD,CATLG,DELETE)

COPY LIST TSLIST

FILTERDDN(FILT)

COPYDDN(SYSCOPY)

CONCURRENT

 SHRLEVEL REFERENCE

Figure 25. Example of invoking DFSMSdss concurrent copy with the COPY utility and using a

filter data set

COPY

Chapter 11. COPY 137

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

CHANGELIMIT option for that table space. For example, if the percentage of

changed pages for table space TPIQUD01 is equal to or greater than 6.7%, COPY

is to take a full image copy.

v Take an incremental image copy of each specified table space if the percentage of

changed pages falls in the range between the specified decimal percentage

values for the CHANGELIMIT option for that table space. For example, if the

percentage of changed pages for table space TLIQUDA1 is greater than 7.9% and

less than 25.3%, COPY is to take an incremental image copy.

v Do not take an image copy of each specified table space if the percentage of

changed pages is equal to or less than the lowest decimal percentage value for

the CHANGELIMIT option for that table space. For example, if the percentage of

changed pages for table space TLIQUDA2 is equal to or less than 2.2%, COPY is

not to take an incremental image copy.

v Take full image copies of index spaces IPIQUD01, IXIQUD02, IUIQUD03,

IXIQUDA1, IXIQUDA2, IXIQUDA3, and IXIQUDA4.

 Example 13: Using GDGs to make a full image copy. The following control

statement specifies that the COPY utility is to make a full image copy of table

space DBLT2501.TPLT2501. The local copies are to be written to data sets that are

dynamically allocated according to the COPYTEM1 template. The remote copies

are to be written to data sets that are dynamically allocated according to the

COPYTEM2 template. For both of these templates, the DSN option indicates the

name of generation data group JULTU225 and the generation number of +1. (If a

GDG base does not already exist, DB2 creates one.) Both of these output data sets

are to be modeled after the JULTU255.MODEL data set (as indicated by the

MODELCB option in the TEMPLATE statements).

//***

//* COMMENT: MAKE A FULL IMAGE COPY OF THE TABLESPACE.

//* USE A TEMPLATE FOR THE GDG.

//***

//STEP2 EXEC DSNUPROC,UID=’JULTU225.COPY’,

COPY

 TABLESPACE DBIQUD01.TPIQUD01 DSNUM ALL CHANGELIMIT(3.3,6.7)

 COPYDDN(COPYTB1)

 TABLESPACE DBIQUD01.TLIQUDA1 DSNUM ALL CHANGELIMIT(7.9,25.3)

 COPYDDN(COPYTA1)

 TABLESPACE DBIQUD01.TLIQUDA2 DSNUM ALL CHANGELIMIT(2.2,4.3)

 COPYDDN(COPYTA2)

 TABLESPACE DBIQUD01.TLIQUDA3 DSNUM ALL CHANGELIMIT(1.2,9.3)

 COPYDDN(COPYTA3)

 TABLESPACE DBIQUD01.TLIQUDA4 DSNUM ALL CHANGELIMIT(2.2,4.0)

 COPYDDN(COPYTA4)

 INDEXSPACE DBIQUD01.IPIQUD01 DSNUM ALL

 COPYDDN(COPYIX1)

 INDEXSPACE DBIQUD01.IXIQUD02 DSNUM ALL

 COPYDDN(COPYIX2)

 INDEXSPACE DBIQUD01.IUIQUD03 DSNUM ALL

 COPYDDN(COPYIX3)

 INDEXSPACE DBIQUD01.IXIQUDA1 DSNUM ALL

 COPYDDN(COPYIXA1)

 INDEXSPACE DBIQUD01.IXIQUDA2 DSNUM ALL

 COPYDDN(COPYIXA2)

 INDEXSPACE DBIQUD01.IXIQUDA3 DSNUM ALL

 COPYDDN(COPYIXA3)

 INDEXSPACE DBIQUD01.IXIQUDA4 DSNUM ALL

 COPYDDN(COPYIXA4)

 SHRLEVEL REFERENCE

Figure 26. Example of copying LOB table spaces together with related objects

COPY

138 Utility Guide and Reference

// UTPROC=’’,

// SYSTEM=’SSTR’

//SYSIN DD *

 TEMPLATE COPYTEM1

 UNIT SYSDA

 DSN ’JULTU225.GDG.LOCAL.&PB.(+1)’

 MODELDCB JULTU225.MODEL

 TEMPLATE COPYTEM2

 UNIT SYSDA

 DSN ’JULTU225.GDG.REMOTE.&PB.(+1)’

 MODELDCB JULTU225.MODEL

 COPY TABLESPACE DBLT2501.TPLT2501

 FULL YES

 COPYDDN (COPYTEM1,COPYTEM1)

 RECOVERYDDN (COPYTEM2,COPYTEM2)

 SHRLEVEL REFERENCE

COPY

Chapter 11. COPY 139

COPY

140 Utility Guide and Reference

Chapter 12. COPYTOCOPY

The COPYTOCOPY utility makes image copies from an image copy that was taken

by the COPY utility. This includes inline copies that the REORG or LOAD utilities

make. Starting with either the local primary or recovery-site primary copy,

COPYTOCOPY can make up to three copies of one or more of the following types

of copies:

v Local primary

v Local backup

v Recovery site primary

v Recovery site backup

You cannot run COPYTOCOPY on concurrent copies.

The RECOVER utility uses the copies when recovering a table space or index space

to the most recent time or to a previous time. These copies can also be used by

MERGECOPY, UNLOAD, and possibly a subsequent COPYTOCOPY execution.

For a diagram of COPYTOCOPY syntax and a description of available options, see

“Syntax and options of the COPYTOCOPY control statement ” on page 142. For

detailed guidance on running this utility, see “Instructions for running

COPYTOCOPY” on page 147.

Output: Output from the COPYTOCOPY utility consists of:

v Up to three sequential data sets that contain the image copy.

v Rows in the SYSIBM.SYSCOPY catalog table that describe the image copy data

sets that are available to the RECOVER utility. Your installations responsible for

ensuring that these data sets are available if the RECOVER utility requests them.

The entries for SYSCOPY columns remain the same as the original entries in the

SYSCOPY row when the COPY utility recorded them. The COPYTOCOPY job

inserts values in the columns DSNAME, GROUP_MEMBER, JOBNAME, AUTHID,

DSVOLSER, and DEVTYPE.

Restrictions: COPYTOCOPY does not support the following catalog and directory

objects:

v DSNDB01.SYSUTILX, and its indexes

v DSNDB01.DBD01, and its indexes

v DSNDB06.SYSCOPY, and its indexes

An image copy from a COPY job with the CONCURRENT option cannot be

processed by COPYTOCOPY.

COPYTOCOPY does not check the recoverability of an object.

Related information: See Part 4 (Volume 1) of DB2 Administration Guide for uses of

COPYTOCOPY in the context of planning for database recovery.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v IMAGCOPY privilege for the database

v DBADM, DBCTRL, or DBMAINT authority for the database

© Copyright IBM Corp. 1983, 2008 141

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute COPYTOCOPY, but

only on a table space in the DSNDB01 or DSNDB06 database.

Execution phases of COPYTOCOPY: The COPYTOCOPY utility operates in these

phases:

Phase Description

UTILINIT Performs initialization

CPY2CPY Copies an image copy

UTILTERM Performs cleanup

The following topics provide additional information:

v “Syntax and options of the COPYTOCOPY control statement ”

v “Instructions for running COPYTOCOPY” on page 147

v “Concurrency and compatibility for COPYTOCOPY” on page 153

v “Sample COPYTOCOPY control statements” on page 154

Syntax and options of the COPYTOCOPY control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

Syntax diagram

�� COPYTOCOPY

�

 LIST listdef-name from-copy-spec data-set-spec

ts-num-spec

from-copy-spec

data-set-spec

index-name-spec

 ��

ts-num-spec:

��

TABLESPACE

database-name.

table-space-name
 DSNUM ALL

DSNUM

integer

��

COPYTOCOPY

142 Utility Guide and Reference

index-name-spec:

��
 (1)

INDEXSPACE

index-space-name

database-name.

INDEX

index-name

creator-id.

 DSNUM ALL

(2)

DSNUM

integer

��

Notes:

1 INDEXSPACE is the preferred specification.

2 Not valid for nonpartitioning indexes.

from-copy-spec:

��
 FROMLASTCOPY

FROMLASTFULLCOPY

(1)

FROMLASTINCRCOPY

(2)

FROMCOPY

dsn

FROMVOLUME

CATALOG

volser

FROMSEQNO

n

��

Notes:

1 Not valid with the INDEXSPACE or INDEX keyword.

2 Not valid with the LIST keyword.

COPYTOCOPY

Chapter 12. COPYTOCOPY 143

data-set-spec:

��
 (1) (2)

COPYDDN(

ddname1

)

,ddname2

RECOVERYDDN(

ddname3

)

,ddname2

,ddname4

,ddname4

RECOVERYDDN(

ddname3

)

,ddname4

,ddname4

��

Notes:

1 Use this option if you want to make a local site primary copy from one of the recovery site

copies.

2 You can specify up to three DD names for both the COPYDDN and RECOVERYDDN options

combined.

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. The

utility allows one LIST keyword for each COPYTOCOPY control

statement. Do not specify LIST with either the INDEX or

TABLESPACE keywords. DB2 invokes COPYTOCOPY once for the

entire list. For more information about LISTDEF specifications, see

Chapter 15, “LISTDEF,” on page 171.

TABLESPACE Specifies the table space (and, optionally, the database it belongs

to) that is to be copied.

 database-name is the name of the database that the table space

belongs to. The default is DSNDB04.

table-space-name is the name of the table space to be copied.

INDEXSPACE database-name.index-space-name

Specifies the qualified name of the index space that is to be copied;

the name is obtained from the SYSIBM.SYSINDEXES table. Define

the index space with the COPY YES attribute.

 database-name optionally specifies the name of the database that the

index space belongs to. The default is DSNDB04.

index-space-name specifies the name of the index space that is to be

copied.

INDEX creator-id.index-name

Specifies the index that is to be copied. Enclose the index name in

quotation marks if the name contains a blank.

 creator-id optionally specifies the creator of the index. The default

is the user identifier for the utility.

index-name specifies the name of the index that is to be copied.

DSNUM Identifies a partition or data set, within the table space or the index

COPYTOCOPY

144 Utility Guide and Reference

space, that is to be copied. The keyword ALL specifies that the

entire table space or index space is to be copied.

ALL Specifies that the entire table space or index space is to be

copied. The default is ALL. You must use ALL for a

nonpartitioned secondary index.

integer Is the number of a partition or data set that is to be copied.

 An integer value is not valid for nonpartitioned secondary

indexes.

For a partitioned table space or index space, the integer is

its partition number. The maximum is 4096.

For a nonpartitioned table space, find the integer at the

end of the data set name as cataloged in the VSAM

catalog. The data set name has the following format:

catname.DSNDBx.dbname.spacename.y0001.Annn

In this format:

catname Is the VSAM catalog name or alias.

x Is C or D.

dbname Is the database name.

spacename Is the table space or index space name.

y Is I or J.

nnn Is the data set integer.

 Specifying or using the default of DSNUM(ALL) causes

COPYTOCOPY to look for an input image copy that was taken at

the entire table space or index space level.

FROMLASTCOPY

Specifies the most recent image copy that was taken for the table

space or index space that is to be the input to the COPYTOCOPY

utility. This could be a full image copy or incremental copy that is

retrieved from SYSIBM.SYSCOPY.

FROMLASTFULLCOPY

Specifies the most recent full image copy that was taken for the

object, which is to be the input to the COPYTOCOPY job.

FROMLASTINCRCOPY

Specifies the most recent incremental image copy that was taken

for the object that is to be the input to COPYTOCOPY job.

 FROMLASTINCRCOPY is not valid with the INDEXSPACE or

INDEX keyword. If FROMLASTINCRCOPY is specified for an

INDEXSPACE or INDEX, COPYTOCOPY uses the last full copy

that was taken, if one is available.

FROMCOPY dsn

Specifies a particular image copy data set (dsn) as the input to the

COPYTOCOPY job. This option is not valid for LIST.

 If the image copy data set is a generation data set, then supply a

fully qualified data set name, including the absolute generation

and version number. If the image copy data set is not a generation

COPYTOCOPY

Chapter 12. COPYTOCOPY 145

|
|

|
|

data set and more than one image copy data set have the same

data set name, use the FROMVOLUME option to identify the data

set exactly.

FROMVOLUME

Identifies the image copy data set.

CATALOG

Identifies the data set as cataloged. Use this option only for an

image copy that was created as a cataloged data set. (Its

volume serial is not recorded in SYSIBM.SYSCOPY.)

 COPYTOCOPY refers to the SYSIBM.SYSCOPY catalog table

during execution. If you use FROMVOLUME CATALOG, the

data set must be cataloged. If you remove the data set from the

catalog after creating it, you must catalog the data set again to

make it consistent with the record that appears in

SYSIBM.SYSCOPY for this copy.

vol-ser

Identifies the data set by an alphanumeric volume serial

identifier of its first volume. Use this option only for an image

copy that was created as a noncataloged data set. Specify the

first vol-ser in the SYSCOPY record to locate a data set that is

stored on multiple tape volumes.If an individual volume serial

number contains leading zeros, it must be enclosed in single

quotation marks.

FROMSEQNO n

Identifies the image copy data set by its file sequence number.

n is the file sequence number.

COPYDDN (ddname1,ddname2)

Specifies a DD name (ddname) or a TEMPLATE name for the

primary (ddname1) and backup (ddname2) copied data sets for the

image copy at the local site. If ddname2 is specified by itself,

COPYTOCOPY expects the local site primary image copy to exist.

If it does not exist, error message DSNU1401 is issued and the

process for the object is terminated.

 Recommendation: Catalog all of your image copy data sets.

You cannot have duplicate image copy data sets. If the DD

statement identifies a noncataloged data set with the same name,

volume serial, and file sequence number as one that is already

recorded in SYSIBM.SYSCOPY, COPYTOCOPY issues a message

and no copy is made. If the DD statement identifies a cataloged

data set with only the same name, no copy is made. For cataloged

image copy data sets, you must specify CATLG for the normal

termination disposition in the DD statement; for example,

DISP=(MOD,CATLG,CATLG). The DSVOLSER field of the

SYSCOPY entry is blank.

When the image copy data set is going to a tape volume, specify

VOL=SER parameter in the DD statement.

The COPYDDN keyword specifies either a DD name or a

TEMPLATE name specification from a previous TEMPLATE control

statement. If utility processing detects that the specified name is

both a DD name in the current job step and a TEMPLATE name,

COPYTOCOPY

146 Utility Guide and Reference

the utility uses the DD name. For more information about

TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on page

587.

RECOVERYDDN (ddname3,ddname4)

Specifies a DD name (ddname) or a TEMPLATE name for the

primary (ddname3) and backup (ddname4) copied data sets for the

image copy at the recovery site. If ddname4 is specified by itself,

COPYTOCOPY expects the recovery site primary image copy to

exist. If this image copy does not exist, error message DSNU1401 is

issued and the process for the object is terminated.

 You cannot have duplicate image copy data sets. The same rules

apply for RECOVERYDDN as for COPYDDN.

The RECOVERYDDN keyword specifies either a DD name or a

TEMPLATE name specification from a previous TEMPLATE control

statement. If utility processing detects that the specified name is

both a DD name in the current job step and a TEMPLATE name,

the utility uses the DD name. For more information about

TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on page

587.

Instructions for running COPYTOCOPY

To run COPYTOCOPY, you must:

1. Read “Before running COPYTOCOPY” in this section.

2. Prepare the necessary data sets, as described in “Data sets that COPYTOCOPY

uses.”

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL

and control statements for COPYTOCOPY, see “Sample COPYTOCOPY control

statements” on page 154.)

4. Prepare a utility control statement, specifying the options for the tasks that you

want to perform, as described in “Instructions for specific tasks” on page 149.

5. Plan for restart if the COPYTOCOPY job does not complete, as described in

“Terminating or restarting COPYTOCOPY” on page 152.

6. Run COPYTOCOPY by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15.

Before running COPYTOCOPY

Check the compatibility table in “Concurrency and compatibility for

COPYTOCOPY” on page 153 if you want to run other jobs concurrently on the

same target objects.

Data sets that COPYTOCOPY uses

Table 18 on page 148 describes the data sets that COPYTOCOPY uses. The table

lists the DD name that is used to identify the data set, a description of the data set,

and an indication of whether it is required. Include statements in your JCL for each

required data set and any optional data sets that you want to use.

COPYTOCOPY

Chapter 12. COPYTOCOPY 147

Table 18. Data sets that COPYTOCOPY uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

Output copies From one to three output data sets that

contain the resulting image copy data sets.

Specify their DD names with the COPYDDN

and RECOVERYDDN options of the utility

control statement.

Yes

The following objects are named in the utility control statement and do not require

DD statements in the JCL:

Table space or Index space

Object that is to be copied. (If you want to copy only certain partitions in a

partitioned table space, use the DSNUM option in the control statement.)

DB2 catalog objects

Objects in the catalog that COPYTOCOPY accesses. The utility records each

copy in the DB2 catalog table SYSIBM.SYSCOPY.

Input image copy data set

This information is accessed through the DB2 catalog. However, if you

want to preallocate your image copy data sets by using DD statements, see

“Retaining tape mounts” on page 151 for more information.

COPYTOCOPY retains all tape mounts for you.

Output data set size: Image copies are written to sequential non-VSAM data sets.

Recommendation: Use a template for the image copy data set for a table space by

specifying a TEMPLATE statement without the SPACE keyword. When you omit

this keyword, the utility calculates the appropriate size of the data set for you.

Alternatively, you can find the approximate size, in bytes, of the image copy data

set for a table space by using the following procedure:

1. Find the high-allocated page number from the COPYPAGESF column of

SYSIBM.SYSCOPY or from information in the VSAM catalog data set.

2. Multiply the high-allocated page number by the page size.

Another option is to look at the size of the input image copy.

JCL parameters: You can specify a block size for the output by using the BLKSIZE

parameter on the DD statement for the output data set. Valid block sizes are

multiples of 4096 bytes.

Cataloging image copies: To catalog your image copy data sets, use the

DISP=(NEW,CATLG,CATLG) parameter in the DD statement or TEMPLATE that is

named by the COPYDDN or RECOVERYDDN option. After the image copy is

taken, the DSVOLSER column of the row that is inserted into SYSIBM.SYSCOPY

contains blanks.

Duplicate image copy data sets are not allowed. If a cataloged data set is already

recorded in SYSIBM.SYSCOPY with the same name as the new image copy data

set, a message is issued and the copy is not made.

COPYTOCOPY

148 Utility Guide and Reference

|
|
|

When RECOVER locates the entry in SYSIBM.SYSCOPY, it uses the ICF catalog to

allocate the required data set. If you have uncataloged the data set, the allocation

fails. In that case, the recovery can still go forward; RECOVER searches for a

previous image copy. But even if RECOVER finds one, it must use correspondingly

more of the log to recover. You are responsible for keeping the z/OS catalog

consistent with SYSIBM.SYSCOPY with regard to existing image copy data sets.

Creating the control statement

Create the utility control statement for the COPYTOCOPY job. See “Syntax and

options of the COPYTOCOPY control statement ” on page 142 for COPYTOCOPY

syntax and option descriptions. See “Sample COPYTOCOPY control statements” on

page 154 for examples of COPYTOCOPY usage.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Copying full or incremental image copies”

 “Copying incremental image copies”

 “Using more than one COPYTOCOPY statement” on page 150

 “Copying an inline copy made by REORG with a range of partitions” on page

150

 “Copying from a specific image copy” on page 150

 “Using TEMPLATE with COPYTOCOPY” on page 150

 “Updating SYSCOPY records” on page 150

 “Determining which input copy to use” on page 151

 “Retaining tape mounts” on page 151

 “Defining generation data groups” on page 151

 “Using DB2 with DFSMS products” on page 151

 “Putting image copies on tape” on page 151

 “Copying a LOB table space” on page 151

 “Copying a list of objects from tape” on page 151

Copying full or incremental image copies

You can copy a full image copy or an incremental image copy by using

FROMLASTCOPY keyword. If you do not specify FROMLASTCOPY, it will be

used by default, as shown in the following example. In this example, the

COPYTOCOPY control statement specifies that the utility is to make a backup copy

of the most recent full image copy or an incremental image copy of the table space

DSN8S81E in database DSN8D81A:

COPYTOCOPY TABLESPACE DSN8D81A.DSN8S81E

 COPYDDN(,DDNNAME2)

The COPYTOCOPY utility makes a copy from an existing image copy and writes

pages from the image copy to the output data sets. The JCL for the utility job must

include DD statements or a template for the output data sets. If the object consists

of multiple data sets and all are copied in one job, the copies reside in one physical

sequential output data set.

Copying incremental image copies

An incremental image copy is a copy of the pages that have changed since the last

full or incremental image copy. To make a copy of an incremental image copy, use

the keyword FROMLASTINCRCOPY.

COPYTOCOPY

Chapter 12. COPYTOCOPY 149

The following example control statement specifies that COPYTOCOPY is to make a

local site backup image copy, a recovery site primary image copy, and a recovery

site backup image copy from an incremental image copy.

COPYTOCOPY TABLESPACE DSN8D81A.DSN8S81E

 FROMLASTINCRCOPY

 COPYDDN(,COPY2)

 RECOVERYDDN(COPY3,COPY4)

Using more than one COPYTOCOPY statement

You can use more than one control statement for COPYTOCOPY in one DB2 utility

job step. After each COPYTOCOPY statement executes successfully:

v A row referring to the image copy is recorded in SYSIBM.SYSCOPY table.

v The image copy data set is valid and available for RECOVER, MERGECOPY,

COPYTOCOPY, and UNLOAD.

If a job step that contains more than one COPYTOCOPY statement abnormally

terminates, do not use TERM UTILITY. Restart the job from the last commit point

by using RESTART instead. Terminating COPYTOCOPY in this case might cause

inconsistencies between the ICF catalog and DB2 catalogs if generation data sets

are used.

Copying an inline copy made by REORG with a range of

partitions

COPYTOCOPY does not support a range of partitions within a partitioned table

space. Specify individual DSNUM(n). From the inline copy, COPYTOCOPY copies

only the specified partition into the output image copy data set.

Copying from a specific image copy

You can specify a particular image copy that is to be used as input to

COPYTOCOPY by using FROMCOPY.The following control statement specifies

that COPYTOCOPY is to make three copies of the table space TPA9031C in

database DBA90301 from the image copy data set DH109003.COPY1.STEP1.COPY3:

COPYTOCOPY TABLESPACE DBA90301.TPA9031C

 FROMCOPY DH109003.COPY1.STEP1.COPY3

 COPYDDN(,COPY2)

 RECOVERYDDN(COPY3,COPY4)

If you specify the FROMCOPY keyword and the specified data set is not found in

SYSIBM.SYSCOPY, COPYTOCOPY issues message DSNU1401I. Processing for the

object then terminates.

Using TEMPLATE with COPYTOCOPY

Template data set name substitution variables resolve as usual. COPYTOCOPY

does not use the template values of the original COPY utility execution.

Updating SYSCOPY records

The image copies COPYTOCOPY made are registered in SYSIBM.SYSCOPY for

later use by the RECOVER utility. Other utilities can use these copies, too.

Columns that are inserted by COPYTOCOPY are the same as those of the original

entries in SYSCOPY row when the COPY utility recorded them. Except for

columns GROUP_MEMBER, JOBNAME, AUTHID, DSNAME, DEVTYPE, and

DSVOLSER, the columns are those of the COPYTOCOPY job. When

COPYTOCOPY is invoked at the partition level (DSNUM n) and the input data set

is an inline copy that was created by the REORG of a range of partitions,

COPYTOCOPY inserts zeros in the HIGHDSNUM and LOWDSNUM columns of

the SYSCOPY record.

COPYTOCOPY

150 Utility Guide and Reference

Determining which input copy to use

If the FROMCOPY keyword is not specified, the COPYTOCOPY utility uses the

following search order to determine the input data set for the utility:

v If you run the utility at the local site, the search order is the local site primary

copy, the local site backup copy, the recovery site primary copy, and the recovery

site backup copy.

v If you run the utility at the recovery site, the search order is the recovery site

primary copy, the recovery site backup copy, the local site primary copy, and the

local site backup copy.

If the input data set cannot be allocated or opened, COPYTOCOPY attempts to use

the next image copy data set, with the same START_RBA value in SYSCOPY

column, in the preceding search order.

If you use the FROMCOPY keyword, only the specified data set is used as the

input to the COPYTOCOPY job.

Retaining tape mounts

COPYTOCOPY retains all tape mounts for you. You do not need to code JCL

statements to retain tape mounts. If the image copy data sets that are used by

COPYTOCOPY reside on the same tape, you do not need to remove the tape.

Defining generation data groups

Recommendation: Use generation data groups to hold image copies because their

use automates the allocation of data set names and the deletion of the oldest data

set.

Recommendation: Use templates when using generation data groups.

When you define the generation data group:

v You can specify that the oldest data set is to be automatically deleted when the

maximum number of data sets is reached. If you do that, make the maximum

number large enough to accommodate all recovery requirements. When data sets

are deleted, use the MODIFY utility to delete the corresponding rows in

SYSIBM.SYSCOPY.

v Make the limit number of generation data sets equal to the number of copies

that you want to keep. Use NOEMPTY to avoid deleting all the data sets from

the integrated catalog facility catalog when the limit is reached.

Using DB2 with DFSMS products

If image copy data sets are managed by HSM or SMS, all data sets are cataloged.

If you plan to use SMS, catalog all image copies. Never maintain cataloged and

uncataloged image copies with the same name.

Putting image copies on tape

Do not combine a full image copy and incremental image copies for the same table

space on one tape volume. If you do, the RECOVER TABLESPACE utility cannot

allocate the incremental image copies.

Copying a LOB table space

You can make both full and incremental image copies of a LOB table space.

Copying a list of objects from tape

COPYTOCOPY determines the number of tape drives to use for the function. If

you use JCL to define tape drives, the JCL allocates tape drives for those

COPYTOCOPY

Chapter 12. COPYTOCOPY 151

|
|
|
|

|

definitions. If you use TEMPLATES to allocate tape drives for the output data sets,

the utility dynamically allocates the tape drives according to the following

algorithm:

v One tape drive if the input data set resides on tape.

v A tape drive for each template with STACK YES that references tape.

v Three tape drives, one for each of the local and remote output image copies, in

case non-stacked templates reference tape.

Thus, COPYTOCOPY allocates a minimum of three tape drives. The utility

allocates four tape drives if the input data set resides on tape, and more tape

drives if you specified tape templates with STACK YES.

If input data sets to be copied are stacked on tape and output data sets are defined

by a template, the utility sorts the list of objects by the file sequence numbers

(FSN) of the input data sets and processes the objects serially.

For example, image copies of the following table spaces with their FSNs are

stacked on TAPE1:

v DB2.TS1 FSN=1

v DB2.TS2 FSN=2

v DB2.TS3 FSN=3

v DB2.TS4 FSN=4

In the following statements, COPYTOCOPY uses a template for the output data

set:

//COPYTOCOPY EXEC DSNUPROC,SYSTEM=V71A

//SYSIN DD *

TEMPLATE A1 &DB..&SP..COPY1 TAPE UNIT CART STACK YES

 COPYTOCOPY

 TABLESPACE DB1.TS4

 LASTFULL

 RECOVERYDDN(A1)

 TABLESPACE DB1.TS1

 LASTFULL

 RECOVERYDDN(A1)

 TABLESPACE DB1.TS2

 LASTFULL

 RECOVERYDDN(A1)

 TABLESPACE DB1.TS3

 LASTFULL

 RECOVERYDDN(A1)

As a result, the utility sorts the objects by FSN and processes them in the following

order:

v DB1.TS1

v DB1.TS2

v DB1.TS3

v DB1.TS4

If the output data sets are defined by JCL, the utility gives stacking preference to

the output data sets over input data sets. If the input data sets are not stacked, the

utility sorts the objects by size in descending order.

Terminating or restarting COPYTOCOPY

This section explains how to terminate and restart the COPYTOCOPY utility.

COPYTOCOPY

152 Utility Guide and Reference

Terminating COPYTOCOPY

You can use the TERM utility command to terminate a COPYTOCOPY job. For

instructions on terminating an online utility, see “Terminating an online utility with

the TERM UTILITY command” on page 40.

Restarting COPYTOCOPY

For instructions on restarting a utility job, see “Restarting an online utility” on

page 41.

Restarting a COPYTOCOPY job: If you do not use the TERM UTILITY

command, you can restart a COPYTOCOPY job. COPYTOCOPY jobs restart from

the last commit point. You cannot use RESTART(PHASE) for any COPYTOCOPY

job. If you are restarting a COPYTOCOPY job with uncataloged output data sets,

you must specify the appropriate volumes for the job in the JCL or on the

TEMPLATE utility statement. Doing so could impact your ability to use implicit

restart.

To prepare for restarting a COPYTOCOPY job, specify

DISP=(MOD,CATLG,CATLG) on your DD statements.

Restarting COPYTOCOPY after an out-of-space condition: See “Restarting after

the output data set is full” on page 43 for guidance in restarting COPYTOCOPY

from the last commit point after receiving an out-of-space condition.

Concurrency and compatibility for COPYTOCOPY

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

Claims: Table 19 shows which claim classes COPYTOCOPY claims on the target

object.

 Table 19. Claim classes of COPYTOCOPY operations.

Target COPYTOCOPY

Table space or partition, or index space or partition UTRW

Legend:

v UTRW - Utility restrictive state - read-write access allowed

Compatibility: Table 20 documents which utilities can run concurrently with

COPYTOCOPY on the same target object. The target object can be a table space, an

index space, or a partition of a table space or index space. If compatibility depends

on particular options of a utility, that information is also documented in the table.

 Table 20. Compatibility of COPYTOCOPY with other utilities

Action

Compatible with

COPYTOCOPY?

CHECK DATA Yes

CHECK INDEX Yes

CHECK LOB Yes

COPY No

DIAGNOSE Yes

COPYTOCOPY

Chapter 12. COPYTOCOPY 153

|
|
|
#
#
#
#

Table 20. Compatibility of COPYTOCOPY with other utilities (continued)

Action

Compatible with

COPYTOCOPY?

LOAD No

MERGECOPY No

MODIFY No

QUIESCE Yes

REBUILD INDEX Yes

RECOVER No

REORG INDEX No

REORG TABLESPACE No

REPAIR Yes

REPORT Yes

RUNSTATS INDEX Yes

RUNSTATS TABLESPACE Yes

STOSPACE Yes

UNLOAD Yes

Sample COPYTOCOPY control statements

Example 1: Making a local backup copy. The following control statement specifies

that the COPYTOCOPY utility is to make a local backup copy of the most recent

full image copy or incremental image copy, whichever is most recent. The

COPYDDN option specifies that the data set for the local site backup image copy

is defined by the COPY2 DD statement. Because no data set is specified for the

local site primary image copy, which is usually the first parameter of the

COPYDDN option, COPYTOCOPY expects this copy to already exist. If it does not

exist, DB2 issues an error message and terminates the job.

//STEP1 EXEC DSNUPROC,UID=’DH109001.COPY1’,

// UTPROC=’’,

// SYSTEM=’DSN’

//COPY2 DD DSN=DH109001.C2C01.STEP2.COPY2,DISP=(MOD,CATLG,CATLG),

// SPACE=(1000,(20,20),,,ROUND)

//SYSIN DD *

 COPYTOCOPY TABLESPACE DBA90101.TLA9011A COPYDDN(,COPY2)

//

Example 2: Copying the most recent copy. The following control statement specifies

that COPYTOCOPY is to make a local site backup copy, a recovery site primary

copy, and a recovery site backup copy of table space DBA90102.TPA9012C. The

COPYDDN and RECOVERYDDN options also indicate the data sets to which these

copies should be written. For example, the recovery site primary copy is to be

written to the COPY3 data set. The FROMLASTCOPY option specifies that the

most recent full image copy or incremental image copy is to be used as the input

copy data set. This option is the default and is therefore not required.

COPYTOCOPY TABLESPACE DBA90102.TPA9012C

 FROMLASTCOPY COPYDDN(,COPY2)

 RECOVERYDDN(COPY3,COPY4)

Example 3: Copying the most recent full image copy. The following control

statement specifies that COPYTOCOPY is to make primary and backup copies at

COPYTOCOPY

154 Utility Guide and Reference

the recovery site of table space DBA90201.TPA9021C. The FROMLASTFULLCOPY

option specifies that the most recent full image copy is to be used as the input

copy data set.

COPYTOCOPY TABLESPACE DBA90201.TPA9021C

 FROMLASTFULLCOPY

 RECOVERYDDN(COPY3,COPY4)

Example 4: Specifying a copy data set for input. The following control statement

specifies that COPYTOCOPY is to make a local site backup copy, a recovery site

primary copy, and a recovery site backup copy from data set

DH109003.COPY1.STEP1.COPY3. This input data set is specified by the

FROMCOPY option. The output data sets (COPY2, COPY3, and COPY4) are

specified by the COPYDDN and RECOVERYDDN options.

COPYTOCOPY TABLESPACE DBA90301.TPA9031C

 FROMCOPY DH109003.COPY1.STEP1.COPY3

 COPYDDN(,COPY2)

 RECOVERYDDN(COPY3,COPY4)

Example 5: Identifying a cataloged image copy data set. The following control

statement specifies that COPYTOCOPY is to make a local site backup copy from a

cataloged data set that is named DH109003.COPY1.STEP1.COPY4. This data set is

identified by the FROMCOPY and FROMVOLUME options. The FROMCOPY

option specifies the input data set name, and the FROMVOLUME CATALOG

option indicates that the input data set is cataloged. Use the FROMVOLUME

option to distinguish a data set from other data sets that have the same name.

COPYTOCOPY TABLESPACE DBA90302.TLA9032A

 FROMCOPY DH109003.COPY1.STEP1.COPY4

 FROMVOLUME CATALOG

 COPYDDN(,COPY2)

Example 6: Identifying an uncataloged image copy data set. The COPYTOCOPY

control statement in Figure 27 specifies that COPYTOCOPY is to make a local site

backup copy, a recovery site primary copy, and a recovery site backup copy from

an uncataloged data set, JUKQU2BP.COPY1.STEP1.TP01. The FROMCOPY option

identifies this input data set name, and the FROMVOLUME option identifies the

volume (SCR03) for the input data set. Use the FROMVOLUME option to

distinguish a data set from other data sets that have the same name. The

COPYDDN option identifies the data set for the local site backup copy. This data

set is to be dynamically allocated according to the specifications of the C2C1_T1

template, which is defined in one of the preceding TEMPLATE control statements.

The RECOVERYDDN option identifies the data sets for the recovery site copies.

These data sets are to be dynamically allocated according to the specifications of

the C2C1_T2 and C2C1_T3 templates, which are defined in the preceding

TEMPLATE control statements. For more information about TEMPLATE control

statements, see “Syntax and options of the TEMPLATE control statement ” on page

587 in the TEMPLATE chapter.

COPYTOCOPY

Chapter 12. COPYTOCOPY 155

Example 7: Processing a list of objects. The following control statement specifies

that COPYTOCOPY is to make local site backup copies of the three partitions of

table space DBA90402.TPA9042C that are specified by the DSNUM option

(partitions 2, 3, and 4). COPYTOCOPY uses the following input copy data sets, as

indicated by the FROMLASTFULLCOPY, FROMLASTCOPY, and

FROMLASTINCRCOPY options:

v The most recent full image copy for partition 2

v The most recent full image copy or incremental image copy, whichever is most

recent, for partition 3

v The most recent incremental image copy for partition 4

The COPYDDN option for each partition indicates the output data sets (COPY2,

COPY3, and COPY4).

COPYTOCOPY

 TABLESPACE DBA90402.TPA9042C DSNUM 2

 FROMLASTFULLCOPY COPYDDN(,COPY2)

 TABLESPACE DBA90402.TPA9042C DSNUM 3

 FROMLASTCOPY COPYDDN(,COPY3)

 TABLESPACE DBA90402.TPA9042C DSNUM 4

 FROMLASTINCRCOPY COPYDDN(,COPY4)

Example 8: Using LISTDEF and TEMPLATE. The following COPYTOCOPY control

statement specifies that the utility is to copy the list of objects that are included in

the CPY1 list, which is defined by the LISTDEF control statement. The copies are

to be written to the data sets that are defined by the TMP1 template, which is

defined in the TEMPLATE control statement. This template defines the naming

convention for the output data sets that are to be dynamically allocated.

The OPTIONS PREVIEW statement before the LISTDEF statement is used to force

the CPY1 list contents to be included in the output. For long lists, using this

statement is not recommended, because it might cause the output to be too long.

//STEP1 EXEC DSNUPROC,UID=’JUKQU2BP.C2C1’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//SYSIN DD *

 TEMPLATE C2C1_T1

 DSN(JUKQU2BP.C2C1.LB.&SN.)

 DISP(NEW,CATLG,CATLG)

 UNIT(SYSDA)

 TEMPLATE C2C1_T2

 DSN(JUKQU2BP.C2C1.RP.&SN.)

 DISP(NEW,CATLG,CATLG)

 UNIT(SYSDA)

 TEMPLATE C2C1_T3

 DSN(JUKQU2BP.C2C1.RB.&SN.)

 DISP(NEW,CATLG,CATLG)

 UNIT(SYSDA)

 COPYTOCOPY TABLESPACE DBKQBP01.TPKQBP01

 FROMCOPY JUKQU2BP.COPY1.STEP1.TP01

 FROMVOLUME SCR03

 COPYDDN(,C2C1_T1)

 RECOVERYDDN(C2C1_T2,C2C1_T3)

/*

Figure 27. Example of identifying an uncataloged image copy data set

COPYTOCOPY

156 Utility Guide and Reference

The OPTIONS OFF statement ends the PREVIEW mode processing, so that the

following TEMPLATE and COPYTOCOPY jobs run normally.

OPTIONS PREVIEW

 LISTDEF CPY1 INCLUDE TABLESPACES TABLESPACE DBA906*.T*A906*

 INCLUDE INDEXSPACES COPY YES INDEXSPACE ADMF001.I?A906*

 OPTIONS OFF

 TEMPLATE TMP1 UNIT SYSDA

 DSN (DH109006.COPY&LOCREM.&PRIBAC..&SN..T&TIME.)

 DISP (MOD,CATLG,CATLG)

 COPYTOCOPY LIST CPY1 COPYDDN(TMP1,TMP1)

For more information about LISTDEF control statements, see “Syntax and options

of the LISTDEF control statement” on page 171 in the LISTDEF chapter. For more

information about TEMPLATE control statements, see “Syntax and options of the

TEMPLATE control statement ” on page 587 in the TEMPLATE chapter. For more

information about OPTIONS control statements, see “Syntax and options of the

OPTIONS control statement” on page 313 in the OPTIONS chapter.

COPYTOCOPY

Chapter 12. COPYTOCOPY 157

158 Utility Guide and Reference

Chapter 13. DIAGNOSE

The DIAGNOSE online utility generates information that is useful in diagnosing

problems. Use this utility only under the direction of IBM Software Support.

Interpreting output

One intended use of this utility is to aid in determining and correcting system

problems. When diagnosing DB2 problems, you might need to refer to

licensed documentation to interpret output from this utility.

 For a diagram of DIAGNOSE syntax and a description of available options, see

“Syntax and options of the DIAGNOSE control statement.” For detailed guidance

on running this utility, see “Instructions for running DIAGNOSE” on page 163.

Authorization required: To execute this utility for options which access relational

data, you must use a privilege set that includes one of the following

authorizations:

v REPAIR privilege for the database

v DBADM or DBCTRL authority for the database

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can execute the DIAGNOSE utility on a

table space in the DSNDB01 or DSNDB06 database.

An ID with installation SYSADM authority can execute the DIAGNOSE utility

with the WAIT statement option on any table space.

The following topics provide additional information:

v “Syntax and options of the DIAGNOSE control statement”

v “Instructions for running DIAGNOSE” on page 163

v “Concurrency and compatibility for DIAGNOSE” on page 164

v “Sample DIAGNOSE control statements” on page 164

Syntax and options of the DIAGNOSE control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

Syntax diagram

�� DIAGNOSE diagnose statement

END
 ��

© Copyright IBM Corp. 1983, 2008 159

diagnose statement:

��

�

,

TYPE(

integer

)

�

ALLDUMPS

,

(

X'abend-code'

)

 �

�

�

NODUMPS

,

(

X'abend-code'

)

 �

�
display statement

wait statement

abend statement
 ��

display statement:

�� DISPLAY OBD table-space-name

database-name

.

ALL

TABLES

INDEXES

SYSUTIL

MEPL

AVAILABLE

DBET

DATABASE

database-name

TABLESPACE

table-space-name

database-name.

INDEX

index-name

 ��

wait statement:

��

�

WAIT

MESSAGE

message-id

INSTANCE

integer

TRACEID

X'trace-id'

integer

INSTANCE

integer

��

DIAGNOSE

160 Utility Guide and Reference

abend statement:

�� ABEND MESSAGE message-id

INSTANCE

integer

NODUMP

TRACEID

X'trace-id'

integer

INSTANCE

integer

 ��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

TYPE(integer, ...)

Specifies one or more types of diagnose that you want to perform.

 integer is the number of types of diagnoses. The maximum number of

types is 32. IBM Software Support defines the types as needed to diagnose

problems with IBM utilities.

ALLDUMPS(X'abend-code', ...)

Forces a dump to be taken in response to any utility abend code.

 X'abend-code' is a member of a list of abend codes to which the scope of

ALLDUMPS is limited.

abend-code is a hexadecimal value.

NODUMPS(X'abend-code', ...)

Suppresses the dump for any utility abend code.

 X'abend-code' is a member of a list of abend codes to which the scope of

NODUMPS is limited.

abend-code is a hexadecimal value.

DISPLAY

Formats the specified database items using SYSPRINT.

OBD database-name.table-space-name

Formats the object descriptor (OBD) of the table space.

 database-name is the name of the database in which the table space

belongs.

table-space-name is the name of the table space whose OBD is to be

formatted.

ALL Formats all OBDs of the table space. The OBD of any object

that is associated with the table space is also formatted.

TABLES

Formats the OBDs of all tables in the specified table spaces.

INDEXES

Formats the OBDs of all indexes in the specified table spaces.

SYSUTIL

Formats every record from SYSIBM.SYSUTIL. This directory table

stores information about all utility jobs.

DIAGNOSE

Chapter 13. DIAGNOSE 161

MEPL

Dumps the module entry point lists (MEPLs) to SYSPRINT.

AVAILABLE

Displays the utilities that are installed on this subsystem in both

bitmap and readable format. The presence or absence the utility

products 5655-K61 (IBM DB2 Utilities Suite for z/OS) affects the results

of this display. See message DSNU862I for the output of this display.

DBET

Dumps the contents of a database exception table (DBET) to

SYSPRINT.

DATABASE database-name

Dumps the DBET entry that is associated with the specified

database.

 database-name is the name of the database.

TABLESPACE database-name.table-space-name

Dumps the DBET entry that is associated with the specified

table space.

 database-name is the name of the database.

table-space-name is the name of the table space.

INDEX creator-name.index-name

Dumps the DBET entry that is associated with the specified

index.

 creator-name is the ID of the creator of the index.

index-name is the name of the index.

Enclose the index name in quotation marks if the name

contains a blank.

WAIT

Suspends utility execution when it encounters the specified utility message

or utility trace ID. DIAGNOSE issues a message to the console and utility

execution does not resume until the operator replies to that message, the

utility job times out, or the utility job is canceled. This waiting period

allows events to be synchronized while you are diagnosing concurrency

problems. The utility waits for the operator to reply to the message,

allowing the opportunity to time or synchronize events.

 If neither the utility message nor the trace ID are encountered, processing

continues.

ABEND

Forces an abend during utility execution if the specified utility message or

utility trace ID is issued.

 If neither the utility message nor the trace ID are encountered, processing

continues.

NODUMP

Suppresses the dump that is generated by an abend of DIAGNOSE.

MESSAGE message-id

Specifies a DSNUxxx or DSNUxxxx message that causes a wait or an abend

to occur when that message is issued. For information about the valid

message IDs, see Part 2 of DB2 Messages.

DIAGNOSE

162 Utility Guide and Reference

|
|
|
|

message-id is the message, in the form of Uxxx or Uxxxx.

INSTANCE integer

Specifies that a wait or an abend is to occur when the MESSAGE

option message has been encountered a specified number of times.

If INSTANCE is not specified, a wait or abend occurs each time

that the message is encountered.

 integer is the number of times that a message is to be encountered

before a wait or an abend occurs.

TRACEID trace-id

Specifies a trace ID that causes a wait or an abend to occur when the ID is

encountered. You can find valid trace IDs can be found in data set

prefix.SDSNSAMP(DSNWEIDS).

 trace-id is a trace ID that is associated with the utility trace (RMID21). You

can specify trace-id in either decimal (integer) or hexadecimal (X'trace-id')

format.

INSTANCE integer

Specifies that a wait or an abend is to occur when the TRACEID

option has been encountered a specified number of times. If

INSTANCE is not specified, a wait or abend occurs each time that

the trace ID is encountered.

 integer is the number of times that a trace ID is to be encountered

before a wait or an abend occurs.

END Ends DIAGNOSE processing.

Instructions for running DIAGNOSE

To run DIAGNOSE, you must:

1. Prepare the necessary data sets, as described in “Data sets that DIAGNOSE

uses.”

2. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

DIAGNOSE, see “Sample DIAGNOSE control statements” on page 164.)

3. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks: Forcing a

utility abend” on page 164.

4. Run DIAGNOSE by using one of the methods that are described in Chapter 3,

“Invoking DB2 online utilities,” on page 15.

Data sets that DIAGNOSE uses

Table 21 lists the data sets that DIAGNOSE uses. The table lists the DD name that

is used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set.

 Table 21. Data sets that DIAGNOSE uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

DIAGNOSE

Chapter 13. DIAGNOSE 163

The following objects are named in the utility control statement and do not require

DD statements in the JCL:

Database

Database about which DIAGNOSE is to gather diagnosis information.

Table space

Table space about which DIAGNOSE is to gather diagnosis information.

Index space

Index about which DIAGNOSE is to gather diagnosis information.

Instructions for specific tasks: Forcing a utility abend

To perform this task, specify the options and values for this task in your utility

control statement.

DIAGNOSE can force a utility to abend when a specific message is issued. To force

an abend when unique-index or referential-constraint violations are detected, you

must specify the message that is issued when the error is encountered. Specify this

message by using the MESSAGE option of the ABEND statement.

Instead of using a message, you can force an abend by using the TRACEID option

of the ABEND statement to specify a trace IFCID that is associated with the utility

to force an abend.

Use the INSTANCE keyword to specify the number of times that the specified

message or trace record is to be generated before the utility abends.

Terminating or restarting DIAGNOSE

You can terminate a DIAGNOSE utility job by using the TERM UTILITY command

if you submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a DIAGNOSE utility job, but it starts from the beginning again. For

guidance in restarting online utilities, see “Restarting an online utility” on page 41.

Concurrency and compatibility for DIAGNOSE

DIAGNOSE can run concurrently on the same target object with any SQL

operation or utility, except a utility that is running on DSNDB01.SYSUTILX.

Sample DIAGNOSE control statements

Example 1: Displaying DB2 MEPLs. The following DIAGNOSE utility control

statement specifies that the DB2 MEPLs are to be displayed. You can use the

output from this statement to find the service level of a specific DB2 module. The

output lists each module, the most recent PTF or APAR that was applied to the

module, and the date that the PTF or APAR was installed.

DIAGNOSE

 DISPLAY MEPL

Example 2: Forcing a dump. The following control statement forces a dump if an

abend occurs with either of the following reason codes: X'00E40322' or X'00E40323'.

DIAGNOSE

 ALLDUMPS(X'00E40322',X'00E40323')

DIAGNOSE

164 Utility Guide and Reference

The following control statement forces a dump for any utility abend that occurs

during the execution of the specified COPY job. The DIAGNOSE END option ends

DIAGNOSE processing.

DIAGNOSE

 ALLDUMPS

 COPY TABLESPACE DSNDB06.SYSDBASE

DIAGNOSE END

Example 3: Performing a diagnosis of a specific type. The control statement in

Figure 28 specifies that you want to perform a diagnosis of type 66. Run this job

under the direction of IBM Software Support to diagnose problems with utility

parallelism.

Example 4: Forcing a utility abend. The control statement in Figure 29 forces an

abend of the specified COPY job when one instance of message DSNU400 is

issued. The NODUMP option indicates that the DIAGNOSE utility is not to

generate a dump in this situation.

 The following control statement forces an abend of the specified LOAD job when

message DSNU311 is issued for the fifth time. The NODUMP option indicates that

the DIAGNOSE utility is not to generate a dump in this situation.

DIAGNOSE

 ABEND MESSAGE U311 INSTANCE 5 NODUMP

LOAD DATA RESUME NO

 INTO TABLE TABLE1

 (NAME POSITION(1) CHAR(20))

DIAGNOSE END

Example 5: Displaying installed utilities. The following control statement specifies

that a bitmap and list of all installed DB2 utilities are to be displayed.

DIAGNOSE DISPLAY AVAILABLE

The output from this utility job looks similar to the following output:

//STEP3 EXEC DSNUPROC,UID=’JUOSU226.REBUI’,

// UTPROC=’’,SYSTEM=’SSTR’

//SYSIN DD *

DIAGNOSE TYPE(66)

 REBUILD INDEX (IDOS0302, IDOS0304, IPOS0301)

 SORTDEVT SYSDA SORTNUM 3

DIAGNOSE END

/*

Figure 28. Example of diagnosing type 66

//STEP1 EXEC DSNUPROC,UID=’IUJMU116.COPY1’,

// UTPROC=’’,

// SYSTEM=’DSN’

//SYSCOPY1 DD DSN=IUJMU116.COPY.STEP1.SYSCOPY1,DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

DIAGNOSE ABEND MESSAGE U400

 INSTANCE 1

 NODUMP

 COPY TABLESPACE DSN8D81A.DSN8S81E

 COPYDDN SYSCOPY1

DIAGNOSE END

//*

Figure 29. Example of forcing an abend of the COPY utility

DIAGNOSE

Chapter 13. DIAGNOSE 165

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

The MAP output line shows a ″1″ for each installed utility. Each position represents

a specific utility. This example output shows that the core utilities and the DB2

Utilities Suite are installed.

Example 6: Suspending utility execution. The control statement in Figure 31

indicates that the specified COPYTOCOPY job is to be suspended when it

encounters 51 occurrences of the trace ID X'2E6F'.

DSNU050I DSNUGUTC - DIAGNOSE DISPLAY AVAILABLE

DSNU862I DSNUDIAG - DISPLAY AVAILABLE UTILITIES.

 MAP: 111111111111111111111110000000000000

|CATMAINT |CHECK |COPY |DIAGNOSE |LISTDEF |LOAD |MERGECOPY|MODIFY |

|OPTIONS |QUIESCE |REBUILD |RECOVER |REORG |REPAIR |REPORT |RUNSTATS |

|STOSPACE |TEMPLATE |UNLOAD |COPYTOCOP|EXEC |BACKUP |RESTORE | |

| | | | | | | | |

Figure 30. Example output for DIAGNOSE DISPLAY AVAILABLE

//STEP2 EXEC DSNUPROC,UID=’DH109012.C2C01’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//COPY2 DD DSN=DH109012.C2C01.STEP2.COPY2,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(1000,(20,20),,,ROUND)

//COPY3 DD DSN=DH109012.C2C01.STEP2.COPY3,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(1000,(20,20),,,ROUND)

//COPY4 DD DSN=DH109012.C2C01.STEP2.COPY4,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(1000,(20,20),,,ROUND)

//SYSIN DD *

 DIAGNOSE WAIT TRACEID X’2E6F’ INSTANCE 51

 COPYTOCOPY TABLESPACE DBA91201.TPA91201 DSNUM 1

 FROMLASTFULLCOPY COPYDDN(,COPY2)

 RECOVERYDDN(COPY3,COPY4)

 DIAGNOSE END

/*

Figure 31. Example of suspending utility execution

DIAGNOSE

166 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

Chapter 14. EXEC SQL

The EXEC SQL utility control statement declares cursors or executes dynamic SQL

statements. You can use this utility as part of the DB2 cross-loader function of the

LOAD utility. The cross-loader function enables you to use a single LOAD job to

transfer data from one location to another location or from one table to another

table at the same location. You can use either a local server or any

DRDA-compliant remote server as a data input source for populating your tables.

Your input can even come from other sources besides DB2 UDB for z/OS; you can

use IBM Information Integrator Federation feature for access to data from sources

as diverse as Oracle and Sybase, as well as the entire DB2 UDB family of database

servers. For more information about using the cross loader function, see “Loading

data by using the cross-loader function” on page 248.

Output: The EXEC SQL control statement produces a result table when you specify

a cursor.

Authorization required: The EXEC SQL statement itself requires no privileges to

execute. The authorization rules that are defined for the dynamic preparation of

the SQL statement specified by EXECUTE IMMEDIATE apply. See DB2 SQL

Reference for authorization rules for each SQL statement.

Execution phases of EXEC SQL: The EXEC SQL control statement executes entirely

in the EXEC phase. You can restart the EXEC phase if necessary.

The following topics provide additional information:

v “Syntax and options of the EXEC SQL control statement”

v “Terminating or restarting EXEC SQL” on page 168

v “Concurrency and compatibility for EXEC SQL” on page 169

v “Sample EXEC SQL control statements” on page 169

Syntax and options of the EXEC SQL control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

Syntax diagram

�� EXEC SQL declare-cursor-spec ENDEXEC

non-select dynamic SQL statement
 ��

© Copyright IBM Corp. 1983, 2008 167

declare-cursor-spec:

�� DECLARE cursor-name CURSOR FOR select-statement ��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

cursor-name Specifies the cursor name. The name must not identify a cursor

that is already declared within the same input stream. When using

the DB2 cross-loader function to load data from a remote server,

you must identify the cursor with a three-part name. Cursor names

that are specified with the EXEC SQL utility cannot be longer than

eight characters.

select-statement Specifies the result table for the cursor. This statement can be any

valid SQL SELECT statement, including joins, unions, conversions,

aggregations, special registers, and user-defined functions. See DB2

SQL Reference for a description of the SELECT statement.

non-select dynamic SQL statement

Specifies a dynamic SQL statement that is to be used as input to

EXECUTE IMMEDIATE. You can specify the following dynamic

SQL statements in a utility statement:

 ALTER

 COMMENT ON

 COMMIT

 CREATE

 DELETE

 DROP

 EXPLAIN

 GRANT

 INSERT

 LABEL ON

 LOCK TABLE

 RENAME

 REVOKE

 ROLLBACK

 SET CURRENT DEGREE

 SET CURRENT LOCALE LC_CTYPE

 SET CURRENT OPTIMIZATION HINT

 SET PATH

 SET CURRENT PRECISION

 SET CURRENT RULES

 SET CURRENT SQLID

 UPDATE

Each SQL statement runs as a separate thread. When the utility

executes the SQL statement, the specified statement string is parsed

and checked for errors. If the SQL statement is invalid, EXEC SQL

does not execute the statement and reports the error condition. If

the SQL statement is valid, but an error occurs during execution,

EXEC SQL reports that error condition. When an error occurs, the

utility terminates.

Terminating or restarting EXEC SQL

You can terminate an EXEC SQL utility job by using the TERM UTILITY command

if you submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart an EXEC SQL utility job, but it starts from the beginning again. If

you are restarting this utility as part of a larger job in which EXEC SQL completed

successfully, but a later utility failed, do not change the EXEC SQL utility control

statement, if possible. If you must change the EXEC SQL utility control statement,

EXEC SQL

168 Utility Guide and Reference

use caution; any changes can cause the restart processing to fail. For guidance in

restarting online utilities, see “Restarting an online utility” on page 41.

Concurrency and compatibility for EXEC SQL

You can use the EXEC SQL control statement with any utility that allows

concurrent SQL access on a table space. Other databases are not affected.

Sample EXEC SQL control statements

Example 1: Creating a table: The following control statement specifies that DB2 is

to create table MYEMP with the same rows and columns as sample table EMP.

EXEC SQL

 CREATE TABLE MYEMP LIKE DSN8810.EMP CCSID EBCDIC

ENDEXEC

This type of statement can be used to create a mapping table. For an example of

creating and using a mapping table, see “Sample REORG TABLESPACE control

statements” on page 481 in the REORG TABLESPACE chapter.

Example 2: Inserting rows into a table: The following control statement specifies

that DB2 is to insert all rows from sample table EMP into table MYEMP.

EXEC SQL

 INSERT INTO MYEMP SELECT * FROM DSN8810.EMP

ENDEXEC

Example 3: Declaring a cursor: The following control statement declares C1 as the

cursor for a query that is to return all rows from table DSN8810.EMP.

EXEC SQL

 DECLARE C1 CURSOR FOR SELECT * FROM DSN8810.EMP

ENDEXEC

You can use a declared cursor with the DB2 cross-loader function to load data from

a local server or from any DRDA-compliant remote server as part of the DB2

cross-loader function. For more information about using the cross-loader function,

see “Loading data by using the cross-loader function” on page 248.

EXEC SQL

Chapter 14. EXEC SQL 169

170 Utility Guide and Reference

Chapter 15. LISTDEF

The LISTDEF utility enables you to group database objects into reusable lists. You

can then specify these lists in other utility control statements to indicate that the

utility is to process all of the items in the list.

You can use LISTDEF to standardize object lists and the utility control statements

that refer to them. This standardization reduces the need to customize or alter

utility job streams.

If you do not use lists and you want to run a utility on multiple objects, you must

run the utility multiple times or specify an itemized list of objects in the utility

control statement.

Restriction: Objects that are created with the DEFINE NO attribute are excluded

from all LISTDEF lists.

Output: Output from the LISTDEF control statement consists of a list with a name.

Authorization required: To execute the LISTDEF utility, you may require SELECT

authority on SYSIBM.SYSINDEXES, SYSIBM.SYSTABLES, or

SYSIBM.SYSTABLESPACE. Authority for each table is required only when that

table is accessed during list expansion. Access varies depending on the keywords

specified.

Additionally, you must have the authority to execute the utility that is used to

process the list, as currently documented in the “Authorization required” section of

each utility in this book.

Execution phases of LISTDEF: The LISTDEF control statement executes entirely

within the UTILINIT phase.

The following topics provide additional information:

v “Syntax and options of the LISTDEF control statement”

v “Instructions for using LISTDEF” on page 179

v “Concurrency and compatibility for LISTDEF” on page 185

v “Sample LISTDEF control statements” on page 186

Syntax and options of the LISTDEF control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

© Copyright IBM Corp. 1983, 2008 171

#

Syntax diagram

�� LISTDEF list-name �

�

�

INCLUDE

LIST

referenced-list-name

EXCLUDE

(1)

initial-object-spec

RI

ALL

type-spec

BASE

LOB

��

Notes:

1 You must specify type-spec if you specify DATABASE.

type-spec:

�� TABLESPACES

INDEXSPACES

COPY

NO

YES

 ��

initial-object-spec:

�� DATABASE database-name

table-space-spec

PARTLEVEL

index-space-spec

(n)

table-spec

index-spec

 ��

table-space-spec:

�� TABLESPACE table-space-name

database-name.
 ��

LISTDEF

172 Utility Guide and Reference

index-space-spec:

�� INDEXSPACE index-space-name

database-name.
 ��

table-spec:

�� TABLE table-name

creator-id.
 ��

index-spec:

�� INDEX index-name

creator-id.
 ��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

LISTDEF list-name

Defines a list of DB2 objects and assigns a name to the list. The list

name makes the list available for subsequent execution as the

object of a utility control statement or as an element of another

LISTDEF statement.

 list-name is the name (up to 18 alphanumeric characters in length)

of the defined list.

You can put LISTDEF statements either in a separate LISTDEF

library data set or before a DB2 utility control statement that refers

to the list-name.

INCLUDE Specifies that the list of objects that results from the expression that

follows is to be added to the list. You must first specify an

INCLUDE clause. You can then specify subsequent INCLUDE or

EXCLUDE clauses in any order to add to or delete clauses from the

existing list. None of the objects referenced by this clause may be

in the STOPPED state.

 For detailed information about the order of INCLUDE and

EXCLUDE processing, see “Including objects in a list” on page 179.

EXCLUDE Specifies, after the initial INCLUDE clause, that the list of objects

that results from the expression that follows is to be excluded from

the list if the objects are in the list. If the objects are not in the list,

LISTDEF

Chapter 15. LISTDEF 173

#
#
#
#
#
#

#
#

#
#
#

they are ignored, and DB2 proceeds to the next INCLUDE or

EXCLUDE clause. None of the objects referenced by this clause

may be in the STOPPED state.

 For detailed information about the order of INCLUDE and

EXCLUDE processing, see “Including objects in a list” on page 179.

TABLESPACES

Specifies that the INCLUDE or EXCLUDE object expression is to

create a list of related table spaces.

 TABLESPACES is the default type for lists that use a table space or

a table for the initial search. For more information about specifying

these objects, see the descriptions of the TABLESPACE and TABLE

options.

No default type value exists for lists that use other lists for the

initial search. The list that is referred to by the LIST option is used

unless you specify TABLESPACES or INDEXSPACES. Likewise, no

type default value exists for lists that use databases for the initial

search. If you specify the DATABASE option, you must specify

INDEXSPACES or TABLESPACES. For more information about

specifying lists and databases, see the descriptions of the LIST and

DATABASE options.

The result of the TABLESPACES keyword varies depending on the

type of object that you specify in the INCLUDE or EXCLUDE

clause. These results are shown in Table 22.

 Table 22. Result of the TABLESPACES keyword based on the object type that is specified in

the INCLUDE or EXCLUDE clause.

Object type specified in

INCLUDE or EXCLUDE

clause Result of the TABLESPACES keyword

DATABASE Returns all table spaces that are contained within the database

TABLESPACE Returns the specified table space

TABLE Returns the table space that contains the table

INDEXSPACE Returns the table space that contains the related table

INDEX Returns the table space that contains the related table

LIST of table spaces Returns the table spaces from the expanded referenced list

LIST of index spaces Returns the related table spaces for the index spaces in the

expanded referenced list

LIST of table spaces and

index spaces

Returns the table spaces from the expanded referenced list and

the related table spaces for the index spaces in the same list

INDEXSPACES

Specifies that the INCLUDE or EXCLUDE object expression is to

create a list of related index spaces.

 INDEXSPACES is the default type for lists that use an index space

or an index for the initial search. For more information about

specifying these objects, see the descriptions of the INDEXSPACE

and INDEX options.

No default type value exists for lists that use other lists for the

initial search. The list that is referred to by the LIST option is used

unless you specify TABLESPACES or INDEXSPACES. Likewise, no

LISTDEF

174 Utility Guide and Reference

#
#
#

#
#

type default value exists for lists that use databases for the initial

search. If you specify the DATABASE option, you must specify

INDEXSPACES or TABLESPACES. For more information about

specifying lists and databases, see the descriptions of the LIST and

DATABASE options.

The result of the INDEXSPACES keyword varies depending on the

type of object that you specify in the INCLUDE or EXCLUDE

clause. These results are shown in Table 23.

 Table 23. Result of the INDEXSPACES keyword based on the object type that is specified in

the INCLUDE or EXCLUDE clause.

Object type specified in

INCLUDE or EXCLUDE

clause Result of the INDEXSPACES keyword

DATABASE Returns all index spaces that are contained within the database

TABLESPACE Returns all index spaces for indexes over all tables in the table

space

TABLE Returns all index spaces for indexes over the table

INDEXSPACE Returns the specified index space.

INDEX Returns the index space that contains the index

LIST of table spaces Returns the related index spaces for the table spaces in the

expanded referenced list

LIST of index spaces Returns the index spaces from the expanded referenced list

LIST of table spaces and

index spaces

Returns the index spaces from the expanded referenced list and

the related index spaces for the table spaces in the same list

COPY Specifies whether indexes that were defined with or altered to

COPY YES or COPY NO attributes are to be included or excluded

in this portion of the list. If you omit COPY, all index spaces that

satisfy the INCLUDE or EXCLUDE expression, regardless of their

COPY attribute, are included or excluded in this portion of the list.

If specified, this keyword must immediately follow the

INDEXSPACES keyword. If you specify this keyword elsewhere, it

is interpreted as the start of the COPY utility control statement.

YES Specifies that only index spaces that were defined with or

altered to COPY YES are to be included in this portion of

the list. Use INCLUDE with COPY YES to develop a list of

index spaces that the COPY utility can process.

NO Specifies that only index spaces that were defined with or

altered to COPY NO are to be included in this portion of

the list. Use EXCLUDE with COPY NO to remove indexes

that the COPY utility cannot process from a larger list.

LIST referenced-list-name

Specifies the name of a previously defined object list that is to be

expanded and used for the initial search for the object.

 referenced-list-name is the name of the list. You must explicitly

specify this name. You cannot specify pattern-matching characters

(%,*, ?, and _) for lists. None of the objects referenced by this

clause may be in the STOPPED state.

LISTDEF

Chapter 15. LISTDEF 175

#
#
#
#

No default type value exists for lists that are developed from the

LIST option. The list is expanded as defined, and it is then

modified by subsequent keywords, if any.

You can specify a type-spec of TABLESPACES to create a list of only

table spaces. If the list to be processed contains index spaces, the

TABLESPACES keyword creates a list that includes related table

spaces.

You can specify a type-spec of INDEXSPACES to create a list of only

index spaces. If the list to be processed contains table spaces, the

INDEXSPACES keyword creates a list that includes related index

spaces.

You can use the LIST keyword to make aggregate lists of lists, to

exclude entire lists from other lists, and to develop lists of objects

that are related to other lists.

DATABASE database-name

Specifies the database that is to be used for the initial search for

the object.

 You can specify the database-name explicitly or as a pattern-matched

name. DATABASE * and DATABASE % are not supported.

If you specify DATABASE, you must also specify either

TABLESPACES or INDEXSPACES as the list type. Depending on

the list type that you specify, DB2 includes all table spaces or index

spaces in database-name that satisfy the pattern-matching expression

in the list.

You cannot specify DSNDB01, DSNDB06, DSNDB07, or

user-defined work file databases in a LISTDEF.

TABLESPACE database-name.table-space-name

Specifies the table space that is to be used for the initial search for

the object.

 If you specify TABLESPACE, the default list type is

TABLESPACES. All table spaces that satisfy the pattern-matching

expression are included in the list unless the list is modified by

other keywords. TABLESPACE *.* and TABLESPACE %.% are not

supported.

database-name specifies the name of the database to which the table

space belongs. The default is DSNDB04.

table-space-name specifies the name of the table space.

You can explicitly specify or use pattern-matching characters to

specify database-name, table-space-name, or both.

You cannot include any objects in DSNDB07 or any user-defined

work file databases in a LISTDEF. Pattern matching is not

supported for DSNDB01 and DSNDB06 objects. None of the objects

referenced by this clause may be in the STOPPED state.

INDEXSPACE database-name.index-space-name

Specifies the index space that is to be used for the initial search for

the object.

 If you specify INDEXSPACE, the default list type is

INDEXSPACES. All index spaces that satisfy the pattern-matching

LISTDEF

176 Utility Guide and Reference

#
#
#
#
#

#
#

expression are included in the list unless the index spaces are

excluded by other LISTDEF options. INDEXSPACE *.* and

INDEXSPACE %.% are not supported.

database-name specifies the name of the database to which the index

space belongs. The default is DSNDB04.

index-space-name specifies the name of the index space.

You can explicitly specify or use pattern-matching characters to

specify database-name, index-space-name, or both.

You cannot include any objects in DSNDB07 or any user-defined

work file databases in a LISTDEF. Pattern-matching is not

supported for DSNDB01 and DSNDB06 objects. None of the objects

referenced by this clause may be in the STOPPED state.

TABLE creator-id.table-name

Specifies the table that is to be used for the initial search for the

object.

 If you specify TABLE, the default list type is TABLESPACES. All

table spaces that contain tables that satisfy the pattern-matching

expression are included in the list unless the list is modified by

other keywords. TABLE *.* and TABLE %.% are not supported.

creator-id specifies the qualifier creator ID for the table. The default

is the user identifier for the utility. table-name specifies the name of

the table.

You can explicitly specify or use pattern-matching characters to

specify creator-id,table-name, or both. However, the underscore

pattern-matching character is ignored in a table name.

Pattern-matching is not supported for catalog and directory objects.

In a LISTDEF statement, you must include catalog and directory

objects by their fully qualified names. None of the objects

referenced by this clause may be in the STOPPED state.

Enclose the table name in quotation marks if the name contains a

blank.

INDEX creator-id.index-name

Specifies the index that is to be used for the initial search for the

object.

 If you specify INDEX, the default list type is INDEXSPACES. All

index spaces that contain indexes that satisfy the pattern-matching

expression are included in the list unless the list is modified by

other keywords. INDEX *.* and INDEX %.% are not supported.

creator-id specifies the qualifier creator ID for the index. The

default is the user identifier for the utility.

index-name specifies the name of the index.

Enclose the index name in quotation marks if the name contains a

blank.

You can explicitly specify or use pattern-matching characters to

specify creator-id, index-name, or both. However, the underscore

pattern-matching character is ignored in an index name.

LISTDEF

Chapter 15. LISTDEF 177

#
#
#

Pattern-matching is not supported for catalog and directory objects.

In a LISTDEF statement, you must include catalog and directory

objects by their fully qualified names. None of the objects

referenced by this clause may be in the STOPPED state.

PARTLEVEL Specifies the partition granularity for partitioned table spaces,

partitioning indexes, and data-partitioned secondary indexes that

are to be contained in the list. You cannot specify the PARTLEVEL

keyword with the RI keyword.

(n) n is the integer partition number where n >= 0.

 If you specify PARTLEVEL 0, the resulting list contains one

entry for each nonpartitioned object.

If you specify PARTLEVEL with a nonzero operand, the

resulting list contains one entry for the specified partition for

partitioned objects and one entry for each nonpartitioned

object.

If you specify PARTLEVEL without (n), the resulting list

contains one entry for each partition in the partitioned object

and one entry for each nonpartitioned object.

 An INCLUDE with the PARTLEVEL keyword can be removed

from the list only by an EXCLUDE with PARTLEVEL.

RI Specifies that all objects that are referentially related to the object

expression (PRIMARY KEY <--> FOREIGN KEY) are to be included

in the list. DB2 processes all referential relationships repeatedly

until the entire referential set is developed. You cannot specify RI

with PARTLEVEL(n).

LOB indicator keywords: Use one of three LOB indicator keywords to direct

LISTDEF processing to follow auxiliary relationships to include related LOB objects

in the list. The auxiliary relationship can be followed in either direction. LOB

objects include the LOB table spaces, auxiliary tables, indexes on auxiliary tables,

and their containing index spaces.

Incomplete LOB definitions cause seemingly related LOB objects to not to be

found. The auxiliary relationship does not exist until you create the AUX TABLE

with the STORES keyword.

No default LOB indicator keyword exists. If you do not specify BASE, LOB, or

ALL, DB2 does not follow the auxiliary relationships and does not filter LOB from

base objects in the enumerated list.

ALL

Specifies that both related BASE and LOB objects are to be included in the list.

Auxiliary relationships are to be followed from all objects that result from the

initial object lookup, and both BASE and LOB objects are to remain in the final

enumerated list.

BASE

Specifies that only base table spaces (non-LOB) and index spaces are to be

included in this element of the list.

 If the result of the initial search for the object is a base object, auxiliary

relationships are not followed. If the result of the initial search for the object is

LISTDEF

178 Utility Guide and Reference

|

|
|

|
|
|

a LOB object, the auxiliary relationship is applied to the base table space or

index space, and only those objects become part of the resulting list.

LOB

Specifies that only LOB table spaces and related index spaces that contain

indexes on auxiliary tables are to be included in this element of the list.

 If the result of the initial search for the object is a LOB object, auxiliary

relationships are not followed. If the result of the initial search for the object is

a base object, the auxiliary relationship is applied to the LOB table space or

index space, and only those objects become part of the resulting list.

Instructions for using LISTDEF

This section provides information about how to create and use object lists and

includes the following topics:

v “Creating the control statement”

v “Including objects in a list”

v “Previewing the contents of a list” on page 183

v “Creating LISTDEF libraries” on page 183

v “Using lists in other utility jobs” on page 183

v “Using the OPTIONS utility with LISTDEF” on page 185

v “Using the TEMPLATE utility with LISTDEF” on page 185

v “Terminating or restarting LISTDEF” on page 185

Creating the control statement

The LISTDEF control statement defines a list of objects and assigns a name to the

list. You must include the following elements in the control statement:

v The name of the list.

v An INCLUDE clause, optionally followed by additional INCLUDE or EXCLUDE

clauses to either include or exclude objects from the list.

For a description of the elements that must be included in each INCLUDE and

EXCLUDE clause, see “Specifying objects to include or exclude.”

Including objects in a list

Use the INCLUDE and EXCLUDE clauses to specify the objects that are to be

included in the list. Each INCLUDE clause adds objects to the list. Each EXCLUDE

clause removes objects from the list. You must first specify an INCLUDE clause.

You can then specify subsequent INCLUDE or EXCLUDE clauses in any order to

add to or delete objects from the existing list.

DB2 constructs the list, one clause at a time, by adding objects to or removing

objects from the list. If an EXCLUDE clause attempts to remove an object that is

not yet in the list, DB2 ignores the EXCLUDE clause of that object and proceeds to

the next INCLUDE or EXCLUDE clause. Be aware that a subsequent INCLUDE

can return a previously excluded object to the list.

You must specify either INCLUDE or EXCLUDE. No default specification exists.

Specifying objects to include or exclude

Each INCLUDE or EXCLUDE clause identifies specific objects to add to or remove

from the list.

You must include the following elements in each INCLUDE or EXCLUDE clause:

LISTDEF

Chapter 15. LISTDEF 179

v The object that is to be used in the initial catalog lookup for each INCLUDE or

EXCLUDE clause. The search for objects can begin with databases, table spaces,

index spaces, tables, indexes, or other lists. You can explicitly specify the names

of these objects or, with the exception of other lists, use a pattern matching

expression. The resulting list contains only table spaces, only index spaces, or

both.

v The type of objects that the list contains, either TABLESPACES or

INDEXSPACES. You must explicitly specify the list type only when you specify

a database as the initial object by using the keyword DATABASE. Otherwise,

LISTDEF uses the default list type values shown in Table 24. These values

depend on the type of object that you specified for the INCLUDE or EXCLUDE

clause.

 Table 24. Default list type values that LISTDEF uses.

Specified object Default list type value

TABLESPACE TABLESPACES

TABLE TABLESPACES

INDEXSPACE INDEXSPACES

INDEX INDEXSPACES

LIST Existing type value of the list

For example, the following INCLUDE clause specifies that table space

DBLT0301.TLLT031A is to be added to the LIST:

INCLUDE TABLESPACE DBLT0301.TLLT031A

In the preceding example, table space DBLT0301.TLLT031A is specified as the

object that LISTDEF is to use for the initial catalog lookup. By default, the list type

value for a TABLESPACE object is TABLESPACES. Therefore, the list includes only

table space DBLT0301.TLLT031A.

The following example INCLUDE clause is similar to the preceding example,

except that it includes the INDEXSPACES keyword:

INCLUDE INDEXSPACES TABLESPACE DBLT0301.TLLT031A

In this example, the clause specifies that all index spaces over all tables in table

space DBLT0301.TLLT031A are to be added to the list.

Optionally, you can add related objects to the list by specifying keywords that

indicate a relationship, such as referentially related objects or auxiliary related

objects. Valid specifications include the following keywords:

v BASE (non-LOB objects)

v LOB (LOB objects)

v ALL (both BASE and LOB objects)

v TABLESPACES (related table spaces)

v INDEXSPACES (related index spaces)

v RI (related by referential constraints, including informational referential

constraints)

The preceding keywords perform two functions: they determine which objects are

related, and they then filter the contents of the list. The behavior of these keywords

varies depending on the type of object that you specify. For example, if your initial

object is a LOB object, the LOB keyword is ignored. If, however, the initial object is

not a LOB object, the LOB keyword determines which LOB objects are related, and

LISTDEF

180 Utility Guide and Reference

||

|
|

DB2 excludes non-LOB objects from the list. For more information about the

keywords that can be used to indicate relationships, see“Option descriptions” on

page 173.

DB2 processes each INCLUDE and EXCLUDE clause in the following order:

1. Perform the initial search for the object that is based on the specified

pattern-matching expression, including PARTLEVEL specification, if specified.

2. Add or remove related objects and filter the list elements based on the specified

list type, either TABLESPACES or INDEXSPACES (COPY YES or COPY NO).

3. Add or remove related objects depending on the presence or absence of the RI,

BASE, LOB, and ALL keywords.

For example, to generate a list of all table spaces in the ACCOUNT database but

exclude all LOB table spaces, you can specify the following LISTDEF statement:

LISTDEF ACCNT INCLUDE TABLESPACES DATABASE ACCOUNT BASE

In the preceding example, the name of the list is ACCNT. The TABLESPACES

keyword indicates that the list is to include table spaces that are associated with

the specified object. In this case, the table spaces to be included are those table

spaces in database ACCOUNT. Finally, the BASE keyword limits the objects to only

base table spaces.

If you want a list of only LOB index spaces in the ACCOUNT database, you can

specify the following LISTDEF statement:

LISTDEF ACLOBIX INCLUDE INDEXSPACES DATABASE ACCOUNT LOB

In the preceding example, the INDEXSPACES and LOB keywords indicate that the

INCLUDE clause is to add only LOB index spaces to the ACLOBIX list.

Restriction: Utilities do not support SYSUTILX-related objects inside a LISTDEF

specification. You cannot specify the following objects in a LISTDEF:

v TABLESPACE DSNDB01.SYSUTILX

v TABLE SYSIBM.SYSUTILX

v TABLE SYSIBM.SYSUTIL

v INDEXSPACE DSNDB01.DSNLUX01

v INDEXSPACE DSNDB01.DSNLUX02

v INDEX SYSIBM.DSNLUX01

v INDEX SYSIBM.DSNLUX02

Using pattern matching expressions

You can use four special pattern-matching characters (%, *, _,?) to define generic

object names in a LISTDEF statement. These characters are similar to those

characters that are used in the SQL LIKE predicate. Utilities that reference a list

access the DB2 catalog at execution time and dynamically expand each generic

object name into an equivalent enumerated list. A utility processes this enumerated

list either sequentially or in parallel, depending on the utility function and the

parameters that you specify.

Restriction: DB2 does not support all-inclusive lists (such as DATABASE * or

TABLESPACE *.*).

Restriction: Pattern-matching of DB2 catalog and directory objects (DSNDB06 and

DSNDB01) is not supported. Catalog and directory objects must be included in a

LISTDEF by their full table space or index space name. Even if catalog and

LISTDEF

Chapter 15. LISTDEF 181

directory objects match a LISTDEF pattern matching expression, they are not

included in the list. To process those objects, you must use syntax from releases

prior to Version 7.

Specify pattern-matching object names by using the pattern-matching characters

that are shown in Table 25. This table lists the pattern-matching character, the

equivalent SQL symbol, and any additional information.

 Table 25. LISTDEF pattern-matching characters

LISTDEF

pattern-

matching

character

Equivalent

symbol used

in SQL LIKE

predicates Usage notes

Percent sign

(%)

Percent sign

(%)

Performs the same function.

Question mark

(?)

Underscore (_) Use the question mark (?) instead of underscore (_) as a

pattern-matching character in table and index names. The

underscore character (_) in table and index names

represents a single occurrence of itself.

Asterisk (*) Percent sign

(%)

Performs the same function.

Underscore (_) Underscore (_) Use the underscore (_) as an alternative to the question

mark (?) for database, table space, and index space names.

Including catalog and directory objects

If you specify DB2 directory objects (DSNDB01) and DB2 catalog objects

(DSNDB06) in object lists, you must specify the fully qualified table space or index

space names for those objects. Pattern-matching is not supported for catalog or

directory objects. DB2 issues error messages for any catalog or directory objects

that are invalid for a utility.

Although DB2 catalog and directory objects can appear in LISTDEF lists, these

objects might be invalid for a utility and result in an error message.

The following valid INCLUDE clauses contain catalog and directory objects:

v INCLUDE TABLESPACE DSNDB06.SYSDBASE

v INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSDBASE

v INCLUDE INDEXSPACE DSNDB06.DSNDXX01

v INCLUDE INDEXSPACES INDEXSPACE DSNDB06.DSNDXX01

Restriction: If you specify a catalog or directory object in a LISTDEF control

statement, you cannot specify the following keywords:

v DATABASE

v TABLE

v INDEX

v BASE

v LOB

v ALL

v Databases DSNDB01, DSNDB06, and DSNDB07

v Table or indexes with a creator id of SYSIBM

These keywords require DB2 to access the catalog, which can cause problems when

you specify a catalog or directory object.

LISTDEF

182 Utility Guide and Reference

All LISTDEF lists automatically exclude work file databases, which consist of

DSNDB07 objects and user-defined work file objects, because DB2 utilities do not

process these objects.

Previewing the contents of a list

You can preview the objects that are to be included in a list by using the PREVIEW

function. When you run a utility using the PREVIEW function, DB2 expands any

LISTDEF control statements into the equivalent enumerated list, prints it to

SYSPRINT, and stops execution.

Specify PREVIEW in one of two ways, either as a JCL parameter or on the

OPTIONS PREVIEW control statement. For details about the OPTIONS PREVIEW

statement, see “Syntax and options of the LISTDEF control statement” on page 171.

Creating LISTDEF libraries

You can create a library of LISTDEF control statements by using a DD statement to

name LISTDEF data sets.

For example, assume that data sets ADMF001.DB.LIST1 and ADMF001.DB.LIST2

each contain several LISTDEF statements. For any utility jobs that reference these

LISTDEF statements, you can include the following DD statement in the JCL:

//LISTDSN DD DSN=ADMF001.DB.LIST1,DISP=SHR

// DD DSN=ADMF001.DB.LIST2,DISP=SHR

This DD statement defines a LISTDEF library. The statement gives a name

(LISTDSN) to a group of data sets that contain LISTDEF statements, in this case

ADMF001.DB.LIST1 and ADMF001.DB.LIST2. Defining such a library enables you

to subsequently refer to the LISTDEF statements in that library by using the

OPTIONS LISTDEFDD control statement.

Any data sets that are identified as part of a LISTDEF library must contain only

LISTDEF statements.

In the utility job that references those LISTDEF statements, include an OPTIONS

statement before the utility statement. In the OPTIONS statement, specify the DD

name of the LISTDEF library as LISTDEFDD ddname.

DB2 uses this LISTDEF library for any subsequent utility control statements, until

either the end of input or until you specify another OPTIONS LISTDEFDD ddname.

The default DD name for the LISTDEF definition library is SYSLISTD.

When DB2 encounters a reference to a list, DB2 first searches SYSIN. If DB2 does

not find the definition of the referenced list, DB2 searches the specified LISTDEF

library.

Using lists in other utility jobs

This section explains how to reference lists in other utility jobs.

Placing the LISTDEF control statement

Specify LISTDEF control statements in the SYSIN DD statement prior to the utility

control statement that references it, or in one or more LISTDEF library data sets.

For more information about LISTDEF libraries and how to create them, see

“Creating LISTDEF libraries.”

LISTDEF

Chapter 15. LISTDEF 183

Any LISTDEF statement that is defined within the SYSIN DD statement overrides

another LISTDEF definition of the same name found in a LISTDEF library data set.

Referencing the list in another utility control statement

To use a list that has been defined with the LISTDEF control statement as the

target object for a specific utility, specify the list name, prefixed by the LIST

keyword. For example, you could QUIESCE all objects in a list by specifying the

following control statement:

QUIESCE LIST X

In general, utilities processes the objects in the list in the order in which they are

specified. However, some utilities alter the list order for optimal processing as

follows:

v CHECK INDEX, REBUILD INDEX, and RUNSTATS INDEX process all index

spaces that are related to a given table space at one time, regardless of list order.

v UNLOAD processes all specified partitions of a given table space at one time

regardless of list order.

The LIST keyword is supported by the utilities that are listed in Table 26. When

possible, utility processing optimizes the order of list processing as indicated in the

table.

 Table 26. How specific utilities process lists

Utility Order of list processing

CHECK INDEX Items are grouped by related table space.

COPY Items are processed in the specified order on a single call to COPY;

the PARALLEL keyword is supported.

COPYTOCOPY Items are processed in the specified order on a single call to

COPYTOCOPY.

MERGECOPY Items are processed in the specified order.

MODIFY

RECOVERY

Items are processed in the specified order.

MODIFY

STATISTICS

Items are processed in the specified order.

QUIESCE All items are processed in the specified order on a single call to

QUIESCE.

REBUILD Items are grouped by related table space.

RECOVER Items are processed in the specified order on a single call to

RECOVER.

REORG Items are processed in the specified order.

REPORT Items are processed in the specified order.

RUNSTATS INDEX Items are grouped by related table space.

RUNSTATS

TABLESPACE

Items are processed in the specified order.

UNLOAD Items at the partition level are grouped by table space.

Some utilities such as COPY and RECOVER, can process a LIST without a

specified object type. Object types are determined from the list contents. Other

utilities, such as REPORT, RUNSTATS, and REORG INDEX, must know the object

type that is to be processed before processing can begin. These utilities require that

you specify an object type in addition to the LIST keyword (for example: REPORT

LISTDEF

184 Utility Guide and Reference

|
|
|

||

||

||

||
|

||
|

||

|
|
|

|
|
|

||
|

||

||
|

||

||

||

|
|
|

||
|

|
|
|
|
|

RECOVERY TABLESPACE LIST, RUNSTATS INDEX LIST, and REORG INDEX

LIST). See the syntax diagrams for an individual utility for details.

Using the TEMPLATE utility with LISTDEF

Many utilities require output data sets. In those cases, you should use the

TEMPLATE control statement to specify the naming convention and, optionally, the

allocation parameters for each type of output data set. Templates, like lists, can be

reused if the naming convention is robust enough to prevent duplicate data set

names from being allocated. See Chapter 31, “TEMPLATE,” on page 587 for more

details about using templates.

In some cases you can use traditional JCL DD statements with LISTDEF lists, but

this method is usually not practical unless you are processing small lists one object

at a time.

Together, the LISTDEF and TEMPLATE utilities enable faster development of

utility job streams, and require fewer modifications when the underlying list of

database objects change.

Using the OPTIONS utility with LISTDEF

Use the following three functions of the OPTIONS utility in conjunction with the

LISTDEF utility when needed:

OPTIONS PREVIEW

Enables you to preview the list contents before actual processing.

OPTIONS ITEMERROR

Enables you to alter the handling of errors that might occur during list

processing.

OPTIONS LISTDEFDD

Enables you to identify a LISTDEF library. The default is LISTDEFDD. For

more information about LISTDEF libraries, see “Creating LISTDEF libraries” on

page 183.

Terminating or restarting LISTDEF

You can terminate a LISTDEF utility job by using the TERM UTILITY command if

you submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a LISTDEF utility job, but it starts from the beginning again. Use

caution when changing LISTDEF lists prior to a restart. When DB2 restarts list

processing, it uses a saved copy of the list. Modifying the LISTDEF list that is

referred to by the stopped utility has no effect. Only control statements that follow

the stopped utility are affected. For guidance in restarting online utilities, see

“Restarting an online utility” on page 41.

Concurrency and compatibility for LISTDEF

LISTDEF is a control statement that is used to set up an environment for another

utility to follow. The LISTDEF list is stored until it is referenced by a specific

utility. When referenced by an utility, the list expands. At that time, the

concurrency and compatibility restrictions of that utility apply, with the additional

restriction that the catalog tables that are necessary to expand the list must be

available for read-only access.

LISTDEF

Chapter 15. LISTDEF 185

|
|

List processing limitations: Although DB2 does not limit the number of objects

that a list can contain, be aware that if your list is too large, the utility might fail

with an error or abend in either DB2 or another program. These errors or abends

can be caused by storage limitations, limitations of the operating system, or other

restrictions imposed by either DB2 or non-DB2 programs. Whether such a failure

occurs depends on many factors including, but not limited to the following items:

v The amount of available storage in both the utility batch and DBM1 address

spaces

v The utility that is running.

v The type and number of other utilities that are running at the same time.

v The specific combination of keywords and operands of all the utilities that are

running

Recommendation: If you receive a failure that you suspect is caused by running a

utility on a list that is too large, divide your list into smaller lists and run the

utility or utilities in separate job steps on the smaller lists until they run

successfully.

Sample LISTDEF control statements

Example 1: Defining a list of objects. The following control statement defines a list

that includes the following objects:

v Table space DBLT0301.TLLT031A

v Index space DBLT0301.IXlT031A

v Table space DBLT0301.IPLT031C

v Table space that contains ADMF001.TBLT032A_1

The name of the list is NAME1. This list can be referenced by any subsequent

utility statements.

LISTDEF NAME1 INCLUDE TABLESPACE DBLT0301.TLLT031A

 INCLUDE INDEXSPACE DBLT0301.IXLT031A

 INCLUDE TABLESPACE DBLT0301.TPLT031C

 INCLUDE TABLE ADMF001.TBLT032A_1

Example 2: Defining a list of all objects in a database. The following control

statement defines a list (EXAMPLE2) that includes all table spaces and all index

spaces in the PAYROLL database.

LISTDEF EXAMPLE2 INCLUDE TABLESPACES DATABASE PAYROLL

 INCLUDE INDEXSPACES DATABASE PAYROLL

Example 3: Using pattern-matching characters. The following control statement

defines a list (PAYROLL) that includes the following objects:

v All table spaces in the PAYROLL database, except for any table spaces whose

names begin with TEMP.

v All index spaces in the PAYROLL database that end with IX, except for those

index spaces that begin with TMPIX.

The subsequent COPY utility control statement processes this list.

LISTDEF PAYROLL INCLUDE TABLESPACE PAYROLL.*

 EXCLUDE TABLESPACE PAYROLL.TEMP*

 INCLUDE INDEXSPACE PAYROLL.*IX

 EXCLUDE INDEXSPACE PAYROLL.TMPIX*

COPY LIST PAYROLL ...

Example 4: Defining a list of partitions and nonpartitioned table spaces. The

following control statement defines a list (EXAMPLE4) that includes one entry for

LISTDEF

186 Utility Guide and Reference

each partition of the qualifying partitioned table spaces and one entry for each

qualifying nonpartitioned table space. The table spaces must satisfy the PAY*.*

name pattern.

LISTDEF EXAMPLE4 INCLUDE TABLESPACE PAY*.* PARTLEVEL

Assume that three table spaces qualify. Of these table spaces, two are partitioned

table spaces (PAY2.DEPTA and PAY2.DEPTF) that each have three partitions and

one is a nonpartitioned table space (PAY1.COMP). In this case, the EXAMPLE4 list

includes the following items:

v PAY2.DEPTA partition 1

v PAY2.DEPTA partition 2

v PAY2.DEPTA partition 3

v PAY2.DEPTF partition 1

v PAY2.DEPTF partition 2

v PAY2.DEPTF partition 3

v PAY1.COMP

If you specified PARTLEVEL(2) instead of PARTLEVEL, the EXAMPLE4 list

includes the following items:

v PAY2.DEPTA partition 2

v PAY2.DEPTF partition 2

v PAY1.COMP

If you specified PARTLEVEL(0) instead of PARTLEVEL, the EXAMPLE4 list

includes only PAY1.COMP.

Example 5: Defining a list of COPY YES indexes. The following control statement

defines a list (EXAMPLE5) that includes related index spaces from the referenced

list (EXAMPLE4) that have been defined or altered to COPY YES.

LISTDEF EXAMPLE5 INCLUDE LIST EXAMPLE4 INDEXSPACES COPY YES

Example 6: Defining a list that includes all table space partitions except for one.

The following control statement defines a list (EXAMPLE6) that includes all

partitions of table space X, except for partition 12. The INCLUDE clause adds an

entry for each partition, and the EXCLUDE clause removes the entry for partition

12.

LISTDEF EXAMPLE6 INCLUDE TABLESPACE X PARTLEVEL

 EXCLUDE TABLESPACE X PARTLEVEL(12)

Note that if the PARTLEVEL keyword is not specified in both clauses, as in the

following two sample statements, the INCLUDE and EXCLUDE items do not

intersect. For example, in the following statement, table space X is included is

included in the list in its entirety, not at the partition level. Therefore, partition 12

cannot be excluded.

LISTDEF EXAMPLE6 INCLUDE TABLESPACE X

 EXCLUDE TABLESPACE X PARTLEVEL(12)

In the following sample statement, the list includes only partition 12 of table space

X, so table space X in its entirety can not be excluded.

LISTDEF EXAMPLE6 INCLUDE TABLESPACE X PARTLEVEL(12)

 EXCLUDE TABLESPACE X

LISTDEF

Chapter 15. LISTDEF 187

Example 7: Defining a LISTDEF library and using a list in a QUIESCE job. In

Figure 32, the first two LISTDEF control statements define the NAME1 and

NAME2 lists. The NAME1 list is stored in a sequential data set

(JULTU103.TCASE.DATA2), and the NAME2 list is stored in a member of a

partitioned data set (JULTU103.TCASE.DATA3(MEM1)). These output data sets are

identified by the SYSUT2 DD statements (in the JCL for the CREATE1 and

CREATE2 jobs).

The LISTLIB DD statement (in the JCL for the QUIESCE job) defines a LISTDEF

library. When you define a LISTDEF library, you give a name to a group of data

sets that contain LISTDEF statements. In this case, the library is to include the

following data sets:

v The sequential data set JULTU103.TCASE.DATA2 (which includes the NAME1

list)

v The MEM1 member of the partitioned data set JULTU103.TCASE.DATA3 (which

includes the NAME2 list).

Defining such a library enables you to subsequently refer to a group of LISTDEF

statements with a single reference.

The OPTIONS utility control statement in this example specifies that the library

that is identified by the LISTLIB DD statement is to be used as the default

LISTDEF definition library. This declaration means that for any referenced lists,

DB2 is to first search SYSIN for the list definition. If DB2 does not find the list

definition in SYSIN, it is to search any data sets that are included in the LISTLIB

LISTDEF library.

The last LISTDEF statement defines the NAME3 list. This list includes all objects in

the NAME1 and NAME2 lists, except for three table spaces (TSLT032B, TSLT031B,

TSLT032C). Because the NAME1 and NAME2 lists are not included in SYSIN, DB2

searches the default LISTDEF library (LISTLIB) to find them.

Finally, the QUIESCE utility control statement specifies this list of objects (NAME3)

for which DB2 is to establish a quiesce point.

LISTDEF

188 Utility Guide and Reference

//CREATE1 JOB ’USER=NAME’,CLASS=A,...

//*--

//* Create an input data set.

//*--

//LOAD1 EXEC PGM=IEBGENER

//SYSPRINT DD DUMMY

//SYSIN DD DUMMY

//SYSUT2 DD DSN=JULTU103.TCASE.DATA2,

// DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)

//SYSUT1 DD *

 LISTDEF NAME1 INCLUDE TABLESPACE DBLT0301.TLLT031A

 INCLUDE TABLESPACE DBLT0301.TSLT031B

/*

//CREATE2 JOB ’USER=NAME’,CLASS=A,...

//*--

//* Create an input data set.

//*--

//CRECNTL EXEC PGM=IEFBR14

//CNTL DD DSN=JULTU103.TCASE.DATA3,UNIT=SYSDA,

// VOL=SER=SCR03,

// SPACE=(TRK,(2,2,2)),DCB=(DSORG=PO,

// LRECL=80,RECFM=FB,BLKSIZE=4560),

// DISP=(NEW,CATLG,CATLG)

/*

//*--

//* Create member of input data set.

//*--

//FILLCNTL EXEC PGM=IEBUPDTE

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=JULTU103.TCASE.DATA3,DISP=OLD

//SYSUT2 DD DSN=JULTU103.TCASE.DATA3,DISP=OLD

//SYSIN DD DATA

./ ADD NAME=MEM1

 LISTDEF NAME2 INCLUDE TABLESPACE DBLT0302.TLLT032A

 INCLUDE TABLESPACE DBLT0302.TSLT032B

 INCLUDE TABLESPACE DBLT0302.TPLT032C

./ ENDUP

/*

Figure 32. Example of building a LISTDEF library and then running the QUIESCE utility (Part

1 of 2)

//QUIESCE JOB ’USER=NAME’,CLASS=A,...

//***

//* QUIESCE LISTDEF DD LILSTDEF data sets

//***

//STEP1 EXEC DSNUPROC,UID=’JULTU103.QUIESC2’,

// UTPROC=’’,SYSTEM=’SSTR’

//LISTLIB DD DSN=JULTU103.TCASE.DATA2,DISP=SHR

// DD DSN=JULTU103.TCASE.DATA3(MEM1),DISP=SHR

//SYSIN DD *

 OPTIONS LISTDEFDD LISTLIB

 LISTDEF NAME3 INCLUDE LIST NAME1

 INCLUDE LIST NAME2

 EXCLUDE TABLESPACE DBLT0302.TSLT032B

 EXCLUDE TABLESPACE DBLT0301.TSLT031B

 EXCLUDE TABLESPACE DBLT0302.TPLT032C

 QUIESCE LIST NAME3

/*

Figure 32. Example of building a LISTDEF library and then running the QUIESCE utility (Part

2 of 2)

LISTDEF

Chapter 15. LISTDEF 189

Example 8: Defining a list that includes related objects. The following LISTDEF

control statement defines a list (EXAMPLE8) that includes table space

DBLT0101.TPLT011C and all objects that are referentially related to it. Only base

table spaces are included in the list. The subsequent RECOVER utility control

statement specifies that all objects in the EXAMPLE8 list are to be recovered.

//STEP2 EXEC DSNUPROC,UID=’JULTU101.RECOVE5’,

// UTPROC=’’,SYSTEM=’SSTR’

//SYSIN DD *

 LISTDEF EXAMPLE8 INCLUDE TABLESPACE DBLT0101.TPLT011C RI BASE

 RECOVER LIST EXAMPLE8

/*

LISTDEF

190 Utility Guide and Reference

Chapter 16. LOAD

Use LOAD to load one or more tables of a table space. The LOAD utility loads

records into the tables and builds or extends any indexes that are defined on them.

If the table space already contains data, you can choose whether you want to add

the new data to the existing data or replace the existing data. The loaded data is

processed by any edit or validation routine that is associated with the table, and

any field procedure that is associated with any column of the table. The LOAD

utility ignores and does not enforce informational referential constraints.

For a diagram of LOAD syntax and a description of available options, see “Syntax

and options of the LOAD control statement” on page 193. For detailed guidance on

running this utility, see “Instructions for running LOAD” on page 231.

Output: LOAD DATA generates one or more of the following forms of output:

v A loaded table space or partition.

v A discard file of rejected records.

v A summary report of errors that were encountered during processing; this report

is generated only if you specify ENFORCE CONSTRAINTS or if the LOAD

involves unique indexes.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorizations:

v Ownership of the table

v LOAD privilege for the database

v DBADM or DBCTRL authority for the database

v SYSCTRL or SYSADM authority

LOAD operates on a table space level, so you must have authority for all tables in

the table space when you perform LOAD.

To run LOAD STATISTICS, the privilege set must include STATS authority on the

database. To run LOAD STATISTICS TABLE ALL REPORT YES, the privilege set

must also include the SELECT privilege on the tables required.

If you use RACF access control with multilevel security and LOAD is to process a

table space that contains a table that has multilevel security with row-level

granularity, you must be identified to RACF and have an accessible valid security

label. You must also meet the following authorization requirements:

v To replace an entire table space with LOAD REPLACE, you must have the

write-down privilege unless write-down rules are not in effect.

v You must have the write-down privilege to specify values for the security label

columns, unless write-down rules are not in effect. If these rules are in effect and

you do not have write-down privilege, DB2 assigns your security label as the

value for the security label column for the rows that you are loading.

For more information about multilevel security and security labels, see Part 3 of

DB2 Administration Guide.

Execution phases of LOAD: The LOAD utility operates in the phases that are listed

in Table 27 on page 192.

© Copyright IBM Corp. 1983, 2008 191

|
|

|
|
|
|

|
|

|
|
|
|

|
|

Table 27. LOAD phases of execution

Phase Description

UTILINIT Performs initialization.

RELOAD Loads record types and writes temporary file records for indexes and foreign

keys. RELOAD makes one pass through the sequential input data set. Check

constraints are checked for each row. Internal commits provide commit points

at which to restart in case operation should halt in this phase.

RELOAD creates inline copies if you specified the COPYDDN or

RECOVERYDDN keywords.

A subtask is started at the beginning of the RELOAD phase to sort the keys.

The sort subtask initializes and waits for the main RELOAD phase to pass its

keys to SORT. RELOAD loads the data, extracts the keys, and passes them in

memory for sorting. At the end of the RELOAD phase, the last key is passed

to SORT, and record sorting completes.

Note that load partition parallelism starts subtasks. PREFORMAT for table

spaces occurs at the end of the RELOAD phase.

SORT Sorts temporary file records before creating indexes or validating referential

constraints, if indexes or foreign keys exist. The SORT phase is skipped if all

the following conditions apply for the data that is processed during the

RELOAD phase:

v Each table has no more than one key.

v All keys are the same type (index key only, indexed foreign key, or foreign

key only).

v The data that is being loaded or reloaded is in key order (if a key exists). If

the key is an index key only and the index is a data-partitioned secondary

index, the data is considered to be in order if the data is grouped by

partition and ordered within partition by key value. If the key in question

is an indexed foreign key and the index is a data-partitioned secondary

index, the data is never considered to be in order.

v The data that is being loaded or reloaded is grouped by table, and each

input record is loaded into one table only.

SORT passes the sorted keys in memory to the BUILD phase, which builds

the indexes.

BUILD Creates indexes from temporary file records for all indexes that are defined on

the loaded tables. Build also detects duplicate keys. PREFORMAT for indexes

occurs at the end of the BUILD phase.

SORTBLD Performs all activities that normally occur in both the SORT and BUILD

phases, if you specify a parallel index build.

INDEXVAL Corrects unique index violations from the information in SYSERR, if any exist.

ENFORCE Checks referential constraints, except informational referential constraints, and

corrects violations. Information about violations of referential constraints is

stored in SYSERR.

DISCARD Copies records that cause errors from the input data set to the discard data

set.

REPORT Generates a summary report, if you specified ENFORCE CONSTRAINT or if

load index validation is performed. The report is sent to SYSPRINT.

UTILTERM Performs cleanup.

The following topics provide additional information:

v “Syntax and options of the LOAD control statement” on page 193

v “Instructions for running LOAD” on page 231

LOAD

192 Utility Guide and Reference

|

|
|
|
|
|
|

|
|

|

v “Concurrency and compatibility for LOAD” on page 264

v “After running LOAD” on page 266

v “Effects of running LOAD” on page 270

v “Sample LOAD control statements” on page 271

Syntax and options of the LOAD control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

LOAD

Chapter 16. LOAD 193

Syntax diagram

��

LOAD
 DATA INDDN SYSREC

INDDN

ddname

INCURSOR

cursor-name

PREFORMAT

�

�
 RESUME NO SHRLEVEL NONE

REPLACE

copy-spec

statistics-spec

SHRLEVEL

NONE

RESUME

YES

SHRLEVEL

CHANGE

�

�

KEEPDICTIONARY

REUSE

 LOG YES

LOG

NO

NOCOPYPEND

 WORKDDN(SYSUT1,SORTOUT)

WORKDDN

(ddname1,ddname2)

,SORTOUT

(ddname1

)

SYSUT1

(

,ddname2)

�

�

 (1)

SORTKEYS

0

SORTKEYS

integer

format-spec

FLOAT(S390)

FLOAT(IEEE)

EBCDIC

ASCII

UNICODE

�

,

CCSID(

integer

)

�

�

NOSUBS

 ENFORCE CONSTRAINTS

ENFORCE

NO

 ERRDDN SYSERR

ERRDDN

ddname

 MAPDDN SYSMAP

MAPDDN

ddname

 DISCARDDN SYSDISC

DISCARDDN

ddname

�

�
 DISCARDS 0

DISCARDS

integer

SORTDEVT

device-type

SORTNUM

integer

�

�

CONTINUEIF(start

)=

X’byte-string’

:end

’character-string’

�

INTO-TABLE-spec

��

Notes:

1 The default is 0 if the input is on tape, a cursor, a PDS member or for SYSREC DD *. For

sequential data sets, LOAD computes the default based upon the input data set size.

LOAD

194 Utility Guide and Reference

||||

copy-spec:

��

(SYSCOPY)

COPYDDN

(ddname1

)

,ddname2

(,ddname2)

RECOVERYDDN(ddname3

)

,ddname4

 ��

statistics-spec:

�� STATISTICS �

�

�

�

 TABLE (ALL)

SAMPLE

integer

COLUMN

ALL

TABLE

(

table-name

)

SAMPLE

integer

,

COLUMN

(

column-name

)

�

�

�

 INDEX (ALL)

correlation-stats-spec

,

INDEX

(

index-name

correlation-stats-spec

)

 REPORT NO

REPORT

YES

�

�
 UPDATE ALL

UPDATE

ACCESSPATH

SPACE

NONE

HISTORY

ALL

ACCESSPATH

SPACE

NONE

FORCEROLLUP

YES

NO

��

correlation-stats-spec:

��

KEYCARD

�

 FREQVAL NUMCOLS 1 COUNT 10

FREQVAL

NUMCOLS

integer

COUNT

integer

��

LOAD

Chapter 16. LOAD 195

|

format-spec:

��

FORMAT

UNLOAD

SQL/DS

COLDEL

','

CHARDEL

'"'

DECPT

'.'

DELIMITED

COLDEL

coldel

CHARDEL

chardel

DECPT

decpt

 ��

INTO-TABLE-spec:

For the syntax diagram and the option descriptions of the into-table specification,

see “INTO-TABLE-spec” on page 210.

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

DATA Specifies that data is to be loaded. This keyword is optional and is used for

clarity only.

INDDN ddname

Specifies the data definition (DD) statement or template that identifies the

input data set for the partition. The record format for the input data set

must be fixed-length or variable-length. The data set must be readable by

the basic sequential access method (BSAM).

 The ddname is the name of the input data set. The default is SYSREC.

INCURSOR cursor-name

Specifies the cursor for the input data set. You must declare the cursor

before it is used by the LOAD utility. Use the EXEC SQL utility control

statement to define the cursor. You cannot load data into the same table on

which you defined the cursor.

 The specified cursor can be used with the DB2 UDB family cross-loader

function, which enables you to load data from any DRDA-compliant

remote server. For more information about using the cross-loader function,

see “Loading data by using the cross-loader function” on page 248.

cursor-name is the cursor name. Cursor names that are specified with the

LOAD utility cannot be longer than eight characters.

You cannot use the INCURSOR option with the following options:

v SHRLEVEL CHANGE

v NOSUBS

v FORMAT UNLOAD

v FORMAT SQL/DS

v CONTINUEIF

v WHEN

In addition, you cannot specify field specifications or use discard

processing with the INCURSOR option.

PREFORMAT

Specifies that the remaining pages are preformatted up to the

LOAD

196 Utility Guide and Reference

|||||||||||||

|

|
|

high-allocated RBA in the table space and index spaces that are associated

with the table that is specified in table-name. The preformatting occurs after

the data has been loaded and the indexes are built.

 PREFORMAT can operate on an entire table space and its index spaces, or

on a partition of a partitioned table space and on the corresponding

partitions of partitioned indexes, if any exist. Specifying LOAD

PREFORMAT (rather than PART integer PREFORMAT) tells LOAD to

serialize at the table space level, which can inhibit concurrent processing of

separate partitions. If you want to serialize at the partition level, specify

PART integer PREFORMAT. See “Option descriptions for INTO TABLE” on

page 213 for information about specifying PREFORMAT at the partition

level.

RESUME

Indicates whether records are to be loaded into an empty or non-empty

table space. For nonsegmented table spaces, space is not reused for rows

that have been marked as deleted or for rows of dropped tables.

 Important: Specifying LOAD RESUME (rather than PART integer RESUME)

tells LOAD to serialize on the entire table space, which can inhibit

concurrent processing of separate partitions. If you want to process other

partitions concurrently, use “INTO-TABLE-spec” on page 210 to specify

PART integer RESUME.

NO

Loads records into an empty table space. If the table space is not

empty, and you have not used REPLACE, a message is issued and the

utility job step terminates with a job step condition code of 8.

 For nonsegmented table spaces that contain deleted rows or rows of

dropped tables, using the REPLACE keyword provides increased

efficiency.

The default is NO, unless you override it with PART integer RESUME

YES.

YES

Loads records into a non-empty table space. If the table space is empty,

a warning message is issued, but the table space is loaded. Loading

begins at the current end of data in the table space. Space is not reused

for rows that are marked as deleted or for rows of dropped tables.

 LOAD RESUME SHRLEVEL CHANGE activates the before triggers and

after triggers for each row that is loaded.

SHRLEVEL

Specifies the extent to which applications can concurrently access the table

space or partition during the LOAD utility job. The following parameter

values are listed in order of increasing extent of allowed concurrent access.

NONE

Specifies that applications have no concurrent access to the table space

or partition.

 The default is NONE.

CHANGE

Specifies that applications can concurrently read from and write to the

table space or partition into which LOAD is loading data. If you

specify SHRLEVEL CHANGE, you cannot specify the following

LOAD

Chapter 16. LOAD 197

|
|

|
|

parameters: INCURSOR, RESUME NO, REPLACE,

KEEPDICTIONARY, LOG NO, ENFORCE NO, STATISTICS,

COPYDDN, RECOVERYDDN, MAPDDN, PREFORMAT, REUSE, or

PART integer REPLACE.

 For a partition-directed LOAD, if you specify SHRLEVEL CHANGE,

only RESUME YES can be specified or inherited from the LOAD

statement.

LOAD SHRLEVEL CHANGE does not perform the SORT, BUILD,

SORTBLD, INDEXVAL, ENFORCE, or REPORT phases, and the

compatibility and concurrency considerations differ.

A LOAD SHRLEVEL CHANGE job functions like a mass INSERT.

Whereas a regular LOAD job drains the entire table space, LOAD

SHRLEVEL CHANGE functions like an INSERT statement and uses

claims when accessing an object.

Normally, a LOAD RESUME YES job loads the records at the end of

the already existing records. However, for a LOAD RESUME YES job

with the SHRLEVEL CHANGE option, the utility tries to insert the

new records in available free space as close to the clustering order as

possible. This LOAD job does not create any additional free pages. If

you insert a lot of records, these records are likely to be stored out of

clustering order. In this case, you should run the REORG

TABLESPACE utility after loading the records.

When an identity column exists in the table being loaded, performance

can be improved by specifying the CACHE attribute for the identity

column.

Recommendation: If you have loaded a lot of records, run RUNSTATS

SHRLEVEL CHANGE UPDATE SPACE and then a conditional

REORG.

Log records that DB2 creates during LOAD SHRLEVEL CHANGE can

be used by DB2 DataPropagator, if the tables that are being loaded are

defined with DATA CAPTURE CHANGES.

Note that before and after row triggers are activated for SHRLEVEL

CHANGE but not for SHRLEVEL NONE. Statement triggers for each

row are also activated for SHRLEVEL CHANGE but not for

SHRLEVEL NONE.

REPLACE

Indicates whether the table space and all its indexes need to be reset to

empty before records are loaded. With this option, the newly loaded rows

replace all existing rows of all tables in the table space, not just those of

the table that you are loading. For DB2 STOGROUP-defined data sets, the

data set is deleted and redefined with this option, unless you also specified

the REUSE option. You must have LOAD authority for all tables in the

table space where you perform LOAD REPLACE. If you attempt a LOAD

REPLACE without this authority, you get an error message.

 You cannot use REPLACE with the PART integer REPLACE option of INTO

TABLE; you must either replace an entire table space by using the

REPLACE option or replace a single partition by using the PART integer

REPLACE option of INTO TABLE.

Specifying LOAD REPLACE (rather than PART integer REPLACE) tells

LOAD to serialize at the table space level. If you want to serialize at the

LOAD

198 Utility Guide and Reference

|
|
|
|

#
#
#

partition level, specify PART integer REPLACE. See the information about

specifying REPLACE at the partition level under the keyword descriptions

for INTO TABLE.

COPYDDN (ddname1,ddname2)

Specifies the DD statements for the primary (ddname1) and backup

(ddname2) copy data sets for the image copy.

 ddname is the DD name.

The default is SYSCOPY for the primary copy. No default exists for the

backup copy.

The COPYDDN keyword can be specified only with REPLACE. A full

image copy data set (SHRLEVEL REFERENCE) is created for the table or

partitions that are specified when LOAD executes. The table space or

partition for which an image copy is produced is not placed in

COPY-pending status.

Image copies that are taken during LOAD REPLACE are not recommended

for use with RECOVER TOCOPY because these image copies might

contain unique index violations or referential constraint violations.

Using COPYDDN when loading a table with LOB columns does not create

a copy of any index or LOB table space. You must perform these tasks

separately.

The COPYDDN keyword specifies either a DD name or a TEMPLATE

name specification from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the

current job step and a TEMPLATE name, the utility uses the DD name. For

more information about TEMPLATE specifications, see Chapter 31,

“TEMPLATE,” on page 587.

RECOVERYDDN ddname3,ddname4

Specifies the DD statements for the primary (ddname3) and backup

(ddname4) copy data sets for the image copy at the recovery site.

 ddname is the DD name.

You cannot have duplicate image copy data sets. The same rules apply for

RECOVERYDDN and COPYDDN.

The RECOVERYDDN keyword specifies either a DD name or a

TEMPLATE name specification from a previous TEMPLATE control

statement. If utility processing detects that the specified name is both a DD

name in the current job step and a TEMPLATE name, the utility uses the

DD name. For more information about TEMPLATE specifications, see

Chapter 31, “TEMPLATE,” on page 587.

STATISTICS

Specifies the gathering of statistics for a table space, index, or both; the

statistics are stored in the DB2 catalog.

 If you specify the STATISTICS keyword with no other statistics-spec or

correlation-stats-spec options, DB2 gathers only table space statistics.

Statistics are collected on a base table space, but not on a LOB table space.

Restriction: If you specify STATISTICS for encrypted data, DB2 might not

provide useful statistics on this data.

LOAD

Chapter 16. LOAD 199

|
|

TABLE

Specifies the table for which column information is to be gathered. All

tables must belong to the table space that is specified in the TABLESPACE

option.

(ALL)

Specifies that information is to be gathered for all columns of all tables

in the table space. The default is ALL.

(table-name)

Specifies the tables for which column information is to be gathered. If

you omit the qualifier, the user identifier for the utility job is used.

Enclose the table name in quotation marks if the name contains a

blank.

 If you specify more than one table, you must repeat the TABLE option.

Multiple TABLE options must be specified entirely before or after any

INDEX keyword that may also be specified. For example, the INDEX

keyword may not be specified between any two TABLE keywords.

SAMPLE integer

Indicates the percentage of rows that LOAD is to sample when collecting

non-indexed column statistics. You can specify any value from 1 through

100. The default is 25.

COLUMN

Specifies the columns for which column information is to be gathered.

 You can specify this option only if you specify the particular tables for

which statistics are to be gathered (TABLE (table-name)). If you specify

particular tables and do not specify the COLUMN option, the default,

COLUMN(ALL), is used. If you do not specify a particular table when

using the TABLE option, you cannot specify the COLUMN option;

however, COLUMN(ALL) is assumed.

(ALL)

Specifies that statistics are to be gathered for all columns in the table.

The default is ALL.

(column-name, ...)

Specifies the columns for which statistics are to be gathered.

 You can specify a list of column names; the maximum is 10. If you

specify more than one column, separate each name with a comma.

INDEX

Specifies indexes for which information is to be gathered. Column

information is gathered for the first column of the index. All the indexes

must be associated with the same table space, which must be the table

space that is specified in the TABLESPACE option.

(ALL)

Specifies that the column information is to be gathered for all indexes

that are defined on tables in the table space.

(index-name)

Specifies the indexes for which information is to be gathered. Enclose

the index name in quotation marks if the name contains a blank.

LOAD

200 Utility Guide and Reference

KEYCARD

Requests the collection of all distinct values in all of the 1 to n key column

combinations for the specified indexes. n is the number of columns in the

index.

FREQVAL

Controls the collection of frequent-value statistics. If you specify

FREQVAL, it must be followed by two additional keywords:

NUMCOLS

Indicates the number of key columns that are to be concatenated

together when collecting frequent values from the specified index.

Specifying '3' means that frequent values are to be collected on the

concatenation of the first three key columns. The default is 1, which

means that DB2 collects frequent values on the first key column of the

index.

COUNT

Indicates the number of frequent values that are to be collected.

Specifying ’15’ means that DB2 collects 15 frequent values from the

specified key columns. The default is 10.

REPORT

Indicates whether a set of messages is to be generated to report the

collected statistics.

NO

Indicates that the set of messages is not sent to SYSPRINT as output.

 The default is NO.

YES

Indicates that the set of messages is sent to SYSPRINT as output. The

generated messages are dependent on the combination of keywords

(such as TABLESPACE, INDEX, TABLE, and COLUMN) that are

specified with the RUNSTATS utility. However, these messages are not

dependent on the specification of the UPDATE option. REPORT YES

always generates a report of SPACE and ACCESSPATH statistics.

UPDATE

Indicates whether the collected statistics are to be inserted into the catalog

tables. UPDATE also allows you to select statistics that are used for access

path selection or statistics that are used by database administrators.

ALL Indicates that all collected statistics are to be updated in the

catalog.

 The default is ALL.

ACCESSPATH

Indicates that updates are to be made only to the catalog table

columns that provide statistics that are used for access path

selection.

SPACE

Indicates that updates are to be made only to the catalog table

columns that provide statistics to help database administrators

assess the status of a particular table space or index.

NONE

Indicates that no catalog tables are to be updated with the collected

statistics. This option is valid only when REPORT YES is specified.

LOAD

Chapter 16. LOAD 201

|
|
|
|

||
|

|

|
|
|
|

|
|
|
|

|
|
|

HISTORY

Records all catalog table inserts or updates to the catalog history tables.

 The default is supplied by the value that is specified in STATISTICS

HISTORY on panel DSNTIPO.

ALL Indicates that all collected statistics are to be updated in the catalog

history tables.

ACCESSPATH

Indicates that updates are to be made only to the catalog history

table columns that provide statistics that are used for access path

selection.

SPACE

Indicates that only space-related catalog statistics are to be updated

in catalog history tables.

NONE

Indicates that no catalog history tables are to be updated with the

collected statistics.

FORCEROLLUP

Specifies whether aggregation or rollup of statistics is to take place when

RUNSTATS is executed even if some parts are empty. This keyword

enables the optimizer to select the best access path.

YES Indicates that forced aggregation or rollup processing is to be done,

even though some parts might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is

available for all parts.

 If data is not available for all parts, DSNU623I message is issued if

the installation value for STATISTICS ROLLUP on panel DSNTIPO

is set to NO.

KEEPDICTIONARY

Prevents the LOAD utility from building a new compression dictionary.

LOAD retains the current compression dictionary and uses it for

compressing the input data. This option eliminates the cost that is

associated with building a new dictionary.

 This keyword is valid only if the table space that is being loaded has the

COMPRESS YES attribute.

 If the table space or partition is empty, DB2 performs one of these actions:

v DB2 builds a dictionary if a compression dictionary does not exist.

v DB2 keeps the dictionary if a compression dictionary exists.

If RESUME NO and REPLACE are specified when the table space or

partition is not empty, DB2 performs the same actions as it does when the

table space or partition is empty.

 If the table space or partition is not empty and RESUME YES is specified,

DB2 performs one of these actions:

v DB2 does not build a dictionary if a compression dictionary does not

exist.

v DB2 keeps the dictionary if a compression dictionary exists.

 For information regarding data compression, see Part 5 (Volume 2) of DB2

Administration Guide.

LOAD

202 Utility Guide and Reference

|

|
|

||
|

|
|
|
|

|
|
|

|
|
|

REUSE

Specifies (when used with REPLACE) that LOAD is to logically reset and

reuse DB2-managed data sets without deleting and redefining them. If you

do not specify REUSE, DB2 deletes and redefines DB2-managed data sets

to reset them.

 REUSE must be accompanied by REPLACE to do the logical reset for all

data sets. However, if you specify REUSE for the table space and

REPLACE only at the partition level, only the replaced partitions are

logically reset. See the description of REUSE in “INTO-TABLE-spec” on

page 210 for information about specifying REUSE for individual partitions.

If a data set has multiple extents, the extents are not released if you specify

the REUSE parameter.

LOG Indicates whether logging is to occur during the RELOAD phase of the

load process.

YES

Specifies normal logging during the load process. All records that are

loaded are logged. The default is YES.

NO

Specifies no logging of data during the load process. The NO option

sets the COPY-pending restriction against the table space or partition

that the loaded table resides in. No table or partition in the table space

can be updated by SQL until the restriction is removed. For ways to

remove the restriction, see “Resetting COPY-pending status” on page

266.

 If you load a single partition of a partitioned table space and the table

space has a secondary index, some logging might occur during the

build phase as DB2 logs any changes to the index structure. This

logging allows recoverability of the secondary index in case an abend

occurs, and it also allows concurrency.

A LOB table space affects logging while DB2 loads a LOB column

regardless of whether the LOB table space was defined with LOG YES

or LOG NO. See Table 40 on page 260 for more information.

NOCOPYPEND

Specifies that LOAD is not to set the table space in the

COPY-pending status, even though LOG NO was specified. A

NOCOPYPEND specification does not turn on or change any

informational COPY-pending (ICOPY) status for indexes. A

NOCOPYPEND specification will not turn off any COPY-pending

status that was set prior to the LOAD. Normal completion of a

LOAD LOG NO NOCOPYPEND job returns a 0 code if no other

errors or warnings exist.

 DB2 ignores a NOCOPYPEND specification if you also specified

COPYDDN to make a local-site inline image copy during the

LOAD.

Attention: Specify the NOCOPYPEND option only if the data in

the table space can be easily recreated by another LOAD job if the

data is lost. If you do not take an image copy following the LOAD,

you cannot recover the table space by using the RECOVER utility

and you might lose data.

LOAD

Chapter 16. LOAD 203

|
|
|
|
|

WORKDDN (ddname1,ddname2)

Specifies the DD statements for the temporary work file for sort input and

sort output. Temporary work files for sort input and output are required if

the LOAD involves tables with indexes.

 ddname1 is the DD name for the temporary work file for sort input. The

default is SYSUT1.

ddname2 is the DD name for the temporary work file for sort output. The

default is SORTOUT.

The WORKDDN keyword specifies either a DD name or a TEMPLATE

name specification from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the

current job step and a TEMPLATE name, the utility uses the DD name. For

more information about TEMPLATE specifications, see Chapter 31,

“TEMPLATE,” on page 587.

SORTKEYS integer

Specifies that index keys are to be sorted in parallel during the SORTBLD

phase to improve performance. Optionally, you can specify a value for

integer to provide an estimate of the number of index keys that are to be

sorted. Integer must be a positive integer between 0 and

562 949 953 421 311. The default is 0 if any of the following conditions are

true:

v The target table has no index and SHRLEVEL is NONE.

v The target table has one index.

v The input is on tape, a cursor, a PDS member, or for SYSREC DD *.

For sequential data sets, LOAD computes an estimate based upon the

input data set size.

 For more information about sorting keys, see “Improved performance with

SORTKEYS” on page 251 and “Building indexes in parallel for LOAD” on

page 255.

FORMAT

Identifies the format of the input record. If you use FORMAT UNLOAD or

FORMAT SQL/DS, it uniquely determines the format of the input, and no

field specifications are allowed in an INTO TABLE option.

 If you omit FORMAT, the format of the input data is determined by the

rules for field specifications that are described in“Option descriptions for

INTO TABLE” on page 213. If you specify FORMAT DELIMITED, the

format of the input data is determined by the rules that are described in

Appendix F, “Delimited file format,” on page 895.

UNLOAD

Specifies that the input record format is compatible with the DB2

unload format. (The DB2 unload format is the result of REORG

with the UNLOAD ONLY option.)

 Input records that were unloaded by the REORG utility are loaded

into the tables from which they were unloaded, if an INTO TABLE

option specifies each table. Do not add columns or change column

definitions of tables between the time you run REORG UNLOAD

ONLY and LOAD FORMAT UNLOAD.

Any WHEN clause on the LOAD FORMAT UNLOAD statement is

ignored; DB2 reloads the records into the same tables from which

LOAD

204 Utility Guide and Reference

#
#

#

#

#

|
|

|
|
|

they were unloaded. Not allowing a WHEN clause with the

FORMAT UNLOAD clause ensures that the input records are

loaded into the proper tables. Input records that cannot be loaded

are discarded.

If the DCB RECFM parameter is specified on the DD statement for

the input data set, and the data set format has not been modified

since the REORG UNLOAD (ONLY) operation, the record format

must be variable (RECFM=V).

SQL/DS

Specifies that the input record format is compatible with the

SQL/DS unload format. The data type of a column in the table

that is to be loaded must be the same as the data type of the

corresponding column in the SQL/DS table.

 If the SQL/DS input contains rows for more than one table, the

WHEN clause of the INTO TABLE option indicates which input

records are to be loaded into which DB2 table.

For information about the correct DCB parameters to specify on

the DD statement for the input data set, refer to DB2 Server for VM:

DBS Utility.

LOAD cannot load SQL/DS strings that are longer than the DB2

limit. For information about DB2 limits, see Appendix A, “Limits in

DB2 UDB for z/OS,” on page 787.

SQL/DS data that has been unloaded to disk under DB2 Server for

VSE & VM resides in a simulated z/OS-type data set with a record

format of VBS. Consider this format when transferring the data to

another system that is to be loaded into a DB2 table (for example,

the DB2 Server for VSE & VM. FILEDEF must define it as a

z/OS-type data set). Processing the data set as a standard CMS file

puts the SQL/DS record type field at the wrong offset within the

records; LOAD is unable to recognize them as valid SQL/DS input.

DELIMITED

Specifies that the input data file is in a delimited format. When

data is in a delimited format, all fields in the input data set are

character strings or external numeric values. In addition, each

column in a delimited file is separated from the next column by a

column delimiter character.

 For each of the delimiter types that you can specify, you must

ensure that the delimiter character is specified in the code page of

the source data. The delimiter character can be specified as either a

character or hex constant. For example, to specify ’#’ as the

delimiter, you can specify either COLDEL ’#’ or COLDEL X'23'. If

the utility statement is coded in a character type that is different

from the input file, such as a utility statement that is coded in

EBCDIC and input data that is in Unicode, you should specify the

delimiter character in the utility statement as a hex constant, or the

result can be unpredictable.

You cannot specify the same character for more than one type of

delimiter (COLDEL, CHARDEL, and DECPT). For more

information about delimiter restrictions, see “Loading delimited

files” on page 242.

LOAD

Chapter 16. LOAD 205

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

Unicode input data for FORMAT DELIMITED must be UTF-8,

CCSID 1208.

If you specify the FORMAT DELIMITED option, you cannot use

any of the following options:

v CONTINUEIF

v INCURSOR

v Multiple INTO TABLE statements

v WHEN

Also, LOAD ignores any specified POSITION statements within

the LOAD utility control statement.

For more information about using delimited output and delimiter

restrictions, see “Loading delimited files” on page 242. For more

information about delimited files see Appendix F, “Delimited file

format,” on page 895.

COLDEL coldel

Specifies the column delimiter that is used in the input file.

The default is a comma (,). For ASCII and UTF-8 data this is

X'2C', and for EBCDIC data it is a X'6B'.

CHARDEL chardel

Specifies the character string delimiter that is used in the input

file. The default is a double quotation mark (“). For ASCII and

UTF-8 data this is X'22', and for EBCDIC data it is X'3F'.

 To delimit character strings that contain the character string

delimiter, repeat the character string delimiter where it is used

in the character string. LOAD interprets any pair of character

delimiters that are found between the enclosing character

delimiters as a single character. For example, the phrase “what

a ““nice warm”” day” is interpreted as what a “nice warm”

day. The LOAD utility recognizes these character delimiter

pairs for only CHAR, VARCHAR, and CLOB fields.

Character string delimiters are required only when the string

contains the CHARDEL character. However, you can put the

character string delimiters around other character strings. Data

that has been unloaded in delimited format by the UNLOAD

utility includes character string delimiters around all character

strings.

DECPTdecpt

Specifies the decimal point character that is used in the input

file. The default is a period (.).

 The default decimal point character is a period in a delimited

file, X'2E' in an ASCII or Unicode UTF-8 file.

FLOAT

Specifies that LOAD is to expect the designated format for floating point

numbers.

(S390)

Specifies that LOAD is to expect that floating point numbers are

provided in System/390 hexadecimal floating point (HFP) format.

(S390) is the format that DB2 stores floating point numbers in. It is also

the default if you do not explicitly specify the FLOAT keyword.

LOAD

206 Utility Guide and Reference

|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

(IEEE)

Specifies that LOAD is to expect that floating point numbers are

provided in IEEE binary floating point (BFP) format.

 When you specify FLOAT(IEEE), DB2 converts the BFP data to HFP

format as the data is being loaded into the DB2 table. If a conversion

error occurs while DB2 is converting from BFP to HFP, DB2 places the

record in the discard file.

FLOAT(IEEE) is mutually exclusive with any specification of the

FORMAT keyword. If you specify both FLOAT(IEEE) and FORMAT,

DB2 issues message DSNU070I.

BFP format is sometimes called IEEE floating point.

EBCDIC

Specifies that the input data file is EBCDIC. The default is EBCDIC.

ASCII Specifies that the input data file is ASCII. Numeric, date, time, and

timestamp internal formats are not affected by the ASCII option.

UNICODE

Specifies that the input data file is Unicode. The UNICODE option does

not affect the numeric internal formats.

CCSID

Specifies up to three coded character set identifiers (CCSIDs) for the input

file. The first value specifies the CCSID for SBCS data that is found in the

input file, the second value specifies the CCSID for mixed DBCS data, and

the third value specifies the CCSID for DBCS data. If any of these values is

specified as 0 or omitted, the CCSID of the corresponding data type in the

input file is assumed to be the same as the installation default CCSID. If

the input data is EBCDIC, the omitted CCSIDs are assumed to be the

EBCDIC CCSIDs that are specified at installation, and if the input data is

ASCII, the omitted CCSIDs are assumed to be the ASCII CCSIDs that are

specified at installation. If the CCSIDs of the input data file do not match

the CCSIDs of the table that is being loaded, the input data is converted to

the table CCSIDs before being loaded.

 integer is any valid CCSID specification.

If the input data is Unicode, the default CCSID values are the Unicode

CCSIDs that are specified at system installation.

NOSUBS

Specifies that LOAD is not to accept substitution characters in a string.

 Place a substitution character in a string when that string is being

converted from ASCII to EBCDIC, or when the string is being converted

from one CCSID to another. For example, this substitution occurs when a

character (sometimes referred to as a code point) that exists in the source

CCSID (code page) does not exist in the target CCSID (code page).

When you specify the NOSUBS option and the LOAD utility determines

that a substitution character has been placed in a string as a result of a

conversion, it performs one of the following actions:

v If discard processing is active: DB2 issues message DSNU310I and

places the record in the discard file.

v If discard processing is not active: DB2 issues message DSNU334I, and

the utility abnormally terminates.

LOAD

Chapter 16. LOAD 207

ENFORCE

Specifies whether LOAD is to enforce check constraints and referential

constraints, except informational referential constraints, which are not

enforced.

CONSTRAINTS

Indicates that constraints are to be enforced. If LOAD detects a

violation, it deletes the errant row and issues a message to identify

it. If you specify this option and referential constraints exist, sort

input and sort output data sets must be defined.

 The default is CONSTRAINTS.

NO Indicates that constraints are not to be enforced. This option places

the target table space in the CHECK-pending status if at least one

referential constraint or check constraint is defined for the table.

ERRDDN ddname

Specifies the DD statement for a work data set that is being used during

error processing. Information about errors that are encountered during

processing is stored in this data set. A SYSERR data set is required if you

request discard processing.

 ddname is the DD name. The default is SYSERR.

The ERRDDN keyword specifies either a DD name or a TEMPLATE name

specification from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the

current job step and a TEMPLATE name, the utility uses the DD name. For

more information about TEMPLATE specifications, see Chapter 31,

“TEMPLATE,” on page 587.

MAPDDN ddname

Specifies the DD statement for a work data set that is to be used during

error processing. The work data set is used to correlate the identifier of a

table row with the input record that caused an error. A SYSMAP data set is

required if you specify ENFORCE CONSTRAINTS and the tables have a

referential relationship, or if you request discard processing when loading

one or more tables that contain unique indexes.

 ddname is the DD name. The default is SYSMAP.

The MAPDDN keyword specifies either a DD name or a TEMPLATE name

specification from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the

current job step and a TEMPLATE name, the utility uses the DD name. For

more information about TEMPLATE specifications, see Chapter 31,

“TEMPLATE,” on page 587.

DISCARDDN ddname

Specifies the DD statement for a discard data set that is to hold copies of

records that are not loaded (for example, if they contain conversion errors).

The discard data set also holds copies of records that are loaded and then

removed (due to unique index errors, or referential or check constraint

violations). Flag input records for discarding during RELOAD, INDEXVAL,

and ENFORCE phases. However, the discard data set is not written until

the DISCARD phase when the flagged records are copied from the input

data set to the discard data set. The discard data set must be a sequential

data set that can be written to by BSAM, with the same record format,

record length, and block size as the input data set.

LOAD

208 Utility Guide and Reference

|
|
|

|
|
|
|
|

|

||
|
|

ddname is the DD name. The default is SYSDISC.

If you omit the DISCARDDN option, the utility application program saves

discarded records only if a SYSDISC DD statement is in the JCL input.

The DISCARDDN keyword is not supported if you use a BatchPipes file as

an input to LOAD, using INDDN name for TEMPLATE SUBSYS.

The DISCARDDN keyword specifies either a DD name or a TEMPLATE

name specification from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the

current job step and a TEMPLATE name, the utility uses the DD name. For

more information about TEMPLATE specifications, see Chapter 31,

“TEMPLATE,” on page 587.

DISCARDS integer

Specifies the maximum number of source records that are to be written on

the discard data set. integer can range from 0 to 2147483647. If the discard

maximum is reached, LOAD abnormally terminates, the discard data set is

empty, and you cannot see which records were discarded. You can either

restart the job with a larger limit, or terminate the utility.

 DISCARDS 0 specifies that you do not want to set a maximum value. The

entire input data set can be discarded.

The default is DISCARDS 0.

SORTDEVT device-type

Specifies the device type for temporary data sets that are to be dynamically

allocated by DFSORT. You can specify any device type that is acceptable to

the DYNALLOC parameter of the SORT or OPTION options for DFSORT.

 A TEMPLATE specification does not dynamically allocate sort work data

sets. The SORTDEVT keyword controls dynamic allocation of these data

sets.

SORTNUM integer

Indicates the number of temporary data sets that are to be dynamically

allocated by the sort application program.

 integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and

omit SORTNUM, no value is passed to DFSORT. In this case, DFSORT uses

its own default.

You need at least two sort work data sets for each sort. The SORTNUM

value applies to each sort invocation in the utility. For example, if there are

three indexes, SORTKEYS is specified, there are no constraints limiting

parallelism, and SORTNUM is specified as 8, then a total of 24 sort work

data sets will be allocated for a job.

Each sort work data set consumes both above the line and below the link

virtual storage, so if you specify too high a value for SORTNUM, the

utility may decrease the degree of parallelism due to virtual storage

constraints, and possibly decreasing the degree down to one, meaning no

parallelism.

Important: The SORTNUM keyword will not be considered if ZPARM

UTSORTAL is set to YES and IGNSORTN is set to YES.

LOAD

Chapter 16. LOAD 209

#
#

#
#
#
#
#

#
#
#
#
#

#
#

CONTINUEIF

Indicates that you want to be able to treat each input record as a portion of

a larger record. After CONTINUEIF, write a condition in one of the

following forms:

(start:end) = X’byte-string’

(start:end) = ’character-string’

If the condition is true in any record, the next record is concatenated with

it before loading takes place. You can concatenate any number of records

into a larger record, up to a maximum size of 32767 bytes.

Data in the input record can be in ASCII or Unicode format, but the utility

control statement always interprets character constants as EBCDIC. To use

CONTINUEIF with the ASCII or UNICODE option, you must code the

condition by using the hexadecimal form, not the character-string form. For

example, use (1:1)=X’31’ rather than (1:1)=’1’. As an alternative, you

can code the control statements in UTF-8. See “Unicode character strings”

on page 17for more information about hex notation and UTF-8.

(start:end)

Specifies column numbers in the input record; the first column of the

record is column 1. The two numbers tell the starting and ending

columns of a continuation field in the input record.

 Other field position specifications (such as those for WHEN,

POSITION, or NULLIF) refer to the field position within the final

assembled load record, not within the input record.

The continuation field is removed from the input record and is not part

of the final load record.

If you omit :end, DB2 assumes that the length of the continuation field

is the length of the byte string or character string. If you use :end, and

the length of the resulting continuation field is not the same as the

length of the byte string or character string, the shorter string is

padded. Character strings are padded with blanks. Hexadecimal

strings are padded with zeros.

X'byte-string'

Specifies a string of hexadecimal characters. This byte-string value in

the continuation field indicates that the next input record is a

continuation of the current load record. Records with this byte-string

value are concatenated until the value in the continuation field

changes. For example, the following CONTINUEIF specification

indicates that for any input records that have a value of X'FF'in column

72, LOAD is to concatenate that record with the next input record.

CONTINUEIF (72) = X’FF’

'character-string'

Specifies a string of characters that has the same effect as X'byte-string'.

For example, the following CONTINUEIF specification indicates that

for any input records that have the string CC in columns 99 and 100,

LOAD is to concatenate that record with the next input record.

CONTINUEIF (99:100) = ’CC’

INTO-TABLE-spec

More than one table or partition for each table space can be loaded with a single

invocation of the LOAD utility. At least one INTO TABLE statement is required for

each table that is to be loaded. Each INTO TABLE statement:

LOAD

210 Utility Guide and Reference

v Identifies the table that is to be loaded

v Describes fields within the input record

v Defines the format of the input data set

All tables that are specified by INTO TABLE statements must belong to the same

table space.

If the data is already in UNLOAD or SQL/DS format, and FORMAT UNLOAD or

FORMAT SQL/DS is used on the LOAD statement, no field specifications are

allowed.

INTO-TABLE-spec:

��

INTO

TABLE

table-name

IDENTITYOVERRIDE

 IGNOREFIELDS NO

IGNOREFIELDS

YES

�

�
INDDN

SYSREC

PART

integer

resume-spec

PREFORMAT

INDDN

ddname

DISCARDDN

ddname

INCURSOR

cursor-name

 �

�
WHEN

SQL/DS=’table-name’

field selection criterion

�

,

(

field specification

)

 ��

resume-spec:

��
 RESUME NO

REPLACE

REUSE

copy-spec

RESUME

YES

KEEPDICTIONARY

��

field selection criterion:

�� field-name

(start

)

:end

 = X’byte-string’

’character-string’

G’graphic-string’

N’graphic-string’

 ��

LOAD

Chapter 16. LOAD 211

field specification:

�� field-name

POSITION(start

)

:end

CHAR

(length)

BIT

strip-spec

MIXED

strip-spec

BLOBF

CLOBF

MIXED

DBCLOBF

VARCHAR

BIT

strip-spec

MIXED

strip-spec

BLOBF

CLOBF

MIXED

DBCLOBF

GRAPHIC

strip-spec

EXTERNAL

(length)

VARGRAPHIC

strip-spec

SMALLINT

INTEGER

EXTERNAL

(length)

PACKED

DECIMAL

ZONED

EXTERNAL

,0

(length

)

,scale

FLOAT

EXTERNAL

(length)

DATE

EXTERNAL

(length)

TIME

EXTERNAL

(length)

TIMESTAMP

EXTERNAL

(length)

ROWID

BLOB

CLOB

MIXED

DBCLOB

 �

�
NULLIF

field selection criterion

DEFAULTIF

field selection criterion

 ��

strip spec:

LOAD

212 Utility Guide and Reference

################

��

BOTH

STRIP

TRAILING

(1)

LEADING

'strip-char'

X'strip-char'

TRUNCATE
 ��

Notes:

1 If you specify GRAPHIC or VARGRAPHIC, you cannot specify 'strip-char'. You can specify only

X'strip-char'.

Option descriptions for INTO TABLE

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

table-name

Specifies the name of a table that is to be loaded. The table must be

described in the catalog and must not be a catalog table or a

system-maintained materialized query table.

 If the table name is not qualified by an authorization ID, the authorization

ID of the invoker of the utility job step is used as the qualifier of the table

name. Enclose the table name in quotation marks if the name contains a

blank.

Data from every LOAD record in the data set is loaded into the specified

table unless:

v A WHEN clause is used, and the data does not match the field selection

criterion.

v The FORMAT UNLOAD option is used on the LOAD statement, and the

data comes from a table that is not specified in an INTO TABLE

statement.

v A certain partition is specified, and the data does not belong to that

partition.

v Data conversion errors occur.

v Any errors occur that are not generated by data conversion.

IDENTITYOVERRIDE

Allows unloaded data to be reloaded into a GENERATED ALWAYS

identity column of the same table using LOAD REPLACE. When this

option is used and input field specifications are coded, the identity column

must be specified and NULLIF or DEFAULTIF is not allowed.

 Specifying this option will allow LOAD INTO TABLE PART when the

identity column is part of the partitioning index.

IGNOREFIELDS

Indicates whether LOAD is to skip fields in the input data set that do not

correspond to columns in the target table. Examples of fields that do not

correspond to table columns are the DSN_NULL_IND_nnnnn,

DSN_ROWID, and DSN_IDENTITY fields that are generated by the

REORG utility.

LOAD

Chapter 16. LOAD 213

||||||

|
|

#
#
#
#
#

#
#

NO

Specifies that the LOAD process is not to skip any fields. The default

is NO.

YES

Specifies that LOAD is to skip fields in the input data set that do not

correspond to columns in the target table.

 Specifying YES can be useful if each input record contains a

variable-length field, followed by some variable-length data that you

do not want to load and then some data that you want to load.

Because of the variable-length field, you cannot use the POSITION

keyword to skip over the variable-length data that you do not want to

load. By specifying IGNOREFIELDS, you can give a field specification

for the variable-length data that you do not want to load; and by

giving it a name that is not one of the table column names, LOAD

skips the field without loading it.

Use this option with care, because it also causes fields to be skipped if

you intend to load a column but have misspelled the name.

PART integer

Specifies that data is to be loaded into a partition of a partitioned table

space. This option is valid only for partitioned table spaces.

 integer is the number of the partition into which records are to be loaded.

The same partition number cannot be specified more than once if partition

parallelism has been requested. Any data that is outside the range of the

specified partition is not loaded. The maximum is 4096.

LOAD INTO PART integer is not allowed if an identity column is part of

the partitioning index, unless IDENTITYOVERRRIDE is specified for the

identity column GENERATED ALWAYS.

PREFORMAT

Specifies that the remaining pages are to be preformatted up to the

high-allocated RBA in the partition and its corresponding partitioning

index space. The preformatting occurs after the data is loaded and the

indexes are built.

RESUME

Specifies whether records are to be loaded into an empty or non-empty

partition. For nonsegmented table spaces, space is not reused for rows that

have been marked as deleted or by rows of dropped tables is not reused. If

the RESUME option is specified at the table space level, the RESUME

option is not allowed in the PART clause.

 If you want the RESUME option to apply to the entire table space, use the

LOAD RESUME option. If you want the RESUME option to apply to a

particular partition, specify it by using PART integer RESUME.

NO

Loads records into an empty partition. If the partition is not empty,

and you have not used REPLACE, a message is issued, and the utility

job step terminates with a job step condition code of 8.

 For nonsegmented table spaces that contains deleted rows or rows of

dropped tables, using the REPLACE keyword provides increased

efficiency.

The default is NO.

LOAD

214 Utility Guide and Reference

|
|
|
|

#
#
#

YES

Loads records into a non-empty partition. If the partition is empty, a

warning message is issued, but the partition is loaded.

REPLACE

Indicates that you want to replace only the contents of the partition that is

cited by the PART option, rather than the entire table space.

 You cannot use LOAD REPLACE with the PART integer REPLACE option

of INTO TABLE. If you specify the REPLACE option, you must either

replace an entire table space, using LOAD REPLACE, or a single partition,

using the PART integer REPLACE option of INTO TABLE. You can,

however, use PART integer REPLACE with LOAD RESUME YES.

REUSE

Specifies, when used with the REPLACE option, that LOAD should

logically reset and reuse DB2-managed data sets without deleting and

redefining them. If you do not specify REUSE, DB2 deletes and redefines

DB2-managed data sets to reset them.

 If you specify REUSE with REPLACE on the PART specification (and not

for LOAD at the table space level), only the specified partitions are

logically reset. If you specify REUSE for the table space and REPLACE for

the partition, data sets for the replaced parts are logically reset.

KEEPDICTIONARY

Specifies that the LOAD utility is not to build a new dictionary. LOAD

retains the current dictionary and uses it for compressing the input data.

This option eliminates the cost that is associated with building a new

dictionary.

 This keyword is valid only if a dictionary exists and the partition that is

being loaded has the COMPRESS YES attribute.

If the partition has the COMPRESS YES attribute, but no dictionary exists,

one is built and an error message is issued.

INDDN ddname

Specifies the data definition (DD) statement or template that identifies the

input data set for the partition. The record format for the input data set

must be fixed or variable. The data set must be readable by the basic

sequential access method (BSAM).

 The ddname is the name of the input data set. The default is SYSREC.

INDDN can be a template name.

When loading LOB data, this input data set should include the names of

the files that contain the LOB column values. Each file can be either a PDS,

PDSE member, or separate HFS file.

If you specify INDDN, with or without DISCARDDN, in one INTO TABLE

PART specification and you supply more than one INTO TABLE PART

clause, you must specify INDDN in all INTO TABLE PART specifications.

Specifying INDDN at the partition level and supplying multiple PART

clauses, each with their own INDDN, enables load partition parallelism,

which can significantly improve performance. Loading all partitions in a

single job with load partition parallelism is recommended instead of

concurrent separate jobs whenever one or more nonpartitioned secondary

indexes are on the table space.

LOAD

Chapter 16. LOAD 215

#
#
#

The field specifications apply separately to each input file. Therefore, if

multiple INTO TABLE PART INDDN clauses are used, field specifications

are required on each one.

DISCARDDN ddname

Specifies the DD statement for a discard data set for the partition. The

discard data set holds copies of records that are not loaded (for example, if

they contain conversion errors). The discard data set also holds copies of

records that were loaded and then removed (due to unique index errors, or

referential or check constraint violations).

 Flag input records for discarding during the RELOAD, INDEXVAL, and

ENFORCE phases. However, the utility does not write the discard data set

until the DISCARD phase when the utility copies the flagged records from

the input data set to the discard data set.

The discard data set must be a sequential data set, and it must be

write-accessible by BSAM, with the same record format, record length, and

block size as the input data set.

The ddname is the name of the discard data set. DISCARDDN can be a

template name.

If you omit the DISCARDDN option, LOAD does not save discarded

records.

INCURSOR cursor-name

Specifies the cursor for the input data set. You must declare the cursor

before it is used by the LOAD utility. Use the EXEC SQL utility control

statement to define the cursor. You cannot load data into the same table on

which you defined the cursor.

 The specified cursor can be used as part of the DB2 UDB family cross

loader function, which enables you to load data from any DRDA-compliant

remote server. For more information about using the cross loader function,

see “Loading data by using the cross-loader function” on page 248.

cursor-name is the cursor name. Cursor names that are specified with the

LOAD utility cannot be longer than eight characters.

You cannot use the INCURSOR option with the following options:

v SHRLEVEL CHANGE

v NOSUBS

v FORMAT UNLOAD

v FORMAT SQL/DS

v CONTINUEIF

v WHEN.

In addition, you cannot specify field specifications with the INCURSOR

option.

WHEN

Indicates which records in the input data set are to be loaded. If no WHEN

clause is specified (and if FORMAT UNLOAD was not used in the LOAD

statement), all records in the input data set are loaded into the specified

tables or partitions. (Data that is beyond the range of the specified

partition is not loaded.)

 The option following WHEN describes a condition; input records that

satisfy the condition are loaded. Input records that do not satisfy any

WHEN clause of any INTO TABLE statement are written to the discard

data set, if one is being used.

LOAD

216 Utility Guide and Reference

Data in the input record can be in ASCII or Unicode, but LOAD always

interprets character constants that are specified in the utility control

statement as EBCDIC. To use WHEN where the ASCII or UNICODE option

is specified, code the condition by using the hexadecimal form, not the

character string form. For example, use (1:1)=X’31’ rather than (1:1)=’1’.

As an alternative, you can code the statement in UTF-8. See “Unicode

character strings” on page 17for more information about hex notation and

UTF-8.

SQL/DS='table-name'

Is valid only when the FORMAT SQL/DS option is used on the LOAD

statement.

 table-name is the name of a table that has been unloaded into the

unload data set. The table name after INTO TABLE tells which DB2

table the SQL/DS table is loaded into. Enclose the table name in

quotation marks if the name contains a blank.

If no WHEN clause is specified, input records from every SQL/DS

table are loaded into the table that is specified after INTO TABLE.

field-selection-criterion

Describes a field and a character constant. Only those records in which

the field contains the specified constant are to be loaded into the table

that is specified after INTO TABLE.

 A field in a selection criterion must:

v Contain a character or graphic string. No data type conversions are

performed when the contents of the field in the input record are

compared to a string constant.

v Start at the same byte offset in each assembled input record. If any

record contains varying-length strings, which are stored with length

fields, that precede the selection field, they must be padded so that

the start of the selection field is always at the same offset.

The field and the constant do not need to be the same length. If they

are not, the shorter of the two is padded before a comparison is made.

Character and graphic strings are padded with blanks. Hexadecimal

strings are padded with zeros.

field-name

Specifies the name of a field that is defined by a field-specification. If

field-name is used, the start and end positions of the field are given

by the POSITION option of the field specification.

(start:end)

Identifies column numbers in the assembled load record; the first

column of the record is column 1. The two numbers indicate the

starting and ending columns of a selection field in the load record.

 If :end is not used, the field is assumed to have the same length as

the constant.

X'byte-string'

Identifies the constant as a string of hexadecimal characters. For

example, the following WHEN clause specifies that a record is to

be loaded if it has the value X'FFFF' in columns 33 through 34.

WHEN (33:34) = X’FFFF’

'character-string'

Identifies the constant as a string of characters. For example, the

LOAD

Chapter 16. LOAD 217

following WHEN clause specifies that a record is to be loaded if

the field DEPTNO has the value D11.

WHEN DEPTNO = ’D11’

G'graphic-string'

Identifies the constant as a string of double-byte characters. For

example, the following WHEN clause specifies that a record is to

be loaded if it has the specified value in columns 33 through 36.

WHEN (33:36) = G’<**>’

In this example, < is the shift-out character,* is a double-byte

character, and > is the shift-in character.

 If the first or last byte of the input data is a shift-out character, it is

ignored in the comparison. Specify G as an uppercase character.

N'graphic-string'

Identifies the constant as a string of double-byte characters. N and

G are synonymous for specifying graphic string constants. Specify

N as an uppercase character.

(field-specification, ...)

Describes the location, format, and null value identifier of the data that is

to be loaded.

 If no field specifications are used:

v The fields in the input records are assumed to be in the same order as in

the DB2 table.

v The formats are set by the FORMAT option on the LOAD statement, if

that option is used.

v Fixed strings in the input are assumed to be of fixed maximum length.

VARCHAR and VARGRAPHIC fields must contain a valid 2-byte binary

length field preceding the data; no intervening gaps are allowed between

the VARCHAR or VARGRAPHIC fields and the LOB that follow.

v ROWID fields are varying length, and must contain a valid 2-byte binary

length field preceding the data; no intervening gaps are allowed between

ROWID fields and the fields that follow.

v LOB fields are varying length, and require a valid 4-byte binary length

field preceding the data; no intervening gaps are allowed between them

and the LOB fields that follow.

v Numeric data is assumed to be in the appropriate internal DB2 number

representation.

v The NULLIF or DEFAULTIF options cannot be used.

If any field specification is used for an input table, a field specification

must exist for each field of the table that does not have a default value.

Any field in the table with no corresponding field specification is loaded

with its default value.

If any column in the output table does not have a field specification and is

defined as NOT NULL, with no default, the utility job step is terminated.

Identity columns can appear in the field specification only if they were

defined with the GENERATED BY DEFAULT attribute.

field-name

Specifies the name of a field, which can be a name of your choice. If the

field is to be loaded, the name must be the name of a column in the table

LOAD

218 Utility Guide and Reference

that is named after INTO TABLE unless IGNOREFIELDS is specified. You

can use the field name as a vehicle to specify the range of incoming data.

See “Example 4: Loading data of different data types” on page 273 for an

example of loading selected records into an empty table space.

 The starting location of the field is given by the POSITION option. If

POSITION is not used, the starting location is one column after the end of

the previous field.

LOAD determines the length of the field in one of the following ways, in

the order listed:

1. If the field has data type VARCHAR, VARGRAPHIC, or ROWID, the

length is assumed to be contained in a 2-byte binary field that precedes

the data. For VARCHAR fields, the length is in bytes; for

VARGRAPHIC fields, the length field identifies the number of

double-byte characters.

If the field has data type CLOB, BLOB, or DBCLOB, the length is

assumed to be contained in a 4-byte binary field that precedes the data.

For BLOB and CLOB fields, the length is in bytes; for DBCLOB fields,

the length field identifies the number of double-byte characters.

2. If :end is used in the POSITION option, the length is calculated from

start and end. In that case, any length attribute after the CHAR,

GRAPHIC, INTEGER, DECIMAL, or FLOAT specifications is ignored.

3. The length attribute on the CHAR, GRAPHIC, INTEGER, DECIMAL, or

FLOAT specifications is used as the length.

4. The length is taken from the DB2 field description in the table

definition, or it is assigned a default value according to the data type.

For DATE and TIME fields, the length is defined during installation.

For variable-length fields, the length is defined from the column in the

DB2 table definition, excluding the null indicator byte, if it is present.

Table 28 shows the default length, in bytes, for each data type.

 Table 28. Default length of each data type (in bytes)

Data type Default length in bytes

BLOB Varying

CHARACTER Length that is used in column definition

CLOB Varying

DATE 10 (or installation default)

DBCLOB Varying

DECIMAL EXTERNAL Decimal precision for output columns that are

decimal, otherwise the length that is used in column

definition

DECIMAL PACKED Length that is used in column definition

DECIMAL ZONED Decimal precision for output columns that are

decimal, otherwise the length that is used in column

definition

FLOAT (single precision) 4

FLOAT (double precision) 8

GRAPHIC 2 multiplied by (length that is used in column

definition)

INTEGER 4

LOAD

Chapter 16. LOAD 219

Table 28. Default length of each data type (in bytes) (continued)

Data type Default length in bytes

MIXED Mixed DBCS data

ROWID Varying

SMALLINT 2

TIME 8 (or installation default)

TIMESTAMP 26

VARCHAR Varying

VARGRAPHIC Varying

If a data type is not given for a field, its data type is assumed to be the

same as that of the column into which it is loaded, as given in the DB2

table definition.

POSITION(start:end)

Indicates where a field is in the assembled load record.

 start and end are the locations of the first and last columns of the field; the

first column of the record is column 1. The option can be omitted.

Column locations can be specified as:

v An integer n, meaning an actual column number

v *, meaning one column after the end of the previous field

v *+n, where n is an integer, meaning n columns after the location that is

specified by *

Do not enclose the entire POSITION option specification in parentheses;

enclose only the start:end description in parentheses. Valid and invalid

specifications are shown in Table 29.

 Table 29. Example of valid and invalid POSITION specifications

Valid Invalid

POSITION (10:20) (POSITION (10:20))

 Data types in a field specification: The data type of the field can be specified by

any of the keywords that follow. Except for graphic fields, length is the length in

bytes of the input field.

All numbers that are designated EXTERNAL are in the same format in the input

records.

CHAR(length)

Specifies a fixed-length character string. If you do not specify length, the length

of the string is determined from the POSITION specification. If you do not

specify length or POSITION, LOAD uses the default length for CHAR, which is

determined from the length of the column in the table. See Table 28 on page

219 for more information on the default length for CHAR. You can also specify

CHARACTER and CHARACTER(length).

BIT

Specifies that the input field contains BIT data. If BIT is specified, LOAD

bypasses any CCSID conversions for the input data. If the target column

has the BIT data type attribute, LOAD bypasses any code page translation

for the input data.

LOAD

220 Utility Guide and Reference

|
|
|
|
|

MIXED

Specifies that the input field contains mixed SBCS and DBCS data. If

MIXED is specified, any required CCSID conversions use the mixed CCSID

for the input data. If MIXED is not specified, any such conversions use the

SBCS CCSID for the input data.

BLOBF

Indicates that the input field contains the name of a file from which a

BLOB is to be loaded into the specified table without CCSID conversion.

CLOBF

Indicates that the input field contains the name of a file from which a

CLOB is to be loaded into the specified table with any required CCSID

conversion.

DBCLOBF

Indicates that the input field contains the name of a file from which a

DBCLOB is to be loaded into the specified table with any required CCSID

conversion.

STRIP

Specifies that LOAD is to remove blanks (the default) or the specified

characters from the beginning, the end, or both ends of the data. LOAD

pads the CHAR field, so that it fills the rest of the column.

 LOAD applies the strip operation before performing any character code

conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar

function. For details, see Chapter 5 of DB2 SQL Reference.

BOTH

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the beginning and end of the data. The default is

BOTH.

TRAILING

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the end of the data.

LEADING

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the beginning of the data.

'strip-char'

Specifies a single-byte or double-byte character that LOAD is to strip

from the data.

 Specify this character value in EBCDIC. Depending on the input

encoding scheme, LOAD applies SBCS CCSID conversion to the

strip-char value before it is used in the strip operation.

If the subtype of the column to be loaded is BIT or you want to specify

a strip-char value in an encoding scheme other than EBCDIC, use the

hexadecimal form (X'strip-char'). LOAD does not perform any CCSID

conversion if the hexadecimal form is used.

X'strip-char'

Specifies in hexadecimal form a single-byte or double-byte character

that LOAD is to strip from the data. For single-byte characters, specify

this value in the form X'hh', where hh is two hexadecimal characters.

LOAD

Chapter 16. LOAD 221

#
#
#

#
#
#
#

#
#
#
#

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

For double-byte characters, specify this value in the form X'hhhh',

where hhhh is four hexadecimal characters.

 Use the hexadecimal form to specify a character in an encoding scheme

other than EBCDIC. When you specify the character value in

hexadecimal form, LOAD does not perform any CCSID conversion.

If you specify a strip character in the hexadecimal format, you must

specify the character in the input encoding scheme.

TRUNCATE

Indicates that LOAD is to truncate the input character string from the right

if the string does not fit in the target column. LOAD performs the

truncation operation after any CCSID translation.

 If the input data is BIT data, LOAD truncates the data at a byte boundary.

If the input data is SBCS or MIXED data, LOAD truncates the data at a

character boundary. (Double-byte characters are not split.) If a MIXED field

is truncated to fit a column, the truncated string can be shorter than the

specified column size. In this case, blanks in the output CCSID are padded

to the right. If MIXED data is in EBCDIC, truncation preserves the SO

(shift-out) and SI (shift-in) characters around a DBCS string.

VARCHAR

Specifies a character field of varying length. The length in bytes must be

specified in a 2-byte binary field preceding the data. (The length does not

include the 2-byte field itself.) The length field must start in the column that is

specified as start in the POSITION option. If :end is used, it is ignored.

BIT

Specifies that the input field contains BIT data. If BIT is specified, LOAD

bypasses any CCSID conversions for the input data. If the target column

has the BIT data type attribute, LOAD bypasses any code page translation

for the input data.

MIXED

Specifies that the input field contains mixed DBCS data. If MIXED is

specified, any required CCSID conversions use the mixed CCSID for the

input data. If MIXED is not specified, any such conversions use the SBCS

CCSID for the input data.

BLOBF

Indicates that the input field contains the name of a file from which a

BLOB is to be loaded into the specified table without CCSID conversion.

The file name must be in the SBCS CCSID of the specified encoding

scheme.

CLOBF

Indicates that the input field contains the name of a file from which a

CLOB is to be loaded into the specified table with any required CCSID

conversion. The file name must be in the SBCS CCSID of the specified

encoding scheme.

DBCLOBF

Indicates that the input field contains the name of a file from which a

DBCLOB is to be loaded into the specified table with any required CCSID

conversion. The file name must be in the SBCS CCSID of the specified

encoding scheme.

STRIP

Specifies that LOAD is to remove blanks (the default) or the specified

LOAD

222 Utility Guide and Reference

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

#
#
#
#
#

#
#
#
#
#

#
#
#
#
#

|
|

characters from the beginning, the end, or both ends of the data. LOAD

adjusts the VARCHAR length field to the length of the stripped data.

 LOAD applies the strip operation before performing any character code

conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar

function. For details, see Chapter 5 of DB2 SQL Reference.

BOTH

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the beginning and end of the data. The default is

BOTH.

TRAILING

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the end of the data.

LEADING

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the beginning of the data.

'strip-char'

Specifies a single-byte or double-byte character that LOAD is to strip

from the data.

 Specify this character value in EBCDIC. Depending on the input

encoding scheme, LOAD applies SBCS CCSID conversion to the

strip-char value before it is used in the strip operation.

If the subtype of the column to be loaded is BIT or you want to specify

a strip-char value in an encoding scheme other than EBCDIC, use the

hexadecimal form (X'strip-char'). LOAD does not perform any CCSID

conversion if the hexadecimal form is used.

X'strip-char'

Specifies in hexadecimal form a single-byte or double-byte character

that LOAD is to strip from the data. For single-byte characters, specify

this value in the form X'hh', where hh is two hexadecimal characters.

For double-byte characters, specify this value in the form X'hhhh',

where hhhh is four hexadecimal characters.

 Use the hexadecimal form to specify a character in an encoding scheme

other than EBCDIC. When you specify the character value in

hexadecimal form, LOAD does not perform any CCSID conversion.

If you specify a strip character in the hexadecimal format, you must

specify the character in the input encoding scheme.

TRUNCATE

Indicates that LOAD is to truncate the input character string from the right

if the string does not fit in the target column. LOAD performs the

truncation operation after any CCSID translation.

 If the input data is BIT data, LOAD truncates the data at a byte boundary.

If the input data is character type data, LOAD truncates the data at a

character boundary. If a mixed-character type data is truncated to fit a

column of fixed size, the truncated string can be shorter than the specified

column size. In this case, blanks in the output CCSID are padded to the

right.

LOAD

Chapter 16. LOAD 223

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

GRAPHIC(length)

Specifies a fixed-length graphic type. You can specify both start and end for the

field specification.

 If you use GRAPHIC, the input data must not contain shift characters. start

and end must indicate the starting and ending positions of the data itself.

length is the number of double-byte characters. The length of the field in bytes

is twice the value of length. If you do not specify length, the number of

double-byte characters is determined from the POSITION specification. If you

do not specify length or POSITION, LOAD uses the default length for

GRAPHIC, which is determined from the length of the column in the table. See

Table 28 on page 219 for more information on the default length for GRAPHIC.

For example, let *** represent three double-byte characters. Then, to describe

***, specify either POS(1:6) GRAPHIC or POS(1) GRAPHIC(3). A GRAPHIC field

that is described in this way cannot be specified in a field selection criterion.

STRIP

Specifies that LOAD is to remove blanks (the default) or the specified

characters from the beginning, the end, or both ends of the data.

 LOAD applies the strip operation before performing any character code

conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar

function. For details, see Chapter 5 of DB2 SQL Reference.

BOTH

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the beginning and end of the data. The default is

BOTH.

TRAILING

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the end of the data.

LEADING

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the beginning of the data.

X'strip-char'

Specifies the hexadecimal form of the double-byte character that LOAD

is to strip from the data. Specify this value in the form X'hhhh', where

hhhh is four hexadecimal characters.

 You must specify the character in the input encoding scheme.

TRUNCATE

Indicates that LOAD is to truncate the input character string from the right

if the string does not fit in the target column. LOAD performs the

truncation operation after any CCSID translation.

 LOAD truncates the data at a character boundary. Double-byte characters

are not split.

GRAPHIC EXTERNAL(length)

Specifies a fixed-length field of the graphic type with the external format. You

can specify both start and end for the field specification.

 If you use GRAPHIC EXTERNAL, the input data must contain a shift-out

character in the starting position, and a shift-in character in the ending

LOAD

224 Utility Guide and Reference

|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|
|

position. Other than the shift characters, this field must have an even number

of bytes. The first byte of any pair must not be a shift character.

length is the number of double-byte characters. length for GRAPHIC

EXTERNAL does not include the number of bytes that are represented by shift

characters. The length of the field in bytes is twice the value of length. If you

do not specify length, the number of double-byte characters is determined from

the POSITION specification. If you do not specify length or POSITION, LOAD

uses the default length for GRAPHIC, which is determined from the length of

the column in the table. See Table 28 on page 219 for more information on the

default length for GRAPHIC.

For example, let *** represent three double-byte characters, and let < and >

represent shift-out and shift-in characters. Then, to describe <***>, specify

either POS(1:8) GRAPHIC EXTERNAL or POS(1) GRAPHIC EXTERNAL(3).

STRIP

Specifies that LOAD is to remove blanks (the default) or the specified

characters from the beginning, the end, or both ends of the data.

 LOAD applies the strip operation before performing any character code

conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar

function. For details, see Chapter 5 of DB2 SQL Reference.

BOTH

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the beginning and end of the data. The default is

BOTH.

TRAILING

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the end of the data.

LEADING

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the beginning of the data.

X'strip-char'

Specifies the hexadecimal form of the double-byte character that LOAD

is to strip from the data. Specify this value in the form X'hhhh', where

hhhh is four hexadecimal characters.

 You must specify the character in the input encoding scheme.

TRUNCATE

Indicates that LOAD is to truncate the input character string from the right

if the string does not fit in the target column. LOAD performs the

truncation operation after any CCSID translation.

 LOAD truncates the data at a character boundary. Double-byte characters

are not split.

VARGRAPHIC

Identifies a graphic field of varying length. The length, in double-byte

characters, must be specified in a 2-byte binary field preceding the data. (The

length does not include the 2-byte field itself.) The length field must start in

the column that is specified as start in the POSITION option. :end, if used, is

ignored.

 VARGRAPHIC input data must not contain shift characters.

LOAD

Chapter 16. LOAD 225

|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|
|

STRIP

Specifies that LOAD is to remove blanks (the default) or the specified

characters from the beginning, the end, or both ends of the data. LOAD

adjusts the VARGRAPHIC length field to the length of the stripped data

(the number of DBCS characters).

 LOAD applies the strip operation before performing any character code

conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar

function. For details, see Chapter 5 of DB2 SQL Reference.

BOTH

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the beginning and end of the data. The default is

BOTH.

TRAILING

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the end of the data.

LEADING

Indicates that LOAD is to remove occurrences of blank or the specified

strip character from the beginning of the data.

X'strip-char'

Specifies the hexadecimal form of the double-byte character that LOAD

is to strip from the data. Specify this value in the form X'hhhh', where

hhhh is four hexadecimal characters.

 You must specify the character in the input encoding scheme.

TRUNCATE

Indicates that LOAD is to truncate the input character string from the right

if the string does not fit in the target column. LOAD performs the

truncation operation after any CCSID translation.

 LOAD truncates the data at a character boundary. Double-byte characters

are not split.

SMALLINT

Specifies a 2-byte binary number. Negative numbers are in two’s complement

notation.

INTEGER

Specifies a 4-byte binary number. Negative numbers are in two’s complement

notation. You can also specify INT.

INTEGER EXTERNAL(length)

A string of characters that represent a number. The format is that of an SQL

numeric constant, as described in Chapter 2 of DB2 SQL Reference. If you do

not specify length, the length of the string is determined from the POSITION

specification. If you do not specify length or POSITION, LOAD uses the default

length for INTEGER, which is 4 bytes. See Table 28 on page 219 for more

information on the default length for INTEGER. You can also specify INT

EXTERNAL.

DECIMAL PACKED

Specifies a number of the form ddd...ds, where d is a decimal digit that is

represented by four bits, and s is a 4-bit sign value. The plus sign (+) is

represented by A, C, E, or F, and the minus sign (-) is represented by B or D.

LOAD

226 Utility Guide and Reference

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|
|

The maximum number of ds is the same as the maximum number of digits

that are allowed in the SQL definition. You can also specify DECIMAL, DEC,

or DEC PACKED.

DECIMAL ZONED

Specifies a number in the form znznzn...z/sn, where z, n, and s have the

following values:

n A decimal digit represented by the right 4 bits of a byte (called the

numeric bits)

z That digit’s zone, represented by the left 4 bits

s The right-most byte of the decimal operand; s can be treated as a zone

or as the sign value for that digit

The plus sign (+) is represented by A, C, E, or F, and the minus sign (-) is

represented by B or D. The maximum number of zns is the same as the

maximum number of digits that are allowed in the SQL definition. You can

also specify DEC ZONED.

DECIMAL EXTERNAL(length,scale)

Specifies a string of characters that represent a number. The format is that of

an SQL numeric constant, as described in Chapter 2 of DB2 SQL Reference.

length

Overall length of the input field, in bytes. If you do not specify length, the

length of the input field is determined from the POSITION specification. If

you do not specify length or POSITION, LOAD uses the default length for

DECIMAL EXTERNAL, which is determined by using decimal precision.

See Table 28 on page 219 for more information on the default length for

DECIMAL EXTERNAL.

scale

Specifies the number of digits to the right of the decimal point. scale must

be an integer greater than or equal to 0, and it can be greater than length.

The default is 0.

 If scale is greater than length, or if the number of provided digits is less than

the specified scale, the input number is padded on the left with zeros until the

decimal point position is reached. If scale is greater than the target scale, the

source scale locates the implied decimal position. All fractional digits greater

than the target scale are truncated. If scale is specified and the target column

has a data type of small integer or integer, the decimal portion of the input

number is ignored. If a decimal point is present, its position overrides the field

specification of scale.

FLOAT(length)

Specifies either a 64-bit floating-point number or a 32-bit floating-point

number. If length is between 1 and 21 inclusive, the number is 32 bits in the

s390 (HFP) format:

Bit 0 Represents a sign (0 for plus and 1 for minus)

Bits 1-7 Represent an exponent

Bits 8-31 Represent a mantissa

If length is between 1 and 24 inclusive, the number is 32 bits in the IEEE (BFP)

format:

Bit 0 Represents a sign (0 for plus and 1 for minus)

Bits 1-8 Represent an exponent

LOAD

Chapter 16. LOAD 227

Bits 9-31 Represent a mantissa

If length is not specified, or is between 22 and 53 inclusive, the number is 64

bits in the s390 (HFP) format:

Bit 0 Represents a sign (0 for plus and 1 for minus)

Bits 1-7 Represent an exponent

Bits 8-63 Represent a mantissa.

If length is not specified, or is between 25 and 53 inclusive, the number is 64

bits in the IEEE (BFP) format:

Bit 0 Represents a sign (0 for “plus”, and 1 for “minus”)

Bits 1-11 Represent an exponent

Bits 12-63 Represent a mantissa.

You can also specify REAL for single-precision floating-point numbers and

DOUBLE PRECISION for double-precision floating-point numbers.

FLOAT EXTERNAL(length)

Specifies a string of characters that represent a number. The format is that of

an SQL floating-point constant, as described in Chapter 2 of DB2 SQL Reference.

 A specification of FLOAT(IEEE) or FLOAT(S390) does not apply for this format

(string of characters) of floating-point numbers.

If you do not specify length, the length of the string is determined from the

POSITION specification. If you do not specify length or POSITION, LOAD uses

the default length for FLOAT, which is 4 bytes for single precision and 8 bytes

for double precision. See Table 28 on page 219 for more information on the

default length for FLOAT.

DATE EXTERNAL(length)

Specifies a character string representation of a date. The length, if unspecified,

is the specified length on the LOCAL DATA LENGTH install option, or, if none

was provided, the default is 10 bytes. If you specify a length, it must be within

the range of 8 to 254 bytes.

 Dates can be in any of the following formats. You can omit leading zeros for

month and day. You can include trailing blanks, but no leading blanks are

allowed.

v dd.mm.yyyy

v mm/dd/yyyy

v yyyy-mm-dd

v Any local format that your site defined at the time DB2 was installed

TIME EXTERNAL(length)

Specifies a character string representation of a time. The length, if unspecified,

is the specified length on the LOCAL TIME LENGTH install option, or, if none

was provided, the default is 8 bytes. If you specify a length, it must be within

the range of 4 to 254 bytes.

 Times can be in any of the following formats:

v hh.mm.ss

v hh:mm AM

v hh:mm PM

v hh:mm:ss

v Any local format that your site defined at the time DB2 was installed

LOAD

228 Utility Guide and Reference

You can omit the mm portion of the hh:mm AM and hh:mm PM formats if mm is

equal to 00. For example, 5 PM is a valid time, and can be used instead of 5:00

PM.

TIMESTAMP EXTERNAL(length)

Specifies a character string representation of a time. The default for length is 26

bytes. If you specify a length, it must be within the range of 19 to 26 bytes.

 Timestamps can be in any of the following formats. Note that nnnnnn

represents the number of microseconds, and can be from 0 to 6 digits. You can

omit leading zeros from the month, day, or hour parts of the timestamp; you

can omit trailing zeros from the microseconds part of the timestamp.

v yyyy-mm-dd-hh.mm.ss

v yyyy-mm-dd-hh.mm.ss.nnnnnn

v yyyy-mm-dd hh:mm:ss.nnnnnn

See Chapter 2 of DB2 SQL Reference for more information about the timestamp

data type.

ROWID

Specifies a row ID. The input data must be a valid value for a row ID; DB2

does not perform any conversions.

 A field specification for a row ID column is not allowed if the row ID column

was created with the GENERATED ALWAYS option.

If the row ID column is part of the partitioning key, LOAD INTO TABLE PART

is not allowed; specify LOAD INTO TABLE instead.

BLOB

Specifies a BLOB field. You must specify the length in bytes in a 4-byte binary

field that precedes the data. (The length does not include the 4-byte field

itself.) The length field must start in the column that is specified as start in the

POSITION option. If :end is used, it is ignored.

CLOB

Specifies a CLOB field. You must specify the length in bytes in a 4-byte binary

field that precedes the data. (The length does not include the 4-byte field

itself.) The length field must start in the column that is specified as start in the

POSITION option. If :end is used, it is ignored.

MIXED

Specifies that the input field contains mixed SBCS and DBCS data. If

MIXED is specified, any required CCSID conversions use the mixed CCSID

for the input data; if MIXED is not specified, any such conversions use the

SBCS CCSID for the input data.

DBCLOB

Specifies a DBCLOB field. You must specify the length in double-byte

characters in a 4-byte binary field that precedes the data. (The length does not

include the 4-byte field itself.) The length field must start in the column that is

specified as start in the POSITION option. If :end is used, it is ignored.

DEFAULTIF field-selection-criterion

Describes a condition that causes the DB2 column to be loaded with its default

value. You can write the field-selection-criterion with the same options as

described under “field-selection-criterion” on page 217. If the contents of the

DEFAULTIF field match the provided character constant, the field that is

specified in field-specification is loaded with its default value.

LOAD

Chapter 16. LOAD 229

If the DEFAULTIF field is defined by the name of a VARCHAR or

VARGRAPHIC field, DB2 takes the length of the field from the 2-byte binary

field that appears before the data portion of the VARCHAR or VARGRAPHIC

field.

Data in the input record can be in ASCII or Unicode, but the utility interprets

character constants that are specified in the utility control statement as EBCDIC

or Unicode. If the control statement is in the same encoding scheme as the

input data, you can code character constants in the control statement.

Otherwise, if the control statement is not in the same encoding scheme as the

input data, you must code the condition with hexadecimal constants. For

example, if the input data is in EBCDIC and the control statement is in UTF-8,

use (1:1)=X’31’ in the condition rather than (1:1)=’1’. See “Unicode

character strings” on page 17for more information about hex notation and

UTF-8.

You can use the DEFAULTIF attribute with the ROWID keyword. If the

condition is met, the column is loaded with a value that DB2 generates.

NULLIF field-selection-criterion

Describes a condition that causes the DB2 column to be loaded with NULL.

You can write the field-selection-criterion with the same options as described

under “field-selection-criterion” on page 217. If the contents of the NULLIF

field match the provided character constant, the field that is specified in

field-specification is loaded with NULL.

 If the NULLIF field is defined by the name of a VARCHAR or VARGRAPHIC

field, DB2 takes the length of the field from the 2-byte binary field that appears

before the data portion of the VARCHAR or VARGRAPHIC field.

To load a null value into a BLOBF, CLOBF, or DBCLOBF field, use a null input

file name.

Data in the input record can be in ASCII or Unicode, but the utility interprets

character constants that are specified in the utility control statement as EBCDIC

or Unicode. If the control statement is in the same encoding scheme as the

input data, you can code character constants in the control statement.

Otherwise, if the control statement is not in the same encoding scheme as the

input data, you must code the condition with hexadecimal constants. For

example, if the input data is in EBCDIC and the control statement is in UTF-8,

use (1:1)=X’31’ in the condition rather than (1:1)=’1’. See “Unicode

character strings” on page 17for more information about hex notation and

UTF-8.

The fact that a field in the output table is loaded with NULL does not change

the format or function of the corresponding field in the input record. The input

field can still be used in a field selection criterion. For example, assume that a

LOAD statement has the following field specification:

(FIELD1 POSITION(*) CHAR(4)

 FIELD2 POSITION(*) CHAR(3) NULLIF(FIELD1=’SKIP’)

 FIELD3 POSITION(*) CHAR(5))

Assume also that LOAD is to process the following source record:

SKIP FLD03

In this example, the record is loaded as follows:

FIELD1

Has the value 'SKIP'.

LOAD

230 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|

#
#

|
|
|
|
|
|
|
|
|
|

FIELD2

Is NULL (not ' ' as in the source record).

FIELD3

Has the value 'FLD03'.

You cannot use the NULLIF parameter with the ROWID keyword because row

ID columns cannot be null.

Field selection criterion

 Describes a condition that causes the DB2 column to be loaded with NULL or

with its default value.

Instructions for running LOAD

To run LOAD, you must:

1. Read “Before running LOAD” in this section.

2. Prepare the necessary data sets, as described in “Data sets that LOAD uses” on

page 232.

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

LOAD, see “Sample LOAD control statements” on page 271.)

4. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

236.

5. Check the compatibility table in “Concurrency and compatibility for LOAD” on

page 264 if you want to run other jobs concurrently on the same target objects.

6. Plan for restart if the LOAD job doesn’t complete, as described in “Terminating

or restarting LOAD” on page 261.

7. Read “After running LOAD” on page 266 in this section.

8. Run LOAD by using one of the methods described in Chapter 3, “Invoking

DB2 online utilities,” on page 15.

Before running LOAD

You cannot run the LOAD utility on the DSNDB01 or DSNDB06 databases, except

to add rows to the following catalog tables:

v SYSSTRINGS

v MODESELECT

v LUMODES

v LULIST

v USERNAMES

v LUNAMES

v LOCATIONS

v IPNAMES

Preprocessing input data

No sorting of the data rows occurs during LOAD processing. Rows are loaded in

the physical sequence in which they are found.

Recommendation: Sort your input records in clustering sequence before loading

the data.

You should also:

v Ensure that no duplicate keys exist for unique indexes.

LOAD

Chapter 16. LOAD 231

v Correct check constraint violations and referential constraint violations in the

input data set.

v Ensure that any input data that is provided for a security label column is a valid

security label. Security label columns are defined with the AS SECURITY LABEL

clause. These columns are used for multilevel security with row-level

granularity. For more information about multilevel security and security labels,

see Part 3 of DB2 Administration Guide.

When loading data into a segmented table space, sort your data by table to ensure

that the data is loaded in the best physical organization.

Loading data by using a cursor

Before you can load data by using a cursor, you need to bind the DSNUT810

package at each location from which you plan to load data. A local package for

DSNUT810 is bound by installation job DSNTIJSG when you install or migrate to a

new version of DB2 UDB for z/OS.

The following example statement binds the DSNUT810 package at a remote

location:

BIND PACKAGE(location.DSNUT810) MEMBER(DSNUGSQL) -

 ACTION(REPLACE) ISOLATION(CS) ENCODING(EBCDIC) -

 VALIDATE(BIND) CURRENTDATA(NO) -

 LIBRARY(’prefix.SDSNDBRM’)

Data sets that LOAD uses

Table 30 lists the data sets that LOAD uses. The table lists the DD name that is

used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set,

and any optional data sets that you want to use. Alternatively, you can use the

TEMPLATE utility to dynamically allocate some of these data sets.

 Table 30. Data sets that LOAD uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

STPRIN01 A data set that contains messages from

DFSORT (usually, SYSOUT or DUMMY).

This data set is used when frequency

statistics are collected on DPSI’s or when

TABLESPACE TABLE COLGROUP

FREQVAL is specified

No1

Input data set The input data set that contains the data

that is to be loaded. Specify its template or

DD name with the INDDN option of the

utility control statement. The default name

is SYSREC. It must be a sequential data set

that is readable by BSAM.

Yes2

Sort data sets Two temporary work data sets for sort input

and sort output. Specify their DD or

template names with the WORKDDN option

of the utility control statement. The default

DD name for sort input is SYSUT1. The

default DD name for sort output is

SORTOUT.

Yes3, 4

LOAD

232 Utility Guide and Reference

|
|
|
|
|

|

|

|

#
#
#
#
#
#

Table 30. Data sets that LOAD uses (continued)

Data set Description Required?

Mapping data set Work data set for mapping the identifier of

a table row back to the input record that

caused an error. Specify its template or DD

name with the MAPDDN option of the

utility control statement. The default DD

name is SYSMAP.

Yes3, 5

UTPRINT Contains messages from DFSORT (usually,

SYSOUT or DUMMY).

No6

Discard data set A work data set that contains copies of

records that are not loaded. It must be a

sequential data set that is readable by

BSAM. Specify its DD or template name

with the DISCARDDN option of the utility

control statement. The default DD name is

SYSDISC.

Yes

7

Error data set Work data set for error processing. Specify

its DD or template name with the ERRDDN

option of the utility control statement. The

default DD or template name is SYSERR.

Yes

Copy data sets One to four output data sets that contain

image copy data sets. Specify their DD or

template names with the COPYDDN and

RECOVERYDDN options of the utility

control statement.

No8

Sort work data sets Temporary data sets for sort input and

output when sorting keys. If index build

parallelism is used, the DD names have the

form SWnnWKmm. If index build

parallelism is not used, the DD names have

the form SORTWKnn. For more information

about allocating these data sets, see

“Building indexes in parallel for LOAD” on

page 255.

Yes9

Sort work data sets Temporary data sets for sort input and

output when collecting inline statistics on at

least one data-partitioned secondary index.

The DD names have the form ST01WKnn.

No1, 10, 11

LOAD

Chapter 16. LOAD 233

|

||
|
|
|

Table 30. Data sets that LOAD uses (continued)

Data set Description Required?

Notes:

 1. Required when collecting inline statistics on at least one data-partitioned secondary

index.

 2. As an alternative to specifying an input data set, you can specify a cursor with the

INCURSOR option. For more information about cursors, see “Loading data by using

the cross-loader function” on page 248.

 3. Required if referential constraints exist and ENFORCE(CONSTRAINTS) is specified

(This option is the default).

 4. Used for tables with indexes.

 5. Required for discard processing when loading one or more tables that have unique

indexes.

 6. Required if a sort is done.

 7. If you omit the DD statement for this data set, LOAD creates the data set with the

same record format, record length, and block size as the input data set.

 8. Required for inline copies.

 9. Required if any indexes are to be built or if a sort is required for processing errors.

10. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate

the data set. Otherwise, DFSORT dynamically allocates the temporary data set.

11. It is recommended that you use dynamic allocation by specifying SORTDEVT in the

utility statement because dynamic allocation reduces the maintenance required of the

utility job JCL.

The following object is named in the utility control statement and does not require

a DD statement in the JCL:

Table Table that is to be loaded. (If you want to load only one partition of a

table, you must use the PART option in the control statement.)

Defining work data sets: Use the formulas and instructions in Table 31 to calculate

the size of work data sets for LOAD. Each row in the table lists the DD name that

is used to identify the data set and either formulas or instructions that you should

use to determine the size of the data set. The key for the formulas is located at the

bottom of the table.

 Table 31. Size of work data sets for LOAD jobs

Work data set Size

SORTOUT max(f,e)

ST01WKnn 2 ×(maximum record length × numcols × (count + 2) × number of

indexes)

SYSDISC Same size as input data set

SYSERR e

SYSMAP v Simple table space for discard processing:

 m
v Partitioned or segmented table space without discard processing:

 max(m,e)

LOAD

234 Utility Guide and Reference

#
#
#

|

|
|

Table 31. Size of work data sets for LOAD jobs (continued)

Work data set Size

SYSUT1 v Simple table space:

 max(k,e)
v Partitioned or segmented table space:

 max(k,e,m)

If you specify an estimate of the number of keys with the SORTKEYS

option:

 max(f,e) for a simple table space

 max(f,e,m) for a partitioned or segmented table space

 Note:

variable

meaning

k Key calculation

f Foreign key calculation

m Map calculation

e Error calculation

max() Maximum value of the specified calculations

numcols Number of key columns to concatenate when you collect frequent values from the

specified index

count Number of frequent values that DB2 is to collect

maximum record length

Maximum record length of the SYSCOLDISTSTATS record that is processed when

collecting frequency statistics (You can obtain this value from the RECLENGTH

column in SYSTABLES.)

 Calculating the key: k

If a mix of data-partitioned secondary indexes and nonpartitioned indexes

exists on the table that is being loaded or a foreign key exists that is exactly

indexed by a data-partitioned secondary index, use this formula:

max(longest index key + 15, longest foreign key + 15) × (number of extracted keys).

Otherwise, use this formula:

max(longest index key + 13, longest foreign key + 13) × (number of extracted keys).

For nonpadded indexes, the length of the longest key means the maximum

possible length of a key with all varying-length columns padded to their

maximum lengths, plus 2 bytes for each varying-length column.

 Calculating the number of extracted keys:

1. Count 1 for each index.

2. Count 1 for each foreign key that is not exactly indexed (that is, where

foreign key and index definitions do not correspond identically).

3. For each foreign key that is exactly indexed (that is, where foreign key and

index definitions correspond identically):

a. Count 0 for the first relationship in which the foreign key participates if

the index is not a data-partitioned secondary index. Count 1 if the index

is a data-partitioned secondary index.

b. Count 1 for subsequent relationships in which the foreign key

participates (if any).

LOAD

Chapter 16. LOAD 235

|
|

||
|

||

|
|
|
|

|
|
|

|

|
|
|

4. Multiply count by the number of rows that are to be loaded.
 Calculating the foreign key: f

If a mix of data-partitioned secondary indexes and nonpartitioned indexes

exists on the table that is being loaded or a foreign key exists that is exactly

indexed by a data-partitioned secondary index, use this formula:

max(longest foreign key + 15) × (number of extracted keys)

Otherwise, use this formula:

max(longest foreign key + 13) × (number of extracted keys)

 Calculating the map: m

The data set must be large enough to accommodate one map entry (length = 21

bytes) per table row that is produced by the LOAD job.

 Calculating the error: e

The data set must be large enough to accommodate one error entry (length =

560 bytes) per defect that is detected by LOAD (for example, conversion errors,

unique index violations, violations of referential constraints).

 Calculating the number of possible defects:

– For discard processing, if the discard limit is specified, the number of

possible defects is equal to the discard limit.

If the discard limit is the maximum, calculate the number of possible defects

by using the following formula:

number of input records +

(number of unique indexes × number of extracted keys) +

(number of relationships × number of extracted foreign keys)

– For nondiscard processing, the data set is not required.

Allocating twice the space that is used by the input data sets is usually adequate

for the sort work data sets. Two or three large SORTWKnn data sets are preferable

to several small ones. For more information, see DFSORT Application Programming:

Guide.

DB2 utilities uses DFSORT to perform sorts. Sort work data sets cannot span

volumes. Smaller volumes require more sort work data sets to sort the same

amount of data; therefore, large volume sizes can reduce the number of needed

sort work data sets. It is recommended that at least 1.2 times the amount of data to

be sorted be provided in sort work data sets on disk. For more information about

DFSORT, see DFSORT Application Programming Guide.

Instructions for specific tasks

The following tasks are described here:

 “Loading variable-length data” on page 237

 “Ordering loaded records” on page 237

 “Replacing data with LOAD” on page 238

 “Using LOAD for tables with identity columns or ROWID columns” on page

239

 “Adding more data to a table or partition” on page 240

 “Deleting all the data in a table space” on page 240

 “Loading partitions” on page 241

 “Loading delimited files” on page 242

 “Loading data with referential constraints” on page 244

 “Correcting referential constraint violations” on page 246

 “Compressing data” on page 246

 “Loading data from DL/I” on page 247

LOAD

236 Utility Guide and Reference

|
|
|

|

|

|
|
|

#
#
#
#
#
#

“Loading data by using the cross-loader function” on page 248

 “Using inline COPY with LOAD” on page 249

 “Improving performance” on page 250

 “Improving performance for parallel processing” on page 250

 “Improved performance with SORTKEYS” on page 251

 “Improving performance with LOAD or REORG PREFORMAT” on page 251

 “Converting input data” on page 253

 “Specifying input fields” on page 254

 “Building indexes while loading data” on page 255

 “Building indexes in parallel for LOAD” on page 255

 “Leaving free space” on page 258

 “Loading with RECOVER-pending, REBUILD-pending, or REORG-pending

status” on page 258

 “Using exit procedures” on page 259

 “Loading ROWID columns” on page 259

 “Loading a LOB column” on page 260

 “Using LOAD LOG on a LOB table space” on page 260

 “Collecting inline statistics while loading a table” on page 261

 “Inline COPY for a base table space” on page 261

 “The effect of LOAD on index version numbers” on page 270

Loading variable-length data

To load variable-length data, put a 2-byte binary length field before each field of

variable-length data. The value in that field depends on the data type of the

column into which you load the data. Use:

v The number of single-byte characters if the data type is VARCHAR

v The number of double-byte characters if the data type is VARGRAPHIC

For example, assume that you have a variable-length column that contains

X'42C142C142C2', which might be interpreted as either six single-byte characters or

three double-byte characters. With the two-byte length field, use:

v X'0006'X'42C142C142C2' to signify six single-byte characters in a VARCHAR

column

v X'0003'X'42C142C142C2' to signify three double-byte characters in a

VARGRAPHIC column

Ordering loaded records

The LOAD utility loads records into a table space in the order in which they

appear in the input stream. It does not sort the input stream, and it does not insert

records in sequence with existing records, even if a clustering index exists. To

achieve clustering when loading an empty table or replacing data, sort the input

stream. When adding data to a clustered table, consider reorganizing the table after

running LOAD.

Because rows with duplicate key values for unique indexes fail to be loaded, any

records that are dependent on such rows either:

v Fail to be loaded because they would cause referential integrity violations (if you

specify ENFORCE CONSTRAINTS)

v Are loaded without regard to referential integrity violations (if you specify

ENFORCE NO)

As a result, violations of referential integrity might occur. Such violations can be

detected by LOAD (without the ENFORCE(NO) option) or by CHECK DATA.

LOAD

Chapter 16. LOAD 237

Replacing data with LOAD

You can use LOAD REPLACE to replace data in a table space that has one or more

tables. You can replace all the data in a table space (by using the REPLACE

option), or you can load new records into a table space without destroying the

rows already there (by using the RESUME option).

When you run a LOAD job with the REPLACE option but without the REUSE

option and the data set that contains the data is not user-managed, DB2 deletes

this data set before the LOAD and redefines a new data set with a control interval

that matches the page size.

If an object is in REORG-pending status, you can perform a LOAD REPLACE of

the entire table space (which resets REORG-pending status). You can also perform

a LOAD PART REPLACE or RESUME of any partitions that are not in

REORG-pending status. In this situation, no other LOAD operations are allowed. If

an object is in advisory-REORG pending status (AREO*), you can perform a LOAD

REPLACE of the entire table space (which resets advisory REORG-pending status).

If an object is in REBUILD-pending status, you can perform a LOAD REPLACE of

the entire table space (which resets REBUILD-pending status). You can also

perform a LOAD PART REPLACE or RESUME of any partitions. If these partitions

are in REBUILD-pending status, a LOAD PART REPLACE or RESUME resets that

status. If an object is in advisory REBUILD-pending status, you can perform a

LOAD REPLACE of the entire table space (which resets advisory

REBUILD-pending status). If a user-defined table space is in refresh-pending

(REFP) status, you can replace the data by using LOAD REPLACE.

See Appendix C, “Advisory or restrictive states,” on page 849 for more

information.

Using LOAD REPLACE with LOG YES: The LOAD REPLACE or PART REPLACE

with LOG YES option logs only the reset and not each deleted row. If you need to

see what rows are being deleted, use the SQL DELETE statement.

Replacing one table in a single-table table space: The control statement in

Figure 33 specifies that LOAD is to replace one table in a single-table table space:

 Replacing one table in a multiple-table table space: When using LOAD REPLACE

on a multiple-table table space, you must be careful because LOAD works on an

entire table space at a time. Thus, to replace all rows in a multiple-table table

space, you must work with one table at a time, by using the RESUME YES option

on all but the first table. For example, if you have two tables in a table space, you

need to do the following steps:

1. Use LOAD REPLACE on the first table as shown in the control statement in

Figure 34 on page 239. This option removes data from the table space and

LOAD DATA

 REPLACE

 INTO TABLE DSN8810.DEPT

 (DEPTNO POSITION (1) CHAR(3),

 DEPTNAME POSITION (5) VARCHAR,

 MGRNO POSITION (37) CHAR(6),

 ADMRDEPT POSITION (44) CHAR(3),

 LOCATION POSITION (48) CHAR(16))

 ENFORCE NO

Figure 33. Example of using LOAD to replace one table in a single-table table space

LOAD

238 Utility Guide and Reference

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

replaces just the data for the first table.

2. Use LOAD with RESUME YES on the second table as shown in the control

statement in Figure 35. This option adds the records for the second table

without destroying the data in the first table.

If you need to replace just one table in a multiple-table table space, you need to

delete all the rows in the table, and then use LOAD with RESUME YES. For

example, assume that you want to replace all the data in DSN8810.TDSPTXT

without changing any data in DSN8810.TOPTVAL. To do this, follow these steps:

1. Delete all the rows from DSN8810.TDSPTXT by using the following SQL

DELETE statement:

EXEC SQL

 DELETE FROM DSN8810.TDSPTXT

ENDEXEC

Hint: The mass delete works most quickly on a segmented table space.

2. Use the LOAD job that is shown in Figure 36 to replace the rows in that table.

Using LOAD for tables with identity columns or ROWID columns

When you run the UNLOAD utility or the REORG utility with the UNLOAD

EXTERNAL or DISCARD options, DB2 generates a LOAD statement that you can

use to load the unloaded data into any table that has a compatible format. If the

source table has a ROWID column that is defined with GENERATED ALWAYS, the

LOAD DATA CONTINUEIF(72:72)=’X’

 REPLACE

 INTO DSN8810.TOPTVAL

 (MAJSYS POSITION (2) CHAR(1),

 ACTION POSITION (4) CHAR(1),

 OBJECT POSITION (6) CHAR(2),

 SRCHCRIT POSITION (9) CHAR(2),

 SCRTYPE POSITION (12) CHAR(1),

 HEADTXT POSITION (80) CHAR(50),

 SELTXT POSITION (159) CHAR(50),

 INFOTXT POSITION (238) CHAR(71),

 HELPTXT POSITION (317) CHAR(71),

 PFKTXT POSITION (396) CHAR(71),

 DSPINDEX POSITION (475) CHAR(2))

Figure 34. Example of using LOAD REPLACE on the first table in a multiple-table table

space

LOAD DATA CONTINUEIF(72:72)=’X’

 RESUME YES

 INTO DSN8810.TDSPTXT

 (DSPINDEX POSITION (2) CHAR(2),

 LINENO POSITION (6) CHAR(2),

 DSPLINE POSITION (80) CHAR(79))

Figure 35. Example of using LOAD with RESUME YES on the second table in a

multiple-table table space

LOAD DATA CONTINUEIF(72:72)=’X’

 RESUME YES

 INTO DSN8810.TDSPTXT

 (DSPINDEX POSITION (2) CHAR(2),

 LINENO POSITION (6) CHAR(2),

 DSPLINE POSITION (80) CHAR(79))

Figure 36. Example of using LOAD with RESUME YES to replace one table in a

multiple-table table space

LOAD

Chapter 16. LOAD 239

generated LOAD statement contains a dummy field named DSN_ROWID for the

ROWID column. If the source table has an identity column that is defined with

GENERATED ALWAYS, the generated LOAD statement contains a dummy field

named DSN_IDENTITY for the identity column. The keyword IGNOREFIELDS in

the LOAD statement causes DB2 to skip the DSN_ROWID or DSN_IDENTITY field

when it loads the data into a table. Using the combination of IGNOREFIELDS and

the dummy fields, you can load the unloaded data into a compatible table that has

GENERATED ALWAYS columns.

If you want to include the data from the identity column or ROWID column when

you load the unloaded data into a table, the identity column or ROWID column in

the target table must be defined with GENERATED BY DEFAULT. To use the

generated LOAD statement, remove the IGNOREFIELDS keyword and change the

dummy field names to the corresponding column names in the target table.

To load the unloaded data into a compatible table that has identity columns that

are defined as GENERATED ALWAYS, use one of the following techniques:

v Using the combination of IGNOREFIELDS and the dummy DSN_IDENTITY

field, load will generate the identity column data.

v To load the unloaded identity column data, add the IDENTITYOVERRIDE

keyword to the LOAD control statement. Change the dummy field name,

DSN_IDENTITY, to the corresponding identity column name in the target table.

v To load the unloaded data into a compatible table that has identity columns or

ROWID columns that are defined as GENERATED BY DEFAULT, remove the

IGNOREFIELDS keyword and change the dummy field names to the

corresponding column names in the target table.

v To load the unloaded data into a compatible table that has ROWID columns that

are defined as GENERATED ALWAYS, using the combintion of IGNOREFIELDS

and the dummy DSN_ROWID field, load will generate the ROWID column data.

Adding more data to a table or partition

You might want to add data to a table, rather than replace it. The RESUME

keyword specifies whether data is to be loaded into an empty or a non-empty table

space. RESUME NO loads records into an empty table space. RESUME YES loads

records into a non-empty table space.

If RESUME NO is specified and the target table is not empty, no data is loaded.

If RESUME YES is specified and the target table is empty, data is loaded.

LOAD always adds rows to the end of the existing rows, but index entries are

placed in key sequence.

Deleting all the data in a table space

Specifying LOAD REPLACE without loading any records is an efficient way of

clearing a table space. To achieve this, specify the input data set in the JCL as DD

DUMMY. LOAD REPLACE is efficient for the following reasons:

1. LOAD REPLACE LOG NO does not log any rows.

2. LOAD REPLACE redefines the table space.

3. LOAD REPLACE retains all views and privileges that are associated with a

table space or table.

4. LOG YES can be used to make the LOAD REPLACE recoverable.

LOAD REPLACE replaces ALL TABLES in the table space.

LOAD

240 Utility Guide and Reference

#
#

#
#

#
#
#

#
#
#
#

#
#
#

Loading partitions

If you use the PART clause of the INTO TABLE option, only the specified

partitions of a partitioned table are loaded. If you omit PART, the entire table is

loaded.

You can specify the REPLACE and RESUME options separately by partition. The

control statement in Figure 37 specifies that DB2 is to load data into the first and

second partitions of the employee table. Records with '0' in column 1 replace the

contents of partition 1; records with '1' in column 1 are added to partition 2; all

other records are ignored. (The example control statement, which is simplified to

illustrate the point, does not list field specifications for all columns of the table.)

 If you are not loading columns in the same order as in the CREATE TABLE

statement, you must code field specifications for each INTO TABLE statement.

The following example assumes that you have your data in separate input data

sets. That data is already sorted by partition, so you do not need to use the WHEN

clause of INTO TABLE. Placing the RESUME YES option before the PART option

inhibits concurrent partition processing while the utility is running.

LOAD DATA INDDN EMPLDS1 CONTINUEIF(72:72)=’X’

 RESUME YES

 INTO TABLE DSN8810.EMP REPLACE PART 1

LOAD DATA INDDN EMPLDS2 CONTINUEIF(72:72)=’X’

 RESUME YES

 INTO TABLE DSN8810.EMP REPLACE PART 2

The following example allows partitioning independence when more than one

partition is being loaded concurrently.

LOAD DATA INDDN SYSREC LOG NO

 INTO TABLE DSN8810.EMP PART 2 REPLACE

When index-based partitioning is used, LOAD INTO PART integer is not allowed if

an identity column is part of the partitioning index. When table-based partitioning

is used, LOAD INTO PART integer is not allowed if an identity column is used in a

partitioning-clause of the CREATE TABLE or ALTER TABLE statement. If

IDENTITYOVERRIDE is used, these operations are allowed.

To invoke partition parallelism, specify a PART clause with INDDN or INCURSOR

and optionally DISCARDDN keywords for each partition in your utility control

statement. This partition parallelism reduces the elapsed time that is required for

LOAD DATA CONTINUEIF(72:72)=’X’

 INTO TABLE DSN8810.EMP PART 1 REPLACE WHEN (1) = ’0’

 (EMPNO POSITION (1:6) CHAR(6),

 FIRSTNME POSITION (7:18) CHAR(12),

 ...
)

 INTO TABLE DSN8810.EMP PART 2 RESUME YES WHEN (1) = ’1’

 (EMPNO POSITION (1:6) CHAR(6),

 FIRSTNME POSITION (7:18) CHAR(12),

 ...
)

Figure 37. Example LOAD control statement for loading partitions

LOAD

Chapter 16. LOAD 241

|
|
|
|
|

|
|
|

loading large amounts of data into partitioned table spaces. Loading partition

parallelism requires a separate input data set for each partition.

Consequences of DEFINE NO: If a partitioned table space is created with DEFINE

NO, all partitions are also implicitly defined with DEFINE NO. The first data row

that is inserted by the LOAD utility defines all data sets in the partitioned table

space. If this process takes a long time, expect timeouts on the DBD.

Coding your LOAD job with SHRLEVEL CHANGE and using partition parallelism

is equivalent to concurrent, independent insert jobs. For example, in a large

partitioned table space that is created with DEFINE NO, the LOAD utility starts

three tasks. The first task tries to insert the first row, which causes an update to the

DBD. The other two tasks time out while they wait to access the DBD. The first

task holds the lock on the DBD while the data sets are defined for the table space.

Loading delimited files

You can load a delimited file by using the FORMAT DELIMITED option. A

delimited file contains cell values that are separated by delimiters. Delimiters are

predefined characters that separate data. The column delimiter separates one

column value from the next. Character string delimiters identify the beginning and

end of a single cell value and are required only if the cell value contains the

column delimiter. For more information about delimited files see Appendix F,

“Delimited file format,” on page 895.

Recommendation: If a delimited file is to be transferred to or from a platform

other than z/OS or between DB2 UDB for z/OS systems that use different EBCDIC

or ASCII CCSIDs, use Unicode as the encoding scheme for the delimited file. Using

Unicode avoids possible CCSID translation problems.

You are responsible for ensuring that the data in the file does not include the

chosen delimiters. If the delimiters are part of the file’s data, unexpected errors can

occur.

Restrictions: The following restrictions apply to the use of delimiters:

v You cannot specify the same character for more than one type of delimiter

(COLDEL, CHARDEL, and DECPT).

v You can specify a character constant for a delimiter if the utility control

statement is coded in the same encoding scheme as the input file. For example,

the utility control statement is coded in Unicode and the input data is also

coded in Unicode.

v You should use the hex representation for non-default delimiters if the utility

control statement is coded in a different encoding scheme than the input file. For

example, the utility control statement is coded in Unicode and the input file is

coded in EBCDIC. In this case, if you do not use the hex representation for the

non-default delimiters, the results can be unpredictable.

v You do not need to specify the POSITION keyword when you specify the

DELIMITED option. The utility ignores the POSITION keyword when you also

specify DELIMITED. The utility overrides field data type specifications

according to the specifications of the delimited format. (For example, length

values for CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, CLOB, DBCLOB, and

BLOB data are the delimited lengths of each field in the input data set, and the

utility expects all numeric types in external format.)

v You cannot specify a binary 0 (zero) for any delimiter.

v You cannot specify the default decimal point as a string character delimiter

(CHARDEL) or a column string delimiter (COLDEL).

LOAD

242 Utility Guide and Reference

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

v You cannot specify shift-in and shift-out characters for EBCDIC MBCS data.

v You cannot specify the pipe character (|) for DBCS data.

Table 32 lists the default hex values for the delimiter characters based on encoding

scheme.

 Table 32. Default delimiter values for different encoding schemes

Character EBCDIC SBCS

EBCDIC

DBCS/MBCS

ASCII/Unicode

SBCS

ASCII/Unicode

MBCS

Character string

delimiter

X'7F' X'7F' X'22' X'22'

Decimal point

character

X'4B' X'4B' X'2E' X'2E'

Column

delimiter

X'6B' X'6B' X'2C' X'2C'

Note: In most EBCDIC code pages, the hex values that are specified in Table 32 are

a double quotation mark(") for the character string delimiter, a period(.) for

the decimal point character, and a comma(,) for the column delimiter.

Table 33 lists the maximum allowable hex values for any delimiter character based

on the encoding scheme.

 Table 33. Maximum delimiter values for different encoding schemes

Encoding scheme Maximum allowable value

EBCDIC SBCS None

EBCDIC DBCS/MBCS X'3F'

ASCII/Unicode SBCS None

ASCII/Unicode MBCS X'7F'

Table 34 identifies the acceptable data type forms for the delimited file format that

the LOAD and UNLOAD utilities use.

 Table 34. Acceptable data type forms for delimited files.

Data type

Acceptable form for loading

a delimited file

Form that is created by

unloading a delimited file

CHAR, VARCHAR A delimited or non-delimited

character string

Character data that is

enclosed by character

delimiters. For VARCHAR,

length bytes do not precede

the data in the string.

GRAPHIC (any type) A delimited or non-delimited

character stream

Data that is unloaded as a

delimited character string.

For VARGRAPHIC, length

bytes do not precede the data

in the string.

INTEGER (any type) 1 A stream of characters that

represents a number in

EXTERNAL format

Numeric data in external

format.

DECIMAL (any type) 2 A character string that

represents a number in

EXTERNAL format

A string of characters that

represents a number.

LOAD

Chapter 16. LOAD 243

|

|

|
|

||

||
|
|
|
|
|
|

|
|
||||

|
|
||||

|
|
||||

|

|
|
|

|
|

||

||

||

||

||

||
|

|
|

||

|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|

|
|

||
|
|

|
|

Table 34. Acceptable data type forms for delimited files. (continued)

Data type

Acceptable form for loading

a delimited file

Form that is created by

unloading a delimited file

FLOAT 3 A representation of a number

in the range -7.2E + 75 to

7.2E + 75 in EXTERNAL

format

A string of characters that

represents a number in

floating-point notation.

BLOB, CLOB A delimited or non-delimited

character string

Character data that is

enclosed by character

delimiters. Length bytes do

not precede the data in the

string.

DBCLOB A delimited or non-delimited

character string

Character data that is

enclosed by character

delimiters. Length bytes do

not precede the data in the

string.

DATE A delimited or non-delimited

character string that contains

a date value in EXTERNAL

format

Character string

representation of a date.

TIME A delimited or non-delimited

character string that contains

a time value in EXTERNAL

format

Character string

representation of a time.

TIMESTAMP A delimited or non-delimited

character string that contains

a timestamp value in

EXTERNAL format

Character string

representation of a

timestamp.

Note:

1. Field specifications of INTEGER or SMALLINT are treated as INTEGER

EXTERNAL.

2. Field specifications of DECIMAL, DECIMAL PACKED, or DECIMAL

ZONED are treated as DECIMAL EXTERNAL.

3. Field specifications of FLOAT, REAL, or DOUBLE are treated as FLOAT

EXTERNAL.

Loading data with referential constraints

LOAD does not load a table with an incomplete definition; if the table has a

primary key, the unique index on that key must exist. If any table that is to be

loaded has an incomplete definition, the LOAD job terminates.

LOAD requires access to the primary indexes on the parent tables of any loaded

tables. For simple, segmented, and partitioned table spaces, it drains all writers

from the parent table’s primary indexes. Other users cannot make changes to the

parent tables that result in an update to their own primary indexes. Concurrent

inserts and deletes on the parent tables are blocked, but updates are allowed for

columns that are not defined as part of the primary index.

By default, LOAD enforces referential constraints, except informational referential

constraints, which LOAD ignores. By enforcing referential constraints, LOAD

provides you with several possibilities for error:

LOAD

244 Utility Guide and Reference

|

|
|
|
|
|

||
|
|
|

|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|
|

|
|
|

|

|

|
|

|
|

|
|

|

|
|
|

v Records that are to be loaded might have duplicate values of a primary key.

v Records that are to be loaded might have invalid foreign-key values, which are

not values of the primary key of the corresponding parent table.

v The loaded table might lack primary key values that are values of foreign keys

in dependent tables.

The next few paragraphs describe how DB2 signals each of those errors and the

means it provides for correcting them.

Duplicate values of a primary key: A primary index must be a unique index and

must exist if the table definition is complete. Therefore, when you load a parent

table, you build at least its primary index. You need an error data set, and

probably also a map data set and a discard data set.

Invalid foreign key values: A dependent table has the constraint that the values of

its foreign keys must be values of the primary keys of corresponding parent tables.

By default, LOAD enforces that constraint in much the same way as it enforces the

uniqueness of key values in a unique index. First, it loads all records to the table.

Subsequently, LOAD checks the validity of the records with respect to the

constraints, identifies any invalid record by an error message, and deletes the

record from the table. You can choose to copy this record to a discard data set.

Again you need at least an error data set, and probably also a map data set and a

discard data set.

If a record fails to load because it violates a referential constraint, any of its

dependent records in the same job also fail. For example, suppose that the sample

project table and project activity tables belong to the same table space, that you

load them both in the same job, and that some input record for the project table

has an invalid department number. Then, that record fails to be loaded and does

not appear in the loaded table; the summary report identifies it as causing a

primary error.

However the project table has a primary key, the project number. In this case, the

record that is rejected by LOAD defines a project number, and any row in the

project activity table that refers to the rejected number is also rejected. The

summary report identifies those as causing secondary errors. If you use a discard

data set, records for both types of errors are copied to it.

Missing primary key values: The deletion of invalid records does not cascade to

other dependent tables that are already in place. Suppose now that the project and

project activity tables exist in separate table spaces, and that they are both

currently populated and possess referential integrity. In addition, suppose that the

data in the project table is now to be replaced (using LOAD REPLACE) and that

the replacement data for some department was inadvertently not supplied in the

input data. Rows that reference that department number might already exist in the

project activity table. LOAD, therefore, automatically places the table space that

contains the project activity table (and all table spaces that contain dependent

tables of any table that is being replaced) into CHECK-pending status.

The CHECK-pending status indicates that the referential integrity of the table

space is in doubt; it might contain rows that violate a referential constraint. DB2

places severe restrictions on the use of a table space in CHECK-pending status;

typically, you run the CHECK DATA utility to reset this status. For more

information, see “Resetting the CHECK-pending status” on page 267.

LOAD

Chapter 16. LOAD 245

|

|
|

|
|

|
|

Consequences of ENFORCE NO: If you use the ENFORCE NO option, you tell

LOAD not to enforce referential constraints. Sometimes you have good reasons for

doing that, but the result is that the loaded table space might violate the

constraints. Hence, LOAD places the loaded table space in CHECK-pending status.

If you use REPLACE, all table spaces that contain any dependent tables of the

tables that were loaded are also placed in CHECK-pending status. You must reset

the status of each table before you can use any of the table spaces.

Correcting referential constraint violations

The referential integrity checking in LOAD can delete only incorrect dependent

rows, which were input to LOAD. Deletion is not always the best strategy for

correcting referential integrity violations.

For example, the violations might occur because parent rows do not exist. In this

case, correcting the parent tables is better than deleting the dependent rows. In this

case, ENFORCE NO is more appropriate than ENFORCE CONSTRAINTS. After

you correct the parent table, you can use CHECK DATA to reset the

CHECK-pending status.

LOAD ENFORCE CONSTRAINTS is not equivalent to CHECK DATA. LOAD

ENFORCE CONSTRAINTS deletes any rows that cause referential constraint

violations. CHECK DATA detects violations and optionally deletes such rows.

CHECK DATA checks a complete referential structure, although LOAD checks only

the rows that are being loaded.

When loading referential structures with ENFORCE CONSTRAINTS, you should

load tables before dependent tables.

Compressing data

You can use LOAD with the REPLACE, RESUME NO, or RESUME YES options to

build a compression dictionary. The RESUME NO option requires the table space

to be empty and RESUME YES will only build a dictionary if the table space is

empty.

LOAD RESUME YES or NO will build compression dictionaries for empty table

spaces, except for linear/simple table spaces. LOAD REPLACE must be used on

linear/simple table spaces in order to build new compression dictionaries. If your

table space, or a partition in a partitioned table space, is defined with COMPRESS

YES, the dictionary is created while records are loaded. After the dictionary is

completely built, the rest of the data is compressed as it is loaded.

The data is not compressed until the dictionary is built. You must use LOAD

REPLACE or RESUME NO to build the dictionary, except for linear/simple table

spaces where LOAD REPLACE must be used to build new compression

dictionaries. To save processing costs, an initial LOAD does not go back to

compress the records that were used to build the dictionary.

The number of records that are required to build a dictionary is dependent on the

frequency of patterns in the data. For large data sets, the number of rows that are

required to build the dictionary is a small percentage of the total number of rows

that are to be compressed. For the best compression results, build a new dictionary

whenever you load the data.

However, in some circumstances, you might want to compress data by using an

existing dictionary. If you are satisfied with the compression that you are getting

with an existing dictionary, you can keep that dictionary by using the

LOAD

246 Utility Guide and Reference

#
#
#

#
#
#
#
#
#

#
#
#
#
#

#
#
#

KEEPDICTIONARY option of LOAD or REORG. For both LOAD and REORG, this

method also saves you the processing overhead of building the dictionary. LOAD

RESUME on a linear/simple table space will always keep the existing dictionary if

one exists. In order to build new dictionaries for a linear/simple table space,

LOAD REPLACE or REORG is required.

Consider using KEEPDICTIONARY if the last dictionary was built by REORG; the

REORG utility’s sampling method can yield more representative dictionaries than

LOAD and can thus mean better compression. REORG with KEEPDICTIONARY is

efficient because the data is not decompressed in the process.

However, REORG with KEEPDICTIONARY does not generate a compression

report. You need to use RUNSTATS to update the catalog statistics and then query

the catalog columns yourself. See Chapter 25, “REORG TABLESPACE,” on page

413 for more information about using REORG to compress data, and see

Chapter 29, “RUNSTATS,” on page 545 for information about using RUNSTATS to

update catalog information about compression.

Use KEEPDICTIONARY if you want to try to compress all the records during

LOAD, and if you know that the data has not changed much in content since the

last dictionary was built. An example of LOAD with the KEEPDICTIONARY

option is shown in Figure 38.

 You can also specify KEEPDICTIONARY for specific partitions of a partitioned

table space. In this case, each partition has its own dictionary.

Loading data from DL/I

To convert data in IMS DL/I databases from a hierarchic structure to a relational

structure so that it can be loaded into DB2 tables, you can use the DataRefresher

and IMS DataPropagator (IMS DPROP) licensed programs. You can use

DataRefresher to create source-to-target mappings and to create DB2 databases.

After your databases are created and the mappings are set, you can use IMS

DPROP to propagate any changes.

IMS DPROP runs as a z/OS application and can extract data from VSAM and

physical sequential access method (SAM) files, as well from DL/I databases. Using

IMS DPROP, you do not need to extract all the data in a database or data set. You

use a statement such as an SQL subselect to indicate which fields to extract and

which conditions, if any, the source records or segments must meet.

With JCL models that you edit, you can have IMS DPROP produce the statements

for a DB2 LOAD utility job. If you have more than one DB2 subsystem, you can

name the one that is to receive the output. IMS DPROP can generate LOAD control

statements in the job to relate fields in the extracted data to target columns in DB2

tables.

LOAD DATA

 REPLACE KEEPDICTIONARY

 INTO TABLE DSN8810.DEPT

 (DEPTNO POSITION (1) CHAR(3),

 DEPTNAME POSITION (5) VARCHAR,

 MGRNO POSITION (37) CHAR(6),

 ADMRDEPT POSITION (44) CHAR(3),

 LOCATION POSITION (48) CHAR(16))

 ENFORCE NO

Figure 38. Example of LOAD with the KEEPDICTIONARY option

LOAD

Chapter 16. LOAD 247

#
#
#
#
#

You have the following choices for how IMS DPROP writes the extracted data:

v 80-byte records, which are included in the generated job stream

v A separate physical sequential data set (which can be dynamically allocated by

IMS DPROP), with a logical record length that is long enough to accommodate

any row of the extracted data

In the first case, the LOAD control statements that are generated by IMS DPROP

include the CONTINUEIF option to describe the extracted data to DB2 LOAD.

In the second case, you can have IMS DPROP name the data set that contains the

extracted data in the SYSREC DD statement in the LOAD job. (In that case, IMS

DPROP makes no provision for transmitting the extracted data across a network.)

Normally, you do not need to edit the job statements that are produced by IMS

DPROP. However, in some cases you might need to edit; for example, if you want

to load character data into a DB2 column with INTEGER data type, you need to

edit the job statements. (DB2 LOAD does not consider CHAR and INTEGER data

to be compatible.)

IMS DPROP is a versatile tool that contains more control, formatting, and output

options than are described here. For more information about this tool, see IMS

DataPropagator: An Introduction.

Loading data by using the cross-loader function

The LOAD utility can directly load the output of a dynamic SQL SELECT

statement into a table. The dynamic SQL statement can be executed on data at a

local server or at any DRDA-compliant remote server. This functionality is called

the DB2 UDB family cross-loader function. This function enables you to use a

single LOAD job to transfer data from one location to another location or from one

table to another table at the same location. Your input for this cross-loader function

can come from other sources besides DB2 UDB for z/OS; you can use IBM

Information Integrator Federation feature for access to data from sources as diverse

as Oracle and Sybase, as well as the entire DB2 UDB family of database servers.

For information about steps that need to be completed prior to using the cross

loader function, see “Loading data by using a cursor” on page 232.

To use the cross-loader function, you first need to declare a cursor by using the

EXEC SQL utility. Within the cursor definition, specify a SELECT statement that

identifies the result table that you want to use as the input data for the LOAD job.

The column names in the SELECT statement must be identical to the column

names in the table that is being loaded. You can use the AS clause in the SELECT

list to change the columns names that are returned by the SELECT statement so

that they match the column names in the target table. The columns in the SELECT

list do not need to be in the same order as the columns in the target table. Also,

the SELECT statement needs to refer to any remote tables by their three-part name.

After you declare the cursor, specify the cursor name with the INCURSOR option

in the LOAD statement. You cannot load the input data into the same table on

which you defined the cursor. You can, however, use the same cursor to load

multiple tables.

When you submit the LOAD job, DB2 parses the SELECT statement in the cursor

definition and checks for errors. If the statement is invalid, the LOAD utility issues

an error message and identifies the condition that prevented the execution. If the

statement syntax is valid but an error occurs during execution, the LOAD utility

also issues an error message. The utility terminates when it encounters an error.

LOAD

248 Utility Guide and Reference

If no errors occur, the utility loads the result table that is identified by the cursor

into the specified target table according to the following rules:

v LOAD matches the columns in the input data to columns in the target table by

name, not by sequence.

v If the number of columns in the cursor is less than the number of columns in the

table that is being loaded, DB2 loads the missing columns with their default

values. If the missing columns are defined as NOT NULL without defaults, the

LOAD job fails.

v If you specify IGNOREFIELDS YES, LOAD skips any columns in the input data

that do not exist in the target table.

v If the data types in the target table do not match the data types in the cursor,

DB2 tries to convert the data as much as possible. If the conversion fails, the

LOAD job fails. You might be able to avoid these conversion errors by using

SQL conversion functions in the SELECT statement of the cursor declaration.

v If the encoding scheme of the input data is different than the encoding scheme

of the target table, DB2 converts the encoding schemes automatically.

v The sum of the lengths of all of the columns cannot exceed 32 KB.

v If the SELECT statement in the cursor definition specifies a table with at least

one LOB column and a ROWID that was created with the GENERATED

ALWAYS clause, you cannot specify this ROWID column in the SELECT list of

the cursor.

Also, although you do not need to specify casting functions for any distinct types

in the input data or target table, you might need to add casting functions to any

additional WHERE clauses in the SQL.

For examples of loading data from a cursor, see “Sample LOAD control

statements” on page 271.

Using inline COPY with LOAD

You can create a full image copy data set (SHRLEVEL REFERENCE) during LOAD

execution. The new copy is an inline copy. The advantage to using an inline copy

is that the table space is not left in COPY-pending status regardless of which LOG

option was specified for the utility. Thus, data availability is increased.

To create an inline copy, use the COPYDDN and RECOVERYDDN keywords. You

can specify up to two primary and two secondary copies. Inline copies are

produced during the RELOAD phase of LOAD processing.

The SYSCOPY record that is produced by an inline copy contains ICTYPE=F and

SHRLEVEL=R. The STYPE column contains an R if the image copy was produced

by LOAD REPLACE LOG(YES). It contains an S if the image copy was produced

by LOAD REPLACE LOG(NO). The data set that is produced by the inline copy is

logically equivalent to a full image copy with SHRLEVEL REFERENCE, but the

data within the data set differs in the following ways:

v Data pages might be out of sequence and some might be repeated. If pages are

repeated, the last one is always the correct copy.

v Space map pages are out of sequence and might be repeated.

v If the compression dictionary is rebuilt with LOAD, the set of dictionary pages

occurs twice in the data set, with the second set being the correct one.

The total number of duplicate pages is small, with a negligible effect on the

required space for the data set.

LOAD

Chapter 16. LOAD 249

You must specify LOAD REPLACE. If you specify RESUME YES or RESUME NO

but not REPLACE, an error message is issued and LOAD terminates.

Improving performance

To improve LOAD utility performance, you can take the following actions:

v Use one LOAD DATA statement when loading multiple tables in the same table

space. Follow the LOAD statement with multiple INTO TABLE WHEN clauses.

v Run LOAD concurrently against separate partitions of a partitioned table space.

Alternatively, specify the INDDN and DISCARDDN keywords in your utility

JCL to invoke partition parallelism. This specification reduces the elapsed time

required for loading large amounts of data into partitioned table spaces.

Recommendation: Use load partition parallelism to load all partitions in a single

job when one or more nonpartitioned secondary indexes exists. If the only

indexes are the partitioned indexes, using multiple concurrent jobs against

separate partitions is better.

v Preprocess the input data. For more information about preprocessing input data,

see “Before running LOAD” on page 231.

v Load numeric data in its internal representation.

v Avoid data conversion, such as from integer to decimal or from decimal to

floating-point.

v When you specify LOAD REPLACE, specify LOG NO with COPYDDN or

RECOVERYDDN to create an inline copy.

v Sort the data in cluster order to avoid needing to reorganize it after loading.

v If you are using 3990 caching, and you have the secondary indexes on RAMAC,

consider specifying YES on the UTILITY CACHE OPTION field of installation

panel DSNTIPE. This allows DB2 to use sequential prestaging when reading

data from RAMAC for the following utilities:

– LOAD PART integer RESUME

– REORG TABLESPACE PART

For these utilities, prefetch reads remain in the cache longer, thus possibly

improving performance of subsequent writes.

The optimum order for presenting data to LOAD is as follows:

v If you are loading a single table that has, at most, one foreign key or one index

key, sort the data in key sequence. (An index over a foreign key is allowed.) If

the key is an index key, sort the data in either ascending or descending order,

depending on how the index was defined. If the key is a foreign key, sort the

data in ascending order. Null key values are treated as “high” values.

v If you are loading more than one table, choose one of the following methods:

– Load each table separately. Using this method, you can follow the rules listed

in the preceding bullet for loading single tables.

– Use the WHEN clause under each INTO TABLE option on your LOAD

statement to group your input data by table.

Within each table, sort the data in key sequence.

Improving performance for parallel processing

Taking advantage of any new parallelism feature without allocating additional

resources or tuning your system can lead to significant performance degradation.

To benefit from parallel operations when using LOAD SHRLEVEL CHANGE or

parallel inserts, especially when secondary indexes are used, you can take the

following actions:

LOAD

250 Utility Guide and Reference

|
|
|
|

|

v Use a larger buffer pool to improve the buffer-pool hit ratio.

v Define a higher deferred-write threshold to reduce the number of pages that are

written to disk, which reduces the I/O time and contention.

v Define a larger checkpoint interval to reduce the number of pages that are

written to disk, which reduces the I/O time and contention.

v Use ESS Parallel Access Volume (PAV) to support multiple concurrent I/Os to

the same volume that contains secondary index data sets.

v Use secondary index pieces to support multiple concurrent secondary index

I/Os.

Improved performance with SORTKEYS

The SORTKEYS keyword improves performance of the index key sort. The

SORTKEYS keyword is the default if one of the following conditions is true:

v SHRLEVEL is not NONE.

v SHRLEVEL is NONE, and the target table has one or more indexes.

Advantages of the SORTKEYS option: With SORTKEYS, index keys are passed in

memory rather than written to work files. Avoiding this I/O to the work files

improves LOAD performance.

You also reduce disk space requirements for the SYSUT1 and SORTOUT data sets,

especially if you provide an estimate of the number of keys to sort.

The SORTKEYS option reduces the elapsed time from the start of the RELOAD

phase to the end of the BUILD phase.

You can reduce the elapsed time of a LOAD job for a table space or partition with

more than one defined index by specifying the parameters to invoke a parallel

index build. For more information, see “Building indexes in parallel for LOAD” on

page 255.

Estimating the number of keys: You can specify an estimate of the number of keys

for the job to sort. If the estimate is specified as 0, LOAD writes the extracted keys

to the work data set, which reduces the performance improvement of using

SORTKEYS.

To estimate the number of keys to sort:

1. Count 1 for each index.

2. Count 1 for each foreign key where foreign key and index definitions are not

identical.

3. For each foreign key where foreign key and index definitions are identical:

a. Count 0 for the first relationship in which the foreign key participates.

b. Count 1 for subsequent relationships in which the foreign key participates

(if any).
4. Multiply the count by the number of rows to be loaded.

If more than one table is being loaded, repeat the preceding steps for each table,

and sum the results.

Improving performance with LOAD or REORG PREFORMAT

DB2 preformatting sometimes causes delay, which can affect the performance or

execution time consistency of high INSERT applications or LOAD jobs with

RESUME YES SHRLEVEL CHANGE. These LOAD jobs are also referred to as

LOAD

Chapter 16. LOAD 251

|

|

#
#

#

#

|
|

#
#

online LOAD jobs.. When these delays occur and when you can predict the table

size for a business processing cycle, consider the LOAD PREFORMAT or REORG

PREFORMAT technique. This technique is of value only when DB2 preformatting

causes a measurable delay with processing or causes inconsistent application

elapsed times for INSERT or online LOAD jobs.

Recommendation: Assess performance before and after using LOAD or REORG

PREFORMAT to quantify its value in your environment.

Considerations for using PREFORMAT: PREFORMAT is a technique that is used

to eliminate the need for DB2 to preformat new pages in a table space during

execution time. This technique might eliminate execution time delays but adds

setup time prior to the application’s execution. LOAD or REORG PREFORMAT

primes a new table space and prepares it for INSERT or online LOAD processing.

When the preformatted space is utilized and DB2 needs to extend the table space,

normal data set extending and preformatting occurs.

Preformatting for online LOAD or INSERT processing can be desirable for

high-insert tables that receive a predictable amount of data because all the required

space can be pre-allocated prior to the application’s execution. This benefit also

applies to the case of a table that acts as a repository for work items that come into

a system and that are subsequently used to feed a backend task that processes the

work items.

Preformatting of a table space that contains a table that is used for query

processing can cause table space scans to read additional empty pages, extending

the elapsed time for these queries. LOAD or REORG PREFORMAT is not

recommended for tables that have a high ratio of reads to inserts if the reads result

in table space scans.

Preformatting boundaries: You can manage your own data sets or have DB2

manage the data sets. For user-managed data sets, DB2 does not delete and

reallocate them during utility processing. The size of the data set does not shrink

back to the original data set allocation size but either remains the same or increases

in size if additional space or data is added. This characteristic has implications

when LOAD or REORG PREFORMAT is used because of the preformatting that is

done for all free pages between the high-used RBA (or page) to the high-allocated

RBA. This preformatting includes secondary extents that have been allocated.

For DB2-managed data sets, DB2 deletes and reallocates them if you specify

REPLACE on the LOAD or REORG job. This results in the data sets being re-sized

to their original allocation size. They remain that size if the data that is being

reloaded does not fill the primary allocation and forces a secondary allocation. This

means the LOAD or REORG PREFORMAT option with DB2-managed data causes

at least the full primary allocation amount of a data set to be preformatted after

the reload of data into the table space.

For both user-managed and DB2-managed data sets, if the data set goes into

secondary extents during utility processing, the high-allocated RBA becomes the

end of the secondary extent, and that becomes the high value for preformatting.

Preformatting performance considerations: LOAD or REORG PREFORMAT can

eliminate dynamic preformatting delays when inserting into a new table space. The

cost of this execution time improvement is an increase in the LOAD or REORG

time due to the additional required processing to preformat all pages between the

LOAD

252 Utility Guide and Reference

#

#

#

#

data that is loaded or reorganized and the high-allocated RBA. The additional

LOAD or REORG time that is required depends on the amount of disk space that

is being preformatted.

Table space scans can also be elongated because empty preformatted pages are

read. Use the LOAD or REORG PREFORMAT option for table spaces that start out

empty and are filled through high insert activity before any query access is

performed against the table space. Mixing inserts and nonindexed queries against a

preformatted table space might have a negative impact on the query performance

without providing a compensating improvement in the insert performance. You

will see the best results where a high ratio of inserts to read operations exists.

Converting input data

The LOAD utility converts data between compatible data types.2

Tables 35, 36, and 37 identify the compatibility of data types for assignments and

comparisons. Y indicates that the data types are compatible. N indicates that the

data types are not compatible. D indicates the defaults that are used when you do

not specify the input data type in a field specification of the INTO TABLE

statement.

Table 35 shows the compatibility of numeric data types.

 Table 35. Compatibility of converting numeric data types.

Input data types Output data types

SMALLINT INTEGER DECIMAL FLOAT

SMALLINT D Y Y Y

INTEGER Y D Y Y

DECIMAL Y Y D Y

FLOAT Y Y Y D

Table 36 shows the compatibility of character data types.

 Table 36. Compatibility of converting character data types.

Input data

types

Output data types

BLOB CHAR VAR-

CHAR

CLOB GRAPHIC VAR-

GRAPHIC

DBCLOB ROWID

CHAR Y D Y Y Y1 Y1 Y1 Y

CHAR

MIXED

Y D Y Y Y1 Y1 Y1 N

VAR- CHAR Y Y D Y Y1 Y1 Y1 Y

VAR- CHAR

MIXED

Y Y D Y Y1 Y1 Y1 N

GRAPHIC N Y1 Y1 Y1 D Y Y N

VAR-

GRAPHIC

N Y1 Y1 Y1 Y D Y N

ROWID N N N N N N N D

2. The source type is used for user-defined distinct types.

LOAD

Chapter 16. LOAD 253

Table 36. Compatibility of converting character data types. (continued)

Input data

types

Output data types

BLOB CHAR VAR-

CHAR

CLOB GRAPHIC VAR-

GRAPHIC

DBCLOB ROWID

Notes:

1. Conversion applies when either the input data or the target table is Unicode.

Table 37 shows the compatibility of time data types.

 Table 37. Compatibility of converting time data types.

Input data types Output data types

DATE TIME TIMESTAMP

DATE EXTERNAL D N N

TIME EXTERNAL N D N

TIMESTAMP EXTERNAL Y Y D

Input fields with data types CHAR, CHAR MIXED, CLOB, DBCLOB, VARCHAR,

VARCHAR MIXED, GRAPHIC, GRAPHIC EXTERNAL, and VARGRAPHIC are

converted from the CCSIDs of the input file to the CCSIDs of the table space when

they do not match. For example:

v You specify the ASCII or UNICODE option for the input data, and the table

space is EBCDIC.

v You specify the EBCDIC or UNICODE option, and the table space is ASCII.

v You specify the ASCII or EBCDIC option, and the table space is Unicode.

v The CCSID option is specified, and the CCSIDs of the input data are not the

same as the CCSIDs of the table space.

CLOB, BLOB, and DBCLOB input field types cannot be converted to any other

field type.

Conversion errors cause LOAD:

v To abend, if no discard data set is provided or if the discard limit is exceeded.

v To map the input record for subsequent discarding and continue (if a discard

data set is provided)

Truncation of the decimal part of numeric data is not considered a conversion

error.

Specifying input fields

When specifying input fields, take one of these actions:

v Specify the length of VARCHAR, BLOB, CLOB, DBCLOB, and ROWID data in

the input file.

v Explicitly define all input field specifications.

v Use DECIMAL EXTERNAL(length,scale) in full.

v Specify decimal points explicitly in the input file.

Specifying the TRUNCATE and STRIP options

You can load certain fields that are longer than the length of target column by

truncating the data. DB2 truncates the data only when you explicitly specify the

LOAD

254 Utility Guide and Reference

|
|
|

TRUNCATE option. You can specify TRUNCATE with the CHAR, VARCHAR,

GRAPHIC, and VARGRAPHIC data type options. LOAD first applies any CCSID

conversion, and then truncates the data. The TRUNCATE option of the LOAD

utility truncates string data, and it has a different purpose than the SQL

TRUNCATE scalar function.

You can also remove a specified character from the beginning, end, or both ends of

the data by specifying the STRIP option. This option is valid only with the CHAR,

VARCHAR, GRAPHIC, and VARGRAPHIC data type options. If you specify both

the TRUNCATE and STRIP options, LOAD performs the strip operation first. For

example, if you specify both TRUNCATE and STRIP for a field that is to be loaded

into a VARCHAR(5) column, LOAD alters the character strings as shown in

Table 38. In this table, an underscore represents a character that is to be stripped.

 Table 38. Results of specifying both TRUNCATE and STRIP for data that is to be loaded into

a VARCHAR(5) column.

Specified STRIP

option Input string

String after strip

operation String that is loaded

STRIP BOTH ‘_ABCDEFG_’ ‘ABCDEFG’ ‘ABCDE’

STRIP LEADING ‘_ABC_’ ‘ABC_’ ‘ABC_’

STRIP TRAILING ‘_ABC_DEF_’ ‘_ABC_DEF’ ‘_ABC_’

Building indexes while loading data

LOAD builds all the indexes that are defined for any table that is being loaded. At

the same time, it checks for duplicate values of any unique index key. If LOAD

finds any duplicate values, none of the corresponding rows are loaded. Error

messages identify the input records that produce duplicates; optionally, the records

are copied to a discard data set. At the end of the job, a summary report lists all

errors that are found.

For unique indexes, any two null values are assumed to be equal, unless the index

was created with the UNIQUE WHERE NOT NULL clause. In that case, if the key

is a single column, it can contain any number of null values, although its other

values must be unique.

Neither the loaded table nor its indexes contain any of the records that might have

produced an error. Using the error messages, you can identify faulty input records,

correct them, and load them again. If you use a discard data set, you can correct

the records there and add them to the table with LOAD RESUME.

Building indexes in parallel for LOAD

Parallel index build reduces the elapsed time for a LOAD job by sorting the index

keys and rebuilding multiple indexes in parallel, rather than sequentially.

Optimally, a pair of subtasks process each index; one subtask sorts extracted keys

while the other subtask builds the index. LOAD begins building each index as

soon as the corresponding sort produces its first sorted record. For more

information about improving index key sort performance, see “Improved

performance with SORTKEYS” on page 251.

LOAD uses parallel index build if all of the following conditions are true:

v More than one index needs to be built.

v The LOAD utility statement specifies a non-zero estimate of the number of keys

on the SORTKEYS option.

LOAD

Chapter 16. LOAD 255

|
|
|
|
|

|
|
|
|
|
|
|

||
|

|
||
|
||

||||

||||

||||
|

|

|
|

For a diagram of parallel index build processing, see Figure 78 on page 468.

You can either allow the utility to dynamically allocate the data sets that the SORT

phase needs, or provide the necessary data sets yourself. Select one of the

following methods to allocate sort work and message data sets:

Method 1: LOAD determines the optimal number of sort work and message data

sets.

1. Specify the SORTDEVT keyword in the utility statement.

2. Allow dynamic allocation of sort work data sets by not supplying SORTWKnn

DD statements in the LOAD utility JCL.

3. Allocate UTPRINT to SYSOUT.

Method 2: You control allocation of sort work data sets, while LOAD allocates

message data sets.

1. Provide DD statements with DD names in the form SWnnWKmm.

2. Allocate UTPRINT to SYSOUT.

Method 3: You have the most control over rebuild processing; you must specify

both sort work and message data sets.

1. Provide DD statements with DD names in the form SWnnWKmm.

2. Provide DD statements with DD names in the form UTPRINnn.

Note: Using this method does not eliminate the requirement for a UTPRINT DD

card.

Data sets used: If you select Method 2 or 3 in the preceding information, use the

information provided here, along with “Determining the number of sort subtasks”

on page 257, “Allocation of sort subtasks” on page 257, and “Estimating the sort

work file size” on page 257 to define the necessary data sets.

Each sort subtask must have its own group of sort work data sets and its own

print message data set. Possible reasons to allocate data sets in the utility job JCL

rather than using dynamic allocation are:

v To control the size and placement of the data sets

v To minimize device contention

v To optimally utilize free disk space

v To limit the number of utility subtasks that are used to build indexes

The DD names SWnnWKmm define the sort work data sets that are used during

utility processing. nn identifies the subtask pair, and mm identifies one or more

data sets that are to be used by that subtask pair. For example:

SW01WK01 The first sort work data set that is used by the subtask as it builds

the first index.

SW01WK02 The second sort work data set that is used by the subtask as it

builds the first index.

SW02WK01 The first sort work data set that is used by the subtask as it builds

the second index.

SW02WK02 The second sort work data set that is used by the subtask as it

builds the second index.

LOAD

256 Utility Guide and Reference

|

|

|

#
#

The DD names UTPRINnn define the sort work message data sets that are used by

the utility subtask pairs. nn identifies the subtask pair.

Determining the number of sort subtasks: The maximum number of utility

subtask pairs that are started for parallel index build is equal to the number of

indexes that are to be built.

LOAD determines the number of subtask pairs according to the following

guidelines:

v The number of subtask pairs equals the number of sort work data set groups

that are allocated.

v The number of subtask pairs equals the number of message data sets that are

allocated.

v If you allocate both sort work and message data set groups, the number of

subtask pairs equals the smallest number of data sets that are allocated.

Allocation of sort subtasks: LOAD attempts to assign one sort subtask pair for

each index that is to be built. If LOAD cannot start enough subtasks to build one

index per subtask pair, it allocates any excess indexes across the pairs (in the order

that the indexes were created), so that one or more subtask pairs might build more

than one index.

During parallel index build processing, LOAD assigns all foreign keys to the first

utility subtask pair. Remaining indexes are then distributed among the remaining

subtask pairs according to the creation date of the index. If a table space does not

participate in any relationships, LOAD distributes all indexes among the subtask

pairs according to the index creation date, assigning the first created index to the

first subtask pair.

Refer to Table 39 for conceptual information about subtask pairing when the

number of indexes (seven indexes) exceeds the available number of subtask pairs

(five subtask pairs).

 Table 39. LOAD subtask pairing for a relational table space

Subtask pair Assigned index

SW01WKmm Foreign keys, fifth created index

SW02WKmm First created index, sixth created index

SW03WKmm Second created index, seventh created index

SW04WKmm Third created index

SW05WKmm Fourth created index

Estimating the sort work file size: If you choose to provide the data sets, you

need to know the size and number of keys in all of the indexes that are being

processed by the subtask in order to calculate each sort work file size. After you

determine which indexes are assigned to which subtask pairs, use one of the

following formulas to calculate the required space:

v If the indexes being processed include a mixture of data-partitioned secondary

indexes and nonpartitioned indexes, use the following formula:

2 × (longest index key + 15) × (number of extracted keys)

v Otherwise, if only one type of index is being built, use the following formula:

2 × (longest index key + 13) × (number of extracted keys)

longest index key The length of the longest key that is to be

LOAD

Chapter 16. LOAD 257

|
|
|

|
|

||

processed by the subtask. For the first subtask pair

for LOAD, compare the length of the longest key

and the length of the longest foreign key, and use

the larger value. For nonpadded indexes, longest

index key means the maximum possible length of a

key with all varying-length columns, padded to

their maximum lengths, plus 2 bytes for each

varying-length column.

number of extracted keys The number of keys from all indexes that are to be

sorted and that the subtask is to process.

Leaving free space

When loading into a nonsegmented table space, LOAD leaves one free page after

reaching the FREEPAGE limit, regardless of whether the loaded records belong to

the same or different tables.

When loading into a segmented table space, LOAD leaves free pages, and free

space on each page, in accordance with the current values of the FREEPAGE and

PCTFREE parameters. (You can set those values with the CREATE TABLESPACE,

ALTER TABLESPACE, CREATE INDEX, or ALTER INDEX statements.) LOAD

leaves one free page after reaching the FREEPAGE limit for each table in the table

space.

Loading with RECOVER-pending, REBUILD-pending, or

REORG-pending status

You cannot load records by specifying RESUME YES if any partition of a table

space is in the RECOVER-pending status. In addition, you cannot load records if

any index on the table that is being loaded is in the REBUILD-pending status. See

“Resetting the REBUILD-pending status” on page 344 for information about

resetting the REBUILD-pending status.

If you are replacing a partition, these preceding restrictions are relaxed; the

partition that is being replaced can be in the RECOVER-pending status, and its

corresponding index partition can be in the REBUILD-pending status. However, all

secondary indexes must not be in the page set REBUILD-pending status. See

Appendix C, “Advisory or restrictive states,” on page 849 for more information

about resetting a restrictive status.

The one RECOVER-pending restrictive status has the following description:

RECP RECOVER-pending status is set on a table space or partition. If a single

logical partition is in RECP status, the partition is treated as RECP status

for SQL access. A single logical partition in RECP status does not restrict

utility access to other logical partitions that are not in RECP status. RECP

status is reset by recovering only the single logical partition.

The four REBUILD-pending restrictive states have the following descriptions:

RBDP REBUILD-pending status is set on a physical or logical index partition. The

individual physical or logical partition is inaccessible and must be rebuilt

by using the REBUILD INDEX utility, or recovered by using the RECOVER

utility.

PSRBD

Page set REBUILD-pending is set on nonpartitioned secondary indexes.

Partitioned indexes, including data-partitioned secondary indexes, are

LOAD

258 Utility Guide and Reference

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

never placed in a page set REBUILD-pending status. The entire index

space is inaccessible until you rebuild it with the REBUILD utility, or

recover it with the RECOVER utility.

RBDP*

REBUILD-pending star status is set only on logical partitions of

nonpartitioning indexes. The entire index is inaccessible, but it is made

available again when the affected partitions are rebuilt by using the

REBUILD INDEX utility, or recovered by using the RECOVER utility.

The one REORG-pending restrictive status has the following description:

REORP

REORG-pending status indicates that a table space or partition needs to be

reorganized.

See Table 171 on page 853 for information about resetting the RECOVER-pending

status, Table 170 on page 853 for information about resetting the REBUILD-pending

status, and “REORG-pending status” on page 854 for information about resetting

the REORG-pending status.

Using exit procedures

Any field procedure that is associated with a column of a table that is being loaded

is executed to encode the data before it is loaded. The field procedures for all

columns are executed before any edit or validation procedure for the row.

Any field specification that describes the data is checked before a field procedure is

executed. That is, the field specification must describe the data as it appears in the

input record.

Loading ROWID columns

Columns that are defined as ROWID can be designated as input fields; refer to the

LOAD field specification syntax diagram. LOAD PART is not allowed if the

ROWID column is part of the partitioning key. In this situation, DB2 issues error

message DSNU256I.

Columns that are defined as ROWID can be designated as GENERATED BY

DEFAULT or GENERATED ALWAYS. With GENERATED ALWAYS, DB2 always

generates a row ID.

ROWID generated by default: The LOAD utility can set from input data columns

that are defined as ROWID GENERATED BY DEFAULT. The input field must be

specified as a ROWID. No conversions are allowed. The input data for a ROWID

column must be a unique, valid value for a row ID. If the value of the row is not

unique, a duplicate key violation occurs. If such an error occurs, the load fails. In

this case, you need to discard the duplicate value and re-run the LOAD job with a

new unique value, or allow DB2 to generate the value of the row ID.

You can use the DEFAULTIF attribute with the ROWID keyword. If the condition

is met, the column is loaded with a value that is generated by DB2. You cannot use

the NULLIF attribute with the ROWID keyword because row ID columns cannot

be null.

ROWID generated always: A ROWID column that is defined as GENERATED

ALWAYS cannot be included in the field specification list because DB2 generates

the row ID value for you.

LOAD

Chapter 16. LOAD 259

|
|
|

|

|
|
|

Loading a LOB column

LOB columns are treated by the LOAD utility as varying-length data. The length

value for a LOB column must be 4 bytes.

You can load LOB values in one of the following ways:

v Load the LOB value directly from the input data set: Use this method only

when the sum of the lengths of all of the columns to be loaded, including the

LOB column, does not exceed 32 KB. To load a LOB value directly from the

input data set:

1. In the input data set, include the LOB value preceded by a 4-byte binary

field that contains the length of the LOB.

2. Specify CLOB, BLOB, or DBCLOB in the field specification portion of the

LOAD statement. These options indicate that the field in the input data set is

a LOB value. For example, to load a CLOB into the RESUME column, specify

something like RESUME POSITION(7) CLOB. This specification indicates that

position 7 of the input data set contains the length of the CLOB followed by

the CLOB value that is to be loaded into the RESUME column.
v Load the LOB value from a file that is listed in the input data set: When you

load a LOB value from a file, the LOB value can be greater than 32 KB. To load

a LOB value from a file:

1. In the input data set, specify the names of the files that contain the LOB

values. Each file can be either a PDS, PDSE, or an HFS file.

2. Specify either BLOBF, CLOBF, or DBCLOBF in the field specification portion

of the LOAD statement. For example, to load a LOB into the RESUME

column of a table, specify something like RESUME POSITION(7) VARCHAR CLOBF.

This specification indicates that position 7 of the input data set contains the

name of a file from which a varying-length CLOB is to be loaded into the

RESUME column.
v Load data from another table: To transfer data from one location to another

location or from one table to another table at the same location, use a cursor.

This method of loading data is called the cross-loader function. For more

information about how to use this function, see “Loading data by using the

cross-loader function” on page 248.

When you use the cross-loader function, the LOB value can be greater than 32

KB. For this method, DB2 uses a separate buffer for LOB data and therefore

stores only 8 bytes per LOB column. The sum of the lengths of the non-LOB

columns plus the sum of 8 bytes per LOB column cannot exceed 32 KB.

Using LOAD LOG on a LOB table space

A LOB table space that was defined with LOG YES or LOG NO affects logging

during the load of a LOB column. Table 40 shows the logging output and LOB

table space effect, if any.

 Table 40. LOAD LOG and REORG LOG impact for a LOB table space

LOAD LOG/ REORG

LOG keyword

LOB table space LOG

attribute What is logged

LOB table space

status after utility

completes

LOG YES LOG YES Control information and LOB data No pending status

LOG YES LOG NO Control information No pending status

LOG NO LOG YES Nothing COPY-Pending1

LOG NO LOG NO Nothing COPY-Pending1

LOAD

260 Utility Guide and Reference

#

#
#
#
#

#
#

#
#
#
#
#
#

#
#
#

#
#

#
#
#
#
#
#

#
#
#
#
#

#
#
#
#

Table 40. LOAD LOG and REORG LOG impact for a LOB table space (continued)

LOAD LOG/ REORG

LOG keyword

LOB table space LOG

attribute What is logged

LOB table space

status after utility

completes

Notes:

1. REORG LOG NO on a LOB table space sets COPY-pending status only if the LOB table space was changed by the

REORG utility.

Collecting inline statistics while loading a table

If you do not specify LOAD RESUME YES, you can use the STATISTICS keyword

to gather inline statistics. Using the STATISTICS keyword eliminates the need to

run RUNSTATS after loading a table space. However, if you perform a LOAD

PART operation, you should run RUNSTATS INDEX on the nonpartitioned

secondary indexes to update the catalog data about these indexes.

Use either the STATISTICS option or the RUNSTATS utility to collect statistics so

that the DB2 catalog statistics contain information about the newly loaded data.

Recording these new statistics enables DB2 to select SQL paths with accurate

information. Then rebind any application plans that depend on the loaded tables to

update the path selection of any embedded SQL statements.

Collecting inline statistics for discarded rows: If you specify the DISCARDDN

and STATISTICS options and a row is found with check constraint errors or

conversion errors, the row is not loaded into the table and DB2 does not collect

inline statistics on it. However, the LOAD utility collects inline statistics prior to

discarding rows that have unique index violations or referential integrity

violations. In these cases, if the number of discarded rows is large enough to make

the statistics significantly inaccurate, run the RUNSTATS utility separately on the

table to gather the most accurate statistics.

Collecting inline statistics for data partitioned secondary indexes: To collect

inline statistics on data partitioned secondary indexes, you must allocate sort work

data sets. For information about these data sets, including how to estimate the

space, see “Data sets that LOAD uses” on page 232.

Inline COPY for a base table space

If you take an inline image copy of a table that has LOB columns, DB2 makes a

copy of the base table space, but does not copy the LOB table spaces.

Terminating or restarting LOAD

This section contains information about how to terminate and restart LOAD.

Terminating LOAD

If you terminate LOAD by using the TERM UTILITY command during the reload

phase, the records are not erased. The table space remains in RECOVER-pending

status, and indexes remain in the REBUILD-pending status.

If you terminate LOAD by using the TERM UTILITY command during the sort or

build phases, the indexes that are not yet built remain in the REBUILD-pending

status.

If you terminate a LOAD SHRLEVEL CHANGE, uncommitted records are rolled

back, but committed records remain in the table. The table space is not in

RECOVER-pending status, and the indexes are not in REBUILD-pending status.

LOAD

Chapter 16. LOAD 261

|
|

If the LOAD job terminates during the RELOAD, SORT, BUILD, or SORTBLD

phases, both RESTART and RESTART(PHASE) phases restart from the beginning of

the RELOAD phase. However, restart of LOAD RESUME YES or LOAD PART

RESUME YES in the BUILD or SORTBLD phase results in message DSNU257I.

Table 41 lists the LOAD phases and their effects on any pending states when the

utility is terminated in a particular phase.

 Table 41. LOAD phases and their effects on pending states when terminated.

Phase Effect on pending status

Reload v Places table space in RECOVER-pending status, then resets the status.

v Places indexes in REBUILD-pending status.

v Places table space in COPY-pending status.

v Places table space in CHECK-pending status.

Build v Resets REBUILD-pending status for non unique indexes.

Indexval v Resets REBUILD-pending status for unique indexes.

Enforce v Resets CHECK-pending status for table space.

Restarting LOAD

You can restart LOAD at its last commit point (RESTART(CURRENT)) or at the

beginning of the phase during which operation ceased (RESTART(PHASE)). LOAD

output messages identify the completed phases; use the DISPLAY command to

identify the specific phase during which operation stopped. When using LOAD

SHRLEVEL CHANGE, the RESTART(CURRENT) and RESTART(PHASE) operate

exactly the same way as committed rows are not loaded again.

By default, DB2 uses RESTART(CURRENT), except if LOAD is restarting during

the UTILINIT phase or the UTILTERM phase. In both of these situations, DB2 uses

RESTART(PHASE) by default. You can override the default RESTART values by

using the RESTART parameter. For general instructions on restarting a utility job,

see “Restarting an online utility” on page 41.

The following restrictions apply to restarting LOAD jobs:

v If LOAD abnormally terminates or a system failure occurs while LOAD is in the

UTILTERM phase, you must restart with RESTART(PHASE).

v If you restart a LOAD job for a table that has LOB columns that specified the

RESUME YES option, you must use RESTART(CURRENT).

v If you use RESTART(PHASE) to restart a LOAD job that specified RESUME NO,

the LOB table spaces and indexes on auxiliary tables are reset.

v For a table that has LOB columns, you cannot restart a LOAD job that uses the

INCURSOR option.

v If you restart a LOAD job that uses the STATISTICS keyword, inline statistics

collection does not occur. To update catalog statistics, run the RUNSTATS utility

after the restarted LOAD job completes.

v If you are using a BatchPipes file, you cannot restart the LOAD utility. If the

application that populates the BatchPipes file terminates, you need to terminate

the job where LOAD is executing. If the LOAD utility was invoked from a

stored procedure, you also need to terminate the WLM application environment

of the LOAD utility that reads the BatchPipes file. After you terminate the job,

terminate the LOAD utility using the DB2 TERM UTILITY command, and then

you can resubmit the LOAD job.

LOAD

262 Utility Guide and Reference

|

|

|

#
#
#
#
#
#

|
|
|
|
|

#
#
#
#
#
#
#

Table 42 provides information about restarting LOAD, depending on the phase that

LOAD was in when the job stopped. The TYPE column distinguishes between the

effects of specifying RESTART or RESTART(PHASE). Additional phase restrictions

are explained in the notes.

 Table 42. LOAD restart information

Phase

Type of

RESTART Required data sets Notes

RELOAD CURRENT SYSREC and SYSUT1 SYSMAP

and SYSERR

1, 2, 10

PHASE SYSREC 3, 10

SORT CURRENT SYSUT1 4, 10

PHASE SYSUT1 10

BUILD CURRENT SORTOUT 4, 5, 10

PHASE SORTOUT 5, 10

SORTBLD CURRENT SYSUT1 and SORTOUT 5, 6, 10

PHASE SYSUT1 and SORTOUT 5, 6, 10

INDEXVAL CURRENT SYSERR or SYSUT1 2

PHASE SYSERR or SYSUT1 2

ENFORCE CURRENT SORTOUT and SYSUT1 7

PHASE SORTOUT and SYSUT1 7

DISCARD CURRENT SYSMAP and SYSERR SORTOUT

and SYSUT1

7, 8

PHASE SYSMAP and SYSERR SORTOUT

and SYSUT1

7, 8

REPORT CURRENT SYSERR or SORTOUT SYSMAP

and SYSERR

7, 9

PHASE SYSERR or SORTOUT SYSMAP

and SYSERR

7, 9

Notes:

 1. SYSMAP and SYSERR data sets might not be required for all load jobs. See Chapter 16,

“LOAD,” on page 191 for exact requirements.

 2. If the SYSERR data set is not required and has not been provided, LOAD uses SYSUT1

as a work data set to contain error information.

 3. You must not restart during the RELOAD phase if you specified SYSREC DD *.This

statement prevents internal commits from being taken, and RESTART performs like

RESTART(PHASE), except with no data back out. Also, you must not restart if your

SYSREC input consistsof multiple, concatenated data sets.

 4. The utility can be restarted with either RESTART or RESTART(PHASE). However,

because this phase does not take checkpoints, RESTART is always re-executed from the

beginning of the phase.

 5. A LOAD RESUME YES job cannot be restarted in the BUILD or SORTBLD phase.

 6. Use RESTART or RESTART(PHASE) to restart at the beginning of the RELOAD phase.

 7. This utility can be restarted with either RESTART or RESTART(PHASE).However, the

utility can be re-executed from the last internal checkpoint. This is dependent on the

data sets that are used and whether any input data sets have been rewritten.

 8. The SYSUT1 data set is required if the target table space is segmented or partitioned.

 9. If report is required and this is a load without discard processing, SYSMAP is required

to complete the report phase.

10. Any job that finished abnormally in the RELOAD, SORT, BUILD, or SORTBUILD phase

restarts from the beginning of the RELOAD phase.

LOAD

Chapter 16. LOAD 263

|

|
|

You can restart LOAD at its last commit point or at the beginning of the phase

during which operation ceased. LOAD output messages identify the completed

phases; use the DISPLAY command to identify the specific phase during which

operation stopped.

Restarting after an out-of-space condition: See “Restarting after the output data

set is full” on page 43 for guidance in restarting LOAD from the last commit point

after receiving an out-of-space condition.

Concurrency and compatibility for LOAD

DB2 treats Individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

For nonpartitioned secondary indexes, LOAD PART:

v Drains only the logical partition

v Does not set the page set REBUILD-pending status (PSRBD)

v Does not consider PCTFREE or FREEPAGE attributes when inserting keys

Claims and drains: Table 43 shows which claim classes LOAD drains and the

restrictive states the utility sets.

 Table 43. Claim classes of LOAD operations

Target

LOAD

SHRLEVEL

NONE

LOAD PART

SHRLEVEL

NONE

LOAD

SHRLEVEL

CHANGE

LOAD PART

SHRLEVEL

CHANGE

Table space, index, or

physical partition of a table

space or index space

DA/UTUT DA/UTUT CW/UTRW CW/UTRW

Nonpartitioned secondary

index

DA/UTUT DR CW/UTRW CW/UTRW

Data-partitioned secondary

index

DA/UTUT DA/UTUT CW/UTRW CW/UTRW

Index logical partition None DA/UTUT None CW/UTRW

Primary index (with

ENFORCE option only)

DW/UTRO DW/UTRO CR/UTRW CR/UTRW

RI dependents CHKP (NO) CHKP (NO) CHKP (NO) CHKP (NO)

Legend:

v CHKP (NO): Concurrently running applications do not see CHECK-pending status after

commit.

v CR: Claim the read claim class.

v CW: Claim the write claim class.

v DA: Drain all claim classes, no concurrent SQL access.

v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.

v DW: Drain the write claim class, concurrent access for SQL readers.

v UTUT: Utility restrictive state, exclusive control.

v UTRO: Utility restrictive state, read-only access allowed.

v UTRW: Utility restrictive state, read-write access allowed.

v None: Object is not affected by this utility.

v RI: Referential integrity

Compatibility: Table 44 on page 265 shows whether or not utilities are compatible

with LOAD and can run concurrently on the same target object. The target object

LOAD

264 Utility Guide and Reference

|
|
|
|

|
|

|
|

can be a table space, an index space, or a partition of a table space or index space.

 Table 44. Compatibility of LOAD with other utilities

Action

LOAD SHRLEVEL

NONE

LOAD SHRLEVEL

CHANGE

BACKUP SYSTEM YES YES

CHECK DATA DELETE NO No No

CHECK DATA DELETE YES No No

CHECK INDEX No No

CHECK LOB No No

COPY INDEXSPACE SHRLEVEL

CHANGE

No Yes

COPY INDEXSPACE SHRLEVEL

REFERENCE

No No

COPY TABLESPACE SHRLEVEL

CHANGE

No Yes

COPY TABLESPACE SHRLEVEL

REFERENCE

No No

COPYTOCOPY No Yes

DIAGNOSE Yes Yes

LOAD SHRLEVEL CHANGE No Yes

LOAD SHRLEVEL NONE No No

MERGECOPY No Yes

MODIFY RECOVERY No Yes

MODIFY STATISTICS No Yes

QUIESCE No No

REBUILD INDEX No No

RECOVER (no options) No No

RECOVER ERROR RANGE No No

RECOVER TOCOPY or TORBA No No

REORG INDEX No No

REORG TABLESPACE UNLOAD

CONTINUE or PAUSE

No No

REORG TABLESPACE UNLOAD

ONLY or EXTERNAL

No No

REPAIR DUMP or VERIFY No No

REPAIR LOCATE KEY or RID

DELETE or REPLACE

No No

REPAIR LOCATE TABLESPACE

PAGE REPLACE

No No

REPORT Yes No

RESTORE SYSTEM No No

RUNSTATS INDEX SHRLEVEL

CHANGE

No Yes

RUNSTATS INDEX SHRLEVEL

REFERENCE

No No

LOAD

Chapter 16. LOAD 265

|

|

Table 44. Compatibility of LOAD with other utilities (continued)

Action

LOAD SHRLEVEL

NONE

LOAD SHRLEVEL

CHANGE

RUNSTATS TABLESPACE

SHRLEVEL CHANGE

No Yes

RUNSTATS TABLESPACE

SHRLEVEL REFERENCE

No No

STOSPACE Yes Yes

UNLOAD No Yes

SQL operations and other online utilities on the same target partition are

incompatible.

After running LOAD

The following tasks are described here:

 “Copying the loaded table space or partition”

 “Resetting COPY-pending status”

 “Resetting REBUILD-pending status” on page 267

 “Resetting the CHECK-pending status” on page 267

 “Collecting inline statistics while loading a table” on page 261

 “Running CHECK INDEX after loading a table that has indexes” on page 269

 “Recovering a failed LOAD job” on page 269

 “Reorganizing an auxiliary index after LOAD” on page 269

Copying the loaded table space or partition

If you use LOG YES, consider taking a full image copy of the loaded table space or

partition to reduce the processing time of subsequent recovery operations. If you

also specify RESUME NO or REPLACE, indicating that this is the first load into

the table space, taking two or more full image copies is recommended to enable

recovery. Alternatively, take primary and backup inline copies when you do a

LOAD REPLACE; full table space or partition image copies that are taken after the

LOAD completes are not necessary. However, you might need to take images

copies of indexes.

Resetting COPY-pending status

If you load with LOG NO and do not take an inline copy, LOAD places a table

space in the COPY-pending status. Immediately after that operation, DB2 cannot

recover the table space (although you can, by loading it again). Prepare for

recovery, and turn off the restriction, by making a full image copy using

SHRLEVEL REFERENCE. (If you end the copy job before it is finished, the table

space is still in COPY-pending status.)

You can also remove the restriction by using one of these operations:

v LOAD REPLACE LOG YES

v LOAD REPLACE LOG NO with an inline copy

v REORG LOG YES

v REORG LOG NO with an inline copy

v REPAIR SET with NOCOPYPEND

LOAD

266 Utility Guide and Reference

If you use LOG YES and do not make an image copy of the table space,

subsequent recovery operations are possible but take longer than if you had made

an image copy.

A table space that is in COPY-pending status can be read without restriction;

however, it cannot be updated.

Resetting REBUILD-pending status

LOAD places all the index spaces for a table space in the REBUILD-pending status

if you end the job (by using the TERM UTILITY command) before it completes the

INDEXVAL phase. DB2 places the table space in RECOVER-pending status if you

end the job before the job completes the RELOAD phase.

Resetting the RECOVER-pending status depends on when the utility terminated:

v If the data is intact and you have a full image copy of the affected indexes, you

can recover the indexes using the RECOVER INDEX utility. Run the DISPLAY

DATABASE command and examine the output. Data is intact when the output

indicates that the indexes are in REBUILD-pending status and the table space is

not in RECOVER-pending status. If you do not have an image copy available,

you must rebuild the entire index by using the REBUILD INDEX utility.

However, for partitioning indexes and for secondary indexes that are in

REBUILD-pending (RBDP) status, you can use the PART option of REBUILD

INDEX to rebuild separate partitions of the index.

v If the data is not intact, you can either load the table again or recover it to a

prior point of consistency. Run the DISPLAY DATABASE command and examine

the output. The recovery puts the table space into COPY-pending status and

places all indexes in REBUILD-pending status.

Resetting the CHECK-pending status

LOAD places a table space in the CHECK-pending status if its referential integrity

is in doubt or its check constraints are violated. The intent of the restriction is to

encourage the use of the CHECK DATA utility, which locates invalid data and,

optionally, removes it. If CHECK DATA removes the invalid data, the remaining

data satisfies all check and referential constraints and the CHECK-pending

restriction is lifted.

Although CHECK DATA is usually preferred, you can also reset the

CHECK-pending status by using any of the following operations:

v Drop tables that contain invalid rows.

v Replace the data in the table space, by using LOAD REPLACE and enforcing

check and referential constraints.

v Recover all members of the table space that were set to a prior quiesce point.

v Use REPAIR SET with NOCHECKPEND.

Running CHECK DATA after LOAD REPLACE

Suppose that you choose to replace the contents of the project table by using

LOAD REPLACE. While doing that, you let LOAD enforce its referential and table

check constraints, so that the project table contains only valid records at the end of

the job; it is not in the CHECK-pending status. However, its dependent, the project

activity table, is placed in CHECK-pending status: some of its rows might have

project numbers that are no longer present in the project table. (If the project table

had any other dependents, they also would be in CHECK-pending status.)

LOAD

Chapter 16. LOAD 267

You want to run CHECK DATA against the table space that contains the project

activity table to reset the status. First, review the review the description of DELETE

YES and exception tables. Then, when you run the utility, ensure the availability of

all table spaces that contain either parent tables or dependent tables of any table in

the table spaces that are being checked.

DELETE YES: This option deletes invalid records and resets the status, but it is

not the default. Use DELETE NO, the default, to find out quickly how large your

problem is; you can choose to correct it by reloading, rather than correcting the

current situation.

Exception tables: With DELETE YES, you do not use a discard data set to receive

copies of the invalid records; instead, you use another DB2 table called an

exception table. This section assumes that you already have an exception table

available for every table that is subject to referential or table check constraints. (For

instructions on creating them, see “Create exception tables” on page 64.)

If you use DELETE YES, you must name an exception table for every descendent

of every table in every table space that is being checked. Deletes that are caused by

CHECK DATA are not subject to any of the SQL delete rules; they cascade without

restraint to the lowest-level descendent.

If table Y is the exception table for table X, name it with the following clause in the

CHECK DATA statement:

FOR EXCEPTION IN X USE Y

Error and sort data sets

The options ERRDDN, WORKDDN, SORTDEVT, and SORTNUM work in CHECK

DATA just as they do in LOAD. That is, you need an error data set, and you can

name work data sets for sort and merge processing or let DB2 allocate them

dynamically.

Example: In the following example, CHECK DATA is to be run against the table

space that contains the project activity table. Assume that the exception tables

DSN8810.EPROJACT and DSN8810.EEPA exist.

CHECK DATA TABLESPACE DSN8D81A.PROJACT

 DELETE YES

 FOR EXCEPTION IN DSN8810.PROJACT USE DSN8810.EPROJACT

 IN DSN8810.EMPPROJACT USE DSN8810.EEPA

 SORTDEVT SYSDA

 SORTNUM 4

If the statement does not name error or work data sets, the JCL for the job must

contain DD statements similar to the following DD statements:

//SYSERR DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSUT1 DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SORTOUT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//UTPRINT DD SYSOUT=A

Running CHECK DATA after LOAD RESUME

Suppose now that you want to add records to both the project and project activity

tables by using LOAD RESUME. Furthermore, you want to run both jobs at the

same time, which you can do because the tables belong to separate table spaces.

The only new consideration is that you must load the project activity table by

using ENFORCE NO because you cannot assume that the parent project table is

already fully loaded.

LOAD

268 Utility Guide and Reference

|
|
|
|

When the two jobs are complete, what table spaces are in CHECK-pending status?

v If you enforced constraints when loading the project table, the table space is not

in CHECK-pending status.

v Because you did not enforce constraints on the project activity table, the table

space is in CHECK-pending status.

v Because you used LOAD RESUME (not LOAD REPLACE) when loading the

project activity table, its dependents (the employee-to-project-activity table) are

not in CHECK-pending status. That is, the operation might not delete any

parent rows from the project table, and therefore might not violate the referential

integrity of its dependent. However if you delete records from PROJACT when

checking, you still need an exception table for EMPPROJACT.

Therefore you should check the data in the project activity table.

DB2 records the identifier of the first row of the table that might violate referential

or table check constraints. For partitioned table spaces, that identifier is in

SYSIBM.SYSTABLEPART; for nonpartitioned table spaces, that identifier is in

SYSIBM.SYSTABLES. The SCOPE PENDING option speeds the checking by

confining it to just the rows that might be in error.

Example: In the following example, CHECK DATA is to be run against the table

space that contains the project activity table after LOAD RESUME:

CHECK DATA TABLESPACE DSN8D81A.PROJACT

 SCOPE PENDING

 DELETE YES

 FOR EXCEPTION IN DSN8810.PROJACT USE DSN8810.EPROJACT

 IN DSN8810.EMPPROJACT USE DSN8810.EEPA

 SORTDEVT SYSDA

 SORTNUM 4

As before, the JCL for the job needs DD statements to define the error and sort

data sets.

Running CHECK INDEX after loading a table that has indexes

The CHECK INDEX utility tests whether an index is consistent with the data it

indexes and issues error messages if it finds an inconsistency. If you have any

reason to doubt the accuracy of an index (for example, if the result of an SQL

SELECT COUNT statement is inconsistent with RUNSTATS output), run CHECK

INDEX. You might also want to run CHECK INDEX after any LOAD operation

that shows some abnormal condition in its execution, or even run it periodically to

verify the accuracy of important indexes.

To rebuild an index that is inconsistent with its data, use the REBUILD INDEX

utility.

Recovering a failed LOAD job

To facilitate recovery in case of failure, DB2 inserts the SYSCOPY record at the

beginning of the RELOAD phase if LOG YES is specified in the LOAD control

statement. As a result, you can recover the data to a point in time before the

LOAD by using RECOVER TORBA.

Reorganizing an auxiliary index after LOAD

Indexes on the auxiliary tables are not built during the BUILD phase. Instead, LOB

values are inserted (not loaded) into auxiliary tables during the RELOAD phase as

each row is loaded into the base table, and each index on the auxiliary table is

LOAD

Chapter 16. LOAD 269

updated as part of the insert operation. Because the LOAD utility inserts keys into

an auxiliary index, free space within the index might be consumed and index page

splits might occur. Consider reorganizing an index on the auxiliary table after

LOAD completes to introduce free space into the index for future inserts and

loads.

Effects of running LOAD

This section contains information about the effects of running the LOAD utility.

The effect of LOAD on index version numbers

DB2 stores the range of used index version numbers in the OLDEST_VERSION

and CURRENT_VERSION columns of the following catalog tables:

v SYSIBM.SYSINDEXES

v SYSIBM.SYSINDEXPART

The OLDEST_VERSION column contains the oldest used version number, and the

CURRENT_VERSION column contains the current version number.

When you run LOAD with the REPLACE option, the utility updates this range of

used version numbers for indexes that are defined with the COPY NO attribute.

LOAD REPLACE sets the OLDEST_VERSION column to the current version

number, which indicates that only one version is active; DB2 can then reuse all of

the other version numbers.

Recycling of version numbers is required when all of the version numbers are

being used. All version numbers are being used when one of the following

situations is true:

v The value in the CURRENT_VERSION column is one less than the value in the

OLDEST_VERSION column.

v The value in the CURRENT_VERSION column is 15, and the value in the

OLDEST_VERSION column is 0 or 1.

You can also run REBUILD INDEX, REORG INDEX, or REORG TABLESPACE to

recycle version numbers for indexes that are defined with the COPY NO attribute.

To recycle version numbers for indexes that are defined with the COPY YES

attribute or for table spaces, run MODIFY RECOVERY.

For more information about versions and how they are used by DB2, see Part 2 of

DB2 Administration Guide.

The effect of LOAD REPLACE on the control interval

When you run a LOAD job with the REPLACE option but without the REUSE

option and the data set that contains the data is DB2-managed, DB2 deletes this

data set before the LOAD and redefines a new data set with a control interval that

matches the page size.

The effect of LOAD on SYSIBM.SYSCOPY

1. LOAD REPLACE LOG(YES) inserts a ICTYPE=R record into SYSCOPY

2. LOAD REPLACE LOG(NO) inserts a ICTYPE=S record into SYSCOPY

3. LOAD LOG(NO)1 inserts a ICTYPE=Y record into SYSCOPY

4. LOAD LOG(YES)1 inserts a ICTYPE=Z record into SYSCOPY

Note:

LOAD

270 Utility Guide and Reference

|

|

|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|

|
|
|
|

#

#

#

#

#

#

1. For LOAD RESUME YES, if the SYSREC data set is empty, no record will

be inserted into the SYSCOPY table.

Sample LOAD control statements

Example 1: Specifying field positions. The LOAD control statement in Figure 39

specifies that the LOAD utility is to load the records from the data set that is

defined by the SYSREC DD statement into table DSN8810.DEPT. SYSREC is the

default input data set.

Each POSITION clause specifies the location of a field in the input record. In this

example, LOAD accepts the input that is shown in Figure 40 and interprets it as

follows:

v The first 3 bytes of each record are loaded into the DEPTNO column of the

table.

v The next 36 bytes, including trailing blanks, are loaded into the DEPTNAME

column.

If this input column were defined as VARCHAR(36), the input data would need

to contain a 2-byte binary length field preceding the data. This binary field

would begin at position 4.

v The next three fields are loaded into columns that are defined as CHAR(6),

CHAR(3), and CHAR(16).

The RESUME YES clause specifies that the table space does not need to be empty;

new records are added to the end of the table.

 Figure 40. shows the input to the preceding LOAD job.

 Table 45 shows the result of executing the statement SELECT * FROM

DSN8810.DEPT after the preceding input records are loaded.

 Table 45. Data that is loaded into a table

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

A00 SPIFFY

COMPUTER

SERVICE DIV.

000010 A00 USIBMSTODB21

B01 PLANNING 000020 A00 USIBMSTODB21

C01 INFORMATION

CENTER

000030 A00 USIBMSTODB21

LOAD DATA

 RESUME YES

 INTO TABLE DSN8810.DEPT

 (DEPTNO POSITION (1:3) CHAR(3),

 DEPTNAME POSITION (4:39) CHAR(36),

 MGRNO POSITION (40:45) CHAR(6),

 ADMRDEPT POSITION (46:48) CHAR(3),

 LOCATION POSITION (49:64) CHAR(16))

Figure 39. Example of a LOAD statement that specifies field positions

A00SPIFFY COMPUTER SERVICE DIV. 000010A00USIBMSTODB21

B01PLANNING 000020A00USIBMSTODB21

C01INFORMATION CENTER 000030A00USIBMSTODB21

D01DEVELOPMENT CENTER A00USIBMSTODB21

Figure 40. Records in an input data set for LOAD

LOAD

Chapter 16. LOAD 271

#
#

#

Table 45. Data that is loaded into a table (continued)

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

D01 DEVELOPMENT

CENTER

A00 USIBMSTODB21

Example 2: Replacing data in a given partition. The following control statement

specifies that data from the data set that is defined by the SYSREC DD statement is

to be loaded into the first partition of table DSN8810.DEPT. The default input data

set is SYSREC. The REPLACE option indicates that the input data is to replace

only the specified partition. If the REPLACE option was specified before the PART

option, REPLACE would indicate that entire table space is to be replaced, and the

data is to be loaded into the specified partition. Note that the keyword DATA does

not need to be specified.

LOAD

 INTO TABLE DSN8810.DEPT PART 1 REPLACE

Example 3: Loading selected records into multiple tables. The control statement in

Figure 41 specifies that the LOAD utility is to load certain data from the EMPLDS

input data set into tables DSN8810.EMP, SMITH.EMPEMPL, and DSN8810.DEPT.

The input data set is identified by the INDDN option. The WHEN clauses indicate

which records are to be loaded into each table. For the EMP and DEPT tables, the

utility is to load only records that begin with the string LKA. For the EMPEMPL

table, the utility is to load only records that begin with the string ABC. The

RESUME YES option indicates that the table space does not need to be empty for

the LOAD job to proceed. The new rows are added to the end of the tables. This

example assumes that the first two tables being loaded have exactly the same

forma, and that the input data matches that format; therefore, no field

specifications are needed for those two INTO TABLE clauses. The third table has a

different format, so field specifications are required and are supplied in the

example.

The POSITION clauses specify the location of the fields in the input data for the

DEPT table. For each source record that is to be loaded into the DEPT table:

v The characters in positions 7 through 9 are loaded into the DEPTNO column.

v The characters in positions 10 through 35 are loaded into the DEPTNAME

column.

v The characters in positions 36 through 41 are loaded into the MGRNO column.

v The characters in positions 42 through 44 are loaded into the ADMRDEPT

column.

LOAD DATA INDDN EMPLDS

 RESUME YES

 INTO TABLE DSN8810.EMP

 WHEN (1:3)=’LKA’

 INTO TABLE SMITH.EMPEMPL

 WHEN (1:3)=’ABC’

 INTO TABLE DSN8810.DEPT

 WHEN (1:3)=’LKA’

 (DEPTNO POSITION (7:9) CHAR,

 DEPTNAME POSITION (10:35) CHAR,

 MGRNO POSITION (36:41) CHAR,

 ADMRDEPT POSITION (42:44) CHAR)

Figure 41. Example LOAD statement that loads selected records into multiple tables

LOAD

272 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example 4: Loading data of different data types. The control statement in Figure 42

specifies that LOAD is to load data from the SYSRECPJ input data set into table

DSN8810.PROJ. The input data set is identified by the INDDN option. Assume that

the table space that contains table DSN8810.PROJ is currently empty.

For each input record, data is loaded into the specified columns (that is, PROJNO,

PROJNAME, DEPTNO, and so on) to form a table row. Any other PROJ columns

that are not specified in the LOAD control statement are set to the default value.

The POSITION clauses define the starting positions of the fields in the input data

set. The ending positions of the fields in the input data set are implicitly defined

either by the length specification of the data type (CHAR length) or the length

specification of the external numeric data type (LENGTH).

The numeric data that is represented in SQL constant format (EXTERNAL format)

is converted to the correct internal format by the LOAD process and placed in the

indicated column names. The two dates (PRSTDATE and PRENDATE) are

assumed to be represented by eight digits and two separator characters, as in the

USA format (for example, 11/15/2001). The length of the date fields is given as 10

explicitly, although in many cases, the default is the same value.

 Example 5: Loading data in delimited file format. The control statement in

Figure 43 on page 274 specifies that data in delimited format is to be loaded into

the specified columns (FILENO, DATE1, TIME1, and TIMESTMP) in table

TBQB0103. The FORMAT DELIMITED option indicates that the data is in

delimited format. The data is to be loaded from the SYSREC data set, which is the

default.

The COLDEL option indicates that the column delimiter is a comma (,). The

CHARDEL option indicates that the character string delimiter is a double

quotation mark ("). The DECPT option indicates that the decimal point character is

a period (.). You are not required to explicitly specify these particular characters,

because they are all defaults.

LOAD DATA INDDN(SYSRECPJ)

 INTO TABLE DSN8810.PROJ

 (PROJNO POSITION (1) CHAR(6),

 PROJNAME POSITION (8) CHAR(22),

 DEPTNO POSITION (31) CHAR(3),

 RESPEMP POSITION (35) CHAR(6),

 PRSTAFF POSITION (42) DECIMAL EXTERNAL(5),

 PRSTDATE POSITION (48) DATE EXTERNAL(10),

 PRENDATE POSITION (59) DATE EXTERNAL(10),

 MAJPROJ POSITION (70) CHAR(6))

Figure 42. Example of loading data of different data types

LOAD

Chapter 16. LOAD 273

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

Example 6: Concatenating multiple input records. The control statement in

Figure 44 on page 275 specifies that data from the SYSRECOV input data set is to

be loaded into table DSN8810.TOPTVAL. The input data set is identified by the

INDDN option. The table space that contains the TOPTVAL table is currently

empty.

Some of the data that is to be loaded into a single row spans more than one input

record. In this situation, an X in column 72 indicates that the input record contains

fields that are to be loaded into the same row as the fields in the next input record.

In the LOAD control statement, CONTINUEIF(72:72)='X' indicates that LOAD is to

concatenate any input records that have an X in column 72 with the next record

before loading the data.

For each assembled input record (that is, after the concatenation), fields are loaded

into the DSN8810.TOPTVAL table columns (that is, MAJSYS, ACTION, OBJECT ...,

DSPINDEX) to form a table row. Any columns that are not specified in the LOAD

control statement are set to the default value.

The POSITION clauses define the starting positions of the fields in the assembled

input records. Starting positions are numbered from the first column of the

internally assembled input record, not from the start of the input records in the

//*

//STEP3 EXEC DSNUPROC,UID=’JUQBU101.LOAD2’,TIME=1440,

// UTPROC=’’,

// SYSTEM=’SSTR’,DB2LEV=DB2A

//SYSERR DD DSN=JUQBU101.LOAD2.STEP3.SYSERR,

// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,

// SPACE=(4096,(20,20),,,ROUND)

//SYSDISC DD DSN=JUQBU101.LOAD2.STEP3.SYSDISC,

// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,

// SPACE=(4096,(20,20),,,ROUND)

//SYSMAP DD DSN=JUQBU101.LOAD2.STEP3.SYSMAP,

// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,

// SPACE=(4096,(20,20),,,ROUND)

//SYSUT1 DD DSN=JUQBU101.LOAD2.STEP3.SYSUT1,

// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,

// SPACE=(4096,(20,20),,,ROUND)

//UTPRINT DD SYSOUT=*

//SORTOUT DD DSN=JUQBU101.LOAD2.STEP3.SORTOUT,

// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,

// SPACE=(4096,(20,20),,,ROUND)

//SYSIN DD *

 LOAD DATA

 FORMAT DELIMITED COLDEL ’,’ CHARDEL ’"’ DECPT ’.’

 INTO TABLE TBQB0103

 (FILENO CHAR,

 DATE1 DATE EXTERNAL,

 TIME1 TIME EXTERNAL,

 TIMESTMP TIMESTAMP EXTERNAL)

 /*

//SYSREC DD *

 "001", 2000-02-16, 00.00.00, 2000-02-16-00.00.00.0000

 "002", 2001-04-17, 06.30.00, 2001-04-17-06.30.00.2000

 "003", 2002-06-18, 12.30.59, 2002-06-18-12.30.59.4000

 "004", 1991-08-19, 18.59.30, 1991-08-19-18.59.30.8000

 "005", 2000-12-20, 24.00.00, 2000-12-20-24.00.00.0000

 /*

Figure 43. Example of loading data in delimited file format

LOAD

274 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

sequential data set. The ending positions of the fields are implicitly defined by the

length specification of the data type (CHAR length).

No conversions are required to load the input character strings into their

designated columns, which are also defined to be fixed-length character strings.

However, because columns INFOTXT, HELPTXT, and PFKTXT are defined as 79

characters in length and the strings that are being loaded are 71 characters in

length, those strings are padded with blanks as they are loaded.

 Example 7: Loading null values. The control statement in Figure 45 specifies that

data from the SYSRECST data set is to be loaded into the specified columns in

table SYSIBM.SYSSTRINGS. The input data set is identified by the INDDN option.

The NULLIF option for the ERRORBYTE and SUBBYTE columns specifies that if

the input field contains a blank, LOAD is to place a null value in the indicated

column for that particular row. The DEFAULTIF option for the TRANSTAB column

indicates that the utility is to load the default value for this column if the input

field value is GG. The CONTINUEIF option indicates that LOAD is to concatenate

any input records that have an X in column 80 with the next record before loading

the data.

Example 8: Enforcing referential constraints when loading data. The control

statement in Figure 46 on page 276 specifies that data from the SYSREC input data

set is to be loaded into table DSN8810.PROJ. The default input data set is SYSREC.

The table space that contains the PROJ table is not empty. RESUME YES indicates

that the records are to be added to the end of the table.

The ENFORCE CONSTRAINTS option indicates that LOAD is to enforce

referential constraints on the data that is being added. This option is also the

default. All violations are reported in the output. All records causing these

violations are not loaded and placed in the SYSDISC data set, which is the default

data set for discarded records.

LOAD DATA INDDN(SYSRECOV) CONTINUEIF(72:72)=’X’

 INTO TABLE DSN8810.TOPTVAL

 (MAJSYS POSITION (2) CHAR(1),

 ACTION POSITION (4) CHAR(1),

 OBJECT POSITION (6) CHAR(2),

 SRCHCRIT POSITION (9) CHAR(2),

 SCRTYPE POSITION (12) CHAR(1),

 HEADTXT POSITION (80) CHAR(50),

 SELTXT POSITION (159) CHAR(50),

 INFOTXT POSITION (238) CHAR(71),

 HELPTXT POSITION (317) CHAR(71),

 PFKTXT POSITION (396) CHAR(71),

 DSPINDEX POSITION (475) CHAR(2))

Figure 44. Example of concatenating multiple input records before loading the data

LOAD DATA INDDN(SYSRECST) CONTINUEIF(80:80)=’X’ RESUME(YES)

 INTO TABLE SYSIBM.SYSSTRINGS

 (INCCSID POSITION(1) INTEGER EXTERNAL(5),

 OUTCCSID POSITION(7) INTEGER EXTERNAL(5),

 TRANSTYPE POSITION(13) CHAR(2),

 ERRORBYTE POSITION(16) CHAR(1) NULLIF(ERRORBYTE=’ ’),

 SUBBYTE POSITION(18) CHAR(1) NULLIF(SUBBYTE=’ ’),

 TRANSPROC POSITION(20) CHAR(8),

 IBMREQD POSITION(29) CHAR(1),

 TRANSTAB POSITION(31) CHAR(256) DEFAULTIF(TRANSTYPE=’GG’))

Figure 45. Example of loading null values

LOAD

Chapter 16. LOAD 275

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

The CONTINUEIF option indicates that before loading the data LOAD is to

concatenate any input records that have an X in column 72 with the next record.

 Example 9: Loading data without enforcing referential constraints. The control

statement in Figure 47 on page 277 specifies that data from the SYSRECAC input

data set is to be loaded into table DSN8810.ACT. The INDDN option identifies the

input data set.

ENFORCE NO indicates that the LOAD utility is not to enforce referential

constraints and places the table in CHECK-pending status. Use this option if you

are loading data into several tables that are related in such a way that the

referential constraints cannot be checked until all tables are loaded. For example, a

column in table A depends on a column in table B; a column in table B depends on

a column in table C; and a column in table C depends on a column in table A.

The POSITION clauses define the starting positions of the fields in the input data

set. The ending positions of the fields in the input data set are implicitly defined

by the length specification of the data type (CHAR length). In this case, the

characters in positions 1 through 3 are loaded into the ACTNO column, the

characters in positions 5 through 10 are loaded into the ACTKWD column, and the

characters in position 13 onward are loaded into the ACTDESC column. Because

the ACTDESC column is of type VARCHAR, the input data needs to contain a

2-byte binary field that contains the length of the character field. This binary field

begins at position 13.

LOAD DATA INDDN(SYSREC) CONTINUEIF(72:72)=’X’

 RESUME YES

 ENFORCE CONSTRAINTS

 INTO TABLE DSN8810.PROJ

 (PROJNO POSITION (1) CHAR (6),

 PROJNAME POSITION (8) VARCHAR,

 DEPTNO POSITION (33) CHAR (3),

 RESPEMP POSITION (37) CHAR (6),

 PRSTAFF POSITION (44) DECIMAL EXTERNAL (5),

 PRSTDATE POSITION (50) DATE EXTERNAL,

 PRENDATE POSITION (61) DATE EXTERNAL,

 MAJPROJ POSITION (80) CHAR (6) NULLIF(MAJPROJ=’ ’))

Figure 46. Example of enforcing referential constraints when loading data

LOAD

276 Utility Guide and Reference

Example 10: Loading data by using a parallel index build. The control statement in

Figure 48 on page 278 specifies that data from the SYSREC input data set is to be

loaded into table DSN8810.DEPT. Assume that 22 000 rows need to be loaded into

table DSN8810.DEPT, which has three indexes. In this example, the SORTKEYS

option is used to improve performance by forcing a parallel index build. The

SORTKEYS option specifies 66 000 as an estimate of the number keys to sort in

parallel during the SORTBLD phase. (This estimate was computed by using the

calculation that is described in “Improved performance with SORTKEYS” on page

251.) Because more than one index needs to be built, LOAD builds the indexes in

parallel.

The SORTDEVT and SORTNUM keywords specify that DFSORT is to dynamically

allocate the required data sets. If sufficient virtual storage resources are available,

one utility subtask pair is started to build each index. This example does not

require UTPRINnn DD statements because it uses DSNUPROC to invoke utility

processing, which includes a DD statement that allocates UTPRINT to SYSOUT.

The CONTINUEIF option indicates that, before loading the data, LOAD is to

concatenate any input records that have a plus sign (+) in column 79 and a plus

sign (+) in column 80 with the next record.

//STEP1 EXEC DSNUPROC,UID=’IUIQU2UB.LOAD’,

// UTPROC=’’,

// SYSTEM=’DSN’

//SYSRECAC DD DSN=IUIQU2UB.LOAD.DATA,DISP=SHR,VOL=SER=SCR03,

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSUT1 DD DSN=IUIQU2UB.LOAD.STEP1.SYSUT1,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SORTOUT DD DSN=IUIQU2UB.LOAD.STEP1.SORTOUT,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

LOAD DATA INDDN(SYSRECAC) RESUME YES

 INTO TABLE DSN8810.ACT

 (ACTNO POSITION(1) INTEGER EXTERNAL(3),

 ACTKWD POSITION(5) CHAR(6),

 ACTDESC POSITION(13) VARCHAR)

 ENFORCE NO

//*

Figure 47. Example of loading data without enforcing referential constraints

LOAD

Chapter 16. LOAD 277

|

Example 11: Creating inline copies. The LOAD control statement in Figure 49 on

page 279 specifies that the LOAD utility is to load data from the SYSREC data set

into the specified columns of table ADMF001.TB0S3902. See “Example 1: Specifying

field positions” on page 271. for an explanation of the POSITION clauses.

COPYDDN(COPYT1) indicates that LOAD is to create inline copies and write the

primary image copy to the data set that is defined by the COPYT1 template. This

template is defined in one of the preceding TEMPLATE control statements. For

more information about TEMPLATE control statements, see “Syntax and options of

the TEMPLATE control statement ” on page 587 of the TEMPLATE chapter. To

create an inline copy, you must also specify the REPLACE option, which indicates

that any data in the table space is to be replaced.

CONTINUEIF(79:80)='++' indicates that, before loading the data, LOAD is to

concatenate any input records that have a plus sign (+) in column 79 and a plus

sign (+) in column 80 with the next record.

The ERRDDN(ERRDDN) and MAPDDN(MAP) options indicate that information

about errors is to be written to the data sets that are defined by the ERRDDN and

MAP templates. DISCARDDDN(DISCARD) specifies that discarded records (those

that violate referential constraints) are to be written to the data set that is defined

by the DISCARD template. WORKDDN(UT1,OUT) specifies the temporary work

files for sort input and output; LOAD is to use the data set that is defined by the

UT1 template for sort input and the data set that is defined by the OUT template

for sort output.

//SAMPJOB JOB ...

//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.LOAD’,UTPROC=’’,SYSTEM=’DSN’

//SORTOUT DD DSN=SAMPJOB.LOAD.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SYSUT1 DD DSN=SAMPJOB.LOAD.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SYSERR DD DSN=SAMPJOB.LOAD.STEP1.SYSERR,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND)

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)

//SYSMAP DD DSN=SAMPJOB.LOAD.STEP1.SYSMAP,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)

//SYSREC DSN=SAMPJOB.TEMP.DATA,DISP=SHR,UNIT=SYSDA

//SYSIN DD *

LOAD DATA REPLACE INDDN SYSREC CONTINUEIF(79:80)=’++’

 SORTKEYS 66000 SORTDEVT SYSDA SORTNUM 3

 INTO TABLE DSN8810.DEPT

/*

Figure 48. Example of loading data by using a parallel index build

LOAD

278 Utility Guide and Reference

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

Example 12: Collecting statistics. The example in Figure 50 on page 281 is similar

to example 11, except that the STATISTICS option and other related options have

been added so that during the LOAD job, DB2 also gathers statistics for the table

space. Gathering these statistics eliminates the need to run the RUNSTATS utility

after completing the LOAD operation.

The TABLE, COLUMN, and INDEX options specify that information is to be

gathered for columns QT_INV_TRANSACTION, NO_DEPT, NO_PART_PREFIX,

DT_TRANS_EFFECTIVE and index ID0S3902 for table TB0S3902. SAMPLE 53

indicates that LOAD is to sample 53% of the rows when gathering non-indexed

column statistics. For the index, the KEYCARD option specifies that all of the

distinct values in all of the key column combinations are to be collected. FREQVAL

//STEP1 EXEC DSNUPROC,UID=’JUOSU339.LOAD1’,TIME=1440,

// UTPROC=’’,

// SYSTEM=’SSTR’,DB2LEV=DB2A

//SYSREC DD DSN=CUST.FM.CINT135.DATA,DISP=SHR,VOL=SER=FORDMD,

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

 TEMPLATE ERRDDN UNIT(SYSDA)

 DSN(JUOSU339.T&TI..&ST..ERRDDN)

 SPACE(50,10) TRK

 TEMPLATE UT1 UNIT(SYSDA)

 DSN(JUOSU339.T&TI..&ST..SYSUT1)

 SPACE(50,10) TRK

 TEMPLATE OUT UNIT(SYSDA)

 DSN(JUOSU339.T&TI..&ST..SYSOUT)

 SPACE(50,10) TRK

 TEMPLATE MAP UNIT(SYSDA)

 DSN(JUOSU339.T&TI..&ST..SYSMAP)

 SPACE(50,10) TRK

 TEMPLATE DISCARD UNIT(SYSDA)

 DSN(JUOSU339.T&TI..&ST..DISCARD)

 SPACE(50,10) TRK

 TEMPLATE COPYT1

 UNIT(SYSDA)

 DSN(JUOSU339.COPY1.STEP1.&SN..COPY&LR.&PB.)

 DISP(MOD,CATLG,CATLG)

 SPACE(60,30) TRK

 LOAD DATA INDDN SYSREC REPLACE

 CONTINUEIF(79:80)=’++’

 COPYDDN(COPYT1)

 ERRDDN(ERRDDN)

 WORKDDN(UT1,OUT)

 MAPDDN(MAP)

 DISCARDDN(DISCARD)

 INTO TABLE

 ADMF001.TBOS3902

 (ID_PARTITION POSITION(1) CHAR(1),

 CD_PLANT POSITION(2) CHAR(5),

 NO_PART_BASE POSITION(7) CHAR(9),

 NO_PART_PREFIX POSITION(16) CHAR(7),

 NO_PART_SUFFIX POSITION(23) CHAR(8),

 NO_PART_CONTROL POSITION(31) CHAR(3),

 DT_TRANS_EFFECTIVE POSITION(34) DATE EXTERNAL(10),

 CD_INV_TRANSACTION POSITION(44) CHAR(3),

 TS_PROCESS POSITION(47) TIMESTAMP EXTERNAL(26),

 QT_INV_TRANSACTION POSITION(73) INTEGER,

 CD_UNIT_MEAS_USAGE POSITION(77) CHAR(2),

 CD_USER_ID POSITION(79) CHAR(7),

 NO_DEPT POSITION(86) CHAR(4),

 NO_WORK_CENTER POSITION(90) CHAR(6))

/*

Figure 49. Example of creating inline copies

LOAD

Chapter 16. LOAD 279

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

NUMCOLS 4 COUNT 20 indicates that 20 frequent values are to be collected on

the concatenation of the first four key columns.

REPORT YES indicates that the statistics are to be sent to SYSPRINT as output.

UPDATE ALL and HISTORY ALL indicate that all collected statistics are to be

updated in the catalog and catalog history tables.

LOAD

280 Utility Guide and Reference

|
|

|
|
|
|

Example 13: Loading Unicode data. The following control statement specifies that

Unicode data from the REC1 input data set is to be loaded into table

ADMF001.TBMG0301. The UNICODE option specifies the type of input data. Only

data that satisfies the condition that is specified in the WHEN clause is to be

//STEP1 EXEC DSNUPROC,UID=’JUOSU339.LOAD1’,TIME=1440,

// UTPROC=’’,

// SYSTEM=’SSTR’,DB2LEV=DB2A

//SYSREC DD DSN=CUST.FM.CINT135.DATA,DISP=SHR,VOL=SER=FORDMD,

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

 TEMPLATE ERRDDN UNIT(SYSDA)

 DSN(JUOSU339.T&TI..&ST..ERRDDN)

 SPACE(50,10) TRK

 TEMPLATE UT1 UNIT(SYSDA)

 DSN(JUOSU339.T&TI..&ST..SYSUT1)

 SPACE(50,10) TRK

 TEMPLATE OUT UNIT(SYSDA)

 DSN(JUOSU339.T&TI..&ST..SYSOUT)

 SPACE(50,10) TRK

 TEMPLATE MAP UNIT(SYSDA)

 DSN(JUOSU339.T&TI..&ST..SYSMAP)

 SPACE(50,10) TRK

 TEMPLATE DISCARD UNIT(SYSDA)

 DSN(JUOSU339.T&TI..&ST..DISCARD)

 SPACE(50,10) TRK

 TEMPLATE COPYT1

 UNIT(SYSDA)

 DSN(JUOSU339.COPY1.STEP1.&SN..COPY&LR.&PB.)

 DISP(MOD,CATLG,CATLG)

 SPACE(60,30) TRK

 LOAD DATA INDDN SYSREC REPLACE

 CONTINUEIF(79:80)=’++’

 COPYDDN(COPYT1)

 STATISTICS

 TABLE (TBOS3902) SAMPLE 53

 COLUMN (QT_INV_TRANSACTION,

 NO_DEPT,

 NO_PART_PREFIX,

 DT_TRANS_EFFECTIVE)

 INDEX (IDOS3902 KEYCARD

 FREQVAL NUMCOLS 4 COUNT 20)

 REPORT YES UPDATE ALL HISTORY ALL

 ERRDDN(ERRDDN)

 WORKDDN(UT1,OUT)

 MAPDDN(MAP)

 DISCARDDN(DISCARD)

 INTO TABLE

 ADMF001.TBOS3902

 (ID_PARTITION POSITION(1) CHAR(1),

 CD_PLANT POSITION(2) CHAR(5),

 NO_PART_BASE POSITION(7) CHAR(9),

 NO_PART_PREFIX POSITION(16) CHAR(7),

 NO_PART_SUFFIX POSITION(23) CHAR(8),

 NO_PART_CONTROL POSITION(31) CHAR(3),

 DT_TRANS_EFFECTIVE POSITION(34) DATE EXTERNAL(10),

 CD_INV_TRANSACTION POSITION(44) CHAR(3),

 TS_PROCESS POSITION(47) TIMESTAMP EXTERNAL(26),

 QT_INV_TRANSACTION POSITION(73) INTEGER,

 CD_UNIT_MEAS_USAGE POSITION(77) CHAR(2),

 CD_USER_ID POSITION(79) CHAR(7),

 NO_DEPT POSITION(86) CHAR(4),

 NO_WORK_CENTER POSITION(90) CHAR(6))

/*

Figure 50. Example of collecting statistics

LOAD

Chapter 16. LOAD 281

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

loaded. The CCSID option specifies the three coded character set identifiers for the

input file: one for SBCS data, one for mixed data, and one for DBCS data. LOG

YES indicates that logging is to occur during the LOAD job.

LOAD DATA INDDN REC1 LOG YES REPLACE

 UNICODE CCSID(00367,01208,01200)

 INTO TABLE "ADMF001 "."TBMG0301"

 WHEN(00004:00005 = X’0003’)

Example 14: Loading data from multiple input data sets by using partition

parallelism. The LOAD control statement in Figure 51 on page 283 contains a

series of INTO TABLE statements that specify which data is to be loaded into

which partitions of table DBA01.TBLX3303. For each INTO TABLE statement:

v Data is to be loaded into the partition that is identified by the PART option. For

example, the first INTO TABLE statement specifies that data is to be loaded into

the first partition of table DBA01.TBLX3303.

v Data is to be loaded from the data set that is identified by the INDDN option.

For example, the data from the PART1 data set is to be loaded into the first

partition.

v Any discarded rows are to be written to the data set that is specified by the

DISCARDDN option. For example, rows that are discarded during the loading

of data from the PART1 data set are written to the DISC1 data set.

v The data is loaded into the specified columns (EMPNO, LASTNAME, and

SALARY).

LOAD uses partition parallelism to load the data into these partitions.

The TEMPLATE utility control statement defines the data set naming convention

for the data set that is to be dynamically allocated during the following LOAD job.

The name of the template is ERR3. The ERRDDN option in the LOAD statement

specifies that any errors are to be written to the data set that is defined by this

ERR3 template. For more information about TEMPLATE control statements, see

“Syntax and options of the TEMPLATE control statement ” on page 587 in the

TEMPLATE chapter.

LOAD

282 Utility Guide and Reference

|
|
|

|
|
|
|

Example 15: Loading data from another table in the same system by using a

declared cursor. The following LOAD control statement specifies that all rows that

are identified by cursor C1 are to be loaded into table MYEMP. The INCURSOR

option is used to specify cursor C1, which is defined in the EXEC SQL utility

control statement. Cursor C1 points to the rows that are returned by executing the

statement SELECT * FROM DSN8810.EMP. In this example, the column names in

table DSN8810.EMP are the same as the column names in table MYEMP. Note that

the cursor cannot be defined on the same table into which DB2 is to load the data.

EXEC SQL

 DECLARE C1 CURSOR FOR SELECT * FROM DSN8810.EMP

ENDEXEC

LOAD DATA

INCURSOR(C1)

REPLACE

INTO TABLE MYEMP

STATISTICS

Example 16: Loading data partitions in parallel from a remote site by using a

declared cursor. The LOAD control statement in Figure 52 on page 284 specifies

that for each specified partition of table MYEMPP, the rows that are identified by

the specified cursor are to be loaded. In each INTO TABLE statement, the PART

option specifies the partition number, and the INCURSOR option specifies the

cursor. For example, the rows that are identified by cursor C1 are to be loaded into

the first partition. The data for each partition is loaded in parallel.

Each cursor is defined in a separate EXEC SQL utility control statement and points

to the rows that are returned by executing the specified SELECT statement. These

SELECT statement are being executed on a table at a remote server, so the

three-part name is used to identify the table. In this example, the column names in

table CHICAGO.DSN8810.EMP are the same as the column names in table

MYEMPP.

 TEMPLATE ERR3

 DSN &UT..&JO..&ST..ERR3&MO.&DAY.

 UNIT SYSDA DISP(NEW,CATLG,CATLG)

 LOAD DATA

 REPLACE

 ERRDDN ERR3

 INTO TABLE DBA01.TBLX3303

 PART 1

 INDDN PART1

 DISCARDDN DISC1

 (EMPNO POSITION(1) CHAR(6),

 LASTNAME POSIITON(8) VARCHAR(15),

 SALARY POSITION(25) DECIMAL(9,2))

 .

 .

 .

 INTO TABLE DBA01.TBLX3303

 PART 5

 INDDN PART5

 DISCARDDN DISC5

 (EMPNO POSITION(1) CHAR(6),

 LASTNAME POSIITON(8) VARCHAR(15),

 SALARY POSITION(25) DECIMAL(9,2))

/*

Figure 51. Example of loading data from individual data sets

LOAD

Chapter 16. LOAD 283

Example 17: Loading LOB data from a file The LOAD control statement in

Figure 53 specifies that data from 000130DSN!10.SDSNIVPD(DSN8R130) is to be

loaded into the MY_EMP_PHOTO_RESUME table. The characters in positions 1

through 6 are loaded into the EMPNO column, and the characters starting from

position 7 are to be loaded into the RESUME column. CLOBF indicates that the

characters in position 7 are the name of a file from which a CLOB is to be loaded.

REPLACE indicates that the new data will replace any existing data. Although no

logging is to be done, as indicated by the LOG NO option, the table space is not to

be set in CHECK-pending state, because NOCOPYPEND is specified.

SORTKEYS 1 indicates that one index key is to be sorted.

EXEC SQL

 DECLARE C1 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP

 WHERE EMPNO <= ’099999’

ENDEXEC

EXEC SQL

 DECLARE C2 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP

 WHERE EMPNO > ’099999’ AND EMPNO <= ’199999’

ENDEXEC

EXEC SQL

 DECLARE C3 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP

 WHERE EMPNO > ’199999’ AND EMPNO <= ’299999’

ENDEXEC

EXEC SQL

 DECLARE C4 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP

 WHERE EMPNO > ’299999’ AND EMPNO <= ’999999’

ENDEXEC

LOAD DATA

 INTO TABLE MYEMPP PART 1 REPLACE INCURSOR(C1)

 INTO TABLE MYEMPP PART 2 REPLACE INCURSOR(C2)

 INTO TABLE MYEMPP PART 3 REPLACE INCURSOR(C3)

 INTO TABLE MYEMPP PART 4 REPLACE INCURSOR(C4)

Figure 52. Example of loading data partitions in parallel using a declared cursor

//***

//* LOAD LOB from file

//***

//LOADIT EXEC DSNUPROC,UID='LOADIT',TIME=1440,

// UTPROC='',

// SYSTEM='DSN'

//SYSREC DD*

000130DSN!10.SDSNIVPD(DSN8R130)

//SYSUT1 DD DSN=SYSADM.LOAD.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SORTOUT DD DSN=SYSADM.LOAD.SORTOUT,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

 LOAD DATA

 REPLACE LOG NO NOCOPYPEND

 SORTKEYS 1

 INTO TABLE MY_EMP_PHOTO_RESUME

 (EMPNO POSITION(1:6) CHAR(6),

 RESUME POSITION(7:31) CHAR CLOBF)

Figure 53. Example of loading LOB data from a file

LOAD

284 Utility Guide and Reference

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#

#
#
#

#
#

Chapter 17. MERGECOPY

The MERGECOPY online utility merges image copies that the COPY utility

produces, image copies that the COPYTOCOPY utility produces, or inline copies

that the LOAD or REORG utilities produce. It can merge several incremental

copies of a table space to make one incremental copy. It can also merge incremental

copies with a full image copy to make a new full image copy. You cannot run

MERGECOPY on concurrent copies.

MERGECOPY operates on the image copy data sets of a table space, and not on

the table space itself.

For a diagram of MERGECOPY syntax and a description of available options, see

“Syntax and options of the MERGECOPY control statement” on page 286. For

detailed guidance on running this utility, see “Instructions for running

MERGECOPY” on page 288.

Output: Output from the MERGECOPY utility consists of one of the following

types of copies:

v A new single incremental image copy

v A new full image copy

You can create the new image copy for the local or recovery site.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v IMAGCOPY privilege for the database

v DBADM, DBCTRL, or DBMAINT authority for the database

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute MERGECOPY, but only

on a table space in the DSNDB01 or DSNDB06 database.

Restrictions on running MERGECOPY:

v MERGECOPY cannot merge image copies into a single incremental image copy

for the other site, that is:

– At local sites, you cannot use RECOVERYDDN with NEWCOPY NO.

– At recovery sites, you cannot use COPYDDN with NEWCOPY NO.
v When none of the keywords NEWCOPY, COPYDDN, or RECOVERYDDN is

specified, the default, NEWCOPY NO COPYDDN(SYSCOPY), is valid for the

local site only.

v You cannot run MERGECOPY on concurrent copies.

Execution phases of MERGECOPY:

The MERGECOPY utility operates in these phases:

Phase Description

UTILINIT Performs initialization

MERGECOP Merges incremental copies

UTILTERM Performs cleanup

© Copyright IBM Corp. 1983, 2008 285

The following topics provide additional information:

v “Syntax and options of the MERGECOPY control statement”

v “Instructions for running MERGECOPY” on page 288

v “Concurrency and compatibility for MERGECOPY” on page 292

v “Sample MERGECOPY control statements” on page 292

Syntax and options of the MERGECOPY control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, you can use the SYSIN DD statement to specify the name of the data set

that contains the utility control statement.

Syntax diagram

�� MERGECOPY LIST listdef-name

DSNUM

ALL

TABLESPACE

table-space-name

database-name.

DSNUM

integer

 �

�
 WORKDDN SYSUT1

WORKDDN

ddname

�

�
 NEWCOPY NO COPYDDN SYSCOPY

COPYDDN(ddname1

)

,ddname2

COPYDDN(,ddname2)

RECOVERYDDN(ddname3

)

,ddname4

COPYDDN

SYSCOPY

NEWCOPY

YES

COPYDDN(ddname1

)

RECOVERYDDN(ddname3

)

,ddname2

,ddname4

COPYDDN(,ddname2)

��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name that contains

only table spaces. You can specify one LIST keyword per MERGECOPY

control statement. Do not specify LIST with the TABLESPACE keyword.

MERGECOPY is invoked once for each table space in the list. For more

information about LISTDEF specifications, see Chapter 15, “LISTDEF,” on

page 171.

TABLESPACE database-name.table-space-name

Specifies the table space that is to be copied, and, optionally, the database

to which it belongs.

MERGECOPY

286 Utility Guide and Reference

database-name

The name of the database that the table space belongs to. The default

is DSNDB04.

table-space-name

The name of the table space whose incremental image copies are to be

merged.

 You cannot run the MERGECOPY utility on the DSNDB01.DBD01,

DSNDB01.SYSUTILX, or DSNDB06.SYSCOPY table spaces because you

cannot make incremental copies of those table spaces. Because

MERGECOPY does not directly access the table space whose copies it is

merging, it does not interfere with concurrent access to that table space.

DSNUM

Identifies the table space or a partition or data set within the table space

that is to be merged. DSNUM is optional.

ALL Merges the entire table space. The default is ALL.

integer Is the number of a partition or data set that is to be merged. The

maximum is 4096.

 For a partitioned table space, the integer is its partition number.

For a nonpartitioned table space, find the integer at the end of the

data set name as cataloged in the VSAM catalog. The data set

name has the following format, where y is either I or J and nnn is

the data set integer:

catname.DSNDBx.dbname.tsname.y0001.Annn

 You cannot specify DSNUM and LIST in the same MERGECOPY control

statement. Use PARTLEVEL on the LISTDEF instead. If image copies were

taken by data set (rather than by table space), MERGECOPY must use the

copies by data set.

WORKDDN ddname

Specifies a DD statement for a temporary data set or template, which is to

be used for intermediate merged output. WORKDDN is optional.

 ddname is the DD name. The default is SYSUT1.

Use the WORKDDN option if you are not able to allocate enough data sets

to execute MERGECOPY; in that case, a temporary data set is used to hold

intermediate output. If you omit the WORKDDN option, you might find

that only some of the image copy data sets are merged. When

MERGECOPY has ended, a message is issued that tells the number of data

sets that exist and the number of data sets that have been merged. To

continue the merge, repeat MERGECOPY with a new output data set.

NEWCOPY

Specifies whether incremental image copies are to be merged with the full

image copy. NEWCOPY is optional.

NO

Merges incremental image copies into a single incremental image copy

but does not merge them with the full image copy. The default is NO.

YES

Merges all incremental image copies with the full image copy to form a

new full image copy.

MERGECOPY

Chapter 17. MERGECOPY 287

|
|

|

|
|
|
|

|

COPYDDN (ddname1,ddname2)

Specifies the DD statements for the output image copy data sets at the

local site. ddname1 is the primary output image copy data set. ddname2 is

the backup output image copy data set. COPYDDN is optional.

 The default is COPYDDN(SYSCOPY), where SYSCOPY identifies the

primary data set.

The COPYDDN keyword specifies either a DD name or a TEMPLATE

name specification from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the

current job step and a TEMPLATE name, the utility uses the DD name. For

more information about TEMPLATE specifications, see Chapter 31,

“TEMPLATE,” on page 587.

RECOVERYDDN (ddname3,ddname4)

Specifies the DD statements for the output image copy data sets at the

recovery site. You can have a maximum of two output data sets; the

outputs are identical. ddname3 is the primary output image copy data set.

ddname4 is the backup output image copy data set. RECOVERYDDN is

optional. No default value exists for RECOVERYDDN.

 The RECOVERYDDN keyword specifies either a DD name or a

TEMPLATE name specification from a previous TEMPLATE control

statement. If utility processing detects that the specified name is both a DD

name in the current job step and a TEMPLATE name, the utility uses the

DD name. For more information about TEMPLATE specifications, see

Chapter 31, “TEMPLATE,” on page 587.

Instructions for running MERGECOPY

To run MERGECOPY, you must:

1. Prepare the necessary data sets, as described in “Data sets that MERGECOPY

uses.”

2. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

MERGECOPY, see “Sample MERGECOPY control statements” on page 292.)

3. Prepare a utility control statement, specifying the options for the tasks that you

want to perform, as described in “Instructions for specific tasks” on page 290.

4. Check the compatibility table in “Concurrency and compatibility for

MERGECOPY” on page 292 if you want to run other jobs concurrently on the

same target objects.

5. Plan for restart if the MERGECOPY job doesn’t complete, as described in

“Terminating or restarting MERGECOPY” on page 292.

6. Run MERGECOPY by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15.

Data sets that MERGECOPY uses

Table 46 on page 289 lists the data sets that MERGECOPY uses. The table lists the

DD name that is used to identify the data set, a description of the data set, and an

indication of whether it is required. Include statements in your JCL for each

required data set and any optional data sets that you want to use.

MERGECOPY

288 Utility Guide and Reference

Table 46. Data sets that MERGECOPY uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

Image copy data set Image copy data set that contains the

resulting image copy. Specify its DD name

with the COPYDDN option of the utility

control statement. The default DD name is

SYSCOPY.

Yes

Work data set A temporary data set that is used for

intermediate merged output. Specify its DD

name with the WORKDDN option of the

utility control statement. The default DD

name is SYSUT1.

Yes

Input data sets Image copy data sets that you can

preallocate. You define the DD names.

No

The following object is named in the utility control statement and does not require

a DD statement in the JCL:

Table space

Object whose copies are to be merged.

Data sets: The input data sets for the merge operation are dynamically allocated.

To merge incremental copies, allocate in the JCL a work data set (WORKDDN) and

up to two new copy data sets (COPYDDN) for the utility job. You can allocate the

data sets to tape or disk. If you allocate them to tape, you need an additional tape

drive for each data set.

With the COPYDDN option of MERGECOPY, you can specify the DD names for

the output data sets. The option has the format COPYDDN (ddname1,ddname2), where

ddname1 is the DD name for the primary output data set in the system that

currently runs DB2, and ddname2 is the DD name for the backup output data set in

the system that currently runs DB2. The default for ddname1 is SYSCOPY.

The RECOVERYDDN option of MERGECOPY lets you specify the output image

copy data sets at the recovery site. The option has the format RECOVERYDDN

(ddname3, ddname4), where ddname3 is the DD name for the primary output image

copy data set at the recovery site, and ddname4 is the DD name for the backup

output data set at the recovery site.

Defining the work data set: The work data set should be at least equal in size to

the largest input image copy data set that is being merged. Use the same DCB

attributes that are used for the image copy data sets.

Creating the control statement

See “Syntax and options of the MERGECOPY control statement” on page 286 for

MERGECOPY syntax and option descriptions. See “Sample MERGECOPY control

statements” on page 292 for examples of MERGECOPY usage.

MERGECOPY

Chapter 17. MERGECOPY 289

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Specifying full or incremental image copy”

 “Merging online copies”

 “Using MERGECOPY with individual data sets”

 “Using MERGECOPY or COPY” on page 291

 “Avoiding MERGECOPY LOG RBA inconsistencies” on page 291

 “Creating image copies in a JES3 environment” on page 291

 “Running MERGECOPY on the directory” on page 292

Specifying full or incremental image copy

Use the NEWCOPY parameter if the new copy that MERGECOPY creates is to be

an incremental image copy or a full image copy. In general, creating a new full

image copy is recommended. The reasons for this recommendation are as follows:

v A new full image copy creates a new recovery point.

v The additional time that it takes to create a new full image copy does not have

any adverse effect on the access to the table space. The only concurrency

implication is the access to SYSIBM.SYSCOPY.

v The range of log records that are to be applied by RECOVER is the same for

both the new full image copy and the merged incremental image copy.

v Assuming that the copies are on tape, only one tape drive is required for image

copies during a RECOVER.

If NEWCOPY is YES, the utility inserts an entry for the new full image copy into

the SYSIBM.SYSCOPY catalog table.

If NEWCOPY is NO, the utility:

v Replaces the SYSCOPY records of the incremental image copies that were

merged with an entry for the new incremental image copy

v Deletes all SYSCOPY records of the incremental image copies that have been

merged.

In either case, if any of the input data sets might not be allocated, or you did not

specify a temporary work data set (WORKDDN), the utility performs a partial

merge.

For large table spaces, consider using MERGECOPY to create full image copies.

Use MERGECOPY NEWCOPY YES immediately after each incremental image

copy. When you use this option, dates become a valid criterion for deletion of

image copy data sets and archive logs. A minimum number of tape drives are

allocated for MERGECOPY and RECOVER execution.

Merging online copies

If you merge an online copy with incremental copies, the result is a full inline

copy. The data set is logically equivalent to a full image copy, but the data within

the data set differs in some respects. See “Using inline COPY with LOAD” on page

249 for additional information about inline copies.

Using MERGECOPY with individual data sets

Use MERGECOPY on copies of an entire table space, on individual data sets, or on

partitions. However, MERGECOPY can only merge incremental copies of the same

type. That is, you cannot merge incremental copies of an entire table space with

MERGECOPY

290 Utility Guide and Reference

incremental copies of individual data sets to form new incremental copies. The

attempt to mix the two types of incremental copies results in the following

messages:

DSNU460I DSNUBCLO - IMAGE COPIES INCONSISTENT.

 MERGECOPY REQUEST REJECTED

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE,

 HIGHEST RETURN CODE=4

With the NEWCOPY YES option, however, you can merge a full image copy of a

table space with incremental copies of the table space and of individual data sets

to make a new full image copy of the table space.

If the image copy data sets that you want to merge reside tape, refer to “Retaining

tape mounts” on page 379 for general information about specifying the appropriate

parameters on the DD statements.

Using MERGECOPY or COPY

COPY and MERGECOPY can create a full image copy. COPY is required after a

LOAD or REORG with LOG NO unless an inline copy is created. However, in

other cases an incremental image copy followed by MERGECOPY is a valid

alternative.

Avoiding MERGECOPY LOG RBA inconsistencies

MERGECOPY does not use information that was logged between the time of the

most recent image copy and the time when MERGECOPY was run. Therefore, you

cannot safely delete all log records made before running MERGECOPY. (You can

safely delete all log records if you run MODIFY RECOVERY and specify the date

when MERGECOPY was run as the value of DATE.)

To delete all log information that is included in a copy that MERGECOPY makes,

perform the following steps:

1. Find the record of that copy in the catalog table SYSIBM.SYSCOPY. You can

find it by selecting database name, table space name, and date (columns

DBNAME, TSNAME, and ICDATE).

2. Column START_RBA contains the RBA of the last image copy that

MERGECOPY used. Find the record of the image copy that has the same value

of START_RBA.

3. In that record, find the date in column ICDATE. You can use MODIFY

RECOVERY to delete all copies and log records for the table space that were

made before that date.

RECOVER uses the LOG RBA of image copies to determine the starting point in

the log that is needed for recovery. Normally, a timestamp directly corresponds to

a LOG RBA. Because of this, and because MODIFY uses dates to clean up recovery

history, you might decide to use dates to delete old archive log tapes. This decision

might cause a problem if you use MERGECOPY. MERGECOPY inserts the LOG

RBA of the last incremental image copy into the SYSCOPY row that is created for

the new image copy. The date that is recorded in the ICDATE column of SYSCOPY

row is the date that MERGECOPY was executed.

Creating image copies in a JES3 environment

Ensure that sufficient units are available to mount the required image copies. In a

JES3 environment, if the number of image copies that are to be restored exceeds

the number of available online and offline units, and if the MERGECOPY job

successfully allocates all available units, the job waits for more units to become

available.

MERGECOPY

Chapter 17. MERGECOPY 291

Running MERGECOPY on the directory

You cannot run the MERGECOPY utility on the DSNDB01.DBD01,

DSNDB01.SYSUTILX, or DSNDB06.SYSCOPY table spaces because you cannot

make incremental copies of those table spaces.

Terminating or restarting MERGECOPY

For instructions on terminating a utility job, see “Terminating an online utility with

the TERM UTILITY command” on page 40.

By default, MERGECOPY restarts at the beginning of the current phase. For

instructions on restarting a utility job, see “Restarting an online utility” on page 41.

See “Restarting after the output data set is full” on page 43 for guidance in

restarting MERGECOPY from the last commit point after receiving an out-of-space

condition.

Concurrency and compatibility for MERGECOPY

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

Table 47 shows the restrictive state that the utility sets on the target object.

 Table 47. Claim classes of MERGECOPY operations.

Target MERGECOPY

Table space or partition UTRW

Legend:

UTRW - Utility restrictive state - read-write access allowed.

MERGECOPY can run concurrently on the same target object with any utility

except the following utilities:

v COPY TABLESPACE

v LOAD

v MERGECOPY

v MODIFY

v RECOVER

v REORG TABLESPACE

v UNLOAD (only when from the same image copy data set)

The target object can be a table space or partition.

Sample MERGECOPY control statements

Example 1: Creating a merged incremental copy. The control statement in Figure 54

on page 293 specifies that the MERGECOPY utility is to merge incremental image

copies from table space DSN8S81C into a single incremental image copy. The

NEWCOPY NO option indicates that these incremental copies are not to be merged

with the full image copy. The COPYDDN option specifies that the output image

copies are to be written to the data sets that are defined by the COPY1 and COPY2

DD statements.

MERGECOPY

292 Utility Guide and Reference

|
|

Example 2: Creating merged incremental copies and using templates. Each

MERGECOPY control statement in Figure 55 specifies that MERGECOPY is to

merge incremental image copies from the specified table space into a single

incremental image copy for that table space. For each control statement, the

COPYDDN option specifies that the output image copies are to be written to data

sets that are defined by the T1 template. This template is defined in the

TEMPLATE utility control statement. For more information about TEMPLATE

utility control statements, see “Syntax and options of the TEMPLATE control

statement ” on page 587 in the TEMPLATE chapter.

Example 3: Creating a merged full image copy. The control statement in Figure 56

on page 294 specifies that MERGECOPY is to merge all incremental image copies

with the full image copy from table space DSN8S81C to create a new full image

copy.

//STEP1 EXEC DSNUPROC,UID=’IUJMU107.MERGE1’,

// UTPROC=’’,SYSTEM=’DSN’

//COPY1 DD DSN=IUJMU107.MERGE1.STEP1.COPY1,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//COPY2 DD DSN=IUJMU107.MERGE1.STEP1.COPY2,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSUT1 DD DSN=IUJMU107.MERGE1.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

MERGECOPY TABLESPACE DSN8D81P.DSN8S81C

 COPYDDN (COPY1,COPY2)

 NEWCOPY NO

Figure 54. Example of creating a merged incremental copy

//STEP1 EXEC DSNUPROC,UID=’JULTU224.MERGE’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//SYSUT1 DD DSN=JULTU224.MERGE.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

 TEMPLATE T1 UNIT(SYSDA)

 DSN(JULTU224.&SN..COPY&IC.&LOCREM.&PB..&JO.)

 DISP(NEW,CATLG,DELETE)

 MERGECOPY TABLESPACE DBLT2401.TPLT2401 DSNUM ALL NEWCOPY NO

 COPYDDN(T1)

 MERGECOPY TABLESPACE DBLT2401.TLLT24A1 DSNUM ALL NEWCOPY NO

 COPYDDN(T1)

 MERGECOPY TABLESPACE DBLT2401.TLLT24A2 DSNUM ALL NEWCOPY NO

 COPYDDN(T1)

 MERGECOPY TABLESPACE DBLT2401.TLLT24A3 DSNUM ALL NEWCOPY NO

 COPYDDN(T1)

 MERGECOPY TABLESPACE DBLT2401.TLLT24A4 DSNUM ALL NEWCOPY NO

 COPYDDN(T1)

Figure 55. Example of using templates

MERGECOPY

Chapter 17. MERGECOPY 293

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

//STEP1 EXEC DSNUPROC,UID=’IUJMU107.MERGE2’,

// UTPROC=’’,SYSTEM=’DSN’

//COPY1 DD DSN=IUJMU107.MERGE2.STEP1.COPY1,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//COPY2 DD DSN=IUJMU107.MERGE2.STEP1.COPY2,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSUT1 DD DSN=IUJMU107.MERGE2.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

MERGECOPY TABLESPACE DSN8D81P.DSN8S81C

 COPYDDN (COPY1,COPY2)

 NEWCOPY YES

Figure 56. Example of creating a merged full image copy

294 Utility Guide and Reference

Chapter 18. MODIFY RECOVERY

The MODIFY utility with the RECOVERY option deletes records from the

SYSIBM.SYSCOPY catalog table, related log records from the SYSIBM.SYSLGRNX

directory table, and entries from the DBD, and recycles version numbers for reuse.

You can remove records that were written before a specific date, or you can

remove records of a specific age. You can delete records for an entire table space,

partition, or data set.

You should run MODIFY regularly to remove outdated information from

SYSIBM.SYSCOPY and SYSIBM.SYSLGRNX. These tables, and particularly

SYSIBM.SYSLGRNX, can become very large and take up considerable amounts of

space. By deleting outdated information from these tables, you can help improve

performance for processes that access data from these tables.

The MODIFY RECOVERY utility automatically removes the SYSCOPY and

SYSLGRNX recovery records that meet the age and date criteria for all indexes on

the table space that were defined with the COPY YES attribute.

For a diagram of MODIFY RECOVERY syntax and a description of available

options, see “Syntax and options of the MODIFY RECOVERY control statement”

on page 296. For detailed guidance on running this utility, see “Instructions for

running MODIFY RECOVERY” on page 298.

Output: MODIFY RECOVERY deletes image copy rows from SYSIBM.SYSCOPY

and SYSIBM.SYSLGRNX.

For each full and incremental SYSCOPY record that is deleted from

SYSIBM.SYSCOPY, the utility returns a message identifying the name of the copy

data set.

For information about deleting SYSLGRNX rows, see “Deleting SYSLGRNX and

SYSCOPY rows for a single partition or the entire table space” on page 299.

If MODIFY RECOVERY deletes at least one SYSCOPY record and the target table

space or partition is not recoverable, the target object is placed in COPY-pending

status.

For table spaces and indexes that are defined with COPY YES, the MODIFY

RECOVERY utility updates the OLDEST_VERSION column of the following

catalog tables:

v SYSIBM.SYSTABLESPACE

v SYSIBM.SYSTABLEPART

v SYSIBM.SYSINDEXES

v SYSIBM.SYSINDEXPART

For more information about how and when MODIFY RECOVERY updates these

tables, see “The effect of MODIFY RECOVERY on version numbers” on page 301.

Authorization required: To execute this utility, you must use a privilege set that

includes of the following authorities:

v IMAGCOPY privilege for the database to run MODIFY RECOVERY

v DBADM, DBCTRL, or DBMAINT authority for the database

© Copyright IBM Corp. 1983, 2008 295

|

|
|
|
|
|
|
|

|
|

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute MODIFY RECOVERY,

but only on a table space in the DSNDB01 or DSNDB06 database.

SYSIBM.SYSCOPY or SYSIBM.SYSLGRNX does not contain records for

DSNDB06.SYSCOPY, DSNDB01.SYSUTILX, or DSNDB01.DBD01. You can run

MODIFY RECOVERY on these table spaces, but you receive message DSNU573I,

indicating that no SYSCOPY records could be found. No SYSCOPY or SYSLGRNX

records are deleted.

Execution phases of MODIFY RECOVERY: The MODIFY RECOVERY phase

operates in these phases:

UTILINIT Performs initialization and setup

MODIFY Deletes records

UTILTERM Performs cleanup

The following topics provide additional information:

v “Syntax and options of the MODIFY RECOVERY control statement”

v “Instructions for running MODIFY RECOVERY” on page 298

v “Concurrency and compatibility for MODIFY RECOVERY” on page 301

v “The effect of MODIFY RECOVERY on version numbers” on page 301

v “Sample MODIFY RECOVERY control statements” on page 302

Syntax and options of the MODIFY RECOVERY control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

Syntax diagram

��

MODIFY

RECOVERY

LIST

listdef-name

TABLESPACE

table-space-name

database-name.

 DSNUM ALL

DSNUM

integer

�

� DELETE AGE integer

(*)

DATE

integer

(*)

 ��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

MODIFY RECOVERY

296 Utility Guide and Reference

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name that contains

only table spaces. You can specify one LIST keyword per MODIFY RECOVERY

control statement. Do not specify LIST with the TABLESPACE keyword.

MODIFY is invoked once for each table space in the list. For more information

about LISTDEF specifications, see Chapter 15, “LISTDEF,” on page 171.

TABLESPACE database-name.table-space-name

Specifies the database and the table space for which records are to be deleted.

database-name Specifies the name of the database to which the table space

belongs. database-name is optional. The default is DSNDB04.

table-space-name

Specifies the name of the table space.

DSNUM integer

Identifies a single partition or data set of the table space for which records are

to be deleted; ALL deletes records for the entire data set and table space.

 integer is the number of a partition or data set.

The default is ALL.

For a partitioned table space, integer is its partition number. The maximum is

4096.

For a nonpartitioned table space, use the data set integer at the end of the data

set name as cataloged in the VSAM catalog. If image copies are taken by

partition or data set and you specify DSNUM ALL, the table space is placed in

COPY-pending status if a full image copy of the entire table space does not

exist. The data set name has the following format, where y is either I or J, and

nnn is the data set integer.

catname.DSNDBx.dbname.tsname.y0001.Annn

If you specify DSNUM, MODIFY RECOVERY does not delete any SYSCOPY

records for the partitions that have an RBA greater than that of the earliest

point to which the entire table space could be recovered. That point might

indicate a full image copy, a LOAD operation with LOG YES or a REORG

operation with LOG YES.

If you specify DSNUM for a partitioned table space, MODIFY RECOVERY

deletes SYSCOPY records for all partitioned index spaces as well as for the

partition and updates the version numbers in the SYSIBM.SYSINDEXES

catalog table. However, DB2 does not perform these functions for the

nonpartitioned indexes.

See “Deleting SYSLGRNX and SYSCOPY rows for a single partition or the

entire table space” on page 299 for more information about specifying

DSNUM.

DELETE

Indicates that records are to be deleted. See the DSNUM description for

restrictions on deleting partition statistics.

AGE integer

Deletes all SYSCOPY records that are older than a specified number of

days.

 integer is the number of days, and can range from 0 to 32767. Records

that are created today are of age 0 and cannot be deleted by this

option.

MODIFY RECOVERY

Chapter 18. MODIFY RECOVERY 297

|
|

|
|
|
|
|

(*) deletes all records, regardless of their age.

DATE integer

Deletes all records that are written before a specified date.

 integer can be in eight- or six-character format. You must specify a year

(yyyy or yy), month (mm), and day (dd) in the form yyyymmdd or

yymmdd. DB2 checks the system clock and converts six-character dates

to the most recent, previous eight-character equivalent.

(*) deletes all records, regardless of the date on which they were

written.

Instructions for running MODIFY RECOVERY

To run MODIFY RECOVERY you must:

1. Read “Before running MODIFY RECOVERY” in this chapter.

2. Prepare the necessary data sets, as described in “Data sets that MODIFY

RECOVERY uses.”

3. Create JCL statements, by using one of the methods described in Chapter 3,

“Invoking DB2 online utilities,” on page 15. (For examples of JCL for MODIFY

RECOVERY, see “Sample MODIFY RECOVERY control statements” on page

302.)

4. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

299.

5. Check the compatibility table in “Concurrency and compatibility for MODIFY

RECOVERY” on page 301 if you want to run other jobs concurrently on the

same target objects.

6. You can restart a MODIFY RECOVERY utility job, but it starts from the

beginning again. You can terminate MODIFY RECOVERY with the TERM

UTILITY command. For guidance in restarting online utilities, see “Terminating

or restarting MODIFY RECOVERY” on page 300.

7. Run MODIFY RECOVERY by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15.

Before running MODIFY RECOVERY

Recommendations for printing SYSCOPY records with REPORT RECOVERY: If

you use MODIFY RECOVERY to delete SYSCOPY records, use the REPORT utility

to view all SYSCOPY records for the object at the specified site to avoid deleting

the wrong records.

Removing RECOVER-pending status: You cannot run MODIFY RECOVERY on a

table space that is in RECOVER-pending status. See Chapter 23, “RECOVER,” on

page 351 for information about resetting the RECOVER-pending status.

Data sets that MODIFY RECOVERY uses

Table 48 on page 299 lists the data sets that MODIFY RECOVERY uses. The table

lists the DD name that is used to identify the data set, a description of the data set,

and an indication of whether it is required. Include statements in your JCL for each

required data set and any optional data sets that you want to use.

MODIFY RECOVERY

298 Utility Guide and Reference

|

Table 48. Data sets that MODIFY RECOVERY uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

The following object is named in the utility control statement and does not require

a DD statement in the JCL:

Table space

Object for which records are to be deleted.

Creating the control statement

See “Syntax diagram” on page 296 for MODIFY RECOVERY syntax and option

descriptions. See “Sample MODIFY RECOVERY control statements” on page 302

for examples of MODIFY RECOVERY usage.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Deleting SYSLGRNX and SYSCOPY rows for a single partition or the entire

table space”

 “Deleting all image copy entries” on page 300

 “Deleting recovery rows for indexes” on page 300

 “Reclaiming space in the DBD” on page 300

 “Improving REORG performance after adding a column” on page 300

 “The effect of MODIFY RECOVERY on version numbers” on page 301

Deleting SYSLGRNX and SYSCOPY rows for a single partition or

the entire table space

Use the DSNUM option to specify whether SYSLGRNX and SYSCOPY rows should

be deleted for a single partition or the entire table space. The DSNUM value that

you should use (ALL or integer) depends on the type of image copies that exist for

the table space. Use the following guidelines to determine whether to use DSNUM

ALL or DSNUM integer:

v If image copies exist at only the partition level, use DSNUM integer.

v If image copies exist at only the data set level for a nonpartitioned table space,

use DSNUM ALL. If DSNUM integer is used, SYSLGRNX records are not

deleted.

v If image copies exist at only the table space or index space level, use DSNUM

ALL.

v If image copies exist at both the partition level and the table space or index

space level, use DSNUM ALL. Restriction: In this case, if you use DSNUM

integer, MODIFY RECOVERY does not delete any SYSCOPY or SYSLGRNX

records that are newer than the oldest recoverable point at the table space or

index space level.

v If image copies exist at both the data set level and the table space level for a

nonpartitioned table space, use DSNUM ALL. Restriction: In this case, if you

use DSNUM integer, MODIFY RECOVERY does not delete any SYSCOPY or

SYSLGRNX records that are newer than the oldest recoverable point at the table

space level.

MODIFY RECOVERY

Chapter 18. MODIFY RECOVERY 299

The preceding guidelines pertain to all image copies, regardless of how they were

created, including those copies that were created by COPY, COPYTOCOPY, LOAD,

REORG or MERGECOPY.

Deleting all image copy entries

MODIFY RECOVERY allows you to delete all image copy entries for a table space

or data set. In this case, MODIFY RECOVERY:

v Issues message DSNU572I.

v Sets the COPY-pending restrictive status.

v Issues return code 4.

Deleting recovery rows for indexes

When you perform MODIFY RECOVERY on a table space, utility processing

deletes SYSCOPY and SYSLGRNX rows that meet the AGE and DATE criteria for

related indexes that were defined with COPY YES. If no SYSCOPY rows exist for

an index, the RBA used for deletion of the table space SYSLGRNX rows is also

used for deletion of the index SYSLGRNX rows.

Reclaiming space in the DBD

To reclaim space in the DBD when you drop a table, use the following procedure:

1. Commit the drop.

2. Run the REORG utility.

3. Run the COPY utility to make a full image copy of the table space.

4. Run MODIFY RECOVERY with the DELETE option to delete all previous

image copies.

Deleting SYSOBDS entries

MODIFY RECOVERY removes entries for an object from the SYSOBDS catalog

table when the last image copy that contains version 0 data rows or keys is

deleted.

Improving REORG performance after adding a column

After you add a column to a table space, the next REORG of the table space

creates default values for the added column by converting all of the fields in each

row to the external DB2 format during the UNLOAD phase and then converting

them to the internal DB2 format during the RELOAD phase. Subsequently, each

REORG job for the table space repeats this processing in the UNLOAD and

RELOAD phases. Use the following procedure to avoid repeating the compression

cycle with each REORG:

1. Run the REORG utility on the table space.

2. Run the COPY utility to make a full image copy of the table space.

3. Run MODIFY RECOVERY with the DELETE option to delete all previous

image copies. MODIFY RECOVERY changes the status of the column that is

added after using the ALTER command only if SYSCOPY rows need to be

deleted.

Terminating or restarting MODIFY RECOVERY

You can use the TERM UTILITY command to terminate MODIFY RECOVERY in

any phase without any integrity exposure.

You can restart a MODIFY RECOVERY utility job, but it starts from the beginning

again. For guidance in restarting online utilities, see “Restarting an online utility”

on page 41.

MODIFY RECOVERY

300 Utility Guide and Reference

Concurrency and compatibility for MODIFY RECOVERY

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

Table 49 shows the restrictive state that the utility sets on the target object.

 Table 49. Claim classes of MODIFY RECOVERY operations.

Target MODIFY RECOVERY

Table space or partition UTRW

Legend:

UTRW - Utility restrictive state - Read-write access allowed.

MODIFY RECOVERY can run concurrently on the same target object with any

utility except the following utilities:

v COPY TABLESPACE

v LOAD

v MERGECOPY

v MODIFY RECOVERY

v RECOVER TABLESPACE

v REORG TABLESPACE

The target object can be a table space or partition.

The effect of MODIFY RECOVERY on version numbers

DB2 stores the range of used version numbers in the OLDEST_VERSION and

CURRENT_VERSION columns of one or more of the following catalog tables,

depending on the object:

v SYSIBM.SYSTABLESPACE

v SYSIBM.SYSTABLEPART

v SYSIBM.SYSINDEXES

v SYSIBM.SYSINDEXPART

The OLDEST_VERSION column contains the oldest used version number, and the

CURRENT_VERSION column contains the current version number.

When you run MODIFY RECOVERY, the utility updates this range of used version

numbers for table spaces and for indexes that are defined with the COPY YES

attribute. MODIFY RECOVERY updates the OLDEST_VERSION column of the

appropriate catalog table or tables with the version number of the oldest version

that has not yet been applied to the entire object. DB2 can reuse any version

numbers that are not in the range that is set by the values in the

OLDEST_VERSION and CURRENT_VERSION columns.

Recycling of version numbers is required when all of the version numbers are

being used. All version numbers are being used when one of the following

situations is true:

v The value in the CURRENT_VERSION column is one less than the value in the

OLDEST_VERSION column.

MODIFY RECOVERY

Chapter 18. MODIFY RECOVERY 301

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|

v The value in the CURRENT_VERSION column is 255 for table spaces or 15 for

indexes, and the value in the OLDEST_VERSION column is 0 or 1.

To recycle version numbers for indexes that are defined with the COPY NO

attribute, run LOAD REPLACE, REBUILD INDEX, REORG INDEX, or REORG

TABLESPACE.

For more information about versions and how they are used by DB2, see Part 2 of

DB2 Administration Guide.

Sample MODIFY RECOVERY control statements

Example 1: Deleting SYSCOPY records that are over a certain age. The following

control statement specifies that the MODIFY RECOVERY utility is to delete all

SYSCOPY records that are older than 90 days for table space

DSN8D81A.DSN8S81E.

//STEP1 EXEC DSNUPROC,UID=’IUIQU2UD.MODRCV1’,

// UTPROC=’’,SYSTEM=’DSN’

//SYSIN DD *

MODIFY RECOVERY TABLESPACE DSN8D81A.DSN8S81E DELETE AGE(90)

/*

Example 2: Deleting SYSCOPY records that are older than a certain date. The

following control statement specifies that MODIFY RECOVERY is to delete all

SYSCOPY records that were written before 10 September 2002.

MODIFY RECOVERY TABLESPACE DSN8D81A.DSN8S81D DELETE DATE(20020910)

Example 3: Deleting SYSCOPY records for partitions. The following control

statements specifies that MODIFY RECOVERY is to delete the following SYSCOPY

records for table space TU5AP053:

v Any records in partition 2 that are older than 5 days

v Any records in partition 3 that were written before 9 October 2001

Example 4: Deleting all SYSCOPY records for objects in a list and viewing the

results. In the following example job, the LISTDEF utility control statements define

three lists (L1, L2, L3). The first group of REPORT utility control statements then

specify that the utility is to report recovery information for the objects in these

lists. Next, the MODIFY RECOVERY control statement specifies that the utility is

to delete all SYSCOPY records for the objects in the L1 list. Finally, the second

group of REPORT control statements specify that the utility is to report the

recovery information for the same three lists. In this second report, no information

will be reported for the objects in the L1 list because all of the SYSCOPY records

//STEP2 EXEC DSNUPROC,UID=’FUN5U053.STEP2’,UTPROC=’’,SYSTEM=’SSTR’

//SYSIN DD *

 MODIFY RECOVERY TABLESPACE TU5AP053

 DSNUM 2

 DELETE AGE(5)

 MODIFY RECOVERY TABLESPACE TU5AP053

 DSNUM 3

 DELETE DATE(011009)

/*

Figure 57. Example MODIFY RECOVERY statements that delete SYSCOPY records for

partitions

MODIFY RECOVERY

302 Utility Guide and Reference

|
|

|
|
|

|
|

|

have been deleted.

For more information about the LISTDEF utility control statements, see Chapter 15,

“LISTDEF,” on page 171. For more information about the REPORT utility control

statements, see Chapter 27, “REPORT,” on page 519.

//STEP4 EXEC DSNUPROC,UID=’JULTU224.RCV1’,

// UTPROC=’’,SYSTEM=’SSTR’

//SYSIN DD *

 LISTDEF L1 INCLUDE TABLESPACE DBLT2401.T*

 LISTDEF L2 INCLUDE INDEXSPACE DBLT2401.I*

 LISTDEF L3 INCLUDE INDEX IXLT2402

 REPORT RECOVERY TABLESPACE LIST L1

 REPORT RECOVERY INDEXSPACE LIST L2

 REPORT RECOVERY INDEX LIST L3

 MODIFY RECOVERY LIST L1

 DELETE DATE(*)

 REPORT RECOVERY TABLESPACE LIST L1

 REPORT RECOVERY INDEXSPACE LIST L2

 REPORT RECOVERY INDEX LIST L3

/*

Figure 58. Example MODIFY RECOVERY statement that deletes all SYSCOPY records

MODIFY RECOVERY

Chapter 18. MODIFY RECOVERY 303

304 Utility Guide and Reference

Chapter 19. MODIFY STATISTICS

The online MODIFY STATISTICS utility deletes unwanted statistics history records

from the corresponding catalog tables. You can remove statistics history records

that were written before a specific date, or you can remove records of a specific

age. You can delete records for an entire table space, index space, or index.

Run MODIFY STATISTICS regularly to clear outdated information from the

statistics history catalog tables. By deleting outdated information from those tables,

you can improve performance for processes that access data from those tables.

For a diagram of MODIFY STATISTICS syntax and a description of available

options, see “Syntax and options of the MODIFY STATISTICS control statement”

on page 306. For detailed guidance on running this utility, see “Instructions for

running MODIFY STATISTICS” on page 308.

Output: MODIFY STATISTICS deletes rows from the following catalog tables:

v SYSIBM.SYSCOLDIST_HIST

v SYSIBM.SYSCOLUMNS_HIST

v SYSIBM.SYSINDEXES_HIST

v SYSIBM.SYSINDEXPART_HIST

v SYSIBM.SYSINDEXSTATS_HIST

v SYSIBM.SYSLOBSTATS_HIST

v SYSIBM.SYSTABLEPART_HIST

v SYSIBM.SYSTABSTATS_HIST

v SYSIBM.SYSTABLES_HIST

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v STATS privilege for the database to run MODIFY STATISTICS

v DBADM, DBCTRL, or DBMAINT authority for the database

v SYSCTRL or SYSADM authority.

A user ID with installation SYSOPR authority can also execute MODIFY

STATISTICS, but only on a table space in the DSNDB01 or DSNDB06 database.

Execution phases of MODIFY STATISTICS: The MODIFY STATISTICS utility

operates in these phases:

Phase Description

UTILINIT Performs initialization and setup

MODIFYS Deletes records

UTILTERM Performs cleanup

The following topics provide additional information:

v “Syntax and options of the MODIFY STATISTICS control statement” on page 306

v “Instructions for running MODIFY STATISTICS” on page 308

v “Concurrency and compatibility for MODIFY STATISTICS” on page 309

v “Sample MODIFY STATISTICS control statements” on page 310

© Copyright IBM Corp. 1983, 2008 305

Syntax and options of the MODIFY STATISTICS control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

Syntax diagram

�� MODIFY STATISTICS LIST listdef-name

TABLESPACE

table-space-name

database-name.

INDEXSPACE

index-space-name

database-name.

INDEX

index-name

creator-id.

 �

� DELETE ALL

ACCESSPATH

SPACE

 AGE (integer)

(*)

DATE

(integer)

(*)

 ��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. You cannot

repeat the LIST keyword or specify it with TABLESPACE, INDEXSPACE, or

INDEX.

 The list can contain index spaces, table spaces, or both. MODIFY STATISTICS

is invoked once for each object in the list.

TABLESPACE database-name.table-space-name

Specifies the database and the table space for which catalog history records are

to be deleted.

database-name Specifies the name of the database to which the table space

belongs. database-name is optional. The default is DSNDB04.

table-space-name

Specifies the name of the table space for which statistics are to

be deleted.

INDEXSPACE database-name.index-space-name

Specifies the qualified name of the index space for which catalog history

information is to be deleted. The utility lists the name in the

SYSIBM.SYSINDEXES table.

database-name Optionally specifies the name of the database to which the

index space belongs. The default is DSNDB04.

MODIFY STATISTICS

306 Utility Guide and Reference

index-space-name

Specifies the name of the index space for which the statistics

are to be deleted.

INDEX creator-id.index-name

Specifies the index for which catalog history information is to be deleted.

creator-id

Optionally specifies the creator of the index. The default is DSNDB04.

index-name

Specifies the name of the index for which the statistics are to be

deleted. Enclose the index name in quotation marks if the name

contains a blank.

DELETE

Indicates that records are to be deleted.

ALL Deletes all statistics history rows that are related to the specified object

from all catalog history tables.

 Rows from the following history tables are deleted only when you

specify DELETE ALL:

v SYSTABLES_HIST

v SYSTABSTATS_HIST

v SYSINDEXES_HIST

v SYSINDEXSTATS_HIST

ACCESSPATH

Deletes all access-path statistics history rows that are related to the

specified object from the following history tables:

v SYSIBM.SYSCOLDIST_HIST

v SYSIBM.SYSCOLUMNS_HIST

SPACE

Deletes all space-tuning statistics history rows that are related to the

specified object from the following history tables:

v SYSIBM.SYSINDEXPART_HIST

v SYSIBM.SYSTABLEPART_HIST

v SYSIBM.SYSLOBSTATS_HIST

AGE (integer)

Deletes all statistics history rows that are related to the specified object and

that are older than a specified number of days.

(integer)

Specifies the number of days in a range from 0 to 32 767. This option

cannot delete records that are created today (age 0).

(*) Deletes all records, regardless of their age.

DATE (integer)

Deletes all records that are written before a specified date.

(integer)

Specifies the date in an eight-character format. Specify a year (yyyy), month

(mm), and day (dd) in the form yyyymmdd.

(*)

Deletes all records, regardless of the date on which they were written.

MODIFY STATISTICS

Chapter 19. MODIFY STATISTICS 307

Instructions for running MODIFY STATISTICS

To run MODIFY STATISTICS you must:

1. Prepare the necessary data sets, as described in “Data sets that MODIFY

STATISTICS uses.”

2. Create JCL statements by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

MODIFY STATISTICS, see “Sample MODIFY STATISTICS control statements”

on page 310.)

3. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks.”

4. Check the compatibility table in “Concurrency and compatibility for MODIFY

STATISTICS” on page 309 if you want to run other jobs concurrently on the

same target objects.

5. Restart a MODIFY STATISTICS utility job (it starts from the beginning again) or

terminate MODIFY STATISTICS by using the TERM UTILITY command. For

guidance in restarting online utilities, see “Restarting an online utility” on page

41.

6. Run MODIFY STATISTICS by using one of the methods described in Chapter 3,

“Invoking DB2 online utilities,” on page 15.

Data sets that MODIFY STATISTICS uses

Table 50 lists the data sets that MODIFY STATISTICS uses. The table lists the DD

name that is used to identify the data set, a description of the data set, and an

indication of whether it is required. Include statements in your JCL for each

required data set and any optional data sets that you want to use.

 Table 50. Data sets that MODIFY STATISTICS uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement

Yes

SYSPRINT Output data set for messages Yes

The following object is named in the utility control statement and does not require

a DD statement in the JCL:

Table space or index space

Object for which records are to be deleted.

Creating the control statement

Create the utility control statement for the MODIFY STATISTICS job. See “Syntax

diagram” on page 306 for MODIFY STATISTICS syntax and option descriptions.

See “Sample MODIFY STATISTICS control statements” on page 310 for examples

of MODIFY STATISTICS usage.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement.

MODIFY STATISTICS

308 Utility Guide and Reference

|

Deciding which statistics history rows to delete

After analyzing trends by using the relevant historical catalog information and

possibly taking actions based on this information, consider deleting all or part of

the statistics history catalog rows. Deleting outdated information from the statistics

history catalog tables can improve performance for processes that access data from

those tables. You also make available the space in the catalog. Then, the next time

you update the relevant statistics by using RUNSTATS TABLESPACE, REBUILD

INDEX, or REORG INDEX, DB2 repopulates the statistics history catalog tables

with more recent historical data. Examining this data lets you determine the

efficacy of any adjustments that you made as a result of your previous analysis.

Be aware that when you manually insert, update, or delete catalog information,

DB2 does not store the historical information for those operations in the historical

catalog tables.

Deleting specific statistics history rows

MODIFY STATISTICS lets you delete some or all statistics history rows for a table

space, an index space, or an index.

You can choose to delete only the statistics rows that relate to access path selection

by specifying the ACCESSPATH option. Alternatively, you can delete the rows that

relate to space statistics by using the SPACE option. To delete rows in all statistics

history catalog tables, including the SYSIBM.SYSTABLES_HIST catalog table, you

must specify the DELETE ALL option in the utility control statement.

To delete statistics from the RUNSTATS history tables, you can either use the

MODIFY STATISTICS utility or issue SQL DELETE statements. The MODIFY

STATISTICS utility simplifies the purging of old statistics without requiring you to

write the SQL DELETE statements. You can also delete rows that meet the age and

date criteria by specifying the corresponding keywords (AGE and DATE) for a

particular object.

To avoid time outs when you delete historical statistics with MODIFY STATISTICS,

you should increase the LOCKMAX parameter for DSNDB06.SYSHIST with ALTER

TABLESPACE.

Terminating or restarting MODIFY STATISTICS

You can use the TERM UTILITY command to terminate the MODIFY STATISTICS

utility in any phase.

You can restart a MODIFY STATISTICS utility job, but it starts from the beginning

again. For guidance in restarting online utilities, see “Restarting an online utility”

on page 41.

Concurrency and compatibility for MODIFY STATISTICS

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

Table 51 on page 310 shows the restrictive state that the utility sets on the target

object.

MODIFY STATISTICS

Chapter 19. MODIFY STATISTICS 309

Table 51. Claim classes of MODIFY STATISTICS operations.

Target MODIFY STATISTICS

Table space, index, or index space UTRW

Legend:

UTRW - Utility restrictive state - read-write access allowed.

Sample MODIFY STATISTICS control statements

Example 1: Deleting SYSIBM.SYSTABLES_HIST records by age. The following

control statement specifies that the MODIFY STATISTICS utility is delete all

statistics history records for table space DSN8D81A.DSN8S81E that are older than

60 days.

//STEP1 EXEC DSNUPROC,UID=’IUIQU2UD.MODSTAT1’,

// UTPROC=’’,SYSTEM=’DSN’

//SYSIN DD *

 MODIFY STATISTICS TABLESPACE DSN8D81A.DSN8S81E

 DELETE ALL

 AGE 60

/*

Example 2: Deleting access path records for all objects in a list. The MODIFY

STATISTICS control statement in Figure 59 specifies that the utility is to delete

access-path statistics history rows that were created before 17 April 2000 for objects

in the specified list. The list, M1, is defined in the preceding LISTDEF control

statement and includes table spaces DB0E1501.TL0E1501 and

DSN8D81A.DSN8S81E. For more information about LISTDEF control statements,

see Chapter 15, “LISTDEF,” on page 171.

Example 3: Deleting space-tuning statistics records for an index by age. The

control statement in Figure 60 on page 311 specifies that MODIFY STATISTICS is to

delete space-tuning statistics records for index ADMF001.IXOE15S1 that are older

than one day.

//STEP9 EXEC DSNUPROC,UID=’JUOEU115.MDFYL9’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 LISTDEF M1 INCLUDE TABLESPACE DBOE1501.TLOE1501

 INCLUDE TABLESPACE DSN8D81A.DSN8S81E

 MODIFY STATISTICS LIST M1

 DELETE ACCESSPATH DATE(20000417)

/*

Figure 59. MODIFY STATISTICS control statement that specifies that access path history

records are to be deleted

MODIFY STATISTICS

310 Utility Guide and Reference

Example 4: Deleting all statistics history records for an index space. The control

statement in Figure 61 specifies that MODIFY STATISTICS is to delete all statistics

history records for index space DBOE1501.IUOE1501. Note that the deleted records

are not limited by date because (*) is specified.

//STEP9 EXEC DSNUPROC,UID=’JUOEU115.MOFYS9’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 MODIFY STATISTICS INDEX ADMF001.IXOE15S1

 DELETE SPACE AGE 1

/*

Figure 60. MODIFY STATISTICS control statement that specifies that space-tuning statistics

records are to be deleted

//STEP8 EXEC DSNUPROC,UID=’JUOEU115.MDFYL8’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 MODIFY STATISTICS INDEXSPACE DBOE1501.IUOE1501

 DELETE ALL DATE (*)

/*

Figure 61. MODIFY STATISTICS control statement that specifies that all statistics history

records are to be deleted

MODIFY STATISTICS

Chapter 19. MODIFY STATISTICS 311

312 Utility Guide and Reference

Chapter 20. OPTIONS

The online OPTIONS utility control statement specifies processing options that are

applicable across many utility executions in a job step. By specifying various

options, you can:

v Preview utility control statements

v Preview LISTDEF or TEMPLATE definitions

v Override library names for LISTDEF lists or TEMPLATE definitions

v Specify how to handle errors during list processing

v Alter the return code for warning messages

v Restore all default options

See “Syntax and options of the OPTIONS control statement” for details.

Output: The OPTIONS control statement sets the specified processing options for

the duration of the job step, or until replaced by another OPTIONS control

statement within the same job step.

Authorization required: The OPTIONS control statement performs setup for

subsequent control statements. The OPTIONS statement itself requires no

privileges to execute.

Execution phases of OPTIONS: The OPTIONS control statement executes entirely

in the UTILINIT phase, in which it performs setup for the subsequent utility.

 The following topics provide additional information:

v “Syntax and options of the OPTIONS control statement”

v “Instructions for using OPTIONS” on page 316

v “Concurrency and compatibility for OPTIONS” on page 317

v “Sample OPTIONS control statements” on page 317

Syntax and options of the OPTIONS control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

Syntax diagram

�� OPTIONS �

�
PREVIEW

LISTDEFDD

ddname

TEMPLATEDD

ddname

FILSZ

integer

event-spec

OFF

KEY

key-value

 ��

© Copyright IBM Corp. 1983, 2008 313

##

event-spec:

��

EVENT

(
 ITEMERROR,HALT

ITEMERROR,SKIP

,

 WARNING,RC4

WARNING,RC0

WARNING,RC8

)

��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

PREVIEW Specifies that the utility control statements that follow are to run in

PREVIEW mode. The utility checks for syntax errors in all utility

control statements, but normal utility execution does not take

place. If the syntax is valid, the utility expands all LISTDEF lists

and TEMPLATE DSNs that appear in SYSIN and prints results to

the SYSPRINT data set.

 PREVIEW evaluates and expands all LISTDEF statements into an

actual list of table spaces or index spaces. It evaluates TEMPLATE

DSNs and uses variable substitution for actual data set names

when possible. It also expands lists from the SYSLISTD DD and

TEMPLATE DSNs from the SYSTEMPL DD that a utility invocation

references.

A definitive preview of TEMPLATE DSN values is not always

possible. Substitution values for some variables, such as &DATE.,

&TIME., &SEQ. and &PART., can change at execution time. In

some cases, PREVIEW generates approximate data set names. The

OPTIONS utility substitutes unknown character variables with the

character string ″UNKNOWN″ and unknown integer variables

with zeroes.

 Instead of OPTIONS PREVIEW, you can use a JCL PARM to

activate preview processing. Although the two functions are

identical, use JCL PARM to preview an existing set of utility

control statements. Use the OPTION PREVIEW control statement

when you invoke DB2 utilities through a stored procedure.

 The JCL PARM is specified as the third JCL PARM of DSNUTILB

and on the UTPROC variable of DSNUPROC, as shown in the

following JCL:

//STEP1 EXEC DSNUPROC,UID=’JULTU106.RECOVE1’,

// UTPROC=’PREVIEW’,SYSTEM=’SSTR’

The PARM value PREVIEW causes the utility control statements in

that job step to be processed for preview only. The LISTDEF and

TEMPLATE control statements are expanded, but the utility does

not execute.

 OPTIONS PREVIEW is identical to the PREVIEW JCL parameter,

except that you can specify a subsequent OPTIONS statement to

turn off the preview for OPTIONS PREVIEW. Absence of the

PREVIEW keyword in the OPTION control statement turns off

OPTIONS

314 Utility Guide and Reference

preview processing, but it does not override the PREVIEW JCL

parameter, which, if specified, remains in effect for the entire job

step.

LISTDEFDD ddname

Specifies the ddname of the LISTDEF definition library. The default

value is SYSLISTD. A LISTDEF library is a data set that contains

only LISTDEF control statements. This data set is processed only

when a referenced LIST is not found in SYSIN. See Chapter 15,

“LISTDEF,” on page 171 for details.

TEMPLATEDD ddname

Specifies the ddname of the TEMPLATE definition library. The

default value is SYSTEMPL. A TEMPLATE library is a data set

that contains only TEMPLATE control statements. This data set is

processed only when a referenced name does not exist in the job

step as a DD name and is not found in SYSIN as a TEMPLATE

name. See Chapter 31, “TEMPLATE,” on page 587 TEMPLATE

CONTROL STATEMENT for details.

FILSZ integer Specifies a file size in megabytes and overrides the DFSORT file

size. Only use this keyword under the direction of IBM Software

Support.

EVENT Specifies one or more pairs of utility processing events and the

matching action for the event. Not all actions are valid for all

events.

 The parentheses and commas in the EVENT operand are currently

optional but they may be required in a future release.

ITEMERROR

 Specifies how utility processing is to handle errors during list

processing. Specifically, this keyword indicates the effect on

processing in response to return code 8. By default, utility

processing stops (HALT). The ITEMERROR event does not include

abnormal terminations (abends).

Note that for the QUIESCE utility, the indexes for the table spaces

in the list, if any, are considered as list items for the purposes of

the ITEMERROR event. ITEMERROR affects how errors are

handled on both the table spaces and the indexes.

HALT

Specifies that the utility is to stop after the event.

SKIP

Ignores the event and skips the list item. Processing continues

with the next item in the list.

 SKIP applies only during the processing of a valid list. SKIP

does not apply if a utility detects that a list is not valid for the

utility that is invoked. In that case, the list is rejected with an

error message and the processing of the list is not initiated.

If any of the items in a list is skipped, the utility produces a

return code of 8, which terminates the job step. The following

code shows an OPTIONS statement with the SKIP option:

 OPTIONS EVENT (ITEMERROR, SKIP)

 COPY LISTA

 COPY LISTB

OPTIONS

Chapter 20. OPTIONS 315

##
#
#

#
#

If LISTA contains ten objects and one object produces a return

code 8 during the COPY, the other nine objects in the list are

copied successfully. The job step ends with a return code 8 and

COPY LISTB is not executed.

WARNING Specifies a response to the return code message event.

 Use WARNING to alter the return code for warning messages. You

can alter the return code from message DSNU010I with this option.

If you alter the message return code, message DSNU1024I is issued

to document the new return code.

Action choices are as follows:

RC0

Lowers the final return code of a single utility invocation that

ends in a return code 4 to a return code of 0. Use RC0 to force

a return code of 0 for warning messages.

 Use this option only when return code 4 is expected, is

acceptable, and other mechanisms are in place to validate the

results of a utility execution.

RC4

Specifies that return codes for warning messages are to remain

unchanged. Use RC4 to override a previous OPTIONS

WARNING specification in the same job step.

RC8

Raises the final return code of a single utility invocation that

ends in a return code 4 to a return code of 8. Use RC8 to force

a return code of 8 for warning messages. The return code of 8

causes the job step to terminate and subsequent utility control

statements are not executed.

OFF Specifies that all default options are to be restored. OPTIONS OFF

does not override the PREVIEW JCL parameter, which, if specified,

remains in effect for the entire job step. You cannot specify any

other OPTIONS keywords with OPTIONS OFF.

 OPTIONS OFF is equivalent to OPTIONS LISTDEFDD SYSLISTD

TEMPLATEDD SYSTEMPL EVENT (ITEMERROR, HALT,

WARNING, RC4).

KEY Specifies an option that you should use only when you are

instructed by IBM Software Support. OPTIONS KEY is followed by

a single operand that IBM Software Support provides when

needed.

Instructions for using OPTIONS

Executing statements in preview mode

To execute utility control statements in preview mode, use OPTIONS PREVIEW.

Control statements are previewed for use with LISTDEF lists and TEMPLATE

definitions but the specified options are not actually executed.

OPTIONS

316 Utility Guide and Reference

Specifying LISTDEF and TEMPLATE libraries

To use different LISTDEF and TEMPLATE libraries, specify OPTIONS LISTDEFDD

and OPTIONS TEMPLATEDD to override the names of the optional library data

sets.

Overriding standard utility processing behavior

To alter settings for warning return codes and error handling during list

processing, use OPTIONS EVENT to override the standard utility processing

behaviors.

Using Multiple OPTIONS control statements

You can repeat an OPTIONS control statement within the SYSIN DD statement. If

you repeat the control statement, it entirely replaces any prior OPTIONS control

statement.

Terminating or restarting OPTIONS

You can terminate an OPTIONS utility job by using the TERM UTILITY command

if you submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart an OPTIONS utility job, but it starts from the beginning again. If

you are restarting this utility as part of a larger job in which OPTIONS completed

successfully, but a later utility failed, do not change the OPTIONS utility control

statement, if possible. If you must change the OPTIONS utility control statement,

use caution; any changes can cause the restart processing to fail. For example, if

you specify a valid OPTIONS statement in the initial invocation, and then on

restart, specify OPTIONS PREVIEW, the job fails. For guidance in restarting online

utilities, see “Restarting an online utility” on page 41.

Concurrency and compatibility for OPTIONS

OPTIONS is a utility control statement that you can use to set up an environment

for another utility to follow. The OPTIONS statement is stored until a specific

utility references the statement. When referenced by another utility, the list is

expanded. At that time, the concurrency and compatibility restrictions of that

utility apply, with the additional restriction that the catalog tables that are

necessary to expand the list must be available for read-only access.

Sample OPTIONS control statements

Example 1: Checking control statement syntax and previewing lists and

TEMPLATE data set names. The following OPTIONS utility control statement

specifies that the subsequent utility control statements are to run in PREVIEW

mode. In PREVIEW mode, DB2 checks for syntax errors in all utility control

statements, but normal utility execution does not take place. If the syntax is valid,

DB2 expands the CPYLIST list and the data set names in the COPYLOC and

COPYREM TEMPLATE utility control statements and prints these results to the

SYSPRINT data set.

OPTIONS

Chapter 20. OPTIONS 317

Example 2: Specifying LISTDEF and TEMPLATE definition libraries. In the

following example, the OPTIONS control statements specify the DD names of the

LISTDEF definition libraries and the TEMPLATE definition libraries.

The first OPTIONS statement specifies that the LISTDEF definition library is

identified by the V1LIST DD statement and the TEMPLATE definition library is

identified by the V1TEMPL DD statement. These definition libraries apply to the

subsequent COPY utility control statement. Therefore, if DB2 does not find the

PAYTBSP list in SYSIN, it searches the V1LIST library, and if DB2 does not find the

PAYTEMP1 template in SYSIN, it searches the V1TEMP library.

The second OPTIONS statement is similar to the first, but it identifies different

libraries and applies to the second COPY control statement. This second COPY

control statement looks similar to the first COPY job. However, this statement

processes a different list and uses a different template. Whereas the first COPY job

uses the PAYTBSP list from the V1LIST library, the second COPY job uses the

PAYTBSP list from the V2LIST library. Also, the first COPY job uses the PAYTEMP1

template from the V1TEMPL library, the second COPY job uses the PAYTEMP1

template from the V2TEMPL library.

OPTIONS LISTDEFDD V1LIST TEMPLATEDD V1TEMPL

COPY LIST PAYTBSP COPYDDN(PAYTEMP1,PAYTEMP1)

OPTIONS LISTDEFDD V2LIST TEMPLATEDD V2TEMPL

COPY LIST PAYTBSP COPYDDN(PAYTEMP1,PAYTEMP1)

Example 3: Forcing a return code 0. In the following example, the first OPTIONS

control statement forces a return code of 0 for the subsequent MODIFY

RECOVERY utility control statement. Ordinarily, this statement ends with a return

code of 4 because it specifies that DB2 is to delete all SYSCOPY records for table

space A.B. The second OPTIONS control statement restores the default options, so

that no return codes will be overridden for the second MODIFY RECOVERY

control statement.

OPTIONS EVENT(WARNING,RC0)

MODIFY RECOVERY TABLESPACE A.B DELETE AGE(*)

OPTIONS OFF

MODIFY RECOVERY TABLESPACE C.D DELETE AGE(30)

Example 4: Checking syntax and skipping errors while processing list objects. In

Figure 63 on page 319, the first OPTIONS utility control statement specifies that the

subsequent utility control statements are to run in PREVIEW mode. In PREVIEW

mode, DB2 checks for syntax errors in all utility control statements, but normal

OPTIONS PREVIEW

TEMPLATE COPYLOC UNIT(SYSDA)

 DSN(&DB..&TS..D&JDATE..&STEPNAME..COPY&IC.&LOCREM.&PB.)

 DISP(NEW,CATLG,CATLG) SPACE(200,20) TRK

 VOLUMES(SCR03)

TEMPLATE COPYREM UNIT(SYSDA)

 DSN(&DB..&TS..&UT..T&TIME..COPY&IC.&LOCREM.&PB.)

 DISP(NEW,CATLG,CATLG) SPACE(100,10) TRK

LISTDEF CPYLIST INCLUDE TABLESPACES DATABASE DBLT0701

COPY LIST CPYLIST FULL YES

 COPYDDN(COPYLOC,COPYLOC)

 RECOVERYDDN(COPYREM,COPYREM)

 SHRLEVEL REFERENCE

Figure 62. Example OPTIONS statement for checking syntax and previewing lists and

templates.

OPTIONS

318 Utility Guide and Reference

utility execution does not take place. If the syntax is valid, DB2 expands the three

lists (LIST1_LISTDEF, LIST2_LISTDEF, and LIST3_LISTDEF) and prints these

results to the SYSPRINT data set.

The second OPTIONS control statement specifies how DB2 is to handle return

codes of 8 in any subsequent utility statements that process a valid list. If

processing of a list item produces return code 8, DB2 skips that item, and

continues to process the rest of the items in the list, but DB2 does not process the

next utility control statement. Instead, the job ends with return code 8.

 OPTIONS PREVIEW

 LISTDEF COPY1_LISTDEF

 INCLUDE TABLESPACES TABLESPACE DSNDB01.SPT01

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSDBASE

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSDBAUT

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSGPAUT

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSGROUP

 INCLUDE TABLESPACES TABLESPACE DBA91302.T?A9132*

 LISTDEF COPY2_LISTDEF

 INCLUDE TABLESPACES TABLESPACE DBA91303.TLA9133A

 INCLUDE TABLESPACES TABLESPACE DBA91303.TSA9133B

 INCLUDE TABLESPACES TABLESPACE DBA91303.TPA9133C

 INCLUDE TABLESPACES TABLESPACE DBA91304.TLA9134A

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSUSER

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSVIEWS

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSSTATS

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSDDF

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSOBJ

 LISTDEF COPY3_LISTDEF

 INCLUDE TABLESPACES TABLESPACE DBA91304.TSA9134B

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSHIST

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSGRTNS

 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSJAVA

 INCLUDE TABLESPACES TABLESPACE DBA91304.TPA9134C

 OPTIONS EVENT(ITEMERROR,SKIP)

 TEMPLATE TMP1 UNIT(SYSDA) DISP(MOD,CATLG,CATLG)

 VOLUMES(SCR03)

 DSN(DH109013.&TS..COPY&ICTYPE.&LOCREM.&PRIBAC.)

 COPY LIST COPY1_LISTDEF SHRLEVEL REFERENCE

 COPYDDN (TMP1)

 RECOVERYDDN (TMP1)

 FULL YES

 COPY LIST COPY2_LISTDEF SHRLEVEL REFERENCE

 COPYDDN (TMP1,TMP1)

 FULL YES

 COPY LIST COPY3_LISTDEF SHRLEVEL REFERENCE

 COPYDDN (TMP1,TMP1)

 RECOVERYDDN (TMP1,TMP1)

 FULL YES

Figure 63. Example OPTIONS statements for checking syntax and skipping errors

OPTIONS

Chapter 20. OPTIONS 319

320 Utility Guide and Reference

Chapter 21. QUIESCE

The online QUIESCE utility establishes a quiesce point for a table space, partition,

table space set, or list of table spaces and table space sets. A quiesce point is the

current log RBA or log record sequence number (LRSN). QUIESCE then records

the quiesce point in the SYSIBM.SYSCOPY catalog table. A successful QUIESCE

improves the probability of a successful RECOVER or COPY. You should run

QUIESCE frequently between regular executions of COPY to establish regular

recovery points for future point-in-time recovery.

For a diagram of QUIESCE syntax and a description of available options, see

“Syntax and options of the QUIESCE control statement” on page 322. For detailed

guidance on running this utility, see “Instructions for running QUIESCE” on page

323.

Output: With the WRITE(YES) option, QUIESCE writes changed pages for the table

spaces and their indexes from the DB2 buffer pool to disk. The catalog table

SYSCOPY records the current RBA and the timestamp of the quiesce point. A row

with ICTYPE=’Q’ is inserted into SYSIBM.SYSCOPY for each table space that is

quiesced. DB2 also inserts a SYSCOPY row with ICTYPE=’Q’ for any indexes

(defined with the COPY YES attribute) over a table space that is being quiesced.

(Table spaces DSNDB06.SYSCOPY, DSNDB01.DBD01, and DSNDB01.SYSUTILX are

an exception; their information is written to the log.)

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v IMAGCOPY privilege for the database

v DBADM, DBCTRL, or DBMAINT authority for the database

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute QUIESCE, but only on

a table space in the DSNDB01 or DSNDB06 database.

You can specify DSNDB01.SYSUTILX, but you cannot include it in a list with other

table spaces to be quiesced. Recover to current of the catalog/directory table spaces

is preferred and recommended. However, if a point-in-time recovery of the

catalog/directory table spaces is desired, a separate quiesce of DSNDB06.SYSCOPY

is required after a quiesce of the other catalog/directory table spaces.

Execution phases of QUIESCE: The QUIESCE utility operates in these phases:

Phase Description

UTILINIT Initialization and setup

QUIESCE Determining the quiesce point and updating the catalog

UTILTERM Cleanup

The following topics provide additional information:

v “Syntax and options of the QUIESCE control statement” on page 322

v “Instructions for running QUIESCE” on page 323

v “Concurrency and compatibility for QUIESCE” on page 326

v “Sample QUIESCE control statements” on page 327

© Copyright IBM Corp. 1983, 2008 321

Syntax and options of the QUIESCE control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

Syntax diagram

�� QUIESCE

�

 LIST listdef-name

TABLESPACE

table-space-name

database-name.

PART

integer

TABLESPACESET

table-space-name

TABLESPACE

database-name.

 �

�
 WRITE YES

WRITE

NO

��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name that contains

only table spaces. The utility allows one LIST keyword for each QUIESCE

control statement. Do not specify LIST with the TABLESPACE or

TABLESPACESET keyword. QUIESCE is invoked once for the entire list.

For the QUIESCE utility, the related index spaces are considered to be list

items for the purposes of OPTIONS ITEMERROR processing. You can alter

the utility behavior during processing of related indexes with the

OPTIONS ITEMERROR statement. For more information about LISTDEF

specifications, see Chapter 15, “LISTDEF,” on page 171.

TABLESPACE database-name.table-space-name

For QUIESCE TABLESPACE, specifies the table space that is to be

quiesced.

 For QUIESCE TABLESPACESET, specifies a table space in the table space

set that is to be quiesced. For QUIESCE TABLESPACESET, the

TABLESPACE keyword is optional.

database-name

Optionally specifies the name of the database to which the table space

belongs. The default is DSNDB04.

table-space-name

Specifies the name of the table space that is to be quiesced. You can

specify DSNDB01.SYSUTILX, but do not include that name in a list

with other table spaces that are to be quiesced. If a point-in-time

QUIESCE

322 Utility Guide and Reference

recovery is planned for the catalog and directory, DSNDB06.SYSCOPY

must be quiesced separately after all other catalog and directory table

spaces.

PART integer

Identifies a partition that is to be quiesced.

 integer is the number of the partition and must be in the range from 1 to

the number of partitions that are defined for the table space. The

maximum is 4096.

TABLESPACESET

Indicates that all of the referentially related table spaces in the table space

set are to be quiesced. For the purposes of the QUIESCE utility, a table

space set is one of these:

v A group of table spaces that have a referential relationship

v A base table space with all of its LOB table spaces

WRITE

Specifies whether the changed pages from the table spaces and index

spaces are to be written to disk.

YES

Establishes a quiesce point and writes the changed pages from the

table spaces and index spaces to disk. The default is YES.

NO

Establishes a quiesce point but does not write the changed pages from

the table spaces and index spaces to disk.

Instructions for running QUIESCE

To run QUIESCE, you must:

1. Read “Before running QUIESCE” in this section.

2. Prepare the necessary data sets, as described in “Data sets that QUIESCE uses”

on page 324.

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

QUIESCE, see “Sample QUIESCE control statements” on page 327.)

4. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

324.

5. Check the compatibility table in “Concurrency and compatibility for QUIESCE”

on page 326 if you want to run other jobs concurrently on the same target

objects.

6. Plan for restart if the QUIESCE job doesn’t complete, as described in

“Terminating or restarting QUIESCE” on page 326.

7. Run QUIESCE by using one of the methods that are described in Chapter 3,

“Invoking DB2 online utilities,” on page 15.

Before running QUIESCE

You cannot run QUIESCE on a table space that is in COPY-pending,

CHECK-pending, RECOVER-pending, or auxiliary CHECK-pending status. See

“Resetting COPY-pending status” on page 266, “Resetting CHECK-pending status”

on page 70, “Resetting REBUILD-pending status” on page 267, and Appendix C,

“Advisory or restrictive states,” on page 849 for information about resetting these

statuses.

QUIESCE

Chapter 21. QUIESCE 323

|
|
|

Data sets that QUIESCE uses

Table 52 lists the data sets that QUIESCE uses. The table lists the DD name that is

used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 52. Data sets that QUIESCE uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

The following object is named in the utility control statement and does not require

a DD statement in the JCL:

Table space

Object that is to be quiesced. (If you want to quiesce only one partition of

a table space, you must use the PART option in the control statement.)

Creating the control statement

Create the utility control statement for the QUIESCE job. See “Syntax and options

of the QUIESCE control statement” on page 322 for QUIESCE syntax and option

descriptions. See “Sample QUIESCE control statements” on page 327 for examples

of QUIESCE usage.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Using QUIESCE for recovery”

 “Using QUIESCE on catalog and directory objects”

 “Obtaining a common quiesce point” on page 325

 “Specifying a list of table spaces and table space sets” on page 325

 “Running QUIESCE on a table space in pending status” on page 325

 “Determining why the write to disk fails” on page 326

Using QUIESCE for recovery

You can recover a table space to its quiesce point by using the RECOVER

TABLESPACE utility. See Chapter 23, “RECOVER,” on page 351 for information

about the RECOVER TABLESPACE utility.

Using QUIESCE on catalog and directory objects

You can quiesce DSNDB01.SYSUTILX, but DSNDB01.SYSUTILX must be the only

table space in the QUIESCE control statement.

If a point-in-time recovery is planned for the catalog and directory, a separate

QUIESCE control statement for DSNDB06.SYSCOPY is required after you quiesce

the other catalog and directory table spaces. A separate QUIESCE of

DSNDB06.SYSCOPY is needed after the QUIESCE of other objects to ensure that a

subsequent point-in-time recovery of DSNDB06.SYSCOPY recovers all of the

QUIESCE SYSCOPY records for the other catalog and directory objects.

QUIESCE

324 Utility Guide and Reference

Obtaining a common quiesce point

Use the QUIESCE utility with the TABLESPACESET option to obtain a common

quiesce point for related table spaces. For the purposes of the QUIESCE utility, a

table space set is:

v A group of table spaces that have a referential relationship

v A base table space with all of its LOB table spaces

If you use QUIESCE TABLESPACE instead and do not include every member, you

might encounter problems when you run RECOVER on the table spaces in the

structure. RECOVER checks if a complete table space set is recovered to a single

point in time. If the complete table space set is not recovered to a single point in

time, RECOVER places all dependent table spaces into CHECK-pending status.

You should QUIESCE and RECOVER the LOB table spaces to the same point in

time as the associated base table space. A group of table spaces that have a

referential relationship should all be quiesced to the same point in time.

When you use QUIESCE WRITE YES on a table space, the utility inserts a

SYSCOPY row that specifies ICTYPE=’Q’ for each related index that is defined

with COPY=YES in order to record the quiesce point.

Specifying a list of table spaces and table space sets

You can specify as many objects in your QUIESCE job as can be allowed by

available memory in the batch address space and in the DB2 DBM1 address space.

Be aware of the following considerations when you specify a list of objects to

quiesce:

v Each table space set is expanded into a list of table spaces that have a referential

relationship, or into a list that contains a base table space with all of its LOB

table spaces.

v If you specify a list of table spaces or table space sets to quiesce and duplicate a

table space, utility processing continues, and the table space is quiesced only

once. QUIESCE issues return code 4 and warning message DSNU533I to alert

you of the duplication.

v If you specify the same table space twice in a list, using PART n in one

specification, and PART m for the other specification, each partition is quiesced

once.

Running QUIESCE on a table space in pending status

If you run QUIESCE on a table space in COPY-pending, CHECK-pending, or

RECOVER-pending status, it terminates with messages that are similar to those

messages shown in Figure 64.

 When you run QUIESCE on a table space or index space that is in COPY-pending,

CHECK-pending, or RECOVER-pending status, you might also receive one or

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = R92341Q

DSNU050I DSNUGUTC - QUIESCE TABLESPACE UTQPD22A.UTQPS22D

 TABLESPACE UTQPD22A.UTQPS22E

 TABLESPACE UTQPD22A.EMPPROJA

DSNU471I % DSNUQUIA COPY PENDING ON TABLESPACE UTQPD22A.EMPPROJA PROHIBITS

 PROCESSING

DSNU012I DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

Figure 64. Termination messages when you run QUIESCE on a table space with pending

restrictions

QUIESCE

Chapter 21. QUIESCE 325

|
|

more of the messages that are shown in Figure 65.

Determining why the write to disk fails

QUIESCE attempts to write pages of each table space to disk. If any of the

following conditions is encountered, the write to disk fails:

v The table space has a write error range.

v The table space has deferred restart pending.

v An I/O error occurs.

If any of the preceding conditions is true, QUIESCE terminates with a return code

of 4 and issues a DSNU473I warning message.

Terminating or restarting QUIESCE

If you use TERM UTILITY to terminate QUIESCE when it is active, QUIESCE

releases the drain locks on table spaces. If QUIESCE is stopped, the drain locks

have already been released.

You can restart a QUIESCE utility job, but it starts from the beginning again. For

guidance in restarting online utilities, see “Restarting an online utility” on page 41.

Concurrency and compatibility for QUIESCE

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

Table 53 shows which claim classes QUIESCE drains and any restrictive state that

the utility sets on the target object.

 Table 53. Claim classes of QUIESCE operations.

Target WRITE YES WRITE NO

Table space or partition DW/UTRO DW/UTRO

Partitioning index, data-partitioned

secondary index, or partition

DW/UTRO

Nonpartitioned secondary index DW/UTRO

Legend:

v DW - Drain the write claim class - concurrent access for SQL readers

v UTRO - Utility restrictive state - read-only access allowed

Table 54 on page 327 shows which utilities can run concurrently with QUIESCE on

the same target object. The target object can be a table space, an index space, or a

partition of a table space or index space. If compatibility depends on particular

DSNU202I csect RECOVER PENDING ON TABLESPACE... PROHIBITS PROCESSING

DSNU203I csect RECOVER PENDING ON INDEX ... PROHIBITS PROCESSING

DSNU204I csect PAGESET REBUILD PENDING ON INDEX ... PROHIBITS PROCESSING

DSNU208I csect GROUP BUFFER POOL RECOVER PENDING ON INDEX ... PROHIBITS PROCESSING

DSNU209I csect RESTART PENDING ON ... PROHIBITS PROCESSING

DSNU210I csect INFORMATIONAL COPY PENDING ON INDEX ... PROHIBITS PROCESSING

DSNU211I csect CHECK PENDING ON ... PROHIBITS PROCESSING

DSNU214I csect REBUILD PENDING ON INDEX ... PROHIBITS PROCESSING

DSNU215I csect REFRESH PENDING ON ... PROHIBITS PROCESSING

DSNU471I csect COPY PENDING ON TABLESPACE ... PROHIBITS PROCESSING

DSNU568I csect INDEX ... IS IN INFORMATIONAL COPY PENDING

Figure 65. Messages for pending restrictions on QUIESCE

QUIESCE

326 Utility Guide and Reference

|
|

|

options of a utility, that information is also documented in the table. QUIESCE

does not set a utility restrictive state if the target object is DSNDB01.SYSUTILX.

 Table 54. Compatibility of QUIESCE with other utilities

Action

Compatible with

QUIESCE?

CHECK DATA DELETE NO Yes

CHECK DATA DELETE YES No

CHECK INDEX Yes

CHECK LOB Yes

COPY INDEXSPACE SHRLEVEL CHANGE No

COPY INDEXSPACE SHRLEVEL REFERENCE Yes

COPY TABLESPACE SHRLEVEL CHANGE No

COPY TABLESPACE SHRLEVEL REFERENCE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE Yes

REBUILD INDEX No

RECOVER INDEX No

RECOVER TABLESPACE No

REORG INDEX No

REORG TABLESPACE UNLOAD CONTINUE or PAUSE No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL Yes

REPAIR DELETE or REPLACE No

REPAIR DUMP or VERIFY Yes

REPORT Yes

RUNSTATS Yes

STOSPACE Yes

UNLOAD Yes

To run the QUIESCE utility on DSNDB01.SYSUTILX, ensure that QUIESCE is the

only utility in the job step.

QUIESCE on SYSUTILX is an exclusive job; such a job can interrupt another job

between job steps, possibly causing the interrupted job to time out.

Sample QUIESCE control statements

Example 1: Establishing a quiesce point for three table spaces. The following

control statement specifies that the QUIESCE utility is to establish a quiesce point

for table spaces DSN8D81A.DSN8S81D, DSN8D81A.DSN8S81E, and

DSN8D81A.DSN8S81P.

//STEP1 EXEC DSNUPROC,UID=’IUIQU2UD.QUIESC2’,

// UTPROC=’’,SYSTEM=’DSN’

//SYSIN DD *

QUIESCE

Chapter 21. QUIESCE 327

||

|

QUIESCE TABLESPACE DSN8D81A.DSN8S81D

 TABLESPACE DSN8D81A.DSN8S81E

 TABLESPACE DSN8D81A.DSN8S81P

//*

Figure 66. shows the output that the preceding command produces.

Example 2: Establishing a quiesce point for a list of objects. In the following

example, the QUIESCE control statement uses a list to specify that the QUIESCE

utility is to establish a quiesce point for the same table spaces as in example 1. The

list is defined in the LISTDEF utility control statement.

//STEP1 EXEC DSNUPROC,UID=’IUIQU2UD.QUIESC2’,

// UTPROC=’’,SYSTEM=’DSN’

//SYSIN DD *

//DSNUPROC.SYSIN DD *

LISTDEF QUIESCELIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D

 INCLUDE TABLESPACE DSN8D81A.DSN8S81E

 INCLUDE TABLESPACE DSN8D81A.DSN8S81P

QUIESCE LIST QUIESCELIST

//*

Figure 67. shows the output that the preceding command produces.

Example 3: Establishing a quiesce point for a table space set. The following control

statement specifies that QUIESCE is to establish a quiesce point for the indicated

table space set. In this example, the table space set includes table space

DSN8D81A.DSN8S81D and all table spaces that are referentially related to it. Run

REPORT TABLESPACESET to obtain a list of table spaces that are referentially

related. For more information about this option, see Chapter 27, “REPORT,” on

page 519.

QUIESCE TABLESPACESET TABLESPACE DSN8D81A.DSN8S81D

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - QUIESCE TABLESPACE DSN8D81A.DSN8S81D

 TABLESPACE DSN8D81A.DSN8S81E

 TABLESPACE DSN8D81A.DSN8S81P

DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81D

DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81E

DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81P

DSNU474I = DSNUQUIA - QUIESCE AT RBA 000004E43B78 AND AT LRSN 000004E43B78

DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:02

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 66. Example output from a QUIESCE job that establishes a quiesce point for three

table spaces

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - LISTDEF QUIESCELIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D

INCLUDE TABLESPACE DSN8D81A.DSN8S81E

INCLUDE TABLESPACE DSN8D81A.DSN8S81P

DSNU1035I DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY

0DSNU050I DSNUGUTC - QUIESCE LIST QUIESCELIST

DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81D

DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81E

DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81P

DSNU474I = DSNUQUIA - QUIESCE AT RBA 000004E56419 AND AT LRSN 000004E56419

DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 67. Example output from a QUIESCE job that establishes a quiesce point for a list of

objects

QUIESCE

328 Utility Guide and Reference

Figure 68. shows the output that the preceding command produces.

 Example 4: Establishing a quiesce point without writing the changed pages to

disk. In the following example, the control statement specifies that the QUIESCE

utility is to establish a quiesce point for table space DSN8D81A.DSN8S81D,

without writing the changed pages to disk. (The default is to write the changed

pages to disk.) In this example, a quiesce point is established for COPY YES

indexes, but not for COPY NO indexes. Note that QUIESCE jobs with the WRITE

YES option, which is the default, process both COPY YES indexes and COPY NO

indexes. For both QUIESCE WRITE YES jobs and QUIESCE WRITE NO jobs, the

utility inserts a row in SYSIBM.SYSCOPY for each COPY YES index.

//STEP1 EXEC DSNUPROC,UID=’IUIQU2UD.QUIESC2’,

// UTPROC=’’,SYSTEM=’DSN’

//SYSIN DD *

//DSNUPROC.SYSIN DD *

QUIESCE TABLESPACE DSN8D81A.DSN8S81D WRITE NO

//*

The preceding command produces the output that is shown in Figure 69. Notice

that the COPY YES index EMPNOI is placed in informational COPY-pending

(ICOPY) status:

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TSLQ.STEP1

DSNU050I DSNUGUTC - QUIESCE TABLESPACESET TABLESPACE DSN8D81A.DSN8S81D

DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACESET DSN8D81A.DSN8S81D

DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81D

DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81E

DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.PROJ

DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.ACT

DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.PROJACT

DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.EMPPROJA

DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S1D

DSNU474I - DSNUQUIA - QUIESCE AT RBA 000000052708 AND AT LRSN 000000052708

DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:25

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 68. Example output from a QUIESCE job that establishes a quiesce point for a table

space set

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - QUIESCE TABLESPACE DSN8D81A.DSN8S81D WRITE NO

DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81D

DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR INDEXSPACE DSN8D81A.EMPNOI

DSNU474I = DSNUQUIA - QUIESCE AT RBA 000004E892A3 AND AT LRSN 000004E892A3

DSNU568I = DSNUGSRX - INDEX ADMF001.EMPNOI IS IN INFORMATIONAL COPY PENDING

DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 69. Example output from a QUIESCE job that establishes a quiesce point, without

writing the changed pages to disk.

QUIESCE

Chapter 21. QUIESCE 329

330 Utility Guide and Reference

Chapter 22. REBUILD INDEX

The REBUILD INDEX utility reconstructs indexes or index partitions from the table

that they reference.

For a diagram of REBUILD INDEX syntax and a description of available options,

see “Syntax and options of the REBUILD INDEX control statement.” For detailed

guidance on running this utility, see “Instructions for running REBUILD INDEX”

on page 337.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v RECOVERDB privilege for the database

v STATS privilege for the database is required if the STATISTICS keyword is

specified.

v DBADM or DBCTRL authority for the database

v SYSCTRL or SYSADM authority

To run REBUILD INDEX STATISTICS REPORT YES, you must use a privilege set

that includes STATS privilege for the database and the SELECT privilege on the

catalog tables and tables for which statistics are to be gathered. REBUILD INDEX

STATISTICS REPORT ALL does not report values from tables that the user is not

authorized to see.

Execution phases of REBUILD INDEX: The REBUILD INDEX utility operates in

the following phases:

Phase Description

UTILINIT Performs initialization and setup.

UNLOAD Unloads index entries.

SORT Sorts unloaded index entries.

BUILD Builds indexes.

SORTBLD Sorts and builds a table space for parallel index build processing.

UTILTERM Performs cleanup.

The following topics provide additional information:

v “Syntax and options of the REBUILD INDEX control statement”

v “Instructions for running REBUILD INDEX” on page 337

v “Concurrency and compatibility for REBUILD INDEX” on page 345

v “The effect of REBUILD INDEX on index version numbers” on page 346

v “Sample REBUILD INDEX control statements” on page 347

Syntax and options of the REBUILD INDEX control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

© Copyright IBM Corp. 1983, 2008 331

|

|

Syntax diagram

�� REBUILD �

�

�

�

 ,

(1)

INDEX

(

creatorid.index-name

)

PART

integer

(ALL)

table-space-spec

LIST

listdef-name

,

INDEXSPACE

(

index-space-name

)

database-name.

PART

integer

(ALL)

table-space-spec

�

�
 SCOPE ALL

SCOPE

PENDING

REUSE

SORTDEVT

device-type

SORTNUM

integer

stats-spec

��

Notes:

1 All listed indexes must reside in the same table space.

table-space-spec:

�� TABLESPACE

database-name.
 table-space-name

PART

integer
 ��

stats-spec:

��

STATISTICS
 REPORT NO

REPORT

YES

correlation-stats-spec
 UPDATE ALL

UPDATE

ACCESSPATH

SPACE

NONE

�

�
HISTORY

ALL

ACCESSPATH

SPACE

NONE

FORCEROLLUP

YES

NO

 ��

REBUILD INDEX

332 Utility Guide and Reference

|||||||||

||||

#

correlation-stats-spec:

��

KEYCARD

�

 FREQVAL NUMCOLS 1 COUNT 10

FREQVAL

NUMCOLS

integer

COUNT

integer

��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

INDEX creator-id.index-name

Indicates the qualified name of the index to be rebuilt. Use the form

creator-id.index-name to specify the name.

creator-id

Specifies the creator of the index. This qualifier is optional. If you omit the

qualifier creator-id, DB2 uses the user identifier for the utility job.

index-name

Specifies the qualified name of the index that is to be rebuilt. For an index,

you can specify either an index name or an index space name. Enclose the

index name in quotation marks if the name contains a blank.

 To rebuild multiple indexes, separate each index name with a comma. All

listed indexes must reside in the same table space. If more than one index is

listed and the TABLESPACE keyword is not specified, DB2 locates the first

valid index name that is cited and determines the table space in which that

index resides. That table space is used as the target table space for all other

valid index names that are listed.

INDEXSPACE database-name.index-space-name

Specifies the qualified name of the index space that is obtained from the

SYSIBM.SYSINDEXES table.

database-name

Specifies the name of the database that is associated with the index. This

qualifier is optional.

index-space-name

Specifies the qualified name of the index space to copy. For an index, you

can specify either an index name or an index space name.

If you specify more than one index space, they must all be defined on the

same table space.

 For an index, you can specify either an index name or an index space name.

(ALL)

Specifies that all indexes in the table space that is referred to by the

TABLESPACE keyword are to be rebuilt.

TABLESPACE database-name.table-space-name

Specifies the table space from which all indexes are to be rebuilt.

REBUILD INDEX

Chapter 22. REBUILD INDEX 333

|
|
|

|
|
|

|
|
|

|
|

|

database-name

Identifies the database to which the table space belongs. The default is

DSNDB04.

table-space-name

Identifies the table space from which all indexes are to be rebuilt.

PART integer

Specifies the physical partition of a partitioning index or a data-partitioned

secondary index in a partitioned table that is to be rebuilt. When the target of

the REBUILD operation is a nonpartitioned secondary index, the utility

reconstructs logical partitions. If any of the following situations are true for a

nonpartitioned index, you cannot rebuild individual logical partitions:

v the index was created with DEFER YES

v the index must be completely rebuilt (This situation is likely in a disaster

recovery scenario)

v the index is in page set REBUILD-pending (PSRBD) status

For these cases, you must rebuild the entire index.

 integer is the number of the partition and must be in the range from 1 to the

number of partitions that are defined for the table space. The maximum is

4096.

You cannot specify PART with the LIST keyword. Use LISTDEF PARTLEVEL

instead.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. The utility

allows one LIST keyword for each REBUILD INDEX control statement. The list

must contain either all index spaces or all table spaces. For a table space list,

REBUILD is invoked once per table space. For an index space list, DB2 groups

indexes by their related table space and executes the rebuild once per table

space. For more information about LISTDEF specifications, see Chapter 15,

“LISTDEF,” on page 171.

SCOPE

Indicates the scope of the rebuild organization of the specified index or

indexes.

ALL

Indicates that you want the specified index or indexes to be rebuilt. The

default is ALL.

PENDING

Indicates that you want the specified index or indexes with one or more

partitions in REBUILD-pending (RBDP), REBUILD-pending star (RBDP*),

page set REBUILD-pending (PSRBD), RECOVER-pending (RECP), or

advisory REORG-pending (AREO*) state to be rebuilt.

REUSE

Specifies that REBUILD should logically reset and reuse DB2-managed data

sets without deleting and redefining them. If you do not specify REUSE, DB2

deletes and redefines DB2-managed data sets to reset them.

 If you are rebuilding the index because of a media failure, do not specify

REUSE.

If a data set has multiple extents, the extents are not released if you use the

REUSE parameter.

REBUILD INDEX

334 Utility Guide and Reference

|
|
|
|
#

#

#
#

#

#

|
|

|
|
|

|
|
|

|
|
|
|
|

SORTDEVT device-type

Specifies the device type for temporary data sets that are to be dynamically

allocated by DFSORT. For device-type, you can specify any device that is valid

on the DYNALLOC parameter of the SORT or OPTION options for DFSORT.

For more information about these options, see DFSORT Application

Programming: Guide.

 device-type is the device type.

A TEMPLATE specification does not dynamically allocate sort work data sets.

The SORTDEVT keyword controls dynamic allocation of these data sets.

SORTNUM integer

Specifies the number of temporary data sets that are to be dynamically

allocated by the sort program. If you omit SORTDEVT, SORTNUM is ignored.

If you use SORTDEVT and omit SORTNUM, no value is passed to DFSORT;

DFSORT uses its own default.

 integer is the number of temporary data sets that can range from 2 to 255.

You need at least two sort work data sets for each sort. The SORTNUM value

applies to each sort invocation in the utility. For example, if there are three

indexes, SORTKEYS is specified, there are no constraints limiting parallelism,

and SORTNUM is specified as 8, then a total of 24 sort work data sets will be

allocated for a job.

Each sort work data set consumes both above the line and below the link

virtual storage, so if you specify too high a value for SORTNUM, the utility

may decrease the degree of parallelism due to virtual storage constraints, and

possibly decreasing the degree down to one, meaning no parallelism.

Important: The SORTNUM keyword will not be considered if ZPARM

UTSORTAL is set to YES and IGNSORTN is set to YES.

STATISTICS

Specifies that index statistics are to be collected.

 If you specify the STATISTICS and UPDATE options, statistics are stored in the

DB2 catalog. You cannot collect inline statistics for indexes on the catalog and

directory tables.

Restriction: If you specify STATISTICS for encrypted data, DB2 might not

provide useful statistics on this data. If the utility is terminated with the

-TERM UTIL command after the STATISTICS have been updated in the

catalog, the statistics are not rolled back. A subsequent RUNSTATS utility may

be needed.

REPORT

Indicates whether a set of messages to report the collected statistics is to be

generated.

NO

Indicates that the set of messages is not to be sent as output to SYSPRINT.

The default is NO.

YES

Indicates that the set of messages is to be sent as output to SYSPRINT. The

generated messages are dependent on the combination of keywords (such

as TABLESPACE, INDEX, TABLE, and COLUMN) that you specify with

the RUNSTATS utility. However, these messages are not dependent on the

specification of the UPDATE option. REPORT YES always generates a

report of SPACE and ACCESSPATH statistics.

REBUILD INDEX

Chapter 22. REBUILD INDEX 335

#
#
#
#
#

#
#
#
#

#
#

#
#
#
#
#

KEYCARD

Specifies that all of the distinct values in all of the 1 to n key column

combinations for the specified indexes are to be collected. n is the number of

columns in the index.

FREQVAL

Controls the collection of frequent-value statistics. If you specify FREQVAL, it

must be followed by two additional keywords:

NUMCOLS

Indicates the number of key columns that are to be concatenated when

collecting frequent values from the specified index. If you specify 3, the

utility collects frequent values on the concatenation of the first three key

columns. The default is 1, which means that DB2 is to collect frequent

values only on the first key column of the index.

COUNT

Indicates the number of frequent values that are to be collected. If you

specify 15, the utility collects 15 frequent values from the specified key

columns. The default is 10.

UPDATE

Indicates whether the collected statistics are to be inserted into the catalog

tables. UPDATE also allows you to select statistics that are used for access path

selection or statistics that are used by database administrators.

ALL Indicates that all collected statistics are to be updated in the catalog.

The default is ALL.

ACCESSPATH

Indicates that the only catalog table columns that are to be updated are

those that provide statistics that are used for access path selection.

SPACE

Indicates that the only catalog table columns that are to be updated are

those that provide statistics to help the database administrator assess

the status of a particular table space or index.

NONE

Indicates that catalog tables are not to be updated with the collected

statistics. This option is valid only when REPORT YES is specified.

HISTORY

Records all catalog table inserts or updates to the catalog history tables.

 The default is supplied by the value that is specified in STATISTICS HISTORY

on panel DSNTIPO.

ALL Indicates that all collected statistics are to be updated in the catalog

history tables.

ACCESSPATH

Indicates that the only catalog history table columns that are to be

updated are those that provide statistics that are used for access path

selection.

SPACE

Indicates that only space-related catalog statistics are to be updated in

catalog history tables.

NONE

Indicates that catalog history tables are not to be updated with the

collected statistics.

REBUILD INDEX

336 Utility Guide and Reference

|
|
|
|

||
|

|
|
|

|
|
|
|

|
|
|

|

|

FORCEROLLUP

Specifies whether aggregation or rollup of statistics is to take place when you

execute RUNSTATS even if some indexes or index partitions are empty. This

keyword enables the optimizer to select the best access path.

 The following options are available for the FORCEROLLUP keyword:

YES Indicates that forced aggregation or rollup processing is to be done,

even though some indexes or index partitions might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is

available for all indexes or index partitions.

If data is not available, the utility issues DSNU623I message if you have set the

installation value for STATISTICS ROLLUP on panel DSNTIPO to NO.

Instructions for running REBUILD INDEX

To run REBUILD INDEX, you must:

1. Read “Before running REBUILD INDEX” in this section.

2. Prepare the necessary data sets, as described in “Data sets that REBUILD

INDEX uses” on page 338.

3. Create JCL statements, by using one of the methods described in Chapter 3,

“Invoking DB2 online utilities,” on page 15. (For examples of JCL for REBUILD

INDEX, see “Sample REBUILD INDEX control statements” on page 347.)

4. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

339.

5. Check the compatibility table in “Concurrency and compatibility for REBUILD

INDEX” on page 345 if you want to run other jobs concurrently on the same

target objects.

6. Plan for restart if the REBUILD INDEX job doesn’t complete, as described in

“Terminating or restarting REBUILD INDEX” on page 345.

7. Run REBUILD INDEX by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15.

Before running REBUILD INDEX

Because the data that DB2 needs to build an index is in the table space on which

the index is based, you do not need image copies of indexes. To rebuild the index,

you do not need to recover the table space, unless it is also damaged. You do not

need to rebuild an index merely because you have recovered the table space on

which it is based.

If you recover a table space to a prior point in time and do not recover all the

indexes to the same point in time, you must rebuild all of the indexes.

Some logging might occur if both of the following conditions are true:

v The index is a nonpartitioning index.

v The index is being concurrently accessed either by SQL on a different partition

of the same table space or by a utility that is run on a different partition of the

same table space.

REBUILD INDEX

Chapter 22. REBUILD INDEX 337

Data sets that REBUILD INDEX uses

Table 55 lists the data sets that REBUILD INDEX uses. The table lists the DD name

that is used to identify the data set, a description of the data set, and an indication

of whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 55. Data sets that REBUILD INDEX uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

STPRIN01 A data set that contains messages from

DFSORT (usually, SYSOUT or DUMMY).

This data set is used when frequency

statistics are collected on DPSI’s or when

TABLESPACE TABLE COLGROUP

FREQVAL is specified

No

1

Work data sets Temporary data sets for sort input and

output when sorting keys If index build

parallelism is used, the DD names have the

form SWnnWKmm. If index build

parallelism is not used, the DD names have

the form SORTWKnn.

Yes

Sort work data sets Temporary data sets for sort input and

output when collecting inline statistics on at

least one data-partitioned secondary index.

The DD names have the form ST01WKnn.

No1, 2, 3

Notes:

1. Required when collecting inline statistics on at least one data-partitioned secondary

index.

2. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate the

data set. Otherwise, DFSORT dynamically allocates the temporary data set.

3. It is recommended that you use dynamic allocation by specifying SORTDEVT in the

utility statement because dynamic allocation reduces the maintenance required of the

utility job JCL.

The following object is named in the utility control statement and does not require

a DD statement in the JCL:

Table space

Object whose indexes are to be rebuilt.

Calculating the size of the work data sets: To calculate the approximate size (in

bytes) of the SORTWKnn data set, use the following formula:

2 × (longest index key + c) × (number of extracted keys)

longest key The length of the longest index key that is to be processed by the

subtask.

 If the index is of varying length, the longest key is the maximum

possible length of a key with all varying-length columns that are

padded to their maximum length, plus 2 bytes for each

varying-length column in the index. For example, if an index with

REBUILD INDEX

338 Utility Guide and Reference

#
#
#
#
#
#

|#
#
#
#

|
|
|
|
|
#
#
#

|
|

|

||
|

|
|
|
|

3 columns (A, B, and C) has length values of CHAR(8) for A,

VARCHAR(128) for B, and VARCHAR(50) for C, the longest key is

calculated as follows:

8 + 128 + 50 + 2 + 2 = 190

c A value as follows:

v 10 if the indexes that are being rebuilt are a mix of

data-partitioned secondary indexes and nonpartitioned indexes

v 8 if the indexes that are being rebuilt are partitioned, or if none

of them are data-partitioned secondary indexes.

number of keys The number of keys from all indexes that the subtask sorts and

processes.

Using two or three large SORTWKnn data sets are preferable to several small ones.

Calculating the size of the sort work data sets: To calculate the approximate size

(in bytes) of the ST01WKnn data set, use the following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length

Maximum record length of the SYSCOLDISTSTATS record that is processed

when collecting frequency statistics (You can obtain this value from the

RECLENGTH column in SYSTABLES.)

numcols

Number of key columns to concatenate when you collect frequent values

from the specified index.

count Number of frequent values that DB2 is to collect.

DB2 utilities uses DFSORT to perform sorts. Sort work data sets cannot span

volumes. Smaller volumes require more sort work data sets to sort the same

amount of data; therefore, large volume sizes can reduce the number of needed

sort work data sets. It is recommended that at least 1.2 times the amount of data to

be sorted be provided in sort work data sets on disk. For more information about

DFSORT, see DFSORT Application Programming Guide.

Creating the control statement

Create the utility control statement for the REBUILD INDEX job. See “Syntax and

options of the REBUILD INDEX control statement” on page 331 for syntax and

option descriptions. See “Sample REBUILD INDEX control statements” on page

347 for examples of usage.

Beginning in Version 8, the SORTKEYS option is the default. Therefore, the

REBUILD INDEX utility does not require the SYSUT1 data set. The WORKDDN

keyword, which provided the DD name of the SYSUT1 data set in earlier versions

of DB2, is not needed and is ignored. The SORTKEYS keyword is also ignored. You

do not need to modify existing control statements to remove the WORKDDN

keyword or the SORTKEYS keyword.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

REBUILD INDEX

Chapter 22. REBUILD INDEX 339

|
|
|

|

||

|
|

|
|

||
|

|
|

|

|

|
|
|
|

|
|
|

||

#
#
#
#
#
#

|
|
|
|
|
|

“Rebuilding index partitions”

 “Improving performance when rebuilding index partitions”

 “Building indexes in parallel”

 “Resetting the REBUILD-pending status” on page 344

 “Rebuilding critical catalog indexes” on page 344

 “Recoverability of a rebuilt index” on page 344

Rebuilding index partitions

REBUILD INDEX can rebuild one or more partitions of a partitioned index by

extracting the keys from the data rows of the table on which they are based. When

you specify the PART option, one or more partitions from a partitioning index or a

data-partitioned secondary index can be rebuilt. However, for nonpartitioned

indexes, you cannot rebuild individual logical partitions in certain situations. See

the description of the PART option (334) for more information about these

situations.

Improving performance when rebuilding index partitions

If you use the PART option to rebuild only a single partition of an index, the

utility does not need to scan the entire table space.

To rebuild several indexes (including data-partitioned secondary indexes) at the

same time and reduce recovery time, use parallel index rebuild, or submit multiple

index jobs. See “Building indexes in parallel” for more information.

When rebuilding nonpartitioned secondary indexes and partitions of partitioned

indexes, this type of parallel processing on the same table space decreases the size

of the sort data set, as well as the total time that is required to sort all the keys.

When you run the REBUILD INDEX utility concurrently on separate partitions of a

partitioned index (either partitioning or secondary), the sum of the processor time

is approximately the time for a single REBUILD INDEX job to run against the

entire index. For partitioning indexes, the elapsed time for running concurrent

REBUILD INDEX jobs is a fraction of the elapsed time for running a single

REBUILD INDEX job against an entire index.

Building indexes in parallel

Parallel index build reduces the elapsed time for a REBUILD INDEX job by sorting

the index keys and rebuilding multiple indexes or index partitions in parallel,

rather than sequentially. Optimally, a pair of subtasks processes each index; one

subtask sorts extracted keys, while the other subtask builds the index. REBUILD

INDEX begins building each index as soon as the corresponding sort generates its

first sorted record. If you specify STATISTICS, a third subtask collects the sorted

keys and updates the catalog table in parallel.

The subtasks that are used for the parallel REBUILD INDEX processing use DB2

connections. If you receive message DSNU397I that indicates that the REBUILD

INDEX utility is constrained, increase the number of concurrent connections by

using the MAX BATCH CONNECT parameter on panel DSNTIPE.

The greatest elapsed processing-time improvements result from parallel rebuilding

for:

v Multiple indexes on a table space

v A partitioning index or a data-partitioned secondary index on all partitions of a

partitioned table space

v A nonpartitioned secondary index on a partitioned table space

REBUILD INDEX

340 Utility Guide and Reference

|
|
|
#
#
#
#

|

|

|

|

|
|

|

|
|

|

Figure 70 shows the flow of a REBUILD INDEX job with a parallel index build.

The same flow applies whether you rebuild a data-partitioned secondary index or

a partitioning index. DB2 starts multiple subtasks to unload the entire partitioned

table space. Subtasks then sort index keys and build the partitioning index in

parallel. If you specify STATISTICS, additional subtasks collect the sorted keys and

update the catalog table in parallel, eliminating the need for a second scan of the

index by a separate RUNSTATS job.

 Figure 71 shows the flow of a REBUILD INDEX job with a parallel index build.

DB2 starts multiple subtasks to unload all partitions of a partitioned table space

and to sort index keys in parallel. The keys are then merged and passed to the

build subtask, which builds the nonpartitioned secondary index. If you specify

STATISTICS, a separate subtask collects the sorted keys and updates the catalog

table.

 When parallel index build is used: Beginning in Version 8, REBUILD INDEX

always sorts the index keys and builds them in parallel for partitioned table spaces

unless constrained by available memory, sort work files, or UTPRINnn file

allocations.

Figure 70. How a partitioning index is rebuilt during a parallel index build

Figure 71. How a nonpartitioned secondary index is rebuilt during a parallel index build

REBUILD INDEX

Chapter 22. REBUILD INDEX 341

|
|
|

|

|
|
|
|

Sort work data sets for parallel index build:You can either allow the utility to

dynamically allocate the data sets that SORT needs, or provide the necessary data

sets yourself. Select one of the following methods to allocate sort work data sets

and message data sets:

Method 1: REBUILD INDEX determines the optimal number of sort work data sets

and message data sets.

1. Specify the SORTDEVT keyword in the utility statement.

2. Allow dynamic allocation of sort work data sets by not supplying SORTWKnn

DD statements in the REBUILD INDEX utility JCL.

3. Allocate UTPRINT to SYSOUT.

Method 2: You control allocation of sort work data sets, and REBUILD INDEX

allocates message data sets.

1. Provide DD statements with DD names in the form SWnnWKmm.

2. Allocate UTPRINT to SYSOUT.

Method 3: You have the most control over rebuild processing; you must specify

both sort work data sets and message data sets.

1. Provide DD statements with DD names in the form SWnnWKmm.

2. Provide DD statements with DD names in the form UTPRINnn.

Data sets that are used: If you select Method 2 or 3, define the necessary data

sets by using the information provided here and in the following topics:

v “Determining the number of sort subtasks” on page 343

v “Allocation of sort subtasks” on page 343

v “Estimating the sort work file size” on page 343

Each sort subtask must have its own group of sort work data sets and its own

print message data set. In addition, you need to allocate the merge message data

set when you build a single nonpartitioned secondary index on a partitioned table

space.

Possible reasons to allocate data sets in the utility job JCL rather than using

dynamic allocation are to:

v Control the size and placement of the data sets

v Minimize device contention

v Optimally utilize free disk space

v Limit the number of utility subtasks that are used to build indexes

The DD names SWnnWKmm define the sort work data sets that are used during

utility processing. nn identifies the subtask pair, and mm identifies one or more

data sets that are to be used by that subtask pair. For example:

SW01WK01 Is the first sort work data set that is used by the subtask that

builds the first index.

SW01WK02 Is the second sort work data set that is used by the subtask that

builds the first index.

SW02WK01 Is the first sort work data set that is used by the subtask that

builds the second index.

SW02WK02 Is the second sort work data set that is used by the subtask that

builds the second index.

REBUILD INDEX

342 Utility Guide and Reference

|

|

|

|
|

The DD names UTPRINnn define the sort work message data sets that are used by

the utility subtask pairs. nn identifies the subtask pair.

If you allocate the UTPRINT DD statement to SYSOUT in the job statement, the

sort message data sets and the merge message data set, if required, are

dynamically allocated. If you want the sort message data sets, merge message data

sets, or both, allocated to a disk or tape data set rather than to SYSOUT, you must

supply the UTPRINnn or the UTMERG01 DD statements (or both) in the utility

JCL. If you do not allocate the UTPRINT DD statement to SYSOUT, and you do

not supply a UTMERG01 DD statement in the job statement, partitions are not

unloaded in parallel.

Determining the number of sort subtasks: The maximum number of utility

subtasks that are started for parallel index build equals:

v For a simple table space, segmented table space, or simple partition of a

partitioned table space, the number of indexes that are to be built

v For a single index that is being built on a partitioned table space, the number of

partitions that are to be unloaded

REBUILD INDEX determines the number of subtasks according to the following

guidelines:

v The number of subtasks equals the number of allocated sort work data set

groups.

v The number of subtasks equals the number of allocated message data sets.

v If you allocate both sort work data sets and message data set groups, the

number of subtasks equals the smallest number of allocated data sets.

Allocation of sort subtasks: REBUILD INDEX attempts to assign one sort subtask

for each index that is to be built. If REBUILD INDEX cannot start enough subtasks

to build one index per subtask, it allocates any excess indexes across the pairs (in

the order that the indexes were created), so that one or more subtasks might build

more than one index.

Estimating the sort work file size: If you choose to provide the data sets, you

need to know the size and number of keys that are present in all of the indexes or

index partitions that are being processed by the subtask in order to calculate each

sort work file size. When you determine which indexes or index partitions are

assigned to which subtask pairs, use the formula listed in “Data sets that REBUILD

INDEX uses” on page 338 to calculate the required space.

Overriding dynamic DFSORT allocation: DB2 estimates how many rows are to

be sorted and passes this information to DFSORT on the parameter FILSZ.

DFSORT then dynamically allocates the necessary sort work space.

If the table space contains rows with VARCHAR columns, DB2 might not be able

to accurately estimate the number of rows. If the estimated number of rows is too

high and the sort work space is not available or if the estimated number of rows is

too low, DFSORT might fail and cause an abend. Important: Run RUNSTATS

UPDATE SPACE before the REBUILD INDEX utility so that DB2 calculates a more

accurate estimate.

You can override this dynamic allocation of sort work space in two ways:

v Allocate the sort work data sets with SORTWKnn DD statements in your JCL.

v Override the DB2 row estimate in FILSZ using control statements that are

passed to DFSORT. However, using control statements overrides size estimates

REBUILD INDEX

Chapter 22. REBUILD INDEX 343

|
|
|
|

|
|
|

|
|
|
|
|
|

|

|

|
|

that are passed to DFSORT in all invocations of DFSORT in the job step,

including any sorts that are done in any other utility that is executed in the

same step. The result might be reduced sort efficiency or an abend due to an

out-of-space condition.

Resetting the REBUILD-pending status

REBUILD-pending status (which appears as RBDP in the output from the DISPLAY

command) means that the physical or logical index partition, nonpartitioned

secondary index, or logical partition of a nonpartitioned secondary index is in

REBUILD-pending status.

The variations of REBUILD-pending status are as follows:

RBDP The physical or logical index partition is in the REBUILD-pending status.

The individual physical or logical index partition is inaccessible. Reset the

RBDP status by rebuilding the single affected partition. If multiple

partitions are in RBDP status, you can rebuild either the entire index or all

affected partitions.

RBDP*

The logical partition of the nonpartitioned secondary index is in the

REBUILD-pending status. The entire nonpartitioned secondary index is

inaccessible. Reset RBDP* status by rebuilding only the affected logical

partitions.

PSRBD

The nonpartitioned secondary index space is in the REBUILD-pending

status. The entire index space is inaccessible. Rebuild the object with the

REBUILD INDEX utility. This state only applies to nonpartitioned

secondary indexes.

You can reset the REBUILD-pending status for an index with any of these

operations:

v REBUILD INDEX

v REORG TABLESPACE SORTDATA

v REPAIR SET INDEX with NORBDPEND

v START DATABASE command with ACCESS FORCE

Important: Use the START DATABASE command with ACCESS FORCE only as a

means of last resort.

Rebuilding critical catalog indexes

If an ID with a granted authority tries to rebuild indexes in the catalog or

directory, and if the DSNDB06.SYSDBASE or DSNDB06.SYSUSER table space is

unavailable, you receive the following message:

DSNT501I, RESOURCE UNAVAILABLE

You must either make these table spaces available, or run the RECOVER

TABLESPACE utility on the catalog or directory, using an authorization ID with the

installation SYSADM or installation SYSOPR authority.

Recoverability of a rebuilt index

When you successfully rebuild an index that was defined with COPY YES, utility

processing inserts a SYSCOPY row with ICTYPE=’B’ for each rebuilt index. Rebuilt

indexes are also placed in informational COPY-pending status, which indicates that

you should make a copy of the index.

REBUILD INDEX

344 Utility Guide and Reference

|
|
|
|

|
|

|
|
|

|

|
|

Recommendation: Make a full image copy of the index to create a recovery point;

this action also resets the ICOPY status.

Terminating or restarting REBUILD INDEX

You can terminate REBUILD INDEX by using the TERM UTILITY command. If

you terminate a REBUILD INDEX job, the index space is placed in the

REBUILD-pending status and is unavailable until it is successfully rebuilt.

By default, DB2 uses RESTART(PHASE) when restarting REBUILD INDEX jobs.

The job starts again from the beginning.

If you restart a job that uses the STATISTICS keyword, inline statistics collection

does not occur. To update catalog statistics, run the RUNSTATS utility after the

restarted REBUILD INDEX job completes.

For more guidance about restarting online utilities, see “Restarting an online

utility” on page 41.

Concurrency and compatibility for REBUILD INDEX

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

Table 56 shows which claim classes REBUILD INDEX drains and any restrictive

state that the utility sets on the target object.

 Table 56. Claim classes of REBUILD INDEX operations.

Target REBUILD INDEX

REBUILD INDEX

PART

Table space or partition DW/UTRO DW/UTRO

Partitioning index, data-partitioned

secondary index, or physical partition

DA/UTUT DA/UTUT

Nonpartitioned secondary index DA/UTUT DR

Logical partition of an index N/A DA/UTUT

Legend:

v DA - Drain all claim classes; no concurrent SQL access

v DW - Drain the write claim class; concurrent access for SQL readers

v DR - Drains the repeatable-read claim class

v N/A - Not applicable

v UTUT - Utility restrictive state; exclusive control

v UTRO - Utility restrictive state; read-only access allowed

Table 57 shows which utilities can run concurrently with REBUILD INDEX on the

same target object. The target object can be an index space or a partition of an

index space. If compatibility depends on particular options of a utility, that

information is also shown. REBUILD INDEX does not set a utility restrictive state

if the target object is DSNDB01.SYSUTILX.

 Table 57. Compatibility of REBUILD INDEX with other utilities

Action REBUILD INDEX

CHECK DATA No

CHECK INDEX No

REBUILD INDEX

Chapter 22. REBUILD INDEX 345

|
|

|
|

|
|

|

Table 57. Compatibility of REBUILD INDEX with other utilities (continued)

Action REBUILD INDEX

CHECK LOB Yes

COPY INDEX No

COPY TABLESPACE SHRLEVEL CHANGE No

COPY TABLESPACE SHRLEVEL REFERENCE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE No

REBUILD INDEX No

RECOVER INDEX No

RECOVER TABLESPACE No

REORG INDEX No

REORG TABLESPACE UNLOAD CONTINUE or PAUSE No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL with

cluster index

No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL without

cluster index

Yes

REPAIR LOCATE by KEY No

REPAIR LOCATE by RID DELETE or REPLACE No

REPAIR LOCATE by RID DUMP or VERIFY Yes

REPAIR LOCATE INDEX PAGE DUMP or VERIFY No

REPAIR LOCATE TABLESPACE or INDEX PAGE REPLACE No

REPAIR LOCATE TABLESPACE PAGE DUMP or VERIFY Yes

REPORT Yes

RUNSTATS INDEX No

RUNSTATS TABLESPACE Yes

STOSPACE Yes

UNLOAD Yes

To run REBUILD INDEX on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02, ensure

that REBUILD INDEX is the only utility in the job step and the only utility that is

running in the DB2 subsystem.

The effect of REBUILD INDEX on index version numbers

DB2 stores the range of used index version numbers in the OLDEST_VERSION

and CURRENT_VERSION columns of the following catalog tables:

v SYSIBM.SYSINDEXES

v SYSIBM.SYSINDEXPART

The OLDEST_VERSION column contains the oldest used version number, and the

CURRENT_VERSION column contains the current version number.

REBUILD INDEX

346 Utility Guide and Reference

When you run REBUILD INDEX, the utility updates this range of used version

numbers for indexes that are defined with the COPY NO attribute. REBUILD

INDEX sets the OLDEST_VERSION column to the current version number, which

indicates that only one version is active; DB2 can then reuse all of the other

version numbers.

Recycling of version numbers is required when all of the version numbers are

being used. All version numbers are being used when one of the following

situations is true:

v The value in the CURRENT_VERSION column is one less than the value in the

OLDEST_VERSION column

v The value in the CURRENT_VERSION column is 15, and the value in the

OLDEST_VERSION column is 0 or 1.

You can also run LOAD REPLACE, REORG INDEX, or REORG TABLESPACE to

recycle version numbers for indexes that are defined with the COPY NO attribute.

To recycle version numbers for indexes that are defined with the COPY YES

attribute or for table spaces, run MODIFY RECOVERY.

For more information about versions and how they are used by DB2, see Part 2 of

DB2 Administration Guide.

Sample REBUILD INDEX control statements

Example 1: Rebuilding an index. The following control statement specifies that the

REBUILD INDEX utility is to rebuild the DSN8810.XDEPT1 index.

//STEP1 EXEC DSNUPROC,UID=’IUIQU2UT.RBLD1’,TIME=1440,

// UTPROC=’’,

// SYSTEM=’DSN’,DB2LEV=DB2A

//SYSREC DD DSN=IUIQU2UT.RBLD1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(8000,(20,20),,,ROUND)

//SYSIN DD *

REBUILD INDEX (DSN8810.XDEPT1)

/*

Example 2: Rebuilding index partitions. The following control statement specifies

that REBUILD INDEX is to rebuild partitions 2 and 3 of the DSN8810.XEMP1

index. The partition numbers are indicated by the PART option.

REBUILD INDEX (DSN8810.XEMP1 PART 2, DSN8810.XEMP1 PART 3)

Example 3: Rebuilding multiple partitions of a partitioning or secondary index.

The following control statement specifies that REBUILD INDEX is to rebuild

partitions 2 and 3 of the DSN8810.XEMP1 index. The partition numbers are

indicated by the PART option. The SORTDEVT and SORTNUM keywords indicate

that the utility is to use dynamic data set and message set allocation. Parallelism is

used by default.

If sufficient virtual storage resources are available, DB2 starts one pair of utility

sort subtasks for each partition. This example does not require UTPRINnn DD

statements because it uses DSNUPROC to invoke utility processing. DSNUPROC

includes a DD statement that allocates UTPRINT to SYSOUT.

//SAMPJOB JOB ...

//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.RBINDEX’,UTPROC=’’,SYSTEM=’DSN’

//SYSIN DD *

REBUILD INDEX

Chapter 22. REBUILD INDEX 347

|
|
|
|
|
|
|
|

REBUILD INDEX (DSN8810.XEMP1 PART 2, DSN8810.XEMP1 PART 3)

 SORTDEVT SYSWK

 SORTNUM 4

/*

Example 4: Rebuilding all partitions of a partitioning index. The control statement

in Figure 72 specifies that REBUILD INDEX is to rebuild all index partitions of the

DSN8810.XEMP1 partitioning index. Parallelism is used by default. For this

example, REBUILD INDEX allocates sort work data sets in two groups, which

limits the number of utility subtask pairs to two. This example does not require

UTPRINnn DD statements because it uses DSNUPROC to invoke utility

processing. DSNUPROC includes a DD statement that allocates UTPRINT to

SYSOUT.

Example 5: Rebuilding all indexes of a table space. The following control statement

specifies that REBUILD INDEX is to rebuild all indexes for table space

DSN8D81A.DSN8S81E. The SORTDEVT and SORTNUM keywords indicate that

the utility is to use dynamic data set and message set allocation. Parallelism is

used by default.

If sufficient virtual storage resources are available, DB2 starts one utility sort

subtask to build the partitioning index and another utility sort subtask to build the

nonpartitioning index. This example does not require UTPRINnn DD statements

because it uses DSNUPROC to invoke utility processing. DSNUPROC includes a

DD statement that allocates UTPRINT to SYSOUT.

//SAMPJOB JOB ...

//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.RCVINDEX’,UTPROC=’’,SYSTEM=’DSN’

//SYSIN DD *

REBUILD INDEX (ALL) TABLESPACE DSN8D81A.DSN8S81E

 SORTDEVT SYSWK

 SORTNUM 4

/*

Example 6: Rebuilding indexes only if they are in a restrictive state and gathering

inline statistics. The control statement in Figure 73 on page 349 specifies that

REBUILD INDEX is to rebuild partition 9 of index ID0S482D if it is in

REBUILD-pending (RBDP), RECOVER-pending (RECP), or advisory

REORG-pending (AREO*) state. This condition that the index be in a certain

restrictive state is indicated by the SCOPE PENDING option. The STATISTICS

FORCEROLLUP YES option indicates that the utility is to collect inline statistics on

the index partition that it is rebuilding and to force aggregation of those statistics.

//SAMPJOB JOB ...

//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.RCVINDEX’,UTPROC=’’,SYSTEM=’DSN’

//* First group of sort work data sets for parallel index rebuild

//SW01WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SW01WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SW01WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//* Second group of sort work data sets for parallel index rebuild

//SW02WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SW02WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SW02WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SYSIN DD *

 REBUILD INDEX (DSN8810.XEMP1)

/*

Figure 72. Example REBUILD INDEX statement

REBUILD INDEX

348 Utility Guide and Reference

//STEP6 EXEC DSNUPROC,UID=’JUOSU248.CHK6’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//UTPRINT DD SYSOUT=*

//SYSREC DD DSN=JUOSU248.CHKIXPX.STEP6.SYSREC,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSCOPY DD DSN=JUOSU248.CHKIXPX.STEP6.SYSCOPY,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SORTOUT DD DSN=JUOSU248.CHKIXPX.STEP6.SORTOUT,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

 REBUILD INDEX (IDOS482D PART 9)

 STATISTICS FORCEROLLUP YES

 SCOPE PENDING

/*

Figure 73. Example REBUILD INDEX statement with STATISTICS option

Chapter 22. REBUILD INDEX 349

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

350 Utility Guide and Reference

Chapter 23. RECOVER

The online RECOVER utility recovers data to the current state or to a previous

point in time by restoring a copy and then applying log records.

The largest unit of data recovery is the table space or index space; the smallest is

the page. You can recover a single object, or a list of objects. The RECOVER utility

recovers an entire table space, index space, a partition or data set, pages within an

error range, or a single page. You recover data from image copies of an object and

from log records that contain changes to the object. If the most recent full image

copy data set is unusable, and previous image copy data sets exist in the system,

RECOVER uses the previous image copy data sets.

For a diagram of RECOVER syntax and a description of available options, see

“Syntax and options of the RECOVER control statement” on page 352. For detailed

guidance on running this utility, see “Instructions for running RECOVER” on page

359.

Output: Output from RECOVER consists of recovered data (a table space, index,

partition or data set, error range, or page within a table space).

If you specify the TOLOGPOINT, TORBA, TOCOPY, TOLASTCOPY, or

TOLASTFULLCOPY option to recover data to a point in time, RECOVER puts any

associated index spaces in REBUILD-pending status. You must run REBUILD

INDEX to remove the REBUILD-pending status from the index space.

If you use the RECOVER utility to partially recover a referentially related table

space set or a base table space and LOB table space set, you must ensure that you

recover the entire set of table spaces. This task includes rebuilding or recovering all

indexes (including indexes on auxiliary tables for a base table space and LOB table

space set) to a common quiesce point or to a SHRLEVEL REFERENCE copy. If you

do not include every member of the set, or if you do not recover the entire set to

the same point in time, RECOVER sets the CHECK-pending status on for all

dependent table spaces, base table spaces, or LOB table spaces in the set.

Recommendation: If you use the RECOVER utility to partially recover data and all

indexes on the data, recover these objects to a common quiesce point or to a

SHRLEVEL REFERENCE copy. Otherwise, RECOVER places all indexes in the

CHECK-pending status.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v RECOVERDB privilege for the database

v DBADM or DBCTRL authority for the database

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute RECOVER, but only on

a table space in the DSNDB01 or DSNDB06 database.

Restrictions on running RECOVER: RECOVER cannot recover a table space or

index space that is defined to use a storage group that is defined with mixed

specific and nonspecific volume IDs. If you specify such a table space or index

space, the job terminates and you receive error message DSNU419I.

© Copyright IBM Corp. 1983, 2008 351

RECOVER cannot recover a point-in-time RECOVER INDEX if the recovery point

precedes the first ALTER INDEX in Version 8 new-function mode that created a

new index version.

Execution phases of RECOVER: The RECOVER utility operates in these phases:

Phase Description

UTILINIT Performs initialization and setup.

RESTORE Locates and merges any appropriate image copies and restores the

table space to a backup level; processes a list of objects in parallel

if you specify the PARALLEL keyword.

RESTORER If you specify the PARALLEL keyword, reads and merges the

image copies.

RESTOREW If you specify the PARALLEL keyword, writes the pages to the

object.

LOGAPPLY Applies any outstanding log changes to the object that is restored

from the previous phase or step.

UTILTERM Performs cleanup.

The following topics provide additional information:

v “Syntax and options of the RECOVER control statement”

v “Instructions for running RECOVER” on page 359

v “Terminating or restarting RECOVER” on page 380

v “Concurrency and compatibility for RECOVER” on page 380

v “Effects of running RECOVER” on page 382

v “Sample RECOVER control statements” on page 382

Syntax and options of the RECOVER control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

RECOVER

352 Utility Guide and Reference

#
#
#

Syntax diagram

�� RECOVER

�

 LIST listdef-name list-options-spec

DSNUM

ALL

object

(1)

DSNUM

integer

DSNUM

ALL

object

recover-options-spec

(1)

DSNUM

integer

object

PAGE

page-number

CONTINUE

 �

�

LOCALSITE

RECOVERYSITE

 LOGRANGES YES

(2)

LOGRANGES

NO

��

Notes:

1 Not valid for nonpartitioning indexes.

2 Use the LOGRANGES NO option only at the direction of IBM Software Support. This option can

cause the LOGAPPLY phase to run much longer and, in some cases, apply log records that

should not be applied.

object:

�� TABLESPACE table-space-name

database-name.

INDEXSPACE

index-space-name

database-name.

INDEX

index-name

creator-id.

 ��

list-options-spec:

��

TORBA

X’byte-string’

TOLOGPOINT

X’byte-string’

 �

�
REUSE

CURRENTCOPYONLY

PARALLEL

(num-objects)

TAPEUNITS

(

num-tape-units

)

LOGONLY

 ��

RECOVER

Chapter 23. RECOVER 353

|###

recover-options-spec:

�� TOCOPY data-set-name

TOVOLUME

CATALOG

REUSE

CURRENTCOPYONLY

vol-ser

TOSEQNO

integer

TOLASTCOPY

REUSE

CURRENTCOPYONLY

TOLASTFULLCOPY

REUSE

CURRENTCOPYONLY

ERROR

RANGE

 ��

Option descriptions

You can specify a list of objects by repeating the TABLESPACE, INDEX, or

INDEXSPACE keywords. If you use a list of objects, the valid keywords are:

DSNUM, TORBA, TOLOGPOINT, LOGONLY, PARALLEL, and either LOCALSITE

or RECOVERYSITE.

The options TOCOPY, TOLASTCOPY, TOLASTFULLCOPY, TORBA and

TOLOGPOINT are all referred to as point-in-time recovery options.

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. The utility

allows one LIST keyword for each control statement of RECOVER. The list can

contain a mixture of table spaces and index spaces. RECOVER is invoked once

for the entire list.

 For more information about LISTDEF specifications, see Chapter 15,

“LISTDEF,” on page 171.

TABLESPACE database-name.table-space-name

Specifies the table space (and optionally, the database to which it belongs) that

is to be recovered.

 You can specify a list of table spaces by repeating the TABLESPACE keyword.

You can recover an individual catalog or directory table space in a list with its

IBM-defined indexes. You cannot recover multiple catalog or directory table

spaces in a list.

database-name Is the name of the database to which the table space belongs.

The default is DSNDB04.

table-space-name

Is the name of the table space that is to be recovered.

INDEXSPACE database-name.index-space-name

Specifies the index space that is to be recovered.

database-name Specifies the name of the database to which the index space

belongs. The default is DSNDB04.

index-space-name

Specifies the name of the index space that is to be recovered.

RECOVER

354 Utility Guide and Reference

|||

INDEX creator-id.index-name

Specifies the index in the index space that is to be recovered. The RECOVER

utility can recover only indexes that were defined with the COPY YES attribute

and subsequently copied.

creator-id

Optionally specifies the creator of the index. The default is the user

identifier for the utility.

index-name

Specifies the name of the index in the index space that is to be recovered.

Enclose the index name in quotation marks if the name contains a blank.

 The following keywords are optional:

DSNUM

Identifies a partition within a partitioned table space or a partitioned index, or

identifies a data set within a nonpartitioned table space that is to be recovered.

You cannot specify a single data set of a nonpartitioned index or a logical

partition of a nonpartitioned index. Alternatively, the option can recover the

entire table space or index space.

ALL

Specifies that the entire table space or index space is to be recovered. The

default is ALL.

integer

Specifies the number of the partition or data set that is to be recovered.

The maximum value is 4096.

 Specifying DSNUM is not valid for nonpartitioning indexes.

 For a partitioned table space or index space: The integer is its partition

number.

For a nonpartitioned table space: Find the integer at the end of the data set

name. The data set name has the following format:

catname.DSNDBx.dbname.tsname.y0001.Annn

where:

catname Is the VSAM catalog name or alias.

x Is C or D.

dbname Is the database name.

tsname Is the table space name.

y Is I or J.

nnn Is the data set integer.

PAGE page-number

Specifies a particular page that is to be recovered. You cannot specify this

option if you are recovering from a concurrent copy.

 page-number is the number of the page, in either decimal or hexadecimal

notation. For example, both 999 and X'3E7' represent the same page. PAGE is

invalid with the LIST specification.

CONTINUE

Specifies that the recovery process is to continue. Use this option only if an

error causes RECOVER to terminate during reconstruction of a page. In

RECOVER

Chapter 23. RECOVER 355

|
|
|
|

|

|
|

this case, the page is marked as “broken”. After you repair the page, you

can use the CONTINUE option to recover the page, starting from the point

of failure in the recovery log.

TORBA X'byte-string'

Specifies, in a non-data-sharing environment, a point on the log to which

RECOVER is to recover. Specify an RBA value.

 In a data sharing environment, use TORBA only when you want to recover to

a point before the originating member joined the data sharing group. If you

specify an RBA after this point, the recovery fails.

Using TORBA terminates the recovery process with the last log record whose

relative byte address (RBA) is not greater than byte-string, which is a string of

up to 12 hexadecimal characters. If byte-string is the RBA of the first byte of a

log record, that record is included in the recovery.

TOLOGPOINT X'byte-string'

Specifies a point on the log to which RECOVER is to recover. Specify either an

RBA or an LRSN value.

 The LRSN is a string of 12 hexadecimal characters and is reported by the

DSN1LOGP utility.

REUSE

Specifies that RECOVER is to logically reset and reuse DB2-managed data sets

without deleting and redefining them. If you do not specify REUSE, DB2

deletes and redefines DB2-managed data sets to reset them.

 If you are recovering an object because of a media failure, do not specify

REUSE.

If a data set has multiple extents, the extents are not released if you use the

REUSE parameter.

CURRENTCOPYONLY

Specifies that RECOVER is to improve the performance of restoring concurrent

copies (copies that were made by the COPY utility with the CONCURRENT

option) by using only the most recent primary copy for each object in the list.

 When you specify CURRENTCOPYONLY for a concurrent copy, RECOVER

builds a DFSMSdss RESTORE command for each group of objects that is

associated with a concurrent copy data set name. If the RESTORE fails,

RECOVER does not automatically use the next most recent copy or the backup

copy, and the object fails. If you specify DSNUM ALL with

CURRENTCOPYONLY and one partition fails during the restore process, the

entire utility job on that object fails.

If you specify CURRENTCOPYONLY and the most recent primary copy of the

object to be recovered is not a concurrent copy, DB2 ignores this keyword.

PARALLEL

Specifies the maximum number of objects in the list that are to be restored in

parallel from image copies on disk or tape. RECOVER attempts to retain tape

mounts for tapes that contain stacked image copies when the PARALLEL

keyword is specified. In addition, to maximize performance, RECOVER

determines the order in which objects are to be restored. If you specify

TAPEUNITS with PARALLEL, you control the number of tape drives that are

dynamically allocated for the recovery function. The TAPEUNITS keyword

applies only to tape drives that are dynamically allocated. The TAPEUNITS

keyword does not apply to JCL-allocated tape drives. The total number of tape

RECOVER

356 Utility Guide and Reference

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

drives that are allocated for the RECOVER job is the sum of the JCL-allocated

tape drives, and the number of tape drives, which is determined as follows:

v The specified value for TAPEUNITS.

v The value that is determined by the RECOVER utility if you omit the

TAPEUNITS keyword. The number of tape drives that RECOVER attempts

to allocate is determined by the object in the list that requires the most tape

drives.

If you specify PARALLEL, you cannot specify TOCOPY, TOLASTCOPY, or

TOLASTFULLCOPY.

(num-objects)

Specifies the number of objects in the list that are to be processed in

parallel. If storage constraints are encountered, you can adjust this

value to a smaller value.

 If you specify 0 or do not specify a value for num-objects, RECOVER

determines the optimal number of objects to process in parallel.

TAPEUNITS

Specifies the number of tape drives that the utility should dynamically allocate

for the list of objects that are to be processed in parallel. If you omit this

keyword, the utility determines the number of tape drives to allocate for the

recovery function.

(num-tape-units)

Specifies the number of tape drives to allocate. If you specify 0 or do not

specify the TAPEUNITS keyword, RECOVER determines the maximum

number of tape units to use at one time.

LOGONLY

Specifies that the target objects are to be recovered from their existing data sets

by applying only log records to the data sets. DB2 applies all log records that

were written after a point that is recorded in the data set itself.

 To recover an index space by using RECOVER LOGONLY, you must define the

index space with the COPY YES attribute.

Use the LOGONLY option when the data sets of the target objects have already

been restored to a point of consistency by another process offline, such as

DFSMSdss concurrent copy.

TOCOPY data-set-name

Specifies the particular image copy data set that DB2 is to use as a source for

recovery.

 data-set-name is the name of the data set.

If the data set is a full image copy, it is the only data set that is used in the

recovery. If it is an incremental image copy, RECOVER also uses the previous

full image copy and any intervening incremental image copies.

If you specify the data set as the local backup copy, DB2 first tries to allocate

the local primary copy. If the local primary copy is unavailable, DB2 uses the

local backup copy.

If you use TOCOPY or TORBA to recover a single data set of a nonpartitioned

table space, DB2 issues message DSNU520I to warn that the table space can

become inconsistent following the RECOVER job. This point-in-time recovery

can cause compressed data to exist without a dictionary or can even overwrite

the data set that contains the current dictionary.

RECOVER

Chapter 23. RECOVER 357

|
|

|

|
|
|
|

#
#

|
|

#
#
#

If you use TOCOPY with a particular partition or data set (identified with

DSNUM), the image copy must be for the same partition or data set, or for the

whole table space or index space. If you use TOCOPY with DSNUM ALL, the

image copy must be for DSNUM ALL. You cannot specify TOCOPY with a

LIST specification.

If the image copy data set is a z/OS generation data set, supply a fully

qualified data set name, including the absolute generation and version number.

If the image copy data set is not a generation data set and more than one

image copy data set with the same data set name exists, use one of the

following options to identify the data set exactly:

TOVOLUME

Identifies the image copy data set. You cannot specify the TOVOLUME option

with a LIST specification.

CATALOG

Indicates that the data set is cataloged. Use this option only for an image

copy that was created as a cataloged data set. (Its volume serial is not

recorded in SYSIBM.SYSCOPY.)

 RECOVER refers to the SYSIBM.SYSCOPY catalog table during execution.

If you use TOVOLUME CATALOG, the data set must be cataloged. If you

remove the data set from the catalog after creating it, you must catalog the

data set again to make it consistent with the record for this copy that

appears in SYSIBM.SYSCOPY.

vol-ser

Identifies the data set by an alphanumeric volume serial identifier of its

first volume. Use this option only for an image copy that was created as a

noncataloged data set. Specify the first vol-ser in the SYSCOPY record to

locate a data set that is stored on multiple tape volumes.

TOSEQNO integer

Identifies the image copy data set by its file sequence number. integer is

the file sequence number.

TOLASTCOPY

Specifies that RECOVER is to restore the object to the last image copy that was

taken. If the last image copy is a full image copy, it is restored to the object. If

the last image copy is an incremental image copy, the most recent full copy

along with any incremental copies are restored to the object. You cannot

specify the TOLASTCOPY option with a LIST specification.

TOLASTFULLCOPY

Specifies that the RECOVER utility is to restore the object to the last full image

copy that was taken. Any incremental image copies that were taken after the

full image copy are not restored to the object. You cannot specify the

TOLASTFULLCOPY option with a LIST specification.

ERROR RANGE

Specifies that all pages within the range of reported I/O errors are to be

recovered. Recovering an error range is useful when the range is small, relative

to the object that contains it; otherwise, recovering the entire object is

preferred. You cannot specify this option if you are recovering from a

concurrent copy.

 In some situations, recovery using the ERROR RANGE option is not possible,

such as when a sufficient quantity of alternate tracks cannot be obtained for all

bad records within the error range. You can use the IBM Device Support

RECOVER

358 Utility Guide and Reference

#

#

|
|

Facility, ICKDSF service utility to determine whether this situation exists. In

such a situation, redefine the error data set at a different location on the

volume or on a different volume, and then run the RECOVER utility without

the ERROR RANGE option.

You cannot specify ERROR RANGE with a LIST specification.

For additional information about the use of this keyword, see Part 4 (Volume

1) of DB2 Administration Guide.

LOCALSITE

Specifies that RECOVER is to use image copies from the local site. If you

specify neither LOCALSITE or RECOVERYSITE, RECOVER uses image copies

from the current site of invocation. (The current site is identified on the

installation panel DSNTIPO under SITE TYPE and in the macro DSN6SPRM

under SITETYP.)

RECOVERYSITE

Specifies that RECOVER is to use image copies from the recovery site. If you

specify neither LOCALSITE or RECOVERYSITE, RECOVER uses image copies

from the current site of invocation. (The current site is identified on the

installation panel DSNTIPO under SITE TYPE and in the macro DSN6SPRM

under SITETYP.)

LOGRANGES YES

Specifies that RECOVER should use SYSLGRNX information for the

LOGAPPLY phase. This option is the default.

LOGRANGES NO

Specifies that RECOVER should not use SYSLGRNX information for the

LOGAPPLY phase. Use this option only under the direction of IBM Software

Support.

 This option can cause RECOVER to run much longer. In a data sharing

environment this option can result in the merging of all logs from all members

that were created since the last image copy.

This option can also cause RECOVER to apply logs that should not be applied.

For example, assume that you take an image copy of a table space and then

run REORG LOG YES on the same table space. Assume also that the REORG

utility abends and you then issue the TERM UTILITY command for the

REORG job. The SYSLGRNX records that are associated with the REORG job

are deleted, so a RECOVER job with the LOGRANGES YES option (the

default) skips the log records from the REORG job. However, if you run

RECOVER LOGRANGES NO, the utility applies these log records.

Instructions for running RECOVER

To run RECOVER, you must:

1. Read “Before running RECOVER” on page 360 in this section.

2. Prepare the necessary data sets, as described in “Data sets that RECOVER uses”

on page 360.

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15.

4. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

361.

RECOVER

Chapter 23. RECOVER 359

5. Check the compatibility table in “Concurrency and compatibility for

RECOVER” on page 380 if you want to run other jobs concurrently on the

same target objects.

6. Plan for restart if the RECOVER utility job does not complete, as described in

“Terminating or restarting RECOVER” on page 380.

7. Run RECOVER by using one of the methods that are described in Chapter 3,

“Invoking DB2 online utilities,” on page 15.

Before running RECOVER

Recovering data and indexes: You do not always need to recover both the data and

indexes. If you recover the table space or index space to a current RBA or LRSN,

any referentially related objects do not need to be recovered. If you plan to recover

a damaged object to a point in time, ensure that you use a consistent point in time

for all of its referentially related objects, including related LOB table spaces. You

must rebuild the indexes from the data if one of the following conditions is true:

v The table space is recovered to a point in time.

v An index is damaged.

v An index is in REBUILD-pending status.

v No image copy of the index is available.

If you need to recover both the data and the indexes, and no image copies of the

indexes are available, use the following procedure:

1. Use RECOVER TABLESPACE to recover the data.

2. Run REBUILD INDEX on any related indexes to rebuild them from the data.

If you have image copies of both the table spaces and the indexes, you can recover

both sets of objects in the same RECOVER utility statement. The objects are

recovered from the image copies and logs.

If the table space or index space to be recovered is associated with a storage group,

DB2 deletes and redefines the necessary data sets. If the STOGROUP has been

altered to remove the volume on which the table space or index space is located,

RECOVER places the data set on another volume of the storage group.

Data sets that RECOVER uses

Table 58 lists the data sets that RECOVER uses. The table lists the DD name that is

used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 58. Data sets that RECOVER uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

The following objects are named in the utility control statement and do not require

DD statements in the JCL:

Table space or index space Object that is to be recovered. If you want to

recover less than an entire table space:

v Use the DSNUM option to recover a partition or

data set.

RECOVER

360 Utility Guide and Reference

|

v Use the PAGE option to recover a single page.

v Use the ERROR RANGE option to recover a

range of pages with I/O errors.

Image copy data set Copy that RECOVER is to restore. DB2 accesses

this information through the DB2 catalog.

However, if you want to preallocate your image

copy data sets by using DD statements, refer to

“Retaining tape mounts” on page 379 for more

information.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Recovering a table space”

 “Recovering a list of objects” on page 362

 “Recovering a data set or partition” on page 363

 “Recovering with incremental copies” on page 363

 “Recovering a page” on page 363

 “Recovering an error range” on page 364

 “Recovering with a data set copy that is not made by DB2” on page 364

 “Recovering catalog and directory objects” on page 365

 “Recovering a table space that contains LOB data” on page 370

 “Performing a point-in-time recovery” on page 371

 “Avoiding specific image copy data sets” on page 375

 “Improving performance” on page 376

 “Optimizing the LOGAPPLY phase” on page 376

 “Recovering image copies in a JES3 environment” on page 378

 “Resetting RECOVER-pending or REBUILD pending status” on page 378

 “Allocating incremental image copies” on page 378

 “Performing fallback recovery” on page 379

 “Retaining tape mounts” on page 379

 “Avoiding damaged media” on page 379

 “Recovering table spaces and index spaces with mixed volume IDs” on page

380

Recovering a table space

The following RECOVER statement specifies that the utility is to recover table

space DSN8S81D in database DSN8D81A:

RECOVER TABLESPACE DSN8D81A.DSN8S81D

To recover multiple table spaces, create a list of table spaces that are to be

recovered; repeat the TABLESPACE keyword before each specified table space. The

following RECOVER statement specifies that the utility is to recover partition 2 of

the partitioned table space DSN8D81A.DSN8S81E, and recover the table space

DSN8D81A.DSN8S81D to the quiesce point (RBA X'000007425468').

RECOVER TABLESPACE DSN8D81A.DSN8S81E DSNUM 2

 TABLESPACE DSN8D81A.DSN8S81D

 TORBA X’000007425468’

Each table space that is involved is unavailable for most other applications until

recovery is complete. If you make image copies by table space, you can recover the

entire table space, or you can recover a data set or partition from the table space. If

you make image copies separately by partition or data set, you must recover the

RECOVER

Chapter 23. RECOVER 361

partitions or data sets by running separate RECOVER operations. The following

example shows the RECOVER statement for recovering four data sets in database

DSN8D81A, table space DSN8S81E:

RECOVER TABLESPACE DSN8D81A.DSN8S81E DSNUM 1

 TABLESPACE DSN8D81A.DSN8S81E DSNUM 2

 TABLESPACE DSN8D81A.DSN8S81E DSNUM 3

 TABLESPACE DSN8D81A.DSN8S81E DSNUM 4

You can schedule the recovery of these data sets in four separate jobs to run in

parallel. In many cases, the four jobs can read the log data concurrently.

If a table space or data set is in the COPY-pending status, recovering it might not

be possible. You can reset this status in several ways; for more information, see

“Resetting COPY-pending status” on page 266.

Recovering a list of objects

You can recover any of the following objects:

v Table space

v Table space partition

v Piece of a linear table space

v Index space

v Index space partition

When you recover an object to a prior point in time, you should recover a set of

referentially related table spaces together to avoid putting any of the table spaces

in CHECK-pending status. Use REPORT TABLESPACESET to obtain a table space

listing.

RECOVER does not place dependent table spaces that are related by informational

referential constraints into CHECK-pending status.

The RECOVER utility merges incremental copies serially and dynamically. As a

result, recovery of a table space list with numerous incremental copies can be

time-consuming and operator-intensive.

If referential integrity violations are not an issue, you can run a separate job to

recover each table space.

When you specify the PARALLEL keyword, DB2 supports parallelism during the

RESTORE phase and performs recovery as follows:

v During initialization and setup (the UTILINIT recover phase), the utility locates

the full and incremental copy information for each object in the list from

SYSIBM.SYSCOPY.

v The utility sorts the list of objects for recovery into lists to be processed in

parallel according to the number of tape volumes, file sequence numbers, and

sizes of each image copy.

v The number of objects that can be restored in parallel depends on the maximum

number of available tape devices and on how many tape devices the utility

requires for the incremental and full image copy data sets. You can control the

number of objects that are to be processed in parallel on the PARALLEL

keyword. You can control the number of dynamically allocated tape drives on

the TAPEUNITS keyword, which is specified with the PARALLEL keyword.

v If an object in the list requires a DB2 concurrent copy, the utility sorts the object

in its own list and processes the list in the main task, while the objects in the

other sorted lists are restored in parallel. If the concurrent copies that are to be

RECOVER

362 Utility Guide and Reference

|
|

restored are on tape volumes, the utility uses one tape device and counts it

toward the maximum value that is specified for TAPEUNITS.

Recovering a data set or partition

You can use the RECOVER utility to recover individual partitions and data sets.

The phases for data set recovery are the same as for table space recovery.

If image copies are taken at the data set level, RECOVER must be performed at the

data set level. To recover the whole table space, you must recover all the data sets

individually in one or more RECOVER steps. If recovery is attempted at the table

space level, DB2 returns an error message.

Alternatively, if image copies are taken at the table space, index, or index space

level, you can recover individual data sets by using the DSNUM parameter.

RECOVER does not support recovery of the following types of indexes:

v A single data set for nonpartitioned secondary indexes

v A logical partition of a nonpartitioned secondary index

Recovering with incremental copies

The RECOVER utility merges all incremental image copies that were taken since

the last full image copy. The utility must have all the image copies available at the

same time. If this requirement is likely to strain your system resources, for

example, by demanding more tape units than are available, consider running

MERGECOPY regularly to merge image copies into one copy.

Even if you do not periodically merge multiple image copies into one copy when

you do not have enough tape units, the utility can still perform. RECOVER

dynamically allocates the full image copy and attempts to dynamically allocate all

the incremental image copy data sets. If RECOVER successfully allocates every

incremental copy, recovery proceeds to merge pages to table spaces and apply the

log. If a point is reached where an incremental copy cannot be allocated,

RECOVER notes the log RBA or LRSN of the last successfully allocated data set.

Attempts to allocate incremental copies cease, and the merge proceeds using only

the allocated data sets. The log is applied from the noted RBA or LRSN, and the

incremental image copies that were not allocated are ignored.

Recovering a page

Using RECOVER PAGE enables you to recover data on a page that is damaged. In

some situations, you can determine (usually from an error message) which page of

an object has been damaged. You can use the PAGE option to recover a single

page. You can use the CONTINUE option to continue recovering a page that was

damaged during the LOGAPPLY phase of a RECOVER operation.

Recovering a page by using PAGE and CONTINUE: Suppose that you start

RECOVER for table space TSPACE1. During processing, message DSNI012I

informs you of a problem that damages page number 5. RECOVER completes, but

the damaged page, number 5, is in a stopped state and is not recovered. When

RECOVER ends, message DSNU501I informs you that page 5 is damaged.

To repair the damaged page:

1. Use the DUMP option of the REPAIR utility to view the contents of the

damaged page. Determine what change should have been made by the

applicable log record, and apply it by using the REPLACE option of REPAIR.

Use the RESET option to turn off the inconsistent-data indicator.

RECOVER

Chapter 23. RECOVER 363

|
|

Attention: Be extremely careful when using the REPAIR utility to replace

data. Using REPAIR to change data to invalid values can produce unpredictable

results, particularly when you change page header information. Improper use

of REPAIR can result in damaged data, or in some cases, system failure.

2. Resubmit the RECOVER utility job by specifying TABLESPACE(TSPACE1)

PAGE(5) CONTINUE. The RECOVER utility finishes recovering the damaged

page by applying the log records that remain after the one that caused the

problem.

If more than one page is damaged during RECOVER, perform the preceding steps

for each damaged page.

Recovering an error range

By using the ERROR RANGE option of RECOVER, you can repair pages with

reported I/O errors. DB2 maintains a page error range for I/O errors for each data

set; pages within the range cannot be accessed. The DISPLAY DATABASE

command displays the range. When recovering an error range, RECOVER:

1. Locates, allocates, and applies image copies.

2. Applies changes from the log.

The following RECOVER statement specifies that the utility is to recover any

current error range problems for table space TS1:

RECOVER TABLESPACE DB1.TS1 ERROR RANGE

Recovering an error range is useful when the range is small, relative to the object

containing it; otherwise, recovering the entire object is preferable.

Message DSNU086I indicates that I/O errors were detected on a table space and

that you need to recover it. Before you attempt to use the ERROR RANGE option

of RECOVER, you should run the ICKDSF service utility to correct the disk error.

If an I/O error is detected during RECOVER processing, DB2 issues message

DSNU538I to identify the affected target tracks are involved. The message provides

enough information to run ICKDSF correctly.

In some situations, which are announced by error messages, recovery of only an

error range is not possible. In such a situation, recovering the entire object is

preferable.

During the recovery of the entire table space or index space, DB2 might still

encounter I/O errors that indicate DB2 is still using a bad volume. For

user-defined data sets, you should use Access Method Services to delete the data

sets and redefine them with the same name on a new volume. If you use DB2

storage groups, you can remove the bad volume from the storage group by using

ALTER STOGROUP.

Recovering with a data set copy that is not made by DB2

You can restore a data set to a point of consistency by using a data set copy that

was not made by the COPY utility. After recovery to the point of consistency, if

you choose to continue and recover to the current point in time, you do not want

RECOVER to begin processing by restoring the data set from a DB2 image copy.

Therefore, use the LOGONLY option of RECOVER, which causes RECOVER to

skip the RESTORE phase and apply the log records only, starting from the first log

record that was written after the data set was backed up.

RECOVER

364 Utility Guide and Reference

Because the data sets are restored offline without DB2 involvement, RECOVER

LOGONLY checks that the data set identifiers match those that are in the DB2

catalog. If the identifiers do not match, message DSNU548I is issued, and the job

terminates with return code 8.

You can use the LOGONLY option on a list of objects.

To ensure that no other transactions can access DB2 objects between the time that

you restore a data set and the time that you run RECOVER LOGONLY, follow

these steps:

1. Stop the DB2 objects that are being recovered by issuing the following

command:

-STOP DATABASE(database-name) SPACENAM(space-name)

2. Restore all DB2 data sets that are being recovered.

3. Start the DB2 objects that are being recovered by issuing the following

command:

-START DATABASE(database-name) SPACENAM(space-name) ACCESS(UT)

4. Run the RECOVER utility without the TORBA or TOLOGPOINT parameters

and with the LOGONLY parameter to recover the DB2 data sets to the current

point in time and to perform forward recovery using DB2 logs. If you want to

recover the DB2 data sets to a prior point in time, run the RECOVER utility

with either TORBA or TOLOGPOINT, and with the LOGONLY parameters.

5. If you did not recover related indexes in the same RECOVER control statement,

rebuild all indexes on the recovered object.

6. Issue the following command to allow access to the recovered object if the

recovery completes successfully:

-START DATABASE(database-name) SPACENAM(space-name) ACCESS(RW)

With the LOGONLY option, when recovering a single piece of a multi-piece linear

page set, RECOVER opens the first piece of the page set. If the data set is migrated

by DFSMShsm, the data set is recalled by DFSMShsm. Without LOGONLY, no data

set recall is requested.

Backing up a single piece of a multi-piece linear page set is not recommended.

This action can cause a data integrity problem if the backup is used to restore the

data set at a later time.

Recovering catalog and directory objects

If you are recovering any subset of the objects in the following list, start with the

object that appears first, and continue in the order of the list. For example, if you

need to recover SYSLGRNX, SYSUTILX, and SYSUSER, recover first SYSUTILX,

then SYSLGRNX, and then SYSUSER. You do not need to recover all of the objects;

only recover those objects that require recovery. If you copy your catalog or

directory indexes, use the RECOVER utility to recover your indexes. Otherwise,

use the REBUILD INDEX utility to rebuild those indexes.

 1. DSNDB01.SYSUTILX.

 2. All indexes on SYSUTILX.

 3. DSNDB01.DBD01.

 4. DSNDB06.SYSCOPY.

 5. All indexes on SYSIBM.SYSCOPY. If no user-defined indexes that are

stogroup-managed are defined on SYSIBM.SYSCOPY, execute the following

utility statement to rebuild IBM-defined and any user-defined indexes on

SYSIBM.SYSCOPY:

RECOVER

Chapter 23. RECOVER 365

|
|
|

#
#
#
#

REBUILD INDEX (ALL) TABLESPACE DSNDB06.SYSCOPY

If user-defined indexes that are stogroup-managed are defined on

SYSIBM.SYSCOPY, rebuild the IBM-defined indexes by name (REBUILD

INDEX (SYSIBM.index-name-1, SYSIBM.index-name-2, . . .,

SYSIBM.index-name-n)) and then rebuild the user-defined indexes in a

subsequent step. See Appendix D of DB2 SQL Reference for a list of the

IBM-defined indexes.

 6. DSNDB01.SYSLGRNX.

 7. All indexes on SYSLGRNX.

 8. DSNDB06.SYSALTER.

 9. All indexes on SYSALTER.

10. DSNDB06.SYSDBAUT.

11. All indexes on SYSDBAUT. If no user-defined indexes that are

stogroup-managed are defined on SYSDBAUT, execute the following utility

statement to rebuild IBM-defined and any user-defined indexes on

SYSDBAUT:

REBUILD INDEX (ALL) TABLESPACE DSNDB06.SYSDBAUT

If user-defined indexes that are stogroup-managed are defined on SYSDBAUT,

rebuild the IBM-defined indexes by name (REBUILD INDEX

(SYSIBM.index-name-1, SYSIBM.index-name-2, . . ., SYSIBM.index-name-n))

and then rebuild the user-defined indexes in a subsequent step. See Appendix

D of DB2 SQL Reference for a list of the IBM-defined indexes.

12. DSNDB06.SYSUSER.

13. DSNDB06.SYSDBASE.

14. All indexes on SYSDBASE and SYSUSER. If no user-defined indexes that are

stogroup-managed are defined on SYSDBASE or SYSUSER, execute the

following utility statement to rebuild IBM-defined and any user-defined

indexes on SYSDBASE and SYSUSER:

REBUILD INDEX (ALL) TABLESPACE DSNDB06.SYSxxxx

If user-defined indexes that are stogroup managed are defined on SYSDBASE

and SYSUSER, rebuild the IBM-defined indexes by name (REBUILD INDEX

(SYSIBM.index-name-1, SYSIBM.index-name-2, . . ., SYSIBM.index-name-n)),

and then rebuild the user-defined indexes in a subsequent step. See Appendix

D of DB2 SQL Reference for a list of the IBM-defined indexes.

15. Other catalog and directory table spaces and their IBM-defined indexes. The

remaining catalog table spaces, in database DSNDB06, are SYSGROUP,

SYSGPAUT, SYSOBJ, SYSPLAN, SYSPKAGE, SYSSEQ, SYSSEQ2, SYSSTATS,

SYSSTR, SYSVIEWS, SYSDDF, SYSHIST, SYSGRTNS, SYSJAVA, SYSJAUXA,

SYSJAUXB, and SYSEBCDC. The two remaining directory table spaces are

DSNDB01.SCT02, which has index SYSIBM.DSNSCT02, and DSNDB01.SPT01,

which has indexes SYSIBM.DSNSPT01 and SYSIBM.DSNSPT02.

Note: At the start of the covesion for enabling-new-function mode, catalog

indes DSNDB06.DSNKCX01 is dropped. In enabling-new-function

mode or new-function mode, this index no longer needs to be rebuilt or

recovered since it does not exist.

16. All user-defined indexes on the catalog that have not been rebuilt or recovered

yet.

17. System utility table spaces, such as DB2 QMF.

RECOVER

366 Utility Guide and Reference

#

#
#
#
#
#
#

|

|

#
#
#
#

#

#
#
#
#
#

#
#
#
#

#

#
#
#
#
#

|

#
#
#
#

18. If used, real-time statistics objects, the object and application registration

tables, and the resource limit specification tables.

19. User table spaces.

For all catalog and directory table spaces, you can list the IBM-defined indexes that

have the COPY YES attribute in the same RECOVER utility statement.

The catalog and directory objects that are listed in step 15 in the preceding list can

be grouped together for recovery. You can specify them as a list of objects in a

single RECOVER utility statement. When you specify all of these objects in one

statement, the utility needs to make only one pass of the log for all objects during

the LOGAPPLY phase and can use parallelism when restoring the image copies in

the RESTORE phase. Thus, these objects are recovered faster.

Recovery of the items on the list can be done concurrently or included in the same

job step. However, some restrictions apply:

1. When you recover the following table spaces or indexes, the job step in which

the RECOVER statement appears must not contain any other utility statements.

No other utilities can run while the RECOVER utility is running.

v DSNDB01.SYSUTILX

v All indexes on SYSUTILX

v DSNDB01.DBD01
2. When you recover the following table spaces, no other utilities can run while

the RECOVER utility is running. Other utility statements can exist in the same

job step.

v DSNDB06.SYSCOPY

v DSNDB01.SYSLGRNX

v DSNDB06.SYSDBAUT

v DSNDB06.SYSUSER

v DSNDB06.SYSDBASE

If the logging environment requires adding or restoring active logs, restoring

archive logs, or performing any action that affects the log inventory in the BSDS,

you should recover the BSDS before catalog and directory objects. For information

about recovering the BSDS, see Part 4 (Volume 1) of DB2 Administration Guide. To

copy active log data sets, use the Access Method Services REPRO function. For

information about the JCL for the Access Method Services REPRO function, see one

of the following publications:

v DFSMS/MVS: Access Method Services for the Integrated Catalog

v z/OS DFSMS Access Method Services for Catalogs

Why the order is important: To recover one object, RECOVER must obtain

information about it from some other object. Table 59 lists the objects from which

RECOVER must obtain information.

 Table 59. Objects that the RECOVER utility accesses

Object name Reason for access by RECOVER

DSNDB01.SYSUTILX Utility restart information. The object is not

accessed when it is recovered; RECOVER for

this object is not restartable, and no other

commands can be in the same job step.

SYSCOPY information for SYSUTILX is

obtained from the log.

RECOVER

Chapter 23. RECOVER 367

|
|

|
|
|
|
|
|

Table 59. Objects that the RECOVER utility accesses (continued)

Object name Reason for access by RECOVER

DSNDB01.DBD01 Descriptors for the catalog database

(DSNDB06), the work file database

(DSNDB07), and user databases. RECOVER

for this object is not restartable, and no other

commands can be in the same job step.

SYSCOPY information for DBD01 is obtained

from the log.

DSNDB06.SYSCOPY Locations of image copy data sets. SYSCOPY

information for SYSCOPY itself is obtained

from the log.

DSNDB01.SYSLGRNX The RBA or LRSN of the first log record after

the most recent copy.

DSNDB06.SYSDBAUT, DSNDB06.SYSUSER Verification that the authorization ID is

authorized to run RECOVER.

DSNDB06.SYSDBASE Information about table spaces that are to be

recovered.

You can use REPORT RECOVERY to obtain SYSCOPY information for

DSNDB01.SYSUTILX, DSNDB01.DBD01, and DSNDB06.SYSCOPY.

Planning for point-in-time recovery for the catalog and directory: When you

recover the DB2 catalog and directory, consider the entire catalog and directory,

including all table spaces and index spaces, as one logical unit. Recover all objects

in the catalog and directory to the same point of consistency. If a point-in-time

recovery of the catalog and directory objects is planned, a separate quiesce of the

DSNDB06.SYSCOPY table space is required after a quiesce of the other catalog and

directory table spaces.

You should be aware of some special considerations when you are recovering

catalog and directory objects to a point in time in which the DB2 subsystem was in

a different mode. For example, if your DB2 subsystem is currently in new-function

mode, and you need to recover to a point in time in which the subsystem was in

compatibility mode. For details, see Part 4 of DB2 Administration Guide.

Recommendation: Before you recover the DB2 catalog and directory objects to a

prior point in time, shut down the DB2 system cleanly and then restart the system

in access(maint) mode. Recover the catalog and directory objects to the current

state. You can use sample queries and documentation, which are provided in

DSNTESQ in the SDSNSAMP sample library, to check the consistency of the

catalog.

Indexes are rebuilt by REBUILD INDEX. If the only items you have recovered are

table spaces in the catalog or directory, you might need to rebuild their indexes.

Use the CHECK INDEX utility to determine whether an index is inconsistent with

the data it indexes. You can use the RECOVER utility to recover catalog and

directory indexes if the index was defined with the COPY YES attribute and if you

have a full index image copy.

You must recover the catalog and directory before recovering user table spaces.

RECOVER

368 Utility Guide and Reference

|
|
|
|
|

Be aware that the following table spaces, along with their associated indexes, do

not have entries in SYSIBM.SYSLGRNX, even if they were defined with COPY

YES:

v DSNDB01.SYSUTILX

v DSNDB01.DBD01

v DSNDB01.SYSLGRNX

v DSNDB06.SYSCOPY

v DSNDB06.SYSGROUP

v DSNDB01.SCT02

v DSNDB01.SPT01

These objects are assumed to be open from the point of their last image copy, so

the RECOVER utility processes the log from that point forward.

Point-in-time recovery: Full recovery of the catalog and directory table spaces and

indexes is strongly recommended. However, if you need to plan for point-in-time

recovery of the catalog and directory, here is a way to create a point of consistency:

1. Quiesce all catalog and directory table spaces in a list, except for

DSNDB06.SYSCOPY and DSNDB01.SYSUTILX.

2. Quiesce DSNDB06.SYSCOPY.

Recommendation: Quiesce DSNDB06.SYSCOPY in a separate utility statement;

when you recover DSNDB06.SYSCOPY to its own quiesce point, it contains the

ICTYPE = 'Q’ (quiesce) SYSCOPY records for the other catalog and directory

table spaces.

3. Quiesce DSNDB01.SYSUTILX in a separate job step.

If you need to recover to a point in time, recover DSNDB06.SYSCOPY and

DSNDB01.SYSUTILX to their own quiesce points, and recover other catalog and

directory table spaces to their common quiesce point. The catalog and directory

objects must be recovered in a particular order, as described in “Why the order is

important” on page 367.

Recovering critical catalog table spaces: An ID with a granted authority receives

message DSNT500I RESOURCE UNAVAILABLE while trying to recover a table space in

the catalog or directory if table space DSNDB06.SYSDBASE or DSNDB06.SYSUSER

is unavailable. If you receive this message, you must either make these table spaces

available, or run the RECOVER utility on the catalog or directory by using an

authorization ID that has the installation SYSADM or installation SYSOPR

authority.

Reinitializing DSNDB01.SYSUTILX

You need to reinitialize the DSNDB01.SYSUTILX directory table space if both of

the following conditions are true:

v You cannot successfully execute the -DIS UTIL and -TERM UTIL commands,

because DSNDB01.SYSUTILX is damaged.

v You cannot recover DSNDB01.SYSUTILX, because errors occur in the

LOGAPPLY phase.

Because DSNDB01.SYSUTILX contains information about active and outstanding

utilities, the process of reinitializing this table space involves determining which

objects have a utility in progress and resolving any pending states to make the

object available for access.

If DSNDB01.SYSUTILX must be reinitialized, use the following procedure with

caution:

RECOVER

Chapter 23. RECOVER 369

#
#
#

#
#

#
#

#
#
#
#

#
#

1. Issue the -DIS DB(*) SPACENAM(*) RESTRICT command and analyze the

output. Write down the following items:

v All of the objects with a utility in progress (The objects in UTUT, UTRO, or

UTRW status have utilities in progress.)

v Any pending states for these objects (RECP, CHKP, and COPY are examples

of pending states. For a complete list, see Appendix C, “Advisory or

restrictive states,” on page 849.)
2. Edit the following installation jobs so that they contain only the commands that

pertain to DSNDB01.SYSUTILX:

DSNTIJDE

Delete VSAM LDS for DSNDB01.SYSUTILX.

DSNTIJIN

Define VSAM LDS for DSNDB01.SYSUTILX and tailor the AMS DEFINE

command to fit the needs of your DB2 system.

DSNTIJID

Initialize DSNDB01.SYSUTILX.
3. Run the three edited installation jobs in the order listed.

4. Issue the -START DB(dbname) ACCESS(UT) command for each database that

has objects with a utility in progress.

5. Issue the -START DB(dbname)SPACENAM(spname) ACCESS(FORCE) command

on each object with a utility in progress. This action clears all utilities that are

in progress or in pending states. (Any pending states are cleared, but you still

need to resolve the pending states as directed in the next step.)

6. Resolve the pending states for each object by running the appropriate utility.

For example, if an object was in the RECP status, run the RECOVER utility. For

more information about how to resolve pending states, see Appendix C,

“Advisory or restrictive states,” on page 849.

7. Issue -START DB(dbname) ACCESS(RW) for each database.

Recovering a table space that contains LOB data

The RECOVER utility can set the auxiliary warning status for a LOB table space if

it finds at least one invalid LOB column. DB2 marks a LOB invalid if all of the

following conditions are true:

1. The LOB table space was defined with the LOG(NO) attribute.

2. The LOB table space was recovered.

3. The LOB was updated since the last image copy.

The status of an object that is related to a LOB table space can change due to a

recovery operation, depending on the type of recovery that is performed. If all of

the following objects for all LOB columns are recovered in a single RECOVER

utility statement to the present point in time, a QUIESCE point, or a COPY

SHRLEVEL(REFERENCE) point, no pending status exists:

v Base table space

v Index on the auxiliary table

v LOB table space

Refer to Table 60 on page 371 for information about the status of a base table

space, index on the auxiliary table, or LOB table space that was recovered without

its related objects.

RECOVER

370 Utility Guide and Reference

#
#

#
#

#
#
#

#
#

#
#

#
#
#

#
#

#

#
#

#
#
#
#

#
#
#
#

#

Table 60. Object status after being recovered without its related objects

Object Recovery type

Base table space

status

Index on the

auxiliary table

status

LOB table space

status

Base table space Current RBA or LRSN None None None

Base table space Point-in-time CHECK- pending1 None None

Index on the

auxiliary table

Current RBA or LRSN None None None

Index on the

auxiliary table

Point-in-time None CHECK- pending1 None

LOB table space Current RBA or LRSN, LOB

table space that is defined

with LOG(YES)

None None None

LOB table space Current RBA or LRSN, LOB

table space that is defined

with LOG(NO)

None None Auxiliary warning2

LOB table space TOCOPY, COPY was

SHRLEVEL REFERENCE

CHECK- pending1 REBUILD- pending None

LOB table space TOCOPY, COPY was

SHRLEVEL CHANGE

CHECK- pending1 REBUILD- pending CHECK- pending or

auxiliary warning1

LOB table space TOLOGPOINT or TORBA

(not a quiesce point)

CHECK- pending1 REBUILD- pending CHECK- pending or

auxiliary warning1

LOB table space TOLOGPOINT or TORBA (at

a quiesce point)

CHECK- pending1 REBUILD- pending None

Notes:

1. RECOVER does not place dependent table spaces that are related by informational referential constraints into

CHECK-pending status.

2. If, at any time, a log record is applied to the LOB table space and a LOB is consequently marked invalid, the LOB

table space is set to auxiliary warning status.

For information about resetting any of these statuses, see Appendix C, “Advisory

or restrictive states,” on page 849.

Performing a point-in-time recovery

A recovery operation that is done with one of the point in time recovery options is

known as a point-in-time recovery. A consistent point-in-time is a quiesce point or

a set of image copies that was taken with SHRLEVEL REFERENCE. You do not

need to take a full image copy after recovering to a point in time, except in the

case of fallback recovery; see “Performing fallback recovery” on page 379. DB2

records the RBAs or LRSNs that are associated with the point-in-time recovery in

the SYSIBM.SYSCOPY catalog table to allow future recover operations to skip the

unwanted range of log records.

Because a point-in-time recovery of only the table space leaves data in a consistent

state and indexes in an inconsistent state, you must rebuild all indexes by using

REBUILD INDEX. For more information, see “Resetting the REBUILD-pending

status” on page 344.

After an index has been altered to PADDED or NOT PADDED, you cannot recover

that index to a prior point in time. Instead, you should rebuild the index.

RECOVER

Chapter 23. RECOVER 371

|

|
|

|
|

|
|

If you use a point-in-time recovery option to recover a single data set of a

nonpartitioned table space, DB2 issues message DSNU520I to warn that the table

space can become inconsistent following the RECOVER job. This point-in-time

recovery can cause compressed data to exist without a dictionary or can even

overwrite the data set that contains the current dictionary.

The auxiliary CHECK-pending status (ACHKP) is set when the CHECK DATA

utility detects an inconsistency between a base table space with defined LOB

columns and a LOB table space. For information about how to reset the ACHKP

status, see Appendix C, “Advisory or restrictive states,” on page 849.

You can also use point-in-time recovery and the point-in-time recovery options to

recover all user-defined table spaces and indexes that are in refresh-pending status

(REFP).

For more information about recovering data to a prior point of consistency, see

Part 4 (Volume 1) of DB2 Administration Guide.

Recovery considerations after rebalancing partitions with REORG: Image copies

that were taken prior to resetting the REORG-pending status of any partition of a

partitioned table space are not usable for recovering to a current RBA or LRSN.

Avoid performing a point-in-time recovery for a partitioned table space to a point

in time that is after the REORG-pending status was set, but before a rebalancing

REORG was performed. To determine an appropriate point in time:

1. Run REPORT RECOVERY.

2. Select an image copy for which the recovery point is a point after the

rebalancing REORG was performed.

If you run the REORG utility to turn off a REORG-pending status, and then

recover to a point in time before that REORG job, DB2 sets restrictive statuses on

all partitions that you specified in the REORG job, as follows:

v Sets REORG-pending (and possibly CHECK-pending) on for the data partitions

v Sets REBUILD-pending on for the associated index partitions

v Sets REBUILD-pending on for the associated logical partitions of nonpartitioned

secondary indexes

For information about resetting these restrictive statuses, see “REORG-pending

status” on page 854 and “REBUILD-pending status” on page 852.

Recommendation: To create a new recovery point, take one of these actions

immediately following an ALTER INDEX or TABLE operation that changes

partition boundaries:

v Run REORG with COPYDDN and SHRLEVEL NONE specified.

v Take a full image copy immediately after REORG completes.

Using offline copies to recover after rebalancing partitions: To recover data after a

REORG job redistributes the data among partitions, use RECOVER LOGONLY. If

you perform a point-in-time recovery, you must keep the offline copies

synchronized with the SYSCOPY records. Therefore, do not use the MODIFY

RECOVERY utility to delete any SYSCOPY records with an ICTYPE column value

of 'A' because these records might be needed during the recovery. Delete these

SYSCOPY records only when you are sure that you no longer need to use the

offline copies that were taken before the REORG that performed the rebalancing.

Actions that can affect recovery status When you perform the following actions

before you recover a table space, the recovery status is affected as described:

RECOVER

372 Utility Guide and Reference

|
|

|
|
|
|
|
|
|
|

|
|

v If you alter a table to rotate partitions:

– You can recover the partition to the current time.

– You can recover the partition to a point in time after the alter. The utility can

use a recovery base, (for example, a full image copy, a REORG LOG YES

operation, or a LOAD REPLACE LOG YES operation) that occurred prior to

the alter.

– You cannot recover the partition to a point in time prior to the alter; the

recover fails with MSGDSNU556I and RC8.
v If you change partition boundaries with ALTER or REORG REBALANCE:

– You can recover the partition to the current time if a recovery base (for

example, a full image copy, a REORG LOG YES operation, or a LOAD

REPLACE LOG YES operation) exists.

– You can recover the partition to a point in time after the alter.

– You can recover the partitions that are affected by the boundary change to a

point in time prior to the alter; RECOVER sets REORG-pending status on the

affected partitions and you must reorganize the table space or range of

partitions. All affected partitions must be in the recovery list of a single

RECOVER statement.
v If you alter a table to add a partition:

– You can recover the partition to the current time.

– You can recover the partition to a point in time after the alter.

– You can recover the partition to a point in time prior to the alter; RECOVER

resets the partition to be empty.

When you perform the following actions before you recover an index to a prior

point in time or to the current time, the recovery status is affected as described:

v If you alter the data type of a column to a numeric data type, you cannot

recover the index until you take a full image copy of the index. However, the

index can be rebuilt.

v If you alter an index to NOT PADDED or PADDED , you cannot recover the

index until you take a full image copy of the index. However, the index can be

rebuilt.

For information about recovery status, see Appendix C, “Advisory or restrictive

states,” on page 849.

Planning for point-in-time recovery: Point-in-time recovery options are viable

alternatives in many situations in which recovery to the current point in time is not

possible or desirable. To make these options work best for you, take periodic

quiesce points at points of consistency that are appropriate to your applications.

When making copies of a single object, use SHRLEVEL REFERENCE to establish

consistent points for TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY recovery.

Copies that are made with SHRLEVEL CHANGE do not copy data at a single

instant because changes can occur as the copy is made. A subsequent RECOVER

TOCOPY operation can produce inconsistent data.

When copying a list of objects, use SHRLEVEL REFERENCE. If a subsequent

recovery to a point in time is necessary, you can use a single RECOVER utility

statement to list all of the objects, along with TOLOGPOINT to identify the

common RBA or LRSN value. If you use SHRLEVEL CHANGE to copy a list of

objects, you should follow it with a QUIESCE of the objects.

RECOVER

Chapter 23. RECOVER 373

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

To improve the performance of the recovery, take a full image copy of the table

space or set of table spaces, and then quiesce them by using the QUIESCE utility.

This action enables RECOVER TORBA to recover the table spaces to the quiesce

point with minimal use of the log.

Authorization: Restrict use of the point-in-time recovery options to personnel with

a thorough knowledge of the DB2 recovery environment.

Ensuring consistency: You can use RECOVER TORBA, RECOVER TOLOGPOINT,

and RECOVER TOCOPY to recover one of the following single objects:

v Partition of a partitioned table space

v Partition of a partitioning index space

v Data set of a simple table space

For any of the previously listed objects, restore all data sets to the same level;

otherwise, the data becomes inconsistent.

If possible, specify a table space and all of its indexes (or a set of table spaces and

all related indexes) in the same RECOVER utility statement, and specify

TOLOGPOINT or TORBA to identify a QUIESCE point. This action avoids placing

indexes in the CHECK-pending or REBUILD-pending status. If the TOLOGPOINT

is not a common QUIESCE point for all objects, use the following procedure:

1. RECOVER table spaces to the value for TOLOGPOINT (either an RBA or

LRSN).

2. Use concurrent REBUILD INDEX jobs to recover the indexes over each table

space.

This procedure ensures that the table spaces and indexes are synchronized, and it

eliminates the need to run the CHECK INDEX utility.

Resetting CHECK-pending status: Point-in-time recovery can cause table spaces to

be placed in CHECK-pending status if they have table check constraints or

referential constraints defined on them. When recovering tables that are involved

in a referential constraint, you should recover all the table spaces that are involved

in a constraint.

RECOVER does not place dependent table spaces that are related by informational

referential constraints into CHECK-pending status.

The TORBA and TOLOGPOINT options set the CHECK-pending status for table

spaces when you perform any of the following actions:

v Recover one or more members of a set of table spaces to a previous point in

time that is not a common quiesce point or SHRLEVEL(REFERENCE) point.

Dependent table spaces are placed in CHECK-pending status.

v Recover all members of a set of table spaces that are to be recovered to the same

quiesce point, but referential constraints were defined for a dependent table after

that quiesce point. Table spaces that contain those dependent tables are placed in

CHECK-pending status.

v Recover table spaces with defined LOB columns without recovering their LOB

table spaces.

To avoid setting CHECK-pending status, you must perform both of the following

steps:

v Recover the table space or the set of table spaces to a quiesce point or to an

image copy that was made with SHRLEVEL REFERENCE.

RECOVER

374 Utility Guide and Reference

|

|
|

|
|
|

|
|
|
|

|
|

If you do not recover each table space to the same quiesce point, and if any of

the table spaces are part of a referential integrity structure, the following actions

occur:

– All dependent table spaces that are recovered are placed in CHECK-pending

status with the scope of the whole table space.

– All dependent table spaces of the recovered table spaces are placed in

CHECK-pending status with the scope of the specific dependent tables.
v Do not add table check constraints or referential constraints after the quiesce

point or image copy.

If you recover each table space of a table space set to the same quiesce point, but

referential constraints were defined after the quiesce point, the CHECK-pending

status is set for the table space that contains the table with the referential

constraint.

The TORBA and TOLOGPOINT options set the CHECK-pending status for indexes

when you perform either of the following actions:

v Recover one or more of the indexes to a previous point in time, but you do not

recover the related table space in the same RECOVER statement.

v Recover one or more of the indexes along with the related table space to a

previous point in time that is not a quiesce point or SHRLEVEL REFERENCE

point.

You can turn off CHECK-pending status for an index by using the TORBA and

TOLOGPOINT options. Recover indexes along with the related table space to the

same quiesce point or SHRLEVEL REFERENCE point. RECOVER processing resets

the CHECK-pending status for all indexes in the same RECOVER statement.

For information about actions to take if CHECK INDEX identifies inconsistencies

after you perform a RECOVER job, see “Reviewing CHECK INDEX output” on

page 89.

For information about resetting the CHECK-pending status of table spaces, see

Chapter 8, “CHECK DATA,” on page 57. For information about resetting the

CHECK-pending status for indexes, see “CHECK-pending status” on page 850.

Compressed data: Use caution when recovering a portion of a table space or

partition (for example, one data set) to a prior point in time. If the data set that is

being recovered has been compressed with a different dictionary, you can no

longer read the data. The details of data compression are described in Part 5

(Volume 2) of DB2 Administration Guide.

Avoiding specific image copy data sets

You might accidentally lose an image copy, or you might want to avoid a specific

image copy data set. Because the corresponding row is still present in

SYSIBM.SYSCOPY, RECOVER always attempts to allocate the data set. This section

describes the options that are available if you want to skip a specific image copy

data set.

Image copy on tape: If the image copy is on tape, messages IEF233D and IEF455D

request the tape for RECOVER, as shown in the following example:

 IEF233D M BAB,COPY ,,R92341QJ,DSNUPROC,

 OR RESPOND TO IEF455D MESSAGE

*42 IEF455D MOUNT COPY ON BAB FOR R92341QJ,DSNUPROC OR REPLY ’NO’

 R 42,NO

 IEF234E K BAB,COPY ,PVT,R92341QJ,DSNUPROC

RECOVER

Chapter 23. RECOVER 375

By replying NO, you can initiate the fallback to the previous image copy.

RECOVER responds with messages DSNU030I and DSNU508I, as shown in the

following example:

DSNU030I csect-name - UNABLE TO ALLOCATE R92341Q.UTQPS001.FCOPY010

 RC=4, CODE=X’04840000’

DSNU508I csect-name - IN FALLBACK PROCESSING TO PRIOR FULL IMAGE COPY

Reason code X'0484' means that the request was denied by the operator.

Image copy on disk: If the image copy is on disk, you can delete or rename the

image copy data set before RECOVER starts executing. RECOVER issues messages

DSNU030I and DSNU508I, as shown in the following example:

DSNU030I csect-name - UNABLE TO ALLOCATE R92341Q.UTQPS001.FCOPY010,

 RC=4, CODE=X’17080000’

DSNU508I csect-name - IN FALLBACK PROCESSING TO PRIOR FULL IMAGE COPY

Reason code X'1708' means that the ICF catalog entry cannot be found.

Improving performance

To improve recovery time, consider enabling the Fast Log Apply function on the

DB2 subsystem. For more information about enabling this function, see the LOG

APPLY STORAGE field on panel DSNTIPL, in Part 2 of DB2 Installation Guide.

Use MERGECOPY to merge your table space image copies before recovering the

table space. If you do not merge your image copies, RECOVER automatically

merges them. If RECOVER cannot allocate all the incremental image copy data sets

when it merges the image copies, RECOVER uses the log instead.

Include a list of table spaces and indexes in your RECOVER utility statement to

apply logs in a single scan of the logs.

If you use RECOVER TOCOPY for full image copies, you can improve

performance by using data compression. The improvement is proportional to the

degree of compression.

Consider specifying the PARALLEL keyword to restore image copies from disk or

tape to a list of objects in parallel.

If you are recovering concurrent copies, consider specifying the

CURRENTCOPYONLY option to improve performance. When you specify this

option, RECOVER can issue one DFSMSdss RESTORE command for multiple

objects. The utility issues one RESTORE command for each group of objects that is

associated with the concurrent copy data set. If you do not use the

CURRENTCOPYONLY keyword, RECOVER issues one RESTORE command for

each object.

Optimizing the LOGAPPLY phase

The time that is required to recover a table space depends on the time that is

required to read and apply log data. You can take several steps to optimize the

process.

If possible, DB2 reads the required log records from the active log to provide the

best performance.

Any log records that are not found in the active logs are read from the archive log

data sets, which are dynamically allocated to satisfy the requests. The type of

RECOVER

376 Utility Guide and Reference

|
|
|
|
|
|
|

storage that is used for archive log data sets is a significant factor in the

performance. Consider the following actions to improve performance:

v RECOVER a list of objects in one utility statement to take only a single pass of

the log.

v Keep archive logs on disk to provide the best possible performance.

v Control archive logs data sets by using DFSMShsm to provide the next best

performance. DB2 optimizes recall of the data sets. After the data set is recalled,

DB2 reads it from disk.

v If the archive log must be read from tape, DB2 optimizes access by means of

ready-to-process and look-ahead mount requests. DB2 also permits delaying the

deallocation of a tape drive if subsequent RECOVER jobs require the same

archive log tape. Those methods are described in more detail in the subsequent

paragraphs.

The BSDS contains information about which log data sets to use and where they

reside. You must keep the BSDS information current. If the archive log data sets

are cataloged, the ICF catalog indicates where to allocate the required data set.

DFSMShsm data sets: The recall of the first DFSMShsm archive log data set starts

automatically when the LOGAPPLY phase starts. When the recall is complete and

the first log record is read, the recall for the next archive log data set starts. This

process is known as look-ahead recalling. Its purpose is to recall the next data set

while it reads the preceding one.

When a recall is complete, the data set is available to all RECOVER jobs that

require it. Reading proceeds in parallel.

Non-DFSMShsm tape data sets: DB2 reports on the console all tape volumes that

are required for the entire job. The report distinguishes two types of volumes:

v Any volume that is not marked with an asterisk (*) is required for the for the

job to complete. Obtain these volumes from the tape library as soon as possible.

v Any volume that is marked with an asterisk (*) contains data that is also

contained in one of the active log data sets. The volume might or might not be

required.

As tapes are mounted and read, DB2 makes two types of mount requests:

v Ready-to-process: The current job needs this tape immediately. As soon as the tape

is loaded, DB2 allocates and opens it.

v Look-ahead: This is the next tape volume that is required by the current job.

Responding to this request enables DB2 to allocate and open the data set before

it is needed, thus reducing overall elapsed time for the job.

You can dynamically change the maximum number of input tape units that are

used to read the archive log by specifying the COUNT option of the SET

ARCHIVE command. For example, use the following command to assign 10 tape

units to your DB2 subsystem:

-SET ARCHIVE COUNT (10)

The DISPLAY ARCHIVE READ command shows the currently mounted tape

volumes and their statuses.

Delayed deallocation: DB2 can delay deallocating the tape units used to read the

archive logs. This is useful when several RECOVER utility statements run in

RECOVER

Chapter 23. RECOVER 377

parallel. By delaying deallocation, DB2 can re-read the same volume on the same

tape unit for different RECOVER jobs, without taking time to allocate it again.

You can dynamically change the amount of time that DB2 delays deallocation by

using the TIME option of the SET ARCHIVE command. For example, to specify a

60 minute delay, issue the following command:

-SET ARCHIVE TIME(60)

In a data sharing environment, you might want to specify zero (0) to avoid having

one member hold onto a data set that another member needs for recovery.

Performance summary:

1. Achieve the best performance by allocating archive logs on disk.

2. Consider staging cataloged tape data sets to disk before allocation by the log

read process.

3. If the data sets are read from tape, set both the COUNT and the TIME values

to the maximum allowable values within the system constraints.

Recovering image copies in a JES3 environment

Ensure that sufficient units are available to mount the required image copies. In a

JES3 environment, if the number of image copies that need to be restored exceeds

the number of available online and offline units, and the RECOVER job

successfully allocates all available units, the job waits for more units to become

available.

Resetting RECOVER-pending or REBUILD pending status

Several possible operations on a table space can place the table space in the

RECOVER-pending status and the index space in REBUILD-pending status. You

can turn off the status in several ways, as follows:

v Recover the table space, index space, or partition.

v Use REBUILD INDEX to rebuild the index space from existing data.

v Use the LOAD utility, with the REPLACE option, on the table space or partition.

v Use the REPAIR utility, with the NORCVRPEND option, on the table space,

index space, or partition. Be aware that the REPAIR utility does not fix the data

inconsistency in the table space or index.

v To rebuild indexes, run REORG TABLESPACE SORTDATA for table spaces and

indexes.

Allocating incremental image copies

RECOVER attempts to dynamically allocate all required incremental image copy

data sets. If any of the incremental image copies are missing, RECOVER performs

the following actions:

v Identifies the first incremental image copy that is missing

v Uses the incremental image copies up to the missing incremental image copy

v Doesn’t use the remaining incremental image copy data sets

v Applies additional log records to compensate for any incremental image copies

that were not used

For example, if the incremental image copies are on tape and an adequate number

of tape drives are not available, RECOVER does not use the remaining incremental

image copy data sets.

RECOVER

378 Utility Guide and Reference

Performing fallback recovery

If the RECOVER utility cannot use the latest primary copy data set as a starting

point for recovery, it attempts to use the backup copy data set, if one is available.

If neither image copy is usable, RECOVER attempts to fall back to a previous

recovery point. If the previous recovery point is a full image copy, the RECOVER

utility uses the full image copy, any incremental image copies, and the log to

recover. If a previous REORG LOG YES or LOAD REPLACE LOG YES was done,

RECOVER attempts to recover from the log and applies any changes that occurred

between the two image copies. If good full image copies are not available, and no

previous REORG LOG YES or LOAD REPLACE LOG YES jobs were run, the

RECOVER utility terminates.

If one of the following actions occurs, the index remains untouched, and utility

processing terminates with return code 8:

v RECOVER processes an index for which no full copy exists.

v The copy cannot be used because of utility activity that occurred on the index or

on its underlying table space,

For more information, see 123.

If you always make multiple image copies, RECOVER should seldom fall back to

an earlier point. Instead, RECOVER relies on the backup copy data set if the

primary copy data set is unusable.

In a JES3 environment, you can do a fallback recovery by issuing a JES3 cancel,s

command at the time the allocation mount message is issued. This action might be

necessary if a volume is not available or if the given volume is not desired.

RECOVER does not perform parallel processing for objects that are in backup or

fallback recovery. Instead, the utility performs non-parallel image copy allocation

processing of the objects. RECOVER defers the processing of objects that require

backup or fallback processing until all other objects are recovered, at which time

the utility processes the objects one at a time.

Retaining tape mounts

DB2 can retain tape mounts for you. For image copies on one or more tape

volumes, you do not need to code JCL statements to retain the tape mounts.

Instead, use the PARALLEL and TAPEUNITS keywords to control the allocation of

tape devices for the job. In some cases, RECOVER cannot retain all tape mounts so

tapes might be deallocated, even if you specify the PARALLEL and TAPEUNITS

keywords.

Avoiding damaged media

When a media error is detected, DB2 prints a message that indicates the extent of

the damage. If an entire volume is bad and storage groups are being used, you

must remove the bad volume first; otherwise, the RECOVER utility might re-access

the damaged media. You must follow these steps:

1. Use ALTER STOGROUP to remove the bad volume and add another volume.

2. Execute the RECOVER utility for all objects on that volume.

If the RECOVER utility cannot complete because of severe errors that are caused

by the damaged media, you might need to use Access Method Services (IDCAMS)

with the NOSCRATCH option to delete the cluster for the table space or index. If

the table space or index is defined by using STOGROUP, the RECOVER utility

automatically redefines the cluster. For user-defined table spaces or indexes, you

must redefine the cluster before invoking the RECOVER utility.

RECOVER

Chapter 23. RECOVER 379

|
|
|
|
|
|

Recovering table spaces and index spaces with mixed volume

IDs

You cannot run RECOVER on a table space or index space on which mixed specific

and non-specific volume IDs were defined with CREATE STOGROUP or ALTER

STOGROUP.

Terminating or restarting RECOVER

This section contains information about how to terminate and restart RECOVER.

Terminating RECOVER

Terminating a RECOVER job with the TERM UTILITY command leaves the table

space that is being recovered in RECOVER-pending status, and the index space

that is being recovered in the REBUILD-pending status. If you recover a table

space to a previous point in time, its indexes are left in the REBUILD-pending

status. The data or index is unavailable until the object is successfully recovered or

rebuilt.

Restarting RECOVER

You can restart RECOVER from the last commit point (RESTART(CURRENT)) or

the beginning of the phase (RESTART(PHASE)). By default, DB2 uses

RESTART(CURRENT).

If you attempt to recover multiple objects by using a single RECOVER statement

and the utility fails in:

v The RESTORE phase: All objects in the process of being restored are placed in

the RECOVER-pending or REBUILD-pending status. The status of the remaining

objects is unchanged.

v The LOGAPPLY phase: All objects that are specified in the RECOVER statement

are placed in the RECOVER-pending or REBUILD-pending status.

In both cases, you must identify and fix the causes of the failure before performing

a current restart.

For instructions on restarting a utility job, see “Restarting an online utility” on

page 41.

Concurrency and compatibility for RECOVER

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible. However, if a nonpartitioned secondary index exists on a partitioned

table space, utilities that operate on different partitions of a table space can be

incompatible because of contention on the nonpartitioned secondary index.

Table 61 shows which claim classes RECOVER claims and drains and any

restrictive state that the utility sets on the target object.

 Table 61. Claim classes of RECOVER operations.

Target

RECOVER (no

option)

RECOVER

TORBA or

TOCOPY

RECOVER

PART TORBA

or TOCOPY

RECOVER

ERROR-
RANGE

Table space or

partition

DA/UTUT DA/UTUT DA/UTUT DA/UTUT

CW/UTRW1

RECOVER

380 Utility Guide and Reference

|
|

|

Table 61. Claim classes of RECOVER operations. (continued)

Target

RECOVER (no

option)

RECOVER

TORBA or

TOCOPY

RECOVER

PART TORBA

or TOCOPY

RECOVER

ERROR-
RANGE

Partitioning index,

data-partitioned

secondary index, or

physical partition

DA/UTUT DA/UTUT DA/UTUT DA/UTUT

CW/UTRW1

Nonpartitioned

secondary index

DA/UTUT DA/UTUT DA/UTUT DA/UTUT

CW/UTRW1

RI dependents none CHKP (YES) CHKP (YES) none

Legend:

v CHKP (YES): Concurrently running applications enter CHECK-pending

after commit

v CW: Claim the write claim class

v DA: Drain all claim classes, no concurrent SQL access

v DR: Drain the repeatable read class, no concurrent access for SQL

repeatable readers

v RI: Referential integrity

v UTRW: Utility restrictive state, read-write access allowed

v UTUT: Utility restrictive state, exclusive control

v none: Object is not affected by this utility

Notes:

1. During the UTILINIT phase, the claim and restrictive states change from

DA/UTUT to CW/UTRW.

RECOVER does not set a utility restrictive state if the target object is

DSNDB01.SYSUTILX.

Table 62 shows which utilities can run concurrently with RECOVER on the same

target object. The target object can be a table space, an index space, or a partition

of a table space or index space. If compatibility depends on particular options of a

utility, that information is also documented in the table.

 Table 62. Compatibility of RECOVER with other utilities

Action

Compatible with

RECOVER (no

option)?

Compatible with

RECOVER

TOCOPY or

TORBA?

Compatible with

RECOVER

ERROR-
RANGE?

CHECK DATA No No No

CHECK INDEX No No No

CHECK LOB No No No

COPY INDEXSPACE No No No

COPY TABLESPACE No No No

DIAGNOSE Yes Yes Yes

LOAD No No No

MERGECOPY No No No

MODIFY No No No

QUIESCE No No No

RECOVER

Chapter 23. RECOVER 381

|
|

|
|
|
|
|
|
|
|
|
|

Table 62. Compatibility of RECOVER with other utilities (continued)

Action

Compatible with

RECOVER (no

option)?

Compatible with

RECOVER

TOCOPY or

TORBA?

Compatible with

RECOVER

ERROR-
RANGE?

REBUILD INDEX No No No

REORG INDEX Yes No Yes

REORG TABLESPACE No No No

REPAIR LOCATE INDEX Yes No Yes

REPAIR LOCATE TABLESPACE No No No

REPORT Yes Yes Yes

RUNSTATS INDEX No No No

RUNSTATS TABLESPACE No No No

STOSPACE Yes Yes Yes

UNLOAD No No No

To run on DSNDB01.SYSUTILX, RECOVER must be the only utility in the job step

and the only utility running in the DB2 subsystem.

RECOVER on any catalog or directory table space is an exclusive job; such a job

can interrupt another job between job steps, possibly causing the interrupted job to

time out.

Effects of running RECOVER

When you run RECOVER without the REUSE option and the data set that contains

that data is DB2–managed, DB2 deletes this data set before the RECOVER and

redefines a new data set with a control interval that matches the page size.

Sample RECOVER control statements

Example 1: Recovering a table space. The following control statement specifies that

the RECOVER utility is to recover table space DSN8D81A.DSN8S81D to the current

point in time.

RECOVER TABLESPACE DSN8D81A.DSN8S81D

Example 2: Recovering a table space partition. The following control statement

specifies that the RECOVER utility is to recover the second partition of table space

DSN8D81A.DSN8S81D. The partition number is indicated by the DSNUM option.

RECOVER TABLESPACE DSN8D81A.DSN8S81D DSNUM 2

Example 3: Recovering a table space partition to the last image copy that was

taken. The following control statement specifies that the RECOVER utility is to

recover the first partition of table space DSN8D81A.DSN8S81D to the last image

copy that was taken. If the last image copy that was taken is a full image copy, this

full image copy is restored. If the last image copy that was taken is an incremental

image copy, the most recent full image copy, along with any incremental image

copies, are restored.

RECOVER TABLESPACE DSN8D81A.DSN8S81D DSNUM 1 TOLASTCOPY

RECOVER

382 Utility Guide and Reference

|

|
|
|

Example 4: Recovering table spaces to a point in time. The following control

statement specifies that the RECOVER utility is to recover the second partition of

table space DSN8D81A.DSN8S81E and all of table space DSN8D81A.DSN8S81D to

the indicated quiesce point (LRSN X'00000551BE7D'). The quiesce point is indicated

by the TOLOGPOINT option. Note that the value for this option can be either an

LRSN or an RBA.

RECOVER TABLESPACE DSN8D81A.DSN8S81E DSNUM 2

 TABLESPACE DSN8D81A.DSN8S81D

 TOLOGPOINT X’00000551BE7D’

Example 5: Recovering an index to the last full image copy that was taken

without deleting and redefining the data sets. The following control statement

specifies that the RECOVER utility is to recover index ADMF001.IADH082P to the

last full image copy. The REUSE option specifies that DB2 is to logically reset and

reuse DB2-managed data sets without deleting and redefining them.

RECOVER INDEX ADMF001.IADH082P REUSE TOLASTFULLCOPY

Example 6: Recovering from concurrent copies. The RECOVER utility control

statement in Figure 74 specifies that the utility is to recover all of the objects that

are included in the RCVR4_LIST. This list is defined by the preceding LISTDEF

utility control statement. Because the most recent primary copy for all of these

objects is a concurrent copy, the CURRENTCOPYONLY option is used in the

RECOVER statement to improve the performance of restoring these concurrent

copies. The LOCALSITE option indicates that RECOVER is to use image copies at

the local site.

Example 7: Recovering a list of objects on different tape devices in parallel. The

control statement in Figure 75 on page 384 specifies that the RECOVER utility is to

recover the list of table spaces. Full image copies and incremental image copies of

the eight table spaces are stacked on four different tape volumes. The utility sorts

the list of objects and, if possible, recovers two objects at a time in parallel. This

number of objects is specified by the PARALLEL option. The TAPEUNITS option

//STEP1 EXEC DSNUPROC,UID=’JUOLU210.RCVR4’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//UTPRINT DD SYSOUT=*

//SYSUT1 DD DSN=JUOLU210.RCVR4.STEP1.SYSUT1,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SORTOUT DD DSN=JUOLU210.RCVR4.STEP1.SORTOUT,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

 LISTDEF RCVR4_LIST

 INCLUDE TABLESPACES TABLESPACE DBOL1002.TSOL1002

 INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1003 PARTLEVEL 3

 INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1003 PARTLEVEL 6

 INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1004 PARTLEVEL 5

 INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1004 PARTLEVEL 9

 INCLUDE INDEXSPACES INDEXSPACE DBOL1003.IPOL1051 PARTLEVEL 22

 INCLUDE INDEXSPACES INDEXSPACE DBOL1003.IPOL1061 PARTLEVEL 10

 INCLUDE INDEXSPACES INDEXSPACE DBOL1003.IXOL1062

 RECOVER LIST RCVR4_LIST

 LOCALSITE

 CURRENTCOPYONLY

 /*

Figure 74. Example RECOVER control statement with the CURRENTCOPYONLY option

RECOVER

Chapter 23. RECOVER 383

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

specifies that up to four tape drives are to be dynamically allocated.

 Example 8: Recovering a list of objects to a point in time. The following

RECOVER control statement specifies that the RECOVER utility is to recover the

specified list of objects to a common quiesce point (LRSN X'00000551BE7D'). The

LISTDEF control statement defines which objects are to be included in the list.

These objects are logically consistent after successful completion of this RECOVER

job. The PARALLEL option indicates that RECOVER is to restore four objects at a

time in parallel. If any of the image copies are on tape (either stacked or not

stacked), RECOVER determines the number of tape drives to use to optimize the

process.

LISTDEF RCVRLIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D

 INCLUDE INDEX DSN8810.XDEPT1

 INCLUDE INDEX DSN8810.XDEPT2

 INCLUDE INDEX DSN8810.XDEPT3

 INCLUDE TABLESPACE DSN8D81A.DSN8S81E

 INCLUDE INDEX DSN8810.XEMP1

 INCLUDE INDEX DSN8810.XEMP2

RECOVER LIST RCVRLIST TOLOGPOINT X’00000551BE7D’ PARALLEL(4)

//RECOVER EXEC DSNUPROC,SYSTEM=’DSN’

//SYSIN DD *

RECOVER PARALLEL(2) TAPEUNITS(4)

TABLESPACE DB1.TS8

TABLESPACE DB1.TS7

TABLESPACE DB1.TS6

TABLESPACE DB1.TS5

TABLESPACE DB1.TS4

TABLESPACE DB1.TS3

TABLESPACE DB1.TS2

TABLESPACE DB1.TS1

Figure 75. Example RECOVER control statement for a list of objects on tape

RECOVER

384 Utility Guide and Reference

|

Chapter 24. REORG INDEX

The online REORG INDEX utility reorganizes an index space to improve access

performance and reclaim fragmented space. You can specify the degree of access to

your data during reorganization, and you can collect inline statistics by using the

STATISTICS keyword.

You can determine when to run REORG INDEX by using the LEAFDISTLIMIT

catalog query option. If you specify the REPORTONLY option, REORG INDEX

produces a report that indicates whether if a REORG is recommended; in this case,

a REORG is not performed. These options are not available for indexes on the

directory.

For a diagram of REORG INDEX syntax and a description of available options, see

“Syntax and options of the REORG INDEX control statement” on page 386. For

detailed guidance on running this utility, see “Instructions for running REORG

INDEX” on page 398.

Output: The following list summarizes REORG INDEX output:

REORG specified Results

REORG INDEX Reorganizes the entire index (all parts if

partitioning).

REORG INDEX PART n Reorganizes PART n of a partitioning index or of a

data-partitioned secondary index

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v REORG privilege for the database

v DBADM or DBCTRL authority for the database

v SYSCTRL authority

v SYSADM authority

To execute this utility on an index space in the catalog or directory, you must use a

privilege set that includes one of the following authorities:

v REORG privilege for the DSNDB06 (catalog) database

v DBADM or DBCTRL authority for the DSNDB06 (catalog) database

v Installation SYSOPR authority

v SYSCTRL authority

v SYSADM or Installation SYSADM authority

While trying to reorganize an index space in the catalog or directory, a user with

authority other than installation SYSADM or installation SYSOPR might receive the

following message:

DSNT500I "resource unavailable"

This message is issued when the DSNDB06.SYSDBAUT or DSNDB06.SYSUSER

catalog table space or one of the indexes is unavailable. If this problem occurs, run

the REORG INDEX utility again, using an authorization ID with the installation

SYSADM or installation SYSOPR authority.

© Copyright IBM Corp. 1983, 2008 385

|
|

An ID with installation SYSOPR authority can also execute REORG INDEX, but

only on an index in the DSNDB06 database.

To run REORG INDEX STATISTICS REPORT YES, you must use a privilege set

that includes STATS privilege for the database and the SELECT privilege on the

catalog tables and tables for which statistics are to be gathered. REORG INDEX

STATISTICS REPORT ALL does not report values from tables that the user is not

authorized to see.

Execution phases of REORG INDEX: The REORG INDEX utility operates in these

phases:

Phase Description

UTILINIT Performs initialization and setup

UNLOAD Unloads index space and writes keys to a sequential data set.

BUILD Builds indexes. Updates index statistics.

LOG Processes log iteratively. Used only if you specify SHRLEVEL

CHANGE.

SWITCH Switches access between original and new copy of index space or

partition. Used only if you specify SHRLEVEL REFERENCE or

CHANGE.

UTILTERM Performs cleanup. For DB2-managed data sets and either

SHRLEVEL CHANGE or SHRLEVEL REFERENCE, the utility

deletes the original copy of the table space or index space.

The following topics provide additional information:

v “Syntax and options of the REORG INDEX control statement”

v “Instructions for running REORG INDEX” on page 398

v “Concurrency and compatibility for REORG INDEX” on page 409

v “Reviewing REORG INDEX output” on page 410

v “The effect of REORG INDEX on index version numbers” on page 411

v “Sample REORG INDEX control statements” on page 411

Syntax and options of the REORG INDEX control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

REORG INDEX

386 Utility Guide and Reference

Syntax diagram

�� REORG INDEX LIST listdef-name

index-name-spec

REUSE
 �

�
 SHRLEVEL NONE

FASTSWITCH YES

SHRLEVEL

REFERENCE

deadline-spec

drain-spec

CHANGE

deadline-spec

drain-spec

change-spec

FASTSWITCH NO

�

�

LEAFDISTLIMIT

integer

REPORTONLY

 UNLOAD CONTINUE

(1)

UNLOAD

PAUSE

ONLY

(2)

stats-spec

�

�
 WORKDDN (SYSUT1)

WORKDDN

(ddname)

PREFORMAT

��

Notes:

1 You cannot use UNLOAD PAUSE with the LIST option.

2 You cannot specify any options in stats-spec with the UNLOAD ONLY option.

index-name-spec:

�� INDEX index-name

creator-id.

INDEXSPACE

index-space-name

database-name.

PART

integer
 ��

deadline-spec:

��
 DEADLINE NONE

DEADLINE

timestamp

labeled-duration-expression

��

REORG INDEX

Chapter 24. REORG INDEX 387

||||||

drain-spec:

��

DRAIN_WAIT

integer

 RETRY 0

RETRY_DELAY

300

RETRY

integer

RETRY_DELAY

integer

��

change-spec:

��
 MAXRO 300

MAXRO

integer

DEFER

 DRAIN WRITERS

DRAIN

ALL

 LONGLOG CONTINUE

LONGLOG

TERM

DRAIN

 DELAY 1200

DELAY

integer

�

�
 TIMEOUT ABEND

TIMEOUT

TERM

��

labeled-duration-expression:

��

CURRENT_DATE

CURRENT_TIMESTAMP

�

+

constant

YEAR

−

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

��

REORG INDEX

388 Utility Guide and Reference

stats-spec:

��

STATISTICS
 REPORT NO

REPORT

YES

correlation-stats-spec

 UPDATE ALL

UPDATE

ACCESSPATH

SPACE

NONE

�

�
HISTORY

ALL

ACCESSPATH

SPACE

NONE

FORCEROLLUP

YES

NO

 ��

correlation-stats-spec:

��

KEYCARD

�

 FREQVAL NUMCOLS 1 COUNT 10

FREQVAL

NUMCOLS

integer

COUNT

integer

SORTDEVT

device-type

�

�
SORTNUM

integer
 ��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

INDEX creator-id.index-name

Specifies an index that is to be reorganized.

 creator-id. specifies the creator of the index and is optional. If you omit the

qualifier creator id, DB2 uses the user identifier for the utility job. index-name is

the qualified name of the index to copy. For an index, you can specify either an

index name or an index space name. Enclose the index name in quotation

marks if the name contains a blank.

INDEXSPACE database-name.index-space-name

Specifies the qualified name of the index space that is obtained from the

SYSIBM.SYSINDEXES table.

 database-name specifies the name of the database that is associated with the

index and is optional. The default is DSNDB04.

index-space-name specifies the qualified name of the index space that is to be

reorganized; the name is obtained from the SYSIBM.SYSINDEXES table.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. The INDEX

REORG INDEX

Chapter 24. REORG INDEX 389

|

|

||

||

|
|

|
|
|

|
|

|
|

keyword is required to differentiate this REORG INDEX LIST from REORG

TABLESPACE LIST. The utility allows one LIST keyword for each control

statement of REORG INDEX. The list must not contain any table spaces.

REORG INDEX is invoked once for each item in the list. For more information

about LISTDEF specifications, see Chapter 15, “LISTDEF,” on page 171.

 Do not specify STATISTICS INDEX index-name with REORG INDEX LIST. If

you want to collect inline statistics for a list of indexes, just specify

STATISTICS.

You cannot specify DSNUM and PART with LIST on any utility.

REUSE

When used with SHRLEVEL NONE, specifies that REORG is to logically reset

and reuse DB2-managed data sets without deleting and redefining them. If you

do not specify REUSE and SHRLEVEL NONE, DB2 deletes and redefines

DB2-managed data sets to reset them.

 If a data set has multiple extents and you use the REUSE parameter, the

extents are not released.

If you specify SHRLEVEL REFERENCE or CHANGE with REUSE, REUSE

does not apply

PART integer

Identifies a partition that is to be reorganized. You can reorganize a single

partition of a partitioning index. You cannot specify PART with LIST. integer

must be in the range from 1 to the number of partitions that are defined for

the partitioning index. The maximum is 4096.

 integer designates a single partition.

If you omit the PART keyword, the entire index is reorganized.

SHRLEVEL

Specifies the method for performing the reorganization. The parameter

following SHRLEVEL indicates the type of access that is to be allowed during

the RELOAD phase of REORG.

NONE

Specifies that reorganization is to operate by unloading from the area

that is being reorganized (while applications can read but cannot write

to the area), building into that area (while applications have no access),

and then allowing read-write access again. The default is NONE.

 If you specify NONE (explicitly or by default), you cannot specify the

following parameters:

v MAXRO

v LONGLOG

v DELAY

v DEADLINE

v DRAIN_WAIT

v RETRY

v RETRY_DELAY

REFERENCE

Specifies that reorganization is to operate as follows:

v Unload from the area that is being reorganized while applications

can read but cannot write to the area.

v Build into a shadow copy of that area while applications can read

but cannot write to the original copy.

REORG INDEX

390 Utility Guide and Reference

|

v Switch the future access of the applications from the original copy to

the shadow copy by exchanging the names of the data sets, and then

allowing read-write access again.

To determine which data sets are required when you execute REORG

SHRLEVEL REFERENCE, see “Data sets that REORG INDEX uses” on

page 399.

If you specify REFERENCE, you cannot specify the following

parameters:

v UNLOAD (Reorganization with REFERENCE always performs

UNLOAD CONTINUE.)

v MAXRO

v LONGLOG

v DELAY

CHANGE

Specifies that reorganization is to operate as follows:

v Unload from the area that is being reorganized while applications

can read and write to the area.

v Build into a shadow copy of that area while applications can read

and write to the original copy.

v Apply the log of the original copy to the shadow copy while

applications can read and usually write to the original copy.

v Switch the future access of the applications from the original copy to

the shadow copy by exchanging the names of the data sets, and then

allowing read-write access again.

To determine which data sets are required when you execute REORG

SHRLEVEL CHANGE, see “Data sets that REORG INDEX uses” on

page 399.

If you specify CHANGE, you cannot specify the UNLOAD parameter.

Reorganization with CHANGE always performs UNLOAD

CONTINUE.

DEADLINE

Specifies the deadline for the SWITCH phase to begin. If DB2 estimates that

the SWITCH phase does not begin by the deadline, DB2 issues the messages

that the DISPLAY UTILITY command issues and then terminates

reorganization.

NONE

Specifies that no deadline exists by which the switch phase of log

processing must begin. The default is NONE.

timestamp

Specifies the deadline for the switch phase of log processing to begin. This

deadline must not have already occurred when REORG is executed.

labeled-duration-expression

Calculates the deadline for the switch phase of log processing to begin. The

calculation is based on either CURRENT TIMESTAMP or CURRENT

DATE. You can add or subtract one or more constant values to specify the

deadline. This deadline must not have already occurred when REORG is

executed. CURRENT TIMESTAMP and CURRENT DATE are evaluated

once, when the REORG statement is first processed. If a list of objects is

specified, the same value will be in effect for all objects in the list.

REORG INDEX

Chapter 24. REORG INDEX 391

#
#
#

CURRENT_DATE

Specifies that the deadline is to be calculated based on the CURRENT

DATE.

CURRENT_TIMESTAMP

Specifies that the deadline is to be calculated based on the CURRENT

TIMESTAMP.

constant

Indicates a unit of time and is followed by one of the seven duration

keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS,

or MICROSECONDS. The singular form of these words is also

acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,

MICROSECOND.

 If REORG SHRLEVEL REFERENCE or SHRLEVEL CHANGE terminates

because of a DEADLINE specification, DB2 issues message DSNU374I with

reason code 2 but does not set a restrictive status.

DRAIN_WAIT integer

Specifies the number of seconds that the utility waits when draining for SQL

statements (inserts, updates, deletes, and selects). The specified time is the

aggregate time for all partitions of the index that is to be reorganized. This

value overrides the values specified by IRLMRWT and UTIMOUT, for these

SQL statements only. For operations like COMMANDS, the IRLMRWT and

UTIMOUT values are used. If the keyword is omitted or a value of 0 is

specified, the utility uses the IRLMRWT and UTIMOUT values for regular

draining. Valid values for integer are from 0 to 1800.

RETRY integer

Specifies the maximum number of retries that REORG is to attempt. Valid

values for integer are from 0 to 255. If the keyword is omitted, the utility does

not attempt a retry.

 Specifying RETRY can lead to increased processing costs and can result in

multiple or extended periods of read-only access.

RETRY_DELAY integer

Specifies the minimum duration, in seconds, between retries. Valid values

for integer are from 1 to 1800. The default is 300 seconds.

MAXRO integer

Specifies the maximum amount of time for the last iteration of log processing.

During that iteration, applications have read-only access.

 The actual execution time of the last iteration might exceed the specified

MAXRO value.

The ALTER UTILITY command can change the value of MAXRO.

integer integer is the number of seconds. Specifying a small positive value

reduces the length of the period of read-only access, but it might

increase the elapsed time for REORG to complete. If you specify a

huge positive value, the second iteration of log processing is probably

the last iteration. The default is 300 seconds.

DEFER

Specifies that the iterations of log processing with read-write access can

continue indefinitely. REORG never begins the final iteration with

read-only access, unless you change the MAXRO value by using the

ALTER UTILITY command.

REORG INDEX

392 Utility Guide and Reference

If you specify DEFER, you should also specify LONGLOG

CONTINUE.

If you specify DEFER, and DB2 determines that the actual time for an

iteration and the estimated time for the next iteration are both less than

5 seconds, DB2 adds a 5-second pause to the next iteration. This pause

reduces consumption of processor time. The first time this situation

occurs for a given execution of REORG, DB2 sends message DSNU362I

to the console. The message states that the number of log records that

must be processed is small and that the pause occurs. To change the

MAXRO value and thus cause REORG to finish, execute the ALTER

UTILITY command. DB2 adds the pause whenever the situation

occurs; however, DB2 sends the message only if 30 minutes have

elapsed since the last message was sent for a given execution of

REORG.

DRAIN

Specifies drain behavior at the end of the log phase after the MAXRO

threshold is reached and when the last iteration of the log is to be applied.

WRITERS

Specifies the current default action, in which DB2 drains only the

writers during the log phase after the MAXRO threshold is reached

and subsequently issues DRAIN ALL on entering the switch phase.

ALL Specifies that DB2 is to drain all readers and writers during the log

phase, after the MAXRO threshold is reached.

 Consider specifying DRAIN ALL if the following conditions are both

true:

v SQL update activity is high during the log phase.

v The default behavior results in a large number of -911 SQL error

messages.

LONGLOG

Specifies the action that DB2 is to perform, after sending a message to the

console, if the number of records that the next iteration of log process is to

process is not sufficiently lower than the number that the previous iterations

processed. This situation means that REORG INDEX is not reading the

application log quickly enough to keep pace with the writing of the application

log.

CONTINUE

Specifies that until the time on the JOB statement expires, DB2 is to

continue performing reorganization, including iterations of log

processing, if the estimated time to perform an iteration exceeds the

time that is specified with MAXRO.

 A value of DEFER for MAXRO and a value of CONTINUE for

LONGLOG together mean that REORG INDEX is to continue allowing

access to the original copy of the area that is being reorganized and

does not switch to the shadow copy. The user can execute the ALTER

UTILITY command with a large value for MAXRO when the switching

is desired.

The default is CONTINUE.

TERM Specifies that DB2 is to terminate reorganization after the delay

specified by the DELAY parameter.

REORG INDEX

Chapter 24. REORG INDEX 393

DRAIN

Specifies that DB2 is to drain the write claim class after the delay that

is specified by the DELAY parameter. This action forces the final

iteration of log processing to occur.

DELAY integer

Specifies the minimum interval between the time that REORG sends the

LONGLOG message to the console and the time REORG that performs the

action that is specified by the LONGLOG parameter.

 integer is the number of seconds. The default is 1200.

TIMEOUT

Specifies the action that is to be taken if the REORG INDEX utility gets a

time-out condition while trying to drain objects in either the log or switch

phases.

ABEND

Indicates that if a time-out condition occurs, DB2 is to leave the objects in a

UTRO or UTUT state.

TERM

Indicates that DB2 is to behave as follows if you specify the TERM option

and a time out condition occurs:

1. DB2 issues an implicit TERM UTILITY command, causing the utility to

end with a return code 8.

2. DB2 issues the DSNU590I and DSNU170I messages.

3. DB2 leaves the objects in a RW state.

FASTSWITCH

Specifies which switch methodology is to be used.

YES

Specifies that the fifth-level qualifier in the data set name is to alternate

between I0001 and J0001. This option is not allowed for the catalog

(DSNDB06) or directory (DSNDB01). The default is FASTSWITCH YES.

NO

Specifies that the SWITCH phase is to use IDCAMS RENAME.

LEAFDISTLIMIT integer

Specifies that the value for integer is to be compared to the LEAFDIST value

for the specified partitions of the specified index in SYSIBM.SYSINDEXPART. If

any LEAFDIST value exceeds the specified LEAFDISTLIMIT value, REORG is

performed or, if you specify REPORTONLY, recommended.

 The default value is 200.

REPORTONLY

Specifies that REORG is only to be recommended, not performed. REORG

produces a report with one of the following return codes:

1 No limit met; no REORG performed or recommended.

2 REORG performed or recommended.

UNLOAD

Specifies whether the utility job is to continue processing or terminate after the

data is unloaded.

CONTINUE

Specifies that, after the data has been unloaded, the utility is to

continue processing. The default is CONTINUE.

REORG INDEX

394 Utility Guide and Reference

PAUSE

Specifies that, after the data has been unloaded, processing is to end.

The utility stops and the RELOAD status is stored in SYSIBM.SYSUTIL

so that processing can be restarted with RELOAD RESTART(PHASE).

 This option is useful if you want to redefine data sets during

reorganization. For example, with a user-defined data set, you can:

v Run REORG with the UNLOAD PAUSE option.

v Redefine the data set using Access Method Services.

v Restart REORG by resubmitting the previous job and specifying

RESTART(PHASE).

If no records are unloaded during an UNLOAD PAUSE, when REORG

is restarted, the RELOAD and BUILD phases are bypassed.

You cannot use UNLOAD PAUSE if you specify the LIST option.

ONLY Specifies that, after the data has been unloaded, the utility job ends

and the status in SYSIBM.SYSUTIL that corresponds to this utility ID is

removed.

STATISTICS

Specifies that statistics for the index are to be collected; the statistics are either

reported or stored in the DB2 catalog. You cannot collect inline statistics for

indexes on the catalog and directory tables.

 Restriction: If you specify STATISTICS for encrypted data, DB2 might not

provide useful information on this data. If the utility is terminated with the

-TERM UTIL command after the STATISTICS have been updated in the

catalog, the statistics are not rolled back. A subsequent RUNSTATS utility may

be needed.

REPORT

Indicates whether a set of messages is to be generated to report the collected

statistics.

NO

Indicates that the set of messages is not to be sent as output to SYSPRINT.

 The default is NO.

YES

Indicates that the set of messages is to be sent as output to SYSPRINT. The

generated messages are dependent on the combination of keywords (such

as TABLESPACE, INDEX, TABLE, and COLUMN) that are specified with

the RUNSTATS utility. However, these messages are not dependent on the

specification of the UPDATE option. REPORT YES always generates a

report of SPACE and ACCESSPATH statistics.

KEYCARD

Indicates that all of the distinct values in all of the 1 to n key column

combinations for the specified indexes are to be collected. n is the number of

columns in the index.

FREQVAL

Specifies that frequent value statistics are to be collected. If you specify

FREQVAL, you must also specify NUMCOLS and COUNT.

NUMCOLS

Indicates the number of key columns to concatenate together when you

collect frequent values from the specified index. Specifying 3 means that

REORG INDEX

Chapter 24. REORG INDEX 395

#
#
#
#
#

DB2 is to collect frequent values on the concatenation of the first three key

columns. The default is 1, which means DB2 is to collect frequent values

on the first key column of the index.

COUNT

Indicates the number of frequent values that are to be collected. Specifying

15 means that DB2 is to collect 15 frequent values from the specified key

columns. The default is 10.

SORTDEVT device-type

Specifies the device type for temporary data sets that are to be dynamically

allocated by DFSORT. For device-type, specify any device that is valid on the

DYNALLOC parameter of the SORT or OPTION options for DFSORT. See

DFSORT Application Programming: Guide for more information.

SORTNUM integer

Specifies the number of temporary data sets that are to be dynamically

allocated when collecting statistics for a data-partitioned secondary index. If

you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and omit

SORTNUM, no value is passed to DFSORT; DFSORT uses its own default.

 integer is the number of temporary data sets that can range from 2 to 255.

You need at least two sort work data sets for each sort. The SORTNUM value

applies to each sort invocation in the utility. For example, if there are three

indexes, SORTKEYS is specified, there are no constraints limiting parallelism,

and SORTNUM is specified as 8, then a total of 24 sort work data sets will be

allocated for a job.

Each sort work data set consumes both above the line and below the link

virtual storage, so if you specify too high a value for SORTNUM, the utility

may decrease the degree of parallelism due to virtual storage constraints, and

possibly decreasing the degree down to one, meaning no parallelism.

Important: The SORTNUM keyword will not be considered if ZPARM

UTSORTAL is set to YES and IGNSORTN is set to YES.

UPDATE

Indicates whether the collected statistics are to be inserted into the catalog

tables. UPDATE also allows you to select statistics that are used for access path

selection or statistics that are used by database administrators.

ALL Indicates that all collected statistics are to be updated in the catalog.

The default is ALL.

ACCESSPATH

Indicates that only the catalog table columns that provide statistics that

are used for access path selection are to be updated.

SPACE

Indicates that only the catalog table columns that provide statistics to

help the database administrator to assess the status of a particular table

space or index are to be updated.

NONE

Indicates that catalog tables are not to be updated with the collected

statistics. This option is valid only when REPORT YES is specified.

HISTORY

Indicates that all catalog table inserts or updates to the catalog history tables

are to be recorded.

REORG INDEX

396 Utility Guide and Reference

|
|
|
|
|

|
|
|
|
|

|

#
#
#
#
#

#
#
#
#

#
#

|
|
|
|

||
|

|
|
|

|
|
|
|

|
|
|

|
|
|

The default is supplied by the specified value in STATISTICS HISTORY on

panel DSNTIPO.

ALL Indicates that all collected statistics are to be updated in the catalog

history tables.

ACCESSPATH

Indicates that only the catalog history table columns that provide

statistics used for access path selection are to be updated.

SPACE

Indicates that only space-related catalog statistics are to be updated in

catalog history tables.

NONE

Indicates that catalog history tables are not to be updated with the

collected statistics.

FORCEROLLUP

Specifies whether aggregation or rollup of statistics are to take place when

RUNSTATS is executed even when some parts are empty. This option enables

the optimizer to select the best access path.

YES Indicates that forced aggregation or rollup processing is to be done,

even though some parts might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is

available for all parts.

If data is not available for all parts and if the installation value for STATISTICS

ROLLUP on panel DSNTIPO is set to NO, DSNU623I message is issued.

WORKDDN(ddname)

ddname specifies the DD statement for the unload data set.

ddname

Is the DD name of the temporary work file for build input. The default

is SYSUT1.

 The WORKDDN keyword specifies either a DD name or a TEMPLATE

name from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the

current job step and a TEMPLATE name, the utility uses DD name. For

more information about TEMPLATE specifications, see Chapter 31,

“TEMPLATE,” on page 587.

 Even though WORKDDN is an optional keyword, a DD statement for the

unload output data set is required in the JCL. If you do not specify

WORKDDN, or if you specify it without ddname, the JCL must have a DD

statement with the name SYSUT1. If ddname is given, you must provide a DD

statement or TEMPLATE that matches the DD name.

PREFORMAT

Specifies that the remaining pages are to be preformatted up to the

high-allocated RBA in the index space. The preformatting occurs after the

index is built.

 PREFORMAT can operate on an entire index space, or on a partition of a

partitioned index space.

PREFORMAT is ignored if you specify UNLOAD ONLY.

REORG INDEX

Chapter 24. REORG INDEX 397

|
|

||
|

|
|
|

|
|
|

|
|
|

For more information about PREFORMAT, see “Improving performance with

LOAD or REORG PREFORMAT” on page 251.

Instructions for running REORG INDEX

To run REORG INDEX, you must:

1. Read “Before running REORG INDEX” in this section.

2. Prepare the necessary data sets, as described in “Data sets that REORG INDEX

uses” on page 399.

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

REORG INDEX, see “Sample REORG INDEX control statements” on page 411.)

4. Prepare a utility control statement that specifies the options for the tasks you

want to perform, as described in “Instructions for specific tasks” on page 402.

5. Check the compatibility table in “Concurrency and compatibility for REORG

INDEX” on page 409 if you want to run other jobs concurrently on the same

target objects.

6. Plan for restart if the REORG job doesn’t complete, as described in

“Terminating or restarting REORG INDEX” on page 407.

7. Run REORG by one of the methods that are described inChapter 3, “Invoking

DB2 online utilities,” on page 15.

Before running REORG INDEX

Region size: The recommended minimum region size is 4096 KB.

Restart-pending status and SHRLEVEL CHANGE: If you specify SHRLEVEL

CHANGE, REORG drains the write claim class near the end of REORG processing.

In a data sharing environment, if a data sharing member fails and that member has

restart-pending status for a target page set, the drain can fail. You must postpone

running REORG with SHRLEVEL CHANGE until all restart-pending statuses have

been removed. You can use the DISPLAY GROUP command to determine whether

a member’s status is FAILED. You can use the DISPLAY DATABASE command

with the LOCKS option to determine if locks are held.

Data sharing considerations for REORG: You must not execute REORG on an

object if another DB2 subsystem holds retained locks on the object or has

long-running noncommitting applications that use the object. You can use the

DISPLAY GROUP command to determine whether a member’s status is ″FAILED.″

You can use the DISPLAY DATABASE command with the LOCKS option to

determine if locks are held.

RECOVER-pending and REBUILD-pending status: You cannot reorganize an index

if any partition of the index is in the RECOVER-pending status or in the

REBUILD-pending status. Similarly, you cannot reorganize a single index partition

if it is in the RECOVER-pending status or in the REBUILD-pending status.

The RECOVER-pending restrictive state is:

RECP The index space or partition is in a RECOVER-pending status. A single

logical partition in RECP does not restrict access to other logical partitions

that are not in RECP. You can reset RECP by recovering only the single

logical partition.

The REBUILD-pending restrictive states are:

REORG INDEX

398 Utility Guide and Reference

RBDP REBUILD-pending status is set on a physical or logical index partition. The

individual physical or logical partition is inaccessible; you must rebuild the

object using the REBUILD INDEX utility.

PSRBD

Page set REBUILD-pending (PSRBD) is set for nonpartitioning indexes. The

entire index space is inaccessible; you must rebuild the object by using the

REBUILD INDEX utility.

RBDP*

A REBUILD-pending status is set only on logical partitions of

nonpartitioning indexes. The entire index is inaccessible, but it is made

available again when you rebuild the affected partitions by using the

REBUILD INDEX utility.

For information about resetting the REBUILD-pending and RECOVER-pending

states, see Table 170 on page 853 and Table 171 on page 853.

CHECK-pending status: You cannot reorganize an index when the data is in the

CHECK-pending status. See Chapter 8, “CHECK DATA,” on page 57 for more

information about resetting the CHECK-pending status.

Data sets that REORG INDEX uses

Table 63 lists the data sets that REORG uses. The table lists the DD name that is

used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 63. Data sets that REORG INDEX uses

Data set Description Required?

SYSIN Input data set that contain the utility control

statement.

Yes

SYSPRINT Output data set for messages. Yes

STPRIN01 A data set that contains messages from

DFSORT (usually, SYSOUT or DUMMY).

This data set is used when frequency

statistics are collected on DPSI’s or when

TABLESPACE TABLE COLGROUP

FREQVAL is specified

No

1

Work data set A temporary data set for unload output and

build input. Specify the DD or template

name with the WORKDDN option of the

utility control statement. The default DD

name is SYSUT1.

Yes

Sort work data sets Temporary data sets for sort input and

output when collecting inline statistics on at

least one data-partitioned secondary index.

The DD names have the form ST01WKnn.

No1, 2, 3

REORG INDEX

Chapter 24. REORG INDEX 399

#
#
#
#
#
#

|#
#
#
#

Table 63. Data sets that REORG INDEX uses (continued)

Data set Description Required?

Notes:

1. Required when collecting inline statistics on at least one data-partitioned secondary

index.

2. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate the

data set. Otherwise, DFSORT dynamically allocates the temporary data set.

3. It is recommended that you use dynamic allocation by specifying SORTDEVT in the

utility statement because dynamic allocation reduces the maintenance required of the

utility job JCL.

The following objects are named in the utility control statement and do not require

DD statements in the JCL:

Index Object to be reorganized.

Calculating the size of the work data sets: When reorganizing an index space, you

need a non-DB2 sequential work data set. That data set is identified by the DD

statement that is named in the WORKDDN option. During the UNLOAD phase,

the index keys and the data pointers are unloaded to the work data set. This data

set is used to build the index. It is required only during the execution of REORG.

Use the following formula to calculate the approximate size (in bytes) of the

WORKDDN data set SYSUT1:

size = number of keys x (key length + 8)

where

number of keys = #tablerows

Calculating the size of the sort work data sets: To calculate the approximate size

(in bytes) of the ST01WKnn data set, use the following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length

Maximum record length of the SYSCOLDISTSTATS record that is processed

when collecting frequency statistics (You can obtain this value from the

RECLENGTH column in SYSTABLES.)

numcols

Number of key columns to concatenate when you collect frequent values

from the specified index.

count Number of frequent values that DB2 is to collect.

DB2 utilities uses DFSORT to perform sorts. Sort work data sets cannot span

volumes. Smaller volumes require more sort work data sets to sort the same

amount of data; therefore, large volume sizes can reduce the number of needed

sort work data sets. It is recommended that at least 1.2 times the amount of data to

be sorted be provided in sort work data sets on disk. For more information about

DFSORT, see DFSORT Application Programming Guide.

REORG INDEX

400 Utility Guide and Reference

|
|
|
|
|
#
#
#

|

|
|

|

|

|
|
|
|

|
|
|

||

#
#
#
#
#
#

Shadow data sets

When you execute the REORG INDEX utility with SHRLEVEL REFERENCE or

SHRLEVEL CHANGE, the utility uses shadow data sets.

For user-managed data sets, you must preallocate the shadow data sets before you

execute REORG INDEX with SHRLEVEL REFERENCE or SHRLEVEL CHANGE. If

an index or partitioned index resides in DB2-managed data sets and shadow data

sets do not already exist when you execute REORG INDEX, DB2 creates the

shadow data sets. At the end of REORG processing, the DB2-managed shadow

data sets are deleted. You can create the shadows ahead of time for DB2-managed

data sets.

Shadow data set names: Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y0001.Lnnn

In the preceding name, the variables have the following meanings:

variable meaning

catname The VSAM catalog name or alias

x C or D

dbname Database name

psname Table space name or index name

y I or J

Lnnn Partition identifier. Use one of the following values:

v A001 through A999 for partitions 1 through 999

v B000 through B999 for partitions 1000 through 1999

v C000 through C999 for partitions 2000 through 2999

v D000 through D999 for partitions 3000 through 3999

v E000 through E996 for partitions 4000 through 4096

To determine the names of existing shadow data sets, execute one of the following

queries against the SYSTABLEPART or SYSINDEXPART catalog tables:

SELECT DBNAME, TSNAME, IPREFIX

 FROM SYSIBM.SYSTABLEPART

 WHERE DBNAME = ’dbname’ AND TSNAME = ’psname’;

SELECT DBNAME, IXNAME, IPREFIX

 FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y

 WHERE X.NAME = Y.IXNAME AND X.CREATOR = Y.IXCREATOR

 AND X.DBNAME = ’dbname’ AND X.INDEXSPACE = ’psname’;

Defining shadow data sets: Consider the following actions when you preallocate

the data sets:

v Allocate the shadow data sets according to the rules for user-managed data sets.

v Define the shadow data sets as LINEAR.

v Use SHAREOPTIONS(3,3).

v Define the shadow data sets as EA-enabled if the original table space or index

space is EA-enabled.

v Allocate the shadow data sets on the volumes that are defined in the storage

group for the original table space or index space.

REORG INDEX

Chapter 24. REORG INDEX 401

|
|

|
|
|

|
|
|
|

If you specify a secondary space quantity, DB2 does not use it. Instead, DB2 uses

the SECQTY value for the table space or index space.

Recommendation: Use the MODEL option, which causes the new shadow data set

to be created like the original data set. This method is shown in the following

example:

DEFINE CLUSTER +

 (NAME(’catname.DSNDBC.dbname.psname.x0001.L001’) +

 MODEL(’catname.DSNDBC.dbname.psname.y0001.L001’)) +

 DATA +

 (NAME(’catname.DSNDBD.dbname.psname.x0001.L001’) +

 MODEL(’catname.DSNDBD.dbname.psname.y0001.L001’))

DB2 treats preallocated shadow data sets as DB2-managed data sets.

Creating shadow data sets for indexes: When you preallocate data sets for indexes,

create the shadow data sets as follows:

v Create shadow data sets for the partition of the table space and the

corresponding partition in each partitioning index and data-partitioned

secondary index.

v Create a shadow data set for logical partitions of nonpartitioned secondary

indexes.

Use the same naming scheme for these index data sets as you use for other data

sets that are associated with the base index, except use J0001 instead of I0001. For

more information about this naming scheme, see the information about the shadow

data set naming convention at the beginning of this section.

Estimating the size of shadow data sets: If you do not change the value of

FREEPAGE or PCTFREE, the amount of space that is required for a shadow data

set is approximately comparable to the amount of space that is required for the

original data set. For more information about calculating the size of data sets, see

“Data sets that REORG INDEX uses” on page 399.

Creating the control statement

Create the utility control statement for the REORG INDEX job. See “Syntax and

options of the REORG INDEX control statement” on page 386 for REORG syntax

and option descriptions. See “Sample REORG INDEX control statements” on page

411 for examples of REORG usage.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Determining when an index requires reorganization” on page 403

 “Using the LEAFDISTLIMIT and REPORTONLY options to determine when

reorganization is needed” on page 403

 “Specifying access with SHRLEVEL” on page 404

 “Considerations for fallback recovery” on page 405

 “Changing data set definitions” on page 405

 “Temporarily interrupting REORG” on page 405

 “Improving performance” on page 406

 “Improving performance with LOAD or REORG PREFORMAT” on page 251

 “The effect of LOAD on index version numbers” on page 270

REORG INDEX

402 Utility Guide and Reference

|

|
|

|
|
|

|
|

|
|
|
|

Determining when an index requires reorganization

Product-sensitive Programming Interface

Use the following query to identify user-created indexes and DB2 catalog indexes

that you should consider reorganizing with the REORG INDEX utility:

EXEC SQL

SELECT IXNAME, IXCREATOR

 FROM SYSIBM.SYSINDEXPART

 WHERE LEAFDIST > 200

ENDEXEC

End of Product-sensitive Programming Interface

 Be aware that using a LEAFDIST value of more than 200 as an indicator of a

disorganized index is merely a rough guideline for general cases. This guidance is

not absolute. In some cases, 200 is an acceptable value for LEAFDIST. For example,

with FREEPAGE 0 and index page splitting, the LEAFDIST value can climb

sharply. In this case, a LEAFDIST value that exceeds 200 can be acceptable.

Product-sensitive Programming Interface

After you run RUNSTATS, issuing the following SQL statement provides the

average distance (multiplied by 100) between successive leaf pages during

sequential access of the ZZZ index.

EXEC SQL

SELECT LEAFDIST

 FROM SYSIBM.SYSINDEXPART

 WHERE IXCREATOR = 'index_creator_name'

 AND IXNAME = 'index_name'

ENDEXEC

End of Product-sensitive Programming Interface

An increase in the LEAFDIST value over time probably indicates that the index

needs to be reorganized. The optimal value of the LEAFDIST catalog column is

zero. However, immediately after you run the REORG and RUNSTATS utilities,

LEAFDIST might be greater than zero as a result of empty pages for FREEPAGE

and non-leaf pages.

For specific REORG threshold numbers, see Part 5 of DB2 Administration Guide.

Using the LEAFDISTLIMIT and REPORTONLY options to

determine when reorganization is needed

Product-sensitive Programming Interface

You can determine when to run REORG for indexes by using the LEAFDISTLIMIT

option. If you specify the REPORTONLY option, REORG produces a report that

indicates whether a REORG is recommended; a REORG is not performed.

When you specify the LEAFDISTLIMIT option with the REPORTONLY option,

REORG produces a report with one of the following return codes:

1 No limit met; no REORG performed or recommended.

2 REORG performed or recommended.

REORG INDEX

Chapter 24. REORG INDEX 403

#

#
#

Alternatively, information from the SYSINDEXPART catalog table can tell you

which indexes qualify for reorganization.

End of Product-sensitive Programming Interface

Specifying access with SHRLEVEL

For reorganizing an index or a partition of a index, the SHRLEVEL option lets you

choose the level of access that you have to your data during reorganization:

v REORG with SHRLEVEL NONE, the default, reloads the reorganized data into

the original area that is being reorganized. Applications have read-only access

during unloading and no access during reloading. SHRLEVEL NONE is the only

access level that resets REORG-pending status.

v REORG with SHRLEVEL REFERENCE reloads the reorganized data into a new

(shadow) copy of the area that is being reorganized. Near the end of

reorganization, DB2 switches applications’ future access from the original to the

shadow copy. For SHRLEVEL REFERENCE, applications have read-only access

during unloading and reloading, and a brief period of no access during

switching.

v REORG with SHRLEVEL CHANGE reloads the reorganized data into a shadow

copy of the area that is being reorganized. Applications can read from and write

to the original area, and DB2 records the writing in the log. DB2 then reads the

log and applies it to the shadow copy to bring the shadow copy up to date. This

step executes iteratively, with each iteration processing a sequence of log records.

Near the end of reorganization, DB2 switches applications’ future access from

the original to the shadow copy. Applications have read-write access during

unloading and reloading, a brief period of read-only access during the last

iteration of log processing, and a brief period of no access during switching.

Log processing with SHRLEVEL CHANGE: When you specify SHRLEVEL

CHANGE, DB2 processes the log to update the shadow copy. This step executes

iteratively. The first iteration processes the log records that accumulated during the

previous iteration. The iterations continue until one of these conditions is met:

v DB2 estimates that the time to perform the log processing in the next iteration

will be less than or equal to the time that is specified by MAXRO. If this

condition is met, the next iteration is the last.

v DB2 estimates that the switch phase will not start by the deadline specified by

DEADLINE. If this condition is met, DB2 terminates reorganization.

v The number of log records that the next iteration will process is not sufficiently

lower than the number of log records that were processed in the previous

iteration. If this condition is met but the first two conditions are not, DB2 sends

message DSNU377I to the console. DB2 continues log processing for the length

of time that is specified by DELAY and then performs the action specified by

LONGLOG.

Operator actions: LONGLOG specifies the action that DB2 is to perform if log

processing is not occurring quickly enough. See “Option descriptions” on page 389

for a description of the LONGLOG options. If the operator does not respond to the

console message DSNU377I, the LONGLOG option automatically goes into effect.

You can take one of the following actions:

v Execute the START DATABASE(db) SPACENAM(ts)... ACCESS(RO) command

and the QUIESCE utility to drain the write claim class. DB2 performs the last

iteration, if MAXRO is not DEFER. After the QUIESCE, you should also execute

the ALTER UTILITY command, even if you do not change any REORG

parameters.

REORG INDEX

404 Utility Guide and Reference

v Execute the START DATABASE(db) SPACENAM(ts)... ACCESS(RO) command

and the QUIESCE utility to drain the write claim class. Then, after

reorganization has made some progress, execute the START DATABASE(db)

SPACENAM(ts)... ACCESS(RW) command. This action increases the likelihood

that log processing can improve. After the QUIESCE, you should also execute

the ALTER UTILITY command, even if you do not change any REORG

parameters.

v Execute the ALTER UTILITY command to change the value of MAXRO.

Changing it to a huge positive value, such as 9999999, causes the next iteration

to be the last iteration.

v Execute the ALTER UTILITY command to change the value of LONGLOG.

v Execute the TERM UTILITY command to terminate reorganization.

v Adjust the amount of buffer space that is allocated to reorganization and to

applications. This adjustment can increase the likelihood that log processing

improve after adjusting the space, you should also execute the ALTER UTILITY

command, even if you do not change any REORG parameters.

v Adjust the scheduling priorities of reorganization and applications. This

adjustment can increase the likelihood that log processing improve. After

adjusting the priorities, you should also execute the ALTER UTILITY command,

even if you do not change any REORG parameters.

DB2 does not take the action specified in the LONGLOG phrase if any one of these

events occurs before the delay expires:

v An ALTER UTILITY command is issued.

v A TERM UTILITY command is issued.

v DB2 estimates that the time to perform the next iteration is likely to be less than

or equal to the time specified on the MAXRO keyword.

v REORG terminates for any reason (including the deadline).

Considerations for fallback recovery

Successful REORG INDEX processing inserts a SYSCOPY row with ICTYPE=’W’

for an index that was defined with COPY YES. REORG also places a reorganized

index in informational COPY-pending status. You should take a full image copy of

the index after the REORG job completes to create a valid point of recovery.

Changing data set definitions

If the index space is defined by storage groups, space allocation is handled by DB2

and data set definitions cannot be altered during the reorganization process. DB2

deletes and redefines the necessary data sets to reorganize the object.

For REORG with SHRLEVEL REFERENCE or CHANGE, you can use the ALTER

STOGROUP command to change the characteristics of a DB2-managed data set.

You can effectively change the characteristics of a user-managed data set by

specifying the desired new characteristics when creating the shadow data set; see

“Shadow data sets” on page 401 for more information about shadow data sets. In

particular, placing the original and shadow data sets on different disk volumes

might reduce contention and thus improve the performance of REORG and the

performance of applications during REORG execution.

Temporarily interrupting REORG

You can temporarily pause REORG. If you specify UNLOAD PAUSE, REORG

pauses after unloading the index space into the work data set. The job completes

with return code 4. You can restart REORG by using the phase restart or current

restart. The REORG statement must not be altered.

REORG INDEX

Chapter 24. REORG INDEX 405

The SYSIBM.SYSUTIL record for the REORG INDEX utility remains in ″stopped″

status until REORG is restarted or terminated.

While REORG is interrupted by PAUSE, you can re-define the table space

attributes for user defined table spaces. PAUSE is not required for

STOGROUP-defined table spaces. Attribute changes are done automatically by a

REORG following an ALTER INDEX.

Improving performance

To improve REORG performance, run REORG concurrently on separate partitions

of a partitioned index space. The processor time for running REORG INDEX on

partitions of a partitioned index is approximately the same as the time for running

a single REORG index job. The elapsed time is a fraction of the time for running a

single REORG job on the entire index

When to use SHRLEVEL CHANGE: Schedule REORG with SHRLEVEL CHANGE

when the rate of writing is low and transactions are short. Avoid scheduling

REORG with SHRLEVEL CHANGE when low-tolerance applications are executing.

When to use DRAIN_WAIT: The DRAIN_WAIT option provides improved control

over the time online REORG waits for drains. Also, because the DRAIN_WAIT is

the aggregate time that online REORG is to wait to perform a drain on a table

space and associated indexes, the length of drains is more predictable than it is

when each partition and index has its own individual waiting-time limit.

By specifying a short delay time (less than the system timeout value, IRLMRWT),

you can reduce the impact on applications by reducing time-outs. You can use the

RETRY option to give the online REORG INDEX utility chances to complete

successfully. If you do not want to use RETRY processing, you can still use

DRAIN_WAIT to set a specific and more consistent limit on the length of drains.

RETRY allows an online REORG that is unable to drain the objects it requires to

try again after a set period (RETRY_DELAY). If the drain fails in the SWITCH

phase, the objects remain in their original state (read-only mode for SHRLEVEL

REFERENCE or read-write mode for SHRLEVEL CHANGE). Likewise, objects will

remain in their original state if the drain fails in the LOG phase.

Because application SQL statements can queue behind any unsuccessful drain that

the online REORG has tried, define a reasonable delay before you retry to allow

this work to complete; the default is 5 minutes.

When the default DRAIN WRITERS is used with SHRLEVEL CHANGE and

RETRY, multiple read-only log iterations can occur. Because online REORG can

have to do more work when RETRY is specified, multiple or extended periods of

restricted access might occur. Applications that run with REORG must perform

frequent commits. During the interval between retries, the utility is still active;

consequently, other utility activity against the table space and indexes is restricted.

When you perform a table space REORG and specify both RETRY and SHRLEVEL

CHANGE, the size of the copy that REORG takes might increase.

Recommendation: Run online REORG during light periods of activity on the table

space or index.

REORG INDEX

406 Utility Guide and Reference

Terminating or restarting REORG INDEX

This section contains information about how to terminate and restart REORG

INDEX.

Terminating REORG INDEX

If you terminate REORG with the TERM UTILITY command during the UNLOAD

phase, objects have not yet been changed, and you can rerun the job.

If you terminate REORG with the TERM UTILITY command during the build

phase, the behavior depends on the SHRLEVEL option:

v For SHRLEVEL NONE, the index is left in RECOVER-pending status. After you

recover the index, rerun the REORG job.

v For SHRLEVEL REFERENCE or CHANGE, the index keys are reloaded into a

shadow index, so the original index has not been affected by REORG. You can

rerun the job.

If you terminate REORG with the TERM UTILITY command during the log phase,

the index keys are reloaded into a shadow index, so the original index has not

been affected by REORG. You can rerun the job.

If you terminate REORG with the TERM UTILITY command during the switch

phase, all data sets that were renamed to their shadow counterparts are renamed

back, so the objects are left in their original state. You can rerun the job. If a

problem occurs in renaming to the original data sets, the objects are left in

RECOVER-pending status. You must recover the index.

The REORG-pending status is not reset until the UTILTERM execution phase. If the

REORG INDEX utility abnormally terminates or is terminated, the objects are left

in RECOVER-pending status. See Appendix C, “Advisory or restrictive states,” on

page 849 for information about resetting either status.

Table 64 lists any restrictive states that are set based on the phase in which REORG

INDEX terminated.

 Table 64. Restrictive states set based on the phase in which REORG INDEX terminated

Phase Effect on restrictive status

UNLOAD No effect.

BUILD Sets REBUILD-pending (RBDP) status at the beginning of the build

phase, and resets RBDP at the end of the phase. SHRLEVEL NONE

places an index that was defined with the COPY YES attribute in

RECOVER pending (RECP) status.

LOG No effect.

SWITCH Under certain conditions, if TERM UTILITY is issued, it must complete

successfully; otherwise, objects might be placed in RECP status or RBDP

status. For SHRLEVEL REFERENCE or CHANGE, sets the RECP status

if the index was defined with the COPY YES attribute at the beginning

of the switch phase, and resets RECP at the end of the phase. If the

index was defined with COPY NO, this phase sets the index in RBDP

status at the beginning of the phase, and resets RBDP at the end of the

phase.

Restarting REORG INDEX

Table 65 on page 408 provides information about restarting REORG INDEX.

REORG INDEX

Chapter 24. REORG INDEX 407

If you restart REORG in the outlined phase, it re-executes from the beginning of

the phase. DB2 always uses RESTART(PHASE) by default unless you restart the

job in the UNLOAD phase. In this case, DB2 uses RESTART(CURRENT) by

default.

If REORG abnormally terminates or a system failure occurs while it is in the

UTILTERM phase, you must restart the job with RESTART(PHASE).

For each phase of REORG and for each type of REORG INDEX (with SHRLEVEL

NONE, with SHRLEVEL REFERENCE, and with SHRLEVEL CHANGE), the table

indicates the types of restart that are allowed (CURRENT and PHASE). None

indicates that no restart is allowed. The ″Data sets required″ column lists the data

sets that must exist to perform the specified type of restart in the specified phase.

 Table 65. REORG INDEX utility restart information

Phase

Type of restart

allowed for

SHRLEVEL NONE

Type of restart

allowed for

SHRLEVEL

REFERENCE

Type of restart

allowed for

SHRLEVEL

CHANGE Data sets required Notes

UNLOAD CURRENT, PHASE CURRENT, PHASE None SYSUT1

BUILD CURRENT, PHASE CURRENT, PHASE None SYSUT1 1

LOG Phase does not occur Phase does not

occur

None None

SWITCH Phase does not occur CURRENT, PHASE CURRENT, PHASE originals and shadows 1

Notes:

1. You can restart the utility with either RESTART or RESTART(PHASE). However, because this phase does not take

checkpoints, RESTART always re-executes from the beginning of the phase.

If you restart a REORG STATISTICS job that was stopped in the BUILD phase by

using RESTART CURRENT, inline statistics collection does not occur. To update

catalog statistics, run the RUNSTATS utility after the restarted job completes.

Restarting a REORG STATISTICS job with RESTART(PHASE) is conditional after

executing UNLOAD PAUSE. To determine if catalog table statistics are to be

updated when you restart a REORG STATISTICS job, see Table 66. This table lists

whether or not statistics are updated based on the execution phase and whether

the job is restarted with RESTART(CURRENT) or RESTART(PHASE).

 Table 66. Whether statistics are updated when REORG INDEX STATISTICS jobs are

restarted in certain phases

Phase RESTART CURRENT RESTART PHASE

UTILINIT No Yes

UNLOAD No Yes

BUILD No Yes

For instructions on restarting a utility job, see Chapter 3, “Invoking DB2 online

utilities,” on page 15.

Restarting REORG after an out-of-space condition: See “Restarting after the

output data set is full” on page 43 for guidance in restarting REORG from the last

commit point after receiving an out-of-space condition.

REORG INDEX

408 Utility Guide and Reference

|
|
|
|

Concurrency and compatibility for REORG INDEX

DB2 treats individual index partitions as distinct target objects. Utilities that

operate on different partitions of the same index space are compatible.

Table 67 shows which claim classes REORG INDEX drains and any restrictive state

the utility sets on the target object. The target is an index or index partition.

 Table 67. Claim classes of REORG INDEX operations

Phase

REORG INDEX SHRLEVEL

NONE

REORG INDEX

SHRLEVEL

REFERENCE

REORG INDEX SHRLEVEL

CHANGE

UNLOAD DW/UTRO DW/UTRO CR/UTRW

BUILD DA/UTUT none none

Last iteration of LOG n/a DA/UTUT1 DW/UTRO

SWITCH n/a DA/UTUT DA/UTUT

Legend:

v CR: Claim the read claim class.

v DA: Drain all claim classes, no concurrent SQL access.

v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.

v DW: Drain the write claim class, concurrent access for SQL readers.

v UTRO: Utility restrictive state, read only access allowed.

v UTUT: Utility restrictive state, exclusive control.

v none: Any claim, drain, or restrictive state for this object does not change in this phase.

Notes:

1. Applicable if you specified DRAIN ALL.

Table 68 shows which utilities can run concurrently with REORG INDEX on the

same target object. The target object can be an index space or a partition. If

compatibility depends on particular options of a utility, that is also shown. REORG

INDEX does not set a utility restrictive state if the target object is an index on

DSNDB01.SYSUTILX.

 Table 68. Compatibility of REORG INDEX with other utilities

Action

REORG INDEX SHRLEVEL

NONE, REFERENCE, or CHANGE

CHECK DATA No

CHECK INDEX No

CHECK LOB Yes

COPY INDEXSPACE No

COPY TABLESPACE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE No

REBUILD INDEX No

RECOVER INDEX No

REORG INDEX

Chapter 24. REORG INDEX 409

Table 68. Compatibility of REORG INDEX with other utilities (continued)

Action

REORG INDEX SHRLEVEL

NONE, REFERENCE, or CHANGE

RECOVER INDEXSPACE No

RECOVER TABLESPACE (with no options) Yes

RECOVER TABLESPACE ERROR RANGE Yes

RECOVER TABLESPACE TOCOPY or TORBA No

REORG INDEX SHRLEVEL NONE, REFERENCE, or

CHANGE

No

REORG TABLESPACE SHRLEVEL NONE UNLOAD

CONTINUE or PAUSE, REORG SHRLEVEL

REFERENCE, or REORG SHRLEVEL CHANGE

No

REORG TABLESPACE SHRLEVEL NONE UNLOAD

ONLY or EXTERNAL with cluster index

No

REORG TABLESPACE SHRLEVEL NONE UNLOAD

ONLY or EXTERNAL without cluster index

Yes

REPAIR LOCATE INDEX PAGE REPLACE No

REPAIR LOCATE KEY No

REPAIR LOCATE RID DELETE No

REPAIR LOCATE RID DUMP, VERIFY, or REPLACE Yes

REPAIR LOCATE TABLESPACE PAGE REPLACE Yes

REPORT Yes

RUNSTATS INDEX No

RUNSTATS TABLESPACE Yes

STOSPACE Yes

UNLOAD Yes

To run on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02, REORG INDEX must be the

only utility in the job step and the only utility that is running in the DB2

subsystem.

Reviewing REORG INDEX output

The output from REORG INDEX consists of a reorganized index or index partition.

Table 69 summarizes the results of REORG INDEX based upon what you specified.

 Table 69. Summary of the results of REORG INDEX

Specification Results

REORG INDEX Entire index (all partitions of a partitioned index)

REORG INDEX PART n Part n of partitioned index

When reorganizing an index, REORG leaves free pages and free space on each

page in accordance with the current values of the FREEPAGE and PCTFREE

parameters. (You can set those values by using the CREATE INDEX or ALTER

INDEX statement.) REORG leaves one free page after reaching the FREEPAGE

limit for each table in the index space.

REORG INDEX

410 Utility Guide and Reference

|

Catalog updates: REORG INDEX updates SYSINDEXPART OLDEST_VERSION

and SYSINDEXES OLDEST_VERSION (if applicable).

The effect of REORG INDEX on index version numbers

DB2 stores the range of used index version numbers in the OLDEST_VERSION

and CURRENT_VERSION columns of the following catalog tables:

v SYSIBM.SYSINDEXES

v SYSIBM.SYSINDEXPART

The OLDEST_VERSION column contains the oldest used version number, and the

CURRENT_VERSION column contains the current version number.

When you run REORG INDEX, the utility updates this range of used version

numbers for indexes that are defined with the COPY NO attribute. REORG INDEX

sets the OLDEST_VERSION column to the current version number, which indicates

that only one version is active; DB2 can then reuse all of the other version

numbers.

Recycling of version numbers is required when all of the version numbers are

being used. All version numbers are being used when one of the following

situations is true:

v The value in the CURRENT_VERSION column is one less than the value in the

OLDEST_VERSION column.

v The value in the CURRENT_VERSION column is 15 and the value in the

OLDEST_VERSION column is 0 or 1.

You can also run LOAD REPLACE, REBUILD INDEX, or REORG TABLESPACE to

recycle version numbers for indexes that are defined with the COPY NO attribute.

To recycle version numbers for indexes that are defined with the COPY YES

attribute or for table spaces, run MODIFY RECOVERY.

For more information about versions and how they are used by DB2, see Part 2 of

DB2 Administration Guide.

Sample REORG INDEX control statements

Example 1: Reorganizing an index. The following control statement specifies that

the REORG INDEX utility is to reorganize index XMSGTXT1. The UNLOAD

PAUSE option indicates that after the data has been unloaded, the utility is to stop.

Processing can be restarted in the RELOAD phase. This option is useful if you

want to redefine data sets during reorganization.

REORG INDEX DSN8810.XMSGTXT1

 UNLOAD PAUSE

Example 2: Collecting inline statistics while reorganizing an index. The following

control statement specifies that REORG INDEX is to collect statistics for index

XEMPL1 while reorganizing that index. The SHRLEVEL REFERENCE option

indicates that during this processing, only read access is allowed on the areas that

are being reorganized

REORG INDEX DSN8810.XEMPL1

 SHRLEVEL REFERENCE STATISTICS

Example 3: Updating access path statistics in the catalog and catalog history

tables while reorganizing an index. The following control statement specifies that

while reorganizing index IU0E0801, REORG INDEX is to also collect statistics,

REORG INDEX

Chapter 24. REORG INDEX 411

collect all of the distinct values in the key column combinations, and update access

path statistics in the catalog and catalog history tables. The utility is also to send

any output, including space and access path statistics, to SYSPRINT.

REORG INDEX IUOE0801

 STATISTICS

 KEYCARD

 REPORT YES

 UPDATE ACCESSPATH

 HISTORY ACCESSPATH

Example 4: Reorganizing a list of indexes. In the example in Figure 76, the

OPTIONS utility control statement specifies that the subsequent TEMPLATE and

LISTDEF utility control statements are to run in PREVIEW mode. If the syntax of

these statements is correct, DB2 expands the REORG_INDX list and the data set

names in the SREC, SUT1, and SOUT templates and prints these results to the

SYSPRINT data set. The second OPTIONS control statement turns off the

PREVIEW mode, and the subsequent REORG INDEX job runs normally.

The REORG INDEX statement specifies that the utility is to reorganize the indexes

that are included in the REORG_INDX list. The SHRLEVEL CHANGE option

indicates that during this processing, read and write access is allowed on the areas

that are being reorganized, with the exception of a 100-second period during the

last iteration of log processing. During this time, which is specified by the MAXRO

option, applications have read-only access. The WORKDDN option indicates that

REORG INDEX is to use the data set that is defined by the SUT1 template. If the

SWITCH phase does not begin by the deadline that is specified on the DEADLINE

option, processing terminates.

//STEP2 EXEC DSNUPROC,UID=’HUHRU257.REORGI’,TIME=1440,

// UTPROC=’’,

// SYSTEM=’SSTR’,DB2LEV=DB2A

//SYSIN DD *

 OPTIONS PREVIEW

 TEMPLATE SREC

 UNIT(SYSDA) DISP(NEW,CATLG,CATLG)

 DSN(HUHRU257.REORG.&ST..SREC)

 TEMPLATE SUT1

 UNIT(SYSDA) DISP(NEW,DELETE,CATLG)

 DSN(HUHRU257.REORG.&ST..SUT1)

 TEMPLATE SOUT

 UNIT(SYSDA) DISP(NEW,DELETE,CATLG)

 DSN(HUHRU257.REORG.&ST..SOUT)

 LISTDEF REORG_INDX INCLUDE INDEX ADMF001.IPHR5701

 INCLUDE INDEX ADMF001.IXHR570*

 OPTIONS OFF

 REORG INDEX LIST REORG_INDX

 PREFORMAT

 SHRLEVEL CHANGE

 DEADLINE 2010-2-4-23.10.12

 MAXRO 100

 WORKDDN (SUT1)

/*

Figure 76. Example statements for job that reorganizes a list of indexes

REORG INDEX

412 Utility Guide and Reference

|
|
|
|
|
|
|

Chapter 25. REORG TABLESPACE

The online REORG TABLESPACE utility reorganizes a table space to improve

access performance and to reclaim fragmented space. In addition, the utility can

reorganize a single partition or range of partitions of a partitioned table space. You

can specify the degree of access to your data during reorganization, and you can

collect inline statistics by using the STATISTICS keyword. If you specify REORG

TABLESPACE UNLOAD EXTERNAL, the data is unloaded in a format that is

acceptable to the LOAD utility of any DB2 subsystem. You can also delete rows

during the REORG job by specifying the DISCARD option.

You can determine when to run REORG for non-LOB table spaces by using the

OFFPOSLIMIT or INDREFLIMIT catalog query options. If you specify the

REPORTONLY option, REORG produces a report that indicates whether a REORG

is recommended without actually performing the REORG.These options are not

applicable and are disregarded if the target object is a directory table space.

Run the REORG TABLESPACE utility on a LOB table space to help increase the

effectiveness of prefetch. For a LOB table space, REORG TABLESPACE performs

these actions:

v Removes imbedded free space

v Attempts to make LOB pages contiguous

A REORG of a LOB table space does not reclaim physical space.

Do not execute REORG on an object if another DB2 holds retained locks on the

object or has long-running noncommitting applications that use the object. You can

use the DISPLAY GROUP command to determine whether a member’s status is

failed. You can use the DISPLAY DATABASE command with the LOCKS option to

determine if locks are held.

For a diagram of REORG TABLESPACE syntax and a description of available

options, see “Syntax and options of the REORG TABLESPACE control statement”

on page 416. For detailed guidance on running this utility, see “Instructions for

running REORG TABLESPACE” on page 445.

Output: If the table space or partition has the COMPRESS YES attribute, the data is

compressed when it is reloaded. If you specify the KEEPDICTIONARY option of

REORG, the current dictionary is used; otherwise a new dictionary is built.

You can execute the REORG TABLESPACE utility on the table spaces in the DB2

catalog database (DSNDB06) and on some table spaces in the directory database

(DSNDB01). It cannot be executed on any table space in the DSNDB07 database.

Table 70. summaries the results of REORG TABLESPACE according to the type of

REORG specified.

 Table 70. Summary of REORG TABLESPACE output

Type of REORG specified Results

REORG TABLESPACE Reorganizes all data and all indexes.

REORG TABLESPACE PART n Reorganizes data for PART n of the table space and

PART n of all partitioned indexes.

© Copyright IBM Corp. 1983, 2008 413

#
#

|

|

Table 70. Summary of REORG TABLESPACE output (continued)

Type of REORG specified Results

REORG TABLESPACE PART n:m Reorganizes data for PART n through PART m of the

table space and PART n through PART m of all

partitioned indexes.

Note: When SCOPE PENDING is also specified, the REORG TABLESPACE utility

reorganizes the specified table space only if it is in REORG-pending or advisory

REORG-pending status. For a partitioned table space, REORG TABLESPACE

SCOPE PENDING reorganizes only the partitions that are in REORG-pending or

advisory REORG-pending status.

Authorization required: To execute this utility on a user table space, you must use

a privilege set that includes one of the following authorities:

v REORG privilege for the database

v DBADM or DBCTRL authority for the database

v SYSCTRL authority

v SYSADM authority

To execute this utility on a table space in the catalog or directory, you must use a

privilege set that includes one of the following authorities:

v REORG privilege for the DSNDB06 (catalog) database

v DBADM or DBCTRL authority for the DSNDB06 (catalog) database

v Installation SYSOPR authority

v SYSCTRL authority

v SYSADM or Installation SYSADM authority

If you specify REORG TABLESPACE SHRLEVEL CHANGE, you must create a

mapping table. You must use a privilege set that includes DELETE, INSERT, and

UPDATE privileges on the mapping table. See “Before running REORG

TABLESPACE” on page 445 for more information about mapping tables.

To run REORG TABLESPACE STATISTICS TABLE REPORT YES, you must use a

privilege set that includes STATS privilege for the database and the SELECT

privilege on the catalog tables and tables for which statistics are to be gathered.

REORG TABLESPACE STATISTICS TABLE REPORT ALL does not report values

from tables that the user is not authorized to see.

An authority other than installation SYSADM or installation SYSOPR can receive

message DSNT500I resource unavailable, while trying to reorganize a table space

in the catalog or directory. This message can be issued when the

DSNDB06.SYSDBAUT or DSNDB06.SYSUSER catalog table space or one of the

indexes is unavailable. If this problem occurs, run the REORG TABLESPACE utility

again using an authorization ID with the installation SYSADM or installation

SYSOPR authority.

If you use RACF access control with multilevel security and REORG TABLESPACE

is to process a table space that contains a table that has multilevel security with

row-level granularity, you must be identified to RACF and have an accessible valid

security label. You must also meet the following authorization requirements:

v For REORG statements that include the UNLOAD EXTERNAL option, each row

is unloaded only if your security label dominates the data security label. If your

security label does not dominate the data security label, the row is not unloaded,

but DB2 does not issue an error message.

REORG TABLESPACE

414 Utility Guide and Reference

|
|

|
|
|
|

|
|
|
|

v For REORG statements that include the DISCARD option, qualifying rows are

discarded only if one of the following situations is true:

– Write-down rules are in effect, you have write-down privilege, and your

security label dominates the data’s security label.

– Write-down rules are not in effect and your security label dominates the

data’s security label.

– Your security label is equivalent to the data security label.

For more information about multilevel security and security labels, see Part 3 of

DB2 Administration Guide.

Execution phases of REORG TABLESPACE: The REORG TABLESPACE utility

operates in these phases:

Phase Description

UTILINIT Performs initialization and setup.

UNLOAD Unloads the table space and sorts data if a clustering index exists

and the utility job includes either the SORTDATA or SHRLEVEL

CHANGE options. If you specify NOSYSREC, the utility passes

rows in memory to the RELOAD phase; otherwise, it writes them

to a sequential data set.

RELOAD Reloads data from the sequential data set into the table space and

creates full image copies if you specify COPYDDN,

RECOVERYDDN, SHRLEVEL REFERENCE, or SHRLEVEL

CHANGE. A subtask sorts the index keys. The utility also updates

table and table space statistics.

SORT Sorts index keys. The sorted keys are passed in memory to the

BUILD phase.

BUILD Builds indexes and updates index statistics.

SORTBLD If parallel index build occurs, all activities that normally occur in

both the SORT and BUILD phases occur in the SORTBLD phase

instead. For more information about when parallel index build

occurs, see“Building indexes in parallel for REORG TABLESPACE”

on page 467.

LOG Processes the log iteratively and appends changed pages to the full

image copies. This phase occurs only if you specify SHRLEVEL

CHANGE.

SWITCH Switches access to shadow copy of table space or partition. This

phase occurs only if you specify SHRLEVEL REFERENCE or

CHANGE.

BUILD2 Corrects nonpartitioning indexes if you specify REORG

TABLESPACE PART SHRLEVEL REFERENCE or CHANGE.

UTILTERM Performs cleanup.

Execution phases of REORG TABLESPACE on a LOB table space: The REORG

TABLESPACE utility operates in these phases when you run it on a LOB table

space:

Phase Description

UTILINIT Performs initialization and setup.

REORGLOB Rebuilds the LOB table space in place. The utility does not unload

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 415

|
|

|
|

|
|

|

|
|

|

|
|

|

or reload LOBs. The LOB table space is set to RECOVER-pending

status at the start of processing; this status is reset when the

REORGLOB phase completes. If the REORGLOB phase fails, the

LOB table space remains in RECOVER-pending status.

UTILTERM Performs cleanup.

You cannot restart REORG TABLESPACE on a LOB table space in the REORGLOB

phase. Before executing REORG TABLESPACE on a LOB table space that is defined

with LOG NO, you should take a full image copy to ensure recoverability.

If the LOB table space is defined with LOG NO, it is left in COPY-pending status

after REORG TABLESPACE completes processing.

The following topics provide additional information:

v “Syntax and options of the REORG TABLESPACE control statement”

v “Instructions for running REORG TABLESPACE” on page 445

v “Concurrency and compatibility for REORG TABLESPACE” on page 475

v “Reviewing REORG TABLESPACE output” on page 479

v “After running REORG TABLESPACE” on page 479

v “Effects of running REORG TABLESPACE” on page 480

v “Sample REORG TABLESPACE control statements” on page 481

Syntax and options of the REORG TABLESPACE control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

REORG TABLESPACE

416 Utility Guide and Reference

Syntax diagram

�� REORG TABLESPACE LIST listdef-name

table-space-name

database-name.

PART

integer

integer1:integer2

 �

�

REUSE

SCOPE ALL

SCOPE PENDING

REBALANCE

LOG

YES

LOG

NO

 YES

SORTDATA

NO

NOSYSREC

�

� copy-spec �

�
 SHRLEVEL NONE

FASTSWITCH

YES

SHRLEVEL

REFERENCE

deadline-spec

drain-spec

CHANGE

deadline-spec

drain-spec

table-change-spec

FASTSWITCH

NO

�

�
10

10

OFFPOSLIMIT

INDREFLIMIT

integer

integer

REPORTONLY

 �

�

�

 UNLOAD CONTINUE

(1)

KEEPDICTIONARY

statistics-spec

UNLOAD

PAUSE

UNLOAD

ONLY

UNLOAD

EXTERNAL

NOPAD

FROM-TABLE-spec

 PUNCHDDN SYSPUNCH

PUNCHDDN

ddname

�

�
 DISCARDDN SYSDISC

DISCARDDN

ddname

reorg tablespace options

�

DISCARD

FROM-TABLE-spec

NOPAD

��

Notes:

1 You cannot use UNLOAD PAUSE with the LIST option.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 417

|||###

|||

copy-spec:

��

 (1)

COPYDDN(SYSCOPY)

COPYDDN(

ddname1

)

,ddname2

,ddname2

RECOVERYDDN(ddname3

)

,ddname4

��

Notes:

1 COPYDDN(SYSCOPY) is not the default if you specify SHRLEVEL NONE and no partitions are

in REORG-pending status.

deadline-spec:

��
 DEADLINE NONE

DEADLINE

timestamp

labeled-duration-expression

��

drain-spec:

��

DRAIN_WAIT

integer

RETRY_DELAY

300

RETRY

integer

RETRY_DELAY

integer

 ��

table-change-spec:

��

MAPPINGTABLE

table-name
 MAXRO 300

MAXRO

integer

DEFER

 DRAIN WRITERS

DRAIN

ALL

 LONGLOG CONTINUE

LONGLOG

TERM

DRAIN

�

�
 DELAY 1200

DELAY

integer

 TIMEOUT ABEND

TIMEOUT

TERM

��

REORG TABLESPACE

418 Utility Guide and Reference

labeled-duration-expression:

��

CURRENT_DATE

CURRENT_TIMESTAMP

�

+

constant

YEAR

−

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

��

statistics-spec:

�� STATISTICS �

�

�

�

 TABLE (ALL)

SAMPLE

integer

COLUMN

ALL

TABLE

(

table-name

)

SAMPLE

integer

,

COLUMN

(

column-name

)

�

�

�

 INDEX (ALL)

correlation-stats-spec

,

INDEX

(

index-name

correlation-stats-spec

)

 REPORT NO

REPORT

YES

�

�
 UPDATE ALL

UPDATE

ACCESSPATH

SPACE

NONE

HISTORY

ALL

ACCESSPATH

SPACE

NONE

FORCEROLLUP

YES

NO

��

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 419

correlation-stats-spec:

��

KEYCARD

�

 FREQVAL NUMCOLS 1 COUNT 10

FREQVAL

NUMCOLS

integer

COUNT

integer

��

FROM-TABLE-spec:

�� FROM TABLE table-name

WHEN

(

selection-condition-spec

)
 ��

selection-condition-spec:

��

predicate

selection condition

�

AND

predicate

OR

selection condition

��

predicate:

�� basic predicate

BETWEEN predicate

IN predicate

LIKE predicate

NULL predicate

 ��

REORG TABLESPACE

420 Utility Guide and Reference

basic predicate:

��

column-name
 (1)

=

<>

>

<

>=

<=

constant

labeled-duration-expression

��

Notes:

1 The following forms of the comparison operators are also supported in basic and quantified

predicates: !=, !<, and !>. For details, see “comparision operators” on page 435.

BETWEEN predicate:

�� column-name

NOT
 BETWEEN constant

labeled-duration-expression
 AND �

� constant

labeled-duration-expression
 ��

IN predicate:

��

column-name

NOT

IN

�

 ,

(

constant

)

��

LIKE predicate:

�� column-name

NOT
 LIKE string-constant

ESCAPE

string-constant
 ��

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 421

NULL predicate:

�� column-name IS

NOT
 NULL ��

reorg tablespace options:

��
 UNLDDN SYSREC

UNLDDN

ddname

SORTDEVT

device-type

SORTNUM

integer

PREFORMAT

��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

TABLESPACE database-name.table-space-name

Specifies the table space (and, optionally, the database to which it belongs) that

is to be reorganized.

 If you reorganize a table space, its indexes are also reorganized.

database-name

Is the name of the database to which the table space belongs. The

name cannot be DSNDB07. The default is DSNDB04.

table-space-name

Is the name of the table space that is to be reorganized. The name

cannot be SYSUTILX if the specified database name is DSNDB01.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. The utility

allows one LIST keyword for each control statement of REORG TABLESPACE.

The list must contain only table spaces.

 Do not specify FROM TABLE, STATISTICS TABLE table-name, or STATISTICS

INDEX index-name with REORG TABLESPACE LIST. If you want to collect

inline statistics for a list of table spaces, specify STATISTICS TABLE (ALL). If

you want to collect inline statistics for a list of indexes, specify STATISTICS

INDEX (ALL). Do not specify PART with LIST.

REORG TABLESPACE is invoked once for each item in the list.

For more information about LISTDEF specifications, see Chapter 15,

“LISTDEF,” on page 171.

REUSE

When used with SHRLEVEL NONE, specifies that REORG is to logically reset

and reuse DB2-managed data sets without deleting and redefining them. If you

do not specify REUSE and SHRLEVEL NONE, DB2 deletes and redefines

DB2-managed data sets to reset them.

 If a data set has multiple extents, the extents are not released if you use the

REUSE parameter.

REORG TABLESPACE

422 Utility Guide and Reference

REUSE does not apply if you also specify SHRLEVEL REFERENCE or

CHANGE.

SCOPE

Indicates the scope of the reorganization of the specified table space or of one

or more specified partitions.

ALL

Indicates that you want the specified table space or one or more partitions

to be reorganized. The default is ALL.

PENDING

Indicates that you want the specified table space or one or more partitions

to be reorganized only if they are in REORG-pending (REORP or AREO*)

status.

PART integer

PART integer1:integer2

Identifies a partition range that is to be reorganized. You can reorganize a

single partition of a partitioned table space, or a range of partitions within a

partitioned table space. integer must be in the range from 1 to the number of

partitions that are defined for the table space or partitioning index. The

maximum is 4096.

integer Designates a single partition.

integer1:integer2

Designates a range of existing table space partitions from

integer1 through integer2.integer2 must be greater than integer1.

 If you omit the PART keyword, the entire table space is reorganized.

If you specify the PART keyword for a LOB table space, DB2 issues an error

message, and utility processing terminates with return code 8.

If you specify a partition range and the high or low partitions in the list are in

a REORG-pending state, the adjacent partition that is outside the specified

range must not be in REORG-pending state; otherwise, the utility terminates

with an error.

REBALANCE

Specifies that REORG TABLESPACE is to set new partition boundaries so that

pages are evenly distributed across the reorganized partitions. If the columns

that are used in defining the partition boundaries have many duplicate values

within the data rows, even balancing is not always possible. Specify

REBALANCE for more than one partition; if you specify a single partition for

rebalancing, REORG TABLESPACE ignores the specification.

 You can specify REBALANCE with SHRLEVEL NONE or SHRLEVEL

REFERENCE. REBALANCE cannot be specified with SHRLEVEL CHANGE or

SCOPE PENDING. Also, do not specify REBALANCE for partitioned table

spaces with LOB columns.

When you specify REBALANCE, you must create an inline copy by

performing one of the following actions:

v Provide a SYSCOPY DD statement in the JCL.

v Use the TEMPLATE utility to dynamically allocate the SYSCOPY data set.

v Specify a DD name with the COPYDDN option in the REORG control

statement and specify either a corresponding DD statement or TEMPLATE

statement.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 423

|
|
|

|
|
|

|
|
|
|

|
|

#
#
#
#

|
|
|
|
|
|
|

|
|
|
|

#
#

#

#

#
#
#

For more information about creating inline copies, see “Using inline copy with

REORG TABLESPACE” on page 465.

For additional restrictions, see “Restrictions when using REBALANCE” on

page 446.

At completion, DB2 invalidates plans, packages, and the dynamic cache.

LOG

Specifies whether records are to be logged during the RELOAD phase of

REORG. If the records are not logged, the table space is recoverable only after

an image copy is taken. If you specify COPYDDN, RECOVERYDDN,

SHRLEVEL REFERENCE, or SHRLEVEL CHANGE, an image copy is taken

during REORG execution.

YES

Specifies that log records are to be taken during the RELOAD phase. This

option is not allowed for any table space in DSNDB01 or DSNDB06, or if

the SHRLEVEL REFERENCE or CHANGE options are used.

 If you specify SHRLEVEL NONE (explicitly or by default), the default is

YES.

You must specify LOG YES (explicitly or by default) for a LOB table space.

Logging occurs only if the LOB table space is defined with the LOG YES

attribute. If the LOB table space is defined with the LOG NO attribute, the

LOB table space is put in COPY-pending status after the REORG.

NO

Specifies that records are not to be logged. This option puts the table space

in COPY-pending status if either of these conditions is true:

v REORG is executed at the local site, and COPYDDN, SHRLEVEL

REFERENCE, and SHRLEVEL CHANGE options are not specified.

v REORG is executed at the remote site, and RECOVERYDDN is not

specified.

SORTDATA

YES

Specifies that the data is to be unloaded by a table space scan, and sorted

in clustering order. The default is SORTDATA YES unless you specify

UNLOAD ONLY or UNLOAD EXTERNAL. If you specify one of these

options, the default is SORTDATA NO.

NO

Specifies that the data is to be unloaded in the order of the clustering

index. SORTDATA NO cannot be specified with SHRLEVEL CHANGE.

 Specify SORTDATA NO if one of the following conditions is true:

v The data is in or near perfect clustering order, and the REORG utility is

used to reclaim space from dropped tables.

v The data set is very large, and an insufficient amount of disk space is

available for sorting.

 SORTDATA is ignored for some of the catalog and directory table spaces; see

“Reorganizing the catalog and directory” on page 461.

NOSYSREC

Specifies that the output of sorting (if a clustering index exists) is the input to

reloading, without the REORG TABLESPACE utility using an unload data set.

You can specify this option only if the REORG TABLESPACE job includes

REORG TABLESPACE

424 Utility Guide and Reference

#
#

|
|

|

#

#
#
#
#
#

#
#
#

#

#
#

#
#

|
|

|

SHRLEVEL REFERENCE or SHRLEVEL NONE, and only if you do not specify

UNLOAD PAUSE or UNLOAD ONLY. See “Omitting the output data set” on

page 460 for additional information about using this option.

COPYDDN (ddname1,ddname2)

Specifies the DD statements for the primary (ddname1) and backup (ddname2)

copy data sets for the image copy.

 ddname1 and ddname2 are the DD names.

The default is SYSCOPY for the primary copy. A full image copy data set is

created when REORG executes. This copy is called an inline copy. (For more

information about inline copies, see “Using inline copy with REORG

TABLESPACE” on page 465.) The name of the data set is listed as a row in the

SYSIBM.SYSCOPY catalog table with ICTYPE=’R’ (as it is for the COPY

SHRLEVEL REFERENCE option). The table space does not remain in

COPY-pending status regardless of which LOG option you specify.

If you specify SHRLEVEL NONE (explicitly or by default) for REORG, and

COPYDDN is not specified, an image copy is not created at the local site.

COPYDDN(SYSCOPY) is assumed, and a DD statement for SYSCOPY is

required if either of the following conditions are true:

v You specify REORG SHRLEVEL REFERENCE or CHANGE, and you do not

specify COPYDDN.

v A table space or partition is in REORG-pending (REORP) status.

v You specify REBALANCE.

The COPYDDN keyword specifies either a DD name or a TEMPLATE name

specification from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the current job

step and a TEMPLATE name, the utility uses the DD name. For more

information about TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on

page 587.

REORG cannot take inline copies of LOB table spaces.

RECOVERYDDN (ddname3,ddname4)

Specifies the DD statements for the primary (ddname3) and backup (ddname4)

copy data sets for the image copy at the recovery site.

 ddname3 and ddname4are the DD names.

You cannot have duplicate image copy data sets. The same rules apply for

RECOVERYDDN as for COPYDDN.

The RECOVERYDDN keyword specifies either a DD name or a TEMPLATE

name specification from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the current job

step and a TEMPLATE name, the utility uses the DD name. For more

information about TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on

page 587.

An inline copy cannot be created for a LOB table space while running a

REORG job on this table space.

SHRLEVEL

Specifies the method that is to be used for the reorganization. The parameter

following SHRLEVEL indicates the type of access that is to be allowed during

the RELOAD phase of REORG.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 425

|

#
#
#

#

For a LOB table space, you must specify SHRLEVEL NONE (explicitly or by

default).

NONE

Specifies that reorganization is to operate as follows:

v Unloading from the area that is being reorganized (while

applications can read but cannot write to the area)

v Reloading into that area (while applications have no access), and

then allowing read-write access again

The default is NONE.

If you specify NONE (explicitly or by default), you cannot specify the

following parameters:

v MAPPINGTABLE

v MAXRO

v LONGLOG

v DELAY

v DEADLINE

v DRAIN_WAIT

v RETRY

v RETRY_DELAY

Restriction: If you specify UNLOAD PAUSE or UNLOAD ONLY, you

cannot specify NOSYSREC.

REFERENCE

Specifies that reorganization is to operate as follows:

v Unloading from the area that is being reorganized (while

applications can read but cannot write to the area)

v Reloading into a shadow copy of that area (while applications can

read but cannot write to the original copy)

v Switching the future access of an application from the original copy

to the shadow copy by exchanging the names of the data sets, and

then allowing read-write access again

To determine which data sets are required when you execute REORG

SHRLEVEL REFERENCE, see “Data sets that REORG TABLESPACE

uses” on page 449.

If you specify REFERENCE, you cannot specify the following

parameters:

v LOG. Reorganization with REFERENCE always creates an image

copy and always refrains from logging records during reloading.

v UNLOAD. Reorganization with REFERENCE always performs

UNLOAD CONTINUE.

v MAPPINGTABLE.

v MAXRO.

v LONGLOG.

v DELAY.

Restriction: You cannot use SHRLEVEL REFERENCE for a LOB table

space.

CHANGE

Specifies that reorganization is to operate as follows:

REORG TABLESPACE

426 Utility Guide and Reference

v By unloading from the area that is being reorganized (while

applications can read and write to the area)

v Reloading into a shadow copy of that area (while applications have

read-write access to the original copy of the area)

v Applying the log of the original copy to the shadow copy (while

applications can read and usually write to the original copy)

v Switching the future access of an application from the original copy

to the shadow copy by exchanging the names of the data sets, and

then allowing read-write access again

To determine which data sets are required when you execute REORG

SHRLEVEL CHANGE, see “Data sets that REORG TABLESPACE uses”

on page 449.

If you specify CHANGE, you cannot specify the following parameters:

v LOG. Reorganization with CHANGE always creates an image copy

and always refrains from logging records during reloading.

v UNLOAD. Reorganization with CHANGE always performs

UNLOAD CONTINUE.

If you specify CHANGE, you must create a mapping table and specify

the name of the mapping table with the MAPPINGTABLE option.

Restriction: You cannot use SHRLEVEL CHANGE for a LOB table

space or a catalog or directory table space with links.

DEADLINE

Specifies the deadline for the SWITCH phase to begin. If DB2 estimates that

the SWITCH phase will not begin by the deadline, DB2 issues the messages

that the DISPLAY UTILITY command would issue and then terminates the

reorganization.

 If REORG SHRLEVEL REFERENCE or SHRLEVEL CHANGE terminates

because of a DEADLINE specification, DB2 issues message DSNU374I with

reason code 2 but does not set a restrictive status.

NONE

Specifies that a deadline by which the SWITCH phase of log

processing must begin does not exist. The default is NONE.

timestamp

Specifies the deadline for the SWITCH phase of log processing to

begin. This deadline must not have already occurred when REORG is

executed.

labeled-duration-expression

Calculates the deadline for the SWITCH phase of log processing to

begin. The calculation is based on either CURRENT TIMESTAMP or

CURRENT DATE. You can add or subtract one or more constant value

to specify the deadline. This deadline must not have already occurred

when REORG is executed. CURRENT TIMESTAMP and CURRENT

DATE are evaluated once, when the REORG statement is first

processed. If a list of objects is specified, the same value will be in

effect for all objects in the list.

CURRENT_DATE

Specifies that the deadline is to be calculated based on the

CURRENT DATE.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 427

#
#
#
#

CURRENT_TIMESTAMP

Specifies that the deadline is to be calculated based on the

CURRENT TIMESTAMP.

constant

Indicates a unit of time and is followed by one of the seven

duration keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES,

SECONDS, or MICROSECONDS. The singular form of these words

is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE,

SECOND, MICROSECOND.

DRAIN_WAIT integer

Specifies the number of seconds that the utility waits when draining the table

space or index. The specified time is the aggregate time for objects that are to

be reorganized. This value overrides the values that are specified by IRLMRWT

and UTIMOUT. If the keyword is omitted or if a value of 0 is specified, the

utility uses the IRLMRWT and UTIMOUT values for regular draining. Valid

values for integer are from 0 to 1800.

RETRY integer

Specifies the maximum number of retries that REORG is to attempt. Valid

values for integer are from 0 to 255. If the keyword is omitted, the utility does

not attempt a retry.

 Specifying RETRY can lead to increased processing costs and can result in

multiple or extended periods of read-only access. For example, when you

specify RETRY and SHRLEVEL CHANGE, the size of the copy that is taken by

REORG might increase.

RETRY_DELAY integer

Specifies the minimum duration, in seconds, between retries. Valid values

for integer are from 1 to 1800. The default is 300 seconds.

MAPPINGTABLE table-name

Specifies the name of the mapping table that REORG TABLESPACE is to use to

map between the RIDs of data records in the original copy of the area and the

corresponding RIDs in the shadow copy. This parameter is required if you

specify SHRLEVEL CHANGE, and you must create a mapping table and an

index for it before running REORG TABLESPACE. See “Before running REORG

TABLESPACE” on page 445 for the columns and the index that the mapping

table must include. Enclose the table name in quotation marks if the name

contains a blank.

MAXRO integer

Specifies the maximum amount of time for the last iteration of log processing.

During that iteration, applications have read-only access.

 The actual execution time of the last iteration might exceed the specified value

for MAXRO.

The ALTER UTILITY command can change the value of MAXRO.

The default is 300 seconds.

integer integer is the number of seconds. Specifying a small positive value

reduces the length of the period of read-only access, but it might

increase the elapsed time for REORG to complete. If you specify a

huge positive value, the second iteration of log processing is probably

the last iteration.

DEFER

Specifies that the iterations of log processing with read-write access can

REORG TABLESPACE

428 Utility Guide and Reference

|
|

continue indefinitely. REORG never begins the final iteration with

read-only access, unless you change the MAXRO value with ALTER

UTILITY.

 If you specify DEFER, you should also specify LONGLOG

CONTINUE.

If you specify DEFER, and DB2 determines that the actual time for an

iteration and the estimated time for the next iteration are both less than

5 seconds, DB2 adds a 5 second pause to the next iteration. This pause

reduces consumption of processor time. The first time this situation

occurs for a given execution of REORG, DB2 sends message DSNU362I

to the console. The message states that the number of log records that

must be processed is small and that the pause occurs. To change the

MAXRO value and thus cause REORG to finish, execute the ALTER

UTILITY command. DB2 adds the pause whenever the situation

occurs; however, DB2 sends the message only if 30 minutes have

elapsed since the last message was sent for a given execution of

REORG.

DRAIN

Specifies drain behavior at the end of the log phase after the MAXRO

threshold is reached and when the last iteration of the log is to be applied.

WRITERS

Specifies the current default action, in which DB2 drains only the

writers during the log phase after the MAXRO threshold is reached

and subsequently issues DRAIN ALL on entering the switch phase.

ALL Specifies that DB2 is to drain all readers and writers during the log

phase, after the MAXRO threshold is reached.

 Consider specifying DRAIN ALL if the following conditions are both

true:

v SQL update activity is high during the log phase.

v The default behavior results in a large number of -911 SQL error

codes.

LONGLOG

Specifies the action that DB2 is to perform, after sending a message to the

console, if the number of records that the next iteration of logging is to process

is not sufficiently lower than the number that the previous iterations processed.

This situation means that the reading of the log by the REORG TABLESPACE

utility is not being done at the same time as the writing of the application log.

CONTINUE

Specifies that until the time on the JOB statement expires, DB2 is to

continue performing reorganization, including iterations of log

processing, if the estimated time to perform an iteration exceeds the

time that is specified for MAXRO.

 A value of DEFER for MAXRO and a value of CONTINUE for

LONGLOG together mean that REORG is to continue allowing access

to the original copy of the area that is being reorganized and does not

switch to the shadow copy. The user can execute the ALTER UTILITY

command with a large value for MAXRO to initiate switching.

The default is CONTINUE.

TERM Specifies that DB2 is to terminate the reorganization after the delay

that is specified by the DELAY parameter.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 429

DRAIN

Specifies that DB2 is to drain the write claim class after the delay that

is specified by the DELAY parameter. This action forces the final

iteration of log processing to occur.

DELAY integer

Specifies the minimum interval between the time that REORG sends the

LONGLOG message to the console and the time that REORG performs the

action that is specified by the LONGLOG parameter.

 integer is the number of seconds. The default is 1200.

TIMEOUT

Specifies the action that is to be taken if the REORG utility gets a time-out

condition while trying to drain objects in either the log or switch phases.

ABEND

Indicates that, if a time-out condition occurs, DB2 is to leave the objects in

a UTRO or UTUT state.

TERM

Indicates that DB2 is to behave as follows if you specify the TERM option

and a time-out condition occurs:

1. DB2 issues an implicit TERM UTILITY command, causing the utility to

end with a return code 8.

2. DB2 issues the DSNU590I and DSNU170I messages.

3. DB2 leaves the objects in a read-write state.

FASTSWITCH

Specifies which switch methodology is to be used for a given reorganization.

YES

Enables the SWITCH phase to use the FASTSWITCH methodology. This

option is not allowed for the catalog (DSNDB06) or directory (DSNDB01).

 The default is YES.

NO

Causes the SWITCH phase to use IDCAMS RENAME methodology.

OFFPOSLIMIT integer

Indicates that the specified value is to be compared to the value that DB2

calculates for the explicit clustering indexes of every table in the specified

partitions that are in SYSIBM.SYSINDEXPART. The calculation is computed as

follows:

(NEAROFFPOSF + FAROFFPOSF) × 100 / CARDF

Alternatively, DB2 checks the values in SYSINDEXPART for a single

nonpartitioned table space, or for each partition if you specified an entire

partitioned table space as the target object. If at least one calculated value

exceeds the OFFPOSLIMIT value, REORG is performed or recommended. This

option is valid for non-LOB table spaces only.

 integer is the value that is to be compared and can range from 0 to 65535. The

default value is 10.

Note: If you specify OFFPOSLIMIT with REORG DISCARD to remove

unwanted rows in a table space, OFFPOSLIMIT will override DISCARD.

This may result in some rows not being removed.

REORG TABLESPACE

430 Utility Guide and Reference

#
#
#

INDREFLIMIT integer

Indicates that the specified value is to be compared to the value that DB2

calculates for the specified partitions in SYSIBM.SYSTABLEPART for the

specified table space. The calculation is computed as follows:

(NEARINDREF + FARINDREF) × 100 / CARDF

Alternatively, DB2 checks the values in SYSTABLEPART for a single

nonpartitioned table space, or for each partition if you specified an entire

partitioned table space as the target object. If at least one calculated value

exceeds the calculated value exceeds the INDREFLIMIT value, REORG is

performed or recommended. This option is valid for non-LOB table spaces

only.

 integer is the value that is to be compared and can range from 0 to 65535. The

default value is 10.

REPORTONLY

Specifies that REORG is only to be recommended, not performed. REORG

produces a report with one of the following return codes:

1 No limit met; no REORG is to be performed or recommended.

2 REORG is to be performed or recommended.

UNLOAD

Specifies whether the utility job is to continue processing or end after the data

is unloaded. Unless you specify UNLOAD EXTERNAL, data can be reloaded

only into the same table and table space (as defined in the DB2 catalog) on the

same subsystem. (This does not preclude VSAM redefinition during UNLOAD

PAUSE.)

 You must specify UNLOAD ONLY for the data set to be in a format that is

compatible with the FORMAT UNLOAD option of LOAD. However, with

LOAD, you can load the data only into the same object from which it is

unloaded.

This option is valid for non-LOB table spaces only.

You must specify UNLOAD EXTERNAL for the data set to be in a format that

is usable by LOAD without the FORMAT UNLOAD option. With UNLOAD

EXTERNAL, you can load the data into any table with compatible columns in

any table space on any DB2 subsystem.

CONTINUE

Specifies that, after the data has been unloaded, the utility is to continue

processing. An edit routine can be called to decode a previously encoded

data row if an index key requires extraction from that row.

 If you specify DISCARD, rows are decompressed and edit routines are

decoded. If you also specify DISCARD to a file, rows are decoded by field

procedure, and the following columns are converted to DB2 external

format:

v SMALLINT

v INTEGER

v FLOAT

v DECIMAL

v TIME

v TIMESTAMP

Otherwise, edit routines or field procedures are bypassed on both the

UNLOAD and RELOAD phases for table spaces. Validation procedures are

not invoked during either phase.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 431

The default is CONTINUE.

PAUSE

Specifies that, after the data has been unloaded, processing is to end. The

utility stops and the RELOAD status is stored in SYSIBM.SYSUTIL so that

processing can be restarted with RELOAD RESTART(PHASE).

 This option is useful if you want to redefine data sets during

reorganization. For example, with a user-defined data set, you can:

v Run REORG with the UNLOAD PAUSE option.

v Redefine the data set by using Access Method Services.

v Restart REORG by resubmitting the previous job and specifying

RESTART(PHASE).

However, you cannot use UNLOAD PAUSE if you specify the LIST option.

ONLY

Specifies that, after the data has been unloaded, the utility job ends and the

status that corresponds to this utility ID is removed from

SYSIBM.SYSUTIL.

 If you specify UNLOAD ONLY with REORG TABLESPACE, any edit

routine or field procedure is executed during record retrieval in the unload

phase.

This option is not allowed for any table space in DSNDB01 or DSNDB06.

The DISCARD and WHEN options are not allowed with UNLOAD ONLY.

EXTERNAL

Specifies that, after the data has been unloaded, the utility job is to end

and the status that corresponds to this utility ID is removed.

 The UNLOAD utility has more functions. If you specify UNLOAD

EXTERNAL with REORG TABLESPACE, rows are decompressed, edit

routines are decoded, field procedures are decoded, and SMALLINT,

INTEGER, FLOAT, DECIMAL, DATE, TIME, and TIMESTAMP columns

are converted to DB2 external format. Validation procedures are not

invoked.

This option is not allowed for any table space in DSNDB01 or DSNDB06.

The DISCARD option is not allowed with UNLOAD EXTERNAL.

NOPAD

Specifies that the variable-length columns in the unloaded or discarded records

are to occupy the actual data length without additional padding. The unloaded

records can have varying lengths. If you do not specify NOPAD, default

REORG processing pads variable-length columns in the unloaded or discarded

records to their maximum length; the unloaded or discarded records have

equal lengths for each table.

 You can specify the NOPAD option only with UNLOAD EXTERNAL or with

UNLOAD DISCARD.

Although the LOAD utility processes records with variable-length columns that

were unloaded or discarded with the NOPAD option, these records cannot be

processed by applications that process only fields that are in fixed positions.

For the generated LOAD statement to provide a NULLIF condition for fields

that are not in a fixed position, DB2 generates an input field definition with a

name in the form of DSN_NULL_IND_nnnnn, where nnnnn is the number of

the associated column.

REORG TABLESPACE

432 Utility Guide and Reference

For example, the LOAD statement that is generated for the EMP sample table

looks similar to the LOAD statement that is in Figure 77.

FROM TABLE

Specifies the tables that are to be reorganized. The table space that is specified

in REORG TABLESPACE can store more than one table. All tables that are

specified by FROM TABLE statements must be unique. All tables are unloaded

for UNLOAD EXTERNAL, and all tables might be subject to DISCARD. If you

specify UNLOAD EXTERNAL and want to limit which tables and rows are

unloaded, specify FROM TABLE with the WHEN option. If you specify

DISCARD, you must qualify the rows that you want to discard by specifying

FROM TABLE with the WHEN option.

 Do not specify FROM TABLE with REORG TABLESPACE LIST.

table-name

Specifies the name of the table that is to be qualified by the following

WHEN clause. The table must be described in the catalog and must not be

a catalog table. If the table name is not qualified by an authorization ID,

LOAD DATA INDDN SYSREC LOG NO RESUME YES

 EBCDIC CCSID(00500,00000,00000)

 INTO TABLE "DSN8810 "."EMP "

 WHEN(00004:00005 = X’0012’)

 ("EMPNO " POSITION(00007:00012) CHAR(006)

 , "FIRSTNME " POSITION(00013) VARCHAR

 , "MIDINIT " POSITION(*) CHAR(001)

 , "LASTNAME " POSITION(*) VARCHAR

 , DSN_NULL_IND_00005 POSITION(*) CHAR(1)

 , "WORKDEPT " POSITION(*) CHAR(003)

 NULLIF(DSN_NULL_IND_00005)=X’FF’

 , DSN_NULL_IND_00006 POSITION(*) CHAR(1)

 , "PHONENO " POSITION(*) CHAR(004)

 NULLIF(DSN_NULL_IND_00006)=X’FF’

 , DSN_NULL_IND_00007 POSITION(*) CHAR(1)

 , "HIREDATE " POSITION(*) DATE EXTERNAL

 NULLIF(DSN_NULL_IND_00007)=X’FF’

 , DSN_NULL_IND_00008 POSITION(*) CHAR(1)

 , "JOB " POSITION(*) CHAR(008)

 NULLIF(DSN_NULL_IND_00008)=X’FF’

 , DSN_NULL_IND_00009 POSITION(*) CHAR(1)

 , "EDLEVEL " POSITION(*) SMALLINT

 NULLIF(DSN_NULL_IND_00009)=X’FF’

 , DSN_NULL_IND_00010 POSITION(*) CHAR(1)

 , "SEX " POSITION(*) CHAR(001)

 NULLIF(DSN_NULL_IND_00010)=X’FF’

 , DSN_NULL_IND_00011 POSITION(*) CHAR(1)

 , "BIRTHDATE " POSITION(*) DATE EXTERNAL

 NULLIF(DSN_NULL_IND_00011)=X’FF’

 , DSN_NULL_IND_00012 POSITION(*) CHAR(1)

 , "SALARY " POSITION(*) DECIMAL

 NULLIF(DSN_NULL_IND_00012)=X’FF’

 , DSN_NULL_IND_00013 POSITION(*) CHAR(1)

 , "BONUS " POSITION(*) DECIMAL

 NULLIF(DSN_NULL_IND_00013)=X’FF’

 , DSN_NULL_IND_00014 POSITION(*) CHAR(1)

 , "COMM " POSITION(*) DECIMAL

 NULLIF(DSN_NULL_IND_00014)=X’FF’

)

Figure 77. Sample LOAD statement generated by REORG TABLESPACE with the NOPAD

keyword

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 433

#
#
#
#
#
#
#

the authorization ID of the person who invokes the utility job step is used

as the qualifier of the table name. Enclose the table name in quotation

marks if the name contains a blank.

WHEN

Indicates which records in the table space are to be unloaded (for UNLOAD

EXTERNAL) or discarded (for DISCARD). If you do not specify a WHEN

clause for a table in the table space, all of the records are unloaded (for

UNLOAD EXTERNAL), or none of the records is discarded (for DISCARD).

 The option following WHEN describes the conditions for UNLOAD or

DISCARD of records from a table and must be enclosed in parentheses.

selection condition

Specifies a condition that is true, false, or unknown about a specific row.

When the condition is true, the row qualifies for UNLOAD or DISCARD.

When the condition is false or unknown, the row does not qualify.

 A selection condition consists of at least one predicate and any logical

operators (AND, OR, NOT). The result of a selection condition is derived by

applying the specified logical operators to the result of each specified

predicate. If logical operators are not specified, the result of the selection

condition is the result of the specified predicate.

Selection conditions within parentheses are evaluated first. If the order of

evaluation is not specified by parentheses, AND is applied before OR.

If the control statement is in the same encoding scheme as the input data,

you can code character constants in the control statement. Otherwise, if the

control statement is not in the same encoding scheme as the input data,

you must code the condition with hexadecimal constants. For example, if

the table space is in EBCDIC and the control statement is in UTF-8, use

(1:1)=X’F1’ in the condition rather than (1:1)=’1’.

Restriction: REORG TABLESPACE cannot filter rows that contain

encrypted data.

predicate

A predicate specifies a condition that is true, false, or unknown about a

given row or group.

basic predicate

Specifies the comparison of a column with a constant. If the value of

the column is null, the result of the predicate is unknown. Otherwise,

the result of the predicate is true or false.

Predicate Is true if and only if

column-name = constant The column is equal to the constant or

labeled duration expression.

column-name < > constant The column is not equal to the constant

or labeled duration expression.

column-name > constant The column is greater than the constant

or labeled duration expression.

column-name < constant The column is less than the constant or

labeled duration expression.

column-name > = constant The column is greater than or equal to

the constant or labeled duration

expression.

REORG TABLESPACE

434 Utility Guide and Reference

|
|
|
|
|
|

|
|

column-name < = constant The column is less than or equal to the

constant or labeled duration

expression.

Comparison operators: The following forms of the comparison

operators are also supported in basic and quantified predicates: !=, !<,

and !>, where ! means not. In addition, in code pages 437, 819, and

850, the forms ¬=, ¬<, and ¬> are supported. All these product-specific

forms of the comparison operators are intended only to support

existing REORG statements that use these operators and are not

recommended for use in new REORG statements.

A not sign (¬), or the character that must be used in its place in certain

countries, can cause parsing errors in statements that are passed from

one DBMS to another. The problem occurs if the statement undergoes

character conversion with certain combinations of source and target

CCSIDs. To avoid this problem, substitute an equivalent operator for

any operator that includes a not sign. For example, substitute ’< >’ for

’¬=’, ’<=’ for ’¬>’, and ’>=’ for ’¬<’.

BETWEEN predicate

Indicates whether a given value lies between two other given values

that are specified in ascending order. Each of the predicate’s two forms

(BETWEEN and NOT BETWEEN) has an equivalent search condition,

as shown in Table 71. If relevant, the table also shows any equivalent

predicates.

 Table 71. BETWEEN predicates and their equivalent search conditions

Predicate Equivalent predicate Equivalent search condition

column BETWEEN value1

AND value2

None

(column >= value1 AND

column <= value2)

column NOT BETWEEN

value1 AND value2

NOT(column BETWEEN value1

AND value2)

(column < value1 OR column >

value2)

Note: The values can be constants or labeled duration expressions.

For example, the following predicate is true for any row when salary is

greater than or equal to 10 000 and less than or equal to 20 000:

SALARY BETWEEN 10000 AND 20000

labeled-duration-expression

Specifies an expression that begins with the following special register

values:

v CURRENT DATE (CURRENT_DATE is acceptable.)

v CURRENT TIMESTAMP (CURRENT_TIMESTAMP is acceptable.)

Optionally, the expression contains the arithmetic operations of

addition or subtraction, expressed by a number followed by one of the

seven duration keywords:

v YEARS (or YEAR)

v MONTHS (or MONTH)

v DAYS (or DAY)

v HOURS (or HOUR)

v MINUTES (or MINUTE)

v SECONDS (or SECOND)

v MICROSECONDS (or MICROSECOND)

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 435

Utilities evaluate a labeled-duration-expression as a timestamp and

implicitly perform a conversion to a date if the comparison is with a

date column.

Incrementing and decrementing CURRENT DATE: The result of adding

a duration to a date, or of subtracting a duration from a date, is itself a

date. (For the purposes of this operation, a month denotes the

equivalent of a calendar page. Adding months to a date, then, is like

turning the pages of a calendar, starting with the page on which the

date appears.) The result must fall between the dates January 1, 0001

and December 31, 9999 inclusive.

Table 72 describes the effects of adding and subtracting years, months,

days, and other dates.

 Table 72. Effects of adding durations to and subtracting durations from CURRENT DATE

Value that is added or

subtracted Effect

Years Adding or subtracting a duration of years affects only

the year portion of the date. The month is unchanged, as

is the day unless the result would be February 29 of a

non-leap-year. In this case, the day portion of the result

is set to 28.

Months Adding or subtracting a duration of months affects only

months and, if necessary, years. The day portion of the

date is unchanged unless that day does not exist in the

resulting month. (September 31, for example). In this

case the day is set to the last day of the month.

Adding a month to a date gives the same day one month

later unless that day does not exist in the later month. In

that case, the day in the result is set to the last day of the

later month. For example, January 28 plus one month

gives February 28; one month added to January 29, 30, or

31 results in either February 28 or, for a leap year,

February 29. If one or more months is added to a given

date and then the same number of months is subtracted

from the result, the final date is not necessarily the same

as the original date.

Days Adding or subtracting a duration of days affects the day

portion of the date, and potentially the month and year.

Dates When a positive date duration is added to a date, or a

negative date duration is subtracted from a date, the date

is incremented by the specified number of years, months,

and days.

When a positive date duration is subtracted from a date,

or a negative date duration is added to a date, the date

is decremented by the specified number of days, months,

and years.

The order in which labeled date durations are added to and subtracted

from dates can affect the results. When you add labeled date durations

to a date, specify them in the order of YEARS + MONTHS + DAYS.

When you subtract labeled date durations from a date, specify them in

the order of DAYS - MONTHS - YEARS. For example, to add one year

and one day to a date, specify the following code:

CURRENT DATE + 1 YEAR + 1 DAY

REORG TABLESPACE

436 Utility Guide and Reference

To subtract one year, one month, and one day from a date, specify the

following code:

CURRENT DATE − 1 DAY − 1 MONTH − 1 YEAR

Incrementing and decrementing timestamps: The result of adding a

duration to a timestamp, or of subtracting a duration from a

timestamp, is itself a timestamp. Date and time arithmetic is performed

as previously defined, except that an overflow or underflow of hours is

carried into the date part of the result, which must be within the range

of valid dates. For example, if the current date is January 15 and the

current time is 20:00, CURRENT_TIMESTAMP+8 HOURS yields January 16,

04:00. Likewise, CURRENT_TIMESTAMP-22 HOURS yields January 14, 22:00.

IN predicate

Specifies that a value is to be compared with a set of values. In the IN

predicate, the second operand is a set of one or more values that are

specified by constants. Each of the predicate’s two forms (IN and NOT

IN) has an equivalent search condition, as shown in Table 73.

 Table 73. IN predicates and their equivalent search conditions

Predicate Equivalent search condition

value1 IN (value1, value2,..., valuen) (value1 = value2 OR ... OR value1 = valuen)

value1 NOT IN (value1, value2,..., valuen) value1 ¬= value2 AND ... AND value1 ¬= valuen)

Note: The values can be constants or labeled duration expressions.

For example, the following predicate is true for any row with an

employee in department D11, B01, or C01:

WORKDEPT IN (’D11’, ’B01’, ’C01’)

LIKE predicate

Qualifies strings that have a certain pattern. Specify the pattern by

using a string in which the underscore and percent sign characters can

be used as wildcard characters. The underscore character (_) represents

a single, arbitrary character. The percent sign (%) represents a string of

zero or more arbitrary characters.

 In this description, let x denote the column that is to be tested and y

denote the pattern in the string constant.

The following rules apply to predicates of the form “x LIKE y...”. If

NOT is specified, the result is reversed.

v When x or y is null, the result of the predicate is unknown.

v When y is empty and x is not empty, the result of the predicate is

false.

v When x is empty and y is not empty, the result of the predicate is

false unless y consists only of one or more percent signs.

v When x and y are both empty, the result of the predicate is true.

v When x and y are both not null, the result of the predicate is true if

x matches the pattern in y and false if x does not match the pattern

in y.

The pattern string and the string that is to be tested must be of the

same type; that is, both x and y must be character strings, or both x

and y must be graphic strings. When x and y are graphic strings, a

character is a DBCS character. When x and y are character strings and

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 437

x is not mixed data, a character is an SBCS character, and y is

interpreted as SBCS data regardless of is subtype. The rules for

mixed-data patterns are described in “Strings and patterns” on page

439.

Within the pattern, a percent sign (%) or underscore character (_) can

represent the literal occurrence of a percent sign or underscore

character. To have a literal meaning, each character must be preceded

by an escape character.

The ESCAPE clause designates a single character. You can use that

character, and only that character, multiple times within the pattern as

an escape character. When the ESCAPE clause is omitted, no character

serves as an escape character and percent signs and underscores in the

pattern can only be used to represent arbitrary characters; they cannot

represent their literal occurrences.

The following rules apply to the use of the ESCAPE clause:

v The ESCAPE clause cannot be used if x is mixed data.

v If x is a character string, the data type of the string constant must be

character string. If x is a graphic string, the data type of the string

constant must be graphic string. In both cases, the length of the

string constant must be 1.

v The pattern must not contain the escape character except when

followed by the escape character, '%', or '_'. For example, if '+' is the

escape character, any occurrences of '+' other than '++', '+_', or '+%'

in the pattern is an error.

When that pattern does not include escape characters, a simple

description of its meaning is:

v The underscore character (_) represents a single, arbitrary character.

v The percent sign (%) represents a string of zero or more arbitrary

characters.

v Any other character represents a single occurrence of itself.

REORG TABLESPACE

438 Utility Guide and Reference

Strings and patterns

The string y is interpreted as a sequence of the minimum number

of substring specifiers, such that each character of y is part of

exactly one substring specifier. A substring specifier is an

underscore, a percent sign, or any non-empty sequence of

characters other than an underscore or percent sign.

 The string x matches the pattern y if a partitioning of x into

substrings exists, such that:

v A substring of x is a sequence of zero or more contiguous

characters, and each character of x is part of exactly one

substring.

v If the nth substring specifier is an underscore, the nth substring

of x is any single character.

v If the nth substring specifier is a percent sign, the nth substring

of x is any sequence of zero or more characters.

v If the nth substring specifier is neither an underscore nor a

percent sign, the nth substring of x is equal to that substring

specifier and has the same length as that substring specifier.

v The number of substrings of x is the same as the number of

substring specifiers.

When escape characters are present in the pattern string, an

underscore, percent sign, or escape character represents a single

occurrence of itself if and only if it is preceded by an odd number

of successive escape characters.

 Mixed-data patterns: If x is mixed data, the pattern is assumed to

be mixed data, and its special characters are interpreted as

follows:

v A single-byte underscore refers to one single-byte character; a

double-byte underscore refers to one double-byte character.

v A percent sign, either single-byte or double-byte, refers to any

number of characters of any type, either single-byte or

double-byte.

v Redundant shift bytes in x or y are ignored.

NULL predicate

Specifies a test for null values.

 If the value of the column is null, the result is true. If the value is not

null, the result is false. If NOT is specified, the result is reversed.

KEEPDICTIONARY

Prevents REORG TABLESPACE from building a new compression dictionary

when unloading the rows. The efficiency of REORG increases with the

KEEPDICTIONARY option for the following reasons:

v The processing cost of building the compression dictionary is eliminated.

v Existing compressed rows do not need to be compressed again.

v Existing compressed rows do not need to be expanded, unless indexes

require it or SORTDATA is used.

Possible reasons for not specifying KEEPDICTIONARY are:

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 439

v If the data has changed significantly since the last dictionary was built,

rebuilding the dictionary might save a significant amount of space.

v If the current dictionary was built using the LOAD utility, building it using

REORG might produce a better compression dictionary.

For more information about specifying or omitting the KEEPDICTIONARY

option, see “Compressing data” on page 246.

KEEPDICTIONARY is valid only if a compression dictionary exists and the

table space or partition that is being reorganized has the COMPRESS YES

attribute. If a dictionary does not exist, one is built, a warning message is

issued, and all the records are compressed.

Messages DSNU234I and DSNU244I, which show compression statistics, are

not issued when you specify REORG UNLOAD CONTINUE

KEEPDICTIONARY or REORG UNLOAD PAUSE KEEPDICTIONARY.

REORG ignores the KEEPDICTIONARY option if a partition that is being

reorganized is in REORG-pending status.

For information about data compression, see Part 5 (Volume 2) of DB2

Administration Guide.

STATISTICS

Specifies that statistics for the table space or associated index, or both, are to be

gathered; the statistics are reported or stored in the DB2 catalog. If statistics are

collected with the default options, only the statistics for the table space are

updated.

 If you specify a table space partition or a range of partitions along with the

STATISTICS keyword, DB2 collects statistics only for the specified table space

partitions. This option is valid for non-LOB table spaces only.

You cannot collect inline statistics for indexes on specific catalog and directory

tables. See “Reorganizing the catalog and directory” on page 461 for the list of

unsupported catalog and directory tables.

Restriction: If you specify STATISTICS for encrypted data, DB2 might not

provide useful statistics on this data. If the utility is terminated with the

-TERM UTIL command after the STATISTICS have been updated in the

catalog, the statistics are not rolled back. A subsequent RUNSTATS utility may

be needed.

TABLE

Specifies the table for which column information is to be gathered. All tables

must belong to the table space that is specified in the TABLESPACE option.

 Do not specify STATISTICS TABLE table-name with REORG TABLESPACE LIST.

Instead, specify STATISTICS TABLE (ALL).

(ALL)

Specifies that information is to be gathered for all columns of all tables in

the table space.

(table-name)

Specifies the tables for which column information is to be gathered. If you

omit the qualifier, the user identifier for the utility job is used. Enclose the

table name in quotation marks if the name contains a blank.

 If you specify more than one table, you must repeat the TABLE option.

Multiple TABLE options must be specified entirely before or after any

INDEX keyword that may also be specified. For example, the INDEX

keyword may not be specified between any two TABLE keywords.

REORG TABLESPACE

440 Utility Guide and Reference

|
|

#
#
#
#
#

SAMPLE integer

Indicates the percentage of rows to be sampled when collecting non-indexed

column statistics. You can specify any value from 1 through 100. The default is

25. The SAMPLE option is not allowed for LOB table spaces.

COLUMN

Specifies columns for which column information is to be gathered.

 You can specify this option only if you specify a particular table for which

statistics are to be gathered (TABLE (table-name)). If you specify particular

tables and do not specify the COLUMN option, the default, COLUMN(ALL), is

used. If you do not specify a particular table when using the TABLE option,

you cannot specify the COLUMN option; however, COLUMN(ALL) is

assumed.

(ALL)

Specifies that statistics are to be gathered for all columns in the table.

(column-name, ...)

Specifies the columns for which statistics are to be gathered.

 You can specify a list of column names; the maximum is 10. If you specify

more than one column, separate each name with a comma.

INDEX

Specifies indexes for which information is to be gathered. Column information

is gathered for the first column of the index. All the indexes must be associated

with the same table space, which must be the table space that is specified in

the TABLESPACE option.

 Do not specify STATISTICS INDEX index-name with REORG TABLESPACE

LIST. Instead, specify STATISTICS INDEX (ALL).

(ALL) Specifies that the column information is to be gathered for all indexes

that are defined on tables that are contained in the table space.

(index-name)

Specifies the indexes for which information is to be gathered. Enclose

the index name in quotation marks if the name contains a blank.

KEYCARD

Indicates that all of the distinct values in all of the 1 to n key column

combinations for the specified indexes are to be collected. n is the number of

columns in the index.

FREQVAL

Specifies that frequent-value statistics are to be collected. If you specify

FREQVAL, you must also specify NUMCOLS and COUNT.

NUMCOLS

Indicates the number of key columns to concatenate together when you

collect frequent values from the specified index. Specifying 3 means that

DB2 is to collect frequent values on the concatenation of the first three key

columns. The default is 1, which means DB2 is to collect frequent values

on the first key column of the index.

COUNT

Indicates the number of frequent values that are to be collected. For

example, specifying 15 means that DB2 is to collect 15 frequent values from

the specified key columns. The default is 10.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 441

REPORT

Specifies whether a set of messages is to be generated to report the collected

statistics.

NO

Indicates that the set of messages is not to be sent as output to SYSPRINT.

The default is NO.

YES

Indicates that the set of messages is to be sent as output to SYSPRINT. The

generated messages are dependent on the combination of keywords (such

as TABLESPACE, INDEX, TABLE, and COLUMN) that are specified with

the RUNSTATS utility. However, these messages are not dependent on the

specification of the UPDATE option. REPORT YES always generates a

report of SPACE and ACCESSPATH statistics.

UPDATE

Indicates whether the collected statistics are to be inserted into the catalog

tables. UPDATE also allows you to select statistics that are used for access path

selection or statistics that are used by database administrators.

ALL Indicates that all collected statistics are to be updated in the catalog.

The default is ALL.

ACCESSPATH

Indicates that only the catalog table columns that provide statistics that

are used for access path selection are to be updated.

SPACE

Indicates that only the catalog table columns that provide statistics to

help database administrators assess the status of a particular table

space or index are to be updated.

NONE

Indicates that no catalog tables are to be updated with the collected

statistics. This option is valid only when REPORT YES is specified.

HISTORY

Specifies that all catalog table inserts or updates to the catalog history tables

are to be recorded.

 The default value is whatever value is specified in the STATISTICS HISTORY

field on panel DSNTIPO.

ALL Indicates that all collected statistics are to be updated in the catalog

history tables.

ACCESSPATH

Indicates that only the catalog history table columns that provide

statistics that are used for access path selection are to be updated.

SPACE

Indicates that only space-related catalog statistics are to be updated in

catalog history tables.

NONE

Indicates that no catalog history tables are to be updated with the

collected statistics.

FORCEROLLUP

Specifies whether aggregation or rollup of statistics is to take place when

RUNSTATS is executed even if statistics have not been gathered on some

REORG TABLESPACE

442 Utility Guide and Reference

|

|

partitions; for example, partitions have not had any data loaded. Aggregate

statistics are used by the optimizer to select the best access path.

YES Indicates that forced aggregation or rollup processing is to be done,

even though some partitions might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is

available for all partitions.

If data is not available for all partitions, DSNU623I message is issued if the

installation value for STATISTICS ROLLUP on panel DSNTIPO is set to NO.

PUNCHDDN ddname

Specifies the DD statement for a data set that is to receive the LOAD utility

control statements that are generated by REORG TABLESPACE UNLOAD

EXTERNAL or REORG TABLESPACE DISCARD FROM TABLE ... WHEN.

 ddname is the DD name.

The default is SYSPUNCH.

PUNCHDDN is required if the limit key of the last partition of a partitioned

table space has been reduced.

The PUNCHDDN keyword specifies either a DD name or a TEMPLATE name

specification from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the current job

step and a TEMPLATE name, the utility uses the DD name. For more

information about TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on

page 587.

DISCARDDN ddname

Specifies the DD statement for a discard data set, which contains copies of

records that meet the DISCARD FROM TABLE ... WHEN specification.

 ddname is the DD name.

If you omit the DISCARDDN option, the utility saves discarded records only if

a SYSDISC DD statement is in the JCL input.

The default is SYSDISC.

The DISCARDDN keyword specifies either a DD name or a TEMPLATE name

specification from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the current job

step and a TEMPLATE name, the utility uses the DD name. For more

information about TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on

page 587.

UNLDDN ddname

Specifies the name of the unload data set.

 ddname is the DD name of the unload data set. The default is SYSREC.

The UNLDDN keyword specifies either a DD name or a TEMPLATE name

specification from a previous TEMPLATE control statement. If utility

processing detects that the specified name is both a DD name in the current job

step and a TEMPLATE name, the utility uses the DD name. For more

information about TEMPLATE specifications, see Chapter 31, “TEMPLATE,” on

page 587.

SORTDEVT device-type

Specifies the device type for temporary data sets that are to be dynamically

allocated by DFSORT.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 443

device-type is the device type; it can be any device that is acceptable to the

DYNALLOC parameter of the SORT or OPTION control statement for

DFSORT.

SORTDEVT is ignored for the catalog and directory table spaces that are listed

in “Reorganizing the catalog and directory” on page 461.

The utility does not allow a TEMPLATE specification to dynamically allocate

sort work data sets. The SORTDEVT keyword controls dynamic allocation of

these data sets.

SORTNUM integer

Specifies the number of temporary data sets that are to be dynamically

allocated for all sorts that REORG performs.

 integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and

omit SORTNUM, no value is passed to DFSORT. DFSORT uses its own default.

SORTNUM is ignored for the catalog and directory table spaces listed in

“Reorganizing the catalog and directory” on page 461.

You need at least two sort work data sets for each sort. The SORTNUM value

applies to each sort invocation in the utility. For example, if there are three

indexes, SORTKEYS is specified, there are no constraints limiting parallelism,

and SORTNUM is specified as 8, then a total of 24 sort work data sets will be

allocated for a job.

Each sort work data set consumes both above the line and below the link

virtual storage, so if you specify too high a value for SORTNUM, the utility

may decrease the degree of parallelism due to virtual storage constraints, and

possibly decreasing the degree down to one, meaning no parallelism.

Important: The SORTNUM keyword will not be considered if ZPARM

UTSORTAL is set to YES and IGNSORTN is set to YES.

PREFORMAT

Specifies that the remaining pages are to be preformatted up to the high RBA

in the table space and index spaces that are associated with the table that is

specified in FROM TABLE table-name option. The preformatting occurs after the

data is loaded and the indexes are built.

 PREFORMAT can operate on an entire table space and its index spaces, or on a

partition of a partitioned table space and its corresponding partitioning index

space.

PREFORMAT is ignored if you specify UNLOAD ONLY or UNLOAD

EXTERNAL.

For more information about the PREFORMAT option, see “Improving

performance with LOAD or REORG PREFORMAT” on page 251.

DISCARD

Specifies that records that meet the specified WHEN conditions are to be

discarded during REORG TABLESPACE UNLOAD CONTINUE or UNLOAD

PAUSE. If you specify DISCARDDN or a SYSDISC DD statement in the JCL,

discarded records are saved in the associated data set.

 You can specify any SHRLEVEL option with DISCARD; however, if you

specify SHRLEVEL CHANGE, modifications that are made during the

reorganization to data rows that match the discard criteria are not permitted.

In this case, REORG TABLESPACE terminates with an error.

REORG TABLESPACE

444 Utility Guide and Reference

#
#
#
#
#

#
#
#
#

#
#

|
|
|
|

If you specify DISCARD, rows are decompressed and edit routines are

decoded. If you also specify DISCARD to a file, rows are decoded by field

procedure, and the following columns are converted to DB2 external format:

v SMALLINT

v INTEGER

v FLOAT

v DECIMAL

v TIME

v TIMESTAMP

Otherwise, edit routines or field procedures are bypassed on both the

UNLOAD and RELOAD phases for table spaces. Validation procedures are not

invoked during either phase.

Do not specify DISCARD with the UNLOAD EXTERNAL or UNLOAD ONLY

option.

Instructions for running REORG TABLESPACE

To run REORG TABLESPACE, you must:

1. Read “Before running REORG TABLESPACE” in this section.

2. Prepare the necessary data sets, as described in “Data sets that REORG

TABLESPACE uses” on page 449.

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

REORG TABLESPACE, see “Sample REORG TABLESPACE control statements”

on page 481.)

4. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

456.

5. Check the compatibility table in “Concurrency and compatibility for REORG

TABLESPACE” on page 475 if you want to run other jobs concurrently on the

same target objects.

6. Plan for restart if the REORG TABLESPACE job doesn’t complete, as described

in “Terminating or restarting REORG TABLESPACE” on page 471.

7. Run REORG TABLESPACE by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15.

Before running REORG TABLESPACE

Catalog and directory table spaces: Before running REORG on a catalog or

directory table space, you must take an image copy. Be aware that for the

DSNDB06.SYSCOPY catalog table space, and the DSNDB01.DBD01, and DSNDB01.

SYSUTILX directory table spaces, REORG scans logs to verify that an image copy

is available. If the scan of the logs does not find an image copy, DB2 requests

archive logs.

Region size: The recommended minimum region size is 4096 KB. Region sizes

greater than 32 MB enable increased parallelism for index builds.

Mapping table and SHRLEVEL CHANGE: Before running REORG TABLESPACE

with SHRLEVEL CHANGE, you must create a mapping table and index for it. The

table space that contains the mapping table must be segmented and cannot be the

table space to be reorganized. To create the mapping table, use a CREATE

TABLESPACE statement similar to the following statement:

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 445

|
|
|
|
|

CREATE TABLESPACE table-space-name SEGSIZE integer

The number of rows in the mapping table should not exceed 110% of the number

of rows in the table space or partition that is to be reorganized. The mapping table

must have only the columns and the index that are created by the following SQL

statements:

CREATE TABLE table-name1

 (TYPE CHAR(1) NOT NULL,

 SOURCE_RID CHAR(5) NOT NULL,

 TARGET_XRID CHAR(9) NOT NULL,

 LRSN CHAR(6) NOT NULL);

CREATE UNIQUE INDEX index-name1 ON table-name1

 (SOURCE_RID ASC, TYPE, TARGET_XRID, LRSN);

The REORG utility removes all rows from the mapping table when the utility

completes.

You must specify the TARGET_XRID column as CHAR(9), even though the RIDs

are 5 bytes long.

You must have DELETE, INSERT, and UPDATE authorization on the mapping

table.

You can run more than one REORG SHRLEVEL CHANGE job concurrently, either

on separate table spaces or on different partitions of the same table space. When

you run concurrently with other jobs, each REORG job must have a separate

mapping table. The mapping tables do not need to reside in separate table spaces.

If only one mapping table exists, the REORG jobs must be scheduled to run

serially. If more than one REORG job tries to access the same mapping table at the

same time, one of the REORG jobs fails.

Recommendation: Consider the following approach to ensure that multiple

REORG jobs do not attempt to use the same mapping table concurrently. Assign

the same name to the mapping table and the utility ID. Because utility IDs must be

unique, this naming decision ensures that the mapping tables are not used by two

REORG jobs that run concurrently.

For a sample of using REORG with SHRLEVEL CHANGE and a sample mapping

table and index, see job sample DSNTEJ1 in DB2 Installation Guide.

Restrictions when running REORG TABLESPACE on encrypted

data

If you plan to run REORG TABLESPACE on encrypted data, do not use the WHEN

statement to filter encrypted fields; REORG TABLESPACE cannot filter rows that

contain encrypted data

Restrictions when using REBALANCE

Restriction for partitions with the COMPRESS YES attribute: Do not run REORG

REBALANCE on a partitioned table space where a subset of partitions have the

COMPRESS YES attribute and the remaining partitions have the COMPRESS NO

attribute.

Restriction when duplicate partitioning key values exist: A REORG REBALANCE

might distribute rows among the partitions that are being rebalanced in such a

way that one or more partitions do not have any rows. This situation occurs when

many rows with duplicate partitioning key values exist, and not enough unique

values exist to enable REORG to distribute them over all of the partitions.

REORG TABLESPACE

446 Utility Guide and Reference

|

#
#

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

Restriction when physical partition numbers do not match logical partition

numbers: A REORG REBALANCE might not be possible if the logical and physical

partition numbers for the specified table space do not match. This situation can be

created by a series of ALTER ROTATEs and ALTER ADD PARTs.

For example, assume that you create a table space with three partitions. Table 74

shows the mapping that exists between the physical and logical partition numbers.

 Table 74. Mapping of physical and logical partition numbers when a table space with three

partitions is created.

Logical partition number Physical partition number

1 1

2 2

3 3

Then, assume that you request the following series of actions:

1. ALTER ROTATE FIRST TO LAST

The new mapping of partition numbers is shown in Table 75

 Table 75. Mapping of physical and logical partition numbers after ALTER ROTATE FIRST TO

LAST.

Logical partition number Physical partition number

1 2

2 3

3 1

2. ALTER ADD PART

The new mapping of partition numbers is shown in Table 76.

 Table 76. Mapping of physical and logical partition numbers after ALTER ADD PART.

Logical partition number Physical partition number

1 2

2 3

3 1

4 4

3. ALTER ROTATE FIRST TO LAST

The new mapping of partition numbers is shown in Table 77.

 Table 77. Mapping of physical and logical partition numbers after second ALTER ROTATE

FIRST TO LAST.

Logical partition number Physical partition number

1 3

2 1

3 4

4 2

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 447

|
|
|
|

|
|

||
|

||

||

||

||
|

|

|

|

||
|

||

||

||

||
|

|

|

||

||

||

||

||

||
|

|

|

||
|

||

||

||

||

||
|

Assume that you then try to execute a REORG TABLESPACE REBALANCE PART

1:2. This statement requests a reorganization and rebalancing of physical partitions

1 and 2. Note that physical partition 1 is logical partition 2, and physical partition

2 is logical partition 4. Thus, the utility is processing logical partitions 2 and 4. If

during the course of rebalancing, the utility needs to move keys from logical

partition 2 to logical partition 3, the job fails, because logical partition 3 is not

within the specified physical partition range.

 Restart-pending status and SHRLEVEL CHANGE: If you specify SHRLEVEL

CHANGE, REORG drains the write claim class near the end of REORG processing.

In a data sharing environment, if a data sharing member fails and that member has

restart-pending status for a target page set, the drain can fail. You must postpone

running REORG with SHRLEVEL CHANGE until all restart-pending statuses are

removed. You can use the DISPLAY GROUP command to determine whether a

member’s status is failed. You can use the DISPLAY DATABASE command with

the LOCKS option to determine if locks are held.

RECOVER-pending and REBUILD-pending status: You cannot reorganize a table

space if any partition or range of partitions of the partitioned table space is in the

RECOVER-pending status. Similarly, you cannot reorganize a single table space

partition if any of the following conditions are true:

v The partition is in the RECOVER-pending status.

v The corresponding partitioning index is in the REBUILD-pending or

RECOVER-pending status, and the data is unloaded by the cluster index

method.

v The specified partition or partitions are a subset of a range of partitions that are

in REORG-pending status; you must reorganize the entire range to reset the

restrictive status.

The only RECOVER-pending restrictive state is:

RECP The table space, index space, or partition of a table space or index space is

in a RECOVER-pending status. A single logical partition in RECP does not

restrict access to other logical partitions that are not in RECP. You can reset

RECP by recovering only the single logical partition.

The three REBUILD-pending restrictive states are:

RBDP REBUILD-pending status is set on a physical or logical index partition. The

individual physical or logical partition is inaccessible and must be rebuilt

by using the REBUILD INDEX utility.

PSRBD

Page set REBUILD-pending status is set for nonpartitioning indexes. The

entire index space is inaccessible and must be rebuilt by using the

REBUILD utility.

RBDP*

A REBUILD-pending status that is set only on logical partitions of

nonpartitioning indexes. The entire index is inaccessible, but it is made

available again when the affected partitions are rebuilt by using the

REBUILD INDEX utility.

For information about resetting the REBUILD-pending and RECOVER-pending

states, see Table 170 on page 853 and Table 171 on page 853.

REORG TABLESPACE

448 Utility Guide and Reference

|
|
|
|
|
|
|

CHECK-pending status: If a table space is in both REORG-pending and

CHECK-pending status (or auxiliary CHECK-pending status), run REORG first,

and then run CHECK DATA to clear the respective states. Otherwise, if a table

space is not in REORG-pending status, you cannot reorganize a table space or

range of partitions if the table space or any partition in the range is in

CHECK-pending status until the CHECK-pending status is removed. See

“CHECK-pending status” on page 850 for more information about resetting the

CHECK-pending status.

REORG-pending status: You must allocate a discard data set (SYSDISC) or specify

the DISCARDDN option if the last partition of the table space is in

REORG-pending status.

Data sets that REORG TABLESPACE uses

Table 78 describes the data sets that REORG TABLESPACE uses. The table lists the

DD name that is used to identify the data set, a description of the data set, and an

indication of whether it is required. Include statements in your JCL for each

required data set, and any optional data sets that you want to use.

 Table 78. Data sets that REORG TABLESPACE uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

STPRIN01 A data set that contains messages from

DFSORT (usually, SYSOUT or DUMMY).

This data set is used when frequency

statistics are collected on DPSI’s or when

TABLESPACE TABLE COLGROUP

FREQVAL is specified

No1

SYSDISC Data set that contains discarded records

from REORG DISCARD. The default DD

name is SYSDISC.

No2

SYSPUNCH Data set that contains a LOAD statement

that is generated by REORG, which loads

records that REORG DISCARD or REORG

UNLOAD EXTERNAL wrote to the

DISCARD or UNLOAD data sets. The

default DD name is SYSPUNCH.

No3

Unload data set Data set that contains the unloaded data

that is to be reloaded during the RELOAD

phase. Specify its DD or template name with

the UNLDDN option or with the RECDSN

field on the DB2I Utilities panel. The data

set must be a sequential data set that is

readable by BSAM. The default DD name is

SYSREC.

The unload data set must be large enough to

contain all the unloaded records from all the

tables in the target table space.If at least one

table in the table space does not have an

index, REORG cannot use the SORTDATA

method with SHRLEVEL CHANGE. As a

result, you must unload the data in the

SYSREC data set.

Yes4

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 449

#
#
#
#
#
#

Table 78. Data sets that REORG TABLESPACE uses (continued)

Data set Description Required?

Copies From one to four output data sets that are to

contain the image copies. Specify their DD

or template names with the COPYDDN and

RECOVERYDDN options of the utility

control statement.

No5

Work data sets Temporary data sets for sort input and

output. The DD names have the form

DATAWKnn.

No6

Work data sets Temporary data sets for sort input and

output when sorting keys, or for sorting

data when SORTDATA is specified but

NOSYSREC is not. If index build parallelism

is used, the DD names have the form

SWnnWKmm. If index build parallelism is

not used, the DD names have the form

SORTWKnn

Yes7

Sort work data sets Temporary data sets for sort input and

output when collecting inline statistics on at

least one data-partitioned secondary index.

The DD names have the form ST01WKnn.

No1, 8, 9

Notes:

1. Required when collecting inline statistics on at least one data-partitioned secondary

index.

2. Required if you specify DISCARDDN

3. Required you specify PUNCHDDN

4. Required unless NOSYSREC or SHRLEVEL CHANGE is specified.

5. Required if a partition is in REORG-pending status or REBALANCE, COPYDDN,

RECOVERYDDN, SHRLEVEL REFERENCE, or SHRLEVEL CHANGE is specified.

6. Required if NOSYSREC or SHRLEVEL CHANGE is specified, but SORTDEVT is not

specified.

7. Required if any indexes exist and SORTDEVT is not specified.

8. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate the

data set. Otherwise, DFSORT dynamically allocates the temporary data set.

9. It is recommended that you use dynamic allocation by specifying SORTDEVT in the

utility statement because dynamic allocation reduces the maintenance required of the

utility job JCL.

The following objects are named in the utility control statement and do not require

DD statements in the JCL:

Table space

Object that is to be reorganized.

Calculating the size of the unload data set: The required size for the unload data

set varies depending on the options that you use for REORG.

1. If you use REORG with UNLOAD PAUSE or CONTINUE and you specify

KEEPDICTIONARY (assuming that a compression dictionary already exists),

the size of the unload data set, in bytes, is the VSAM high-allocated RBA for

the table space. You can obtain the high-allocated RBA from the associated

VSAM catalog.

REORG TABLESPACE

450 Utility Guide and Reference

|

||
|
|
|
|
|
|
|

|

||
|
|
|

#
#

#
#
#

For SHRLEVEL CHANGE, also add the result of the following calculation (in

bytes) to the VSAM high-used RBA:

number of records * 11

2. If you use REORG with UNLOAD ONLY, UNLOAD PAUSE, or CONTINUE

and you do not specify KEEPDICTIONARY, you can calculate the size of the

unload data set, in bytes, by using the following formula:

maximum row length * number of rows

The maximum row length is the row length, including the 6-byte record prefix,

plus the length of the longest clustering key. If multiple tables exist in the table

space, use the following formula to determine the maximum row length:

Sum over all tables (row length * number of rows)

For SHRLEVEL CHANGE, also add the result of the following formula to the

preceding result:

(21 * ((NEARINDREF + FARINDREF) * 1.1))

In the preceding formula:

NEARINDREF

Is the value that is obtained from the NEARINDREF column of

the SYSIBM.SYSTABLEPART catalog table.3

FARINDREF Is the value that is obtained from the FARINDREF column of

the SYSIBM.SYSTABLEPART catalog table.
3. If you have variable-length fields, the calculation in step 2 might result in

excessive space. Use the average uncompressed row length, multiplied by the

number of rows.

4. If you use REORG with UNLOAD PAUSE or CONTINUE with the DISCARD

option, and the table has variable length fields, use the maximum row length in

the calculation. The DISCARD option without the NOPAD option pads the

variable length fields.

For certain table spaces in the catalog and directory, the unload data set for the

table spaces have a different format. The calculation for the size of this data set is

as follows:

data set size in bytes = (28 + longrow) * numrows

In the preceding formula:

longrow Is the length of the longest row in the table space.

numrows Is the number of rows in the data set.

The length of the row is calculated as follows:

Sum of column lengths + 4 bytes for each link

The length of the column is calculated as follows:

Maximum length of the column + 1 (if nullable) + 2 (if varying length)

See “Reorganizing the catalog and directory” on page 461 for more information

about reorganizing catalog and directory table spaces.

3. The accuracy of the data set size calculation depends on recent information in the SYSTABLEPART catalog table.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 451

Calculating the size of the work data sets: Allocating twice the space that is used

by the input data sets is usually adequate for the sort work data sets. For

compressed data, double again the amount of space that is allocated for the sort

work data sets if you use either of the following REORG options:

v UNLOAD PAUSE without KEEPDICTIONARY

v UNLOAD CONTINUE without KEEPDICTIONARY

Using two or three large SORTWKnn data sets is preferable to using several small

ones. If adequate space is not available, you cannot run REORG.

Specifying a destination for DFSORT messages: The REORG utility job step must

contain a UTPRINT DD statement that defines a destination for messages that are

issued by DFSORT during the SORT phase of REORG. DB2I, the %DSNU CLIST

command, and the DSNUPROC procedure use the following default DD statement:

//UTPRINT DD SYSOUT=A

Calculating the size of the sort work data sets: To calculate the approximate size

(in bytes) of the ST01WKnn data set, use the following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length

Maximum record length of the SYSCOLDISTSTATS record that is processed

when collecting frequency statistics (You can obtain this value from the

RECLENGTH column in SYSTABLES.)

numcols

Number of key columns to concatenate when you collect frequent values

from the specified index.

count Number of frequent values that DB2 is to collect.

DB2 utilities uses DFSORT to perform sorts. Sort work data sets cannot span

volumes. Smaller volumes require more sort work data sets to sort the same

amount of data; therefore, large volume sizes can reduce the number of needed

sort work data sets. It is recommended that at least 1.2 times the amount of data to

be sorted be provided in sort work data sets on disk. For more information about

DFSORT, see DFSORT Application Programming Guide.

Shadow data sets

When you execute the REORG utility with SHRLEVEL REFERENCE or SHRLEVEL

CHANGE, the utility uses shadow data sets.

For user-managed data sets, you must preallocate the shadow data sets before you

execute REORG with SHRLEVEL REFERENCE or SHRLEVEL CHANGE. If a table

space, partition, or index resides in DB2-managed data sets and shadow data sets

do not already exist when you execute REORG, DB2 creates the shadow data sets.

At the end of REORG processing, the DB2-managed shadow data sets are deleted.

Shadow data set names: Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y0001.Lnnn

In the preceding name, the variables have the following meanings:

REORG TABLESPACE

452 Utility Guide and Reference

|
|
|
|
|
|

|
|

|

|

|
|
|
|

|
|
|

||

#
#
#
#
#
#

|
|

variable meaning

catname The VSAM catalog name or alias

x C or D

dbname Database name

psname Table space name or index name

y I or J

Lnnn Partition identifier. Use one of the following values:

v A001 through A999 for partitions 1 through 999

v B000 through B999 for partitions 1000 through 1999

v C000 through C999 for partitions 2000 through 2999

v D000 through D999 for partitions 3000 through 3999

v E000 through E996 for partitions 4000 through 4096

To determine the names of existing shadow data sets, execute one of the following

queries against the SYSTABLEPART or SYSINDEXPART catalog tables:

SELECT DBNAME, TSNAME, IPREFIX

 FROM SYSIBM.SYSTABLEPART

 WHERE DBNAME = ’dbname’ AND TSNAME = ’psname’;

SELECT DBNAME, IXNAME, IPREFIX

 FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y

 WHERE X.NAME = Y.IXNAME AND X.CREATOR = Y.IXCREATOR

 AND X.DBNAME = ’dbname’ AND X.INDEXSPACE = ’psname’;

For a partitioned table space, DB2 returns rows from which you select the row for

the partitions that you want to reorganize.

For example, assume that you have a ten-partition table space and you want to

determine a naming convention for the data set in order to successfully execute the

REORG utility with the SHRLEVEL CHANGE PART 2:6 options. The following

queries of the DB2 catalog tables SYSTABLEPART and SYSINDEXPART provide

the required information:

SELECT DBNAME, TSNAME, PARTITION, IPREFIX FROM SYSIBM.SYSTABLEPART

 WHERE DBNAME = ’DBDV0701’ AND TSNAME = ’TPDV0701’

 ORDER BY PARTITION;

SELECT IXNAME, PARTITION, IPREFIX FROM SYSIBM.SYSINDEXPART

 WHERE IXNAME = ’IXDV0701

 ORDER BY PARTITION;

The preceding queries produce the information that is shown in Table 79 and

Table 80 on page 454.

Table 79 shows the results from the first query.

 Table 79. Query results from the first preceding query

DBNAME TSNAME PARTITION IPREFIX

DBDV0701 TPDV0701 1 I

DBDV0701 TPDV0701 4 I

DBDV0701 TPDV0701 3 J

DBDV0701 TPDV0701 2 I

DBDV0701 TPDV0701 5 J

DBDV0701 TPDV0701 6 J

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 453

|
|
|

|
|
|
|

Table 79. Query results from the first preceding query (continued)

DBNAME TSNAME PARTITION IPREFIX

DBDV0701 TPDV0701 7 I

DBDV0701 TPDV0701 8 I

DBDV0701 TPDV0701 9 I

DBDV0701 TPDV0701 10 I

Table 80 shows the results from the second query.

 Table 80. Query results from the second preceding query

IXNAME PARTITION IPREFIX

IXDV0701 10 I

IXDV0701 9 I

IXDV0701 8 I

IXDV0701 7 I

IXDV0701 6 J

IXDBV0701 5 J

IXDV0701 4 I

IXDV0701 3 J

IXDV0701 2 I

IXDV0701 1 I

To execute REORG SHRLEVEL CHANGE PART 2:6, you need to preallocate the

following shadow objects. The naming convention for these objects use information

from the query results that are shown in Table 79 on page 453 and Table 80.

vcatnam.DSNDBC.DBDV0701.TPDV0701.J0001.A002

vcatnam.DSNDBC.DBDV0701.TPDV0701.I0001.A003

vcatnam.DSNDBC.DBDV0701.TPDV0701.J0001.A004

vcatnam.DSNDBC.DBDV0701.TPDV0701.I0001.A005

vcatnam.DSNDBC.DBDV0701.TPDV0701.I0001.A006

vcatnam.DSNDBC.DBDV0701.IXDV0701.J0001.A002

vcatnam.DSNDBC.DBDV0701.IXDV0701.I0001.A003

vcatnam.DSNDBC.DBDV0701.IXDV0701.J0001.A004

vcatnam.DSNDBC.DBDV0701.IXDV0701.I0001.A005

vcatnam.DSNDBC.DBDV0701.IXDV0701.I0001.A006

Defining shadow data sets: Consider the following actions when you preallocate

the data sets:

v Allocate the shadow data sets according to the rules for user-managed data sets.

v Define the shadow data sets as LINEAR.

v Use SHAREOPTIONS(3,3).

v Define the shadow data sets as EA-enabled if the original table space or index

space is EA-enabled.

v Allocate the shadow data sets on the volumes that are defined in the storage

group for the original table space or index space.

If you specify a secondary space quantity, DB2 does not use it. Instead, DB2 uses

the SECQTY value for the table space or index space.

REORG TABLESPACE

454 Utility Guide and Reference

Recommendation: Use the MODEL option, which causes the new shadow data set

to be created like the original data set. This method is shown in the following

example:

DEFINE CLUSTER +

 (NAME(’catname.DSNDBC.dbname.psname.x0001.L001’) +

 MODEL(’catname.DSNDBC.dbname.psname.y0001.L001’)) +

 DATA +

 (NAME(’catname.DSNDBD.dbname.psname.x0001.L001’) +

 MODEL(’catname.DSNDBD.dbname.psname.y0001.L001’))

DB2 treats preallocated shadow data sets as DB2-managed data sets. For example,

DB2 deletes a preallocated shadow data set for a nonpartitioning index at the end

of REORG PART.

Creating shadow data sets for indexes: When you preallocate data sets for indexes,

create the shadow data sets as follows:

v Create shadow data sets for the partition of the table space and the

corresponding partition in each partitioning index and data-partitioned

secondary index.

v Create a shadow data set for logical partitions of nonpartitioned secondary

indexes.

Use the same naming scheme for these index data sets as you use for other data

sets that are associated with the base index, except use J0001 instead of I0001. For

more information about this naming scheme, see the information about the shadow

data set naming convention at the beginning of this section, “Shadow data sets” on

page 452.

Estimating the size of shadow data sets: If you have not changed the value of

FREEPAGE or PCTFREE, the amount of required space for a shadow data set is

comparable to the amount of required space for the original data set. However, for

REORG PART, the required space for the shadow data set of the logical partition of

a nonpartitioning index is approximately equal to the percentage of space that the

partition occupies in the entire table space.

For example, a partitioned table space with 100 partitions and data that is

relatively evenly balanced across the partitions needs a shadow data set for the

logical partition that is approximately 1% of the size of the original nonpartitioning

index.

Preallocating shadow data sets for REORG PART: By creating the shadow data

sets before executing REORG PART, even for DB2-managed data sets, you prevent

possible over-allocation of the disk space during REORG processing. When

reorganizing a partition, you must create the shadow data sets for the partition of

the table space and for the partition of the partitioning index. In addition, before

executing REORG PART with SHRLEVEL REFERENCE or SHRLEVEL CHANGE

on partition mmm of a partitioned table space, you must create a shadow data set

for each nonpartitioning index that resides in user-defined data sets. Each shadow

data set is to be used for a copy of the logical partition of the index. The name for

this shadow data set has the form catname.DSNDBx.dbname.psname.y0mmm.Annn.

When reorganizing a range of partitions, you must allocate a single shadow data

set for each logical partition. Each logical partition within the range specified is

contained in the single shadow data set. The name for this shadow data set must

have the form catname.DSNDBx.dbname.psname.y0mmm.Annn, where mmm is the

first partition in the range specification.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 455

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

Creating the control statement

Create the utility control statement for the REORG TABLESPACE job. See “Syntax

and options of the REORG TABLESPACE control statement” on page 416 for

REORG TABLESPACE syntax and option descriptions. See “Sample REORG

TABLESPACE control statements” on page 481 for examples of REORG

TABLESPACE usage.

Beginning in Version 8, the SORTKEYS option is the default. Therefore, the REORG

TABLESPACE utility does not require SYSUT1 and SORTOUT data sets. The

WORKDDN keyword, which provided the DD names of the SYSUT1 and

SORTOUT data sets in earlier versions of DB2, is not needed and is ignored. The

SORTKEYS keyword is also ignored. You do not need to modify existing control

statements to remove the WORKDDN keyword or the SORTKEYS keyword.

Recommendation: Remove the DD statements from the job to prevent allocation of

space that is not used.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Determining when an object should be reorganized”

 “Specifying access with SHRLEVEL” on page 458

 “Omitting the output data set” on page 460

 “Unloading without reloading” on page 460

 “Reclaiming space from dropped tables” on page 460

 “Considerations for fallback recovery” on page 460

 “Reorganizing the catalog and directory” on page 461

 “Changing data set definitions” on page 463

 “Temporarily interrupting REORG” on page 463

 “Building a compression dictionary” on page 463

 “Overriding dynamic DFSORT and SORTDATA allocation” on page 463

 “Rebalancing partitions by using REORG” on page 464

 “Using inline copy with REORG TABLESPACE” on page 465

 “Improving performance” on page 466

 “Building indexes in parallel for REORG TABLESPACE” on page 467

Determining when an object should be reorganized

Product-sensitive Programming Interface

You can determine when to run REORG for non-LOB table spaces and indexes by

using the OFFPOSLIMIT and INDREFLIMIT catalog query options. If you specify

the REPORTONLY option, REORG produces a report that indicates whether a

REORG is recommended; a REORG is not performed.

When you specify the catalog query options along with the REPORTONLY option,

REORG produces a report with one of the following return codes:

1 No limit met; no REORG is performed or recommended.

2 REORG is performed or recommended.

Alternatively, use the SYSTABLEPART and SYSINDEXPART catalog tables to find

which table spaces and indexes qualify for reorganization. The information in these

catalog tables can also be used to determine when the DB2 catalog table spaces

require reorganization. For catalog table spaces SYSDBASE, SYSVIEWS, and

REORG TABLESPACE

456 Utility Guide and Reference

|
|
|
|
|
|

|
|
|
|

SYSPLAN, you should not use the value for columns FAROFFPOSF and

NEAROFFPOSF of SYSINDEXPART to determine whether to reorganize.

Table spaces or partitions that are in REORG-pending status should be

reorganized. Use the DISPLAY DATABASE RESTRICT command to display those

table spaces and partitions that require reorganization. See Appendix C, “Advisory

or restrictive states,” on page 849 for more information.

Information from the SYSTABLEPART catalog table can also tell you how well disk

space is being used. If you want to find the number of varying-length rows that

were relocated to other pages because of an update, run RUNSTATS, and then

issue the following statement:

SELECT CARD, NEARINDREF, FARINDREF

 FROM SYSIBM.SYSTABLEPART

 WHERE DBNAME = 'XXX'

 AND TSNAME = 'YYY';

A large number (relative to previous values that you have received) for

FARINDREF indicates that I/O activity on the table space is high. If you find that

this number increases over a period of time, you probably need to reorganize the

table space to improve performance, and increase PCTFREE or FREEPAGE for the

table space with the ALTER TABLESPACE statement.

The following statement returns the percentage of unused space in nonsegmented

table space YYY. In nonsegmented table spaces, the space that is used by dropped

tables is not reclaimed until you reorganize the table space.

SELECT PERCDROP

 FROM SYSIBM.SYSTABLEPART

 WHERE DBNAME = 'XXX'

 AND TSNAME = 'YYY';

Issue the following statement to determine whether the rows of a table are stored

in the same order as the entries of its clustering index:

SELECT NEAROFFPOSF, FAROFFPOSF

 FROM SYSIBM.SYSINDEXPART

 WHERE IXCREATOR = 'index_creator_name'

 AND IXNAME = 'index_name';

Several indicators are available to signal a time for reorganizing table spaces. A

large value for FAROFFPOSF might indicate that clustering is deteriorating. In this

case, reorganizing the table space can improve query performance.

A large value for NEAROFFPOSF might indicate also that reorganization might

improve performance. However, in general NEAROFFPOSF is not as critical a

factor as FAROFFPOSF.

FAROFFPOSF and NEAROFFPOSF do not have query performance considerations

for the following DB2 catalog tables:

 DSNDB06.SYSDBASE

 DSNDB06.SYSDBAUT

 DSNDB06.SYSGROUP

 DSNDB06.SYSPLAN

 DSNDB06.SYSVIEWS

For any table, the REORG utility repositions rows into the sequence of the key of

the clustering index that is defined on that table.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 457

|
|

For nonclustering indexes, the statistical information that is recorded by

RUNSTATS in SYSINDEXES and SYSINDEXPART might appear even worse after

the clustering index is used to reorganize the data. This applies only to the

CLUSTERING and CLUSTERED columns in SYSINDEXES and to the

NEAROFFPOS and FAROFFPOS columns in SYSINDEXPART.

For specific REORG threshold numbers, see Part 5 of DB2 Administration Guide.

Recommendation: Run RUNSTATS if the statistics are not current. If you have an

object that should also be reorganized, run REORG with STATISTICS and take

inline copies. If you run REORG PART and nonpartitioning indexes exist,

subsequently run RUNSTATS for each nonpartitioning index.

End of Product-sensitive Programming Interface

Specifying access with SHRLEVEL

For reorganizing a table space, or a partition of a table space, the SHRLEVEL

option lets you choose the level of access that you have to your data during

reorganization.

REORG with SHRLEVEL NONE, the default, reloads the reorganized data into the

original area that is being reorganized. Applications have read-only access during

unloading and no access during reloading. For data-partitioned secondary indexes,

the option rebuilds the index parts during the BUILD phase. (Rebuilding these

indexes does not create contention between parallel REORG PART jobs.) For

nonpartitioned secondary indexes, the option corrects the indexes. Using REORG

SHRLEVEL NONE is the only access level that resets REORG-pending status.

REORG with SHRLEVEL REFERENCE reloads the reorganized data into a new

(shadow) copy of the area that is being reorganized. Near the end of

reorganization, DB2 switches the future access of the application from the original

data to the shadow copy. For SHRLEVEL REFERENCE, applications have

read-only access during unloading and reloading, and a brief period of no access

during switching. For data-partitioned secondary indexes, nothing occurs during

the BUILD phase. (Rebuilding these indexes does not create contention between

parallel REORG PART jobs.) For nonpartitioned secondary indexes, the option

corrects the indexes of the reorganized parts.

REORG with SHRLEVEL CHANGE reloads the reorganized data into a shadow

copy of the area that is being reorganized. For REORG TABLESPACE SHRLEVEL

CHANGE, a mapping table correlates RIDs in the original copy of the table space

or partition with RIDs in the shadow copy; see “Mapping table with SHRLEVEL

CHANGE” on page 445 for instructions on creating the mapping table.

Applications can read from and write to the original area, and DB2 records the

writing in the log. DB2 then reads the log and applies it to the shadow copy to

bring the shadow copy up to date. This step executes iteratively, with each

iteration processing a sequence of log records.

Near the end of reorganization, DB2 switches the future access of the application

from the original data to the shadow copy. Applications have read-write access

during unloading and reloading, a brief period of read-only access during the last

iteration of log processing, and a brief period of no access during switching.

REORG TABLESPACE

458 Utility Guide and Reference

#

|
|
|
|
|

|
|
|
|
|
|
|
|

For data-partitioned secondary indexes, nothing occurs during the BUILD phase.

(Rebuilding these indexes does not create contention between parallel REORG

PART jobs.) For nonpartitioned secondary indexes, the option corrects the indexes

of the reorganized parts.

Log processing with SHRLEVEL CHANGE: When you specify SHRLEVEL

CHANGE, DB2 processes the log to update the shadow copy. This step executes

iteratively. The first iteration processes the log records that accumulated during the

previous iteration. The iterations continue until one of these conditions is met:

v DB2 estimates that the time to perform the log processing in the next iteration

will be less than or equal to the time that is specified for MAXRO. If this

condition is met, the next iteration is the last iteration.

v DB2 estimates that the SWITCH phase will not start by the deadline that is

specified for DEADLINE. If this condition is met, DB2 terminates reorganization.

v The number of log records that the next iteration is to process is not sufficiently

lower than the number of log records that were processed in the previous

iteration. If this condition is met but the first two conditions are not met, DB2

sends message DSNU377I to the console. DB2 continues log processing for the

length of time that is specified for DELAY and then performs the action that is

specified for LONGLOG.

Operator actions: LONGLOG specifies the action that DB2 performs if the pace of

processing log records between iterations is slow. See “Option descriptions” on

page 422 for a description of the LONGLOG options. If no action is taken after

message DSNU377I is sent to the console, the LONGLOG option automatically

goes into effect. Some examples of possible actions that you can take:

v Execute the START DATABASE(database) SPACENAM(tablespace) ... ACCESS(RO)

command and the QUIESCE utility to drain the write claim class. DB2 performs

the last iteration, if MAXRO is not DEFER. After the QUIESCE, you should also

execute the ALTER UTILITY command, even if you do not change any REORG

parameters.

v Execute the START DATABASE(database) SPACENAM(tablespace) ... ACCESS(RO)

command and the QUIESCE utility to drain the write claim class. Then, after

reorganization makes some progress, execute the START DATABASE(database)

SPACENAM(tablespace) ... ACCESS(RW) command. This increases the likelihood

that processing of log records between iterations can continue at an acceptable

rate. After the QUIESCE, you should also execute the ALTER UTILITY

command, even if you do not change any REORG parameters.

v Execute the ALTER UTILITY command to change the value of MAXRO.

Changing it to a huge positive value, such as 9999999, causes the next iteration

to be the last iteration.

v Execute the ALTER UTILITY command to change the value of LONGLOG.

v Execute the TERM UTILITY command to terminate reorganization.

v Adjust the amount of buffer space that is allocated to reorganization and to

applications. This adjustment can increase the likelihood that processing of log

records between iterations can continue at an acceptable rate. After adjusting the

space, you should also execute the ALTER UTILITY command, even if you do

not change any REORG parameters.

v Adjust the scheduling priorities of reorganization and applications. This

adjustment can increase the likelihood that processing of log records between

iterations can continue at an acceptable rate. After adjusting the priorities, you

should also execute the ALTER UTILITY command, even if you do not change

any REORG parameters.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 459

|
|
|
|

DB2 does not take the action that is specified in the LONGLOG phrase if any one

of these events occurs before the delay expires:

v An ALTER UTILITY command is issued.

v A TERM UTILITY command is issued.

v DB2 estimates that the time to perform the next iteration is less than or equal to

the time that is specified in the MAXRO keyword.

v REORG terminates for any reason (including the deadline).

Omitting the output data set

For REORG TABLESPACE, you can use the NOSYSREC option to omit the unload

data set. You can use this option only if you do not specify UNLOAD PAUSE or

UNLOAD ONLY. This option provides a performance advantage. However, you

should be aware of the following facts:

v For REORG TABLESPACE SHRLEVEL CHANGE, REORG omits the unload data

set, even if you do not specify NOSYSREC.

v For REORG TABLESPACE SHRLEVEL REFERENCE, if you do not use the

NOSYSREC option and an error occurs during reloading, you can restart at the

RELOAD phase of REORG by using the contents of the unload data set.

However, if the REORG job includes both SORTDATA and NOSYSREC, you

must restart at the UNLOAD phase.

v For REORG TABLESPACE SHRLEVEL NONE with NOSYSREC, if an error

occurs during reloading, you must execute the RECOVER TABLESPACE utility,

starting from the most recent image copy. Therefore, if you specify NOSYSREC

with SHRLEVEL NONE, you must create an image copy before starting REORG

TABLESPACE.

Unloading without reloading

REORG can unload data without continuing and without creating a

SYSIBM.SYSUTIL record after the job ends.

If you specify UNLOAD ONLY, REORG unloads data from the table space and

then ends. You can reload the data at a later date with the LOAD utility, specifying

FORMAT UNLOAD.

Between unloading and reloading, you can add a validation routine to a table.

During reloading, all the rows are checked by the validation procedure.

Do not use REORG UNLOAD ONLY to propagate data. When you specify the

UNLOAD ONLY option, REORG unloads only the data that physically resides in

the base table space; LOB columns are not unloaded. For purposes of data

propagation, you should use UNLOAD or REORG UNLOAD EXTERNAL instead.

Reclaiming space from dropped tables

Reorganization omits tables that were previously dropped, reclaiming the space

that they acquired. See “Reclaiming space in the DBD” on page 300 for actions to

take when you drop a table.

Considerations for fallback recovery

If RECOVER cannot use the latest image copy or copies as a starting point for the

recovery, it attempts to use previous copies; if that attempt fails, RECOVER

restores the data from the log.

However, if you use REORG SHRLEVEL NONE LOG NO, RECOVER cannot

restore data from the log past the point at which the object was last reorganized

REORG TABLESPACE

460 Utility Guide and Reference

|
|
|
|

successfully. Therefore, you must take an image copy after running REORG with

LOG NO to establish a level of fallback recovery.

Recommendation: Immediately following an ALTER INDEX operation that

modifies key values, create a new recovery point by taking one of the following

actions:

v Run REORG and specify COPYDDN and SHRLEVEL NONE.

v Take a full image copy immediately after REORG completes.

If you performed a REORG to reset REORG-pending status (REORP), you should

also take an inline image copy or run the COPY utility. Image copies that are taken

prior to resetting the REORG-pending status cannot be used for recovery to the

current RBA or LRSN.

Successful REORG LOG NO processing inserts a row into SYSIBM.SYSCOPY with

ICTYPE=W for each index that was defined with COPY YES. REORG also places a

reorganized index in informational COPY-pending (ICOPY) status. You should take

a full image copy of the index after the REORG job completes to create a valid

point of recovery.

Reorganizing the catalog and directory

You can run REORG TABLESPACE on the table spaces in the catalog database

(DSNDB06) and on the SCT02, SPT01, DBD01, and SYSLGRNX table spaces in the

directory database (DSNDB01).

Attention: You must take a full image copy before and after reorganizing any

catalog or directory object. Otherwise, you cannot recover any catalog of directory

objects without the full image copies. When you reorganize the

DSNDB06.SYSCOPY table space with the LOG NO option and omit the

COPYDDN option, DB2 places the table space in COPY-pending status. Take a full

image copy of the table space to remove the COPY-pending status before

continuing to reorganize the catalog or directory table spaces.

Running REORG LOG NO COPYDDN avoids the COPY-pending status, because

an inline copy is taken during the REORG.

The FASTSWITCH YES option is ignored for catalog and directory objects.

Recommendation: Use SHRLEVEL REFERENCE when reorganizing the catalog.

When to run REORG on the catalog and directory: You do not need to run

REORG TABLESPACE on the catalog and directory table spaces as often as you do

on user table spaces. RUNSTATS collects statistics about user table spaces which

you use to determine if a REORG is necessary. You can use the same statistics to

determine if a REORG is needed for catalog table spaces. The only difference is the

information in the columns NEAROFFPOSF and FAROFFPOSF in table

SYSINDEXPART. The values in these columns can be double the recommended

value for user table spaces before a reorganization is needed if the table space is

DSNDB06.SYSDBASE, DSNDB06.SYSVIEWS, DSNDB06.SYSPLAN,

DSNDB06.SYSGROUP, or DSNDB06.SYSDBAUT.

Reorganize the whole catalog before a catalog migration or once every couple of

years. Reorganizing the catalog is useful for reducing the size of the catalog table

space. To improve query performance, reorganize the indexes on the catalog tables.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 461

When statistical information indicates that DSNDB06.SYSDBASE,

DSNDB06.SYSPLAN, or DSNDB06.SYSPKAGE requires reorganization, you should

also reorganize the corresponding directory table space. These catalog table spaces

and their corresponding directory table spaces are listed in Table 81.

 Table 81. Catalog table spaces and their corresponding directory table spaces

Catalog table space Directory table space

DSNDB06.SYSDBASE DSNDB01.DBD01

DSNDB06.SYSPLAN DSNDB01.SCT02

DSNDB06.SYSPKAGE DSNDB01.SPT01

Associated directory table spaces: When certain catalog table spaces are

reorganized, you should also reorganize the associated directory table space. The

associated directory table spaces are listed in Table 81.

Limitations for reorganizing the catalog and directory:

v You cannot reorganize DSNDB01.SYSUTILX.

v The UNLOAD ONLY or UNLOAD EXTERNAL and LOG YES options are not

allowed for catalog and directory table spaces. However, LOG YES is required

for the catalog LOB table spaces.

v The SORTDEVT and SORTNUM options are ignored for the following catalog

and directory table spaces:

– DSNDB06.SYSDBASE

– DSNDB06.SYSDBAUT

– DSNDB06.SYSGROUP

– DSNDB06.SYSPLAN

– DSNDB06.SYSVIEWS

– DSNDB01.DBD01

The COPYDDN and RECOVERYDDN options are valid for the preceding

catalog and directory tables if SHRLEVEL REFERENCE is also specified.

v REORG TABLESPACE with SHRLEVEL CHANGE cannot operate on the

following catalog and directory table spaces:

– DSNDB06.SYSDBASE

– DSNDB06.SYSDBAUT

– DSNDB06.SYSGROUP

– DSNDB06.SYSPLAN

– DSNDB06.SYSVIEWS

– DSNDB01.DBD01
v REORG TABLESPACE with STATISTICS cannot collect inline statistics on the

following catalog and directory table spaces:

– DSNDB06.SYSDBASE

– DSNDB06.SYSDBAUT

– DSNDB06.SYSGROUP

– DSNDB06.SYSPLAN

– DSNDB06.SYSVIEWS

– DSBDB06.SYSSTATS

– DSNDB06.SYSHIST

– DSNDB01.DBD01

Phases for reorganizing the catalog and directory: REORG TABLESPACE processes

certain catalog and directory table spaces differently from other table spaces; it

does not execute the BUILD and SORT phases for the following table spaces:

REORG TABLESPACE

462 Utility Guide and Reference

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

v DSNDB06.SYSDBASE

v DSNDB06.SYSDBAUT

v DSNDB06.SYSGROUP

v DSNDB06.SYSPLAN

v DSNDB06.SYSVIEWS

v DSNDB01.DBD01

For these table spaces, REORG TABLESPACE reloads the indexes (in addition to

the table space) during the RELOAD phase, rather than storing the index keys in a

work data set for sorting.

For all other catalog and directory table spaces, DB2 uses index build parallelism.

Changing data set definitions

If the table space is defined by storage groups, DB2 allocates space, and you

cannot alter data set definitions during the reorganization process. DB2 deletes and

redefines the necessary data sets to reorganize the object.

For REORG with SHRLEVEL REFERENCE or CHANGE, you can use the ALTER

STOGROUP command to change the characteristics of a DB2-managed data set. To

change the characteristics of a user-managed data set, specify the desired new

characteristics when you create the shadow data set; see “Shadow data sets” on

page 452 for more information about user-managed data sets. For example, placing

the original and shadow data sets on different disk volumes might reduce

contention and thus improve the performance of REORG and the performance of

applications during REORG execution.

Temporarily interrupting REORG

You can temporarily pause REORG. If you specify UNLOAD PAUSE, REORG

pauses after unloading the table space into the unload data set. You cannot use

NOSYSREC and PAUSE. The job completes with return code 4. You can restart

REORG by using the phase restart or current restart. Do not alter the REORG

statement.

The REORG utility remains in stopped status until REORG is restarted or

terminated.

While REORG is interrupted by PAUSE, you can redefine the table space attributes

for user-defined table spaces. PAUSE is not required for STOGROUP-defined table

spaces. Attribute changes are done automatically by a REORG following an ALTER

TABLESPACE.

Building a compression dictionary

The REORG utility builds the compression dictionary during the UNLOAD

process. This dictionary is then used during the RELOAD phase to compress the

data. Specify the KEEPDICTIONARY option to save the cost of rebuilding the

dictionary if you are satisfied with the current compression ratio.

Overriding dynamic DFSORT and SORTDATA allocation

If your REORG job includes the SORTDATA option, DB2 estimates how many

rows are to be sorted and passes this information to DFSORT on the parameter

FILSZ. DFSORT then dynamically allocates the necessary sort work space.

If the table space contains rows with VARCHAR columns, DB2 might not be able

to accurately estimate the number of rows. If the estimated number of rows is too

high and the sort work space is not available or if the estimated number of rows is

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 463

|
|
|

too low, DFSORT might fail and cause an abend. Important: Run RUNSTATS

UPDATE SPACE before the REORG so that DB2 calculates a more accurate

estimate.

You can override this dynamic allocation of sort work space in two ways:

v Allocate the sort work data sets with SORTWKnn DD statements in your JCL.

v Override the DB2 row estimate in FILSZ using control statements that are

passed to DFSORT. However, using control statements overrides size estimates

that are passed to DFSORT in all invocations of DFSORT in the job step,

including sorting keys to build indexes, and any sorts that are done in any other

utility that is executed in the same step. The result might be reduced sort

efficiency or an abend due to an out-of-space condition.

Rebalancing partitions by using REORG

You can use the following methods to rebalance partitions:

v Use ALTER INDEX to modify the limit keys for partition boundaries before you

use REORG TABLESPACE.

v Use ALTER TABLE ALTER PARTITION before you use REORG TABLESPACE.

v Use REBALANCE on the REORG TABLESPACE utility. Restriction: You cannot

use the REBALANCE option with the SCOPE PENDING option.

If you use ALTER INDEX to modify the limit keys for partition boundaries, you

must subsequently use REORG TABLESPACE to redistribute data in the

partitioned table spaces based on the new key values and to reset the

REORG-pending status. The following example specifies options that help

maximize performance while performing the necessary rebalancing reorganization:

REORG TABLESPACE DSN8S81E PART 2:3

 NOSYSREC

 COPYDDN SYSCOPY

 STATISTICS TABLE INDEX(ALL)

You can reorganize a range of partitions, even if the partitions are not in

REORG-pending status. If you specify the STATISTICS keyword, REORG collects

data about the specified range of partitions.

If you perform a REORG on partitions that are in the REORG-pending status, be

aware that:

v You must specify SHRLEVEL NONE if the object is in REORG-pending status.

Otherwise, REORG terminates and issues message DSNU273I and return code 8.

v REORG ignores the KEEPDICTIONARY option for any partition that is in

REORG-pending status; REORG automatically rebuilds the dictionaries for the

affected partitions. However, if you specify a range of partitions that includes

some partitions that are not in REORG-pending restrictive status, REORG honors

the KEEPDICTIONARY option for those nonrestricted partitions.

v If any partition is in REORG-pending status when REORG executes, DB2 writes

a SYSCOPY record with STYPE=A for each partition that is specified on the

REORG job.

v If you take an inline image copy of a range of partitions, DB2 writes one

SYSCOPY record with ICTYPE=F for each partition, and each record has the

same data set name.

v Specify the DISCARDDN and PUNCHDDN data sets for a table space that is

defined as LARGE or DSSIZE, but has had the limit key for the last partition of

the table space reduced by a subsequent ALTER INDEX statement. Otherwise,

REORG terminates and issues message DSNU035I and return code 8.

REORG TABLESPACE

464 Utility Guide and Reference

|
|
|

|

|
|

|

|
|

|
|
|
|

You cannot reorganize a subset of a range of partitions that are in REORG-pending

status; you must reorganize the entire range to reset the restrictive status.

For more restrictions when using REBALANCE, see “Restrictions when using

REBALANCE” on page 446.

Rebalancing partitions when the clustering index does not match the

partitioning key: For a table that has a clustering index that does not match the

partitioning key, you must run REORG TABLESPACE twice so that data is

rebalanced and all rows are in clustering order. The first utility execution

rebalances the data and the second utility execution sorts the data.

For example, assume you have a table space that was created with the following

SQL:

--

 SQL to create a table and index with

 separate columns for partitioning

 and clustering

--

CREATE TABLESPACE TS IN DB

 USING STOGROUP SG

 NUMPARTS 4 BUFFERPOOL BP0;

CREATE TABLE TB (C01 CHAR(5) NOT NULL,

 C02 CHAR(5) NOT NULL,

 C03 CHAR(5) NOT NULL)

 IN DB.TS

 PARTITION BY (C01)

 (PART 1 VALUES (’00001’),

 PART 2 VALUES (’00002’),

 PART 3 VALUES (’00003’),

 PART 4 VALUES (’00004’));

CREATE INDEX IX ON TB(C02) CLUSTER;

To rebalance the data across the four partitions, use the following REORG

TABLESPACE control statement:

REORG TABLESPACE DB.TS REBALANCE

After the preceding utility job completes, the table space is placed in AREO* status

to indicate that a subsequent reorganization is recommended to ensure that the

rows are in clustering order. For this subsequent reorganization, use the following

REORG TABLESPACE control statement:

REORG TABLESPACE DB.TS

Using inline copy with REORG TABLESPACE

You can create a full image copy data set (SHRLEVEL REFERENCE) during

REORG TABLESPACE execution. The new copy is an inline copy. The advantage to

using an inline copy is that the table space is not left in COPY-pending status,

regardless of which LOG option is specified for the utility. Thus, data availability is

increased. You must take an inline copy when you specify the REBALANCE

option. You cannot take inline copies of LOB table spaces.

To create an inline copy, use the COPYDDN and RECOVERYDDN keywords. You

can specify up to two primary copies and two secondary copies. Inline copies are

produced during the RELOAD phase of REORG processing.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 465

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|

|

#
#

The SYSCOPY record that is produced by an inline copy contains ICTYPE=F,

SHRLEVEL=R. The STYPE column contains an X if the image copy was produced

by REORG TABLESPACE LOG(YES), and a W if the image copy was produced by

REORG TABLESPACE LOG(NO). The data set that is produced by the inline copy

is logically equivalent to a full image copy with SHRLEVEL REFERENCE, but the

data within the data set differs in some respects:

v Data pages might be out of sequence and some might be repeated. If pages are

repeated, the last one is always the correct copy.

v Space map pages are out of sequence and might be repeated

The total number of duplicate pages is small, with a negligible effect on the

amount of space that is required for the data set. One exception to this guideline is

the case of running REORG SHRLEVEL CHANGE, in which the number of

duplicate pages varies with the number of records that are applied during the LOG

phase.

Improving performance

To improve REORG performance:

v Run REORG concurrently on separate partitions of a partitioned table space.

When you run REORG on partitions of a partitioned table space, the sum of

each job’s processor usage is greater than for a single REORG job on the entire

table space. However, the elapsed time of reorganizing the entire table in parallel

can be significantly less than it would be for a single REORG job.

v Use parallel index build for table spaces or partitions that have more than one

defined index. For more information, see “Building indexes in parallel for

REORG TABLESPACE” on page 467.

v Specify NOSYSREC on your REORG statement. See “Omitting the output data

set” on page 460 for restrictions.

v If you are using 3990 caching, and you have the nonpartitioning indexes on

RAMAC®, consider specifying YES on the UTILITY CACHE OPTION field of

installation panel DSNTIPE. This option allows DB2 to use sequential prestaging

when reading data from RAMAC for the following utilities:

– LOAD PART integer RESUME

– REORG TABLESPACE PART
For LOAD PART and REORG TABLESPACE PART utility jobs, prefetch reads

remain in the cache longer, which can lead to possible improvements in the

performance of subsequent writes.

Use inline copy and inline statistics instead of running separate COPY and

RUNSTATS utilities.

When to use SHRLEVEL CHANGE: Schedule REORG with SHRLEVEL CHANGE

when the rate of writing is low and transactions are short. Avoid scheduling

REORG with SHRLEVEL CHANGE when critical applications are executing.

Performance implications with SHRLEVEL CHANGE: Under certain circumstances,

the log records that REORG SHRLEVEL CHANGE uses contain additional

information, as if DATA CAPTURE CHANGES were used. Generation of the

additional information can slow applications and increase consumption of log

space. The additional information is generated for all the tables in the table space if

at least one table satisfies all these conditions:

v The table has undergone ALTER TABLE ADD column.

v The table does not use DATA CAPTURE CHANGES.

v One of these conditions is true:

REORG TABLESPACE

466 Utility Guide and Reference

– The area that is being reorganized uses data compression.

– The area is a partitioned table space, and at least one partition uses data

compression.

When to use DRAIN_WAIT: The DRAIN_WAIT option gives you greater control

over the time that online REORG is to wait for drains. Also because the

DRAIN_WAIT is the aggregate time that online REORG is to wait to perform a

drain on a table space and associated indexes, the length of drains is more

predictable than if each partition and index has its own individual waiting time

limit.

By specifying a short delay time (less than the system timeout value, IRLMRWT),

you can reduce the impact on applications by reducing time-outs. You can use the

RETRY option to give the online REORG more chances to complete successfully. If

you do not want to use RETRY processing, you can still use DRAIN_WAIT to set a

specific and more consistent limit on the length of drains.

RETRY allows an online REORG that is unable to drain the objects that it requires

so that DB2 can try again after a set period (RETRY_DELAY). During the

RETRY_DELAY period, all the objects are available for read-write access in the case

of SHRLEVEL CHANGE. For SHRLEVEL REFERENCE, the objects remain with

the access that existed prior to the attempted drain (that is if the drain fails in the

UNLOAD phase the object remains in read-write access; if the drain fails in the

SWITCH phase, objects remain in read-only access). Because application SQL

statements can be in a queue behind any unsuccessful drain the online REORG has

tried, a reasonable delay is recommended before retrying, to allow this work to

complete; the default is 5 minutes.

When you specify DRAIN WRITERS (the default) with SHRLEVEL CHANGE and

RETRY, multiple read-only log iterations can occur. Generally, online REORG might

need to do more work when RETRY is specified, and this might result in multiple

or extended periods of restricted access. Applications that run alongside online

REORG need to perform frequent commits. During the interval between retries, the

utility is still active, and consequently other utility activity against the table space

and indexes is restricted.

When doing a table space REORG with RETRY and SHRLEVEL CHANGE both

specified, you can increase the size of the COPY that REORG takes.

Recommendation: Run online REORG during lighter periods of activity on the

table space or index.

Building indexes in parallel for REORG TABLESPACE

Parallel index build reduces the elapsed time for a REORG TABLESPACE job by

sorting the index keys and rebuilding multiple indexes in parallel, rather than

sequentially. Optimally, a pair of subtasks processes each index; one subtlest sorts

extracted keys, while the other subtlest builds the index. REORG TABLESPACE

begins building each index as soon as the corresponding sort emits its first sorted

record.

Figure 78 on page 468 shows the flow of a REORG TABLESPACE job that uses a

parallel index build. DB2 starts multiple subtasks to sort index keys and build

indexes in parallel. If you specify STATISTICS, additional subtasks collect the

sorted keys and update the catalog table in parallel, eliminating the need for a

second scan of the index by a separate RUNSTATS job.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 467

REORG TABLESPACE uses parallel index build if more than one index needs to be

built (including the mapping index for SHRLEVEL CHANGE). You can either let

the utility dynamically allocate the data sets that SORT needs for this parallel

index build or provide the necessary data sets yourself.

Select one of the following methods to allocate sort work and message data sets:

Method 1: REORG TABLESPACE determines the optimal number of sort work

data sets and message data sets.

1. Specify the SORTDEVT keyword in the utility statement.

2. Allow dynamic allocation of sort work data sets by not supplying SORTWKnn

DD statements in the REORG TABLESPACE utility JCL.

3. Allocate UTPRINT to SYSOUT.

Method 2: Control allocation of sort work data sets, while REORG TABLESPACE

allocates message data sets.

1. Provide DD statements with DD names in the form SWnnWKmm.

2. Allocate UTPRINT to SYSOUT.

Method 3: Exercise the most control over rebuild processing; specify both sort

work data sets and message data sets.

1. Provide DD statements with DD names in the form SWnnWKmm.

2. Provide DD statements with DD names in the form UTPRINnn.

Data sets used: If you select Method 2 or 3 in the preceding information, define

the necessary data sets by using the information provided here, along with

“Determining the number of sort subtasks” on page 469, “Allocation of sort

subtasks” on page 469, and “Estimating the sort work file size” on page 469.

Each sort subtask must have its own group of sort work data sets and its own

print message data set. Possible reasons to allocate data sets in the utility job JCL

rather than using dynamic allocation are:

v To control the size and placement of the data sets

v To minimize device contention

v To optimally utilize free disk space

v To limit the number of utility subtasks that are used to build indexes

Figure 78. How indexes are built during a parallel index build

REORG TABLESPACE

468 Utility Guide and Reference

|
|
|
|

|

|

|

The DD name SWnnWKmm defines the sort work data sets that are used during

utility processing. nn identifies the subtask pair, and mm identifies one or more

data sets that are to be used by that subtask pair. For example:

SW01WK01 Is the first sort work data set that is used by the subtask that

builds the first index.

SW01WK02 Is the second sort work data set that is used by the subtask that

builds the first index.

SW02WK01 Is the first sort work data set that is used by the subtask that

builds the second index.

SW02WK02 Is the second sort work data set that is used by the subtask that

builds the second index.

The DD name UTPRINnn defines the sort work message data sets that are used by

the utility subtask pairs. nn identifies the subtask pair.

Determining the number of sort subtasks: The maximum number of utility

subtask pairs that are started for parallel index build is equal to the number of

indexes that need to be built.

REORG TABLESPACE determines the number of subtask pairs according to the

following guidelines:

v The number of subtask pairs equals the number of allocated sort work data set

groups.

v The number of subtask pairs equals the number of allocated message data sets.

v If you allocate both sort work data sets and message data set groups, the

number of subtask pairs equals the smallest number of allocated data sets.

Allocation of sort subtasks: REORG TABLESPACE attempts to assign one sort

subtask pair for each index that is to be built. If REORG TABLESPACE cannot start

enough subtasks to build one index per subtask pair, it allocates any excess

indexes across the pairs; therefore one or more subtask pairs might build more

than one index.

During parallel index build processing, REORG distributes all indexes among the

subtask pairs according to the index creation date, assigning the first created index

to the first subtask pair. For SHRLEVEL CHANGE, the mapping index is assigned

last.

Estimating the sort work file size: If you choose to provide the data sets, you

need to know the size and number of keys that are present in all of the indexes

that are being processed by the subtask in order to calculate each sort work file

size. After you determine which indexes are assigned to which subtask pairs, use

the following formula to calculate the required space:

2 × (longest index key + c) × (number of extracted keys)

longest key The length of the longest index key that is to be processed by the

subtask. If the index is of varying length, the longest key is the

maximum possible length of a key with all varying-length columns

that are padded to their maximum length, plus 2 bytes for each

varying-length column in the index. For example, if an index with

three columns (A, B, and C) has length values of CHAR(8) for A,

VARCHAR(128) for B, and VARCHAR(50) for C, the longest key is

calculated as follows:

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 469

|

||
|
|
|
|
|
|
|

8 + 128 + 50 + 2 + 2 = 190

For SHRLEVEL CHANGE, the mapping index key length is 21.

c A value as follows:

v 10 if the indexes that are rebuilt are a mix of data-partitioned

secondary indexes and nonpartitioned indexes

v 8 if all indexes are partitioned or none of them are

data-partitioned secondary indexes.

number of keys The number of keys from all indexes that need to be sorted and

that are to be processed by the subtask.

Do not count keys that belong to partitioning indexes should not be counted in the

sort work data set size calculation. The space estimation formula might indicate

that 0 bytes are required (because the only index that is processed by a task set is

the partitioning index). In this case, if you allocate your own sort work data set

groups, you still need to allocate sort work data sets for this task set, but you can

use a minimal allocation, such as 1 track.

For information about LOAD and REORG performance, see “Improving

performance with LOAD or REORG PREFORMAT” on page 251.

Methods of unloading data

DB2 unloads data by one of three methods:

v Table space scan with sort: If at least one table space has an index, DB2 uses a

table-space scan with a sort.

v Table space scan: DB2 uses a table-space scan for simple table spaces that contain

more than one table, or that contain one table but do not have an index.

v Clustering index: DB2 uses this option for simple table spaces that contain one

table and have an index, and for tables in a segmented table space that have an

index.

Encountering an error in the RELOAD phase

Failure during the RELOAD phase (after the data is unloaded and data sets are

deleted, but before the data is reloaded) results in an unusable table space.

If the error is on the table space data:

v If you have defined data sets, you can allocate new data sets.

v If STOGROUP has defined data sets, you can alter the new table space to change

the primary and secondary quantities.

v If you allocate new data sets, alter the table space, or add volumes to the storage

group, restart the REORG job at the beginning of the phase. Otherwise, you can

restart either at the last commit point or at the beginning of the phase.

If the error is on the unloaded data, or if you used the NOSYSREC option,

terminate REORG by using the TERM UTILITY command. Then recover the table

space, using RECOVER, and run the REORG job again.

Reorganizing partitioned table spaces

If you reorganize a single partition or a range of partitions, all indexes of the table

space are affected. Depending on how disorganized the nonpartitioning indexes

are, you might want to reorganize them, as well. For more information about when

to reorganize, see “Determining when an index requires reorganization” on page

403.

REORG TABLESPACE

470 Utility Guide and Reference

|

|

||

|
|

|
|

||
|

Reorganizing segmented table spaces

If the target table space is segmented, REORG unloads and reloads by table.

If an index exists on a table in a segmented table space, that table is unloaded in

clustering sequence. If NO index exists, the table is unloaded in physical row and

segment order.

For segmented table spaces, REORG does not normally need to reclaim space from

dropped tables. Space that is freed by dropping tables in a segmented table space

is immediately available if the table space can be accessed when DROP TABLE is

executed. If the table space cannot be accessed when DROP TABLE is executed (for

example, the disk device is offline), DB2 removes the table from the catalog, but

does not delete all table rows. In this case, the space for the dropped table is not

available until REORG reclaims it.

After you run REORG, the segments for each table are contiguous.

Counting records loaded during RELOAD phase

At the end of the RELOAD phase, REORG compares the number of records that

were actually loaded to the number of records that were unloaded. If the counts do

not match, the resulting actions depend on the UNLOAD option that you specified

on the original job:

v If you specify UNLOAD PAUSE, REORG sets return code 4 and continues

processing the job.

v If you specify UNLOAD CONTINUE, DB2 issues an error message and

abnormally terminates the job. The table space or partition remains in

RECOVER-pending status.

Reorganizing a LOB table space

Reorganizing a LOB table space is a separate task from reorganizing the base table

space. REORG does not unload LOBs, and it does not reclaim physical space. A

LOB table space that is defined with LOG YES or LOG NO affects logging during

the reorganizing a LOB column. Table 40 on page 260 shows the logging output

and LOB table space effect, if any. SYSIBM.SYSCOPY is not updated.

Specify LOG YES and SHRLEVEL NONE when you reorganize a LOB table space

to avoid leaving the LOB table space in COPY-pending status after the REORG.

Terminating or restarting REORG TABLESPACE

This section contains information about how to terminate and restart REORG

TABLESPACE.

Terminating REORG TABLESPACE

If you terminate REORG TABLESPACE with the TERM UTILITY command during

the UNLOAD phase, objects have not yet been changed, and you can rerun the

job.

If you terminate REORG TABLESPACE with the TERM UTILITY command during

the RELOAD phase, the behavior depends on the SHRLEVEL option:

v For SHRLEVEL NONE, the data records are not erased. The table space and

indexes remain in RECOVER-pending status. After you recover the table space,

rerun the REORG job.

v For SHRLEVEL REFERENCE or CHANGE, the data records are reloaded into

shadow objects, so the original objects have not been affected by REORG. You

can rerun the job.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 471

If you terminate REORG with the TERM UTILITY command during the SORT,

BUILD, or LOG phases, the behavior depends on the SHRLEVEL option:

v For SHRLEVEL NONE, the indexes that are not yet built remain in

RECOVER-pending status. You can run REORG with the SORTDATA option, or

you can run REBUILD INDEX to rebuild those indexes.

v For SHRLEVEL REFERENCE or CHANGE, the records are reloaded into shadow

objects, so the original objects have not been affected by REORG. You can rerun

the job.

If you terminate a stopped REORG utility with the TERM UTILITY command

during the SWITCH phase, the following conditions apply:

v All data sets that were renamed to their shadow counterparts are renamed to

their original names, so that the objects remain in their original state, and you

can rerun the job.

v If a problem occurs in renaming the data sets to the original names, the objects

remain in RECOVER-pending status, and you cannot rerun the job.

If the SWITCH phase does not complete, the image copy that REORG created is

not available for use by the RECOVER utility. If you terminate an active REORG

utility during the SWITCH phase with the TERM UTILITY command, during the

rename process, the renaming occurs, and the SWITCH phase completes. The

image copy that REORG created is available for use by the RECOVER utility.

If you terminate REORG with the TERM UTILITY command during the BUILD2

phase, the logical partitions of nonpartitioned indexes remain in

RECOVER-pending status. After you run REBUILD INDEX for the logical

partition, all objects have been reorganized successfully.

The REORG-pending status is not reset until the UTILTERM execution phase. If the

REORG utility abnormally terminates or is terminated, the objects remain in

REORG-pending status and RECOVER-pending status, depending on the phase in

which the failure occurred. See Appendix C, “Advisory or restrictive states,” on

page 849 for information about resetting either status.

Table 82 lists the restrictive states that REORG TABLESPACE sets according to the

phase in which the utility terminated.

 Table 82. Restrictive states that REORG TABLESPACE sets.

Phase Effect on restrictive status

UNLOAD No effect.

RELOAD SHRLEVEL NONE:

v Places table space in RECOVER-pending status at the beginning of the

phase and resets the status at the end of the phase.

v Places indexes in RECOVER-pending status.

v Places the table space in COPY-pending status. If COPYDDN is

specified and SORTKEYS is ignored, the COPY-pending status is reset

at the end of the phase. SORTKEYS is ignored for several catalog and

directory table spaces. For a list of these table spaces, see

“Reorganizing the catalog and directory” on page 461.

SHRLEVEL REFERENCE or CHANGE has no effect.

SORT No effect.

REORG TABLESPACE

472 Utility Guide and Reference

|
|
|
|
|

Table 82. Restrictive states that REORG TABLESPACE sets. (continued)

Phase Effect on restrictive status

BUILD SHRLEVEL NONE resets RECOVER-pending status for indexes and, if

the utility job includes both COPYDDN and SORTKEYS, resets

COPY-pending status for table spaces at the end of the phase.

SHRLEVEL REFERENCE or CHANGE has no effect.

SORTBLD No effect during the sort portion of the SORTBLD phase. During the

build portion of the SORTBLD phase, the effect is the same as for the

BUILD phase.

LOG No effect.

SWITCH No effect. Under certain conditions, if TERM UTILITY is issued, it must

complete successfully; otherwise, objects might be placed in

RECOVER-pending status.

BUILD2 If TERM UTILITY is issued, the logical partitions for nonpartitioning

indexes are placed in logical RECOVER-pending status.

Recovering a failed REORG job: If you terminate REORG SHRLEVEL NONE in

the RELOAD phase, all SYSLGRNX records associated with the reorganization are

deleted. Use the RECOVER TABLESPACE utility to recover to the current point in

time. This action recovers the table space to its state before the failed

reorganization.

Restarting REORG TABLESPACE

By default, DB2 uses RESTART(CURRENT) when restarting REORG TABLESPACE

jobs, with the following exceptions:

v Jobs that are restarted in the SORT, BUILD, SWITCH, or BUILD2 phase use

RESTART(PHASE) by default.

v Jobs with the SORTKEYS option that are restarted in the RELOAD, SORT,

BUILD, or SORTBLD phase always restart from the beginning of the RELOAD

phase.

v Jobs with the SHRLEVEL REFERENCE, NOSYSREC, and SORTDATA options

use RESTART(PHASE) to restart at the beginning of the UNLOAD phase.

v Jobs that reorganize the following catalog or directory table spaces use

RESTART(PHASE):

– DSNDB06.SYSDBASE

– DSNDB06.SYSDBAUT

– DSNDB06.SYSGROUP

– DSNDB06.SYSPLAN

– DSNDB06.SYSVIEWS

– DSNDB01.DBD01

If you restart a REORG job of one or more of the catalog or directory table spaces

in the preceding list, you cannot use RESTART(CURRENT).

If you restart REORG in the UTILINIT phase, it re-executes from the beginning of

the phase. If REORG abnormally terminates or system failure occurs while it is in

the UTILTERM phase, you must restart the job with RESTART(PHASE).

Table 83 on page 474 provides information about restarting REORG TABLESPACE,

depending on the phase that REORG was in when the job stopped.

For each phase of REORG and for each type of REORG TABLESPACE (with

SHRLEVEL NONE, with SHRLEVEL REFERENCE, and with SHRLEVEL

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 473

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

CHANGE), Table 83 indicates the types of restarts that are allowed (CURRENT and

PHASE). A value of None indicates that no restart is allowed. The ″Data Sets

Required″ column lists the data sets that must exist to perform the specified type

of restart in the specified phase.

 Table 83. REORG TABLESPACE utility restart information for SHRLEVEL NONE, REFERENCE, and CHANGE

Phase

Type of

restart

allowed for

SHRLEVEL

NONE

Type of

restart

allowed for

SHRLEVEL

REFERENCE

Type of

restart

allowed for

SHRLEVEL

CHANGE Required data sets Notes

UNLOAD CURRENT,

PHASE

CURRENT,

PHASE

None SYSREC

RELOAD CURRENT,

PHASE

CURRENT,

PHASE

None SYSREC 1, 2

SORT CURRENT,

PHASE

CURRENT,

PHASE

None None 2, 3

BUILD CURRENT,

PHASE

CURRENT,

PHASE

None None 2, 3, 4

SORTBLD CURRENT,

PHASE

CURRENT,

PHASE

None None 2

LOG Phase does

not occur

Phase does

not occur

None None

SWITCH Phase does

not occur

CURRENT,

PHASE

CURRENT,

PHASE

Originals and shadows 3

BUILD2 Phase does

not occur

CURRENT,

PHASE

CURRENT,

PHASE

Shadows for nonpartitioning indexes 3, 4

Notes:

1. For None, if you specify NOSYSREC, restart is not possible, and you must execute the RECOVER TABLESPACE

utility for the table space or partition. For REFERENCE, if the REORG job includes both SORTDATA and

NOSYSREC, RESTART or RESTART(PHASE) restarts at the beginning of the UNLOAD phase.

2. If you specify SHRLEVEL NONE or SHRLEVEL REFERENCE, and the job includes the SORTKEYS option, use

RESTART or RESTART(PHASE) to restart at the beginning of the RELOAD phase.

3. You can restart the utility with RESTART or RESTART(PHASE). However, because this phase does not take

checkpoints, RESTART restarts from the beginning of the phase.

4. If you specify the PART option with REORG TABLESPACE, you cannot restart the utility at the beginning of the

BUILD or BUILD2 phase if any nonpartitioning index is in a page set REBUILD-pending (PSRBD) status.

If you restart a REORG STATISTICS job by using RESTART CURRENT, inline

statistics are not collected. To update catalog statistics, run the RUNSTATS utility

after the restarted job completes. Restarting a REORG STATISTICS job with

RESTART(PHASE) is conditional after executing UNLOAD PAUSE. To determine if

catalog table statistics are going to be updated, see Table 84. This table shows

whether or not statistics are updated for REORG STATISTICS jobs according to the

phase in which the job terminated and the restart value that was used.

 Table 84. Statistics collection for REORG TABLESPACE utility phase restart

Phase CURRENT PHASE

UTILINIT NO YES

UNLOAD NO YES

RELOAD NO YES

SORT NO NO

REORG TABLESPACE

474 Utility Guide and Reference

|

|

|

Table 84. Statistics collection for REORG TABLESPACE utility phase restart (continued)

Phase CURRENT PHASE

BUILD NO YES

SORTBLD NO YES

For instructions on restarting a utility job, see Chapter 3, “Invoking DB2 online

utilities,” on page 15.

Restarting REORG after an out-of-space condition: See “Restarting after the

output data set is full” on page 43 for guidance in restarting REORG from the last

commit point after receiving an out-of-space condition.

Concurrency and compatibility for REORG TABLESPACE

DB2 treats individual data and index partitions, and individual logical partitions of

nonpartitioning indexes as distinct target objects. Utilities that operate on different

partitions of the same table space or index space are compatible.

REORG of a LOB table space is not compatible with any other utility. The LOB

table space is unavailable to other applications during REORG processing.

This section includes a series of tables that show which claim classes REORG

drains and any restrictive state that the utility sets on the target object.

For nonpartitioned indexes, REORG PART:

v Drains only the logical partition (and the repeatable read class for the entire

index)

v Does not set the page set REBUILD-pending status (PSRCP)

v Does not use PCTFREE or FREEPAGE attributes when inserting keys

For SHRLEVEL NONE, Table 85 shows which claim classes REORG drains and any

restrictive state that the utility sets on the target object. For each column, the table

indicates the claim or drain that is acquired and the restrictive state that is set in

the corresponding phase. UNLOAD CONTINUE and UNLOAD PAUSE, unlike

UNLOAD ONLY, include the RELOAD phase and thus include the drains and

restrictive states of that phase.

 Table 85. Claim classes of REORG TABLESPACE SHRLEVEL NONE operations

Target

UNLOAD phase of

REORG

RELOAD phase of

REORG if UNLOAD

CONTINUE or

PAUSE UNLOAD phase of

REORG PART

RELOAD phase of

REORG PART if

UNLOAD

CONTINUE or

PAUSE

Table space, partition, or

a range of partitions of a

table space

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Partitioning index, data-

partitioned secondary

index, or partition of

either type of index

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Nonpartitioned index DW/UTRO DA/UTUT None DR

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 475

|

|
|
|
|

Table 85. Claim classes of REORG TABLESPACE SHRLEVEL NONE operations (continued)

Target

UNLOAD phase of

REORG

RELOAD phase of

REORG if UNLOAD

CONTINUE or

PAUSE UNLOAD phase of

REORG PART

RELOAD phase of

REORG PART if

UNLOAD

CONTINUE or

PAUSE

Logical partition of

nonpartitioning index

None None DW/UTRO DA/UTUT

Legend:

v DA: Drain all claim classes, no concurrent SQL access.

v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.

v DW: Drain the write claim class, concurrent access for SQL readers.

v UTUT: Utility restrictive state, exclusive control.

v UTRO: Utility restrictive state, read-only access allowed.

v None: Any claim, drain, or restrictive state for this object does not change in this phase.

For SHRLEVEL REFERENCE, Table 86 shows which claim classes REORG drains

and any restrictive state that the utility sets on the target object. For each column,

the table indicates the claim or drain that is acquired and the restrictive state that

is set in the corresponding phase.

 Table 86. Claim classes of REORG TABLESPACE SHRLEVEL REFERENCE operations

Target

UNLOAD phase

of REORG

SWITCH phase

of REORG

UNLOAD phase

of REORG PART

SWITCH phase

of REORG PART

BUILD2 phase of

REORG PART

Table space or

partition of table

space

DW/UTRO DA/UTUT DW/UTRO DA/UTUT UTRW

Partitioning index,

data- partitioned

secondary index, or

partition of either

DW/UTRO DA/UTUT DW/UTRO DA/UTUT UTRW

Nonpartitioned

secondary index

DW/UTRO DA/UTUT None DR None

Logical partition of

nonpartitioning

index

None None DW/UTRO DA/UTUT None

Legend:

v DA: Drain all claim classes, no concurrent SQL access.

v DDR: Dedrain the read claim class, concurrent SQL access.

v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.

v DW: Drain the write claim class, concurrent access for SQL readers.

v UTUT: Utility restrictive state, exclusive control.

v UTRO: Utility restrictive state, read-only access allowed.

v None: Any claim, drain, or restrictive state for this object does not change in this phase.

For REORG of an entire table space with SHRLEVEL CHANGE, Table 87 shows

which claim classes REORG drains and any restrictive state that the utility sets on

the target object.

 Table 87. Claim classes of REORG TABLESPACE SHRLEVEL CHANGE operations

Target UNLOAD phase

Last iteration of LOG

phase SWITCH phase

Table space CR/UTRW1 DW/UTRO DA/UTUT

REORG TABLESPACE

476 Utility Guide and Reference

|
|

|
|
|
|

|
|

Table 87. Claim classes of REORG TABLESPACE SHRLEVEL CHANGE operations (continued)

Target UNLOAD phase

Last iteration of LOG

phase SWITCH phase

Index CR/UTRW1 DW/UTRO DA/UTUT

Legend:

v CR: Claim the read claim class.

v DA: Claim all claim classes, no concurrent SQL access.

v DW: Drain the write claim class, concurrent access for SQL readers.

v UTUT: Utility restrictive state, exclusive control.

v UTRO: Utility restrictive state, read-only access allowed.

v UTRW: Utility restrictive state, read-write access allowed.

Notes:

1. If the target object is a segmented table space, SHRLEVEL CHANGE does not allow you to concurrently execute

an SQL searched DELETE without the WHERE clause.

For REORG of a partition with SHRLEVEL CHANGE, Table 88 shows which claim

classes REORG drains and any restrictive state that the utility sets on the target

object.

 Table 88. Claim classes of REORG TABLESPACE SHRLEVEL CHANGE operations on a partition

Target UNLOAD phase

Last iteration of LOG

phase SWITCH phase BUILD2 phase

Partition of table

space

CR/UTRW DW/UTRO or

DA/UTUT1

DA/UTUT UTRW

Partition of

partitioning index

CR/UTRW DW/UTRO or

DA/UTUT1

DA/UTUT UTRW

Nonpartitioning index None None DR None

Logical partition of

nonpartitioning index

CR/UTRW DW/UTRO or

DA/UTUT1

DA/UTUT None

Legend:

v CR: Claim the read claim class.

v DA: Drain all claim classes, no concurrent SQL access.

v DDR: Dedrain the read claim class, no concurrent access for SQL repeatable readers.

v DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.

v DW: Drain the write claim class, concurrent access for SQL readers.

v UTUT: Utility restrictive state, exclusive control.

v UTRO: Utility restrictive state, read-only access allowed.

v UTRW: Utility restrictive state, read-write access allowed.

v None: Any claim, drain, or restrictive state for this object does not change in this phase.

Notes:

1. DA/UTUT applies if you specify DRAIN ALL.

Table 89 on page 478 shows which utilities can run concurrently with REORG on

the same target object. The target object can be a table space, an index space, or a

partition of a table space or index space. If compatibility depends on particular

options of a utility, that information is also shown.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 477

Table 89. Compatibility of REORG TABLESPACE with other utilities

Action

REORG SHRLEVEL

NONE UNLOAD

CONTINUE or PAUSE,

REORG SHRLEVEL

REFERENCE, or

REORG SHRLEVEL

CHANGE

REORG SHRLEVEL

NONE UNLOAD ONLY

without clustering index

REORG SHRLEVEL

NONE UNLOAD ONLY

with clustering index

CATMAINT No No No

CHECK DATA No No No

CHECK INDEX No Yes Yes

CHECK LOB No No No

COPY INDEXSPACE No Yes Yes

COPY TABLESPACE No Yes Yes

DIAGNOSE Yes Yes Yes

LOAD No No No

MERGECOPY No No No

MODIFY No No No

QUIESCE No Yes Yes

REBUILD INDEX No Yes No

RECOVER INDEX No Yes No

RECOVER INDEXSPACE No No No

RECOVER TABLESPACE No No No

REORG INDEX No Yes No

REORG TABLESPACE SHRLEVEL

NONE UNLOAD CONTINUE or

PAUSE, REORG SHRLEVEL

REFERENCE, or REORG SHRLEVEL

CHANGE

No No No

REORG TABLESPACE SHRLEVEL

NONE UNLOAD ONLY or

EXTERNAL

No Yes Yes

REPAIR DUMP or VERIFY No Yes Yes

REPAIR LOCATE KEY or RID

DELETE or REPLACE

No No No

REPAIR LOCATE INDEX PAGE

REPLACE

No Yes No

REPAIR LOCATE TABLESPACE

PAGE REPLACE

No No No

REPORT Yes Yes Yes

RUNSTATS No Yes Yes

STOSPACE No Yes Yes

UNLOAD No Yes Yes

Table 90 on page 479 shows which DB2 operations can be affected when

reorganizing catalog table spaces.

REORG TABLESPACE

478 Utility Guide and Reference

Table 90. DB2 operations that are affected by reorganizing catalog table spaces

Catalog table space Actions that might not run concurrently

Any table space except SYSCOPY and

SYSSTR

CREATE, ALTER, and DROP statements

SYSCOPY, SYSDBASE, SYSDBAUT,

SYSSTATS, SYSUSER, SYSHIST

Utilities

SYSDBASE, SYSDBAUT, SYSGPAUT,

SYSPKAGE, SYSPLAN, SYSUSER

GRANT and REVOKE statements

SYSDBAUT, SYSDBASE, SYSGPAUT,

SYSPKAGE, SYSPLAN, SYSSTATS, SYSUSER,

SYSVIEWS

BIND and FREE commands

SYSPKAGE, SYSPLAN Plan or package execution

Reviewing REORG TABLESPACE output

The output from REORG TABLESPACE consists of a reorganized table space,

partition, or a range of partitions; from REORG INDEX, the output consists of a

reorganized index or index partition. Table 91 summarizes the effect of REORG on

a table space partition and on the corresponding index partition.

 Table 91. Summary of the results of REORG TABLESPACE according to the type of

specification.

Specification Results

REORG TABLESPACE All data + entire partitioning index + all nonpartitioning indexes

REORG TABLESPACE

PART n

Data for PART n + PART n of the partitioning index + index entries

for PART n in all nonpartitioning indexes

REORG TABLESPACE

PART n1:n2

Data for PART n1 through n2 + PART n1 through n2 of the

partitioning index + index entries for those partitions in all

nonpartitioning indexes

REORG TABLESPACE

SCOPE PENDING

Specified table space or partitions that are in REORG-pending

status.

When reorganizing a segmented table space, REORG leaves free pages and free

space on each page in accordance with the current values of the FREEPAGE and

PCTFREE parameters. (You can set those values by using the CREATE

TABLESPACE, ALTER TABLESPACE, CREATE INDEX, or ALTER INDEX

statements). REORG leaves one free page after reaching the FREEPAGE limit for

each table in the table space. When reorganizing a nonsegmented table space,

REORG leaves one free page after reaching the FREEPAGE limit, regardless of

whether the loaded records belong to the same or different tables.

After running REORG TABLESPACE

After a reorganization is complete, perform the following actions:

v If you have used LOG YES, consider taking an image copy of the reorganized

table space or partition to:

– Provide a full image copy for recovery. This action prevents the need to

process the log records that are written during reorganization.

– Permit making incremental image copies later.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 479

You might not need to take an image copy of a table space for which all the

following statements are true:

– The table space is relatively small.

– The table space is used only in read-only applications.

– The table space can be easily loaded again in the event of failure.
See Chapter 11, “COPY,” on page 101 for information about making image

copies.

v If you use REORG SHRLEVEL NONE LOG NO on a LOB table space and DB2

determines that nothing needs to be done to the table space, no COPY-pending

status is set. However, if DB2 indicates that changes are needed, REORG places

the reorganized LOB table space or partition in COPY-pending status. In this

situation, perform a full image copy to reset the COPY-pending status and to

ensure that a backup is available for recovery.

You should also run the COPY utility if the REORG was performed to turn off

REORG-pending status (REORP), and an inline copy was not taken. You cannot

use an image copy that was created before turning off REORP.

v If you use COPYDDN, SHRLEVEL REFERENCE, or SHRLEVEL CHANGE, and

the object that you are reorganizing is not a catalog or directory table space for

which COPYDDN is ignored, you do not need to take an image copy.

v Use the RUNSTATS utility on the table space and its indexes if inline statistics

were not collected, so that the DB2 catalog statistics take into account the newly

reorganized data, and SQL paths can be selected with accurate information. You

need to run RUNSTATS on nonpartitioning indexes only if you reorganized a

subset of the partitions.

v If you use REORG TABLESPACE SHRLEVEL CHANGE, you can drop the

mapping table and its index.

v If you use SHRLEVEL REFERENCE or CHANGE, and a table space, partition, or

index resides in user-managed data sets, you can delete the user-managed

shadow data sets.

v If you specify DISCARD on a REORG of a table that is involved in a referential

integrity set, you need to run CHECK DATA for any affected referentially

related objects that were placed in CHECK-pending status.

Effects of running REORG TABLESPACE

This section contains information about the effects of running REORG

TABLESPACE.

The effect of REORG TABLESPACE on index version numbers

and the version of the data

DB2 stores the range of used version numbers in the OLDEST_VERSION and

CURRENT_VERSION columns of one or more of the following catalog tables,

depending on the object:

v SYSIBM.SYSTABLESPACE

v SYSIBM.SYSTABLESPART

v SYSIBM.SYSINDEXES

v SYSIBM.SYSINDEXPART

The OLDEST_VERSION column contains the oldest used version number, and the

CURRENT_VERSION column contains the current version number.

When you run REORG TABLESPACE, the utility sets all of the rows in the table or

partition to the current object version. The utility also updates the range of used

version numbers for indexes that are defined with the COPY NO attribute. REORG

REORG TABLESPACE

480 Utility Guide and Reference

|

|

|
|
|
|
|
|
|

|
|

|
|
|

TABLESPACE sets the OLDEST_VERSION column equal to the

CURRENT_VERSION column in the appropriate catalog column. These updated

values indicate that only one version is active. DB2 can then reuse all of the other

version numbers.

Recycling of version numbers is required when all of the version numbers are

being used. All version numbers are being used when one of the following

situations is true:

v The value in the CURRENT_VERSION column is one less than the value in the

OLDEST_VERSION column.

v The value in the CURRENT_VERSION column is 255 for table spaces or 15 for

indexes, and the value in the OLDEST_VERSION column is 0 or 1.

You can also run LOAD REPLACE, REBUILD INDEX, or REORG INDEX to

recycle version numbers for indexes that are defined with the COPY NO attribute.

To recycle version numbers for indexes that are defined with the COPY YES

attribute or for table spaces, run MODIFY RECOVERY.

For more information about versions and how they are used by DB2, see Part 2 of

DB2 Administration Guide.

The effect of REORG TABLESPACE on the control interval

When you run REORG TABLESPACE without the REUSE option and the data set

that contains that data is DB2–managed, DB2 deletes this data set before the

REORG and redefines a new data set with a control interval that matches the page

size.

Sample REORG TABLESPACE control statements

Example 1: Reorganizing a table space. The following control statement specifies

that the REORG TABLESPACE utility is to reorganize table space DSN8S81D in

database DSN8D81A.

REORG TABLESPACE DSN8D81A.DSN8S81D

Example 2: Reorganizing a table space and specifying the unload data set. The

control statement in Figure 79 specifies that REORG TABLESPACE is to reorganize

table space DSN8D81A.DSN8S81D. The DD name for the unload data set is UNLD,

as specified by the UNLDDN option.

Example 3: Reorganizing a table space partition. The following control statement

specifies that REORG TABLESPACE is to reorganize partition 3 of table space

//STEP1 EXEC DSNUPROC,UID=’IUJLU101.REORG’,

// UTPROC=’’,

// SYSTEM=’DSN’

//UTPRINT DD SYSOUT=*

//UNLD DD DSN=IUJLU101.REORG.STEP1.UNLD,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SORTWK01 DD DSN=IUJLU101.REORG.STEP1.SORTWK01,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SORTWK02 DD DSN=IUJLU101.REORG.STEP1.SORTWK02,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

REORG TABLESPACE (DSN8D81A.DSN8S81D)

 UNLDDN (UNLD)

//*

Figure 79. Example REORG TABLESPACE control statement with the UNLDDN option

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 481

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

DSN8D81A.DSN8S81E. The SORTDEVT option indicates the device type for the

temporary data sets that are to be dynamically allocated by DFSORT.

REORG TABLESPACE DSN8D81A.DSN8S81E

 PART 3

 SORTDEVT SYSDA

Example 4: Reorganizing a table and using parallel index build. The control

statement in Figure 80 specifies that REORG TABLESPACE is to reorganize table

space DSNDB04.DSN8S81D and to use a parallel index build to rebuild the

indexes. The indexes are built in parallel, because more than one index needs to be

built and the job allocates the data sets that DFSORT needs. Note that you no

longer need to specify SORTKEYS; it is the default.

The job allocates the sort work data sets in two groups, which limits the number of

pairs of utility subtasks to two. This example does not require UTPRINnn DD

statements because it uses DSNUPROC to invoke utility processing. DSNUPROC

includes a DD statement that allocates UTPRINT to SYSOUT.

LOG NO specifies that records are not to be logged during the RELOAD phase.

This option puts the table space in COPY-pending status.

Example 5: Reorganizing a table while allowing read-write access. The following

control statement specifies that REORG TABLESPACE is to reorganize table space

DSNDB04.DSN8S81E and to use a parallel index build to rebuild the indexes.

DFSORT dynamically allocates sort work data sets. This example does not require

UTPRINnn DD statements because it uses DSNUPROC to invoke utility

processing. DSNUPROC includes a DD statement that allocates UTPRINT to

SYSOUT. The SORTDEVT option indicates the device type for the temporary data

sets that are to be dynamically allocated by DFSORT. The SHRLEVEL CHANGE

option specifies that while the table is being reorganized, users have read-write

access. The name of the mapping table is DSN8MAP. This table is used to map the

RIDs of data records in the original copy of the area to the corresponding RIDs in

the shadow copy.

//SAMPJOB JOB ...

//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.REORG’,UTPROC=’’,SYSTEM=’DSN’

//SYSCOPY DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND),

// DSN=SAMPJOB,COPY,DISP=(NEW,CATLG,CATLG)

//SAMPJOB JOB ...

//STEP1 EXEC DSNUPROC,UID=’SAMPJOB.REORG’,UTPROC=’’,SYSTEM=’DSN’

//SYSREC DD DSN=SAMPJOB.REORG.STEP1.SYSREC,DISP=(NEW,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//* First group of sort work data sets for parallel index build

//SW01WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SW01WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SW01WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//* Second group of sort work data sets for parallel index build

//SW02WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SW02WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SW02WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//* Sort work data sets for use by SORTDATA

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)

//SYSIN DD *

REORG TABLESPACE DSNDB04.DSN8S81D LOG NO

/*

Figure 80. Example REORG TABLESPACE control statement with LOG NO option

REORG TABLESPACE

482 Utility Guide and Reference

|
|

//SYSIN DD *

REORG TABLESPACE DSNDB04.DSN8S81E LOG NO SORTDEVT SYSDA SORTNUM 4

 SHRLEVEL CHANGE MAPPINGTABLE DSN8MAP

/*

Example 6: Specifying a deadline for the SWITCH phase while reorganizing a

table. The following control statement specifies that REORG TABLESPACE is to

reorganize table space DSN8D81A.DSN8S81D. The DEADLINE option indicates

that the deadline for start of the SWITCH phase is eight hours from the start of the

REORG job. The COPYDDN and RECOVERYDDN options indicate that the utility

is to take an image copy of the table space. DB2 is to write the primary image

copy at the local site to a data set that is defined by the MYCOPY1 DD statement

and to write the primary image copy at the recovery site to a data set that is

defined by the MYCOPY2 DD statement. SHRLEVEL REFERENCE indicates that

access is restricted during reorganization.

REORG TABLESPACE DSN8D81A.DSN8S81D COPYDDN(MYCOPY1)

 RECOVERYDDN(MYCOPY2) SHRLEVEL REFERENCE

 DEADLINE CURRENT TIMESTAMP + 8 HOURS

Example 7: Setting a deadline for a REORG TABLESPACE job. The following

control statement specifies that REORG TABLESPACE is to reorganize table space

DSN8D81A.DSN8S81D. The DEADLINE option indicates that the deadline for the

start of the SWITCH phase is eight hours from the start of the REORG job. The

name of the mapping table is DSN8810.MAP_TBL. The maximum desired amount

of time for the log processing in the read-only (last) iteration of log processing is

240 seconds, as indicated by the MAXRO option. If DB2 is not reading the log

quickly enough after the applications write to the log, DB2 drains the write claim

class after sending the LONGLOG message to the operator. That draining takes

place at least 900 seconds after the LONGLOG message is sent, as indicated by the

DELAY option. DB2 is also to take inline image copies for the local site and

recovery site, as indicated by the COPYDDN and RECOVERYDDN options.

REORG TABLESPACE DSN8D81A.DSN8S81D COPYDDN(MYCOPY1)

 RECOVERYDDN(MYCOPY2) SHRLEVEL CHANGE

 DEADLINE CURRENT TIMESTAMP + 8 HOURS

 MAPPINGTABLE DSN8810.MAP_TBL MAXRO 240 LONGLOG DRAIN DELAY 900

Example 8: Reorganizing a range of table space partitions. The following control

statement specifies that REORG TABLESPACE is to reorganize partitions 3 through

5 of table space DSN8D81A.DSN8S81E. The SORTDEVT option indicates the device

type for the temporary data sets that are to be dynamically allocated by DFSORT.

The SHRLEVEL NONE option indicates that while the data is being unloaded,

applications can read but can’t write. While the data is being reloaded, applications

can have read-write access. SHRLEVEL NONE is the default. The COPYDDN

option indicates that the utility is to take an image copy of the table space and to

write the primary image copy to the data set that is defined by the SYSCOPY DD

statement.

REORG TABLESPACE DSN8D81A.DSN8S81E

 PART 3:5

 SORTDEVT SYSDA

 SHRLEVEL NONE

 COPYDDN SYSCOPY

Example 9: Reorganizing a partition and updating the statistics. The following

control statement specifies that REORG TABLESPACE is to reorganize partition 3

of table space DSN8D81A. DSN8S81E. The STATISTICS option indicates that the

utility is also to update statistics in the catalog for that partition. Note that the

STATISTICS option is not valid for LOB table spaces.

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 483

|
|
|
|
|

REORG TABLESPACE DSN8D81A.DSN8S81E

 STATISTICS PART 3

Example 10: Reorganizing a table space and reporting table space and index

statistics. The following control statement specifies that REORG TABLESPACE is

to reorganize table space DSN8D81A.DSN8S81E. The SORTDATA option indicates

that the data is to be unloaded and sorted in clustering order. This option is the

default and does not need to be specified. The STATISTICS, TABLE, INDEX, and

REPORT YES options indicate that the utility is also to report catalog statistics for

all tables in the table space and for all indexes that are defined on those tables. The

KEYCARD, FREQVAL, NUMCOLS, and COUNT options indicate that DB2 is to

collect 10 frequent values on the first key column of the index. UPDATE NONE

indicates that the catalog tables are not to be updated. This option requires that

REPORT YES also be specified.

REORG TABLESPACE DSN8D81A.DSN8S81E SORTDATA STATISTICS

 TABLE

 INDEX(ALL) KEYCARD FREQVAL NUMCOLS 1

 COUNT 10 REPORT YES UPDATE NONE

Example 11: Determining whether a table space should be reorganized. The control

statement in Figure 81 specifies that REORG TABLESPACE is to report if the

OFFPOSLIMIT and INDREFLIMIT values for partition 11 of table space

DBHR5201.TPHR5201 exceed the specified values (11 for OFFPOSLIMIT and 15 for

INDREFLIMIT).

On successful completion, DB2 returns output that is similar to the output in

Figure 82 on page 485. This sample output shows that the limits have been met.

//STEP1 EXEC DSNUPROC,UID=’HUHRU252.REORG2’,TIME=1440,

// UTPROC=’’,

// SYSTEM=’DSN’,DB2LEV=DB2A

//SYSREC DD DSN=HUHRU252.REORG2.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSCOPY DD DSN=HUHRU252.REORG2.STEP1.SYSCOPY,DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

// SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

REORG TABLESPACE DBHR5201.TPHR5201 PART 11

 NOSYSREC

 REPORTONLY

 SHRLEVEL CHANGE MAPPINGTABLE ADMF001.MAP1

 COPYDDN (SYSCOPY)

 OFFPOSLIMIT 11 INDREFLIMIT 15

/*

Figure 81. Example REORG TABLESPACE statement with REPORTONLY, OFFPOSLIMIT,

and INDREFLIMIT options

REORG TABLESPACE

484 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

Example 12: Conditionally reorganizing a table space. In the example in Figure 83,

the RUNSTATS utility control statement specifies that the utility is to update space

statistics in the catalog for table space DBHR5201.TPHR5201. This RUNSTATS job

ensures that the space statistics for this table space are current. The subsequent

REORG TABLESPACE control statement specifies that if any of the values for

OFFPOSLIMIT or INDREFLIMIT exceed 9, the utility is to reorganize the table

space.

On successful completion, DB2 returns output for the REORG TABLESPACE job

that is similar to the output in Figure 84 on page 486.

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = HUHRU252.REORG2

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - REORG TABLESPACE DBHR5201.TPHR5201 PART 11 NOSYSREC REPORTONLY SHRLEVEL CHANGE

MAPPINGTABLE ADMF001.MAP1 COPYDDN(SYSCOPY) OFFPOSLIMIT 11 INDREFLIMIT 15

DSNU286I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 OFFPOSLIMIT SYSINDEXPART ROWS

* CREATOR.IXNAME : ADMF001.IPHR5201

 CREATOR.TBNAME : ADMF001.TBHR5201

 PART: 1 CARDF: 6.758E+03 FAROFFPOSF: 2.892E+03 NEAROFFPOSF: 8.18E+02 STATSTIME: 2003-04-11

13.32.06

DSNU287I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 INDREFLIMIT SYSTABLEPART ROWS

 DBNAME .TSNAME PART CARD FARINDREF NEARINDREF STATSTIME

 DBHR5201.TPHR5201 1 6758 0 0 2003-04-11-13.32.06

DSNU289I = DSNURLIM - REORG LIMITS HAVE BEEN MET

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 82. Sample output showing that REORG limits have been met

//**

//* COMMENT: UPDATE STATISTICS

//**

//STEP1 EXEC DSNUPROC,UID=’HUHRU252.REORG1’,TIME=1440,

// UTPROC=’’,

// SYSTEM=’DSN’,DB2LEV=DB2A

//SYSREC DD DSN=HUHRU252.REORG1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

// SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

RUNSTATS TABLESPACE DBHR5201.TPHR5201

 UPDATE SPACE

/*

//**

//* COMMENT: REORG THE TABLESPACE

//**

//STEP2 EXEC DSNUPROC,UID=’HUHRU252.REORG1’,TIME=1440,

// UTPROC=’’,

// SYSTEM=’DSN’,DB2LEV=DB2A

//SYSREC DD DSN=HUHRU252.REORG1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSCOPY1 DD DSN=HUHRU252.REORG1.STEP1.SYSCOPY1,

// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,

// SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

REORG TABLESPACE DBHR5201.TPHR5201

 SHRLEVEL CHANGE MAPPINGTABLE MAP1

 COPYDDN(SYSCOPY1)

 OFFPOSLIMIT 9 INDREFLIMIT 9

/*

Figure 83. Example of conditionally reorganizing a table

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 485

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Example 13: Reorganizing a table space after waiting for SQL statements to

complete. The control statement in Figure 85 on page 487 specifies that REORG

TABLESPACE is to reorganize the table space in the REORG_TBSP list, which is

defined in the preceding LISTDEF utility control statement. Before reorganizing the

DSNU050I DSNUGUTC - REORG TABLESPACE DBHR5201.TPHR5201 SHRLEVEL CHANGE MAPPINGTABLE

MAP1 COPYDDN(SYSCOPY1)

OFFPOSLIMIT 9 INDREFLIMIT 9

DSNU286I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 OFFPOSLIMIT SYSINDEXPART ROWS

* CREATOR.IXNAME : ADMF001.IPHR5201

CREATOR.TBNAME : ADMF001.TBHR5201

 PART: 1 CARDF: 3.6E+01 FAROFFPOSF: 0.0E0 NEAROFFPOSF: 1.2E+01

STATSTIME: 2002-05-28-16.22.18

 CREATOR.IXNAME : ADMF001.IPHR5201

 CREATOR.TBNAME : ADMF001.TBHR5201

 PART: 2 CARDF: 5.0E+00 FAROFFPOSF: 0.0E0 NEAROFFPOSF: 0.0E0

STATSTIME: 2002-05-28-16.22.18

...

* CREATOR.IXNAME : ADMF001.IPHR5201

 CREATOR.TBNAME : ADMF001.TBHR5201

 PART: 11 CARDF: 6.758E+03 FAROFFPOSF: 2.892E+03 NEAROFFPOSF: 8.18E+02

STATSTIME: 2002-05-28-16.22.18

DSNU287I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 INDREFLIMIT SYSTABLEPART ROWS

 DBNAME .TSNAME PART CARD FARINDREF NEARINDREF STATSTIME

 DBHR5201.TPHR5201 1 36 0 0 2002-05-28-16.22.18

 DBHR5201.TPHR5201 2 5 0 0 2002-05-28-16.22.18

 DBHR5201.TPHR5201 3 54 0 0 2002-05-28-16.22.18

 DBHR5201.TPHR5201 4 30 0 0 2002-05-28-16.22.18

 DBHR5201.TPHR5201 5 21 0 0 2002-05-28-16.22.18

 DBHR5201.TPHR5201 6 5 0 0 2002-05-28-16.22.18

 DBHR5201.TPHR5201 7 4 0 0 2002-05-28-16.22.18

 DBHR5201.TPHR5201 8 35 0 0 2002-05-28-16.22.18

 DBHR5201.TPHR5201 9 25 0 0 2002-05-28-16.22.18

 DBHR5201.TPHR5201 10 1 0 0 2002-05-28-16.22.18

 DBHR5201.TPHR5201 11 6758 0 0 2002-05-28-16.22.18

DSNU289I = DSNURLIM - REORG LIMITS HAVE BEEN MET

DSNU290I = DSNURLIM - REORG WILL BE PERFORMED

DSNU252I DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=6985 FOR

TABLESPACE DBHR5201.TPHR5201

DSNU250I DSNUGSRT - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:01

DSNU304I = DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=6985 FOR TABLE

ADMF001.TBHR5201

DSNU302I DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=6985

DSNU300I DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:29

DSNU042I DSNUGSOR - SORT PHASE STATISTICS -

 NUMBER OF RECORDS=34925

 ELAPSED TIME=00:00:00

DSNU348I = DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=36 FOR INDEX ADMF001.IPHR5201 PART 1

DSNU348I = DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=5 FOR INDEX ADMF001.IPHR5201 PART 2

...

DSNU349I = DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=6985 FOR INDEX ADMF001.IUHR5210

DSNU258I DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=5

DSNU259I DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=00:00:18

DSNU386I DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 1, NUMBER OF LOG

RECORDS = 194

DSNU385I DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:01:10

DSNU400I DSNURBID - COPY PROCESSED FOR TABLESPACE DBHR5201.TPHR5201

 NUMBER OF PAGES=1073

 AVERAGE PERCENT FREE SPACE PER PAGE = 14.72

 PERCENT OF CHANGED PAGES =100.00

 ELAPSED TIME=00:01:58

DSNU387I DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:01:05

DSNU428I DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DBHR5201.TPHR5201

Figure 84. Sample REORG output for conditional REORG

REORG TABLESPACE

486 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

table space, REORG TABLESPACE is to wait for 30 seconds for SQL statements to

finish adding or changing data. This interval is indicated by the DRAIN_WAIT

option. If the SQL statements do not finish, the utility is to retry up to four times,

as indicated by the RETRY option. The utility is to wait 10 seconds between retries,

as indicated by the RETRY_DELAY option.

The TEMPLATE utility control statements define the data set characteristics for the

data sets that are to be dynamically allocated during the REORG TABLESPACE

job. The OPTIONS utility control statement indicates that the TEMPLATE

statements and LISTDEF statement are to run in PREVIEW mode.

On successful completion, DB2 returns output similar to the output in Figure 86 on

page 488.

//STEP1 EXEC DSNUPROC,UID=’HUHRU257.REORG’,TIME=1440,

// UTPROC=’’,

// SYSTEM=’DSN’,DB2LEV=DB2A

//UTPRINT DD SYSOUT=*

//SYSIN DD *

 OPTIONS PREVIEW

 TEMPLATE CPYTMP UNIT(SYSDA)

 DSN(HUHRU257.REORG.T&TI..SYSCOPY1)

 TEMPLATE SREC

 UNIT(SYSDA) DISP(NEW,CATLG,CATLG)

 DSN(HUHRU257.REORG.&ST..SREC)

 TEMPLATE SDISC

 UNIT(SYSDA) DISP(NEW,CATLG,CATLG)

 DSN(HUHRU257.REORG.&ST..SDISC)

 TEMPLATE SPUNCH

 UNIT(SYSDA) DISP(NEW,CATLG,CATLG)

 DSN(HUHRU257.REORG.&ST..SPUNCH)

 LISTDEF REORG_TBSP INCLUDE TABLESPACE DBHR5701.TPHR5701

 OPTIONS OFF

 REORG TABLESPACE LIST REORG_TBSP

 DRAIN_WAIT 30 RETRY 4 RETRY_DELAY 10

 STATISTICS

 TABLE (ALL) SAMPLE 60

 INDEX (ALL KEYCARD FREQVAL NUMCOLS 2 COUNT 15)

 SHRLEVEL CHANGE MAPPINGTABLE MAP5702

 LONGLOG DRAIN MAXRO DEFER DELAY 30

 COPYDDN (CPYTMP)

 SORTDEVT SYSDA SORTNUM 8

 PUNCHDDN SPUNCH

 DISCARDDN SDISC

 UNLDDN SREC

Figure 85. Example of reorganizing a table space by using DRAIN WAIT, RETRY, and

RETRY_DELAY

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 487

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = HUHRU257.REORG

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - OPTIONS PREVIEW

DSNU1000I DSNUGUTC - PROCESSING CONTROL STATEMENTS IN PREVIEW MODE

DSNU1035I DSNUILDR - OPTIONS STATEMENT PROCESSED SUCCESSFULLY

DSNU050I DSNUGUTC - TEMPLATE CPYTMP UNIT(SYSDA) DSN(HUHRU257.REORG.STEP1.SYSCOPY1)

DSNU1035I DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

DSNU050I DSNUGUTC - TEMPLATE SREC UNIT(SYSDA) DISP(NEW,CATLG,CATLG) DSN(HUHRU257.REORG.&ST..SREC)

DSNU1035I DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

DSNU050I DSNUGUTC - TEMPLATE SDISC UNIT(SYSDA) DISP(NEW,CATLG,CATLG) DSN(HUHRU257.REORG.&ST..SDISC)

DSNU1035I DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

DSNU050I DSNUGUTC - TEMPLATE SPUNCH UNIT(SYSDA) DISP(NEW,CATLG,CATLG) DSN(HUHRU257.REORG.&ST..SPUNCH)

DSNU1035I DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY

DSNU050I DSNUGUTC - LISTDEF REORG_TBSP INCLUDE TABLESPACE DBHR5701.TPHR5701

DSNU1035I DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY

DSNU1020I = DSNUILSA - EXPANDING LISTDEF REORG_TBSP

DSNU1021I = DSNUILSA - PROCESSING INCLUDE CLAUSE TABLESPACE DBHR5701.TPHR5701

DSNU1022I = DSNUILSA - CLAUSE IDENTIFIES 1 OBJECTS

DSNU1023I = DSNUILSA - LISTDEF REORG_TBSP CONTAINS 1 OBJECTS

DSNU1010I DSNUGPVV - LISTDEF REORG_TBSP EXPANDS TO THE FOLLOWING OBJECTS:

 LISTDEF REORG_TBSP -- 00000001 OBJECTS

 INCLUDE TABLESPACE DBHR5701.TPHR5701

DSNU050I DSNUGUTC - OPTIONS OFF

DSNU1035I DSNUILDR - OPTIONS STATEMENT PROCESSED SUCCESSFULLY

DSNU050I DSNUGUTC - REORG TABLESPACE LIST REORG_TBSP DRAIN_WAIT 30 RETRY 4 RETRY_DELAY 10 STATISTICS

TABLE(ALL)

SAMPLE 60 INDEX(ALL KEYCARD FREQVAL NUMCOLS 2 COUNT 15) SHRLEVEL CHANGE MAPPINGTABLE MAP5702 LONGLOG DRAIN

MAXRO

DEFER DELAY 30 COPYDDN(CPYTMP) SORTDEVT SYSDA SORTNUM 8 PUNCHDDN SPUNCH DISCARDDN

SDISC UNLDDN SREC

DSNU1033I DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DBHR5701.TPHR5701

DSNU1038I DSNUGDYN - DATA SET ALLOCATED. TEMPLATE=CPYTMP

 DDNAME=SYS00001

 DSN=HUHRU257.REORG.STEP1.SYSCOPY1

DSNU252I DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=331 FOR TABLESPACE DBHR

DSNU250I DSNUGSRT - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00

DSNU395I DSNURPIB - INDEXES WILL BE BUILT IN PARALLEL, NUMBER OF TASKS = 9

DSNU397I DSNURPIB - NUMBER OF TASKS CONSTRAINED BY VIRTUAL STORAGE

DSNU610I = DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DBHR5701.TPHR5701 SUCCESSFUL

DSNU610I = DSNUSUPT - SYSTABSTATS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

DSNU610I = DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

DSNU610I = DSNUSUTB - SYSTABLES CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

DSNU610I = DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DBHR5701.TPHR5701 SUCCESSFUL

DSNU620I = DSNURDRT - RUNSTATS CATALOG TIMESTAMP = 2002-08-05-16.25.20.438798

DSNU304I = DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=331 FOR TABLE ADMF001.TBHR5701

DSNU302I DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=331

DSNU300I DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:14

DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IXHR5703

DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IXHR5702

Figure 86. Sample output of REORG TABLESPACE job with DRAIN WAIT, RETRY, and RETRY_DELAY options (Part

1 of 2)

REORG TABLESPACE

488 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Example 14: Using a mapping table: In the example in Figure 87 on page 490, a

mapping table and mapping table index are created. Then, a REORG TABLESPACE

DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IXHR5706

DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IXHR5705

DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL

DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL

DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL

DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL

DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL

DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL

DSNU620I = DSNURDRI - RUNSTATS CATALOG TIMESTAMP = 2002-08-05-16.25.21.292235

DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL

DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL

DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL

DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL

DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL

DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL

DSNU620I = DSNURDRI - RUNSTATS CATALOG TIMESTAMP = 2002-08-05-16.25.22.288665

DSNU393I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IPHR5701 PART 11

DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IPHR5701

DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IXHR5704

DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL

DSNU610I = DSNUSUPI - SYSINDEXSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL

DSNU610I = DSNUSUPD - SYSCOLDISTSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL

DSNU610I = DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL

DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL

DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL

DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL

DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL

DSNU620I = DSNURDRI - RUNSTATS CATALOG TIMESTAMP = 2002-08-05-16.25.20.886803

DSNU391I DSNURPTB - SORTBLD PHASE STATISTICS. NUMBER OF INDEXES = 7

DSNU392I DSNURPTB - SORTBLD PHASE COMPLETE, ELAPSED TIME = 00:00:04

DSNU377I = DSNURLOG - IN REORG WITH SHRLEVEL CHANGE, THE LOG IS

BECOMING LONG, MEMBER= , UTILID=HUHRU257.REORG

DSNU377I = DSNURLOG - IN REORG WITH SHRLEVEL CHANGE, THE LOG IS

BECOMING LONG, MEMBER= , UTILID=HUHRU257.REORG

...

DSNU377I = DSNURLOG - IN REORG WITH SHRLEVEL CHANGE, THE LOG IS

BECOMING LONG, MEMBER= , UTILID=HUHRU257.REORG

DSNU1122I = DSNURLOG - JOB T3161108 PERFORMING REORG

WITH UTILID HUHRU257.REORG UNABLE TO DRAIN DBHR5701.TPHR5701.

RETRY 1 OF 4 WILL BE ATTEMPTED IN 10 SECONDS

 DSNU1122I = DSNURLOG - JOB T3161108 PERFORMING REORG

 WITH UTILID HUHRU257.REORG UNABLE TO DRAIN DBHR5701.TPHR5701.

RETRY 2 OF 4 WILL BE ATTEMPTED IN 10 SECONDS

DSNU386I DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 32, NUMBER OF LOG RECORDS = 2288

DSNU385I DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:03:43

DSNU400I DSNURBID - COPY PROCESSED FOR TABLESPACE DBHR5701.TPHR5701

 NUMBER OF PAGES=377

 AVERAGE PERCENT FREE SPACE PER PAGE = 5.42

 PERCENT OF CHANGED PAGES =100.00

 ELAPSED TIME=00:04:02

DSNU387I DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:02

DSNU428I DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DBHR5701.TPHR5701

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 86. Sample output of REORG TABLESPACE job with DRAIN WAIT, RETRY, and RETRY_DELAY options (Part

2 of 2)

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 489

|

job uses the mapping table, and finally the mapping table is dropped. Some parts

of this job use the EXEC SQL utility to execute dynamic SQL statements.

The first EXEC SQL control statement contains the SQL statements that create a

mapping table that is named MYMAPPING_TABLE. The second EXEC SQL control

statement contains the SQL statements that create mapping index

MYMAPPING_INDEX on the table MYMAPPING_TABLE. For more information

about the CREATE TABLE and CREATE INDEX statements, see DB2 SQL Reference.

The REORG TABLESPACE control statement then specifies that the REORG

TABLESPACE utility is to reorganize table space DSN8D81P.DSN8S81C and to use

mapping table MYMAPPING_TABLE.

Finally, the third EXEC SQL statement contains the SQL statements that drop

MYMAPPING_TABLE. For more information about the DROP TABLE statement,

see DB2 SQL Reference.

Example 15: Discarding records from one table while reorganizing a table space:

The control statement in Figure 88 on page 491 specifies that REORG TABLESPACE

is to reorganize table space DSN8D51A.DSN8S51E. During reorganization, records

in table DSN8510.EMP are discarded if they have the value D11 in the

WORKDEPT field. This discard criteria is specified in the WHEN clause that

EXEC SQL

 CREATE TABLE MYMAPPING_TABLE

 (TYPE CHAR(01) NOT NULL,

 SOURCE_RID CHAR(05) NOT NULL,

 TARGET_XRID CHAR(09) NOT NULL,

 LRSN CHAR(06) NOT NULL)

 IN DSN8D81P.DSN8S81Q

 CCSID EBCDIC

ENDEXEC

EXEC SQL

 CREATE UNIQUE INDEX MYMAPPING_INDEX

 ON MYMAPPING_TABLE

 (SOURCE_RID ASC,

 TYPE,

 TARGET_XRID,

 LRSN)

 USING STOGROUP DSN8G710

 PRIQTY 120 SECQTY 20

 ERASE NO

 BUFFERPOOL BP0

 CLOSE NO

ENDEXEC

REORG TABLESPACE DSN8D81P.DSN8S81C

 COPYDDN(COPYDDN)

 SHRLEVEL CHANGE

 DEADLINE CURRENT_TIMESTAMP+8 HOURS

 MAPPINGTABLE MYMAPPING_TABLE

 MAXRO 240 LONGLOG DRAIN DELAY 900

 SORTDEVT SYSDA SORTNUM 4

 STATISTICS TABLE(ALL)

 INDEX(ALL)

EXEC SQL

 DROP TABLE MYMAPPING_TABLE

ENDEXEC

Figure 87. Example of creating and using a mapping table.

REORG TABLESPACE

490 Utility Guide and Reference

follows the DISCARD option. Because a SYSDISC DD statement is included in the

JCL, any discarded rows are to be written to the data set that is identified by this

DD statement.

The COPYDDN option specifies that during the REORG, DB2 is also to take an

inline copy of the table space. This image copy is to be written to the data set that

is identified by the SYSCOPY DD statement.

Example 16: Discarding records from multiple tables while reorganizing a table

space: The control statement in Figure 89 on page 492 specifies that REORG

TABLESPACE is to reorganize table space DBKC0501.TLKC0501. During

reorganization, the following records are discarded:

v Records in table TBKC0501 that have a value in the QT_INV_TRANSACTION

column that is less than or equal to 700, and a value in the NO_DEPT column

that is equal to X'33303230'.

v Records in table TBKC0502 that have a value in the NO_WORK_CENTER

column that is equal to either X'333031303120' or X'333032303620'.

This discard criteria is specified with the DISCARD option. Any discarded rows

are to be written to the SYSDISC data set, as specified by the DISCARDDN option.

//REORGDIS EXEC DSNUPROC,TIME=1440,

 // UTPROC=’’,

 // SYSTEM=’DSN’,UID=’REORGDIS.EMP’

 //SYSREC DD DISP=(NEW,CATLG,CATLG),

 // DSN=SYSADM.REORGDIS.SYSREC,

 // UNIT=SYSDA,SPACE=(TRK,(15,15))

 //SYSDISC DD DISP=(NEW,CATLG,CATLG),

 // DSN=SYSADM.REORGDIS.SYSDISC,

 // UNIT=SYSDA,SPACE=(TRK,(15,15))

 //SYSPUNCH DD DISP=(NEW,CATLG,CATLG),

 // DSN=SYSADM.REORGDIS.SYSPUNCH,

 // UNIT=SYSDA,SPACE=(TRK,(15,15))

 //SYSCOPY DD DISP=(NEW,CATLG,CATLG),

 // UNIT=SYSDA,SPACE=(TRK,(30,30)),

 // DSN=SYSADM.DSN8D51A.DSN8S51E.COPY

 //SYSIN DD *

 REORG TABLESPACE

 DSN8D81A.DSN8S81E

 DISCARD

 FROM TABLE DSN8810.EMP

 WHEN (WORKDEPT = ’D11’)

 SHRLEVEL NONE COPYDDN SYSCOPY

Figure 88. Example REORG statement that specifies discard criteria

REORG TABLESPACE

Chapter 25. REORG TABLESPACE 491

Example 17: Reorganizing only those partitions that are in REORG-pending

status. The control statement in Figure 90 specifies that REORG TABLESPACE is to

reorganize only those partitions of table space DBKQAA01.TPKQAA01 that are in

the range from 2 to 10 and are in REORG-pending status.

//STEP1 EXEC DSNUPROC,UID=’IUKCU105.REORG2’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//UTPRINT DD SYSOUT=*

//SYSDISC DD DSN=IUKCU105.REORG2.STEP1.SYSDISC,

// DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)

//SYSREC DD DSN=IUKCU105.REORG2.STEP1.SYSREC,

// DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSCOPY DD DSN=IUKCU105.REORG2.STEP1.SYSCOPY,

// DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//LOADSTMT DD DSN=IUKCU105.REORG2.STEP1.SYSPUNCH,

// DISP=(MOD,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

 REORG TABLESPACE DBKC0501.TLKC0501 SHRLEVEL REFERENCE

 PUNCHDDN LOADSTMT DISCARDDN SYSDISC

 UNLOAD CONTINUE

 DISCARD

 FROM TABLE TBKC0501

 WHEN (QT_INV_TRANSACTION <= 700 AND

 NO_DEPT = X’33303230’)

 FROM TABLE TBKC0502

 WHEN (NO_WORK_CENTER = X’333031303120’ OR

 NO_WORK_CENTER = X’333032303620’)

/*

Figure 89. Example REORG statement that specifies discard criteria for several tables

//STEP1 EXEC DSNUPROC,UID=’JUKQU1AA.REORG6’,

// UTPROC=’’,SYSTEM=’SSTR’

//SYSREC DD DSN=JUKQU1AA.REORG6.STEP1.SYSREC,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSCOPY DD DSN=JUKQU1AA.REORG6.STEP1.SYSCOPY,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSUT1 DD DSN=JUKQU1AA.REORG6.STEP1.SYSUT1,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SORTOUT DD DSN=JUKQU1AA.REORG6.STEP1.SORTOUT,

// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,

// SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *

 REORG TABLESPACE DBKQAA01.TPKQAA01 SCOPE PENDING PART 2:10

/*

Figure 90. Example REORG TABLESPACE statement with SCOPE PENDING

REORG TABLESPACE

492 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Chapter 26. REPAIR

The online REPAIR utility repairs data. The data can be your own data or data that

you would not normally access, such as space map pages and index entries.

You use REPAIR to replace invalid data with valid data. Be extremely careful when

using REPAIR. Improper use can damage the data even further.

You can use the REPAIR utility to:

v Test database definitions (DBDs)

v Repair DBDs

v Reset a pending status on a table space or index

v Verify the contents of data areas in table spaces and indexes

v Replace the contents of data areas in table spaces and indexes

v Delete a single row from a table space

v Produce a hexadecimal dump of an area in a table space or index

v Delete an entire LOB from a LOB table space

v Dump LOB pages

v Rebuild object descriptors (OBDs) for a LOB table space

v Manage version numbers

For a diagram of REPAIR syntax and a description of available options, see

“Syntax and options of the REPAIR control statement” on page 494. For detailed

guidance on running this utility, see “Instructions for running REPAIR” on page

508.

Output: The output from the REPAIR utility can consist of one or more modified

pages in the specified DB2 table space or index and a dump of the contents.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v REPAIR privilege for the database

v DBADM or DBCTRL authority for the database

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute REPAIR, but only on a

table space in the DSNDB01 or DSNDB06 database.

To execute REPAIR with the DBD option, you must use a privilege set that

includes SYSADM, SYSCTRL, or installation SYSOPR authority.

REPAIR should be used only by a person that is knowledgeable in DB2 and your

data. Grant REPAIR authorization only to the appropriate people.

Execution phases of REPAIR: The phases for REPAIR are:

Phase Description

UTILINIT Performs initialization

REPAIR Repairs data

UTILTERM Performs cleanup

The following topics provide additional information:

© Copyright IBM Corp. 1983, 2008 493

|

v “Syntax and options of the REPAIR control statement”

v “Instructions for running REPAIR” on page 508

v “Concurrency and compatibility for REPAIR” on page 513

v “Reviewing REPAIR output” on page 515

v “After running REPAIR” on page 516

v “Sample REPAIR control statements” on page 516

Syntax and options of the REPAIR control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

REPAIR syntax diagram

�� REPAIR

�

OBJECT

LOG

YES

set statement

LOG

NO

locate block

dbd-statement

level-id statement

versions statement

 ��

level-id statement:

�� LEVELID TABLESPACE table-space-name

database-name.

index-name-spec

PART

integer
 ��

versions statement:

�� VERSIONS TABLESPACE table-space-name

database-name.

index-name-spec

 ��

REPAIR

494 Utility Guide and Reference

|

index-name-spec:

�� INDEX index-name

creator-id.

INDEXSPACE

index-space-name

database-name.

 ��

REPAIR option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

OBJECT

Indicates that an object is to be repaired. This keyword Is optional. only.

LOG

Indicates whether the changes that REPAIR makes are to be logged. If the

changes are to be logged, they are applied again if the data is recovered.

YES

Indicates that the changes are to be logged. The default is YES.

 REPAIR LOG YES cannot override the LOG NO attribute of a table space.

NO

Indicates that the changes are not to be logged. You cannot use this option

with a DELETE statement.

 REPAIR LOG NO can override the LOG YES attribute of a table space.

LEVELID

Indicates that the level identifier of the named table space, table space

partition, index, or index space partition is to be reset to a new identifier. Use

LEVELID to accept the use of a down-level data set. You cannot specify

multiple LEVELID keywords in the same REPAIR control statement.

 You cannot use LEVELID with a table space, table space partition, index, or

index space partition that has outstanding indoubt log records or pages in the

logical page list (LPL).

Attention: Accepting the use of a down-level data set might cause data

inconsistencies. Problems with inconsistent data that result from resetting the

level identifier are the responsibility of the user.

TABLESPACE database-name.table-space-name

Specifies the table space (and, optionally, the database to which it belongs)

whose level identifier is to be reset (if you specify LEVELID) or whose version

identifier is to be updated (if you specify VERSIONS).

database-name

Specifies the name of the database to which the table space belongs.

The default is DSNDB04.

table-space-name

Specifies the name of the table space.

REPAIR

Chapter 26. REPAIR 495

|||

|
|

INDEX

Specifies the index whose level identifier is to be reset (if you specify

LEVELID) or whose version identifier is to be updated (if you specify

VERSIONS).

creator-id.

Specifies the creator of the index. Specifying this qualifier is optional.

index-name

Specifies the name of the index. Enclose the index name in quotation

marks if the name contains a blank.

You can specify either INDEX or INDEXSPACE to identify an index. To specify

multiple indexes, repeat the keyword.

INDEXSPACE

Specifies the index space for the index whose level identifier is to be reset (if

you specify LEVELID) or whose version identifier is to be updated (if you

specify VERSIONS). You can obtain the index space name for an index from

the SYSIBM.SYSINDEXES catalog table. The index space name must be

qualified.

database-name.

Specifies the name of the database to which the index space belongs.

index-space-name

Specifies the name of the index space.

You can specify either INDEX or INDEXSPACE to identify an index. To specify

multiple indexes, repeat the keyword.

PART

Identifies a partition of the table space or index (including a partition of a

data-partitioned secondary index).

 integer is the number of the partition and must be in the range from one to the

number of partitions that are defined for the object. The maximum is 4096.

VERSIONS

Updates the version information in the catalog and directory for the specified

table space or index with the version information from the system pages of the

object. Use REPAIR VERSIONS in the following situations:

v When you run the DSN1COPY utility with the OBIDXLAT option to move

objects from one system to another. For more information about this process,

see “Updating version information when moving objects to another

subsystem” on page 512.

v If you do not own the IBM REORG utility. For information about how the

REORG utility updates version information, see “The effect of REORG

INDEX on index version numbers” on page 411 or “The effect of REORG

TABLESPACE on index version numbers and the version of the data” on

page 480.

For more information about version number management, see Part 2 of DB2

Administration Guide.

SET statement syntax

The SET TABLESPACE statement resets the COPY-pending, RECOVER-pending,

CHECK-pending, auxiliary warning (AUXW), and auxiliary CHECK-pending

(ACHKP) statuses for a table space or data set. The SET INDEX statement resets

REPAIR

496 Utility Guide and Reference

|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|

|

|

the informational COPY-pending (ICOPY), RECOVER-pending, REBUILD-pending,

or CHECK-pending status for an index.

�� SET table-space-spec NOCOPYPEND

NORCVRPEND

PART

integer

NOCHECKPEND

NOAUXWARN

NOAUXCHKP

NOAREORPENDSTAR

INDEX

(index-name

)

NOCOPYPEND

PART

integer

NORCVRPEND

(

ALL

)

table-space-spec

NORBDPEND

NOCHECKPEND

NOAREORPENDSTAR

INDEXSPACE

(

index-space-name

)

database-name.

PART

integer

(

ALL

)

table-space-spec

 ��

table-space-spec:

�� TABLESPACE table-space-name

database-name.
 ��

SET statement option descriptions

SET TABLESPACE database-name.table-space-name

Specifies the table space (and, optionally, the database to which it belongs)

whose pending status is to be reset.

database-name

Specifies the name of the database to which the table space

belongs. The default is DSNDB04.

table-space-name

Specifies the name of the table space.

SET INDEX

Specifies the index whose RECOVER-pending, CHECK-pending,

REBUILD-pending, or informational COPY-pending status is to be reset.

(index-name)

Specifies the index that is to be processed. Enclose the index name

in quotation marks if the name contains a blank.

(ALL) Specifies that all indexes in the table space will be processed.

 The keyword INDEXES is accepted following a table-space-spec and causes

all indexes to be processed. You can also repair all indexes by specifying

INDEX(ALL) followed by a table-space-spec.

REPAIR

Chapter 26. REPAIR 497

|||||||||||||

SET INDEXSPACE

Specifies the index space for the index whose RECOVER-pending,

CHECK-pending, REBUILD-pending, or informational COPY-pending

status is to be reset.

(database-name.index-space-name)

Specifies the index space that is to be processed.

(ALL) Specifies that all indexes in the table space will be processed.

PART integer

Specifies a particular partition whose COPY-pending, informational

COPY-pending, or RECOVER-pending status is to be reset. If you do not

specify PART, REPAIR resets the pending status of the entire table space or

index.

 integer is the number of the partition and must be in the range from one to

the number of partitions that are defined for the object. The maximum is

4096.

You can specify PART for NOCHECKPEND on a table space, and for

NORCVRPEND on indexes.

The PART keyword is not valid for a LOB table space or an index on the

auxiliary table.

NOCOPYPEND

Specifies that the COPY-pending status of the specified table space, or the

informational COPY-pending (ICOPY) status of the specified index is to be

reset.

NORCVRPEND

Specifies that the RECOVER-pending (RECP) status of the specified table

space or index is to be reset.

NORBDPEND

Specifies that the REBUILD-pending (RBDP) status, the page set

REBUILD-pending status (PSRBDP), or the RBDP* status of the specified

index is to be reset.

NOCHECKPEND

Specifies that the CHECK-pending (CHKP) status of the specified table

space or index is to be reset.

NOAUXWARN

Specifies that the auxiliary warning (AUXW) status of the specified table

space is to be reset. The specified table space must be a base table space or

a LOB table space.

NOAUXCHKP

Specifies that the auxiliary CHECK-pending (ACHKP) status of the

specified table space is to be reset. The specified table space must be a base

table space.

NOAREORPENDSTAR

Resets the advisory REORG-pending (AREO*) status of the specified table

space or index.

REPAIR

498 Utility Guide and Reference

|
|
|
|

|
|

||

|
|

|
|
|

LOCATE block syntax

A LOCATE block is a set of statements, each with its own options, that begins with

a LOCATE statement and ends with the next LOCATE or SET statement, or with

the end of the job. You can include more than one LOCATE block in a REPAIR

utility statement.

In any LOCATE block, you can use VERIFY, REPLACE, or DUMP as often as you

like; you can use DELETE only once.

�� LOCATE �

�

�

table-space-spec

table-options spec

verify statement

INDEX

index-name

index-options-spec

replace statement

INDEXSPACE

index-space-name

index-options-spec

delete statement

dump statement

table-space-spec

ROWID

X'byte-string'

VERSION

X'byte-string'

delete statement

dump statement

��

table-space-spec:

�� TABLESPACE table-space-name

database-name.
 ��

table-options-spec:

�� PAGE X'byte-string'

PAGE

integer

PART

integer

RID

X'byte-string'

KEY

literal

INDEX

index-name

 ��

index-options-spec:

�� PAGE X'byte-string'

PAGE

integer

PART

integer

 ��

REPAIR

Chapter 26. REPAIR 499

||

######

######

LOCATE TABLESPACE statement option descriptions

The LOCATE TABLESPACE statement locates data that is to be repaired within a

table space.

One LOCATE statement is required for each unit of data that is to be repaired.

Several LOCATE statements can appear after each REPAIR statement.

If a REPAIR statement is followed by more than one LOCATE statement, all

processing that is caused by VERIFY, REPLACE, and DUMP statements is

committed before the next LOCATE statement is processed.

TABLESPACE database-name.table-space-name

Specifies the table space (and, optionally, the database to which it belongs) in

which data is to be located for repair.

database-name

Is the name of the database to which the table space belongs and is

optional. The default is DSNDB04.

table-space-name

Is the name of the table space that contains the data that you want to

repair.

PART integer

Specifies the partition that contains the page that is to be located. Part is valid

only for partitioned table spaces.

 integer is the number of the partition.

PAGE

Specifies the relative page number within the table space, partitioned table

space, or index that is to be operated on. The first page, in either case, is 0

(zero).

integer integer is a decimal number from one to six digits in length.

X'byte-string'

Specifies that the data of interest is an entire page. The specified offsets

in byte-string and in subsequent statements are relative to the

beginning of the page. The first byte of the page is at offset 0.

 byte-string is a hexadecimal value from one to eight characters in

length. You do not need to enter leading zeros. Enclose the byte-string

between apostrophes, and precede it with X.

RID X'byte-string'

Specifies that the data that is to be located is a single row. The specified offsets

in byte-string and in subsequent statements are relative to the beginning of the

row. The first byte of the stored row prefix is at offset 0.

 byte-string can be a hexadecimal value from one to eight characters in length.

You do not need to enter leading zeros. Enclose the byte string between

apostrophes, and precede it with an X.

KEY literal

Specifies that the data that is to be located is a single row, identified by literal.

The specified offsets in subsequent statements are relative to the beginning of

the row. The first byte of the stored row prefix is at offset 0.

 literal is any SQL constant that can be compared with the key values of the

named index.

REPAIR

500 Utility Guide and Reference

Character constants that are specified within the LOCATE KEY option cannot

be specified as ASCII or Unicode character strings. No conversion of the values

is performed. To use this option when the table space is ASCII or Unicode, you

should specify the values as hexadecimal constants.

If more than one row has the value literal in the key column, REPAIR returns a

list of record identifiers (RIDs) for records with that key value, but does not

perform any other operations (verify, replace, delete, or dump) until the next

LOCATE TABLESPACE statement is encountered. To repair the proper data,

write a LOCATE TABLESPACE statement that selects the desired row, using

the RID option, the PAGE option, or a different KEY and INDEX option. Then

execute REPAIR again.

ROWID X'byte-string'

Specifies that the data that is to be located is a LOB in a LOB table space.

 byte-string is the row ID that identifies the LOB column.

Use the ROWID keyword to repair an orphaned LOB row. You can find the

ROWID in the output from the CHECK LOB utility. If you specify the ROWID

keyword, the specified table space must be a LOB table space.

VERSION X'byte-string'

Specifies that the data that is to be located is a LOB in a LOB table space.

 byte-string is the version number that identifies the version of the LOB column.

Use the VERSION keyword to repair an orphaned LOB column. You can find

the VERSION number in the output of the CHECK LOB utility or an

out-of-synch LOB that is reported by the CHECK DATA utility. If you specify

the VERSION keyword, the specified table space must be a LOB table space.

LOCATE INDEX statement and LOCATE INDEXSPACE

statement option descriptions

The LOCATE INDEX (or INDEXSPACE) statement locates data that is to be

repaired within an index. You can specify indexes by either their index name or

their index space name.

One LOCATE statement is required for each unit of data that is to be repaired.

Multiple LOCATE statements can appear after each REPAIR statement.

If a REPAIR statement is followed by multiple LOCATE statements, all processing

that is caused by VERIFY, REPLACE, and DUMP statements is committed before

the next LOCATE statement is processed.

INDEX index-name

Specifies a particular index that is to be used to find the row that contains

the key. When you are locating an index by key, the index that you specify

must be a single-column index.

 index-name is the qualified or unqualified name of the index. If you omit

the qualifier creator ID, the user identifier for the utility job is used.

Enclose the index name in quotation marks if the name contains a blank.

INDEXSPACE index-space-name

Specifies the index space for a particular index that is to be used to find

the row that contains the key. Look in the SYSIBM.SYSINDEXES catalog

table to find the index space name for an index. When you are locating an

index by key, the index that you specify must be a single-column index.

REPAIR

Chapter 26. REPAIR 501

|
|
|
|

|

|

|
|
|

index-space-name is the qualified name of the index space, in the form

database-name.index-space-name.

PART integer

Specifies the partition number of the partitioning index that contains the

page that is to be located. The PART keyword is valid only for indexes of

partitioned table spaces.

 integer is the number of the partitioning index.

PAGE integer

Specifies the relative page number within the index space that is to be

operated on. The first page is 0 (zero).

integer integer is a decimal number from one to six digits in length.

X'byte-string'

Specifies that the data of interest is an entire page. The specified

offsets in byte-string and in subsequent statements are relative to

the beginning of the page. The first byte of the page is at offset 0.

 byte-string is a hexadecimal value from one to eight characters in

length. You do not need to enter leading zeros. Enclose the

byte-string between apostrophes, and precede it with X.

VERIFY statement syntax

The VERIFY statement tests whether a particular data area contains a specified

value. Depending on the outcome of this test, the REPAIR utility performs the

following actions:

v If the data area does contain the value, subsequent operations in the same

LOCATE block are allowed to proceed.

v If any data area does not contain its specified value, all subsequent operations in

the same LOCATE block are inhibited.

��

VERIFY
 OFFSET 0

OFFSET

integer

X'byte-string'

DATA

X'byte-string'

'character-string'

��

VERIFY statement option descriptions

OFFSET

Locates the data that is to be tested by a relative byte address (RBA) within the

row or page.

integer Identifies the offset as an integer. The default is 0, the first byte of the

area that is identified by the previous LOCATE statement.

X'byte-string'

Identifies the offset as one to four hexadecimal characters. You do not

need to enter leading zeros. Enclose the byte string between

apostrophes, and precede it with X.

REPAIR

502 Utility Guide and Reference

DATA

Specifies what data must be present at the current location before a change is

made.

 Character constants that are specified within the VERIFY DATA option cannot

be specified as ASCII or Unicode character strings. No conversion of the values

is performed. To use this option when the table space is ASCII or Unicode, you

should specify the values as hexadecimal constants.

X'byte-string'

Specifies an even number of hexadecimal characters that must be

present. You do not need to enter leading zeros. Enclose the byte string

between apostrophes, and precede it with X.

'character-string'

Specifies any character string that must be present.

REPLACE statement syntax

The REPLACE statement replaces data at a particular location. The statement is

contained within a LOCATE block. If any VERIFY statement within that block

finds a data area that does not contain its specified data, the REPLACE operation

is inhibited.

�� REPLACE RESET

OFFSET

0

DATA

X'byte-string'

OFFSET

integer

'character-string'

X'byte-string'

 ��

REPLACE statement option descriptions

RESET

Specifies that the inconsistent data indicator is to be reset. A page for which

this indicator is on is considered in error, and the indicator must be reset

before you can access the page. Numbers of pages with inconsistent data are

reported at the time that they are encountered.

 The option also resets the PGCOMB flag bit in the first byte of the page to

agree with the bit code in the last byte of the page.

OFFSET

Indicates where data is to be replaced by a relative byte address (RBA) within

the row or page. Only one OFFSET and one DATA specification are acted on

for each REPLACE statement.

integer Specifies the offset as an integer. The default is 0, the first byte of the

area that is identified by the previous LOCATE statement.

X'byte-string'

Specifies the offset as one to four hexadecimal characters. You do not

need to enter leading zeros. Enclose the byte string between

apostrophes, and precede it with X.

DATA

Specifies the new data that is to be entered. Only one OFFSET and one DATA

specification are acted on for each REPLACE statement.

REPAIR

Chapter 26. REPAIR 503

Character constants that are specified within the VERIFY DATA option cannot

be specified as ASCII or Unicode character strings. No conversion of the values

is performed. To use this option when the table space is ASCII or Unicode, you

should specify the values as hexadecimal constants.

X'byte-string'

Specifies an even number of hexadecimal characters that are to replace

the current data. You do not need to enter leading zeros. Enclose the

byte string between apostrophes, and precede it with X.

'character-string'

Specifies any character string that is to replace the current data.

DELETE statement syntax and description

The DELETE statement deletes a single row of data that has been located by a RID

or KEY option. The statement is contained within a LOCATE block. If any VERIFY

statement within that block finds a data area that does not contain its specified

data, the DELETE operation is inhibited.

The DELETE statement operates without regard for referential constraints. If you

delete a parent row, its dependent rows remain unchanged in the table space.

However, in the DB2 catalog and directory table spaces, where links are used to

reference other tables in the catalog, deleting a parent row causes all child rows to

be deleted, as well. Moreover, deleting a child row in the DB2 catalog tables also

updates its predecessor and successor pointer to reflect the deletion of this row.

Therefore, if the child row has incorrect pointers, the DELETE might lead to an

unexpected result. See “Example 5: Repairing a table space with an orphan row”

on page 517 for a possible method of deleting a child row without updating its

predecessor and successor pointer.

In any LOCATE block, you can include no more than one DELETE option.

If you have coded any of the following options, you cannot use DELETE:

v The LOG NO option on the REPAIR statement

v A LOCATE INDEX statement to begin the LOCATE block

v The PAGE option on the LOCATE TABLESPACE statement in the same LOCATE

block

v A REPLACE statement for the same row of data

When you specify LOCATE ROWID for a LOB table space, the LOB that is

specified by ROWID is deleted with its index entry. All pages that are occupied by

the LOB are converted to free space. The DELETE statement does not remove any

reference to the deleted LOB from the base table space.

�� DELETE ��

DUMP statement syntax

The DUMP statement produces a hexadecimal dump of data that is identified by

offset and length. DUMP statements have no effect on VERIFY or REPLACE

operations.

REPAIR

504 Utility Guide and Reference

|

|

|

|
|

|

When you specify LOCATE ROWID for a LOB table space, one or more map or

data pages of the LOB are dumped. The DUMP statement dumps all of the LOB

column pages if you do not specify either the MAP or DATA keyword.

��

DUMP
 OFFSET 0

OFFSET

integer

LENGTH

X'byte-string'

PAGES

X'byte-string'

X'byte-string'

integer

integer

*

MAP

pages

DATA

pages

��

DUMP statement option descriptions

OFFSET

Optionally, locates the data that is to be dumped by a relative byte address

(RBA) within the row or page.

integer Specifies the offset as an integer. The default is 0, the first byte of the

row or page.

X'byte-string'

Specifies the offset as one to four hexadecimal characters. You do not

need to enter leading zeros. Enclose the byte string between

apostrophes, and precede it with X.

LENGTH

Optionally, specifies the number of bytes of data that are to be dumped. If you

omit both LENGTH and PAGE, the dump begins at the specified OFFSET and

continues to the end of the row or page.

 If you specify a number of bytes (with LENGTH) and a number of pages (with

PAGE), the dump contains the same relative bytes from each page. That is,

from each page you see the same number of bytes, beginning at the same

offset.

X'byte-string'

Specifies one to four hexadecimal characters. You do not need to enter

leading zeros. Enclose the byte string between apostrophes, and

precede it with X.

integer Specifies the length as an integer.

PAGES

Optionally, specifies a number of pages that are to be dumped. You can use

this option only if you used PAGE in the preceding LOCATE TABLESPACE

control statement.

X'byte-string'

Specifies one to four hexadecimal characters. You do not need to enter

leading zeros. Enclose the byte string between apostrophes, and

precede it with X.

integer Specifies the number of pages as an integer.

* Specifies that all pages from the starting point to the end of the table

space or partition are to be dumped.

REPAIR

Chapter 26. REPAIR 505

MAP pages

Specifies that only the LOB map pages are to be dumped.

 pages specifies the number of LOB map pages that are to be dumped. If you do

not specify pages, all LOB map pages of the LOB that is specified by ROWID

and version are dumped.

DATA pages

Specifies that only the LOB data pages are to be dumped.

 pages specifies the number of LOB data pages that are to be dumped. If you do

not specify pages, all LOB data pages of the LOB that is specified by ROWID

and version are dumped.

DBD statement syntax

The DBD statement allows you to:

v Compare the database definition (DBD) in the DB2 catalog with its definition in

the DB2 directory

v Rebuild a database definition in the directory by using the information including

LOB information in the DB2 catalog

v Drop an inconsistent database definition from the DB2 catalog and the DB2

directory

The REPAIR utility assumes that the links in table spaces DSNDB01.DBD01,

DSNDB06.SYSDBAUT, and DSNDB06.SYSDBASE are intact. Before executing

REPAIR with the DBD statement, run the DSN1CHKR utility on these table spaces

to ensure that the links are not broken. For more information about DSN1CHKR,

see Chapter 38, “DSN1CHKR,” on page 703.

The database on which REPAIR DBD REBUILD is run must be started for access

by utilities only. DB2 performs this step automatically. For more information about

using the DBD statement, see “Using the DBD statement” on page 510.

You can use REPAIR DBD on declared temporary tables, which must be created in

a database that is defined with the AS TEMP clause. No other DB2 utilities can be

used on a declared temporary table, its indexes, or its table spaces.

�� DBD DROP DATABASE database-name DBID X'dbid'

TEST

DATABASE

database-name

DIAGNOSE

OUTDDN

ddname

REBUILD

 ��

DBD statement option descriptions

DROP

Specifies that the named database is to be dropped from both the DB2 catalog

and the DB2 directory. When you specify this option, DB2 also drops databases

that contain tables that have been created with RESTRICT ON DROP. Use this

keyword if the SQL DROP DATABASE statement fails because the description

of the database is not in both the DB2 catalog and the DB2 directory. If you

cannot use the ALTER command to remove the with RESTRICT ON DROP

option on tables in a database that is badly damaged and you need to drop the

database, you can use this keyword to drop the database.

REPAIR

506 Utility Guide and Reference

Attention: Use the DROP option with extreme care. Using DROP can cause

additional damage to your data. For more assistance, you can contact IBM

Software Support.

DATABASE database-name

Specifies the target database.

 database-name is the name of the target database, which cannot be DSNDB01

(the DB2 directory) or DSNDB06 (the DB2 catalog).

If you use TEST, DIAGNOSE, or REBUILD, database-name cannot be DSNDB07

(the work file database).

If you use DROP, database-name cannot be DSNDB04 (the default database).

DBID X'dbid'

Specifies the database descriptor identifier for the target database.

 dbid is the database descriptor identifier.

TEST

Specifies that a DBD is to be built from information in the DB2 catalog, and is

to be compared with the DBD in the DB2 directory. If you specify TEST, DB2

reports significant differences between the two DBDs.

 If the condition code is 0, the DBD in the DB2 directory is consistent with the

information in the DB2 catalog.

If the condition code is not 0, then the information in the DB2 catalog and the

DBD in the DB2 directory might be inconsistent. Run REPAIR DBD with the

DIAGNOSE option to gather information that is necessary for resolving any

possible inconsistency.

DIAGNOSE

Specifies that information that is necessary for resolving an inconsistent

database definition is to be generated. Like the TEST option, DIAGNOSE

builds a DBD that is based on the information in the DB2 catalog and

compares it with the DBD in the DB2 directory. In addition, DB2 reports any

differences between the two DBDs, and produces hexadecimal dumps of the

inconsistent DBDs.

 If the condition code is 0, the information in the DB2 catalog and the DBD in

the DB2 directory is consistent.

If the condition code is 8, the information in the DB2 catalog and the DBD in

the DB2 directory might be inconsistent.

For further assistance in resolving any inconsistencies, you can contact IBM

Software Support.

REBUILD

Specifies that the DBD that is associated with the specified database is to be

rebuilt from the information in the DB2 catalog.

 Attention: Use the REBUILD option with extreme care, as you can cause more

damage to your data. For more assistance, you can contact IBM Software

Support.

OUTDDN ddname

Specifies the DD statement for an optional output data set. This data set

contains copies of the DB2 catalog records that are used to rebuild the DBD.

 ddname is the name of the DD statement.

REPAIR

Chapter 26. REPAIR 507

Instructions for running REPAIR

To run REPAIR, you must:

1. Read “Before running REPAIR” in this section.

2. Prepare the necessary data sets, as described in “Data sets that REPAIR uses.”

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

REPAIR, see “Sample REPAIR control statements” on page 516.)

4. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

509.

5. Check the compatibility table in “Concurrency and compatibility for REPAIR”

on page 513 if you want to run other jobs concurrently on the same target

objects.

6. Run REPAIR by using one of the methods that are described in Chapter 3,

“Invoking DB2 online utilities,” on page 15.

Attention: Be extremely careful when using the REPAIR utility to replace data.

Changing data to invalid values by using REPLACE might produce unpredictable

results, particularly when changing page header information. Improper use of

REPAIR can result in damaged data, or in some cases, system failure.

Before running REPAIR

Before you run the REPAIR utility, perform the following actions.

Making a copy of the table space

Before starting to use REPAIR to change data, ensure that you have a copy (full

image copy or DSN1COPY generated copy) of the affected table space to enable

fallback.

Restoring damaged indexes

Because REPAIR can access index data only by referring to a page and an offset

within the page, identifying and correcting a problem can be difficult. Use

REBUILD INDEX or RECOVER INDEX to restore damaged index data.

Running REPAIR on encrypted data

Do not run REPAIR on encrypted data. REPAIR does not decrypt the data. The

utility reads the data in its encrypted form and then manipulates the data without

decrypting it.

Data sets that REPAIR uses

Table 92 lists the data sets that REPAIR uses. The table lists the DD name that is

used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 92. Data sets that REPAIR uses

Data set Data set Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

REPAIR

508 Utility Guide and Reference

|
|
|
|

Table 92. Data sets that REPAIR uses (continued)

Data set Data set Required?

Optional output data set Data set that contains copies of the DB2

catalog records that are used to rebuild the

DBD. You define the DD name.

No

The following objects are named in the utility control statement and do not require

a DD statement in the JCL:

Table space or index

Object that is to be repaired.

Calculating output data set size: Use the following formula to estimate the size of

the output data set:

SPACE = (4096,(n,n))

In this formula, n = the total number of DB2 catalog records that relate to the

database on which REPAIR DBD is being executed.

You can calculate an estimate for n by summing the results of SELECT COUNT(*)

from all of the catalog tables in the SYSDBASE table space, where the name of the

database that is associated with the record matches the database on which REPAIR

DBD is being executed.

Creating the control statement

Create the utility control statement for the REPAIR job. See “Syntax and options of

the REPAIR control statement” on page 494 for REPAIR syntax and option

descriptions. See “Sample REPAIR control statements” on page 516 for examples of

REPAIR usage.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Resetting table space status”

 “Resetting index space status” on page 510

 “Repairing a damaged page” on page 510

 “Using the DBD statement” on page 510

 “Locating rows by key” on page 511

 “Using VERIFY with REPLACE and DELETE operations” on page 511

 “Repairing critical catalog table spaces and indexes” on page 511

 “Updating version information when moving objects to another subsystem” on

page 512

Resetting table space status

In most cases, resetting the COPY-pending restriction by taking a full image copy

is preferable to using REPAIR. This is because RECOVER cannot be executed

successfully until an image copy has been made.

Resetting the RECOVER-pending status by running RECOVER or LOAD is

preferable to using REPAIR. This is because RECOVER uses DB2-controlled

recovery information, whereas REPAIR SET TABLESPACE or INDEX resets the

RECOVER-pending status without considering the recoverability of the table space.

Recoverability issues include the availability of image copies, of rows in

SYSIBM.SYSCOPY, and of log data sets.

REPAIR

Chapter 26. REPAIR 509

|
|

Verifying and possibly correcting referential integrity constraints by running

CHECK DATA are recommended. CHECK DATA performs a complete check of all

referential integrity constraints of the table space set, whereas with REPAIR, you

are responsible for checking all the referential integrity constraints violations.

To reset the CHECK-pending status for a LOB table space:

1. Run the CHECK DATA utility again with the AUXERROR INVALIDATE

keywords specified.

2. Update the invalid LOBs.

To reset the auxiliary warning (AUXW) status for a LOB table space:

1. Update or correct the invalid LOB columns, then

2. Run the CHECK LOB utility with the AUXERROR INVALIDATE option if

invalid LOB columns were corrected.

Resetting index space status

Running COPY INDEXSPACE to reset the informational COPY-pending status is

preferable to using the REPAIR utility to reset the status.

Consider using the REBUILD INDEX or RECOVER INDEX utility on an index that

is in REBUILD-pending status, rather than running REPAIR SET INDEX

NORBDPEND. RECOVER uses DB2-controlled recovery information, whereas

REPAIR SET INDEX resets the REBUILD-pending status without considering the

recoverability of the index. Recoverability issues include the availability of image

copies, of rows in SYSIBM.SYSCOPY, and of log data sets.

Repairing a damaged page

1. Execute REPAIR with the LOG YES option and the DUMP control statement,

specifying the pages that you suspect are damaged. Verify that the dump you

receive contains the desired pages.

2. If you know which page is damaged and you can see how to resolve the error,

repair the page and reset the “inconsistent data” indicator. Run REPAIR with

the REPLACE RESET DATA control statement. Document your actions in case

you need to undo anything later.

3. If you determine that the page is not really damaged, but merely has the

“inconsistent data” indicator on, reset the indicator by running REPAIR with

the REPLACE RESET control statement.

Using the DBD statement

To use the DBD statement:

1. Run the DSN1CHKR utility on the DSNDB01.DBD01, DSNDB06.SYSDBAUT,

and DSNDB06.SYSDBASE table spaces.

2. Run REPAIR DBD with the TEST option to determine if the information in the

DB2 catalog is consistent with the DBD in the DB2 directory. REPAIR DBD

TEST obtains environment information, such as the character that is used for

the decimal point, from the DSNHDECP module for the subsystem.

3. If inconsistencies exist (condition code is not 0), use the DIAGNOSE option

with the OUTDDN keyword to produce diagnostic information. Contact IBM

Software Support for assistance in analyzing this information. REPAIR DBD

DIAGNOSE obtains environment information, such as the character that is used

for the decimal point, from the DSNHDECP module for the subsystem.

4. If IBM Software Support instructs you to do so, replace the existing DBD with

the REBUILD option. Do not use this option if you suspect that information in

REPAIR

510 Utility Guide and Reference

the catalog is causing the inconsistency. REBUILD uses information in the

catalog to rebuild the DBD; if the catalog is incorrect, the rebuilt DBD cannot be

correct.

DB2 reads each table space in the database during the REBUILD process to

gather information. If the data sets for the table spaces do not exist or are not

accessible to DB2, the REBUILD abnormally terminates.

REPAIR DBD REBUILD obtains environment information, such as the character

that is used for the decimal point, from the DSNHDECP module for the

subsystem.

5. If you suspect an inconsistency in the DBD of the work file database, run

REPAIR DBD DROP or DROP DATABASE (SQL), and then recreate it. If you

receive errors when you drop the work file database, contact IBM Software

Support for assistance.

6. If the database is started for utility-only access, issue the STOP DATABASE

(database-name) command, and then issue the START DATABASE

(database-name) ACCESS(RW) command to allow full access to the database.

You need to complete this step if you ran REPAIR DBD REBUILD. DB2 starts

the database for utility-only access when you execute this utility.

Locating rows by key

If you use LOCATE TABLESPACE KEY, a number of rows might satisfy the

condition. In this case, REPAIR returns only the RIDs of the rows and does not

perform any VERIFY, REPLACE, DELETE, or DUMP actions which might be coded

in that LOCATE block. You can then use the RID option of LOCATE TABLESPACE

to identify a specific row. Examples of the messages that are issued are shown in

the following example:

DSNU658I - DSNUCBRL - MULTIPLE RECORDS FOUND WITH SPECIFIED KEY

DSNU660I - DSNUCBRL - POSSIBLE RID - X00000100B’

DSNU660I - DSNUCBRL - POSSIBLE RID - X000000C18’

DSNU660I - DSNUCBRL - POSSIBLE RID - X000000916’

DSNU660I - DSNUCBRL - POSSIBLE RID - X000000513’

DSNU650I - DSNUCBRP - DUMP

DSNU012I DSNUGBAC - UTILITY EXECUTION TERMINATED,

 HIGHEST RETURN CODE=8

Multiple-column indexes: The KEY option supports only single-column indexes.

The following message is issued if you try to locate a row by using a

multiple-column index.

DSNUCBRK - INDEX USED HAS MULTIPLE-FIELD KEY

Using VERIFY with REPLACE and DELETE operations

If any data area does not contain the value that is required by a VERIFY statement,

all REPLACE and DELETE operations in the same locate block are inhibited.

VERIFY and REPLACE statements that follow the next LOCATE statement are not

affected.

Repairing critical catalog table spaces and indexes

An ID with a granted authority receives message DSNT5001 RESOURCE UNAVAILABLE,

while trying to repair a table space or index in the catalog or directory if table

space DSNDB06.SYSDBASE or DSNDB06.SYSUSER is unavailable. If you get this

message, you must either make these table spaces available or run the REPAIR

utility on the catalog or directory by using an authorization ID with the installation

SYSADM or installation SYSOPR authority.

REPAIR

Chapter 26. REPAIR 511

#
#
#
#
#

|

Updating version information when moving objects to another

subsystem

When you move objects that contain system pages from one subsystem to another

subsystem, the version information on the target subsystem must match the

version information on the source subsystem. If the version information does not

match, you cannot access the data on the target subsystem. Follow these steps to

move objects to another subsystem and ensure that the version information

matches:

1. Ensure that the object definitions on the source and target subsystems are the

same. For a table space, each table must have the same number of columns,

and each column must be the same data type.

Recommendation: Use the same ALTER TABLE statement on both the source

and target objects.

2. If you are copying indexes that have not been altered in Version 8, check the

SYSIBM.SYSINDEXES catalog table on both subsystems to ensure that the value

in both the CURRENT_VERSION column and the OLDEST_VERSION column

is 0.

3. If the object has been altered since its creation and has never been reorganized,

run the REORG utility on the object. You can determine if an object has been

altered but not reorganized by checking the values of the OLDEST_VERSION

and CURRENT_VERSION columns in SYSIBM.SYSTABLESPACE or

SYSIBM.SYSINDEXES. If OLDEST_VERSION is 0 and CURRENT_VERSION is

greater than 0, run REORG.

4. Ensure that enough version numbers are available. For a table space, the

combined active number of versions for the object on both the source and

target subsystems must be less than 255. For an index, the combined active

number of versions must be less than 16. Use the following guidelines to

calculate the active number of versions for the object on both the source and

target subsystems:

v If the value in the CURRENT_VERSION column is less than the value in the

OLDEST_VERSION column, add the maximum number of versions (255 for

a table space or 16 for an index) to the value in the CURRENT_VERSION

column.

v Use the following formula to calculate the number of active versions:

number of active_versions =

MAX(target.CURRENT_VERSION,source.CURRENT_VERSION)

- MIN(target.OLDEST_VERSION,source.OLDEST_VERSION) + 1

If the number of active versions is too high, you must reduce the number of

active versions by running REORG on both the source and target objects. Then,

use the COPY utility to take a copy, and run MODIFY RECOVERY to recycle

the version numbers.

5. Run the DSN1COPY utility with the OBIDXLAT option. On the control

statement, specify the proper mapping of table database object identifiers

(OBIDs) for the table space or index from the source to the target subsystem.

6. Run REPAIR VERSIONS on the object on the target subsystem. For table

spaces, the utility updates the following columns:

v OLDEST_VERSION and CURRENT_VERSION in SYSTABLEPART

v VERSION in SYSTABLES

v OLDEST_VERSION and CURRENT_VERSION in SYSTABLESPACE

For indexes, the utility updates OLDEST_VERSION and CURRENT_VERSION

in SYSINDEXES. DB2 uses the following formulas to update these columns in

both SYSTABLEPART and SYSINDEXES:

CURRENT_VERSION = MAX(target.CURRENT_VERSION,source.CURRENT_VERSION)

REPAIR

512 Utility Guide and Reference

|
|
|
|
|
|
|
|

|
|
|

#
#

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
#

|
|
|

|

OLDEST_VERSION = MIN(target.OLDEST_VERSION,source.OLDEST_VERSION)

For more information about versions and how they are used by DB2, see Part 2 of

DB2 Administration Guide.

Terminating or restarting REPAIR

You can terminate a REPAIR job with the TERM UTILITY command. See Chapter 2

of DB2 Command Reference for information about TERM UTILITY.

REPAIR cannot be restarted. If you attempt to restart REPAIR, you receive message

DSNU191I, which states that the utility cannot be restarted. You must terminate the

job with the TERM UTILITY command, and rerun REPAIR from the beginning.

Concurrency and compatibility for REPAIR

DB2 treats individual data and index partitions as distinct target objects. Utilities

that operate on different partitions of the same table space or index space are

compatible.

Table 93 shows which claim classes REPAIR drains and any restrictive state that

the utility sets on the target object.

 Table 93. Claim classes of REPAIR operations

Action

Table space or

partition

Index or partition

REPAIR LOCATE KEY DUMP or VERIFY DW/UTRO DW/UTRO

REPAIR LOCATE KEY DELETE or

REPLACE

DA/UTUT DA/UTUT

REPAIR LOCATE RID DUMP or VERIFY DW/UTRO None

REPAIR LOCATE RID DELETE DA/UTUT DA/UTUT

REPAIR LOCATE RID REPLACE DA/UTUT None

REPAIR LOCATE TABLESPACE DUMP or

VERIFY

DW/UTRO None

REPAIR LOCATE TABLESPACE REPLACE DA/UTUT None

REPAIR LOCATE INDEX PAGE DUMP or

VERIFY

None DW/UTRO

REPAIR LOCATE INDEX PAGE DELETE None DA/UTUT

Legend:

v DA - Drain all claim classes - no concurrent SQL access.

v DW - Drain the write claim class - concurrent access for SQL readers.

v UTUT - Utility restrictive state - exclusive control.

v UTRO - Utility restrictive state - read-only access allowed.

v None - Object is not affected by this utility.

REPAIR does not set a utility restrictive state if the target object is

DSNDB01.SYSUTILX.

Table 94 on page 514 and Table 95 on page 515 show which utilities can run

concurrently with REPAIR on the same target object. The target object can be a

table space, an index space, or a partition of a table space or index space. If

compatibility depends on particular options of a utility, that information is also

shown in the table.

REPAIR

Chapter 26. REPAIR 513

|

|
|

|
|
|

Table 94 shows which utilities can run concurrently with REPAIR LOCATE by KEY

or RID.

 Table 94. Utility compatibility with REPAIR, LOCATE by KEY or RID

Utility DUMP or VERIFY DELETE or REPLACE

CHECK DATA No No

CHECK INDEX Yes No

CHECK LOB Yes No

COPY INDEXSPACE Yes No

COPY TABLESPACE Yes No

DIAGNOSE Yes Yes

LOAD No No

MERGECOPY Yes Yes

MODIFY Yes Yes

QUIESCE Yes No

REBUILD INDEX No No

RECOVER INDEX

1 No No

RECOVER TABLESPACE No No

REORG INDEX

2 No No

REORG TABLESPACE UNLOAD

CONTINUE or PAUSE

No No

REORG TABLESPACE UNLOAD

ONLY or EXTERNAL

Yes No

REPAIR DELETE or REPLACE

3 No No

REPAIR DUMP or VERIFY Yes No

REPORT Yes Yes

RUNSTATS INDEX SHRLEVEL

CHANGE

Yes Yes

RUNSTATS INDEX SHRLEVEL

REFERENCE

Yes No

RUNSTATS TABLESPACE Yes No

STOSPACE Yes Yes

UNLOAD Yes No

Notes:

1. REORG INDEX is compatible with LOCATE by RID, DUMP, VERIFY, or

REPLACE.

2. RECOVER INDEX is compatible with LOCATE by RID, DUMP, or VERIFY.

3. REPAIR LOCATE INDEX PAGE REPLACE is compatible with LOCATE by RID

or REPLACE.

Table 95 on page 515 shows which utilities can run concurrently with REPAIR

LOCATE by PAGE.

REPAIR

514 Utility Guide and Reference

Table 95. Utility compatibility with REPAIR, LOCATE by PAGE

Utility or action

TABLESPACE

DUMP or VERIFY

TABLESPACE

REPLACE

INDEX DUMP or

VERIFY INDEX REPLACE

SQL read Yes No Yes No

SQL write No No No No

CHECK DATA No No No No

CHECK INDEX Yes No Yes No

CHECK LOB Yes No Yes No

COPY INDEXSPACE Yes Yes Yes No

COPY TABLESPACE Yes No Yes No

DIAGNOSE Yes Yes Yes Yes

LOAD No No No No

MERGECOPY Yes Yes Yes Yes

MODIFY Yes Yes Yes Yes

QUIESCE Yes No Yes No

REBUILD INDEX Yes No No N/A

RECOVER INDEX Yes No No No

RECOVER TABLESPACE

(with no option)

No No Yes Yes

RECOVER TABLESPACE

ERROR RANGE

No No Yes Yes

RECOVER TABLESPACE

TOCOPY or TORBA

No No No No

REORG INDEX Yes Yes No No

REORG TABLESPACE

UNLOAD CONTINUE or

PAUSE

No No No No

REORG TABLESPACE

UNLOAD ONLY or

EXTERNAL

Yes No Yes Yes

REPAIR DELETE or

REPLACE

No No No No

REPAIR DUMP or VERIFY1 Yes No Yes No

REPORT Yes Yes Yes Yes

RUNSTATS INDEX Yes Yes Yes No

RUNSTATS TABLESPACE Yes No Yes Yes

STOSPACE Yes Yes Yes Yes

UNLOAD Yes No Yes Yes

Notes:

1. REPAIR LOCATE INDEX PAGE REPLACE is compatible with LOCATE TABLESPACE PAGE.

Reviewing REPAIR output

The output from the REPAIR utility can consist of one or more modified pages in

the specified DB2 table space or index, and a dump of the contents.

REPAIR

Chapter 26. REPAIR 515

Error messages: At each LOCATE statement, the last data page and the new page

that are being located are checked for a few common errors, and messages are

issued.

Data checks: Although REPAIR enables you to manipulate both user and DB2 data

by bypassing SQL, it does perform some checking of data. For example, if REPAIR

tries to write a page with the wrong page number, DB2 abnormally terminates

with a 04E code and reason code C200B0. If the page is broken because the broken

page bit is on or the incomplete page flag is set, REPAIR issues the following

message:

DSNU670I + DSNUCBRP - PAGE X’000004’ IS A BROKEN PAGE

After running REPAIR

CHECK-pending status: You are responsible for violations of referential constraints

that are a result of running REPAIR. These violations cause the target table space

to be placed in the CHECK-pending status. See Chapter 8, “CHECK DATA,” on

page 57 for information about resetting this status.

Sample REPAIR control statements

Example 1: Replacing damaged data and verifying replacement. The following

control statement specifies that the REPAIR utility is to perform the following

actions:

v Repair the specified page of table space DSN8D81A.DSN8S81D, as indicated by

the LOCATE clause.

v Verify that, at the specified offset (50), the damaged data (0A00) is found, as

indicated by the VERIFY clause.

v Replace the damaged data with the desired data (0D11), as indicated by the

REPLACE clause.

v Initiate a dump beginning at offset 50, for 4 bytes, as indicated by the DUMP

clause. You can use the generated dump to verify the replacement.
//STEP1 EXEC DSNUPROC,UID=’IUIQU1UH’,UTPROC=’’,SYSTEM=’DSN’

//SYSIN DD *

REPAIR OBJECT

 LOCATE TABLESPACE DSN8D81A.DSN8S81D PAGE X’02’

 VERIFY OFFSET 50 DATA X’0A00’

 REPLACE OFFSET 50 DATA X’0D11’

 DUMP OFFSET 50 LENGTH 4

Example 2: Removing a nonindexed row that is found by REORG. When

reorganizing table space DSNDB04.TS1, assume that you received the following

message:

DSNU3401 DSNURBXA - ERROR LOADING INDEX, DUPLICATE KEY

 INDEX = EMPINDEX

 TABLE = EMP

 RID OF INDEXED ROW = X’0000000201’

 RID OF NONINDEXED ROW = X’0000000503’

To resolve this error condition, submit the following control statement, which

specifies that REPAIR is to delete the nonindexed row and log the change. (The

LOG keyword is not required; the change is logged by default.) The RID option

identifies the row that REPAIR is to delete.

REPAIR

 LOCATE TABLESPACE DSNDB04.TS1 RID (X’0000000503’)

 DELETE

REPAIR

516 Utility Guide and Reference

Example 3: Reporting whether catalog and directory DBDs differ. The following

control statement specifies that REPAIR is to compare the DBD for DSN8D2AP in

the catalog with the DBD for DSN8D2AP in the directory.

REPAIR DBD TEST DATABASE DSN8D2AP

If the condition code is 0, the DBDs are consistent. If the condition code is not 0,

the DBDs might be inconsistent. In this case, run REPAIR DBD with the

DIAGNOSE option, as shown in example 4, to find out more detailed information

about any inconsistencies.

Example 4: Reporting differences between catalog and directory DBDs. The

following control statement specifies that the REPAIR utility is to report

information about the inconsistencies between the catalog and directory DBDs for

DSN8D2AP. Run this job after you run a REPAIR job with the TEST option (as

shown in example 3), and the condition code is not 0. In this example, SYSREC is

the output data set, as indicated by the OUTDDN option.

REPAIR DBD DIAGNOSE DATABASE DSN8D2AP OUTDDN SYSREC

Example 5: Repairing a table space with an orphan row. After running

DSN1CHKR on table space SYSDBASE, assume that you receive the following

message:

DSN1812I ORPHAN ID = 20 ID ENTRY = 0190 FOUND IN

 PAGE = 0000000024

From a DSN1PRNT of page X'0000000024' and X'0000002541', you identify that RID

X'0000002420' has a forward pointer of X'0000002521'.

Repair the table space by taking the following actions:

1. Submit the following control statement, which specifies that REPAIR is to set

the orphan’s backward pointer to zeros:

REPAIR OBJECT LOG YES

 LOCATE TABLESPACE DSNDB06.SYSDBASE RID X’0000002420’

 VERIFY OFFSET X’0A’ DATA X’0000002422’

 REPLACE OFFSET X’0A’ DATA X’0000000000’

Setting the pointer to zeros prevents the next step from updating link pointers

while deleting the orphan. Updating the link pointers can cause DB2 to

abnormally terminate if the orphan’s pointers are incorrect.

2. Submit the following control statement, which deletes the orphan:

REPAIR OBJECT LOG YES

 LOCATE TABLESPACE DSNDB06.SYSDBASE RID X’00002420’

 VERIFY OFFSET X’06’ DATA X’00002521’

 DELETE

Example 6: Resetting restrictive states. The control statement in Figure 91 on page

518 specifies that the REPAIR utility is to reset the following restrictive states for

the indicated objects:

v For all indexes on table spaces DBNI1601.TSNI1601 and DBNI1601.TSNI1602,

reset RBDP, PSRBDP, or RBDP* status.

v For partition 1 of table space DBNI1601.TSNI1601 and partition 4 of table space

DBNI1601.TSNI1602, reset ACHKP status.

v For partitions 1 and 4 of table space DBNI1601.TSNI1601, reset CHKP status.

REPAIR

Chapter 26. REPAIR 517

Example 7: Updating version information. The control statement in Figure 92

specifies that REPAIR is to update the version information in the catalog and

directory for table spaces TLKQAST1, TSKQAST2, and TPKQAST3.

//STEP3 EXEC DSNUPROC,UID=’JUNIU116.RECV1’,

// UTPROC=’’,SYSTEM=’SSTR’

//SYSIN DD *

 REPAIR OBJECT

 SET INDEX (ALL) TABLESPACE DBNI1601.TSNI1601 NORBDPEND

 SET INDEX (ALL) TABLESPACE DBNI1601.TSNI1602 NORBDPEND

 SET TABLESPACE DBNI1601.TSNI1601 PART 1 NOAUXCHKP

 SET TABLESPACE DBNI1601.TSNI1602 PART 4 NOAUXCHKP

 SET TABLESPACE DBNI1601.TSNI1602 PART 1 NOCHECKPEND

 SET TABLESPACE DBNI1601.TSNI1602 PART 4 NOCHECKPEND

/*

Figure 91. REPAIR SET example control statement

//STEP1 EXEC DSNUPROC,UID=’JUKQU3AS.REPAIR’,TIME=1440,

// UTPROC=’’,

// SYSTEM=’SSTR’,DB2LEV=DB2A

//SYSIN DD *

 REPAIR VERSIONS TABLESPACE DBKQAST1.TLKQAST1

 REPAIR VERSIONS TABLESPACE DBKQAST2.TSKQAST2

 REPAIR VERSIONS TABLESPACE DBKQAST3.TPKQAST3

Figure 92. REPAIR VERSIONS example control statement

REPAIR

518 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|

|
|
|
|

Chapter 27. REPORT

The REPORT utility provides information about table spaces. Use REPORT

TABLESPACESET to find the names of all the table spaces and tables in a

referential structure, including LOB table spaces. The REPORT utility also provides

the LOB table spaces that are associated with a base table space. Use REPORT

RECOVERY to find information that is necessary for recovering a table space,

index, or a table space and all of its indexes.

For a diagram of REPORT syntax and a description of available options, see

“Syntax and options of the REPORT control statement” on page 520. For detailed

guidance on running this utility, see “Instructions for running REPORT” on page

524.

Output: The output from REPORT TABLESPACESET consists of the names of all

table spaces in the table space set that you specify. It also lists all tables in the table

spaces and all tables that are dependent on those tables.

The output from REPORT RECOVERY consists of the recovery history from the

SYSIBM.SYSCOPY catalog table, log ranges from the SYSIBM.SYSLGRNX directory

table, and volume serial numbers where archive log data sets from the BSDS

reside. In addition, REPORT RECOVERY output includes information about any

indexes on the table space that are in the informational COPY-pending status

because this information affects the recoverability of an index. For more

information about this situation, see 123.

In a data sharing environment, the REPORT output provides:

v The RBA of when DB2 was migrated to Version 8

v The high and low RBA values of the migrated member

v A list of any SYSLGRNX records from the time before data sharing was enabled

that cannot be used to recover to any point in time after data sharing was

enabled

v For SYSCOPY, the member from which the image copy was deleted

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v RECOVERDB privilege for the database

v DBADM or DBCTRL authority for the database

v SYSCTRL or SYSADM authority

An ID with DBCTRL or DBADM authority over database DSNDB06 can run the

REPORT utility on any table space in DSNDB01 (the directory) or DSNDB06 (the

catalog), as can any ID with installation SYSOPR, SYSCTRL, or SYSADM authority.

Execution phases of REPORT: The REPORT utility operates in these phases:

Phase Description

UTILINIT Performs initialization

REPORT Collects information

UTILTERM Performs cleanup

© Copyright IBM Corp. 1983, 2008 519

The following topics provide additional information:

v “Syntax and options of the REPORT control statement”

v “Instructions for running REPORT” on page 524

v “Concurrency and compatibility for REPORT” on page 527

v “Reviewing REPORT output” on page 527

v “Sample REPORT control statements” on page 534

Syntax and options of the REPORT control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

Syntax diagram

�� REPORT �

�
 INDEX NONE

RECOVERY

TABLESPACE

LIST

listdef-name

table-space-name-spec

INDEX ALL

info options

index-list-spec

TABLESPACESET

table-space-name-spec

TABLESPACE

��

index-list-spec:

�� INDEXSPACE index-space-name

database-name.

LIST

listdef-name

INDEX

index-name

creator-id.

LIST

listdef-name

 ��

info options:

REPORT

520 Utility Guide and Reference

��
 DSNUM ALL

DSNUM

integer

CURRENT

SUMMARY

LOCALSITE

RECOVERYSITE

�

�
 ARCHLOG 1

ARCHLOG

2

ALL

��

table-space-name-spec:

��

database-name.
 table-space-name ��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

RECOVERY

Indicates that recovery information for the specified table space or index is to

be reported.

TABLESPACE database-name.table-space-name

For REPORT RECOVERY, specifies the table space (and, optionally, the

database to which it belongs) that is being reported.

 For REPORT TABLESPACESET, specifies a table space (and, optionally, the

database to which it belongs) in the table space set.

database-name

Optionally specifies the database to which the table space belongs.

table-space-name

Specifies the table space.

LIST listdef-name

 Specifies the name of a previously defined LISTDEF list name. The

utility allows one LIST keyword for each control statement of REPORT.

The list must contain only table spaces. Do not specify LIST with the

TABLESPACE...table-space-name specification. The TABLESPACE

keyword is required in order to validate the contents of the list.

REPORT RECOVERY TABLESPACE is invoked once per item in the

list.

For more information about LISTDEF specifications, see Chapter 15,

“LISTDEF,” on page 171.

INDEXSPACE database-name.index-space-name

Specifies the index space that is being reported.

 database-name

Optionally specifies the database to which the index space belongs.

REPORT

Chapter 27. REPORT 521

index-space-name

Specifies the index space name for the index that is being reported.

LIST listdef-name

 Specifies the name of a previously defined LISTDEF list name. The

utility allows one LIST keyword for each control statement of REPORT.

The list must contain only index spaces. Do not specify LIST with the

INDEXSPACE...index-space-name specification. The INDEXSPACE

keyword is required in order to validate the contents of the list.

REPORT RECOVERY INDEXSPACE is invoked once for each item in

the list.

For more information about LISTDEF specifications, see Chapter 15,

“LISTDEF,” on page 171.

INDEX creator-id.index-name

Specifies the index in the index space that is being reported.

creator-id

Optionally specifies the creator of the index.

index-name

Specifies the index name that is to be reported. Enclose the index name

in quotation marks if the name contains a blank.

LIST listdef-name

 Specifies the name of a previously defined LISTDEF list name. The

utility allows one LIST keyword for each control statement of REPORT.

The list must contain only index spaces. Do not specify LIST with the

INDEX...index-name specification. The INDEX keyword is required in

order to validate the contents of the list. REPORT RECOVERY INDEX

is invoked once for each item in the list.

For more information about LISTDEF specifications, see Chapter 15,

“LISTDEF,” on page 171.

 The following REPORT keywords are optional:

INDEX NONE

Specifies that recovery information for index spaces that are associated

with the specified table space is not to be reported.

INDEX ALL

Specifies that recovery information for index spaces that are associated

with the specified table space is to be reported.

DSNUM

Identifies a partition or data set for which information is to be reported.

Alternatively, DSNUM specifies that information is to be reported for the

entire table space or index space.

ALL Specifies that information is to be reported for the entire table

space or index space. The default is ALL.

integer Is the number of a partition or data set for which information is to

be reported. The maximum is 4096.

 For a partitioned table space or partitioned index space, the

integer is its partition number.

REPORT

522 Utility Guide and Reference

|

For a nonpartitioned table space, find the integer at the end of the

data set name, as cataloged in the VSAM catalog. The data set

name has the following format:

catname.DSNDBx.dbname.tsname.y0001.Annn

In this format:

catname Is the VSAM catalog name or alias.

x Is C or D.

dbname Is the database name.

tsname Is the table space name.

y Is I or J.

nnn Is the data set integer.

CURRENT

Specifies that only the SYSCOPY entries that were written after the last

recovery point of the table space are to be reported. The last recovery point

is the last full image copy, LOAD REPLACE LOG YES image copy, or

REORG LOG YES image copy. If you specify DSNUM ALL, the last

recovery point is a full image copy that was taken for the entire table space

or index space. However, if you specify the CURRENT option, but the last

recovery point does not exist on the active log, DB2 prompts you to mount

archive tapes until this point is found.

 CURRENT also reports only the SYSLGRNX rows and archive log volumes

that were created after the last incremental image copy entry. If no

incremental image copies were created, only the SYSLGRNX rows and

archive log volumes that were created after the last recovery point are

reported.

If you do not specify CURRENT or if no last recovery point exists, all

SYSCOPY and SYSLGRNX entries for that table space or index space are

reported, including those on archive logs. If you do not specify CURRENT,

the entries that were written after the last recovery point are marked with

an asterisk (*) in the report.

SUMMARY

Specifies that only a summary of volume serial numbers is to be reported.

It reports the following volume serial numbers:

v Where the archive log data sets from the BSDS reside

v Where the image copy data sets from SYSCOPY reside

If you do not specify SUMMARY, recovery information is reported, in

addition to the summary of volume serial numbers.

LOCALSITE

Specifies that all SYSCOPY records that were copied from a local site

system are to be reported.

RECOVERYSITE

Specifies that all SYSCOPY records that were copied from the recovery site

system are to be reported.

ARCHLOG

Specifies which archive log data sets are to be reported.

1 Reports archive log data set 1 only. The default is 1.

2 Reports archive log data set 2 only.

REPORT

Chapter 27. REPORT 523

ALL

Reports both archive log data sets 1 and 2.

TABLESPACESET

Indicates that the names of all table spaces in the table space set, as well as

the names of all indexes on tables in the table space set, are to be reported.

Instructions for running REPORT

To run REPORT, you must:

1. Prepare the necessary data sets, as described in “Data sets that REPORT uses.”

2. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

REPORT, see “Sample REPORT control statements” on page 534.)

3. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

525.

4. Check the compatibility table in “Concurrency and compatibility for REPORT”

on page 527 if you want to run other jobs concurrently on the same target

objects.

5. Plan for restart if the REPORT job doesn’t complete, as described in

“Terminating or restarting REPORT” on page 527.

6. Run REPORT by using one of the methods that are described in Chapter 3,

“Invoking DB2 online utilities,” on page 15.

Data sets that REPORT uses

Table 96 lists the data sets that REPORT uses. The table lists the DD name that is

used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 96. Data sets that REPORT uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

The following object is named in the utility control statement and does not require

a DD statement in the JCL:

Table space

Object that is to be reported.

Creating the control statement

Create the utility control statement for the REPORT job. See “Syntax and options of

the REPORT control statement” on page 520 for REPORT syntax and option

descriptions. See “Sample REPORT control statements” on page 534 for examples

of REPORT usage.

REPORT

524 Utility Guide and Reference

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

the REPORT utility control statement:

 “Reporting recovery information”

 “Running REPORT on the catalog and directory” on page 526

Reporting recovery information

You can use the REPORT utility when planning for recovery. REPORT provides

information that is necessary for recovering a table space. You can request report

information for LOCALSITE, RECOVERYSITE, or both. REPORT RECOVERY

displays:

v Recovery information from the SYSIBM.SYSCOPY catalog table, including

QUIESCE, COPY, LOAD, REORG, RECOVER TOCOPY, and RECOVER TORBA

(or TOLOGPOINT) history. REPORT RECOVERY output also indicates the

device type and whether this is the primary or backup copy for LOCALSITE or

RECOVERYSITE.

v Log ranges of the table space from the SYSIBM.SYSLGRNX directory.

v Archive log data sets ARCHLOG1, ARCHLOG2, or both from the bootstrap data

set.

You can use REPORT TABLESPACESET to find the names of all members of a

table space set.

You can also use REPORT to obtain recovery information about the catalog and

directory. When doing so, use the CURRENT option to avoid unnecessary

mounting of archive tapes.

REPORT uses asterisks to denote any non-COPY entries that it finds in the

SYSIBM.SYSCOPY catalog table. For example, an entry that is added by the

QUIESCE utility is marked with asterisks in the REPORT output.

Recommendation: For image copies of partitioned table spaces that are taken with

the DSNUM ALL option, run REPORT RECOVERY DSNUM ALL. If you run

REPORT RECOVERY DSNUM ALL CURRENT, DB2 reports additional historical

information that dates back to the last full image copy that was taken for the entire

table space.

The REPORT RECOVERY utility output indicates whether any image copies are

unusable; image copies that were taken prior to REORG or LOAD events that reset

REORG-pending status are marked as unusable. In the REPORT RECOVERY

output, look at the IC TYPE and STYPE fields to help you determine which image

copies are unusable.

For example, in the sample REPORT RECOVERY output in Figure 93 on page 526,

the value in the first IC TYPE field, *R*, indicates that a LOAD REPLACE LOG

YES operation occurred. The value in the second IC TYPE field, <F> indicates that

a full image copy was taken.

REPORT

Chapter 27. REPORT 525

After this image copy was taken, assume that an event occurred that put the table

space in REORG-pending status. Figure 94 shows the next several rows of REPORT

RECOVERY output for the same table space. The value in the first ICTYPE field,

X indicates that a REORG LOG YES event occurred. In the same SYSCOPY

record, the value in the STYPE field, A, indicates that this REORG job reset the

REORG-pending status. Any image copies that are taken before this status was

reset are unusable. (Thus, the full image copy in the REPORT output in Figure 93

is unusable.) The next record contains an F in the IC TYPE field and an X in the

STYPE field, which indicates that a full image copy was taken during the REORG

job. This image copy is usable.

For a complete explanation of the SYSCOPY fields, see DB2 SQL Reference.

Running REPORT on the catalog and directory

REPORT RECOVERY shows the image copies for those table spaces that are not

included in SYSIBM.SYSCOPY:

v DSNDB01.SYSUTILX

v DSNDB01.DBD01

v DSNDB06.SYSCOPY

DSNU582I = DSNUPPCP - REPORT RECOVERY TABLESPACE DBKQAA01.TPKQAA01 SYSCOPY ROWS

TIMESTAMP = 2003-02-12-08.37.18.745375, IC TYPE = *R*, SHR LVL = , DSNUM = 0000,

 START LRSN =00000B14E404

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000

JOBNAME = T0811104, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = JUKQU1AA.COPY.STEP1.SYSCOPY , MEMBER NAME=

TIMESTAMP = 2003-02-12-08.37.56.231114, IC TYPE = <F>, SHR LVL = R, DSNUM = 0000,

 START LRSN =00000B283171

DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 000

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000

JOBNAME = T0811105, AUTHID = ADMF001 , COPYPAGESF = 1.63E+02

NPAGESF = 3.6E+02 , CPAGESF = 1.37E+0

DSNAME = JUKQU1AA.COPY.STEP1.SYSCOPY , MEMBER NAME =

Figure 93. Sample REPORT RECOVERY output before table space placed in REORG-pending status

TIMESTAMP = 2003-02-12-08.38.33.366524, IC TYPE = *X*, SHR LVL = , DSNUM = 0000,

 START LRSN =00000B2A6D20

DEV TYPE = , IC BACK = , STYPE = A, FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0001, HIGH DSNUM = 0026, OLDEST VERSION = 0000, LOGICAL PART = 0000

JOBNAME = T0811108, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DBKQAA01.TPKQAA01 , MEMBER NAME =

TIMESTAMP = 2003-02-12-08.38.37.108660, IC TYPE = F , SHR LVL = R, DSNUM = 0000,

 START LRSN =00000B386

DEV TYPE = 3390 , IC BACK = , STYPE = X, FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0001, HIGH DSNUM = 0026, OLDEST VERSION = 0000, LOGICAL PA

JOBNAME = T0811108, AUTHID = ADMF001 , COPYPAGESF = 1.89E+02

NPAGESF = 3.6E+02 , CPAGESF = 3.6E+02

DSNAME = JUKQU1AA.REORG1.STEP1.SYSCOPY , MEMBER NAME =

Figure 94. Sample REPORT RECOVERY output after REORG-pending status is reset

REPORT

526 Utility Guide and Reference

When you execute REPORT RECOVERY on DSNDB01.DBD01,

DSNDB01.SYSUTILX, or DSNDB06.SYSCOPY, specify the CURRENT option to

avoid unnecessarily mounting archive tapes. If you do not specify CURRENT, DB2

searches for and reports all SYSCOPY records in the log, including those on

archive tapes. However, if the CURRENT option is specified and the last recovery

point does not exist on the active log, DB2 prompts you to mount archive tapes

until this point is found.

You can use REPORT TABLESPACESET on the DB2 catalog and directory table

spaces.

Terminating or restarting REPORT

You can terminate a REPORT utility job with the TERM UTILITY command if you

have submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a REPORT utility job, but it starts from the beginning again. For

guidance in restarting online utilities, see “Restarting an online utility” on page 41.

Concurrency and compatibility for REPORT

REPORT does not set a utility restrictive state on the target table space or partition.

REPORT can run concurrently on the same target object with any utility or SQL

operation.

Reviewing REPORT output

REPORT TABLESPACESET output: The output from REPORT TABLESPACESET

consists of the names of all table spaces in the table space set that you specify. It

also identifies all tables in the table spaces, and identifies all tables that are

dependent on those tables, including LOB table spaces.

For example, the statement REPORT TABLESPACESET TABLESPACE

DSN8D81A.DSN8S81D generates the output that is shown in Figure 95 on page

528.

REPORT

Chapter 27. REPORT 527

REPORT RECOVERY output: REPORT RECOVERY displays all information about

the image copy data sets and archive log data set that might be required during

the recovery.

If the DSVOLSER column of SYSIBM.SYSCOPY is blank, REPORT RECOVERY

does not display volume serial numbers for image copy data sets.

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - REPORT TABLESPACESET TABLESPACE DSN8D81A.DSN8S81D

DSNU587I = DSNUPSET - REPORT TABLESPACE SET WITH TABLESPACE DSN8D81A.DSN8S81D

TABLESPACE SET REPORT:

TABLESPACE : DSN8D81A.DSN8S81D

 TABLE : DSN8810.DEPT

 INDEXSPACE : DSN8D81A.XDEPT1

 INDEX : DSN8810.XDEPT1

 INDEXSPACE : DSN8D81A.XDEPT2

 INDEX : DSN8810.XDEPT2

 INDEXSPACE : DSN8D81A.XDEPT3

 INDEX : DSN8810.XDEPT3

 DEP TABLE : DSN8810.DEPT

 DSN8810.EMP

 DSN8810.PROJ

TABLESPACE : DSN8D81A.DSN8S81E

 TABLE : DSN8810.EMP

 INDEXSPACE : DSN8D81A.XEMP1

 INDEX : DSN8810.XEMP1

 INDEXSPACE : DSN8D81A.XEMP2

 INDEX : DSN8810.XEMP2

 DEP TABLE : DSN8810.DEPT

 DSN8810.EMPPROJACT

 DSN8810.PROJ

TABLESPACE : DSN8D81A.DSN8S81P

 TABLE : DSN8810.ACT

 INDEXSPACE : DSN8D81A.XACT1

 INDEX : DSN8810.XACT1

 INDEXSPACE : DSN8D81A.XACT2

 INDEX : DSN8810.XACT2

 DEP TABLE : DSN8810.PROJACT

 TABLE : DSN8810.EMPPROJACT

 INDEXSPACE : DSN8D81A.XEMPPROJ

 INDEX : DSN8810.XEMPPROJACT1

 INDEXSPACE : DSN8D81A.KRZC1YHQ

 INDEX : DSN8810.XEMPPROJACT2

 TABLE : DSN8810.PROJ

 INDEXSPACE : DSN8D81A.XPROJ1

 INDEX : DSN8810.XPROJ1

 INDEXSPACE : DSN8D81A.XPROJ2

 INDEX : DSN8810.XPROJ2

 DEP TABLE : DSN8810.PROJ

 DSN8810.PROJACT

 TABLE : DSN8810.PROJACT

 INDEXSPACE : DSN8D81A.XPROJAC1

 INDEX : DSN8810.XPROJAC1

 DEP TABLE : DSN8810.EMPPROJACT

DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 95. Example of REPORT TABLESPACESET output

REPORT

528 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The report contains three sections, which include the following types of

information:

v Recovery history from the SYSIBM.SYSCOPY catalog table.

For a description of the fields in the SYSCOPY rows, see the table that describes

SYSIBM.SYSCOPY in Appendix D of DB2 SQL Reference.

v Log ranges from SYSIBM.SYSLGRNX.

v Volume serial numbers where archive log data sets from the BSDS reside.

If REPORT has no data to display for one or more of these topics, the

corresponding sections of the report contain the following message:

DSNU588I - NO DATA TO BE REPORTED

The RECOVERY ENVIRONMENT RECORD is displayed following message

DSNU581I.

SYSIBM.SYSCOPY information is displayed following message DSNU582I. In that

section characters are placed around the ″IC TYPE″ value to indicate different

unique conditions:

 < > - indicates the TABLESPACE image copy preceded an event that reset

REORG PENDING. Any point-in-time recovery prior to this point will return

the object to REORG PENDING state.

 () - indicates the TABLESPACE image copy preceded a LOG NO event or the

INDEXSPACE image copy preceded an unrecoverable log point. Image copies

prior to this point are only usable for point-in-time recoveries.

 * * - indicates a full or incremental image copy with none of the preceding

special conditions.

Summary information is displayed following message DSNU586I.

The data sharing member, if applicable, is identified in message DSNU592I.

SYSIBM.SYSLGRNX rows are displayed following message DSNU583I.

BSDS information is displayed following message DSNU584I.

Additional information is available in DB2 Messages under each message.

Figure 96 on page 530 shows a sample of REPORT RECOVERY output in a data

sharing environment.

REPORT

Chapter 27. REPORT 529

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = JUOSU2

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - REPORT RECOVERY TABLESPACE DBOS3002.TPOS3002 ARCHLOG ALL

DSNU581I = DSNUPREC - REPORT RECOVERY TABLESPACE DBOS3002.TPOS3002

 DSNU593I = DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

’ MINIMUM RBA: 000000000000

’ MAXIMUM RBA: 0000028A5A82

’ MIGRATING RBA: 0000028A5A82

DSNU582I = DSNUPPCP - REPORT RECOVERY TABLESPACE DBOS3002.TPOS3002 SYSCOPY ROWS

TIMESTAMP = 2002-09-25-08.47.59.979389, IC TYPE = *R*, SHR LVL = , DSNUM = 0000,

 START LRSN =B848B17DBFA1

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000

JOBNAME = T3161102, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DBOS3002.TPOS3002 , MEMBER NAME = V81B

TIMESTAMP = 2002-09-25-09.13.27.330574, IC TYPE = F , SHR LVL = R, DSNUM = 0002,

 START LRSN =B848B732F57A

DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0002

JOBNAME = T3161103, AUTHID = ADMF001 , COPYPAGESF = 1.51E+02

NPAGESF = 1.56E+02 , CPAGESF = 1.5E+02

DSNAME = JUOSU230.COPY.STEP1.SYSCOPY1 , MEMBER NAME = V81A

TIMESTAMP = 2002-09-25-09.14.02.047456, IC TYPE = F , SHR LVL = R, DSNUM = 0000,

 START LRSN =B848B7505C65

DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000

JOBNAME = T3161103, AUTHID = ADMF001 , COPYPAGESF = 2.113E+03

NPAGESF = 2.28E+03 , CPAGESF = 1.947E+03

DSNAME = JUOSU230.COPY.STEP1.SYSCOPY2 , MEMBER NAME = V81A

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DBOS3002.TPOS3002 SUMMARY

DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU592I = DSNUPREC - REPORT RECOVERY INFORMATION FOR DATA SHARING MEMBER : V81A

DSNU583I = DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE DBOS3002.TPOS3002

Figure 96. Example of REPORT RECOVERY in a data sharing environment (Part 1 of 2)

REPORT

530 Utility Guide and Reference

Figure 97 on page 532 shows sample output for the statement REPORT

RECOVERY TABLESPACE ARCHLOG. Under message DSNU584I, the archive log

entries after the last recovery point are marked with an asterisk (*). If you code the

CURRENT option, the output from message DSNU584I would include only the

archive logs after the last recovery point and the asterisk (*) would not be included

in the report.

UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID

092502 08361462 00000DE3C9FA 00000DE5BC88 B848AEDD97F6 B848AF380D15 0001 0001

092502 08361646 00000DE3E91D 00000DE5BD88 B848AEDF5972 B848AF3828FE 0002 0001

092502 08361831 00000DE40804 00000DE5BE88 B848AEE11D01 B848AF382BAF 0003 0001

092502 08362021 00000DE426EB 00000DE5C000 B848AEE2ECAC B848AF382F61 0004 0001

092502 08362214 00000DE445D2 00000DE5C100 B848AEE4C45C B848AF3830BC 0005 0001

092502 08362404 00000DE464B9 00000DE5C200 B848AEE69324 B848AF38331C 0006 0001

092502 08362822 00000DE483A0 00000DE5C300 B848AEEA8F55 B848AF3834F7 0007 0001

092502 08363681 00000DE4A2AD 00000DE5C400 B848AEF2C02C B848AF3836FE 0008 0001

092502 08364286 00000DE4C194 00000DE5C500 B848AEF886EE B848AF383888 0009 0001

092502 08364946 00000DE4E0A1 00000DE5C600 B848AEFED236 B848AF3839DB 0010 0001

...

092502 08392880 00000DE83A3E 00000DF41788 B848AF96C610 B848B1752630 0015 0001

092502 08392883 00000DE83DA8 00000DF41526 B848AF96CD77 B848B174A721 0016 0001

DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DBOS3002.TPOS3002 ARCHLOG1 BSDS VOLUMES

DSNU588I = DSNUPPBS - NO DATA TO BE REPORTED

DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DBOS3002.TPOS3002 ARCHLOG2 BSDS VOLUMES

DSNU588I = DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DBOS3002.TPOS3002 SUMMARY

DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU592I = DSNUPREC - REPORT RECOVERY INFORMATION FOR DATA SHARING MEMBER : V81B

DSNU583I = DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE DBOS3002.TPOS3002

UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID

092502 08502167 00000010981C 000000128AAB B848B20565F4 B848B206C7D0 0001 0002

092502 08502170 00000010B7CF 000000128BAB B848B2056F2B B848B206C976 0002 0002

092502 08502176 00000010D6B6 000000128CAB B848B2057C32 B848B206CAED 0003 0002

092502 08502182 00000010F5DA 000000128DAB B848B2058BE5 B848B206CC55 0004 0002

092502 08502188 0000001115CF 000000128EAB B848B2059AAD B848B206CDCA 0005 0002

092502 08502193 0000001134B6 000000129000 B848B205A5C3 B848B206CF53 0006 0002

...

092502 09064089 00000083C29F 0000009A2DB2 B848B5AB422E B848B6D42EBD 0015 0002

092502 09070293 00000089949A 0000009A3090 B848B5C04679 B848B6D4DEE7 0016 0002

DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DBOS3002.TPOS3002 ARCHLOG1 BSDS VOLUMES

DSNU588I = DSNUPPBS - NO DATA TO BE REPORTED

DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DBOS3002.TPOS3002 ARCHLOG2 BSDS VOLUMES

DSNU588I = DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DBOS3002.TPOS3002 SUMMARY

DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU589I = DSNUPREC - REPORT RECOVERY TABLESPACE DBOS3002.TPOS3002 COMPLETE

DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:01

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

NO CONTROL STATEMENT PROVIDED.

Figure 96. Example of REPORT RECOVERY in a data sharing environment (Part 2 of 2)

REPORT

Chapter 27. REPORT 531

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = D7058005.RCVR3

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - REPORT RECOVERY TABLESPACE DB580501.TS580501 ARCHLOG ALL

DSNU581I = DSNUPREC - REPORT RECOVERY TABLESPACE DB580501.TS580501

DSNU593I = DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

’ MINIMUM RBA: 000000000000

’ MAXIMUM RBA: FFFFFFFFFFFF

’ MIGRATING RBA: 000000000000

 DSNU582I = DSNUPPCP - REPORT RECOVERY TABLESPACE DB580501.TS580501 SYSCOPY ROWS

TIMESTAMP = 2002-09-17-10.03.16.784238, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,

 START LRSN =00001E58E60D

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3648

JOBNAME = T3951105, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DB580501.TS580501 , MEMBER NAME =

TIMESTAMP = 2002-09-17-10.03.22.937931, IC TYPE = *Z*, SHR LVL = , DSNUM = 0000,

 START LRSN =00001E5956A3

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000

JOBNAME = T3951105, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DB580501.TS580501 , MEMBER NAME =

TIMESTAMP = 2002-09-17-10.03.43.118193, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,

 START LRSN =00001E5A7B9D

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3648

JOBNAME = T3951106, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DB580501.TS580501 , MEMBER NAME =

TIMESTAMP = 2002-09-17-10.03.53.881540, IC TYPE = *Z*, SHR LVL = , DSNUM = 0000,

 START LRSN =00001E5ADC6E

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000

JOBNAME = T3951106, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DB580501.TS580501 , MEMBER NAME =

TIMESTAMP = 2002-09-17-10.04.02.955333, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,

 START LRSN =00001E624A3C

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3648

JOBNAME = T3951106, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DB580501.TS580501 , MEMBER NAME =

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DB580501.TS580501 SUMMARY

DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I = DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE DB580501.TS580501

UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID

091702 10025977 00001E4FD319 00001E4FEB91 00001E4FD319 00001E4FEB91 0000 0000 *

091702 10030124 00001E505B93 00001E58BC23 00001E505B93 00001E58BC23 0000 0000 *

091702 10032302 00001E59A637 00001E5A5258 00001E59A637 00001E5A5258 0000 0000 *

091702 10035391 00001E5B26AB 00001E6222F3 00001E5B26AB 00001E6222F3 0000 0000 *

Figure 97. Example of REPORT RECOVERY TABLESPACE ARCHLOG (Part 1 of 3)

REPORT

532 Utility Guide and Reference

DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DB580501.TS580501 ARCHLOG1 BSDS VOLUMES

START TIME END TIME START RBA END RBA UNIT VOLSER DATA SET NAME

20022601702454 20022601704156 00001E48B000 00001E629FFF SYSDA SCR03 DSNC810.ARCHLOG1.A0000005 *

DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DB580501.TS580501 ARCHLOG2 BSDS VOLUMES

DSNU588I = DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DB580501.TS580501 SUMMARY

 ARCHLOG1 BSDS VOLSER(S) SCR03 *

 DSNU589I = DSNUPREC - REPORT RECOVERY TABLESPACE DB580501.TS580501 COMPLETE

DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = D7058005.RCVR3

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - REPORT RECOVERY TABLESPACE DB580501.TS580501 CURRENT

DSNU581I = DSNUPREC - REPORT RECOVERY TABLESPACE DB580501.TS580501

DSNU585I = DSNUPREC - REPORT RECOVERY TABLESPACE DB580501.TS580501 CURRENT

DSNU593I = DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

’ MINIMUM RBA: 000000000000

’ MAXIMUM RBA: FFFFFFFFFFFF

’ MIGRATING RBA: 000000000000

 DSNU582I = DSNUPPCP - REPORT RECOVERY TABLESPACE DB580501.TS580501 SYSCOPY ROWS

TIMESTAMP = 2002-09-17-10.03.16.784238, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,

 START LRSN =00001E58E60D

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3648

JOBNAME = T3951105, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DB580501.TS580501 , MEMBER NAME =

TIMESTAMP = 2002-09-17-10.03.22.937931, IC TYPE = *Z*, SHR LVL = , DSNUM = 0000,

 START LRSN =00001E5956A3

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000

JOBNAME = T3951105, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DB580501.TS580501 , MEMBER NAME =

...

TIMESTAMP = 2002-09-17-10.04.02.955333, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,

 START LRSN =00001E624A3C

DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3648

JOBNAME = T3951106, AUTHID = ADMF001 , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DB580501.TS580501 , MEMBER NAME =

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DB580501.TS580501 SUMMARY

DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I = DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE DB580501.TS580501

UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID

091702 10025977 00001E4FD319 00001E4FEB91 00001E4FD319 00001E4FEB91 0000 0000

091702 10030124 00001E505B93 00001E58BC23 00001E505B93 00001E58BC23 0000 0000

091702 10032302 00001E59A637 00001E5A5258 00001E59A637 00001E5A5258 0000 0000

091702 10035391 00001E5B26AB 00001E6222F3 00001E5B26AB 00001E6222F3 0000 0000

DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DB580501.TS580501 ARCHLOG1 BSDS VOLUMES

START TIME END TIME START RBA END RBA UNIT VOLSER DATA SET NAME

20022601702454 20022601704156 00001E48B000 00001E629FFF SYSDA SCR03 DSNC810.ARCHLOG1.A0000005

Figure 97. Example of REPORT RECOVERY TABLESPACE ARCHLOG (Part 2 of 3)

REPORT

Chapter 27. REPORT 533

Sample REPORT control statements

Example 1: Reporting recovery information for a table space. The following control

statement specifies that the REPORT utility is to provide recovery information for

table space DSN8D81A.DSN8S81E.

//STEP1 EXEC DSNUPROC,UID=’IUKUU206.REPORT2’,

// UTPROC=’’,SYSTEM=’DSN’

//SYSIN DD *

REPORT RECOVERY

 TABLESPACE DSN8D81A.DSN8S81E

//*

The preceding statement produces output similar to the output shown in Figure 98

on page 535.

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DB580501.TS580501 SUMMARY

 ARCHLOG1 BSDS VOLSER(S) SCR03

DSNU589I = DSNUPREC - REPORT RECOVERY TABLESPACE DB580501.TS580501 COMPLETE

DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00

DSNU050I DSNUGUTC - RECOVER TABLESPACE DB580501.TS580501 LOGONLY

DSNU532I = DSNUCALA - RECOVER TABLESPACE DB580501.TS580501 START

DSNU549I = DSNUCALA - RECOVER TABLESPACE DB580501.TS580501

 USES ONLY DB2 LOGS STARTING FROM LOGPOINT=X’00001E5A5258’.

DSNU513I = DSNUCALA - RECOVER UTILITY LOG APPLY RANGE IS RBA 00001E5B26AB LRSN 00001E5B26AB TO

 RBA 00001E6222F3 LRSN 00001E6222F3

DSNU500I DSNUCBDR - RECOVERY COMPLETE, ELAPSED TIME=00:00:03

DSNU050I DSNUGUTC - REBUILD INDEX(ALL) TABLESPACE DB580501.TS580501

DSNU555I = DSNUCRUL - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS PROCESSED=45

DSNU705I DSNUCRIB - UNLOAD PHASE COMPLETE - ELAPSED TIME=00:00:00

DSNU394I = DSNURBXC - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=25 FOR INDEX ADMF001.IX580501

DSNU394I = DSNURBXC - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=20 FOR INDEX ADMF001.IX580502

DSNU391I DSNUCRIB - SORTBLD PHASE STATISTICS. NUMBER OF INDEXES = 2

DSNU392I DSNUCRIB - SORTBLD PHASE COMPLETE, ELAPSED TIME = 00:00:09

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 97. Example of REPORT RECOVERY TABLESPACE ARCHLOG (Part 3 of 3)

REPORT

534 Utility Guide and Reference

Example 2: Reporting table spaces that are referentially related. The following

control statement specifies that REPORT is to provide a list of all table spaces that

are referentially related to table space DSN8D81A.DSN8S81E. The output also

includes a list of any related LOB table spaces and of all indexes on the tables in

those table spaces.

REPORT TABLESPACESET TABLESPACE DSN8D81A.DSN8S81E

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E

DSNU581I = DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E

DSNU593I = DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

’ MINIMUM RBA: 000000000000

’ MAXIMUM RBA: FFFFFFFFFFFF

’ MIGRATING RBA: 000000000000

DSNU582I = DSNUPPCP - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E SYSCOPY ROWS

TIMESTAMP = 2002-11-14-14.58.46.843369, IC TYPE = *Z*, SHR LVL = , DSNUM = 0004,

 START LRSN=0000018C3750

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ =0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3647

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DSN8D81A.DSN8S81E , MEMBER NAME =

TIMESTAMP = 2002-11-14-14.58.46.843369, IC TYPE = *Z*, SHR LVL = , DSNUM = 0003,

 START LRSN=0000018C3750

DEV TYPE = , IC BACK = , STYPE = FILE SEQ =0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0001

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DSN8D81A.DSN8S81E , MEMBER NAME =

...

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E SUMMARY

DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I = DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE DSN8D8

 UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID

 111402 14582223 00000173BEAA 000001742B91 00000173BEAA 000001742B91 0001 0000

 111402 14582235 00000173DDD0 000001742B91 00000173DDD0 000001742B91 0002 0000

 111402 14582245 00000173FCF0 000001742B91 00000173FCF0 000001742B91 0003 0000

 111402 14582255 000001741BF8 000001742B91 000001741BF8 000001742B91 0004 0000

 111402 14582696 00000177E5DB 0000017F890B 00000177E5DB 0000017F890B 0001 0000

 111402 14582698 00000177E98B 00000182D2B8 00000177E98B 00000182D2B8 0002 0000

 111402 14582699 00000177ECFF 0000017B05E4 00000177ECFF 0000017B05E4 0003 0000

 111402 14582699 00000177F09E 0000018798B8 00000177F09E 0000018798B8 0004 0000

 111402 14584686 0000018C97A8 0000019451CB 0000018C97A8 0000019451CB 0001 0000

 111402 14584725 0000018DAB26 00000194543B 0000018DAB26 00000194543B 0002 0000

 111402 14584755 0000018EBEC5 0000019456AB 0000018EBEC5 0000019456AB 0004 0000

 111402 14591633 000001AFB000 000001AFD033 000001AFB000 000001AFD033 0003 0000

 111402 14591706 000001AFE4AA 000001B0D1AF 000001AFE4AA 000001B0D1AF 0003 0000

 111402 14592109 000001B2EADA 000001B39F0D 000001B2EADA 000001B39F0D 0003 0000

DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E ARCHLOG1 BS

DSNU588I = DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E SUMMARY

DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU589I = DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E COMPLETE

DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 98. Example output for REPORT RECOVERY

REPORT

Chapter 27. REPORT 535

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The preceding statement produces output similar to the output shown in Figure 99.

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - REPORT TABLESPACESET TABLESPACE DSN8D81A.DSN8S81E

DSNU587I = DSNUPSET - REPORT TABLESPACE SET WITH TABLESPACE DSN8D81A.DSN8S81E

TABLESPACE SET REPORT:

TABLESPACE : DSN8D81A.DSN8S81D

 TABLE : DSN8810.DEPT

 INDEXSPACE : DSN8D81A.XDEPT1

 INDEX : DSN8810.XDEPT1

 INDEXSPACE : DSN8D81A.XDEPT2

 INDEX : DSN8810.XDEPT2

 INDEXSPACE : DSN8D81A.XDEPT3

 INDEX : DSN8810.XDEPT3

 DEP TABLE : DSN8810.DEPT

 DSN8810.EMP

 DSN8810.PROJ

TABLESPACE : DSN8D81A.DSN8S81E

 TABLE : DSN8810.EMP

 INDEXSPACE : DSN8D81A.XEMP1

 INDEX : DSN8810.XEMP1

 INDEXSPACE : DSN8D81A.XEMP2

 INDEX : DSN8810.XEMP2

 DEP TABLE : DSN8810.DEPT

 DSN8810.EMPPROJACT

 DSN8810.PROJ

TABLESPACE : DSN8D81A.DSN8S81P

 TABLE : DSN8810.ACT

 INDEXSPACE : DSN8D81A.XACT1

 INDEX : DSN8810.XACT1

 INDEXSPACE : DSN8D81A.XACT2

 INDEX : DSN8810.XACT2

 DEP TABLE : DSN8810.PROJACT

 TABLE : DSN8810.EMPPROJACT

 INDEXSPACE : DSN8D81A.XEMPPROJ

 INDEX : DSN8810.XEMPPROJACT1

 INDEXSPACE : DSN8D81A.KRZC1YHQ

 INDEX : DSN8810.XEMPPROJACT2

 TABLE : DSN8810.PROJ

 INDEXSPACE : DSN8D81A.XPROJ1

 INDEX : DSN8810.XPROJ1

 INDEXSPACE : DSN8D81A.XPROJ2

 INDEX : DSN8810.XPROJ2

 DEP TABLE : DSN8810.PROJ

 DSN8810.PROJACT

 TABLE : DSN8810.PROJACT

 INDEXSPACE : DSN8D81A.XPROJAC1

 INDEX : DSN8810.XPROJAC1

 DEP TABLE : DSN8810.EMPPROJACT

DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 99. Example output for REPORT TABLESPACESET

REPORT

536 Utility Guide and Reference

Example 3: Reporting recovery information for a partition of a partitioned table

space. The following control statement specifies that REPORT is to provide

recovery information for partition 4 of table space DSN8D81A.DSN8S81E. The

partition number is indicated by the DSNUM option.

REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E DSNUM 4

The preceding statement produces output similar to the output shown in

Figure 100.

Example 4: Reporting recovery information for an index. The control statement in

Figure 101 specifies that REPORT is to provide recovery information for index

DSN8810.XDEPT1.

 The preceding statement produces output similar to the output shown in

Figure 102 on page 538.

1DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP

 DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

0DSNU050I DSNUGUTC - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E DSNUM 4

 DSNU581I = DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E

 DSNU593I = DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

 ’ MINIMUM RBA: 000000000000

 ’ MAXIMUM RBA: FFFFFFFFFFFF

 ’ MIGRATING RBA: 000000000000

 DSNU582I = DSNUPPCP - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E SYSCOPY ROW

TIMESTAMP = 2002-11-14-14.58.46.843369, IC TYPE = *Z*, SHR LVL = , DSNUM = 0004,

 START LRSN=0000018C3750

DEV TYPE = , IC BACK = , STYPE = , FILE SEQ =0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 3647

JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00

NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00

DSNAME = DSN8D81A.DSN8S81E , MEMBER NAME =

...

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E SUMMARY

DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I = DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE DSN8D8

 UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID

 111402 14582255 000001741BF8 000001742B91 000001741BF8 000001742B91 0004 0000

 111402 14582699 00000177F09E 0000018798B8 00000177F09E 0000018798B8 0004 0000

 111402 14584755 0000018EBEC5 0000019456AB 0000018EBEC5 0000019456AB 0004 0000

DSNU584I = DSNUPPBS - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E ARCHLOG1 BS

DSNU588I = DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I = DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E SUMMARY

DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU589I = DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D81A.DSN8S81E COMPLETE

DSNU580I DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 100. Example output for REPORT RECOVERY DSNUM

//STEP3 EXEC DSNUPROC,UID=’IUJMU111.REPORT’,

// UTPROC=’’,

// SYSTEM=’SSTR’,DB2LEV=DB2A

//SYSIN DD *

 REPORT RECOVERY INDEX DSN8810.XDEPT1

/*

Figure 101. Example REPORT RECOVERY statement for an index

REPORT

Chapter 27. REPORT 537

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP

DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNU050I DSNUGUTC - REPORT RECOVERY INDEX DSN8810.XDEPT1

DSNU581I = DSNUPREC - REPORT RECOVERY INDEX DSN8810.XDEPT1

DSNU593I = DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:

’ MINIMUM RBA: 000000000000

’ MAXIMUM RBA: FFFFFFFFFFFF

’ MIGRATING RBA: 000000000000

DSNU582I = DSNUPPCP - REPORT RECOVERY INDEX DSN8810.XDEPT1 SYSCOPY ROWS

TIMESTAMP = 2003-03-18-13.53.09.802224, IC TYPE = F , SHR LVL = R, DSNUM = 0000,

 START LRSN =000004FE4537

DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,

 PIT LRSN = 000000000000

LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000

JOBNAME = ADMF001A, AUTHID = ADMF001 , COPYPAGESF = 5.0E+00

NPAGESF = 1.2E+01 , CPAGESF = 0.0E0

DSNAME = ADMF001.LOCAL , MEMBER NAME =

DSNU586I = DSNUPSUM - REPORT RECOVERY INDEX DSN8810.XDEPT1 SUMMARY

DSNU588I = DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I = DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR INDEX DSN8810.XDEP

DSNU588I = DSNUPPLR - NO DATA TO BE REPORTED

Figure 102. Example output for REPORT RECOVERY INDEX

538 Utility Guide and Reference

Chapter 28. RESTORE SYSTEM

The RESTORE SYSTEM utility invokes z/OS DFSMShsm (Version 1 Release 5 or

above) to recover a DB2 subsystem or a data sharing group to a previous point in

time. To perform the recovery, the utility uses data that is copied by the BACKUP

SYSTEM utility. All data sets that you want to recover must be SMS-managed data

sets.

The RESTORE SYSTEM utility can be run from any member in a data sharing

group, even one that is normally quiesced when any backups are taken. Any

member in the data sharing group that is active at or beyond the log truncation

point must be restarted, and its logs are truncated to the SYSPITR LRSN point. You

can specify the SYSPITR LRSN point in the CRESTART control statement of the

DSNJU003 (Change Log Inventory) utility. Any data sharing group member that is

normally quiesced at the time the backups are taken and is not active at or beyond

the log truncation point does not need to be restarted.

Restrictions: DFSMShsm V1R5 can maintain multiple backup versions of copy

pools. However, you cannot specify a particular backup version to be used by the

RESTORE SYSTEM utility. RESTORE SYSTEM uses the latest version before the log

truncation point. You can specify the log truncation point with the CRESTART

SYSPITR option of the DSNJU003 (Change Log Inventory) stand-alone utility. For

more information about this option, see Chapter 36, “DSNJU003 (change log

inventory),” on page 671. For information about copy pools and associated backup

storage groups, see z/OS DFSMSdfp Storage Administration Reference.

RESTORE SYSTEM does not restore logs; the utility only applies the logs. If you

specified BACKUP SYSTEM FULL to create copies of both the data and the logs,

you can restore the logs by another method. For more information about BACKUP

SYSTEM FULL, see Chapter 5, “BACKUP SYSTEM,” on page 47.

Output: Output for RESTORE SYSTEM is the recovered copy of the data volume

or volumes.

Related information: For more information about the use of RESTORE SYSTEM in

system level point-in-time recovery, see Part 4 of DB2 Administration Guide.

Authorization required: To run this utility, you must use a privilege set that

includes Installation SYSADM authority.

Execution phases of RESTORE SYSTEM: The RESTORE SYSTEM utility operates in

the following phases:

Phase Description

UTILINIT Performs initialization and setup

RESTORE Locates and restores the volume copies if the LOGONLY option is

not specified

LOGAPPLY Applies the outstanding log changes to the database

UTILTERM Performs cleanup

The following topics provide additional information:

© Copyright IBM Corp. 1983, 2008 539

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

#
|

|
|

||

||

||
|

||

||

|

v “Syntax and options of the RESTORE SYSTEM control statement”

v “Instructions for running RESTORE SYSTEM”

v “Concurrency and compatibility for RESTORE SYSTEM” on page 542

v “After running RESTORE SYSTEM” on page 542

v “Sample RESTORE SYSTEM control statements” on page 542

Syntax and options of the RESTORE SYSTEM control statement

The utility control statement defines the function that the utility job performs. Use

the ISPF/PDF edit function to create a control statement and to save it in a

sequential or partitioned data set. When you create the JCL for running the job, use

the SYSIN DD statement to specify the name of the data set that contains the

utility control statement.

When you specify RESTORE SYSTEM, you can specify only the following

statements in the same step:

v DIAGNOSE

v OPTIONS PREVIEW

v OPTIONS OFF

v OPTIONS KEY

v OPTIONS EVENT WARNING

In addition, RESTORE SYSTEM must be the last statement in SYSIN.

Syntax diagram

�� RESTORE SYSTEM

LOGONLY
 ��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

LOGONLY

Specifies that the database volumes have already been restored, so the

RESTORE phase is skipped. Use this option when the database volumes have

already been restored outside of DB2. If the subsystem is at a tracker site, you

must specify the LOGONLY option. For more information about using a

tracker site, see Part 4 (Volume 1) of DB2 Administration Guide.

 By default, RESTORE SYSTEM recovers the data from the database copy pool

during the RESTORE phase and then applies logs to the point in time at which the

existing logs were truncated during the LOGAPPLY phase. The RESTORE utility

never restores logs from the log copy pool.

Instructions for running RESTORE SYSTEM

To run RESTORE SYSTEM, you must:

1. Read “Before running RESTORE SYSTEM” on page 541.

RESTORE SYSTEM

540 Utility Guide and Reference

|

|

|

|

|

|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|||||||||||||

|
||

|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|

|

2. Prepare the necessary data sets, as described in “Data sets that RESTORE

SYSTEM uses.”

3. Create JCL statements by either “Using the supplied JCL procedure

(DSNUPROC)” on page 33 or “Creating the JCL data set yourself by using the

EXEC statement” on page 36.

4. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks.”

5. Check “Concurrency and compatibility for RESTORE SYSTEM” on page 542 if

you want to run other jobs concurrently on the same target objects.

6. Plan for restarting RESTORE SYSTEM if the job doesn’t complete, as described

in “Terminating and restarting RESTORE SYSTEM” on page 542.

7. Run RESTORE SYSTEM by either “Using the supplied JCL procedure

(DSNUPROC)” on page 33 or “Creating the JCL data set yourself by using the

EXEC statement” on page 36.

Before running RESTORE SYSTEM

Complete the following steps prior to running RESTORE SYSTEM:

1. Stop DB2.

2. Run DSNJU003 (Change Log Inventory) with the CRESTART SYSPITR option.

For SYSPITR, specify the log truncation point that corresponds to the previous

point in time to which the system is to be recovered. The utility allows

SYSPITR only after new-function mode is enabled.

3. Start DB2. When the restart that is specified by CRESTART SYSPITR completes,

DB2 enters system RECOVER-pending and access maintenance mode. During

system RECOVER-pending mode, you can run only the RESTORE SYSTEM

utility.

4. Ensure that the ICF catalog volumes for DB2 data are not active. The ICF

catalog for the data must be on a separate volume that the ICF catalog for the

logs.

Data sets that RESTORE SYSTEM uses

Table 97 lists the data sets that RESTORE SYSTEM uses. The table lists the DD

name that is used to identify the data set, a description of the data set, and an

indication of whether it is required. Include statements in your JCL for each

required data set.

 Table 97. Data sets that RESTORE SYSTEM uses

Data set Description Required?

SYSIN An input data set that contains the utility

control statement

Yes

SYSPRINT An output data set for messages Yes

Instructions for specific tasks

This section contains information about the following tasks:

 “Restoring data in a data sharing environment”

 “Using DISPLAY UTILITY with RESTORE SYSTEM” on page 542

Restoring data in a data sharing environment

Ensure that all data sharing members that were active at the SYSPITR log

truncation point (or restarted after this point) have been restarted with the same

RESTORE SYSTEM

Chapter 28. RESTORE SYSTEM 541

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|

|

|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

||

|||

||
|
|

|||
|

|

|
|
|

|
|
|

SYSPITR LRSN value. You can stop the other members of the data group (with

MODE(QUIESCE)) after the SYSPITR restart.

Using DISPLAY UTILITY with RESTORE SYSTEM

To use the DISPLAY UTILITY command for RESTORE SYSTEM on a data sharing

group, you must issue the command from the member on which the RESTORE

SYSTEM utility is invoked.

Terminating and restarting RESTORE SYSTEM

You cannot terminate RESTORE SYSTEM by using the TERM UTILITY command.

You can restart RESTORE SYSTEM at the beginning of a phase or at the current

system checkpoint. A current system checkpoint occurs during the LOGAPPLY

phase after log records are processed. By default, RESTORE SYSTEM restarts at the

current system checkpoint.

When you restart RESTORE SYSTEM for a data sharing group, the member on

which the restart is issued must be the same member on which the original

RESTORE SYSTEM was issued.

For guidance in restarting online utilities, see “Restarting an online utility” on page

41.

Concurrency and compatibility for RESTORE SYSTEM

While RESTORE SYSTEM is running, no other utilities can run.

After running RESTORE SYSTEM

Complete the following steps after running RESTORE SYSTEM:

1. Stop and start each DB2 subsystem or member to remove it from access

maintenance mode.

2. Use the DISPLAY UTIL command to see if any utilities are running. If other

utilities are running, use the TERM UTIL command to end them.

3. Use the RECOVER utility to recover all objects in RECOVER-pending (RECP)

or REBUILD-pending (RBDP) status, or use the REBUILD INDEX utility to

rebuild objects. If a CREATE TABLESPACE, CREATE INDEX, or data set

extension has failed, you can also recover or rebuild any objects in the logical

page list (LPL).

Sample RESTORE SYSTEM control statements

RESTORE SYSTEM uses data that is copied by the BACKUP SYSTEM utility. For a

complete list of all of the steps for system-level point-in-time recovery, see Part 4 of

DB2 Administration Guide.

Example 1: Recovering a backup system. The following control statement specifies

that the RESTORE SYSTEM utility is to recover a DB2 subsystem or a data sharing

group to a previous point in time by restoring volume copies and applying any

outstanding log changes.

RESTORE SYSTEM

542 Utility Guide and Reference

|
|

|
|
|
|

|

|

|
|
|
|

|
|
|

|
|

|
|

|

|
|

|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

//STEP1 EXEC DSNUPROC,TIME=1440,

// UTPROC=’’,

// SYSTEM=’DSN’

//SYSIN DD *

 RESTORE SYSTEM

/*

Example 2: Recovering a backup system after the database volumes have already

been restored. The LOGONLY keyword in the following control statement indicates

that RESTORE SYSTEM is to apply any outstanding log changes to the database.

The utility is not to restore the volume copies. In this example, the database

volumes have already been restored outside of DB2. Note that RESTORE SYSTEM

applies log changes; it never restores the log copy pool.

//STEP1 EXEC DSNUPROC,TIME=1440,

// UTPROC=’’,

// SYSTEM=’DSN’

//SYSIN DD *

 RESTORE SYSTEM LOGONLY

/*

RESTORE SYSTEM

Chapter 28. RESTORE SYSTEM 543

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

RESTORE SYSTEM

544 Utility Guide and Reference

Chapter 29. RUNSTATS

The RUNSTATS utility gathers summary information about the characteristics of

data in table spaces, indexes, and partitions. DB2 records these statistics in the DB2

catalog and uses them to select access paths to data during the bind process. You

can use these statistics to evaluate the database design and determine when table

spaces or indexes must be reorganized. To obtain the updated statistics, you can

query the catalog tables.

The two formats for the RUNSTATS utility are RUNSTATS TABLESPACE and

RUNSTATS INDEX. RUNSTATS TABLESPACE gathers statistics on a table space

and, optionally, on tables, indexes or columns; RUNSTATS INDEX gathers statistics

only on indexes.

RUNSTATS can collect statistics on any single column or set of columns.

RUNSTATS collects the following two types of distribution statistics:

Frequency

The percentage of rows in the table that contain a value for a column or

combination of values for a set of columns.

Cardinality

The number of distinct values in the column or set of columns.

When you run RUNSTATS TABLESPACE, you can use the COLGROUP option to

collect frequency and cardinality statistics on any column group. You can also

collect frequency and cardinality statistics on any single column. When you run

RUNSTATS INDEX, you can collect frequency statistics on the leading column of

an index and multi-column frequency and cardinality statistics on the leading

concatenated columns of an index.

For a diagram of RUNSTATS syntax and a description of available options, see

“Syntax and options of the RUNSTATS control statement” on page 546. For

detailed guidance on running this utility, see “Instructions for running

RUNSTATS” on page 558.

Output: RUNSTATS updates the DB2 catalog with table space or index space

statistics, prints a report, or both. See “Reviewing RUNSTATS output” on page 565

for a list of all the catalog tables and columns that are updated by RUNSTATS.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v STATS privilege for the database

v DBADM, DBCTRL, or DBMAINT authority for the database

v SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute the RUNSTATS utility,

but only on a table space in the DSNDB06 database.

To run RUNSTATS TABLESPACE TABLE REPORT YES and see column values in

the report, you must use a privilege set that includes the SELECT privilege on the

catalog tables. RUNSTATS does not report values from tables that the user is not

authorized to see.

© Copyright IBM Corp. 1983, 2008 545

|

|
|

|
|
|

|
|

|
|
|
|
|
|

To gather statistics on a LOB table space, you must have SYSADM or DBADM

authority for the LOB table space.

Execution phases of RUNSTATS: The RUNSTATS utility operates in the following

phases:

Phase Description

UTILINIT Performs initialization

RUNSTATS Scans table space or index and updates catalog.

 If you specify COLGROUP, RUNSTATS also performs a subtask

that sorts one or more column group’s data. If you specify

FREQVAL with COLGROUP or are collecting frequency statistics

for data-partitioned secondary indexes, RUNSTATS also performs a

subtask that sorts the partition-level frequency data.

UTILTERM Performs cleanup

The following topics provide additional information:

v “Syntax and options of the RUNSTATS control statement”

v “Instructions for running RUNSTATS” on page 558

v “Concurrency and compatibility for RUNSTATS” on page 564

v “Reviewing RUNSTATS output” on page 565

v “After running RUNSTATS” on page 576

v “Sample RUNSTATS control statements” on page 576

Syntax and options of the RUNSTATS control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

RUNSTATS

546 Utility Guide and Reference

|
|

|
|
|
|
|

RUNSTATS TABLESPACE syntax diagram

�� RUNSTATS TABLESPACE �

� LIST listdef-name

table-space-name

database-name.

FORCEROLLUP

NO

PART

integer

FORCEROLLUP

YES

 �

�

�

(1)

ALL

TABLE

(

)

25

SAMPLE

integer

(1)

TABLE(table-name)

column-spec

25

colgroup-spec

SAMPLE

integer

 �

�

�

(

ALL

)

INDEX

correlation-stats-spec

,

(

index-name

correlation-stats-spec

)

PART

integer

 �

�

SHRLEVEL

REFERENCE

SHRLEVEL

CHANGE

REPORT

NO

REPORT

YES

UPDATE

ALL

UPDATE

ACCESSPATH

SPACE

NONE

 (2)

HISTORY

NONE

HISTORY

ALL

ACCESSPATH

SPACE

�

�
SORTDEVT

device-type

SORTNUM

integer
 ��

Notes:

1 The TABLE keyword is not valid for a LOB table space.

2 You can change the default HISTORY value by modifying the STATISTICS HISTORY subsystem

parameter. By default, this value is NONE.

RUNSTATS

Chapter 29. RUNSTATS 547

||||||

||||

column-spec:

��

�

 COLUMN (ALL)

,

COLUMN

(

column-name

)

��

colgroup-spec:

��

�

�

,

COLGROUP

(

column-name

)

MOST

FREQVAL

COUNT

integer

BOTH

LEAST

��

correlation-stats-spec:

��

KEYCARD

�

FREQVAL

NUMCOLS

1

COUNT

10

MOST

MOST

FREQVAL

NUMCOLS

integer

COUNT

integer

BOTH

LEAST

��

RUNSTATS TABLESPACE option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

TABLESPACE database-name.table-space-name

Specifies the table space (and, optionally, the database to which it belongs) on

which table space and table statistics are to be gathered. This keyword must

not identify a table space in DSNDB01 or DSNDB07.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. You can

specify one LIST keyword for each RUNSTATS control statement.

When you specify this keyword with RUNSTATS TABLESPACE, the

list must contain only table spaces. Do not specify LIST with keywords

from the TABLE...(table-name) specification. Instead, specify LIST with

TABLE (ALL). Likewise, do not specify LIST with keywords from the

RUNSTATS

548 Utility Guide and Reference

||||||||||

|||

INDEX...(index-name) specification. You cannot specify index names

with a list. Use INDEX(ALL) instead.

 If you specify LIST, you cannot specify the PART option. Instead, use

the PARTLEVEL option on the LISTDEF statement. The TABLESPACE

keyword is required in order to validate the contents of the list.

RUNSTATS TABLESPACE is invoked once for each item in the list.

For more information about LISTDEF specifications, see Chapter 15,

“LISTDEF,” on page 171.

database-name

Identifies the name of the database to which the table space belongs.

The default is DSNDB04.

table-space-name

Identifies the name of the table space on which statistics are to be

gathered.

 If the table space that is specified by the TABLESPACE keyword is a LOB table

space, you can specify only the following additional keywords: SHRLEVEL

REFERENCE or CHANGE, REPORT YES or NO, and UPDATE ALL or NONE.

PART integer

Identifies a table space partition on which statistics are to be collected.

 integer is the number of the partition and must be in the range from 1 to the

number of partitions that are defined for the table space. The maximum is

4096.

You cannot specify PART with LIST.

TABLE

Specifies the table on which column statistics are to be gathered. All tables

must belong to the table space that is specified in the TABLESPACE option.

You cannot specify the TABLE option for a LOB table space.

(ALL) Specifies that column statistics are to be gathered on all columns of all

tables in the table space. The default is ALL.

(table-name)

Specifies the tables on which column statistics are to be gathered. If

you omit the qualifier, RUNSTATS uses the user identifier for the

utility job as the qualifier. Enclose the table name in quotation marks if

the name contains a blank.

 If you specify more than one table, you must repeat the TABLE option.

Multiple TABLE options must be specified entirely before or after any

INDEX keyword that may also be specified. For example, the INDEX

keyword may not be specified between any two TABLE keywords.

SAMPLE integer

Indicates the percentage of rows that RUNSTATS is to sample when collecting

statistics on non-leading-indexed columns. You can specify any value from 1

through 100. The default is 25.

 You cannot specify SAMPLE for LOB table spaces.

COLUMN

Specifies columns on which column statistics are to be gathered.

 You can specify this option only if you specify a particular table on which

statistics are to be gathered. (Use the TABLE (table-name) option to specify a

RUNSTATS

Chapter 29. RUNSTATS 549

|
|

particular table.) If you specify particular tables and do not specify the

COLUMN option, RUNSTATS uses the default, COLUMN(ALL). If you do not

specify a particular table when using the TABLE option, you cannot specify the

COLUMN option; however, in this case, COLUMN(ALL) is assumed.

(ALL)

Specifies that statistics are to be gathered on all columns in the table.

 The COLUMN (ALL) option is not allowed for LOB table spaces.

(column-name, ...)

Specifies the columns on which statistics are to be gathered. You can

specify a list of column names. If you specify more than one column,

separate each name with a comma.

The more columns that you specify, the longer the job takes to complete.

COLGROUP (column-name, ...)

Indicates that the specified set of columns are to be treated as a group. This

option enables RUNSTATS to collect a cardinality value on the specified

column group.

 When you specify the COLGROUP keyword, RUNSTATS collects correlation

statistics for the specified column group. If you want RUNSTATS to also collect

distribution statistics, specify the FREQVAL option with COLGROUP.

(column-name, ...) specifies the names of the columns that are part of the

column group.

To specify more than one column group, repeat the COLGROUP option.

FREQVAL

Indicates, when specified with the COLGROUP option, that frequency statistics

are also to be gathered for the specified group of columns. (COLGROUP

indicates that cardinality statistics are to be gathered.) One group of statistics is

gathered for each column. You must specify COUNT integer with COLGROUP

FREQVAL.

COUNT integer

Indicates the number of frequently occurring values to be collected from

the specified column group. For example, COUNT 20 means that DB2

collects 20 frequently occurring values from the column group. You must

specify a value for integer; no default value is assumed.

 Be careful when specifying a high value for COUNT. Specifying a value of

1000 or more can increase the prepare time for some SQL statements.

MOST

Indicates that the utility is to collect the most frequently occurring values

for the specified set of columns when COLGROUP is specified. The default

is MOST.

LEAST

Indicates that the utility is to collect the least frequently occurring values

for the specified set of columns when COLGROUP is specified.

BOTH

Indicates that the utility is to collect the most and the least frequently

occurring values for the specified set of columns when COLGROUP is

specified.

INDEX

Specifies indexes on which statistics are to be gathered. RUNSTATS gathers

RUNSTATS

550 Utility Guide and Reference

|
|
|

|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

column statistics for the first column of the index, and possibly additional

index columns depending on the options that you specify. All the indexes must

be associated with the same table space, which must be the table space that is

specified in the TABLESPACE option.

 INDEX can be used on auxiliary tables to gather statistics on an index.

(ALL) Specifies that column statistics are to be gathered for all indexes that

are defined on tables that are contained in the table space. The default

is ALL.

(index-name, ...)

Specifies the indexes for which statistics are to be gathered. You can

specify a list of index names. If you specify more than one index,

separate each name with a comma. Enclose the index name in

quotation marks if the name contains a blank.

PART integer

Identifies an index partition on which statistics are to be collected.

 integer is the number of the partition.

KEYCARD

Collects all of the distinct values in all of the 1 to n key column combinations

for the specified indexes. n is the number of columns in the index. For

example, suppose that you have an index defined on three columns: A, B, and

C. If you specify KEYCARD, RUNSTATS collects cardinality statistics for

column A, column set A and B, and column set A, B, and C.

FREQVAL

Controls, when specified with the INDEX option, the collection of

frequent-value statistics. If you specify FREQVAL with INDEX, this keyword

must be followed by the NUMCOLS and COUNT keywords.

NUMCOLS integer

Indicates the number of columns in the index for which RUNSTATS is to

collect frequently occurring values. integer can be a number between 1 and

the number of indexed columns. If you specify a number greater than the

number of indexed columns, RUNSTATS uses the number of columns in

the index.

 For example, suppose that you have an index defined on three columns: A,

B, and C. If you specify NUMCOLS 1, DB2 collects frequently occurring

values for column A. If you specify NUMCOLS 2, DB2 collects frequently

occurring values for the column set A and B. If you specify NUMCOLS 3,

DB2 collects frequently occurring values for the column set A, B, and C.

The default is 1, which means that RUNSTATS is to collect frequently

occurring values on the first key column of the index.

COUNTinteger

Indicates the number of frequently occurring values that are to be collected

from the specified key columns. For example, specifying 15 means that

RUNSTATS is to collect 15 frequently occurring values from the specified

key columns. The default is 10.

SHRLEVEL

Indicates whether other programs that access the table space while RUNSTATS

is running must use read-only access or can change the table space.

RUNSTATS

Chapter 29. RUNSTATS 551

|
|
|
|
|
|

|
|
|
|
|

|
|

REFERENCE

Allows only read-only access by other programs. The default is

REFERENCE.

CHANGE

Allows other programs to change the table space or index. With

SHRLEVEL CHANGE, RUNSTATS might collect statistics on

uncommitted data.

REPORT

Specifies whether RUNSTATS is to generate a set of messages that report the

collected statistics.

NO

Indicates that RUNSTATS is not to generate the set of messages. The

default is NO.

YES

Indicates that the set of messages is to be sent as output to SYSPRINT. The

messages that RUNSTATS generates are dependent on the combination of

keywords in the utility control statement. However, these messages are not

dependent on the value of the UPDATE option. REPORT YES always

generates a report of space and access path statistics.

UPDATE

Indicates which collected statistics are to be inserted into the catalog tables.

ALL Indicates that all collected statistics are to be updated in the catalog.

The default is ALL.

ACCESSPATH

Indicates that DB2 is to update the catalog with only those statistics

that are used for access path selection.

SPACE

Indicates that DB2 is to update the catalog with only space-related

statistics.

NONE

Indicates that no catalog tables are to be updated with the collected

statistics.

 Executing RUNSTATS always invalidates the dynamic cache; however,

when you specify UPDATE NONE REPORT NO, RUNSTATS

invalidates statements in the dynamic statement cache without

collecting statistics, updating catalogs tables, or generating reports.

HISTORY

Indicates which statistics are to be recorded in the catalog history tables. The

value that you specify for HISTORY does not depend on the value that you

specify for UPDATE.

 The default is the value of the STATISTICS HISTORY subsystem parameter on

the DSNTIPO installation panel. By default, this parameter value is NONE.

ALL Indicates that all collected statistics are to be updated in the catalog

history tables.

ACCESSPATH

Indicates that DB2 is to update the catalog history tables with only

those statistics that are used for access path selection.

RUNSTATS

552 Utility Guide and Reference

|
|

||
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

||
|

|
|
|

SPACE

Indicates that DB2 is to update the catalog history tables with only

space-related statistics.

NONE

Indicates that no catalog history tables are to be updated with the

collected statistics.

SORTDEVT

Specifies the device type that DFSORT uses to dynamically allocate the sort

work data sets that are required.

device-type

Specifies any device type that is acceptable for the DYNALLOC parameter

of the SORT or OPTIONS option of DFSORT. For information about valid

device types, see DFSORT Application Programming Guide.

 If you omit SORTDEVT, a sort is required, and you have not provided the DD

statements that the SORT program requires for the temporary data sets,

SORTDEVT will default to SYSALLDA and the temporary data sets will be

dynamically allocated.

If you specify SORTDEVT and omit SORTNUM, no value is passed to

DFSORT; DFSORT uses its own default.

SORTNUM integer

Specifies the number of required sort work data sets that DFSORT is to

allocate.

 integer is the number of temporary data sets that can range from 2 to 255.

You need at least two sort work data sets for each sort. The SORTNUM value

applies to each sort invocation in the utility. For example, if there are three

indexes, SORTKEYS is specified, there are no constraints limiting parallelism,

and SORTNUM is specified as 8, then a total of 24 sort work data sets will be

allocated for a job.

Each sort work data set consumes both above the line and below the link

virtual storage, so if you specify too high a value for SORTNUM, the utility

may decrease the degree of parallelism due to virtual storage constraints, and

possibly decreasing the degree down to one, meaning no parallelism.

Important: The SORTNUM keyword will not be considered if ZPARM

UTSORTAL is set to YES and IGNSORTN is set to YES.

FORCEROLLUP

Specifies whether aggregation or rollup of statistics is to occur even if statistics

have not been gathered on some partitions. This option enables the optimizer

to select the best access path.

YES Indicates that forced aggregation or rollup processing is to be done,

even though some partitions might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is

available for all partitions.

If the value for STATISTICS ROLLUP on panel DSNTIPO is NO and data is

not available for all partitions, DB2 issues message DSNU623I.

RUNSTATS

Chapter 29. RUNSTATS 553

|
|
|

|
|
|

|
|
|

|
|
|
|

#
#
#
#

#
#

|
|
|

|

#
#
#
#
#

#
#
#
#

#
#

RUNSTATS INDEX syntax diagram

�� RUNSTATS INDEX �

�

�

 LIST listdef-name correlation-stats-spec

,

(

index-name

correlation-stats-spec

)

PART

integer

(

ALL

)

TABLESPACE

tablespace-name

correlation-stats-spec

database-name.

 �

�
 SHRLEVEL REFERENCE

SHRLEVEL

CHANGE

 REPORT NO

REPORT

YES

 UPDATE ALL

UPDATE

ACCESSPATH

SPACE

NONE

SORTDEVT

device-type

�

�

SORTNUM

integer

 (1)

HISTORY

NONE

HISTORY

ALL

ACCESSPATH

SPACE

FORCEROLLUP

NO

FORCEROLLUP

YES

��

Notes:

1 You can change the default HISTORY value by modifying the STATISTICS HISTORY subsystem

parameter. By default, this value is NONE.

correlation-stats-spec:

��

KEYCARD

�

FREQVAL

NUMCOLS

1

COUNT

10

MOST

MOST

FREQVAL

NUMCOLS

integer

COUNT

integer

BOTH

LEAST

NUMCOLS

1

NUMQUANTILES

HISTOGRAM

NUMCOLS

integer

NUMQUANTILES

integer

��

RUNSTATS INDEX option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

RUNSTATS

554 Utility Guide and Reference

#

||

||||||||

#

|||

INDEX

Specifies the indexes on which statistics are to be gathered. Column statistics

are gathered on the first column of the index. All of the indexes must be

associated with the same table space.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. You can specify

one LIST keyword for each RUNSTATS control statement. When you specify

LIST with RUNSTATS INDEX, the list must contain only index spaces. Do not

specify LIST with keywords from the INDEX...(index-name) specification; except

for the correlation-stats-spec.

 RUNSTATS groups indexes by their related table space. RUNSTATS INDEX is

invoked once per table space. The INDEX keyword is required in order to

validate the contents of the LIST.

For more information about LISTDEF specifications, see Chapter 15,

“LISTDEF,” on page 171.

(index-name, ...)

Specifies the indexes on which statistics are to be gathered. You can specify a

list of index names. If you specify more than one index, separate each name

with a comma. Enclose the index name in quotation marks if the name

contains a blank.

PART integer

Identifies the index partition on which statistics are to be collected.

 integer is the number of the partition.

(ALL)

Specifies that statistics are to be gathered on all indexes that are defined on all

tables in the specified table space.

TABLESPACE

Identifies the table space and, optionally, the database to which it belongs, for

which index statistics are to be gathered.

database-name

The name of the database to which the table space belongs. The

default is DSNDB04.

tablespace-name

The name of the table space for which index statistics are to be

gathered.

KEYCARD

Collects all of the distinct values in all of the 1 to n intermediate key column

combinations for the specified indexes. n is the number of columns in the

index. For example, suppose that you have an index defined on three columns:

A, B, and C. If you specify KEYCARD, RUNSTATS collects cardinality statistics

for the intermediate column set A and B.

FREQVAL

Controls, when specified with the INDEX option, the collection of

frequent-value statistics. If you specify FREQVAL with INDEX, this keyword

must be followed by the NUMCOLS and COUNT keywords.

NUMCOLS integer

Indicates the number of columns in the index for which RUNSTATS is to

collect frequently occurring values. integer can be a number between 1 and

RUNSTATS

Chapter 29. RUNSTATS 555

#
#
#
#
#
#

|
|
|

the number of indexed columns. If you specify a number greater than the

number of indexed columns, RUNSTATS uses the number of columns in

the index.

 For example, suppose that you have an index defined on three columns: A,

B, and C. If you specify NUMCOLS 1, DB2 collects frequently occurring

values for column A. If you specify NUMCOLS 2, DB2 collects frequently

occurring values for the column set A and B. If you specify NUMCOLS 3,

DB2 collects frequently occurring values for the column set A, B, and C.

The default is 1, which means that RUNSTATS is to collect frequently

occurring values on the first key column of the index.

COUNT integer

Indicates the number of frequently occurring values that are to be collected

from the specified key columns. For example, specifying 15 means that

RUNSTATS is to collect 15 frequently occurring values from the specified

key columns. The default is 10.

MOST

Indicates that the utility is to collect the most frequently occurring values

for the numcols specified for the index. The default is MOST.

LEAST

Indicates that the utility is to collect the least frequently occurring values

for the numcols specified for the index.

BOTH

Indicates that the utility is to collect the most and the least frequently

occurring values for the numcols specified for the index.

SHRLEVEL

Indicates whether other programs that access the table space while RUNSTATS

is running must use read-only access or can change the table space.

REFERENCE

Allows only read-only access by other programs. The default is

REFERENCE.

CHANGE

Allows other programs to change the table space or index. With

SHRLEVEL CHANGE, RUNSTATS might collect statistics on

uncommitted data.

REPORT

Specifies whether RUNSTATS is to generate a set of messages that report the

collected statistics.

NO

Indicates that RUNSTATS is not to generate the set of messages. The

default is NO.

YES

Indicates that the set of messages is to be sent as output to SYSPRINT. The

messages that RUNSTATS generates are dependent on the combination of

keywords in the utility control statement. However, these messages are not

dependent on the value of the UPDATE option. REPORT YES always

generates a report of space and access path statistics.

UPDATE

Indicates which collected statistics are to be inserted into the catalog tables.

RUNSTATS

556 Utility Guide and Reference

|
|
|

|
|
|
|
|

|
|

#
#
#

#
#
#

#
#
#

|
|

ALL Indicates that all collected statistics are to be updated in the catalog.

The default is ALL.

ACCESSPATH

Indicates that DB2 is to update the catalog with only those statistics

that are used for access path selection.

SPACE

Indicates that DB2 is to update the catalog with only space-related

statistics.

NONE

Indicates that no catalog tables are to be updated with the collected

statistics.

 Executing RUNSTATS always invalidates the dynamic cache; however,

when you specify UPDATE NONE REPORT NO, RUNSTATS

invalidates statements in the dynamic statement cache without

collecting statistics, updating catalogs tables, or generating reports.

SORTDEVT

Specifies the device type that DFSORT uses to dynamically allocate the sort

work data sets that are required.

device-type

Specifies any device type that is acceptable for the DYNALLOC parameter

of the SORT or OPTIONS option of DFSORT. For information about valid

device types, see DFSORT Application Programming Guide.

 If you omit SORTDEVT, a sort is required, and you have not provided the DD

statements that the SORT program requires for the temporary data sets,

SORTDEVT will default to SYSALLDA and the temporary data sets will be

dynamically allocated.

If you specify SORTDEVT and omit SORTNUM, no value is passed to

DFSORT; DFSORT uses its own default.

SORTNUM

Specifies the number of required sort work data sets that DFSORT is to

allocate.

 integer is the number of temporary data sets that can range from 2 to 255.

You need at least two sort work data sets for each sort. The SORTNUM value

applies to each sort invocation in the utility. For example, if there are three

indexes, SORTKEYS is specified, there are no constraints limiting parallelism,

and SORTNUM is specified as 8, then a total of 24 sort work data sets will be

allocated for a job.

Each sort work data set consumes both above the line and below the link

virtual storage, so if you specify too high a value for SORTNUM, the utility

may decrease the degree of parallelism due to virtual storage constraints, and

possibly decreasing the degree down to one, meaning no parallelism.

HISTORY

Indicates which statistics are to be recorded in the catalog history tables. The

value that you specify for HISTORY does not depend on the value that you

specify for UPDATE.

 The default is the value of the STATISTICS HISTORY subsystem parameter on

the DSNTIPO installation panel. By default, this parameter value is NONE.

RUNSTATS

Chapter 29. RUNSTATS 557

||
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|

#
#
#
#
#

#
#
#
#

|
|
|
|

|
|

ALL Indicates that all collected statistics are to be updated in the catalog

history tables.

ACCESSPATH

Indicates that DB2 is to update the catalog history tables with only

those statistics that are used for access path selection.

SPACE

Indicates that DB2 is to update the catalog history tables with only

space-related statistics.

NONE

Indicates that no catalog history tables are to be updated with the

collected statistics.

FORCEROLLUP

Specifies whether aggregation or rollup of statistics is to occur even if statistics

have not been gathered on some partitions. This option enables the optimizer

to select the best access path.

YES Indicates that forced aggregation or rollup processing is to be done,

even though some partitions might not contain data.

NO Indicates that aggregation or rollup is to be done only if data is

available for all partitions.

If the value for STATISTICS ROLLUP on panel DSNTIPO is NO and data is

not available for all partitions, DB2 issues message DSNU623I.

Instructions for running RUNSTATS

To run RUNSTATS, you must:

1. Read “Before running RUNSTATS” in this section.

2. Prepare the necessary data sets, as described in “Data sets that RUNSTATS

uses” on page 559.

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15.

4. Prepare a utility control statement, that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

561.

5. Check the compatibility table in “Concurrency and compatibility for

RUNSTATS” on page 564 if you want to run other jobs concurrently on the

same target objects.

6. Plan for restart if the RUNSTATS job doesn’t complete, as described in

“Terminating or restarting RUNSTATS” on page 564. RUNSTATS can be

restarted, but it starts over again from the beginning.

7. Run RUNSTATS by using one of the methods that are described in Chapter 3,

“Invoking DB2 online utilities,” on page 15.

Before running RUNSTATS

You can use SQL to manually update the catalog columns that RUNSTATS

updates. Use caution when running RUNSTATS after any user has manually

updated the statistic columns in the catalog. RUNSTATS replaces any values that

the user changed.

Restriction: RUNSTATS might not provide useful statistics on encrypted data.

RUNSTATS

558 Utility Guide and Reference

||
|

|
|
|

|
|
|

|
|
|

|

Data sets that RUNSTATS uses

Table 98 lists the data sets that RUNSTATS uses. The table lists the DD name that

is used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 98. Data sets that RUNSTATS uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

RNPRIN01 A data set that contains messages from

DFSORT (usually, SYSOUT or DUMMY).

This data set is used when distribution

statistics are collected for column groups.

No1

STPRIN01 A data set that contains messages from

DFSORT (usually, SYSOUT or DUMMY).

This data set is used when frequency

statistics are collected on DPSI’s or when

TABLESPACE TABLE COLGROUP

FREQVAL is specified

No1, 2

Sort work data sets Temporary data sets for sort input and

output when collecting statistics on at least

one data-partitioned secondary index. The

DD names have the form ST01WKnn or

ST02WKnn. ST02WKnn will also be used

with STATWK01 for RUNSTATS with

COLGROUP and FREQVAL option.

No2, 3, 5

Sort work data sets Temporary data sets for sort input and

output when collecting distribution statistics

for column groups. The DD names have the

form STATWK01.

No1, 3, 5

Notes:

1. Required when collecting distribution statistics for column groups.

2. Required when collecting statistics on at least one data-partitioned secondary index or

when TABLESPACE TABLE COLGROUP FREQVAL is specified.

3. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate the

data set. Otherwise, DFSORT dynamically allocates the temporary data set.

4. Required when the COLGROUP with FREQVAL options are specified.

5. It is recommended that you use dynamic allocation by specifying SORTDEVT in the

utility statement because dynamic allocation reduces the maintenance required of the

utility job JCL.

The following objects are named in the utility control statement and do not require

DD statements in the JCL:

Table space or index

Object that is to be scanned.

Calculating the size of the sort work data sets: Depending on the type of statistics

that RUNSTATS collects, the utility uses the ST01WKnn data sets, the SORTWK01

data set, both types of data sets, or neither. RUNSTATS with COLGROUP and

FREQVAL option will use both SORTWK01 and ST01WKnn data sets.

RUNSTATS

Chapter 29. RUNSTATS 559

#

#
#
#
#

##

###

##
#
#

###

|#
#
#
#

#

|#
#
#
#
#
#

#

|#
#
#
#
#
#
#

#

|#
#
#
#

#

|
|
#
#
|
|
#
|
|
|
#

#
#

#
#

#
#
#
#

The ST01WKnn data sets are used when collecting statistics on at least one

data-partitioned secondary index. To calculate the approximate size (in bytes) of

the ST01WKnn data set, use the following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length

Maximum record length of the SYSCOLDISTSTATS record that is processed

when collecting frequency statistics (You can obtain this value from the

RECLENGTH column in SYSTABLES.)

numcols

Number of key columns to concatenate when you collect frequent values

from the specified index.

count Number of frequent values that RUNSTATS is to collect.

The SORTWK01 data set is used when collecting distribution statistics. To calculate

the approximate size (in bytes) of the SORTWK01 data set, use the following

formula:

(longest_record_length + prefix) × sum from 1 to N (#colgroupsn

× #rows - n)

The variables in the preceding formula have the following values:

N Number of tables for which distribution statistics are collected

#colgroupsn

Number of column groups that are specified for the nth table

#rows Number of rows for the nth table

The ST02WKnn data sets are used when collecting frequency statistics on at least

one COLGROUP. To calculate the approximate size (in bytes) of the ST02WKnn

data set, use the following formula:

2 ×(maximum record length ×(count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length

Maximum record length of the SYSCOLDISTSTATS record that is processed

when collecting frequency statistics (You can obtain this value from the

RECLENGTH column in SYSTABLES.)

count Number of frequent values that RUNSTATS is to collect.

DB2 utilities uses DFSORT to perform sorts. Sort work data sets cannot span

volumes. Smaller volumes require more sort work data sets to sort the same

amount of data; therefore, large volume sizes can reduce the number of needed

sort work data sets. It is recommended that at least 1.2 times the amount of data to

be sorted be provided in sort work data sets on disk. For more information about

DFSORT, see DFSORT Application Programming Guide.

Creating the control statement

Create the utility control statement for the RUNSTATS job. See “Syntax and options

of the RUNSTATS control statement” on page 546 for RUNSTATS syntax and

RUNSTATS

560 Utility Guide and Reference

|
|
|

|

#

#
#
#
#

#
#
#

##

|
|
|

|

#

##

#
#

##

|
|
|

|

#

#
#
#
#

##

#
#
#
#
#
#

option descriptions. See “Sample RUNSTATS control statements” on page 576 for

examples of RUNSTATS control statements.

Instructions for specific tasks

This section includes information about the following tasks:

 “Deciding when to use RUNSTATS”

 “Assessing table space status”

 “Collecting distribution statistics for column groups” on page 562

 “Updating statistics for a partitioned table space” on page 562

 “Running RUNSTATS on the DB2 catalog” on page 562

 “Improving performance” on page 562

 “Collecting frequency statistics for data-partitioned secondary indexes” on page

563

 “Invalidating statements in the dynamic statement cache” on page 563

 “Collecting statistics history” on page 563

 “Collecting statistics on LOB table spaces” on page 564

Deciding when to use RUNSTATS

DB2 uses the statistics that RUNSTATS generates to determine access paths to data.

If no statistics are available, DB2 makes fixed default assumptions. To ensure the

effectiveness of the paths selected, run RUNSTATS at the following times:

v After a table is loaded

v After an index is physically created

v After a table space is reorganized if inline statistics were not collected

v After running extensive updates, deletions, or insertions in a table space

v After running any of the following utilities without collecting inline statistics:

RECOVER TABLESPACE, REBUILD INDEX, or REORG INDEX

v Before running REORG with the OFFPOSLIMIT, INDREFLIMIT, or

LEAFDISTLIMIT options

You should recollect frequency statistics when either of the following situations is

true:

v The distribution of the data changes

v The values over which the data is distributed change

Determining when to gather statistics and what statistics to gather depends on a

number of factors. The preceding information is only a guideline. You should

determine your own statistic collection strategy. For more detailed information

about how to determine which statistics you need and how to keep them current,

see Part 5 (Volume 2) of DB2 Administration Guide.

One common situation in which old statistics can affect query performance is when

a table has columns that contain data or ranges that are constantly changing (for

example, dates and timestamps). These types of columns can result in old values in

the HIGH2KEY and LOW2KEY columns in the catalog. You should periodically

collect column statistics on these changing columns so that the values in

HIGH2KEY and LOW2KEY accurately reflect the true range of data, and range

predicates can obtain accurate filter factors.

Assessing table space status

Changes to a table space can also change its space requirements and performance.

You can use RUNSTATS to update the table space statistics and then assess the

current status of the table space and decide whether to reorganize or redesign the

table space.

RUNSTATS

Chapter 29. RUNSTATS 561

|
|
|
|

|
|
|
|
|
|
|

|

Collecting distribution statistics for column groups

When RUNSTATS collects distribution statistics for columns groups, the utility

invokes DFSORT or a similar product to sort the distribution statistics. This sort

requires its own work data set. You can let this data set be dynamically allocated

through the SORT program, or you can allocate the data set through a DD

statement in the job JCL. The DD name is STATWK01.

If you need to control the size or placement of the data sets, use the JCL

statements to allocate STATWK01. To estimate the size of this sort work data set,

use the formula for STATWK01 in “Data sets that RUNSTATS uses” on page 559.

To let the work data set be dynamically allocated, remove the STATWK01 DD

statements from the job and allocate the UTPRINT statement to SYSOUT. If you let

the SORT program dynamically allocate this data set, you must specify the

SORTDEV option in the RUNSTATS control statement.

Updating statistics for a partitioned table space

You can run RUNSTATS on one or more single partitions of one or more table

spaces or indexes (including data-partitioned secondary indexes). When you run

the utility on a single partition of an object, RUNSTATS uses the resulting

partition-level statistics to update the aggregate statistics for the entire object.

Running RUNSTATS on the DB2 catalog

You can run RUNSTATS on the DB2 catalog to gather index space and table space

statistics for various catalog tables. The sample in Figure 103 shows part of the

output from a RUNSTATS job on a catalog table space and its indexes:

DB2 uses the collected statistics on the catalog to determine the access path for

user queries of the catalog.

Improving performance

You can improve the performance of RUNSTATS on table spaces that are defined

with the LARGE option by specifying the SAMPLE option, which reduces the

number of rows that are scanned for statistics.

Consider running several RUNSTATS jobs concurrently against different partitions

of a partitioned table space or index rather than running a single RUNSTATS job

on the entire table space or index. The sum of the processor time for the

concurrent jobs is roughly equivalent to the processor time for running the single

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = DSNTEX

DSNU050I DSNUGUTC - RUNSTATS TABLESPACE DSNDB06.SYSDBASE INDEX(ALL)

DSNU610I # DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DSNDB06.SYSDBASE SUCCESSFUL

DSNU610I # DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DSNDB06.SYSDBASE SUCCESSFUL

DSNU610I # DSNUSUTB - SYSTABLES CATALOG UPDATE FOR SYSIBM.SYSTABLESPACE SUCCESSFUL

DSNU610I # DSNUSUTB - SYSTABLES CATALOG UPDATE FOR SYSIBM.SYSSYNONYMS SUCCESSFUL

DSNU610I # DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL

DSNU610I # DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL

DSNU610I # DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL

DSNU610I # DSNUSUFL - SYSFIELDS CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL

DSNU610I # DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL

DSNU610I # DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL

DSNU610I # DSNUSUCO - SYSCOLUMN CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL

DSNU610I # DSNUSUFL - SYSFIELDS CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL

DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Figure 103. Example RUNSTATS output from a job on a catalog table space

RUNSTATS

562 Utility Guide and Reference

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

RUNSTATS job. However, the total elapsed time for the concurrent jobs can be

significantly less than when you run RUNSTATS on an entire table space or index.

Run RUNSTATS on only the columns or column groups that might be used as

search conditions in a WHERE clause of queries. Use the COLGROUP option to

identify the column groups. Collecting additional statistics on groups of columns

that are used as predicates improves the accuracy of the filter factor estimate and

leads to improved query performance. Collecting statistics on all columns of a table

is costly and might not be necessary.

In some cases, you can avoid running RUNSTATS by specifying the STATISTICS

keyword in LOAD, REBUILD INDEX, or REORG utility statements. When you

specify STATISTICS in one of these utility statements, DB2 updates the catalog

with table space or index space statistics for the objects on which the utility is run.

However, you cannot collect column group statistics with the STATISTICS

keyword. You can collect column group statistics only by running the RUNSTATS

utility. If you restart a LOAD or REBUILD INDEX job that uses the STATISTICS

keyword, DB2 does not collect inline statistics. For these cases, you need to run the

RUNSTATS utility after the restarted utility job completes. For information about

restarting a REORG job that uses the STATISTICS keyword, see“Restarting REORG

STATISTICS” on page 474.

Collecting frequency statistics for data-partitioned secondary

indexes

When RUNSTATS collects frequency statistics on at least one data-partitioned

secondary index, the utility invokes DFSORT or a similar product to sort the

statistics. This sort requires temporary sort work data sets. You can let these data

sets be dynamically allocated through the SORT program, or you can allocate the

data sets through DD statements in the job JCL. The DD name is ST01WKnn.

If you need to control the size or placement of the data sets, use the JCL

statements to allocate ST01WKnn. To estimate the size of this sort work data set,

use the formula for ST01WKnn in “Data sets that RUNSTATS uses” on page 559.

To let the sort work data sets be dynamically allocated, remove the ST01WKnn DD

statements from the job and allocate the UTPRINT statement to SYSOUT. If you let

the SORT program dynamically allocate these data sets, you must specify the

SORTDEV option in the RUNSTATS control statement to specify the device type

for the temporary data sets. Optionally, you can also use the SORTNUM option to

specify the number of temporary data sets to use.

Invalidating statements in the dynamic statement cache

DB2 invalidates statements in the dynamic statement cache when you run

RUNSTATS on objects to which those statements refer. In a data sharing

environment, the relevant statements are also invalidated in the cache of other

members in the group. DB2 invalidates the cached statements to ensure that the

next invocations of those statements are fully prepared and that they use the latest

access path changes. You can invalidate statements in the dynamic statement cache

without collecting statistics by specifying the options UPDATE NONE and

REPORT NO.

Collecting statistics history

Use the HISTORY option to collect the statistics history. When you specify

HISTORY with a value other than NONE, RUNSTATS updates the catalog history

tables with the access path statistics, space statistics, or both, depending on the

parameter that you specify with HISTORY. The HISTORY option does not update

RUNSTATS

Chapter 29. RUNSTATS 563

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

the main catalog statistics that DB2 uses to select access paths. You can use the

HISTORY option to monitor how statistics change over time without updating the

main catalog statistics that DB2 uses to select access paths.

Collecting statistics on LOB table spaces

You can specify that RUNSTATS is to collect space statistics on a LOB table space

so that you can determine when the LOB table space should be reorganized. No

statistics on the LOB table space affect access path selection.

Terminating or restarting RUNSTATS

You can terminate RUNSTATS with the TERM UTILITY command.

You can restart a RUNSTATS utility job, but it starts from the beginning again. For

guidance in restarting online utilities, see “Restarting an online utility” on page 41.

Concurrency and compatibility for RUNSTATS

DB2 treats individual data and index partitions as distinct target objects. Utilities

operating on different partitions of the same table space or index space are

compatible.

Table 99 shows which claim classes RUNSTATS claims and drains and any

restrictive state that the utility sets on the target object.

 Table 99. Claim classes of RUNSTATS operations

Target

RUNSTATS

TABLESPACE

SHRLEVEL

REFERENCE

RUNSTATS

TABLESPACE

SHRLEVEL

CHANGE

RUNSTATS

INDEX

SHRLEVEL

REFERENCE

RUNSTATS

INDEX

SHRLEVEL

CHANGE

Table space or

partition

DW/UTRO CR/UTRW1 None None

Index or

partition

None None DW/UTRO CR/UTRW

Legend:

v DW - Drain the write claim class - concurrent access for SQL readers.

v CR - Claim the read claim class.

v UTRO - Utility restrictive state - read-only access allowed.

v UTRW - Utility restrictive state - read-write access allowed.

v None - Object is not affected by this utility.

Notes:

1. If the target object is a segmented table space, SHRLEVEL CHANGE does not allow you

to concurrently execute an SQL searched DELETE without the WHERE clause.

Table 100 shows which utilities can run concurrently with RUNSTATS on the same

target object. The target object can be a table space, an index space, or a partition

of a table space or index space. If compatibility depends on particular options of a

utility, that information is also shown in the table.

 Table 100. Compatibility of RUNSTATS with other utilities

Utility

RUNSTATS

TABLESPACE

SHRLEVEL

REFERENCE

RUNSTATS

TABLESPACE

SHRLEVEL

CHANGE

RUNSTATS

INDEX

SHRLEVEL

REFERENCE

RUNSTATS

INDEX

SHRLEVEL

CHANGE

CHECK DATA DELETE NO Yes Yes Yes Yes

RUNSTATS

564 Utility Guide and Reference

|
|
|

Table 100. Compatibility of RUNSTATS with other utilities (continued)

Utility

RUNSTATS

TABLESPACE

SHRLEVEL

REFERENCE

RUNSTATS

TABLESPACE

SHRLEVEL

CHANGE

RUNSTATS

INDEX

SHRLEVEL

REFERENCE

RUNSTATS

INDEX

SHRLEVEL

CHANGE

CHECK DATA DELETE YES No No No No

CHECK INDEX Yes Yes Yes Yes

CHECK LOB Yes Yes Yes Yes

COPY INDEXSPACE Yes Yes Yes Yes

COPY TABLESPACE Yes Yes Yes Yes

DIAGNOSE Yes Yes Yes Yes

LOAD No No No No

MERGECOPY Yes Yes Yes Yes

MODIFY RECOVERY Yes Yes Yes Yes

QUIESCE Yes Yes Yes Yes

REBUILD INDEX Yes Yes No No

RECOVER ERROR RANGE No No Yes Yes

RECOVER INDEX Yes Yes No No

RECOVER INDEX TOCOPY or

TOLOGPOINT

No No No No

RECOVER TABLESPACE (no

options)

No No Yes Yes

RECOVER TABLESPACE TOCOPY

or TORBA

No No No No

REORG INDEX Yes Yes No No

REORG TABLESPACE UNLOAD

CONTINUE or PAUSE

No No No No

REORG TABLESPACE UNLOAD

ONLY or EXTERNAL

Yes Yes Yes Yes

REPAIR DUMP or VERIFY Yes Yes Yes Yes

REPAIR LOCATE INDEX PAGE

REPLACE

Yes Yes No No

REPAIR LOCATE KEY or RID

DELETE or REPLACE

No No No Yes

REPAIR LOCATE TABLESPACE

PAGE REPLACE

No No Yes Yes

REPORT Yes Yes Yes Yes

RUNSTATS Yes Yes Yes Yes

STOSPACE Yes Yes Yes Yes

UNLOAD Yes Yes Yes Yes

Reviewing RUNSTATS output

RUNSTATS alters tables and columns in the catalog tables. When you specify

REPORT YES, RUNSTATS also generates a report of statistics that are gathered

during processing.

RUNSTATS

Chapter 29. RUNSTATS 565

#
#
####

RUNSTATS sets the following columns to -1 for table spaces that are defined as

LARGE:

v CARD in SYSTABLES

v CARD in SYSINDEXPART

v FAROFFPOS in SYSINDEXPART

v NEAROFFPOS in SYSINDEXPART

v FIRSTKEYCARD in SYSINDEXES

v FULLKEYCARD in SYSINDEXES

Index statistics and table space statistics: Table 101 shows the catalog tables that

RUNSTATS updates depending on the value of the UPDATE option, the value of

the HISTORY option, and the source of the statistics (table space, partition, index

or LOB table space).

 Table 101. Catalog tables that RUNSTATS updates

Keyword UPDATE option HISTORY option

Catalog table that RUNSTATS

updates

TABLESPACE UPDATE ALL HISTORY ALL

4 SYSTABLESPACE

SYSTABLEPART1 SYSTABLES1

SYSTABSTATS1,2 SYSLOBSTATS3

TABLESPACE UPDATE ALL HISTORY ACCESSPATH SYSTABLESPACE SYSTABLES1

SYSTABSTATS1,2

TABLESPACE UPDATE ALL HISTORY SPACE SYSTABLEPART1

SYSLOBSTATS3

TABLESPACE UPDATE ACCESSPATH2 HISTORY ALL

4 SYSTABLESPACE

SYSTABLES

SYSTABSTATS2

TABLESPACE UPDATE ACCESSPATH2 HISTORY ACCESSPATH SYSTABLESPACE

SYSTABLES

SYSTABSTATS2

TABLESPACE UPDATE ACCESSPATH2 HISTORY SPACE none

TABLESPACE UPDATE SPACE2 HISTORY ALL

4 SYSTABLEPART

SYSLOBSTATS

SYSTABLES

TABLESPACE UPDATE SPACE2 HISTORY ACCESSPATH none

TABLESPACE UPDATE SPACE2 HISTORY SPACE SYSTABLEPART

SYSLOBSTATS

SYSTABLES

TABLE UPDATE ALL HISTORY ALL

4 SYSCOLUMNS SYSCOLSTATS2

TABLE UPDATE ALL HISTORY ACCESSPATH SYSCOLUMNS SYSCOLSTATS2

TABLE UPDATE ALL HISTORY SPACE none

TABLE UPDATE ACCESSPATH HISTORY ALL

4 SYSCOLUMNS

SYSCOLSTATS2

TABLE UPDATE ACCESSPATH HISTORY ACCESSPATH SYSCOLUMNS

SYSCOLSTATS2

TABLE UPDATE ACCESSPATH HISTORY SPACE none

INDEX UPDATE ALL HISTORY ALL

4 SYSCOLUMNS SYSCOLDIST

SYSCOLDISTSTATS2

SYSCOLSTATS2 SYSINDEXES

SYSINDEXPART

SYSINDEXSTATS2

RUNSTATS

566 Utility Guide and Reference

Table 101. Catalog tables that RUNSTATS updates (continued)

Keyword UPDATE option HISTORY option

Catalog table that RUNSTATS

updates

INDEX UPDATE ALL HISTORY ACCESSPATH SYSCOLUMNS SYSCOLDIST

SYSCOLDISTSTATS2

SYSCOLSTATS2

SYSINDEXPART

SYSINDEXSTATS2

INDEX UPDATE ALL HISTORY SPACE SYSINDEXES

INDEX UPDATE ACCESSPATH HISTORY ALL

4 SYSCOLUMNS

SYSCOLDIST

SYSCOLDISTSTATS2

SYSCOLSTATS

SYSINDEXES

SYSINDEXSTATS2

INDEX UPDATE ACCESSPATH HISTORY ACCESSPATH SYSCOLUMNS

SYSCOLDIST

SYSCOLDISTSTATS2

SYSCOLSTATS

SYSINDEXES

SYSINDEXSTATS2

INDEX UPDATE ACCESSPATH HISTORY SPACE SYSINDEXES

INDEX UPDATE SPACE HISTORY ALL

4 SYSINDEXPART
SYSINDEXES5

INDEX UPDATE SPACE HISTORY ACCESSPATH none

INDEX UPDATE SPACE HISTORY SPACE SYSINDEXPART

SYSINDEXES5

Notes:

1. Not applicable if the specified table space is a LOB table space.

2. Only updated for partitioned objects. When you run RUNSTATS against single partitions of an object, RUNSTATS

uses the partition-level statistics to update the aggregate statistics for the entire object. These partition-level

statistics are contained in the following catalog tables:

v SYSCOLSTATS

v SYSCOLDISTSTATS

v SYSTABSTATS

v SYSINDEXSTATS

3. Applicable only when the specified table space is a LOB table space.

4. When HISTORY NONE is specified, none of the catalog history tables are updated.

5. Only the SPACEF and STATSTIME columns are updated.

Access path statistics

The catalog table columns that are listed in Table 102, Table 103, Table 104,

Table 105, Table 106, and Table 107 are used by DB2 to select access paths to data

during the bind process. These columns are updated by RUNSTATS with the

UPDATE ACCESSPATH or UPDATE ALL options. Refer to Part 5 (Volume 2) of

DB2 Administration Guide for more information about these columns.

These tables do not describe information about LOB columns because DB2 does

not use those statistics for access path selection. For information about what values

in these columns indicate for LOBs, see Appendix F of DB2 SQL Reference.

RUNSTATS

Chapter 29. RUNSTATS 567

A value in the “Use” column indicates whether information about the DB2 catalog

column is General-use Programming Interface and Associated Guidance

Information (G) or Product-sensitive Programming Interface and Associated

Guidance Information (S), as defined in “Programming interface information” on

page 902.

Table 102 lists the columns in SYSTABLES that DB2 uses to select access paths.

These columns are updated by RUNSTATS with the UPDATE ACCESSPATH or

UPDATE ALL options unless the statistics in the SYSTABSTATS table have been

manually updated to -1. In this case, the columns in SYSTABLES are not updated

after RUNSTATS PART UPDATE ALL is run.

 Table 102. SYSTABLES catalog columns that DB2 uses to select access paths

SYSTABLES Column

name Column description Use

CARDF Total number of rows in the table. S

NPAGES Total number of pages on which rows of this table are

included.

S

NPAGESF Total number of pages that are used by the table. S

PCTROWCOMP Percentage of rows compressed within the total

number of active rows in the table.

S

Table 103 lists the columns in SYSTABSTATS that DB2 uses to select access paths.

These columns are updated by RUNSTATS with the UPDATE ACCESSPATH or

UPDATE ALL options.

 Table 103. SYSTABSTATS catalog columns that DB2 uses to select access paths

SYSTABSTATS

Column name Column description Use

CARDF Total number of rows in the partition. S

NPAGES Total number of pages on which rows of this partition

are included.

S

Table 104 lists the columns in SYSCOLUMNS that DB2 uses to select access paths.

These columns are updated by RUNSTATS with the UPDATE ACCESSPATH or

UPDATE ALL options.

 Table 104. SYSCOLUMNS catalog columns that DB2 uses to select access paths

SYSCOLUMNS

Column name Column description Use

COLCARDF Estimated number of distinct values for the column.

For an indicator column, this value is the number of

LOBs that are not null and whose lengths are greater

than zero. The value is -1 if statistics have not been

gathered. The value is -2 for columns of an auxiliary

table.

S

HIGH2KEY Second highest value of the column. Blank if statistics

have not been gathered or if the column is an indicator

column or a column of an auxiliary table. If the column

has a non-character data type, the data might not be

printable. This column can be updated.

S

RUNSTATS

568 Utility Guide and Reference

#
#
#
#

Table 104. SYSCOLUMNS catalog columns that DB2 uses to select access

paths (continued)

SYSCOLUMNS

Column name Column description Use

LOW2KEY Second lowest value of the column. Blank if statistics

have not been gathered or if the column is an indicator

column or a column of an auxiliary table. If the column

has a non-character data type, the data might not be

printable. This column can be updated.

S

Table 105 lists the columns in SYSCOLDIST that DB2 uses to select access paths.

These columns are updated by RUNSTATS with the UPDATE ACCESSPATH or

UPDATE ALL options.

 Table 105. SYSTCOLDIST catalog columns that DB2 uses to select access paths

SYSCOLDIST

Column name Column description Use

CARDF The number of distinct values for the column group.

This number is valid only for cardinality key column

statistics. (A C in the TYPE column indicates that

cardinality statistics were gathered.)

S

COLGROUPCOLNO Identifies the set of columns that are associated with

the key column statistics.

S

COLVALUE Actual index column value that is being counted for

distribution index statistics.

S

FREQUENCYF Percentage of rows, multiplied by 100, that contain the

values that are specified in COLVALUE.

S

NUMCOLUMNS The number of columns that are associated with the

key column statistics.

G

Table 106 lists the columns in SYSTABLESPACE that DB2 uses to select access

paths. These columns are updated by RUNSTATS with the UPDATE ACCESSPATH

or UPDATE ALL options.

 Table 106. SYSTABLESPACE catalog columns that DB2 uses to select access paths

SYSTABLESPACE

Column name Column description Use

NACTIVE or

NACTIVEF

Number of active pages in the table space; shows the

number of pages that are accessed if a record cursor is

used to scan the entire file. The value is -1 if statistics

have not been gathered.

S

Table 107 on page 570 lists the columns in SYSINDEXES that DB2 uses to select

access paths. These columns are updated by RUNSTATS with the UPDATE

ACCESSPATH or UPDATE ALL options.

RUNSTATS

Chapter 29. RUNSTATS 569

Table 107. SYSINDEXES catalog columns that DB2 uses to select access paths

SYSINDEXES

Column name Column description Use

CLUSTERRATIOF A number between 0 and 1 that, when multiplied by

100, gives the percentage of rows that are in clustering

order. For example, a value of 1 indicates that all rows

are in clustering order. A value of .87825 indicates that

87.825% of the rows are in clustering order.

S

CLUSTERING Indication of whether CLUSTER was specified when

the index was created.

G

FIRSTKEYCARDF Number of distinct values of the first key column. S

FULLKEYCARDF Number of distinct values of the full key. S

NLEAF Number of leaf pages in the index. S

NLEVELS Number of levels in the index tree. S

Space statistics (columns for tuning information)

The catalog table columns that are listed in Table 108, Table 109, Table 110 on page

571, Table 111 on page 571, Table 112 on page 573, Table 113 on page 573, Table 114

on page 573 Table 115 on page 573, Table 116 on page 576, and Table 117 on page

576 are updated by RUNSTATS with the UPDATE SPACE or UPDATE ALL

options. The information in these columns helps database administrators assess the

status of a particular table space or index.

A value in the ″Use″ column indicates whether information about the DB2 catalog

column is General-use Programming Interface and Associated Guidance

Information (G) or Product-sensitive Programming Interface and Associated

Guidance Information (S), as defined in “Programming interface information” on

page 902.

Table 108 lists the columns in SYSTABLESPACE that are updated by RUNSTATS

with the UPDATE SPACE or UPDATE ALL options

 Table 108. SYSTABLESPACE catalog columns that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options.

SYSTABLESPACE

Column name Column description Use

AVGROWLEN Average length of rows for the tables in the table space. G

Table 109 lists the columns in SYSTABLES that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options.

 Table 109. SYSTABLES catalog columns that are updated by RUNSTATS with the UPDATE

SPACE or UPDATE ALL options

SYSTABLES Column

name Column description Use

AVGROWLEN Average length of rows for the tables in the table space. G

Table 110 on page 571 lists the columns in SYSTABLES_HIST that are updated by

RUNSTATS with the UPDATE SPACE or UPDATE ALL options.

RUNSTATS

570 Utility Guide and Reference

|
|

||
|

|
|||

|||
|

|
|

||
|

|
|||

|||
|

|
|

Table 110. SYSTABLES_HIST catalog columns that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options

SYSTABLES_HIST

Column name Column description Use

AVGROWLEN Average length of rows for the tables in the table space. G

Table 111 lists the columns in SYSTABLEPART that are updated by RUNSTATS

with the UPDATE SPACE or UPDATE ALL options.

 Table 111. SYSTABLEPART catalog columns that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options

SYSTABLEPART

column name Column description Use

AVGROWLEN Average length of rows for the tables in the table

space.

G

CARDF Total number of rows in the table space or partition,

or number of LOBs in the table space if the table

space is a LOB table space. The value is -1 if statistics

have not been gathered.

G

DSNUM Number of data sets. G

EXTENTS Number of data set extents. G

NEARINDREF Number of rows that are relocated near their original

page.

For more information about NEARINDREF, see the

description of FARINDREF.

S

FARINDREF Number of rows that are relocated far from their

original page.

If an update operation increases the length of a

record by more than the amount of available space in

the page in which it is stored, the record is moved to

another page. Until the table space is reorganized, the

record requires an additional page reference when it

is accessed. The sum of NEARINDREF and

FARINDREF is the total number of such records.

For nonsegmented table spaces, a page is considered

“near” the present page if the two page numbers

differ by 16 or fewer; otherwise, it is “far from” the

present page.

For segmented table spaces, a page is considered

“near” the present page if the two page numbers

differ by (SEGSIZE * 2) or less. Otherwise, it is “far

from” its original page.

A record that is relocated near its original page tends

to be accessed more quickly than one that is relocated

far from its original page.

S

RUNSTATS

Chapter 29. RUNSTATS 571

|

Table 111. SYSTABLEPART catalog columns that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options (continued)

SYSTABLEPART

column name Column description Use

PAGESAVE Percentage of pages that are saved in the table space

or partition as a result of using data compression. For

example, a value of 25 indicates a savings of 25%, so

that the required pages are only 75% of what would

be required without data compression. The value is 0

if no savings from using data compression are likely,

or if statistics have not been gathered. The value can

be negative if using data compression causes an

increase in the number of pages in the data set.

This calculation includes the overhead bytes for each

row, the required bytes for the dictionary, and the

required bytes for the current FREEPAGE and

PCTFREE specification for the table space and

partition.

This calculation is based on an average row length,

and the result varies depending on the actual lengths

of the rows.

S

PERCACTIVE Percentage of space that is occupied by rows of data

from active tables. The value is -1 if statistics have

not been gathered. The value is -2 if the table space is

a LOB table space.

This value is influenced by the PCTFREE and the

FREEPAGE parameters on the CREATE

TABLESPACE statement and by unused segments of

segmented table spaces.

S

PERCDROP For nonsegmented table spaces, the percentage of

space that is occupied by rows of data from dropped

tables. For segmented table spaces, this value is zero.

After reorganization, this value is always zero.

Space that is occupied by dropped tables is reclaimed

by reorganization. Hence, this figure is one indicator

of when a table space should be reorganized.

S

SPACE The number of kilobytes of space that is currently

allocated for all extents. A value of -1 indicates that

the data set is defined with the DEFINE NO

attribute, and the first insert operation has not

occurred.

G

SPACEF The number of kilobytes of disk storage. G

PQTY

(user-managed)

The primary space allocation in 4-KB blocks for the

data set.

G

SQTY

(user-managed)

The secondary space allocation in 4-KB blocks for the

data set, in small integer format.

G

SECQTYI

(user-managed)

The secondary space allocation in 4-KB blocks for the

data set, in integer format.

G

Table 112 on page 573 lists the columns in SYSTABLEPART_HIST that are updated

by RUNSTATS with the UPDATE SPACE or UPDATE ALL options.

RUNSTATS

572 Utility Guide and Reference

|
|

Table 112. SYSTABLEPART_HIST that are updated by RUNSTATS with the UPDATE SPACE

or UPDATE ALL options

SYSTABLEPART_HIST

Column name Column description Use

AVGROWLEN Average length of rows for the tables in the table

space.

G

Table 113 lists the columns in SYSINDEXES that are updated by RUNSTATS with

the UPDATE SPACE or UPDATE ALL options.

 Table 113. SYSINDEXES catalog columns that are updated by RUNSTATS with the UPDATE

SPACE or UPDATE ALL options

SYSINDEXES

column name Column description Use

AVGKEYLEN Average length of keys within the index. The value is

−1 if statistics have not been gathered.

G

Table 114 lists the columns in SYSINDEXES_HIST that are updated by RUNSTATS

with the UPDATE SPACE or UPDATE ALL options.

 Table 114. SYSINDEXES_HIST catalog columns that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options

SYSINDEXES_HIST

column name Column description Use

AVGKEYLEN Average length of keys within the index. The

value is −1 if statistics have not been gathered.

G

Table 115 lists the columns in SYSINDEXPART that are updated by RUNSTATS

with the UPDATE SPACE or UPDATE ALL options.

 Table 115. SYSINDEXPART catalog columns that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options

SYSINDEXPART

column name Column description Use

AVGKEYLEN Average length of keys within the index. The value is

−1 if statistics have not been gathered.

G

CARDF Number of rows that the index or partition refers to. S

DSNUM Number of data sets. G

EXTENTS Number of data set extents. G

RUNSTATS

Chapter 29. RUNSTATS 573

|
|

||
|

|
|||

||
|
|

|

|
|

||
|

|
|||

||
|
|

|

||
|
|

Table 115. SYSINDEXPART catalog columns that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options (continued)

SYSINDEXPART

column name Column description Use

FAROFFPOSF Number of times that accessing a different, “far-off”

page would be necessary when accessing all the data

records in index order.

Each time that DB2 accesses a far-off page, accessing

the “next” record in index order would probably

require I/O activity.

For nonsegmented table spaces, a page is considered

far-off from the present page if the two page

numbers differ by 16 or more. For segmented table

spaces, a page is considered far-off from the present

page if the two page numbers differ by SEGSIZE * 2

or more.

Together, NEAROFFPOS and FAROFFPOS indicate

how well the index follows the cluster pattern of the

table space. For a clustering index, NEAROFFPOS

and FAROFFPOS approach a value of 0 as clustering

improves. A reorganization should bring them nearer

their optimal values; however, if a nonzero

FREEPAGE value is specified on the CREATE

TABLESPACE statement, the NEAROFFPOS after

reorganization reflects the table on which the index is

defined. Do not expect optimal values for

nonclustering indexes. FAROFFPOS is not applicable

for the index on an auxiliary table (-1).

S

LEAFNEAR Number of leaf pages that are located physically near

previous leaf pages for successive active leaf pages.

S

LEAFFAR Number of leaf pages that are located physically far

away from previous leaf pages for successive active

leaf pages that are accessed in an index scan.

S

RUNSTATS

574 Utility Guide and Reference

Table 115. SYSINDEXPART catalog columns that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options (continued)

SYSINDEXPART

column name Column description Use

NEAROFFPOSF Number of times that accessing a different, “near-off”

page would be necessary when accessing all the data

records in index order.

Each time that DB2 accesses a near-off page,

accessing the “next” record in index order would

probably require I/O activity. For more information

about NEAROFFPOS, see the description of

FAROFFPOS.

NEAROFFPOS is incremented if the current indexed

row is not on the same or next data page of the

previous indexed row, and if the distance between

the two data pages does not qualify for FAROFFPOS.

For nonsegmented table spaces, a page is considered

near-off from the present page if the difference

between the two page numbers is greater than or

equal to 2, and less than 16. For segmented table

spaces, a page is considered near-off from the present

page if the difference between the two page numbers

is greater than or equal to 2, and less than SEGSIZE *

2. A nonzero value in the NEAROFFPOS field after a

REORG might be attributed to the number of space

map pages that are contained in the segmented table

space. NEAROFFPOS is not applicable for the index

on an auxiliary table (-1).

S

LEAFDIST 100 times the average distance in page IDs between

successive leaf pages during a sequential access of

the index.

This value indicates how well an index is organized.

The value is at its lowest immediately after the index

has been reorganized. Changes increase the value;

and you can reduce it again by reorganizing the

index, either explicitly or as part of a general table

space reorganization.

S

PSEUDO_DEL_

ENTRIES

Number of pseudo-deleted keys. Pseudo-deleted keys

are keys that are marked for deletion, but the data

still resides in the index space, and the space can be

reused. The space can be reclaimed by running

REORG INDEX.

S

SPACE The number of kilobytes of space that is currently

allocated for all extents. A value of -1 indicates that

the data set is defined with the DEFINE NO

attribute, and the first insert operation has not

occurred.

G

SPACEF The number of kilobytes of disk storage. G

PQTY

(user-managed)

The primary space allocation in 4-KB blocks for the

data set.

G

SQTY

(user-managed)

The secondary space allocation in 4-KB blocks for the

data set, in small integer format.

G

RUNSTATS

Chapter 29. RUNSTATS 575

Table 115. SYSINDEXPART catalog columns that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options (continued)

SYSINDEXPART

column name Column description Use

SECQTYI

(user-managed)

The secondary space allocation in 4-KB blocks for the

data set, in integer format.

G

Table 116 lists the columns in SYSINDEXPART_HIST that are updated by

RUNSTATS with the UPDATE SPACE or UPDATE ALL options.

 Table 116. SYSINDEXPART_HIST catalog columns that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options

SYSINDEXPART_HIST

column name Column description Use

AVGKEYLEN Average length of keys within the index. The

value is −1 if statistics have not been

gathered.

G

Table 117 lists the columns in SYSLOBSTATS that are updated by RUNSTATS with

the UPDATE SPACE or UPDATE ALL options.

 Table 117. SYSLOBSTATS catalog columns that are updated by RUNSTATS with the

UPDATE SPACE or UPDATE ALL options

SYSLOBSTATS

column name Column description Use

AVGSIZE The average size of a LOB in the LOB table space. G

FREESPACE The number of kilobytes of available space in the

LOB table space, up to the highest used RBA.

S

ORGRATIO The percentage of organization in the LOB table

space. A value of 100 indicates perfect organization of

the LOB table space. A value of 1 indicates that the

LOB table space is disorganized.

A value of 0.00 indicates that the LOB table space is

totally disorganized. An empty LOB table space has

an ORGRATIO value of 100.

S

After running RUNSTATS

After running RUNSTATS with the UPDATE ACCESSPATH option, the UPDATE

SPACE option, or the UPDATE ALL option, rebind any application plans that use

the tables or indexes so that they use the new statistics.

Sample RUNSTATS control statements

Example 1: Updating catalog statistics for a table space while allowing changes.

The following control statement specifies that the RUNSTATS utility is to update

the catalog with statistics for table space DSN8D81A.DSN8S81E and all of its

associated tables and indexes. When updating the table statistics, RUNSTATS is to

sample 25% of the rows. The SHRLEVEL change option indicates that DB2 is to

permit other processes to make changes while this utility is executing.

RUNSTATS

576 Utility Guide and Reference

|
|

||
|

|
|||

||
|
|

|

|

#

#
#
#
#

//STEP1 EXEC DSNUPROC,UID=’IUJQU225.RUNSTA’,TIME=1440,

// UTPROC=’’,

// SYSTEM=’DSN’,DB2LEV=DB2A

//UTPRINT DD SYSOUT=*

//SYSIN DD *

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

 TABLE(ALL) SAMPLE 25

 INDEX(ALL)

 SHRLEVEL CHANGE

Example 2: Updating index statistics. The following control statement specifies

that RUNSTATS is to update the catalog statistics for index DSN8810.XEMPL1.

RUNSTATS INDEX (DSN8810.XEMPL1)

Example 3: Updating index statistics while prohibiting updates. The following

control statement specifies that RUNSTATS is to update the catalog statistics for

indexes XEMPL1 and XEMPL2. DB2 does not permit other processes to change the

table space that is associated with XEMPL1 and XEMPL2 (table space DSN8S81E)

while this utility is executing. This restricted access is the default behavior.

RUNSTATS INDEX (DSN8810.XEMPL1,DSN8810.XEMPL2)

Example 4: Updating statistics for columns in several tables. The following control

statement specifies that RUNSTATS is to update the catalog statistics for the

following columns in table space DSN8D81P.DSN8S81C:

v All columns in the TCONA and TOPTVAL tables

v The LINENO and DSPLINE columns in the TDSPTXT table
RUNSTATS TABLESPACE(DSN8D81P.DSN8S81C)

 TABLE (TCONA)

 TABLE (TOPTVAL) COLUMN(ALL)

 TABLE (TDSPTXT) COLUMN(LINENO,DSPLINE)

Example 5: Updating all statistics for a table space. The following control

statement specifies that RUNSTATS is to update all catalog statistics (table space,

tables, columns, and indexes) for table space DSN8D81P.DSN8S81C.

RUNSTATS TABLESPACE(DSN8D81P.DSN8S81C) TABLE INDEX

Example 6: Updating statistics that are used for access path selection and

generating a report. The following control statement specifies that RUNSTATS is to

update the catalog with only the statistics that are collected for access path

selection. The utility is to report all statistics for the table space and route the

report to SYSPRINT.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

 REPORT YES

 UPDATE ACCESSPATH

Example 7: Updating all statistics and generating a report. The following control

statement specifies that RUNSTATS is to update the catalog with all statistics

(access path and space) for table space DSN8D81A.DSN8S81E. The utility is also to

report the collected statistics and route the report to SYSPRINT.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

 REPORT YES

 UPDATE ALL

Example 8: Reporting statistics without updating the catalog. The following

control statement specifies that RUNSTATS is to collect statistics for table space

DSN8D81A.DSN8S81E and route the report to SYSPRINT. The utility is not to

update the catalog with the collected statistics.

RUNSTATS

Chapter 29. RUNSTATS 577

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

 REPORT YES

 UPDATE NONE

Example 9: Updating statistics for a partition. The following control statement

specifies that RUNSTATS is to update the statistics for the first partition of table

space DSN8D81A.DSN8S81E and the first partition of the DSN8810.XEMP1 index.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E PART 1 INDEX(DSN8810.XEMP1 PART 1)

Example 10: Updating catalog and history tables and reporting all statistics. The

following control statement specifies that RUNSTATS is to update the catalog

tables and history catalog tables with all statistics for table space

DB0E0101.TL0E0101 (including related indexes and columns). The utility is to

report the collected statistics and route the statistics to SYSPRINT.

RUNSTATS TABLESPACE DBOE0101.TLOE0101

 INDEX

 TABLE

 REPORT YES

 UPDATE ALL

 HISTORY ALL

Example 11: Updating statistics on frequently occurring values. Assume that the

SYSADM.IXNP1 index is defined on four columns: NP1, NP2, NP3, and NP4. The

following control statement specifies that RUNSTATS is to update the statistics for

index SYSADM.IXNPI.

The KEYCARD option indicates that the utility is to collect cardinality statistics for

column NP1, column set NP1 and NP2, and column set NP1, NP2, and NP3, and

column set NP1, NP2, NP3, and NP4. The FREQVAL option and its associated

parameters indicate that RUNSTATS is also to collect the 5 most frequently

occurring values on column NP1 (the first key column of the index), and the 10

most frequently occurring values on the column set NP1 and NP2 (the first two

key columns of the index). The utility is to report the collected statistics and route

the statistics to SYSPRINT.

RUNSTATS INDEX (SYSADM.IXNPI)

 KEYCARD

 FREQVAL NUMCOLS 1 COUNT 5

 FREQVAL NUMCOLS 2 COUNT 10

 REPORT YES

Example 12: Updating distribution statistics for a group of specified columns in a

table. The following control statement specifies that RUNSTATS is to update

statistics for the columns EMPLEVEL, EMPGRADE, and EMPSALARY in table

DSN8810.DEPT (in table space DSN8D81A.DSN8S81E). The statement uses the

COLGROUP keyword to group these columns. RUNSTATS is to collect the

cardinality of this column group and store the cardinality in the SYSCOLDIST

catalog table.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

TABLE(DSN8810.DEPT)

COLGROUP (EMPLEVEL,EMPGRADE,EMPSALARY)

Example 13: Updating distribution statistics for specific columns and retrieving

the most frequently occurring values. The following control statement specifies that

RUNSTATS is to update statistics for the columns EMPLEVEL, EMPGRADE, and

EMPSALARY in table DSN8810.DEPT. The FREQVAL and COUNT options

indicate that RUNSTATS is to collect the 10 most frequently occurring values for

each column. The values are to be stored in the SYSCOLDIST and

SYSCOLDISTSTATS catalog tables.

RUNSTATS

578 Utility Guide and Reference

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

TABLE(DSN8810.DEPT)

COLGROUP(EMPLEVEL,EMPGRADE,EMPSALARY) FREQVAL COUNT 10

Example 14: Updating distribution statistics for specific columns in a table and

retrieving the least frequently occurring values. The following control statement

specifies that RUNSTATS is to update statistics for the columns EMPLEVEL,

EMPGRADE, and EMPSALARY in table DSN8810.DEPT. The FREQVAL and

COUNT options indicate that RUNSTATS is to collect the 15 least frequently

occurring values for each column. The values are to be stored in the SYSCOLDIST

and SYSCOLDISTSTATS catalog tables.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

TABLE(DSN8810.DEPT)

COLGROUP(EMPLEVEL,EMPGRADE,EMPSALARY) FREQVAL COUNT 15 LEAST

Example 15: Updating distribution statistics for specific columns in a table space

and retrieving the most and least frequently occurring values. The following

control statement specifies that RUNSTATS is to update statistics for the columns

EMPLEVEL, EMPGRADE, and EMPSALARY in table DSN8810.DEPT. The

FREQVAL and COUNT options indicate that RUNSTATS is to collect the 10 most

frequently occurring values for each column and the 10 least frequently occurring

values for each column. The values are to be stored in the SYSCOLDIST and

SYSCOLDISTSTATS catalog tables.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

TABLE(DSN8810.DEPT)

COLGROUP(EMPLEVEL,EMPGRADE,EMPSALARY) FREQVAL COUNT 10 BOTH

Example 16: Updating statistics for an index and retrieving the most and least

frequently occurring values. The following control statement specifies that

RUNSTATS is to collect the 10 most frequently occurring values and the 10 least

frequently occurring values for the first key column of index ADMF001.IXMA0101.

The KEYCARD option indicates that the utility is also to collect all the distinct

values in all the key column combinations. A set of messages is sent to SYSPRINT

and all collected statistics are updated in the catalog.

RUNSTATS INDEX(ADMF001.IXMA0101)

 KEYCARD

FREQVAL NUMCOLS 1 COUNT 10 BOTH

REPORT YES UPDATE ALL

Example 17: Invalidating statements in the dynamic statement cache for a table

space without generating report statistics. The following control statement

specifies that RUNSTATS is to invalidate statements in the dynamic statement

cache for table space DSN8D81A.DSN8S81E. However, RUNSTATS is not to collect

or report statistics or update the catalog.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

REPORT NO

UPDATE NONE

RUNSTATS

Chapter 29. RUNSTATS 579

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

RUNSTATS

580 Utility Guide and Reference

Chapter 30. STOSPACE

The STOSPACE utility updates DB2 catalog columns that indicate how much space

is allocated for storage groups and related table spaces and indexes.

For a diagram of STOSPACE syntax and a description of available options, see

“Syntax and options of the STOSPACE control statement.” For detailed guidance

on running this utility, see “Instructions for running STOSPACE” on page 582.

Output: The output from STOSPACE consists of new values in a number of catalog

tables. See “Reviewing STOSPACE output” on page 585 for a list of columns and

tables that STOSPACE updates.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v STOSPACE privilege

v SYSCTRL or SYSADM authority

Execution phases of STOSPACE: The STOSPACE utility operates in these phases:

Phase Description

UTILINIT Performs initialization

STOSPACE Gathers space information and updates catalog

UTILTERM Performs cleanup

The following topics provide additional information:

v “Syntax and options of the STOSPACE control statement”

v “Instructions for running STOSPACE” on page 582

v “Concurrency and compatibility for STOSPACE” on page 585

v “Reviewing STOSPACE output” on page 585

v “Sample STOSPACE control statement” on page 585

Syntax and options of the STOSPACE control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

© Copyright IBM Corp. 1983, 2008 581

Syntax diagram

��

STOSPACE

�

 ,

STOGROUP(

stogroup-name

)

*

��

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

STOGROUP

Identifies the storage groups that are to be processed.

(stogroup-name, ...)

Specifies the name of a storage group. You can use a list of

from one to 255 storage group names. Separate items in the

list by commas, and enclose them in parentheses.

* Indicates that all storage groups are to be processed.

Instructions for running STOSPACE

To run STOSPACE, you must:

1. Prepare the necessary data sets, as described in “Data sets that STOSPACE

uses.”

2. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

STOSPACE, see “Sample STOSPACE control statement” on page 585.)

3. Prepare a utility control statement that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

583.

4. Check the compatibility rules in “Concurrency and compatibility for

STOSPACE” on page 585 if you want to run other jobs concurrently on the

same target objects.

5. Plan for restart if the STOSPACE job doesn’t complete, as described in

“Terminating or restarting STOSPACE” on page 585.

6. Run STOSPACE by using one of the methods that are described in Chapter 3,

“Invoking DB2 online utilities,” on page 15.

Data sets that STOSPACE uses

Table 118 lists the data sets that STOSPACE uses. The table lists the DD name that

is used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 118. Data sets that STOSPACE uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

STOSPACE

582 Utility Guide and Reference

Table 118. Data sets that STOSPACE uses (continued)

Data set Description Required?

SYSPRINT Output data set for messages. Yes

The following object is named in the utility control statement and does not require

a DD statement in the JCL:

Storage group

Object that is to be reported.

Creating the control statement

Create the utility control statement for the STOSPACE job. See “Syntax and options

of the STOSPACE control statement” on page 581 for STOSPACE syntax and option

descriptions. See “Sample STOSPACE control statement” on page 585 for examples

of STOSPACE usage.

Instructions for specific tasks

To perform the following tasks, specify the options and values for those tasks in

your utility control statement:

 “Ensuring availability of objects that STOSPACE requires”

 “Obtaining statistical information with STOSPACE”

 “Analyzing the values in a SPACE or SPACEF column” on page 584

 “Running STOSPACE on user-defined spaces” on page 584

Ensuring availability of objects that STOSPACE requires

For each specified storage group, STOSPACE looks at the

SYSIBM.SYSTABLESPACE and SYSIBM.SYSINDEXES catalog tables to determine

which objects belong to that storage group. For each object, the amount of

allocated space is determined from an appropriate VSAM catalog. Hence the table

spaces and indexes do not need to be available to DB2 when STOSPACE is

running; only the DB2 catalog and appropriate VSAM catalogs are required.

However, to gain access to the VSAM catalog, the utility must have available to it

the database definition (DBD) for the objects that are involved. This access requires

that the appropriate database, table spaces, and index spaces not be in the stopped

state.

Obtaining statistical information with STOSPACE

Table 119 lists statistical information that the STOSPACE utility records and that is

useful for making space allocation decisions.

 Table 119. DB2 catalog data that STOSPACE collects

Catalog table Column name Column description

SYSTABLESPACE SPACEF Number of kilobytes of storage that are

allocated to the table space

SYSTABLEPART SPACEF Number of kilobytes of storage that are

allocated to the table space partition

SYSINDEXES SPACEF Number of kilobytes of storage that are

allocated to the index

SYSINDEXPART SPACEF Number of kilobytes of storage that are

allocated to the index partition

SYSSTOGROUP SPACEF Number of kilobytes of storage that are

allocated to the storage group

STOSPACE

Chapter 30. STOSPACE 583

Table 119. DB2 catalog data that STOSPACE collects (continued)

Catalog table Column name Column description

SYSSTOGROUP STATSTIME Time when STOSPACE was last run on a

particular storage group

When DB2 storage groups are used in the creation of table spaces and indexes,

DB2 defines the data sets for them. The STOSPACE utility permits a site to monitor

the disk space that is allocated for the storage group.

STOSPACE does not accumulate information for more than one storage group. If a

partitioned table space or index space has partitions in more than one storage

group, the information in the catalog about that space comes from only the group

for which STOSPACE was run.

When you run the STOSPACE utility, the SPACEF column of the catalog represents

the high-allocated RBA of the VSAM linear data set. Use the value in the SPACEF

column to project space requirements for table spaces, table space partitions, index

spaces, and index space partitions over time. Use the output from the Access

Method Services LISTCAT command to determine which table spaces and index

spaces have allocated secondary extents. When you find these, increase the

primary quantity value for the data set, and run the REORG utility.

For information about space utilization in the DSN8S81E table space in the

DSN8D81A database, first run the STOSPACE utility, and then execute the

following SQL statement:

General-use Programming Interface

EXEC SQL

 SELECT SPACE

 FROM SYSIBM.SYSTABLESPACE

 WHERE NAME = ’DSN8S81E

 AND DBNAME = ’DSN8D81A’

ENDEXEC

End of General-use Programming Interface

Alternatively, you can use TSO to look at data set and pack descriptions.

To update SYSIBM.SYSSTOGROUP for storage group DSN8G810, as well as

SYSIBM.SYSTABLESPACE and SYSIBM.SYSINDEXES, for every table space and

index that belongs to DSN8G810, use the following utility control statement:

STOSPACE STOGROUP DSN8G810

Analyzing the values in a SPACE or SPACEF column

The value in a SPACE or SPACEF column represents total allocated space, not only

the space that is allocated on the current list of volumes in the storage groups. (If

the value is too large to fit in the SPACE column, the SPACEF column is used.)

You can delete volumes from a storage group even though space on those volumes

is still allocated to DB2 table spaces or indexes. Deletion of a volume from a

storage group prevents future allocations; it does not withdraw a current

allocation.

Running STOSPACE on user-defined spaces

For user-defined spaces, STOSPACE does not record any statistics.

STOSPACE

584 Utility Guide and Reference

|
|
|
|
|

Terminating or restarting STOSPACE

You can terminate a STOSPACE utility job with the TERM UTILITY command if

you have submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a STOSPACE utility job, but it starts from the beginning again. For

guidance in restarting online utilities, see “Restarting an online utility” on page 41.

Concurrency and compatibility for STOSPACE

STOSPACE does not set a utility restrictive state on the target object.

STOSPACE can run concurrently with any utility on the same target object.

However, because STOSPACE updates the catalog, concurrent STOSPACE utility

jobs or other concurrent applications that update the catalog might cause timeouts

and deadlocks.

You can use the STOSPACE utility on storage groups that have objects within

temporary databases.

Reviewing STOSPACE output

The output from STOSPACE consists of updated values in the columns and tables

in the following list. In each case, an amount of space is given in kilobytes (KB).

v SPACE

4 in SYSIBM.SYSINDEXES shows the amount of space that is allocated to

indexes. If the index is not defined using STOGROUP, or if STOSPACE has not

been executed, the value is zero.

v SPACE4 in SYSIBM.SYSTABLESPACE shows the amount of space that is

allocated to table spaces. If the table space is not defined using STOGROUP, or if

STOSPACE has not been executed, the value is zero.

v SPACE4 in SYSIBM.SYSINDEXPART shows the amount of space that is allocated

to index partitions. If the partition is not defined using STOGROUP, or if

STOSPACE has not been executed, the value is zero.

v SPACE4 in SYSIBM.SYSTABLEPART shows the amount of space that is allocated

to table partitions. If the partition is not defined using STOGROUP, or if

STOSPACE has not been executed, the value is zero.

v SPACE4 in SYSIBM.SYSSTOGROUP shows the amount of space that is allocated

to storage groups.

v STATSTIME in SYSIBM.SYSSTOGROUP shows the timestamp for the time at

which STOSPACE was last executed.

Sample STOSPACE control statement

Example 1: Updating catalog SPACE columns for a particular storage group. The

following control statement specifies that the STOSPACE utility is to update the

catalog SPACE or SPACEF columns for storage group DSN8G810 and any related

table spaces and indexes.

//STEP1 EXEC DSNUPROC,UID=’FUAUU330.STOSPCE’,

// UTPROC=’’,

// SYSTEM=’DSN’

//SYSIN DD *

STOSPACE STOGROUP DSN8G810

//*

4. If the value is too large to fit in the SPACE column, the SPACEF column is updated.

STOSPACE

Chapter 30. STOSPACE 585

#
#

|

Example 2: Specifying a storage group name that contains spaces. If the name of

the storage group that you want STOSPACE to process contains spaces, enclose the

entire storage group name in single quotation marks. Parentheses are optional. The

following statements are correct ways to specify a storage group with the name

THIS IS STOGROUP.1.ON.E:

STOSPACE STOGROUP(’THIS IS STOGROUP.1.ONE’)

STOSPACE STOGROUP ’THIS IS STOGROUP.1.ONE’

Example 3: Updating catalog SPACE columns for all storage groups. The following

control statement specifies that the STOSPACE utility is to update the catalog

SPACE or SPACEF columns for all storage groups.

STOSPACE STOGROUP *

Example 4: Updating catalog SPACE columns for several storage groups. The

following control statement specifies that the STOSPACE utility is to update the

catalog SPACE or SPACEF columns for storage groups DSN8G810 and DSN8G81U.

STOSPACE STOGROUP(DSN8G810, DSN8G81U)

STOSPACE

586 Utility Guide and Reference

|
|
|
|
|

|
|
|

|

|

Chapter 31. TEMPLATE

The TEMPLATE utility control statement lets you allocate data sets, without using

JCL DD statements, during the processing of a LISTDEF list. In its simplest form,

the TEMPLATE control statement defines the data set naming convention. You can

also write TEMPLATE control statements so that they contain allocation parameters

that define data set size, location, and attributes.

Templates enable you to standardize data set names across the DB2 subsystem and

to easily identify the data set type when you use variables in the data set name.

These variables are listed in “Option descriptions” on page 590.

The TEMPLATE control statement uses the z/OS DYNALLOC macro (SVC 99) to

perform data set allocation. Therefore, the facility is constrained by the limitations

of this macro and by the subset of DYNALLOC that is supported by TEMPLATE.

See z/OS MVS Programming: Assembler Services Guide for more details.

Output: The TEMPLATE control statement generates a dynamic allocation template

with an assigned name for later reference.

Authorization required: No privileges are required to execute this control

statement. When a TEMPLATE is referenced by a specific utility, privileges are

checked at that time.

 Execution phases of TEMPLATE: The TEMPLATE control statement executes

entirely in the UTILINIT phase, which performs setup for the subsequent utility.

The following topics provide additional information:

v “Syntax and options of the TEMPLATE control statement ”

v “Instructions for using TEMPLATE” on page 600

v “Concurrency and compatibility for TEMPLATE” on page 603

v “Sample TEMPLATE control statements” on page 603

Syntax and options of the TEMPLATE control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

© Copyright IBM Corp. 1983, 2008 587

Syntax diagram

�� TEMPLATE template-name DSN name-expression

common-options

disk-options

tape-options

 �

�
SUBSYS

name

LRECL

int

RECFM

F

FB

V

VB

 ��

name-expression:

��

�

 .

qualifier-expression

(1)

(parenthetical-expression)

��

Notes:

1 The entire name-expression represents one character string and cannot contain any blanks.

qualifier-expression:

��

�

character-expression

(2)

&variable

.

(1)

(start

)

,length

��

Notes:

1 If you use substring notation, the entire DSN operand must be enclosed in single quotation

marks. For example, the DSN operand 'P&PA(4,2).' uses substring notation, so it is enclosed in

single quotation marks.

2 The &PA. variable cannot be used more than once.

TEMPLATE

588 Utility Guide and Reference

|

|||||||||

|

|

common-options:

��
 UNIT SYSALLDA

UNIT

name

MODELDCB

dsname

 BUFNO 30

BUFNO

integer

DATACLAS

name

�

�
MGMTCLAS

name

STORCLAS

name

RETPD integer

EXPDL' date'

�

,

VOLUMES

(

volser

)

 �

�

VOLCNT

integer

UNCNT

integer

 GDGLIMIT 99

GDGLIMIT

integer

�

�
DISP

(

NEW

,

DELETE

,

DELETE

)

OLD

KEEP

KEEP

SHR

CATLG

CATLG

MOD

UNCATLG

UNCATLG

 ��

disk-options:

��
 SPACE CYL

SPACE

CYL

(primary,secondary)

TRK

MB

 PCTPRIME 100

PCTPRIME

integer

MAXPRIME

integer

�

�
 NBRSECND 10

NBRSECND

integer

DIR

integer

DSNTYPE

LIBRARY

PDS

HFS

NULL

��

tape-options:

��

 TRTCH NONE

STACK

NO

STACK

YES

TRTCH

COMP

NOCOMP

��

TEMPLATE

Chapter 31. TEMPLATE 589

|

#######

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

TEMPLATE template-name

Defines a data set allocation template and assigns to the template a

name, template-name, for subsequent reference on a DB2 utility

control statement. The template-name can have up to eight

alphanumeric characters and must begin with an alphabetic

character.

 The template-name is followed by keywords that control the

allocation of tape and disk data sets. A single TEMPLATE

statement cannot have both disk options and tape options. The

UNIT keyword specifies a generic unit name that is defined on

your system. This value is used to determine if a disk or tape data

set is being allocated. All other keywords specified on the

TEMPLATE control statement must be consistent with the specified

unit type.

DSN name-expression

Specifies the template for the z/OS data set name. You can specify

the data set name, name-expression, by using symbolic variables,

non-variable alphanumeric, or national characters, or any

combination of these characters. The resulting name must adhere

to the z/OS data set naming rules, including those rules about

name length, valid characters, name structure and qualifier length.

 Data set names consists of a series of qualifiers, qualifier-expression,

that are separated by a period (.) and an optional parenthetical

expression. No imbedded blanks are allowed.

If the DSN name operand contains any special characters, it must

be enclosed in single quotation marks. For example, in the

following TEMPLATE statement, the DSN operand contains the

parentheses special character, so the entire operand is enclosed in

single quotation marks:

TEMPLATE X DSN ’A.GDG.VERSION(+1)’

Parentheses around the DSN name operand are optional. They are

used in the following DSN specification:

DSN(&DB..&TS..D&DATE.)

character-expression

Specifies the data set name or part of the data set name by using

non-variable alphanumeric or national characters.

parenthetical-expression

Specifies part of the data set name by using non-variable

alphanumeric or national characters that are enclosed in

parentheses. For example, the expressions Q1.Q2.Q3(member) and

Q1.Q2.Q3(+1) use valid parenthetical expressions.

&variable. Specifies the data set name or part of the data set name by using

symbolic variables. See Table 120 on page 591, Table 121 on page

592, Table 122 on page 592, and Table 123 on page 593 for a list of

variables that can be used.

 Each symbolic variable is substituted with its related value at

execution time to form a specific data set name. When used in a

TEMPLATE

590 Utility Guide and Reference

DSN expression, substitution variables begin with an ampersand

sign (&) and end with a period (.), as in the following example:

DSN &DB..&TS..D&JDATE..COPY&ICTYPE.

Using numeric variables alone generates an invalid data set

qualifier for all numeric-type variables (all date or time-type

variables, and others, such as &SEQ. or &PART.). These variables

must be preceded by character constants to form valid DSN

qualifiers. The following examples are valid specifications:

P&PART.

D&DATE.

Some substitution variables are invalid if you use TEMPLATE with

an incompatible utility. For example, ICTYPE is not meaningful if

the TEMPLATE statement is used with LOAD SYSDISC. Other

variables assume default values when their values are not known.

For example, &PART. becomes 00000 for non-partitioned objects.

You can also use substring notation for data set name variables.

This notation can help you keep the data set name from exceeding

the 44 character maximum. If you use substring notation, the entire

DSN operand must be enclosed in single quotation marks. To

specify a substring, use the form &variable(start). or

&variable(start,length).

start

Specifies the substring’s starting byte location within the

current variable base value at the time of execution. start must

be an integer from 1 to 128.

length

Specifies the length of the substring. If you specify start but do

not specify length, length, by default, is the number of

characters from the start character to the last character of the

variable value at the time of execution. For example, given a

five-digit base value, &PART(4). specifies the fourth and fifth

digits of the value. length must be an integer that does not

cause the substring to extend beyond the end of the base

value. For more examples of variable substring notation, see

“Sample TEMPLATE control statements” on page 603.

Table 120 contains a list of JOB variables and their descriptions.

 Table 120. JOB variables

Variable Description

&JOBNAME. or &JO. The z/OS job name.

&STEPNAME. or &ST. The z/OS step name. This variable might be needed if data

set names from two different job steps conflict.

&USERID. or &US. The user ID of the person that is running the utility. The

value is 1 to 8 characters long.

&UTILID. or &UT. The utility ID truncated to eight characters and checked for

invalid DSN characters.

&SSID. or &SS. Subsystem ID (non-data sharing) or group attach name (data

sharing).

Table 121 on page 592 contains a list of UTILITY variables and

TEMPLATE

Chapter 31. TEMPLATE 591

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

their descriptions.

 Table 121. UTILITY variables

Variable Description

&ICTYPE. or &IC. Single-character image copy type. This variable is valid only

for image copy templates. The substitution is governed by

whether a full image copy (F), an incremental image copy

(I), or a CHANGELIMIT image copy (C) is specified by the

user.

&UTILNAME. or &UN. Special values are assigned to some utilities: CHECKD for

CHECK DATA, CHECKI for CHECK INDEX, CHECKL for

CHECK LOB, REORGI for REORG INDEX, and REORGT for

REORG TABLESPACE. Utility names that are longer than

eight characters are truncated to eight characters.

&SEQ. or &SQ. Sequence number of the list item in the list.

&LOCREM. or &LR. Indicator of whether ddname is for the local site (COPYDDN)

or the recovery site (RECOVERYDDN). Single character L is

used when the utility defines a COPYDDN ddname. The

single character R is used when the utility defines a

RECOVERYDDN ddname. You can replicate the SYSCOPY

ICBACKUP column information by using both the

&LOCREM. and &PRIBAC. variables. This variable is valid

only for image copy templates.

&PRIBAC. or &PB. Indicator of whether ddname is for the primary (ddname1) or

backup (ddname2) copy data set. Single character P is used

when the utility defines a ddname1. The single character B is

used when the utility defines a ddname2. You can replicate

the SYSCOPY ICBACKUP column information by using both

the &LOCREM. and &PRIBAC. variables. This variable is

valid only for image copy templates.

Table 122 contains a list of OBJECT variables and their descriptions.

 Table 122. OBJECT variables

Variable Description

&LIST. or &LI. The name of the list that is defined by using the LISTDEF

control statement and that is referenced on the same control

statement as this TEMPLATE. This variable is used with

COPY FILTERDDN templates. All objects in the list are

copied to one data set, which makes &TS. and &IS.

meaningless.

&DB. Database name.

&TS.1 Table space name.

&IS.

1 Index space name.

&SN.1 Space name (table space or index space).

&PART. or &PA.2 Five-digit partition number, padded with leading zeros.

TEMPLATE

592 Utility Guide and Reference

|

|

Table 122. OBJECT variables (continued)

Variable Description

Notes:

1. When you specify the &TS., &IS., or &SN. variables in a template that is used by an

UNLOAD statement with BLOBF, CLOBF, or DBCLOBF, DB2 substitutes the name of the

table space that stores the LOB column value, not the base table space name. This

substitution enables DB2 to generate unique data set names for each LOB column with

partitioned table spaces.

2. Use the &PA. variable when processing LISTDEF lists with the PARTLEVEL keyword or

data-partitioned secondary indexes. Otherwise, DB2 could generate duplicate data set

names.

Table 123 contains a list of DATE and TIME variables. and their

descriptions.

 Table 123. DATE and TIME variables

Variable Description

&DATE. or &DT. YYYYDDD

&TIME. or &TI. HHMMSS

&JDATE. or &JU. YYYYDDD

&YEAR. or &YE. YYYY portion of &DATE.

&MONTH. or &MO. MM

&DAY. or &DA. DD

&JDAY. or &JD. DDD portion of &DATE.

&HOUR. or &HO. HH portion of &TIME.

&MINUTE. or &MI. MM portion of &TIME.

&SECOND. or &SC. SS portion of &TIME.

&UNIQ. or &UN. Unique eight characters that DB2 derives from the system

clock at the time of allocation. This set of characters begins

with an alphabetical character and is followed by seven

alphabetical or numeric characters.

Note: All date and time values are set by using the STCK instruction, and they reflect the

date and time value in Greenwich Mean Time (GMT). With the exception of &UNIQ. and

&UN. DATE and TIME values are captured in the UTILINIT phase of each utility and remain

constant until the utility terminates.&UNIQ. and &UN. are assigned a unique value for each

allocation.

SUBSYSname Specifies the MVS BATCHPIPES SUBSYSTEM name. The SUBSYS

operand must be a valid BATCHPIPES SUBSYSTEM name and

must not exceed eight characters in length. When SUBSYS is

specified, LRECL and RECFM are required. When SUBSYS is

specified, TEMPLATE keywords that are not compatible with

SUBSYS (such as UNIT) are ignored.

Restriction:: When using BATCHPIPES, TEMPLATE with the

SUBSYS keyword, the utility cannot be restarted and

the LOAD DISCARDDN keyword is not supported.

LRECLint Specifies the record length of the MVS BATCHPIPES SUBSYSTEM

file. There is no default value and this option is required when

SUBSYS is specified.

TEMPLATE

Chapter 31. TEMPLATE 593

#
#
#
#
#

##
#
#
#

#
#
#

RECFM Specifies the record format of the MVS BATCHPIPES SUBSYSTEM

file. The valid values are F, FB, V, or VB. There is no default value

and this option is required when SUBSYS is specified.

common-options (apply to both disk and tape)

UNIT Specifies the device-number, device-type (generic), or group-name

for the data set. All other TEMPLATE keywords are validated

based on the specified type of unit (disk or tape). The default is

SYSALLDA.

MODELDCB dsname

Specifies the name of the data set on which the template is based.

DCB information is read from this model data set.

 If this is not coded and a GDG Base does not already exist, the

TEMPLATE module will pass below parameter as the default for

creating the GDG data set: DEFINE GDG(NAME(data set

name)LIM(99)SCR).

BUFNO integer

Specifies the number of BSAM buffers. The specified value must be

in the range from 0 to 99. The default is 30.

DATACLAS name

Specifies the SMS data class. The name value must be a valid SMS

data class and must not exceed eight characters in length.

 The data set is cataloged if DATACLAS is specified. If this option

is omitted, no DATACLAS is specified to SMS.

MGMTCLAS name

Specifies the SMS management class. The name value must be a

valid SMS management class and must not exceed eight characters

in length.

 The data set is cataloged if MGMTCLAS is specified. If this option

is omitted, no MGMTCLAS is specified to SMS.

STORCLAS name

Specifies the SMS storage class. The name value must be a valid

SMS storage class and must not exceed eight characters in length.

 The data set is cataloged if STORCLAS is specified. If this option is

omitted, no STORCLAS is specified to SMS.

RETPD integer Specifies the retention period in days for the data set. The integer

value must be in the range from 0 to 9999.

 If DATACLAS, MGMTCLAS, or STORCLAS is specified, the class

definition might control the retention. RETPD cannot be specified

with EXPDL..

EXPDL 'date' Specifies the expiration date for the data set, in the form

YYYYDDD, where YYYY is the four-digit year, and DDD is the

three-digit Julian day. The 'date' value must be enclosed by single

quotation marks.

 If DATACLAS, MGMTCLAS, or STORCLAS is specified, the class

definition might control the retention. EXPDL cannot be specified

with RETPD.

TEMPLATE

594 Utility Guide and Reference

#
#
#
#

#
#
#

#
#
#

VOLUMES (vol1,vol2,...)

Specifies a list of volume serial numbers for this allocation. If the

data set is not cataloged the list is truncated, if necessary, when it

is stored in SYSIBM.SYSCOPY. The specified number of volumes

cannot exceed the specified or default value of VOLCNT.

 The first volume must contain enough space for the primary space

allocation.

If an individual volume serial-number contains leading zeros, it

must be enclosed in single quotation marks.

VOLCNT (integer)

Specifies the maximum number of volumes that an output data set

might require. The specified value must be between 0 and 255. The

default for tape templates is 95. For disk templates, the utility does

not set a default value. Operating system defaults apply.

UNCNT integer

Specifies the number of devices that are to be allocated. The

specified value must in the range from 0 to 59.

 If UNIT specifies a specific device number, the value of UNCNT

must either be 1 or be omitted.

GDGLIMIT (integer)

Specifies the number of entries that are to be created in a GDG

base if a GDG DSN is specified and the base does not already

exist. If a GDG base does not already exist and you do not want to

define one, specify a GDGLIMIT of zero (0).

 The default value is 99. The integer value must be in the range

from 0 to 255.

DISP (value1, value2, value3)

Specifies the data set disposition by using three positional

parameters: status, normal-termination, and abnormal-termination.

All three parameters must be specified.

status

Standard z/OS values are allowed: NEW, OLD, SHR, MOD.

normal-termination

Standard z/OS values are allowed: DELETE, KEEP, CATLG,

UNCATLG.

abnormal-termination

Standard z/OS values are allowed: DELETE, KEEP, CATLG,

UNCATLG.

 Default values for DISP vary, depending on the utility and the data

set that is being allocated. Defaults for restarted utilities also differ

from default values for new utility executions. Default values are

shown in Table 124 on page 596 and Table 125 on page 596.

Table 124 on page 596 shows the data dispositions for dynamically

allocated data sets for new utility executions.

TEMPLATE

Chapter 31. TEMPLATE 595

|
|

#

Table 124. Data dispositions for dynamically allocated data sets for new utility executions

ddname

CHECK

DATA

CHECK

INDEX or

CHECK LOB COPY

COPY-

TOCOPY LOAD

MERGE-

COPY

REBUILD

INDEX

REORG

INDEX

REORG

TABLE-

SPACE UNLOAD

SYSREC Ignored Ignored Ignored Ignored OLD

KEEP

KEEP

Ignored Ignored Ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

SYSDISC Ignored Ignored Ignored Ignored NEW

CATLG

CATLG

Ignored Ignored Ignored NEW

CATLG

CATLG

Ignored

SYSPUNCH Ignored Ignored Ignored Ignored Ignored Ignored Ignored Ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

SYSCOPY Ignored Ignored NEW

CATLG

CATLG

Ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

Ignored Ignored NEW

CATLG

CATLG

Ignored

SYSCOPY2 Ignored Ignored NEW

CATLG

CATLG

Ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

Ignored Ignored NEW

CATLG

CATLG

Ignored

SYSRCPY1 Ignored Ignored NEW

CATLG

CATLG

Ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

Ignored Ignored NEW

CATLG

CATLG

Ignored

SYSRCPY2 Ignored Ignored NEW

CATLG

CATLG

Ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

Ignored Ignored NEW

CATLG

CATLG

Ignored

SYSUT1 NEW

DELETE

CATLG

NEW

DELETE

CATLG

Ignored Ignored NEW

DELETE

CATLG

Ignored NEW

DELETE

CATLG

NEW

CATLG

CATLG

NEW

DELETE

CATLG

Ignored

SORTOUT NEW

DELETE

CATLG

Ignored Ignored Ignored NEW

DELETE

CATLG

Ignored Ignored NEW

DELETE

CATLG

NEW

DELETE

CATLG

Ignored

SYSMAP Ignored Ignored Ignored Ignored NEW

CATLG

CATLG

Ignored Ignored Ignored Ignored Ignored

SYSERR NEW

CATLG

CATLG

Ignored Ignored Ignored NEW

CATLG

CATLG

Ignored Ignored Ignored Ignored Ignored

FILTERDDS Ignored Ignored NEW

DELETE

DELETE

Ignored Ignored Ignored Ignored Ignored Ignored Ignored

Table 125 shows data dispositions for dynamically allocated data

sets on RESTART.

 Table 125. Data dispositions for dynamically allocated data sets on RESTART

ddname

CHECK

DATA

CHECK

INDEX or

CHECK

LOB COPY

COPY-

TOCOPY LOAD

MERGE-

COPY

REBUILD

INDEX

REORG

INDEX

REORG

TABLE-

SPACE UNLOAD

SYSREC Ignored Ignored Ignored Ignored OLD

KEEP

KEEP

Ignored Ignored Ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

SYSDISC Ignored Ignored Ignored Ignored MOD

CATLG

CATLG

Ignored Ignored Ignored MOD

CATLG

CATLG

Ignored

SYSPUNCH Ignored Ignored Ignored Ignored Ignored Ignored Ignored Ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

SYSCOPY Ignored Ignored MOD

CATLG

CATLG

Ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

Ignored Ignored MOD

CATLG

CATLG

Ignored

SYSCOPY2 Ignored Ignored MOD

CATLG

CATLG

Ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

Ignored Ignored MOD

CATLG

CATLG

Ignored

SYSRCPY1 Ignored Ignored MOD

CATLG

CATLG

Ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

Ignored Ignored MOD

CATLG

CATLG

Ignored

TEMPLATE

596 Utility Guide and Reference

Table 125. Data dispositions for dynamically allocated data sets on RESTART (continued)

ddname

CHECK

DATA

CHECK

INDEX or

CHECK

LOB COPY

COPY-

TOCOPY LOAD

MERGE-

COPY

REBUILD

INDEX

REORG

INDEX

REORG

TABLE-

SPACE UNLOAD

SYSRCPY2 Ignored Ignored MOD

CATLG

CATLG

Ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

Ignored Ignored MOD

CATLG

CATLG

Ignored

SYSUT1 MOD

DELETE

CATLG

MOD

DELETE

CATLG

Ignored Ignored MOD

DELETE

CATLG

Ignored MOD

DELETE

CATLG

MOD

CATLG

CATLG

MOD

DELETE

CATLG

Ignored

SORTOUT MOD

DELETE

CATLG

Ignored Ignored Ignored MOD

DELETE

CATLG

Ignored Ignored MOD

DELETE

CATLG

MOD

DELETE

CATLG

Ignored

SYSMAP Ignored Ignored Ignored Ignored MOD

CATLG

CATLG

Ignored Ignored Ignored Ignored Ignored

SYSERR MOD

CATLG

CATLG

Ignored Ignored Ignored MOD

CATLG

CATLG

Ignored Ignored Ignored Ignored Ignored

FILTERDDS Ignored Ignored NEW

DELETE

DELETE

Ignored Ignored Ignored Ignored Ignored Ignored Ignored

End of common-options (apply to both disk and tape)

disk-options

SPACE (primary,secondary)

Specifies the z/OS disk space allocation parameters in the range

from 1 to 1677215. If you specify (primary,secondary) value, these

values are used instead of the DB2-calculated values. When

specifying primary and secondary quantities, you must either

specify both values or omit both values.

 Use the MAXPRIME option to set an upper limit on the primary

quantity.

CYL

Specifies that allocation quantities, if present, are to be

expressed in cylinders and that allocation is to occur in

cylinders. If SPACE CYL is specified, without

(primary,secondary), the DB2-calculated quantities are allocated

in cylinders by using 3390 quantities for byte conversion.

 The default is CYL.

TRK

Specifies that, in the absence of values for (primary,secondary),

the DB2-calculated quantities are to be allocated in tracks by

using 3390 disk drive quantities for byte conversion. If the

amount calculated is greater than one cylinder, the TRK

keyword is ignored and the data set is allocated in cylinders

(CYL).

MB

Specifies that allocation quantities, if present, are to be

expressed in megabytes, and that allocation is to occur in

records. One megabyte is 1 048 576 bytes. If SPACE MB is

specified, without (primary,secondary), the DB2-calculated

quantities are allocated in records by using the average record

length for the data set.

TEMPLATE

Chapter 31. TEMPLATE 597

#
#
#
#

See “Default space calculations” on page 602 for default space

calculations for each utility data set.

PCTPRIME integer

Specifies the percentage of the estimated required space that is to

be obtained as the primary quantity. The default is 100.

 Use the MAXPRIME option to set the upper limit of this value for

large objects.

MAXPRIME integer

Specifies the maximum allowable primary space allocation,

expressed in cylinders (CYL). This value constrains the primary

space value and the PCTPRIME calculation, as well as the size of

each secondary allocation.

NBRSECND integer

Specifies the division of secondary space allocations. After the

primary space is allocated, an amount of space equal to the

estimated required space is divided into the specified number of

secondary allocations. The integer value must be in the range from

1 to 10. The default value is 10.

DIR integer Specifies the number of 256-byte records that are to be allocated for

the directory of a new partitioned data set. You must specify this

operand if you are allocating a new partitioned data set.

 If the template is being used in a UNLOAD statement with BLOBF,

CLOBF, or DBCLOBF and you specify a DSNTYPE of LIBRARY or

PDS, but do not specify DIR, DB2 calculates the number of

256-byte records to allocate by dividing the estimated number of

records by 20.

DSNTYPE Specifies the type of data set to be allocated.

LIBRARY

Specifies that a partitioned data set extended (PDSE) is to be

allocated.

PDS

Specifies that a partitioned data set (PDS) is to be allocated.

HFS

Specifies that a hierarchical file system (HFS) file is to be

allocated.

NULL

Specifies a null file. Use this value for a template with

UNLOAD CLOBF, BLOBF, or DBCLOBF to unload a null LOB

value. In this case, the unload data set contains a null file

name.

If you omit DSNTYPE, the type of data set is determined by other

data set attributes, the data class for the data set, or an installation

default.

End of disk-options

tape-options

TEMPLATE

598 Utility Guide and Reference

##
#
#

#
#
#
#
#

##

#
#
#

#
#

#
#
#

#
#
#
#
#

#
#
#

STACK Specifies whether output data sets are to be stacked contiguously

on the same tape volumes.

NO

Specifies that output data sets are not to be stacked

contiguously on tape. The default is NO.

YES

Specifies that similar output data sets are to be stacked as

successive files on one logical tape volume, where a logical

tape volume can consist of a multi-volume aggregate. Within

one utility execution, output data sets are stacked on a logical

tape volume of the same usage type. For example, local

primary image copies are stacked separately from local backup

image copies.

 Restriction: Do not use the STACK YES option for concurrent

copies (copies that are made by the COPY utility with the

CONCURRENT option).

To preserve parallel processing, parallel tasks are written to

different tape volumes. The specific volume to which the data

set is written can vary, depending on the number of output

data sets that are being produced, the number of parallel

processes that are requested, and the number of tape units that

are available to the job step.

The data sets and utilities for which the STACK YES option are

supported are listed in Table 126. ″Yes″ indicates that the

specified utility supports tape stacking for the specified data

set. ″No″ indicates that the specified utility does not support

tape stacking for the specified data set. ″Ignored″ indicates that

the specified data set does not apply to the specified utility.

 Table 126. Supported data sets for tape stacking

ddname

CHECK

DATA

CHECK

INDEX or

CHECK

LOB COPY

COPY-

TOCOPY LOAD

MERGE-

COPY

REBUILD

INDEX

REORG

INDEX

REORG

TABLE-

SPACE UNLOAD

SYSREC Ignored Ignored Ignored Ignored No Ignored Ignored Ignored Yes Yes

SYSDISC Ignored Ignored Ignored Ignored No Ignored Ignored Ignored Yes Ignored

SYSPUNCH Ignored Ignored Ignored Ignored Ignored Ignored Ignored Ignored Yes Yes

SYSCOPY Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSCOPY2 Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSRCPY1 Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSRCPY2 Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSUT1 No No Ignored Ignored No Ignored No No No Ignored

SORTOUT No Ignored Ignored Ignored No Ignored Ignored No No Ignored

SYSMAP Ignored Ignored Ignored Ignored No Ignored Ignored Ignored Ignored Ignored

SYSERR No Ignored Ignored Ignored No Ignored Ignored Ignored Ignored Ignored

FILTERDDS Ignored Ignored No Ignored Ignored Ignored Ignored Ignored Ignored Ignored

TRTCH Specifies the track recording technique for magnetic tape drives

that have improved data recording capability.

NONE

Specifies that the TRTCH specification is to be eliminated from

dynamic allocation. The default is NONE.

TEMPLATE

Chapter 31. TEMPLATE 599

#
#
#
#
#
#

##

#
#
#

#
#
#
##
#
##
#
#
#
#
#
#

#
#
##
###########
###########
###########
###########
###########
###########
###########
###########
###########
###########
###########
###########
#

#

COMP

Specifies that data is to be written in compacted format.

NOCOMP

Specifies that data is to be written in standard format.

End of tape-options

Instructions for using TEMPLATE

Some DB2 utilities produce data sets during execution. These data sets are

referenced in utility control statements by a set of DD name keywords and are

specified in detail in the corresponding JCL.

As an alternative to using JCL to specify the data sets, you can use the TEMPLATE

utility control statement to dynamically allocate utility data sets. Options of the

TEMPLATE utility allow you to specify the following information:

v The data set naming convention

v DFSMS parameters

v Disk or tape allocation parameters

You can specify a template in the SYSIN data set, immediately preceding the utility

control statement that references it, or in one or more TEMPLATE libraries.

A TEMPLATE library is a data set that contains only TEMPLATE utility control

statements. You can specify a TEMPLATE data set DD name by using the

TEMPLATEDD option of the OPTIONS utility control statement. This specification

applies to all subsequent utility control statements until the end of input or until

DB2 encounters a new OPTIONS TEMPLATEDD(ddname) specification.

Any template that is defined within SYSIN overrides another template definition of

the same name in a TEMPLATE data set.

TEMPLATE utility control statements enable you to standardize data set allocation

and the utility control statements that reference those data sets, which reduces the

need to customize and alter utility job streams.

Key TEMPLATE operations

Like both LISTDEF and OPTIONS utility control statements, a TEMPLATE control

statement performs a setup operation in preparation for use by another utility.

When the control statement is processed, the information is saved under the

template name for the duration of the job step. You can reference it as though it

were an output data set DD name by substituting the template name for the DD

name on most utility control statements. If a DD name and a TEMPLATE name

conflict, the DD statement is used for allocation, and the TEMPLATE is ignored.

Minimally, a TEMPLATE statement consists of a name (similar to a DD name) and

a data set naming convention. If nothing else is specified, DB2 calculates the

required data set size and uses default data set attributes that are appropriate to

the data set that is being created. DB2 then allocates a disk data set with these

defaults.

The required TEMPLATE statement might look something like the following

TEMPLATE statement:

TEMPLATE

600 Utility Guide and Reference

TEMPLATE tmp1 DSN(DB2.&TS..D&JDATE..COPY&ICTYPE.&LOCREM.&PRIBAC.)

 VOLUMES(vol1,vol2,vol3)

LISTDEF payroll INCLUDE TABLESPACE PAYROLL.*

 INCLUDE INDEXSPACE PAYROLL.*IX

 EXCLUDE TABLESPACE PAYROLL.TEMP*

 EXCLUDE INDEXSPACE PAYROLL.TMPIX*

COPY LIST payroll COPYDDN(tmp1,tmp1) RECOVERYDDN(tmp1,tmp1)

See “Syntax and options of the TEMPLATE control statement ” on page 587 for

details.

Creating data set names

The data set naming convention that is specified on the DSN option of each

TEMPLATE statement must be appropriate for the data set that is being created

and coordinated with the other templates and DD statements in the same job step.

The data set name must be both unique and meaningful. DB2 does not check that

the data set names are unique until the execution of the utility that references the

template. Ensure that the data set names are unique when you define the data set

naming convention on the TEMPLATE control statement. Follow these guidelines

when developing template names:

v Use a combination of static characters, national characters, and the provided

variable names to form valid z/OS data set qualifiers. Normal z/OS rules apply.

Variables that produce numeric values must be preceded by either a static

character or a character variable. All qualifiers must start with an alphabetic

character. The qualifiers must consist of a maximum of eight characters and a

maximum of 44 characters for the entire data set name. To help comply with this

44 character limit, you can use variable substring notation. For more information

about variable substring notation, see the description of &variable in “Option

descriptions” on page 590.

v Use the two-character form of the DSN variables to save space.

v Use two consecutive periods following all variables that precede the last

qualifier (one to terminate the variable, followed by a second static period to

separate the qualifiers), as in the following example:

&DB..&TS.

v Use &DB. and &TS. to relate the data set to a database object.

v Use &PART. when executing PARTLEVEL lists. Preceed the variable with a static

character or a character variable to form a valid qualifier.

v Use &JO. and &ST. to eliminate conflicts with other jobs or job steps.

v Use &SS., &US., &UT., and &UN. if you have a need to know the subsystem,

member, user, utility ID, or name of the utility that produced the data set.

v Use &DATE. and &TIME. or the shorter substring variations to guarantee

uniqueness. Preceed the variable with a static character or a character variable to

form a valid qualifier.

v Use &IC., &LR., and &PB. to identify image copy data sets. For example, the

following template name would make a meaningful seven-character data set

qualifier:

COPY&IC.&LR.&PB.

Controlling data set size

You can also use the TEMPLATE syntax to specify disk space parameters. If you

do not specify the SPACE keyword, DB2 estimates the size of the data set based on

formulas that vary according to the utility and the data set. See “Default space

calculations” on page 602 for details.

TEMPLATE

Chapter 31. TEMPLATE 601

DB2 usually estimates the size of a data set based on the size of other existing data

sets; however, if any of the required data sets are on tape, DB2 is unable to

estimate the size. When DB2 is able to calculate size, it calculates the maximum

size. This action can result in overly large data sets. DB2 always allocates data set

size with the RLSE (release) option so that unused space is released on

deallocation. However in some cases, the calculated size of required data sets is too

large for the DYNALLOC interface to handle. In this case, DB2 issues error

message DSNU1034I, you must allocate the data set by a DD statement. If the

object is part of a LISTDEF list, you might need to remove it from the list and

process it individually.

 Database administrators can check utility control statements without executing

them by using the PREVIEW function. In PREVIEW mode, DB2 expands all

TEMPLATE data set names in the SYSIN DD, in addition to any data set name

from the TEMPLATE DD that are referenced on a utility control statement. DB2

then prints the information to the SYSPRINT data set and halts execution. You can

specify PREVIEW in one of two ways, either as a JCL PARM or on the OPTIONS

PREVIEW utility control statement.

Default space calculations

Three keywords are provided to let you manage how DB2 allocates the required

space for the data set. You can use these three keywords, in combination, to

constrain and quantify the allocation extents.

PCTPRIME

100% of the required space estimated by DB2 is allocated as a PRIMARY

quantity. If this amount of space is typically not available on a single

volume, decrease PCTPRIME.

MAXPRIME

If you want an upper limit based on size, not on percentage, use

MAXPRIME.

NBRSECND

After the restrictions on the PRIMARY quantity have been applied, a

SECONDARY quantity equal to the estimated required space is divided

into the specified number of secondary extents.

If you omit the SPACE option quantities, current data set space estimation

formulas that are shown in the ″Data sets that utility uses″ sections for each online

utility are implemented as default values for disk data sets.

Recommendation: Run the RUNSTATS utility with the UPDATE SPACE or

UPDATE ALL option before you run any of the following utilities to improve the

accuracy of the default space estimation:

v CHECK DATA

v CHECK INDEX

v CHECK LOB

v REBUILD INDEX

v REORG INDEX

v REORG TABLESPACE

Working with TAPE

The STACK keyword supports tape processing in two forms. The first form,

STACK NO, supports traditional, single-file processing. The data set is written, and

TEMPLATE

602 Utility Guide and Reference

|
|
|

|

|

|

|

|

|

the tape is rewound and repositioned or even remounted. The second form,

STACK YES, lets successive files be written on a single logical tape without

repositioning or remounting. Important considerations for STACK YES processing

include:

v You can stack only like files on the same tape. For example, one tape might

contain local primary image copies whereas another tape might contain remote

primary image copies. The file types cannot be mixed.

v DB2 stacks files only within a single utility invocation. When that utility ends,

the stack is terminated (meaning that the tape is rewound and unloaded). To

allow stacking, use a LISTDEF list to force multiple objects to be processed

under a single utility invocation.

v Parallel processing can complicate stacking. To prevent conflicts between parallel

processes, use a single process to write a file to a given stack.

Working with GDGs

TEMPLATE DSN operands support both GDG absolute version references and

relative references. DB2 detects the absence of a GDG base and creates it, with a

limit of 99 entries, by default. Use the keyword GDGLIMIT to alter this value or

prohibit this action. If you use the PREVIEW function on the OPTIONS utility

control statement, DB2 displays the GDG relative version references. GDG names

are restricted to 35 characters.

A model data set, as defined in the MODELDCB option, might be required to

allocate GDG data sets in your environment.

Terminating or restarting TEMPLATE

You can terminate a TEMPLATE utility job by using the TERM UTILITY command

if you submitted the job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a TEMPLATE utility job, but it starts from the beginning again. If

you are restarting this utility as part of a larger job in which TEMPLATE

completed successfully, but a later utility failed, do not change the TEMPLATE

utility control statement, if possible. If you must change the TEMPLATE utility

control statement, use caution; any changes can cause the restart processing to fail.

For example, if you change the template name of a temporary work data set that

was opened in an earlier phase and closed but is to be used later, the job fails. For

guidance in restarting online utilities, see “Restarting an online utility” on page 41.

Concurrency and compatibility for TEMPLATE

TEMPLATE is a control statement that is used to set up an environment for

another utility to follow. The template is stored until it is referenced by a specific

utility. The list is expanded when it is referenced by another utility. At that time,

the concurrency and compatibility restrictions of that utility apply, and the catalog

tables that are necessary to expand the list must be available for read-only access.

Sample TEMPLATE control statements

Example 1: Specifying a basic template for an image copy on disk. The following

TEMPLATE utility control statement defines a basic template that can be used to

allocate an image copy data set. The name of the template is COPYDS. Any

subsequent COPY jobs that specify this template for dynamically allocated data

sets use the data set naming convention that is defined by the DSN option.

TEMPLATE COPYDS DSN &DB..&TS..COPY&IC.&LR.&PB..D&DATE..T&TIME.

TEMPLATE

Chapter 31. TEMPLATE 603

Example 2: Using variable substring notation to specify data set names. The

following control statement defines template CP2. Variable substring notation is

used in the DSN option to define the data set naming convention.

Assume that in the year 2003 you make a full image copy of partition 00004 of

table space DSN8S81D. Assume that you specify the template CP2 for the data set

for the local primary copy. DB2 gives the following name to the image copy data

set: DH173001.DSN8S81D.Y03.COPYLP.P004

Notice that every variable in the DSN option begins with an ampersand (&) and

ends with a period (.). These ampersands and periods are not included in the data

set name. Only periods that do not signal the end of a variable are included in the

data set name.

TEMPLATE CP2 DSN ’DH173001.&SN..Y&YEAR(3)..COPY&LR.&PB..P&PART(3,3).’

 UNIT(SYSDA)

Example 3: Using COPY with TEMPLATE with variable substring notation. The

following TEMPLATE utility control statement defines template SYSCOPY. Variable

substring notation is used in the DSN option to define the data set naming

convention. The subsequent COPY utility control statement specifies that DB2 is to

make a local primary copy of the first partition of table space

DSN8D81A.DSN8S81E. COPY is to write this image copy to a data set that is

dynamically allocated according to the SYSCOPY template. In this case, the

resulting data set name is DSN8D81A.DSN8S81E.P001

TEMPLATE SYSCOPY DSN ’&DB..&TS..P&PA(3).’

COPY TABLESPACE DSN8D81A.DSN8S81E DSNUM 1 COPYDDN(SYSCOPY)

Notice that you can change the part variable in the DSN operand from P&PA(3). to

P&PA(3,3). The resulting data set name is the same, because the length value of 3

is implied in the first specification.

Example 4: Specifying a template for tape data sets with an expiration date. The

following control statement defines the TAPEDS template. Any data sets that are

defined with this template are to be allocated on device number 3590-1, as

indicated by the UNIT option, and are to expire on 1 January 2100, as indicated by

the EXPDL option. The DSN option indicates that these data set names are to have

the following three parts: database name, table space name, and date.

TEMPLATE TAPEDS DSN(&DB..&TS..D&DATE.)

 UNIT 3590-1 EXPDL ’2100001’

Example 5: Specifying a disk template that gives space allocation parameters. The

following control statement defines the DISK template. Any data sets that are

defined with this template are to have 100 cylinders of primary disk space and 10

cylinders of secondary disk space, as indicated by the SPACE and CYL options.

The DSN option indicates that the data set names are to have the following three

parts: database name, table space name, and time.

TEMPLATE DISK DSN &DB..&TS..T&TIME.

 SPACE(100,10) CYL

Example 6: Specifying a disk template that uses a default size with constraints.

The following control statement defines the DISK template. Because the SPACE

option does not specify quantities for primary and secondary space allocation, DB2

calculates these values with the following constraint: the maximum allowable

primary space allocation is 1000 cylinders. This constraint is indicated by the

TEMPLATE

604 Utility Guide and Reference

MAXPRIME option. The DSN option indicates that the data set names are to have

the following three parts: database name, table space name, and time.

TEMPLATE DISK DSN(&DB..&TS..T&TIME.)

 SPACE CYL MAXPRIME 1000

Example 7: Using TEMPLATE with LISTDEF and COPY. In the following example,

the LISTDEF utility control statement defines the CPY1 list. The TEMPLATE

control statement then defines the TMP1 template. The COPY utility control

statement then specifies that DB2 is to make local copies of the objects in the CPY1

list. DB2 is to write these copies to data sets that are dynamically allocated

according to the characteristics that are defined in the TMP1 template.

LISTDEF CPY1 INCLUDE TABLESPACES TABLESPACE DBA906*.T*A906*

 INCLUDE INDEXSPACES COPY YES INDEXSPACE ADMF001.I?A906*

TEMPLATE TMP1 UNIT SYSDA

 DSN (DH109006.&STEPNAME..&SN..T&TIME.)

 DISP (MOD,CATLG,CATLG)

COPY LIST CPY1 COPYDDN (TMP1) PARALLEL (2) SHRLEVEL REFERENCE

Note: Parentheses for the DSN name-expression are optional.

Example 8: Use TEMPLATE to create a GDG data set. In the example in

Figure 104, the TEMPLATE control statement defines the COPYTEMP template.

The COPY utility control statement specifies that DB2 is to write a local image

copy of the table space DBLT2501.TPLT2501 to a data set that is dynamically

allocated according to the characteristics that are defined in the COPYTEMP

template. According to the COPYTEMP template, this data set is to be named

JULTU225.GDG(+1) (as indicated by the DSN option) and is to have six entries

created in the GDG base (as indicated by the GDGLIMIT option). The control block

information is to be the same as that in the JULTU225.MODEL data set, as

indicated by the MODELDCB option.

Example 9: Using a template to copy a GDG data set to tape. In the example in

Figure 105 on page 606, the OPTIONS utility control statement causes the

//**

//* COMMENT: Define a model data set. *

//**

//STEP1 EXEC PGM=IEFBR14

//SYSCOPX DD DSN=JULTU225.MODEL,DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20)),VOL=SER=SCR03,

// DCB=(RECFM=FB,BLKSIZE=4000,LRECL=100)

//***

//* COMMENT: GDGLIMIT(6)

//***

//STEP2 EXEC DSNUPROC,UID=’JULTU225.GDG’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//SYSIN DD *

 TEMPLATE COPYTEMP

 UNIT SYSDA

 DSN ’JULTU225.GDG(+1)’

 MODELDCB JULTU225.MODEL

 GDGLIMIT(6)

 COPY TABLESPACE DBLT2501.TPLT2501

 FULL YES

 COPYDDN (COPYTEMP)

 SHRLEVEL REFERENCE

/*

Figure 104. Example TEMPLATE and COPY statements for writing a local copy to a data set

that is dynamically allocated according to the characteristics of the template.

TEMPLATE

Chapter 31. TEMPLATE 605

subsequent TEMPLATE statement to run in PREVIEW mode. In this mode, DB2

checks the syntax of the TEMPLATE statement. If DB2 determines that the syntax

is valid, it expands the data set names. The OPTIONS OFF statement ends

PREVIEW mode processing. The subsequent COPY utility control statement

executes normally. The COPY statement specifies that DB2 is to write a local image

copy of the table space DBLT4301.TPLT4301 to a data set that is dynamically

allocated according to the characteristics that are defined in the COPYTEMP

template. According to the COPYTEMP template, this data set is to be named

JULTU243.GDG(+1) (as indicated by the DSN option) and is to be stacked on the

tape volume 99543 (as indicated by the UNIT, STACK, and VOLUMES options).

The data set dispositions are specified by the DISP option. The GDGLIMIT option

specifies that 50 entries are to be created in a GDG base.

Example 10: Creating a template that can be used for unloading LOB objects The

TEMPLATE control statement in Figure 106 defines a template called LOBFRV. The

subsequent UNLOAD statement specifies that each CLOB in the RESUME column

is to be unloaded to files that are dynamically allocated according to the

characteristics defined for the LOBFRV template. In this case, those files are to be

partitioned data sets, as specified by the DSNTYPE option. Each data set is to have

the name UNLODTEST.database-name.LOB-table-space-name.RESUME, as specified by

the DSN option. The names of each CLOB PDS is written to the unload data set.

By default, the unload data set is defined by the SYSREC DD statement or

template.

/*

//***

//* COMMENT: COPY GDG DATA SET TO TAPE

//***

//STEP1 EXEC DSNUPROC,UID=’JULTU243.GDG’,

// UTPROC=’’,

// SYSTEM=’SSTR’

//SYSIN DD *

 OPTIONS PREVIEW

 TEMPLATE COPYTEMP

 UNIT TAPE

 DSN ’JULTU243.GDG(+1)’

 VOLUMES (99543)

 GDGLIMIT(50)

 DISP(NEW,CATLG,CATLG)

 STACK YES

 OPTIONS OFF

 COPY TABLESPACE DBLT4301.TPLT4301

 FULL YES

 COPYDDN (COPYTEMP)

 SHRLEVEL REFERENCE

/*

Figure 105. Example job that uses OPTIONS, TEMPLATE, and COPY statements to copy a

GDG data set to tape.

TEMPLATE LOBFRV DSN 'UNLDTEST.&DB..&TS..RESUME'

 DSNTYPE(PDS) UNIT(SYSDA)

UNLOAD DATA

 FROM TABLE DSN8910.EMP_PHOTO_RESUME

 (EMPNO CHAR(6),

 RESUME VARCHAR(255) CLOBF LOBFRV)

 SHRLEVEL CHANGE

Figure 106. Example job that creates a template that can be used for unloading LOB objects.

TEMPLATE

606 Utility Guide and Reference

#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#

#

Chapter 32. UNLOAD

The online UNLOAD utility unloads data from one or more source objects to one

or more BSAM sequential data sets in external formats. The source can be DB2

table spaces or DB2 image copy data sets. The source cannot be a concurrent copy.

UNLOAD must be run on the system where the definitions of the table space and

the table exists.

UNLOAD is an enhancement of the REORG UNLOAD EXTERNAL function. With

UNLOAD, you can unload rows from an entire table space or select specific

partitions or tables to unload. You can also select columns by using the field

specification list. If a table space is partitioned, you can unload all of the selected

partitions into a single data set, or you can unload each partition in parallel into

physically distinct data sets.

The output records that the UNLOAD utility writes are compatible as input to the

LOAD utility; as a result, you can reload the original table or different tables.

For a diagram of UNLOAD syntax and a description of available options, see

“Syntax and options of the UNLOAD control statement” on page 608. For detailed

guidance on running this utility, see “Instructions for running UNLOAD” on page

641.

Output: UNLOAD generates an unloaded table space or partition.

Authorization required: To execute this utility, you must use a privilege set that

includes one of the following authorities:

v Ownership of the tables

v SELECT privilege on the tables

v DBADM authority for the database

v SYSADM authority

v SYSCTRL authority (catalog tables only)

If you use RACF access control with multilevel security and UNLOAD is to

process a table space that contains a table that has multilevel security with

row-level granularity, you must be identified to RACF and have an accessible valid

security label. Each row is unloaded only if your security label dominates the data

security label. If your security label does not dominate the data security label, the

row is not unloaded, but DB2 does not issue an error message. For more

information about multilevel security and security labels, see Part 3 of DB2

Administration Guide.

Execution phases of UNLOAD: The UNLOAD utility operates in these phases:

Phase Description

UTILINIT Performs initialization.

UNLOAD Unloads records to sequential data sets. One pass through the

input data set is made. If UNLOAD is processing a table space or

partition, DB2 takes internal commits. These commits provide

commit points at which the utility can be restarted in case

operation should halt in this phase.

UTILTERM Performs cleanup.

© Copyright IBM Corp. 1983, 2008 607

|
|
|
|
|
|
|
|

The following topics provide additional information:

v “Syntax and options of the UNLOAD control statement”

v “Instructions for running UNLOAD” on page 641

v “Concurrency and compatibility for UNLOAD” on page 654

v “Sample UNLOAD control statements” on page 656

Syntax and options of the UNLOAD control statement

The utility control statement defines the function that the utility job performs. You

can create a control statement with the ISPF/PDF edit function. After creating it,

save it in a sequential or partitioned data set. When you create the JCL for running

the job, use the SYSIN DD statement to specify the name of the data set that

contains the utility control statement.

Syntax diagram

��

UNLOAD

�

�

DATA

from-table-spec

from-table-spec

source-spec

from-table-spec

LIST

listdef-name

unload-spec

��

source-spec:

�� TABLESPACE tablespace-name

database-name.

PART

integer

int1

:

int2

 �

�
FROMCOPY

data-set-name

FROMVOLUME

CATALOG

vol-ser

(1)

FROMSEQNO

n

FROMCOPYDDN

ddname

 ��

Notes:

1 The FROMSEQNO option is required if you are unloading an image copy from a tape data set

that is not cataloged.

UNLOAD

608 Utility Guide and Reference

||

unload-spec:

��
 PUNCHDDN SYSPUNCH

PUNCHDDN

ddname

template-name

 UNLDDN SYSREC

UNLDDN

ddname

template-name

EBCDIC

ASCII

UNICODE

�

�

�

,

CCSID(

integer

)

NOSUBS

NOPAD
 �

�

COLDEL

','

CHARDEL

'"'

DECPT

'.'

DELIMITED

COLDEL

coldel

CHARDEL

chardel

DECPT

decpt

 FLOAT S390

FLOAT

IEEE

�

�
 MAXERR 1

MAXERR

integer

 SHRLEVEL CHANGE ISOLATION CS

SHRLEVEL

CHANGE

ISOLATION

UR

REFERENCE

��

FROM-TABLE-spec:

For the syntax diagram and the option descriptions of the FROM TABLE

specification, see “FROM-TABLE-spec ” on page 617.

Option descriptions

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

DATA Identifies the data that is to be selected for unloading with table-name in

the from-table-spec. The DATA keyword is mutually exclusive with

TABLESPACE, PART, and LIST keywords.

 When you specify the DATA keyword, or you omit either the

TABLESPACE or the LIST keyword, you must also specify at least one

FROM TABLE clause.

TABLESPACE

Specifies the table space (and, optionally, the database to which it belongs)

from which the data is to be unloaded.

database-name

The name of the database to which the table space belongs. The name

cannot be DSNDB01 or DSNDB07. The default is DSNDB04.

tablespace-name

The name of the table space from which the data is to be unloaded.

The specified table space must not be a LOB table space.

PART

Identifies a partition or a range of partitions from which the data is to

UNLOAD

Chapter 32. UNLOAD 609

|||||||||||||

be unloaded. This keyword applies only if the specified table space is

partitioned. You cannot specify PART with LIST. The maximum is 4096.

integer

Designates a single partition. integer must identify an existing

partition number within the table space.

int1:int2

Designates a range of partitions from int1 to int2. int1 must be a

positive integer that is less than the highest partition number

within the table space. int2 must be an integer that is greater than

int1 and less than or equal to the highest partition number.

 If no PART keyword is specified in an UNLOAD control statement, the

data from the entire table space is unloaded into a single unload data

set.

FROMCOPY data-set-name

Indicates that data is to be unloaded from an image copy data set. When

you specify FROMCOPY, the UNLOAD utility processes only the specified

image copy data set. Alternatively, you can use the FROMCOPYDDN

keyword where multiple image copy data sets can be concatenated under a

single DD name.

data-set-name

Specifies the name of a single image copy data set.

 The image copy data set that you specify on the FROMCOPY keyword

must be created by one of the following utilities:

v COPY

v COPYTOCOPY

v LOAD inline image copy

v MERGECOPY

v REORG TABLESPACE inline image copy

v DSN1COPY

If the specified image copy data set is a full image copy, either

compressed or uncompressed records can be unloaded.

If the default of SYSTEMPAGES was used for the incremental image

copy, either compressed or uncompressed records can be unloaded.

If the specified image copy data set is an incremental image copy or a

copy of a partition or partitions, you can unload compressed records

only when the same data set contains the dictionary pages for

decompression. If an image copy data set contains a compressed row

and a dictionary is not available, DB2 issues an error message. See

“MAXERR” on page 616 for more information about specifying

error-tolerance conditions.

When you specify FROMCOPY or FROMCOPYDDN, you can also

specify selection criteria with either PART, FROM TABLE, or both, to

qualify tables and rows that are to be unloaded.

FROMVOLUME

Identifies the volume where the image copy data set resides.

CATALOG

Indicates that the data set is cataloged. Use this option only for an

image copy that was created as a cataloged data set (which means that

its volume serial is not recorded in SYSIBM.SYSCOPY).

UNLOAD

610 Utility Guide and Reference

|

vol-ser

Identifies the data set by an alphanumeric volume serial identifier of

its first volume. Use this option only for an image copy that was

created as a non-cataloged data set. To specify a data set that is stored

on multiple tape volumes, identify the first vol-ser in the SYSCOPY

record.

FROMSEQNO n

Identifies the image copy data set by its file sequence number. The

FROMSEQNO option is required if you are unloading an image

copy from a tape data set that is not cataloged.

n Specifies the file sequence number.

FROMCOPYDDN ddname

Indicates that data is to be unloaded from one or more image copy data

sets that are associated with the specified ddname. Multiple image copy

data sets (primarily for the copy of pieces) can be concatenated under a

single DD name.

ddname

Identifies a DD name with which one or more image copy data sets are

associated.

LIST listdef-name

Identifies the name of a list of objects that are defined by a LISTDEF utility

control statement. The list can include table spaces, index spaces,

databases, a tables, an index, and partitions. The list cannot include index

spaces, LOB table spaces, and directory objects. You cannot use the LIST

option to specify image copy data sets.

 When you specify the LIST option, the referenced LISTDEF identifies:

v The table spaces from which the data is to be unloaded. You can use the

pattern-matching feature of LISTDEF.

v The partitions (if a table space is partitioned) from which the data is to

be unloaded (defined by the INCLUDE, EXCLUDE, and PARTLEVEL

keywords in the LISTDEF statement).

The UNLOAD utility associates a single table space with one output data

set, except when partition-parallelism is activated. When you use the LIST

option with a LISTDEF that represents multiple table spaces, you must also

define a data set TEMPLATE that corresponds to all of the table spaces and

specify the template-name in the UNLDDN option.

If you want to generate the LOAD statements, you must define another

TEMPLATE for the PUNCHDDN data set that is similar to UNLDDN. DB2

then generates a LOAD statement for each table space.

PUNCHDDN

Specifies the DD name for a data set or a template name that defines one

or more data set names that are to receive the LOAD utility control

statements that the UNLOAD utility generates.

ddname

Specifies the DD name. The default is SYSPUNCH.

template-name

Identifies the name of a data set template that is defined by a

TEMPLATE utility control statement.

UNLOAD

Chapter 32. UNLOAD 611

|

|

|
|
|

If the specified name is defined both as a DD name (in the JCL) and as a

template name (in a TEMPLATE statement), it is treated as the DD name.

When you run the UNLOAD utility for multiple table spaces and you

want to generate corresponding LOAD statements, you must have multiple

output data sets that correspond to the table spaces so that DB2 retains all

of the generated LOAD statements. In this case, you must specify an

appropriate template name to PUNCHDDN. If you omit the PUNCHDDN

specification, the LOAD statements are not generated.

If the partition variable (&PART or &PA) is included in a TEMPLATE for

PUNCHDDN, DB2 replaces the &PART or &PA variable with the lowest

partition number in the list of partitions to be unloaded. The partition

number is in the form nnnnn.

UNLDDN

Specifies the DD name for a data set or a template name that defines one

or more data set names into which the data is to be unloaded.

ddname

Specifies the DD name. The default is SYSREC.

template-name

Identifies the name of a data set template that is defined by a

TEMPLATE utility control statement.

 If the specified name is defined both as a DD name (in the JCL) and as a

template name (in a TEMPLATE statement), it is treated as the DD name.

When you run the UNLOAD utility for a partitioned table space, the

selected partitions are unloaded in parallel if the following conditions are

true:

1. You specify a template name for UNLDDN.

2. The template data set name contains the partition as a variable (&PART.

or &PA.) without substring notation. This template name is expanded

into multiple data sets that correspond to the selected partitions.

3. The TEMPLATE control statement does not contain all of the following

options:

v STACK(YES)

v UNIT(TAPE)

v An UNCNT value that is less than or equal to one.

If conditions 1 and 2 are true, but condition 3 is false, partition parallelism

is not activated and all output data sets are stacked on one tape.

If condition 2 is false because &PA(s,l). substring syntax is used, the DSN

may not be unique for all partitions and parallel UNLOAD cannot be

performed. Therefore the &PA. variable is set to zero and a single

UNLDDN data set is used for all partitions. This action may cause

duplicate data set errors on subsequent UNLOAD jobs for other partitions

of the same table space.

Similarly, when you run the UNLOAD utility for multiple table spaces, the

output records are placed in data sets that correspond to the respective

table spaces. Therefore the output data sets must be physically distinctive,

and you must specify an appropriate template name to UNLDDN. If you

omit the UNLDDN specification, the SYSREC DD name is not used, and

an error occurs.

UNLOAD

612 Utility Guide and Reference

#
#
#
#
#
#

If the partition variable (&PART. or &PA.) is included in the TEMPLATE

DSN statement when partition parallelism is not applicable (when the

source is a non-partitioned table space or an image copy), the variable is

replaced by '00000' in the actual data set name. In this case, warning

message DSNU1252I is issued, and the UNLOAD utility issues return code

4.

EBCDIC

Specifies that all output data of the character type is to be in EBCDIC. If a

different encoding scheme is used for the source data, the data (except for

bit strings) is converted into EBCDIC.

 If you do not specify EBCDIC, ASCII, UNICODE, or CCSID, the encoding

scheme of the source data is preserved.

See the description of the CCSID option for this utility.

ASCII Specifies that all output data of the character type is to be in ASCII. If a

different encoding scheme is used for the source data, the data (except for

bit strings) is converted into ASCII.

 If you do not specify EBCDIC, ASCII, UNICODE, or CCSID, the encoding

scheme of the source data is preserved.

See the description of the CCSID option for this utility.

UNICODE

Specifies that all output data of the character type (except for bit strings) is

to be in Unicode. If a different encoding scheme is used for the source

data, the data is converted into Unicode.

 If you do not specify EBCDIC, ASCII, UNICODE, or CCSID, the encoding

scheme of the source data is preserved.

See the description of the CCSID option of this utility.

CCSID(integer1,integer2,integer3)

Specifies up to three coded character set identifiers (CCSIDs) that are to be

used for the data of character type in the output records, including data

that is unloaded in the external character formats.

 integer1 specifies the CCSID for SBCS data. integer2 specifies the CCSID for

mixed data. integer3 specifies the CCSID for DBCS data. This option is not

applied to data with a subtype of BIT.

If you specify both FORMAT DELIMITED and UNICODE, all output data

is in CCSID 1208, UTF-8; any other specified CCSID is ignored.

The following specifications are also valid:

CCSID(integer1)

Indicates that only an SBCS CCSID is specified.

CCSID(integer1,integer2)

Indicates that an SBCS CCSID and a mixed CCSID are specified.

integer

Specifies either a valid CCSID or 0.

 If you specify a value of 0 for one of the arguments or omit a value, the

encoding scheme that is specified by EBCDIC, ASCII, or UNICODE is

assumed for the corresponding data type (SBCS, MIXED, or DBCS). If you

do not specify EBCDIC, ASCII, or UNICODE:

UNLOAD

Chapter 32. UNLOAD 613

#

|
|

v If the source data is of character type, the original encoding scheme is

preserved.

v For character strings that are converted from numeric, date, time, or

timestamp data, the default encoding scheme of the table is used. For

more information, see the CCSID option of the CREATE TABLE

statement in Chapter 5 of DB2 SQL Reference.

When a CCSID conversion is requested, CCSID character substitutions can

occur in the output string. Use the NOSUBS option to prevent possible

character substitutions during CCSID conversion.

NOSUBS

Specifies that CCSID code substitution is not to be performed during

unload processing.

 When a string is converted from one CCSID to another (including EBCDIC,

ASCII, and Unicode), a substitution character is sometimes placed in the

output string. For example, this substitution occurs when a character

(referred to as a code point) that exists in the source CCSID does not exist

in the target CCSID. You can use the NOSUBS keyword to prevent the

UNLOAD utility from allowing this substitution.

If you specify the NOSUBS keyword and character substitution is

attempted while data is being unloaded, this action is treated as a

conversion error. The record with the error is not unloaded, and the

process continues until the total error count reaches the number that is

specified by MAXERR.

NOPAD

Specifies that the variable-length columns in the unloaded records are to

occupy the actual data length without additional padding. As a result, the

unloaded or discarded records might have varying lengths.

 When you do not specify NOPAD:

v Default UNLOAD processing pads variable-length columns in the

unloaded records to their maximum length, and the unloaded records

have the same length for each table.

v The padded data fields are preceded by the length fields that indicate

the size of the actual data without the padding.

v When the output records are reloaded with the LOAD utility, padded

data fields are treated as varying-length data.

If you specify DELIMITED, the NOPAD option is the default for

variable-length columns. For fixed-length columns, the normal padding

rules apply.

Although LOAD processes records with variable-length columns that are

unloaded or discarded by using the NOPAD option, these records cannot

be processed by applications that process only fields in fixed positions. For

example, the LOAD statement that is generated for the EMP sample table

would look similar to the LOAD statement in Figure 77 on page 433.

DELIMITED

Specifies that the output data file is in a delimited format. When data is in

a delimited format, all fields in the output data set are character strings or

external numeric values. In addition, each column in a delimited file is

separated from the next column by a column delimiter character.

 For each of the delimiter types that you can specify, you must ensure that

the delimiter character is specified in the code page of the target data. The

UNLOAD

614 Utility Guide and Reference

|
|
|

|
|
|
|
|

|
|

delimiter character can be specified as either a character or hex constant.

For example, to specify # as the delimiter, you can specify either COLDEL

’#’ or COLDEL X'23'. If the utility statement is coded in a character type

that is different from the output file, such as a utility statement that is

coded in EBCDIC and output data that is in Unicode, specify the delimiter

character in the utility statement as a hex constant, or the result is

unpredictable.

You cannot specify the same character for more than one type of delimiter

(COLDEL, CHARDEL, and DECPT).

If you specify the FORMAT DELIMITED option, you cannot specify

HEADER CONST or use any of the multiple FROM TABLE statements.

Also, UNLOAD ignores any specified POSITION statements within the

UNLOAD utility control statement.

For delimited output, UNLOAD does not add trailing padded blanks to

variable-length columns, even if you do not specify the NOPAD option.

For fixed-length columns, the normal padding rules apply. For example, if

a VARCHAR(10) field contains ABC, UNLOAD DELIMITED unloads the

field as ″ABC″. However, for a CHAR(10) field that contains ABC, UNLOAD

DELIMITED unloads it as ″ABC ″. For information about using

delimited output and delimiter restrictions, see “Unloading delimited files”

on page 650. For more information about delimited files see Appendix F,

“Delimited file format,” on page 895.

COLDEL

Specifies the column delimiter that is used in the output file. The

default is a comma (,). For ASCII and UTF-8 data this is X'2C', and for

EBCDIC data it is a X'6B'.

CHARDEL

Specifies the character string delimiter that is used in the output file.

The default is a double quotation mark (″). For ASCII and UTF-8 data

this is X'22', and for EBCDIC data it is X'7F'.

 The UNLOAD utility adds the CHARDEL character before and after

every character string. To delimit character strings that contain the

character string delimiter, the UNLOAD utility repeats the character

string delimiter where it used in the character string. The LOAD utility

then interprets any pair of character delimiters that are found between

the enclosing character delimiters as a single character. For example,

the phrase what a “nice warm” day is unloaded as “what a ““nice

warm”” day”, and LOAD interprets it as what a “nice warm” day. The

UNLOAD utility recognizes these character pairs for only CHAR,

VARCHAR, and CLOB fields.

DECPT

Specifies the decimal point character that is used in the output file. The

default is a period (.).

 The default decimal point character is a period in a delimited file, X'2E'

in an ASCII data file, and X'4B' in an EBCDIC data file.

FLOAT

Specifies the output format of the numeric floating-point data. This option

applies to the binary output format only.

UNLOAD

Chapter 32. UNLOAD 615

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

S390

Indicates that the binary floating point data is written to the output

records in the S/390 internal format (also known as the hexadecimal

floating point, or HFP).

 The default is FLOAT S390.

IEEE

Indicates that the binary floating-point data is written to the output

records in the IEEE format (also known as the binary floating point, or

BFP).

MAXERR integer

Specifies the maximum number of records in error that are to be allowed;

the unloading process terminates when this value is reached.

integer

Specifies the number of records in error that are allowed. When the

error count reaches this number, the UNLOAD utility issues message

DSNU1219 and terminates with return code 8.

 The default is 1, which indicates that UNLOAD stops when the first

error is encountered. If you specify 0 or any negative number,

execution continues regardless of the number of records that are in

error.

 If multiple table spaces are being processed, the number of records in error

is counted for each table space. If the LIST option is used, you can add

OPTION utility control statement (EVENT option with ITEMERROR)

before the UNLOAD statement to specify that the table space in error is to

be skipped and the subsequent table spaces are to be processed.

SHRLEVEL

Specifies whether other processes can access or update the table space or

partitions while the data is being unloaded.

 UNLOAD ignores the SHRLEVEL specification when the source object is

an image copy data set.

The default is SHRLEVEL CHANGE ISOLATION CS.

CHANGE

Specifies that rows can be read, inserted, updated, and deleted from

the table space or partition while the data is being unloaded.

ISOLATION

Specifies the isolation level with SHRLEVEL CHANGE.

CS

Indicates that the UNLOAD utility is to read rows in cursor

stability mode. With CS, the UNLOAD utility assumes

CURRENTDATA(NO).

UR

Indicates that uncommitted rows, if they exist, are to be

unloaded. The unload operation is performed with minimal

interference from the other DB2 operations that are applied to

the objects from which the data is being unloaded.

UNLOAD

616 Utility Guide and Reference

REFERENCE

Specifies that during the unload operation, rows of the tables can be

read, but cannot be inserted, updated, nor deleted by other DB2

threads.

 When you specify SHRLEVEL REFERENCE, the UNLOAD utility

drains writers on the table space from which the data is to be

unloaded. When data is unloaded from multiple partitions, the drain

lock is obtained for all of the selected partitions in the UTILINIT

phase.

FROM-TABLE-spec

More than one table or partition for each table space can be unloaded with a single

invocation of the UNLOAD utility. One FROM TABLE statement for each table that

is to be unloaded is required to identify:

v A table name from which the rows are to be unloaded

v A field to identify the table that is associated with the rows that are to be

unloaded from the table by using the HEADER option

v Sampling options for the table rows

v A list of field specifications for the table that is to be used to select columns that

are to be unloaded

v Selection conditions, specified in the WHEN clause, that are to be used to

qualify rows that are to be unloaded from the table

All tables that are specified by FROM TABLE statements must belong to the same

table space. If rows from specific tables are to be unloaded, a FROM TABLE clause

must be specified for each source table. If you do not specify a FROM TABLE

clause for a table space, all the rows of the table space are unloaded.

Use a list of field specifications to specify the following characteristics:

v Column selection. Specifies the column names of a table that is to be unloaded.

If a list of field specifications is given, only the listed columns are unloaded.

v Column ordering. Specifies the order of fields that are to be placed in the output

records. If a list of field specifications is given, data of the listed columns is

unloaded in the order of listed column names.

v Output field attributes and format. Specifies the data type, length, and format of

the data in the output records.

If you omit a list of field specifications, all columns of the source table are

unloaded in the defined column order for the table. The default output field types

that correspond to the data types of the columns are used.

In a FROM TABLE clause, you can use parentheses in only two situations: to

enclose the entire field selection list, and in a WHEN selection clause. This usage

avoids potential conflict between the keywords and field-names that are used in

the field selection list. A valid sample of a FROM TABLE clause specification

follows:

UNLOAD ...

 FROM TABLE tablename SAMPLE x (c1,c2) WHEN (c3>0)

You cannot specify FROM TABLE if the LIST option is already specified.

FROM-TABLE-spec:

UNLOAD

Chapter 32. UNLOAD 617

FROM-TABLE-spec

��

FROM

TABLE

table-name
 HEADER OBID

HEADER

NONE

CONST

'string'

X'hex-string'

SAMPLE

decimal

LIMIT

integer

�

�

�

,

(

field-specification

)

WHEN

(selection-condition)
 ��

field-specification:

UNLOAD

618 Utility Guide and Reference

��

field-name
 POSITION(*)

POSITION(start)

CHAR

(length)

TRUNCATE

BLOBF

template-name

CLOBF

DBCLOBF

VARCHAR

(length)

strip-spec

BLOBF

template-name

CLOBF

DBCLOBF

GRAPHIC

EXTERNAL

(length)

TRUNCATE

VARGRAPHIC

strip-spec

(length)

SMALLINT

INTEGER

EXTERNAL

(length)

PACKED

DECIMAL

ZONED

,0

EXTERNAL

(length

)

,scale

FLOAT

EXTERNAL

(length)

DOUBLE

REAL

DATE

EXTERNAL

(length)

TIME

EXTERNAL

(length)

TIMESTAMP

EXTERNAL

(length)

CONSTANT

'string'

X'hex-string'

ROWID

BLOB

(length)

TRUNCATE

CLOB

(length)

TRUNCATE

DBCLOB

(length)

TRUNCATE

��

strip spec:

��

BOTH

STRIP

TRAILING

(1)

LEADING

'strip-char'

X'strip-char'

TRUNCATE
 ��

Notes:

1 If you specify VARGRAPHIC, you cannot specify 'strip-char'. You can specify only X'strip-char'.

UNLOAD

Chapter 32. UNLOAD 619

########

||||||

selection condition:

��

predicate

(selection-condition)

�

AND

OR

predicate

(selection-condition)

��

predicate:

�� basic predicate

BETWEEN predicate

IN predicate

LIKE predicate

NULL predicate

 ��

basic predicate:

�� column-name =

<>

>

<

>=

<=

 constant

labeled-duration-expression
 ��

BETWEEN predicate:

�� column-name

NOT
 BETWEEN constant

labeled-duration-expression
 AND constant

labeled-duration-expression
 ��

IN predicate:

��

column-name

NOT

IN

�

 ,

(

constant

)

��

UNLOAD

620 Utility Guide and Reference

LIKE predicate:

�� column-name

NOT
 LIKE string-constant

ESCAPE

string-constant
 ��

NULL predicate:

�� column-name IS NULL

NOT
 ��

labeled-duration-expression:

��

CURRENT_DATE

CURRENT_TIMESTAMP

�

+

constant

YEAR

−

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

��

Option descriptions for FROM TABLE

“Control statement coding rules” on page 16 provides general information about

specifying options for DB2 utilities.

table-name

Identifies a DB2 table from which the rows are to be unloaded and to

which the options in the FROM TABLE clause are to be applied.

 If the table name is not qualified by an authorization ID, the authorization

ID of the invoker of the utility job step is used as the qualifier of the table

name. Enclose the table name in quotation marks if the name contains a

blank.

HEADER

Specifies a constant header field, at the beginning of the output records,

that can be used to associate an output record with the table from which it

was unloaded.

UNLOAD

Chapter 32. UNLOAD 621

If you specify a header field, it is used as the field selection criterion of the

WHEN clause (a part of the INTO-TABLE specification) in the LOAD

statement that is generated.

OBID

Specifies that the object identifier (OBID) for the table (a 2-byte binary

value) is to be placed in the first 2 bytes of the output records that are

unloaded from the table.

 If you omit the HEADER option, HEADER OBID is the default, except

for delimited files.

With HEADER OBID, the first 2 bytes of the output record cannot be

used by the unloaded data. For example, consider the following

UNLOAD statement:

UNLOAD ...

 FROM TABLE table-name HEADER OBID ...

The preceding UNLOAD statement generates a LOAD statement that

is similar to the following example:

LOAD ...

 INTO TABLE table-name WHEN (1:2)=X'hh' ...

In this example, X'hh' is the hexadecimal notation of the OBID of table

table-name.

NONE

Indicates that no record header field is to be created. HEADER NONE

is the default value for a delimited file.

 If HEADER NONE is specified in a FROM TABLE clause, the

corresponding INTO TABLE clause in the generated LOAD statement

does not have a WHEN specification. Therefore, if rows from multiple

tables are unloaded and HEADER NONE is specified in one or more

FROM TABLE clauses, rows that are unloaded from those tables are

not able to be reloaded until you edit the generated LOAD statement.

If you use the generated statement directly with the LOAD utility, the

results might be unpredictable.

CONST

Specifies that a constant string is to be used as the record header. The

given string operand determines the length of the header field. The

string value must be enclosed by a pair of single quote characters.

 For example, consider the following UNLOAD statement:

UNLOAD ...

 FROM TABLE table-name HEADER CONST 'abc' ...

The preceding UNLOAD statement generates a LOAD statement that

is similar to the following example:

LOAD ...

 INTO TABLE table-name WHEN (1:3)='abc' ...

In this example, the given string is assumed to be in SBCS EBCDIC

format. The output string of the HEADER field is in the specified or

the default encoding scheme. If the encoding scheme that is used for

output is not EBCDIC, the SBCS CCSID conversion is applied to the

given string before it is placed in the output records. If the output

UNLOAD

622 Utility Guide and Reference

|
|

|
|

SBCS encoding scheme is not EBCDIC, the WHEN condition in the

generated LOAD statement contains a hexadecimal string.

You can also use the hexadecimal form, X'hex-string', to represent a

string constant. If you want to specify a CONST string value in an

encoding scheme other than SBCS EBCDIC, use the hexadecimal form.

No CCSID conversion is performed if the hexadecimal form is used.

SAMPLE decimal

Indicates that only sampled rows of the table are to be unloaded. If

selection conditions are specified by a WHEN clause within the same

FROM TABLE clause, sampling is applied to the rows that are qualified by

the WHEN selection conditions.

decimal

Specifies the percentage of the rows that are to be sampled in the

decimal format. The precision is ddd.dddd, and the valid range is 0 <=

decimal <= 100.

 If the number of rows to which the sampling is to be applied is N:

v decimal × N ⁄ 100 rows are unloaded. (The fraction might be rounded

to the nearest whole number.)

v If decimal > 0 and N > 0, at least one row is unloaded.

v If decimal = 100, all rows from the table are unloaded.

v If the given decimal = 0 or N = 0, no row is unloaded from the table.

 The sampling is applied for each individual table. If the rows from

multiple tables are unloaded with sampling enabled, the referential

integrity between the tables might be lost.

LIMIT integer

Specifies the maximum number of rows that are to be unloaded from a

table. If the number of unloaded rows reaches the specified limit, message

DSNU1202I is issued for the table, and no more rows are unloaded from

the table. The process continues to unload qualified rows from the other

tables.

 When partition parallelism is activated, the LIMIT option is applied to each

partition instead of to the entire table.

integer

Indicates the maximum number of rows that are to be unloaded from a

table. If the specified number is less than or equal to zero, no row is

unloaded from the table.

 Like the SAMPLE option, if multiple tables are unloaded with the LIMIT

option, the referential integrity between the tables might be lost.

field-name

Identifies a column name that must exist in the source table.

POSITION(start)

Specifies the field position in the output record. You can specify

 the position parameter as follows:

* An asterisk, indicating that the field starts at the first byte after the

last position of the previous field.

start A positive integer that indicates the start column of the data field.

UNLOAD

Chapter 32. UNLOAD 623

The default is POSITION(*).

The first column (byte position) of an output record corresponds to

POSITION(1). If you specify HEADER NONE in the FROM TABLE clause,

the item that is specified by the HEADER option is placed at the beginning

of all the records that are unloaded from the table. You must account for

the space for the record header:

v HEADER OBID (the default case): 2 bytes from position 1.

v HEADER CONST 'string' or X'hex-string' case: The length of the given

string from position 1.

If the source table column can be null, the utility places a NULL indicator

byte at the beginning of the data field in the output record. For BLOBF,

CLOBF, or DBCLOBF columns, null values are indicated by a byte at the

beginning of the file name. The start parameter (or *) points to the position

of the NULL indicator byte. In the generated LOAD statement, start is

shifted by 1 byte to the right (as start+1) so that, in the LOAD statement,

the start parameter of the POSITION option points to the next byte past

the NULL indicator byte.

For a varying-length field, a length field precedes the actual data field

(after the NULL indicator byte, if applicable). For BLOBF, CLOBF, or

DBCLOBF columns, the length of the file name is indicated by two bytes at

the beginning of the file name.If the value cannot be null, the start

parameter (or *) points to the first byte of the length field. The size of the

length field is either 4 bytes (BLOB, CLOB, or DBCLOB) or 2 bytes

(VARCHAR or VARGRAPHIC).

When you explicitly specify the output field positions by using start

parameters (or using the * format) of the POSITION option, you must

consider the following items as a part of the output field:

v For a field whose value can be null, a space for the NULL indicator byte

v For varying-length data, a space for the length field (either 2 bytes or 4

bytes)

“Determining the layout of output fields” on page 647 illustrates the field

layout in conjunction with the POSITION option, NULL indicator byte, the

length field for a varying-length field, the length parameter, and the actual

data length.

The POSITION option is useful when the output fields must be placed at

desired positions in the output records. The use of the POSITION

parameters, however, can restrict the size of the output data fields. Use

care when explicitly specifying start parameters for nullable and

varying-length fields. The TRUNCATE option might be required, if

applicable, to fit a data item in a shorter space in an output record.

If you omit the POSITION option for the first field, the field starts from

position 1 if HEADER NONE is specified. Otherwise, the field starts from

the next byte position past the record header field. If POSITION is omitted

for a subsequent field, the field is placed next to the last position of the

previous field without any gap.

If NOPAD is specified and POSITION parameters are given for certain

fields, the effect of the NOPAD option might be lost because the fields with

start parameters (other than the default *) always start at the fixed

positions in the output records.

The POSITION option is ignored for delimited output files.

UNLOAD

624 Utility Guide and Reference

#
#
#

#
#
#

|

CHAR

Indicates that the output field is a character type with fixed length. You

can use CHARACTER in place of CHAR. If the source table column can be

null, a NULL indicator byte is placed at the beginning of the output field

for a non-delimited output file.

 If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the

output data that corresponds to the specified option, is encoded in the

CCSID, depending on the subtype of the source data (SBCS or MIXED). If

the subtype is BIT, no conversion is applied. If the output field is a file

name, the output data in the file is in the SBCS CCSID of the specified

encoding scheme.

For BLOBF, CLOBF, and DBCLOBF, if the file does not exist, DB2 creates it

using the attributes of the specified template. If the template specifies a

DSNTYPE of LIBRARY or PDS, DB2 appends (&UNIQ.) to the

name-expression of the template. If the template specifies a DSNTYPE of

HFS, DB2 appends /UNIQ. to the name-expression of the template.

Restriction: BLOBF, CLOBF, and DBCLOBF are not supported when

unloading from an image copy.

(length)

Specifies the size of the output data in bytes.

 If the length parameter is omitted, the default is the maximum length

that is defined on the source table column. When the length parameter

is specified:

v If the length is less than the size of the table column, the data is

truncated to the length if the TRUNCATE keyword is present;

otherwise, a conversion error occurs.

v If the length is larger than the size of the table column, the output

field is padded by the default pad characters to the specified length.

BLOBF

Specifies that the output field is to contain the name of the file to

which the BLOB is to be unloaded without CCSID conversion.

CLOBF

Specifies that the output field is to contain the name of the file to

which the CLOB is to be unloaded with any required CCSID

conversion.

DBLOBF

Specifies that the output field is to contain the name of the file to

which the DBLOB is to be unloaded with any required CCSID

conversion.

TRUNCATE

Indicates that a character string (encoded for output) is to be truncated

from the right, if the data does not fit in the available space for the

field in the output record. Truncation occurs at the character boundary.

See “Specifying TRUNCATE and STRIP options for output data” on

page 652 for the truncation rules that are used in the UNLOAD utility.

Without TRUNCATE, an error occurs when the output field size is too

small for the data.

VARCHAR

Specifies that the output field type is character of varying length. A 2-byte

binary field indicating the length of data in bytes is prepended to the data

UNLOAD

Chapter 32. UNLOAD 625

|

#
#
#

#
#
#
#
#

#
#

#
#
#

#
#
#
#

#
#
#
#

field. If the table column can be null, a NULL indicator byte is placed

before this length field for a non-delimited output file.

 If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the

output data is encoded in the CCSID corresponding to the specified option,

depending on the subtype of the source data (SBCS or MIXED). If the

subtype is BIT, no conversion is applied. If the output field is a file name,

the output data in the file is in the SBCS CCSID of the specified encoding

scheme.

For BLOBF, CLOBF, and DBCLOBF, if the file does not exist, DB2 creates it

using the attributes of the specified template. If the template specifies a

DSNTYPE of LIBRARY or PDS, DB2 appends (&UNIQ.) to the

name-expression of the template. If the template specifies a DSNTYPE of

HFS, DB2 appends /UNIQ. to the name-expression of the template.

Restriction: BLOBF, CLOBF, and DBCLOBF are not supported when

unloading from an image copy.

(length)

Specifies the maximum length of the actual data field in bytes. If you

also specify NOPAD, it indicates the maximum allowable space for the

data in the output records; otherwise, the space of the specified length

is reserved for the data.

 If the length parameter is omitted, the default is the smaller of 255 and

the maximum length that is defined on the source table column.

BLOBF

Specifies that the output field is to contain the name of the file to

which the BLOB is to be unloaded without CCSID conversion.

CLOBF

Specifies that the output field is to contain the name of the file to

which the CLOB is to be unloaded with any required CCSID

conversion.

DBLOBF

Specifies that the output field is to contain the name of the file to

which the DBLOB is to be unloaded with any required CCSID

conversion.

STRIP

Specifies that UNLOAD is to remove blanks (the default) or the

specified characters from the beginning, the end, or both ends of the

data. UNLOAD adjusts the VARCHAR length field (for the output

field) to the length of the stripped data.

 The STRIP option is applicable if the subtype of the source data is BIT.

In this case, no CCSID conversion is performed on the specified strip

character (even if it is given in the form 'strip-char').

The effect of the STRIP option is the same as the SQL STRIP scalar

function. For details, see Chapter 5 of DB2 SQL Reference.

BOTH

Indicates that UNLOAD is to remove occurrences of blank or the

specified strip character from the beginning and end of the data.

The default is BOTH.

UNLOAD

626 Utility Guide and Reference

|

#
#
#

#
#
#
#
#

#
#

#
#
#

#
#
#
#

#
#
#
#

TRAILING

Indicates that UNLOAD is to remove occurrences of blank or the

specified strip character from the end of the data.

LEADING

Indicates that UNLOAD is to remove occurrences of blank or the

specified strip character from the beginning of the data.

'strip-char'

Specifies a single-byte character that is to be stripped. Specify this

character value in EBCDIC. Depending on the output encoding

scheme, UNLOAD applies SBCS CCSID conversion to the strip-char

value before it is used in the strip operation. If you want to specify

a strip-char value in an encoding scheme other than EBCDIC, use

the hexadecimal form. UNLOAD does not perform CCSID

conversion if the hexadecimal form is used.

X'strip-char'

Specifies a single-byte character that is to be stripped. It can be

specified in the hexadecimal form, X'hex-string', where hex-string is

two hexadecimal characters that represent a single SBCS character.

If the strip-char operand is omitted, the default is the blank

character, which is coded as follows:

v X'40', for the EBCDIC-encoded output case

v X'20' for the ASCII-encoded output case

v X'20' the Unicode-encoded output case

The strip operation is applied after the character code conversion,

if the output character encoding scheme is different from the one

that is defined on the source data. Therefore, if a strip character is

specified in the hexadecimal format, you must specify the character

in the encoding scheme that is used for output.

TRUNCATE

Indicates that a character string (encoded for output) is to be truncated

from the right, if the data does not fit in the available space for the

field in the output records. Truncation occurs at a character boundary.

See “Specifying TRUNCATE and STRIP options for output data” on

page 652 for the truncation rules that are used in the UNLOAD utility.

Without TRUNCATE, an error occurs when the output field size is too

small for the data.

GRAPHIC

Specifies that the output field is of the fixed-length graphic type. If the

table column can be null, a NULL indicator byte is placed before the actual

data field for any non-delimited output file.

 If the output is in EBCDIC, the shift-in and shift-out characters are not

included at the beginning and at the end of the data.

(length)

Specifies the number of DBCS characters (the size of the output data in

bytes is twice the given length). If the given length is larger than the

source data length, the output field is padded with the default pad

character.

TRUNCATE

Indicates that a graphic character string (encoded for output) is to be

truncated from the right, if the data does not fit in the available space

for the field in the output records. Truncation occurs at a character

UNLOAD

Chapter 32. UNLOAD 627

|

(DBCS) boundary. Without TRUNCATE, an error occurs when the

output field size is too small for the data.

GRAPHIC EXTERNAL

Specifies that the data is to be written in the output records as a

fixed-length field of the graphic type with the external format; that is, the

shift-out (SO) character is placed at the starting position, and the shift-in

(SI) character is placed at the ending position. The byte count of the output

field is always an even number.

 GRAPHIC EXTERNAL is supported only in the EBCDIC output mode (by

default or when the EBCDIC keyword is specified).

If the start parameter of the POSITION option is used to specify the output

column position, it points to the (inserted) shift-out character at the

beginning of the field. The shift-in character is placed at the next byte

position past the last double-byte character of the data.

(length)

Specifies a number of DBCS characters, excluding the shift characters

(as in the graphic type column definition that is used in a CREATE

TABLE statement) nor the NULL indicator byte if the source column

can be null. If the length parameter is omitted, the default output field

size is the length that is defined on the corresponding table column,

plus two bytes (shift-out and shift-in characters).

 If the specified length is larger than the size of the data, the field is

padded on the right with the default DBCS padding character.

TRUNCATE

Indicates that a graphic character string is to be truncated from the

right by the DBCS characters, if the data does not fit in the available

space for the field in the output records. Without TRUNCATE, an error

occurs when the output field size is too small for the data. An error

can also occur with the TRUNCATE option if the available space is less

than 4 bytes (4 bytes is the minimum size for a GRAPHIC EXTERNAL

field; shift-out character, one DBCS, and shift-in character); or fewer

than 5 bytes if the field is can be null (the 4 bytes plus the NULL

indicator byte).

VARGRAPHIC

Specifies that the output field is to be of the varying-length graphic type. A

2-byte binary length field is prepended to the actual data field. If the table

column can be null, a NULL indicator byte is placed before this length

field for any non-delimited output file.

(length)

Specifies the maximum length of the actual data field in the number of

DBCS characters. If you also specify NOPAD, it indicates the maximum

allowable space for the data in the output records; otherwise, the space

of the specified length is reserved for the data.

 If the length parameter is omitted, the default is the smaller of 127 and

the maximum defined length of the source table column.

STRIP

Indicates that UNLOAD is to remove DBCS blanks (the default) or the

specified characters from the unloaded data. UNLOAD adjusts the

VARGRAPHIC length field (for the output field) to the length of the

stripped data (the number of DBCS characters).

UNLOAD

628 Utility Guide and Reference

|

The effect of the STRIP option is the same as the SQL STRIP scalar

function. For details, see Chapter 5 of DB2 SQL Reference.

BOTH

Indicates that UNLOAD is to remove occurrences of blank or the

specified strip character from the beginning and end of the data.

The default is BOTH.

TRAILING

Indicates that UNLOAD is to remove occurrences of blank or the

specified strip character from the end of the data.

LEADING

Indicates that UNLOAD is to remove occurrences of blank or the

specified strip character from the beginning of the data.

X'strip-char'

Specifies a DBCS character that is to be stripped in the

hexadecimal format, X'hhhh', where hhhh is four hexadecimal

characters that represent a DBCS character. If this operand is

omitted, the default is a DBCS blank in the output encoding

scheme (for example, X'4040' for the EBCDIC-encoded output or

X'8140' for CCSID 301).

 The strip operation is applied after the character code conversion,

if the output character encoding scheme is different from the one

that is defined on the source data. Therefore, if you specify a strip

character, it must be in the encoding scheme that is used for the

output.

TRUNCATE

Indicates that a graphic character string (encoded for output) is to be

truncated from the right, if the data does not fit in the available space

for the field in the output records. Truncation occurs at a DBCS

character boundary. Without TRUNCATE, an error occurs when the

output field size is too small for the data.

SMALLINT

Specifies that the output field is a 2-byte binary integer (a negative number

is in two’s complement notation). To use the external format, specify

INTEGER EXTERNAL.

 If the source data type is INTEGER, DECIMAL, or FLOAT (either 4-byte or

8-byte format), an error occurs when the data is greater than 32 767 or less

than -32 768.

A SMALLINT output field requires 2 bytes, and the length option is not

available.

INTEGER

Specifies that the output field is a 4-byte binary integer (a negative number

is in two’s complement notation).

 If the original data type is DECIMAL, or FLOAT (either 4-byte or 8-byte

format), an error occurs when the original data is greater than 2 147 483 647

or less than -2 147 483 648.

An INTEGER output field requires 4 bytes, and the length option is not

available.

UNLOAD

Chapter 32. UNLOAD 629

INTEGER EXTERNAL

Specifies that the output field is to contain a character string that

represents an integer number.

(length)

Indicates the size of the output data in bytes, including a space for the

sign character. When the length is given and the character notation

does not fit in the space, an error occurs. The default is 11 characters

(including a space for the sign).

 If the value is negative, a minus sign precedes the numeric digits. If the

output field size is larger than the length of the data, the output data is left

justified and blanks are padded on the right.

If the source data type is DECIMAL, or FLOAT (either 4-byte or 8-byte

format), an error occurs when the original data is greater than 2 147 483 647

or less than -2 147 483 648.

DECIMAL

Specifies that the output data is a number that is represented by the

indicated decimal format (either PACKED, ZONED, or EXTERNAL). If you

specify the keyword DECIMAL by itself, packed-decimal format is

assumed.

PACKED

Specifies that the output data is a number that is represented by the

packed-decimal format. You can use DEC or DEC PACKED as an

abbreviated form of the keyword.

 The packed-decimal representation of a number is of the form ddd...ds,

where d is a decimal digit that is represented by 4 bits, and s is a 4-bit

sign character (hexadecimal A, C, E, or F for a positive number, and

hexadecimal B or D for a negative number).

length

Specifies the number of digits (not including the sign digit) that are

to be placed in the output field. The length must be between 1 and

31. If the length is odd, the size of the output data field is

(length+1) ⁄ 2 bytes; if even, (length ⁄ 2)+1 byte.

 If the source data type is DECIMAL and the length parameter is

omitted, the default length is determined by the column attribute

defined on the table. Otherwise, the default length is 31 digits (16

bytes).

scale

Specifies the number of digits to the right of the decimal point.

(Note that, in this case, a decimal point is not included in the

output field.) The number must be an integer that is greater than

or equal to zero and less than or equal to the length.

 The default depends on the column attribute that is defined on the

table. If the source data type is DECIMAL, the defined scale value

is the default value; otherwise, the default is 0.

 If you specify the output field size as less than the length of the data,

an error occurs. If the specified field size is greater than the length of

data, X'0' is padded on the left.

UNLOAD

630 Utility Guide and Reference

ZONED

Specifies that the output data is a number that is represented by the

zoned-decimal format. You can use DEC ZONED as an abbreviated

form of the keyword.

 The zoned-decimal representation of a number is of the form

znznzn...z/sn, where n denotes a 4 bit decimal digit (called the numeric

bits); z is the digit’s zone (left 4 bits of a byte); s is the right-most

operand that can be a zone (z) or can be a sign value (hexadecimal A,

C, E, or F for a positive number, and hexadecimal B or D for a

negative number).

length

Specifies the number of bytes (that is the number of decimal digits)

that are placed in the output field. The length must be between 1

and 31.

 If the source data type is DECIMAL and the length parameter is

omitted, the default length is determined by the column attribute

that is defined on the table. Otherwise, the default length is 31

bytes.

scale

Specifies the number of digits to the right of the decimal point.

(Note that, in this case, a decimal point is not included in the

output field.) The number must be an integer greater than or equal

to zero and less than or equal to the length.

 The default depends on the column attribute that is defined on the

table. If the source data type is DECIMAL, the defined scale value

is the default value; otherwise, the default is 0.

 If you specify the output field size as less than the length of the data,

an error occurs. If the specified field size is greater than the length of

data, X'F0' is padded on the left.

EXTERNAL

Specifies that the output data is a character string that represents a

number in the form of ±dd...d.ddd...d, where d is a numeric character

0-9. (The plus sign for a positive value is omitted.)

length

Specifies the overall length of the output data (the number of

characters including a sign, and a decimal point if scale is

specified).

 If the source data type is DECIMAL and the length parameter is

omitted, the default length is determined by the column attribute

that is defined on the table. Otherwise, the default length is 33 (31

numeric digits, plus a sign and a decimal point). The minimum

value of length is 3 to accommodate the sign, one digit, and the

decimal point.

scale

Specifies the number of digits to the right of the decimal point. The

number must be an integer that is greater than or equal to zero

and less than or equal to length - 2 (to allow for the sign character

and the decimal point).

UNLOAD

Chapter 32. UNLOAD 631

If the source data type is DECIMAL and the length parameter is

omitted, the default scale is determined by the column attribute

that is defined on the table. Otherwise, the default is 0.

An error occurs if the character representation of a value does not

fit in the given or default field size (precision). If the source data

type is floating point and a data item is too small for the precision

that is defined by scale, the value of zero (not an error) is returned.

FLOAT(length)

Specifies that the output data is a binary floating-point number (32-bit or

single-precision FLOAT if the length is between one and 21 inclusive; 64-bit

or double-precision FLOAT if the length is between 22 and 53 inclusive). If

the length parameter is omitted, the 64-bit format is assumed (output field

size is 8 bytes). Note that the length parameter for the FLOAT type does

not represent the field size in bytes.

 The format of the binary floating-point output is controlled by the global

FLOAT option. The default is S/390 format (Hexadecimal Floating Point or

HFP). If you specify FLOAT(IEEE), all the binary floating-point output is in

IEEE format (Binary Floating Point or BFP). When you specify

FLOAT(IEEE) and the source data type DOUBLE is unloaded as REAL, an

error occurs if the source data cannot be expressed by the IEEE (BFP) 32-bit

notation.

EXTERNAL(length)

Specifies that the output data is a number that is represented by a

character string in floating-point notation, ±d.ddd...dddE±nn, where d is

a numeric character (0-9) for the significant digits; nn after the

character E, and the sign consists of two numeric characters for the

exponent.

(length)

Specifies the total field length in bytes, including the first sign

character, the decimal point, the E character, the second sign

character, and the two-digit exponent. If the number of characters

in the result is less than the specified or the default length, the

result is padded to the right with blanks. The length, if specified,

must be greater than or equal to 8.

 The default output field size is 14 if the source data type is the

32-bit FLOAT; otherwise, the default is 24.

A FLOAT EXTERNAL output field requires a space of at least seven

characters in the output record to accommodate the minimal floating

point notation. Otherwise, an error occurs.

DOUBLE

Specifies that the output data is in 64-bit floating point notation. If

DOUBLE is used, the length parameter must not be specified.

REAL Specifies that the output data is in 32-bit floating point notation. If REAL is

used, the length parameter must not be specified.

DATE EXTERNAL

Specifies that the output field is for a character string representation of a

date. The output format of date depends on the DB2 installation.

(length)

Specifies the size of the data field in bytes in the output record. A

DATE EXTERNAL field requires a space of at least 10 characters. If the

UNLOAD

632 Utility Guide and Reference

space is not available, an error occurs. If the specified length is larger

than the size of the data, blanks are padded on the right.

TIME EXTERNAL

Specifies that the output field is for a character string representation of a

time. The output format of time depends on the DB2 installation.

(length)

Specifies the size of the data field in bytes in the output record. A

TIME EXTERNAL field requires a space of at least eight characters. If

the space is not available, a conversion error occurs. If the specified

length is larger than the size of the data, blanks are padded on the

right.

TIMESTAMP EXTERNAL

Specifies that the output field is for a character string representation of a

timestamp.

(length)

Specifies the size of the data field in bytes in the output record. A

TIMESTAMP EXTERNAL field requires a space of at least 19

characters. If the space is not available, an error occurs. The length

parameter, if specified, determines the output format of the

TIMESTAMP. If the specified length is larger than the size of the data,

the field is padded on the right with the default padding character.

CONSTANT

Specifies that the output records are to have an extra field containing a

constant value. The field name that is associated with the CONSTANT

keyword must not coincide with a table column name (the field name is

for clarification purposes only). A CONSTANT field always has a fixed

length that is equal to the length of the given string.

'string'

Specifies the character string that is to be inserted in the output records

at the specified or default position. A string is the required operand of

the CONSTANT option. If the given string is in the form 'string', it is

assumed to be an EBCDIC SBCS string. However, the output string for

a CONSTANT field is in the specified or default encoding scheme.

(That is, if the encoding scheme used for output is not EBCDIC, the

SBCS CCSID conversion is applied to the given string before it is

placed in output records.)

X'hex-string'

Specifies the character string in hexadecimal form, X'hex-string', that is

to be inserted in the output records at the specified or default position.

If you want to specify a CONSTANT string value in an encoding

scheme other than SBCS EBCDIC, use the hexadecimal form. No

CCSID conversion is performed if the hexadecimal form is used.

 For a CONSTANT field, no other field selection list options should be

specified.

If a CONSTANT field is inserted, it will not be included in the generated

LOAD statement (the LOAD statement is generated so that the

CONSTANT field is skipped).

If you specify both FORMAT DELIMITED and CONSTANT, the generated

LOAD statement is not usable.

UNLOAD

Chapter 32. UNLOAD 633

|
|

|
|
|
|
|
|
|

|
|

ROWID

Specifies that the output data is of type ROWID. The field type ROWID

can be specified if and only if the column that is to be unloaded is of type

ROWID. The keyword is provided for consistency purposes.

 ROWID fields have varying length and a 2-byte binary length field is

prepended to the actual data field.

For the ROWID type, no data conversion nor truncation is applied. If the

output field size is too small to unload ROWID data, an error occurs.

If the source is an image copy and a ROWID column is selected, and if the

page set header page is missing in the specified data set, the UNLOAD

utility terminates with the error message DSNU1228I. This situation can

occur when the source is an image copy data set of DSNUM that is greater

than one for a nonpartitioned table space that is defined on multiple data

sets.

BLOB Indicates that the column is to be unloaded as a binary large object

(BLOB). No data conversion is applied to the field.

 When you specify the BLOB field type, a 4-byte binary length field is

placed in the output record prior to the actual data field. If the source table

column can be null, a NULL indicator byte is placed before the length

field.

(length)

Specifies the maximum length of the actual data field in bytes. If you

specify NOPAD, it indicates the maximum allowable space for the data

in the output records; otherwise, the space of the specified length is

reserved for the data.

 The default is the maximum length that is defined on the source table

column.

TRUNCATE

Indicates that a BLOB string is to be truncated from the right, if the

data does not fit in the available space for the field in the output

record. For BLOB data, truncation occurs at a byte boundary. Without

TRUNCATE, an error occurs when the output field size is too small for

the data.

CLOB Indicates that the column is to be unloaded as a character large object

(CLOB).

 When you specify the CLOB field type, a 4-byte binary length field is

placed in the output record prior to the actual data field. If the source table

column can be null, a NULL indicator byte is placed before the length

field.

If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the

output data is encoded in the CCSID corresponding to the specified option,

depending on the subtype of the source data (SBCS or MIXED). No

conversion is applied if the subtype is BIT.

(length)

Specifies the maximum length of the actual data field in bytes. If you

specify NOPAD, it indicates the maximum allowable space for the data

in the output records; otherwise, the space of the specified length is

reserved for the data.

UNLOAD

634 Utility Guide and Reference

The default is the maximum length that is defined on the source table

column.

TRUNCATE

Indicates that a CLOB string (encoded for output) is to be truncated

from the right, if the data does not fit in the available space for the

field in the output record. For CLOB data, truncation occurs at a

character boundary. See “Specifying TRUNCATE and STRIP options for

output data” on page 652 for the truncation rules that are used in the

UNLOAD utility. Without TRUNCATE, an error occurs when the

output field size is too small for the data.

DBCLOB

Indicates that the column is to be unloaded as a double-byte character

large object (DBCLOB).

 If you specify the DBCLOB field type, a 4-byte binary length field is placed

in the output record prior to the actual data field. If the source table

column can be null, a NULL indicator byte is placed before the length

field.

If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the

output data is encoded in the CCSID corresponding to the specified option;

DBCS CCSID is used.

(length)

Specifies the maximum length of the actual data field in the number of

DBCS characters. If you specify NOPAD, it indicates the maximum

allowable space for the data in the output records; otherwise, the space

of the specified length is reserved for the data.

 The default is the maximum length that is defined on the source table

column.

TRUNCATE

Indicates that a DBCS string (encoded for output) is to be truncated

from the right, if the data does not fit in the available space for the

field in the output record. For a DBCLOB data, truncation occurs at a

character (DBCS) boundary. See “Specifying TRUNCATE and STRIP

options for output data” on page 652 for the truncation rules that are

used in the UNLOAD utility. Without TRUNCATE, an error occurs

when the output field size is too small for the data.

WHEN

Indicates which records in the table space are to be unloaded. If no WHEN

clause is specified for a table in the table space, all of the records are

unloaded.

 The option following WHEN describes the conditions for unloading

records from a table.

Data in the table can be in EBCDIC, ASCII, or Unicode. If the target table

is in Unicode and the character constants are specified in the utility control

statement as EBCDIC, the UNLOAD utility converts these constants to

Unicode. To use a constant when the target table is ASCII, specify the

hexadecimal form of the constant (instead of the character string form) in

the condition for the WHEN clause.

selection condition

Specifies a condition that is true, false, or unknown about a given row.

UNLOAD

Chapter 32. UNLOAD 635

#
#
#
#
#
#

When the condition is true, the row qualifies for UNLOAD. When the

condition is false or unknown, the row does not qualify.

 The result of a selection condition is derived by application of the specified

logical operators (AND and OR) to the result of each specified predicate. If

logical operators are not specified, the result of the selection condition is

the result of the specified predicate.

Selection conditions within parentheses are evaluated first. If the order of

evaluation is not specified by parentheses, AND is applied before OR.

If the control statement is in the same encoding scheme as the input data,

you can code character constants in the control statement. Otherwise, if the

control statement is not in the same encoding scheme as the input data,

you must code the condition with hexadecimal constants. For example, if

the table space is in EBCDIC and the control statement is in UTF-8, use

(1:1) = X'31' in the condition rather than (1:1) = ’1’.

Restriction: UNLOAD cannot filter rows that contain encrypted data.

predicate

Specifies a condition that is true, false, or unknown about a row.

basic predicate

Specifies the comparison of a column with a constant. If the value of

the column is null, the result of the predicate is unknown. Otherwise,

the result of the predicate is true or false.

column = constant The column is equal to the constant or

labeled duration expression.

column < > constant The column is not equal to the constant

or labeled duration expression.

column > constant The column is greater than the constant

or labeled duration expression.

column < constant The column is less than the constant or

labeled duration expression.

column > = constant The column is greater than or equal to

the constant or labeled duration

expression.

column < = constant The column is less than or equal to the

constant or labeled duration

expression.

Note: The following alternative comparison operators are available:

 != or ¬= for not equal.

 !> or ¬> for not greater than.

 !< or ¬< for not less than.

The symbol ¬ representing “not” is supported for compatibility

purposes. Use ! where possible.

BETWEEN predicate

Indicates whether a given value lies between two other given values

that are specified in ascending order. The values can be constants or

labeled duration expressions. Each of the predicate’s two forms

(BETWEEN and NOT BETWEEN) has an equivalent search condition,

as shown in Table 127 on page 637. When relevant, the table also

shows any equivalent predicates.

UNLOAD

636 Utility Guide and Reference

|
|
|
|
|
|

|

Table 127. BETWEEN predicates and their equivalent search conditions

Predicate Equivalent predicate Equivalent search condition

column BETWEEN value1

AND value2

None

(column >= value1 AND

column <= value2)

column NOT BETWEEN value1

AND value2

NOT(column BETWEEN

value1 AND value2)

(column < value1 OR column >

value2)

Note: The values can be constants or labeled duration expressions.

For example, the following predicate is true for any row when salary is

greater than or equal 10000 and less than or equal to 20000:

SALARY BETWEEN 10000 AND 20000

IN predicate

Specifies that a value is to be compared with a set of values. In the IN

predicate, the second operand is a set of one or more values that are

specified by constants. Each of the predicate’s two forms (IN and NOT

IN) has an equivalent search condition, as shown in Table 128.

 Table 128. IN predicates and their equivalent search conditions

Predicate Equivalent search condition

value1 IN (value1, value2,..., valuen) (value1 = value2 OR ... OR value1 = valuen)

value1 NOT IN (value1, value2,..., valuen) value1 ¬= value2 AND ... AND value1 ¬= valuen)

Note: The values can be constants or labeled duration expressions.

For example, the following predicate is true for any row whose

employee is in department D11, B01, or C01:

WORKDEPT IN (’D11’, ’B01’, ’C01’)

LIKE predicate

Specifies the qualification of strings that have a certain pattern.

 Within the pattern, a percent sign or underscore can have a special

meaning, or it can represent the literal occurrence of a percent sign or

underscore. To have its literal meaning, it must be preceded by an

escape character. If it is not preceded by an escape character, it has its

special meaning. The underscore character (_) represents a single,

arbitrary character. The percent sign (%) represents a string of zero or

more arbitrary characters.

The ESCAPE clause designates a single character. That character, and

only that character, can be used multiple times within the pattern as an

escape character. When the ESCAPE clause is omitted, no character

serves as an escape character, so that percent signs and underscores in

the pattern always have their special meanings.

The following rules apply to the use of the ESCAPE clause:

v The ESCAPE clause cannot be used if x is mixed data.

v If x is a character string, the data type of the string constant must be

character string. If x is a graphic string, the data type of the string

constant must be graphic string. In both cases, the length of the

string constant must be 1.

UNLOAD

Chapter 32. UNLOAD 637

v The pattern must not contain the escape character except when

followed by the escape character, '%' or '_'. For example, if '+' is the

escape character, any occurrence of '+' other than '++', '+_', or '+%' in

the pattern is an error.

When the pattern does not include escape characters, a simple

description of its meaning is:

v The underscore sign (_) represents a single arbitrary character.

v The percent sign (%) represents a string of zero or more arbitrary

characters.

v Any other character represents a single occurrence of itself.

Let x denote the column that is to be tested and y the pattern in the

string constant. The following rules apply to predicates of the form ″x

LIKE y...″. If NOT is specified, the result is reversed.

v When x and y are both neither empty nor null, the result of the

predicate is true if x matches the pattern in y and false if x does not

match the pattern in y.

v When x or y is null, the result of the predicate is unknown.

v When y is empty and x is not empty, the result of the predicate is

false.

v When x is empty and y is not empty, the result of the predicate is

false unless y consists only of one or more percent signs.

v When x and y are both empty, the result of the predicate is true.

The pattern string and the string that is to be tested must be of the

same type. That is, both x and y must be character strings, or both x

and y must be graphic strings. When x and y are graphic strings, a

character is a DBCS character. When x and y are character strings and

x is not mixed data, a character is an SBCS character and y is

interpreted as SBCS data regardless of its subtype. The rules for

mixed-data patterns are described under “Strings and patterns” on

page 639.

UNLOAD

638 Utility Guide and Reference

Strings and patterns

The string y is interpreted as a sequence of the minimum number

of substring specifiers such that each character of y is part of

exactly one substring specifier. A substring specifier is an

underscore, a percent sign, or any non-empty sequence of

characters other than an underscore or percent sign.

 The string x matches the pattern y if a partitioning of x into

substrings exists, such that:

v A substring of x is a sequence of zero or more contiguous

characters, and each character of x is part of exactly one

substring.

v If the nth substring specifier is an underscore, the nth substring

of x is any single character.

v If the nth substring specifier is a percent sign, the nth substring

of x is any sequence of zero or more characters.

v If the nth substring specifier is neither an underscore nor a

percent sign, the nth substring of x is equal to that substring

specifier and has the same length as that substring specifier.

v The number of substrings of x is the same as the number of

substring specifiers.

When escape characters are present in the pattern string, an

underscore, percent sign, or escape character represents a single

occurrence of itself if and only if it is preceded by an odd number

of successive escape characters.

 Mixed data patterns: If x is mixed data, the pattern is assumed to

be mixed data, and its special characters are interpreted as

follows:

v A single-byte underscore refers to one single-byte character; a

double-byte underscore refers to one double-byte character.

v A percent sign, either single-byte or double-byte, refers to any

number of characters of any type, either single-byte or

double-byte.

v Redundant shift bytes in x or y are ignored.

NULL predicate

Specifies a test for null values.

 If the value of the column is null, the result is true. If the value is not

null, the result is false. If NOT is specified, the result is reversed. (That

is, if the value is null, the result is false, and if the value is not null, the

result is true.)

labeled duration expression

Specifies an expression that begins with special register CURRENT

DATE or special register CURRENT TIMESTAMP (the forms

CURRENT_DATE and CURRENT_TIMESTAMP are also acceptable).

This special register can be followed by arithmetic operations of

addition or subtraction. These operations are expressed by using

numbers that are followed by one of the seven duration keywords:

YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS, or

UNLOAD

Chapter 32. UNLOAD 639

MICROSECONDS. (The singular form of these keywords is also

acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and

MICROSECOND.)

 Utilities always evaluate a labeled duration expression as a timestamp

and implicitly convert to a date if the comparison is with a date

column.

Incrementing and decrementing CURRENT DATE: The result of

adding a duration to a date, or of subtracting a duration from a date, is

itself a date. (For the purposes of this operation, a month denotes the

equivalent of a calendar page. Adding months to a date, then, is like

turning the pages of a calendar, starting with the page on which the

date appears.) The result must fall between the dates January 1, 0001

and December 31, 9999 inclusive. If a duration of years is added or

subtracted, only the year portion of the date is affected. The month is

unchanged, as is the day, unless the result would be February 29 of a

non-leap-year. In this situation, the day portion of the result is set to

28.

Similarly, if a duration of months is added or subtracted, only months

and, if necessary, years are affected. The day portion of the date is

unchanged unless the result would be invalid (September 31, for

example). In this case the day is set to the last day of the month.

Adding or subtracting a duration of days affects the day portion of the

date, and potentially the month and year.

Date durations, whether positive or negative, can also be added to and

subtracted from dates. As with labeled durations, the result is a valid

date.

When a positive date duration is added to a date, or a negative date

duration is subtracted from a date, the date is incremented by the

specified number of years, months, and days.

When a positive date duration is subtracted from a date, or a negative

date duration is added to a date, the date is decremented by the

specified number of days, months, and years.

Adding a month to a date gives the same day one month later, unless

that day does not exist in the later month. In that case, the day in the

result is set to the last day of the later month. For example, January 28

plus one month gives February 28; one month added to January 29, 30,

or 31 results in either February 28 or, for a leap year, February 29. If

one or more months is added to a given date and then the same

number of months is subtracted from the result, the final date is not

necessarily the same as the original date.

The order in which labeled date durations are added to and subtracted

from dates can affect the results. When you add labeled date durations

to a date, specify them in the order of YEARS + MONTHS + DAYS.

When you subtract labeled date durations from a date, specify them in

the order of DAYS - MONTHS - YEARS. For example, to add one year

and one day to a date, specify the following code:

CURRENT DATE + 1 YEAR + 1 DAY

To subtract one year, one month, and one day from a date, specify the

following code:

CURRENT DATE - 1 DAY - 1 MONTH - 1 YEAR

UNLOAD

640 Utility Guide and Reference

Incrementing and decrementing timestamps: The result of adding a

duration to a timestamp, or of subtracting a duration from a

timestamp, is itself a timestamp. Date and time arithmetic is performed

as previously defined, except that an overflow or underflow of hours is

carried into the date part of the result, which must be within the range

of valid dates.

Instructions for running UNLOAD

To run UNLOAD, you must:

1. Read “Before running UNLOAD” in this section.

2. Prepare the necessary data sets, as described in “Data sets that UNLOAD

uses.”

3. Create JCL statements, by using one of the methods that are described in

Chapter 3, “Invoking DB2 online utilities,” on page 15. (For examples of JCL for

UNLOAD, see “Sample UNLOAD control statements” on page 656.)

4. Prepare a utility control statement, that specifies the options for the tasks that

you want to perform, as described in “Instructions for specific tasks” on page

642.

5. Check the compatibility table in “Concurrency and compatibility for UNLOAD”

on page 654 if you want to run other jobs concurrently on the same target

objects.

6. Plan for restart if the UNLOAD job doesn’t complete, as described in

“Terminating or restarting UNLOAD” on page 654.

7. Run UNLOAD by using one of the methods that are described in Chapter 3,

“Invoking DB2 online utilities,” on page 15.

Before running UNLOAD

If you plan to run UNLOAD on encrypted data, do not use the WHEN statement

to filter encrypted fields; UNLOAD cannot filter rows that contain encrypted data

Data sets that UNLOAD uses

Table 129 lists the data sets that UNLOAD uses. The table lists the DD name that is

used to identify the data set, a description of the data set, and an indication of

whether it is required. Include statements in your JCL for each required data set

and any optional data sets that you want to use.

 Table 129. Data sets that UNLOAD uses

Data set Description Required?

SYSIN Input data set that contains the utility

control statement.

Yes

SYSPRINT Output data set for messages. Yes

SYSPUNCH One or more work data sets that contain the

generated LOAD statements for

subsequently reloading the data. The default

DD name is PUNCHDDN.

No1

Unload data set One or more work data sets that contain the

unloaded table rows. The default DD name

is SYSREC.

Yes

UNLOAD

Chapter 32. UNLOAD 641

|

|
|

Table 129. Data sets that UNLOAD uses (continued)

Data set Description Required?

Notes:

1. Required if you request that UNLOAD generate LOAD statements by specifying

PUNCHDDN in the utility control statement.

The following object is named in the utility control statement and does not require

a DD statement in the JCL:

Table space

Table space that is to be unloaded. (If you want to unload only one

partition of a table space, you must specify the PART option in the control

statement.)

Instructions for specific tasks

The following tasks are described here:

 “Unloading partitions”

 “Selecting tables and rows to unload”

 “Selecting and ordering columns to unload” on page 643

 “Unloading data from image copy data sets” on page 643

 “Converting data with the UNLOAD utility” on page 644

 “Specifying output field types” on page 645

 “Unloading delimited files” on page 650

 “Specifying output field positioning and size” on page 646

 “Determining the layout of output fields” on page 647

 “Specifying TRUNCATE and STRIP options for output data” on page 652

 “Generating LOAD statements” on page 653

 “Unloading compressed data” on page 653

 “Interpreting field specification errors” on page 654

Unloading partitions

If the source table space is partitioned, use one of the following mutually exclusive

methods to select the partitions to unload:

v Use the LIST keyword with a LISTDEF that contains PARTLEVEL specifications.

Partitions can be either included or excluded by the use of the INCLUDE and

the EXCLUDE features of LISTDEF.

v Specify the PART keyword to select a single partition or a range of partitions.

With either method, the unloaded data can be stored in a single data set for all

selected partitions or in one data set for each selected partition. If you want to

unload to a single output data set, specify a DD name to UNLDDN. If you want to

unload into multiple output data sets, specify a template name that is associated

with the partitions. You can process multiple partitions in parallel if the

TEMPLATE definition contains the partition as a variable, for example &PA.

You cannot specify multiple output data sets with the FROMCOPY or the

FROMCOPYDDN option.

Selecting tables and rows to unload

If a table space contains multiple tables, you can select specific tables to unload by

using the FROM TABLE specification clauses. If you specify one or more FROM

TABLE clauses for a table space, only the qualified rows from the specified tables

UNLOAD

642 Utility Guide and Reference

|

are unloaded. You can specify a maximum of one FROM TABLE clause per table. If

you do not specify at least one FROM TABLE clause, the rows from all the tables

in the table space are unloaded.

Within a FROM TABLE clause, you can specify one or more of the following

criteria:

v Row and column selection criteria by using the field specification list

v Row selection conditions by using the WHEN specification clause

v Row sampling specifications

Important: When an incremental image copy is taken of a table space, rows might

be updated or moved if the SHRLEVEL CHANGE option is specified. As a result,

data that is unloaded from such a copy might contain duplicates of these rows.

Selecting and ordering columns to unload

Use a field specification list in a FROM TABLE clause to unload specified columns

in the listed order. If you omit a field specification list, all the columns in the row

are unloaded in the order of the columns that are defined on the table.

You can specify a format conversion option for each field in the field specification

list.

If you select a LOB column in a list of field specifications or select a LOB column

by default (by omitting a list of field specifications), LOB data is materialized in

the output. However, you cannot select LOB columns from image copy data sets.

Unloading data from image copy data sets

In addition to unloading data from table spaces and partitions, you can also

unload data from one or more image copy data sets. If you use the SYSTEMPAGES

YES option on the COPY utility, you can use UNLOAD to process rows of

compressed data or image copies from different versions. See SYSTEMPAGES in

the “Option descriptions” on page 105 for the COPY utility.

Unload rows from a single image copy data set by specifying the FROMCOPY

option in the UNLOAD control statement. Specify the FROMCOPYDDN option to

unload data from one or more image copy data sets that are associated with the

specified DD name. Use an image copy that contains the page set header page

when you are unloading a ROWID column; otherwise the unload fails.

The source image copy data set must have been created by one of the following

utilities:

v COPY

v COPYTOCOPY

v LOAD inline image copy

v MERGECOPY

v REORG TABLESPACE inline image copy

v DSN1COPY

UNLOAD accepts full image copies, incremental image copies, and a copy of

pieces as valid input sources.

The UNLOAD utility supports image copy data sets for a single table space. The

table space name must be specified in the TABLESPACE option. The specified table

space must exist when you run the UNLOAD utility. (That is, the table space

cannot have been dropped since the image copy was taken.)

UNLOAD

Chapter 32. UNLOAD 643

|
|
|
|

Use the FROMCOPYDDN option to concatenate the copy of table space partitions

under a DD name to form a single input data set image. When you use the

FROMCOPYDDN option, concatenate the data sets in the order of the data set

number; the first data set must be concatenated first. If the data sets are

concatenated in the wrong order or if different generations of image copies are

concatenated, the results might be unpredictable. For example, if the most recent

image copy data sets and older image copies are intermixed, the results might be

unpredictable.

You can use the FROMCOPYDDN option to concatenate a full image copy and

incremental image copies for a table space, a partition, or a piece, but duplicate

rows are also unloaded in this situation. Instead, consider using MERGECOPY to

generate an updated full image copy as the input to the UNLOAD utility.

You can select specific rows and columns to unload just as you would for a table

space. However, you can unload only rows that contain LOB columns when the

LOB columns are not included in a field specification list. If you use an image

copy that does not contain the page set header page when unloading a ROWID

column, the unload fails.

If you use the FROMCOPY or the FROMCOPYDDN option, you can specify only

one output data set.

If an image copy is created by an inline copy operation (LOAD or REORG

TABLESPACE), the image copy can contain duplicate pages. If duplicate pages

exist, the UNLOAD utility issues a warning message, and all the qualified rows in

duplicate pages are unloaded into the output data set.

If you specify a dropped table on the FROM TABLE option, the UNLOAD utility

terminates with return code 4. If you do not specify a FROM TABLE option and if

an image copy contains rows from dropped tables, UNLOAD ignores these rows.

When you specify either a full or incremental copy of partitions of a segmented

table space that consists of multiple data sets in the FROMCOPY option, be careful

when applying a mass delete to a table in the table space before you create the

copy. If a mass delete of a table occurs, the utility unloads deleted rows if the

space map pages that indicate the mass delete are not included in the data set that

corresponds to the specified copy. Where possible, use the FROMCOPYDDN

option to concatenate the copy of table space partitions.

If an image copy contains a table to which ALTER ADD COLUMN was applied

after the image copy was taken, the UNLOAD utility sets the system or

user-specified default value for the added column when the data is unloaded from

such an image copy.

Converting data with the UNLOAD utility

You can convert one data type to another compatible data type by using the

UNLOAD utility.5 For example, you can convert columns of a numeric type

(SMALLINT, INTEGER, FLOAT, DOUBLE, REAL, and DECIMAL) from the DB2

internal format to the S/390 or an external format.

When you unload a floating-point type column, you can specify the binary form of

the output to either the S/390 format (hexadecimal floating point, or HFP), or the

IEEE format (binary floating point, or BFP).

5. The source type is used for user-defined distinct types.

UNLOAD

644 Utility Guide and Reference

|

You can also convert a varying-length column to a fixed-length output field, with

or without padding characters. In either case, unless you explicitly specify a

fixed-length data type for the field, the data itself is treated as a varying-length

data, and a length field is appended to the data.

For certain data types, you can unload data into fields with a smaller length by

using the TRUNCATE or STRIP options. In this situation, if a character code

conversion is applied, the length of the data in bytes might change due to the code

conversion. The truncation operation is applied after the code conversion.

You can perform character code conversion on a character type field, including

converting numeric columns to the external format and the CLOB type. Be aware

that when you apply a character code conversion for mixed-data fields, the length

of the result string in bytes can be shorter or longer than the length of the source

string. Character type data is always converted if you specify any of the character

code conversion options (EBCDIC, ASCII, UNICODE, or CCSID).

DATE, TIME, or TIMESTAMP column types are always converted into the external

formats based on the DATE, TIME, and TIMESTAMP formats of your installation.

Specifying output field types

An output field can have a different data type from the one that is defined on a

source table column if the data types are compatible. The UNLOAD utility follows

the general DB2 rules and conventions on the data type attributes and the

compatibility among the data types, as described in Chapter 2 of DB2 SQL

Reference.

If you specify a data type in the UNLOAD control statement, the field type

information is included in the generated LOAD utility statement. For specific data

type compatibility information, refer to Table 130, Table 131 on page 646, and

Table 132 on page 646. These tables show the compatibility of the data type of the

source column (input data type) with the data type of the output field (output data

type). A Y indicates that the input data type can be converted to the output data

type.

Table 130 shows the compatibility of converting numeric data types.

 Table 130. Compatibility of converting numeric data types

Input data types

Output data types

SMALLINT

INTEGER

(external)

DECIMAL

(external) FLOAT (external)

DOUBLE or

REAL

SMALLINT Y Y1 Y1 Y1 Y

INTEGER Y2 Y1 Y1 Y1 Y

DECIMAL Y2 Y1, 2 Y1 Y1 Y

FLOAT, DOUBLE, or

REAL

Y2 Y1, 2 Y1, 2 Y1 Y

Notes:

1. Subject to the CCSID conversion, if specified (EXTERNAL case). For more information about CCSID, see “CCSID”

on page 613.

2. Potential overflow (conversion error).

Table 131 on page 646 shows the compatibility of converting character data types.

UNLOAD

Chapter 32. UNLOAD 645

Table 131. Compatibility of converting character data types

Input data

types

Output data types

BLOB CHAR

VAR-

CHAR CLOB GRAPHIC

GRAPHIC

EXTERNAL

VAR-

GRAPHIC DBCLOB

BLOB Y N N N N N N N

CLOB N Y

1, 2 Y

1, 2 Y N N N N

DBCLOB N N N N Y

1, 2 Y

1, 2, 3 Y

1, 2 Y

1

CHAR N Y

1 Y

1 Y

1, 4 N N N N

VARCHAR or

LONG

VARCHAR

N Y1,2 Y1 Y1, 4 N N N N

GRAPHIC N N N N Y

1 Y

1, 3 Y

1 Y

1

VAR-

GRAPHIC or

LONG VAR-

GRAPHIC

N N N N Y

1, 2 Y

1, 2, 3 Y

1 Y

1

Notes:

1. Subject to the CCSID conversion, if specified.

2. Results in an error if the field length is too small for the data unless you specify the TRUNCATE option. Note

that a LOB has a 4-byte length field; any other varying-length type has a 2-byte length field.

3. Only in the EBCDIC output mode.

4. Not applicable to BIT subtype data.

Table 132 shows the compatibility of converting time data types.

 Table 132. Compatibility of converting time data types

Input data types

Output data types

DATE EXTERNAL TIME EXTERNAL TIMESTAMP EXTERNAL

DATE Y1 N Y1, 2

TIME N Y1 N

TIMESTAMP Y1, 3 Y1, 3 Y1

Notes:

1. Subject to the CCSID conversion, if specified.

2. Zeros in the time portion.

3. DATE or TIME portion of the timestamp.

Specifying output field positioning and size

By default, output data is always placed in an output record in the order of the

defined columns over the selected tables. You can choose to specify the order of

the output fields by using a list of field specifications.

Use the POSITION option to specify field position in the output records. You can

also specify the size of the output data field by using the length parameter for a

particular data type. The length parameter must indicate the size of the actual data

field. The start parameter of the POSITION option indicates the starting position of

a field, including the NULL indicator byte (if the field can be null) and the length

field (if the field is varying length).

UNLOAD

646 Utility Guide and Reference

Using the POSITION parameter, the length parameter, or both can restrict the size

of the data field in the output records. Use care when specifying the POSITION

and length parameters, especially for nullable fields and varying length fields. If a

conflict exists between the length parameter and the size of the field in the output

record that is specified by the POSITION parameters, DB2 issues an error message,

and the UNLOAD utility terminates. If an error occurs, the count of the number of

records in error is incremented. See the description of the MAXERR option under

“MAXERR” on page 616 for more information.

If you specify a length parameter for a varying-length field and you also specify

the NOPAD option, length indicates the maximum length of data that is to be

unloaded. Without the NOPAD option, UNLOAD reserves a space of the given

length instead of the maximum data size.

If you explicitly specify start parameters for certain fields, they must be listed in

ascending order in the field selection list. Unless you specify HEADER NONE for

the table, a fixed-length record header is placed at the beginning of each record for

the table, and the start parameter must not overlap the record header area.

The TRUNCATE option is available for certain output field types. See

“FROM-TABLE-spec ” on page 617 and “Specifying TRUNCATE and STRIP

options for output data” on page 652 for more information. For the output field

types where the TRUNCATE option is not applicable, enough space must be

provided in the output record for each field. The output field layouts are

summarized in “Determining the layout of output fields.”

For information about errors that can occur at the record level due to the field

specifications, see “Interpreting field specification errors” on page 654.

Determining the layout of output fields

To determine the layout of a fixed-length field that cannot be null, see the layout

diagram in Figure 107. This diagram shows that the data field begins at a specified

position, or at the next byte position past the end of the previous data field. The

data field then continues for the specified length or the length of the column in the

table definition. For GRAPHIC EXTERNAL data, shift-in and shift-out characters

are inserted before and after the data.

To determine the layout of a fixed-length field that can be null, see the layout

diagram in Figure 108 on page 648. This diagram shows that a null indicator byte

is stored before the data field, which begins at the specified position or at the next

byte position past the end of the previous data field.

Data field

Length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition.
For GRAPHIC EXTERNAL (EBCDIC only),
shift-out and shift-in characters are inserted
before and after the data.

Default position of the next field

Figure 107. Layout of a fixed-length field (NOT NULL)

UNLOAD

Chapter 32. UNLOAD 647

If you are running UNLOAD with the NOPAD option and need to determine the

layout of a varying-length field that cannot be null, see the layout diagram in

Figure 109. This diagram shows that a length field, which contains the actual

length of the data, is stored before the data field. The length field begins at the

specified position or at the next byte position past the end of the previous data

field.

If you are running UNLOAD without the NOPAD option and need to determine

the layout of a varying-length field that cannot be null, see the layout diagram in

Figure 110 on page 649. This diagram shows that the length field is stored before

the data field and that the padding is after the data field.

Data field

Length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition.
For GRAPHIC EXTERNAL (EBCDIC only),
shift-out and shift-in characters are inserted
before and after the data.

Default position of the next field

Null indicator byte

Figure 108. Layout of a nullable fixed-length field

Data field

Maximum
length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition

Default position of the next field

Length field, which contains the actual data length.
The size of the length field is 4 bytes for LOBs, or
2 bytes for other data types.

Length Actual length, up to maximum length

Figure 109. Layout of a varying-length field (NOT NULL) with the NOPAD option

UNLOAD

648 Utility Guide and Reference

If you are running UNLOAD with the NOPAD option and need to determine the

layout of a varying-length field that can be null, see the layout diagram in

Figure 111. This diagram shows that the null indicator is stored before the length

field, which is stored before the data field. The length field begins at the specified

position or at the next byte position past the end of the previous data field.

If you are running UNLOAD without the NOPAD option and need to determine

the layout of a varying-length field that can be null, see the layout diagram in

Figure 112 on page 650. This diagram shows that the null indicator is stored before

the length field, which is stored before the data field, which has padding at the

end.

Data field

Maximum
length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition

Default position of the next field

Length field, which contains the actual data length.
The size of the length field is 4 bytes for LOBs, or
2 bytes for other data types.

Length Actual length, up to maximum length

Pad

Figure 110. Layout of a varying-length field (NOT NULL) without the NOPAD option

Data field

Maximum
length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition

Default position of the next field

Length field, which contains the actual data length.
The size of the length field is 4 bytes for LOBs, or
2 bytes for other data types.

Length Actual length, up to maximum length

Null indicator byte

Figure 111. Layout of a nullable varying-length field with the NOPAD option

UNLOAD

Chapter 32. UNLOAD 649

Unloading delimited files

You can use the DELIMITED option to specify that UNLOAD is to produce an

output file in delimited format. All fields in the output data set are either in

character string or numeric external format. Each column is separated from the

next by a column delimiter, and character strings are marked by character string

delimiters. For more information on delimited files see Appendix F, “Delimited file

format,” on page 895.

Recommendation: If a delimited file is to be transferred to or from a platform

other than z/OS or between DB2 for z/OS systems that use different EBCDIC or

ASCII CCSIDs, use Unicode as the encoding scheme for the delimited file. Using

Unicode avoids possible CCSID translation problems.

You are responsible for ensuring that the chosen delimiters are not part of the data

in the file. If the delimiters are part of the file’s data, unexpected errors can occur.

Restrictions: The following general restrictions apply to the use of delimiters:

v You cannot specify the same character for more than one type of delimiter

(COLDEL, CHARDEL, and DECPT).

v You can specify a character constant for a delimiter if the utility control

statement is coded in the same encoding scheme as the output file. For example,

the utility control statement is coded in Unicode and the output data is also

coded in Unicode.

v Use the hex representation for non-default delimiters if the utility control

statement is coded in a different encoding scheme than the output file. For

example, the utility control statement is coded in Unicode and the output file is

coded in EBCDIC. In this case, if you do not use the hex representation for the

non-default delimiters, the results can be unpredictable.

v You cannot specify HEADER OBID and ROWID for output fields in delimited

output format. Because a header is not allowed, output must be from a single

table.

v When you specify the DELIMITED option, the utility ignores the POSITION

keyword. The utility overrides field data type specifications according to the

specifications of the delimited format. (For example, length values for CHAR,

VARCHAR, GRAPHIC, VARGRAPHIC, CLOB, DBCLOB, and BLOB data are the

delimited lengths of each field in the output data set, and the utility unloads all

numeric types in external format.)

Data field

Maximum
length

Specified position, or the next byte position
past the end of the previous data field

Specified length, or the length
of the column in the table definition

Default position of the next field

Length field, which contains the actual data length.
The size of the length field is 4 bytes for LOBs, or
2 bytes for other data types.

Length Actual length, up to maximum length

Pad

Null indicator byte

Figure 112. Layout of a nullable varying-length field without the NOPAD option

UNLOAD

650 Utility Guide and Reference

|
|
|
|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

v You cannot specify a binary 0 (zero) for any delimiter.

v No null byte is present for a delimited output file. A null value is indicated by

the absence of a cell value where one would normally occur. For example, two

successive column delimiters or a missing column at the end of a record indicate

a null value.

v You cannot use the default decimal point as a character string delimiter

(CHARDEL) or a column string delimiter (COLDEL).

v Shift-in and shift-out characters cannot be specified as EBCDIC MBCS delimiters.

v In the DBCS environment, the pipe character (|) is not supported.

v If the output is coded in ASCII or Unicode, you cannot specify any of the

following values for any delimiter: X'0A', X'0D', X'2E'.

v If the output is coded in EBCDIC, you cannot specify any of the following

values for any delimiter: X'15', X'0D', X'25'.

v If the output is coded in EBCDIC DBCS or MBCS, you cannot specify any of the

following values for character string delimiters: X'0D', X'15', X'25', X'4B'.

Table 32 on page 243 lists by encoding scheme the default hex values for the

delimiter characters.

 Table 133. Default delimiter values for different encoding schemes

Character EBCDIC SBCS

EBCDIC

DBCS/MBCS

ASCII/Unicode

SBCS

ASCII/Unicode

MBCS

Character string

delimiter

X'7F' X'7F' X'22' X'22'

Decimal point

character

X'4B' X'4B' X'2E' X'2E'

Column

delimiter

X'6B' X'6B' X'2C' X'2C'

In most EBCDIC code pages, the hex values in Table 32 on page 243 represent a

double quotation mark(") for the character string delimiter, a period(.) for the

decimal point character, and a comma(,) for the column delimiter.

Table 33 on page 243 lists by encoding scheme the maximum allowable hex values

for any delimiter character.

 Table 134. Maximum delimiter values for different encoding schemes

Encoding scheme Maximum allowable value

EBCDIC SBCS None

EBCDIC DBCS/MBCS X'3F'

ASCII/Unicode SBCS None

ASCII/Unicode MBCS X'7F'

Table 135 on page 652 identifies the acceptable data type forms for the delimited

file format that the LOAD and UNLOAD utilities use.

UNLOAD

Chapter 32. UNLOAD 651

|

|
|
|
|

|
|

|

|

|
|

|
|

|
|

|
|

||

||
|
|
|
|
|
|

|
|
||||

|
|
||||

|
|
||||

|

|
|
|

|
|

||

||

||

||

||

||
|

|
|

Table 135. Acceptable data type forms for delimited files

Data type

Acceptable form for loading a

delimited file

Form that is created by unloading a

delimited file

CHAR, VARCHAR A delimited or non-delimited

character string

Character data that is enclosed by

character delimiters. For VARCHAR,

length bytes do not precede the data

in the string.

GRAPHIC (any type) A delimited or non-delimited

character stream

Data that is unloaded as a delimited

character string. For VARGRAPHIC,

length bytes do not precede the data

in the string.

INTEGER (any type) A stream of characters that represents

a number in EXTERNAL format

Numeric data in external format.

Decimal (any type) A character stream that represents a

number in EXTERNAL format

A string of characters that represents

a number.

FLOAT Representation of a number in the

range -7.2E + 75 to 7.2E + 75in

EXTERNAL format

A string of characters that represents

a number in floating-point notation.

BLOB, CLOB A delimited or non-delimited

character string

Character data that is enclosed by

character delimiters. Length bytes do

not precede the data in the string.

DBCLOB A delimited or non-delimited

character string

Character data that is enclosed by

character delimiters. Length bytes do

not precede the data in the string.

DATE A delimited or non-delimited

character string that contains a date

value in EXTERNAL format

A string of characters that represents

a date.

TIME A delimited or non-delimited

character string that contains a time

value in EXTERNAL format

A string of characters that represents

a time.

TIMESTAMP A delimited or non-delimited

character string that contains a

timestamp value in EXTERNAL

format

A string of characters that represents

a timestamp.

Specifying TRUNCATE and STRIP options for output data

You can unload certain types of data into output fields that are shorter than the

length of the output data. This data truncation occurs only when you explicitly

specify the TRUNCATE option. Any CCSID conversion is applied first, and then

truncation is applied to encoded data for output.

For bit strings, truncation occurs at a byte boundary. For character type data,

truncation occurs at a character boundary (a multi-byte character is not split). If a

mixed-character type data is truncated in an output field of fixed size, the

truncated string can be shorter than the specified field size. In this case, blanks in

the output CCSID are padded to the right. If the output data is in EBCDIC for a

mixed-character type field, truncation preserves the SO (shift-out) and the SI

(shift-in) characters around a DBCS substring.

The TRUNCATE option of the UNLOAD utility truncates string data, and it has a

different purpose than the SQL TRUNCATE scalar function.

UNLOAD

652 Utility Guide and Reference

||

|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|

||
|
|

||
|
|
|

||
|
|

|
|

||
|
|
|
|

||
|
|
|
|

||
|
|

|
|

||
|
|

|
|

||
|
|
|

|
|

|

|

For VARCHAR and VARGRAPHIC output fields, in addition to the TRUNCATE

option, the STRIP option is provided to remove the specified characters, or the

leading blanks, the trailing blanks, or both. The strip operation is applied on the

encoded data for output. If both the TRUNCATE and STRIP options are specified,

the truncation operation is applied first, and then strip is applied. For example, the

output for an UNLOAD job in which you specify both the TRUNCATE and STRIP

options for a VARCHAR(5) output field is shown in Table 136. In this table, an

underscore represents a character that is to be stripped. In all cases, the source

string is first truncated to '_ABC_' (a five-character string to fit in the VARCHAR(5)

field), and then the strip operation is applied.

 Table 136. Results of specifying both the TRUNCATE and STRIP options for UNLOAD

Specified STRIP

option Source string Truncated string

Output

string

Specified

length

STRIP BOTH ’_ABC_DEF’ ’_ABC_’ ’ABC’ 3

STRIP LEADING ’_ABC_DEF’ ’_ABC_’ ’ABC_’ 4

STRIP TRAILING ’_ABC_DEF’ ’_ABC_’ ’_ABC’ 4

Generating LOAD statements

To enable reloading the unloaded data into either the original table or different

tables, a LOAD utility statement is generated and written to the SYSPUNCH DD

name or to the DD name that is specified by PUNCHDDN.

The generated LOAD statement includes WHEN and INTO TABLE specifications

that identify the table where the rows are to be reloaded, unless the HEADER

NONE option was specified in the UNLOAD control statement. You need to edit

the generated LOAD statement if you intend to load the UNLOAD output data

into different tables than the original ones.

If multiple table spaces are to be unloaded and you want UNLOAD to generate

LOAD statements, you must specify a physically distinct data set for each table

space to PUNCHDDN by using a template that contains the table space as a

variable (&TS.).

If PUNCHDDN is not specified and the SYSPUNCH DD name does not exist, the

LOAD statement is not generated.

Unloading compressed data

You can unload compressed rows from an image copy data set only when the

dictionary for decompression has been retrieved. If a row is compressed and the

dictionary the dictionary pages have not been read when the row is encountered,

the UNLOAD utility ignores this row, issues a warning message, and increments

the error count. If the error count reaches the limit that is specified by the

MAXERR option, UNLOAD terminates with an error message.

If the image copy data set is an incremental copy or a copy of pieces that does not

contain a dictionary, the FROMCOPYDDN option can be used for a DD name to

concatenate the data set with the corresponding full image copy that contains the

dictionary. If SYSTEMPAGES YES is used, a dictionary will always be available in

the incremental copies or pieces. For more information, see “FROMCOPYDDN” on

page 611.

UNLOAD

Chapter 32. UNLOAD 653

Interpreting field specification errors

If the UNLOAD utility detects any inconsistency relating to the field specification,

including a problem in data conversion or encoding while unloading a row, DB2

issues an error message. If the MAXERR option specifies a number that is greater

than zero, the UNLOAD utility continues processing until the total number of the

records in error reaches the specified MAXERR number. DB2 issues one message

for each record in error and does not unload the record. For information about

specific error messages, see DB2 Messages.

Terminating or restarting UNLOAD

If you terminate UNLOAD by using the TERM UTILITY command during the

unload phase, the output records are not erased. The output data set remains

incomplete until you either delete it or restart the utility job.

For instructions on restarting a utility job, see “Restarting an online utility” on

page 41. When the source is one or more table spaces, you can restart the

UNLOAD job at the partition level or at the table space level when data is

unloaded from multiple table spaces by using the LIST option. When you restart a

terminated UNLOAD job, processing begins with the table spaces or partitions that

had not yet been completed. For a table space or partitions that were being

processed at termination, UNLOAD resets the output data sets and processes those

table space or partitions again.

When the source is one or more image copy data sets (when FROMCOPY or

FROMCOPYDDN is specified), UNLOAD always starts processing from the

beginning.

Concurrency and compatibility for UNLOAD

DB2 treats Individual data partitions as distinct source objects. Utilities that operate

on different partitions of the same table space are compatible.

Claims and drains: Table 137 shows which claim classes UNLOAD drains and the

restrictive states that the utility sets.

 Table 137. Claim classes of UNLOAD operations

Target UNLOAD UNLOAD PART

Table space or physical partition of a table

space with SHRLEVEL REFERENCE

DW/UTRO DW/UTRO

Table space or physical partition of a table

space with SHRLEVEL CHANGE

CR/UTRW CR/UTRW

Image copy* CR/UTRW CR/UTRW

Legend:

v DW: Drain the write claim class, concurrent access for SQL readers

v UTRO: Utility restrictive state, read-only access allowed

v CR: Claim read, concurrent access for SQL writers and readers

v UTRW: Utility restrictive state; read-write access allowed

Note: * If the target object is an image copy, the UNLOAD utility applies CR/UTRW to the

corresponding table space or physical partitions to prevent the table space from being

dropped while data is being unloaded from the image copy, even though the UNLOAD

utility does not access the data in the table space.

UNLOAD

654 Utility Guide and Reference

Compatibility: The compatibility of the UNLOAD utility and the other utilities on

the same target objects are shown in Table 138. If the SHRLEVEL REFERENCE

option is specified, only SQL read operations are allowed on the same target

objects; otherwise SQL INSERT, DELETE, and UPDATE are also allowed. If the

target object is an image copy, INSERT, DELETE, and UPDATE are always allowed

on the corresponding table space. In any case, DROP or ALTER cannot be applied

to the target object while the UNLOAD utility is running.

 Table 138. Compatibility of UNLOAD with other utilities

Action

UNLOAD

SHRLEVEL

REFERENCE

UNLOAD

SHRLEVEL

CHANGE

FROM IMAGE

COPY

CHECK DATA

DELETE NO

Yes Yes Yes

CHECK DATA

DELETE YES

No No Yes

CHECK INDEX Yes Yes Yes

CHECK LOB Yes Yes Yes

COPY INDEXSPACE Yes Yes Yes

COPY TABLESPACE Yes Yes Yes*

DIAGNOSE Yes Yes Yes

LOAD SHRLEVEL

CHANGE

No Yes Yes

LOAD SHRLEVEL

NONE

No No Yes

MERGECOPY Yes Yes No

MODIFY RECOVERY Yes Yes No

MODIFY STATISTICS Yes Yes Yes

QUIESCE Yes Yes Yes

REBUILD INDEX Yes Yes Yes

RECOVER (no

options)

No No Yes

RECOVER ERROR

RANGE

No No Yes

RECOVER TOCOPY

or TORBA

No No Yes

REORG INDEX Yes Yes Yes

REORG

TABLESPACE

UNLOAD

CONTINUE or

PAUSE

No No Yes

REORG

TABLESPACE

UNLOAD ONLY or

EXTERNAL

Yes Yes Yes

REPAIR DUMP or

VERIFY

Yes Yes Yes

UNLOAD

Chapter 32. UNLOAD 655

Table 138. Compatibility of UNLOAD with other utilities (continued)

Action

UNLOAD

SHRLEVEL

REFERENCE

UNLOAD

SHRLEVEL

CHANGE

FROM IMAGE

COPY

REPAIR LOCATE

INDEX PAGE

REPLACE

Yes Yes Yes

REPAIR LOCATE

KEY or RID DELETE

or REPLACE

No No Yes

REPAIR LOCATE

TABLESPACE PAGE

REPLACE

No No Yes

REPORT Yes Yes Yes

RUNSTATS INDEX Yes Yes Yes

RUNSTATS

TABLESPACE

Yes Yes Yes

STOSPACE Yes Yes Yes

Note (*): If the same data set is used as the output from the COPY utility and as the input

data set of the UNLOAD utility, unexpected results can occur.

Sample UNLOAD control statements

Example 1: Unloading all columns of specified rows. The control statement in

Figure 113 specifies that all columns of rows that meet the following criteria are to

be unloaded from table DSN8810.EMP in table space DSN8D81A.DSN8S71E:

v The value in the WORKDEPT column is D11.

v The value in the SALARY column is greater than 25 000.

Example 2: Unloading specific columns by using a field specification list. The

following control statement specifies that columns EMPNO, LASTNAME, and

SALARY are to be unloaded, in that order, for all rows that meet the specified

conditions. These conditions are specified in the WHEN clause and are the same as

those conditions in example 1. The SALARY column is to be unloaded as type

DECIMAL EXTERNAL. The NOPAD option indicates that variable-length fields are

to be unloaded without any padding.

//STEP1 EXEC DSNUPROC,UID=’SMPLUNLD’,UTPROC=’’,SYSTEM=’DSN’

//SYSREC DD DSN=USERID.SMPLUNLD.SYSREC,

// DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(TRK,(2,1))

//SYSPUNCH DD DSN=USERID.SMPLUNLD.SYSPUNCH,

// DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(TRK,(1,1))

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 UNLOAD TABLESPACE DSN8D81A.DSN8S81E

 FROM TABLE DSN8810.EMP

 WHEN (WORKDEPT = ’D11’ AND SALARY > 25000)

Figure 113. Example of unloading all columns of specified rows

UNLOAD

656 Utility Guide and Reference

UNLOAD TABLESPACE DSN8D81A.DSN8S81E NOPAD

 FROM TABLE DSN8810.EMP

 (EMPNO, LASTNAME, SALARY DECIMAL EXTERNAL)

 WHEN (WORKDEPT = ’D11’ AND SALARY > 25000)

The output from this example might look similar to the following output:

000060@@STERN# 32250.00

000150@@ADAMSON# 25280.00

000200@@BROWN# 27740.00

000220@@LUTZ# 29840.00

200220@@JOHN# 29840.00

In this output:

v '@@' before the last name represents the 2-byte binary field that contains the

length of the VARCHAR field LASTNAME (for example, X'0005' for STERN).

v '#' represents the NULL indicator byte for the nullable SALARY field.

v Because the SALARY column is declared as DECIMAL (9,2) on the table, the

default output length of the SALARY field is 11 (9 digits + sign + decimal point),

not including the NULL indicator byte.

v LASTNAME is unloaded as a variable-length field because the NOPAD option is

specified.

Example 3: Unloading data from an image copy. The FROMCOPY option in the

following control statement specifies that data is to be unloaded from a single

image copy data set, JUKWU111.FCOPY1.STEP1.FCOPY1.

PUNCHDDN SYSPUNCH specifies that the UNLOAD utility is to generate LOAD

utility control statements and write them to the data set that is defined by the

SYSPUNCH DD statement; SYSPUNCH is the default. UNLDDN SYSREC specifies

that the data is to be unloaded to the data set that is defined by the SYSREC DD

statement; SYSREC is the default.

UNLOAD TABLESPACE DBKW1101.TPKW1101

 FROMCOPY JUKWU111.FCOPY1.STEP1.FCOPY1

 PUNCHDDN SYSPUNCH UNLDDN SYSREC

Example 4: Unloading a sample of rows and specifying a header. The following

control statement specifies that a sample of rows is to be unloaded from table

ADMF001.TBKW1605. Unloading a sample of rows is useful for building a test

system. The SAMPLE option indicates that 75% of the rows are to be sampled. The

HEADER option indicates that the string ’sample’ is to be used as the header field

in the output file. The PUNCHDDN option indicates that UNLOAD is to generate

LOAD utility control statements and write them to the SYSPUNCH data set, which

is the default. UNLOAD specifies the header field as a criterion in the WHEN

clause of these LOAD statements.

UNLOAD TABLESPACE DBKW1603.TPKW1603

 PUNCHDDN SYSPUNCH UNLDDN SYSREC

 FROM TABLE ADMF001.TBKW1605

 HEADER CONST ’sample’

 SAMPLE 75

Example 5: Unloading data from two tables in a segmented table space. The

following control statement specifies that data from table ADMF001.TBKW1504

and table ADMF001.TBKW1505 is to be unloaded from the segmented table space

DBKW1502.TSKW1502. The PUNCHDDN option indicates that UNLOAD is to

generate LOAD utility control statements and write them to the SYSPUNCH data

UNLOAD

Chapter 32. UNLOAD 657

|
|
|

|
|
|
|
|

set, which is the default. The UNLDDN option specifies that the data is to be

unloaded to the data set that is defined by the SYSREC DD statement, which is

also the default.

UNLOAD TABLESPACE DBKW1502.TSKW1502

 PUNCHDDN SYSPUNCH UNLDDN SYSREC

 FROM TABLE ADMF001.TBKW1504

 FROM TABLE ADMF001.TBKW1505

Example 6: Unloading data in parallel from a partitioned table space. The

UNLOAD control statement in Figure 114 specifies that data from table TCRT.TTBL

is to be unloaded to data sets that are defined by the UNLDDS template. These

data sets are to be dynamically allocated and named according to the naming

convention that is defined by the DSN option of the TEMPLATE utility control

statement. This naming convention indicates that a data set is to be allocated for

each table space partition. For more information about TEMPLATE control

statements, see “Syntax and options of the TEMPLATE control statement ” on page

587 in the TEMPLATE chapter.

Assume that table space TDB1.TSP1, which contains table TCRT.TTBL, has three

partitions. Because the table space is partitioned and each partition is associated

with an output data set that is defined by the UNLDDS template, the UNLOAD

job runs in parallel in a multi-processor environment. The number of parallel tasks

are determined by the number of available processors.

Assume that the user ID is USERID. This UNLOAD job creates the following three

data sets to store the unloaded data:

v USERID.SMPLUNLD.TSP1.P00001 ... contains rows from partition 1.

v USERID.SMPLUNLD.TSP1.P00002 ... contains rows from partition 2.

v USERID.SMPLUNLD.TSP1.P00003 ... contains rows from partition 3.

Example 7: Using a LISTDEF utility statement to specify partitions to unload. The

UNLOAD control statement in Figure 115 on page 659 specifies that data that is

included in the UNLDLIST list is to be unloaded. UNLDLIST is defined in the

LISTDEF utility control statement and contains partitions one and three of table

space TDB1.TSP1. The LIST option of the UNLOAD statement specifies that the

UNLOAD utility is to use this list. For more information about LISTDEF control

statements, see “Syntax and options of the LISTDEF control statement” on page

171 in the LISTDEF chapter.

The data is to be unloaded to data sets that are defined by the UNLDDS template.

For more information about TEMPLATE control statements, see “Syntax and

options of the TEMPLATE control statement ” on page 587 in the TEMPLATE

chapter.

//STEP1 EXEC DSNUPROC,UID=’SMPLUNLD’,UTPROC=’’,SYSTEM=’DSN’

//SYSPUNCH DD DSN=USERID.SMPLUNLD.SYSPUNCH,

// DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(TRK,(1,1))

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 TEMPLATE UNLDDS DSN &USERID..SMPLUNLD.&TS..P&PART.

 UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (2,1) CYL

 UNLOAD TABLESPACE TDB1.TSP1

 UNLDDN UNLDDS

 FROM TABLE TCRT.TTBL

Figure 114. Example of unloading data in parallel from a partitioned table space

UNLOAD

658 Utility Guide and Reference

|
|
|

|
|
|
|

Assume that the user ID is USERID. This UNLOAD job creates the following two

data sets to store the unloaded data:

v USERID.SMPLUNLD.TSP1.P00001 ... contains rows from partition 1.

v USERID.SMPLUNLD.TSP1.P00003 ... contains rows from partition 3.

Example 8: Unloading multiple table spaces by using LISTDEF. The UNLOAD

control statement in Figure 116 specifies that data from multiple table spaces is to

be unloaded. These table spaces are specified in the LISTDEF utility control

statement. Assume that the database TDB1 contains two table spaces that can be

expressed by the pattern-matching string 'TSP*', (for example, TSP1 and TSP2).

These table spaces are both included in the list named UNLDLIST, which is

defined in the LISTDEF statement. The LIST option of the UNLOAD statement

specifies that the UNLOAD utility is to use this list. For more information about

LISTDEF control statements, see “Syntax and options of the LISTDEF control

statement” on page 171 in the LISTDEF chapter.

The UNLDDN option specifies that the data is to be unloaded to data sets that are

defined by the UNLDDS template. The PUNCHDDN option specifies that

UNLOAD is to generate LOAD utility control statements and write them to the

data sets that are defined by the PUNCHDS template. For more information about

TEMPLATE control statements, see “Syntax and options of the TEMPLATE control

statement ” on page 587 in the TEMPLATE chapter.

Assume that the user ID is USERID. This UNLOAD job creates the following two

data sets to store the unloaded data:

v USERID.SMPLUNLD.TSP1 ... contains rows from table space TDB1.TSP1.

v USERID.SMPLUNLD.TSP2 ... contains rows from table space TDB1.TSP2.

//SAMPJOB JOB ...

//STEP1 EXEC DSNUPROC,UID=’SMPLUNLD’,UTPROC=’’,SYSTEM=’DSN’

//SYSPUNCH DD DSN=USERID.SMPLUNLD.SYSPUNCH,

// DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,SPACE=(TRK,(1,1))

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 LISTDEF UNLDLIST

 INCLUDE TABLESPACE TDB1.TSP1 PARTLEVEL(1)

 INCLUDE TABLESPACE TDB1.TSP1 PARTLEVEL(3)

 TEMPLATE UNLDDS DSN &USERID..SMPLUNLD.&TS..P&PART.

 UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (2,1) CYL

 UNLOAD LIST UNLDLIST -- LIST name

 UNLDDN UNLDDS -- TEMPLATE name

Figure 115. Example of using a LISTDEF utility statement to specify partitions to unload

//SAMPJOB JOB ...

//STEP1 EXEC DSNUPROC,UID=’SMPLUNLD’,UTPROC=’’,SYSTEM=’DSN’

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 LISTDEF UNLDLIST

 INCLUDE TABLESPACE TDB1.TSP*

 TEMPLATE UNLDDS DSN &USERID..SMPLUNLD.&TS.

 UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (2,1) CYL

 TEMPLATE PUNCHDS DSN &USERID..SMPLPUNC.&TS.

 UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (1,1) CYL

 UNLOAD LIST UNLDLIST

 PUNCHDDN PUNCHDS -- TEMPLATE name

 UNLDDN UNLDDS -- TEMPLATE name

Figure 116. Example of unloading multiple table spaces

UNLOAD

Chapter 32. UNLOAD 659

Example 9: Unloading data into a delimited file. The control statement in

Figure 117 specifies that data from the specified columns (RECID, CHAR7SBCS,

CHAR7BIT, VCHAR20, VCHAR20SBCS, VCHAR20BIT) in table TBQB0501 is to be

unloaded into a delimited file. This output format is indicated by the DELIMITED

option. The POSITION(*) option indicates that each field in the output file is to

start at the first byte after the last position of the previous field.

The column delimiter is specified by the COLDEL option as a semicolon (;), the

character string delimiter is specified by the CHARDEL option as a pound sign (#),

and the decimal point character is specified by the DECPT option as an

exclamation point (!).

PUNCHDDN SYSPUNCH specifies that UNLOAD is to generate LOAD utility

control statements and store them in the SYSPUNCH data set, which is the default.

UNLDDN SYSREC indicates that the data is to be unloaded to the SYSREC data

set, which is the default.

The EBCDIC option indicates that all output character data is to be in EBCDIC.

 Example 10: Converting character data. For this example, assume that table

DSN8810.DEMO_UNICODE contains character data in Unicode. The UNLOAD

control statement in Figure 118specifies that the utility is to unload the data in this

table as EBCDIC data.

Example 11: Unloading LOB data to a file. The UNLOAD control statement in

Figure 119 on page 661 specifies that the utility is to unload data from table

DSN8910.EMP_PHOTO_RESUME into the data set that is identified by the

//*

//STEP3 EXEC DSNUPROC,UID=’JUQBU105.UNLD1’,

// UTPROC='',

// SYSTEM='SSTR'

//UTPRINT DD SYSOUT=*

//SYSREC DD DSN=JUQBU105.UNLD1.STEP3.TBQB0501,DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSPUNCH DD DSN=JUQBU105.UNLD1.STEP3.SYSPUNCH

// DISP=(MOD,CATLG,CATLG)

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD*

 UNLOAD TABLESPACE DBQB0501.TSQB0501

 DELIMITED CHARDEL '#' COLDEL ';' DECPT '!'

 PUNCHDDN SYSPUNCH

 UNLDDN SYSREC EBCDIC

 FROM TABLE ADMF001.TBQB0501

 (RECID POSITION(*) CHAR,

 CHAR7SBCS POSITION(*) CHAR,

 CHAR7SBIT POSITION(*) CHAR(7),

 VCHAR20 POSITION(*) VARCHAR,

 VCHAR20SBCS POSITION(*) VARCHAR,

 VCHAR20BIT POSITION(*) VARCHAR)

 /*

Figure 117. Example of unloading data into a delimited file.

UNLOAD

 EBCDIC

 TABLSPACE DSN8D81E.DSN8S81U

 FROM TABLE DSN8810.DEMO_UNICODE

Figure 118. Example of unloading Unicode table data into EBCDIC

UNLOAD

660 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

#
#
#

SYSREC DD statement. Data in the EMPNO field is six bytes of character data, as

indicated by the CHAR(6) option, and is unloaded directly into the SYSREC data

set. Data in the RESUME column is CLOB data as indicated by the CLOBF option.

This CLOB data is to be unloaded to the files identified by the LOBFRV template,

which is defined in the preceding TEMPLATE statement. If these files do not

already exist, DB2 creates them. The names of these files are stored in the SYSREC

data set. The length of the file name to be stored in this data set can be up to 255

bytes as specified by the VARCHAR option.

TEMPLATE LOBFRV DSN 'UNLDTEST.&DB..&TS..RESUME'

 DSNTYPE(PDS) UNIT(SYSDA)

UNLOAD DATA

 FROM TABLE DSN8910.EMP_PHOTO_RESUME

 (EMPNO CHAR(6),

 RESUME VARCHAR(255) CLOBF LOBFRV)

 SHRLEVEL CHANGE

Figure 119. Example of unloading LOB data into a file

UNLOAD

Chapter 32. UNLOAD 661

#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#

662 Utility Guide and Reference

Part 3. DB2 stand-alone utilities

Chapter 33. Invoking stand-alone utilities . . . 665

Creating utility control statements 665

Specifying options by using the JCL EXEC PARM

parameter 665

Effects of invoking stand-alone utilities on tables

that have multilevel security with row-level

granularity 666

Chapter 34. DSNJCNVB 667

Before running DSNJCNVB 667

Environment 667

Authorization required 667

Prerequisite actions 667

Control statement 667

Required and optional data sets 667

Running DSNJCNVB 668

Sample DSNJCNVB control statement 668

DSNJCNVB output 668

Chapter 35. DSNJLOGF (preformat active log) 669

Before running DSNJLOGF 669

Environment 669

Control statement 669

Sample DSNJLOGF control statement 669

DSNJLOGF output 670

Chapter 36. DSNJU003 (change log inventory) 671

Syntax and options of the DSNJU003 control

statement 671

DSNJU003 (change log inventory) syntax

diagram 671

Option descriptions 673

Before running DSNJU003 681

Environment 681

Authorization required 682

Control statement 682

Using DSNJU003 to modify the BSDS 683

Running DSNJU003 683

Making changes for active logs 683

Making changes for archive logs 685

Creating a conditional restart control record . . 685

Deleting log data sets with errors 685

Altering references to NEWLOG and DELETE

data sets 687

Defining the high-level qualifier for catalog and

directory objects 687

Renaming DB2 system data sets 687

Renaming DB2 active log data sets 688

Renaming DB2 archive log data sets 688

Sample DSNJU003 control statements 688

Chapter 37. DSNJU004 (print log map) 691

Syntax and options of the DSNJU004 control

statement 691

DSNJU004 (print log map) syntax diagram . . 691

Option descriptions 691

Before running DSNJU004 692

Environment 692

Authorization required 692

Control statement 692

Recommendations 693

Sample DSNJU004 control statement 693

DSNJU004 (print log map) output 693

Timestamps in the BSDS 698

Active log data set status 700

Archive log command history 700

Reading conditional restart control records . . 701

Chapter 38. DSN1CHKR 703

Syntax and options of the DSN1CHKR control

statement 703

DSN1CHKR syntax diagram 703

Option descriptions 703

Before running DSN1CHKR 705

Environment 705

Authorization required 705

Control statement 705

Restrictions 706

Sample DSN1CHKR control statements 706

DSN1CHKR output 709

Chapter 39. DSN1COMP 711

Syntax and options of the DSN1COMP control

statement 711

DSN1COMP syntax diagram 711

Option descriptions 711

Before running DSN1COMP 713

Environment 714

Authorization required 714

Control statement 714

Recommendation 715

Using DSN1COMP to estimate space savings from

DB2 data compression 715

The effect of the REORG option on compression

savings estimates 716

Free space in compression calculations 716

The effect of running DSN1COMP on a table

space with identical rows 717

Sample DSN1COMP control statements 717

DSN1COMP output 719

Message DSN1941 719

Sample DSN1COMP report 719

Chapter 40. DSN1COPY 721

Syntax and options of the DSN1COPY control

statement 722

DSN1COPY syntax diagram 722

Option descriptions 722

Before running DSN1COPY 727

Environment 727

© Copyright IBM Corp. 1983, 2008 663

|
|
||

Authorization required 727

Control statement 728

Defining the input data set 730

Defining the output data set 731

Restrictions 732

Recommendations 733

Using DSN1COPY to copy data sets 734

The effect of altering a table before running

DSN1COPY 734

Checking for inconsistent data 734

The effects of not specifying the OBIDXLAT

option 734

Requirements for using an image copy as input

to DSN1COPY 734

Resetting page log RBAs 735

Copying from an image copy 735

Restoring indexes with DSN1COPY 735

Restoring table spaces with DSN1COPY . . . 736

Printing with DSN1COPY 736

Copying tables from one subsystem to another 736

Sample DSN1COPY control statements 737

DSN1COPY output 739

Chapter 41. DSN1LOGP 741

Syntax and options of the DSN1LOGP control

statement 742

DSN1LOGP syntax diagram 742

Option descriptions 742

Before running DSN1LOGP 748

Environment 748

Authorization required 748

Control statement 748

Using DSN1LOGP to format the contents of the

recovery log 750

Reading archive log data sets on tape 750

Locating table and index identifiers 751

Sample DSN1LOGP control statements 751

DSN1LOGP output 753

Reviewing DSN1LOGP output 754

Interpreting error codes 759

Chapter 42. DSN1PRNT 761

Syntax and options of the DSN1PRNT control

statement 762

DSN1PRNT syntax diagram 762

Option descriptions 762

Before running DSN1PRNT 768

Environment 768

Authorization required 768

Control statement 768

Recommendations 769

Sample DSN1PRNT control statements 770

DSN1PRNT output 771

Chapter 43. DSN1SDMP 773

Syntax and options of the DSN1SDMP control

statement 773

DSN1SDMP syntax diagram 773

Option descriptions 774

Before running DSN1SDMP 778

Environment 778

Authorization required 778

Control statement 778

Using DSN1SDMP to force dumps and write trace

records 779

Assigning buffers 779

Conditions for generating a dump 780

Stopping or modifying DSN1SDMP traces . . . 780

Sample DSN1SDMP control statements 780

DSN1SDMP output 784

664 Utility Guide and Reference

Chapter 33. Invoking stand-alone utilities

This chapter contains procedures and guidelines for creating utility control

statements and EXEC PARM parameters for invoking the stand-alone utilities.

Utility control statements and parameters define the function that a utility job

performs. Some stand-alone utilities read the control statements from an input

stream, and others obtain the function definitions from JCL EXEC PARM

parameters.

The following topics provide additional information:

v “Creating utility control statements”

v “Specifying options by using the JCL EXEC PARM parameter”

v “Effects of invoking stand-alone utilities on tables that have multilevel security

with row-level granularity” on page 666

Creating utility control statements

Create the utility control statements with the ISPF/PDF edit function. After you

create the control statements, save them in a sequential or partitioned data set.

The following utilities read control statements from the input stream file of the

specified DD name:

Utility DD name

DSNJU003 (change log inventory)

SYSIN

DSNJU004 (print log map) SYSIN (optional)

DSN1LOGP SYSIN

DSN1SDMP SDMPIN

Utility control statements are read from the DD name input stream. The statements

in that stream must conform to the following rules:

v The logical record length (LRECL) must be 80 characters. Columns 73 through

80 are ignored.

v The records are concatenated into a single stream before they are parsed. No

concatenation character is necessary.

v The SYSIN stream can contain multiple utility control statements.

Specifying options by using the JCL EXEC PARM parameter

Use the EXEC PARM parameter to specify function options for the following

stand-alone utilities:

v DSN1CHKR

v DSN1COMP

v DSN1COPY

v DSN1PRNT

Ensure that the parameters that you specify obey the following OS/390 JCL EXEC

PARM parameter specification rules:

© Copyright IBM Corp. 1983, 2008 665

v Enclose multiple subparameters in single quotation marks or parentheses and

separate the subparameters with commas, as in the following example:

//name EXEC PARM=’ABC,...,XYZ’

v Do not let the total length exceed 100 characters.

v Do not use blanks within the parameter specification.

To specify the parameter across multiple lines, perform the following actions:

1. Enclose it in parentheses.

2. End the first line with a subparameter, followed by a comma.

3. Continue the subparameters on the next line, beginning before column 17.

The following example shows a parameter that spans multiple lines:

//stepname EXEC PARM=(ABC,...LMN,

 OPQ,...,XYZ)

Effects of invoking stand-alone utilities on tables that have multilevel

security with row-level granularity

If you use RACF access control with multilevel security, you do not need any

additional authorizations to run stand-alone utilities. When processing tables that

have multilevel security with row-level granularity, stand-alone utilities ignore

row-level granularity. They check only for authorization to operate on the table

space; they do not check row-level authorizations. For more information about

multilevel security, see Part 3 of DB2 Administration Guide.

666 Utility Guide and Reference

|

|

|
|
|
|
|
|

Chapter 34. DSNJCNVB

The DSNJCNVB conversion utility converts the bootstrap data set (BSDS) so that it

can support up to 10 000 archive log volumes and 93 active log data sets per log

copy. If you do not convert the BSDS, it can manage only 1 000 archive log

volumes and 31 active log data sets per log copy. Converting the BSDS is optional.

The following topics provide additional information:

v “Before running DSNJCNVB”

v “Running DSNJCNVB” on page 668

v “Sample DSNJCNVB control statement” on page 668

v “DSNJCNVB output ” on page 668

Before running DSNJCNVB

This section contains information that you need to be aware of prior to running

DSNJCNVB.

Environment

Execute the DSNJCNVB utility as a batch job only when DB2 is not running.

Your DB2 subsystem must be in new-function mode to convert the BSDS.

Authorization required

The authorization ID of the DSNJCNVB job must have the requisite RACF

authorization.

Prerequisite actions

If you have migrated to a new version of DB2, you need to create a larger BSDS

before converting it. See the DB2 Installation Guide for instructions on how to create

a larger BSDS. For a new installation, you do not need to create a larger BSDS.

DB2 provides a larger BSDS definition in installation job DSNTIJIN; however, if

you want to convert the BSDS, you must still run DSNJCNVB.

Control statement

See “Sample DSNJCNVB control statement” on page 668 for an example of using

DSNJCNVB to convert the BSDS.

Required and optional data sets

DSNJCNVB recognizes DD statements with the following DD names:

JOBCAT or

STEPCAT Specifies the catalog in which the BSDS is cataloged. This

statement is optional. Typically, the high-level qualifier of the BSDS

name points to the ICF catalog that contains an entry for the BSDS.

SYSUT1 Specifies the BSDS copy 1 data set that DSNJCNVB is to use as

input. This statement is required.

SYSUT2 Specifies the BSDS copy 2 data set that DSNJCNVB is to use as

input. This statement is optional.

© Copyright IBM Corp. 1983, 2008 667

Specify this statement if you are using dual BSDSs and you want

to convert both with a single execution of DSNJCNVB. You can run

DSNJCNVB separately for each copy if desired.

SYSPRINT Specifies a data set or print spool class for print output. This

statement is required. The logical record length (LRECL) is 125.

Running DSNJCNVB

Use the following EXEC statement to execute this utility:

//EXEC PGM=DSNJCNVB

Sample DSNJCNVB control statement

The following statements specify that DSNJCNVB is to convert the BSDS so that it

can manage up to 10 000 archive log volumes and 93 active log data sets per log

copy. The SYSUT1 and SYSUT2 statements identify the bootstrap data sets. Only

the SYSUT1 statement is required. The SYSUT2 statement is optional. Specify

SYSUT2 only if you are using dual BSDSs and you want to convert both with a

single execution of DSNJCNVB.

//DSNJCNVB EXEC PGM=DSNJCNVB

//STEPLIB DD DISP=SHR,DSN=DSNC810.SDSNEXIT

// DD DISP=SHR,DSN=DSNC810.SDSNLOAD

//SYSUT1 DD DISP=OLD,DSN=DSNC810.BSDS01

//SYSUT2 DD DISP=OLD,DSN=DSNC810.BSDS02

//SYSPRINT DD SYSOUT=*

DSNJCNVB output

The following example shows sample DSNJCNVB output:

CONVERSION OF BSDS DATA SET - COPY 1, DSN=DSNC810.BSDS01

 SYSTEM TIMESTAMP - DATE=2003.199 LTIME= 9:40:58.74

 UTILITY TIMESTAMP - DATE=2003.216 LTIME=14:26:02.21

 PREVIOUS HIKEY - 04000053

 NEW HIKEY - 040002F0

 RECORDS ADDED - 669

DSNJ260I DSNJCNVB BSDS CONVERSION FOR DDNAME=SYSUT1 COMPLETED SUCCESSFULLY

DSNJ200I DSNJCNVB CONVERT BSDS UTILITY PROCESSING COMPLETED SUCCESSFULLY

DSNJCNVB

668 Utility Guide and Reference

Chapter 35. DSNJLOGF (preformat active log)

When writing to an active log data set for the first time, DB2 must preformat a

VSAM control area before writing the log records. The DSNJLOGF utility avoids

this delay by preformatting the active log data sets before bringing them online to

DB2.

The following topics provide additional information:

v “Before running DSNJLOGF”

v “Sample DSNJLOGF control statement”

v “DSNJLOGF output” on page 670

Before running DSNJLOGF

This section contains information that you need to be aware of prior to running

DSNJLOGF.

Environment

Run DSNJLOGF as a z/OS job.

Control statement

See “Sample DSNJLOGF control statement” for an example of using DSNJLOGF to

preformat the active log data sets.

Required data sets: DSNJLOGF recognizes DD statements with the following DD

names.

SYSUT1 Defines the newly defined active log data set that is to be

preformatted. The data set must be an empty VSAM linear data set

and less than four gigabytes in size.

SYSPRINT Defines the print spool class or data set for print output. The

logical record length (LRECL) is 132.

Sample DSNJLOGF control statement

The control statements in Figure 120 on page 670 specify that DSNJLOGF is to

preformat the four active log data sets that are identified by the four SYSUT1 DD

statements.

© Copyright IBM Corp. 1983, 2008 669

DSNJLOGF output

The following sample shows the DSNJLOGF output for the first data set in the

sample control statement in Figure 120.

DSNJ991I DSNJLOGF START OF LOG DATASET PREFORMAT FOR JOB LOGFRMT STEP1

DSNJ992I DSNJLOGF LOG DATA SET NAME = DSNC810.LOGCOPY1.DS01

DSNJ996I DSNJLOGF LOG PREFORMAT COMPLETED SUCCESSFULLY, 00015000

 RECORDS FORMATTED

//JOBLIB DD DSN=DSN810.SDSNLOAD,DISP=SHR

//STEP1 EXEC PGM=DSNJLOGF

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSUT1 DD DSN=DSNC810.LOGCOPY1.DS01,DISP=SHR

//STEP2 EXEC PGM=DSNJLOGF

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSUT1 DD DSN=DSNC810.LOGCOPY1.DS02,DISP=SHR

//STEP3 EXEC PGM=DSNJLOGF

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSUT1 DD DSN=DSNC810.LOGCOPY2.DS01,DISP=SHR

//STEP4 EXEC PGM=DSNJLOGF

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSUT1 DD DSN=DSNC810.LOGCOPY2.DS02,DISP=SHR

Figure 120. Sample DSNJLOGF control statement

DSNJLOGF (preformat active log)

670 Utility Guide and Reference

Chapter 36. DSNJU003 (change log inventory)

The DSNJU003 stand-alone utility changes the bootstrap data sets (BSDSs). You can

use the utility to:

v Add or delete active or archive log data sets

v Add or delete checkpoint records

v Create a conditional restart control record to control the next start of the DB2

subsystem

v Change the VSAM catalog name entry in the BSDS

v Modify the communication record in the BSDS

v Modify the value for the highest-written log RBA value (relative byte address

within the log) or the highest-offloaded RBA value

The following topics provide additional information:

v “Syntax and options of the DSNJU003 control statement”

v “Before running DSNJU003” on page 681

v “Using DSNJU003 to modify the BSDS” on page 683

v “Sample DSNJU003 control statements” on page 688

Syntax and options of the DSNJU003 control statement

DSNJU003 (change log inventory) syntax diagram

DSNJU003 uses multiple statements that you submit in separate jobs. The

statements are:

v NEWLOG

v DELETE

v CRESTART

v NEWCAT

v DDF

v CHECKPT

v HIGHRBA

NEWLOG statement

�� NEWLOG DSNAME=data-set-name new active log

new archive log

STARTIME=startime,ENDTIME=endtime
 ��

new active log:

�� ,COPY1

,COPY2

,STARTRBA=startrba,ENDRBA=endrba
 ��

© Copyright IBM Corp. 1983, 2008 671

new archive log:

��

,COPY1VOL=vol-id

,STARTRBA=startrba,ENDRBA=endrba,UNIT=unit-id

,COPY2VOL=vol-id

 ,CATALOG=NO

,CATALOG=YES

�

�
STRTLRSN=startlrsn,ENDLRSN=endlrsn

 ��

DELETE statement

�� DELETE DSNAME=data-set-name

,COPY1VOL=vol-id

,COPY2VOL=vol-id

CCSIDS

 ��

CRESTART statement

�� CRESTART CREATE create-spec

CANCEL
 ��

create-spec:

��

,STARTRBA=startrba

,ENDRBA=endrba

,ENDLRSN=endlrsn

,SYSPITR=log-truncation-point

,CHKPTRBA=chkptrba
 �

�
 ,FORWARD=YES ,BACKOUT=YES

,FORWARD=NO

,BACKOUT=NO

,CSRONLY

��

DSNJU003 (change log inventory)

672 Utility Guide and Reference

|

|

NEWCAT statement

�� NEWCAT VSAMCAT=catalog-name ��

DDF statement

��

DDF

�

�

 ,

LOCATION=locname

,

ALIAS=

alias-name

:alias-port

NOALIAS

LUNAME=luname

PASSWORD=password

NOPASSWD

GENERIC=gluname

NGENERIC

PORT=port

RESPORT=resport

��

CHECKPT statement

�� CHECKPT STARTRBA=startrba ,ENDRBA=endrba ,TIME=time

,ENDLRSN=endlrsn

,CANCEL

 ��

HIGHRBA statement

�� HIGHRBA STARTRBA=startrba ,TIME=time

,OFFLRBA=offlrba

OFFLRBA=offlrba

 ��

Option descriptions

“Creating utility control statements” on page 665 provides general information

about specifying options for DB2 utilities.

NEWLOG Declares one of the following data sets:

v A VSAM data set that is available for use as an active log data

set.

DSNJU003 (change log inventory)

Chapter 36. DSNJU003 (change log inventory) 673

||||

Use only the keywords DSNAME=, COPY1, and COPY2.

v An active log data set that is replacing one that encountered an

I/O error.

Use only the keywords DSNAME=, COPY1, COPY2,

STARTRBA=, and ENDRBA=.

v An archive log data set volume.

Use only the keywords DSNAME= ,COPY1VOL=, COPY2VOL=,

STARTRBA=, ENDRBA=, UNIT=, CATALOG=, STRTLRSN=, and

ENDLRSN=.

If you create an archive log data set and add it to the BSDS with

this utility, you can specify a name that DB2 might also generate.

DB2 generates archive log data set names of the form

DSNCAT.ARCHLOGx.Annnnnnn where:

– DSNCAT and ARCHLOG are parts of the data set prefix that

you specified on installation panels DSNTIPA2 and DSNTIPH.

– x is 1 for the first copy of the logs, and 2 is for the second

copy.

– Annnnnnn represents the series of low-level qualifiers that

DB2 generates for archive log data set names, beginning with

A0000001, and incrementing to A0000002, A0000003, and so

forth.
For data sharing, the naming convention is

DSNCAT.ARCHLOG1 or DSNCAT.DSN1.ARCLG1.

If you do specify a name by using the same naming convention

as DB2, you receive a dynamic allocation error when DB2

generates that name. The error message, DSNJ103I, is issued

once. DB2 then increments the low-level qualifier to generate the

next data set name in the series and offloads to it the next time

DB2 archives. (The active log that previously was not offloaded

is offloaded to this data set.)

The newly defined active logs cannot specify a start and end

LRSN. When DB2 starts, it reads the new active log data sets

with an RBA range to determine the LRSN range, and updates

the start and end LRSN in the BSDS for the new log data sets.

The start and end LRSN for new active logs that contain active

log data are read at DB2 start-up time from the new active log

data sets that are specified in the change log inventory

NEWLOG statements. For new archive logs that are defined

with change log inventory, the user must specify the start and

end RBAs. For data sharing, the user must also specify the start

and end LRSNs. DB2 startup does not attempt to find these

values from the new archive log data sets.

DSNAME=data-set-name

Specifies a log data set.

 data-set-name can be up to 44 characters long.

COPY1 Makes the data set an active log copy-1 data set.

COPY2 Makes the data set an active log copy-2 data set.

STARTRBA=startrba

Identifies a hexadecimal number of up to 12 characters. If you use

fewer than 12 characters, leading zeros are added. startrba must

DSNJU003 (change log inventory)

674 Utility Guide and Reference

end with '000'; otherwise DB2 returns a DSNJ4381 error message.

You can obtain the RBA from messages or by printing the log map.

 On the NEWLOG statement, startrba gives the log RBA of the

beginning of the replacement active log data set or the archive log

data set volume that is specified by DSNAME.

On the CRESTART statement, startrba is the earliest RBA of the

log that is to be used during restart. If you omit STARTRBA, DB2

determines the beginning of the log range.

On the CHECKPT statement, startrba indicates the start checkpoint

log record.

STARTRBA is required when STARTIME is specified.

On the HIGHRBA statement, startrba denotes the log RBA of the

highest-written log record in the active log data sets.

ENDRBA=endrba

endrba is a hexadecimal number of up to 12 characters. If you use

fewer than 12 characters, leading zeros are added. endrba must end

with 'FFF' or DB2 returns a DSNJ4381 error message.

 On the NEWLOG statement, endrba gives the log RBA (relative

byte address within the log) of the end of the replacement active

log data set or the archive log data set volume that is specified by

DSNAME.

On the CRESTART statement, endrba is the last RBA of the log

that is to be used during restart, and it is also the starting RBA of

the next active log that is written after restart. Any log information

in the bootstrap data set, the active logs, and the archive logs with

an RBA that is greater than endrba is discarded. If you omit

ENDRBA, DB2 determines the end of the log range.

The value of ENDRBA must be a multiple of 4096. (The

hexadecimal value must end in 000.) Also, the value must be

greater than or equal to the value of STARTRBA. If STARTRBA and

ENDRBA are equal, the next restart is a cold start; that is, no log

records are processed during restart. The specified RBA becomes

the beginning RBA of the new log.

On the CHECKPT statement, endrba indicates the end checkpoint

log record that corresponds to the start checkpoint log record.

COPY1VOL=vol-id

vol-id is the volume serial of the copy-1 archive log data set that is

specified after DSNAME.

COPY2VOL=vol-id

vol-id is the volume serial of the copy-2 archive log data set that is

specified after DSNAME.

UNIT=unit-id unit-id is the device type of the archive log data set that is named

after DSNAME.

CATALOG Indicates whether the archive log data set is to be cataloged.

NO Indicates that the archive log data set is not to be

cataloged. All subsequent allocations of the data set are

made using the unit and volume information that is

specified on the statement.

DSNJU003 (change log inventory)

Chapter 36. DSNJU003 (change log inventory) 675

|

YES Indicates that the archive log data set is to be cataloged.

All subsequent allocations of the data set are made using

the catalog.

 DB2 requires that all archive log data sets on disk be

cataloged. Select CATALOG=YES if the archive log data set

is on disk.

STRTLRSN=startlrsn

On the NEWLOG statement, identifies the LRSN in the log record

header of the first complete log record on the new archive data set.

startlrsn is a hexadecimal number of up to 12 characters. If you use

fewer than 12 characters, leading zeros are added. In a data

sharing environment, run the print log map utility to find an

archive log data set and start and end RBAs and LRSNs.

ENDLRSN=endlrsn

endlrsn is a hexadecimal number of up to 12 characters. If you use

fewer than 12 characters, leading zeros are added. In a data

sharing environment, run the print log map utility to find an

archive log data set and start and end RBAs and LRSNs.

 For the NEWLOG and CHECKPT statements, the ENDLRSN

option is valid only in a data sharing environment. For the

CRESTART statement, the ENDLRSN option is valid in both data

sharing and non-data sharing environments. This option cannot be

specified with STARTRBA or ENDRBA.

On the NEWLOG statement, endlrsn is the LRSN in the log record

header of the last log record on the new archive data set.

On the CRESTART statement, in a data sharing environment,

endlrsn is an LRSN value that is to be used as the log truncation

point. A valid log truncation point is any LRSN value for which

there exists a log record with an LRSN that is greater than or equal

to the specified LRSN value. Any log information in the bootstrap

data set, the active logs, and the archive logs with an LRSN greater

than endlrsn is discarded. If you omit ENDLRSN, DB2 determines

the end of the log range.

In a non-data sharing environment, endlrsn is the RBA value that

matches the start of the last log record that is to be used during

restart. Any log information in the bootstrap data set, the active

logs, and the archive logs with an RBA that is greater than endlrsn

is discarded. If the endlrsn RBA value does not match the start of a

log record, DB2 restart fails. If you omit ENDLRSN, DB2

determines the end of the log range.

On the CHECKPT statement, endlrsn is the LRSN of the end

checkpoint log record.

STARTIME=startime

Enables you to record the start time of the RBA in the BSDS. This

field is optional.

 startime specifies the start time in the following timestamp format:

yyyydddhhmmsst

In this format:

yyyy Indicates the year (1989-2099).

ddd Indicates the day of the year (0-365; 366 in leap years).

DSNJU003 (change log inventory)

676 Utility Guide and Reference

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

hh Indicates the hour (0-23).

mm Indicates the minutes (0-59).

ss Indicates the seconds (0-59).

t Indicates tenths of a second.

If fewer than 14 digits are specified for the STARTIME or

ENDTIME parameter, trailing zeros are added.

If STARTIME is specified, the ENDTIME, STARTRBA, and

ENDRBA options must also be specified.

ENDTIME=endtime

Enables you to record the end time of the RBA in the BSDS. This

field is optional.

 endtime specifies the end time in the same timestamp format as the

STARTIME option. The ENDTIME value must be greater than or

equal to the value of STARTIME.

DELETE Deletes either CCSID information or log data set information from

the bootstrap data sets. To delete CCSID information, specify the

CCSIDS option. To delete all information for a specified log data

set or volume, specify the DSNAME option.

CCSIDS Deletes CCSID information from the BSDS. CCSID information is

stored in the BSDS to ensure that you do not accidentally change

the CCSID values.

 Use this option under the direction of IBM Software Support when

the CCSID information in the BSDS is incorrect. After you run a

DSNJU003 job with the DELETE CCSIDS option, the CCSID values

from DSNHDECP are recorded in the BSDS the next time DB2 is

started.

CRESTART Controls the next restart of DB2, either by creating a new

conditional restart control record or by canceling the one that is

currently active.

CREATE Creates a new conditional restart control record. When the new

record is created, the previous control record becomes inactive.

SYSPITR=log-truncation-point

Specifies the log RBA (non-data sharing system) or the log LRSN

(data sharing system) that represents the log truncation point for

the point-in-time for system recovery. Before you run the RESTORE

SYSTEM utility to recover system data, you must use the SYSPITR

option of DSNJU003. This option enables you to create a

conditional restart control record to truncate the logs for system

point-in-time recovery.

 log-truncation-point specifies the log RBA or log LRSN. In a

non-data sharing environment, log-truncation point is the RBA value

that matches the start of the last log record that is to be used

during restart. If the RBA value does not match the start of a log

record, DB2 restart fails. In a data sharing environment,

log-truncation point is an LRSN value that is a valid log truncation

point. A valid log truncation point is any LRSN value for which

there exists a log record with an LRSN that is greater than or equal

to the specified LRSN value. Use the same LRSN value for all

members of the data sharing group that require log truncation.

DSNJU003 (change log inventory)

Chapter 36. DSNJU003 (change log inventory) 677

||
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

You cannot specify any other option with CREATE, SYSPITR. You

can run this option of the utility only after new-function mode is

enabled.

CANCEL On the CRESTART statement, deactivates the currently active

conditional restart control record. The record remains in the BSDS

as historical information.

 No other keyword can be used with CANCEL on the CRESTART

statement.

On the CHECKPT statement, deletes the checkpoint queue entry

that contains a starting RBA that matches the parameter that is

specified by the STARTRBA keyword.

Attention: This statement can override DB2’s efforts to maintain

data in a consistent state. Do not use this statement without

understanding the conditional restart process, which is described in

Part 4 (Volume 1) of DB2 Administration Guide.

CHKPTRBA=chkptrba

Identifies the log RBA of the start of the checkpoint record that is

to be used during restart.

 If you use STARTRBA or ENDRBA, and you do not use

CHKPTRBA, the DSNJU003 utility selects the RBA of an

appropriate checkpoint record. If you do use CHKPTRBA, you

override the value that is selected by the utility.

chkptrba must be in the range that is determined by startrba and

endrba or their default values.

If possible, do not use CHKPTRBA; let the utility determine the

RBA of the checkpoint record.

CHKPTRBA=0 overrides any selection by the utility; at restart, DB2

attempts to use the most recent checkpoint record.

FORWARD= Indicates whether to use the forward-log-recovery phase of DB2

restart, which reads the log in a forward direction to recover any

units of recovery that were in one of the following two states when

DB2 was last stopped:

v Indoubt (the units of recovery had finished the first phase of

commit, but had not started the second phase)

v In-commit (had started but had not finished the second phase of

commit)

For a complete description of the forward-log-recovery phase, see

Part 4 of DB2 Administration Guide.

YES Allows forward-log recovery.

 If you specify a cold start (by using the same value for

STARTRBA and ENDRBA), no recovery processing is

performed.

NO Terminates forward-log recovery before log records are

processed. When you specify, FORWARD=NO, DB2 does

not go back in the log to the beginning of any indoubt or

in-commit units of recovery to complete forward recovery

for these units. Choose this option if a very old indoubt

unit of recovery exists to avoid a lengthy restart. The

DSNJU003 (change log inventory)

678 Utility Guide and Reference

|
|
|

#
#
#
#
#

in-commit and indoubt units of recovery are marked as

bypassed and complete in the log. However, any database

writes that are pending at the end of the log, including

updates from other units of recovery, are still written out

during the forward phase of restart. Any updates that must

be rolled-back, such as for an inflight or in-abort unit of

recovery, are done during the backout phase of restart.

BACKOUT= Indicates whether to use the backward-log-recovery phase of DB2

restart, which rolls back any units of recovery that were in one of

the following two states when DB2 was last stopped:

v Inflight (did not complete the first phase of commit)

v In-abort (had started but not finished an abort)

YES Allows backward-log recovery.

 If you specify a cold start (by using the same value for

STARTRBA and ENDRBA), no recovery processing is

performed.

NO Terminates backward-log recovery before log records are

processed.

CSRONLY Performs only the first and second phases of restart processing (log

initialization and current-status rebuild). After these phases, the

system status is displayed, and restart terminates. Some parts of

the log initialization are not performed, including any updating of

the log and display of STARTRBA and ENDRBA information.

 When DB2 is restarted with this option in effect, the conditional

restart control record is not deactivated. To prevent the control

record from remaining active, use the DSNJU003 utility again with

CRESTART CANCEL, or with CRESTART CREATE to create a new

active control record.

NEWCAT Changes the VSAM catalog name in the BSDS.

VSAMCAT=catalog-name

Changes the VSAM catalog name entry in the BSDS.

 catalog-name can be up to eight characters long. The first character

must be alphabetic, and the remaining characters can be

alphanumeric.

DDF Updates the LOCATION, LUNAME, and PASSWORD values in the

BSDS. If you use this statement to insert new values into the BSDS,

you must include at least the LOCATION and LUNAME in the

DDF statement. To update an existing set of values, you need to

include only those values that you want to change. The DDF

record cannot be deleted from the BSDS after it has been added; it

can only be modified.

 NOPASSWD removes the DDF password from the DDF record in

the BSDS. No other keywords can be used with NOPASSWD.

LOCATION=location-name

Changes the LOCATION value in the BSDS.

 location-name specifies the name of your local DB2 site.

ALIAS=alias-name :alias-port

Specifies one or more alias names for the location. An alias name is

DSNJU003 (change log inventory)

Chapter 36. DSNJU003 (change log inventory) 679

#
#
#
#
#
#
#

|
|

a name besides the location name that connect processing can

accept. Specifying an alias name does not change the location

identifier for a database object.

 alias-name specifies from 1 to 8 alias names for the location name.

alias-name cannot be one of the valid DSNJU003 keywords.

:alias-port specifies a TCP/IP port number for the alias that can be

used by DDF to accept distributed requests. This value must be a

decimal number between 1 and 65535, including 65535, and must

be different than the values for the PORT and RESPORT options.

Specify a value for alias-port when you want to identify a subset of

data sharing members to which a distributed request can go. For

more information about member-specific access, see DB2 Data

Sharing: Planning and Administration.

You can add or replace aliases by respecifying the ALIAS option.

The new list of names replaces the existing list.

NOALIAS Indicates that no alias names exist for the specified location. Any

alias names that were specified in a previous DSNJU003 utility job

are removed.

 You cannot specify any other keyword with NOALIAS.

LUNAME=luname

Changes the LUNAME value in the BSDS.

 luname specifies the LUNAME value. The LUNAME in the BSDS

must always contain the value that identifies your local DB2

subsystem to the VTAM network.

PASSWORD= The DDF password follows VTAM convention, but DB2 restricts it

to one to eight alphanumeric characters. The first character must be

either a capital letter or an alphabetic extender. The remaining

characters can consist of alphanumeric characters and alphabetic

extenders.

password Optionally assigns a password to the distributed

data facility communication record that establishes

communications for a distributed data

environment. See VTAM for MVS/ESA Resource

Definition Reference for a description of the

PRTCT=password option on the APPL definition

statement that is used to define DB2 to VTAM.

NOPASSWD Removes the archive password protection for all archives that are

created after this operation. It also removes a previously existing

password from the DDF record. No other keyword can be used

with NOPASSWD.

GENERIC=gluname

Replaces the value of the DB2 GENERIC LUNAME subsystem

parameter in the BSDS.

 gluname specifies the GENERIC LUNAME value.

NGENERIC Changes the DB2 GENERIC LUNAME to binary zeros in the BSDS,

indicating that no VTAM generic LU name support is requested.

PORT Identifies the TCP/IP port number that is used by DDF to accept

incoming connection requests. This value must be a decimal

DSNJU003 (change log inventory)

680 Utility Guide and Reference

|
|
|

#
#

|
|
|
|
|
|
|
|

|
|

||
|
|

|

number between 0 and 65535, including 65535; zero indicates that

DDF’s TCP/IP support is to be deactivated.

 If DB2 is part of a data sharing group, all the members of the DB2

data sharing group must have the same value for PORT.

RESPORT Identifies the TCP/IP port number that is used by DDF to accept

incoming DRDA two-phase commit resynchronization requests.

This value must be a decimal number between 0 and 65535,

including 65535; zero indicates that DDF’s TCP/IP support is to be

deactivated. If RESPORT is non-zero, RESPORT must not be the

same as the value that is supplied on PORT.

 For data sharing DB2 systems, RESPORT must be uniquely

assigned to each DB2 member, so that no two DB2 members use

the same TCP/IP port for two-phase commit resynchronization.

CHECKPT Allows updating of the checkpoint queue with the start checkpoint

and end checkpoint log records.

Attention: This statement can override DB2’s efforts to maintain

data in a consistent state. Do not use the statement without

understanding the conditional restart and checkpoint processing

processes, which are described in Part 4 (Volume 1) of DB2

Administration Guide.

TIME=time On the CHECKPT statement, specifies the time that the start

checkpoint record was written.

 On the HIGHRBA statement, TIME specifies when the log record

with the highest RBA was written to the log.

time specifies the time value. For timestamp format, see

“STARTIME” on page 676.

HIGHRBA Updates the highest-written log RBA in either the active or archive

log data sets.

Attention: This statement can override DB2’s efforts to maintain

data in a consistent state. Do not use the statement without

understanding the conditional restart process, which is described in

Part 4 (Volume 1) of DB2 Administration Guide.

OFFLRBA=offlrba

Specifies the highest-offloaded RBA in the archive log.

 offlrba is a hexadecimal number of up to 12 characters. If you use

fewer than 12 characters, leading zeros are added. The value must

end with hexadecimal X'FFF'.

Before running DSNJU003

This section contains information you need to be aware of prior to running

DSNJU003.

Environment

Execute the change log inventory utility only as a batch job when DB2 is not

running. Changing a BSDS for a data-sharing member by using DSNJU003 might

DSNJU003 (change log inventory)

Chapter 36. DSNJU003 (change log inventory) 681

cause a log read request from another data-sharing member to fail. The failure

occurs only if the second member tries to access the changed BSDS before the first

member is started.

Authorization required

The authorization ID of the DSNJU003 job must have the requisite RACF

authorization.

Control statement

See “Syntax and options of the DSNJU003 control statement” on page 671 for

DSNJU003 syntax and option descriptions.

Required and optional data sets

DSNJU003 recognizes DD statements with the following DD names:

JOBCAT or

STEPCAT Specifies the catalog in which the bootstrap data sets (BSDSs) are

cataloged. This statement is optional. Typically, the high-level

qualifier of the BSDS name points to the ICF catalog that contains

an entry for the BSDS.

SYSUT1 Specifies and allocates the bootstrap data set. This statement is

required.

SYSUT2 Specifies and allocates a second copy of the bootstrap data set. This

statement is required if you use dual BSDSs.

 Dual BSDSs and DSNJU003: With each execution of DSNJU003, the

BSDS timestamp field is updated with the current system time. If

you run DSNJU003 separately for each copy of a dual copy BSDS,

the timestamp fields are not synchronized, and DB2 fails at startup.

If you change the contents of the BSDS copy by running

DSNJU003, DB2 issues error message DSNJ122I. Therefore, if you

use DSNJU003 to update dual copy BSDSs, update both BSDSs

within a single execution of DSNJU003.

SYSPRINT Specifies a data set for print output. This statement is required. The

logical record length (LRECL) is 125.

SYSIN Specifies the input data set for statements. This statement is

required. The logical record length (LRECL) is 80.

Optional statements

The change log inventory utility provides the following statements:

v NEWLOG

v DELETE

v SYSTEMDB

v CRESTART

v NEWCAT

v DDF

v CHECKPT

v HIGHRBA

You can specify any statement one or more times. In each statement, separate the

operation name from the first parameter by one or more blanks. You can use

parameters in any order; separate them by commas with no blanks. Do not split a

parameter description across two SYSIN records.

DSNJU003 (change log inventory)

682 Utility Guide and Reference

A statement that contains an asterisk in column 1 is considered a comment and is

ignored. However, it appears in the output listing. To include a comment or

sequence number in a SYSIN record, separate it from the last comma by a blank.

When a blank is encountered after a comma, the rest of the record is ignored.

During execution of DSNJU003, a significant error in any statement causes that

statement and all subsequent statements to be skipped. However, all remaining

statements are checked for syntax errors. Therefore, BSDS updates are not made for

any operation that is specified in the statement in error and in any subsequent

statements.

Using DSNJU003 to modify the BSDS

This section describes the following tasks that are associated with running the

DSNJU003 utility:

 “Running DSNJU003”

 “Making changes for active logs”

 “Making changes for archive logs” on page 685

 “Creating a conditional restart control record” on page 685

 “Deleting log data sets with errors” on page 685

 “Altering references to NEWLOG and DELETE data sets” on page 687

 “Defining the high-level qualifier for catalog and directory objects” on page 687

 “Renaming DB2 system data sets” on page 687

 “Renaming DB2 active log data sets” on page 688

 “Renaming DB2 archive log data sets” on page 688

Running DSNJU003

Execute the utility with the following statement, which can be included only in a

batch job:

//EXEC PGM=DSNJU003

Making changes for active logs

Adding: If an active log is in stopped status, it is not reused for output logging;

however, it continues to be used for reading. To add a new active log:

1. Use the Access Method Services DEFINE command to define new active log

data sets.

2. Use DSNJLOGF to preformat the new active log data sets. Restriction: If you

do not preformat these logs with the DSNJLOGF utility, DB2 needs to

preformat them the first time they are used. Otherwise, performance might be

impacted. This restriction applies to empty data sets and data sets with residual

data.

3. Use DSNJU003 to register the new data sets in the BSDS.

For example, specify the following statements:

NEWLOG DSNAME=DSNC810.LOGCOPY1.DS04,COPY1

NEWLOG DSNAME=DSNC810.LOGCOPY2.DS04,COPY2

To copy the contents of an old active log data set to the new one, you can also give

the RBA range and the starting and ending timestamp on the NEWLOG statement.

To archive to disk when the size of your active logs has increased, you might find

it necessary to increase the size of your archive data set primary and secondary

space quantities in DSNZPARM.

DSNJU003 (change log inventory)

Chapter 36. DSNJU003 (change log inventory) 683

#
#
#
#
#

|
|
|

Deleting: To delete information about an active log data set from the BSDS, you

might specify the following statements:

DELETE DSNAME=DSNC810.LOGCOPY1.DS01

DELETE DSNAME=DSNC810.LOGCOPY2.DS01

Recording: To record information about an existing active log data set in the BSDS,

you might specify the following statement:

NEWLOG DSNAME=DSNC810.LOGCOPY2.DS05,COPY2,STARTIME=19910212205198,

 ENDTIME=19910412205200,STARTRBA=43F8000,ENDRBA=65F3FFF

You can insert a record of that information into the BSDS for any of these reasons:

v The data set has been deleted and is needed again.

v You are copying the contents of one active log data set to another data set (copy

1 to copy 2).

v You are recovering the BSDS from a backup copy.

Enlarging: When DB2 is inactive (down), use one of the following procedures.

If you can use the Access Method Services REPRO command, follow these steps:

1. Stop DB2. This step is required because DB2 allocates all active log data sets

when it is active.

2. Use the Access Method Services ALTER command with the NEWNAME option

to rename your active log data sets.

3. Use the Access Method Services DEFINE command to define larger active log

data sets. Refer to installation job DSNTIJIN to see the definitions that create

the original active log data sets. See DB2 Installation Guide.

By reusing the old data set names, you don’t need to run the change log

inventory utility to establish new names in the BSDSs. The old data set names

and the correct RBA ranges are already in the BSDSs.

4. Use the Access Method Services REPRO command to copy the old (renamed)

data sets into their respective new data sets.

5. Start DB2.

If you cannot use the Access Method Services REPRO command, follow this

procedure:

1. Ensure that all active log data sets except the current active log data sets have

been archived. Active log data sets that have been archived are marked

REUSABLE in print log map utility (DSNJU004) output.

2. Stop DB2.

3. Rename or delete the reusable active logs. Allocate new, larger active log data

sets with the same names as the old active log data sets.

4. Run the DSNJLOGF utility to preformat the new log data sets.

5. Run the change log inventory utility (DSNJU003) with the DELETE statement

to delete all active logs except the current active logs from the BSDS.

6. Run the change log inventory utility with the NEWLOG statement to add to

the BSDS the active logs that you just deleted. So that the logs are added as

empty, do not specify an RBA range.

7. Start DB2.

8. Issue the ARCHIVE LOG command to cause DB2 to truncate the current active

logs and switch to one of the new sets of active logs.

9. Repeat steps 2 through 7 to enlarge the active logs that were just archived.

DSNJU003 (change log inventory)

684 Utility Guide and Reference

Although all log data sets do not need to be the same size, from an operational

standpoint using the same size is more consistent and efficient. If the log data sets

are not the same size, tracking your system’s logs can be more difficult. Space can

be wasted if you are using dual data sets of different sizes because they fill only to

the size of the smallest, not using the remaining space on the larger one.

If you are archiving to disk and the size of your active logs has increased, you

might need to increase the size of your archive log data sets. However, because of

DFSMS disk management limits, you must specify less than 64 000 tracks for the

primary space quantity. See the PRIMARY QUANTITY and SECONDARY QTY

fields on installation panel DSNTIPA to modify the primary and secondary

allocation space quantities. See DB2 Installation Guide for more information.

Making changes for archive logs

Adding: When the recovery of an object depends on reading an existing archive log

data set, the BSDS must contain information about that data set, so that the

recovery job can find it. To register information about an existing archive log data

set in the BSDS, you might specify the following statement:

NEWLOG DSNAME=DSNC810.ARCHLOG1.D89021.T2205197.A0000015,COPY1VOL=DSNV04,

UNIT=TAPE,STARTRBA=3A190000,ENDRBA=3A1F0FFF,CATALOG=NO

Deleting: To delete an entire archive log data set from one or more volumes, you

might specify the following statement:

DELETE DSNAME=DSNC810.ARCHLOG1.D89021.T2205197.A0000015,COPY1VOL=DSNV04

Creating a conditional restart control record

To create a new conditional restart control record in the BSDS, you must execute

the change log inventory utility and use the CRESTART control statement. For

example, to truncate the log, to specify the earliest log RBA, and to bypass

backout, use a statement similar to the following statement:

CRESTART CREATE,STARTRBA=28894,ENDRBA=58000,BACKOUT=NO

To specify a cold start, make the values of STARTRBA and ENDRBA equal with a

statement similar to the following statement:

CRESTART CREATE,STARTRBA=4A000,ENDRBA=4A000

In most cases when doing a cold start, you should make sure that the STARTRBA

and ENDRBA are set to an RBA value that is greater than the highest used RBA.

An existing conditional restart control record governs any START DB2 operation

until one of these events occurs:

v A restart operation completes.

v A CRESTART CANCEL statement is issued.

v A new conditional restart control record is created.

Deleting log data sets with errors

If an active log data set has encountered an I/O error, perform the following steps:

1. If you use dual active log data sets, check if the data from the bad active log

data set is saved in the other active log. If it is, you can use the other active

log.

2. If you cannot use the other active log or if the active log is in the STOPPED

status, you must fix the problem manually.

DSNJU003 (change log inventory)

Chapter 36. DSNJU003 (change log inventory) 685

a. Check to see if the data set has been offloaded. For example, check the list

of archive log data sets to see if one has the same RBA range as the active

log data set. This list can be created by using the DSNJU004 (print log map)

utility.

b. If the data set has not been offloaded, copy the data to a new VSAM data

set. If the data set has been offloaded, create a new VSAM data set that is to

be used as an active log data set.

c. Specify DELETE to remove information about the bad data set from the

BSDS.

d. Specify NEWLOG to identify the new data set as the new active log. The

DELETE and NEWLOG operations can be performed by the same job step.

(The DELETE statement precedes the NEWLOG statement in the SYSIN

input data set.)
3. Delete the bad data set, using VSAM Access Method Services.

Use the print log map utility before and after running the change log inventory

utility to ensure correct execution and to document changes.

When using dual active logs, choose a naming convention that distinguishes

primary and secondary active log data set. The naming convention should also

identify the log data sets within the series of primary or secondary active log data

sets. For example, the default naming convention that is established at DB2

installation time is:

prefix.LOGCOPYn.DSmm

In this convention, n=1 for all primary log data sets, n=2 for all secondary log data

sets, and mm is the data set number within each series.

If a naming convention such as the default convention is used, pairs of data sets

with equal mm values are usually used together. For example,

DSNC120.LOGCOPY1.DS02 and DSNC120.LOGCOPY2.DS02 are used together.

However, after you run the change log inventory utility with the DELETE and

NEWLOG statements, the primary and secondary series can become

unsynchronized, even if the NEWLOG data set name that you specify is the same

as the old data set name. To avoid this situation, always do maintenance on both

data sets of a pair in the same change log inventory execution:

v Delete both data sets together.

v Define both data sets together with NEWLOG statements.

The data sets themselves do not require deletion and redefinition.

To ensure consistent results, execute the change log inventory utility on the same

z/OS system on which the DB2 online subsystem executes.

If misused, the change log inventory utility can compromise the viability and

integrity of the DB2 subsystem. Only highly skilled people, such as the DB2 system

administrator, should use this utility, and then only after careful consideration.

Before initiating a conditional restart or cold restart, you should consider making

backup copies of all disk volumes that contain any DB2 data sets. This enables a

possible fallback. The backup data sets must be generated when DB2 is not active.

DSNJU003 (change log inventory)

686 Utility Guide and Reference

Altering references to NEWLOG and DELETE data sets

Use the NEWLOG and DELETE statements to add and delete references to data

sets in the BSDS. The log data sets are not changed in any way. If DELETE and

NEWLOG are used for a reference in the BSDS to an active log data set, the

referenced log data set itself does not require alteration.

Defining the high-level qualifier for catalog and directory

objects

Use the NEWCAT statement to define the high-level qualifier that is to be used for

the following objects:

v Catalog table spaces and index spaces

v Directory table spaces and index spaces

At startup, the DB2 system checks that the name that is recorded with NEWCAT in

the BSDS is the high-level qualifier of the DB2 system table spaces that are defined

in the load module for subsystem parameters.

NEWCAT is normally used only at installation time. See “Renaming DB2 system

data sets” for an additional function of NEWCAT.

When you change the high-level qualifier by using the NEWCAT statement, you

might specify the following statements:

//S2 EXEC PGM=DSNJU003

//SYSUT1 DD DSN=DSNC120.BSDS01,DISP=OLD

//SYSUT2 DD DSN=DSNC120.BSDS02,DISP=OLD

//SYSPRINT DD SYSOUT=*

 NEWCAT VSAMCAT=DBP1

After you run the change log inventory utility with the NEWCAT statement, the

utility generates output similar to the following output:

NEWCAT VSAMCAT=DBP1

DSNJ210I OLD VASAM CATALOG NAME=DSNC120, NEW CATALOG NAME=DBP1

DSNJ225I NEWCAT OPERATION COMPLETED SUCCESSFULLY

DSNJ200I DSNJU003 CHANGE LOG INVENTORY UTILITY

 PROCESSING COMPLETED SUCCESSFULLY

Renaming DB2 system data sets

Occasionally, you might want to rename the DB2 system table spaces. In that case

you should perform the following steps:

1. Stop DB2 in a consistent state.

2. Create a full system backup so that you can recover from operational errors.

3. Execute the change log inventory utility with NEWCAT.

4. Rename the BSDS and all DB2 directory and catalog table spaces and index

spaces with IDCAMS.

5. Reassemble DSNZPARM to redefine the high-level qualifier for the system table

spaces.

6. Update the BSDS name in the DB2 startup procedure.

7. Start DB2.

8. Drop and re-create the work file database.

9. Optionally use the ALTER command for table spaces in DSNDB04 and user

databases.

DSNJU003 (change log inventory)

Chapter 36. DSNJU003 (change log inventory) 687

|
|
|
|
|

Renaming DB2 active log data sets

When you rename system data sets, you might also want to rename the log data

sets. In that case:

1. Stop DB2 in a consistent state.

2. Create a full system backup so that you can recover from operational errors.

3. Delete the reusable active log data sets with IDCAMS, but keep the current

active log.

4. Define a new set of active log data sets with IDCAMS.

5. Execute the change log inventory utility to remove names of deleted active log

data sets and to define the new active log data set names in the BSDS.

6. Start and use DB2 normally.

When the current active log is archived and becomes reusable, you can delete it.

Renaming DB2 archive log data sets

You do not need to rename archive log data sets for the following reasons:

v Old archive logs are replaced as a part of the normal maintenance cycle.

v The RECOVER utility works with archive logs that contain different high-level

qualifiers.

To modify the high-level qualifier for archive log data sets, you need to reassemble

DSNZPARM.

Sample DSNJU003 control statements

Example 1: Adding a new archive log data set. The following control statement

specifies that the DSNJU003 utility is to add the data set DSNREPAL.A0001187 to

the BSDS. The volume serial number for the data set is DSNV04, as indicated by

the COPY1VOL option. The device type is SYSDA, and the data set is not to be

cataloged. The RBA of the beginning of the archive log data set volume is

3A190000, and the end RBA is 3A1F0000.

//STEP5 EXEC PGM=DSNJU003,COND=EVEN

//SYSUT1 DD DSN=DSNCAT.BSDS01,DISP=SHR

//SYSUT2 DD DSN=DSNCAT.BSDS02,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

NEWLOG DSNAME=DSNREPAL.A0001187,COPY1VOL=DSNV04,UNIT=SYSDA,

STARTRBA=3A190000,ENDRBA=3A1F0000,CATALOG=NO

/*

Example 2: Deleting a data set. The following control statement specifies that

DSNJU003 is to delete data set DSNREPAL.A0001187 from the BSDS. The volume

serial number for the data set is DSNV04, as indicated by the COPY1VOL option.

DELETE DSNAME=DSNREPAL.A0001187,COPY1VOL=DSNV04

Example 3: Creating a new conditional restart control record. The following

statement specifies that DSNJU003 is to create a new conditional restart control

record, which controls the next restart of DB2. BACKOUT=NO indicates that DB2

is not to execute the backward-log-recovery phase when it restarts. The ENDRBA

option indicates that 000000010000 is the last RBA of the log that is to be used

during restart. Any log information in the bootstrap data set, the active logs, and

the archive logs with an RBA that is greater than this RBA is discarded.

CRESTART CREATE,BACKOUT=NO,ENDRBA=000000010000

DSNJU003 (change log inventory)

688 Utility Guide and Reference

Example 4: Adding a communication record to the BSDS. The following control

statement specifies that DSNJU003 is to add a new communication record to the

BSDS. The location, LU name, and password values are all provided.

DDF LOCATION=USIBMSTODB22,LUNAME=STL#M08,PASSWORD=$STL@290

Example 5: Adding a communication record with an alias to the BSDS. The

following control statement specifies that DSNJU003 is to add a communication

record to the BSDS. The location, alias, LU name, and password values are all

provided.

DDF LOCATION=USIBMSTODB22,ALIAS=STL715A1,STL715A2,LUNAME=STL#M08,PASSWORD=$STL@290

Example 6: Adding multiple aliases and alias ports to the BSDS. The following

control statement specifies five alias names for the communication record in the

BSDS (MYALIAS1, MYALIAS2, MYALIAS3, MYALIAS4, and MYALIAS5). Only

MYALIAS2 and MYALIAS5 support subsets of a data sharing group. Any alias

names that were specified in a previous DSNJU003 utility job are removed.

DDF ALIAS=MYALIAS1,MYALIAS2:8002,MYALIAS3,MYALIAS4,MYALIAS5:10001

Example 7: Specifying a point in time for system recovery. The following control

statement specifies that DSNJU003 is to create a new conditional restart control

record. The SYSPITR option specifies an end RBA value as the point in time for

system recovery for a non-data sharing system. For a data sharing system, use an

end LRSN value instead of an end RBA value. This point in time is used by the

RESTORE SYSTEM utility.

//JOBLIB DD DSN=USER.TESTLIB,DISP=SHR

// DD DSN=DSN810.SDSNLOAD,DISP=SHR

//STEP01 EXEC PGM=DSNJU003

//SYSUT1 DD DSN=DSNC810.BSDS01,DISP=OLD

//SYSUT2 DD DSN=DSNC810.BSDS02,DISP=OLD

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 CRESTART CREATE,SYSPITR=04891665D000

/*

Example 8: Removing aliases from a communication record. The following control

statement specifies that no alias names apply. Any alias names that were specified

in a previous DSNJU003 utility job are removed.

DDF NOALIAS

Example 9: Updating the checkpoint queue. The following control statement

specifies that DSNJU003 is to update the checkpoint queue with the start

checkpoint and end checkpoint log records. The RBAs of these log records are

indicated by the STARTRBA and ENDRBA options. The TIME option specifies the

time that the start checkpoint record was written.

/*

//STEP3 EXEC PGM=DSNJU003

//SYSUT1 DD DSN=DSNCAT.BSDS01,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 CHECKPT STARTRBA=0,ENDRBA=FFFFFFFFFFFF,

 TIME=19893652359599

/*

Only use the CHECKPT statement if you have a good understanding of

conditional restart and checkpoint processing.

DSNJU003 (change log inventory)

Chapter 36. DSNJU003 (change log inventory) 689

|
|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|

690 Utility Guide and Reference

Chapter 37. DSNJU004 (print log map)

The print log map (DSNJU004) utility lists the following information:

v Log data set name, log RBA association, and log LRSN for both copy 1 and copy

2 of all active and archive log data sets

v Active log data sets that are available for new log data

v Status of all conditional restart control records in the bootstrap data set

v Contents of the queue of checkpoint records in the bootstrap data set

v The communication record of the BSDS, if one exists

v Contents of the quiesce history record

v System and utility timestamps

v Contents of the checkpoint queue

v Archive log command history

v BACKUP SYSTEM utility history

v System CCSID information

In a data sharing environment, the DSNJU004 utility can list information from any

or all BSDSs of a data sharing group.

Additional information regarding the DSNJU004 utility appears in Part 4 (Volume

1) of DB2 Administration Guide.

The following topics provide additional information:

v “Syntax and options of the DSNJU004 control statement”

v “Before running DSNJU004” on page 692

v “Sample DSNJU004 control statement” on page 693

v “DSNJU004 (print log map) output” on page 693

Syntax and options of the DSNJU004 control statement

Using the SYSIN data set allows you to list information from any or all BSDSs of a

data sharing group.

DSNJU004 (print log map) syntax diagram

��

�

 MEMBER *

MEMBER

DDNAME

,

(

member-name

)

��

Option descriptions

The following keywords can be used in an optional control statement on the SYSIN

data set:

MEMBER

Specifies which member’s BSDS information to print.

© Copyright IBM Corp. 1983, 2008 691

|
|
|

* Prints the information from the BSDS of each member in

the data sharing group.

DDNAME Prints information from only those BSDSs that are pointed

to by the MxxBSDS DD statements.

(member-name) Prints information for only the named group members.

Before running DSNJU004

This section contains information that you need to be aware of prior to running

DSNJU004.

Environment

The DSNJU004 program runs as a batch job.

This utility can be executed either when DB2 is running and when it is not

running. However, to ensure consistent results from the utility job, the utility and

the DB2 online subsystem must both be executing under the control of the same

operating system.

Authorization required

The user ID of the DSNJU004 job must have requisite RACF authorization.

Control statement

See “DSNJU004 (print log map) syntax diagram” on page 691 for DSNJU004 syntax

and option descriptions. See “Sample DSNJU004 control statement” on page 693

for an example of a control statement.

Required and optional data sets

DSNJU004 recognizes DD statements with the following DD names:

JOBCAT or

STEPCAT Specifies the catalog in which the bootstrap data set (BSDS) is

cataloged. This statement is optional. Typically, the high-level

qualifier of the BSDS name points to the integrated catalog facility

catalog that contains an entry for the BSDS.

SYSUT1 Specifies and allocates the bootstrap data set. This statement is

required. It allocates the BSDS. If the BSDS must be shared with a

concurrently executing DB2 online subsystem, use DISP=SHR on

the DD statement.

SYSPRINT Specifies a data set or print spool class for print output. This

statement is required. The logical record length (LRECL) is 125.

SYSIN (optional)

Contains the control statement. If you do not specify the SYSIN

DD statement, BSDS information is printed only from the BSDS

data set that is identified by the SYSUT1 DD statement.

GROUP Names a single BSDS. DB2 can use this BSDS to find the names of

all BSDSs in the group. Ensure that the BSDS name that you

specify is not the BSDS of a member that has been quiesced since

before new members joined the group. This statement is required if

the control statement specifies either of these options:

v MEMBER *

v MEMBER(member-name)

DSNJU004 (print log map)

692 Utility Guide and Reference

MnnBSDS Names the BSDS data set of a group member whose information is

to be listed. You must specify one such DD statement for each

member. The statements are required if the control statement

specifies MEMBER DDNAME. nn represents a two-digit number.

You must use consecutive two-digit numbers from 01 to the total

number of required members. If a break occurs in the sequence of

numbers, any number after the break is ignored.

Running the DSNJU004 utility

Use the following EXEC statement to execute this utility:

// EXEC PGM=DSNJU004

Recommendations

v For dual BSDSs, execute the print log map utility twice, once for each BSDS, to

compare their contents.

v To ensure consistent results for this utility, execute the utility job on the same

z/OS system on which the DB2 online subsystem executes.

v Execute the print log map utility regularly, possibly daily, to keep a record of

recovery log data set usage.

v Use the print log map utility to document changes that are made by the change

log inventory utility.

Sample DSNJU004 control statement

The following statement specifies that DSNJU004 is to print information from the

BSDS for each member in the data sharing group:

//PLM EXEC PGM=DSNJU004

//GROUP DD DSN=DBD1.BSDS01,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 MEMBER *

DSNJU004 (print log map) output

Figure 121 on page 694 and Figure 122 on page 696 show example output from the

print log map utility. This output includes the following information:

v The data set name (DSN) of the BSDS.

v The system date and time (SYSTEM TIMESTAMP), which is set at the time that

the subsystem stops.

v The date and time that the BSDS was last changed by the change log inventory

utility (listed as the UTILITY TIMESTAMP).

v The integrated catalog facility catalog name that is associated with the BSDS.

v The highest-written RBA. The value is updated each time the log buffers are

physically written to disk.

v The highest RBA that was offloaded.

v Log RBA ranges (STARTRBA and ENDRBA) and data set information for active

and archive log data sets. The last active log data set shown is the current active

log.

v Information about each active log data set. This information includes the starting

and ending RBAs within the data set, the date and time the data set was

created, and the data set’s name (DSN), and status.

DSNJU004 (print log map)

Chapter 37. DSNJU004 (print log map) 693

v Information about each archive log data set. This information includes the

starting and ending RBAs within the data set, the date and time the data set was

created, and the data set’s name (DSN), unit and volume of storage, and status.

v Conditional restart control records. For a description of these records and the

format of this part of the output from the print log map utility, see “Reading

conditional restart control records” on page 701.

v The contents of the checkpoint description queue. For a description of this

output, see Figure 125 on page 701.

v Archive log command history. For a description of this output, see Figure 124 on

page 701.

v The distributed data facility (DDF) communication record. This record contains

the DB2-defined location name, any alias names for the location name, and the

VTAM-defined LU name. DB2 uses this information to establish the distributed

database environment.

v The tokens for all BACKUP SYSTEM utility records. The token identifies each

backup version that has been created.

v The RBA or LRSN when the subsystem was converted to enabling-new-function

mode.

The sample print log map utility output in Figure 121 is for a non-data-sharing

subsystem.

**

* *

* LOG MAP OF THE BSDS DATA SET BELONGING TO MEMBER ’NO NAME ’ OF GROUP ’NO NAME ’. *

* *

**

DSNJCNVB CONVERSION PROGRAM HAS NOT RUN DDNAME=SYSUT1

 LOG MAP OF BSDS DATA SET COPY 1, DSN=DSNC810.BSDS01

 LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.

 DATA SHARING MODE IS OFF

 SYSTEM TIMESTAMP - DATE=2003.346 LTIME= 8:36:35.35

 UTILITY TIMESTAMP - DATE=2003.346 LTIME= 8:18:10.10

 VSAM CATALOG NAME=DSNC810

 HIGHEST RBA WRITTEN 000004FD1B40 2003.346 16:36:26.1

 HIGHEST RBA OFFLOADED 0000031B1FFF

 RBA WHEN CONVERTED TO V4 000000000000

 THIS BSDS HAS MEMBER RECORDS FOR THE FOLLOWING MEMBERS:

 HOST MEMBER NAME:

 MEMBER ID: 0

 GROUP NAME:

 BSDS COPY 1 DATA SET NAME:

 BSDS COPY 2 DATA SET NAME:

 ENFM START RBA/LRSN: 0000035B8D5C

ACTIVE LOG COPY 1 DATA SETS

 START RBA/TIME END RBA/TIME DATE LTIME DATA SET INFORMATION

 -------------------- -------------------- -------- ----- --------------------

 0000048C4000 000004C47FFF 2001.045 14:39 DSN=DSNC810.LOGCOPY1.DS02

 2003.346 16:33:11.8 2003.346 16:34:09.4 PASSWORD=(NULL) STATUS=REUSABLE

 000004C48000 000004FC8FFF 2001.045 14:39 DSN=DSNC810.LOGCOPY1.DS03

 2003.346 16:34:09.4 2003.346 16:35:47.8 PASSWORD=(NULL) STATUS=TRUNCATED, REUSABLE

 000004FC9000 00000534CFFF 2001.045 14:39 DSN=DSNC810.LOGCOPY1.DS01

 2003.346 16:35:47.8 PASSWORD=(NULL) STATUS=REUSABLE

Figure 121. Sample print log map utility output for a non-dating-sharing subsystem (Part 1 of 3)

DSNJU004 (print log map)

694 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|

|

ARCHIVE LOG COPY 1 DATA SETS

 START RBA/TIME END RBA/TIME DATE LTIME DATA SET INFORMATION

 -------------------- -------------------- -------- ----- --------------------

 000002A30000 000002DB3FFF 2003.346 8:20 DSN=DSNC810.ARCHLOG1.A0000001

 2001.178 15:46:36.8 2001.178 15:51:03.9 PASSWORD=(NULL) VOL=SCR03 UNIT=SYSDA

 CATALOGUED

 000002DB4000 000003137FFF 2003.346 8:20 DSN=DSNC810.ARCHLOG1.A0000002

 2001.178 15:51:03.9 2003.346 16:18:43.8 PASSWORD=(NULL) VOL=SCR03 UNIT=SYSDA

 CATALOGUED

 000003138000 000003167FFF 2003.346 8:20 DSN=DSNC810.ARCHLOG1.A0000003

 2003.346 16:18:43.8 2003.346 16:20:49.5 PASSWORD=(NULL) VOL=SCR03 UNIT=SYSDA

 CATALOGUED

 000003168000 00000316BFFF 2003.346 8:20 DSN=DSNC810.ARCHLOG1.A0000004

 2003.346 16:20:49.5 2003.346 16:20:49.6 PASSWORD=(NULL) VOL=SCR03 UNIT=SYSDA

 CATALOGUED

 00000316C000 0000031ABFFF 2003.346 8:21 DSN=DSNC810.ARCHLOG1.A0000005

 2003.346 16:20:49.6 2003.346 16:21:23.7 PASSWORD=(NULL) VOL=SCR03 UNIT=SYSDA

 CATALOGUED

 0000031AC000 0000031B1FFF 2003.346 8:21 DSN=DSNC810.ARCHLOG1.A0000006

 2003.346 16:21:23.7 2003.346 16:21:23.8 PASSWORD=(NULL) VOL=SCR03 UNIT=SYSDA

 CATALOGUED

ACTIVE LOG COPY 2 DATA SETS

 START RBA/TIME END RBA/TIME DATE LTIME DATA SET INFORMATION

 -------------------- -------------------- -------- ----- --------------------

 0000048C4000 000004C47FFF 2001.045 14:39 DSN=DSNC810.LOGCOPY2.DS02

 2003.346 16:33:11.8 2003.346 16:34:09.4 PASSWORD=(NULL) STATUS=REUSABLE

 000004C48000 000004FC8FFF 2001.045 14:39 DSN=DSNC810.LOGCOPY2.DS03

 2003.346 16:34:09.4 2003.346 16:35:47.8 PASSWORD=(NULL) STATUS=TRUNCATED, REUSABLE

 000004FC9000 00000534CFFF 2001.045 14:39 DSN=DSNC810.LOGCOPY2.DS01

 2003.346 16:35:47.8 PASSWORD=(NULL) STATUS=REUSABLE

ARCHIVE LOG COPY 2 DATA SETS

NO ARCHIVE DATA SETS DEFINED FOR THIS COPY

DSNJ401I DSNRJPCR RESTART CONTROL RECORD NOT FOUND

 CHECKPOINT QUEUE

 16:36:52 DECEMBER 12, 2003

 TIME OF CHECKPOINT 16:36:15 DECEMBER 12, 2003

 BEGIN CHECKPOINT RBA 000004FCE074

 END CHECKPOINT RBA 000004FD1B40

 SHUTDOWN CHECKPOINT

 TIME OF CHECKPOINT 16:35:47 DECEMBER 12, 2003

 BEGIN CHECKPOINT RBA 000004FCAA17

 END CHECKPOINT RBA 000004FCD90C

 TIME OF CHECKPOINT 16:35:13 DECEMBER 12, 2003

 BEGIN CHECKPOINT RBA 000004F4EABB

 END CHECKPOINT RBA 000004F8B994

 ...

 TIME OF CHECKPOINT 15:50:56 JUNE 27, 2001

 BEGIN CHECKPOINT RBA 000002D6D9F1

 END CHECKPOINT RBA 000002D72066

 TIME OF CHECKPOINT 15:50:53 JUNE 27, 2001

 BEGIN CHECKPOINT RBA 000002D4861E

 END CHECKPOINT RBA 000002D4C6D4

Figure 121. Sample print log map utility output for a non-dating-sharing subsystem (Part 2 of 3)

DSNJU004 (print log map)

Chapter 37. DSNJU004 (print log map) 695

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

The sample print log map utility output in Figure 122 is for a member of a data

sharing group.

 ARCHIVE LOG COMMAND HISTORY

 16:36:54 DECEMBER 12, 2003

 DATE TIME RBA MODE WAIT TIME

------------ ---------- ------------ ------- ---- -----

DEC 12, 2003 16:35:47.8 000004FC89E5 QUIESCE YES 999

DEC 12, 2003 16:31:49.5 00000453F379

DEC 12, 2003 16:21:23.8 0000031B1388

DEC 12, 2003 16:21:23.7 0000031AB392

DEC 12, 2003 16:20:49.6 00000316B000

DEC 12, 2003 16:20:49.5 000003167000

 **** DISTRIBUTED DATA FACILITY ****

 COMMUNICATION RECORD

 16:36:54 DECEMBER 12, 2003

LOCATION=STLEC1 ALIAS=(NULL)

LUNAME=SYEC1DB2 PASSWORD=DB2PW1 GENERICLU=(NULL) PORT=NULL RPORT=NULL

DSNJ401I DSNUPBHR BACKUP SYSTEM UTILITY HISTORY RECORD NOT FOUND

 SYSTEM CCSIDS

 16:36:54 DECEMBER 12, 2003

 SYSTEM CCSIDS

 ASCII SBCS = 1252

 ASCII MIXED = 65534

 ASCII DBCS = 65534

 EBCDIC SBCS = 37

 EBCDIC MBCS = 65534

 EBCDIC DBCS = 65534

 UNICODE SBCS = 367

 UNICODE MBCS = 1208

 UNICODE DBCS = 1200

DSNJ200I DSNJU004 PRINT LOG UTILITY PROCESSING COMPLETED SUCCESSFULLY

Figure 121. Sample print log map utility output for a non-dating-sharing subsystem (Part 3 of 3)

* *

* LOG MAP OF THE BSDS DATA SET BELONGING TO MEMBER ’V81A ’ OF GROUP ’DSNCAT ’. *

* *

DSNJCNVB CONVERSION PROGRAM HAS NOT RUN DDNAME=SYSUT1

 LOG MAP OF BSDS DATA SET COPY 1, DSN=DSNC810.BSDS01

 LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.

 DATA SHARING MODE IS ON

 SYSTEM TIMESTAMP - DATE=2003.346 LTIME=10:45:53.34

 UTILITY TIMESTAMP - DATE=2003.346 LTIME= 8:52:00.63

 VSAM CATALOG NAME=DSNC810

 HIGHEST RBA WRITTEN 0000068F92DE 2003.346 18:45:22.8

 HIGHEST RBA OFFLOADED 000000000000

 RBA WHEN CONVERTED TO V4 000001251868

 MAX RBA FOR TORBA 000001251868

 MIN RBA FOR TORBA 000000000000

 STCK TO LRSN DELTA 000000000000

Figure 122. Sample print log map utility output for a member of a data sharing group (Part 1 of 3)

DSNJU004 (print log map)

696 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

THIS BSDS HAS MEMBER RECORDS FOR THE FOLLOWING MEMBERS:

 HOST MEMBER NAME: V81A

 MEMBER ID: 1

 GROUP NAME: DSNCAT

 BSDS COPY 1 DATA SET NAME: DSNC810.BSDS01

 BSDS COPY 2 DATA SET NAME: DSNC810.BSDS02

 ENFM START RBA/LRSN: BA75C10BCA2B

 MEMBER NAME: V81B

 MEMBER ID: 2

 GROUP NAME: DSNCAT

 BSDS COPY 1 DATA SET NAME: DSNC818.BSDS01

 BSDS COPY 2 DATA SET NAME: DSNC818.BSDS02

ACTIVE LOG COPY 1 DATA SETS

 START RBA/LRSN/TIME END RBA/LRSN/TIME DATE LTIME DATA SET INFORMATION

 -------------------- -------------------- -------- ----- --------------------

 000005EB6000 000006239FFF 2001.045 14:39 DSN=DSNC810.LOGCOPY1.DS03

 BA75CC4E3821 BA75CF112B6E PASSWORD=(NULL) STATUS=REUSABLE

 2003.346 18:13:45.8 2003.346 18:26:07.1

 00000623A000 0000065BDFFF 2001.045 14:39 DSN=DSNC810.LOGCOPY1.DS01

 BA75CF112B6F BA75D0BD5A8A PASSWORD=(NULL) STATUS=REUSABLE

 2003.346 18:26:07.1 2003.346 18:33:36.1

 0000065BE000 000006941FFF 2001.045 14:39 DSN=DSNC810.LOGCOPY1.DS02

 BA75D0BD5A8B PASSWORD=(NULL) STATUS=REUSABLE

 2003.346 18:33:36.1

ARCHIVE LOG COPY 1 DATA SETS

NO ARCHIVE DATA SETS DEFINED FOR THIS COPY

ACTIVE LOG COPY 2 DATA SETS

 START RBA/LRSN/TIME END RBA/LRSN/TIME DATE LTIME DATA SET INFORMATION

 -------------------- -------------------- -------- ----- --------------------

 000005EB6000 000006239FFF 2001.045 14:39 DSN=DSNC810.LOGCOPY2.DS03

 BA75CC4E3821 BA75CF112B6E PASSWORD=(NULL) STATUS=REUSABLE

 2003.346 18:13:45.8 2003.346 18:26:07.1

 00000623A000 0000065BDFFF 2001.045 14:39 DSN=DSNC810.LOGCOPY2.DS01

 BA75CF112B6F BA75D0BD5A8A PASSWORD=(NULL) STATUS=REUSABLE

 2003.346 18:26:07.1 2003.346 18:33:36.1

 0000065BE000 000006941FFF 2001.045 14:39 DSN=DSNC810.LOGCOPY2.DS02

 BA75D0BD5A8B PASSWORD=(NULL) STATUS=REUSABLE

 2003.346 18:33:36.1

ARCHIVE LOG COPY 2 DATA SETS

NO ARCHIVE DATA SETS DEFINED FOR THIS COPY

DSNJ401I DSNRJPCR RESTART CONTROL RECORD NOT FOUND

 CHECKPOINT QUEUE

 18:46:25 DECEMBER 12, 2003

 TIME OF CHECKPOINT 18:45:08 DECEMBER 12, 2003

 BEGIN CHECKPOINT RBA 0000068F56FA

 END CHECKPOINT RBA 0000068F92DE

 END CHECKPOINT LRSN BA75D35F5638

 SHUTDOWN CHECKPOINT

 TIME OF CHECKPOINT 18:41:20 DECEMBER 12, 2003

 BEGIN CHECKPOINT RBA 0000068EE29E

 END CHECKPOINT RBA 0000068F124A

 END CHECKPOINT LRSN BA75D278B6BD

 ...

 TIME OF CHECKPOINT 01:00:21 JUNE 28, 2001

 BEGIN CHECKPOINT RBA 0000047319AF

 END CHECKPOINT RBA 000004736215

 END CHECKPOINT LRSN B60D1C57A2EC

 TIME OF CHECKPOINT 01:00:17 JUNE 28, 2001

 BEGIN CHECKPOINT RBA 00000470E2B0

 END CHECKPOINT RBA 0000047128FC

 END CHECKPOINT LRSN B60D1C545549

Figure 122. Sample print log map utility output for a member of a data sharing group (Part 2 of 3)

DSNJU004 (print log map)

Chapter 37. DSNJU004 (print log map) 697

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

Timestamps in the BSDS

The output of the print log map utility reveals that many timestamps are recorded

in the BSDS. Those timestamps record the date and time of various system events.

Timestamps in the output column LTIME are in local time. All other timestamps

are in Greenwich Mean Time (GMT).

Figure 121 on page 694 and Figure 122 on page 696 show example output from the

print log map utility. The following timestamps are included in the header section

of the reports:

System timestamp Reflects the date and time that the BSDS was last

updated. The BSDS can be updated by several

events:

v DB2 startup.

v During log write activities, whenever the write

threshold is reached.

Depending on the number of output buffers that

you have specified and the system activity rate,

the BSDS might be updated several times a

second, or it might not be updated for several

seconds, minutes, or even hours.

v Due to an error, DB2 might drop into

single-BSDS mode from its normal dual BSDS

mode. This action might occur when a request to

get, insert, point to, update, or delete a BSDS

ARCHIVE LOG COMMAND HISTORY

 MEMBER V81A

 DATA SHARING GROUP DSNCAT CONTAINS 2 MEMBERS

 18:46:29 DECEMBER 12, 2003

 DATE/SDATE TIME/STIME RBA MODE WAIT TIME SCOPE CMD ORIGIN STATUS ACTIVE

------------ ---------- ------------ ------- ---- ----- ----- ---------- ------ ------

DEC 12, 2003 17:24:35.5 0000050A56FA QUIESCE YES 999 G V81A ORIGINATOR 2

DEC 12, 2003 17:01:29.5 000004ABD642 M V81A ORIGINATOR

 **** DISTRIBUTED DATA FACILITY ****

 COMMUNICATION RECORD

 18:46:29 DECEMBER 12, 2003

LOCATION=STLEC1 ALIAS=(NULL)

LUNAME=SYEC1DB2 PASSWORD=DB2PW1 GENERICLU=SYEC1GLU PORT=NULL RPORT=NULL

DSNJ401I DSNUPBHR BACKUP SYSTEM UTILITY HISTORY RECORD NOT FOUND

 SYSTEM CCSIDS

 18:46:30 DECEMBER 12, 2003

 SYSTEM CCSIDS

 ASCII SBCS = 1252

 ASCII MIXED = 65534

 ASCII DBCS = 65534

 EBCDIC SBCS = 37

 EBCDIC MBCS = 65534

 EBCDIC DBCS = 65534

 UNICODE SBCS = 367

 UNICODE MBCS = 1208

 UNICODE DBCS = 1200

DSNJ200I DSNJU004 PRINT LOG UTILITY PROCESSING COMPLETED SUCCESSFULLY

Figure 122. Sample print log map utility output for a member of a data sharing group (Part 3 of 3)

DSNJU004 (print log map)

698 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

record is unsuccessful. When this error occurs,

DB2 updates the timestamp in the remaining

BSDS to force a timestamp mismatch with the

disabled BSDS.

Utility timestamp The date and time that the contents of the BSDS

were altered by the change log inventory utility

(DSNJU003).

The following timestamps are included in the active and archive log data sets

portion of the reports:

Active log date The date on which the active log data set was

originally allocated on the DB2 subsystem.

Active log time The time at which the active log data set was

originally allocated on the DB2 subsystem.

Archive log date The date of creation (not allocation) of the archive

log data set.

Archive log time The time of creation (not allocation) of the archive

log data set.

The following timestamps are included in the conditional restart control record

portion of the report that is shown in Figure 126 on page 702:

Conditional restart control record

The current time and date. This data is reported for

information only and is not kept in the BSDS.

CRCR created The time and date of creation of the CRCR by the

CRESTART option in the change log inventory

utility.

Begin restart The time and date that the conditional restart was

attempted.

End restart The time and date that the conditional restart

ended.

STARTRBA (timestamp) The time at which the control interval was written.

ENDRBA (timestamp) The time at which the last control interval was

written.

Time of checkpoint The time and date that are associated with the

checkpoint record that was used during the

conditional restart process.

The following timestamps are included in the checkpoint queue and the DDF

communication record sections of the report that is shown in Figure 125 on page

701:

Checkpoint queue The current time and date. This data is reported for

information only and is not kept in the BSDS.

Time of checkpoint The time and date that the checkpoint was taken.

DDF communication record (heading)

The current time and date. This data is reported for

information only, and is not kept in the BSDS.

DSNJU004 (print log map)

Chapter 37. DSNJU004 (print log map) 699

Active log data set status

The BSDS records the status of an active log data set as one of the status values

that are listed in Table 139. This table lists each status value and its meaning.

 Table 139. Statuses of active log data sets

Status Meaning

NEW The data set has been defined but never used by DB2, or the log is truncated at a point

before the data set was created. In either case, the data set starting and ending RBA values

are reset to zero.

REUSABLE Either the data set is new and has no records, or the data set has been offloaded. In the print

log map output, the start RBA value for the last REUSABLE data set is equal to the start

RBA value of the last archive log data set.

NOT REUSABLE The data set contains records that have not been offloaded.

STOPPED The offload processor encountered an error while reading a record, and that record could

not be obtained from the other copy of the active log. Alternatively, an error occurred during

truncation of the data set following a write I/O error. See Part 4 (Volume 1) of DB2

Administration Guide.

TRUNCATED One of these conditions exists:

v An I/O error occurred, and DB2 has stopped writing to this data set. The active log data

set is offloaded, beginning with the starting RBA and continuing up to the last valid

record segment in the truncated active log data set. (The RBA of the last valid record

segment is less than the ending RBA of the active log data set.) Logging is switched to the

next available active log data set and continues uninterrupted.

v The log was truncated by a conditional restart at a point within the data set RBA range.

v The DB2 ARCHIVE LOG command was issued while this data set was the current active

log data set.

The status value for each active log data set is displayed in the print log map

utility output. The sample print log map output in Figure 123 shows how the

status is displayed.

Archive log command history

The print log map utility output also displays the archive log command history, as

shown in Figure 124 on page 701.

ACTIVE LOG COPY 1 DATA SETS

 START RBA/TIME END RBA/TIME DATE LTIME DATA SET INFORMATION

 -------------------- -------------------- -------- ----- --------------------

 00000316C000 0000031ABFFF 2001.045 14:39 DSN=DSNC810.LOGCOPY1.DS02

 2003.346 16:20:49.6 2003.346 16:21:23.7 PASSWORD=(NULL) STATUS=TRUNCATED, REUSABLE

 0000031AC000 0000031B1FFF 2001.045 14:39 DSN=DSNC810.LOGCOPY1.DS03

 2003.346 16:21:23.7 2003.346 16:21:23.8 PASSWORD=(NULL) STATUS=TRUNCATED, REUSABLE

 0000031B2000 000003535FFF 2001.045 14:39 DSN=DSNC810.LOGCOPY1.DS01

 2003.346 16:21:23.8 PASSWORD=(NULL) STATUS=NOTREUSABLE

Figure 123. Portion of print log map utility output that shows active log data set status

DSNJU004 (print log map)

700 Utility Guide and Reference

The values in the TIME column of the ARCHIVE LOG COMMAND HISTORY

section of the report in Figure 124 represent the time that the ARCHIVE LOG

command was issued. This time value is saved in the BSDS and is converted to

printable format at the time that the print log map utility is run. Therefore this

value, when printed, can differ from other time values that were recorded

concurrently. Some time values are converted to printable format when they are

recorded, and then they are saved in the BSDS. These printed values remain the

same when the printed report is run.

Reading conditional restart control records

In addition to listing information about log records, the print log map utility lists

information about each conditional restart control record and each checkpoint. A

sample description of a checkpoint record in the queue is shown in Figure 125.

 A sample description of a conditional restart control record is shown in Figure 126

on page 702.

ARCHIVE LOG COMMAND HISTORY

 16:36:54 DECEMBER 12, 2003

 DATE TIME RBA MODE WAIT TIME

------------ ---------- ------------ ------- ---- -----

DEC 12, 2003 16:35:47.8 000004FC89E5 QUIESCE YES 999

DEC 12, 2003 16:31:49.5 00000453F379

DEC 12, 2003 16:21:23.8 0000031B1388

DEC 12, 2003 16:21:23.7 0000031AB392

DEC 12, 2003 16:20:49.6 00000316B000

DEC 12, 2003 16:20:49.5 000003167000

Figure 124. Portion of print log map utility output that shows archive log command history

 CHECKPOINT QUEUE

 15:54:57 FEBRUARY 04, 2003

 TIME OF CHECKPOINT 15:54:37 FEBRUARY 04, 2003

 BEGIN CHECKPOINT RBA 0000400000EC

 END CHECKPOINT RBA 00004000229A

 TIME OF CHECKPOINT 15:53:44 FEBRUARY 04, 2003

 BEGIN CHECKPOINT RBA 00000B39E1EC

 END CHECKPOINT RBA 00000B3A80A6

 SHUTDOWN CHECKPOINT

 TIME OF CHECKPOINT 15:49:40 FEBRUARY 04, 2003

 BEGIN CHECKPOINT RBA 00000B2E33E5

 END CHECKPOINT RBA 00000B2E9C88

 ...

 TIME OF CHECKPOINT 21:06:01 FEBRUARY 03, 2003

 BEGIN CHECKPOINT RBA 00000A7AA19C

 END CHECKPOINT RBA 00000A82C998

Figure 125. Sample print log map description of checkpoints

DSNJU004 (print log map)

Chapter 37. DSNJU004 (print log map) 701

|
|
|
|
|
|
|
|
|
|
|
|
|

CRCR IDENTIFIER 0001

 USE COUNT 1

 RECORD STATUS

 CRCR NOT ACTIVE

 SUCCESSFUL RESTART

 PROCESSING STATUS

 COLD START (STARTRBA = ENDRBA)

 FORWARD = NO

 BACKOUT = NO

 STARTRBA 000040000000

 ENDRBA 000040000000

 ENDLRSN NOT SPECIFIED

 EARLIEST REQUESTED RBA 000000000000

 FIRST LOG RECORD RBA 000000000000

 ORIGINAL CHECKPOINT RBA 000000000000

 NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED

 CRCR CREATED 15:54:13 FEBRUARY 04, 2003

 BEGIN RESTART 15:54:26 FEBRUARY 04, 2003

 END RESTART 15:54:37 FEBRUARY 04, 2003

 RESTART PROGRESS STARTED ENDED

 ======= =====

 CURRENT STATUS REBUILD YES YES

 FORWARD RECOVERY PHASE YES YES

 BACKOUT RECOVERY PHASE YES YES

Figure 126. Sample print log map description of a CRCR

702 Utility Guide and Reference

Chapter 38. DSN1CHKR

The DSN1CHKR utility verifies the integrity of DB2 directory and catalog table

spaces. DSN1CHKR scans the specified table space for broken links, broken hash

chains, and records that are not part of any link or chain.

Use DSN1CHKR on a regular basis to promptly detect any damage to the catalog

and directory.

The following topics provide additional information:

v “Syntax and options of the DSN1CHKR control statement”

v “Before running DSN1CHKR” on page 705

v “Sample DSN1CHKR control statements” on page 706

v “DSN1CHKR output” on page 709

Syntax and options of the DSN1CHKR control statement

DSN1CHKR syntax diagram

��

�

�

�

�

�

�

,

PARM=

DUMP

FORMAT

,

HASH(

hexadecimal-constant

)

,

MAP=

ANCHOR(

id,integer

)

,

RID(

integer,hexadecimal-constant

)

,

HASH(

hexadecimal-constant,integer

)

,

PAGE(

integer,hexadecimal-constant

)

 ��

Option descriptions

The following parameters are optional. Specify parameters on the EXEC statement

in any order after the required JCL parameter PARM=. If you specify more than

one parameter, separate them with commas but no blanks. If you do not specify

any parameters, DSN1CHKR scans all table space pages for broken links and for

records that are not part of any link or chain, and prints the appropriate diagnostic

messages.

© Copyright IBM Corp. 1983, 2008 703

DUMP Specifies that printed table space pages, if any, are to be in dump

format. If you specify DUMP, you cannot specify the FORMAT

parameter.

FORMAT Specifies that printed table space pages, if any, are to be formatted

on output. If you specify FORMAT, you cannot specify the DUMP

parameter.

HASH(hexadecimal-constant, ...)

Specifies a hash value for a hexadecimal database identifier (DBID)

in table space DBD01. DSN1CHKR returns hash values for each

DBID in page form and in anchor point offset form.

 hexadecimal-constant is the hash value for a DBID. The maximum

number of DBIDs is 10.

MAP= Identifies a record whose pointer is to be followed. DSN1CHKR

prints each record as it follows the pointer. Use this parameter only

after you have determined which chain is broken. You can

determine if a chain is broken by running DSN1CHKR without any

parameters, or with only FORMAT or DUMP.

 The options for this parameter help DSN1CHKR locate the record

whose pointer it follows. Each option must point to the beginning

of the 6-byte prefix area of a valid record or to the beginning of the

hash anchor. If the value that you specify does not point to one of

these, DSN1CHKR issues an error message and continues with the

next pair of values.

ANCHOR(id,integer)

Specifies the anchor point that DSN1CHKR is to map.

 id identifies the starting page and anchor point in the form

ppppppaa, where pppppp is the page number, and aa is the

anchor point number.

integer determines which pointer to follow while mapping. 0

specifies the forward pointer; 4 specifies the backward pointer.

The maximum number of pairs is five.

RID(integer, hexadecimal-constant, ...)

Identifies the record or hash anchor from which DSN1CHKR is

to start mapping.

 integer is the page and record, in the form pppppprr, where

pppppp is the page number, and rr is the record number. These

values are in hexadecimal format.

hexadecimal-constant specifies the hexadecimal displacement

from the beginning of the record to the pointer in the record

from which mapping starts.

The maximum number of pairs is five.

HASH(hexadecimal-constant, integer, ...)

Specifies the value that DSN1CHKR is to hash and map for

table space DBD01.

 hexadecimal constant is the database identifier in table space

DBD01.

integer determines which pointer to follow while mapping. 0

specifies the forward pointer; 4 specifies the backward pointer.

DSN1CHKR

704 Utility Guide and Reference

The maximum number of pairs is five.

PAGE(integer, hexadecimal-constant, ...)

integer specifies the page number on which the record or hash

anchor is to be located.

 hexadecimal-constant specifies the offset to the pointer from the

beginning of the page.

When you use the PAGE option, DSN1CHKR follows the

forward pointer while mapping. If a forward pointer does not

exist, DSN1CHKR stops mapping after the first record.

The maximum number of pairs is five.

Before running DSN1CHKR

The information in this section is necessary for running DSN1CHKR.

DSN1CHKR is a diagnosis tool; it executes outside the control of DB2. You should

have detailed knowledge of DB2 data structures to make proper use of this service

aid.

Environment

Run the DSN1CHKR program as a z/OS job.

Do not run DSN1CHKR on a table space while it is active under DB2. While

DSN1CHKR runs, do not run other database operations for the database and table

space that are to be checked. Use the STOP DATABASE command for the database

and table space that are to be checked.

Authorization required

This utility does not require authorization. However, if RACF protects any of the

data sets, the authorization ID must also have the necessary RACF authority.

Control statement

Create the utility control statement for the DSN1CHKR job. See “Syntax and

options of the DSN1CHKR control statement” on page 703 for DSN1CHKR syntax

and option descriptions.

Required data sets: DSN1CHKR uses two data definition (DD) statements. Specify

the data set for the utility’s output with the SYSPRINT DD statement. Specify the

first data set piece of the table space that is to be checked with the SYSUT1 DD

statement.

SYSPRINT Defines the data set that contains output messages from the

DSN1CHKR program and all hexadecimal dump output.

SYSUT1 Defines the input data set. This data set can be a DB2 data set or a

copy that is created by the DSN1COPY utility. Specify disposition

of this data set as DISP=OLD to ensure that it is not in use by DB2.

Set the data set’s disposition as DISP=SHR only when the STOP

DATABASE command has stopped the table space you want to

check.

DSN1CHKR

Chapter 38. DSN1CHKR 705

Restrictions

This section contains restrictions that you should be aware of before running

DSN1CHKR.

Running DSN1COPY before DSN1CHKR

DSN1CHKR requires a VSAM data set as input; it cannot check a physical

sequential data set.

DSN1CHKR does not use full image copies that are created with the COPY utility.

If you create a full image copy with SHRLEVEL REFERENCE, you can copy it into

a VSAM data set with DSN1COPY and check it with DSN1CHKR.

DSN1CHKR cannot use full image copies that are created with DFSMSdss

concurrent copy. The DFSMSdss data set does not copy to a VSAM data set

because of incompatible formats.

Recommendation: First copy the stopped table space to a temporary data set by

using DSN1COPY. Use the DB2 naming convention for the copied data set. Run

DSN1CHKR on the copy, which frees the actual table space for restart to DB2.

When you run DSN1COPY, use the CHECK option to examine the table space for

page integrity errors. Although DSN1CHKR does check for these errors, running

DSN1COPY with CHECK prevents an unnecessary invocation of DSN1CHKR.

Running DSN1CHKR on a valid table space

Run DSN1CHKR only on the following valid table spaces:

v DSNDB01.DBD01

v DSNDB06.SYSDBASE

v DSNDB06.SYSDBAUT

v DSNDB06.SYSGROUP

v DSNDB06.SYSPLAN

v DSNDB06.SYSVIEWS

Sample DSN1CHKR control statements

Example 1: Running DSN1CHKR on a temporary data set. In the sample JCL in

Figure 127 on page 707, STEP1 allocates a temporary data set. The fifth qualifier in

the data set name can be either I0001 or J0001. This example uses I0001. STEP2

stops database DSNDB06 with the STOP DATABASE command. STEP3 copies the

target table space into the temporary data set

(TESTCAT.DSNDBC.TEMPDB.TMPDBASE.I0001.A001) with DSN1COPY. This step

also uses the CHECK option to check the table space for page integrity errors.

After DSN1COPY with the CHECK option ensures that no errors exist, STEP4

restarts the table space for access to DB2. STEP5 runs DSN1CHKR on the

temporary data set.

DSN1CHKR prints the chains, beginning with the pointers on the RID option in

the MAP (maintenance analysis procedure) parameter. In this example, the first

pointer is on page 000002, at an offset of 6 bytes from record 1. The second pointer

is on page 00000B, at an offset of 6 bytes from record 1.

The RIDs in STEP5 are for instruction only.

DSN1CHKR

706 Utility Guide and Reference

//YOUR JOBCARD

//*

//JOBCAT DD DSNAME=DSNCAT1.USER.CATALOG,DISP=SHR

//STEP1 EXEC PGM=IDCAMS

//**

//* ALLOCATE A TEMPORARY DATA SET FOR SYSDBASE *

//**

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSIN DD *

 DELETE -

 (TESTCAT.DSNDBC.TEMPDB.TMPDBASE.I0001.A001) -

 CATALOG(DSNCAT)

 DEFINE CLUSTER -

 (NAME(TESTCAT.DSNDBC.TEMPDB.TMPDBASE.I0001.A001) -

 NONINDEXED -

 REUSE -

 CONTROLINTERVALSIZE(4096) -

 VOLUMES(XTRA02) -

 RECORDS(783 783) -

 RECORDSIZE(4089 4089) -

 SHAREOPTIONS(3 3)) -

 DATA -

 (NAME(TESTCAT.DSNDBD.TEMPDB.TMPDBASE.I0001.A001)) -

 CATALOG(DSNCAT)

/*

//STEP2 EXEC PGM=IKJEFT01,DYNAMNBR=20

//**

//* STOP DSNDB06.SYSDBASE *

//**

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR

//SYSTSPRT DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 -STOP DB(DSNDB06) SPACENAM(SYSDBASE)

 END

/*

//STEP3 EXEC PGM=DSN1COPY,PARM=(CHECK)

//**

//* CHECK SYSDBASE AND RUN DSN1COPY *

//**

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBC.DSNDB06.SYSDBASE.I0001.A001,DISP=SHR

//SYSUT2 DD DSN=TESTCAT.DSNDBC.TEMPDB.TMPDBASE.I0001.A001,DISP=SHR

/*

Figure 127. Sample JCL for running DSN1CHKR on a temporary data set (Part 1 of 2)

DSN1CHKR

Chapter 38. DSN1CHKR 707

Example 2: Running DSN1CHKR on a table space. In the sample JCL in Figure 128,

STEP1 stops database DSNDB06 with the STOP DATABASE command. STEP2 runs

DSN1CHKR on the target table space; the output from this utility job is identical to

the output in Example 1. STEP3 restarts the database with the START DATABASE

command.

//STEP4 EXEC PGM=IKJEFT01,DYNAMNBR=20

//**

//* START DSNDB06.SYSDBASE *

//**

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR

//SYSTSPRT DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 -START DB(DSNDB06) SPACENAM(SYSDBASE)

 END

/*//STEP5 EXEC PGM=DSN1CHKR,PARM=’MAP=RID(00000201,06,00000B01,06)’,

// COND=(4,LT)

//**

//* CHECK LINKS OF SYSDBASE *

//**

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=TESTCAT.DSNDBC.TEMPDB.TMPDBASE.I0001.A001,DISP=SHR

/*

Figure 127. Sample JCL for running DSN1CHKR on a temporary data set (Part 2 of 2)

//YOUR JOBCARD

//*

//STEP1 EXEC PGM=IKJEFT01,DYNAMNBR=20

//**

//* EXAMPLE 2 *

//* *

//* STOP DSNDB06.SYSDBASE *

//**

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR

//SYSTSPRT DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 -STOP DB(DSNDB06) SPACENAM(SYSDBASE)

 END

/*

Figure 128. Sample JCL for running DSN1CHKR on a stopped table space. (Part 1 of 2)

DSN1CHKR

708 Utility Guide and Reference

DSN1CHKR output

One intended use of this utility is to aid in determining and correcting system

problems. When diagnosing DB2, you might need to refer to licensed

documentation to interpret output from this utility. For more information about

diagnosing problems, see DB2 Diagnosis Guide and Reference.

//STEP2 EXEC PGM=DSN1CHKR,PARM=’MAP=RID(00000201,06,00000B01,06)’,

// COND=(4,LT)

//**

//* CHECK LINKS OF SYSDBASE *

//**

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBD.DSNDB06.SYSDBASE.I0001.A001,DISP=SHR

/*

//STEP3 EXEC PGM=IKJEFT01,DYNAMNBR=20

//**

//* RESTART DSNDB06.SYSDBASE *

//**

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR

//SYSTSPRT DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 -START DB(DSNDB06) SPACENAM(SYSDBASE)

 END

/*

Figure 128. Sample JCL for running DSN1CHKR on a stopped table space. (Part 2 of 2)

DSN1CHKR

Chapter 38. DSN1CHKR 709

710 Utility Guide and Reference

Chapter 39. DSN1COMP

DSN1COMP estimates space savings that are to be achieved by DB2 data

compression in table spaces. For more information regarding ESA data

compression, see Part 5 (Volume 2) of DB2 Administration Guide.

You can run this utility on the following types of data sets that contain

uncompressed data:

v DB2 full image copy data sets

v VSAM data sets that contain DB2 table spaces

v Sequential data sets that contain DB2 table spaces (for example, DSN1COPY

output)

You cannot run DSN1COMP on concurrent copies.

DSN1COMP does not estimate savings for data sets that contain LOB table spaces

or for index spaces.

The following topics provide additional information:

v “Syntax and options of the DSN1COMP control statement”

v “Before running DSN1COMP” on page 713

v “Using DSN1COMP to estimate space savings from DB2 data compression” on

page 715

v “Sample DSN1COMP control statements” on page 717

v “DSN1COMP output” on page 719

Syntax and options of the DSN1COMP control statement

DSN1COMP syntax diagram

�� DSN1COMP

32K

PAGESIZE

(

4K

)

8K

16K

32K

DSSIZE

(

integer

G

)

LARGE

NUMPARTS(integer)
 �

�
FREEPAGE(integer)

PCTFREE(integer)

FULLCOPY

REORG

ROWLIMIT(integer)
 �

�
MAXROWS(integer)

 ��

Option descriptions

To run DSN1COMP, specify one or more of the following parameters on the EXEC

statement to run DSN1COMP. If you specify more than one parameter, separate

each parameter by a comma. You can specify parameters in any order.

© Copyright IBM Corp. 1983, 2008 711

32K Specifies that the input data set, SYSUT1, has a 32-KB page size. If

you specify this option and the SYSUT1 data set does not have a

32-KB page size, DSN1COMP might produce unpredictable results.

 The recommended option for performance is PAGESIZE(32K).

PAGESIZE Specifies the page size of the input data set that is defined by

SYSUT1. Available page size values are 4K, 8K, 16K, or 32K. If you

specify an incorrect page size, DSN1COMP might produce

unpredictable results.

 If you omit PAGESIZE, DSN1COMP tries to determine the page

size from the input data set. DB2 issues an error message if

DSN1COMP cannot determine the input page size. This might

happen if the header page is not in the input data set, or if the

page size field in the header page contains an invalid page size.

DSSIZE(integer G)

Specifies the data set size, in gigabytes, for the input data set. If

you omit DSSIZE, DB2 assumes that the input data set size is 2

GB.

 integer must match the DSSIZE value that was specified when the

table space was defined.

If you omit DSSIZE and the data set is not one of the default sizes,

the results from DSN1COMP are unpredictable.

LARGE Specifies that the input data set is a table space that was defined

with the LARGE option. If you specify LARGE, DB2 assumes that

the data set has a 4-GB boundary.

 The recommended method of specifying a table space defined with

LARGE is DSSIZE(4G).

If you omit the LARGE or DSSIZE(4G) option when it is needed,

or if you specify LARGE for a table space that was not defined

with the LARGE option, the results from DSN1COMP are

unpredictable.

NUMPARTS(integer)

Specifies the number of partitions that are associated with the

input data set. Valid specifications range from 1 to 4096. If you

omit NUMPARTS or specify it as 0, DSN1COMP assumes that your

input file is not partitioned. If you specify a number greater than

64, DSN1COMP assumes that the data set is for a partitioned table

space that was defined with the LARGE option, even if the LARGE

keyword is not specified.

 DSN1COMP cannot always validate the NUMPARTS parameter. If

you specify it incorrectly, DSN1COMP might produce

unpredictable results.

DSN1COMP terminates and issues message DSN1946I when it

encounters an image copy that contains multiple partitions; a

compression report is issued for the first partition.

FREEPAGE(integer)

Specifies how often to leave a page of free space when calculating

the percentage of saved pages. You must specify an integer in the

range 0 to 255. If you specify 0, no pages are included as free space

when DSN1COMP reports the percentage of pages saved.

DSN1COMP

712 Utility Guide and Reference

|

Otherwise, one free page is included after every n pages, where n

is the specified integer. The default is 0.

 Specify the same value that you specify for the FREEPAGE option

of the SQL statement CREATE TABLESPACE or ALTER

TABLESPACE.

PCTFREE(integer)

Indicates what percentage of each page to leave as free space when

calculating the percentage of pages saved. You must specify an

integer in the range 0 to 99. When calculating the savings,

DSN1COMP allows for at least n percent of free space for each

page, where n is the specified integer. The default is 5.

 Specify the same value that you specify for the PCTFREE option of

the SQL statement CREATE TABLESPACE or ALTER

TABLESPACE.

FULLCOPY Specifies that a DB2 full image copy (not a DFSMSdss concurrent

copy) of your data is to be used as input. Omitting this parameter

when the input is a full image copy can cause error messages or

unpredictable results. If this data is partitioned, also specify the

NUMPARTS parameter to identify the number of partitions.

REORG Provides an estimate of compression savings that are comparable

to the savings that the REORG utility would achieve. If this

keyword is not specified, the results are similar to the compression

savings that the LOAD utility would achieve.

ROWLIMIT(integer)

Specifies the maximum number of rows to evaluate in order to

provide the compression estimate. This option prevents

DSN1COMP from examining every row in the input data set. Valid

specifications range from 1 to 99000000.

 Use this option to limit the elapsed time and processor time that

DSN1COMP requires. An analysis of the first 5 to 10 MB of a table

space provides a fairly representative sample of the table space for

estimating compression savings. Therefore, specify a ROWLIMIT

value that restricts DSN1COMP to the first 5 to 10 MB of the table

space. For example, if the row length of the table space is 200

bytes, specifying ROWLIMIT(50000) causes DSN1COMP to analyze

approximately 10 MB of the table space.

MAXROWS(integer)

Specifies the maximum number of rows that DSN1COMP is to

consider when calculating the percentage of pages saved. You must

specify an integer in the range 1 to 255. The default is 255.

 Specify the same value that you specify for the MAXROWS option

of the SQL statement CREATE TABLESPACE or ALTER

TABLESPACE.

Before running DSN1COMP

If you run DSN1COMP on a segmented table space, you must first query the

SYSTABLEPART catalog table to determine the current instance qualifier, which is

stored in the IPREFIX column. You can then use the current instance qualifier to

code the data set name in the JCL. The following sample shows an example of

such a query.

DSN1COMP

Chapter 39. DSN1COMP 713

SELECT DBNAME, TSNAME, PARTITION, IPREFIX

 FROM SYSIBM.SYSTABLEPART

 WHERE DBNAME = ’DBMC0731’ AND TSNAME = ’TPMC0731’

 ORDER BY TSNAME, PARTITION;

The preceding query produces the following result:

The preceding output provides the current instance qualifier (J), which can be used

to code the data set name in the DSN1COMP JCL as follows.

//STEP1 EXEC PGM=DSN1COMP

//SYSUT1 DD DSN=vcatname.DSNDBC.DBMC0731.J0001.A001,DISP=SHR

//SYSPRINT DD AYAOUT=*

//SYSUDUMP DD AYAOUT=*

Environment

Run DSN1COMP as a z/OS job.

You can run DSN1COMP even when the DB2 subsystem is not operational. Before

you use DSN1COMP when the DB2 subsystem is operational, issue the DB2 STOP

DATABASE command. Issuing the STOP DATABASE command ensures that DB2

has not allocated the DB2 data sets.

Do not run DSN1COMP on table spaces in DSNDB01, DSNDB06, or DSNDB07.

Authorization required

DSN1COMP does not require authorization. However, if any of the data sets is

RACF-protected, the authorization ID of the job must have RACF authority.

Control statement

Create the utility control statement for the DSN1COMP job. See “Syntax and

options of the DSN1COMP control statement” on page 711 for DSN1COMP syntax

and option descriptions.

Required data sets: DSN1COMP uses the following data definition (DD)

statements:

SYSPRINT Defines the data set that contains output messages from

DSN1COMP and all hexadecimal dump output.

SYSUT1 Defines the input data set, which can be a sequential data set or a

VSAM data set.

 Specify the disposition for this data set as OLD (DISP=OLD) to

ensure that it is not in use by DB2. Specify the disposition for this

 +---+

 | DBNAME | TSNAME | PARTITION | IPREFIX |

 +---+

1_| DBMC0731 | TPMC0731 | 1 | J |

2_| DBMC0731 | TPMC0731 | 2 | J |

3_| DBMC0731 | TPMC0731 | 3 | J |

4_| DBMC0731 | TPMC0731 | 4 | J |

5_| DBMC0731 | TPMC0731 | 5 | J |

 +---+

Figure 129. Result from query on the SYSTABLEPART catalog table to determine the value

in the IPREFIX column

DSN1COMP

714 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|

|

data set as SHR (DISP=SHR) only in circumstances where the DB2

STOP DATABASE command does not work.

The requested operation takes place only for the specified data set.

In the following situations, you must specify the correct data set.

v The input data set belongs to a linear table space.

v The index space is larger than 2 GB.

v The table space or index space is a partitioned space.

If running the online REORG utility with the FASTSWITCH option,

verify the data set name before running the DSN1COMP utility.

The fifth-level qualifier in the data set name alternates between

I0001 and J0001 when using FASTSWITCH. Specify the correct

fifth-level qualifier in the data set name to successfully execute the

DSN1COMP utility. To determine the correct fifth-level qualifier,

query the IPREFIX column of SYSIBM.SYSTABLEPART for each

data partition or the IPREFIX column of SYSIBM.SYSINDEXPART

for each index partition. If the object is not partitioned, use zero as

the value for the PARTITION column in your query.

Recommendation

Before using DSN1COMP, be sure that you know the page size and data set size

(DSSIZE) for the table space. Use the following query on the DB2 catalog to get the

information you need, in this example for table 'DEPT':

SELECT T.CREATOR,T.NAME,S.NAME AS TABLESPACE,S.PARTITIONS,S.PGSIZE,

 CASE S.DSSIZE

 WHEN 0 THEN

 CASE WHEN S.TYPE = ’O’ THEN 4194304

 ELSE

 CASE WHEN S.PARTITIONS > 254 THEN

 CASE WHEN S.PGSIZE = 4 THEN 4194304

 WHEN S.PGSIZE = 8 THEN 8388608

 WHEN S.PGSIZE = 16 THEN 16777216

 WHEN S.PGSIZE = 32 THEN 33554432

 ELSE NULL

 END

 WHEN S.PARTITIONS > 64 THEN 4194304

 WHEN S.PARTITIONS > 32 THEN 1048576

 WHEN S.PARTITIONS > 16 THEN 2097152

 WHEN S.PARTITIONS > 0 THEN 4194304

 ELSE 2097152

 END

 END

 ELSE S.DSSIZE

 END

 AS DSSIZE

 FROM SYSIBM.SYSTABLES T,

 SYSIBM.SYSTABLESPACE S

 WHERE

 T.NAME = ’DEPT’ AND

 T.TSNAME = S.NAME;

Using DSN1COMP to estimate space savings from DB2 data

compression

This section describes the following tasks that are associated with running the

DSN1COMP utility:

 “The effect of the REORG option on compression savings estimates” on page

716

 “Free space in compression calculations” on page 716

DSN1COMP

Chapter 39. DSN1COMP 715

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

“The effect of running DSN1COMP on a table space with identical rows” on

page 717

The effect of the REORG option on compression savings

estimates

If you run DSN1COMP with the REORG option on small data sets, the resulting

estimates might vary greatly from the estimates that are produced without the

default REORG option. Alternatively, if you run DSN1COMP and specify a small

number (n) for ROWLIMIT, the estimates might vary greatly from the estimates

that are produced without REORG.

DNS1COMP does not try to convert data to the latest version before it compresses

rows and derives a savings estimate.

Without the REORG option, DSN1COMP uses the first n rows to fill the

compression dictionary. DSN1COMP processes the remaining rows to provide the

compression estimate. If the number of rows that are used to build the dictionary

is a significant percentage of the data set rows, little savings result. With the

REORG option, DSN1COMP processes all the rows, including those that are used

to build the dictionary, which results in greater compression.

Free space in compression calculations

The DSN1COMP utility’s compression estimates take into account the PCTFREE

and FREEPAGE options. If you use different PCTFREE or FREEPAGE values than

those that were created with the input table space, you get a different value for

noncmppages. DSN1COMP reports this value in message DSN1940I, as shown in

the example output in Figure 130 on page 717.

DSN1COMP

716 Utility Guide and Reference

The effect of running DSN1COMP on a table space with

identical rows

If you run DSN1COMP on a table space in which the data is the same for all rows,

message DSN1941I is issued. In this case, DSN1COMP does not compute any

statistics.

Sample DSN1COMP control statements

Example 1: Estimating space savings from data compression for a full image copy.

The following statement specifies that the DSN1COMP utility is to report the

estimated space savings that are to be achieved by compressing the full image

copy that is identified by the SYSUT1 DD statement. In this statement, the DSN

option specifies the data set name of the image copy that is to be used as input.

The fifth qualifier in the data set name can be either I0001 or J0001. This example

uses I0001. Note that because the input is a full image copy, the FULLCOPY option

must be specified.

DSN1999I START OF DSN1COMP FOR JOB TST512A STEP1

DSN1998I INPUT DSNAME = FUFOU237.TSP32K , SEQ

DSN1944I DSN1COMP INPUT PARAMETERS

 512 DICTIONARY SIZE USED

 30 FREEPAGE VALUE USED

 45 PCTFREE VALUE USED

 NO ROWLIMIT WAS REQUESTED

 ESTIMATE BASED ON DB2 LOAD METHOD

DSN1940I DSN1COMP COMPRESSION REPORT

 1,289 KB WITHOUT COMPRESSION

 717 KB WITH COMPRESSION

 44 PERCENT OF THE BYTES WOULD BE SAVED

 176 ROWS SCANNED TO BUILD DICTIONARY

 20,000 ROWS SCANNED TO PROVIDE COMPRESSION ESTIMATE

 512 DICTIONARY ENTRIES

 1 DICTIONARY PAGES REQUIRED

 147 PAGES REQUIRED WITHOUT COMPRESSION

 148 PAGES REQUIRED WITH COMPRESSION

 0 PERCENT OF THE DB2 DATA PAGES WOULD BE SAVED

 *** DETAIL REPORT OF FREQUENCIES AND AVERAGES ***

 1 CHILD CHARACTER WAS COMPARED 566,764 TIMES

 2 CHILD CHARACTERS WERE COMPARED 182,026 TIMES

 3 CHILD CHARACTERS WERE COMPARED 10,300 TIMES

 5 CHILD CHARACTERS WERE COMPARED 1,129 TIMES

 TOTAL ALPHABET NODE COMPARISONS 528,139 TIMES

 967,361 CHILD COMPARISONS IN THE SIBLING LISTS

 760,219 SEARCHES IN THE SIBLING LISTS

 1.2 AVERAGE NUMBER OF COMPARISONS PER SEARCH

 60 BYTES FOR AVERAGE UNCOMPRESSED ROW LENGTH

 39 BYTES FOR AVERAGE COMPRESSED ROW LENGTH

 263 IS THE DATABASE ID (DBID)

 2 IS THE PAGESET ID (PSID)

Figure 130. Example DSN1COMP output

DSN1COMP

Chapter 39. DSN1COMP 717

//jobname JOB acct information

//COMPEST EXEC PGM=DSN1COMP,PARM=’FULLCOPY’

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBC.DB254A.TS254A.I0001.A001,DISP=SHR

Example 2: Providing intended free space when estimating space savings. In the

sample statements in Figure 131, STEP1 specifies that DSN1COMP is to report the

estimated space savings that are to be achieved by compressing the data in the

data set that is identified by the SYSUT1 DD statement,

DSNC810.DSNDBD.DB254SP4.TS254SP4.I0001.A00. When calculating these

estimates, DSN1COMP considers the values passed by the PCTFREE and

FREEPAGE options. The PCTFREE value indicates that 20% of each page is to be

left as free space. The FREEPAGE value indicates that every fifth page is to be left

as free space. This value must be the same value that you specified for the

FREEPAGE option of the SQL statement CREATE TABLESPACE or ALTER

TABLESPACE.

STEP2 specifies that DSN1COMP is to report the estimated space savings that are

to achieved by compressing the data in the data set that is identified by the

SYSUT1 DD statement, DSNC810.DSNDBD.DB254SP4.TS254SP4.I0001.A0001. When

providing the compression estimate, DSN1COMP is to evaluate no more than

20 000 rows, as indicated by the ROWLIMIT option. Specifying the maximum

number of rows to evaluate limits the elapsed time and processor time that

DSN1COMP requires.

Example 3: Estimating space savings that are comparable to what the REORG

utility would achieve. The statement in Figure 132 on page 719 specifies that

DSN1COMP is to report the estimated space savings that are to be achieved by

compressing the data in the data set that is identified by the SYSUT1 DD

statement, DSNCAT.DSNDBD.DBJT0201.TPJTO201.I0001.A254. This input data set

is a table space that was defined with the LARGE option and has 254 partitions, as

indicated by the DSN1COMP options LARGE and NUMPARTS.

The REORG option indicates that DSN1COMP is to provide an estimate of

compression savings that is comparable to the savings that the REORG utility

would achieve, rather than what the LOAD utility would achieve.

//DSN1COMP JOB MSGLEVEL=(1,1),CLASS=A,MSGCLASS=A,REGION=3000K,

// USER=SYSADM,PASSWORD=SYSADM

/*ROUTE PRINT STLXXXX.USERID

//STEP1 EXEC PGM=DSN1COMP,PARM=’PCTFREE(20),FREEPAGE(5)’

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSDUMP DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//SYSUT1 DD DSN=DSNC810.DSNDBD.DB254SP4.TS254SP4.I0001.A001,DISP=SHR

/*

//STEP2 EXEC PGM=DSN1COMP,PARM=’ROWLIMIT(20000)’

//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSDUMP DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//SYSUT1 DD DSN=DSNC810.DSNDBD.DB254SP4.TS254SP4.I0001.A001,DISP=SHR

/*

//

Figure 131. Example DSN1COMP statements with PCTFREE, FREEPAGE, and ROWLIMIT

options

DSN1COMP

718 Utility Guide and Reference

When calculating these estimates, DSN1COMP considers the values passed by the

PCTFREE and FREEPAGE options. The PCTFREE value indicates that 30% of each

page is to be left as free space. The FREEPAGE value indicates that every thirtieth

page is to be left as free space. This value must be the same value that you

specified for the FREEPAGE option of the SQL statement CREATE TABLESPACE

or ALTER TABLESPACE. DSN1COMP is to evaluate no more than 20 000 rows, as

indicated by the ROWLIMIT option.

DSN1COMP output

This section contains examples of output that is generated by the DSN1COMP

utility.

Message DSN1941

If you receive this message, use a data set with more rows as input, or specify a

larger ROWLIMIT.

Sample DSN1COMP report

Figure 133 shows a sample of the output that DSN1COMP generates.

//STEP2 EXEC PGM=DSN1COMP,

// PARM=’LARGE,PCTFREE(30),FREEPAGE(30),NUMPARTS(

// 254),REORG,ROWLIMIT(1000)’

//STEPLIB DD DSN=’USER.TESTLIB’,DISP=SHR

// DD DSN=’DB2A.SDSNLOAD’,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSDUMP DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBD.DBJT0201.TPJT0201.I0001.A254,DISP=SHR

//SYSUT2 DD SYSOUT=A

/*

Figure 132. Example DSN1COMP statement with the LARGE, PCTFREE, FREEPAGE,

NUMPARTS, REORG, and ROWLIMIT options.

DSN1940I DSN1COMP COMPRESSION REPORT

 301 KB WITHOUT COMPRESSION

 224 KB WITH COMPRESSION

 25 PERCENT OF THE BYTES WOULD BE SAVED

 1,975 ROWS SCANNED TO BUILD DICTIONARY

 4,665 ROWS SCANNED TO PROVIDE COMPRESSION ESTIMATE

 4,096 DICTIONARY ENTRIES

 81 BYTES FOR AVERAGE UNCOMPRESSED ROW LENGTH

 52 BYTES FOR AVERAGE COMPRESSED ROW LENGTH

 16 DICTIONARY PAGES REQUIRED

 110 PAGES REQUIRED WITHOUT COMPRESSION

 99 PAGES REQUIRED WITH COMPRESSION

 10 PERCENT OF THE DB2 DATA PAGES WOULD BE SAVED

Figure 133. Sample DSN1COMP report

DSN1COMP

Chapter 39. DSN1COMP 719

720 Utility Guide and Reference

Chapter 40. DSN1COPY

With the DSN1COPY stand-alone utility, you can copy:

v DB2 VSAM data sets to sequential data sets

v DSN1COPY sequential data sets to DB2 VSAM data sets

v DB2 image copy data sets to DB2 VSAM data sets

v DB2 VSAM data sets to other DB2 VSAM data sets

v DSN1COPY sequential data sets to other sequential data sets

Note: A DB2 VSAM data set is a single piece of a nonpartitioned table space or

index, or a single partition of a partitioned table space or index. The input

must be a single z/OS sequential or VSAM data set. Concatenation of input

data sets is not supported.

Using DSN1COPY, you can also print hexadecimal dumps of DB2 data sets and

databases, check the validity of data or index pages (including dictionary pages for

compressed data), translate database object identifiers (OBIDs) to enable moving

data sets between different systems, and reset to 0 the log RBA that is recorded in

each index page or data page.

You cannot run DSN1COPY on concurrent copies.

You can use the DSN1COPY utility on LOB table spaces by specifying the LOB

keyword and omitting the SEGMENT and INLCOPY keywords.

The following topics provide additional information:

v “Syntax and options of the DSN1COPY control statement” on page 722

v “Before running DSN1COPY” on page 727

v “Using DSN1COPY to copy data sets” on page 734

v “Sample DSN1COPY control statements” on page 737

v “DSN1COPY output” on page 739

© Copyright IBM Corp. 1983, 2008 721

Syntax and options of the DSN1COPY control statement

DSN1COPY syntax diagram

�� DSN1COPY

CHECK

32K

PAGESIZE(

4K

)

8K

16K

32K

FULLCOPY

INCRCOPY

SEGMENT

INLCOPY

LARGE

LOB

 �

�
DSSIZE

(

integer

G

)

PIECESIZ(integer

K

)

M

G

NUMPARTS(integer)
 �

�
(1)

EBCDIC

PRINT

(hexadecimal-constant,hexadecimal-constant)

ASCII

UNICODE

 �

�
VALUE(

string

)

hexadecimal-constant

OBIDXLAT

RESET
 ��

Notes:

1 EBCDIC is not necessarily the default if the first page of the input data set is a header page. If

the first page is a header page, DSN1COPY uses the format information in the header page as the

default format.

Option descriptions

To run DSN1COPY, specify one or more of the following parameters on the EXEC

statement. If you specify more than one parameter, separate each parameter by a

comma. You can specify parameters in any order.

CHECK Checks each page from the SYSUT1 data set for validity. The

validity checking operates on one page at a time and does not

include any cross-page checking. If an error is found, a message is

issued describing the type of error, and a dump of the page is sent

to the SYSPRINT data set. If you do not receive any messages, no

errors were found. If more than one error exists in a given page,

the check identifies only the first of the errors. However, the entire

page is dumped. DSN1COPY does not check system pages for

validity.

32K Specifies that the SYSUT1 data set has a 32-KB page size. If you

specify this option and the SYSUT1 data set does not have a 32-KB

page size, DSN1COPY might produce unpredictable results.

 The recommended option for performance is PAGESIZE(32K).

PAGESIZE Specifies the page size of the input data set that is defined by

DSN1COPY

722 Utility Guide and Reference

|||

|
|

SYSUT1. Available page size values are 4K, 8K, 16K, or 32K. If you

specify an incorrect page size, DSN1COPY might produce

unpredictable results.

 If you do not specify the page size, DSN1COPY tries to determine

the page size from the input data set if the first page of the input

data set is a header page. DB2 issues an error message if

DSN1COPY cannot determine the input page size. This might

happen if the header page is not in the input data set, or if the

page size field in the header page contains an invalid page size.

FULLCOPY Specifies that a DB2 full image copy (not a DFSMSdss concurrent

copy) of your data is to be used as input. If this data is partitioned,

specify NUMPARTS to identify the total number of partitions. If

you specify FULLCOPY without NUMPARTS, DSN1COPY

assumes that your input file is not partitioned.

 Specify FULLCOPY when using a full image copy as input.

Omitting the parameter can cause error messages or unpredictable

results.

The FULLCOPY parameter requires SYSUT2 (output data set) to be

either a DB2 VSAM data set or a DUMMY data set.

INCRCOPY Specifies that an incremental image copy of the data is to be used

as input. DSN1COPY with the INCRCOPY parameter updates

existing data sets; do not redefine the existing data sets.

INCRCOPY requires that the output data set (SYSUT2) be a DB2

VSAM data set.

 Before you apply an incremental image copy to your data set, you

must first apply a full image copy to the data set by using the

FULLCOPY parameter. Make sure that you apply the full image

copy in a separate execution step because you receive an error

message if you specify both the FULLCOPY and the INCRCOPY

parameters in the same step. Then, apply each incremental image

copy in a separate step, starting with the oldest incremental image

copy.

Specifying neither FULLCOPY nor INCRCOPY implies that the

input is not image copy data sets. Therefore, only a single output

data set is used.

SEGMENT Specifies that you want to use a segmented table space as input to

DSN1COPY. Pages with all zeros in the table space are copied, but

no error messages are issued. You cannot specify FULLCOPY or

INCRCOPY if you specify SEGMENT.

 If you are using DSN1COPY with the OBIDXLAT to copy a DB2

data set to another DB2 data set, the source and target table spaces

must have the same SEGSIZE attribute.

You cannot specify the SEGMENT option with the LOB parameter.

INLCOPY Specifies that the input data is an inline copy data set.

 You cannot specify the INLCOPY option with the LOB parameter.

DSSIZE(integer G)

Specifies the data set size, in gigabytes, for the input data set. If

you omit the DSSIZE keyword or the LARGE keyword,

DSN1COPY assumes the appropriate default input data set size

DSN1COPY

Chapter 40. DSN1COPY 723

that is listed in Table 140.

 Table 140. Default input data set sizes

Object Default input data set size (in GB)

Non-LOB linear table space or index 2

LOB 4

Partitioned table space or index with

NUMPARTS = 1-16

4

Partitioned table space or index with

NUMPARTS = 17-32

2

Partitioned table space or index with

NUMPARTS = 33-64

1

Partitioned table space or index with

NUMPARTS >64

4

integer must match the DSSIZE value that was specified when the

table space was defined.

If you omit DSSIZE and the data set is not one of the default sizes,

the results from DSN1COPY are unpredictable.

If you specify DSSIZE, you cannot specify LARGE.

LARGE Specifies that the input data set is a table space that was defined

with the LARGE option, or an index on such a table space. If you

specify the LARGE keyword, DB2 assumes that the data set has a

4-GB boundary. The recommended method of specifying a table

space that was defined with the LARGE option is DSSIZE(4G).

 If you omit the LARGE or DSSIZE(4G) option when it is needed,

or if you specify LARGE for a table space that was not defined

with the LARGE option, the results from DSN1COPY are

unpredictable.

If you specify LARGE, you cannot specify LOB or DSSIZE.

LOB Specifies that SYSUT1 data set is a LOB table space. Empty pages

in the table space are copied, but no error messages are issued. You

cannot specify the SEGMENT and INLCOPY options with the LOB

parameter.

 DSN1COPY attempts to determine if the input data set is a LOB

data set. If it can be clearly verified that the LOB option is

specified, but the data set is not a LOB data set, or that the LOB

option is omitted for a data set that is a LOB data set, DSN1COPY

issues an error message and terminates. Otherwise, if the LOB

option isn't specified or omitted correctly the results of DSN1COPY

are unpredictable.

If you specify LOB, you cannot specify LARGE.

NUMPARTS(integer)

Specifies the total number of partitions that are associated with the

data set that you are using as input or whose page range you are

printing. When you use DSN1COPY to copy a data-partitioned

secondary index, specify the number of partitions in the index.

 integer can range from 1 to 4096.

DSN1COPY

724 Utility Guide and Reference

#
#
#
#
#
#
#

|
|

|

DSN1COPY uses this value to calculate the size of its output data

sets and to help locate the first page in a range that is to be

printed. If you omit NUMPARTS or specify it as 0, DSN1COPY

will get the NUMPARTS value from the header page if possible,

otherwise DSN1COPY will assume that your input is not

partitioned. If you specify a number greater than 64, DSN1COPY

assumes that the data set is for a partitioned table space that was

defined with the LARGE option, even if the LARGE keyword is

not specified for DSN1COPY.

If you specify the number of partitions incorrectly, DSN1COPY can

copy the data to the wrong data sets, return an error message

indicating that an unexpected page number was encountered, or

fail to allocate the data sets correctly. In the last case, a VSAM PUT

error might be detected, resulting in a request parameter list (RPL)

error code of 24.

PRINT(hexadecimal-constant,hexadecimal-constant)

Causes the SYSUT1 data set to be printed in hexadecimal format

on the SYSPRINT data set. You can specify the PRINT parameter

with or without the page range specifications (hexadecimal-
constant,hexadecimal-constant). If you do not specify a range, all

pages of the SYSUT1 are printed. If you want to limit the range of

pages that are printed, indicate the beginning and ending page. If

you want to print a single page, supply only that page number. In

either case, your range specifications must be from one to eight

hexadecimal characters in length.

 The following example shows how you code the PRINT parameter

if you want to begin printing at page X'2F0' and stop at page

X'35C':

PRINT(2F0,35C)

Because the CHECK and RESET options and the copy function run

independently of the PRINT range, these options apply to the

entire input file, regardless of whether a range of pages is being

printed.

You can indicate the format of the row data in the PRINT output

by specifying EBCDIC, ASCII, or UNICODE. For an example of the

output that is affected by these options, see the DSN1PRNT

FORMAT output in Figure 142 on page 766.

EBCDIC

Indicates that the row data in the PRINT output is to be

displayed in EBCDIC. The default is EBCDIC if the first page

of the input data set is not a header page.

 If the first page is a header page, DSN1COPY uses the format

information in the header page as the default format. However,

if you specify EBCDIC, ASCII, or UNICODE, that format

overrides the format information in the header page. The

unformatted header page dump is always displayed in

EBCDIC, because most of the fields are in EBCDIC.

ASCII

Indicates that the row data in the PRINT output is to be

displayed in ASCII. Specify ASCII when printing table spaces

that contain ASCII data.

DSN1COPY

Chapter 40. DSN1COPY 725

#
#
#
#
#
#
#
#
#

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

UNICODE

Indicates that the row data in the PRINT output is to be

displayed in Unicode. Specify UNICODE when printing table

spaces that contain Unicode data.

PIECESIZ(integer)

Specifies the maximum piece size (data set size) for nonpartitioned

indexes. The value that you specify must match the value that was

specified when the nonpartitioning index was created or altered.

 The defaults for PIECESIZ are 2G (2 GB) for indexes that are

backed by non-large table spaces and 4G (4 GB) for indexes that

are backed by table spaces that were defined with the LARGE

option. This option is required if the piece size is not one of the

default values. If PIECESIZ is omitted and the index is backed by a

table space that was defined with the LARGE option, the LARGE

option is required for DSN1COPY.

The subsequent keyword K, M, or G indicates the unit of the value

that is specified in integer.

K Indicates that the integer value is to be multiplied by 1 KB

to specify the maximum piece size in bytes. integer must be

either 256 or 512.

M Indicates that the integer value is to be multiplied by 1 MB

to specify the maximum piece size in bytes. integer must be

a power of two, between 1 and 512.

G Indicates that the integer value is to be multiplied by 1 GB

to specify the maximum piece size in bytes. integer must be

1, 2, or 4.

Valid values for piece size are:

v 1 MB or 1 GB

v 2 MB or 2 GB

v 4 MB or 4 GB

v 8 MB

v 16 MB

v 32 MB

v 64 MB

v 128 MB

v 256 KB or 256 MB

v 512 KB or 512 MB

VALUE Causes each page of the SYSUT1 input data set to be scanned for

the character string that you specify in parentheses following the

VALUE parameter. Each page that contains that character string is

printed in the SYSPRINT data set. You can specify the VALUE

parameter in conjunction with any of the other DSN1COPY

parameters.

 string can consist of 1 to 20 alphanumeric characters.

hexadecimal-constant can consist of 2 to 40 hexadecimal characters.

Specify two apostrophe characters before and after the hexadecimal

character string.

If you want to search your input file for the string '12345', your

JCL should look similar to the following JCL:

//STEP1 EXEC PGM=DSN1COPY,PARM=’VALUE(12345)’

DSN1COPY

726 Utility Guide and Reference

|
|
|
|

|
|

If you want to search for the equivalent hexadecimal character

string, your JCL should look similar to the following JCL:

//STEP1 EXEC PGM=DSN1COPY,PARM=’VALUE(’’F1F2F3F4F5’’)’

OBIDXLAT Specifies that OBID translation must be done before the DB2 data

set is copied. This parameter requires additional input from the

SYSXLAT file by using the DD statements. DSN1COPY can

translate only up to 1000 record OBIDs. If you specify OBIDXLAT,

CHECK processing is performed, regardless of whether you specify

the CHECK option.

RESET Causes the log RBAs in each index page or data page and the

high-formatted page number in the header page to be reset to 0. If

you specify this option, CHECK processing is performed,

regardless of whether you specify the CHECK option.

 Use RESET when the output file is used to build a DB2 table space

that is to be processed on a DB2 subsystem with a different

recovery log than the source subsystem. Failure to specify RESET

in such a case can result in an abend during subsequent update

activity. The abend reason code of 00C200C1 indicates that the

specified RBA value is outside the valid range of the recovery log.

A condition code of 0 indicates successful completion.

If you do not specify RESET when copying a table space from one

DB2 system to another, a down-level ID check might result in

abend reason code 00C2010D when the table space is accessed. For

more information about down-level detection, see Part 4 (Volume

1) of DB2 Administration Guide.

Before running DSN1COPY

This section contains information that you should use before running DSN1COPY.

 Attention: Do not use DSN1COPY in place of COPY for both backup and

recovery. Improper use of DSN1COPY can result in unrecoverable damage and loss

of data.

Environment

Execute DSN1COPY as a z/OS job when the DB2 subsystem is either active or not

active.

If you execute DSN1COPY when DB2 is active, use the following procedure:

1. Start the table space as read-only by using START DATABASE.

2. Run the QUIESCE utility with the WRITE (YES) option to externalize all data

pages and index pages.

3. Run DSN1COPY with DISP=SHR on the data definition (DD) statement.

4. Start the table space as read-write by using START DATABASE to return to

normal operations.

Authorization required

DSN1COPY does not require authorization. However, if any of the data sets is

RACF-protected, the authorization ID of the job must have RACF authority.

DSN1COPY

Chapter 40. DSN1COPY 727

Control statement

Create the utility control statement for the DSN1COPY job. See “Syntax and

options of the DSN1COPY control statement” on page 722 for DSN1COPY syntax

and option descriptions.

Required data sets:

DSN1COPY uses the following data sets:

Input data set Input to DSN1COPY. The DD name is SYSUT1.

Output data set Output from DSN1COPY. The DD name is

SYSUT2. Optional.

Message data set Data set for output messages. The DD name is

SYSPRINT.

OBIDXLAT data set Data set that defines the OBID translation values.

The DD name is SYSXLAT.

DSN1COPY uses the following DD statements:

SYSPRINT Defines the data set that contains output messages from the

DSN1COPY program and all hexadecimal dump output.

SYSUT1 Defines the input data set. This data set can be a sequential data

set that is created by the DSN1COPY or COPY utilities, or a VSAM

data set.

 Specify the data set’s disposition as DISP=OLD to ensure that it is

not in use by DB2. Specify the data set’s disposition as DISP=SHR

only when the DB2 STOP DATABASE command does not work.

The requested operation takes place only for the specified data set.

If the input data set is a partitioned table space or index, ensure

that you specify the NUMPARTS parameter and the correct data

set. For example, to print a page range in the second partition of a

four-partition table space, specify NUMPARTS(4) and the data set

name of the second data set. This second data set is in the group of

VSAM data sets, and the VSAM data set name is

DSNCAT.DSNDBD.TESTDB.TS01.I0001.A002. The last qualifier

(A002) represents the partition number 2. See “Sample DSN1COPY

control statements” on page 737 for examples of VSAM data set

names.

If running the online REORG utility with the FASTSWITCH option,

verify the data set name before running the DSN1COPY utility. The

fifth-level qualifier in the data set name alternates between I0001

and J0001 when using FASTSWITCH. Specify the correct fifth-level

qualifier in the data set name to successfully execute the

DSN1COPY utility. To determine the correct fifth-level qualifier,

query the IPREFIX column of SYSIBM.SYSTABLEPART for each

data partition or the IPREFIX column of SYSIBM.SYSINDEXPART

for each index partition. If the object is not partitioned, use zero as

the value for the PARTITION column in your query.

SYSUT2 Defines the output data set. This data set can be a sequential data

set, a VSAM data set, or a DUMMY data set.

 DSN1COPY assumes that the output data sets are empty (that is,

the program adds the blocks) except when you specify INCRCOPY.

Before you run DSN1COPY, define your VSAM output data sets as

DSN1COPY

728 Utility Guide and Reference

|
|
|
|
|

REUSE. If you have not defined the data sets, you must redefine

all VSAM output data sets you are restoring by using Access

Method Services. Ensure that these data sets are empty before you

run DSN1COPY.

You might want to specify a DUMMY SYSUT2 DD statement if

you are dumping or checking pages.

To enable DB2 to obtain necessary information from the integrated

catalog facility catalog when using VSAM data sets, do not code

the unit-serial parameter and volume-serial parameter.

If running the online REORG utility with the FASTSWITCH option,

verify the data set name before running the DSN1COPY utility. The

fifth-level qualifier in the data set name alternates between I0001

and J0001 when using FASTSWITCH. Specify the correct fifth-level

qualifier in the data set name to successfully execute the

DSN1COPY utility.

SYSXLAT Defines for translation the DBIDs, OBIDs, presentation space ID

(PSID), or ISOBIDs.

 If you have dropped a table without a subsequent REORG of the

table space, you must reorganize the source table space before

running DSN1COPY with the OBIDXLAT option. This action

removes any previously dropped records from the table space.

A non-numeric character must separate each record in the

SYSXLAT file, and each record must contain a pair of decimal

integers. The first integer of each record pertains to the source, and

the second integer pertains to the target. The first record in the

SYSXLAT file contains the source DBIDs and the target DBIDs; the

values can range from -32767 to 65535. The second record contains

the source and target PSIDs or ISOBIDs; the values can range from

0 to 32767. All subsequent records in the SYSXLAT data set are for

table OBIDs. For an index, the SYSXLAT data set must contain the

index fan set OBID, in addition to the DBID and ISOBID. Sample

data in a SYSXLAT file follows (with an indication of how each

record translates shown in parentheses):

260,280 (source DBID 260 translates to target DBID 280)

2,10 (source PSID 2 translates to target PSID 10)

3,55 (source table OBID 3 translates to target table OBID 55)

6,56 (source table OBID 6 translates to target table OBID 57)

7,57 (source table OBID 7 translates to target table OBID 57

To obtain the names, DBIDs, PSIDs, ISOBIDs, and OBIDs, run the

DSNTEP2 sample application on both the source and target

systems. The following SQL statements yield the preceding

information.

The example for indexes yields output that is similar to the

preceding example, but with an additional column of data.

Product-sensitive Programming Interface

 For table spaces use the following statements:

SELECT DBID, PSID FROM SYSIBM.SYSTABLESPACE

 WHERE NAME=’tablespace_name’

 AND DBNAME=’database_name’;

SELECT NAME, OBID FROM SYSIBM.SYSTABLES

 WHERE TSNAME=’tablespace_name’

 AND CREATOR=’creator_name’;

DSN1COPY

Chapter 40. DSN1COPY 729

|
|
|
|
|

For index spaces use the following statement:

SELECT DBID, ISOBID, OBID FROM SYSIBM.SYSINDEXES

 WHERE NAME=’index_name’

 AND CREATOR=’creator_name’;

End of Product-sensitive Programming Interface

Several examples of using DSN1COPY follow:

v Create a backup copy of a DB2 data set:

– SYSUT1: DB2-VSAM

– SYSUT2: Sequential data set
v Restore a backup copy of a DB2 data set:

– SYSUT1: DSN1COPY sequential data set

– SYSUT2: DB2-VSAM
v Move a DB2 data set to another DB2 data set:

– SYSUT1: DB2-VSAM

– SYSUT2: DB2-VSAM

– Parameters: OBIDXLAT, RESET
v Perform validity checking on a DB2 data set:

– SYSUT1: DB2-VSAM

– SYSUT2: DUMMY

– Parameter: CHECK
v Perform validity checking on and print a DB2 data set:

– SYSUT1: DB2-VSAM

– SYSUT2: DUMMY

– Parameters: CHECK, PRINT
v Restore a table space from a nonpartitioned image copy data set or page set:

– SYSUT1: DB2 full image copy

– SYSUT2: DB2-VSAM

– Parameter: FULLCOPY
v Restore a table space from a partitioned image copy data or page set:

– SYSUT1: DB2 full image copy

– SYSUT2: DB2-VSAM

– Parameters: FULLCOPY, NUMPARTS(nn)
v Perform RBA RESET on a DB2 data set:

– SYSUT1: DB2-VSAM or DSN1COPY sequential data set

– SYSUT2: DB2-VSAM

– Parameter: RESET

Defining the input data set

The SYSUT1 data set can be any of the following types:

v A DB2 table space data set

v A DB2 index space data set

v A full image copy

v An incremental image copy

v A sequential data set that was previously created by DSN1COPY

Define SYSUT1 with DISP=OLD to ensure that DSN1COPY uses it exclusively. If

SYSUT1 is a table space or index space, use the following procedure before using

DSN1COPY:

1. Issue the following command to determine if the object is stopped:

-DISPLAY DATABASE (database_name) SPACENAM(space_name) RESTRICT

DSN1COPY

730 Utility Guide and Reference

2. If DB2 has not stopped the object, issue the following command to stop the

object:

-STOP DATABASE (database_name) SPACENAME(space_name)

DB2 allows input of only one DSN1COPY data set. DB2 does not permit the input

of concatenated data sets. For a table space that consists of multiple data sets,

ensure that you specify the correct data set. For example, if you specify the

CHECK option to validate pages of a partitioned table space’s second partition,

code the second data set of the table space for SYSUT1.

Defining the output data set

The SYSUT2 data set can be any of the following types:

v A sequential data set

v A DB2 table space data set

v A DB2 index space data set

v A DUMMY data set

Specify a DUMMY SYSUT2 DD statement if you are using DSN1COPY to check or

dump a page. The table spaces and index spaces must either be empty or defined

with VSAM REUSE. STOGROUP-defined table spaces and index spaces have the

REUSE attribute, except when you are applying the INCRCOPY option

Naming the output data set

For your output data set to be useful, ensure that it has the same name as the data

set that you are resetting.

v Method 1:

1. Use DSN1COPY to copy your existing data set to a sequential data set.

Specify this target data set as SYSUT1.

2. If you defined your existing data set without the REUSE parameter, delete

and redefine the data set. Specify your existing data set as SYSUT2.
v Method 2:

1. Use your existing DB2 data set as the SYSUT1 specification, creating a new

VSAM data set for SYSUT2.

2. After completion of the reset operation, delete the data set that you specified

as SYSUT1, and rename the SYSUT2 data set. Give SYSUT2 the name of the

data set that you just deleted.

If you use full or incremental copies as input, specify the SYSUT2 data sets

according to the following guidelines:

v If SYSUT1 is an image copy of a single partition, SYSUT2 must list the data set

name for that partition of the table space. Specify the NUMPARTS parameter to

identify the number of partitions in the entire table space.

v If SYSUT1 is an image copy of an entire partitioned table space, SYSUT2 must

list the name of the table space’s first data set. Important: All data sets in the

partitioned table space must use the same fifth-level qualifier, I0001 or J0001,

before DSN1COPY can run successfully on a partitioned table space. DSN1COPY

allocates all of the target data sets. However, you must previously define the

target data sets by using IDCAMS. Specify the NUMPARTS parameter to

identify the number of partitions in the whole table space.

v If SYSUT1 is an image copy of a nonpartitioned data set, SYSUT2 should be

the name of the actual output data set. Do not specify the NUMPARTS

parameter because this parameter is only for partitioned table spaces.

DSN1COPY

Chapter 40. DSN1COPY 731

v If SYSUT1 is an image copy of all data sets in a linear table space with

multiple data sets, SYSUT2 should be the name of its first data set. DSN1COPY

allocates all target data sets. However, you must previously define the target

data sets by using IDCAMS.

Adding additional volumes for SYSUT2

When you create a table space or index space by using STOGROUP, the ICF

catalog entry has only one volume in the volume list. If the SYSUT2 data set that

DSN1COPY restores requires more than one volume, use the IDCAMS command,

ALTER ADDVOLUMES, to add additional volume IDs to the integrated catalog

entry. The extension to new volumes uses the primary size on each new volume.

This is the normal VSAM extension process. If you want the data set to use the

secondary size on the candidate volumes, follow these steps:

1. Run DSN1COPY.

2. Run REORG, or make a full image copy and recover the table space.

Performing these steps resets the data set and causes normal extensions through

DB2.

Restrictions

This section contains restrictions that you should know about when running

DSN1COPY.

DSN1COPY does not alter data set structure. For example, DSN1COPY does not

copy a partitioned or segmented table space into a simple table space. The output

data set is a page-for-page copy of the input data set. If the intended use of

DSN1COPY is to move or restore data, ensure that definitions for the source and

target table spaces, tables, and indexes are identical. Otherwise, unpredictable

results can occur.

DSN1COPY cannot copy DB2 recovery log data sets. The format of a DB2 log page

is different from that of a table or index page. If you try to use DSN1COPY to

recover log data sets, DSN1COPY will abnormally terminate.

DSN1COPY will issue an error and terminate if it can be clearly verified that the

LOB option is specified, but the data set is not a LOB data set, or that the LOB

option is omitted for a data set that is a LOB data set. To avoid problems, always

specify the LOB option if the input data set SYSUT1 is a LOB table space, and

make sure that the LOB option is not specified for non LOB table spaces.

DSN1COPY cannot copy a source object of 4 GB or greater in size when it is full

unless the target object is EA-enabled. For example, the source is full when it is not

the last piece of a multi-piece non-partitioned object with a DSSIZE of 4 GB or

greater. To avoid VSAM errors and limit each piece to 2 GB so that the target

object has more pieces than the original source:

v Define the target data set as EA-enabled and DSN1COPY can be used, one piece

at a time, to copy the data from the source that is not EA-enabled to the target.

v If it is not possible to define the target data set as EA-enabled:

1. Take a full image copy of the entire source object by running the COPY

utility and specifying DSNUM ALL.

2. Allocate the target object by specifying DSSIZE 2G for the DSN1COPY utility.

3. Define the partition number data sets (2 GB each) with the IDCAMS

command. Define enough pieces to hold the entire source.

DSN1COPY

732 Utility Guide and Reference

#
#
#
#
#

#
#
#
#
#

#
#

#

#
#

#

#
#

4. Run the DSN1COPY utility with the image copy as the source (SYSUT1), the

target object as SYSUT2, and specify DSSIZE 2G.

Recommendations

This section contains recommendations that you should know about when running

the DSN1COPY utility.

Printing with DSN1PRNT instead of DSN1COPY

If you require only a printed hexadecimal dump of a data set, use DSN1PRNT

rather than DSN1COPY. For more information, see “Printing with DSN1PRNT

instead of DSN1COPY” on page 769.

Determining page size and DSSIZE

Before using DSN1COPY, ensure that you know the page size and data set size

(DSSIZE) for the page set. Use the following query on the DB2 catalog to get the

information you need, in this example for table 'DEPT':

Using the OBIDXLAT option with DSN1COPY

When you use DSN1COPY with the OBIDXLAT option to move objects from one

system to another system, ensure that the version information on the target system

matches the version information on the source version. For instructions on how to

move the objects while ensuring that the version information matches, see

“Updating version information when moving objects to another subsystem” on

page 512.

For more information about versions and how DB2 uses them, see Part 2 of DB2

Administration Guide.

SELECT T.CREATOR,T.NAME,S.NAME AS TABLESPACE,S.PARTITIONS,S.PGSIZE,

 CASE S.DSSIZE

 WHEN 0 THEN

 CASE WHEN S.TYPE = ’O’ THEN 4194304

 ELSE

 CASE WHEN S.PARTITIONS > 254 THEN

 CASE WHEN S.PGSIZE = 4 THEN 4194304

 WHEN S.PGSIZE = 8 THEN 8388608

 WHEN S.PGSIZE = 16 THEN 16777216

 WHEN S.PGSIZE = 32 THEN 33554432

 ELSE NULL

 END

 WHEN S.PARTITIONS > 64 THEN 4194304

 WHEN S.PARTITIONS > 32 THEN 1048576

 WHEN S.PARTITIONS > 16 THEN 2097152

 WHEN S.PARTITIONS > 0 THEN 4194304

 ELSE 2097152

 END

 END

 ELSE S.DSSIZE

 END

 AS DSSIZE

 FROM SYSIBM.SYSTABLES T,

 SYSIBM.SYSTABLESPACE S

 WHERE

 T.NAME = ’DEPT’ AND

 T.TSNAME = S.NAME;

Figure 134. Example catalog query that returns the page set size and data set size for the

page set.

DSN1COPY

Chapter 40. DSN1COPY 733

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#
#

|
|
|
|

|
|
|
|
|
|
|

|
|

Using DSN1COPY to copy data sets

This section describes the following tasks that are associated with running the

DSN1COPY utility:

 “The effect of altering a table before running DSN1COPY”

 “Checking for inconsistent data”

 “The effects of not specifying the OBIDXLAT option”

 “Requirements for using an image copy as input to DSN1COPY”

 “Resetting page log RBAs” on page 735

 “Copying from an image copy” on page 735

 “Restoring indexes with DSN1COPY” on page 735

 “Restoring table spaces with DSN1COPY” on page 736

 “Printing with DSN1COPY” on page 736

 “Copying tables from one subsystem to another” on page 736

The effect of altering a table before running DSN1COPY

When you use ALTER TABLE ADD COLUMN, the table does not change; only the

description of the table changes. You must run REORG on the table space (so that

the data matches its description) before you can run DSN1COPY on the table

space.

Checking for inconsistent data

When critical data is involved, use the CHECK option to prevent the undetected

copying of inconsistent data to the output data set. The CHECK option of

DSN1COPY performs validity checking on one page at a time.

You must run a CHECK utility job on the table space that is involved to ensure

that no inconsistencies exist between data and indexes on that data:

v Before using DSN1COPY to save critical data that is indexed

v After using DSN1COPY to restore critical data that is indexed

The CHECK utility performs validity checking between pages.

The effects of not specifying the OBIDXLAT option

If you use DSN1COPY to load data into a table space or index without specifying

the OBIDXLAT option, be careful not to invalidate embedded DB2 internal

identifiers. Those OBIDs can become invalid in the following circumstances:

v When you drop and re-create tables after the input data set to DSN1COPY was

created.

v When a difference exists among the following attributes between the target

subsystem and the source subsystem:

– Table space attributes of BUFFERPOOL or NUMPARTS

– Table attributes other than table name, table space name, and database name

– The order of the table spaces, indexes, and tables that the user defined or

dropped in the source and target databases

To protect against invalidating the OBIDs, specify the OBIDXLAT parameter for

DSN1COPY. The OBIDXLAT parameter translates OBID, DBID, or PSID before

DSN1COPY copies the data.

Requirements for using an image copy as input to DSN1COPY

If you want to use image copies as input to DSN1COPY, you must produce those

image copies by using the COPY utility with SHRLEVEL REFERENCE. Using the

DSN1COPY

734 Utility Guide and Reference

FULLCOPY parameter ensures that the data that is contained in your image copies

is consistent. DSN1COPY accepts an index image copy as input when you specify

the FULLCOPY option.

Resetting page log RBAs

Use the RESET option to reset the log RBAs that are recorded in a table space or

index space and the high-formatted page number in the header page to 0.

DSN1COPY performs CHECK processing, regardless of whether you explicitly

requested CHECK.

Do not specify the RESET parameter for page sets that are in group buffer pool

RECOVER-pending (GRECP) status.

Copying from an image copy

When you use DSN1COPY to copy from an image copy of a table space’s data sets

to the table space’s data sets, specify the following SYSUT2 data sets:

v If SYSUT1 is an image copy of a single partition, ensure that the first data set

of the table space is named SYSUT2. DSN1COPY determines the correct target

data set. Code the NUMPARTS(nn) parameter, where nn is the number of

partitions in the entire table space. However, if the partitioned table space is

defined with more than one VCAT name (for example, a unique VCAT for

different partitions), use SYSUT2 as the name of the data set for that partition.

v If SYSUT1 is an image copy of an entire partitioned table space, ensure that

the first data set of the table space is named SYSUT2. In this case, DSN1COPY

allocates all of the target data sets. However, you must have previously defined

the target data sets by using Access Method Services. Code the NUMPARTS

parameter as described in the first bullet when the table space is partitioned.

When multiple VCAT names are used for different partitions of a partitioned

table space, DSN1COPY cannot restore the entire table space by using as input a

single full image copy of the table space. In this case, when you use DSN1COPY,

you must restore individual copies of each partition by using the name of the

data sets for that partition. Code the NUMPARTS(nn) parameter, where nn is the

number of partitions in the entire table space.

v If SYSUT1 is an image copy of a single data set of a multiple data set linear

table space, ensure that the actual (not the first) output data set is named

SYSUT2. Do not specify NUMPARTS because this parameter is only for

partitioned table spaces.

v If SYSUT1 is an image copy of an entire multiple data set linear table space,

ensure that the first data set of the table space is named SYSUT2. DSN1COPY

allocates all target data sets.

Restoring indexes with DSN1COPY

When a table space is restored using either the TOCOPY option of RECOVER or

the DSN1COPY utility, restore the indexes in one of the following three ways:

v Use the RECOVER utility, if you have a full image copy available, and the index

was defined with the COPY YES option.

v Use DSN1COPY on the indexes, if a copy is available. If you specified the

OBIDXLAT option for the data, you must also specify the OBIDXLAT option for

the indexes. Also, the indexes must all have been copied at the same time as the

data; otherwise, inconsistencies might exist.

v If you do not have an image copy of the index, use the REBUILD INDEX utility,

which reconstructs the indexes from the data. For more information about the

REBUILD INDEX utility, refer to Chapter 22, “REBUILD INDEX,” on page 331.

DSN1COPY

Chapter 40. DSN1COPY 735

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

Restoring table spaces with DSN1COPY

You cannot use RECOVER TOCOPY for an image-copy data set that is not

referenced by SYSIBM.SYSCOPY for that table space or data set. An attempt to do

so results in the message "TOCOPY DATASET NOT FOUND".

The MODIFY utility might have removed the row in SYSIBM.SYSCOPY. If the row

has been removed, and if the image copy is a full image copy with SHRLEVEL

REFERENCE, use DSN1COPY to restore the table space or data set.

DSN1COPY can restore the object to an incremental image copy, but it must first

restore the previous full image copy and any intermediate incremental image

copies. These actions ensure data integrity. You are responsible for providing the

correct sequence of image copies. DB2 cannot help ensure the proper sequence.

If you use DSN1COPY for point-in-time recovery, the table space is not recoverable

with the RECOVER utility. Because DSN1COPY executed outside of DB2’s control,

DB2 is not aware that you recovered to a point in time. Use DSN1COPY to recover

the affected table space after point-in-time recovery. Then perform the following

steps:

1. Remove old image copies by using MODIFY AGE.

2. Create one or more full image copies by using SHRLEVEL REFERENCE.

Printing with DSN1COPY

If you want to print one or more pages without invoking the utility’s copy

function, use DSN1PRNT to avoid unnecessary reading of the input file.

When you use DSN1COPY for printing, you must specify the PRINT parameter.

The requested operation takes place only for the specified data set. If the input

data set belongs to a linear table space or index space that is larger than 2 GB,

specify the correct data set. Alternatively, if it is a partitioned table space or

partitioned index, specify the correct data set. For example, DSN1COPY prints a

page range in the second partition of a four-partition table space. DSN1COPY does

this by specifying NUMPARTS(4) and the data set name of the second data set in

the VSAM group (DSN=...A002).

To print a full image copy data set (rather than recovering a table space), specify a

DUMMY SYSUT2 DD statement, and specify the FULLCOPY parameter.

Copying tables from one subsystem to another

When you copy tables from one subsystem to another, you must ensure that the

version information on the target subsystem matches the version information on

the source subsystem. For instructions on how to ensure that this information

matches, see “Updating version information when moving objects to another

subsystem” on page 512.

Be careful when you copy a table that contains an identity column from one DB2

subsystem to another:

1. Stop the table space on the source subsystem.

2. Issue a SELECT statement to query the SYSIBM.SYSSEQUENCES entry that

corresponds to the identity column for this table on the source subsystem. Add

the INCREMENT value to the MAXASSIGNEDVAL to determine the next value

(nv) for the identity column.

DSN1COPY

736 Utility Guide and Reference

3. Create the table on the target subsystem. On the identity column specification,

specify nv for the START WITH value, and ensure that all of the other identity

column attributes are the same as for the source table.

4. Stop the table space on the target subsystem.

5. Copy the data by using DSN1COPY.

6. Start the table space on the source subsystem for read-write access.

7. Start the table space on the target subsystem for read-write access.

To copy a compressed table space from one subsystem to another with the

following criteria, you need to REORG the table space without the

KEEPDICTIONARY option:

v You use the Instrumentation Facility Interface for IFCID 0306

v The subsystems are not data sharing subsystems

v The log range on the target is not the same or greater than the source subsystem

Sample DSN1COPY control statements

If you run online REORG with the FASTSWITCH option, the fifth-level qualifier in

the data set name can be either I0001 or J0001. These examples use I0001.

Example 1: Checking input data set before copying. The following statement

specifies that the DSN1COPY utility is to copy the data set that is identified by the

SYSUT1 DD statement to the data set that is identified by the SYSUT2 DD

statement. Before DSN1COPY copies this data, the utility is to check the validity of

the input data set.

//RUNCOPY EXEC PGM=DSN1COPY,PARM=’CHECK’

//* COPY VSAM TO SEQUENTIAL AND CHECK PAGES

//STEPLIB DD DSN=PDS CONTAINING DSN1COPY

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBC.DSNDB01.SYSUTILX.I0001.A001,DISP=OLD

//SYSUT2 DD DSN=TAPE.DS,UNIT=TAPE,DISP=(NEW,KEEP),VOL=SER=UTLBAK

Example 2: Translating the DB2 internal identifiers. The statement in Figure 135 on

page 738 specifies that DSN1COPY is to copy the data set that is identified by the

SYSUT1 DD statement to the data set that is identified by the SYSUT2 DD

statement. The OBIDXLAT option specifies that DSN1COPY is to translate the

OBIDs before the data set is copied. The OBIDs are provided as input on the

SYSXLAT DD statement. Because the OBIDXLAT option is specified, DSN1COPY

also checks the validity of the input data set, even though the CHECK option is

not specified.

DSN1COPY

Chapter 40. DSN1COPY 737

Example 3: Printing a single page of a partitioned table space. The following

statement specifies that DSN1COPY is to print page 2002A1 of the table space in

the data set that is identified by the SYSUT1 DD statement. This table space has

eight partitions, as indicated by the NUMPARTS option.

//PRINT EXEC PGM=DSN1COPY,PARM=’PRINT(2002A1),NUMPARTS(8)’

//* PRINT A PAGE IN THE THIRD PARTITION OF A TABLE SPACE CONSISTING

//* OF 8 PARTITIONS.

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSUT2 DD DUMMY

//SYSUT1 DD DSN=DSNCAT.DSNDBD.MMRDB.PARTEMP1.I0001.A003,DISP=OLD

Example 4: Printing 16 pages of a nonpartitioning index. The following statement

specifies that DSN1COPY is to print 16 pages of a nonpartitioning index in the

data set that is identified by the SYSUT1 DD statement. The pages range from

page F0000 to page F000F, as indicated by the PRINT option. The maximum data

set size is 64 MB, as indicated by the PIECESIZ option.

//PRINT2 EXEC PGM=DSN1COPY,PARM=(PRINT(F0000,F000F),PIECESIZ(64M))

//* PRINT THE FIRST 16 PAGES IN THE 61ST PIECE OF AN NPI WITH PIECE SIZE OF 64M

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSUT2 DD DUMMY

//SYSUT1 DD DISP=OLD,DSN=DSNCAT.DSTDBD.MMRDB.NPI1.I0001.A061

Example 5: Copying individual partitions of a partitioned table space. In the

example in Figure 136 on page 739, the two job steps specify that DSN1COPY is to

copy partitions 1501 and partition 1502 from image copy data sets into a

partitioned table space. In the two SYSUT2 DD statements, the fifth-level qualifier

in the data set names can differ, because each job step lists an individual partition.

The FULLCOPY option is used in both steps to indicate that the input data set is a

full image copy. The NUMPARTS option indicates that the input data set has 1600

partitions. The RESET option resets to 0 the high-formatted page number in the

header page. Because this option is specified, DSN1COPY checks the validity of the

input data, even though the CHECK option is not specified.

//EXECUTE EXEC PGM=DSN1COPY,PARM=’OBIDXLAT’

//STEPLIB DD DSN=PDS CONTAINING DSN1COPY

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=DSNC810.DSNDBC.DSN8D81P.DSN8S81C.I0001.A001,

// DISP=OLD

//SYSUT2 DD DSN=DSNC618.DSNDBC.DSN8D81P.DSN8S81C.I0001.A001,

// DISP=OLD

//SYSXLAT DD *

260,280

2,10

3,55

6,56

7,57

/*

Figure 135. Example DSN1COPY statement with the OBIDXLAT option.

DSN1COPY

738 Utility Guide and Reference

Example 6: Copying all partitions of a partitioned table space. The following

statement specifies that DSN1COPY is to copy data into all partitions of a

partitioned table space by using a full image copy of the table space as input. The

input image copy has 16 partitions, as indicated by the NUMPARTS option. You

must ensure that the fifth-level qualifier in the data set name is the same, either

I0001 or J0001, for all partitions of the output table space before running this type

of job stream.

//DSN1COPY EXEC PGM=DSN1COPY,

// PARM=’NUMPARTS(16),RESET,FULLCOPY’

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DISP=SHR,DSN=PROD.IMAGE.COPY.DSNUMALL

//SYSUT2 DD DISP=OLD,DSN=DSNCAT.DSNDBD.TESTDB.TS01.I0001.A001

DSN1COPY output

One intended use of this utility is to aid in determining and correcting system

problems. When diagnosing DB2, you might need to refer to licensed

documentation to interpret output from this utility. For more information about

diagnosing problems, see DB2 Diagnosis Guide and Reference.

//STEP1 EXEC PGM=DSN1COPY,

// PARM=’NUMPARTS(1600),RESET,FULLCOPY’

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DISP=SHR,DSN=PROD.IMAGE.COPY.PART1501

//SYSUT2 DD DISP=OLD,DSN=DSNCAT.DSNDBD.TESTDB.TS01.I0001.B501

//STEP2 EXEC PGM=DSN1COPY,

// PARM=’NUMPARTS(1600),RESET,FULLCOPY’

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DISP=SHR,DSN=PROD.IMAGE.COPY.PART1502

//SYSUT2 DD DISP=OLD,DSN=DSNCAT.DSNDBD.TESTDB.TS01.J0001.B502

Figure 136. Example DSN1COPY job for partitions

DSN1COPY

Chapter 40. DSN1COPY 739

740 Utility Guide and Reference

Chapter 41. DSN1LOGP

The DSN1LOGP utility formats the contents of the recovery log for display. The

two recovery log report formats are:

v A detail report of individual log records. This information helps IBM Software

Support personnel analyze the log in detail. (This book does not include a full

description of the detail report.)

v A summary report, which helps you:

– Perform a conditional restart

– Resolve indoubt threads with a remote site

– Detect problems with data propagation

You can specify the range of the log to process and select criteria within the range

to limit the records in the detail report. For example, you can specify:

v One or more units of recovery that are identified by URID

v A single database

By specifying a URID and a database, you can display recovery log records that

correspond to the use of one database by a single unit of recovery.

DSN1LOGP cannot read logs that have been compressed by DFSMS. (This

compression requires extended format data sets.)

The following topics provide additional information:

v “Syntax and options of the DSN1LOGP control statement” on page 742

v “Before running DSN1LOGP” on page 748

v “Using DSN1LOGP to format the contents of the recovery log” on page 750

v “Sample DSN1LOGP control statements” on page 751

v “DSN1LOGP output” on page 753

© Copyright IBM Corp. 1983, 2008 741

#
#

Syntax and options of the DSN1LOGP control statement

DSN1LOGP syntax diagram

��
 RBAEND (FFFFFFFFFFFF)

RBASTART(hex-constant)

RBAEND

(

hex-constant

)

LRSNEND

(

FFFFFFFFFFFF

)

LRSNSTART(hex-constant)

LRSNEND

(

hex-constant

)

 DATAONLY (NO)

DATAONLY

(YES)

�

�

SYSCOPY

(NO)

SYSCOPY

(YES)

DBID(hex-constant)

OBID(hex-constant)

�

PAGE(hex-constant)

�

�

�

RID(hex-constant)

�

URID(hex-constant)

�

LUWID(luwid)

�

�
TYPE

(

hex-constant

)

SUBTYPE

(

hex-constant

)

value/offset statement

 �

�
 SUMMARY (NO)

SUMMARY

(

YES

)

ONLY

FILTER

CHECK(DATA)

��

value/offset statement:

�� VALUE/OFFSET

VALUE(hex-constant)

OFFSET(hex-constant)
 ��

Option descriptions

To execute DSN1LOGP, construct a batch job. The utility name, DSN1LOGP, should

appear on the EXEC statement, as shown in “Sample DSN1LOGP control

statements” on page 751.

Specify keywords in up to 50 control statements in the SYSIN file. Each control

statement can have up to 72 characters. To specify no keywords, either use a

SYSIN file with no keywords following it, or omit the SYSIN file from the job JCL.

DSN1LOGP

742 Utility Guide and Reference

If you specify more than one keyword, separate them by commas. You can specify

the keywords in any order. You can include blanks between keywords, and also

between the keywords and the corresponding values.

RBASTART(hex-constant)

Specifies the hexadecimal log RBA from which to begin reading. If

the value does not match the beginning RBA of one of the log

records, DSN1LOGP begins reading at the beginning RBA of the

next record. For any given job, specify this keyword only once.

Alternative spellings: STARTRBA, ST.

 hex-constant is a hexadecimal value consisting of 1 to 12 characters

(6 bytes); leading zeros are not required.

The default is 0.

RBAEND(hex-constant)

Specifies the last valid hexadecimal log RBA to extract. If the

specified RBA is in the middle of a log record, DSN1LOGP

continues reading the log in an attempt to return a complete log

record.

 To read to the last valid RBA in the log, specify

RBAEND(FFFFFFFFFFFF). For any given job, specify this keyword

only once. Alternative spellings: ENDRBA, EN.

hex-constant is a hexadecimal value consisting of 1 to 12 characters

(6 bytes); leading zeros are not required.

The default is FFFFFFFFFFFF.

RBAEND can be specified only if RBASTART is specified.

LRSNSTART(hex-constant)

Specifies the log record sequence number (LRSN) from which to

begin the log scan. DSN1LOGP starts its processing on the first log

record that contains an LRSN value that is greater than or equal to

the LRSN value that is specified on LRSNSTART. The default

LRSN is the LRSN at the beginning of the data set. Alternative

spellings: STARTLRSN, STRTLRSN, and LRSNSTRT.

 For any given job, specify this keyword only once.

You must specify this keyword to search the member BSDSs and to

locate the log data sets from more than one DB2 subsystem. You

can specify either the LRSNSTART keyword or the RBASTART

keyword to search the BSDS of a single DB2 subsystem and to

locate the log data sets.

LRSNEND(hex-constant)

Specifies the LRSN value of the last log record that is to be

scanned. When LRSNSTART is specified, the default is

X'FFFFFFFFFFFF'. Otherwise, it is the end of the data set.

Alternative spelling: ENDLRSN.

 For any given job, specify this keyword only once.

DATAONLY Limits the log records in the detail report to those that represent

data changes (insert, page repair, update space map, and so on).

 The default is DATAONLY(NO).

(YES) Extracts log records for data changes only. For example,

DSN1LOGP

Chapter 41. DSN1LOGP 743

DATAONLY(YES), together with a DBID and OBID, reads

only the log records that modified data for that DBID and

OBID.

(NO) Extracts all record types.

SYSCOPY Limits the detail report to SYSCOPY log records. The default is

SYSCOPY(NO).

(YES) Includes only SYSCOPY log records in the detail report.

(NO) Does not limit records to SYSCOPY records only.

DBID(hex-constant)

Specifies a hexadecimal database identifier (DBID). DSN1LOGP

extracts only the records that are associated with that DBID. For

any given job, specify this keyword only once.

 hex-constant is a hexadecimal value consisting of one to four

characters. Leading zeros are not required.

The DBID is displayed in many DB2 messages. You can also find

the DBID in the DB2 catalog for a specific object (for example, in

the column named DBID of the SYSIBM.SYSTABLESPACE catalog

table).

When you select a DBID from a catalog table, the value is

displayed in decimal format. Use the SQL HEX function in a

SELECT statement to convert a DBID to hexadecimal format. The

following SQL statements show this use of the HEX function:

SELECT NAME, DBNAME, HEX(DBID), HEX(PSID)

FROM SYSIBM.SYSTABLESPACE

WHERE NAME =’table space name’

SELECT NAME, DBNAME, HEX(DBID), HEX(ISOBID)

FROM SYSIBM.SYSINDEXES

WHERE NAME =’index name’

OBID(hex-constant)

Specifies a hexadecimal database object identifier, either a data

page set identifier (PSID) or an index page set identifier (ISOBID).

DSN1LOGP extracts only the records that are associated with that

identifier.

 hex-constant is a hexadecimal value consisting of one to four

characters. Leading zeros are not required.

Whenever DB2 makes a change to data, the log record that

describes the change identifies the database by DBID and the table

space by page set ID (PSID). You can find the PSID column in the

SYSIBM.SYSTABLESPACE catalog table.

You can also find a column named OBID in the

SYSIBM.SYSTABLESPACE catalog table. That column actually

contains the OBID of a file descriptor; don’t confuse this with the

PSID, which is the information that you must include when you

execute DSN1LOGP.

Whenever DB2 makes a change to an index, the log record that

describes the change identifies the database (by DBID) and the

index space (by index space OBID or ISOBID). You can find the

ISOBID for an index space in the column named ISOBID in the

SYSIBM.SYSINDEXES catalog table.

DSN1LOGP

744 Utility Guide and Reference

You can also find a column named OBID in the

SYSIBM.SYSINDEXES catalog table. This column actually contains

the identifier of a fan set descriptor; don’t confuse this with the

ISOBID, which is the information that you must include when you

execute DSN1LOGP.

When you select either the PSID or the ISOBID from a catalog

table, the value is displayed in decimal format. Use the SQL HEX

function in your select statement to convert them to hexadecimal.

For any given DSN1LOGP job, use this keyword only once. If you

specify OBID, you must also specify DBID.

PAGE(hex-constant)

Specifies a hexadecimal page number. When data or an index is

changed, a recovery log record is written to the log, identifying the

object identifier and the page number of the changed data page or

index page. Specifying a page number limits the search to a single

page; otherwise, all pages for a given combination of DBID and

OBID are extracted. The log output also contains page set control

log records for the specified DBID and OBID, and system event log

records, unless DATAONLY(YES) is also specified.

 hex-constant is a hexadecimal value consisting of a maximum of

eight characters.

You can specify a maximum of 100 PAGE keywords in any given

DSN1LOGP job. You must also specify the DBID and OBID

keywords that correspond to those pages.

The PAGE and RID keywords are mutually exclusive.

RID(hex-constant)

Specifies a record identifier, which is a hexadecimal value

consisting of 10 characters, with the first eight characters

representing the page number and the last two characters

representing the page ID map entry number. The option limits the

log records that are extracted to those that are associated with that

particular record. The log records that are extracted include not

only those that are directly associated with the RID, such as insert

and delete, but also the control records that are associated with the

DBID and OBID specifications, such as page set open, page set

close, set write, reset write, page set write, data set open, and data

set close.

 You can specify a maximum of 40 RID keywords in any given

DSN1LOGP job. You must also specify the DBID and OBID

keywords that correspond to the specified records.

The PAGE and RID keywords are mutually exclusive.

URID(hex-constant)

Specifies a hexadecimal unit of recovery identifier (URID). Changes

to data and indexes occur in the context of a DB2 unit of recovery,

which is identified on the log by a BEGIN UR record. In the

summary DSN1LOGP report, the URID is listed in the STARTRBA

field in message DSN1162I. In the detail DSN1LOGP report, look

for the subtype of BEGIN UR; the URID is listed in the URID field.

Using the log RBA of that record as the URID value limits the

extraction of information from the DB2 log to that unit of recovery.

DSN1LOGP

Chapter 41. DSN1LOGP 745

hex-constant is a hexadecimal value consisting of 1 to 12 characters

(6 bytes). Leading zeros are not required.

You can specify a maximum of 10 URID keywords in any given

DSN1LOGP job.

LUWID(luwid) Specifies up to 10 LUWIDs that DSN1LOGP is to include

information about in the summary report.

 luwid consists of three parts: an LU network name, an LUW

instance number, and a commit sequence number. If you supply

the first two parts, the summary report includes an entry for each

commit that is performed in the logical unit of work (within the

search range). If you supply all three parts, the summary report

includes an entry for only that LUWID.

The LU network name consists of a one- to eight-character network

ID, a period, and a one- to eight-character network LU name. The

LUW instance number consists of a period, followed by 12

hexadecimal characters. The last element of the LUWID is the

commit sequence number of 4 hexadecimal characters, preceded by

a period.

TYPE(hex-constant)

Limits the log records that are extracted to records of a specified

type. The TYPE and SUBTYPE options are mutually exclusive.

 hex-constant indicates the type, as follows:

Constant Description

2 Page set control record

4 SYSCOPY utility record

10 System event record

20 UR control record

100 Checkpoint record

200 UR-UNDO record

400 UR-REDO record

800 Archive quiesce record

1000 to 8000 Assigned by the resource manager

SUBTYPE(hex-constant)

Restricts formatting to a particular subtype of unit of recovery

undo and redo log records (types 200 and 400). The TYPE and

SUBTYPE options are mutually exclusive.

 hex-constant indicates the subtype, as follows:

Constant

Description

1 Update data page

2 Format page or update space map

3 Update space map bits

4 Update to index space map

5 Update to index page

DSN1LOGP

746 Utility Guide and Reference

6 DBA table update log record

7 Checkpoint DBA table log record

9 DBD virtual memory copy

A Exclusive lock on page set partition or DBD

B Format file page set

C Format index page set

F Update by repair (first half if 32 KB)

10 Update by repair (second half if 32 KB)

11 Allocate or deallocate a segment entry

12 Undo/redo log record for modified page or redo log record

for formatted page

14 Savepoint

15 Other DB2 component log records that are written for

RMID 14

17 Checkpoint record of modified page set

19 Type 2 index update

1A Type 2 index undo/redo or redo log record

1B Type 2 index change notification log record

1C Type 2 index space map update

1D DBET log record with exception data

1E DBET log record with LPL/GRECP data

65 Data propagation diagnostic log

81 Index dummy compensation log record

82 START DATABASE ACCESS (FORCE) log record

The VALUE and OFFSET options must be used together. You can

specify a maximum of 10 VALUE-OFFSET pairs. The SUBTYPE

parameter is required when using the VALUE and OFFSET

options.

VALUE(hex-constant)

Specifies a value that must appear in a log record that is to be

extracted.

 hex-constant is a hexadecimal value consisting of a maximum of

64 characters and must be an even number of characters.

The SUBTYPE keyword must be specified before the VALUE

option.

OFFSET(hex-constant)

Specifies an offset from the log record header at which the

value that is specified in the VALUE option must appear.

 hex-constant is a hexadecimal value consisting of a maximum of

eight characters.

The SUBTYPE keyword must be specified before specifying the

OFFSET option.

DSN1LOGP

Chapter 41. DSN1LOGP 747

SUMMARY Summarizes all recovery information within the RBASTART and

RBAEND specifications. You can use summary information to

determine what work is incomplete when DB2 starts. You cannot

limit the output of the summary report with any of the other

options, except by using the FILTER option with a URID or

LUWID specification. The default is SUMMARY(NO).

(YES) Generates both a detail and summary report.

(NO) Generates only a detail report.

(ONLY)

Generates only a summary report.

FILTER Restricts the summary report to include messages for only the

specified URIDs and LUWIDs. Specify this option only once.

 The SUMMARY keyword must be specified before FILTER.

CHECK(DATA)

Specifies that DSN1LOGP is to check the specified range of data

pages for page regression. Any page regression errors are

displayed in the detail and summary reports. See “Description of

the report on page regression errors” on page 758 for a sample

report on page regression errors.

Before running DSN1LOGP

This section contains information that you need to know before running

DSN1LOGP.

Environment

DSN1LOGP runs as a batch z/OS job.

DSN1LOGP runs on archive data sets, but not active data sets, when DB2 is

running.

Authorization required

DSN1COPY does not require authorization. However, if any of the data sets is

RACF-protected, the authorization ID of the job must have RACF authority.

Control statement

Create the utility control statement for the DSN1LOGP job. See “Syntax and

options of the DSN1LOGP control statement” on page 742 for DSN1LOGP syntax

and option descriptions.

Required data sets

When you execute DSN1LOGP, provide the following data definition (DD)

statements:

SYSPRINT DSN1LOGP writes all error messages, exception conditions, and

the detail report to the SYSPRINT file. The logical record length

(LRECL) is 131.

SYSIN DSN1LOGP specifies keywords in this file. The LRECL must be 80.

Keywords and values must appear in characters 1 through 72.

DSN1LOGP

748 Utility Guide and Reference

DSN1LOGP allows specification of as many as 50 control

statements for a given job. DSN1LOGP concatenates all records

into a single string.

SYSSUMRY DSN1LOGP writes the formatted output of a summary report to

the SYSSUMRY file. The LRECL is 131. For an example of the

appropriate JCL, see “Example 4: Use DSN1LOGP with the

SUMMARY option” on page 752.

DSN1LOGP identifies the recovery log by DD statements that are described in the

stand-alone log services. For a description of these services, see Appendix C

(Volume 2) of DB2 Administration Guide.

Identifying log data sets

You must identify to DSN1LOGP the log data sets that are to be processed by

including at least one of the following DD statements.

BSDS The BSDS identifies and provides information about all active log

data sets and archive log data sets that exist in your DB2

subsystem. When you identify the BSDS to DSN1LOGP, you must

provide the beginning and ending RBAs for the range of the

recovery log that you want displayed. DSN1LOGP then associates

the beginning RBA specifications and the ending RBA

specifications with the appropriate data set names.

 See “Example 1: Extracting information from the recovery log with

an available BSDS.” on page 751 for guidance in using this DD

statement.

ACTIVEn If the BSDS is not available, and if the active log data sets that are

involved have been copied and sent to you, you can specify the set

of active log data sets that are to be processed by DSN1LOGP by

specifying one or more ACTIVE DD statements. If you used the

REPRO command of Access Method Services for copying the active

log, you must identify this data set in an ARCHIVE DD statement.

 Each DD statement that you include identifies another active log

data set. If you identify more than one active log data set, you

must list the ACTIVEn DD statements in ascending log RBA

sequence. For example, ACTIVE1 must identify a portion of the log

that is less than ACTIVE2, and ACTIVE2 must identify a portion of

the log that is less than ACTIVE3. If you do not specify this

correctly, errors that DSN1LOGP does not detect can occur.

When you identify active log data sets, you do not need to use the

RBASTART and RBAEND keywords (as you do when you identify

the BSDS). DSN1LOGP scans all active log data sets that the job

indicates only when the data sets are in the correct log RBA

sequence.

See “Example 2: Extracting information from the active log when

the BSDS is not available” on page 752 for guidance in using these

DD statements.

ARCHIVE If the BSDS is not available (as previously described under

ACTIVEn), you can specify which archive log data sets are to be

processed by specifying one ARCHIVE DD statement, concatenated

with one or more DD statements.

 Each DD statement that you include identifies another archive log

data set. If you identify more than one archive log data set, you

DSN1LOGP

Chapter 41. DSN1LOGP 749

must list the DD statements that correspond to the multiple archive

log data sets in ascending log RBA sequence. If you do not specify

this correctly, errors that DSN1LOGP does not detect can occur.

When you identify archive log data sets, you do not need to use

the RBASTART and RBAEND keywords. DSN1LOGP scans all

archive log data sets that are indicated by the job only when the

data sets are in the correct log RBA sequence.

See “Example 3: Extracting information from the archive log when

the BSDS is not available” on page 752 for guidance in using the

ARCHIVE DD statement.

Data sharing requirements: When selecting log records from more than one DB2

subsystem, you must use all of the following DD statements to locate the log data

sets:

 GROUP

 MxxBSDS

 MxxARCHV

 MxxACTn

See Appendix C (Volume 2) of DB2 Administration Guide for descriptions of those

statements. If you use GROUP or MxxBSDSs to locate the log data sets, you must

use LRSNSTART to define the selection range.

Using DSN1LOGP to format the contents of the recovery log

This section describes the following tasks that are associated with running the

DSN1LOGP utility:

 “Reading archive log data sets on tape”

 “Locating table and index identifiers” on page 751

Reading archive log data sets on tape

If you store your archive logs on tape, DSN1LOGP constructs two files on tape

during the archiving process. The first file is the BSDS, and the second is a dump

of the active log that DSN1LOGP is currently archiving. If a failure occurs during

the time DSN1LOGP is archiving the BSDS, DB2 might omit the BSDS. In this case,

the first file contains the active log.

If you perform archiving on tape, the first letter of the lowest-level qualifier varies

for both the first and second data sets. The first letter of the first data set is B (for

BSDS), and the first letter of the second data set is A (for archive). Hence, the

archive log data set names all end in Axxxxxxx, and the DD statement identifies

each of them as the second data set on the corresponding tape:

LABEL=(2,SL)

When reading archive log data sets on tape (or copies of active log data sets on

tape), add one or more of the following Job Entry Subsystem (JES) statements:

For the JES3 environment:

JES3 environment JCL Description

//*MAIN SETUP=JOB Alert the z/OS operator to mount the initial

volumes before the job executes.

//*MAIN HOLD=YES Place the job in HOLD status until the operator is

ready to release the job.

DSN1LOGP

750 Utility Guide and Reference

TYPRUN=HOLD Perform the same function as //*MAIN

HOLD=YES. The system places the JCL on the JOB

statement.

For the JES2 environment:

JES2 environment JCL Description

/*SETUP Alert the z/OS operator to prepare to mount a

specified list of tapes.

/*HOLD Place the job in HOLD status until the operator has

located the tapes and is ready to release the job.

TYPRUN=HOLD Perform the same function as /*HOLD. The system

places the JCL on the JOB statement.

Alternatively, submit the job to a z/OS initiator that your operations center has

established for exclusive use by jobs that require tape mounts. Specify the initiator

class by using the CLASS parameter on the JOB statement, in both JES2 and JES3

environments.

For additional information on these options, refer to z/OS MVS JCL User's Guide or

z/OS MVS JCL Reference.

Locating table and index identifiers

Use the DSN1PRNT utility to find the DBIDs, PSIDs, ISOBIDs, and OBIDs of the

tables and indexes from the system tables. For more information, see Chapter 42,

“DSN1PRNT,” on page 761.

Sample DSN1LOGP control statements

Example 1: Extracting information from the recovery log with an available BSDS.

The following example shows how to extract information from the recovery log

when you have the BSDS available. The extraction starts at the log RBA of

X'AF000' and ends at the log RBA of X'B3000'. The DSN1LOGP utility identifies the

table or index space by the DBID of X'10A' (266 decimal) and the OBID of X'1F' (31

decimal).

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP

//SYSPRINT DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//BSDS DD DSN=DSNCAT.BSDS01,DISP=SHR

//SYSIN DD *

 RBASTART (AF000) RBAEND (B3000)

 DBID (10A) OBID(1F)

/*

You can think of the DB2 recovery log as a large sequential file. When recovery log

records are written, they are written to the end of the log. A log RBA is the address

of a byte on the log. Because the recovery log is larger than a single data set, the

recovery log is physically stored on many data sets. DB2 records the RBA ranges

and their corresponding data sets in the BSDS. To determine which data set

contains a specific RBA, read the information about the DSNJU004 utility under

Chapter 37, “DSNJU004 (print log map),” on page 691 and see Part 4 (Volume 1) of

DB2 Administration Guide. During normal DB2 operation, messages are issued that

include information about log RBAs.

DSN1LOGP

Chapter 41. DSN1LOGP 751

Example 2: Extracting information from the active log when the BSDS is not

available. The following example shows how to extract the information from the

active log when the BSDS is not available. The extraction includes log records that

apply to the table space or index space that is identified by the DBID of X'10A' and

the OBID of X'1F'. The only information that is extracted is information that relates

to page numbers X'3B' and X'8C', as identified by the PAGE options. You can omit

beginning and ending RBA values for ACTIVEn or ARCHIVE DD statements

because the DSN1LOGP search includes all specified ACTIVEn DD statements. The

DD statements ACTIVE1, ACTIVE2, and ACTIVE3 specify the log data sets in

ascending log RBA range. Use the DSNJU004 utility to determine what the log

RBA range is for each active log data set. If the BSDS is not available and you

cannot determine the ascending log RBA order of the data sets, you must run each

log data set individually.

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP

//SYSPRINT DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//ACTIVE1 DD DSN=DSNCAT.LOGCOPY1.DS02,DISP=SHR RBA X’A000’ - X’BFFF’

//ACTIVE2 DD DSN=DSNCAT.LOGCOPY1.DS03,DISP=SHR RBA X’C000’ - X’EFFF’

//ACTIVE3 DD DSN=DSNCAT.LOGCOPY1.DS01,DISP=SHR RBA X’F000’ - X’12FFF’

//SYSIN DD *

 DBID (10A) OBID(1F) PAGE(3B) PAGE(8C)

/*

Example 3: Extracting information from the archive log when the BSDS is not

available. The example in Figure 137 shows how to extract the information from

archive logs when the BSDS is not available. The extraction includes log records

that apply to a single unit of recovery (whose URID is X'61F321'). Because the

BEGIN UR is the first record for the unit of recovery and is at X'61F321', the

beginning RBA is specified to indicate that it is the first RBA in the range from

which to extract recovery log records. Also, because no ending RBA value is

specified, all specified archive logs are scanned for qualifying log records. The

specification of DBID(4) limits the scan to changes that the specified unit of

recovery made to all table spaces and index spaces in the database whose DBID is

X'4'.

Example 4: Use DSN1LOGP with the SUMMARY option. The DSN1LOGP

SUMMARY option allows you to scan the recovery log to determine what work is

incomplete at restart time. You can specify this option either by itself or when you

use DSN1LOGP to produce a detail report of log data. Summary log results appear

in SYSSUMRY; therefore, you must include a SYSSUMRY DD statement as part of

the JCL with which you execute DSN1LOGP.

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP

//SYSPRINT DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//ARCHIVE DD DSN=DSNCAT.ARCHLOG1.A0000037,UNIT=TAPE,VOL=SER=T10067,

// DISP=(OLD,KEEP),LABEL=(2,SL)

// DD DSN=DSNCAT.ARCHLOG1.A0000039,UNIT=TAPE,VOL=SER=T30897,

// DISP=(OLD,KEEP),LABEL=(2,SL)

// DD DSN=DSNCAT.ARCHLOG1.A0000041,UNIT=TAPE,VOL=SER=T06573,

// DISP=(OLD,KEEP),LABEL=(2,SL)

//SYSIN DD *

 RBASTART (61F321)

 URID (61F321) DBID(4)

/*

Figure 137. Example DSN1LOGP statement with RBASTART and URID options

DSN1LOGP

752 Utility Guide and Reference

The following example produces both a detail and a summary report that uses the

BSDS to identify the log data sets. The summary report summarizes all recovery

log information within the RBASTART and RBAEND specifications. You cannot

limit the output of the summary report with any of the other options, except by

using the FILTER option with a URID or LUWID specification. RBASTART and

RBAEND specification use depends on whether a BSDS is used.

This example is similar to Example 1, in that it shows how to extract the

information from the recovery log when you have the BSDS available. However,

this example also shows you how to specify a summary report of all logged

information between the log RBA of X'AF000' and the log RBA of X'B3000'. This

summary is generated with a detail report, but it is printed to SYSSUMRY

separately.

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP

//SYSPRINT DD SYSOUT=A

//SYSSUMRY DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//BSDS DD DSN=DSNCAT.BSDS01,DISP=SHR

//SYSIN DD *

 RBASTART (AF000) RBAEND (B3000)

 DBID (10A) OBID(1F) SUMMARY(YES)

/*

Example 5: Use DSN1LOGP on all members of a data sharing group. The

following example shows how to extract log information that pertains to the table

space that is identified by DBID X'112' and OBID X'1D' from all members of a data

sharing group.

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP

//SYSPRINT SYSOUT=A

//SYSABEND SYSOUT=A

//GROUP DD DSN=DSNDB0G.BSDS01,DISP=SHR

//SYSIN DD *

 DATAONLY (YES)

 LRSNSTART (A7951A001AD5) LRSNEND (A7951A003B6A)

 DBID (112) OBID(1D)

/*

Example 6: Use DSN1LOGP on a single member of a data sharing group. The

following example shows how to extract log information that pertains to the table

space that is identified by DBID X'112' and OBID X'1D' from a single member of a

data sharing group.

//STEP1 EXEC PGM=DSN1LOGP

//STEPLIB DD DSN=PDS containing DSN1LOGP

//SYSPRINT SYSOUT=A

//SYSABEND SYSOUT=A

//M01BSDS DD DSN=DSNDB0G.DB1G.BSDS01,DISP=SHR

//SYSIN DD *

 DATAONLY (YES)

 LRSNSTART (A7951A001AD5) LRSNEND (A7951A003B6A)

 DBID (112) OBID(1D)

/*

DSN1LOGP output

One intended use of this utility is to aid in determining and correcting system

problems. When diagnosing DB2, you might need to refer to licensed

documentation to interpret output from this utility. For more information about

diagnosing problems, see DB2 Diagnosis Guide and Reference.

DSN1LOGP

Chapter 41. DSN1LOGP 753

Reviewing DSN1LOGP output

With the SUMMARY option, you can produce a summary report, a detail report, or

both. You can also use the CHECK(DATA) option to produce a summary and

detail report of page regression errors.

Figure 138 on page 755 shows a sample of the summary report. Figure 139 on page

756 shows a sample of the detail report. Figure 140 on page 758 shows a sample of

data propagation information from a summary report. A description of the output

precedes each sample.

Description of the summary report

The summary report in Figure 138 on page 755 contains a summary of completed

events, consisting of an entry for each completed unit of work. Each entry shows,

among other information, the start time, user, and all page sets that were modified.

The summary report is divided into two distinct sections:

v The first section is headed by the following message:

DSN1150I SUMMARY OF COMPLETED EVENTS

v The second section is headed by the following message:

DSN1157I RESTART SUMMARY

The first section lists all completed units of recovery (URs) and checkpoints within

the range of the log that is scanned. Events are listed chronologically, with URs

listed according to when they were completed and checkpoints listed according to

when the end of the checkpoint was processed. The page sets that are changed by

each completed UR are listed. If a log record that is associated with a UR is

unavailable, the attribute INFO=PARTIAL is displayed for the UR. Otherwise, the

UR is marked INFO=COMPLETE. A log record that is associated with a UR is

unavailable if the range of the scanned log is not large enough to contain all

records for a given UR.

The DISP attribute can be one of the following values: COMMITTED, ABORTED,

INFLIGHT, IN-COMMIT, IN-ABORT, POSTPONED ABORT, or INDOUBT. The

DISP attributes COMMITTED and ABORTED are used in the first section; the

remaining attributes are used in the second section.

The list in the second section shows the work that is required of DB2 at restart as

it is recorded in the log that you specified. If the log is available, the checkpoint

that is to be used is identified, as is each outstanding UR, together with the page

sets it changed. Each page set with pending writes is also identified, as is the

earliest log record that is required to complete those writes. If a log record that is

associated with a UR is unavailable, the attribute INFO=PARTIAL is displayed,

and the identification of modified page sets is incomplete for that UR.

DSN1LOGP

754 Utility Guide and Reference

|
|
|
|

DSN1212I DSN1LGRD FIRST LOG LRSN ENCOUNTERED AA526968220D

==

DSN1150I SUMMARY OF COMPLETED EVENTS

DSN1151I DSN1LPRT MEMBER=V81B UR CONNID=V81B CORRID=021.OPNLGR00 AUTHID=SYSOPR PLAN=SYSTEM

 START DATE=94.347 TIME=11:15:22 DISP=COMMITTED INFO=COMPLETE

 STARTRBA=00000000E570 ENDRBA=00000000EB64 STARTLRSN=AA52696B1269 ENDLRSN=AA526999D14D NID=*

 LUWID=USIBMSY.SYEC1B.AA52696825CE.0001 COORDINATOR=*

 PARTICIPANTS=*

 DATA MODIFIED:

 DATABASE=0001=DSNDB01 PAGE SET=00CF=SYSLGRNX

 DATABASE=0001=DSNDB01 PAGE SET=0087=DSNLLX01

 DATABASE=0001=DSNDB01 PAGE SET=0086=DSNLLX02

DSN1151I DSN1LPRT MEMBER=V81B UR CONNID=V81B CORRID=021.OPNLGR00 AUTHID=SYSOPR PLAN=SYSTEM

 START DATE=94.347 TIME=11:16:14 DISP=COMMITTED INFO=COMPLETE

 STARTRBA=00000000ECFC ENDRBA=00000000F20A STARTLRSN=AA52699C97A9 ENDLRSN=AA52699CADC5 NID=*

 LUWID=USIBMSY.SYEC1B.AA52699C9508.0001 COORDINATOR=*

 PARTICIPANTS=*

 DATA MODIFIED:

 DATABASE=0001=DSNDB01 PAGE SET=00CF=SYSLGRNX

 DATABASE=0001=DSNDB01 PAGE SET=0087=DSNLLX01

 DATABASE=0001=DSNDB01 PAGE SET=0086=DSNLLX02

....

DSN1213I DSN1LGRD LAST LOG LRSN ENCOUNTERED AA527C9B8392

DSN1214I NUMBER OF LOG RECORDS READ 0000000000004991

==

DSN1157I RESTART SUMMARY

DSN1153I DSN1LSIT CHECKPOINT MEMBER=V81B

 STARTRBA=000000068CD3 ENDRBA=00000006CAED STARTLRSN=AA527AA809DF ENDLRSN=AA527AA829F4

 DATE=94.347 TIME=12:32:29

DSN1162I DSN1LPRT MEMBER=V81C UR CONNID=BATCH CORRID=S5529927 AUTHID=ADMF001 PLAN=PLNFW543

 START DATE=94.347 TIME=12:41:04 DISP=INFLIGHT INFO=COMPLETE

 STARTRBA=000000016000 STARTLRSN=AA527C9278DF NID=*

 LUWID=USIBMSY.SYEC1C.AA527C22E283.0001 COORDINATOR=*

 PARTICIPANTS=*

 DATA MODIFIED:

 DATABASE=0113=DBFW5401 PAGE SET=0002=TPFW5401

 DATABASE=0113=DBFW5401 PAGE SET=0005=IPFW5401

DSN1162I DSN1LPRT MEMBER=V81A UR CONNID=BATCH CORRID=S5529925 AUTHID=ADMF001 PLAN=PLNFW541

 START DATE=94.347 TIME=12:41:04 DISP=INFLIGHT INFO=COMPLETE

 STARTRBA=000001F9A3C1 STARTLRSN=AA527C92E419 NID=*

 LUWID=USIBMSY.SYEC1DB2.AA527C1D674B.0001 COORDINATOR=*

 PARTICIPANTS=*

 DATA MODIFIED:

 DATABASE=0113=DBFW5401 PAGE SET=0002=TPFW5401

 ...

 DSN1160I DATABASE WRITES PENDING:

 DATABASE=0001=DSNDB01 PAGE SET=0046=DSNLUX02 START=000000068CD3

 DATABASE=0001=DSNDB01 PAGE SET=0044=DSNLUX01 START=000000068CD3

 ...

 DATABASE=0006=DSNDB06 PAGE SET=0076=DSNUCX01 START=000000068CD3

 DATABASE=0006=DSNDB06 PAGE SET=0072=DSNUCH01 START=000000068CD3

 ...

Figure 138. Sample DSN1LOGP summary report

DSN1LOGP

Chapter 41. DSN1LOGP 755

Description of the detail report

The detail report in Figure 139 includes the following records:

v Redo and undo log records

v System events log records, including begin and end checkpoint records, begin

current status rebuild records, and begin forward and backward recovery

records

v Page set control log records, including open and close page set log records, open

and close data set log records, set write, reset write, and page set write log

records

v UR control log records for the complete or incomplete unit of recovery

You can reduce the volume of the detail log records by specifying one or more of

the optional keywords that are listed under “Syntax and options of the DSN1LOGP

control statement” on page 742.

DSN1212I DSN1LGRD FIRST LOG RBA ENCOUNTERED 00000335916E

0000033591D4 MEMBER(M01) LRSN(AB62536BE583) DBID(0006) OBID(00B2)

 TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET STATUS RECORD)

 LRH 00660066 00020009 0E800000 00000000 00000335 916E0126 00000335 916EAB62

 536BE583 0001

 0000 000600B2 C4E2D5C4 C2F0F640 C4E2D5E3 D5E7F0F1 00010000 92018000 00000334

 0020 EC3AAB62 5260AB0B 00000000 00000000 00000000 00000000 00000000 00000000

0000000109E2 MEMBER(M02) LRSN(AB6253746CE3) DBID(0113) OBID(0008)

 TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET OPEN)

 LRH 00A0006E 00020001 0E800000 00000000 00000000 00000126 00000000 0000AB62

 53746CE3 0002

 0000 01130008 6C010100 00000005 0040C4C2 C6E6F0F0 F1F1C9C3 C6E6F0F0 F0F10001

 0020 00060000 10009201 00130020 00000000 00000000 00000000 00000000 00000000

 0040 00000000 00000010 00010000 00000000 00000000 00000000 00000000 00000000

 0060 00AB624B 192CEEAB 624B4783 F8000000 0000C4E2 D5C3F4F1 F040

000000010A82 MEMBER(M02) URID(000000010A82) LRSN(AB6253747801)

 TYPE(UR CONTROL) SUBTYPE(BEGIN UR)

 LRH 009000A0 00200001 03800000 00010A82 00000000 00000126 00000000 0000AB62

 53747801 0002

 0000 00010000 0000D000 00000000 00000700 0000D4F0 F0F0F1F0 F2F54040 4040D7C6

 0020 E5E3F0F0 F340AB62 537477FC B803C4E2 D5E3C5D7 F340C2C1 E3C3C840 4040C2C1

 0040 E3C3C840 40400000 00000000 0000001A 0001E4E2 C9C2D4E2 E840E2E8 C5C3F1C4

 0060 4040AB62 5362554A 0001

000000010B12 MEMBER(M02) URID(000000010A82) LRSN(AB6253747807)

 TYPE(UNDO) SUBTYPE(SAVEPOINT)

 LRH 002F0090 22000014 0E800000 00010A82 00000001 0A820126 00000001 0A82AB62

 53747807 0002

 0000 00E7D9E4 C9000000 02

000000010B42 MEMBER(M02) URID(000000010A82) LRSN(AB625374780E) DBID(0113) OBID(0008)

 PAGE(00000003)

 TYPE(UNDO REDO) SUBTYPE(TYPE 2 INDEX UPDATE) CLR(NO) PROCNAME(DSNKDLE)

 LRH 0053002F 06000019 0E800000 00010A82 00000001 0B120126 00000001 0B12AB62

 5374780E 0002

 *LG** 84011300 08000003 63000000 00000000 0000

 0000 001B3000 00B40001 00000201 000A0000 02C5C5F0 F6C1C1D4 F3F1C1

Figure 139. Sample DSN1LOGP detail report (Part 1 of 2)

DSN1LOGP

756 Utility Guide and Reference

000000010B94 MEMBER(M02) URID(000000010A82) LRSN(AB6253747CEF) DBID(0113) OBID(0008)

 PAGE(00000003)

 TYPE(UNDO REDO) SUBTYPE(TYPE 2 INDEX UPDATE) CLR(NO) PROCNAME(DSNKINSL)

 LRH 00530053 06000019 0E800000 00010A82 00000001 0B420126 00000001 0B42AB62

 53747CEF 0002

 *LG** 04011300 08000003 64000000 00000000 0000

 0000 001B1000 00B30001 00000201 000A2000 00C5C5F0 F6C1C1D7 D7D3F4

......

00000001138E MEMBER(M02) URID(0000000110A0) LRSN(AB62537B4931)

 TYPE(UR CONTROL) SUBTYPE(BEGIN COMMIT1)

 LRH 005C0053 00200002 03800000 000110A0 00000001 133B0126 00000001 133BAB62

 537B4931 0002

 0000 00020000 00004000 00000000 00000700 0000F0F2 F14BD6D7 D5D3C7D9 F0F04040

 0020 40404040 40400000 00000000 00000000 00000000 0000

0000000113EA MEMBER(M02) URID(0000000110A0) LRSN(AB62537B4940)

 TYPE(UR CONTROL) SUBTYPE(PHASE 1 TO 2)

 LRH 0034005C 0020000C 03800000 000110A0 00000001 138E0126 00000001 138EAB62

 537B4940 0002

 0000 00020000 00004000 00000000 0000

0000033685DE MEMBER(M01) LRSN(AB6254D9A231) DBID(0001) OBID(001F)

 TYPE(CHECKPOINT) SUBTYPE(DBE TABLE WITH EXCEPTION DATA)

 LRH 0061003E 2100001D 0E800000 00000000 00000336 85A00126 00000336 85A0AB62

 54D9A231 0001

 0000 00000000 C4E2D5C4 C2F0F140 C4C2C4F0 F1404040 0001001F 00000000 00000000

 0020 00000000 00000000 00000000 00000000 00000000 00000000 000000

00000336863F MEMBER(M01) LRSN(AB6254D9A237) DBID(0001) OBID(001F)

 TYPE(CHECKPOINT) SUBTYPE(DBE TABLE WITH PIECE DATA)

 LRH 01F60061 2100001E 0E800000 00000000 00000336 85DE0126 00000336 85DEAB62

 54D9A237 0001

 0000 00000100 1FC4E2D5 C4C2F0F1 40C4C2C4 F0F14040 40000000 0020FFFF FFFFFFFF

 0020 00000000 00000000 0000006C 00000090 FFFFFFFF 00000000 00000000 00FFFFFF

 0040 FF000000 00000000 0000FFFF FFFF0000 00000000 000000FF FFFFFF00 00000000

 0060 00000000 FFFFFFFF 00000000 00000000 00FFFFFF FF000000 00000000 0000FFFF

 0080 FFFF0000 00000000 000000FF FFFFFF00 00000000 00000000 FFFFFFFF 00000000

 00A0 00000000 00FFFFFF FF000000 00000000 0000FFFF FFFF0000 00000000 000000FF

 00C0 FFFFFF00 00000000 00000000 FFFFFFFF 00000000 00000000 00FFFFFF FF000000

 00E0 00000000 0000FFFF FFFF0000 00000000 000000FF FFFFFF00 00000000 00000000

 0100 FFFFFFFF 00000000 00000000 00FFFFFF FF000000 00000000 0000FFFF FFFF0000

 0120 00000000 000000FF FFFFFF00 00000000 00000000 FFFFFFFF 00000000 00000000

 0140 00FFFFFF FF000000 00000000 0000FFFF FFFF0000 00000000 000000FF FFFFFF00

 0160 00000000 00000000 FFFFFFFF 00000000 00000000 00FFFFFF FF000000 00000000

 0180 0000FFFF FFFF0000 00000000 000000FF FFFFFF00 00000000 00000000 FFFFFFFF

 01A0 00000000 00000000 00FFFFFF FF000000 00000000 0000FFFF FFFF0000 00000000

 01C0 000000FF FFFFFF00 00000000 00000000

 ...

000000057EA2 MEMBER(M02) LRSN(AB62564FF606) DBID(0113) OBID(000A)

 TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET WRITE)

 LRH 009C002A 00020007 0E800000 00000000 00000005 7E780126 00000005 7E78AB62

 564FF606 0002

 0000 0000F5D7 C3D60113 000AC4C2 C6E6F0F0 F1F1C9E4 C6E6F0F0 F0F20000 00000000

 0020 00000000 0004D98E 00000004 D98E0000 00000000 11040000 00000000 03000003

 0040 AB62553F 98780000 00000000 04000004 AB62553F 930C0000 00000000 05000005

 0060 AB62553F 95C30000 00000000 06000006 AB62553F 9855

000000057F3E MEMBER(M02) LRSN(AB62564FFFBA) DBID(0113) OBID(000A)

 TYPE(PAGE SET CONTROL) SUBTYPE(PAGE SET CLOSE)

 LRH 002A009C 00020003 0E800000 00000000 00000005 7EA20126 00000005 7EA2AB62

 564FFFBA 0002

 0000 0113000A

DSN1213I DSN1LGRD LAST LOG RBA ENCOUNTERED 00000337A000

DSN1214I NUMBER OF LOG RECORDS READ 0000000000004661

Figure 139. Sample DSN1LOGP detail report (Part 2 of 2)

DSN1LOGP

Chapter 41. DSN1LOGP 757

Description of data propagation information in the summary

report

The sample output in Figure 140 shows information from the DSN1LOGP

summary report about log records of changes to DB2 tables that were defined with

DATA CAPTURE CHANGES.

The fields show the following information:

v START RBA and END RBA show the first and last RBAs that are captured for

the unit of recovery that was not retrieved. The range that the start and end

RBA encompass can include one or all of the SQL statements within the scope of

the unit of recovery.

v TABLE LIST OVERFLOW indicates whether more than 10 distinct data capture

table IDs were updated by this unit of recovery. This example indicates that no

overflow occurred.

v LR WRITTEN shows the number of written log records that represented changes

to tables that were defined for data capture and were available to the

DB2CDCEX routine. Recursive SQL changes from DB2CDCEX and changes from

other attachments that are not associated with DB2CDCEX are not included. If

you receive a value of 2147483647, an overflow occurred and the count is not

valid.

v LR RETRIEVED is the number of captured RBAs that were retrieved by

DB2CDCEX. If you receive a value of 2147483647, an overflow occurred and the

count is not valid.

v LR NOT RETRIEVED is the difference between the number of written log

records (LR WRITTEN) and the number of retrieved log records (LR

RETRIEVED). The following example output shows that four log records were

written, and none were retrieved.

Description of the report on page regression errors

DSN1LOGP reports page regression errors when you specify the CHECK(DATA)

option. The value of the SUMMARY option determines whether the utility creates

a detail report, a summary report, or both.

A detail report contains the following information for each page regression error:

v DBID

v OBID

v Page number

v Current LRSN or RBA

v Member name

v Previous level

v Previous update

v Date

v Time

DATA PROPAGATION INFORMATION:

 START RBA=000004A107F4 END RBA=000004A10A5C TABLE LIST OVERFLOW=NO

 LR WRITTEN=0000000000000004 LR RETRIEVED=0000000000000000 LR NOT RETRIEVED=0000000000000004

 DATABASE=0112=DBCS1701 PAGESET=0002=TSCS1701 TABLE OBID=0005

Figure 140. Sample data propagation information from the summary report

DSN1LOGP

758 Utility Guide and Reference

A summary report contains the total number of page regressions that the utility

found as well as the following information for each table space in which it found

page regression errors:

v Database name

v Table space name

v DBID

v OBID

If no page regression errors are found, DSN1LOGP outputs a single message that

no page regression errors were found.

The sample output in Figure 141 shows detail and summary reports when page

regression errors are found.

Interpreting error codes

When an error occurs, DSN1LOGP formats a reason code from the DB2

stand-alone log service in the SYSPRINT output. For information about the

stand-alone log service and the reason codes that it issues, see Appendix C

(Volume 2) of DB2 Administration Guide.

DSN1LOGP can abnormally terminate with a user abend code of X'099'.

DSN1LOGP finds the corresponding abend reason code in register 15 (at the time

of error).

DSN1212I DSN1LGRD FIRST LOG RBA ENCOUNTERED 5182C4758000

DSN1212I DSN1LGRD FIRST LOG LRSN ENCOUNTERED B7A829006D13

DSN1191I:

 DETAIL REPORT OF PAGE REGRESSION ERRORS

DBID OBID PAGE# CURRENT MEMBER PREV-LEVEL PREV-UPDATE DATE TIME

---- --- -------- ------------ ------- ----------- ------------ ------ --------

0001 OOCF OOOO132F B7A83F071892 0002 84A83BBEE81F B7A83C6042DF 02.140 15:29:20

0001 OOCF 000086C2 B7A84BD4C3E5 0003 04A83BC42C58 B7A83C61D53E 02.140 18:01:13

0006 0009 00009DBF B7A8502A39F4 0002 04A83BC593B6 B7A83C669743 02.140 18:20:37

DSN1213I DSN1LGRD LAST LOG RBA ENCOUNTERED 51830AC57F47

DSN1213I DSN1LGRD LAST LOG LRSN ENCOUNTERED B7A8568367E6

DSN12141 NUMBER OF LOG RECORDS READ 0000000007816406

DSN1194I:

 SUMMARY REPORT OF PAGE REGRESSION ERRORS

 DATABASE SPACENAM DBID OBID #PG REGRESSIONS

 -------- -------- ---- ---- ---------------

 DSNDB01 SYSLGRNX 0001 00CF 00000002

 DSNDB06 SYSDBASE 0006 0009 00000001

DSN1197I TOTAL PAGES CHECKED FOR REGRESSION = 00312927

:

:

Figure 141. Sample DSN1LOGP detail and summary reports for page regression errors.

DSN1LOGP

Chapter 41. DSN1LOGP 759

760 Utility Guide and Reference

Chapter 42. DSN1PRNT

With the DSN1PRNT stand-alone utility, you can print:

v DB2 VSAM data sets that contain table spaces or index spaces (including

dictionary pages for compressed data)

v Image copy data sets

v Sequential data sets that contain DB2 table spaces or index spaces

Note: A DB2 VSAM data set is a single piece of a nonpartitioned table space or

index, or a single partition of a partitioned table space or index. The input

must be a single z/OS sequential or VSAM data set. Concatenation of input

data sets is not supported.

Using DSN1PRNT, you can print hexadecimal dumps of DB2 data sets and

databases. If you specify the FORMAT option, DSN1PRNT formats the data and

indexes for any page that does not contain an error that would prevent formatting.

If DSN1PRNT detects such an error, it prints an error message just before the page

and dumps the page without formatting. Formatting resumes with the next page.

Compressed records are printed in compressed format.

DSN1PRNT is especially useful when you want to identify the contents of a table

space or index. You can run DSN1PRNT on image copy data sets and on table

spaces and indexes. DSN1PRNT accepts an index image copy as input when you

specify the FULLCOPY option.

You cannot run DSN1PRNT on concurrent copies.

DSN1PRNT is compatible with LOB table spaces, when you specify the LOB

keyword and omit the INLCOPY keyword.

The following topics provide additional information:

v “Syntax and options of the DSN1PRNT control statement” on page 762

v “Before running DSN1PRNT” on page 768

v “Sample DSN1PRNT control statements” on page 770

v “DSN1PRNT output” on page 771

© Copyright IBM Corp. 1983, 2008 761

Syntax and options of the DSN1PRNT control statement

DSN1PRNT syntax diagram

��

32K

PAGESIZE

(

4K

)

8K

16K

32K

FULLCOPY

INCRCOPY

INLCOPY

LARGE

LOB

DSSIZE

(

integer

G

)
 �

�
PIECESIZ(integer

K

)

M

G

NUMPARTS(integer)
 �

�

 (1)

PRINT

EBCDIC

(1)

EBCDIC

PRINT

(hexadecimal-constant,hexadecimal-constant)

ASCII

UNICODE

�

�
VALUE(

string

)

hexadecimal-constant

FORMAT

EXPAND

NODATA

SWONLY

NODATPGS

 ��

Notes:

1 EBCDIC is not necessarily the default if the first page of the input data set is a header page. If

the first page is a header page, DSN1PRNT uses the format information in the header page as the

default format.

Option descriptions

To run DSN1PRNT, specify one or more of the following parameters on the EXEC

statement.

Important: If you specify more than one parameter:

v Separate them by commas (no blanks).

v Specify them in any order.

32K Specifies that the SYSUT1 data set has a 32-KB page size. If you

specify this option and the SYSUT1 data set does not have a 32-KB

page size, DSN1COPY might produce unpredictable results.

 The recommended option for performance is PAGESIZE(32K).

DSN1PRNT

762 Utility Guide and Reference

|||

PAGESIZE Specifies the page size of the input data set that is defined by

SYSUT1. Available page size values are 4K, 8K, 16K, or 32K. If you

specify an incorrect page size, DSN1PRNT might produce

unpredictable results.

 If you do not specify the page size, DSN1PRNT tries to determine

the page size from the input data set if the first page of the input

data set is a header page. DB2 issues an error message if

DSN1PRNT cannot determine the input page size. This might

happen if the header page is not in the input data set, or if the

page size field in the header page contains an invalid page size.

FULLCOPY Specifies that a DB2 full image copy (not a DFSMSdss concurrent

copy) of your data is to be used as input. If this data is partitioned,

you also need to specify the NUMPARTS parameter to identify the

number and length of the partitions. If you specify FULLCOPY

without including a NUMPARTS specification, DSN1PRNT

assumes that the input file is not partitioned.

 The FULLCOPY parameter must be specified when you use an

image copy as input to DSN1PRNT. Omitting the parameter can

cause error messages or unpredictable results.

INCRCOPY Specifies that an incremental image copy of the data is to be used

as input. If the data is partitioned, also specify NUMPARTS to

identify the number and length of the partitions. If you specify

INCRCOPY without NUMPARTS, DSN1PRNT assumes that the

input file is not partitioned.

 The INCRCOPY parameter must be specified when you use an

incremental image copy as input to DSN1PRNT. Omitting the

parameter can cause error messages or unpredictable results.

INLCOPY Specifies that the input data is to be an inline copy data set.

 When you use DSN1PRNT to print a page or a page range from an

inline copy that is produced by LOAD or REORG, DSN1PRNT

prints all instances of the pages. The last instance of the printed

page or pages is the last one that is created by the utility.

LARGE Specifies that the input data set is a table space that was defined

with the LARGE option, or an index on such a table space. If you

specify LARGE, DB2 assumes that the data set has a 4-GB

boundary. The recommended method of specifying a table space

that was defined with the LARGE option is DSSIZE(4G).

 If you omit the LARGE or DSSIZE(4G) option when it is needed,

or if you specify LARGE for a table space that was not defined

with the LARGE option, the results from DSN1PRNT are

unpredictable.

If you specify LARGE, you cannot specify LOB or DSSIZE.

LOB Specifies that the SYSUT1 data set is a LOB table space. You cannot

specify the INLCOPY option with the LOB parameter.

 DB2 attempts to determine if the input data set is a LOB data set.

If you specify the LOB option but the data set is not a LOB data

set, or if you omit the LOB option but the data set is a LOB data

set, DB2 issues an error message and DSN1PRNT terminates.

If you specify LOB, you cannot specify LARGE.

DSN1PRNT

Chapter 42. DSN1PRNT 763

DSSIZE(integer G)

Specifies the data set size, in gigabytes, for the input data set. If

you omit the DSSIZE keyword or the LARGE keyword,

DSN1PRNT assumes the appropriate default input data set size

that is listed in Table 141.

 Table 141. Default input data set sizes

Object Default input data set size (in GB)

Non-LOB linear table space or index 2

LOB 4

Partitioned table space or index with

NUMPARTS = 1-16

4

Partitioned table space or index with

NUMPARTS = 17-32

2

Partitioned table space or index with

NUMPARTS = 33-64

1

Partitioned table space or index with

NUMPARTS >64

4

integer must match the DSSIZE value that was specified when the

table space was defined.

If you omit DSSIZE and the data set is not one of the default sizes,

the results from DSN1PRNT are unpredictable.

If you specify DSSIZE, you cannot specify LARGE.

PIECESIZ(integer)

Specifies the maximum piece size (data set size) for nonpartitioned

indexes. The value that you specify must match the value that is

specified when the secondary index was created or altered.

 The defaults for PIECESIZ are 2G (2 GB) for indexes that are

backed by non-large table spaces and 4G (4 GB) for indexes that

are backed by table spaces that were defined with the LARGE

option. This option is required if a print range is specified and the

piece size is not one of the default values. If PIECESIZ is omitted

and the index is backed by a table space that was defined with the

LARGE option, the LARGE keyword is required for DSN1PRNT.

The subsequent keyword K, M, or G, indicates the units of the

value that is specified in integer.

K Indicates that the integer value is to be multiplied by 1 KB

to specify the maximum piece size in bytes. integer must be

either 256 or 512.

M Indicates that the integer value is to be multiplied by 1 MB

to specify the maximum piece size in bytes. integer must be

a power of 2, between 1 and 512.

G Indicates that the integer value is to be multiplied by 1 GB

to specify the maximum piece size in bytes. integer must be

1, 2, or 4.

Valid values for piece size are:

v 1 MB or 1 GB

v 2 MB or 2 GB

DSN1PRNT

764 Utility Guide and Reference

|

v 4 MB or 4 GB

v 8 MB

v 16 MB

v 32 MB

v 64 MB

v 128 MB

v 256 KB or 256 MB

v 512 KB or 512 MB

NUMPARTS(integer)

Specifies the number of partitions that are associated with the

input data set. NUMPARTS is required if the input data set is

partitioned. When you use DSN1PRNT to copy a data-partitioned

secondary index, specify the number of partitions in the index.

 Valid specifications range from 1 to 4096. DSN1PRNT uses this

value to help locate the first page in a range that is to be printed. If

you omit NUMPARTS or specify it as 0, DSN1PRNT assumes that

your input file is not partitioned. If you specify a number greater

than 64, DSN1PRNT assumes that the data set is for a partitioned

table space that was defined with the LARGE option, even if the

LARGE keyword is not specified for DSN1PRNT.

DSN1PRNT cannot always validate the NUMPARTS parameter. If

you specify it incorrectly, DSN1PRNT might print the wrong data

sets or return an error message that indicates that an unexpected

page number was encountered.

PRINT(hexadecimal-constant,hexadecimal-constant)

Causes the SYSUT1 data set to be printed in hexadecimal format

on the SYSPRINT data set. This option is the default for

DSN1PRNT.

 You can specify the PRINT parameter with or without page range

specifications. If you do not specify a range, all pages of the

SYSUT1 are printed. If you want to limit the range of pages that

are printed, you can do so by indicating the beginning and ending

page numbers with the PRINT parameter or, if you want to print a

single page, by indicating only the beginning page. In either case,

your range specifications must be from one to eight hexadecimal

characters in length.

The following example shows how to code the PRINT parameter if

you want to begin printing at page X'2F0' and to stop at page

X'35C':

PRINT(2F0,35C)

Note that the actual size of a 4-GB DB2 data set that is full is 4G -

256 x 4KB. This size also applies to data sets that are created with a

DFSMS data class that has extended addressability. When

calculating the print range of pages in a non-first data set of a

multiple data set linear table space or index with 4G DSSIZE or

PIECESIZ, use the actual data set size.

The relationship between the page size and the number of pages in

a 4-GB data set is shown in Table 142 on page 766.

DSN1PRNT

Chapter 42. DSN1PRNT 765

|
|

|

|
|
|
|
|
|

|
|

Table 142. Relationship between page size and the number of pages in a 4-GB data set

Page size Number of pages

4 KB X'FFF00'

8 KB X'7FF80'

16 KB X'3FFC0'

32 KB X'1FFE0'

For example, if PAGESIZE is 4 KB, the page number of the first

page of the third data set is 2*FFF00 = 1FFE00.

To print only the header page for a nonpartitioned table space,

specify PRINT(0). For guidance on specifying page numbers for

partitioned table spaces, see “Using VERIFY with REPLACE and

DELETE operations” on page 511 and "Data organization" in DB2

Diagnosis Guide and Reference.

You can indicate the format of the row data in the PRINT output

by specifying EBCDIC, ASCII, or UNICODE. The part of the

output that is affected by these options is in bold in Figure 142.

EBCDIC

Indicates that the row data in the PRINT output is to be

displayed in EBCDIC. The default is EBCDIC if the first page

of the input data set is not a header page.

 If the first page is a header page, DSN1PRNT uses the format

information in the header page as the default format. However,

if you specify EBCDIC, ASCII, or UNICODE, that format

overrides the format information in the header page. The

unformatted header page dump is always displayed in

EBCDIC, because most of the fields are in EBCDIC.

ASCII

Indicates that the row data in the PRINT output is to be

displayed in ASCII. Specify ASCII when printing table spaces

that contain ASCII data.

UNICODE

Indicates that the row data in the PRINT output is to be

displayed in Unicode. Specify UNICODE when printing table

spaces that contain Unicode data.

VALUE Causes each page of the input data set SYSUT1 to be scanned for

the character string that you specify in parentheses following the

VALUE parameter. Each page that contains that character string is

then printed in SYSPRINT. You can specify the VALUE parameter

in conjunction with any of the other DSN1PRNT parameters.

RECORD: XOFFSET=’0014’X PGSFLAGS=’00’X PGSLTH=65 PGSLTH=’0041’X PGSOBD=’0003’X PGSBID=’01’X

C5C5F0F6 C1404040 40404040 F1F34040 40C1E2D6 F1F3F5E7 40404040 40404040 EE06A 13 ASO135X

C1C6F3F1 C587C6F0 01800000 14199002 01174522 00000080 000000 AF31E.F0...................

RECORD: XOFFSET=’0055’X PGSFLAGS=’00’X PGSLTH=65 PGSLTH=’0041’X PGSOBD=’0003’X PGSBID=’02’X

C5C5F0F6 C1404040 40404040 F1F34040 40C1E2D6 F1F3F5E7 40404040 40404040 EE06A 13 ASO135X

C1C6F5F2 D487C5F0 09800000 78199002 01174522 00000080 000000 AF52M.E0...................

Figure 142. The part of the DSN1PRNT FORMAT output that is affected by the EBCDIC, ASCII, and UNICODE

options

DSN1PRNT

766 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|

||

||

||

||

||

||
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

(string)

Can consist of from 1 to 20 alphanumeric EBCDIC characters.

For non-EBCDIC characters, use hexadecimal characters.

(hexadecimal-constant)

Consists of from 2 to 40 hexadecimal characters. You must

specify two apostrophe characters before and after the

hexadecimal character string.

 If, for example, you want to search your input file for the string

'12345', your JCL should look like the following JCL:

//STEP1 EXEC PGM=DSN1PRNT,PARM=’VALUE(12345)’

Alternatively, you might want to search for the equivalent

hexadecimal character string, in which case your JCL should look

like the following JCL:

//STEP1 EXEC PGM=DSN1PRNT,PARM=’VALUE(’’F1F2F3F4F5’’)’

FORMAT Causes the printed output to be formatted. Page control fields are

identified, and individual records are printed. Empty fields are not

displayed.

EXPAND

Specifies that the data is compressed and causes

DSN1PRNT to expand it before formatting. The FORMAT

EXPAND function is not supported for incremental and

inline copies.

SWONLY

Causes DSN1PRNT to use software to expand the

compressed data, even when the compression

hardware is available. This option is intended to be

used only under the direction of your IBM

Software Support.

NODATA

Suppresses printing of table row data. The row headers are

formatted and printed. This keyword is ignored for

indexes. Specify NODATA to reduce the volume of the

output when the contents of the rows are not important.

NODATPGS

Suppresses all data pages of a table space. This keyword is

ignored for indexes. Specify NODATPGS to format and

print only non-data pages to reduce the volume of the

output when only certain page types are of interest (for

example, LOB space map pages). Alternatively, you can

specify NODHDR.

 DSN1PRNT cannot format a leaf or nonleaf page for an index page

set that contains keys with altered columns. When it encounters

this situation, DSN1PRNT generates the following message:

KEY WITH ALTERED COLUMN HAS BEEN DETECTED-UNABLE TO FORMAT PAGE

DSN1PRNT generates unformatted output for the page.

FORMAT might generate unformatted output for certain system

pages.

DSN1PRNT

Chapter 42. DSN1PRNT 767

#
#
#

|
|
|
|
|

|
|
|
|
|
|
|

|
|

Before running DSN1PRNT

This section contains information that you need to know before you run

DSN1PRNT.

Environment

Run DSN1PRNT as a z/OS job.

You can run DSN1PRNT even when the DB2 subsystem is not operational. If you

choose to use DSN1PRNT when the DB2 subsystem is operational, ensure that the

DB2 data sets that are to be printed are not currently allocated to DB2.

To make sure that a data set is not currently allocated to DB2, issue the DB2 STOP

DATABASE command, specifying the table spaces and indexes that you want to

print.

Authorization required

No special authorization is required. However, if any of the data sets is RACF

protected, the authorization ID of the job must have RACF authority.

Control statement

Create the utility control statement for the DSN1PRNT job. See “Syntax and

options of the DSN1PRNT control statement” on page 762 for DSN1PRNT syntax

and option descriptions.

Required data sets: DSN1PRNT uses the following DD statements:

SYSPRINT Defines the data set that contains output messages from

DSN1PRNT and all hexadecimal dump output.

SYSUT1 Defines the input data set. That data set can be a sequential data

set or a VSAM data set.

 Disposition for this data set must be specified as OLD (DISP=OLD)

to ensure that it is not in use by DB2. Specify the disposition for

this data set as SHR (DISP=SHR) only in circumstances where the

DB2 STOP DATABASE command does not work.

The requested operation takes place only for the specified data set.

If the input data set belongs to a linear table space or index space

that is larger than 2 GB, or if it is a partitioned table space or index

space, you must ensure the correct data set is specified. For

example, to print a page range in the second partition of a

four-partition table space, specify NUMPARTS(4) and the data set

name of the data set in the group of VSAM data sets comprising

the table space. The following code shows the data set name:

DSN=...A002

If you run the online REORG utility with the FASTSWITCH option,

verify the data set name before running the DSN1PRNT utility. The

fifth-level qualifier in the data set name alternates between I0001

and J0001 when using FASTSWITCH. Specify the correct fifth-level

qualifier in the data set name to successfully execute the

DSN1PRNT utility. To determine the correct fifth-level qualifier,

query the IPREFIX column of SYSIBM.SYSTABLEPART for each

data partition or the IPREFIX column of SYSIBM.SYSINDEXPART

DSN1PRNT

768 Utility Guide and Reference

|
|
|

for each index partition. If the object is not partitioned, use zero as

the value for the PARTITION column in your query.

Recommendations

This section contains recommendations for running the DSN1PRNT utility.

Printing with DSN1PRNT instead of DSN1COPY

If you want to print information about a data set, use the DSN1PRNT utility rather

than the DSN1COPY utility. DSN1COPY scans the entire SYSUT1 data set, but

DSN1PRNT might be able to stop scanning before the end of the data set. Also, the

DSN1PRNT utility can write a formatted dump.

Determining page size and DSSIZE

Before using DSN1PRNT, determine the page size and data set size (DSSIZE) for

the page set. Use the query in Figure 143 on the DB2 catalog to get the information

that you need, in this example for table 'DEPT':

See “Data sets that REORG INDEX uses” on page 399 for information about

determining data set names.

Running DSN1PRNT on encrypted data

DSN1PRNT does not decrypt any encrypted data; the utility displays the data as

is.

SELECT T.CREATOR,T.NAME,S.NAME AS TABLESPACE,S.PARTITIONS,S.PGSIZE,

 CASE S.DSSIZE

 WHEN 0 THEN

 CASE WHEN S.TYPE = ’O’ THEN 4194304

 ELSE

 CASE WHEN S.PARTITIONS > 254 THEN

 CASE WHEN S.PGSIZE = 4 THEN 4194304

 WHEN S.PGSIZE = 8 THEN 8388608

 WHEN S.PGSIZE = 16 THEN 16777216

 WHEN S.PGSIZE = 32 THEN 33554432

 ELSE NULL

 END

 WHEN S.PARTITIONS > 64 THEN 4194304

 WHEN S.PARTITIONS > 32 THEN 1048576

 WHEN S.PARTITIONS > 16 THEN 2097152

 WHEN S.PARTITIONS > 0 THEN 4194304

 ELSE 2097152

 END

 END

 ELSE S.DSSIZE

 END

 AS DSSIZE

 FROM SYSIBM.SYSTABLES T,

 SYSIBM.SYSTABLESPACE S

 WHERE

 T.NAME = ’DEPT’ AND

 T.TSNAME = S.NAME;

Figure 143. Example SQL query that returns the page size and data set size for the page

set.

DSN1PRNT

Chapter 42. DSN1PRNT 769

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|

Sample DSN1PRNT control statements

Example 1: Printing a data set and formatting the output. The following example

specifies that the DSN1PRNT utility is to print the data set that is identified by the

SYSUT1 DD statement and the output is to be formatted. This data set is to be

printed on the data set that is identified by the SYSPRINT DD statement. The

fifth-level qualifier in the data set name can be either I0001 or J0001. This example

uses I0001.

//jobname JOB acct info

//RUNPRNT EXEC PGM=DSN1PRNT,PARM=’PRINT,FORMAT’

//STEPLIB DD DSN=prefix.SDSNLOAD

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBC.DSNDB01.SYSUTILX.I0001.A001,DISP=SHR

Example 2: Printing a nonpartitioning index with a 64-MB piece size. The

following example specifies that DSN1PRNT is to print the first 16 pages of the

61st piece of an nonpartitioned index with a piece size of 64 MB. The pages that

are to be printed are identified by the PRINT option. These page values are

determined as follows: A data set of size 64 MB contains X'4000' 4-KB pages.

Decimal 61 is X’3D’. The page number of the first page of the 61st piece is

4000*(3D-1) = 4000*3C = F0000. To print the last 16 pages of the 61st piece, specify

PARM=(PRINT(F3FF0,F3FFF), ...).

The fifth-level qualifier in the data set name can be either I0001 or J0001. This

example uses I0001.

//PRINT2 EXEC PGM=DSN1PRNT,

// PARM=(PRINT(F0000,F000F),FORMAT,PIECESIZ(64M))

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DISP=OLD,DSN=DSNCAT.DSNDBD.MMRDB.NPI1.I0001.A061

Example 3: Printing a single page of an image copy. The following example

specifies that DSN1PRNT is to print one page of an image copy. The image copy is

identified by the SYSUT1 DD statement. The PRINT option specifies that the only

page to be printed is X'1'.

//STEP2 EXEC PGM=DSN1PRNT,

// PARM=’PRINT(1),FORMAT,INLCOPY’

//STEPLIB DD DSN=DB2A.SDSNLOAD,DISP=SHR

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=HUHYU205.L1.STEP1.DD2,DISP=SHR

Example 4: Printing a partitioned data set. The following example specifies that

DSN1PRNT is to print the data set that is identified by the SYSUT1 DD statement.

Because this data set is a table space that was defined with the LARGE option, the

DSSIZE(4G) option is specified in the parameter list for DSN1PRNT. You could

specify the LARGE option in this list instead, but specifying DSSIZE(4G) is

recommended. This input table space has 260 partitions, as indicated by the

NUMPARTS option.

//RUNPRNT1 EXEC PGM=DSN1PRNT,

// PARM=’DSSIZE(4G),PRINT,NUMPARTS(260),FORMAT’

//STEPLIB DD DSN=DB2A.SDSNLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=DSNCAT.DSNDBC.DBOM0301.TPOM0301.I0001.A259,DISP=SHR

/*

DSN1PRNT

770 Utility Guide and Reference

DSN1PRNT output

One intended use of this utility is to aid in determining and correcting system

problems. When diagnosing DB2, you might need to refer to licensed

documentation to interpret output from this utility. For more information about

diagnosing problems, see DB2 Diagnosis Guide and Reference.

DSN1PRNT

Chapter 42. DSN1PRNT 771

772 Utility Guide and Reference

Chapter 43. DSN1SDMP

Under the direction of IBM Software Support, use the IFC selective dump

(DSN1SDMP) utility to:

v Force dumps when selected DB2 trace events occur.

v Write DB2 trace records to a user-defined z/OS data set.

For information about the format of trace records, see Appendix D (Volume 2) of

DB2 Administration Guide.

The following topics provide additional information:

v “Syntax and options of the DSN1SDMP control statement”

v “Before running DSN1SDMP” on page 778

v “Using DSN1SDMP to force dumps and write trace records” on page 779

v “Sample DSN1SDMP control statements” on page 780

v “DSN1SDMP output” on page 784

Syntax and options of the DSN1SDMP control statement

DSN1SDMP syntax diagram

�� START TRACE (trace-parameters)

�

SELECT

function,offset,data-specification

 �

�
(X'00E60100')

ACTION

(action

)

(abend-code)

(1)

(STTRACE

)second-trace-spec

(X'00E60100')

,action

(abend-code)

 �

�
 AFTER (1)

AFTER

(integer)

 FOR (1)

FOR

(integer)

��

Notes:

1 The options in the second-trace-spec do not have to be specified immediately following the

STTRACE option. However, they can be specified only if the STTRACE option is also specified.

© Copyright IBM Corp. 1983, 2008 773

||||||||||

second-trace-spec:

��

(X'00E60100')

ACTION2(

action

)

(abend-code)

FILTER(

ACE

)

EB

COMMAND

command
 �

�
 AFTER2 (1)

AFTER2

(integer)

 FOR2 (1)

FOR2

(integer)

�

SELECT2

function,offset,data-specification

��

Option descriptions

START TRACE (trace-parameters)

Indicates the start of a DSN1SDMP job. START TRACE is a

required keyword and must be the first keyword that is specified

in the SDMPIN input stream. The trace parameters that you use

are those that are described in Chapter 2 of DB2 Command

Reference, except that you cannot use the subsystem recognition

character.

 If the START TRACE command in the SDMPIN input stream is not

valid, or if the user is not properly authorized, the IFI

(instrumentation facility interface) returns an error code and

START TRACE does not take effect. DSN1SDMP writes the error

message to the SDMPPRNT data set.

 Trace Destination: If DB2 trace data is to be written to the SDMPTRAC data set,

the trace destination must be an IFI online performance (OP) buffer. OP buffer

destinations are specified in the DEST keyword of START TRACE. Eight OP buffer

destinations exist, OP1 to OP8. The OPX trace destination assigns the next

available OP buffer.

The DB2 output text from the START TRACE command is written to SDMPPRNT.

START TRACE and its associated keywords must be specified first. Specify the

remaining selective dump keywords in any order following the START TRACE

command.

SELECT function,offset,data-specification

Specifies selection criteria in addition to those that are specified on the START

TRACE command. SELECT expands the data that is available for selection in a

trace record and allows more specific selection of data in the trace record than

using START TRACE alone. You can specify a maximum of eight SELECT

criteria.

 The selection criteria use the concept of the current-record pointer. DB2

initializes the current-record pointer to zero, that is, at the beginning of the

trace record. For this instance of the DSN1SDMP trace, the trace record begins

with the self-defining section. The current-record pointer can be modified by

Px and LN functions, which are described in the list of functions below.

DSN1SDMP

774 Utility Guide and Reference

|||||||||||

For information about the fields in the DB2 trace records, see Appendix D

(Volume 2) of DB2 Administration Guide.

You can specify the selection criteria with the following parameters:

function Specifies the type of search that is to be performed on the trace

record. The specified value must be two characters. The

possible values are:

DR Specifies a direct comparison of data from the specified

offset. The offset is always calculated from the

current-record pointer.

GE Specifies a comparison of data that is greater than or

equal to the value of the specified offset. The offset is

always calculated from the current-record pointer. The

test succeeds if the data from the specified offset is

greater than or equal to data-specification, which you

can specify on the SELECT option.

LE Specifies a comparison of data that is less than or equal

to the value of the specified offset. The offset is always

calculated from the current-record pointer. The test

succeeds if the data from the specified offset is less

than or equal to data-specification, which you specify on

the SELECT option.

P1, P2, or P4

Selects the 1-, 2-, or 4-byte field that is located offset

bytes past the start of the record. The function then

moves the current-record pointer that number of bytes

into the record. P1, P2, and P4 always start from the

beginning of the record (plus the offset that you

specify).

 This offset is saved as the current-record pointer that is

to be used on subsequent DR, LE, GR, and LN

requests.

For example, suppose that the user knows that the

offset to the standard header is 4 bytes long and is

located in the first 4 bytes of the record. P4,00 reads

that offset and moves the current-record pointer to the

start of the standard header.

LN Advances the current-record pointer by the number of

bytes that are indicated in the 2-byte field that is

located offset bytes from the previous current-record

pointer.

 This offset is saved as the current-record pointer that is

to be used on subsequent DR, LE, GR, and LN

requests.

offset Specifies the number (in decimal) of bytes into the trace record

where the comparison with the data-specification field begins.

The offset starts from the beginning of the trace record after a

P1, P2, or P4, and from the current-record pointer after a GE,

LE, LN, or DR.

DSN1SDMP

Chapter 43. DSN1SDMP 775

The format of the DB2 trace record at data-specification

comparison time is shown in Figure 144.

v The format of the self-defining section depends on the trace

type.

v The format and content of the data sections depend on the

IFCID that is being recorded. Each record can have one or

more data sections. Each data section can have multiple

repeating groups.

v The format and content of the trace header section depends

on the trace type.

For more information about the format of DB2 trace records,

refer to Appendix D (Volume 2) of DB2 Administration Guide.

data-specification

Specifies that the data can be hexadecimal (for example,

X'9FECBA10') or character (C'FIELD').

ACTION

Specifies the action to perform when a trace record passes the selection criteria

of the START TRACE and SELECT keywords.

 Attention: The purpose of the ACTION keyword is to facilitate problem

analysis. You should use it with extreme caution because you might damage

existing data. Not all abends are recoverable, even if the ABENDRET

parameter is specified. Some abends might force the DB2 subsystem to

terminate, particularly those abends that occur during end-of-task or

end-of-memory processing due to the agent having experienced a previous

abend.

action(abend-code)

Specifies a particular action to perform. Possible values for action are:

ABENDRET ABEND and retry the agent.

ABENDTER ABEND and terminate the agent.

 An abend reason code can also be specified on this parameter. The codes

must be in the range X'00E60100' to X'00E60199'. The default value is

X'00E60100'.

STTRACE

Specifies that a second trace is to be started when a trace record passes the

selection criteria.

If you do not specify action or STTRACE, the record is written and no action is

performed.

AFTER(integer)

Specifies that the ACTION is to be performed after the trace point is reached

integer times.

 integer must be between 1 and 32767. The default is AFTER(1).

Self defining
section Data sections

Product
section

Figure 144. Format of the DB2 trace record at data specification comparison time

DSN1SDMP

776 Utility Guide and Reference

FOR(integer)

Specifies the number of times that the ACTION is to take place when the

specified trace point is reached. After integer times, the trace is stopped, and

DSN1SDMP terminates.

 integer must be between 1 and 32767 and includes the first action. If no

SELECT criteria are specified, use an integer greater than 1; the START TRACE

command automatically causes the action to take place one time. The default is

FOR(1).

ACTION2

Specifies the action to perform when a trace record passes the selection criteria

of the START TRACE, SELECT, and SELECT2 keywords.

 Attention: The ACTION2 keyword, like the ACTION keyword, should be used

with extreme caution, because you might damage existing data. Not all abends

are recoverable, even if the ABENDRET parameter is specified. Some abends

might force the DB2 subsystem to terminate, particularly those that occur

during end-of-task or end-of-memory processing due to the agent having

experienced a previous abend.

action(abend-code)

Specifies a particular action to perform. Possible values for action are:

ABENDRET ABEND and retry the agent.

ABENDTER ABEND and terminate the agent.

 An abend reason code can also be specified on this parameter. The codes

must be in the range X'00E60100-00E60199'. If no abend code is specified,

X'00E60100' is used.

If you do not specify action, the record is written and no action is performed.

FILTER

Specifies that DSN1SDMP is to filter the output of the second trace based on

either an ACE or an EB.

(ACE)

Specifies that DSN1SDMP is to include trace records only for the agent

control element (ACE) that is associated with the agent when the first

action is triggered and the second trace is started.

(EB)

Specifies that DSN1SDMP is to include trace records only for the execution

block (EB) that is associated with the agent when the first action is

triggered and the second trace is started.

COMMAND

Indicates that the specified command is to be issued when a trace record

passes the selection criteria for the first trace and a second trace is started. You

can start a second trace by specifying the STTRACE option.

command

Specifies a specific command to be issued. For a complete list of

commands, see DB2 Command Reference.

FOR2(integer)

Specifies the number of times that the ACTION2 is to take place when the

specified second trace point is reached. After integer times, the second trace is

stopped, and DSN1SDMP terminates.

DSN1SDMP

Chapter 43. DSN1SDMP 777

integer must be between 1 and 32767 and includes the first action. If no

SELECT2 criteria are specified, use an integer greater than 1; the STTRACE

option automatically causes the action to take place one time. The default is

FOR2(1).

AFTER2(integer)

Specifies that the ACTION2 is to be performed after the second trace point is

reached integer times.

 integer must be between 1 and 32767. The default is AFTER2(1).

SELECT2 function,offset,data-specification

Specifies selection criteria for the second trace. This option functions like the

SELECT option, except that it pertains to the second trace only. You can start a

second trace by specifying the STTRACE option.

Before running DSN1SDMP

This section contains information that you need to know before you run

DSN1SDMP.

Environment

Run DSN1SDMP as a z/OS job, and execute it with the DSN TSO command

processor. To execute DSN1SDMP, the DB2 subsystem must be running.

The z/OS job completes only under one of the following conditions:

v The TRACE and any additional selection criteria that are started by DSN1SDMP

meet the criteria specified in the FOR parameter.

v The TRACE that is started by DSN1SDMP is stopped by using the STOP TRACE

command.

v The job is canceled by the operator.

If you must stop DSN1SDMP, use the STOP TRACE command.

Authorization required

To execute this utility, the privilege set of the process must include one of the

following privileges or authorities:

v TRACE system privilege

v SYSOPR authority

v SYSADM authority

v MONITOR1 or MONITOR2 privileges (if you are using user-defined data sets)

The user who executes DSN1SDMP must have EXECUTE authority on the plan

that is specified in the trace-parameters of the START TRACE keyword.

Control statement

See “Syntax and options of the DSN1SDMP control statement” on page 773 for

DSN1SDMP syntax and option descriptions.

Required data sets: DSN1SDMP uses the following DD statements:

SDMPIN Defines the control data set that specifies the input parameters to

DSN1SDMP. This DD statement is required. The LRECL is 80. Only

the first 72 columns are checked by DSN1SDMP.

SDMPPRNT Defines the sequential message data set that is used for

DSN1SDMP

778 Utility Guide and Reference

DSN1SDMP messages. If the SDMPPRNT DD statement is omitted,

no messages are written. The LRECL is 131.

SYSABEND Defines the data set that is to contain an ABEND dump in case

DSN1SDMP abends. This DD statement is optional.

SDMPTRAC Defines the sequential DB2 trace record data set that DB2 returns

to DSN1SDMP. The DD statement is required only if trace data is

written to an OPX trace destination. If the destination is anything

other than an OPX buffer, SDMPTRAC is ignored.

 Trace records that DB2 writes to SDMPTRAC are of the same

format as SMF or GTF records except that the SDMPTRAC trace

record headers contain the monitor header (that is mapped by

DSNDQWIW). The DCB parameters are VB, BLKSIZE=32760,

LRECL=32756.

SYSTSIN Defines the DSN commands to connect to DB2 and to execute an

IFC selective dump:

DSN SYSTEM(subsystem name)

RUN PROG(DSN1SDMP) LIB(’prefix.SDSNLOAD’) PLAN(DSNEDCL)

The DB2 subsystem name must be filled in by the user. The DSN

RUN command must specify a plan for which the user has execute

authority. DSN1SDMP dump does not execute the specified plan;

the plan is used only to connect to DB2.

 When no plan name is specified on the DSN RUN command, the

default plan name is the program name. When DSN1SDMP is

executed without a plan, DSN generates an error if no DSN1SDMP

plan exists for which the user has execute authority.

Using DSN1SDMP to force dumps and write trace records

This section describes the following tasks that are associated with running the

DSN1SDMP utility:

 “Assigning buffers”

 “Conditions for generating a dump” on page 780

 “Stopping or modifying DSN1SDMP traces” on page 780

Assigning buffers

The OPX trace destination assigns the next available OP buffer. You must specify

the OPX destination for all traces that are being recorded to an OPn buffer, thereby

avoiding the possibility of starting a trace to a buffer that has already been

assigned.

If a trace is started to an OPn buffer that has already been assigned, DSN1SDMP

waits indefinitely until the trace is manually stopped. The default for

MONITOR-type traces is the OPX destination (the next available OP buffer). Other

trace types must be explicitly directed to OP destinations via the DEST keyword of

the START TRACE command. DSN1SDMP interrogates the IFCAOPN field after

the START TRACE COMMAND call to determine if the trace was started to an OP

buffer.

Trace records are written to the SDMPTRAC data set when the trace destination is

an OP buffer (see “Trace Destination” on page 774). The instrumentation facilities

DSN1SDMP

Chapter 43. DSN1SDMP 779

#
#

component (IFC) writes trace records to the buffer and posts DSN1SDMP to read

the buffer when it fills to half of the buffer size.

You can specify the buffer size on the BUFSIZE keyword of the START TRACE

command. All returned records are written to SDMPTRAC.

If the number of generated trace records requires a larger buffer size than was

specified, you can lose some trace records. If this happens, error message

DSN2724I is issued.

Conditions for generating a dump

DSN1SDMP generates a DB2 dump when all of the following events occur:

v DB2 produces a trace record that satisfies all of the selection criteria.

v You specify an abend action (ABENDRET or ABENDTER).

v The AFTER and FOR conditions for the trace are satisfied.

If all three events occur, an 00E601xx abend occurs. xx is an integer between 1 and

99 that DB2 obtains from the user-specified value on the ACTION keyword.

Stopping or modifying DSN1SDMP traces

If you must stop DSN1SDMP, use the STOP TRACE command.

If DSN1SDMP does not finish execution, you can stop the utility by issuing the

STOP TRACE command, as in the following example:

-STOP TRACE=P CLASS(32)

DSN1SDMP executes as a stand-alone batch utility without requiring external

intervention from the console operator or other programs. During execution,

DSN1SDMP issues an IFI READA request to obtain the data from the OPn buffer

and a STOP TRACE command to terminate the original trace that is started by

DSN1SDMP.

A STOP TRACE or MODIFY TRACE command that is entered from a console for

the trace that is started by DSN1SDMP causes immediate abnormal termination of

DSN1SDMP processing. The IFI READA function terminates with an appropriate

IFI termination message and reason code. Additional error messages and reason

codes that are associated with the DSN1SDMP STOP TRACE command vary

depending on the specific trace command that is entered by the console operator.

If the console operator terminates the original trace by using the STOP TRACE

command, the subsequent STOP TRACE command that is issued by DSN1SDMP

fails.

If the console operator enters a MODIFY TRACE command and processing of this

command completes before the STOP TRACE command is issued by DSN1SDMP,

the modified trace is also terminated.

Sample DSN1SDMP control statements

Example 1: Creating the JCL for DSN1SDMP. The example in Figure 145 on page

781 shows the skeleton JCL for a DSN1SDMP job.

DSN1SDMP

780 Utility Guide and Reference

#
#

Example 2: Abending and terminating agent on -904 SQL CODE. The example in

Figure 146 on page 782 specifies that DB2 is to start a performance trace (which is

indicated by the letter P) and activate only IFCID 58. To start only those IFCIDs

that are specified in the IFCID option, use trace classes 30-32. In this example, trace

class 32 is specified. The trace output is to be recorded in a generic destination that

uses the first free OPn slot, as indicated by the DEST option. These START TRACE

options are explained in greater detail in DB2 Command Reference.

The SELECT option indicates additional criteria for data in the trace record. In this

example, the SELECT option first specifies that the current-record pointer is to be

moved to the 4-byte field that is located 8 bytes past the start of the record. The

option then specifies that the utility is to directly compare the data that is 74 bytes

from the current-record pointer with the value X'FFFFFC78'.

When a trace record passes the selection criteria of the START TRACE command

and SELECT keywords, DSN1SDMP is to perform the action that is specified by

the ACTION keyword. In this example, the job is to abend and terminate with

reason code 00E60188. This action is to take place only once, as indicated by the

FOR option. FOR(1) is the default, and is therefore not required to be explicitly

specified.

//DSN1J018 JOB ’IFC SD’,CLASS=A,

// MSGLEVEL=(1,1),USER=SYSADM,PASSWORD=SYSADM,REGION=1024K

//**

//*

//* THIS IS A SKELETON OF THE JCL USED TO RUN DSN1SDMP.

//* YOU MUST INSERT SDMPIN DD.

//*

//**

//IFCSD EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)

//STEPLIB DD DISP=SHR,DSN=prefix.SDSNLOAD

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SDMPPRNT DD SYSOUT=*

//SDMPTRAC DD DISP=(NEW,CATLG,CATLG),DSN=IFCSD.TRACE,

// UNIT=SYSDA,SPACE=(8192,(100,100)),DCB=(DSORG=PS,

// LRECL=32756,RECFM=VB,BLKSIZE=32760)

//SDMPIN DD *

//**

//*

//* INSERT SDMPIN DD HERE. IT MUST BEGIN WITH A VALID

//* START TRACE COMMAND (WITHOUT THE SUBSYSTEM RECOGNITION CHAR)

//*

//**

 (VALID SDMPIN GOES HERE)

/*

//**

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 RUN PROG(DSN1SDMP) PLAN(DSNEDCL)

 END

//*

Figure 145. Skeleton JCL for DSN1SDMP

DSN1SDMP

Chapter 43. DSN1SDMP 781

#
#

Example 3: Abending and retrying on RMID 20. The example in Figure 147

specifies that DB2 is to start a performance trace (which is indicated by the letter

P) and activate all IFCIDs in classes 3 and 8. The trace output is to be recorded in

a generic destination that uses the first free OPn slot, as indicated by the DEST

option. The TDATA (TRA) option specifies that a CPU header is to be placed into

the product section of each trace record. These START TRACE options are

explained in greater detail in DB2 Command Reference.

The SELECT option indicates additional criteria for data in the trace record. In this

example, the SELECT option first specifies that the current-record pointer is to be

placed at the 4-byte field that is located at the start of the record. The current

record pointer is then to be advanced the number of bytes that are indicated in the

2-byte field that is located at the current record pointer. The utility is then to

directly compare the data that is 4 bytes from the current-record pointer with the

value X'0025'.

When a trace record passes the selection criteria of the START TRACE command

and SELECT keywords, DSN1SDMP is to perform the action that is specified by

the ACTION keyword. In this example, the job is to abend and retry the agent.

Example 4: Generating a dump on SQLCODE -811 RMID16 IFCID 58. The example

in Figure 148 on page 783 specifies that DB2 is to start a performance trace (which

is indicated by the letter P) and activate all IFCIDs in class 3. The trace output is to

be recorded in the system management facility (SMF). The TDATA (COR,TRA)

//SDMPIN DD *

* START ONLY IFCID 58, END SQL STATEMENT

 START TRACE=P CLASS(32) IFCID(58) DEST(OPX)

 FOR(1)

 ACTION(ABENDTER(00E60188))

 SELECT

* OFFSET TO FIRST DATA SECTION CONTAINING THE SQLCA.

 P4,08

* SQLCODE -904, RESOURCE UNAVAILABLE

 DR,74,X’FFFFFC78’

/*

Figure 146. Example job that abends and terminates agent on -904 SQL code

//* ABEND AND RETRY AN AGENT WHEN EVENT ID X’0025’

//* (AGENT ALLOCATION) IS RECORDED BY RMID 20 (SERVICE

//* CONTROLLER).

//*

//SDMPIN DD *

* ENSURE ONLY THE TRACE HEADER IS APPENDED WITH THE STANDARD HEADER

* VIA THE TDATA KEYWORD ON START TRACE

 START TRACE=P CLASS(3,8) RMID(20) DEST(OPX) TDATA(TRA)

* ABEND AND RETRY THE AGENT WITH THE DEFAULT ABEND CODE (00E60100)

 ACTION(ABENDRET)

* SPECIFY THE SELECT CRITERIA FOR RMID.EID

 SELECT

* OFFSET TO THE STANDARD HEADER

 P4,00

* ADD LENGTH OF STANDARD HEADER TO GET TO TRACE HEADER

 LN,00

* LOOK FOR EID 37 AT OFFSET 4 IN THE TRACE HEADER

 DR,04,X’0025’

/*

Figure 147. Example job that abends and retries on RMID 20

DSN1SDMP

782 Utility Guide and Reference

option specifies that a trace header and a CPU header are to be placed into the

product section of each trace record. These START TRACE options are explained in

greater detail in DB2 Command Reference.

The SELECT option indicates additional criteria for data in the trace record. In this

example, the SELECT option first specifies that the current-record pointer is to be

placed at the 4-byte field that is located at the start of the record. The utility is then

to directly compare the data that is 2 bytes from the current-record pointer with

the value X'0116003A'. The current record pointer is then to be moved to the 4-byte

field that is located 8 bytes past the start of the current record. The utility is then

to directly compare the data that is 74 bytes from the current-record pointer with

the value X'FFFFFCD5'.

When a trace record passes the selection criteria of the START TRACE command

and SELECT keywords, DSN1SDMP is to perform the action that is specified by

the ACTION keyword. In this example, the job is to abend with reason code

00E60188 and retry the agent. This action is to take place only once, as indicated

by the FOR option. FOR(1) is the default, and is therefore not required to be

explicitly specified. AFTER(1) indicates that this action is to be performed the first

time the trace point is reached. AFTER(1) is also the default.

Example 5: Starting a second trace. The example job in Figure 149 on page 784

starts a trace on IFC 196 records. An IFC 196 record is written when a lock timeout

occurs. In this example, when a lock timeout occurs, DSN1SDMP is to start a

second trace, as indicated by the ACTION(STTRACE) option. This second trace is

to be an accounting trace, as indicated by the COMMAND START

TRACE(ACCTG) option. This trace is to include records only for the ACE that is

associated with the agent that timed out, as indicated by the FILTER(ACE) option.

When the qualifying accounting record is found, DSN1SDMP generates a dump.

//SDMPIN DD *

 START TRACE=P CLASS(3) RMID(22) DEST(SMF) TDATA(COR,TRA)

 AFTER(1)

 FOR(1)

 SELECT

* POSITION TO HEADERS (QWHS IS ALWAYS FIRST)

 P4,00

* CHECK QWHS 01, FOR RMID 16, IFCID 58

 DR,02,X’0116003A’

* POSITION TO SECOND SECTION (1ST DATA SECTION)

 P4,08

* COMPARE SQLCODE FOR 811

 DR,74,X’FFFFFCD5’

 ACTION(ABENDRET(00E60188))

/*

Figure 148. Example job that generates a dump on SQL code -811 RMID16 IFCID

DSN1SDMP

Chapter 43. DSN1SDMP 783

DSN1SDMP output

One intended use of this utility is to aid in determining and correcting system

problems. When diagnosing DB2, you might need to refer to licensed

documentation to interpret output from this utility. For more information about

diagnosing problems, see DB2 Diagnosis Guide and Reference.

//SDMPIN DD *

* START ONLY IFCID 196, TIMEOUT

 START TRACE=P CLASS(32) IFCID(196) DEST(SMF)

 AFTER(1)

* ACTION = START ACCOUNTING TRACE

 ACTION(STTRACE)

* FILTER ON JUST 196 RECORDS...

 SELECT

 P4,00

 DR,04,X’00C4’

* WHEN ACCOUNTING IS CUT, ABEND

 ACTION2(ABENDRET(00E60188))

* START THE ACCOUNTING TRACE FILTER ON THE ACE OF THE AGENT

* THAT TIMED OUT

 COMMAND

 START TRACE(ACCTG) CLASS(32) IFCID(3) DEST(SMF)

* Filter can be for ACE or EB

 FILTER(ACE)

 /*

Figure 149. Example job that starts a second trace.

DSN1SDMP

784 Utility Guide and Reference

Part 4. Appendixes

© Copyright IBM Corp. 1983, 2008 785

786 Utility Guide and Reference

Appendix A. Limits in DB2 UDB for z/OS

System storage limits might preclude the limits specified in this section. The limit

for items not that are not specified below is limited by system storage.

Table 143 shows the length limits for identifiers.

 Table 143. Identifier length limits. The term byte in this table means the number of bytes for the UTF-8 representation

unless noted otherwise.

Item Limit

External-java-routine-name 1305 bytes

Name of an alias, auxiliary table, collection, constraint,

correlation, cursor (except for DECLARE CURSOR WITH

RETURN or the EXEC SQL utility), distinct type (both

parts of two-part name), function (both parts of two-part

name), host identifier, index, JARs, parameter, procedure,

schema, sequence, specific, statement, storage group,

savepoint, SQL condition, SQL label, SQL parameter, SQL

variable, synonym, table, trigger, view, XML attribute

name, XML element name

128 bytes

Name of an authorization ID 8 bytes

Version identifier 64 bytes

Name of a column 30 bytes

Name of cursor that is created with DECLARE CURSOR

WITH RETURN

30 bytes

Name of cursor that is created with the EXEC SQL utility 8 bytes

Name of a location 16 bytes

Name of buffer pool name, catalog, database, plan,

program, table space

8 bytes

Name of package 8 bytes (Only 8 EBCDIC characters are used for packages

that are created with the BIND PACKAGE command. 128

bytes can be used for packages that are created as a result

of the CREATE TRIGGER statement.)

Table 144 shows the minimum and maximum limits for numeric values.

 Table 144. Numeric limits

Item Limit

Smallest SMALLINT value -32768

Largest SMALLINT value 32767

Smallest INTEGER value -2147483648

Largest INTEGER value 2147483647

Smallest REAL value About -7.2×1075

Largest REAL value About 7.2×1075

Smallest positive REAL value About 5.4×10-79

Largest negative REAL value About -5.4×10-79

© Copyright IBM Corp. 1983, 2008 787

||
|

||

||

|
|
|
|
|
|
|
|
|

|

||

#|

||

|
|
|

||

||

|
|
|

||
|
|
|
|

Table 144. Numeric limits (continued)

Item Limit

Smallest FLOAT value About -7.2×1075

Largest FLOAT value About 7.2×1075

Smallest positive FLOAT value About 5.4×10-79

Largest negative FLOAT value About -5.4×10-79

Smallest DECIMAL value 1 − 1031

Largest DECIMAL value 1031 − 1

Largest decimal precision 31

Table 145 shows the length limits for strings.

 Table 145. String length limits

Item Limit

Maximum length of CHAR 255 bytes

Maximum length of GRAPHIC 127 double-byte characters

Maximum length1 of VARCHAR 4046 bytes for 4-KB pages

8128 bytes for 8-KB pages

16320 bytes for 16-KB pages

32704 bytes for 32-KB pages

Maximum length1 of VARGRAPHIC 2023 double-byte characters for 4-KB pages

4064 double-byte characters for 8-KB pages

8160 double-byte characters for 16-KB pages

16352 double-byte characters for 32-KB pages

Maximum length of CLOB 2 147 483 647 bytes (2 GB - 1 byte)

Maximum length of DBCLOB 1 073 741 823 double-byte characters

Maximum length of BLOB 2 147 483 647 bytes (2 GB - 1 byte)

Maximum length of a character constant 32704 UTF-8 bytes

Maximum length of a hexadecimal character constant 32704 hexadecimal digits

Maximum length of a graphic string constant 16352 double-byte characters (32704 bytes when

expressed in UTF-8)

Maximum length of a hexadecimal graphic string

constant

32704 hexadecimal digits

Maximum length of a concatenated character string 2 147 483 647 bytes (2 GB - 1 byte)

Maximum length of a concatenated graphic string 1 073 741 824 double-byte characters

Maximum length of a concatenated binary string 2 147 483 647 bytes (2 GB - 1 byte)

Note:

1. The maximum length can be achieved only if the column is the only column in the table. Otherwise, the

maximum length depends on the amount of space remaining on a page.

Table 146 shows the minimum and maximum limits for datetime values.

 Table 146. Datetime limits

Item Limit

Smallest DATE value (shown in ISO format) 0001-01-01

Limits in DB2 UDB for z/OS

788 Utility Guide and Reference

|

|

|#
#

|
|

Table 146. Datetime limits (continued)

Item Limit

Largest DATE value (shown in ISO format) 9999-12-31

Smallest TIME value (shown in ISO format) 00.00.00

Largest TIME value (shown in ISO format) 24.00.00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000

Table 147 shows the DB2 limits on SQL statements.

 Table 147. DB2 limits on SQL statements

Item Limit

Maximum number of columns that are in a table or view

(the value depends on the complexity of the CREATE

VIEW statement) or columns returned by a table function.

750 or fewer

749 if the table is a dependent

Maximum number of base tables in a view, SELECT,

UPDATE, INSERT, or DELETE

225

Maximum row and record sizes for a table See the description of CREATE TABLE in Chapter 5 of

DB2 SQL Reference.

Maximum number of volume IDs in a storage group 133

Maximum number of partitions in a partitioned table

space or partitioned index

64 for table spaces that are not defined with LARGE or a

DSSIZE greater than 2 GB.

4096, depending on what is specified for DDSIZE or

LARGE and the page size. See the description of

NUMPARTS in CREATE TABLESPACE in Chapter 5 of

DB2 SQL Reference.

Maximum sum of the lengths of limit key values of a

partition boundary

765 UTF-8 bytes

Maximum size of a partition (table space or index) For table spaces that are not defined with LARGE or a

DSSIZE greater than 2 GB:

 4 GB, for 1 to 16 partitions

 2 GB, for 17 to 32 partitions

 1 GB, for 33 to 64 partitions

For table spaces that are defined with LARGE:

 4 GB, for 1 to 4096 partitions

For table spaces that are defined with a DSSIZE greater

than 2 GB:

 64 GB, depending on the page size (for 1 to 256

partitions for 4-KB pages, for 1 to 512 partitions for

8-KB pages, for 1 to 1024 partitions for 16-KB pages,

and 1 to 2048 partitions for 32-KB pages)

Maximum size of a DBRM entry 3272000 bytes

Maximum length of an index key Partitioning index: 255-n

Nonpartitioning index that is padded: 2000-n

Nonpartitioning index that is not padded: 2000-n-2m

Where n is the number of columns in the key that allow

nulls and m is the number of varying-length columns in

the key

Limits in DB2 UDB for z/OS

Appendix A. Limits in DB2 UDB for z/OS 789

|
|
|
|

#
#
#

|
|

|
|
|
#
#
#

#

||
|
|

|
|
|

Table 147. DB2 limits on SQL statements (continued)

Item Limit

Maximum number of bytes used in the partitioning of a

partitioned index

255 (This maximum limit is subject to additional

limitations, depending on the number of partitions in the

table space. The number of partitions * (106 + limit key

size) must be less than 65394.)

Maximum number of columns in an index key 64

Maximum number of tables in a FROM clause 225 or fewer, depending on the complexity of the

statement

Maximum number of subqueries in a statement 224

Maximum total length of host and indicator variables

pointed to in an SQLDA

32767 bytes

2 147 483 647 bytes (2 GB - 1 byte) for a LOB, subject to

the limitations that are imposed by the application

environment and host language

Longest host variable used for insert or update 32704 bytes for a non-LOB

2 147 483 647 bytes (2 GB - 1 byte) for a LOB, subject to

the limitations that are imposed by the application

environment and host language

Longest SQL statement 2 097 152 bytes

Maximum number of elements in a select list 750 or fewer, depending on whether the select list

includes a hidden ROWID column or is for the result

table of static scrollable cursor1

Maximum number of predicates in a WHERE or

HAVING clause

Limited by storage

Maximum total length of columns of a query operation

requiring a sort key (SELECT DISTINCT, ORDER BY,

GROUP BY, UNION without the ALL keyword, and the

DISTINCT keyword for aggregate functions)

4000 bytes

Maximum total length os columns of a query operation

requiring sort and evaluating column functions

(MULTIPLE DISTINCT)

32686 bytes

Maximum length of a sort key 16000 bytes

Maximum length of a check constraint 3800 bytes

Maximum number of bytes that can be passed in a single

parameter of an SQL CALL statement

32765 bytes for a non-LOB

2 147 483 647 bytes (2 GB - 1 byte) for a LOB, subject to

the limitations imposed by the application environment

and host language

Maximum number of stored procedures, triggers, and

user-defined functions that an SQL statement can

implicitly or explicitly reference

16 nesting levels

Maximum length of the SQL path 2048 bytes

Note:

1. If the scrollable cursor is read-only, the maximum number is 749 less the number of columns in the ORDER BY

that are not in the select list. If the scrollable cursor is not read-only, the maximum number is 747.

Table 148 on page 791 shows the DB2 system limits.

Limits in DB2 UDB for z/OS

790 Utility Guide and Reference

|

#
#
#

#

|

|

Table 148. DB2 system limits

Item Limit

Maximum number of concurrent DB2 or application

agents

Limited by the EDM pool size, buffer pool size, and the

amount of storage that is used by each DB2 or

application agent

Largest table or table space 128 terabytes (TB)

Largest simple or segmented table space 64 GB

Largest log space 248

Largest active log data set 4 GB -1 byte

Largest archive log data set 4 GB -1 byte

Maximum number of active log copies 2

Maximum number of archive log copies 2

Maximum number of active log data sets (each copy) 93

Maximum number of archive log volumes (each copy) 10000

Maximum number of databases accessible to an

application or end user

Limited by system storage and EDM pool size

Largest EDM pool The installation parameter maximum depends on

available space

Maximum number of databases 65271

Maximum number of rows per page 255 for all table spaces except catalog and directory tables

spaces, which have a maximum of 127

Maximum simple or segmented data set size 2 GB

Maximum partitioned data set size See item “maximum size of a partition” in Table 147 on

page 789

Maximum LOB data set size 64 GB

Maximum number of rows that can be inserted with a

single INSERT statement

32767 rows

Limits in DB2 UDB for z/OS

Appendix A. Limits in DB2 UDB for z/OS 791

|

|

|

|

|
|

Limits in DB2 UDB for z/OS

792 Utility Guide and Reference

Appendix B. DB2-supplied stored procedures

DB2 provides several stored procedures that you can call in your application

programs to perform a number of utility and application programming functions.

Those stored procedures are:

v The utilities stored procedure for EBCDIC input (DSNUTILS)

This stored procedure lets you invoke utilities from a local or remote client

program. See “Invoking utilities as a stored procedure (DSNUTILS)” on page 795

for information.

v The utilities stored procedure for Unicode input (DSNUTILU)

This stored procedure lets you invoke utilities from a local or remote client

program that generates Unicode utility control statements. See “DSNUTILU

stored procedure” on page 805 for information.

v The DB2 Universal Database Control Center (Control Center) table space and

index information stored procedure (DSNACCQC)

This stored procedure helps you determine when utilities should be run on your

databases. This stored procedure is designed primarily for use by the Control

Center but can be invoked from any client program. See “The Control Center

table space and index information stored procedure (DSNACCQC)” on page 808

for information.

v The Control Center partition information stored procedure (DSNACCAV)

This stored procedure helps you determine when utilities should be run on your

partitioned table spaces. This stored procedure is designed primarily for use by

the Control Center but can be invoked from any client program. See “The

Control Center partition information stored procedure (DSNACCAV)” on page

816 for information.

v The real-time statistics stored procedure (DSNACCOR)

This stored procedure queries the DB2 real-time statistics tables to help you

determine when you should run COPY, REORG, or RUNSTATS, or enlarge your

DB2 data sets. See “The DB2 real-time statistics stored procedure” on page 826

for more information.

v The WLM environment refresh stored procedure (WLM_REFRESH)

This stored procedure lets you refresh a WLM environment from a remote

workstation. See Appendix I of DB2 Application Programming and SQL Guide for

information.

v The CICS transaction invocation stored procedure (DSNACICS)

This stored procedure lets you invoke CICS transactions from a remote

workstation. See Appendix I of DB2 Application Programming and SQL Guide for

more information.

v The SYSIBM.USERNAMES encryption stored procedure (DSNLEUSR)

This stored procedure lets you store encrypted values in the NEWAUTHID and

PASSWORD fields of the SYSIBM.USERNAMES catalog table. See Appendix I of

DB2 Administration Guide for more information.

v The IMS transactions stored procedure (DSNAIMS)

This stored procedure allows DB2 to invoke IMS transactions and commands

easily, without maintaining their own connections to IMS.

v The EXPLAIN stored procedure (DSN8EXP)

© Copyright IBM Corp. 1983, 2008 793

|

|
|
|

#

#
#
#

#

#
#

This stored procedure allows a user to perform an EXPLAIN on an SQL

statement without having the authorization to execute that SQL statement.

v The MQ XML stored procedures

All of the MQ XML stored procedures have been deprecated.

These stored procedures perform the following functions:

 Table 149. MQ XML stored procedures

Stored procedure name Function For information, see:

DXXMQINSERT Returns a message that contains an XML

document from an MQ message queue,

decomposes the document, and stores the data

in DB2 tables that are specified by an enabled

XML collection.

DB2 Application Programming and

SQL Guide

DXXMQSHRED Returns a message that contains an XML

document from an MQ message queue,

decomposes the document, and stores the data

in DB2 tables that are specified in a document

access definition (DAD) file. DXXMQSHRED

does not require an enabled XML collection.

DB2 Application Programming and

SQL Guide

DXXMQINSERTCLOB Returns a message that contains an XML

document from an MQ message queue,

decomposes the document, and stores the data

in DB2 tables that are specified by an enabled

XML collection. DXXMQINSERTCLOB is

intended for an XML document with a length of

up to 1MB.

DB2 Application Programming and

SQL Guide

DXXMQSHREDCLOB Returns a message that contains an XML

document from an MQ message queue,

decomposes the document, and stores the data

in DB2 tables that are specified in a document

access definition (DAD) file.

DXXMQSHREDCLOB does not require an

enabled XML collection. DXXMQSHREDCLOB is

intended for an XML document with a length of

up to 1MB.

DB2 Application Programming and

SQL Guide

DXXMQINSERTALL Returns messages that contains XML documents

from an MQ message queue, decomposes the

documents, and stores the data in DB2 tables

that are specified by an enabled XML collection.

DXXMQINSERTALL is intended for XML

documents with a length of up to 3KB.

DB2 Application Programming and

SQL Guide

DXXMQSHREDALL Returns messages that contain XML documents

from an MQ message queue, decomposes the

documents, and stores the data in DB2 tables

that are specified in a document access definition

(DAD) file. DXXMQSHREDALL does not require

an enabled XML collection. DXXMQSHREDALL

is intended for XML documents with a length of

up to 3KB.

DB2 Application Programming and

SQL Guide

DB2-supplied stored procedures

794 Utility Guide and Reference

#

#

#

##

###

##
#
#
#
#

#
#

##
#
#
#
#
#

#
#

##
#
#
#
#
#
#

#
#

##
#
#
#
#
#
#
#
#

#
#

##
#
#
#
#
#

#
#

##
#
#
#
#
#
#
#

#
#

Table 149. MQ XML stored procedures (continued)

Stored procedure name Function For information, see:

DXXMQSHREDALLCLOB Returns messages that contain XML documents

from an MQ message queue, decomposes the

documents, and stores the data in DB2 tables

that are specified in a document access definition

(DAD) file. DXXMQSHREDALLCLOB does not

require an enabled XML collection.

DXXMQSHREDALLCLOB is intended for XML

documents with a length of up to 1MB.

DB2 Application Programming and

SQL Guide

DXXMQINSERTALLCLOB Returns messages that contains XML documents

from an MQ message queue, decomposes the

documents, and stores the data in DB2 tables

that are specified by an enabled XML collection.

DXXMQINSERTALLCLOB is intended for XML

documents with a length of up to 1MB.

DB2 Application Programming and

SQL Guide

DXXMQGEN Constructs XML documents from data that is

stored in DB2 tables that are specified in a

document access definition (DAD) file, and

sends the XML documents to an MQ message

queue. DXXMQGEN is intended for XML

documents with a length of up to 3KB.

DB2 Application Programming and

SQL Guide

DXXMQRETRIEVE Constructs XML documents from data that is

stored in DB2 tables that are specified in an

enabled XML collection, and sends the XML

documents to an MQ message queue.

DXXMQRETRIEVE is intended for XML

documents with a length of up to 3KB.

DB2 Application Programming and

SQL Guide

DXXMQGENCLOB Constructs XML documents from data that is

stored in DB2 tables that are specified in a

document access definition (DAD) file, and

sends the XML documents to an MQ message

queue. DXXMQGENCLOB is intended for XML

documents with a length of up to 32KB.

DB2 Application Programming and

SQL Guide

DXXMQRETRIEVECLOB Constructs XML documents from data that is

stored in DB2 tables that are specified in an

enabled XML collection, and sends the XML

documents to an MQ message queue.

DXXMQRETRIEVECLOB is intended for XML

documents with a length of up to 32KB.

DB2 Application Programming and

SQL Guide

Invoking utilities as a stored procedure (DSNUTILS)

The DSNUTILS stored procedure enables you use the SQL CALL statement to

execute DB2 utilities from a DB2 application program that specifies EBCDIC input.

When called, DSNUTILS performs the following actions:

v Dynamically allocates the specified data sets

v Creates the utility input (SYSIN) stream

v Invokes DB2 utilities (program DSNUTILB)

v Deletes all the rows that are currently in the created temporary table

(SYSIBM.SYSPRINT)

v Captures the utility output stream (SYSPRINT) into a created temporary table

(SYSIBM.SYSPRINT)

v Declares a cursor to select from SYSPRINT:

DB2-supplied stored procedures

Appendix B. DB2-supplied stored procedures 795

#

###

##
#
#
#
#
#
#
#

#
#

##
#
#
#
#
#

#
#

##
#
#
#
#
#

#
#

##
#
#
#
#
#

#
#

##
#
#
#
#
#

#
#

##
#
#
#
#
#

#
#

#

#

DECLARE SYSPRINT CURSOR WITH RETURN FOR

 SELECT SEQNO, TEXT FROM SYSPRINT

 ORDER BY SEQNO;

v Opens the SYSPRINT cursor and returns.

The calling program then fetches from the returned result set to obtain the

captured utility output.

Environment for DSNUTILS

DSNUTILS must run in a WLM environment. TCB=1 is also required.

Authorization required for DSNUTILS

To execute the CALL statement, the owner of the package or plan that contains the

CALL statement must have one or more of the following privileges on each

package that the stored procedure uses:

v The EXECUTE privilege on the package for DSNUTILS

v Ownership of the package

v PACKADM authority for the package collection

v SYSADM authority

Then, to execute the utility, you must use a privilege set that includes the

authorization to run the specified utility.

Control statement for DSNUTILS

DSNUTILS dynamically allocates the specified data sets. Any utility that requires a

sort must include the SORTDEVT keyword in the utility control statement, and

optionally, the SORTNUM keyword.

If the DSNUTILS stored procedure invokes a new utility, refer to Table 150 for

information about the default data dispositions that are specified for dynamically

allocated data sets. This table lists the DD name that is used to identify the data

set and the default dispositions for the data set by utility.

 Table 150. Data dispositions for dynamically allocated data sets

DD name

CHECK

DATA

CHECK

INDEX or

CHECK

LOB COPY

COPY-

TOCOPY LOAD

MERGE-

COPY

REBUILD

INDEX

REORG

INDEX

REORG

TABLE-

SPACE UNLOAD

SYSREC ignored ignored ignored ignored OLD KEEP

KEEP

ignored ignored ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

SYSDISC ignored ignored ignored ignored NEW

CATLG

CATLG

ignored ignored ignored NEW

CATLG

CATLG

ignored

SYSPUNCH ignored ignored ignored ignored ignored ignored ignored ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

SYSCOPY ignored ignored NEW

CATLG

CATLG

ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

ignored ignored NEW

CATLG

CATLG

ignored

SYSCOPY2 ignored ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

NEW

CATLG

CATLG

NEW

CATLG

CATLG

ignored ignored NEW

CATLG

CATLG

ignored

SYSRCPY1 ignored ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

NEW

CATLG

CATLG

NEW

CATLG

CATLG

ignored ignored NEW

CATLG

CATLG

ignored

SYSRCPY2 ignored ignored NEW

CATLG

CATLG

NEW

CATLG

CATLG

NEW

CATLG

CATLG

NEW

CATLG

CATLG

ignored ignored NEW

CATLG

CATLG

ignored

DSNUTILS stored procedure

796 Utility Guide and Reference

Table 150. Data dispositions for dynamically allocated data sets (continued)

DD name

CHECK

DATA

CHECK

INDEX or

CHECK

LOB COPY

COPY-

TOCOPY LOAD

MERGE-

COPY

REBUILD

INDEX

REORG

INDEX

REORG

TABLE-

SPACE UNLOAD

SYSUT1 NEW

DELETE

CATLG

NEW

DELETE

CATLG

ignored ignored NEW

DELETE

CATLG

ignored NEW

DELETE

CATLG

NEW

CATLG

CATLG

NEW

DELETE

CATLG

ignored

SORTOUT NEW

DELETE

CATLG

ignored ignored ignored NEW

DELETE

CATLG

ignored ignored ignored NEW

DELETE

CATLG

ignored

SYSMAP ignored ignored ignored ignored NEW

CATLG

CATLG

ignored ignored ignored ignored ignored

SYSERR NEW

CATLG

CATLG

ignored ignored ignored NEW

CATLG

CATLG

ignored ignored ignored ignored ignored

FILTER ignored ignored NEW

DELETE

CATLG

ignored ignored ignored ignored ignored ignored ignored

If the DSNUTILS stored procedure restarts a current utility, refer to Table 151 for

information about the default data dispositions that are specified for

dynamically-allocated data sets on RESTART. This table lists the DD name that is

used to identify the data set and the default dispositions for the data set by utility.

 Table 151. Data dispositions for dynamically allocated data sets on RESTART

DD name

CHECK

DATA

CHECK

INDEX or

CHECK

LOB COPY

COPY-

TOCOPY LOAD

MERGE-

COPY

REBUILD

INDEX

REORG

INDEX

REORG

TABLE-

SPACE UNLOAD

SYSREC ignored ignored ignored ignored OLD KEEP

KEEP

ignored ignored ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

SYSDISC ignored ignored ignored ignored MOD

CATLG

CATLG

ignored ignored ignored MOD

CATLG

CATLG

ignored

SYSPUNCH ignored ignored ignored ignored ignored ignored ignored ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

SYSCOPY ignored ignored MOD

CATLG

CATLG

ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

ignored ignored MOD

CATLG

CATLG

ignored

SYSCOPY2 ignored ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

MOD

CATLG

CATLG

MOD

CATLG

CATLG

ignored ignored MOD

CATLG

CATLG

ignored

SYSRCPY1 ignored ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

MOD

CATLG

CATLG

MOD

CATLG

CATLG

ignored ignored MOD

CATLG

CATLG

ignored

SYSRCPY2 ignored ignored MOD

CATLG

CATLG

MOD

CATLG

CATLG

MOD

CATLG

CATLG

MOD

CATLG

CATLG

ignored ignored MOD

CATLG

CATLG

ignored

SYSUT1 MOD

DELETE

CATLG

MOD

DELETE

CATLG

ignored ignored MOD

DELETE

CATLG

ignored MOD

DELETE

CATLG

MOD

CATLG

CATLG

MOD

DELETE

CATLG

ignored

SORTOUT MOD

DELETE

CATLG

ignored ignored ignored MOD

DELETE

CATLG

ignored ignored ignored MOD

DELETE

CATLG

ignored

SYSMAP ignored ignored ignored ignored MOD

CATLG

CATLG

ignored ignored ignored ignored ignored

SYSERR MOD

CATLG

CATLG

ignored ignored ignored MOD

CATLG

CATLG

ignored ignored ignored ignored ignored

DSNUTILS stored procedure

Appendix B. DB2-supplied stored procedures 797

Table 151. Data dispositions for dynamically allocated data sets on RESTART (continued)

DD name

CHECK

DATA

CHECK

INDEX or

CHECK

LOB COPY

COPY-

TOCOPY LOAD

MERGE-

COPY

REBUILD

INDEX

REORG

INDEX

REORG

TABLE-

SPACE UNLOAD

FILTER ignored ignored MOD

DELETE

CATLG

ignored ignored ignored ignored ignored ignored ignored

DSNUTILS stored procedure syntax diagram

The following syntax diagram shows the SQL CALL statement for invoking

utilities as a stored procedure. Because the linkage convention for DSNUTILS is

GENERAL, you cannot pass null values for input parameters. For character

parameters that you are not using, specify an empty string ('').

�� CALL DSNUTILS (utility-id,restart,utstmt,retcode , utility-name �

� ,recdsn,recdevt,recspace ,discdsn,discdevt,discspace ,pnchdsn,pnchdevt,pnchspace �

� ,copydsn1,copydevt1,copyspace1 ,copydsn2,copydevt2,copyspace2 ,rcpydsn1,rcpydevt1,rcpyspace1 �

� ,rcpydsn2,rcpydevt2,rcpyspace2 ,workdsn1,workdevt1,workspace1 ,workdsn2,workdevt2,workspace2 �

� ,mapdsn,mapdevt,mapspace ,errdsn,errdevt,errspace ,filtrdsn,filtrdevt,filtrspace) ��

DSNUTILS option descriptions

utility-id

Specifies a unique identifier for this utility within DB2.

 This is an input parameter of type VARCHAR(16) in EBCDIC.

restart Specifies whether DB2 is to restart a current utility, and, if so, at what

point the utility is to be restarted.

 restart is an input parameter of type VARCHAR(8) in Unicode UTF-8,

which must be translatable to allowable EBCDIC characters. Specify one of

the following values for this parameter:

NO or null

Indicates that the utility job is new, not a restart. No other utility

with the same utility identifier (UID) can exist.

 The default is null.

CURRENT

Restarts the utility at the last commit point.

PHASE

Restarts the utility at the beginning of the currently stopped phase.

Use the DISPLAY UTILITY to determine the currently stopped

phase.

PREVIEW

Executes in PREVIEW mode the utility control statements that

follow. While in PREVIEW mode, DB2 parses all utility control

statements for syntax errors, but normal utility execution does not

DSNUTILS stored procedure

798 Utility Guide and Reference

take place. If the syntax is valid, DB2 expands all LISTDEF lists

and TEMPLATE data set name expressions that appear in SYSIN

and prints the results to the SYSPRINT data set. DB2 evaluates and

expands all LISTDEF definitions into an actual list of table spaces

or index spaces. DB2 also evaluates TEMPLATE data set name

expressions into actual data set names through variable

substitution. DB2 also expands lists from the SYSLISTD DD and

TEMPLATE data set name expressions from the SYSTEMPL DD

that is referenced by a utility invocation.

 Absence of the PREVIEW keyword turns off preview processing

with one exception. The absence of this keyword does not override

the PREVIEW JCL parameter which, if specified, remains in effect

for the entire job step.

This option is identical to the PREVIEW JCL parameter.

utstmt Specifies the utility control statements.

 This is an input parameter of type VARCHAR(32704) in EBCDIC.

retcode Specifies the utility highest return code.

 This is an output parameter of type INTEGER.

utility-name

Specifies the utility that you want to invoke.

 This is an input parameter of type VARCHAR(20) in EBCDIC.

Because DSNUTILS allows only a single utility here, dynamic support of

data set allocation is limited. Specify only a single utility that requires data

set allocation in the utstmt parameter. Select the utility name from the

following list:

 ANY6

 CHECK DATA

 CHECK INDEX

 CHECK LOB

 COPY

 COPYTOCOPY

 DIAGNOSE

 LOAD

 MERGECOPY

 MODIFY RECOVERY

 MODIFY STATISTICS

 QUIESCE

 REBUILD INDEX

 RECOVER

 REORG INDEX

 REORG LOB

 REORG TABLESPACE

 REPAIR

 REPORT RECOVERY

 REPORT TABLESPACESET

 RUNSTATS INDEX

 RUNSTATS TABLESPACE

 STOSPACE

6. Use ANY to indicate that TEMPLATE dynamic allocation is to be used. This value suppresses the dynamic allocation that is

normally performed by DSNUTILS.

DSNUTILS stored procedure

Appendix B. DB2-supplied stored procedures 799

UNLOAD

Recommendation: Invoke DSNUTILS with a utility-name of ANY and omit

all of the xxxdsn, xxxdevt, and xxxspace parameters. Use TEMPLATE

statements to allocate the data sets.

recdsn Specifies the cataloged data set name that is required by LOAD for input,

or by REORG TABLESPACE as the unload data set. recdsn is required for

LOAD. It is also required for REORG TABLESPACE unless you also

specified NOSYSREC or SHRLEVEL CHANGE. If you specify recdsn, the

data set is allocated to the SYSREC DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specified the INDDN parameter for LOAD, the specified ddname

value must be SYSREC.

If you specify the UNLDDN parameter for REORG TABLESPACE, the

specified ddname value must be SYSREC.

recdevt Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the recdsn data set resides.

 This is an input parameter of type CHAR(8) in EBCDIC.

recspace

Specifies the number of cylinders to use as the primary space allocation for

the recdsn data set. The secondary space allocation is 10% of the primary

space allocation.

 This is an input parameter of type SMALLINT.

discdsn Specifies the cataloged data set name that is used by LOAD as a discard

data set to hold records not loaded, and by REORG TABLESPACE as a

discard data set to hold records that are not reloaded. If you specify

discdsn, the data set is allocated to the SYSDISC DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the DISCARDDN parameter for LOAD or REORG

TABLESPACE, the specified ddname value must be SYSDISC.

discdevt

Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the discdsn data set resides.

 This is an input parameter of type CHAR(8) in EBCDIC.

discspace

Specifies the number of cylinders to use as the primary space allocation for

the discdsn data set. The secondary space allocation is 10% of the primary

space allocation.

 This is an input parameter of type SMALLINT.

pnchdsn

Specifies the cataloged data set name that REORG TABLESPACE UNLOAD

EXTERNAL or REORG TABLESPACE DISCARD uses to hold the

generated LOAD utility control statements. If you specify a value for

pnchdsn, the data set is allocated to the SYSPUNCH DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the PUNCHDDN parameter for REORG TABLESPACE, the

specified ddname value must be SYSPUNCH.

DSNUTILS stored procedure

800 Utility Guide and Reference

pnchdevt

Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the pnchdsn data set resides.

 This is an input parameter of type CHAR(8) in EBCDIC.

pnchspace

Specifies the number of cylinders to use as the primary space allocation for

the pnchdsn data set. The secondary space allocation is 10% of the primary

space allocation.

 This is an input parameter of type SMALLINT.

copydsn1

Specifies the name of the required target (output) data set, which is needed

when you specify the COPY, COPYTOCOPY, or MERGECOPY utilities. It

is optional for LOAD and REORG TABLESPACE. If you specify copydsn1,

the data set is allocated to the SYSCOPY DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the COPYDDN parameter for COPY, COPYTOCOPY,

MERGECOPY, LOAD, or REORG TABLESPACE, the specified ddname1

value must be SYSCOPY.

copydevt1

Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the copydsn1 data set resides.

 This is an input parameter of type CHAR(8) in EBCDIC.

copyspace1

Specifies the number of cylinders to use as the primary space allocation for

the copydsn1 data set. The secondary space allocation is 10% of the primary

space allocation.

 This is an input parameter of type SMALLINT.

copydsn2

Specifies the name of the cataloged data set that is used as a target

(output) data set for the backup copy. It is optional for COPY,

COPYTOCOPY, MERGECOPY, LOAD, and REORG TABLESPACE. If you

specify copydsn2, the data set is allocated to the SYSCOPY2 DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the COPYDDN parameter for COPY, COPYTOCOPY,

MERGECOPY, LOAD, or REORG TABLESPACE, the specified ddname2

value must be SYSCOPY2.

copydevt2

Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the copydsn2 data set resides.

 This is an input parameter of type CHAR(8) in EBCDIC.

copyspace2

Specifies the number of cylinders to use as the primary space allocation for

the copydsn2 data set. The secondary space allocation is 10% of the primary

space allocation.

 This is an input parameter of type SMALLINT.

rcpydsn1

Specifies the name of the cataloged data set that is required as a target

DSNUTILS stored procedure

Appendix B. DB2-supplied stored procedures 801

(output) data set for the remote site primary copy. It is optional for COPY,

COPYTOCOPY, LOAD, and REORG TABLESPACE. If you specifyrcpydsn1,

the data set is allocated to the SYSRCPY1 DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specified the RECOVERYDDN parameter for COPY, COPYTOCOPY,

MERGECOPY, LOAD, or REORG TABLESPACE, the specified ddname1

value must be SYSRCPY1.

rcpydevt1

Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the rcpydsn1 data set resides.

 This is an input parameter of type CHAR(8) in EBCDIC.

rcpyspace1

Specifies the number of cylinders to use as the primary space allocation for

the rcpydsn1 data set. The secondary space allocation is 10% of the primary

space allocation.

 This is an input parameter of type SMALLINT.

rcpydsn2

Specifies the name of the cataloged data set that is required as a target

(output) data set for the remote site backup copy. It is optional for COPY,

COPYTOCOPY, LOAD, and REORG TABLESPACE. If you specify rcpydsn2,

the data set is allocated to the SYSRCPY2 DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the RECOVERYDDN parameter for COPY, COPYTOCOPY,

MERGECOPY, LOAD, or REORG TABLESPACE, the specified ddname2

value must be SYSRCPY2.

rcpydevt2

Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the rcpydsn2 data set resides.

 This is an input parameter of type CHAR(8) in EBCDIC.

rcpyspace2

Specifies the number of cylinders to use as the primary space allocation for

the rcpydsn2 data set. The secondary space allocation is 10% of the primary

space allocation

 This is an input parameter of type SMALLINT.

workdsn1

Specifies the name of the cataloged data set that is required as a work data

set for sort input and output. It is required for CHECK DATA, CHECK

INDEX and REORG INDEX. It is also required for LOAD and REORG

TABLESPACE unless you also specify the SORTKEYS keyword. It is

optional for REBUILD INDEX. If you specify workdsn1, the data set is

allocated to the SYSUT1 DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the WORKDDN parameter for CHECK DATA, CHECK

INDEX, LOAD, REORG INDEX, REORG TABLESPACE, or REBUILD

INDEX, the specified ddname value must be SYSUT1.

DSNUTILS stored procedure

802 Utility Guide and Reference

workdevt1

Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the workdsn1 data set resides.

 This is an input parameter of type CHAR(8) in EBCDIC.

workspace1

Specifies the number of cylinders to use as the primary space allocation for

the workdsn1 data set. The secondary space allocation is 10% of the primary

space allocation.

 This is an input parameter of type SMALLINT.

workdsn2

Specifies the name of the cataloged data set that is required as a work data

set for sort input and output. It is required for CHECK DATA. It is also

required if you use REORG INDEX to reorganize non-unique type 1

indexes. It is required for LOAD or REORG TABLESPACE unless you also

specify the SORTKEYS keyword. If you specify workdsn2, the data set is

allocated to the SORTOUT DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the WORKDDN parameter for CHECK DATA, LOAD,

REORG INDEX, or REORG TABLESPACE, the specified ddname value must

be SORTOUT.

workdevt2

Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the workdsn2 data set resides.

 This is an input parameter of type CHAR(8) in EBCDIC.

workspace2

Specifies the number of cylinders to use as the primary space allocation for

the workdsn2 data set. The secondary space allocation is 10% of the primary

space allocation.

 This is an input parameter of type SMALLINT.

mapdsn

Specifies the name of the cataloged data set that is required as a work data

set for error processing during LOAD with ENFORCE CONSTRAINTS. It

is optional for LOAD. If you specify mapdsn, the data set is allocated to the

SYSMAP DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the MAPDDN parameter for LOAD, the specified ddname

value must be SYSMAP.

mapdevt

Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the mapdsn data set resides.

 This is an input parameter of type CHAR(8).

mapspace

Specifies the number of cylinders to use as the primary space allocation for

the mapdsn data set. The secondary space allocation is 10% of the primary

space allocation.

 This is an input parameter of type SMALLINT.

errdsn Specifies the name of the cataloged data set that is required as a work data

DSNUTILS stored procedure

Appendix B. DB2-supplied stored procedures 803

set for error processing. It is required for CHECK DATA, and it is optional

for LOAD. If you specify errdsn, the data set is allocated to the SYSERR

DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the ERRDDN parameter for CHECK DATA or LOAD, the

specified ddname value must be SYSERR.

errdevt Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the errdsn data set resides.

 This is an input parameter of type CHAR(8) in EBCDIC.

errspace

Specifies the number of cylinders to use as the primary space allocation for

the errdsn data set. The secondary space allocation is 10% of the primary

space allocation.

 This is an input parameter of type SMALLINT.

filtrdsn Specifies the name of the cataloged data set that is required as a work data

set for error processing. It is optional for COPY CONCURRENT. If you

specify filtrdsn, the data set is allocated to the FILTER DD name.

 This is an input parameter of type VARCHAR(54) in EBCDIC.

If you specify the FILTERDDN parameter for COPY, the specified ddname

value must be FILTER.

filtrdevt

Specifies a unit address, a generic device type, or a user-assigned group

name for a device on which the filtrdsn data set resides.

 This is an input parameter of type CHAR(8) in EBCDIC.

filtrspace

Specifies the number of cylinders to use as the primary space allocation for

the filtrdsn data set. The secondary space allocation is 10% of the primary

space allocation.

 This is an input parameter of type SMALLINT.

Modifying the WLM-established address space for DSNUTILS

Add DSSPRINT, SYSIN, and SYSPRINT to the JCL procedure for starting the

WLM-established address space in which DSNUTILS runs.

Requirement: You must allocate SYSIN and SYSPRINT in the procedure to

temporarily store utility input statements and utility output messages. If you plan

to invoke RUNSTATS and collect distribution statistics, you also need to allocate

RNPRIN01.

Use JCL similar to the following sample PROC:

//***

//* JCL FOR RUNNING THE WLM-ESTABLISHED STORED PROCEDURES

//* ADDRESS SPACE

//* RGN -- THE MVS REGION SIZE FOR THE ADDRESS SPACE.

//* DB2SSN -- THE DB2 SUBSYSTEM NAME.

//* APPLENV -- THE MVS WLM APPLICATION ENVIRONMENT

//* SUPPORTED BY THIS JCL PROCEDURE.

//*

//* IMPORTANT: You must use the value 1 in this EXEC card:

//* IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

DSNUTILS stored procedure

804 Utility Guide and Reference

#
#
#

//* PARM=’&DB2SSN,1,&APPLENV’

//*

//***

//DSNWLM PROC RGN=0K,APPLENV=WLMENV1,DB2SSN=DSN

//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

// PARM=’&DB2SSN,1,&APPLENV’

//STEPLIB DD DISP=SHR,DSN=CEE.V!R!M!.SCEERUN

// DD DISP=SHR,DSN=DSN!!0.SDSNLOAD

//UTPRINT DD SYSOUT=*

//RNPRIN01 DD SYSOUT=*

//DSSPRINT DD SYSOUT=*

//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSPRINT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

Sample program for calling DSNUTILS

Three example programs calling DSNUTILS are shipped in SDSNSAMP.

v DSNTEJ6U: A DSNUTILS caller that uses PL/I. Job DSNTEJ6U compiles,

link-edits, binds, and runs sample PL/I program DSN8EPU, which invokes the

DSNUTILS stored procedure to execute an utility.

v DSNTEJ6V: A DSNUTILS caller that uses C++. Job DSNTEJ6V compiles,

link-edits, binds, and runs sample C++ program DSN8EE1, which invokes the

DSNUTILS stored procedure to execute an utility.

v DSNTEJ80: A DSNUTILS caller that uses C and ODBC. You can use this sample

to compile, pre-link, link-edit, and execute the sample application DSN8OIVP,

which you can use to verify that your DB2 ODBC installation is correct.

DSNUTILS output

DB2 creates the result set according to the DECLARE statement that is shown

under “Example of declaring a cursor to select from SYSPRINT” on page 795.

Output from a successful execution of the DSNTEJ6U sample job or an equivalent

job lists the specified parameters followed by the messages that are generated by

the DB2 DIAGNOSE DISPLAY MEPL utility.

If DSNUTILB abends, the abend codes are returned as DSNUTILS return codes.

DSNUTILU stored procedure

The DSNUTILU stored procedure enables you to provide control statements in

Unicode UTF-8 characters instead of EBCDIC characters to execute DB2 utilities

from a DB2 application program. To use the stored procedure DSNUTILU, input

data sets for the utility control statements can begin with the following Unicode

characters:

v A Unicode UTF-8 blank (X'20')

v A Unicode UTF-8 dash (X'2D')

v Upper case Unicode UTF-8 ″A″ through ″Z″ (X'41' through X'5A')

When called, DSNUTILU performs the following actions:

v Translates the values that are specified for utility-id and restart to EBCDIC

v Creates the utility input (SYSIN) stream for control statements that use Unicode

characters

v Invokes DB2 utilities (Program DSNUTILB)

v Deletes all the rows that are currently in the created temporary table

(SYSIBM.SYSPRINT)

DSNUTILS stored procedure

Appendix B. DB2-supplied stored procedures 805

#
#

|

|
|
|
|
|
|
|
|

|

|

|
|

|

|
|

v Captures the utility output stream (SYSPRINT) into a created temporary table

(SYSIBM.SYSPRINT)

v Declares a cursor to select from SYSPRINT:

DECLARE SYSPRINT CURSOR WITH RETURN FOR

 SELECT SEQNO, TEXT FROM SYSPRINT

 ORDER BY SEQNO;

v Opens the SYSPRINT cursor and returns

The calling program then performs fetches from the returned result set to obtain

the captured utility output.

The BIND PACKAGE statement for the DSNUTILU stored procedure determines

the character set of the resulting utility SYSPRINT output that is placed in the

SYSIBM.SYSPRINT table. If ENCODING(EBCDIC) is specified, the SYSPRINT

contents are in EBCDIC. If ENCODING(UNICODE) is specified, the SYSPRINT

contents are in Unicode. The default install job, DSNTIJSG, is shipped with

ENCODING(EBCDIC).

Environment for DSNUTILU

DSNUTILU must run in a WLM environment. TCB=1 is also required.

Authorization required for DSNUTILU

To execute the CALL statement, the owner of the package or plan that contains the

CALL statement must have one or more of the following privileges on each

package that the stored procedure uses:

v The EXECUTE privilege on the package for DSNUTILU

v Ownership of the package

v PACKADM authority for the package collection

v SYSADM authority

Then, to execute the utility, you must use a privilege set that includes the

authorization to run the specified utility.

Control statement for DSNUTILU

DSNUTILU does not dynamically allocate data sets. The TEMPLATE utility control

statement must be used to dynamically allocate data sets. Any utility that requires

a sort must include the SORTDEVT keyword in the utility control statement. Use

of the SORTNUM keyword is optional.

DSNUTILU stored procedure syntax diagram

The following syntax diagram shows the SQL CALL statement for invoking

utilities as a stored procedure.

�� CALL DSNUTILS (utility-id,restart,utstmt,retcode) ��

DSNUTILU option descriptions

utility-id

Specifies a unique identifier for this utility within DB2.

DSNUTILU stored procedure

806 Utility Guide and Reference

|
|

|

|
|
|

|

|
|

|
|
|
|
|
|

|

|

|

|
|
|

|

|

|

|

|
|

|

|
|
|
|

|

|
|
|

|||||||||||||||
|
||

|

|
|

This is an input parameter of type VARCHAR(16) in Unicode UTF-8,

which must be translatable to the following allowable EBCDIC characters:

v A - Z (upper and lower case)

v 0 - 9

v #, $, @, ¢, !, ^, or period (.)

restart Specifies whether DB2 is to restart a current utility, and, if so, at what

point the utility is to be restarted.

 restart is an input parameter of type VARCHAR(8) in Unicode UTF-8,

which must be translatable to allowable EBCDIC characters. Specify one of

the following values for this parameter:

NO or null

Indicates that the utility job is new, not a restart. No other utility

with the same utility identifier (UID) can exist.

 The default is null.

CURRENT

Restarts the utility at the last commit point.

PHASE

Restarts the utility at the beginning of the currently stopped phase.

Use the DISPLAY UTILITY to determine the currently stopped

phase.

PREVIEW

Executes in PREVIEW mode the utility control statements that

follow. While in PREVIEW mode, DB2 parses all utility control

statements for syntax errors, but normal utility execution does not

take place. If the syntax is valid, DB2 expands all LISTDEF lists

and TEMPLATE data set name expressions that appear in SYSIN

and prints the results to the SYSPRINT data set. DB2 evaluates and

expands all LISTDEFs into an actual list of table spaces or index

spaces. DB2 also evaluates TEMPLATE data set name expressions

into actual data set names through variable substitution. DB2 also

expands lists from the SYSLISTD DD and TEMPLATE data set

name expressions from the SYSTEMPL DD that is referenced by a

utility invocation.

 Absence of the PREVIEW keyword turns off preview processing

with one exception. The absence of this keyword does not override

the PREVIEW JCL parameter which, if specified, remains in effect

for the entire job step.

This option is identical to the PREVIEW JCL parameter.

utstmt Specifies the utility control statements.

 utstmt is an input parameter of type VARCHAR(32704) in UNICODE

UTF-8.

retcode Specifies the utility highest return code.

 retcode is an output parameter of type INTEGER.

Modifying the WLM-established address space for DSNUTILU

Add DSSPRINT, SYSIN, and SYSPRINT to the JCL procedure for starting the

WLM-established address space, in which DSNUTILU runs. You must allocate

SYSIN and SYSPRINT in the procedure to temporarily store utility input

DSNUTILU stored procedure

Appendix B. DB2-supplied stored procedures 807

|
|
|
|
|

||
|

|
|
|

|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

||

|
|

||

|

|

|
|
|

statements and utility output messages. If you plan to invoke RUNSTATS and

collect distribution statistics, you also need to allocate RNPRIN01.

Use JCL similar to the sample PROC in Figure 150.

Sample program for calling DSNUTILU

The following sample program calls DSNUTILU and is shipped in SDSNSAMP:

 DSNTEJ6R - A DSNUTILU caller using PL/I. Job DSNTEJ6R compiles,

link-edits, binds, and runs sample C-language caller program DSN8ED8, which

invokes the DSNUTILU stored procedure to execute a utility.

DSNUTILU output

DB2 creates the result set according to the DECLARE statement shown on

“Example of declaring a cursor to select from SYSPRINT” on page 795

Output from a successful execution of the DSNTEJ6R sample job or an equivalent

job lists the specified parameters, followed by the messages that are generated by

the DB2 DIAGNOSE DISPLAY MEPL utility.

The Control Center table space and index information stored

procedure (DSNACCQC)

The information under this heading is Product-sensitive Programming Interface

and Associated Guidance Information.

Restriction: The DSNACCQC stored procedure has been deprecated.

DSNACCQC is a sample stored procedure that gives you information about your

table spaces and indexes. You can use DSNACCQC to obtain the following types

of information:

v Table spaces and indexes on which RUNSTATS needs to be run

v Table spaces and indexes on which the STOSPACE utility has not been run

v Table spaces and indexes that exceed the primary space allocation

v Table spaces with more than a user-specified percentage of relocated rows

//***

//* JCL FOR RUNNING THE WLM-ESTABLISHED STORED PROCEDURES

//* ADDRESS SPACE

//* RGN -- THE MVS REGION SIZE FOR THE ADDRESS SPACE.

//* DB2SSN -- THE DB2 SUBSYSTEM NAME.

//* APPLENV -- THE MVS WLM APPLICATION ENVIRONMENT

//* SUPPORTED BY THIS JCL PROCEDURE.

//*

//***

//DSNWLM PROC RGN=0K,APPLENV=WLMENV1,DB2SSN=DSN

//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

// PARM=’&DB2SSN,1,&APPLENV’

//STEPLIB DD DISP=SHR,DSN=CEE.V!R!M!.SCEERUN

// DD DISP=SHR,DSN=DSN!!0.SDSNLOAD

//UTPRINT DD SYSOUT=*

//RNPRIN01 DD SYSOUT=*

//DSSPRINT DD SYSOUT=*

//SYSIN DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSPRINT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

Figure 150. Sample PROC for running the WLM-established stored procedures

DSNUTILU stored procedure

808 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#
#
|
|
|
|

#
#

|
||

|

|

|
|
|

|

|
|

|
|
|

#

v Table spaces with more than a user-specified percentage of space that is

occupied by dropped tables

v Table spaces with table space locking

v Simple table spaces with more than one table

v Indexes with clustering problems

v Indexes with more than a user-specified number of index levels

v Indexes with more than a user-specified LEAFDIST value

v Type 1 indexes

v Indexes with long RID chains that are not unique

v Indexes that are not used in static SQL statements

Environment for DSNACCQC

DSNACCQC runs in a WLM-established stored procedures address space.

Authorization required for DSNACCQC

To execute the CALL statement, the owner of the package or plan that contains the

CALL statement must have one or more of the following privileges on each

package that the stored procedure uses:

v The EXECUTE privilege on the package for DSNACCQC

v Ownership of the package

v PACKADM authority for the package collection

v SYSADM authority

The owner of the package or plan that contains the CALL statement must also

have SELECT authority on the following catalog table spaces:

v SYSIBM.SYSINDEXES

v SYSIBM.SYSINDEXPART

v SYSIBM.SYSPACKDEP

v SYSIBM.SYSPLANDEP

v SYSIBM.SYSTABLEPART

v SYSIBM.SYSTABLES

v SYSIBM.SYSTABLESPACE

DSNACCQC syntax diagram

The following syntax diagram shows the SQL CALL statement for invoking

DSNACCQC. Because the linkage convention for DSNACCQC is GENERAL, you

cannot pass null values for input parameters. For character parameters that you are

not using, specify an empty string ('').

�� CALL DSNACCQC (object-type, query-type, qualifier1, qualifier2, varparm1, varparm2, �

� varparm3, varparm4, varparm5, varparm6, varparm7, varparm8, varparm9, varparm10, �

� return-code, message-text) ��

DSNACCQC stored procedure

Appendix B. DB2-supplied stored procedures 809

DSNACCQC option descriptions

object-type

Specifies whether you want information about indexes or about table spaces.

object-type is an input parameter of type INTEGER. The contents must be one

of the following values:

0 Obtain information about indexes

1 Obtain information about table spaces

query-type

Specifies the type of information that you want to obtain. query-type is an input

parameter of type INTEGER.

 If object-type is 0 (indexes), query-type must be one of the following values:

0 Obtains information about indexes on which RUNSTATS needs to be

run.

1 Obtains information about indexes with clustering problems.

2 Obtains information about indexes with more than a user-specified

number of levels.

3 Obtains information about indexes with a LEAFDIST value that is

higher than a user-specified percentage.

4 Obtains information about type 1 indexes.

5 Obtains information about indexes with long RID chains that are not

unique.

6 Obtains information about indexes that are not used in static SQL

statements.

7 Obtains information about indexes on which the STOSPACE utility has

not been run.

8 Obtains information about indexes that have exceeded their allocated

primary space quantity.

If object-type is 1 (table spaces), query-type must be one of the following values:

0 Obtains information about table spaces on which RUNSTATS needs to

be run.

1 Obtains information about table spaces with more than a user-specified

percentage of relocated rows.

2 Obtains information about table spaces with more than a user-specified

percentage of space that is occupied by dropped tables.

3 Obtains information about table spaces with table space locking.

4 Obtains information about simple table spaces with more than one

table.

5 Obtains information about table spaces on which the STOSPACE utility

has not been run.

6 Obtains information about table spaces that have exceeded their

allocated primary space quantity.

qualifier1

Narrows the search for objects that match query-type to a specified set of

database names. qualifier1 is an input parameter of type VARCHAR(255).

DSNACCQC stored procedure

810 Utility Guide and Reference

The format of this parameter is the same as the format of pattern-expression in

an SQL LIKE predicate. pattern-expression is described in Chapter 4 of DB2 SQL

Reference.

For example, to obtain information about table spaces or indexes in all

databases with names that begin with ACCOUNT, specify this value for

qualifier1:

ACCOUNT%

qualifier2

Narrows the search for objects that match query-type to a specified set of

creator names. A creator name is the value of column CREATOR in

SYSIBM.SYSTABLESPACE for table space queries, or SYSIBM.SYSINDEXES for

index queries. qualifier2 is an input parameter of type VARCHAR(255).

 The format of this parameter is the same as the format of pattern-expression in

an SQL LIKE predicate. pattern-expression is described in Chapter 4 of DB2 SQL

Reference.

For example, to obtain information about table spaces or indexes with creators

that begin with DSN8, specify this value for qualifier2:

DSN8%

varparm1, varparm2, varparm3

The meanings of these parameters vary with object-type and query-type. See

Table 152 for the meaning of each parameter for table space queries. See

Table 153 on page 812 for the meaning of each parameter for index queries.

 These are input parameters of type VARCHAR(255).

varparm4 through varparm10

These variables are reserved for future use. Specify an empty string ('') for each

parameter value.

 These are input parameters of type VARCHAR(255).

return-code

Specifies the return code from the DSNACCQC call, which is one of the

following values:

0 DSNACCQC executed successfully.

12 An error occurred during DSNACCQC execution.

return-code is an output parameter of type INTEGER.

message-text

If an error occurs while DSNACCQC executes, contains information about the

error. If the error is an SQL error, message-text also contains the formatted

SQLCA. The message text consists of from one to eleven lines, each with a

length of 121 bytes. The last byte of each line is a new-line character.

message-text is an output parameter of type VARCHAR(1331).

 Table 152. Variable input parameter values for DSNACCQC table space queries

query- type Parameter Value

0 varparm1 Specifies the table spaces for which to collect information. This

is a timestamp in character format (yyyy-mm-dd-
hh.mm.ss.nnnnnn). Information is collected for table spaces if

RUNSTATS was run on them before this time or was never run.

0 varparm2 Not used. Specify an empty string ('').

DSNACCQC stored procedure

Appendix B. DB2-supplied stored procedures 811

Table 152. Variable input parameter values for DSNACCQC table space queries (continued)

query- type Parameter Value

0 varparm3 Not used. Specify an empty string ('').

1 varparm1 Character representation of a number between 0 and 100, which

indicates the maximum acceptable percentage of relocated table

rows. DSNACCQC returns information about table spaces for

which (((FARINDREF+NEARINDREF)⁄CARD)*100)>varparm1.

1 varparm2 Not used. Specify an empty string ('').

1 varparm3 Not used. Specify an empty string ('').

2 varparm1 Character representation of a number between 0 and 100, which

indicates the maximum acceptable percentage space that is

occupied by rows of dropped tables. DSNACCQC returns

information about table spaces for which PERCDROP>varparm1.

2 varparm2 Not used. Specify an empty string ('').

2 varparm3 Not used. Specify an empty string ('').

3 varparm1 Not used. Specify an empty string ('').

3 varparm2 Not used. Specify an empty string ('').

3 varparm3 Not used. Specify an empty string ('').

4 varparm1 Not used. Specify an empty string ('').

4 varparm2 Not used. Specify an empty string ('').

4 varparm3 Not used. Specify an empty string ('').

5 varparm1 Not used. Specify an empty string ('').

5 varparm2 Not used. Specify an empty string ('').

5 varparm3 Not used. Specify an empty string ('').

6 varparm1 Not used. Specify an empty string ('').

6 varparm2 Not used. Specify an empty string ('').

6 varparm3 Not used. Specify an empty string ('').

 Table 153. Variable input parameter values for DSNACCQC index queries

query- type Parameter Value

0 varparm1 Specifies the indexes for which to collect information. This is a

timestamp in character format (yyyy-mm-dd-hh.mm.ss.nnnnnn).

Information is collected for indexes if RUNSTATS was run on

them before this time or was never run.

0 varparm2 Not used. Specify an empty string ('').

0 varparm3 Not used. Specify an empty string ('').

1 varparm1 Character representation of a number between 0 and 100, which

indicates the maximum acceptable percentage of table rows that

are far from their optimal position. DSNACCQC returns

information about indexes for which

((FAROFFPOSF⁄CARDF)*100)>varparm1.

1 varparm2 Character representation of a number between 0 and 100, which

indicates the maximum acceptable percentage of table rows that

are near but not at their optimal position. DSNACCQC returns

information about indexes for which

((NEAROFFPOSF⁄CARDF)*100)>varparm2.

DSNACCQC stored procedure

812 Utility Guide and Reference

Table 153. Variable input parameter values for DSNACCQC index queries (continued)

query- type Parameter Value

1 varparm3 Character representation of a number between 0 and 100, which

indicates the minimum acceptable percentage of table rows that

are in clustering order. DSNACCQC returns information about

indexes for which CLUSTERRATIO<varparm3.

2 varparm1 Character representation of a number that indicates the

maximum acceptable number of index levels. DSNACCQC

returns information about indexes for which

NLEVELS>varparm1.

2 varparm2 Not used. Specify an empty string ('').

2 varparm3 Not used. Specify an empty string ('').

3 varparm1 Character representation of a number that indicates the

maximum acceptable value for 100 times the average number of

leaf pages between successive active leaf pages of the index.

DSNACCQC returns information about indexes for which

LEAFDIST>varparm1.

3 varparm2 Not used. Specify an empty string ('').

3 varparm3 Not used. Specify an empty string ('').

4 varparm1 Not used. Specify an empty string ('').

4 varparm2 Not used. Specify an empty string ('').

4 varparm3 Not used. Specify an empty string ('').

5 varparm1 Character representation of a number that indicates the

maximum acceptable average length for RID chains.

DSNACCQC returns information about indexes for which

((CARDF*1.0)/FULLKEYCARDF)>varparm1.

5 varparm2 Not used. Specify an empty string ('').

5 varparm3 Not used. Specify an empty string ('').

6 varparm1 Not used. Specify an empty string ('').

6 varparm2 Not used. Specify an empty string ('').

6 varparm3 Not used. Specify an empty string ('').

7 varparm1 Not used. Specify an empty string ('').

7 varparm2 Not used. Specify an empty string ('').

7 varparm3 Not used. Specify an empty string ('').

8 varparm1 Not used. Specify an empty string ('').

8 varparm2 Not used. Specify an empty string ('').

8 varparm3 Not used. Specify an empty string ('').

Example of DSNACCQC invocation

Suppose that you want information about indexes on which RUNSTATS has never

been run. You want information about indexes in databases whose names begin

with DSNCC only. The parameter declarations and DSNACCQC call look like

those in Figure 151 on page 814:

DSNACCQC stored procedure

Appendix B. DB2-supplied stored procedures 813

DSNACCQC output

In addition to the output parameters described in “DSNACCQC option

descriptions” on page 810, DSNACCQC returns one result set. The format of the

result set varies, depending on whether you are retrieving index information

(object-type=0) or table space information (object-type=1).

Table 154 shows the columns of a result set row and the DB2 catalog table that is

the source of information for each column for table space queries.

 Table 154. Result set columns for DSNACCQC table space queries

Column name Data type

DB2 catalog table that is the

data source

NAME CHAR(8) SYSTABLESPACE

CREATOR VARCHAR(128) SYSTABLESPACE

BPOOL CHAR(8) SYSTABLESPACE

LOCKRULE CHAR(1) SYSTABLESPACE

LOCKMAX INTEGER SYSTABLESPACE

DCL OBJTYPE FIXED BIN(31);

DCL QUERY FIXED BIN(31);

DCL DBQUAL CHAR(255) VARYING;

DCL CREATQUAL CHAR(255) VARYING;

DCL VARPARM1 CHAR(255) VARYING;

DCL VARPARM2 CHAR(255) VARYING;

DCL VARPARM3 CHAR(255) VARYING;

DCL VARPARM4 CHAR(255) VARYING;

DCL VARPARM5 CHAR(255) VARYING;

DCL VARPARM6 CHAR(255) VARYING;

DCL VARPARM7 CHAR(255) VARYING;

DCL VARPARM8 CHAR(255) VARYING;

DCL VARPARM9 CHAR(255) VARYING;

DCL VARPARM10 CHAR(255) VARYING;

DCL RC FIXED BIN(31);

DCL MSGTEXT CHAR(1331) VARYING;

DCL IXTABLE SQL TYPE IS RESULT_SET_LOCATOR VARYING;

OBJTYPE=0;

QUERY=0;

DBQUAL='DSNCC%';

CREATQUAL='%';

VARPARM1='0001-01-01-00.00.00.000000';

VARPARM2='';

VARPARM3='';

VARPARM4='';

VARPARM5='';

VARPARM6='';

VARPARM7='';

VARPARM8='';

VARPARM9='';

VARPARM10='';

EXEC SQL CALL SYSPROC.DSNACCQC(:OBJTYPE, :QUERY, :DBQUAL,

 :CREATQUAL, :VARPARM1, :VARPARM2, :VARPARM3,

 :VARPARM4, :VARPARM5, :VARPARM6, :VARPARM7,

 :VARPARM8, :VARPARM9, :VARPARM10,

 :RC, :MSGTEXT);

Figure 151. Example of DSNACCQC invocation

DSNACCQC stored procedure

814 Utility Guide and Reference

|

Table 154. Result set columns for DSNACCQC table space queries (continued)

Column name Data type

DB2 catalog table that is the

data source

CLOSERULE CHAR(1) SYSTABLESPACE

ENCODING_SCHEME CHAR(1) SYSTABLESPACE

LOCKPART CHAR(1) SYSTABLESPACE

MAXROWS SMALLINT SYSTABLESPACE

PARTITIONS SMALLINT SYSTABLESPACE

TYPE CHAR(1) SYSTABLESPACE

SEGSIZE SMALLINT SYSTABLESPACE

SPACE INTEGER SYSTABLESPACE

NTABLES SMALLINT SYSTABLESPACE

STATUS CHAR(1) SYSTABLESPACE

STATSTIME TIMESTAMP SYSTABLESPACE

ERASERULE CHAR(1) SYSTABLESPACE

DBNAME CHAR(8) SYSTABLESPACE

DSETPASS CHAR(8) SYSTABLESPACE

LOG CHAR(1) SYSTABLESPACE

DSSIZE INTEGER SYSTABLESPACE

SBCS_CCSID INTEGER SYSTABLESPACE

Table 155 shows the columns of a result set row and the DB2 catalog table that is

the source of information for index queries.

 Table 155. Result set columns for DSNACCQC index queries

Column name Data type

DB2 catalog table that is the

data source

CREATOR VARCHAR(128) SYSINDEXES

NAME VARCHAR(128) SYSINDEXES

TBCREATOR VARCHAR(128) SYSINDEXES

TBNAME VARCHAR(128) SYSINDEXES

UNIQUERULE CHAR(1) SYSINDEXES

INDEXTYPE CHAR(1) SYSINDEXES

INDEXSPACE CHAR(8) SYSINDEXES

CLUSTERING CHAR(1) SYSINDEXES

ERASERULE CHAR(1) SYSINDEXES

CLOSERULE CHAR(1) SYSINDEXES

COLCOUNT SMALLINT SYSINDEXES

DBID SMALLINT SYSINDEXES

DBNAME CHAR(8) SYSINDEXES

BPOOL CHAR(8) SYSINDEXES

PGSIZE SMALLINT SYSINDEXES

DSETPASS CHAR(8) SYSINDEXES

DSNACCQC stored procedure

Appendix B. DB2-supplied stored procedures 815

|

|

|

|

Table 155. Result set columns for DSNACCQC index queries (continued)

Column name Data type

DB2 catalog table that is the

data source

PIECESIZE INTEGER SYSINDEXES

COPY CHAR(1) SYSINDEXES

PARTITION_COUNT INTEGER SYSINDEXPART1

Notes:

1. The value of PARTITION_COUNT is COUNT(DISTINCT PARTITION) for partitioning

indexes or 0 for nonpartitioning indexes. The PARTITION column is in

SYSIBM.SYSINDEXPART.

To obtain the information from the result set, you can write your client program to

retrieve information from one result set with known contents. However, for greater

flexibility, you might want to write your client program to retrieve data from an

unknown number of result sets with unknown contents. Both techniques are

shown in Part 6 of DB2 Application Programming and SQL Guide.

The Control Center partition information stored procedure

(DSNACCAV)

The information under this heading is Product-sensitive Programming Interface

and Associated Guidance Information.

Restriction: The DSNACCAV stored procedure has been deprecated.

DSNACCAV is a sample stored procedure that gives you information about

partitions in your table spaces and indexes. You can use DSNACCAV to obtain the

following types of information:

v Partitions that need to be image copied

v Partitions that are in a restricted state

v Partitions on which RUNSTATS needs to be run

v Partitions on which REORG needs to be run

v Partitions that exceed a user-specified number of extents

Environment for DSNACCAV

DSNACCAV runs in a WLM-established stored procedures address space.

Authorization required for DSNACCAV

To execute the CALL statement, the owner of the package or plan that contains the

CALL statement must have one or more of the following privileges on each

package that the stored procedure uses:

v The EXECUTE privilege on the package for DSNACCAV

v Ownership of the package

v PACKADM authority for the package collection

v SYSADM authority

The owner of the package or plan that contains the CALL statement must also

have SELECT authority on the following catalog table spaces:

v SYSIBM.SYSCOPY

v SYSIBM.SYSINDEXES

v SYSIBM.SYSINDEXPART

v SYSIBM.SYSTABLEPART

DSNACCQC stored procedure

816 Utility Guide and Reference

#

v SYSIBM.SYSTABLES

v SYSIBM.SYSTABLESPACE

DSNACCAV syntax diagram

The following syntax diagram shows the SQL CALL statement for invoking

DSNACCAV. Because the linkage convention for DSNACCAV is GENERAL WITH

NULLS, if you pass parameters in host variables, you need to include a null

indicator with every host variable. Null indicators for input host variables must be

initialized before you execute the CALL statement.

�� CALL DSNACCAV (query-type, search-condition ,

NULL
 maximum-days ,

NULL
 �

� image-copy-type ,

NULL
 maximum-extents ,

NULL
 return-code, error-statement, ifi-return-code, �

� ifi-reason-code, ifi-excess-bytes, message-text) ��

DSNACCAV option descriptions

query-type

Specifies the type of information that you want to obtain. query-type is an input

parameter of type VARCHAR(20). The contents must be one of the following

values:

COPY TABLESPACE

Obtains information about table space partitions for which image copies

need to be made.

COPY INDEX

Obtains information about index partitions for which image copies need to

be made.

RESTRICT TABLESPACE

Obtains information about table space partitions that are in a restricted

status.

RESTRICT INDEX

Obtains information about index partitions that are in a restricted status.

RUNSTATS TABLESPACE

Obtains information about table space partitions on which RUNSTATS

needs to be run.

RUNSTATS INDEX

Obtains information about index partitions on which RUNSTATS needs to

be run.

REORG TABLESPACE

Obtains information about table space partitions on which REORG needs

to be run.

REORG INDEX

Obtains information about index partitions on which REORG needs to be

run.

DSNACCAV stored procedure

Appendix B. DB2-supplied stored procedures 817

EXTENTS TABLESPACE

Obtains information about table space partitions that have used more than

a user-specified number of extents.

EXTENTS INDEX

Obtains information about index partitions that have used more than a

user-specified number of extents.

search-condition

Narrows the search for objects that match query-type. search-condition is an input

parameter of type VARCHAR(4096).

 The format of this parameter is the same as the format of search-condition in an

SQL where-clause.search-condition is described in Chapter 4 of DB2 SQL Reference.

If the call is executed to obtain table space information, search-condition can

include any column in SYSIBM.SYSTABLESPACE. If the call is executed to

obtain index information, search-condition can include any column in

SYSIBM.SYSINDEXES. Each column name must be preceded by the string 'A.'.

For example, to obtain information about table spaces with creator ADMF001,

specify this value for search-condition:

A.CREATOR='ADMF001'

maximum-days

Specifies the maximum number of days that are to elapse between executions

of the REORG, RUNSTATS, or COPY utility. DSNACCAV uses this value as the

criterion for determining which table space or index partitions need to have

the utility that you specified in query-type run against them. This value can be

specified if query-type has one of the following values:

v COPY TABLESPACE

v COPY INDEX

v RUNSTATS TABLESPACE

v RUNSTATS INDEX

v REORG TABLESPACE

v REORG INDEX

maximum-days is an input parameter of type INTEGER.

image-copy-type

Specifies the types of image copies about which DSNACCAV is to give you

information. This value can be specified if query-type is COPY TABLESPACE or

COPY INDEX.image-copy-type is an input parameter of type CHAR(1). The

contents must be one of the following values:

B Specifies that you want information about partitions for which the

most recent image copy was either a full image copy or an incremental

image copy

F Specifies that you want information about partitions for which the

most recent image copy was a full image copy

I Specifies that you want information about partitions for which the

most recent image copy was an incremental image copy

maximum-extents

Specifies the maximum number of extents that a table space or index partition

is to use. This value can be specified if query-type is one of the following

values:

v REORG TABLESPACE

v REORG INDEX

v EXTENTS TABLESPACE

DSNACCAV stored procedure

818 Utility Guide and Reference

v EXTENTS INDEX

maximum-extents is an input parameter of type INTEGER.

return-code

Specifies the return code from the DSNACCAV call, which is one of the

following values:

0 DSNCCAV executed successfully.

12 An error occurred during DSNCCAV execution.

return-code is an output parameter of type INTEGER.

error-statement

If return-code is not 0, specifies the SQL statement or DB2 command that DB2

was executing when the error occurred. error-statement is an output parameter

of type VARCHAR(8012).

ifi-return-code

When query-type is RESTRICT TABLESPACE, RESTRICT INDEX, COPY

TABLESPACE, or REORG TABLESPACE, specifies the return code from the IFI

call that submitted a DISPLAY DATABASE command to obtain information

about restricted objects. ifi-return-code is an output parameter of type INTEGER.

ifi-reason-code

When query-type is RESTRICT TABLESPACE, RESTRICT INDEX, COPY

TABLESPACE, or REORG TABLESPACE, specifies the reason code from the IFI

call that submitted a DISPLAY DATABASE command to obtain information

about restricted objects. ifi-reason-code is an output parameter of type INTEGER.

ifi-excess-bytes

When query-type is RESTRICT TABLESPACE, RESTRICT INDEX, COPY

TABLESPACE, or REORG TABLESPACE, specifies the number of bytes that did

not fit in the return area for the IFI call that submitted a DISPLAY DATABASE

command to obtain information about restricted objects. ifi-excess-bytes is an

output parameter of type INTEGER.

message-text

If an SQL error occurs while DSNACCAV executes, contains information about

the error, including the formatted SQLCA. The message text consists of from

one to ten lines, each with a length of 121 bytes. The last byte of each line is a

new-line character. message-text is an output parameter of type

VARCHAR(1210).

Example of DSNACCAV invocation

Suppose that you want information about table space partitions that are in a

restricted status. You want information about table spaces that are in databases

whose names begin with DSNCC only. The parameter declarations and

DSNACCAV call looks like those in Figure 152 on page 820:

DSNACCAV stored procedure

Appendix B. DB2-supplied stored procedures 819

DSNACCAV output

In addition to the output parameters that are described in “DSNACCAV option

descriptions” on page 817, DSNACCAV returns two result sets.

The first result set contains the text from commands that DB2 executes, formatted

into 80-byte records.

Table 156 shows the format of the first result set.

 Table 156. Result set row for DSNACCAV command output

Column name Data type Contents

RS_SEQUENCE INTEGER Sequence number of the output line

RS_DATA CHAR(80) A line of command output

DCL QUERY CHAR(20) VARYING;

DCL CRITERIA CHAR(4096) VARYING;

DCL NUMDAYS FIXED BIN(31);

DCL OPTYPE CHAR(1) VARYING;

DCL EXTENTS FIXED BIN(31);

DCL RC FIXED BIN(31);

DCL STMT CHAR(8012) VARYING;

DCL IFIRC FIXED BIN(31);

DCL IFIREASON FIXED BIN(31);

DCL IFIEXCESS FIXED BIN(31);

DCL STMT CHAR(8012) VARYING;

DCL MSGTEXT CHAR(1331) VARYING;

DCL IND1 FIXED BIN(15);

DCL IND2 FIXED BIN(15);

DCL IND3 FIXED BIN(15);

DCL IND4 FIXED BIN(15);

DCL IND5 FIXED BIN(15);

DCL IND6 FIXED BIN(15);

DCL IND7 FIXED BIN(15);

DCL IND8 FIXED BIN(15);

DCL IND9 FIXED BIN(15);

DCL IND10 FIXED BIN(15);

DCL IND11 FIXED BIN(15);

DCL CMDMSG SQL TYPE IS RESULT_SET_LOCATOR VARYING;

DCL TSTABLE SQL TYPE IS RESULT_SET_LOCATOR VARYING;

QUERY='RESTRICT TABLESPACE';

IND1=0;

Criteria='A.DBNAME LIKE ''DSNCC%''';

IND2=0;

numdays=0;

IND3=0;

optype='';

IND4=0;

extents=0;

IND5=0;

EXEC SQL CALL SYSPROC.DSNACCAV(:QUERY :IND1, :CRITERIA :IND2,

 :NUMDAYS :IND3, :OPTYPE :IND4, :EXTENTS :IND5,

 :RC :IND6, :STMT :IND7, :IFIRC :IND8,

 :IFIREASON :IND9, :IFIEXCESS :IND10, :MSGTEXT :IND11);

Figure 152. Example of DSNACCAV invocation

DSNACCAV stored procedure

820 Utility Guide and Reference

The second result set contains partition information. The format of the second

result set varies, depending on whether you request table space or index

information.

Table 157 shows the columns of a result set row and the DB2 catalog table that is

the source of information for each column for table space queries.

 Table 157. Result set row for DSNACCAV table space queries

Column name Data type

DB2 catalog table that is the

data source

NAME CHAR(8) SYSTABLESPACE

CREATOR CHAR(8) SYSTABLESPACE

BPOOL CHAR(8) SYSTABLESPACE

LOCKRULE CHAR(1) SYSTABLESPACE

LOCKMAX INTEGER SYSTABLESPACE

CLOSERULE CHAR(1) SYSTABLESPACE

ENCODING_SCHEME CHAR(1) SYSTABLESPACE

LOCKPART CHAR(1) SYSTABLESPACE

MAXROWS SMALLINT SYSTABLESPACE

PARTITIONS SMALLINT SYSTABLESPACE

TYPE CHAR(1) SYSTABLESPACE

SEGSIZE SMALLINT SYSTABLESPACE

SPACE INTEGER SYSTABLESPACE

NTABLES SMALLINT SYSTABLESPACE

STATUS CHAR(1) SYSTABLESPACE

STATSTIME TIMESTAMP SYSTABLESPACE

ERASERULE CHAR(1) SYSTABLESPACE

DBNAME CHAR(8) SYSTABLESPACE

DSETPASS CHAR(8) SYSTABLESPACE

LOG CHAR(1) SYSTABLESPACE

DSSIZE INTEGER SYSTABLESPACE

PARTITION SMALLINT SYSTABLEPART

OPERATIONTIME TIMESTAMP SYSCOPY or

SYSTABLEPART1

DAYS INTEGER SYSCOPY or

SYSTABLEPART2

PERCOFFPOS SMALLINT SYSINDEXPART3

PERCINDREF SMALLINT SYSTABLEPART4

PERCDROP SMALLINT SYSTABLEPART

EXTENTS INTEGER None5

REASON CHAR(18) None6

SBCS_CCSID INTEGER SYSTABLESPACE

DSNACCAV stored procedure

Appendix B. DB2-supplied stored procedures 821

Table 157. Result set row for DSNACCAV table space queries (continued)

Column name Data type

DB2 catalog table that is the

data source

Notes:

1. If query-type is COPY TABLESPACE or REORG TABLESPACE, the value of

OPERATIONTIME is the value of the TIMESTAMP column in SYSIBM.SYSCOPY.

If query-type is RUNSTATS TABLESPACE, the value of OPERATIONTIME is the value of

the TIMESTAMP column in SYSIBM.SYSTABLEPART.

2. DAYS is the number of days since the last invocation of the utility. This column is

derived from the OPERATIONTIME column.

3. PERCOFFPOS=(NEAROFFPOSF+FAROFFPOSF)*100⁄CARDF

4. PERCINDREF=(NEARINDREF+FARINDREF)*100⁄CARD

5. EXTENTS is the number of data set extents that the partition is using.

6. REASON is the reason that the row is in the result set. See Table 158 for values of

REASON for each value of query-type.

Table 158 shows the values of the REASON column for each query-type value for

table space queries.

 Table 158. Values of the REASON result set column for table space queries

query-type REASON value REASON meaning

COPY

TABLESPACE

Status from

DISPLAY

DATABASE

command output

Table space is in restricted status COPY

COPY

TABLESPACE

DAYS The number of days since the last COPY occurred

exceeds the maximum-days value

RESTRICT

TABLESPACE

Status from

DISPLAY

DATABASE

command output

Table space is in restricted status

RUNSTATS

TABLESPACE

LOAD LOAD was run after RUNSTATS

RUNSTATS

TABLESPACE

REORG REORG was run after RUNSTATS

RUNSTATS

TABLESPACE

RECOVER RECOVER was run after RUNSTATS

RUNSTATS

TABLESPACE

DAYS The number of days since the last RUNSTATS

occurred exceeds the maximum-days value

REORG

TABLESPACE

LIMIT One of the following reasons:

v A clustering index meets this condition:

((NEAROFFPOSF+FAROFFPOSF)*100⁄CARDF)>10

v A partition meets either of these conditions:

((NEARINDREF+FARINDREF)*

100⁄CARD)>10

PERCDROP>10

REORG

TABLESPACE

DAYS The number of days since the last REORG occurred

exceeds the maximum-days value

DSNACCAV stored procedure

822 Utility Guide and Reference

Table 158. Values of the REASON result set column for table space queries (continued)

query-type REASON value REASON meaning

REORG

TABLESPACE

EXTENTS Number of partition extents exceeds maximum-extents

value

REORG

TABLESPACE

Status from

DISPLAY

DATABASE

command output

The table space is in restricted status REORP

EXTENTS

TABLESPACE

EXTENTS Number of partition extents exceeds maximum-extents

value

Table 159 shows the columns of a result set row and the DB2 catalog table that is

the source of information for each column for index queries.

 Table 159. Result set row for DSNACCAV index queries

Column name Data type

DB2 catalog table that is the

data source

CREATOR CHAR(8) SYSINDEXES

NAME VARCHAR(18) SYSINDEXES

TBCREATOR CHAR(8) SYSINDEXES

TBNAME VARCHAR(18) SYSINDEXES

UNIQUERULE CHAR(1) SYSINDEXES

INDEXTYPE CHAR(1) SYSINDEXES

INDEXSPACE CHAR(8) SYSINDEXES

CLUSTERING CHAR(1) SYSINDEXES

ERASERULE CHAR(1) SYSINDEXES

CLOSERULE CHAR(1) SYSINDEXES

COLCOUNT SMALLINT SYSINDEXES

DBID SMALLINT SYSINDEXES

DBNAME CHAR(8) SYSINDEXES

BPOOL CHAR(8) SYSINDEXES

PGSIZE SMALLINT SYSINDEXES

DSETPASS CHAR(8) SYSINDEXES

PIECESIZE INTEGER SYSINDEXES

COPY CHAR(1) SYSINDEXES

PARTITIONS SMALLINT SYSINDEXPART1

PARTITION SMALLINT SYSINDEXPART

OPERATIONTIME TIMESTAMP SYSCOPY or

SYSINDEXPART2

DAYS INTEGER SYSCOPY or

SYSTABLEPART3

LEAFDIST INTEGER SYSINDEXPART

EXTENTS INTEGER None4

REASON CHAR(18) None5

DSNACCAV stored procedure

Appendix B. DB2-supplied stored procedures 823

Table 159. Result set row for DSNACCAV index queries (continued)

Column name Data type

DB2 catalog table that is the

data source

Notes:

1. PARTITIONS is derived from the PARTITION column through this SELECT statement:

SELECT IXNAME,IXCREATOR,MAX(PARTITION) AS PARTITIONS

 FROM SYSIBM.SYSINDEXPART

 GROUP BY IXNAME,IXCREATOR;

2. If query-type is COPY INDEX or REORG INDEX, the value of OPERATIONTIME is the

value of the TIMESTAMP column in SYSIBM.SYSCOPY.

If query-type is RUNSTATS INDEX, the value of OPERATIONTIME is the value of the

TIMESTAMP column in SYSIBM.SYSINDEXPART.

3. DAYS is the number of days since the last invocation of the utility. This column is

derived from the OPERATIONTIME column.

4. EXTENTS is the number of data set extents that the partition is using.

5. REASON is the reason that the row is in the result set. See Table 160 for values of

REASON for each value of query-type.

Table 160 shows the values of the REASON column for each query-type value for

index queries.

 Table 160. Values of the REASON result set column for index queries

query-type REASON value REASON meaning

COPY INDEX LIMIT Index is in restricted status ICOPY

COPY INDEX DAYS The number of days since the last COPY occurred

exceeds the maximum-days value

RESTRICT

INDEX

Status from

DISPLAY

DATABASE

command output

Index is in restricted status

RUNSTATS

INDEX

TABLESPACE

LOAD

LOAD was run on the associated table space after

RUNSTATS

RUNSTATS

INDEX

TABLESPACE

REORG

REORG was run on the associated table space after

RUNSTATS

RUNSTATS

INDEX

TABLESPACE

RECOVER

RECOVER was run on the associated table space

after RUNSTATS

RUNSTATS

INDEX

REBUILT REBUILD was run after RUNSTATS

RUNSTATS

INDEX

DAYS The number of days since the last RUNSTATS

occurred exceeds maximum-days value

REORG INDEX LIMIT LEAFDIST exceeds the recommended limit of 200

REORG INDEX DAYS The number of days since the last REORG occurred

exceeds maximum-days value

REORG INDEX EXTENTS Number of partition extents exceeds maximum-extents

value

EXTENTS INDEX EXTENTS Number of partition extents exceeds maximum-extents

value

The number of rows that are returned in the second result set varies with

query-type. Table 161 on page 825 shows the number and types of rows that are

DSNACCAV stored procedure

824 Utility Guide and Reference

returned from an invocation of DSNACCAV for each query-type.

 Table 161. Rows of the second DSNACCAV result set for each query type

query-type Rows returned

COPY TABLESPACE One row for:

v Each table space partition that has not been copied within the

number of days that are specified by the maximum-days parameter

v The most recent copy of each data set in a nonpartitioned table

space

v Each table space partition that is in COPY-pending status

COPY INDEX One row for:

v Each index space partition that has not been copied within the

number of days that are specified by the maximum-days parameter

v The most recent copy of each data set in a nonpartitioned index

space

v Each index space partition that is in ICOPY-pending status

RESTRICT

TABLESPACE

One row for each table space in the subsystem that meets the

criteria that are specified by the search-criteria parameter and is in a

restricted status

RESTRICT INDEX One row for each index in the subsystem that meets the criteria

specified by the search-criteria parameter and is in a restricted status

RUNSTATS

TABLESPACE

One row for:

v Each table space partition on which LOAD, REORG, or

RECOVER was run after the last time RUNSTATS was run

v Each table space partition on which RUNSTATS was not run

within the number of days that are specified by the maximum-days

parameter

RUNSTATS INDEX One row for:

v Each index partition that is defined on a table on which LOAD,

REORG, or RECOVER was run after the last time RUNSTATS

was run

v Each index partition on which RUNSTATS was not run within the

number of days that are specified by the maximum-days parameter

v Each index partition on which REBUILD was run after the last

time RUNSTATS was run

REORG TABLESPACE One row for:

v Each table space partition that is in REORG-pending status

v Each table space partition for which the number of data set

extents exceeds the value that is specified by maximum-extents

v Each table space partition for which the clustering index that is

associated with the table has

(NEAROFFPOSF+FAROFFPOSF)*100⁄CARDF>10

v Each table space partition for which

(NEARINDREF+FARINDREF)*100⁄CARD>10

v Each table space partition for which PERCDROP>10

v Each table space partition on which REORG was not run within

the number of days that are specified by the maximum-days

parameter

DSNACCAV stored procedure

Appendix B. DB2-supplied stored procedures 825

Table 161. Rows of the second DSNACCAV result set for each query type (continued)

query-type Rows returned

REORG INDEX One row for:

v Each index partition for which LEAFDIST>200

v Each index partition for which the number of data set extents

exceeds the value that is specified by maximum-extents

v Each index partition on which REORG was not run within the

number of days specified by the maximum-days parameter

EXTENTS

TABLESPACE

One row for each table space partition for which the number of

data set extents exceeds the value that is specified by

maximum-extents

EXTENTS INDEX One row for each index partition for which the number of data set

extents exceeds the value that is specified by maximum-extents

To obtain the information from the result sets, you can write your client program

to retrieve information from two result sets with known contents. However, for

greater flexibility, you might want to write your client program to retrieve data

from an unknown number of result sets with unknown contents. Both techniques

are shown in Part 6 of DB2 Application Programming and SQL Guide.

The DB2 real-time statistics stored procedure

The information under this heading is Product-sensitive Programming Interface

and Associated Guidance Information.

The DSNACCOR stored procedure is a sample stored procedure that makes

recommendations to help you maintain your DB2 databases. In particular,

DSNACCOR performs these actions:

v Recommends when you should reorganize, image copy, or update statistics for

table spaces or index spaces

v Indicates table spaces or index spaces that have exceeded their data set

v Indicates whether objects are in a restricted state

DSNACCOR uses data from the SYSIBM.TABLESPACESTATS and

SYSIBM.INDEXSPACESTATS real-time statistics tables to make its

recommendations. DSNACCOR provides its recommendations in a result set.

DSNACCOR uses the set of criteria that are shown in “DSNACCOR formulas for

recommending actions” on page 836 to evaluate table spaces and index spaces. By

default, DSNACCOR evaluates all table spaces and index spaces in the subsystem

that have entries in the real-time statistics tables. However, you can override this

default through input parameters.

Important information about DSNACCOR recommendations:

v DSNACCOR makes recommendations based on general formulas that require

input from the user about the maintenance policies for a subsystem. These

recommendations might not be accurate for every installation.

v If the real-time statistics tables contain information for only a small percentage

of your DB2 subsystem, the recommendations that DSNACCOR makes might

not be accurate for the entire subsystem.

v Before you perform any action that DSNACCOR recommends, ensure that the

object for which DSNACCOR makes the recommendation is available, and that

DSNACCAV stored procedure

826 Utility Guide and Reference

|

the recommended action can be performed on that object. For example, before

you can perform an image copy on an index, the index must have the COPY

YES attribute.

Environment for DSNACCOR

DSNACCOR must run in a WLM-established stored procedure address space.

DSNACCOR creates and uses declared temporary tables. Therefore, before you can

invoke DSNACCOR, you need to create a TEMP database and segmented table

spaces in the TEMP database. For information about creating TEMP databases and

table spaces, see CREATE DATABASE and CREATE TABLESPACE Chapter 5 of

DB2 SQL Reference.

Before you can invoke DSNACCOR, the real-time statistics tables,

SYSIBM.TABLESPACESTATS and SYSIBM.INDEXSPACESTATS, must exist, and the

real-time statistics database must be started. See Appendix E, “Real-time statistics

tables,” on page 869 for information about the real-time statistics tables.

You should bind the package for DSNACCOR with isolation UR to avoid lock

contention. You can find the installation steps for DSNACCOR in job DSNTIJSG.

Authorization required for DSNACCOR

To execute the CALL DSNACCOR statement, the owner of the package or plan

that contains the CALL statement must have one or more of the following

privileges on each package that the stored procedure uses:

v The EXECUTE privilege on the package for DSNACCOR

v Ownership of the package

v PACKADM authority for the package collection

v SYSADM authority

The owner of the package or plan that contains the CALL statement must also

have:

v SELECT authority on the real-time statistics tables

v The DISPLAY system privilege

DSNACCOR syntax diagram

The following syntax diagram shows the CALL statement for invoking

DSNACCOR. Because the linkage convention for DSNACCOR is GENERAL WITH

NULLS, if you pass parameters in host variables, you need to include a null

indicator with every host variable. Null indicators for input host variables must be

initialized before you execute the CALL statement.

DSNACCOR stored procedure

Appendix B. DB2-supplied stored procedures 827

�� CALL DSNACCOR (QueryType ,

NULL
 ObjectType ,

NULL
 ICType ,

NULL
 StatsSchema ,

NULL
 �

� CatlgSchema ,

NULL
 LocalSchema ,

NULL
 ChkLvl ,

NULL
 Criteria ,

NULL
 Restricted ,

NULL
 �

� CRUpdatedPagesPct ,

NULL
 CRChangesPct ,

NULL
 CRDaySncLastCopy ,

NULL
 ICRUpdatedPagesPct ,

NULL
 �

� ICRChangesPct ,

NULL
 CRIndexSize ,

NULL
 RRTInsDelUpdPct ,

NULL
 RRTUnclustInsPct ,

NULL
 �

� RRTDisorgLOBPct ,

NULL
 RRTMassDelLimit ,

NULL
 RRTIndRefLimit ,

NULL
 RRIInsertDeletePct ,

NULL
 �

� RRIAppendInsertPct ,

NULL
 RRIPseudoDeletePct ,

NULL
 RRIMassDelLimit ,

NULL
 RRILeafLimit ,

NULL
 �

� RRINumLevelsLimit ,

NULL
 SRTInsDelUpdPct ,

NULL
 SRTInsDelUpdAbs ,

NULL
 SRTMassDelLimit ,

NULL
 �

� SRIInsDelUpdPct ,

NULL
 SRIInsDelUpdAbs ,

NULL
 SRIMassDelLimit ,

NULL
 ExtentLimit ,

NULL
 �

� LastStatement, ReturnCode, ErrorMsg, IFCARetCode, IFCAResCode, ExcessBytes) ��

DSNACCOR option descriptions

In the following option descriptions, the default value for an input parameter is

the value that DSNACCOR uses if you specify a null value.

QueryType

Specifies the types of actions that DSNACCOR recommends. This field

contains one or more of the following values. Each value is enclosed in single

quotation marks and separated from other values by a space.

ALL Makes recommendations for all of the following actions.

COPY Makes a recommendation on whether to perform an image

copy.

RUNSTATS Makes a recommendation on whether to perform RUNSTATS.

REORG Makes a recommendation on whether to perform REORG.

Choosing this value causes DSNACCOR to process the

EXTENTS value also.

EXTENTS Indicates when data sets have exceeded a user-specified extents

limit.

RESTRICT Indicates which objects are in a restricted state.

QueryType is an input parameter of type VARCHAR(40). The default is ALL.

ObjectType

Specifies the types of objects for which DSNACCOR recommends actions:

ALL Table spaces and index spaces.

TS Table spaces only.

DSNACCOR stored procedure

828 Utility Guide and Reference

IX Index spaces only.

ObjectType is an input parameter of type VARCHAR(3). The default is ALL.

ICType

Specifies the types of image copies for which DSNACCOR is to make

recommendations:

F Full image copy.

I Incremental image copy. This value is valid for table spaces only.

B Full image copy or incremental image copy.

ICType is an input parameter of type VARCHAR(1). The default is B.

StatsSchema

Specifies the qualifier for the real-time statistics table names. StatsSchema is an

input parameter of type VARCHAR(128). The default is SYSIBM.

CatlgSchema

Specifies the qualifier for DB2 catalog table names. CatlgSchema is an input

parameter of type VARCHAR(128). The default is SYSIBM.

LocalSchema

Specifies the qualifier for the names of tables that DSNACCOR creates.

LocalSchema is an input parameter of type VARCHAR(128). The default is

DSNACC.

ChkLvl

Specifies the types of checking that DSNACCOR performs, and indicates

whether to include objects that fail those checks in the DSNACCOR

recommendations result set. This value is the sum of any combination of the

following values:

0 DSNACCOR performs none of the following actions.

1 For objects that are listed in the recommendations result set, check the

SYSTABLESPACE or SYSINDEXES catalog tables to ensure that those

objects have not been deleted. If value 16 is not also chosen, exclude

rows for the deleted objects from the recommendations result set.

 DSNACCOR excludes objects from the recommendations result set if

those objects are not in the SYSTABLESPACE or SYSINDEXES catalog

tables.

When this setting is specified, DSNACCOR does not use

EXTENTS>ExtentLimit to determine whether a LOB table space should

be reorganized.

2 For index spaces that are listed in the recommendations result set,

check the SYSTABLES, SYSTABLESPACE, and SYSINDEXES catalog

tables to determine the name of the table space that is associated with

each index space.

 Choosing this value causes DSNACCOR to also check for rows in the

recommendations result set for objects that have been deleted but have

entries in the real-time statistics tables (value 1). This means that if

value 16 is not also chosen, rows for deleted objects are excluded from

the recommendations result set.

4 Check whether rows that are in the DSNACCOR recommendations

result set refer to objects that are in the exception table. For

DSNACCOR stored procedure

Appendix B. DB2-supplied stored procedures 829

|
|
|

recommendations result set rows that have corresponding exception

table rows, copy the contents of the QUERYTYPE column of the

exception table to the INEXCEPTTABLE column of the

recommendations result set.

8 Check whether objects that have rows in the recommendations result

set are restricted. Indicate the restricted status in the OBJECTSTATUS

column of the result set.

16 For objects that are listed in the recommendations result set, check the

SYSTABLESPACE or SYSINDEXES catalog tables to ensure that those

objects have not been deleted (value 1). In result set rows for deleted

objects, specify the word ORPHANED in the OBJECTSTATUS column.

32 Exclude rows from the DSNACCOR recommendations result set for

index spaces for which the related table spaces have been

recommended for REORG. Choosing this value causes DSNACCOR to

perform the actions for values 1 and 2.

64 For index spaces that are listed in the DSNACCOR recommendations

result set, check whether the related table spaces are listed in the

exception table. For recommendations result set rows that have

corresponding exception table rows, copy the contents of the

QUERYTYPE column of the exception table to the INEXCEPTTABLE

column of the recommendations result set.

ChkLvl is an input parameter of type INTEGER. The default is 7 (values

1+2+4).

Criteria

Narrows the set of objects for which DSNACCOR makes recommendations.

This value is the search condition of an SQL WHERE clause. Criteria is an

input parameter of type VARCHAR(4096). The default is that DSNACCOR

makes recommendations for all table spaces and index spaces in the

subsystem. The search condition can use any column in the result set and

wildcards are allowed.

Restricted

A parameter that is reserved for future use. Specify the null value for this

parameter. Restricted is an input parameter of type VARCHAR(80).

CRUpdatedPagesPct

Specifies a criterion for recommending a full image copy on a table space or

index space. If the following condition is true for a table space, DSNACCOR

recommends an image copy:

 The total number of distinct updated pages, divided by the total number of

preformatted pages (expressed as a percentage) is greater than

CRUpdatedPagesPct.

See item 2 in Figure 153 on page 836. If both of the following conditions are

true for an index space, DSNACCOR recommends an image copy:

v The total number of distinct updated pages, divided by the total number of

preformatted pages (expressed as a percentage) is greater than

CRUpdatedPagesPct.

v The number of active pages in the index space or partition is greater than

CRIndexSize. See items 2 and 3 in Figure 154 on page 837.

CRUpdatedPagesPct is an input parameter of type INTEGER. The default is 20.

DSNACCOR stored procedure

830 Utility Guide and Reference

||
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|

CRChangesPct

Specifies a criterion for recommending a full image copy on a table space or

index space. If the following condition is true for a table space, DSNACCOR

recommends an image copy:

 The total number of insert, update, and delete operations since the last

image copy, divided by the total number of rows or LOBs in a table space

or partition (expressed as a percentage) is greater than CRChangesPct.

See item 3 in Figure 153 on page 836. If both of the following conditions are

true for an index table space, DSNACCOR recommends an image copy:

v The total number of insert and delete operations since the last image copy,

divided by the total number of entries in the index space or partition

(expressed as a percentage) is greater than CRChangesPct.

v The number of active pages in the index space or partition is greater than

CRIndexSize.

See items 2 and 4 in Figure 154 on page 837. CRChangesPct is an input

parameter of type INTEGER. The default is 10.

CRDaySncLastCopy

Specifies a criterion for recommending a full image copy on a table space or

index space. If the number of days since the last image copy is greater than

this value, DSNACCOR recommends an image copy. (See item 1 in Figure 153

on page 836 and item 1 in Figure 154 on page 837.) CRDaySncLastCopy is an

input parameter of type INTEGER. The default is 7.

ICRUpdatedPagesPct

Specifies a criterion for recommending an incremental image copy on a table

space. If the following condition is true, DSNACCOR recommends an

incremental image copy:

 The number of distinct pages that were updated since the last image copy,

divided by the total number of active pages in the table space or partition

(expressed as a percentage) is greater than CRUpdatedPagesPct.

(See item 1 in Figure 155 on page 837.) ICRUpdatedPagesPct is an input

parameter of type INTEGER. The default is 1.

ICRChangesPct

Specifies a criterion for recommending an incremental image copy on a table

space. If the following condition is true, DSNACCOR recommends an

incremental image copy:

 The ratio of the number of insert, update, or delete operations since the last

image copy, to the total number of rows or LOBs in a table space or

partition (expressed as a percentage) is greater than ICRChangesPct.

(See item 2 in Figure 155 on page 837.) ICRChangesPct is an input parameter of

type INTEGER. The default is 1.

CRIndexSize

Specifies, when combined with CRUpdatedPagesPct or CRChangesPct, a criterion

for recommending a full image copy on an index space. (See items 2, 3, and 4

in Figure 154 on page 837.) CRIndexSize is an input parameter of type

INTEGER. The default is 50.

RRTInsDelUpdPct

Specifies a criterion for recommending that the REORG utility is to be run on a

table space. If the following condition is true, DSNACCOR recommends

running REORG:

DSNACCOR stored procedure

Appendix B. DB2-supplied stored procedures 831

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|

The sum of insert, update, and delete operations since the last REORG,

divided by the total number of rows or LOBs in the table space or partition

(expressed as a percentage) is greater than RRTInsDelUpdPct

(See item 1 in Figure 156 on page 837.) RRTInsDelUpdPct is an input parameter

of type INTEGER. The default is 20.

RRTUnclustInsPct

Specifies a criterion for recommending that the REORG utility is to be run on a

table space. If the following condition is true, DSNACCOR recommends

running REORG:

 The number of unclustered insert operations, divided by the total number

of rows or LOBs in the table space or partition (expressed as a percentage)

is greater than RRTUnclustInsPct.

(See item 2 in Figure 156 on page 837.) RRTUnclustInsPct is an input parameter

of type INTEGER. The default is 10.

RRTDisorgLOBPct

Specifies a criterion for recommending that the REORG utility is to be run on a

table space. If the following condition is true, DSNACCOR recommends

running REORG:

 The number of imperfectly chunked LOBs, divided by the total number of

rows or LOBs in the table space or partition (expressed as a percentage) is

greater than RRTDisorgLOBPct.

(See item 3 in Figure 156 on page 837.) RRTDisorgLOBPct is an input parameter

of type INTEGER. The default is 10.

RRTMassDelLimit

Specifies a criterion for recommending that the REORG utility is to be run on a

table space. If one of the following values is greater than RRTMassDelLimit,

DSNACCOR recommends running REORG:

v The number of mass deletes from a segmented or LOB table space since the

last REORG or LOAD REPLACE

v The number of dropped tables from a nonsegmented table space since the

last REORG or LOAD REPLACE

(See item 5 in Figure 156 on page 837.) RRTMassDelLimit is an input parameter

of type INTEGER. The default is 0.

RRTIndRefLimit

Specifies a criterion for recommending that the REORG utility is to be run on a

table space. If the following value is greater than RRTIndRefLimit, DSNACCOR

recommends running REORG:

 The total number of overflow records that were created since the last

REORG or LOAD REPLACE, divided by the total number of rows or LOBs

in the table space or partition (expressed as a percentage)

(See item 4 in Figure 156 on page 837.) RRTIndRefLimit is an input parameter of

type INTEGER. The default is 10.

RRIInsertDeletePct

Specifies a criterion for recommending that the REORG utility is to be run on

an index space. If the following value is greater than RRIInsertDeletePct,

DSNACCOR recommends running REORG:

 The sum of the number of index entries that were inserted and deleted

since the last REORG, divided by the total number of index entries in the

index space or partition (expressed as a percentage)

DSNACCOR stored procedure

832 Utility Guide and Reference

|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

(See item 1 in Figure 157 on page 838.) This is an input parameter of type

INTEGER. The default is 20.

RRIAppendInsertPct

Specifies a criterion for recommending that the REORG utility is to be run on

an index space. If the following value is greater than RRIAppendInsertPct,

DSNACCOR recommends running REORG:

 The number of index entries that were inserted since the last REORG,

REBUILD INDEX, or LOAD REPLACE with a key value greater than the

maximum key value in the index space or partition, divided by the number

of index entries in the index space or partition (expressed as a percentage)

(See item 2 in Figure 157 on page 838.) RRIInsertDeletePct is an input parameter

of type INTEGER. The default is 10.

RRIPseudoDeletePct

Specifies a criterion for recommending that the REORG utility is to be run on

an index space. If the following value is greater than RRIPseudoDeletePct,

DSNACCOR recommends running REORG:

 The number of index entries that were pseudo-deleted since the last

REORG, REBUILD INDEX, or LOAD REPLACE, divided by the number of

index entries in the index space or partition (expressed as a percentage)

(See item 3 in Figure 157 on page 838.) RRIPseudoDeletePct is an input

parameter of type INTEGER. The default is 10.

RRIMassDelLimit

Specifies a criterion for recommending that the REORG utility is to be run on

an index space. If the number of mass deletes from an index space or partition

since the last REORG, REBUILD, or LOAD REPLACE is greater than this

value, DSNACCOR recommends running REORG.

 (See item 4 in Figure 157 on page 838.) RRIMassDelLimit is an input parameter

of type INTEGER. The default is 0.

RRILeafLimit

Specifies a criterion for recommending that the REORG utility is to be run on

an index space. If the following value is greater than RRILeafLimit,

DSNACCOR recommends running REORG:

 The number of index page splits that occurred since the last REORG,

REBUILD INDEX, or LOAD REPLACE in which the higher part of the split

page was far from the location of the original page, divided by the total

number of active pages in the index space or partition (expressed as a

percentage)

(See item 5 in Figure 157 on page 838.) RRILeafLimit is an input parameter of

type INTEGER. The default is 10.

RRINumLevelsLimit

Specifies a criterion for recommending that the REORG utility is to be run on

an index space. If the following value is greater than RRINumLevelsLimit,

DSNACCOR recommends running REORG:

 The number of levels in the index tree that were added or removed since

the last REORG, REBUILD INDEX, or LOAD REPLACE

(See item 6 in Figure 157 on page 838.) RRINumLevelsLimit is an input

parameter of type INTEGER. The default is 0.

SRTInsDelUpdPct

Specifies, when combined with SRTInsDelUpdAbs, a criterion for

DSNACCOR stored procedure

Appendix B. DB2-supplied stored procedures 833

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

recommending that the RUNSTATS utility is to be run on a table space. If both

of the following conditions are true, DSNACCOR recommends running

RUNSTATS:

v The number of insert, update, or delete operations since the last RUNSTATS

on a table space or partition, divided by the total number of rows or LOBs

in table space or partition (expressed as a percentage) is greater than

SRTInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last

RUNSTATS on an index space or partition is greater than SRTInsDelUpdAbs.

(See items 1 and 2 in Figure 158 on page 838.) SRTInsDelUpdPct is an input

parameter of type INTEGER. The default is 20.

SRTInsDelUpdAbs

Specifies, when combined with SRTInsDelUpdPct, a criterion for recommending

that the RUNSTATS utility is to be run on a table space. If both of the

following conditions are true, DSNACCOR recommends running RUNSTATS:

v The number of insert, update, and delete operations since the last

RUNSTATS on a table space or partition, divided by the total number of

rows or LOBs in table space or partition (expressed as a percentage) is

greater than SRTInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last

RUNSTATS on an index space or partition is greater than SRTInsDelUpdAbs.

(See items 1 and 2 in Figure 158 on page 838.) SRTInsDelUpdAbs is an input

parameter of type INTEGER. The default is 0.

SRTMassDelLimit

Specifies a criterion for recommending that the RUNSTATS utility is to be run

on a table space. If the following condition is true, DSNACCOR recommends

running RUNSTATS:

v The number of mass deletes from a table space or partition since the last

REORG or LOAD REPLACE is greater than SRTMassDelLimit.

(See item 3 in Figure 158 on page 838.) SRTMassDelLimit is an input parameter

of type INTEGER. The default is 0.

SRIInsDelPct

Specifies, when combined with SRIInsDelAbs, a criterion for recommending

that the RUNSTATS utility is to be run on an index space. If both of the

following conditions are true, DSNACCOR recommends running RUNSTATS:

v The number of inserted and deleted index entries since the last RUNSTATS

on an index space or partition, divided by the total number of index entries

in the index space or partition (expressed as a percentage) is greater than

SRIInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last

RUNSTATS on an index space or partition is greater than SRIInsDelUpdAbs.

(See items 1 and 2 in Figure 159 on page 838.) SRIInsDelPct is an input

parameter of type INTEGER. The default is 20.

SRIInsDelAbs

Specifies, when combined with SRIInsDelPct, specifies a criterion for

recommending that the RUNSTATS utility is to be run on an index space. If the

following condition is true, DSNACCOR recommends running RUNSTATS:

DSNACCOR stored procedure

834 Utility Guide and Reference

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

v The number of inserted and deleted index entries since the last RUNSTATS

on an index space or partition, divided by the total number of index entries

in the index space or partition (expressed as a percentage) is greater than

SRIInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last

RUNSTATS on an index space or partition is greater than SRIInsDelUpdAbs,

(See items 1 and 2 in Figure 159 on page 838.) SRIInsDelAbs is an input

parameter of type INTEGER. The default is 0.

SRIMassDelLimit

Specifies a criterion for recommending that the RUNSTATS utility is to be run

on an index space. If the number of mass deletes from an index space or

partition since the last REORG, REBUILD INDEX, or LOAD REPLACE is

greater than this value, DSNACCOR recommends running RUNSTATS.

 (See item 3 in Figure 159 on page 838.) SRIMassDelLimit is an input parameter

of type INTEGER. The default is 0.

ExtentLimit

Specifies a criterion for recommending that the RUNSTATS or REORG utility is

to be run on a table space or index space. Also specifies that DSNACCOR is to

warn the user that the table space or index space has used too many extents.

DSNACCOR recommends running RUNSTATS or REORG, and altering data

set allocations if the following condition is true:

v The number of physical extents in the index space, table space, or partition

is greater than ExtentLimit.

(See Figure 160 on page 838.) ExtentLimit is an input parameter of type

INTEGER. The default is 50.

LastStatement

When DSNACCOR returns a severe error (return code 12), this field contains

the SQL statement that was executing when the error occurred. LastStatement is

an output parameter of type VARCHAR(8012).

ReturnCode

The return code from DSNACCOR execution. Possible values are:

0 DSNACCOR executed successfully. The ErrorMsg parameter contains

the approximate percentage of the total number of objects in the

subsystem that have information in the real-time statistics tables.

4 DSNACCOR completed, but one or more input parameters might be

incompatible. The ErrorMsg parameter contains the input parameters

that might be incompatible.

8 DSNACCOR terminated with errors. The ErrorMsg parameter contains

a message that describes the error.

12 DSNACCOR terminated with severe errors. The ErrorMsg parameter

contains a message that describes the error. The LastStatement

parameter contains the SQL statement that was executing when the

error occurred.

14 DSNACCOR terminated because it could not access one or more of the

real-time statistics tables. The ErrorMsg parameter contains the names

of the tables that DSNACCOR could not access.

15 DSNACCOR terminated because it encountered a problem with one of

the declared temporary tables that it defines and uses.

DSNACCOR stored procedure

Appendix B. DB2-supplied stored procedures 835

|
|
|
|

|
|

|
|

16 DSNACCOR terminated because it could not define a declared

temporary table. No table spaces were defined in the TEMP database.

NULL DSNACCOR terminated but could not set a return code.

ReturnCode is an output parameter of type INTEGER.

ErrorMsg

Contains information about DSNACCOR execution. If DSNACCOR runs

successfully (ReturnCode=0), this field contains the approximate percentage of

objects in the subsystem that are in the real-time statistics tables. Otherwise,

this field contains error messages. ErrorMsg is an output parameter of type

VARCHAR(1331).

IFCARetCode

Contains the return code from an IFI COMMAND call. DSNACCOR issues

commands through the IFI interface to determine the status of objects.

IFCARetCode is an output parameter of type INTEGER.

IFCAResCode

Contains the reason code from an IFI COMMAND call. IFCAResCode is an

output parameter of type INTEGER.

ExcessBytes

Contains the number of bytes of information that did not fit in the IFI return

area after an IFI COMMAND call. ExcessBytes is an output parameter of type

INTEGER.

DSNACCOR formulas for recommending actions

The following formulas specify the criteria that DSNACCOR uses for its

recommendations and warnings. The variables in italics are DSNACCOR input

parameters. The capitalized variables are columns of the

SYSIBM.TABLESPACESTATS or SYSIBM.INDEXSPACESTATS tables. The numbers

to the right of selected items are reference numbers for the option descriptions in

“DSNACCOR option descriptions” on page 828.

Figure 153 shows the formula that DSNACCOR uses to recommend a full image

copy on a table space.

 Figure 154 on page 837 shows the formula that DSNACCOR uses to recommend a

full image copy on an index space.

((QueryType=’COPY’ OR QueryType=’ALL’) AND

 (ObjectType=’TS’ OR ObjectType=’ALL’) AND

 ICType=’F’) AND

 (COPYLASTTIME IS NULL OR

 REORGLASTTIME>COPYLASTTIME OR

 LOADRLASTTIME>COPYLASTTIME OR

 (CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR �1�

 (COPYUPDATEDPAGES*100)/NACTIVE>CRUpdatedPagesPct OR �2�

 (COPYCHANGES*100)/TOTALROWS>CRChangesPct) �3�

Figure 153. DSNACCOR formula for recommending a full image copy on a table space

DSNACCOR stored procedure

836 Utility Guide and Reference

Figure 155 shows the formula that DSNACCOR uses to recommend an incremental

image copy on a table space.

 Figure 156 shows the formula that DSNACCOR uses to recommend a REORG on a

table space. If the table space is a LOB table space, and CHCKLVL=1, the formula

does not include EXTENTS>ExtentLimit.

 Figure 157 on page 838 shows the formula that DSNACCOR uses to recommend a

REORG on an index space.

((QueryType=’COPY’ OR QueryType=’ALL’) AND

 (ObjectType=’IX’ OR ObjectType=’ALL’) AND

 (ICType=’F’ OR ICType=’B’)) AND

 (COPYLASTTIME IS NULL OR

 REORGLASTTIME>COPYLASTTIME OR

 LOADRLASTTIME>COPYLASTTIME OR

 REBUILDLASTTIME>COPYLASTTIME OR

 (CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR �1�

 (NACTIVE>CRIndexSize AND �2�

 ((COPYUPDATEDPAGES*100)/NACTIVE>CRUpdatedPagesPct OR �3�

 (COPYCHANGES*100)/TOTALENTRIES>CRChangesPct))) �4�

Figure 154. DSNACCOR formula for recommending a full image copy on an index space

((QueryType=’COPY’ OR QueryType=’ALL’) AND

 (ObjectType=’TS’ OR ObjectType=’ALL’) AND

 ICType=’I’ AND

 COPYLASTTIME IS NOT NULL) AND

 (LOADRLASTTIME>COPYLASTTIME OR

 REORGLASTTIME>COPYLASTTIME OR

 (COPYUPDATEDPAGES*100)/NACTIVE>ICRUpdatedPagesPct OR �1�

 (COPYCHANGES*100)/TOTALROWS>ICRChangesPct)) �2�

Figure 155. DSNACCOR formula for recommending an incremental image copy on a table

space

((QueryType=’REORG’ OR QueryType=’ALL’) AND

 (ObjectType=’TS’ OR ObjectType=’ALL’)) AND

 (REORGLASTTIME IS NULL OR

 ((REORGINSERTS+REORGDELETES+REORGUPDATES)*100)/TOTALROWS>RRTInsDelUpdPct OR �1�

 (REORGUNCLUSTINS*100)/TOTALROWS>RRTUnclustInsPct OR �2�

 (REORGDISORGLOB*100)/TOTALROWS>RRTDisorgLOBPct OR �3�

 ((REORGNEARINDREF+REORGFARINDREF)*100)/TOTALROWS>RRTIndRefLimit OR �4�

 REORGMASSDELETE>RRTMassDelLimit OR �5�

 EXTENTS>ExtentLimit) �6�

Figure 156. DSNACCOR formula for recommending a REORG on a table space

DSNACCOR stored procedure

Appendix B. DB2-supplied stored procedures 837

Figure 158 shows the formula that DSNACCOR uses to recommend RUNSTATS on

a table space.

 Figure 159 shows the formula that DSNACCOR uses to recommend RUNSTATS on

an index space.

 Figure 160 shows the formula that DSNACCOR uses to that too many index space

or table space extents have been used.

Using an exception table

An exception table is an optional, user-created DB2 table that you can use to place

information in the INEXCEPTTABLE column of the recommendations result set.

You can put any information in the INEXCEPTTABLE column, but the most

common use of this column is to filter the recommendations result set. Each row in

the exception table represents an object for which you want to provide information

for the recommendations result set.

((QueryType=’REORG’ OR QueryType=’ALL’) AND

 (ObjectType=’IX’ OR ObjectType=’ALL’)) AND

 (REORGLASTTIME IS NULL OR

 ((REORGINSERTS+REORGDELETES)*100)/TOTALENTRIES>RRIInsertDeletePct OR �1�

 (REORGAPPENDINSERT*100)/TOTALENTRIES>RRIAppendInsertPct OR �2�

 (REORGPSEUDODELETES*100)/TOTALENTRIES>RRIPseudoDeletePct OR �3�

 REORGMASSDELETE>RRIMassDeleteLimit OR �4�

 (REORGLEAFFAR*100)/NACTIVE>RRILeafLimit OR �5�

 REORGNUMLEVELS>RRINumLevelsLimit OR �6�

 EXTENTS>ExtentLimit) �7�

Figure 157. DSNACCOR formula for recommending a REORG on an index space

((QueryType=’RUNSTATS’ OR QueryType=’ALL’) AND

 (ObjectType=’TS’ OR ObjectType=’ALL’)) AND

 (STATSLASTTIME IS NULL OR

 (((STATSINSERTS+STATSDELETES+STATSUPDATES)*100)/TOTALROWS>SRTInsDelUpdPct AND �1�

 (STATSINSERTS+STATSDELETES+STATSUPDATES)>SRTInsDelUpdAbs) OR �2�

 STATSMASSDELETE>SRTMassDeleteLimit) �3�

Figure 158. DSNACCOR formula for recommending RUNSTATS on a table space

((QueryType=’RUNSTATS’ OR QueryType=’ALL’) AND

 (ObjectType=’IX’ OR ObjectType=’ALL’)) AND

 (STATSLASTTIME IS NULL OR

 (((STATSINSERTS+STATSDELETES)*100)/TOTALENTRIES>SRIInsDelUpdPct AND �1�

 (STATSINSERTS+STATSDELETES)>SRIInsDelPct) OR �2�

 STATSMASSDELETE>SRIInsDelAbs) �3�

Figure 159. DSNACCOR formula for recommending RUNSTATS on an index space

EXTENTS>ExtentLimit

Figure 160. DSNACCOR formula for warning that too many data set extents for a table space

or index space are used

DSNACCOR stored procedure

838 Utility Guide and Reference

To create the exception table, execute a CREATE TABLE statement similar to the

following one. You can include other columns in the exception table, but you must

include at least the columns that are shown.

 CREATE TABLE DSNACC.EXCEPT_TBL

 (DBNAME CHAR(8) NOT NULL,

 NAME CHAR(8) NOT NULL,

 QUERYTYPE CHAR(40))

 CCSID EBCDIC;

The meanings of the columns are:

DBNAME

The database name for an object in the exception table.

NAME

The table space name or index space name for an object in the exception table.

QUERYTYPE

The information that you want to place in the INEXCEPTTABLE column of the

recommendations result set.

 If you put a null value in this column, DSNACCOR puts the value YES in the

INEXCEPTTABLE column of the recommendations result set row for the object

that matches the DBNAME and NAME values.

 Recommendation: If you plan to put many rows in the exception table, create a

nonunique index on DBNAME, NAME, and QUERYTYPE.

After you create the exception table, insert a row for each object for which you

want to include information in the INEXCEPTTABLE column.

Example: Suppose that you want the INEXCEPTTABLE column to contain the

string 'IRRELEVANT’ for table space STAFF in database DSNDB04. You also want

the INEXCEPTTABLE column to contain ’CURRENT’ for table space DSN8S81D in

database DSN8D81A. Execute these INSERT statements:

INSERT INTO DSNACC.EXCEPT_TBL VALUES(’DSNDB04 ’, ’STAFF ’, ’IRRELEVANT’);

INSERT INTO DSNACC.EXCEPT_TBL VALUES(’DSN8D81A’, ’DSN8S81D’, ’CURRENT’);

To use the contents of INEXCEPTTABLE for filtering, include a condition that

involves the INEXCEPTTABLE column in the search condition that you specify in

your Criteria input parameter.

Example: Suppose that you want to include all rows for database DSNDB04 in the

recommendations result set, except for those rows that contain the string

’IRRELEVANT’ in the INEXCEPTTABLE column. You might include the following

search condition in your Criteria input parameter:

DBNAME=’DSNDB04’ AND INEXCEPTTABLE<>’IRRELEVANT’

Example of DSNACCOR invocation

Figure 161 on page 840 is a COBOL example that shows variable declarations and

an SQL CALL for obtaining recommendations for objects in databases DSN8D81A

and DSN8D81L. This example also outlines the steps that you need to perform to

retrieve the two result sets that DSNACCOR returns. These result sets are

described in “DSNACCOR output” on page 843. See DB2 Application Programming

and SQL Guide for more information about how to retrieve result sets from a stored

procedure.

DSNACCOR stored procedure

Appendix B. DB2-supplied stored procedures 839

WORKING-STORAGE SECTION. ...

* DSNACCOR PARAMETERS *

 01 QUERYTYPE.

 49 QUERYTYPE-LN PICTURE S9(4) COMP VALUE 40.

 49 QUERYTYPE-DTA PICTURE X(40) VALUE ’ALL’.

 01 OBJECTTYPE.

 49 OBJECTTYPE-LN PICTURE S9(4) COMP VALUE 3.

 49 OBJECTTYPE-DTA PICTURE X(3) VALUE ’ALL’.

 01 ICTYPE.

 49 ICTYPE-LN PICTURE S9(4) COMP VALUE 1.

 49 ICTYPE-DTA PICTURE X(1) VALUE ’B’.

 01 STATSSCHEMA.

 49 STATSSCHEMA-LN PICTURE S9(4) COMP VALUE 128.

 49 STATSSCHEMA-DTA PICTURE X(128) VALUE ’SYSIBM’.

 01 CATLGSCHEMA.

 49 CATLGSCHEMA-LN PICTURE S9(4) COMP VALUE 128.

 49 CATLGSCHEMA-DTA PICTURE X(128) VALUE ’SYSIBM’.

 01 LOCALSCHEMA.

 49 LOCALSCHEMA-LN PICTURE S9(4) COMP VALUE 128.

 49 LOCALSCHEMA-DTA PICTURE X(128) VALUE ’DSNACC’.

 01 CHKLVL PICTURE S9(9) COMP VALUE +3.

 01 CRITERIA.

 49 CRITERIA-LN PICTURE S9(4) COMP VALUE 4096.

 49 CRITERIA-DTA PICTURE X(4096) VALUE SPACES.

 01 RESTRICTED.

 49 RESTRICTED-LN PICTURE S9(4) COMP VALUE 80.

 49 RESTRICTED-DTA PICTURE X(80) VALUE SPACES.

 01 CRUPDATEDPAGESPCT PICTURE S9(9) COMP VALUE +0.

 01 CRCHANGESPCT PICTURE S9(9) COMP VALUE +0.

 01 CRDAYSNCLASTCOPY PICTURE S9(9) COMP VALUE +0.

 01 ICRUPDATEDPAGESPCT PICTURE S9(9) COMP VALUE +0.

 01 ICRCHANGESPCT PICTURE S9(9) COMP VALUE +0.

 01 CRINDEXSIZE PICTURE S9(9) COMP VALUE +0.

 01 RRTINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.

 01 RRTUNCLUSTINSPCT PICTURE S9(9) COMP VALUE +0.

 01 RRTDISORGLOBPCT PICTURE S9(9) COMP VALUE +0.

 01 RRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.

 01 RRTINDREFLIMIT PICTURE S9(9) COMP VALUE +0.

 01 RRIINSERTDELETEPCT PICTURE S9(9) COMP VALUE +0.

 01 RRIAPPENDINSERTPCT PICTURE S9(9) COMP VALUE +0.

 01 RRIPSEUDODELETEPCT PICTURE S9(9) COMP VALUE +0.

 01 RRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.

 01 RRILEAFLIMIT PICTURE S9(9) COMP VALUE +0.

 01 RRINUMLEVELSLIMIT PICTURE S9(9) COMP VALUE +0.

 01 SRTINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.

 01 SRTINSDELUPDABS PICTURE S9(9) COMP VALUE +0.

 01 SRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.

 01 SRIINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.

 01 SRIINSDELUPDABS PICTURE S9(9) COMP VALUE +0.

 01 SRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.

 01 EXTENTLIMIT PICTURE S9(9) COMP VALUE +0.

 01 LASTSTATEMENT.

 49 LASTSTATEMENT-LN PICTURE S9(4) COMP VALUE 8012.

 49 LASTSTATEMENT-DTA PICTURE X(8012) VALUE SPACES.

 01 RETURNCODE PICTURE S9(9) COMP VALUE +0.

 01 ERRORMSG.

 49 ERRORMSG-LN PICTURE S9(4) COMP VALUE 1331.

 49 ERRORMSG-DTA PICTURE X(1331) VALUE SPACES.

 01 IFCARETCODE PICTURE S9(9) COMP VALUE +0.

 01 IFCARESCODE PICTURE S9(9) COMP VALUE +0.

 01 EXCESSBYTES PICTURE S9(9) COMP VALUE +0.

Figure 161. Example of DSNACCOR invocation (Part 1 of 4)

DSNACCOR stored procedure

840 Utility Guide and Reference

* INDICATOR VARIABLES. *

* INITIALIZE ALL NON-ESSENTIAL INPUT *

* VARIABLES TO -1, TO INDICATE THAT THE *

* INPUT VALUE IS NULL. *

 01 QUERYTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.

 01 OBJECTTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.

 01 ICTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.

 01 STATSSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 CATLGSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 LOCALSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 CHKLVL-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 CRITERIA-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RESTRICTED-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 CRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 CRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 CRDAYSNCLASTCOPY-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 ICRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 ICRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 CRINDEXSIZE-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RRTINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RRTUNCLUSTINSPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RRTDISORGLOBPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RRTINDREFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RRIINSERTDELETEPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RRIAPPENDINSERTPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RRIPSEUDODELETEPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RRILEAFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 RRINUMLEVELSLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 SRTINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 SRTINSDELUPDABS-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 SRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 SRIINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 SRIINSDELUPDABS-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 SRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 EXTENTLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.

 01 LASTSTATEMENT-IND PICTURE S9(4) COMP-4 VALUE +0.

 01 RETURNCODE-IND PICTURE S9(4) COMP-4 VALUE +0.

 01 ERRORMSG-IND PICTURE S9(4) COMP-4 VALUE +0.

 01 IFCARETCODE-IND PICTURE S9(4) COMP-4 VALUE +0.

 01 IFCARESCODE-IND PICTURE S9(4) COMP-4 VALUE +0.

 01 EXCESSBYTES-IND PICTURE S9(4) COMP-4 VALUE +0.

 PROCEDURE DIVISION. ...

* SET VALUES FOR DSNACCOR INPUT PARAMETERS: *

* - USE THE CHKLVL PARAMETER TO CAUSE DSNACCOR TO CHECK *

* FOR ORPHANED OBJECTS AND INDEX SPACES WITHOUT *

* TABLE SPACES, BUT INCLUDE THOSE OBJECTS IN THE *

* RECOMMENDATIONS RESULT SET (CHKLVL=1+2+16=19) *

* - USE THE CRITERIA PARAMETER TO CAUSE DSNACCOR TO *

* MAKE RECOMMENDATIONS ONLY FOR OBJECTS IN DATABASES *

* DSN8D81A AND DSN8D81L. *

Figure 161. Example of DSNACCOR invocation (Part 2 of 4)

DSNACCOR stored procedure

Appendix B. DB2-supplied stored procedures 841

* - FOR THE FOLLOWING PARAMETERS, SET THESE VALUES, *

* WHICH ARE LOWER THAN THE DEFAULTS: *

* CRUPDATEDPAGESPCT 4 *

* CRCHANGESPCT 2 *

* RRTINSDELUPDPCT 2 *

* RRTUNCLUSTINSPCT 5 *

* RRTDISORGLOBPCT 5 *

* RRIAPPENDINSERTPCT 5 *

* SRTINSDELUPDPCT 5 *

* SRIINSDELUPDPCT 5 *

* EXTENTLIMIT 3 *

 MOVE 19 TO CHKLVL.

 MOVE SPACES TO CRITERIA-DTA.

 MOVE ’DBNAME = ’’DSN8D81A’’ OR DBNAME = ’’DSN8D81L’’’

 TO CRITERIA-DTA.

 MOVE 46 TO CRITERIA-LN.

 MOVE 4 TO CRUPDATEDPAGESPCT.

 MOVE 2 TO CRCHANGESPCT.

 MOVE 2 TO RRTINSDELUPDPCT.

 MOVE 5 TO RRTUNCLUSTINSPCT.

 MOVE 5 TO RRTDISORGLOBPCT.

 MOVE 5 TO RRIAPPENDINSERTPCT.

 MOVE 5 TO SRTINSDELUPDPCT.

 MOVE 5 TO SRIINSDELUPDPCT.

 MOVE 3 TO EXTENTLIMIT.

* INITIALIZE OUTPUT PARAMETERS *

 MOVE SPACES TO LASTSTATEMENT-DTA.

 MOVE 1 TO LASTSTATEMENT-LN.

 MOVE 0 TO RETURNCODE-O2.

 MOVE SPACES TO ERRORMSG-DTA.

 MOVE 1 TO ERRORMSG-LN.

 MOVE 0 TO IFCARETCODE.

 MOVE 0 TO IFCARESCODE.

 MOVE 0 TO EXCESSBYTES.

* SET THE INDICATOR VARIABLES TO 0 FOR NON-NULL INPUT *

* PARAMETERS (PARAMETERS FOR WHICH YOU DO NOT WANT *

* DSNACCOR TO USE DEFAULT VALUES) AND FOR OUTPUT *

* PARAMETERS. *

 MOVE 0 TO CHKLVL-IND.

 MOVE 0 TO CRITERIA-IND.

 MOVE 0 TO CRUPDATEDPAGESPCT-IND.

 MOVE 0 TO CRCHANGESPCT-IND.

 MOVE 0 TO RRTINSDELUPDPCT-IND.

 MOVE 0 TO RRTUNCLUSTINSPCT-IND.

 MOVE 0 TO RRTDISORGLOBPCT-IND.

 MOVE 0 TO RRIAPPENDINSERTPCT-IND.

 MOVE 0 TO SRTINSDELUPDPCT-IND.

 MOVE 0 TO SRIINSDELUPDPCT-IND.

 MOVE 0 TO EXTENTLIMIT-IND.

 MOVE 0 TO LASTSTATEMENT-IND.

 MOVE 0 TO RETURNCODE-IND.

 MOVE 0 TO ERRORMSG-IND.

 MOVE 0 TO IFCARETCODE-IND.

 MOVE 0 TO IFCARESCODE-IND.

 MOVE 0 TO EXCESSBYTES-IND. ...

Figure 161. Example of DSNACCOR invocation (Part 3 of 4)

DSNACCOR stored procedure

842 Utility Guide and Reference

DSNACCOR output

If DSNACCOR executes successfully, in addition to the output parameters

described in “DSNACCOR option descriptions” on page 828, DSNACCOR returns

two result sets.

The first result set contains the results from IFI COMMAND calls that DSNACCOR

makes. Table 162 on page 844 shows the format of the first result set.

* CALL DSNACCOR *

 EXEC SQL

 CALL SYSPROC.DSNACCOR

 (:QUERYTYPE :QUERYTYPE-IND,

 :OBJECTTYPE :OBJECTTYPE-IND,

 :ICTYPE :ICTYPE-IND,

 :STATSSCHEMA :STATSSCHEMA-IND,

 :CATLGSCHEMA :CATLGSCHEMA-IND,

 :LOCALSCHEMA :LOCALSCHEMA-IND,

 :CHKLVL :CHKLVL-IND,

 :CRITERIA :CRITERIA-IND,

 :RESTRICTED :RESTRICTED-IND,

 :CRUPDATEDPAGESPCT :CRUPDATEDPAGESPCT-IND,

 :CRCHANGESPCT :CRCHANGESPCT-IND,

 :CRDAYSNCLASTCOPY :CRDAYSNCLASTCOPY-IND,

 :ICRUPDATEDPAGESPCT :ICRUPDATEDPAGESPCT-IND,

 :ICRCHANGESPCT :ICRCHANGESPCT-IND,

 :CRINDEXSIZE :CRINDEXSIZE-IND,

 :RRTINSDELUPDPCT :RRTINSDELUPDPCT-IND,

 :RRTUNCLUSTINSPCT :RRTUNCLUSTINSPCT-IND,

 :RRTDISORGLOBPCT :RRTDISORGLOBPCT-IND,

 :RRTMASSDELLIMIT :RRTMASSDELLIMIT-IND,

 :RRTINDREFLIMIT :RRTINDREFLIMIT-IND,

 :RRIINSERTDELETEPCT :RRIINSERTDELETEPCT-IND,

 :RRIAPPENDINSERTPCT :RRIAPPENDINSERTPCT-IND,

 :RRIPSEUDODELETEPCT :RRIPSEUDODELETEPCT-IND,

 :RRIMASSDELLIMIT :RRIMASSDELLIMIT-IND,

 :RRILEAFLIMIT :RRILEAFLIMIT-IND,

 :RRINUMLEVELSLIMIT :RRINUMLEVELSLIMIT-IND,

 :SRTINSDELUPDPCT :SRTINSDELUPDPCT-IND,

 :SRTINSDELUPDABS :SRTINSDELUPDABS-IND,

 :SRTMASSDELLIMIT :SRTMASSDELLIMIT-IND,

 :SRIINSDELUPDPCT :SRIINSDELUPDPCT-IND,

 :SRIINSDELUPDABS :SRIINSDELUPDABS-IND,

 :SRIMASSDELLIMIT :SRIMASSDELLIMIT-IND,

 :EXTENTLIMIT :EXTENTLIMIT-IND,

 :LASTSTATEMENT :LASTSTATEMENT-IND,

 :RETURNCODE :RETURNCODE-IND,

 :ERRORMSG :ERRORMSG-IND,

 :IFCARETCODE :IFCARETCODE-IND,

 :IFCARESCODE :IFCARESCODE-IND,

 :EXCESSBYTES :EXCESSBYTES-IND)

 END-EXEC.

* ASSUME THAT THE SQL CALL RETURNED +466, WHICH MEANS THAT *

* RESULT SETS WERE RETURNED. RETRIEVE RESULT SETS. *

* LINK EACH RESULT SET TO A LOCATOR VARIABLE

 EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)

 WITH PROCEDURE SYSPROC.DSNACCOR

 END-EXEC.

* LINK A CURSOR TO EACH RESULT SET

 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC1

 END-EXEC.

 EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :LOC2

 END-EXEC.

* PERFORM FETCHES USING C1 TO RETRIEVE ALL ROWS FROM FIRST RESULT SET

* PERFORM FETCHES USING C2 TO RETRIEVE ALL ROWS FROM SECOND RESULT SET

Figure 161. Example of DSNACCOR invocation (Part 4 of 4)

DSNACCOR stored procedure

Appendix B. DB2-supplied stored procedures 843

Table 162. Result set row for first DSNACCOR result set

Column name Data type Contents

RS_SEQUENCE INTEGER Sequence number of the output line

RS_DATA CHAR(80) A line of command output

The second result set contains DSNACCOR's recommendations. This result set

contains one or more rows for a table space or index space. A nonpartitioned table

space or nonpartitioning index space can have at most one row in the result set. A

partitioned table space or partitioning index space can have at most one row for

each partition. A table space, index space, or partition has a row in the result set if

both of the following conditions are true:

v If the Criteria input parameter contains a search condition, the search condition

is true for the table space, index space, or partition.

v DSNACCOR recommends at least one action for the table space, index space, or

partition.

Table 163 shows the columns of a result set row.

 Table 163. Result set row for second DSNACCOR result set

Column name Data type Description

DBNAME CHAR(8) Name of the database that contains the object.

NAME CHAR(8) Table space or index space name.

PARTITION INTEGER Data set number or partition number.

OBJECTTYPE CHAR(2) DB2 object type:

v TS for a table space

v IX for an index space

OBJECTSTATUS CHAR(36) Status of the object:

v ORPHANED, if the object is an index space with no

corresponding table space, or if the object does not exist

v If the object is in a restricted state, one of the following

values:

– TS=restricted-state, if OBJECTTYPE is TS

– IX=restricted-state, if OBJECTTYPE is IX

restricted-state is one of the status codes that appear in

DISPLAY DATABASE output. See Chapter 2 of DB2

Command Reference for details.

v A, if the object is in an advisory state.

v L, if the object is a logical partition, but not in an advisory

state.

v AL, if the object is a logical partition and in an advisory

state.

IMAGECOPY CHAR(3) COPY recommendation:

v If OBJECTTYPE is TS: FUL (full image copy), INC

(incremental image copy), or NO

v If OBJECTTYPE is IX: YES or NO

RUNSTATS CHAR(3) RUNSTATS recommendation: YES or NO.

EXTENTS CHAR(3) Indicates whether the data sets for the object have exceeded

ExtentLimit: YES or NO.

REORG CHAR(3) REORG recommendation: YES or NO.

DSNACCOR stored procedure

844 Utility Guide and Reference

|||

|
|

|
|
|
|

|
|
|

|

|
|

|
|

Table 163. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

INEXCEPTTABLE CHAR(40) A string that contains one of the following values:

v Text that you specify in the QUERYTYPE column of the

exception table.

v YES, if you put a row in the exception table for the object

that this result set row represents, but you specify NULL in

the QUERYTYPE column.

v NO, if the exception table exists but does not have a row for

the object that this result set row represents.

v Null, if the exception table does not exist, or if the ChkLvl

input parameter does not include the value 4.

ASSOCIATEDTS CHAR(8) If OBJECTTYPE is IX and the ChkLvl input parameter includes

the value 2, this value is the name of the table space that is

associated with the index space. Otherwise null.

COPYLASTTIME TIMESTAMP Timestamp of the last full image copy on the object. Null if

COPY was never run, or if the last COPY execution was

terminated.

LOADRLASTTIME TIMESTAMP Timestamp of the last LOAD REPLACE on the object. Null if

LOAD REPLACE was never run, or if the last LOAD

REPLACE execution was terminated.

REBUILDLASTTIME TIMESTAMP Timestamp of the last REBUILD INDEX on the object. Null if

REBUILD INDEX was never run, or if the last REBUILD

INDEX execution was terminated.

CRUPDPGSPCT INTEGER If OBJECTTYPE is TS or IX and IMAGECOPY is YES, the ratio

of distinct updated pages to preformatted pages, expressed as

a percentage. Otherwise null.

CRCPYCHGPCT INTEGER If OBJECTTYPE is TS and IMAGECOPY is YES, the ratio of

the total number insert, update, and delete operations since

the last image copy to the total number of rows or LOBs in the

table space or partition, expressed as a percentage. If

OBJECTTYPE is IX and IMAGECOPY is YES, the ratio of the

total number of insert and delete operations since the last

image copy to the total number of entries in the index space or

partition, expressed as a percentage. Otherwise null.

CRDAYSCELSTCPY INTEGER If OBJECTTYPE is TS or IX and IMAGECOPY is YES, the

number of days since the last image copy. Otherwise null.

CRINDEXSIZE INTEGER If OBJECTTYPE is IX and IMAGECOPY is YES, the number of

active pages in the index space or partition. Otherwise null.

REORGLASTTIME TIMESTAMP Timestamp of the last REORG on the object. Null if REORG

was never run, or if the last REORG execution was terminated.

RRTINSDELUPDPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the sum

of insert, update, and delete operations since the last REORG

to the total number of rows or LOBs in the table space or

partition, expressed as a percentage. Otherwise null.

RRTUNCINSPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the

number of unclustered insert operations to the total number of

rows or LOBs in the table space or partition, expressed as a

percentage. Otherwise null.

RRTDISORGLOBPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the

number of imperfectly chunked LOBs to the total number of

rows or LOBs in the table space or partition, expressed as a

percentage. Otherwise null.

DSNACCOR stored procedure

Appendix B. DB2-supplied stored procedures 845

Table 163. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

RRTMASSDELETE INTEGER If OBJECTTYPE is TS, REORG is YES, and the table space is a

segmented table space or LOB table space, the number of mass

deletes since the last REORG or LOAD REPLACE. If

OBJECTTYPE is TS, REORG is YES, and the table space is

nonsegmented, the number of dropped tables since the last

REORG or LOAD REPLACE. Otherwise null.

RRTINDREF INTEGER If OBJECTTYPE is TS, REORG is YES, the ratio of the total

number of overflow records that were created since the last

REORG or LOAD REPLACE to the total number of rows or

LOBs in the table space or partition, expressed as a percentage.

Otherwise null.

RRIINSDELPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the total

number of insert and delete operations since the last REORG

to the total number of index entries in the index space or

partition, expressed as a percentage. Otherwise null.

RRIAPPINSPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the

number of index entries that were inserted since the last

REORG, REBUILD INDEX, or LOAD REPLACE that had a key

value greater than the maximum key value in the index space

or partition, to the number of index entries in the index space

or partition, expressed as a percentage. Otherwise null.

RRIPSDDELPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the

number of index entries that were pseudo-deleted (the RID

entry was marked as deleted) since the last REORG, REBUILD

INDEX, or LOAD REPLACE to the number of index entries in

the index space or partition, expressed as a percentage.

Otherwise null.

RRIMASSDELETE INTEGER If OBJECTTYPE is IX and REORG is YES, the number of mass

deletes from the index space or partition since the last REORG,

REBUILD, or LOAD REPLACE. Otherwise null.

RRILEAF INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the

number of index page splits that occurred since the last

REORG, REBUILD INDEX, or LOAD REPLACE in which the

higher part of the split page was far from the location of the

original page, to the total number of active pages in the index

space or partition, expressed as a percentage. Otherwise null.

RRINUMLEVELS INTEGER If OBJECTTYPE is IX and REORG is YES, the number of levels

in the index tree that were added or removed since the last

REORG, REBUILD INDEX, or LOAD REPLACE. Otherwise

null.

STATSLASTTIME TIMESTAMP Timestamp of the last RUNSTATS on the object. Null if

RUNSTATS was never run, or if the last RUNSTATS execution

was terminated.

SRTINSDELUPDPCT INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the ratio of the

total number of insert, update, and delete operations since the

last RUNSTATS on a table space or partition, to the total

number of rows or LOBs in the table space or partition,

expressed as a percentage. Otherwise null.

SRTINSDELUPDABS INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the total number

of insert, update, and delete operations since the last

RUNSTATS on a table space or partition. Otherwise null.

DSNACCOR stored procedure

846 Utility Guide and Reference

|

|

Table 163. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

SRTMASSDELETE INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the number of

mass deletes from the table space or partition since the last

REORG or LOAD REPLACE. Otherwise null.

SRIINSDELPCT INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the ratio of the

total number of insert and delete operations since the last

RUNSTATS on the index space or partition, to the total

number of index entries in the index space or partition,

expressed as a percentage. Otherwise null.

SRIINSDELABS INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the number

insert and delete operations since the last RUNSTATS on the

index space or partition. Otherwise null.

SRIMASSDELETE INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the number of

mass deletes from the index space or partition since the last

REORG, REBUILD INDEX, or LOAD REPLACE. Otherwise,

this value is null.

TOTALEXTENTS SMALLINT If EXTENTS is YES, the number of physical extents in the table

space, index space, or partition. Otherwise, this value is null.

DSNACCOR stored procedure

Appendix B. DB2-supplied stored procedures 847

DSNACCOR stored procedure

848 Utility Guide and Reference

Appendix C. Advisory or restrictive states

To control access and help ensure data integrity, DB2 sets a restrictive or

nonrestrictive (advisory) status on certain objects. This appendix outlines the

restrictive and nonrestrictive (advisory) object statuses that affect utilities, and the

required steps to correct each status for a particular object.

Use the DISPLAY DATABASE command to display the current status for an object.

The following states are described in this section:

 “Auxiliary CHECK-pending status”

 “Auxiliary warning status” on page 850

 “CHECK-pending status” on page 850

 “COPY-pending status” on page 851

 “Group buffer pool RECOVER-pending status” on page 852

 “Informational COPY-pending status” on page 852

 “REBUILD-pending status” on page 852

 “RECOVER-pending status” on page 853

 “REFRESH-pending status” on page 854

 “REORG-pending status” on page 854

 “Restart-pending status” on page 855

In addition to these states, the output from the DISPLAY DATABASE command

might also indicate that an object is in logical page list (LPL) status. This state

means that the pages that are listed in the LPL PAGES column are logically in

error and are unavailable for access. DB2 writes entries for these pages in an LPL.

For more information about an LPL and on how to remove pages from the LPL,

see Part 4 of DB2 Administration Guide.

Auxiliary CHECK-pending status

The auxiliary CHECK-pending (ACHKP) restrictive status is set on when at least

one base table LOB column error is detected and not invalidated as a result of

running CHECK DATA AUXERROR REPORT.

Refer to Table 164 for information about resetting the auxiliary CHECK-pending

status. This table lists the status name, abbreviation, affected object, and any

corrective actions.

 Table 164. Resetting auxiliary CHECK-pending status

Status Abbreviation Object affected Corrective action Notes

Auxiliary

CHECK-
pending

ACHKP Base table space 1. Update or delete invalid LOBs using SQL.

2. Run the CHECK DATA utility with the

appropriate SCOPE option to verify the

validity of LOBs and reset ACHKP status.

You can use the REPAIR utility, followed by

CHECK DATA, to reset the ACHKP status, but

use caution.

1

Notes:

1. A base table space in the ACHKP status is unavailable for processing by SQL.

© Copyright IBM Corp. 1983, 2008 849

|
|
|
|
|
|

Auxiliary warning status

Auxiliary warning (AUXW) status is set on when at least one base table LOB

column has an invalidated LOB as a result of running CHECK DATA AUXERROR

INVALIDATE. An attempt to retrieve an invalidated LOB results in a -904 SQL

return code.

The RECOVER utility also sets AUXW status if it finds an invalid LOB column.

Invalid LOB columns might result from a situation in which all the following

actions occur:

1. LOB table space was defined with LOG NO.

2. LOB table space was recovered.

3. LOB was updated since the last image copy.

Refer to Table 165 for information about resetting the auxiliary warning status. This

table lists the status name, abbreviation, affected objects, and any corrective

actions.

 Table 165. Resetting auxiliary warning status

Status Abbreviation Object affected Corrective action Notes

Auxiliary

warning

AUXW Base table space 1. Update or delete invalid LOBs using SQL.

2. Run CHECK DATA utility to verify the

validity of LOBs and reset AUXW status.

1,2,3

Auxiliary

warning

 AUXW LOB table space 1. Update or delete invalid LOBs using SQL.

2. Run CHECK LOB utility to verify the

validity of LOBs and reset AUXW status.

1

Notes:

1. A base table space or LOB table space in the AUXW status is available for processing by SQL, even though it

contains invalid LOBs. However, an attempt to retrieve an invalid LOB results in a -904 SQL return code.

2. DB2 can access all rows of a base table space that are in the AUXW status. SQL can update the invalid LOB

column and delete base table rows, but the value of the LOB column cannot be retrieved. If DB2 attempts to

access an invalid LOB column, a -904 SQL code is returned. The AUXW status remains on the base table space

even when SQL deletes or updates the last invalid LOB column.

3. If CHECK DATA AUXERROR REPORT encounters only invalid LOB columns and no other LOB column errors,

the base table space is set to the auxiliary warning status.

CHECK-pending status

The CHECK-pending (CHKP) restrictive status indicates that an object might be in

an inconsistent state and must be checked.

The following utilities set the CHECK-pending status on a table space if referential

integrity constraints are encountered:

v LOAD with ENFORCE NO

v RECOVER to a point in time

v CHECK LOB

The CHECK-pending status can also affect a base table space or a LOB table space.

DB2 ignores informational referential integrity constraints and does not set

CHECK-pending status for them.

Resetting an advisory or restrictive status

850 Utility Guide and Reference

Refer to Table 166 for information about resetting the CHECK-pending status. This

table lists the status name, abbreviation, affected objects, and any corrective

actions.

 Table 166. Resetting CHECK-pending status

Status Abbreviation Object affected Corrective action Notes

CHECK-
pending

CHKP Table space, base table

space

Check and correct referential integrity

constraints using the CHECK DATA utility.

If a table space is in both REORG-pending and

CHECK-pending status (or auxiliary

CHECK-pending status), run REORG first and

then use CHECK DATA to clear the respective

states.

CHECK-
pending

CHKP Partitioning index,

nonpartitioning index,

index on the auxiliary

table

1. Run CHECK INDEX on the index.

2. If any errors are found, use the REBUILD

INDEX utility to rebuild the index from

existing data.

1

CHECK-
pending

CHKP LOB table space Use the CHECK LOB utility to check the LOB

table space. If any errors are found:

1. Correct any defects that are found in the

LOB table space by using the REPAIR utility.

2. Run CHECK LOB again to reset the

CHECK-pending status.

3. See Table 165 on page 850 if an AUXW

status exists.

Notes:

1. An index might be placed in the CHECK-pending status if you recovered an index to a specific RBA or LRSN

from a copy and applied the log records, but you did not recover the table space in the same list. The

CHECK-pending status can also be placed on an index if you specified the table space and the index in the same

list, but the RECOVER point in time was not a QUIESCE or COPY SHRLEVEL REFERENCE point.

COPY-pending status

The COPY-pending (COPY) restrictive status indicates that the affected object must

be copied.

DB2 ignores informational referential integrity constraints and does not set

CHECK-pending status for them.

Refer to Table 167 for information about resetting the COPY-pending status. This

table lists the status name, abbreviation, affected objects, and any corrective

actions.

 Table 167. Resetting COPY-pending status

Status Abbreviation Object affected Corrective action Notes

COPY-
pending

COPY Table space, table space

partition

Take an image copy of the affected object.

Resetting an advisory or restrictive status

Appendix C. Advisory or restrictive states 851

Group buffer pool RECOVER-pending status

The group buffer pool RECOVER-pending (GRECP) status is set on when a

coupling facility fails with pages that were not externalized. The affected object

must be recovered.

Refer to Table 168 for information about resetting the group buffer pool

RECOVER-pending status. This table lists the status name, abbreviation, affected

objects, and any corrective actions.

 Table 168. Resetting group buffer pool RECOVER-pending status

Status Abbreviation Object affected Corrective action Notes

Group buffer

pool

RECOVER-

pending

GRECP Object Recover the object, or use START DATABASE to

recover the object.

Informational COPY-pending status

The informational COPY-pending (ICOPY) advisory status indicates that the

affected object should be copied.

Refer to Table 169 for information about resetting the informational COPY-pending

status. This table lists the status name, abbreviation, affected objects, and any

corrective actions.

 Table 169. Resetting informational COPY-pending status

Status Abbreviation Object affected Corrective action Notes

Informational

COPY-
pending

ICOPY Partitioning index,

nonpartitioning index,

index on the auxiliary

table

Copy the affected index.

REBUILD-pending status

A REBUILD-pending restrictive status indicates that the affected index or index

partition is broken and must be rebuilt from the data.

REBUILD-pending (RBDP) status indicates that the physical or logical partition is

inaccessible and must be rebuilt. RBDP status is set on a data-partitioned

secondary index if you create the index after performing the following actions:

v Create a partitioned table space.

v Create a partitioning index.

v Insert a row into a table.

In this situation, the last partition of the table space is set to REORG-pending

(REORP) restrictive status.

REBUILD-pending star (RBDP*) status indicates that a logical partition of a

nonpartitioned secondary index is unavailable for read-write access and the entire

index is unavailable for read access.

Page set REBUILD-pending (PSRBD) status indicates that an entire nonpartitioned

secondary index or index on the auxiliary table is unavailable for read-write access.

Resetting an advisory or restrictive status

852 Utility Guide and Reference

|
|
|
|
|
|

|
|

|
|
|

|
|

Rebuilding an index and thereby resetting the REBUILD-pending status invalidates

the dynamic statement cache for the related table.

If you alter the data type of a column to a numeric data type, RECOVER INDEX

cannot complete. You must rebuild the index.

Refer to Table 170 for information about resetting a REBUILD-pending status. This

table lists the status name, abbreviation, affected objects, and any corrective

actions.

 Table 170. Resetting REBUILD-pending status

Status Abbreviation Object affected Corrective action Notes

REBUILD-

pending

RBDP Physical or logical index

partition

Run the REBUILD utility on the affected index

partition.

REBUILD-

pending star

RBDP* Logical partitions of

nonpartitioned secondary

indexes

Run REBUILD INDEX PART or RECOVER

utility on the affected logical partitions.

Page set

REBUILD-

pending

PSRBD Nonpartitioned

secondary index, index

on the auxiliary table

Run REBUILD INDEX ALL, the RECOVER

utility, or run REBUILD INDEX listing all

indexes in the affected index space.

REBUILD-

pending

RBDP, RBDP*,

or PSRBD

all The following actions also reset the

REBUILD-pending status:

v Use LOAD REPLACE for the table space or

partition.

v Use REPAIR SET INDEX with NORBDPEND

on the index partition. Be aware that this

does not correct the data inconsistency in the

index partition. Use CHECK INDEX instead

of REPAIR to verify referential integrity

constraints.

v Start the database that contains the index

space with ACCESS FORCE. Be aware that

this does not correct the data inconsistency in

the index partition.

v Run REORG INDEX SORTDATA on the

affected index.

RECOVER-pending status

The RECOVER-pending (RECP) restrictive status indicates that a table space or

table space partition is broken and must be recovered.

Refer to Table 171 for information about resetting the RECOVER-pending status.

This table lists the status name, abbreviation, affected objects, and any corrective

actions.

 Table 171. Resetting RECOVER-pending status

Status Abbreviation Object affected Corrective action Notes

RECOVER-

pending

RECP Table space Run the RECOVER utility on the affected object.

RECOVER-

pending

RECP Table space partition Recover the partition.

Resetting an advisory or restrictive status

Appendix C. Advisory or restrictive states 853

|
|

|
|

|

|

|
|

Table 171. Resetting RECOVER-pending status (continued)

Status Abbreviation Object affected Corrective action Notes

RECOVER-

pending

RECP Index on the auxiliary

table

Correct the RECOVER-pending status by using

one of the following utilities:

v REBUILD INDEX

v RECOVER INDEX

v REORG INDEX SORTDATA

RECOVER-

pending

RECP Index space Run one of the following utilities on the affected

index space to reset RECP, RBDP, RBDP*, or

PSRBDP status:

v REBUILD INDEX

v RECOVER INDEX

v REORG INDEX SORTDATA

RECOVER-

pending

RECP Any The following actions also reset the

RECOVER-pending status:

v Use LOAD REPLACE for the table space or

partition.

v Use REPAIR SET TABLESPACE or INDEX

with NORCVRPEND on the table space or

partition. Be aware that this does not correct

the data inconsistency in the table space or

partition.

v Start the database that contains the table

space or index space with ACCESS FORCE.

Be aware that this does not correct the data

inconsistency in the table space or partition.

REFRESH-pending status

Whenever DB2 marks an object in refresh-pending (REFP) status, it also puts the

object in RECOVER-pending (RECP) or REBUILD-pending (RBDP or PSRBD). If a

user-defined table space is in refresh-pending (REFP) status, you can replace the

data by using LOAD REPLACE. At the successful completion of the RECOVER

and LOAD REPLACE jobs, both (REFP and RECP or REFP and RBDP or PSRBD)

statuses are reset.

REORG-pending status

The REORG-pending (REORP) restrictive status indicates that a table space

partition definition has changed and the affected partitions must be reorganized

before the data is accessible.

The REORG-pending (AREO*) advisory status indicates that a table space, index,

or partition needs to be reorganized for optimal performance.

Refer to Table 172 on page 855 for information about resetting the REORG-pending

status. This table lists the status name, abbreviation, affected objects, and any

corrective actions.

Resetting an advisory or restrictive status

854 Utility Guide and Reference

|
|

Table 172. Resetting REORG-pending status

Status Abbreviation Object affected Corrective action Notes

REORG-
pending

REORP Table space Perform one of the following actions:

v Use LOAD REPLACE for the entire table

space.

v Run the REORG TABLESPACE utility with

SHRLEVEL NONE.

If a table space is in both REORG-pending

and CHECK-pending status (or auxiliary

CHECK-pending status), run REORG first

and then run CHECK DATA to clear the

respective states.

v Run REORG PARTm:n SHRLEVEL NONE.

REORG-
pending

REORP Partitioned table space For row lengths <= 32 KB:

1. Run REORG TABLESPACE SHRLEVEL

NONE SORTDATA.

For row lengths > 32 KB:

1. Run REORG TABLESPACE UNLOAD

ONLY.

2. Run LOAD TABLESPACE FORMAT

UNLOAD.

Advisory

REORG-
pending

AREO* Table space Run one of the following utilities:

v REORG TABLESPACE

v LOAD REPLACE

v REPAIR TABLESPACE

1

Advisory

REORG-
pending

AREO* Index space Run one of the following utilities:

v REORG TABLESPACE

v LOAD REPLACE

v REORG INDEX

v REPAIR INDEX

1

Notes:

1. You can reset AREO* for a specific partition without being restricted by

another AREO* for an adjacent partition. When you run REPAIR VERSIONS,

the utility resets the status and updates the version information in

SYSTABLEPART for table spaces and SYSINDEXES for indexes.

Restart-pending status

The restart-pending (RESTP) status is set on if an object has backout work pending

at the end of DB2 restart.

Refer to Table 173 on page 856 for information about resetting the restart-pending

status. This table lists the status name, abbreviation, affected objects, and any

corrective actions.

Resetting an advisory or restrictive status

Appendix C. Advisory or restrictive states 855

|
|
|

|

|

|

|

|
|
|

|

|

|

|

|

|
|
|
|

Table 173. Resetting restart-pending status

Status Abbreviation Object affected Corrective action Notes

Restart-

pending

RESTP Table space, table space

partitions, index spaces,

and physical index space

partitions

Objects in the RESTP status remain unavailable

until backout work is complete, or until restart

is canceled and a conditional restart or cold

start is performed in its place. See Part 4

(Volume 1) of DB2 Administration Guide for

information about the RESTP restrictive status.

1,2,3

Notes:

1. Delay running REORG TABLESPACE SHRLEVEL CHANGE until all RESTP statuses are reset.

2. You cannot use LOAD REPLACE on an object that is in the RESTP status.

3. Utility activity against page sets or partitions with RESTP status is not allowed. Any attempt to access a page set

or partition with RESTP status terminates with return code 8.

Resetting an advisory or restrictive status

856 Utility Guide and Reference

Appendix D. Running the productivity-aid sample programs

DB2 provides four sample programs that many users find helpful as productivity

aids. These programs are shipped as source code, so you can modify them to meet

your needs. The programs are:

DSNTIAUL The sample unload program. This program, which is written in

assembler language, is a simple alternative to the UNLOAD utility.

It unloads some or all rows from up to 100 DB2 tables. With

DSNTIAUL, you can unload data of any DB2 built-in data type or

distinct type. You can unload up to 32 KB of data from a LOB

column. DSNTIAUL unloads the rows in a form that is compatible

with the LOAD utility and generates utility control statements for

LOAD. DSNTIAUL also lets you execute any SQL non-SELECT

statement that can be executed dynamically. See “Running

DSNTIAUL” on page 858.

DSNTIAD A sample dynamic SQL program that is written in assembler

language. With this program, you can execute any SQL statement

that can be executed dynamically, except a SELECT statement. See

“Running DSNTIAD” on page 862.

DSNTEP2 A sample dynamic SQL program that is written in the PL/I

language. With this program, you can execute any SQL statement

that can be executed dynamically. You can use the source version

of DSNTEP2 and modify it to meet your needs, or, if you do not

have a PL/I compiler at your installation, you can use the object

code version of DSNTEP2. See “Running DSNTEP2 and DSNTEP4”

on page 864.

DSNTEP4 A sample dynamic SQL program that is written in the PL/I

language. This program is identical to DSNTEP2 except DSNTEP4

uses multi-row fetch for increased performance. You can use the

source version of DSNTEP4 and modify it to meet your needs, or,

if you do not have a PL/I compiler at your installation, you can

use the object code version of DSNTEP4. See “Running DSNTEP2

and DSNTEP4” on page 864.

Because these four programs also accept the static SQL statements CONNECT, SET

CONNECTION, and RELEASE, you can use the programs to access DB2 tables at

remote locations.

Retrieval of UTF-16 Unicode data: You can use DSNTEP2, DSNTEP4, and

DSNTIAUL to retrieve Unicode UTF-16 graphic data. However, these programs

might not be able to display some characters, if those characters have no mapping

in the target SBCS EBCDIC CCSID.

DSNTIAUL and DSNTIAD are shipped only as source code, so you must

precompile, assemble, link, and bind them before you can use them. If you want to

use the source code version of DSNTEP2 or DSNTEP4, you must precompile,

compile, link, and bind it. You need to bind the object code version of DSNTEP2 or

DSNTEP4 before you can use it. Usually a system administrator prepares the

programs as part of the installation process. Table 174 on page 858 indicates which

installation job prepares each sample program. All installation jobs are in data set

DSN810.SDSNSAMP.

© Copyright IBM Corp. 1983, 2008 857

||
|
|
|
|
|
|

#
#
#
#

|
|
|

Table 174. Jobs that prepare DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Program name Program preparation job

DSNTIAUL DSNTEJ2A

DSNTIAD DSNTIJTM

DSNTEP2 (source) DSNTEJ1P

DSNTEP2 (object) DSNTEJ1L

DSNTEP4 (source) DSNTEJ1P

DSNTEP4 (object) DSNTEJ1L

To run the sample programs, use the DSN RUN command, which is described in

detail in Chapter 2 of DB2 Command Reference. Table 175 lists the load module

name and plan name that you must specify, and the parameters that you can

specify when you run each program. See the following sections for the meaning of

each parameter.

 Table 175. DSN RUN option values for DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Program name Load module Plan Parameters

DSNTIAUL DSNTIAUL DSNTIB81 SQL

 number of rows per fetch

 TOLWARN(NO|YES)

DSNTIAD DSNTIAD DSNTIA81 RC0

 SQLTERM(termchar)

DSNTEP2 DSNTEP2 DSNTEP81 ALIGN(MID)

 or ALIGN(LHS)

 NOMIXED or MIXED

 SQLTERM(termchar)

 TOLWARN(NO|YES)

DSNTEP4 DSNTEP4 DSNTEP481 ALIGN(MID)

 or ALIGN(LHS)

 NOMIXED or MIXED

 SQLTERM(termchar)

 TOLWARN(NO|YES)

The remainder of this chapter contains the following information about running

each program:

v Descriptions of the input parameters

v Data sets that you must allocate before you run the program

v Return codes from the program

v Examples of invocation

See the sample jobs that are listed in Table 174 for a working example of each

program.

Running DSNTIAUL

This section contains information that you need when you run DSNTIAUL,

including parameters, data sets, return codes, and invocation examples.

To retrieve data from a remote site by using the multi-row fetch capability for

enhanced performance, bind DSNTIAUL with the DBPROTOCOL(DRDA) option.

Running DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

858 Utility Guide and Reference

#

#

#

#
#

To run DSNTIAUL remotely when it is bound with the DBPROTOCOL(PRIVATE)

option, switch DSNTIAUL to single-row fetch mode by specifying 1 for the

number of rows per fetch parameter.

DSNTIAUL parameters:

SQL

Specify SQL to indicate that your input data set contains one or more complete

SQL statements, each of which ends with a semicolon. You can include any

SQL statement that can be executed dynamically in your input data set. In

addition, you can include the static SQL statements CONNECT, SET

CONNECTION, or RELEASE. DSNTIAUL uses the SELECT statements to

determine which tables to unload and dynamically executes all other

statements except CONNECT, SET CONNECTION, and RELEASE. DSNTIAUL

executes CONNECT, SET CONNECTION, and RELEASE statically to connect

to remote locations.

number of rows per fetch

Specify a number from 1 to 32767 to specify the number of rows per fetch that

DSNTIAUL retrieves. If you do not specify this number, DSNTIAUL retrieves

100 rows per fetch. This parameter can be specified with the SQL parameter.

 Specify 1 to retrieve data from a remote site when DSNTIAUL is bound with

the DBPROTOCOL(PRIVATE) option.

TOLWARN

Specify NO (the default) or YES to indicate whether DSNTIAUL continues to

retrieve rows after receiving an SQL warning:

NO If a warning occurs when DSNTIAUL executes an OPEN or FETCH to

retrieve rows, DSNTIAUL stops retrieving rows. If the SQLWARN1,

SQLWARN2, SQLWARN6, or SQLWARN7 flag is set when DSNTIAUL

executes a FETCH to retrieve rows, DSNTIAUL continues to retrieve

rows.

 Exception:

YES If a warning occurs when DSNTIAUL executes an OPEN or FETCH to

retrieve rows, DSNTIAUL continues to retrieve rows.

If you do not specify the SQL parameter, your input data set must contain one or

more single-line statements (without a semicolon) that use the following syntax:

table or view name [WHERE conditions] [ORDER BY columns]

Each input statement must be a valid SQL SELECT statement with the clause

SELECT * FROM omitted and with no ending semicolon. DSNTIAUL generates a

SELECT statement for each input statement by appending your input line to

SELECT * FROM, then uses the result to determine which tables to unload. For this

input format, the text for each table specification can be a maximum of 72 bytes

and must not span multiple lines.

You can use the input statements to specify SELECT statements that join two or

more tables or select specific columns from a table. If you specify columns, you

need to modify the LOAD statement that DSNTIAUL generates.

DSNTIAUL data sets:

Data set Description

SYSIN Input data set.

Running DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Appendix D. Running the productivity-aid sample programs 859

#
#
#

|
|
|
|

#
#

#
#
#

##
#
#
#
#

#

##
#

You cannot enter comments in DSNTIAUL input.

The record length for the input data set must be at least 72 bytes.

DSNTIAUL reads only the first 72 bytes of each record.

SYSPRINT Output data set. DSNTIAUL writes informational and error

messages in this data set.

 The record length for the SYSPRINT data set is 121 bytes.

SYSPUNCH Output data set. DSNTIAUL writes the LOAD utility control

statements in this data set.

SYSRECnn Output data sets. The value nn ranges from 00 to 99. You can have

a maximum of 100 output data sets for a single execution of

DSNTIAUL. Each data set contains the data that is unloaded when

DSNTIAUL processes a SELECT statement from the input data set.

Therefore, the number of output data sets must match the number

of SELECT statements (if you specify parameter SQL) or table

specifications in your input data set.

Define all data sets as sequential data sets. You can specify the record length and

block size of the SYSPUNCH and SYSRECnn data sets. The maximum record

length for the SYSPUNCH and SYSRECnn data sets is 32760 bytes.

DSNTIAUL return codes:

 Table 176. DSNTIAUL return codes

Return code Meaning

0 Successful completion.

4 An SQL statement received a warning code. If the SQL statement was a

SELECT statement, DB2 did not perform the associated unload operation.

If DB2 return a +394, which indicates that it is using optimization hints,

DB2 performs the unload operation.

8 An SQL statement received an error code. If the SQL statement was a

SELECT statement, DB2 did not perform the associated unload operation.

12 DSNTIAUL could not open a data set, an SQL statement returned a

severe error code (-8nn or -9nn), or an error occurred in the SQL message

formatting routine.

Examples of DSNTIAUL invocation: Suppose that you want to unload the rows for

department D01 from the project table. Because you can fit the table specification

on one line, and you do not want to execute any non-SELECT statements, you do

not need the SQL parameter. Your invocation looks like the one that is shown in

Figure 162 on page 861:

Running DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

860 Utility Guide and Reference

If you want to obtain the LOAD utility control statements for loading rows into a

table, but you do not want to unload the rows, you can set the data set names for

the SYSRECnn data sets to DUMMY. For example, to obtain the utility control

statements for loading rows into the department table, you invoke DSNTIAUL as

shown in Figure 163:

Now suppose that you also want to use DSNTIAUL to do these things:

v Unload all rows from the project table

v Unload only rows from the employee table for employees in departments with

department numbers that begin with D, and order the unloaded rows by

employee number

v Lock both tables in share mode before you unload them

v Retrieve 250 rows per fetch

For these activities, you must specify the SQL parameter and specify the number of

rows per fetch when you run DSNTIAUL. Your DSNTIAUL invocation is shown in

Figure 164 on page 862:

//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB81) -

 LIB(’DSN810.RUNLIB.LOAD’)

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSREC00 DD DSN=DSN8UNLD.SYSREC00,

// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),

// VOL=SER=SCR03

//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,

// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),

// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200

//SYSIN DD *

DSN8810.PROJ WHERE DEPTNO='D01'

Figure 162. DSNTIAUL invocation without the SQL parameter

//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB81) -

 LIB(’DSN810.RUNLIB.LOAD’)

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSREC00 DD DUMMY

//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,

// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),

// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200

//SYSIN DD *

DSN8810.DEPT

Figure 163. DSNTIAUL invocation to obtain LOAD control statements

Running DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Appendix D. Running the productivity-aid sample programs 861

|

|
|

Running DSNTIAD

This section contains information that you need when you run DSNTIAD,

including parameters, data sets, return codes, and invocation examples.

DSNTIAD parameters:

RC0

If you specify this parameter, DSNTIAD ends with return code 0, even if the

program encounters SQL errors. If you do not specify RC0, DSNTIAD ends

with a return code that reflects the severity of the errors that occur. Without

RC0, DSNTIAD terminates if more than 10 SQL errors occur during a single

execution.

SQLTERM(termchar)

Specify this parameter to indicate the character that you use to end each SQL

statement. You can use any special character except one of those listed in

Table 177. SQLTERM(;) is the default.

 Table 177. Invalid special characters for the SQL terminator

Name Character Hexadecimal representation

blank X'40'

comma , X'6B'

double quotation mark " X'7F'

left parenthesis (X'4D'

right parenthesis) X'5D'

single quotation mark ' X'7D'

underscore _ X'6D'

//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB81) PARMS('SQL,250') -

 LIB(’DSN810.RUNLIB.LOAD’)

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSREC00 DD DSN=DSN8UNLD.SYSREC00,

// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),

// VOL=SER=SCR03

//SYSREC01 DD DSN=DSN8UNLD.SYSREC01,

// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),

// VOL=SER=SCR03

//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,

// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),

// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200

//SYSIN DD *

LOCK TABLE DSN8810.EMP IN SHARE MODE;

LOCK TABLE DSN8810.PROJ IN SHARE MODE;

SELECT * FROM DSN8810.PROJ;

SELECT * FROM DSN8810.EMP

 WHERE WORKDEPT LIKE ’D%’

 ORDER BY EMPNO;

Figure 164. DSNTIAUL invocation with the SQL parameter

Running DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

862 Utility Guide and Reference

|

Use a character other than a semicolon if you plan to execute a statement that

contains embedded semicolons.

Example: Suppose that you specify the parameter SQLTERM(#) to indicate that

the character # is the statement terminator. Then a CREATE TRIGGER

statement with embedded semicolons looks like this:

CREATE TRIGGER NEW_HIRE

 AFTER INSERT ON EMP

 FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;

 END#

A CREATE PROCEDURE statement with embedded semicolons looks like the

following statement:

CREATE PROCEDURE PROC1 (IN PARM1 INT, OUT SCODE INT)

 LANGUAGE SQL

 BEGIN

 DECLARE SQLCODE INT;

 DECLARE EXIT HANDLER FOR SQLEXCEPTION

 SET SCODE = SQLCODE;

 UPDATE TBL1 SET COL1 = PARM1;

 END #

Be careful to choose a character for the statement terminator that is not used

within the statement.

DSNTIAD data sets:

Data set Description

SYSIN Input data set. In this data set, you can enter any number of

non-SELECT SQL statements, each terminated with a semicolon. A

statement can span multiple lines, but DSNTIAD reads only the

first 72 bytes of each line.

 You cannot enter comments in DSNTIAD input.

SYSPRINT Output data set. DSNTIAD writes informational and error

messages in this data set. DSNTIAD sets the record length of this

data set to 121 bytes and the block size to 1210 bytes.

Define all data sets as sequential data sets.

DSNTIAD return codes:

 Table 178. DSNTIAD return codes

Return code Meaning

0 Successful completion, or the user-specified parameter RC0.

4 An SQL statement received a warning code.

8 An SQL statement received an error code.

12 DSNTIAD could not open a data set, the length of an SQL statement was

more than 32760 bytes, an SQL statement returned a severe error code

(-8nn or -9nn), or an error occurred in the SQL message formatting

routine.

Example of DSNTIAD invocation: Suppose that you want to execute 20 UPDATE

statements, and you do not want DSNTIAD to terminate if more than 10 errors

Running DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Appendix D. Running the productivity-aid sample programs 863

#
#

#
#
#
#
#
#
#
#

occur. Your invocation looks like the one that is shown in Figure 165:

Running DSNTEP2 and DSNTEP4

This section contains information that you need when you run DSNTEP2 or

DSNTEP4, including parameters, data sets, return codes, and invocation examples.

DSNTEP2 and DSNTEP4 parameters:

ALIGN(MID) or ALIGN(LHS)

Specifies the alignment.

ALIGN(MID)

Specifies that DSNTEP2 or DSNTEP4 output should be centered.

ALIGN(MID) is the default.

ALIGN(LHS)

Specifies that the DSNTEP2 or DSNTEP4 output should be left-justified.

NOMIXED or MIXED

Specifies whether DSNTEP2 or DSNTEP4 contains any DBCS characters.

NOMIXED

Specifies that the DSNTEP2 or DSNTEP4 input contains no DBCS

characters. NOMIXED is the default.

MIXED

Specifies that the DSNTEP2 or DSNTEP4 input contains some DBCS

characters.

SQLTERM(termchar)

Specifies the character that you use to end each SQL statement. You can use

any character except one of those that are listed in Table 177 on page 862.

SQLTERM(;) is the default.

 Use a character other than a semicolon if you plan to execute a statement that

contains embedded semicolons.

Example: Suppose that you specify the parameter SQLTERM(#) to indicate that

the character # is the statement terminator. Then a CREATE TRIGGER

statement with embedded semicolons looks like this:

CREATE TRIGGER NEW_HIRE

 AFTER INSERT ON EMP

 FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;

 END#

//RUNTIAD EXEC PGM=IKJEFT01,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA81) PARMS('RC0') -

 LIB(’DSN810.RUNLIB.LOAD’)

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

UPDATE DSN8810.PROJ SET DEPTNO='J01' WHERE DEPTNO='A01';

UPDATE DSN8810.PROJ SET DEPTNO='J02' WHERE DEPTNO='A02'; ...
UPDATE DSN8810.PROJ SET DEPTNO='J20' WHERE DEPTNO='A20';

Figure 165. DSNTIAD Invocation with the RC0 Parameter

Running DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

864 Utility Guide and Reference

|
|

|

|

|

|

|

|

A CREATE PROCEDURE statement with embedded semicolons looks like the

following statement:

CREATE PROCEDURE PROC1 (IN PARM1 INT, OUT SCODE INT)

 LANGUAGE SQL

 BEGIN

 DECLARE SQLCODE INT;

 DECLARE EXIT HANDLER FOR SQLEXCEPTION

 SET SCODE = SQLCODE;

 UPDATE TBL1 SET COL1 = PARM1;

 END #

Be careful to choose a character for the statement terminator that is not used

within the statement.

If you want to change the SQL terminator within a series of SQL statements,

you can use the --#SET TERMINATOR control statement.

Example: Suppose that you have an existing set of SQL statements to which

you want to add a CREATE TRIGGER statement that has embedded

semicolons. You can use the default SQLTERM value, which is a semicolon, for

all of the existing SQL statements. Before you execute the CREATE TRIGGER

statement, include the --#SET TERMINATOR # control statement to change the

SQL terminator to the character #:

SELECT * FROM DEPT;

SELECT * FROM ACT;

SELECT * FROM EMPPROJACT;

SELECT * FROM PROJ;

SELECT * FROM PROJACT;

--#SET TERMINATOR #

CREATE TRIGGER NEW_HIRE

 AFTER INSERT ON EMP

 FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;

 END#

See the following discussion of the SYSIN data set for more information about

the --#SET control statement.

TOLWARN

Specify NO (the default) or YES to indicate whether DSNTEP2 or DSNTEP4

continues to process SQL SELECT statements after receiving an SQL warning:

NO If a warning occurs when DSNTEP2 or DSNTEP4 executes an OPEN or

FETCH for a SELECT statement, DSNTEP2 or DSNTEP4 stops

processing the SELECT statement. If SQLCODE +445 or SQLCODE

+595 occurs when DSNTEP2 or DSNTEP4 executes a FETCH for a

SELECT statement, DSNTEP2 or DSNTEP4 continues to process the

SELECT statement. If SQLCODE +802 occurs when DSNTEP2 or

DSNTEP4 executes a FETCH for a SELECT statement, DSNTEP2 or

DSNTEP4 continues to process the SELECT statement if the

TOLARTHWRN control statement is set to YES.

YES If a warning occurs when DSNTEP2 or DSNTEP4 executes an OPEN or

FETCH for a SELECT statement, DSNTEP2 or DSNTEP4 continues to

process the SELECT statement.

DSNTEP2 and DSNTEP4 data sets:

Data Set Description

SYSIN Input data set. In this data set, you can enter any number of SQL

Running DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Appendix D. Running the productivity-aid sample programs 865

#
#

#
#
#
#
#
#
#
#

#
#
#

##
#
#
#
#
#
#
#
#

##
#
#

|

statements, each terminated with a semicolon. A statement can

span multiple lines, but DSNTEP2 or DSNTEP4 reads only the first

72 bytes of each line.

 You can enter comments in DSNTEP2 or DSNTEP4 input with an

asterisk (*) in column 1 or two hyphens (--) anywhere on a line.

Text that follows the asterisk is considered to be comment text.

Text that follows two hyphens can be comment text or a control

statement. Comments are not considered in dynamic statement

caching. Comments and control statements cannot span lines.

You can enter control statements of the following form in the

DSNTEP2 and DSNTEP4 input data set:

--#SET control-option value

The control options are:

TERMINATOR

The SQL statement terminator. value is any single-byte

character other than one of those that are listed in Table 177 on

page 862. The default is the value of the SQLTERM parameter.

ROWS_FETCH

The number of rows that are to be fetched from the result

table. value is a numeric literal between -1 and the number of

rows in the result table. -1 means that all rows are to be

fetched. The default is -1.

ROWS_OUT

The number of fetched rows that are to be sent to the output

data set. value is a numeric literal between -1 and the number

of fetched rows. -1 means that all fetched rows are to be sent to

the output data set. The default is -1.

MULT_FETCH

This option is valid only for DSNTEP4. Use MULT_FETCH to

specify the number of rows that are to be fetched at one time

from the result table. The default fetch amount for DSNTEP4 is

100 rows, but you can specify from 1 to 32676 rows.

TOLWARN

Indicates whether DSNTEP2 and DSNTEP4 continue to process

an SQL SELECT after an SQL warning is returned. value is

either NO (the default) or YES.

TOLARTHWRN

Indicates whether DSNTEP2 and DSNTEP4 continue to process

an SQL SELECT statement after an arithmetic SQL warning

(SQLCODE +802) is returned. value is either NO (the default)

or YES.

MAXERRORS

Specifies that number of errors that DSNTEP2 and DSNTEP4

handle before processing stops. The default is 10.

SYSPRINT Output data set. DSNTEP2 and DSNTEP4 write informational and

error messages in this data set. DSNTEP2 and DSNTEP4 write

output records of no more than 133 bytes.

Define all data sets as sequential data sets.

Running DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

866 Utility Guide and Reference

|

|

|
|

|

|
|
|
|
|

#
#
#
#

#
#
#
#
#

#
#
#

|
|

DSNTEP2 and DSNTEP4 return codes:

 Table 179. DSNTEP2 and DSNTEP4 return codes

Return code Meaning

0 Successful completion.

4 An SQL statement received a warning code.

8 An SQL statement received an error code.

12 The length of an SQL statement was more than 32760 bytes, an SQL

statement returned a severe error code (-8nn or -9nn), or an error

occurred in the SQL message formatting routine.

Example of DSNTEP2 invocation: Suppose that you want to use DSNTEP2 to

execute SQL SELECT statements that might contain DBCS characters. You also

want left-aligned output. Your invocation looks like the one in Figure 166:

Example of DSNTEP4 invocation: Suppose that you want to use DSNTEP4 to

execute SQL SELECT statements that might contain DBCS characters, and you

want center-aligned output. You also want DSNTEP4 to fetch 250 rows at a time.

Your invocation looks like the one in Figure 167:

//RUNTEP2 EXEC PGM=IKJEFT01,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 RUN PROGRAM(DSNTEP2) PLAN(DSNTEP81) PARMS('/ALIGN(LHS) MIXED') -

 LIB(’DSN810.RUNLIB.LOAD’)

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

SELECT * FROM DSN8810.PROJ;

Figure 166. DSNTEP2 invocation with the ALIGN(LHS) and MIXED parameters

//RUNTEP2 EXEC PGM=IKJEFT01,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 RUN PROGRAM(DSNTEP4) PLAN(DSNTEP481) PARMS('/ALIGN(MID) MIXED') -

 LIB(’DSN810.RUNLIB.LOAD’)

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

--#SET MULT_FETCH 250

SELECT * FROM DSN8810.EMP;

Figure 167. DSNTEP4 invocation with the ALIGN(MID) and MIXED parameters and using the

MULT_FETCH control option

Running DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Appendix D. Running the productivity-aid sample programs 867

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

868 Utility Guide and Reference

Appendix E. Real-time statistics tables

The information under this heading is Product-sensitive Programming Interface

and Associated Guidance Information, as defined in “Notices” on page 901.

DB2 collects statistics that you can use to determine when you need to perform

certain maintenance functions on your table spaces and index spaces.

DB2 collects the statistics in real time. You create tables into which DB2

periodically writes the statistics. You can then write applications that query the

statistics and help you decide when to run REORG, RUNSTATS, or COPY, or to

enlarge your data sets. Figure 168 shows an overview of the process of collecting

and using real-time statistics.

The following sections provide detailed information about the real-time statistics

tables:

v “Setting up your system for real-time statistics”

v “Contents of the real-time statistics tables” on page 871

v “Operating with real-time statistics” on page 883

For information about a DB2-supplied stored procedure that queries the real-time

statistics tables, see “The DB2 real-time statistics stored procedure” on page 826.

Setting up your system for real-time statistics

DB2 always generates in-memory statistics for each table space, index space,

including catalog objects but not the directory, in your system. For partitioned

spaces, DB2 generates information for each partition. However, you need to

perform the following steps before DB2 externalizes the statistics to DB2 tables:

1. Create the real-time statistics objects. See “Creating and altering the real-time

statistics objects” on page 870.

2. Set the interval for writing statistics. See “Setting the interval for writing

real-time statistics” on page 871.

3. Start the real-time statistics database. See “Starting the real-time statistics

database” on page 871.

4. Establish base values for the statistics. See “Establishing base values for

real-time statistics” on page 871.

DB2

DB2 catalog

Real-time statistics
tables

Application
program

Figure 168. Real-time statistics overview

© Copyright IBM Corp. 1983, 2008 869

#
#
#
#

#
#

#
#

#
#

#
#

Creating and altering the real-time statistics objects

You need to create a database, table space, tables, and indexes for the real-time

statistics. Those objects are listed in Table 180. Use the SQL statements in member

DSNTESS of data set DSN810.SDSNSAMP as a model for creating the real-time

statistics objects. You can create these objects in user-managed or DB2-managed

data sets.

Restrictions on changing the provided definitions for the real-time statistics

objects: You can change most of the attributes in the provided definitions of the

real-time statistics objects. However, you cannot change the following items:

v Object names. You must use the names that are specified in DSNTESS for the

database, table space, tables, indexes, and table columns.

v The CCSID parameter on the CREATE DATABASE, CREATE TABLESPACE, and

CREATE TABLE statements. The CCSID must be EBCDIC.

v Number of columns or column definitions. You cannot add table columns or

modify column definitions.

v The LOCKSIZE parameter on the CREATE TABLESPACE statement. The

LOCKSIZE must be ROW.

Before you can alter an object in the real-time statistics database, you must stop the

database. Otherwise, you receive an SQL error. Table 180 shows the DB2 objects for

storing real-time statistics.

 Table 180. DB2 objects for storing real-time statistics

Object name Description

DSNRTSDB Database for real-time statistics objects

DSNRTSTS Table space for real-time statistics objects

SYSIBM.TABLESPACESTATS Table for statistics on table spaces and table space

partitions

SYSIBM.INDEXSPACESTATS Table for statistics on index spaces and index space

partitions

SYSIBM.TABLESPACESTATS_IX Unique index on SYSIBM.TABLESPACESTATS

(columns DBID, PSID, and PARTITION)

SYSIBM.INDEXSPACESTATS_IX Unique index on SYSIBM.INDEXSPACESTATS

(columns DBID, ISOBID, and PARTITION)

To create the real-time statistics objects, you need the authority to create tables and

indexes on behalf of the SYSIBM authorization ID.

DB2 inserts one row in the table for each partition or non-partitioned table space

or index space. You therefore need to calculate the amount of disk space that you

need for the real-time statistics tables based on the current number of table spaces

and indexes in your subsystem.

To determine the amount of storage that you need for the real-time statistics when

they are in memory, use the following formula:

Max_concurrent_objects_updated * 152 bytes = Storage_in_bytes

Where Max_concurrent_objects_updated is the peak number of objects that might

be updated concurrently and 152 bytes is the amount of in-memory space that DB2

uses for each object.

870 Utility Guide and Reference

|
|

Recommendation: Place the statistics indexes and tables in their own buffer pool.

When the statistics pages are in memory, the speed at which in-memory statistics

are written to the tables improves.

Setting the interval for writing real-time statistics

You can set the interval for writing real-time statistics when you install DB2, and

you can subsequently update that interval online. The installation field is REAL

TIME STATS on panel DSNTIPO. The default interval is 30 minutes. To update the

interval, modify system parameter STATSINT.

In a data sharing environment, each member has its own interval for writing

real-time statistics.

Starting the real-time statistics database

After you create the real-time statistics database, DB2 puts it into a stopped state.

After you create all the objects in the database, you need to issue START

DATABASE(DSNRTSDB) to explicitly start the database.

You must start the database in read-write modeso that DB2 can externalize

real-time statistics. See “When DB2 externalizes real-time statistics” on page 883 for

information about the conditions for which DB2 externalizes the statistics.

Establishing base values for real-time statistics

Many columns in the real-time statistics tables show the number of times an

operation was performed between the last time a particular utility was run and

when the real-time statistics are written. For example, STATSINSERT in

TABLESPACESTATS indicates the number of records or LOBs that have been

inserted after the last RUNSTATS utility was run on the table space or partition.

Therefore, for each object for which you want real-time statistics, run the

appropriate utility (REORG, RUNSTATS, LOAD REPLACE, REBUILD INDEX, or

COPY) to establish a base value from which the delta value can be calculated.

Contents of the real-time statistics tables

The SYSIBM.TABLESPACESTATS table contains statistics information about table

spaces and table space partitions. The SYSIBM.INDEXSPACESTATS table contains

statistics information about index spaces and index space partitions.

Table 181 describes the columns of the TABLESPACESTATS table and explains how

you can use them in deciding when to run REORG, RUNSTATS, or COPY.

 Table 181. Descriptions of columns in the TABLESPACESTATS table

Column name Data type Description

DBNAME CHAR(8) NOT

NULL

The name of the database. This column is used to map a database

to its statistics.

NAME CHAR(8) NOT

NULL

The name of the table space. This column is used to map a table

space to its statistics.

PARTITION SMALLINT NOT

NULL

The data set number within the table space. This column is used to

map a data set number in a table space to its statistics. For

partitioned table spaces, this value corresponds to the partition

number for a single partition. For nonpartitioned table spaces, this

value is 0.

Appendix E. Real-time statistics tables 871

Table 181. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

DBID SMALLINT NOT

NULL

The internal identifier of the database. This column is used to map

a DBID to its statistics.

PSID SMALLINT NOT

NULL

The internal identifier of the table space page set descriptor. This

column is used to map a PSID to its statistics.

UPDATESTATSTIME TIMESTAMP NOT

NULL WITH

DEFAULT

The timestamp when the row was inserted or last updated.

This column is updated with the current timestamp when a row in

the TABLESPACESTATS table is inserted or updated. You can use

this column in several ways:

v To determine the actions that caused the latest change to the

table. Do this by selecting any of the timestamp columns and

comparing them to the UPDATESTATSTIME column.

v To determine whether an analysis of data is needed. This

determination might be based on a given time interval, or on a

combination of the time interval and the amount of activity.

For example, suppose that you want to analyze statistics for the

last seven days. To determine whether there has been any

activity in the past seven days, check whether the difference

between the current date and the UPDATESTATSTIME value is

less than or equal to seven:

(JULIAN_DAY(CURRENT DATE)-JULIAN_DAY(UPDATESTATSTIME))<= 7

TOTALROWS FLOAT The number of rows or LOBs in the table space or partition.

If the table space contains more than one table, this value is the

sum of all rows in all tables. A null value means that the number

of rows is unknown or that REORG or LOAD has never been run.

Use the TOTALROWS value with the value of any column that

contains some affected rows to determine the percentage of rows

that are affected by a particular action.

NACTIVE INTEGER The number of active pages in the table space or partition.

A null value means that the number of active pages is unknown.

This value is equivalent to the number of preformatted pages. For

multi-piece table spaces, this value is the total number of

preformatted pages in all data sets.

Use the NACTIVE value with the value of any column that

contains some affected pages to determine the percentage of pages

that are affected by a particular action.

For example, suppose that your site's maintenance policies require

that COPY is to be run after 20% of the pages in a table space have

changed. To determine if a COPY might be required, calculate the

ratio of updated pages since the last COPY to the total number of

active pages. If the percentage is greater than 20, you need to run

COPY:

((COPYUPDATEDPAGES*100)/NACTIVE)>20

872 Utility Guide and Reference

Table 181. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

SPACE INTEGER The amount of space, in KB, that is allocated to the table space or

partition.

For multi-piece linear page sets, this value is the amount of space

in all data sets. A null value means the amount of space is

unknown.

Use this value to monitor growth and validate design assumptions.

EXTENTS SMALLINT The number of extents in the table space or partition. For

multi-piece table spaces, this value is the number of extents for the

last data set. For a data set that is striped across multiple volumes,

the value is the number of logical extents. A null value means that

the number of extents is unknown.

Use this value to determine:

v When the primary or secondary allocation value for a table

space or partition needs to be altered.

v When you are approaching the maximum number of extents

and risking extend failures.

LOADRLASTTIME TIMESTAMP The timestamp of the last LOAD REPLACE on the table space or

partition.

A null value means that LOAD REPLACE has never been run on

the table space or partition or that the timestamp of the last LOAD

REPLACE is unknown.

You can compare this timestamp to the timestamp of the last

COPY on the same object to determine when a COPY is needed. If

the date of the last LOAD REPLACE is more recent than the last

COPY, you might need to run COPY:

(JULIAN_DAY(LOADRLASTTIME)>JULIAN_DAY(COPYLASTTIME))

REORGLASTTIME TIMESTAMP The timestamp of the last REORG on the table space or partition.

A null value means REORG has never been run on the table space

or partition or that the timestamp of the last REORG is unknown.

You can compare this timestamp to the timestamp of the last

COPY on the same object to determine when a COPY is needed. If

the date of the last REORG is more recent than the last COPY, you

might need to run COPY:

(JULIAN_DAY(REORGLASTTIME)>JULIAN_DAY(COPYLASTTIME))

REORGINSERTS INTEGER The number of records or LOBs that have been inserted since the

last REORG or LOAD REPLACE on the table space or partition.

A null value means that the number of inserted records or LOBs is

unknown.

REORGDELETES INTEGER The number of records or LOBs that have been deleted since the

last REORG or LOAD REPLACE on the table space or partition.

A null value means that the number of deleted records or LOBs is

unknown.

Appendix E. Real-time statistics tables 873

Table 181. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

REORGUPDATES INTEGER The number of rows that have been updated since the last REORG

or LOAD REPLACE on the table space or partition.

This value does not include LOB updates because LOB updates are

really deletions followed by insertions. A null value means that the

number of updated rows is unknown.

This value can be used with REORGDELETES and

REORGINSERTS to determine if a REORG is necessary. For

example, suppose that your site's maintenance policies require that

REORG is run after 20 per cent of the rows in a table space have

changed. To determine if a REORG is required, calculate the sum

of updated, inserted, and deleted rows since the last REORG. Then

calculate the ratio of that sum to the total number of rows. If the

percentage is greater than 20, you might need to run REORG:

(((REORGINSERTS+REORGDELETES+REORGUPDATES)*100)/TOTALROWS)>20

REORGDISORGLOB INTEGER The number of LOBs that were inserted since the last REORG or

LOAD REPLACE that are not perfectly chunked. A LOB is

perfectly chunked if the allocated pages are in the minimum

number of chunks. A null value means that the number of

imperfectly chunked LOBs is unknown.

Use this value to determine whether you need to run REORG. For

example, you might want to run REORG if the ratio of

REORGDISORGLOB to the total number of LOBs is greater than

10%:

((REORGDISORGLOB*100)/TOTALROWS)>10

REORGUNCLUSTINS INTEGER The number of records that were inserted since the last REORG or

LOAD REPLACE that are not well-clustered with respect to the

clustering index. A record is well-clustered if the record is inserted

into a page that is within 16 pages of the ideal candidate page. The

clustering index determines the ideal candidate page.

A null value means that the number of badly-clustered pages is

unknown.

You can use this value to determine whether you need to run

REORG. For example, you might want to run REORG if the

following comparison is true:

((REORGUNCLUSTINS*100)/TOTALROWS)>10

REORGMASSDELETE INTEGER The number of mass deletes from a segmented or LOB table space,

or the number of dropped tables from a segmented table space,

since the last REORG or LOAD REPLACE.

A null value means that the number of mass deletes is unknown.

If this value is non-zero, a REORG might be necessary.

REORGNEARINDREF INTEGER The number of overflow records that were created since the last

REORG or LOAD REPLACE and were relocated near the pointer

record. For nonsegmented table spaces, a page is near the present

page if the two page numbers differ by 16 or less. For segmented

table spaces, a page is near the present page if the two page

numbers differ by SEGSIZE*2 or less.

A null value means that the number of overflow records near the

pointer record is unknown.

874 Utility Guide and Reference

Table 181. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

REORGFARINDEF INTEGER The number of overflow records that were created since the last

REORG or LOAD REPLACE and were relocated far from the

pointer record. For nonsegmented table spaces, a page is far from

the present page if the two page numbers differ by more than 16.

For segmented table spaces, a page is far from the present page if

the two page numbers differ by at least (SEGSIZE*2)+1.

A null value means that the number of overflow records far from

the pointer record is unknown.

For example, in a non-data sharing environment, you might run

REORG if the following comparison is true:

(((REORGNEARINDREF+REORGFARINDREF)*100)/TOTALROWS)>10

In a data sharing environment, you might run REORG if the

following comparison is true:

(((REORGNEARINDREF+REORGFARINDREF)*100)/TOTALROWS)>5

STATSLASTTIME TIMESTAMP The timestamp of the last RUNSTATS on the table space or

partition.

A null value means that RUNSTATS has never been run on the

table space or partition, or that the timestamp of the last

RUNSTATS is unknown.

You can compare this timestamp to the timestamp of the last

REORG on the same object to determine when RUNSTATS is

needed. If the date of the last REORG is more recent than the last

RUNSTATS, you might need to run RUNSTATS:

(JULIAN_DAY(REORGLASTTIME)>JULIAN_DAY(STATSLASTTIME))

STATSINSERTS INTEGER The number of records or LOBs that have been inserted since the

last RUNSTATS on the table space or partition.

A null value means that the number of inserted records or LOBs is

unknown.

STATSDELETES INTEGER The number of records or LOBs that have been deleted since the

last RUNSTATS on the table space or partition.

A null value means that the number of deleted records or LOBs is

unknown.

STATSUPDATES INTEGER The number of rows that have been updated since the last

RUNSTATS on the table space or partition.

This value does not include LOB updates because LOB updates are

really deletions followed by insertions. A null value means that the

number of updated rows is unknown.

This value can be used with STATSDELETES and STATSINSERTS

to determine if RUNSTATS is necessary. For example, suppose that

your site's maintenance policies require that RUNSTATS is to be

run after 20% of the rows in a table space have changed. To

determine if RUNSTATS is required, calculate the sum of updated,

inserted, and deleted rows since the last RUNSTATS. Then

calculate the ratio of that sum to the total number of rows. If the

percentage is greater than 20, you need to run RUNSTATS:

(((STATSINSERTS+STATSDELETES+STATSUPDATES)*100)/TOTALROWS)>20

Appendix E. Real-time statistics tables 875

Table 181. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

STATSMASSDELETE INTEGER The number of mass deletes from a segmented or LOB table space,

or the number of dropped tables from a segmented table space,

since the last RUNSTATS.

A null value means that the number of mass deletes is unknown.

If this value is non-zero, RUNSTATS might be necessary.

COPYLASTTIME TIMESTAMP The timestamp of the last full or incremental image copy on the

table space or partition.

A null value means that COPY has never been run on the table

space or partition, or that the timestamp of the last full image copy

is unknown.

You can compare this timestamp to the timestamp of the last

REORG on the same object to determine when a COPY is needed.

If the date of the last REORG is more recent than the last COPY,

you might need to run COPY:

(JULIAN_DAY(REORGRLASTTIME)>JULIAN_DAY(COPYLASTTIME))

COPYUPDATEDPAGES INTEGER The number of distinct pages that have been updated since the last

COPY.

A null value means that the number of updated pages is

unknown.

You can compare this value to the total number of pages to

determine when a COPY is needed.

For example, you might want to take an incremental image copy

when 1% of the pages have changed:

((COPYUPDATEDPAGES*100)/NACTIVE)>1

You might want to take a full image copy when 20% of the pages

have changed:

((COPYUPDATEDPAGES*100)/NACTIVE)>20

COPYCHANGES INTEGER The number of insert, delete, and update operations since the last

COPY.

A null value means that the number of insert, delete, or update

operations is unknown.

This number indicates the approximate number of log records that

DB2 needs to process to recover to the current state.

For example, you might want to take an incremental image copy

when DB2 processes more than 1% of the rows from the logs:

((COPYCHANGES*100)/TOTALROWS)>1

You might want to take a full image copy when DB2 processes

more than 10% of the rows from the logs:

((COPYCHANGES*100)/TOTALROWS)>10

876 Utility Guide and Reference

Table 181. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

COPYUPDATELRSN CHAR(6) FOR BIT

DATA

The LRSN or RBA of the first update after the last COPY.

A null value means that the LRSN or RBA is unknown.

Consider running COPY if this value is not in the active logs. To

determine the oldest LRSN or RBA in the active logs, use the print

log map utility (DSNJU004).

COPYUPDATETIME TIMESTAMP The timestamp of the first update after the last COPY.

A null value means that the timestamp is unknown.

Table 182 describes the columns of the INDEXSPACESTATS table and explains how

you can use them in deciding when to run REORG, RUNSTATS, or COPY.

 Table 182. Descriptions of columns in the INDEXSPACESTATS table

Column name Data type Description

DBNAME CHAR(8) NOT NULL The name of the database. This column is used to map a

database to its statistics.

NAME CHAR(8) NOT NULL The name of the index space. This column is used to map an

index space to its statistics.

PARTITION SMALLINT NOT

NULL

This column is used to map a data set number in an index space

to its statistics. The data set number within the index space.

For partitioned index spaces, this value corresponds to the

partition number for a single partition. For nonpartitioned index

spaces, this value is 0.

DBID SMALLINT NOT

NULL

The internal identifier of the database. This column is used to

map a DBID to its statistics.

ISOBID SMALLINT NOT

NULL

The internal identifier of the index space page set descriptor.

This column is used to map an ISOBID to its statistics.

PSID SMALLINT NOT

NULL

The internal identifier of the table space page set descriptor for

the table space associated with the index that is represented by

this row.

This column is used to map a PSID to the statistics for the

associated index.

Appendix E. Real-time statistics tables 877

Table 182. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

UPDATESTATSTIME TIMESTAMP NOT

NULL WITH

DEFAULT

The timestamp when the row was inserted or last updated.

This column is updated with the current timestamp when a row

in the INDEXSPACESTATS table is inserted or updated. You can

use this column in several ways:

v To determine the actions that caused the latest change to the

INDEXSPACESTATS table. Do this by selecting any of the

timestamp columns and comparing them to the

UPDATESTATSTIME column.

v To determine whether an analysis of data is needed. This

determination might be based on a given time interval, or on a

combination of the time interval and the amount of activity.

For example, suppose that you want to analyze statistics for

the last seven days. To determine whether any activity has

occurred in the past seven days, check whether the difference

between the current date and the UPDATESTATSTIME value

is less than or equal to seven:

(JULIAN_DAY(CURRENT DATE)-JULIAN_DAY(UPDATESTATSTIME))<= 7

TOTALENTRIES FLOAT The number of entries, including duplicate entries, in the index

space or partition.

A null value means that the number of entries is unknown, or

that REORG, LOAD, or REBUILD has never been run.

Use this value with the value of any column that contains a

number of affected index entries to determine the percentage of

index entries that are affected by a particular action.

NLEVELS SMALLINT The number of levels in the index tree.

A null value means that the number of levels is unknown.

NACTIVE INTEGER The number of active pages in the index space or partition. This

value is equivalent to the number of preformatted pages.

A null value means that the number of active pages is unknown.

Use this value with the value of any column that contains a

number of affected pages to determine the percentage of pages

that are affected by a particular action.

For example, suppose that your site's maintenance policies

require that COPY is to be run after 20% of the pages in an index

space have changed. To determine if a COPY is required,

calculate the ratio of updated pages since the last COPY to the

total number of active pages. If the percentage is greater than 20,

you need to run COPY:

((COPYUPDATEDPAGES*100)/NACTIVE)>20

SPACE INTEGER The amount of space, in KB, that is allocated to the index space

or partition. For multi-piece linear page sets, this value is the

amount of space in all data sets.

A null value means that the amount of space is unknown.

Use this value to monitor growth and validate design

assumptions.

878 Utility Guide and Reference

Table 182. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

EXTENTS SMALLINT The number of extents in the index space or partition. For

multi-piece index spaces, this value is the number of extents for

the last data set. For a data set that is striped across multiple

volumes, the value is the number of logical extents.

A null value means that the number of extents is unknown.

Use this value to determine:

v When the primary allocation value for an index space or

partition needs to be altered.

v When you are approaching the maximum number of extents

and risking extend failures.

LOADRLASTTIME TIMESTAMP The timestamp of the last LOAD REPLACE on the index space

or partition.

A null value means that the timestamp of the last LOAD

REPLACE is unknown.

If COPY YES was specified when the index was created (the

value of COPY is Y in SYSIBM.SYSINDEXES), you can compare

this timestamp to the timestamp of the last COPY on the same

object to determine when a COPY is needed. If the date of the

last LOAD REPLACE is more recent than the last COPY, you

might need to run COPY:

(JULIAN_DAY(LOADRLASTTIME)>JULIAN_DAY(COPYLASTTIME))

REBUILDLASTTIME TIMESTAMP The timestamp of the last REBUILD INDEX on the index space

or partition.

A null value means that the timestamp of the last REBUILD

INDEX is unknown.

If COPY YES was specified when the index was created (the

value of COPY is Y in SYSIBM.SYSINDEXES), you can compare

this timestamp to the timestamp of the last COPY on the same

object to determine when a COPY is needed. If the date of the

last REBUILD INDEX is more recent than the last COPY, you

might need to run COPY:

(JULIAN_DAY(REBUILDLASTTIME)>JULIAN_DAY(COPYLASTTIME))

REORGLASTTIME TIMESTAMP The timestamp of the last REORG INDEX on the index space or

partition.

A null value means that the timestamp of the last REORG

INDEX is unknown.

If COPY YES was specified when the index was created (the

value of COPY is Y in SYSIBM.SYSINDEXES), you can compare

this timestamp to the timestamp of the last COPY on the same

object to determine when a COPY is needed. If the date of the

last REORG INDEX is more recent than the last COPY, you

might need to run COPY:

(JULIAN_DAY(REORGLASTTIME)>JULIAN_DAY(COPYLASTTIME))

Appendix E. Real-time statistics tables 879

Table 182. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

REORGINSERTS INTEGER The number of index entries that have been inserted since the

last REORG, REBUILD INDEX, or LOAD REPLACE on the index

space or partition.

A null value means that the number of inserted index entries is

unknown.

REORGDELETES INTEGER The number of index entries that have been deleted since the last

REORG, REBUILD INDEX, or LOAD REPLACE on the index

space or partition.

A null value means that the number of deleted index entries is

unknown.

This value can be used with REORGINSERTS to determine if a

REORG is necessary. For example, suppose that your site's

maintenance policies require that REORG is to be run after 20%

of the index entries have changed. To determine if a REORG is

required, calculate the sum of inserted and deleted rows since

the last REORG. Then calculate the ratio of that sum to the total

number of index entries. If the percentage is greater than 20, you

need to run REORG:

(((REORGINSERTS+REORGDELETES)*100)/TOTALENTRIES)>20

REORGAPPENDINSERT INTEGER The number of index entries that have been inserted since the

last REORG, REBUILD INDEX, or LOAD REPLACE on the index

space or partition that have a key value that is greater than the

maximum key value in the index or partition.

A null value means that the number of inserted index entries is

unknown.

This value can be used with REORGINSERTS to decide when to

adjust the PCTFREE specification for the index. For example, if

the ratio of REORGAPPENDINSERT to REORGINSERTS is

greater than 10%, you might need to run ALTER INDEX to

adjust PCTFREE or to run REORG more frequently:

((REORGAPPENDINSERT*100)/REORGINSERTS)>10

REORGPSEUDODELETES INTEGER The number of index entries that have been pseudo-deleted since

the last REORG, REBUILD INDEX, or LOAD REPLACE on the

index space or partition. A pseudo-delete is a RID entry that has

been marked as deleted.

A null value means that the number of pseudo-deleted index

entries is unknown.

This value can be used to determine if a REORG is necessary.

For example, if the ratio of pseudo-deletes to total index entries

is greater than 10%, you might need to run REORG:

((REORGPSEUDODELETES*100)/TOTALENTRIES)>10

REORGMASSDELETE INTEGER The number of times that an index or index space partition was

mass deleted since the last REORG, REBUILD INDEX, or LOAD

REPLACE.

A null value means that the number of mass deletes is unknown.

If this value is non-zero, a REORG might be necessary.

880 Utility Guide and Reference

Table 182. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

REORGLEAFNEAR INTEGER The number of index page splits that occurred since the last

REORG, REBUILD INDEX, or LOAD REPLACE in which the

higher part of the split page was near the location of the original

page. The higher part of a split page is near the original page if

the two page numbers differ by 16 or less.

A null value means that the number of split pages near their

original pages is unknown.

REORGLEAFFAR INTEGER The number of index page splits that occurred since the last

REORG, REBUILD INDEX, or LOAD REPLACE in which the

higher part of the split page was far from the location of the

original page. The higher part of a split page is far from the

original page if the two page numbers differ by more than 16.

A null value means that the number of split pages that are far

from their original pages is unknown.

This value can be used to decide when to run REORG. For

example, calculate the ratio of index page splits in which the

higher part of the split page was far from the location of the

original page to the number of active pages. If this value is

greater than 10% you might need to run REORG:

((REORGLEAFFAR*100)/NACTIVE)>10

REORGNUMLEVELS INTEGER The number of levels in the index tree that were added or

removed since the last REORG, REBUILD INDEX, or LOAD

REPLACE.

A null value means that the number of added or deleted levels is

unknown.

If this value has increased since the last REORG, REBUILD

INDEX, or LOAD REPLACE, you need to check other values

such as REORGPSEUDODELETES to determine whether to run

REORG.

If this value is less than zero, the index space contains empty

pages. Running REORG can save disk space and decrease index

sequential scan I/O time by eliminating those empty pages.

STATSLASTTIME TIMESTAMP The timestamp of the last RUNSTATS on the index space or

partition.

A null value means that RUNSTATS has never been run on the

index space or partition, or that the timestamp of the last

RUNSTATS is unknown.

You can compare this timestamp to the timestamp of the last

REORG on the same object to determine when RUNSTATS is

needed. If the date of the last REORG is more recent than the

last RUNSTATS, you might need to run RUNSTATS:

(JULIAN_DAY(REORGLASTTIME)>JULIAN_DAY(STATSLASTTIME))

STATSINSERTS INTEGER The number of index entries that have been inserted since the

last RUNSTATS on the index space or partition.

A null value means that the number of inserted index entries

unknown.

Appendix E. Real-time statistics tables 881

Table 182. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

STATSDELETES INTEGER The number of index entries that have been deleted since the last

RUNSTATS on the index space or partition.

A null value means that the number of deleted index entries is

unknown.

This value can be used with STATSINSERTS to determine if

RUNSTATS is necessary. For example, suppose that your site's

maintenance policies require that RUNSTATS is run after 20% of

the rows in an index space have changed. To determine if

RUNSTATS is required, calculate the sum of inserted and deleted

index entries since the last RUNSTATS. Then calculate the ratio

of that sum to the total number of index entries. If the

percentage is greater than 20, you need to run RUNSTATS:

(((STATSINSERTS+STATSDELETES)*100)/TOTALENTRIES)>20

STATSMASSDELETE INTEGER The number of times that the index or index space partition was

mass deleted since the last RUNSTATS.

A null value means that the number of mass deletes is unknown.

If this value is non-zero, RUNSTATS might be necessary.

COPYLASTTIME TIMESTAMP The timestamp of the last full image copy on the index space or

partition.

A null value means that COPY has never been run on the index

space or partition, or that the timestamp of the last full image

copy is unknown.

You can compare this timestamp to the timestamp of the last

REORG on the same object to determine when a COPY is

needed. If the date of the last REORG is more recent than the

last COPY, you might need to run COPY:

(JULIAN_DAY(REORGRLASTTIME)>JULIAN_DAY(COPYLASTTIME))

COPYUPDATEDPAGES INTEGER The number of distinct pages that have been updated since the

last COPY.

A null value means that the number of updated pages is

unknown, or that the index was created with COPY NO.

You can compare this value to the total number of pages to

determine when a COPY is needed.

For example, you might want to take a full image copy when

20% of the pages have changed:

((COPYUPDATEDPAGES*100)/NACTIVE)>20

COPYCHANGES INTEGER The number of insert or delete operations since the last COPY.

A null value means that the number of insert or update

operations is unknown, or that the index was created with COPY

NO.

This number indicates the approximate number of log records

that DB2 needs to process to recover to the current state.

For example, you might want to take a full image copy when

DB2 processes more than 10% of the index entries from the logs:

((COPYCHANGES*100)/TOTALENTRIES)>10

882 Utility Guide and Reference

Table 182. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

COPYUPDATELRSN CHAR(6) FOR BIT

DATA

The LRSN or RBA of the first update after the last COPY.

A null value means that the LRSN or RBA is unknown, or that

the index was created with COPY NO.

Consider running COPY if this value is not in the active logs. To

determine the oldest LRSN or RBA in the active logs, use the

print log map utility (DSNJU004).

COPYUPDATETIME TIMESTAMP The timestamp of the first update after the last COPY.

A null value means that the timestamp is unknown, or tthat he

index was created with COPY NO.

Operating with real-time statistics

To use the real-time statistics effectively, you need to understand when DB2

collects and externalizes them, and what factors in your system can affect the

statistics. This section contains the following topics:

v “When DB2 externalizes real-time statistics”

v “How DB2 utilities affect the real-time statistics” on page 884

v “How non-DB2 utilities affect real-time statistics” on page 891

v “Real-time statistics on objects in work file databases and the TEMP database”

on page 891

v “Real-time statistics on read-only or nonmodified objects” on page 891

v “How dropping objects affects real-time statistics” on page 891

v “How SQL operations affect real-time statistics counters” on page 892

v “Real-time statistics in data sharing” on page 893

v “Improving concurrency with real-time statistics” on page 893

v “Recovering the real-time statistics tables” on page 893

v “Statistics accuracy” on page 894

When DB2 externalizes real-time statistics

DB2 externalizes real-time statistics in the following circumstances:

v When you issue STOP DATABASE(DSNRTSDB)

This command stops the in-memory statistics database and externalizes statistics

for all objects in the subsystem.

v When you issue STOP DATABASE(database-name) SPACENAM(space-name)

This command externalizes statistics only for database-name and space-name.

v At the end of the time interval that you specify during installation

See “Setting the interval for writing real-time statistics” on page 871 for

information about how to set this time interval.

v When you issue STOP DB2 MODE(QUIESCE)

DB2 writes any statistics that are in memory when you issue this command to

the statistics tables. However, if you issue STOP DB2 MODE(FORCE), DB2 does

not write the statistics, and you lose them.

v During utility operations

“How DB2 utilities affect the real-time statistics” on page 884 gives details on

how the utilities modify the statistics tables.

Appendix E. Real-time statistics tables 883

DB2 does not maintain real-time statistics for any objects in the real-time

statistics database. Therefore, if you run a utility with a utility list, and the list

contains any real-time statistics objects, DB2 does not externalize real-time

statistics during the execution of that utility for any of the objects in the utility

list. DB2 does not maintain interval counter real-time statistics for SYSLGRNG

and its indexes during utility operation. DB2 maintains statistics for these objects

only during non-utility operation.

Recommendation: Do not include real-time statistics objects in utility lists.

DB2 does not externalize real-time statistics at a tracker site.

How DB2 utilities affect the real-time statistics

In general, SQL INSERT, UPDATE, and DELETE statements cause DB2 to modify

the real-time statistics. However, certain DB2 utilities also affect the statistics. The

following sections discuss the effect of each of those utilities on the statistics:

v “How LOAD affects real-time statistics”

v “How REORG affects real-time statistics” on page 886

v “How REBUILD INDEX affects real-time statistics” on page 888

v “How RUNSTATS affects real-time statistics” on page 889

v “How COPY affects real-time statistics” on page 890

v “How RECOVER affects real-time statistics” on page 891

How LOAD affects real-time statistics

Table 183 shows how running LOAD REPLACE on a table space or table space

partition affects the TABLESPACESTATS statistics.

 Table 183. Changed TABLESPACESTATS values during LOAD

Column name

Settings for LOAD REPLACE after RELOAD

phase

TOTALROWS Number of loaded rows or LOBs1

NACTIVE Actual value

SPACE Actual value

EXTENTS Actual value

LOADRLASTTIME Current timestamp

REORGINSERTS 0

REORGDELETES 0

REORGUPDATES 0

REORGDISORGLOB 0

REORGUNCLUSTINS 0

REORGMASSDELETE 0

REORGNEARINDREF 0

REORGFARINDEF 0

STATSLASTTIME Current timestamp2

STATSINSERTS 02

STATSDELETES 02

STATSUPDATES 02

STATSMASSDELETE 02

884 Utility Guide and Reference

|
|
|

#
#

Table 183. Changed TABLESPACESTATS values during LOAD (continued)

Column name

Settings for LOAD REPLACE after RELOAD

phase

COPYLASTTIME Current timestamp3

COPYUPDATEDPAGES 03

COPYCHANGES 03

COPYUPDATELRSN Null3

COPYUPDATETIME Null3

Notes:

1. Under certain conditions, such as a utility restart, the LOAD utility might not have an

accurate count of loaded records. In those cases, DB2 sets this value to null. Some rows

that are loaded into a table space and are included in this value might later be removed

during the index validation phase or the referential integrity check. DB2 includes counts

of those removed records in the statistics that record deleted records.

2. DB2 sets this value only if the LOAD invocation includes the STATISTICS option.

3. DB2 sets this value only if the LOAD invocation includes the COPYDDN option.

Table 184 shows how running LOAD REPLACE affects the INDEXSPACESTATS

statistics for an index space or physical index partition.

 Table 184. Changed INDEXSPACESTATS values during LOAD REPLACE

Column name

Settings for LOAD REPLACE after BUILD

phase

TOTALENTRIES Number of index entries added1

NLEVELS Actual value

NACTIVE Actual value

SPACE Actual value

EXTENTS Actual value

LOADRLASTTIME Current timestamp

REORGINSERTS 0

REORGDELETES 0

REORGAPPENDINSERT 0

REORGPSEUDODELETES 0

REORGMASSDELETE 0

REORGLEAFNEAR 0

REORGLEAFFAR 0

REORGNUMLEVELS 0

STATSLASTTIME Current timestamp2

STATSINSERTS 02

STATSDELETES 02

STATSMASSDELETE 02

COPYLASTTIME Current timestamp3

COPYUPDATEDPAGES 03

COPYCHANGES 03

COPYUPDATELRSN Null3

Appendix E. Real-time statistics tables 885

#
#

Table 184. Changed INDEXSPACESTATS values during LOAD REPLACE (continued)

Column name

Settings for LOAD REPLACE after BUILD

phase

COPYUPDATETIME Null3

Notes:

1. Under certain conditions, such as a utility restart, the LOAD utility might not have an

accurate count of loaded records. In those cases, DB2 sets this value to null.

2. DB2 sets this value only if the LOAD invocation includes the STATISTICS option.

3. DB2 sets this value only if the LOAD invocation includes the COPYDDN option.

For a logical index partition:

v A LOAD operation without the REPLACE option behaves similar to a SQL

INSERT operation in that the number of records loaded are counted in the

incremental counters such as REORGINSERTS, REORGAPPENDINSERT,

STATSINSERTS, and COPYCHANGES. A LOAD operation without the

REPLACE option affects the organization of the data and can be a trigger to run

REORG, RUNSTATS or COPY.

v DB2 does not reset the nonpartitioned index when it does a LOAD REPLACE on

a partition. Therefore, DB2 does not reset the statistics for the index. The REORG

counters from the last REORG are still correct. DB2 updates LOADRLASTTIME

when the entire nonpartitioned index is replaced.

v When DB2 does a LOAD RESUME YES on a partition, after the BUILD phase,

DB2 increments TOTALENTRIES by the number of index entries that were

inserted during the BUILD phase.

How REORG affects real-time statistics

Table 185 shows how running REORG on a table space or table space partition

affects the TABLESPACESTATS statistics.

 Table 185. Changed TABLESPACESTATS values during REORG

Column name

Settings for REORG

SHRLEVEL NONE after

RELOAD phase

Settings for REORG SHRLEVEL

REFERENCE or CHANGE after SWITCH

phase

TOTALROWS Number rows or LOBs

loaded1

For SHRLEVEL REFERENCE: Number of

loaded rows or LOBs during RELOAD

phase

For SHRLEVEL CHANGE: Number of

loaded rows or LOBs during RELOAD

phase plus number of rows inserted

during LOG APPLY phase minus number

of rows deleted during LOG phase

NACTIVE Actual value Actual value

SPACE Actual value Actual value

EXTENTS Actual value Actual value

REORGLASTTIME Current timestamp Current timestamp

REORGINSERTS 0 Actual value2

REORGDELETES 0 Actual value2

REORGUPDATES 0 Actual value2

REORGDISORGLOB 0 Actual value2

886 Utility Guide and Reference

#
#
#
#
#
#

Table 185. Changed TABLESPACESTATS values during REORG (continued)

Column name

Settings for REORG

SHRLEVEL NONE after

RELOAD phase

Settings for REORG SHRLEVEL

REFERENCE or CHANGE after SWITCH

phase

REORGUNCLUSTINS 0 Actual value2

REORGMASSDELETE 0 Actual value2

REORGNEARINDREF 0 Actual value2

REORGFARINDEF 0 Actual value2

STATSLASTTIME Current timestamp3 Current timestamp3

STATSINSERTS 03 Actual value2

STATSDELETES 03 Actual value2

STATSUPDATES 03 Actual value2

STATSMASSDELETE 03 Actual value2

COPYLASTTIME Current timestamp4 Current timestamp

COPYUPDATEDPAGES 04 Actual value2

COPYCHANGES 04 Actual value2

COPYUPDATELRSN Null4 Actual value5

COPYUPDATETIME Null4 Actual value5

Notes:

1. Under certain conditions, such as a utility restart, the REORG utility might not have an accurate count of loaded

records. In those cases, DB2 sets this value to null. Some rows that are loaded into a table space and are included

in this value might later be removed during the index validation phase or the referential integrity check. DB2

includes counts of those removed records in the statistics that record deleted records.

2. This is the actual number of inserts, updates, or deletes that are due to applying the log to the shadow copy.

3. DB2 sets this value only if the REORG invocation includes the STATISTICS option.

4. DB2 sets this value only if the REORG invocation includes the COPYDDN option.

5. This is the LRSN or timestamp for the first update that is due to applying the log to the shadow copy.

Table 186 shows how running REORG affects the INDEXSPACESTATS statistics for

an index space or physical index partition.

 Table 186. Changed INDEXSPACESTATS values during REORG

Column name

Settings for REORG

SHRLEVEL NONE after

RELOAD phase

Settings for REORG SHRLEVEL

REFERENCE or CHANGE after SWITCH

phase

TOTALENTRIES Number of index entries

added1

For SHRLEVEL REFERENCE: Number of

added index entries during BUILD phase

For SHRLEVEL CHANGE: Number of

added index entries during BUILD phase

plus number of added index entries during

LOG phase minus number of deleted index

entries during LOG phase

NLEVELS Actual value Actual value

NACTIVE Actual value Actual value

SPACE Actual value Actual value

EXTENTS Actual value Actual value

REORGLASTTIME Current timestamp Current timestamp

Appendix E. Real-time statistics tables 887

Table 186. Changed INDEXSPACESTATS values during REORG (continued)

Column name

Settings for REORG

SHRLEVEL NONE after

RELOAD phase

Settings for REORG SHRLEVEL

REFERENCE or CHANGE after SWITCH

phase

REORGINSERTS 0 Actual value2

REORGDELETES 0 Actual value2

REORGAPPENDINSERT 0 Actual value2

REORGPSEUDODELETES 0 Actual value2

REORGMASSDELETE 0 Actual value2

REORGLEAFNEAR 0 Actual value2

REORGLEAFFAR 0 Actual value2

REORGNUMLEVELS 0 Actual value2

STATSLASTTIME Current timestamp3 Current timestamp3

STATSINSERTS 03 Actual value2

STATSDELETES 03 Actual value2

STATSMASSDELETE 03 Actual value2

COPYLASTTIME Current timestamp4 Unchanged5

COPYUPDATEDPAGES 04 Unchanged5

COPYCHANGES 04 Unchanged5

COPYUPDATELRSN Null4 Unchanged5

COPYUPDATETIME Null4 Unchanged5

Notes:

1. Under certain conditions, such as a utility restart, the REORG utility might not have an accurate count of loaded

records. In those cases, DB2 sets this value to null.

2. This is the actual number of inserts, updates, or deletes that are due to applying the log to the shadow copy.

3. DB2 sets this value only if the REORG invocation includes the STATISTICS option.

4. DB2 sets this value only if the REORG invocation includes the COPYDDN option.

5. Inline COPY is not allowed for SHRLEVEL CHANGE or SHRLEVEL REFERENCE.

For a logical index partition, DB2 does not reset the nonpartitioned index when it

does a REORG on a partition. Therefore, DB2 does not reset the statistics for the

index. The REORG counters and REORGLASTTIME are relative to the last time the

entire nonpartitioned index is reorganized. In addition, the REORG counters might

be low because, due to the methodology, some index entries are changed during

REORG of a partition.

How REBUILD INDEX affects real-time statistics

Table 187 shows how running REBUILD INDEX affects the INDEXSPACESTATS

statistics for an index space or physical index partition.

 Table 187. Changed INDEXSPACESTATS values during REBUILD INDEX

Column name Settings after BUILD phase

TOTALENTRIES Number of index entries added1

NLEVELS Actual value

NACTIVE Actual value

SPACE Actual value

888 Utility Guide and Reference

Table 187. Changed INDEXSPACESTATS values during REBUILD INDEX (continued)

Column name Settings after BUILD phase

EXTENTS Actual value

REBUILDLASTTIME Current timestamp

REORGINSERTS 0

REORGDELETES 0

REORGAPPENDINSERT 0

REORGPSEUDODELETES 0

REORGMASSDELETE 0

REORGLEAFNEAR 0

REORGLEAFFAR 0

REORGNUMLEVELS 0

Note:

1. Under certain conditions, such as a utility restart, the REBUILD utility might not have an

accurate count of loaded records. In those cases, DB2 sets this value to null.

For a logical index partition, DB2 does not collect TOTALENTRIES statistics for the

entire nonpartitioned index when it runs REBUILD INDEX. Therefore, DB2 does

not reset the statistics for the index. The REORG counters from the last REORG are

still correct. DB2 updates REBUILDLASTTIME when the entire nonpartitioned

index is rebuilt.

How RUNSTATS affects real-time statistics

Only RUNSTATS UPDATE ALL affects the real-time statistics. When the

RUNSTATS job starts, DB2 externalizes all in-memory statistics to the real-time

statistics tables.

Table 188 shows how running RUNSTATS UPDATE ALL on a table space or table

space partition affects the TABLESPACESTATS statistics.

 Table 188. Changed TABLESPACESTATS values during RUNSTATS UPDATE ALL

Column name During UTILINIT phase After RUNSTATS phase

STATSLASTTIME Current timestamp1 Timestamp of the start of

RUNSTATS phase

STATSINSERTS Actual value1 Actual value2

STATSDELETES Actual value1 Actual value2

STATSUPDATES Actual value1 Actual value2

STATSMASSDELETE Actual value1 Actual value2

Notes:

1. DB2 externalizes the current in-memory values.

2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL

CHANGE.

Table 189 on page 890 shows how running RUNSTATS UPDATE ALL on an index

affects the INDEXSPACESTATS statistics.

Appendix E. Real-time statistics tables 889

Table 189. Changed INDEXSPACESTATS values during RUNSTATS UPDATE ALL

Column name During UTILINIT phase After RUNSTATS phase

STATSLASTTIME Current timestamp1 Timestamp of the start of

RUNSTATS phase

STATSINSERTS Actual value1 Actual value2

STATSDELETES Actual value1 Actual value2

STATSMASSDELETE Actual value1 Actual value2

Notes:

1. DB2 externalizes the current in-memory values.

2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL

CHANGE.

How COPY affects real-time statistics

When a COPY job starts, DB2 externalizes all in-memory statistics to the real-time

statistics tables. Statistics are gathered for a full image copy or an incremental copy,

but not for a data set copy.

Table 190 shows how running COPY on a table space or table space partition

affects the TABLESPACESTATS statistics.

 Table 190. Changed TABLESPACESTATS values during COPY

Column name During UTILINIT phase After COPY phase

COPYLASTTIME Current timestamp1 Timestamp of the start of

COPY phase

COPYUPDATEDPAGES Actual value1 Actual value2

COPYCHANGES Actual value1 Actual value2

COPYUPDATELRSN Actual value1 Actual value3

COPYUPDATETIME Actual value1 Actual value3

Notes:

1. DB2 externalizes the current in-memory values.

2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL

CHANGE.

3. This value is null for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL

CHANGE.

Table 191 shows how running COPY on an index affects the INDEXSPACESTATS

statistics.

 Table 191. Changed INDEXSPACESTATS values during COPY

Column name During UTILINIT phase After COPY phase

COPYLASTTIME Current timestamp1 Timestamp of the start of

COPY phase

COPYUPDATEDPAGES Actual value1 Actual value2

COPYCHANGES Actual value1 Actual value2

COPYUPDATELRSN Actual value1 Actual value3

COPYUPDATETIME Actual value1 Actual value3

890 Utility Guide and Reference

Table 191. Changed INDEXSPACESTATS values during COPY (continued)

Column name During UTILINIT phase After COPY phase

Note:

1. DB2 externalizes the current in-memory values.

2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL

CHANGE.

3. This value is null for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL

CHANGE.

How RECOVER affects real-time statistics

After recovery to the current state, the in-memory counter fields are still valid, so

DB2 does not modify them. However, after a point-in-time recovery, the statistics

might not be valid. DB2 therefore sets all the REORG, STATS, and COPY counter

statistics to null after a point-in-time recovery. After recovery to the current state,

DB2 sets NACTIVE, SPACE, and EXTENTS to their new values. After a

point-in-time recovery, DB2 sets NLEVELS, NACTIVE, SPACE, and EXTENTS to

their new values.

How non-DB2 utilities affect real-time statistics

Non-DB2 utilities do not affect real-time statistics. Therefore, an object that is the

target of a non-DB2 COPY, LOAD, REBUILD, REORG, or RUNSTATS job can cause

incorrect statistics to be inserted in the real-time statistics tables. Follow this

process to ensure correct statistics when you run non-DB2 utilities:

1. Stop the table space or index on which you plan to run the utility. This action

causes DB2 to write the in-memory statistics to the real-time statistics tables

and initialize the in-memory counters. If DB2 cannot externalize the statistics,

the STOP command does not fail.

2. Run the utility.

3. When the utility completes, update the statistics tables with new totals and

timestamps, and put zero values in the incremental counter.

Real-time statistics on objects in work file databases and the

TEMP database

Although you cannot run utilities on objects in the work files databases and TEMP

database, DB2 records the NACTIVE, SPACE, and EXTENTS statistics on table

spaces in those databases.

Real-time statistics for DEFINE NO objects

For objects that are created with DEFINE NO, no row is inserted into the real-time

statistics table until the object is physically defined.

Real-time statistics on read-only or nonmodified objects

DB2 does not externalize the NACTIVE, SPACE, or EXTENTS statistics for

read-only objects or objects that are not modified.

How dropping objects affects real-time statistics

If you drop a table space or index, DB2 deletes its statistics from the real-time

statistics tables. However, if the real-time statistics database is not available when

you drop a table space or index, the statistics remain in the real-time statistics

Appendix E. Real-time statistics tables 891

|
|

|

|
|

tables, even though the corresponding object no longer exists. You need to use SQL

DELETE statements to manually remove those rows from the real-time statistics

tables.

If a row still exists in the real-time statistics tables for a dropped table space or

index, and if you create a new object with the same DBID and PSID as the

dropped object, DB2 reinitializes the row before it updates any values in that row.

How SQL operations affect real-time statistics counters

SQL operations affect the counter columns in the real-time statistics tables. These

are the columns that record the number of insert, delete, or update operations, as

well as the total counters, TOTALROWS, and TOTALENTRIES.

UPDATE: When you perform an UPDATE, DB2 increments the update counters.

INSERT: When you perform an INSERT, DB2 increments the insert counters. DB2

keeps separate counters for clustered and unclustered INSERTs.

DELETE: When you perform a DELETE, DB2 increments the delete counters.

ROLLBACK: When you perform a ROLLBACK, DB2 increments the counters,

depending on the type of SQL operation that is rolled back:

 Rolled-back SQL statement Incremented counters

UPDATE Update counters

INSERT Delete counters

DELETE Insert counters

Notice that for INSERT and DELETE, the counter for the inverse operation is

incremented. For example, if two INSERT statements are rolled back, the delete

counter is incremented by 2.

UPDATE of partitioning keys: If an update to a partitioning key causes rows to

move to a new partition, the following real-time statistics are impacted:

 Action Incremented counters

When UPDATE is executed Update count of old partition = +1

 Insert count of new partition = +1

When UPDATE is committed Delete count of old partition = +1

When UPDATE is rolled back Update count of old partition = +1

 (compensation log record)

 Delete count of new partition = +1

 (remove inserted record)

If an update to a partitioning key does not cause rows to move to a new partition,

the counts are accumulated as expected:

 Action Incremented counters

When UPDATE is executed Update count of current partition = +1

 NEAR/FAR indirect reference count = +1

 (if overflow occured)

892 Utility Guide and Reference

|
|
|

Action Incremented counters

When UPDATE is rolled back Update count of current partition = +1

 (compensation log record)

Mass DELETE:Performing a mass delete operation on a table space does not cause

DB2 to reset the counter columns in the real-time statistics tables. After a mass

delete operation, the value in a counter column includes the count from a time

prior to the mass delete operation, as well as the count after the mass delete

operation.

Real-time statistics in data sharing

In a data sharing environment, DB2 members update their statistics serially. Each

member reads the target row from the statistics table, obtains a lock, aggregates its

in-memory statistics, and updates the statistics table with the new totals. Each

member sets its own interval for writing real-time statistics.

DB2 does locking based on the lock size of the DSNRTSDB.DSNRTSTS table space.

DB2 uses cursor stability isolation and CURRENTDATA(YES) when it reads the

statistics tables.

At the beginning of a RUNSTATS job, all data sharing members externalize their

statistics to the real-time statistics tables and reset their in-memory statistics. If all

members cannot externalize their statistics, DB2 sets STATSLASTTIME to null. An

error in gathering and externalizing statistics does not prevent RUNSTATS from

running.

At the beginning of a COPY job, all data sharing members externalize their

statistics to the real-time statistics tables and reset their in-memory statistics. If all

members cannot externalize their statistics, DB2 sets COPYLASTTIME to null. An

error in gathering and externalizing statistics does not prevent COPY from

running.

Utilities that reset page sets to empty can invalidate the in-memory statistics of

other DB2 members. The member that resets a page set notifies the other DB2

members that a page set has been reset to empty, and the in-memory statistics are

invalidated. If the notify process fails, the utility that resets the page set does not

fail. DB2 sets the appropriate timestamp (REORGLASTTIME, STATSLASTTIME, or

COPYLASTTIME) to null in the row for the empty page set to indicate that the

statistics for that page set are unknown.

Improving concurrency with real-time statistics

Follow these recommendations to reduce the risk of timeouts and deadlocks when

you work with the real-time statistics tables:

v When you run COPY, RUNSTATS, or REORG on the real-time statistics objects,

use SHRLEVEL CHANGE.

v When you execute SQL statements to query the real-time statistics tables, use

uncommitted read isolation.

Recovering the real-time statistics tables

When you recover a DB2 subsystem after a disaster, DB2 starts with the

ACESS(MAINT) option. No statistics are externalized in this state. Therefore, you

need to perform the following actions on the real-time statistics database:

Appendix E. Real-time statistics tables 893

|
|
|

v Recover the real-time statistics objects after you recover the DB2 catalog and

directory.

v Start the real-time statistics database explicitly, after DB2 restart.

Statistics accuracy

In general, the real-time statistics are accurate values. However, several factors can

affect the accuracy of the statistics:

v Certain utility restart scenarios

v Certain utility operations that leave indexes in a database restrictive state, such

as RECOVER-pending (RECP)

Always consider the database restrictive state of objects before accepting a utility

recommendation that is based on real-time statistics.

v A DB2 subsystem failure

v A notify failure in a data sharing environment

If you think that some statistics values might be inaccurate, you can correct the

statistics by running REORG, RUNSTATS, or COPY on the objects for which DB2

generated the statistics.

894 Utility Guide and Reference

|
|

|

Appendix F. Delimited file format

A delimited file is a sequential file with column delimiters. Each delimited file is a

stream of records, which consists of fields that are ordered by column. Each record

contains fields for one row. Within each row, individual fields are separated by

column delimiters. All fields must be delimited character strings, non-delimited

character strings, or external numeric values. Delimited character strings can

contain column delimiters and can also contain character string delimiters when

two successive character string delimiters are used to represent one character.

All characters in all records are in the same CCSID. If EBCDIC or ASCII data

contains DBCS characters, the data must be in an appropriate mixed CCSID. If the

data is Unicode it must be in CCSID 1208.

Figure 169 describes the format of delimited files that can be loaded into or

unloaded from tables by using the LOAD and UNLOAD utilities.

Delimited file ::= Row 1 data ||

 Row 2 data ||

 .

 .

 .

 Row n data

Row i data ::= Cell value(i,1) || Column delimiter ||

 Cell value(i,2) || Column delimiter ||

 .

 .

 .

 Cell value(i,m)

Column delimiter ::= Character specified by COLDEL option;

 the default value is a comma (,)

Cell value(i,j) ::= Leading spaces ||

 External numeric values ||

 Delimited character string ||

 Non-delimited character string ||

 Trailing spaces

Non-delimited character string ::= A set of any characters except

 a column delimiter

Delimited character string ::= A character string delimiter ||

 A set of any characters except a

 character string delimiter unless

 the character string delimiter is

 part of two successive character

 string delimiters ||

 A character string delimiter ||

 Trailing garbage

Character string delimiter ::= Character specified by CHARDEL option; the default

 value is a double quotation mark (")

Trailing garbage ::= A set of any characters except a column delimiter

Figure 169. Format of delimited files

© Copyright IBM Corp. 1983, 2008 895

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|
|
|
|
|
|
|

#
#
#

|
|
|

For more information about the COLDEL and CHARDEL options for the LOAD

utility, see “Option descriptions” on page 196. For more information about the

COLDEL and CHARDEL options for the UNLOAD utility, see “Option

descriptions” on page 609.

The following topics provide additional information:

v “Restrictions”

v “Delimited data types”

v “Examples of delimited files” on page 897

Restrictions

For delimiter restrictions, see “Loading delimited files” on page 242 or “Unloading

delimited files” on page 650.

Delimited data types

Table 192 identifies the acceptable data type forms for the delimited file format that

the LOAD and UNLOAD utilities use.

 Table 192. Acceptable data type forms for delimited files

Data type

Acceptable form for loading

a delimited file

Form that is created by

unloading a delimited file

CHAR, VARCHAR A delimited or non-delimited

character string

Character data that is

enclosed by character

delimiters. For VARCHAR,

length bytes do not precede

the data in the string.

GRAPHIC (any type)4 A delimited or non-delimited

character stream

Data that is unloaded as a

delimited character string.

For VARGRAPHIC, length

bytes do not precede the data

in the string.

INTEGER (any type)1 A stream of characters that

represents a number in

EXTERNAL format

Numeric data in external

format.

DECIMAL (any type)2 A character string that

represents a number in

EXTERNAL format

A string of characters that

represents a number.

FLOAT

3 A representation of a number

in the range −7.2E+75 to

7.2E+75 in EXTERNAL

format

A string of characters that

represents a number in

floating-point notation.

BLOB, CLOB A delimited or non-delimited

character string

Character data that is

enclosed by character

delimiters. Length bytes do

not precede the data in the

string.

DBCLOB A delimited or non-delimited

character string

Character data that is

enclosed by character

delimiters. Length bytes do

not precede the data in the

string.

896 Utility Guide and Reference

|
|
|
|

|

|

|

|

|
|

|
|

|
|

|
|

||

|
|
|
|
|

||
|
|
|
|
|
|

#|
|
|
|
|
|
|

||
|
|

|
|

||
|
|

|
|

||
|
|
|

|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

Table 192. Acceptable data type forms for delimited files (continued)

Data type

Acceptable form for loading

a delimited file

Form that is created by

unloading a delimited file

DATE A delimited or non-delimited

character string that contains

a date value in EXTERNAL

format

Character string

representation of a date.

TIME A delimited or non-delimited

character string that contains

a time value in EXTERNAL

format

Character string

representation of a time.

TIMESTAMP A delimited or non-delimited

character string that contains

a timestamp value in

EXTERNAL format

Character string

representation of a

timestamp.

Notes:

1. Field specifications of INTEGER or SMALLINT are treated as INTEGER EXTERNAL.

2. Field specifications of DECIMAL, DECIMAL PACKED, or DECIMAL ZONED are treated

as DECIMAL EXTERNAL.

3. Field specifications of FLOAT, REAL, or DOUBLE are treated as FLOAT EXTERNAL.

4. EBCID graphic data must be enclosed in shift-out and shift-in characters.

Examples of delimited files

Figure 170 shows an example of a delimited file with delimited character strings.

In this example, the column delimiter is a comma (,). Because the character strings

contain the column delimiter character, they must be delimited with character

string delimiters. In this example, the character string delimiter is a double

quotation mark (″).

Figure 171 shows an example of a delimited file with non-delimited character

strings. In this example, the column delimiter is a semicolon (;). Because the

character strings do not contain the column delimiter character, they do not need

to be delimited with character string delimiters.

"Smith, Bob",4973,15.46

"Jones, Bill",12345,16.34

"Williams, Sam",452,193.78

Figure 170. Example of a delimited file with delimited character strings

Smith, Bob;4973;15.46

Jones, Bill;12345;16.34

Williams, Sam;452;193.78

Figure 171. Example of a delimited file with non-delimited character strings

Appendix F. Delimited file format 897

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|
|

|
|
|

|

|

|
|

|

#
|

|
|

|
|
|
|
|
|

|
|
|
|
|

898 Utility Guide and Reference

Appendix G. How to use the DB2 library

Titles of books in the library begin with DB2 Universal Database for z/OS Version

8. However, references from one book in the library to another are shortened and

do not include the product name, version, and release. Instead, they point directly

to the section that holds the information. For a complete list of books in the library,

and the sections in each book, see the bibliography at the back of this book.

The most rewarding task associated with a database management system is asking

questions of it and getting answers, the task called end use. Other tasks are also

necessary—defining the parameters of the system, putting the data in place, and so

on. The tasks that are associated with DB2 are grouped into the following major

categories (but supplemental information relating to all of the following tasks for

new releases of DB2 can be found in DB2 Release Planning Guide.

Installation: If you are involved with DB2 only to install the system, DB2

Installation Guide might be all you need.

If you will be using data sharing capabilities you also need DB2 Data Sharing:

Planning and Administration, which describes installation considerations for data

sharing.

If you want to set up a DB2 subsystem to meet the requirements of the Common

Criteria, you need DB2 Common Criteria Guide, which contains information that

supersedes other information in the DB2 UDB for z/OS library regarding Common

Criteria.

End use: End users issue SQL statements to retrieve data. They can also insert,

update, or delete data, with SQL statements. They might need an introduction to

SQL, detailed instructions for using SPUFI, and an alphabetized reference to the

types of SQL statements. This information is found in DB2 Application Programming

and SQL Guide, and DB2 SQL Reference.

End users can also issue SQL statements through the DB2 Query Management

Facility (QMF) or some other program, and the library for that licensed program

might provide all the instruction or reference material they need. For a list of the

titles in the DB2 QMF library, see the bibliography at the end of this book.

Application programming: Some users access DB2 without knowing it, using

programs that contain SQL statements. DB2 application programmers write those

programs. Because they write SQL statements, they need the same resources that

end users do.

Application programmers also need instructions on many other topics:

v How to transfer data between DB2 and a host program—written in Java, C, or

COBOL, for example

v How to prepare to compile a program that embeds SQL statements

v How to process data from two systems simultaneously, say DB2 and IMS or DB2

and CICS

v How to write distributed applications across operating systemss

v How to write applications that use Open Database Connectivity (ODBC) to

access DB2 servers

© Copyright IBM Corp. 1983, 2008 899

v How to write applications in the Java programming language to access DB2

servers

The material needed for writing a host program containing SQL is in DB2

Application Programming and SQL Guide and in DB2 Application Programming Guide

and Reference for Java. The material needed for writing applications that use DB2

ODBC or ODBC to access DB2 servers is in DB2 ODBC Guide and Reference. For

handling errors, see DB2 Codes.

If you will be working in a distributed environment, you will need DB2 Reference

for Remote DRDA Requesters and Servers.

Information about writing applications across operating systems can be found in

IBM DB2 Universal Database SQL Reference for Cross-Platform Development.

System and database administration: Administration covers almost everything else.

DB2 Administration Guide divides those tasks among the following sections:

v Part 2 (Volume 1) of DB2 Administration Guide discusses the decisions that must

be made when designing a database and tells how to implement the design by

creating and altering DB2 objects, loading data, and adjusting to changes.

v Part 3 (Volume 1) of DB2 Administration Guide describes ways of controlling

access to the DB2 system and to data within DB2, to audit aspects of DB2 usage,

and to answer other security and auditing concerns.

v Part 4 (Volume 1) of DB2 Administration Guide describes the steps in normal

day-to-day operation and discusses the steps one should take to prepare for

recovery in the event of some failure.

v Part 5 (Volume 2) of DB2 Administration Guide explains how to monitor the

performance of the DB2 system and its parts. It also lists things that can be done

to make some parts run faster.

If you will be using the RACF access control module for DB2 authorization

checking, you will need DB2 RACF Access Control Module Guide.

If you are involved with DB2 only to design the database, or plan operational

procedures, you need DB2 Administration Guide. If you also want to carry out your

own plans by creating DB2 objects, granting privileges, running utility jobs, and so

on, you also need:

v DB2 SQL Reference, which describes the SQL statements you use to create, alter,

and drop objects and grant and revoke privileges

v DB2 Utility Guide and Reference, which explains how to run utilities

v DB2 Command Reference, which explains how to run commands

If you will be using data sharing, you need DB2 Data Sharing: Planning and

Administration, which describes how to plan for and implement data sharing.

Additional information about system and database administration can be found in

DB2 Messages and DB2 Codes, which list messages and codes issued by DB2, with

explanations and suggested responses.

Diagnosis: Diagnosticians detect and describe errors in the DB2 program. They

might also recommend or apply a remedy. The documentation for this task is in

DB2 Diagnosis Guide and Reference, DB2 Messages, and DB2 Codes.

900 Utility Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1983, 2008 901

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Programming interface information

This book is intended to help you to use DB2 UDB for z/OS utilities.

This book also documents General-use Programming Interface and Associated

Guidance Information and Product-sensitive Programming Interface and

Associated Guidance Information provided by DB2 Universal Database for z/OS

(DB2 UDB for z/OS).

General-use programming interfaces allow the customer to write programs that

obtain the services of DB2 UDB for z/OS.

General-use Programming Interface and Associated Guidance Information is

identified where it occurs, by an entry in a column of a table.

Product-sensitive programming interfaces allow the customer installation to

perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or

tuning of this IBM software product. Use of such interfaces creates dependencies

on the detailed design or implementation of the IBM software product.

Product-sensitive programming interfaces should be used only for these specialized

purposes. Because of their dependencies on detailed design and implementation, it

902 Utility Guide and Reference

is to be expected that programs written to such interfaces may require changes in

order to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is

identified where it occurs by an entry in a column of a table, or by the following

marking:

Product-sensitive Programming Interface

Product-sensitive Programming Interface and Associated Guidance Information ...

End of Product-sensitive Programming Interface

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 BookManager

 CICS

 CICS Connection

 CT

 DataJoiner

 DataPropagator

 DataRefresher

 DB2

 DB2 Connect

 DB2 Universal Database

 DFSMSdfp

 DFSMSdss

 DFSMShsm

 DFSORT

 Distributed Relational Database Architecture

 DRDA

 Enterprise Storage Server

 ES/3090

 eServer

 FlashCopy

 IBM

 IBM Registry

 IMS

 iSeries

 Language Environment

 MVS

 MVS/ESA

 OS/390

 Parallel Sysplex

 PR/SM

 QMF

 RACF

 RAMAC

 Redbooks

 S/390

 SecureWay

 SQL/DS

 System/390

 TotalStorage

 VTAM

 WebSphere

 z/OS

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Notices 903

904 Utility Guide and Reference

Glossary

The following terms and abbreviations are

defined as they are used in the DB2 library.

A

abend. Abnormal end of task.

abend reason code. A 4-byte hexadecimal code that

uniquely identifies a problem with DB2.

abnormal end of task (abend). Termination of a task,

job, or subsystem because of an error condition that

recovery facilities cannot resolve during execution.

access method services. The facility that is used to

define and reproduce VSAM key-sequenced data sets.

access path. The path that is used to locate data that is

specified in SQL statements. An access path can be

indexed or sequential.

active log. The portion of the DB2 log to which log

records are written as they are generated. The active

log always contains the most recent log records,

whereas the archive log holds those records that are

older and no longer fit on the active log.

active member state. A state of a member of a data

sharing group. The cross-system coupling facility

identifies each active member with a group and

associates the member with a particular task, address

space, and z/OS system. A member that is not active

has either a failed member state or a quiesced member

state.

address space. A range of virtual storage pages that is

identified by a number (ASID) and a collection of

segment and page tables that map the virtual pages to

real pages of the computer’s memory.

address space connection. The result of connecting an

allied address space to DB2. Each address space that

contains a task that is connected to DB2 has exactly one

address space connection, even though more than one

task control block (TCB) can be present. See also allied

address space and task control block.

address space identifier (ASID). A unique

system-assigned identifier for and address space.

administrative authority. A set of related privileges

that DB2 defines. When you grant one of the

administrative authorities to a person’s ID, the person

has all of the privileges that are associated with that

administrative authority.

after trigger. A trigger that is defined with the trigger

activation time AFTER.

agent. As used in DB2, the structure that associates all

processes that are involved in a DB2 unit of work. An

allied agent is generally synonymous with an allied

thread. System agents are units of work that process

tasks that are independent of the allied agent, such as

prefetch processing, deferred writes, and service tasks.

aggregate function. An operation that derives its

result by using values from one or more rows. Contrast

with scalar function.

alias. An alternative name that can be used in SQL

statements to refer to a table or view in the same or a

remote DB2 subsystem.

allied address space. An area of storage that is

external to DB2 and that is connected to DB2. An allied

address space is capable of requesting DB2 services.

allied thread. A thread that originates at the local DB2

subsystem and that can access data at a remote DB2

subsystem.

allocated cursor. A cursor that is defined for stored

procedure result sets by using the SQL ALLOCATE

CURSOR statement.

already verified. An LU 6.2 security option that

allows DB2 to provide the user’s verified authorization

ID when allocating a conversation. With this option, the

user is not validated by the partner DB2 subsystem.

ambiguous cursor. A database cursor that is in a plan

or package that contains either PREPARE or EXECUTE

IMMEDIATE SQL statements, and for which the

following statements are true: the cursor is not defined

with the FOR READ ONLY clause or the FOR UPDATE

OF clause; the cursor is not defined on a read-only

result table; the cursor is not the target of a WHERE

CURRENT clause on an SQL UPDATE or DELETE

statement.

American National Standards Institute (ANSI). An

organization consisting of producers, consumers, and

general interest groups, that establishes the procedures

by which accredited organizations create and maintain

voluntary industry standards in the United States.

ANSI. American National Standards Institute.

APAR. Authorized program analysis report.

APAR fix corrective service. A temporary correction

of an IBM software defect. The correction is temporary,

© Copyright IBM Corp. 1983, 2008 905

|
|

 #
 #
 #

 |
 |
 |
 |
 |
 |
 |
 |
 |

because it is usually replaced at a later date by a more

permanent correction, such as a program temporary fix

(PTF).

APF. Authorized program facility.

API. Application programming interface.

APPL. A VTAM® network definition statement that is

used to define DB2 to VTAM as an application program

that uses SNA LU 6.2 protocols.

application. A program or set of programs that

performs a task; for example, a payroll application.

application-directed connection. A connection that an

application manages using the SQL CONNECT

statement.

application plan. The control structure that is

produced during the bind process. DB2 uses the

application plan to process SQL statements that it

encounters during statement execution.

application process. The unit to which resources and

locks are allocated. An application process involves the

execution of one or more programs.

application programming interface (API). A

functional interface that is supplied by the operating

system or by a separately orderable licensed program

that allows an application program that is written in a

high-level language to use specific data or functions of

the operating system or licensed program.

application requester. The component on a remote

system that generates DRDA® requests for data on

behalf of an application. An application requester

accesses a DB2 database server using the DRDA

application-directed protocol.

application server. The target of a request from a

remote application. In the DB2 environment, the

application server function is provided by the

distributed data facility and is used to access DB2 data

from remote applications.

archive log. The portion of the DB2 log that contains

log records that have been copied from the active log.

ASCII. An encoding scheme that is used to represent

strings in many environments, typically on PCs and

workstations. Contrast with EBCDIC and Unicode.

ASID. Address space identifier.

attachment facility. An interface between DB2 and

TSO, IMS, CICS, or batch address spaces. An

attachment facility allows application programs to

access DB2.

attribute. A characteristic of an entity. For example, in

database design, the phone number of an employee is

one of that employee’s attributes.

authorization ID. A string that can be verified for

connection to DB2 and to which a set of privileges is

allowed. It can represent an individual, an

organizational group, or a function, but DB2 does not

determine this representation.

authorized program analysis report (APAR). A report

of a problem that is caused by a suspected defect in a

current release of an IBM supplied program.

authorized program facility (APF). A facility that

permits the identification of programs that are

authorized to use restricted functions.

automatic query rewrite. A process that examines an

SQL statement that refers to one or more base tables,

and, if appropriate, rewrites the query so that it

performs better. This process can also determine

whether to rewrite a query so that it refers to one or

more materialized query tables that are derived from

the source tables.

auxiliary index. An index on an auxiliary table in

which each index entry refers to a LOB.

auxiliary table. A table that stores columns outside

the table in which they are defined. Contrast with base

table.

B

backout. The process of undoing uncommitted

changes that an application process made. This might

be necessary in the event of a failure on the part of an

application process, or as a result of a deadlock

situation.

backward log recovery. The fourth and final phase of

restart processing during which DB2 scans the log in a

backward direction to apply UNDO log records for all

aborted changes.

base table. (1) A table that is created by the SQL

CREATE TABLE statement and that holds persistent

data. Contrast with result table and temporary table.

 (2) A table containing a LOB column definition. The

actual LOB column data is not stored with the base

table. The base table contains a row identifier for each

row and an indicator column for each of its LOB

columns. Contrast with auxiliary table.

base table space. A table space that contains base

tables.

basic predicate. A predicate that compares two values.

basic sequential access method (BSAM). An access

method for storing or retrieving data blocks in a

continuous sequence, using either a sequential-access or

a direct-access device.

906 Utility Guide and Reference

|

 |
 |
 |
 |
 |
 |
 |

batch message processing program. In IMS, an

application program that can perform batch-type

processing online and can access the IMS input and

output message queues.

before trigger. A trigger that is defined with the

trigger activation time BEFORE.

binary integer. A basic data type that can be further

classified as small integer or large integer.

binary large object (BLOB). A sequence of bytes in

which the size of the value ranges from 0 bytes to

2 GB−1. Such a string has a CCSID value of 65535.

binary string. A sequence of bytes that is not

associated with a CCSID. For example, the BLOB data

type is a binary string.

bind. The process by which the output from the SQL

precompiler is converted to a usable control structure,

often called an access plan, application plan, or

package. During this process, access paths to the data

are selected and some authorization checking is

performed. The types of bind are:

 automatic bind. (More correctly, automatic rebind) A

process by which SQL statements are bound

automatically (without a user issuing a BIND

command) when an application process begins

execution and the bound application plan or

package it requires is not valid.

 dynamic bind. A process by which SQL statements

are bound as they are entered.

 incremental bind. A process by which SQL

statements are bound during the execution of an

application process.

 static bind. A process by which SQL statements are

bound after they have been precompiled. All static

SQL statements are prepared for execution at the

same time.

bit data. Data that is character type CHAR or

VARCHAR and has a CCSID value of 65535.

BLOB. Binary large object.

block fetch. A capability in which DB2 can retrieve, or

fetch, a large set of rows together. Using block fetch can

significantly reduce the number of messages that are

being sent across the network. Block fetch applies only

to cursors that do not update data.

BMP. Batch Message Processing (IMS). See batch

message processing program.

bootstrap data set (BSDS). A VSAM data set that

contains name and status information for DB2, as well

as RBA range specifications, for all active and archive

log data sets. It also contains passwords for the DB2

directory and catalog, and lists of conditional restart

and checkpoint records.

BSAM. Basic sequential access method.

BSDS. Bootstrap data set.

buffer pool. Main storage that is reserved to satisfy

the buffering requirements for one or more table spaces

or indexes.

built-in data type. A data type that IBM supplies.

Among the built-in data types for DB2 UDB for z/OS

are string, numeric, ROWID, and datetime. Contrast

with distinct type.

built-in function. A function that DB2 supplies.

Contrast with user-defined function.

business dimension. A category of data, such as

products or time periods, that an organization might

want to analyze.

C

cache structure. A coupling facility structure that

stores data that can be available to all members of a

Sysplex. A DB2 data sharing group uses cache

structures as group buffer pools.

CAF. Call attachment facility.

call attachment facility (CAF). A DB2 attachment

facility for application programs that run in TSO or

z/OS batch. The CAF is an alternative to the DSN

command processor and provides greater control over

the execution environment.

call-level interface (CLI). A callable application

programming interface (API) for database access, which

is an alternative to using embedded SQL. In contrast to

embedded SQL, DB2 ODBC (which is based on the CLI

architecture) does not require the user to precompile or

bind applications, but instead provides a standard set

of functions to process SQL statements and related

services at run time.

cascade delete. The way in which DB2 enforces

referential constraints when it deletes all descendent

rows of a deleted parent row.

CASE expression. An expression that is selected based

on the evaluation of one or more conditions.

cast function. A function that is used to convert

instances of a (source) data type into instances of a

different (target) data type. In general, a cast function

has the name of the target data type. It has one single

argument whose type is the source data type; its return

type is the target data type.

castout. The DB2 process of writing changed pages

from a group buffer pool to disk.

castout owner. The DB2 member that is responsible

for casting out a particular page set or partition.

Glossary 907

|
|
|
|

#
#
#

#
#

catalog. In DB2, a collection of tables that contains

descriptions of objects such as tables, views, and

indexes.

catalog table. Any table in the DB2 catalog.

CCSID. Coded character set identifier.

CDB. Communications database.

CDRA. Character Data Representation Architecture.

CEC. Central electronic complex. See central processor

complex.

central electronic complex (CEC). See central processor

complex.

central processor (CP). The part of the computer that

contains the sequencing and processing facilities for

instruction execution, initial program load, and other

machine operations.

central processor complex (CPC). A physical

collection of hardware (such as an ES/3090™) that

consists of main storage, one or more central

processors, timers, and channels.

CFRM. Coupling facility resource management.

CFRM policy. A declaration by a z/OS administrator

regarding the allocation rules for a coupling facility

structure.

character conversion. The process of changing

characters from one encoding scheme to another.

Character Data Representation Architecture (CDRA).

An architecture that is used to achieve consistent

representation, processing, and interchange of string

data.

character large object (CLOB). A sequence of bytes

representing single-byte characters or a mixture of

single- and double-byte characters where the size of the

value can be up to 2 GB−1. In general, character large

object values are used whenever a character string

might exceed the limits of the VARCHAR type.

character set. A defined set of characters.

character string. A sequence of bytes that represent bit

data, single-byte characters, or a mixture of single-byte

and multibyte characters.

check constraint. A user-defined constraint that

specifies the values that specific columns of a base table

can contain.

check integrity. The condition that exists when each

row in a table conforms to the check constraints that

are defined on that table. Maintaining check integrity

requires DB2 to enforce check constraints on operations

that add or change data.

check pending. A state of a table space or partition

that prevents its use by some utilities and by some SQL

statements because of rows that violate referential

constraints, check constraints, or both.

checkpoint. A point at which DB2 records internal

status information on the DB2 log; the recovery process

uses this information if DB2 abnormally terminates.

child lock. For explicit hierarchical locking, a lock that

is held on either a table, page, row, or a large object

(LOB). Each child lock has a parent lock. See also parent

lock.

CI. Control interval.

CICS. Represents (in this publication): CICS

Transaction Server for z/OS: Customer Information

Control System Transaction Server for z/OS.

CICS attachment facility. A DB2 subcomponent that

uses the z/OS subsystem interface (SSI) and

cross-storage linkage to process requests from CICS to

DB2 and to coordinate resource commitment.

CIDF. Control interval definition field.

claim. A notification to DB2 that an object is being

accessed. Claims prevent drains from occurring until

the claim is released, which usually occurs at a commit

point. Contrast with drain.

claim class. A specific type of object access that can be

one of the following isolation levels:

 Cursor stability (CS)

 Repeatable read (RR)

 Write

claim count. A count of the number of agents that are

accessing an object.

class of service. A VTAM term for a list of routes

through a network, arranged in an order of preference

for their use.

class word. A single word that indicates the nature of

a data attribute. For example, the class word PROJ

indicates that the attribute identifies a project.

clause. In SQL, a distinct part of a statement, such as

a SELECT clause or a WHERE clause.

CLI. Call- level interface.

client. See requester.

CLIST. Command list. A language for performing TSO

tasks.

CLOB. Character large object.

closed application. An application that requires

exclusive use of certain statements on certain DB2

908 Utility Guide and Reference

|

 |
 |
 |
 |

 |
 |
 |
 |

 |
 |
 |

objects, so that the objects are managed solely through

the application’s external interface.

CLPA. Create link pack area.

clustering index. An index that determines how rows

are physically ordered (clustered) in a table space. If a

clustering index on a partitioned table is not a

partitioning index, the rows are ordered in cluster

sequence within each data partition instead of spanning

partitions. Prior to Version 8 of DB2 UDB for z/OS, the

partitioning index was required to be the clustering

index.

coded character set. A set of unambiguous rules that

establish a character set and the one-to-one

relationships between the characters of the set and their

coded representations.

coded character set identifier (CCSID). A 16-bit

number that uniquely identifies a coded representation

of graphic characters. It designates an encoding scheme

identifier and one or more pairs consisting of a

character set identifier and an associated code page

identifier.

code page. (1) A set of assignments of characters to

code points. In EBCDIC, for example, the character 'A'

is assigned code point X'C1' (2) , and character 'B' is

assigned code point X'C2'. Within a code page, each

code point has only one specific meaning.

code point. In CDRA, a unique bit pattern that

represents a character in a code page.

code unit. The fundamental binary width in a

computer architecture that is used for representing

character data, such as 7 bits, 8 bits, 16 bits, or 32 bits.

Depending on the character encoding form that is used,

each code point in a coded character set can be

represented internally by one or more code units.

coexistence. During migration, the period of time in

which two releases exist in the same data sharing

group.

cold start. A process by which DB2 restarts without

processing any log records. Contrast with warm start.

collection. A group of packages that have the same

qualifier.

column. The vertical component of a table. A column

has a name and a particular data type (for example,

character, decimal, or integer).

column function. See aggregate function.

"come from" checking. An LU 6.2 security option that

defines a list of authorization IDs that are allowed to

connect to DB2 from a partner LU.

command. A DB2 operator command or a DSN

subcommand. A command is distinct from an SQL

statement.

command prefix. A one- to eight-character command

identifier. The command prefix distinguishes the

command as belonging to an application or subsystem

rather than to MVS.

command recognition character (CRC). A character

that permits a z/OS console operator or an IMS

subsystem user to route DB2 commands to specific DB2

subsystems.

command scope. The scope of command operation in

a data sharing group. If a command has member scope,

the command displays information only from the one

member or affects only non-shared resources that are

owned locally by that member. If a command has group

scope, the command displays information from all

members, affects non-shared resources that are owned

locally by all members, displays information on

sharable resources, or affects sharable resources.

commit. The operation that ends a unit of work by

releasing locks so that the database changes that are

made by that unit of work can be perceived by other

processes.

commit point. A point in time when data is

considered consistent.

committed phase. The second phase of the multisite

update process that requests all participants to commit

the effects of the logical unit of work.

common service area (CSA). In z/OS, a part of the

common area that contains data areas that are

addressable by all address spaces.

communications database (CDB). A set of tables in

the DB2 catalog that are used to establish conversations

with remote database management systems.

comparison operator. A token (such as =, >, or <) that

is used to specify a relationship between two values.

composite key. An ordered set of key columns of the

same table.

compression dictionary. The dictionary that controls

the process of compression and decompression. This

dictionary is created from the data in the table space or

table space partition.

concurrency. The shared use of resources by more

than one application process at the same time.

conditional restart. A DB2 restart that is directed by a

user-defined conditional restart control record (CRCR).

connection. In SNA, the existence of a communication

path between two partner LUs that allows information

Glossary 909

|
|
|
|
|
|
|
|

#
#
#
#
#
#

#

to be exchanged (for example, two DB2 subsystems

that are connected and communicating by way of a

conversation).

connection context. In SQLJ, a Java™ object that

represents a connection to a data source.

connection declaration clause. In SQLJ, a statement

that declares a connection to a data source.

connection handle. The data object containing

information that is associated with a connection that

DB2 ODBC manages. This includes general status

information, transaction status, and diagnostic

information.

connection ID. An identifier that is supplied by the

attachment facility and that is associated with a specific

address space connection.

consistency token. A timestamp that is used to

generate the version identifier for an application. See

also version.

constant. A language element that specifies an

unchanging value. Constants are classified as string

constants or numeric constants. Contrast with variable.

constraint. A rule that limits the values that can be

inserted, deleted, or updated in a table. See referential

constraint, check constraint, and unique constraint.

context. The application’s logical connection to the

data source and associated internal DB2 ODBC

connection information that allows the application to

direct its operations to a data source. A DB2 ODBC

context represents a DB2 thread.

contracting conversion. A process that occurs when

the length of a converted string is smaller than that of

the source string. For example, this process occurs

when an EBCDIC mixed-data string that contains DBCS

characters is converted to ASCII mixed data; the

converted string is shorter because of the removal of

the shift codes.

control interval (CI). A fixed-length area or disk in

which VSAM stores records and creates distributed free

space. Also, in a key-sequenced data set or file, the set

of records that an entry in the sequence-set index

record points to. The control interval is the unit of

information that VSAM transmits to or from disk. A

control interval always includes an integral number of

physical records.

control interval definition field (CIDF). In VSAM, a

field that is located in the 4 bytes at the end of each

control interval; it describes the free space, if any, in the

control interval.

conversation. Communication, which is based on LU

6.2 or Advanced Program-to-Program Communication

(APPC), between an application and a remote

transaction program over an SNA logical unit-to-logical

unit (LU-LU) session that allows communication while

processing a transaction.

coordinator. The system component that coordinates

the commit or rollback of a unit of work that includes

work that is done on one or more other systems.

copy pool. A named set of SMS storage groups that

contains data that is to be copied collectively. A copy

pool is an SMS construct that lets you define which

storage groups are to be copied by using FlashCopy®

functions. HSM determines which volumes belong to a

copy pool.

copy target. A named set of SMS storage groups that

are to be used as containers for copy pool volume

copies. A copy target is an SMS construct that lets you

define which storage groups are to be used as

containers for volumes that are copied by using

FlashCopy functions.

copy version. A point-in-time FlashCopy copy that is

managed by HSM. Each copy pool has a version

parameter that specifies how many copy versions are

maintained on disk.

correlated columns. A relationship between the value

of one column and the value of another column.

correlated subquery. A subquery (part of a WHERE or

HAVING clause) that is applied to a row or group of

rows of a table or view that is named in an outer

subselect statement.

correlation ID. An identifier that is associated with a

specific thread. In TSO, it is either an authorization ID

or the job name.

correlation name. An identifier that designates a table,

a view, or individual rows of a table or view within a

single SQL statement. It can be defined in any FROM

clause or in the first clause of an UPDATE or DELETE

statement.

cost category. A category into which DB2 places cost

estimates for SQL statements at the time the statement

is bound. A cost estimate can be placed in either of the

following cost categories:

v A: Indicates that DB2 had enough information to

make a cost estimate without using default values.

v B: Indicates that some condition exists for which DB2

was forced to use default values for its estimate.

The cost category is externalized in the

COST_CATEGORY column of the

DSN_STATEMNT_TABLE when a statement is

explained.

coupling facility. A special PR/SM™ LPAR logical

partition that runs the coupling facility control program

and provides high-speed caching, list processing, and

locking functions in a Parallel Sysplex®.

910 Utility Guide and Reference

 |
 |
 |
 |
 |
 |

 |
 |
 |
 |
 |
 |

 |
 |
 |
 |

coupling facility resource management. A component

of z/OS that provides the services to manage coupling

facility resources in a Parallel Sysplex. This

management includes the enforcement of CFRM

policies to ensure that the coupling facility and

structure requirements are satisfied.

CP. Central processor.

CPC. Central processor complex.

C++ member. A data object or function in a structure,

union, or class.

C++ member function. An operator or function that is

declared as a member of a class. A member function

has access to the private and protected data members

and to the member functions of objects in its class.

Member functions are also called methods.

C++ object. (1) A region of storage. An object is

created when a variable is defined or a new function is

invoked. (2) An instance of a class.

CRC. Command recognition character.

CRCR. Conditional restart control record. See also

conditional restart.

create link pack area (CLPA). An option that is used

during IPL to initialize the link pack pageable area.

created temporary table. A table that holds temporary

data and is defined with the SQL statement CREATE

GLOBAL TEMPORARY TABLE. Information about

created temporary tables is stored in the DB2 catalog,

so this kind of table is persistent and can be shared

across application processes. Contrast with declared

temporary table. See also temporary table.

cross-memory linkage. A method for invoking a

program in a different address space. The invocation is

synchronous with respect to the caller.

cross-system coupling facility (XCF). A component of

z/OS that provides functions to support cooperation

between authorized programs that run within a

Sysplex.

cross-system extended services (XES). A set of z/OS

services that allow multiple instances of an application

or subsystem, running on different systems in a Sysplex

environment, to implement high-performance,

high-availability data sharing by using a coupling

facility.

CS. Cursor stability.

CSA. Common service area.

CT. Cursor table.

current data. Data within a host structure that is

current with (identical to) the data within the base

table.

current SQL ID. An ID that, at a single point in time,

holds the privileges that are exercised when certain

dynamic SQL statements run. The current SQL ID can

be a primary authorization ID or a secondary

authorization ID.

current status rebuild. The second phase of restart

processing during which the status of the subsystem is

reconstructed from information on the log.

cursor. A named control structure that an application

program uses to point to a single row or multiple rows

within some ordered set of rows of a result table. A

cursor can be used to retrieve, update, or delete rows

from a result table.

cursor sensitivity. The degree to which database

updates are visible to the subsequent FETCH

statements in a cursor. A cursor can be sensitive to

changes that are made with positioned update and

delete statements specifying the name of that cursor. A

cursor can also be sensitive to changes that are made

with searched update or delete statements, or with

cursors other than this cursor. These changes can be

made by this application process or by another

application process.

cursor stability (CS). The isolation level that provides

maximum concurrency without the ability to read

uncommitted data. With cursor stability, a unit of work

holds locks only on its uncommitted changes and on

the current row of each of its cursors.

cursor table (CT). The copy of the skeleton cursor

table that is used by an executing application process.

cycle. A set of tables that can be ordered so that each

table is a descendent of the one before it, and the first

table is a descendent of the last table. A self-referencing

table is a cycle with a single member.

D

DAD. See Document access definition.

disk. A direct-access storage device that records data

magnetically.

database. A collection of tables, or a collection of table

spaces and index spaces.

database access thread. A thread that accesses data at

the local subsystem on behalf of a remote subsystem.

database administrator (DBA). An individual who is

responsible for designing, developing, operating,

safeguarding, maintaining, and using a database.

Glossary 911

|
|
|
|
|
|

 |

 |
 |

database alias. The name of the target server if

different from the location name. The database alias

name is used to provide the name of the database

server as it is known to the network. When a database

alias name is defined, the location name is used by the

application to reference the server, but the database

alias name is used to identify the database server to be

accessed. Any fully qualified object names within any

SQL statements are not modified and are sent

unchanged to the database server.

database descriptor (DBD). An internal representation

of a DB2 database definition, which reflects the data

definition that is in the DB2 catalog. The objects that

are defined in a database descriptor are table spaces,

tables, indexes, index spaces, relationships, check

constraints, and triggers. A DBD also contains

information about accessing tables in the database.

database exception status. An indication that

something is wrong with a database. All members of a

data sharing group must know and share the exception

status of databases.

database identifier (DBID). An internal identifier of

the database.

database management system (DBMS). A software

system that controls the creation, organization, and

modification of a database and the access to the data

that is stored within it.

database request module (DBRM). A data set

member that is created by the DB2 precompiler and

that contains information about SQL statements.

DBRMs are used in the bind process.

database server. The target of a request from a local

application or an intermediate database server. In the

DB2 environment, the database server function is

provided by the distributed data facility to access DB2

data from local applications, or from a remote database

server that acts as an intermediate database server.

data currency. The state in which data that is retrieved

into a host variable in your program is a copy of data

in the base table.

data definition name (ddname). The name of a data

definition (DD) statement that corresponds to a data

control block containing the same name.

data dictionary. A repository of information about an

organization’s application programs, databases, logical

data models, users, and authorizations. A data

dictionary can be manual or automated.

data-driven business rules. Constraints on particular

data values that exist as a result of requirements of the

business.

Data Language/I (DL/I). The IMS data manipulation

language; a common high-level interface between a

user application and IMS.

data mart. A small data warehouse that applies to a

single department or team. See also data warehouse.

data mining. The process of collecting critical business

information from a data warehouse, correlating it, and

uncovering associations, patterns, and trends.

data partition. A VSAM data set that is contained

within a partitioned table space.

data-partitioned secondary index (DPSI). A secondary

index that is partitioned. The index is partitioned

according to the underlying data.

data sharing. The ability of two or more DB2

subsystems to directly access and change a single set of

data.

data sharing group. A collection of one or more DB2

subsystems that directly access and change the same

data while maintaining data integrity.

data sharing member. A DB2 subsystem that is

assigned by XCF services to a data sharing group.

data source. A local or remote relational or

non-relational data manager that is capable of

supporting data access via an ODBC driver that

supports the ODBC APIs. In the case of DB2 UDB for

z/OS, the data sources are always relational database

managers.

data space. In releases prior to DB2 UDB for z/OS,

Version 8, a range of up to 2 GB of contiguous virtual

storage addresses that a program can directly

manipulate. Unlike an address space, a data space can

hold only data; it does not contain common areas,

system data, or programs.

data type. An attribute of columns, literals, host

variables, special registers, and the results of functions

and expressions.

data warehouse. A system that provides critical

business information to an organization. The data

warehouse system cleanses the data for accuracy and

currency, and then presents the data to decision makers

so that they can interpret and use it effectively and

efficiently.

date. A three-part value that designates a day, month,

and year.

date duration. A decimal integer that represents a

number of years, months, and days.

datetime value. A value of the data type DATE, TIME,

or TIMESTAMP.

DBA. Database administrator.

912 Utility Guide and Reference

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

 |
 |
 |
 |
 |
 |

DBCLOB. Double-byte character large object.

DBCS. Double-byte character set.

DBD. Database descriptor.

DBID. Database identifier.

DBMS. Database management system.

DBRM. Database request module.

DB2 catalog. Tables that are maintained by DB2 and

contain descriptions of DB2 objects, such as tables,

views, and indexes.

DB2 command. An instruction to the DB2 subsystem

that a user enters to start or stop DB2, to display

information on current users, to start or stop databases,

to display information on the status of databases, and

so on.

DB2 for VSE & VM. The IBM DB2 relational database

management system for the VSE and VM operating

systems.

DB2I. DB2 Interactive.

DB2 Interactive (DB2I). The DB2 facility that provides

for the execution of SQL statements, DB2 (operator)

commands, programmer commands, and utility

invocation.

DB2I Kanji Feature. The tape that contains the panels

and jobs that allow a site to display DB2I panels in

Kanji.

DB2 PM. DB2 Performance Monitor.

DB2 thread. The DB2 structure that describes an

application’s connection, traces its progress, processes

resource functions, and delimits its accessibility to DB2

resources and services.

DCLGEN. Declarations generator.

DDF. Distributed data facility.

ddname. Data definition name.

deadlock. Unresolvable contention for the use of a

resource, such as a table or an index.

declarations generator (DCLGEN). A subcomponent

of DB2 that generates SQL table declarations and

COBOL, C, or PL/I data structure declarations that

conform to the table. The declarations are generated

from DB2 system catalog information. DCLGEN is also

a DSN subcommand.

declared temporary table. A table that holds

temporary data and is defined with the SQL statement

DECLARE GLOBAL TEMPORARY TABLE. Information

about declared temporary tables is not stored in the

DB2 catalog, so this kind of table is not persistent and

can be used only by the application process that issued

the DECLARE statement. Contrast with created

temporary table. See also temporary table.

default value. A predetermined value, attribute, or

option that is assumed when no other is explicitly

specified.

deferred embedded SQL. SQL statements that are

neither fully static nor fully dynamic. Like static

statements, they are embedded within an application,

but like dynamic statements, they are prepared during

the execution of the application.

deferred write. The process of asynchronously writing

changed data pages to disk.

degree of parallelism. The number of concurrently

executed operations that are initiated to process a

query.

delete-connected. A table that is a dependent of table

P or a dependent of a table to which delete operations

from table P cascade.

delete hole. The location on which a cursor is

positioned when a row in a result table is refetched and

the row no longer exists on the base table, because

another cursor deleted the row between the time the

cursor first included the row in the result table and the

time the cursor tried to refetch it.

delete rule. The rule that tells DB2 what to do to a

dependent row when a parent row is deleted. For each

relationship, the rule might be CASCADE, RESTRICT,

SET NULL, or NO ACTION.

delete trigger. A trigger that is defined with the

triggering SQL operation DELETE.

delimited identifier. A sequence of characters that are

enclosed within double quotation marks ("). The

sequence must consist of a letter followed by zero or

more characters, each of which is a letter, digit, or the

underscore character (_).

delimiter token. A string constant, a delimited

identifier, an operator symbol, or any of the special

characters that are shown in DB2 syntax diagrams.

denormalization. A key step in the task of building a

physical relational database design. Denormalization is

the intentional duplication of columns in multiple

tables, and the consequence is increased data

redundancy. Denormalization is sometimes necessary to

minimize performance problems. Contrast with

normalization.

dependent. An object (row, table, or table space) that

has at least one parent. The object is also said to be a

dependent (row, table, or table space) of its parent. See

also parent row, parent table, parent table space.

Glossary 913

dependent row. A row that contains a foreign key that

matches the value of a primary key in the parent row.

dependent table. A table that is a dependent in at

least one referential constraint.

DES-based authenticator. An authenticator that is

generated using the DES algorithm.

descendent. An object that is a dependent of an object

or is the dependent of a descendent of an object.

descendent row. A row that is dependent on another

row, or a row that is a descendent of a dependent row.

descendent table. A table that is a dependent of

another table, or a table that is a descendent of a

dependent table.

deterministic function. A user-defined function whose

result is dependent on the values of the input

arguments. That is, successive invocations with the

same input values produce the same answer.

Sometimes referred to as a not-variant function.

Contrast this with an nondeterministic function

(sometimes called a variant function), which might not

always produce the same result for the same inputs.

DFP. Data Facility Product (in z/OS).

DFSMS. Data Facility Storage Management Subsystem

(in z/OS). Also called Storage Management Subsystem

(SMS).

DFSMSdss. The data set services (dss) component of

DFSMS (in z/OS).

DFSMShsm™. The hierarchical storage manager (hsm)

component of DFSMS (in z/OS).

dimension. A data category such as time, products, or

markets. The elements of a dimension are referred to as

members. Dimensions offer a very concise, intuitive

way of organizing and selecting data for retrieval,

exploration, and analysis. See also dimension table.

dimension table. The representation of a dimension in

a star schema. Each row in a dimension table

represents all of the attributes for a particular member

of the dimension. See also dimension, star schema, and

star join.

directory. The DB2 system database that contains

internal objects such as database descriptors and

skeleton cursor tables.

distinct predicate. In SQL, a predicate that ensures

that two row values are not equal, and that both row

values are not null.

distinct type. A user-defined data type that is

internally represented as an existing type (its source

type), but is considered to be a separate and

incompatible type for semantic purposes.

distributed data. Data that resides on a DBMS other

than the local system.

distributed data facility (DDF). A set of DB2

components through which DB2 communicates with

another relational database management system.

Distributed Relational Database Architecture™

(DRDA). A connection protocol for distributed

relational database processing that is used by IBM’s

relational database products. DRDA includes protocols

for communication between an application and a

remote relational database management system, and for

communication between relational database

management systems. See also DRDA access.

DL/I. Data Language/I.

DNS. Domain name server.

document access definition (DAD). Used to define

the indexing scheme for an XML column or the

mapping scheme of an XML collection. It can be used

to enable an XML Extender column of an XML

collection, which is XML formatted.

domain. The set of valid values for an attribute.

domain name. The name by which TCP/IP

applications refer to a TCP/IP host within a TCP/IP

network.

domain name server (DNS). A special TCP/IP

network server that manages a distributed directory

that is used to map TCP/IP host names to IP addresses.

double-byte character large object (DBCLOB). A

sequence of bytes representing double-byte characters

where the size of the values can be up to 2 GB. In

general, DBCLOB values are used whenever a

double-byte character string might exceed the limits of

the VARGRAPHIC type.

double-byte character set (DBCS). A set of characters,

which are used by national languages such as Japanese

and Chinese, that have more symbols than can be

represented by a single byte. Each character is 2 bytes

in length. Contrast with single-byte character set and

multibyte character set.

double-precision floating point number. A 64-bit

approximate representation of a real number.

downstream. The set of nodes in the syncpoint tree

that is connected to the local DBMS as a participant in

the execution of a two-phase commit.

DPSI. Data-partitioned secondary index.

drain. The act of acquiring a locked resource by

quiescing access to that object.

drain lock. A lock on a claim class that prevents a

claim from occurring.

914 Utility Guide and Reference

|
|

|
|

#
#
#

 |
 |
 |
 |
 |

 |

DRDA. Distributed Relational Database Architecture.

DRDA access. An open method of accessing

distributed data that you can use to can connect to

another database server to execute packages that were

previously bound at the server location. You use the

SQL CONNECT statement or an SQL statement with a

three-part name to identify the server. Contrast with

private protocol access.

DSN. (1) The default DB2 subsystem name. (2) The

name of the TSO command processor of DB2. (3) The

first three characters of DB2 module and macro names.

duration. A number that represents an interval of

time. See also date duration, labeled duration, and time

duration.

dynamic cursor. A named control structure that an

application program uses to change the size of the

result table and the order of its rows after the cursor is

opened. Contrast with static cursor.

dynamic dump. A dump that is issued during the

execution of a program, usually under the control of

that program.

dynamic SQL. SQL statements that are prepared and

executed within an application program while the

program is executing. In dynamic SQL, the SQL source

is contained in host language variables rather than

being coded into the application program. The SQL

statement can change several times during the

application program’s execution.

dynamic statement cache pool. A cache, located above

the 2-GB storage line, that holds dynamic statements.

E

EA-enabled table space. A table space or index space

that is enabled for extended addressability and that

contains individual partitions (or pieces, for LOB table

spaces) that are greater than 4 GB.

EB. See exabyte.

EBCDIC. Extended binary coded decimal interchange

code. An encoding scheme that is used to represent

character data in the z/OS, VM, VSE, and iSeries™

environments. Contrast with ASCII and Unicode.

e-business. The transformation of key business

processes through the use of Internet technologies.

EDM pool. A pool of main storage that is used for

database descriptors, application plans, authorization

cache, application packages.

EID. Event identifier.

embedded SQL. SQL statements that are coded within

an application program. See static SQL.

enclave. In Language Environment® , an independent

collection of routines, one of which is designated as the

main routine. An enclave is similar to a program or run

unit.

encoding scheme. A set of rules to represent character

data (ASCII, EBCDIC, or Unicode).

entity. A significant object of interest to an

organization.

enumerated list. A set of DB2 objects that are defined

with a LISTDEF utility control statement in which

pattern-matching characters (*, %, _ or ?) are not used.

environment. A collection of names of logical and

physical resources that are used to support the

performance of a function.

environment handle. In DB2 ODBC, the data object

that contains global information regarding the state of

the application. An environment handle must be

allocated before a connection handle can be allocated.

Only one environment handle can be allocated per

application.

EOM. End of memory.

EOT. End of task.

equijoin. A join operation in which the join-condition

has the form expression = expression.

error page range. A range of pages that are considered

to be physically damaged. DB2 does not allow users to

access any pages that fall within this range.

escape character. The symbol that is used to enclose

an SQL delimited identifier. The escape character is the

double quotation mark ("), except in COBOL

applications, where the user assigns the symbol, which

is either a double quotation mark or an apostrophe (').

ESDS. Entry sequenced data set.

ESMT. External subsystem module table (in IMS).

EUR. IBM European Standards.

exabyte. For processor, real and virtual storage

capacities and channel volume:

1 152 921 504 606 846 976 bytes or 260.

exception table. A table that holds rows that violate

referential constraints or check constraints that the

CHECK DATA utility finds.

exclusive lock. A lock that prevents concurrently

executing application processes from reading or

changing data. Contrast with share lock.

executable statement. An SQL statement that can be

embedded in an application program, dynamically

prepared and executed, or issued interactively.

Glossary 915

|
|
|
|

|
|

|

|
|
|

 |
 |
 |

execution context. In SQLJ, a Java object that can be

used to control the execution of SQL statements.

exit routine. A user-written (or IBM-provided default)

program that receives control from DB2 to perform

specific functions. Exit routines run as extensions of

DB2.

expanding conversion. A process that occurs when

the length of a converted string is greater than that of

the source string. For example, this process occurs

when an ASCII mixed-data string that contains DBCS

characters is converted to an EBCDIC mixed-data

string; the converted string is longer because of the

addition of shift codes.

explicit hierarchical locking. Locking that is used to

make the parent-child relationship between resources

known to IRLM. This kind of locking avoids global

locking overhead when no inter-DB2 interest exists on a

resource.

exposed name. A correlation name or a table or view

name for which a correlation name is not specified.

Names that are specified in a FROM clause are exposed

or non-exposed.

expression. An operand or a collection of operators

and operands that yields a single value.

extended recovery facility (XRF). A facility that

minimizes the effect of failures in z/OS, VTAM , the

host processor, or high-availability applications during

sessions between high-availability applications and

designated terminals. This facility provides an

alternative subsystem to take over sessions from the

failing subsystem.

Extensible Markup Language (XML). A standard

metalanguage for defining markup languages that is a

subset of Standardized General Markup Language

(SGML). The less complex nature of XML makes it

easier to write applications that handle document

types, to author and manage structured information,

and to transmit and share structured information across

diverse computing environments.

external function. A function for which the body is

written in a programming language that takes scalar

argument values and produces a scalar result for each

invocation. Contrast with sourced function, built-in

function, and SQL function.

external procedure. A user-written application

program that can be invoked with the SQL CALL

statement, which is written in a programming

language. Contrast with SQL procedure.

external routine. A user-defined function or stored

procedure that is based on code that is written in an

external programming language.

external subsystem module table (ESMT). In IMS, the

table that specifies which attachment modules must be

loaded.

F

failed member state. A state of a member of a data

sharing group. When a member fails, the XCF

permanently records the failed member state. This state

usually means that the member’s task, address space,

or z/OS system terminated before the state changed

from active to quiesced.

fallback. The process of returning to a previous

release of DB2 after attempting or completing migration

to a current release.

false global lock contention. A contention indication

from the coupling facility when multiple lock names

are hashed to the same indicator and when no real

contention exists.

fan set. A direct physical access path to data, which is

provided by an index, hash, or link; a fan set is the

means by which the data manager supports the

ordering of data.

federated database. The combination of a DB2

Universal Database server (in Linux, UNIX®, and

Windows® environments) and multiple data sources to

which the server sends queries. In a federated database

system, a client application can use a single SQL

statement to join data that is distributed across multiple

database management systems and can view the data

as if it were local.

fetch orientation. The specification of the desired

placement of the cursor as part of a FETCH statement

(for example, BEFORE, AFTER, NEXT, PRIOR,

CURRENT, FIRST, LAST, ABSOLUTE, and RELATIVE).

field procedure. A user-written exit routine that is

designed to receive a single value and transform

(encode or decode) it in any way the user can specify.

filter factor. A number between zero and one that

estimates the proportion of rows in a table for which a

predicate is true.

fixed-length string. A character or graphic string

whose length is specified and cannot be changed.

Contrast with varying-length string.

FlashCopy. A function on the IBM Enterprise Storage

Server® that can create a point-in-time copy of data

while an application is running.

foreign key. A column or set of columns in a

dependent table of a constraint relationship. The key

must have the same number of columns, with the same

descriptions, as the primary key of the parent table.

916 Utility Guide and Reference

Each foreign key value must either match a parent key

value in the related parent table or be null.

forest. An ordered set of subtrees of XML nodes.

forget. In a two-phase commit operation, (1) the vote

that is sent to the prepare phase when the participant

has not modified any data. The forget vote allows a

participant to release locks and forget about the logical

unit of work. This is also referred to as the read-only

vote. (2) The response to the committed request in the

second phase of the operation.

forward log recovery. The third phase of restart

processing during which DB2 processes the log in a

forward direction to apply all REDO log records.

free space. The total amount of unused space in a

page; that is, the space that is not used to store records

or control information is free space.

full outer join. The result of a join operation that

includes the matched rows of both tables that are being

joined and preserves the unmatched rows of both

tables. See also join.

fullselect. A subselect, a values-clause, or a number of

both that are combined by set operators. Fullselect

specifies a result table. If UNION is not used, the result

of the fullselect is the result of the specified subselect.

fully escaped mapping. A mapping from an SQL

identifier to an XML name when the SQL identifier is a

column name.

function. A mapping, which is embodied as a

program (the function body) that is invocable by means

of zero or more input values (arguments) to a single

value (the result). See also aggregate function and scalar

function.

 Functions can be user-defined, built-in, or generated by

DB2. (See also built-in function, cast function, external

function, sourced function, SQL function, and user-defined

function.)

function definer. The authorization ID of the owner of

the schema of the function that is specified in the

CREATE FUNCTION statement.

function implementer. The authorization ID of the

owner of the function program and function package.

function package. A package that results from binding

the DBRM for a function program.

function package owner. The authorization ID of the

user who binds the function program’s DBRM into a

function package.

function resolution. The process, internal to the

DBMS, by which a function invocation is bound to a

particular function instance. This process uses the

function name, the data types of the arguments, and a

list of the applicable schema names (called the SQL

path) to make the selection. This process is sometimes

called function selection.

function selection. See function resolution.

function signature. The logical concatenation of a

fully qualified function name with the data types of all

of its parameters.

G

GB. Gigabyte (1 073 741 824 bytes).

GBP. Group buffer pool.

GBP-dependent. The status of a page set or page set

partition that is dependent on the group buffer pool.

Either read/write interest is active among DB2

subsystems for this page set, or the page set has

changed pages in the group buffer pool that have not

yet been cast out to disk.

generalized trace facility (GTF). A z/OS service

program that records significant system events such as

I/O interrupts, SVC interrupts, program interrupts, or

external interrupts.

generic resource name. A name that VTAM uses to

represent several application programs that provide the

same function in order to handle session distribution

and balancing in a Sysplex environment.

getpage. An operation in which DB2 accesses a data

page.

global lock. A lock that provides concurrency control

within and among DB2 subsystems. The scope of the

lock is across all DB2 subsystems of a data sharing

group.

global lock contention. Conflicts on locking requests

between different DB2 members of a data sharing

group when those members are trying to serialize

shared resources.

governor. See resource limit facility.

graphic string. A sequence of DBCS characters.

gross lock. The shared, update, or exclusive mode locks

on a table, partition, or table space.

group buffer pool (GBP). A coupling facility cache

structure that is used by a data sharing group to cache

data and to ensure that the data is consistent for all

members.

group buffer pool duplexing. The ability to write

data to two instances of a group buffer pool structure: a

primary group buffer pool and a secondary group buffer

Glossary 917

|

|
|
|

#
#
#
#
#

#
#
#
#

pool. z/OS publications refer to these instances as the

"old" (for primary) and "new" (for secondary)

structures.

group level. The release level of a data sharing group,

which is established when the first member migrates to

a new release.

group name. The z/OS XCF identifier for a data

sharing group.

group restart. A restart of at least one member of a

data sharing group after the loss of either locks or the

shared communications area.

GTF. Generalized trace facility.

H

handle. In DB2 ODBC, a variable that refers to a data

structure and associated resources. See also statement

handle, connection handle, and environment handle.

help panel. A screen of information that presents

tutorial text to assist a user at the workstation or

terminal.

heuristic damage. The inconsistency in data between

one or more participants that results when a heuristic

decision to resolve an indoubt LUW at one or more

participants differs from the decision that is recorded at

the coordinator.

heuristic decision. A decision that forces indoubt

resolution at a participant by means other than

automatic resynchronization between coordinator and

participant.

hole. A row of the result table that cannot be accessed

because of a delete or an update that has been

performed on the row. See also delete hole and update

hole.

home address space. The area of storage that z/OS

currently recognizes as dispatched.

host. The set of programs and resources that are

available on a given TCP/IP instance.

host expression. A Java variable or expression that is

referenced by SQL clauses in an SQLJ application

program.

host identifier. A name that is declared in the host

program.

host language. A programming language in which

you can embed SQL statements.

host program. An application program that is written

in a host language and that contains embedded SQL

statements.

host structure. In an application program, a structure

that is referenced by embedded SQL statements.

host variable. In an application program, an

application variable that is referenced by embedded

SQL statements.

host variable array. An array of elements, each of

which corresponds to a value for a column. The

dimension of the array determines the maximum

number of rows for which the array can be used.

HSM. Hierarchical storage manager.

HTML. Hypertext Markup Language, a standard

method for presenting Web data to users.

HTTP. Hypertext Transfer Protocol, a communication

protocol that the Web uses.

I

ICF. Integrated catalog facility.

IDCAMS. An IBM program that is used to process

access method services commands. It can be invoked as

a job or jobstep, from a TSO terminal, or from within a

user’s application program.

IDCAMS LISTCAT. A facility for obtaining

information that is contained in the access method

services catalog.

identify. A request that an attachment service program

in an address space that is separate from DB2 issues

thorough the z/OS subsystem interface to inform DB2

of its existence and to initiate the process of becoming

connected to DB2.

identity column. A column that provides a way for

DB2 to automatically generate a numeric value for each

row. The generated values are unique if cycling is not

used. Identity columns are defined with the AS

IDENTITY clause. Uniqueness of values can be ensured

by defining a unique index that contains only the

identity column. A table can have no more than one

identity column.

IFCID. Instrumentation facility component identifier.

IFI. Instrumentation facility interface.

IFI call. An invocation of the instrumentation facility

interface (IFI) by means of one of its defined functions.

IFP. IMS Fast Path.

image copy. An exact reproduction of all or part of a

table space. DB2 provides utility programs to make full

image copies (to copy the entire table space) or

incremental image copies (to copy only those pages

that have been modified since the last image copy).

918 Utility Guide and Reference

|
|
|
|

 |
 |
 |
 |

implied forget. In the presumed-abort protocol, an

implied response of forget to the second-phase

committed request from the coordinator. The response is

implied when the participant responds to any

subsequent request from the coordinator.

IMS. Information Management System.

IMS attachment facility. A DB2 subcomponent that

uses z/OS subsystem interface (SSI) protocols and

cross-memory linkage to process requests from IMS to

DB2 and to coordinate resource commitment.

IMS DB. Information Management System Database.

IMS TM. Information Management System

Transaction Manager.

in-abort. A status of a unit of recovery. If DB2 fails

after a unit of recovery begins to be rolled back, but

before the process is completed, DB2 continues to back

out the changes during restart.

in-commit. A status of a unit of recovery. If DB2 fails

after beginning its phase 2 commit processing, it

"knows," when restarted, that changes made to data are

consistent. Such units of recovery are termed in-commit.

independent. An object (row, table, or table space)

that is neither a parent nor a dependent of another

object.

index. A set of pointers that are logically ordered by

the values of a key. Indexes can provide faster access to

data and can enforce uniqueness on the rows in a table.

index-controlled partitioning. A type of partitioning

in which partition boundaries for a partitioned table are

controlled by values that are specified on the CREATE

INDEX statement. Partition limits are saved in the

LIMITKEY column of the SYSIBM.SYSINDEXPART

catalog table.

index key. The set of columns in a table that is used

to determine the order of index entries.

index partition. A VSAM data set that is contained

within a partitioning index space.

index space. A page set that is used to store the

entries of one index.

indicator column. A 4-byte value that is stored in a

base table in place of a LOB column.

indicator variable. A variable that is used to represent

the null value in an application program. If the value

for the selected column is null, a negative value is

placed in the indicator variable.

indoubt. A status of a unit of recovery. If DB2 fails

after it has finished its phase 1 commit processing and

before it has started phase 2, only the commit

coordinator knows if an individual unit of recovery is

to be committed or rolled back. At emergency restart, if

DB2 lacks the information it needs to make this

decision, the status of the unit of recovery is indoubt

until DB2 obtains this information from the coordinator.

More than one unit of recovery can be indoubt at

restart.

indoubt resolution. The process of resolving the

status of an indoubt logical unit of work to either the

committed or the rollback state.

inflight. A status of a unit of recovery. If DB2 fails

before its unit of recovery completes phase 1 of the

commit process, it merely backs out the updates of its

unit of recovery at restart. These units of recovery are

termed inflight.

inheritance. The passing downstream of class

resources or attributes from a parent class in the class

hierarchy to a child class.

initialization file. For DB2 ODBC applications, a file

containing values that can be set to adjust the

performance of the database manager.

inline copy. A copy that is produced by the LOAD or

REORG utility. The data set that the inline copy

produces is logically equivalent to a full image copy

that is produced by running the COPY utility with

read-only access (SHRLEVEL REFERENCE).

inner join. The result of a join operation that includes

only the matched rows of both tables that are being

joined. See also join.

inoperative package. A package that cannot be used

because one or more user-defined functions or

procedures that the package depends on were dropped.

Such a package must be explicitly rebound. Contrast

with invalid package.

insensitive cursor. A cursor that is not sensitive to

inserts, updates, or deletes that are made to the

underlying rows of a result table after the result table

has been materialized.

insert trigger. A trigger that is defined with the

triggering SQL operation INSERT.

install. The process of preparing a DB2 subsystem to

operate as a z/OS subsystem.

installation verification scenario. A sequence of

operations that exercises the main DB2 functions and

tests whether DB2 was correctly installed.

instrumentation facility component identifier

(IFCID). A value that names and identifies a trace

record of an event that can be traced. As a parameter

on the START TRACE and MODIFY TRACE

commands, it specifies that the corresponding event is

to be traced.

Glossary 919

|
|
|
|
|
|
 |
 |
 |
 |

instrumentation facility interface (IFI). A

programming interface that enables programs to obtain

online trace data about DB2, to submit DB2 commands,

and to pass data to DB2.

Interactive System Productivity Facility (ISPF). An

IBM licensed program that provides interactive dialog

services in a z/OS environment.

inter-DB2 R/W interest. A property of data in a table

space, index, or partition that has been opened by more

than one member of a data sharing group and that has

been opened for writing by at least one of those

members.

intermediate database server. The target of a request

from a local application or a remote application

requester that is forwarded to another database server.

In the DB2 environment, the remote request is

forwarded transparently to another database server if

the object that is referenced by a three-part name does

not reference the local location.

internationalization. The support for an encoding

scheme that is able to represent the code points of

characters from many different geographies and

languages. To support all geographies, the Unicode

standard requires more than 1 byte to represent a single

character. See also Unicode.

internal resource lock manager (IRLM). A z/OS

subsystem that DB2 uses to control communication and

database locking.

International Organization for Standardization. An

international body charged with creating standards to

facilitate the exchange of goods and services as well as

cooperation in intellectual, scientific, technological, and

economic activity.

invalid package. A package that depends on an object

(other than a user-defined function) that is dropped.

Such a package is implicitly rebound on invocation.

Contrast with inoperative package.

invariant character set. (1) A character set, such as the

syntactic character set, whose code point assignments

do not change from code page to code page. (2) A

minimum set of characters that is available as part of

all character sets.

IP address. A 4-byte value that uniquely identifies a

TCP/IP host.

IRLM. Internal resource lock manager.

ISO. International Organization for Standardization.

isolation level. The degree to which a unit of work is

isolated from the updating operations of other units of

work. See also cursor stability, read stability, repeatable

read, and uncommitted read.

ISPF. Interactive System Productivity Facility.

ISPF/PDF. Interactive System Productivity

Facility/Program Development Facility.

iterator. In SQLJ, an object that contains the result set

of a query. An iterator is equivalent to a cursor in other

host languages.

iterator declaration clause. In SQLJ, a statement that

generates an iterator declaration class. An iterator is an

object of an iterator declaration class.

J

Japanese Industrial Standard. An encoding scheme

that is used to process Japanese characters.

JAR. Java Archive.

Java Archive (JAR). A file format that is used for

aggregating many files into a single file.

JCL. Job control language.

JDBC. A Sun Microsystems database application

programming interface (API) for Java that allows

programs to access database management systems by

using callable SQL. JDBC does not require the use of an

SQL preprocessor. In addition, JDBC provides an

architecture that lets users add modules called database

drivers, which link the application to their choice of

database management systems at run time.

JES. Job Entry Subsystem.

JIS. Japanese Industrial Standard.

job control language (JCL). A control language that is

used to identify a job to an operating system and to

describe the job’s requirements.

Job Entry Subsystem (JES). An IBM licensed program

that receives jobs into the system and processes all

output data that is produced by the jobs.

join. A relational operation that allows retrieval of

data from two or more tables based on matching

column values. See also equijoin, full outer join, inner

join, left outer join, outer join, and right outer join.

K

KB. Kilobyte (1024 bytes).

Kerberos. A network authentication protocol that is

designed to provide strong authentication for

client/server applications by using secret-key

cryptography.

Kerberos ticket. A transparent application mechanism

that transmits the identity of an initiating principal to

its target. A simple ticket contains the principal’s

920 Utility Guide and Reference

|
|
|
|
|

 |
 |

 |

identity, a session key, a timestamp, and other

information, which is sealed using the target’s secret

key.

key. A column or an ordered collection of columns

that is identified in the description of a table, index, or

referential constraint. The same column can be part of

more than one key.

key-sequenced data set (KSDS). A VSAM file or data

set whose records are loaded in key sequence and

controlled by an index.

keyword. In SQL, a name that identifies an option

that is used in an SQL statement.

KSDS. Key-sequenced data set.

L

labeled duration. A number that represents a duration

of years, months, days, hours, minutes, seconds, or

microseconds.

large object (LOB). A sequence of bytes representing

bit data, single-byte characters, double-byte characters,

or a mixture of single- and double-byte characters. A

LOB can be up to 2 GB−1 byte in length. See also

BLOB, CLOB, and DBCLOB.

last agent optimization. An optimized commit flow

for either presumed-nothing or presumed-abort

protocols in which the last agent, or final participant,

becomes the commit coordinator. This flow saves at

least one message.

latch. A DB2 internal mechanism for controlling

concurrent events or the use of system resources.

LCID. Log control interval definition.

LDS. Linear data set.

leaf page. A page that contains pairs of keys and RIDs

and that points to actual data. Contrast with nonleaf

page.

left outer join. The result of a join operation that

includes the matched rows of both tables that are being

joined, and that preserves the unmatched rows of the

first table. See also join.

limit key. The highest value of the index key for a

partition.

linear data set (LDS). A VSAM data set that contains

data but no control information. A linear data set can

be accessed as a byte-addressable string in virtual

storage.

linkage editor. A computer program for creating load

modules from one or more object modules or load

modules by resolving cross references among the

modules and, if necessary, adjusting addresses.

link-edit. The action of creating a loadable computer

program using a linkage editor.

list. A type of object, which DB2 utilities can process,

that identifies multiple table spaces, multiple index

spaces, or both. A list is defined with the LISTDEF

utility control statement.

list structure. A coupling facility structure that lets

data be shared and manipulated as elements of a

queue.

LLE. Load list element.

L-lock. Logical lock.

load list element. A z/OS control block that controls

the loading and deleting of a particular load module

based on entry point names.

load module. A program unit that is suitable for

loading into main storage for execution. The output of

a linkage editor.

LOB. Large object.

LOB locator. A mechanism that allows an application

program to manipulate a large object value in the

database system. A LOB locator is a fullword integer

value that represents a single LOB value. An

application program retrieves a LOB locator into a host

variable and can then apply SQL operations to the

associated LOB value using the locator.

LOB lock. A lock on a LOB value.

LOB table space. A table space in an auxiliary table

that contains all the data for a particular LOB column

in the related base table.

local. A way of referring to any object that the local

DB2 subsystem maintains. A local table, for example, is

a table that is maintained by the local DB2 subsystem.

Contrast with remote.

locale. The definition of a subset of a user’s

environment that combines a CCSID and characters

that are defined for a specific language and country.

local lock. A lock that provides intra-DB2 concurrency

control, but not inter-DB2 concurrency control; that is,

its scope is a single DB2.

local subsystem. The unique relational DBMS to

which the user or application program is directly

connected (in the case of DB2, by one of the DB2

attachment facilities).

location. The unique name of a database server. An

application uses the location name to access a DB2

Glossary 921

 |
 |
 |

 |
 |

database server. A database alias can be used to

override the location name when accessing a remote

server.

location alias. Another name by which a database

server identifies itself in the network. Applications can

use this name to access a DB2 database server.

lock. A means of controlling concurrent events or

access to data. DB2 locking is performed by the IRLM.

lock duration. The interval over which a DB2 lock is

held.

lock escalation. The promotion of a lock from a row,

page, or LOB lock to a table space lock because the

number of page locks that are concurrently held on a

given resource exceeds a preset limit.

locking. The process by which the integrity of data is

ensured. Locking prevents concurrent users from

accessing inconsistent data.

lock mode. A representation for the type of access that

concurrently running programs can have to a resource

that a DB2 lock is holding.

lock object. The resource that is controlled by a DB2

lock.

lock promotion. The process of changing the size or

mode of a DB2 lock to a higher, more restrictive level.

lock size. The amount of data that is controlled by a

DB2 lock on table data; the value can be a row, a page,

a LOB, a partition, a table, or a table space.

lock structure. A coupling facility data structure that

is composed of a series of lock entries to support

shared and exclusive locking for logical resources.

log. A collection of records that describe the events

that occur during DB2 execution and that indicate their

sequence. The information thus recorded is used for

recovery in the event of a failure during DB2 execution.

log control interval definition. A suffix of the

physical log record that tells how record segments are

placed in the physical control interval.

logical claim. A claim on a logical partition of a

nonpartitioning index.

logical data modeling. The process of documenting

the comprehensive business information requirements

in an accurate and consistent format. Data modeling is

the first task of designing a database.

logical drain. A drain on a logical partition of a

nonpartitioning index.

logical index partition. The set of all keys that

reference the same data partition.

logical lock (L-lock). The lock type that transactions

use to control intra- and inter-DB2 data concurrency

between transactions. Contrast with physical lock

(P-lock).

logically complete. A state in which the concurrent

copy process is finished with the initialization of the

target objects that are being copied. The target objects

are available for update.

logical page list (LPL). A list of pages that are in error

and that cannot be referenced by applications until the

pages are recovered. The page is in logical error because

the actual media (coupling facility or disk) might not

contain any errors. Usually a connection to the media

has been lost.

logical partition. A set of key or RID pairs in a

nonpartitioning index that are associated with a

particular partition.

logical recovery pending (LRECP). The state in which

the data and the index keys that reference the data are

inconsistent.

logical unit (LU). An access point through which an

application program accesses the SNA network in order

to communicate with another application program.

logical unit of work (LUW). The processing that a

program performs between synchronization points.

logical unit of work identifier (LUWID). A name that

uniquely identifies a thread within a network. This

name consists of a fully-qualified LU network name, an

LUW instance number, and an LUW sequence number.

log initialization. The first phase of restart processing

during which DB2 attempts to locate the current end of

the log.

log record header (LRH). A prefix, in every logical

record, that contains control information.

log record sequence number (LRSN). A unique

identifier for a log record that is associated with a data

sharing member. DB2 uses the LRSN for recovery in

the data sharing environment.

log truncation. A process by which an explicit starting

RBA is established. This RBA is the point at which the

next byte of log data is to be written.

LPL. Logical page list.

LRECP. Logical recovery pending.

LRH. Log record header.

LRSN. Log record sequence number.

LU. Logical unit.

922 Utility Guide and Reference

|
|
|

|
|
|

|
|
|

LU name. Logical unit name, which is the name by

which VTAM refers to a node in a network. Contrast

with location name.

LUW. Logical unit of work.

LUWID. Logical unit of work identifier.

M

mapping table. A table that the REORG utility uses to

map the associations of the RIDs of data records in the

original copy and in the shadow copy. This table is

created by the user.

mass delete. The deletion of all rows of a table.

master terminal. The IMS logical terminal that has

complete control of IMS resources during online

operations.

master terminal operator (MTO). See master terminal.

materialize. (1) The process of putting rows from a

view or nested table expression into a work file for

additional processing by a query.

 (2) The placement of a LOB value into contiguous

storage. Because LOB values can be very large, DB2

avoids materializing LOB data until doing so becomes

absolutely necessary.

materialized query table. A table that is used to

contain information that is derived and can be

summarized from one or more source tables.

MB. Megabyte (1 048 576 bytes).

MBCS. Multibyte character set. UTF-8 is an example

of an MBCS. Characters in UTF-8 can range from 1 to 4

bytes in DB2.

member name. The z/OS XCF identifier for a

particular DB2 subsystem in a data sharing group.

menu. A displayed list of available functions for

selection by the operator. A menu is sometimes called a

menu panel.

metalanguage. A language that is used to create other

specialized languages.

migration. The process of converting a subsystem

with a previous release of DB2 to an updated or

current release. In this process, you can acquire the

functions of the updated or current release without

losing the data that you created on the previous

release.

mixed data string. A character string that can contain

both single-byte and double-byte characters.

MLPA. Modified link pack area.

MODEENT. A VTAM macro instruction that

associates a logon mode name with a set of parameters

representing session protocols. A set of MODEENT

macro instructions defines a logon mode table.

modeling database. A DB2 database that you create

on your workstation that you use to model a DB2 UDB

for z/OS subsystem, which can then be evaluated by

the Index Advisor.

mode name. A VTAM name for the collection of

physical and logical characteristics and attributes of a

session.

modify locks. An L-lock or P-lock with a MODIFY

attribute. A list of these active locks is kept at all times

in the coupling facility lock structure. If the requesting

DB2 subsystem fails, that DB2 subsystem’s modify

locks are converted to retained locks.

MPP. Message processing program (in IMS).

MTO. Master terminal operator.

multibyte character set (MBCS). A character set that

represents single characters with more than a single

byte. Contrast with single-byte character set and

double-byte character set. See also Unicode.

multidimensional analysis. The process of assessing

and evaluating an enterprise on more than one level.

Multiple Virtual Storage. An element of the z/OS

operating system. This element is also called the Base

Control Program (BCP).

multisite update. Distributed relational database

processing in which data is updated in more than one

location within a single unit of work.

multithreading. Multiple TCBs that are executing one

copy of DB2 ODBC code concurrently (sharing a

processor) or in parallel (on separate central

processors).

must-complete. A state during DB2 processing in

which the entire operation must be completed to

maintain data integrity.

mutex. Pthread mutual exclusion; a lock. A Pthread

mutex variable is used as a locking mechanism to allow

serialization of critical sections of code by temporarily

blocking the execution of all but one thread.

MVS. See Multiple Virtual Storage.

N

negotiable lock. A lock whose mode can be

downgraded, by agreement among contending users, to

be compatible to all. A physical lock is an example of a

negotiable lock.

Glossary 923

|
|
|

|
|

 |

nested table expression. A fullselect in a FROM clause

(surrounded by parentheses).

network identifier (NID). The network ID that is

assigned by IMS or CICS, or if the connection type is

RRSAF, the RRS unit of recovery ID (URID).

NID. Network identifier.

nonleaf page. A page that contains keys and page

numbers of other pages in the index (either leaf or

nonleaf pages). Nonleaf pages never point to actual

data.

nonpartitioned index. An index that is not physically

partitioned. Both partitioning indexes and secondary

indexes can be nonpartitioned.

nonscrollable cursor. A cursor that can be moved only

in a forward direction. Nonscrollable cursors are

sometimes called forward-only cursors or serial cursors.

normalization. A key step in the task of building a

logical relational database design. Normalization helps

you avoid redundancies and inconsistencies in your

data. An entity is normalized if it meets a set of

constraints for a particular normal form (first normal

form, second normal form, and so on). Contrast with

denormalization.

nondeterministic function. A user-defined function

whose result is not solely dependent on the values of

the input arguments. That is, successive invocations

with the same argument values can produce a different

answer. this type of function is sometimes called a

variant function. Contrast this with a deterministic

function (sometimes called a not-variant function), which

always produces the same result for the same inputs.

not-variant function. See deterministic function.

NPSI. See nonpartitioned secondary index.

NRE. Network recovery element.

NUL. The null character (’\0’), which is represented

by the value X'00'. In C, this character denotes the end

of a string.

null. A special value that indicates the absence of

information.

NULLIF. A scalar function that evaluates two passed

expressions, returning either NULL if the arguments

are equal or the value of the first argument if they are

not.

null-terminated host variable. A varying-length host

variable in which the end of the data is indicated by a

null terminator.

null terminator. In C, the value that indicates the end

of a string. For EBCDIC, ASCII, and Unicode UTF-8

strings, the null terminator is a single-byte value (X'00').

For Unicode UCS-2 (wide) strings, the null terminator

is a double-byte value (X'0000').

O

OASN (origin application schedule number). In IMS,

a 4-byte number that is assigned sequentially to each

IMS schedule since the last cold start of IMS. The

OASN is used as an identifier for a unit of work. In an

8-byte format, the first 4 bytes contain the schedule

number and the last 4 bytes contain the number of IMS

sync points (commit points) during the current schedule.

The OASN is part of the NID for an IMS connection.

ODBC. Open Database Connectivity.

ODBC driver. A dynamically-linked library (DLL) that

implements ODBC function calls and interacts with a

data source.

OBID. Data object identifier.

Open Database Connectivity (ODBC). A Microsoft®

database application programming interface (API) for C

that allows access to database management systems by

using callable SQL. ODBC does not require the use of

an SQL preprocessor. In addition, ODBC provides an

architecture that lets users add modules called database

drivers, which link the application to their choice of

database management systems at run time. This means

that applications no longer need to be directly linked to

the modules of all the database management systems

that are supported.

ordinary identifier. An uppercase letter followed by

zero or more characters, each of which is an uppercase

letter, a digit, or the underscore character. An ordinary

identifier must not be a reserved word.

ordinary token. A numeric constant, an ordinary

identifier, a host identifier, or a keyword.

originating task. In a parallel group, the primary

agent that receives data from other execution units

(referred to as parallel tasks) that are executing portions

of the query in parallel.

OS/390. Operating System/390®.

outer join. The result of a join operation that includes

the matched rows of both tables that are being joined

and preserves some or all of the unmatched rows of the

tables that are being joined. See also join.

overloaded function. A function name for which

multiple function instances exist.

924 Utility Guide and Reference

|
|
|

|

P

package. An object containing a set of SQL statements

that have been statically bound and that is available for

processing. A package is sometimes also called an

application package.

package list. An ordered list of package names that

may be used to extend an application plan.

package name. The name of an object that is created

by a BIND PACKAGE or REBIND PACKAGE

command. The object is a bound version of a database

request module (DBRM). The name consists of a

location name, a collection ID, a package ID, and a

version ID.

page. A unit of storage within a table space (4 KB, 8

KB, 16 KB, or 32 KB) or index space (4 KB). In a table

space, a page contains one or more rows of a table. In a

LOB table space, a LOB value can span more than one

page, but no more than one LOB value is stored on a

page.

page set. Another way to refer to a table space or

index space. Each page set consists of a collection of

VSAM data sets.

page set recovery pending (PSRCP). A restrictive

state of an index space. In this case, the entire page set

must be recovered. Recovery of a logical part is

prohibited.

panel. A predefined display image that defines the

locations and characteristics of display fields on a

display surface (for example, a menu panel).

parallel complex. A cluster of machines that work

together to handle multiple transactions and

applications.

parallel group. A set of consecutive operations that

execute in parallel and that have the same number of

parallel tasks.

parallel I/O processing. A form of I/O processing in

which DB2 initiates multiple concurrent requests for a

single user query and performs I/O processing

concurrently (in parallel) on multiple data partitions.

parallelism assistant. In Sysplex query parallelism, a

DB2 subsystem that helps to process parts of a parallel

query that originates on another DB2 subsystem in the

data sharing group.

parallelism coordinator. In Sysplex query parallelism,

the DB2 subsystem from which the parallel query

originates.

Parallel Sysplex. A set of z/OS systems that

communicate and cooperate with each other through

certain multisystem hardware components and

software services to process customer workloads.

parallel task. The execution unit that is dynamically

created to process a query in parallel. A parallel task is

implemented by a z/OS service request block.

parameter marker. A question mark (?) that appears in

a statement string of a dynamic SQL statement. The

question mark can appear where a host variable could

appear if the statement string were a static SQL

statement.

parameter-name. An SQL identifier that designates a

parameter in an SQL procedure or an SQL function.

parent key. A primary key or unique key in the parent

table of a referential constraint. The values of a parent

key determine the valid values of the foreign key in the

referential constraint.

parent lock. For explicit hierarchical locking, a lock

that is held on a resource that might have child locks

that are lower in the hierarchy. A parent lock is usually

the table space lock or the partition intent lock. See also

child lock.

parent row. A row whose primary key value is the

foreign key value of a dependent row.

parent table. A table whose primary key is referenced

by the foreign key of a dependent table.

parent table space. A table space that contains a

parent table. A table space containing a dependent of

that table is a dependent table space.

participant. An entity other than the commit

coordinator that takes part in the commit process. The

term participant is synonymous with agent in SNA.

partition. A portion of a page set. Each partition

corresponds to a single, independently extendable data

set. Partitions can be extended to a maximum size of 1,

2, or 4 GB, depending on the number of partitions in

the partitioned page set. All partitions of a given page

set have the same maximum size.

partitioned data set (PDS). A data set in disk storage

that is divided into partitions, which are called

members. Each partition can contain a program, part of

a program, or data. The term partitioned data set is

synonymous with program library.

partitioned index. An index that is physically

partitioned. Both partitioning indexes and secondary

indexes can be partitioned.

partitioned page set. A partitioned table space or an

index space. Header pages, space map pages, data

pages, and index pages reference data only within the

scope of the partition.

partitioned table space. A table space that is

subdivided into parts (based on index key range), each

of which can be processed independently by utilities.

Glossary 925

 |
 |

 |
 |
 |
 |
 |

 |
 |
 |

partitioning index. An index in which the leftmost

columns are the partitioning columns of the table. The

index can be partitioned or nonpartitioned.

partition pruning. The removal from consideration of

inapplicable partitions through setting up predicates in

a query on a partitioned table to access only certain

partitions to satisfy the query.

partner logical unit. An access point in the SNA

network that is connected to the local DB2 subsystem

by way of a VTAM conversation.

path. See SQL path.

PCT. Program control table (in CICS).

PDS. Partitioned data set.

piece. A data set of a nonpartitioned page set.

physical claim. A claim on an entire nonpartitioning

index.

physical consistency. The state of a page that is not in

a partially changed state.

physical drain. A drain on an entire nonpartitioning

index.

physical lock (P-lock). A type of lock that DB2

acquires to provide consistency of data that is cached in

different DB2 subsystems. Physical locks are used only

in data sharing environments. Contrast with logical lock

(L-lock).

physical lock contention. Conflicting states of the

requesters for a physical lock. See also negotiable lock.

physically complete. The state in which the

concurrent copy process is completed and the output

data set has been created.

plan. See application plan.

plan allocation. The process of allocating DB2

resources to a plan in preparation for execution.

plan member. The bound copy of a DBRM that is

identified in the member clause.

plan name. The name of an application plan.

plan segmentation. The dividing of each plan into

sections. When a section is needed, it is independently

brought into the EDM pool.

P-lock. Physical lock.

PLT. Program list table (in CICS).

point of consistency. A time when all recoverable data

that an application accesses is consistent with other

data. The term point of consistency is synonymous

with sync point or commit point.

policy. See CFRM policy.

Portable Operating System Interface (POSIX). The

IEEE operating system interface standard, which

defines the Pthread standard of threading. See also

Pthread.

POSIX. Portable Operating System Interface.

postponed abort UR. A unit of recovery that was

inflight or in-abort, was interrupted by system failure

or cancellation, and did not complete backout during

restart.

PPT. (1) Processing program table (in CICS). (2)

Program properties table (in z/OS).

precision. In SQL, the total number of digits in a

decimal number (called the size in the C language). In

the C language, the number of digits to the right of the

decimal point (called the scale in SQL). The DB2 library

uses the SQL terms.

precompilation. A processing of application programs

containing SQL statements that takes place before

compilation. SQL statements are replaced with

statements that are recognized by the host language

compiler. Output from this precompilation includes

source code that can be submitted to the compiler and

the database request module (DBRM) that is input to

the bind process.

predicate. An element of a search condition that

expresses or implies a comparison operation.

prefix. A code at the beginning of a message or

record.

preformat. The process of preparing a VSAM ESDS

for DB2 use, by writing specific data patterns.

prepare. The first phase of a two-phase commit

process in which all participants are requested to

prepare for commit.

prepared SQL statement. A named object that is the

executable form of an SQL statement that has been

processed by the PREPARE statement.

presumed-abort. An optimization of the

presumed-nothing two-phase commit protocol that

reduces the number of recovery log records, the

duration of state maintenance, and the number of

messages between coordinator and participant. The

optimization also modifies the indoubt resolution

responsibility.

presumed-nothing. The standard two-phase commit

protocol that defines coordinator and participant

responsibilities, relative to logical unit of work states,

recovery logging, and indoubt resolution.

primary authorization ID. The authorization ID that

is used to identify the application process to DB2.

926 Utility Guide and Reference

|
|
|

|
|
|
|

primary group buffer pool. For a duplexed group

buffer pool, the structure that is used to maintain the

coherency of cached data. This structure is used for

page registration and cross-invalidation. The z/OS

equivalent is old structure. Compare with secondary

group buffer pool.

primary index. An index that enforces the uniqueness

of a primary key.

primary key. In a relational database, a unique,

nonnull key that is part of the definition of a table. A

table cannot be defined as a parent unless it has a

unique key or primary key.

principal. An entity that can communicate securely

with another entity. In Kerberos, principals are

represented as entries in the Kerberos registry database

and include users, servers, computers, and others.

principal name. The name by which a principal is

known to the DCE security services.

private connection. A communications connection that

is specific to DB2.

private protocol access. A method of accessing

distributed data by which you can direct a query to

another DB2 system. Contrast with DRDA access.

private protocol connection. A DB2 private connection

of the application process. See also private connection.

privilege. The capability of performing a specific

function, sometimes on a specific object. The types of

privileges are:

 explicit privileges, which have names and are held

as the result of SQL GRANT and REVOKE

statements. For example, the SELECT privilege.

 implicit privileges, which accompany the

ownership of an object, such as the privilege to drop

a synonym that one owns, or the holding of an

authority, such as the privilege of SYSADM

authority to terminate any utility job.

privilege set. For the installation SYSADM ID, the set

of all possible privileges. For any other authorization

ID, the set of all privileges that are recorded for that ID

in the DB2 catalog.

process. In DB2, the unit to which DB2 allocates

resources and locks. Sometimes called an application

process, a process involves the execution of one or more

programs. The execution of an SQL statement is always

associated with some process. The means of initiating

and terminating a process are dependent on the

environment.

program. A single, compilable collection of executable

statements in a programming language.

program temporary fix (PTF). A solution or bypass of

a problem that is diagnosed as a result of a defect in a

current unaltered release of a licensed program. An

authorized program analysis report (APAR) fix is

corrective service for an existing problem. A PTF is

preventive service for problems that might be

encountered by other users of the product. A PTF is

temporary, because a permanent fix is usually not

incorporated into the product until its next release.

protected conversation. A VTAM conversation that

supports two-phase commit flows.

PSRCP. Page set recovery pending.

PTF. Program temporary fix.

Pthread. The POSIX threading standard model for

splitting an application into subtasks. The Pthread

standard includes functions for creating threads,

terminating threads, synchronizing threads through

locking, and other thread control facilities.

Q

QMF™. Query Management Facility.

QSAM. Queued sequential access method.

query. A component of certain SQL statements that

specifies a result table.

query block. The part of a query that is represented

by one of the FROM clauses. Each FROM clause can

have multiple query blocks, depending on DB2’s

internal processing of the query.

query CP parallelism. Parallel execution of a single

query, which is accomplished by using multiple tasks.

See also Sysplex query parallelism.

query I/O parallelism. Parallel access of data, which

is accomplished by triggering multiple I/O requests

within a single query.

queued sequential access method (QSAM). An

extended version of the basic sequential access method

(BSAM). When this method is used, a queue of data

blocks is formed. Input data blocks await processing,

and output data blocks await transfer to auxiliary

storage or to an output device.

quiesce point. A point at which data is consistent as a

result of running the DB2 QUIESCE utility.

quiesced member state. A state of a member of a data

sharing group. An active member becomes quiesced

when a STOP DB2 command takes effect without a

failure. If the member’s task, address space, or z/OS

system fails before the command takes effect, the

member state is failed.

Glossary 927

R

RACF. Resource Access Control Facility, which is a

component of the z/OS Security Server.

RAMAC®. IBM family of enterprise disk storage

system products.

RBA. Relative byte address.

RCT. Resource control table (in CICS attachment

facility).

RDB. Relational database.

RDBMS. Relational database management system.

RDBNAM. Relational database name.

RDF. Record definition field.

read stability (RS). An isolation level that is similar to

repeatable read but does not completely isolate an

application process from all other concurrently

executing application processes. Under level RS, an

application that issues the same query more than once

might read additional rows that were inserted and

committed by a concurrently executing application

process.

rebind. The creation of a new application plan for an

application program that has been bound previously. If,

for example, you have added an index for a table that

your application accesses, you must rebind the

application in order to take advantage of that index.

rebuild. The process of reallocating a coupling facility

structure. For the shared communications area (SCA)

and lock structure, the structure is repopulated; for the

group buffer pool, changed pages are usually cast out

to disk, and the new structure is populated only with

changed pages that were not successfully cast out.

RECFM. Record format.

record. The storage representation of a row or other

data.

record identifier (RID). A unique identifier that DB2

uses internally to identify a row of data in a table.

Compare with row ID.

record identifier (RID) pool. An area of main storage

that is used for sorting record identifiers during

list-prefetch processing.

record length. The sum of the length of all the

columns in a table, which is the length of the data as it

is physically stored in the database. Records can be

fixed length or varying length, depending on how the

columns are defined. If all columns are fixed-length

columns, the record is a fixed-length record. If one or

more columns are varying-length columns, the record is

a varying-length column.

Recoverable Resource Manager Services attachment

facility (RRSAF). A DB2 subcomponent that uses

Resource Recovery Services to coordinate resource

commitment between DB2 and all other resource

managers that also use RRS in a z/OS system.

recovery. The process of rebuilding databases after a

system failure.

recovery log. A collection of records that describes the

events that occur during DB2 execution and indicates

their sequence. The recorded information is used for

recovery in the event of a failure during DB2 execution.

recovery manager. (1) A subcomponent that supplies

coordination services that control the interaction of DB2

resource managers during commit, abort, checkpoint,

and restart processes. The recovery manager also

supports the recovery mechanisms of other subsystems

(for example, IMS) by acting as a participant in the

other subsystem’s process for protecting data that has

reached a point of consistency. (2) A coordinator or a

participant (or both), in the execution of a two-phase

commit, that can access a recovery log that maintains

the state of the logical unit of work and names the

immediate upstream coordinator and downstream

participants.

recovery pending (RECP). A condition that prevents

SQL access to a table space that needs to be recovered.

recovery token. An identifier for an element that is

used in recovery (for example, NID or URID).

RECP. Recovery pending.

redo. A state of a unit of recovery that indicates that

changes are to be reapplied to the disk media to ensure

data integrity.

reentrant. Executable code that can reside in storage

as one shared copy for all threads. Reentrant code is

not self-modifying and provides separate storage areas

for each thread. Reentrancy is a compiler and operating

system concept, and reentrancy alone is not enough to

guarantee logically consistent results when

multithreading. See also threadsafe.

referential constraint. The requirement that nonnull

values of a designated foreign key are valid only if they

equal values of the primary key of a designated table.

referential integrity. The state of a database in which

all values of all foreign keys are valid. Maintaining

referential integrity requires the enforcement of

referential constraints on all operations that change the

data in a table on which the referential constraints are

defined.

928 Utility Guide and Reference

|
|

|
|
|

referential structure. A set of tables and relationships

that includes at least one table and, for every table in

the set, all the relationships in which that table

participates and all the tables to which it is related.

refresh age. The time duration between the current

time and the time during which a materialized query

table was last refreshed.

registry. See registry database.

registry database. A database of security information

about principals, groups, organizations, accounts, and

security policies.

relational database (RDB). A database that can be

perceived as a set of tables and manipulated in

accordance with the relational model of data.

relational database management system (RDBMS). A

collection of hardware and software that organizes and

provides access to a relational database.

relational database name (RDBNAM). A unique

identifier for an RDBMS within a network. In DB2, this

must be the value in the LOCATION column of table

SYSIBM.LOCATIONS in the CDB. DB2 publications

refer to the name of another RDBMS as a LOCATION

value or a location name.

relationship. A defined connection between the rows

of a table or the rows of two tables. A relationship is

the internal representation of a referential constraint.

relative byte address (RBA). The offset of a data

record or control interval from the beginning of the

storage space that is allocated to the data set or file to

which it belongs.

remigration. The process of returning to a current

release of DB2 following a fallback to a previous

release. This procedure constitutes another migration

process.

remote. Any object that is maintained by a remote

DB2 subsystem (that is, by a DB2 subsystem other than

the local one). A remote view, for example, is a view that

is maintained by a remote DB2 subsystem. Contrast

with local.

remote attach request. A request by a remote location

to attach to the local DB2 subsystem. Specifically, the

request that is sent is an SNA Function Management

Header 5.

remote subsystem. Any relational DBMS, except the

local subsystem, with which the user or application can

communicate. The subsystem need not be remote in

any physical sense, and might even operate on the

same processor under the same z/OS system.

reoptimization. The DB2 process of reconsidering the

access path of an SQL statement at run time; during

reoptimization, DB2 uses the values of host variables,

parameter markers, or special registers.

REORG pending (REORP). A condition that restricts

SQL access and most utility access to an object that

must be reorganized.

REORP. REORG pending.

repeatable read (RR). The isolation level that provides

maximum protection from other executing application

programs. When an application program executes with

repeatable read protection, rows that the program

references cannot be changed by other programs until

the program reaches a commit point.

repeating group. A situation in which an entity

includes multiple attributes that are inherently the

same. The presence of a repeating group violates the

requirement of first normal form. In an entity that

satisfies the requirement of first normal form, each

attribute is independent and unique in its meaning and

its name. See also normalization.

replay detection mechanism. A method that allows a

principal to detect whether a request is a valid request

from a source that can be trusted or whether an

untrustworthy entity has captured information from a

previous exchange and is replaying the information

exchange to gain access to the principal.

request commit. The vote that is submitted to the

prepare phase if the participant has modified data and

is prepared to commit or roll back.

requester. The source of a request to access data at a

remote server. In the DB2 environment, the requester

function is provided by the distributed data facility.

resource. The object of a lock or claim, which could be

a table space, an index space, a data partition, an index

partition, or a logical partition.

resource allocation. The part of plan allocation that

deals specifically with the database resources.

resource control table (RCT). A construct of the CICS

attachment facility, created by site-provided macro

parameters, that defines authorization and access

attributes for transactions or transaction groups.

resource definition online. A CICS feature that you

use to define CICS resources online without assembling

tables.

resource limit facility (RLF). A portion of DB2 code

that prevents dynamic manipulative SQL statements

from exceeding specified time limits. The resource limit

facility is sometimes called the governor.

resource limit specification table (RLST). A

site-defined table that specifies the limits to be enforced

by the resource limit facility.

Glossary 929

|
|
|

resource manager. (1) A function that is responsible

for managing a particular resource and that guarantees

the consistency of all updates made to recoverable

resources within a logical unit of work. The resource

that is being managed can be physical (for example,

disk or main storage) or logical (for example, a

particular type of system service). (2) A participant, in

the execution of a two-phase commit, that has

recoverable resources that could have been modified.

The resource manager has access to a recovery log so

that it can commit or roll back the effects of the logical

unit of work to the recoverable resources.

restart pending (RESTP). A restrictive state of a page

set or partition that indicates that restart (backout)

work needs to be performed on the object. All access to

the page set or partition is denied except for access by

the:

v RECOVER POSTPONED command

v Automatic online backout (which DB2 invokes after

restart if the system parameter LBACKOUT=AUTO)

RESTP. Restart pending.

result set. The set of rows that a stored procedure

returns to a client application.

result set locator. A 4-byte value that DB2 uses to

uniquely identify a query result set that a stored

procedure returns.

result table. The set of rows that are specified by a

SELECT statement.

retained lock. A MODIFY lock that a DB2 subsystem

was holding at the time of a subsystem failure. The

lock is retained in the coupling facility lock structure

across a DB2 failure.

RID. Record identifier.

RID pool. Record identifier pool.

right outer join. The result of a join operation that

includes the matched rows of both tables that are being

joined and preserves the unmatched rows of the second

join operand. See also join.

RLF. Resource limit facility.

RLST. Resource limit specification table.

RMID. Resource manager identifier.

RO. Read-only access.

rollback. The process of restoring data that was

changed by SQL statements to the state at its last

commit point. All locks are freed. Contrast with commit.

root page. The index page that is at the highest level

(or the beginning point) in an index.

routine. A term that refers to either a user-defined

function or a stored procedure.

row. The horizontal component of a table. A row

consists of a sequence of values, one for each column of

the table.

ROWID. Row identifier.

row identifier (ROWID). A value that uniquely

identifies a row. This value is stored with the row and

never changes.

row lock. A lock on a single row of data.

rowset. A set of rows for which a cursor position is

established.

rowset cursor. A cursor that is defined so that one or

more rows can be returned as a rowset for a single

FETCH statement, and the cursor is positioned on the

set of rows that is fetched.

rowset-positioned access. The ability to retrieve

multiple rows from a single FETCH statement.

row-positioned access. The ability to retrieve a single

row from a single FETCH statement.

row trigger. A trigger that is defined with the trigger

granularity FOR EACH ROW.

RRE. Residual recovery entry (in IMS).

RRSAF. Recoverable Resource Manager Services

attachment facility.

RS. Read stability.

RTT. Resource translation table.

RURE. Restart URE.

S

savepoint. A named entity that represents the state of

data and schemas at a particular point in time within a

unit of work. SQL statements exist to set a savepoint,

release a savepoint, and restore data and schemas to

the state that the savepoint represents. The restoration

of data and schemas to a savepoint is usually referred

to as rolling back to a savepoint.

SBCS. Single-byte character set.

SCA. Shared communications area.

scalar function. An SQL operation that produces a

single value from another value and is expressed as a

function name, followed by a list of arguments that are

enclosed in parentheses. Contrast with aggregate

function.

930 Utility Guide and Reference

 |
 |

 |
 |
 |
 |

 |
 |

 |
 |

 #
 #
 #
 #
 #

scale. In SQL, the number of digits to the right of the

decimal point (called the precision in the C language).

The DB2 library uses the SQL definition.

schema. (1) The organization or structure of a

database. (2) A logical grouping for user-defined

functions, distinct types, triggers, and stored

procedures. When an object of one of these types is

created, it is assigned to one schema, which is

determined by the name of the object. For example, the

following statement creates a distinct type T in schema

C:

CREATE DISTINCT TYPE C.T ...

scrollability. The ability to use a cursor to fetch in

either a forward or backward direction. The FETCH

statement supports multiple fetch orientations to

indicate the new position of the cursor. See also fetch

orientation.

scrollable cursor. A cursor that can be moved in both

a forward and a backward direction.

SDWA. System diagnostic work area.

search condition. A criterion for selecting rows from a

table. A search condition consists of one or more

predicates.

secondary authorization ID. An authorization ID that

has been associated with a primary authorization ID by

an authorization exit routine.

secondary group buffer pool. For a duplexed group

buffer pool, the structure that is used to back up

changed pages that are written to the primary group

buffer pool. No page registration or cross-invalidation

occurs using the secondary group buffer pool. The

z/OS equivalent is new structure.

secondary index. A nonpartitioning index on a

partitioned table.

section. The segment of a plan or package that

contains the executable structures for a single SQL

statement. For most SQL statements, one section in the

plan exists for each SQL statement in the source

program. However, for cursor-related statements, the

DECLARE, OPEN, FETCH, and CLOSE statements

reference the same section because they each refer to

the SELECT statement that is named in the DECLARE

CURSOR statement. SQL statements such as COMMIT,

ROLLBACK, and some SET statements do not use a

section.

segment. A group of pages that holds rows of a single

table. See also segmented table space.

segmented table space. A table space that is divided

into equal-sized groups of pages called segments.

Segments are assigned to tables so that rows of

different tables are never stored in the same segment.

self-referencing constraint. A referential constraint

that defines a relationship in which a table is a

dependent of itself.

self-referencing table. A table with a self-referencing

constraint.

sensitive cursor. A cursor that is sensitive to changes

that are made to the database after the result table has

been materialized.

sequence. A user-defined object that generates a

sequence of numeric values according to user

specifications.

sequential data set. A non-DB2 data set whose

records are organized on the basis of their successive

physical positions, such as on magnetic tape. Several of

the DB2 database utilities require sequential data sets.

sequential prefetch. A mechanism that triggers

consecutive asynchronous I/O operations. Pages are

fetched before they are required, and several pages are

read with a single I/O operation.

serial cursor. A cursor that can be moved only in a

forward direction.

serialized profile. A Java object that contains SQL

statements and descriptions of host variables. The SQLJ

translator produces a serialized profile for each

connection context.

server. The target of a request from a remote

requester. In the DB2 environment, the server function

is provided by the distributed data facility, which is

used to access DB2 data from remote applications.

server-side programming. A method for adding DB2

data into dynamic Web pages.

service class. An eight-character identifier that is used

by the z/OS Workload Manager to associate user

performance goals with a particular DDF thread or

stored procedure. A service class is also used to classify

work on parallelism assistants.

service request block. A unit of work that is

scheduled to execute in another address space.

session. A link between two nodes in a VTAM

network.

session protocols. The available set of SNA

communication requests and responses.

shared communications area (SCA). A coupling

facility list structure that a DB2 data sharing group uses

for inter-DB2 communication.

share lock. A lock that prevents concurrently

executing application processes from changing data,

but not from reading data. Contrast with exclusive lock.

Glossary 931

|
|
|
|
|
|
|
|

|

|
|

 |
 |
 |

 |
 |
 |

shift-in character. A special control character (X'0F')

that is used in EBCDIC systems to denote that the

subsequent bytes represent SBCS characters. See also

shift-out character.

shift-out character. A special control character (X'0E')

that is used in EBCDIC systems to denote that the

subsequent bytes, up to the next shift-in control

character, represent DBCS characters. See also shift-in

character.

sign-on. A request that is made on behalf of an

individual CICS or IMS application process by an

attachment facility to enable DB2 to verify that it is

authorized to use DB2 resources.

simple page set. A nonpartitioned page set. A simple

page set initially consists of a single data set (page set

piece). If and when that data set is extended to 2 GB,

another data set is created, and so on, up to a total of

32 data sets. DB2 considers the data sets to be a single

contiguous linear address space containing a maximum

of 64 GB. Data is stored in the next available location

within this address space without regard to any

partitioning scheme.

simple table space. A table space that is neither

partitioned nor segmented.

single-byte character set (SBCS). A set of characters

in which each character is represented by a single byte.

Contrast with double-byte character set or multibyte

character set.

single-precision floating point number. A 32-bit

approximate representation of a real number.

size. In the C language, the total number of digits in a

decimal number (called the precision in SQL). The DB2

library uses the SQL term.

SMF. System Management Facilities.

SMP/E. System Modification Program/Extended.

SMS. Storage Management Subsystem.

SNA. Systems Network Architecture.

SNA network. The part of a network that conforms to

the formats and protocols of Systems Network

Architecture (SNA).

socket. A callable TCP/IP programming interface that

TCP/IP network applications use to communicate with

remote TCP/IP partners.

sourced function. A function that is implemented by

another built-in or user-defined function that is already

known to the database manager. This function can be a

scalar function or a column (aggregating) function; it

returns a single value from a set of values (for example,

MAX or AVG). Contrast with built-in function, external

function, and SQL function.

source program. A set of host language statements

and SQL statements that is processed by an SQL

precompiler.

source table. A table that can be a base table, a view, a

table expression, or a user-defined table function.

source type. An existing type that DB2 uses to

internally represent a distinct type.

space. A sequence of one or more blank characters.

special register. A storage area that DB2 defines for an

application process to use for storing information that

can be referenced in SQL statements. Examples of

special registers are USER and CURRENT DATE.

specific function name. A particular user-defined

function that is known to the database manager by its

specific name. Many specific user-defined functions can

have the same function name. When a user-defined

function is defined to the database, every function is

assigned a specific name that is unique within its

schema. Either the user can provide this name, or a

default name is used.

SPUFI. SQL Processor Using File Input.

SQL. Structured Query Language.

SQL authorization ID (SQL ID). The authorization ID

that is used for checking dynamic SQL statements in

some situations.

SQLCA. SQL communication area.

SQL communication area (SQLCA). A structure that

is used to provide an application program with

information about the execution of its SQL statements.

SQL connection. An association between an

application process and a local or remote application

server or database server.

SQLDA. SQL descriptor area.

SQL descriptor area (SQLDA). A structure that

describes input variables, output variables, or the

columns of a result table.

SQL escape character. The symbol that is used to

enclose an SQL delimited identifier. This symbol is the

double quotation mark ("). See also escape character.

SQL function. A user-defined function in which the

CREATE FUNCTION statement contains the source

code. The source code is a single SQL expression that

evaluates to a single value. The SQL user-defined

function can return only one parameter.

SQL ID. SQL authorization ID.

SQLJ. Structured Query Language (SQL) that is

embedded in the Java programming language.

932 Utility Guide and Reference

 |
 |

SQL path. An ordered list of schema names that are

used in the resolution of unqualified references to

user-defined functions, distinct types, and stored

procedures. In dynamic SQL, the current path is found

in the CURRENT PATH special register. In static SQL,

it is defined in the PATH bind option.

SQL procedure. A user-written program that can be

invoked with the SQL CALL statement. Contrast with

external procedure.

SQL processing conversation. Any conversation that

requires access of DB2 data, either through an

application or by dynamic query requests.

SQL Processor Using File Input (SPUFI). A facility of

the TSO attachment subcomponent that enables the

DB2I user to execute SQL statements without

embedding them in an application program.

SQL return code. Either SQLCODE or SQLSTATE.

SQL routine. A user-defined function or stored

procedure that is based on code that is written in SQL.

SQL statement coprocessor. An alternative to the DB2

precompiler that lets the user process SQL statements

at compile time. The user invokes an SQL statement

coprocessor by specifying a compiler option.

SQL string delimiter. A symbol that is used to enclose

an SQL string constant. The SQL string delimiter is the

apostrophe ('), except in COBOL applications, where

the user assigns the symbol, which is either an

apostrophe or a double quotation mark (").

SRB. Service request block.

SSI. Subsystem interface (in z/OS).

SSM. Subsystem member (in IMS).

stand-alone. An attribute of a program that means

that it is capable of executing separately from DB2,

without using DB2 services.

star join. A method of joining a dimension column of

a fact table to the key column of the corresponding

dimension table. See also join, dimension, and star

schema.

star schema. The combination of a fact table (which

contains most of the data) and a number of dimension

tables. See also star join, dimension, and dimension table.

statement handle. In DB2 ODBC, the data object that

contains information about an SQL statement that is

managed by DB2 ODBC. This includes information

such as dynamic arguments, bindings for dynamic

arguments and columns, cursor information, result

values, and status information. Each statement handle

is associated with the connection handle.

statement string. For a dynamic SQL statement, the

character string form of the statement.

statement trigger. A trigger that is defined with the

trigger granularity FOR EACH STATEMENT.

static cursor. A named control structure that does not

change the size of the result table or the order of its

rows after an application opens the cursor. Contrast

with dynamic cursor.

static SQL. SQL statements, embedded within a

program, that are prepared during the program

preparation process (before the program is executed).

After being prepared, the SQL statement does not

change (although values of host variables that are

specified by the statement might change).

storage group. A named set of disks on which DB2

data can be stored.

stored procedure. A user-written application program

that can be invoked through the use of the SQL CALL

statement.

string. See character string or graphic string.

strong typing. A process that guarantees that only

user-defined functions and operations that are defined

on a distinct type can be applied to that type. For

example, you cannot directly compare two currency

types, such as Canadian dollars and U.S. dollars. But

you can provide a user-defined function to convert one

currency to the other and then do the comparison.

structure. (1) A name that refers collectively to

different types of DB2 objects, such as tables, databases,

views, indexes, and table spaces. (2) A construct that

uses z/OS to map and manage storage on a coupling

facility. See also cache structure, list structure, or lock

structure.

Structured Query Language (SQL). A standardized

language for defining and manipulating data in a

relational database.

structure owner. In relation to group buffer pools, the

DB2 member that is responsible for the following

activities:

v Coordinating rebuild, checkpoint, and damage

assessment processing

v Monitoring the group buffer pool threshold and

notifying castout owners when the threshold has

been reached

subcomponent. A group of closely related DB2

modules that work together to provide a general

function.

subject table. The table for which a trigger is created.

When the defined triggering event occurs on this table,

the trigger is activated.

Glossary 933

 |
 |
 |
 |

subpage. The unit into which a physical index page

can be divided.

subquery. A SELECT statement within the WHERE or

HAVING clause of another SQL statement; a nested

SQL statement.

subselect. That form of a query that does not include

an ORDER BY clause, an UPDATE clause, or UNION

operators.

substitution character. A unique character that is

substituted during character conversion for any

characters in the source program that do not have a

match in the target coding representation.

subsystem. A distinct instance of a relational database

management system (RDBMS).

surrogate pair. A coded representation for a single

character that consists of a sequence of two 16-bit code

units, in which the first value of the pair is a

high-surrogate code unit in the range U+D800 through

U+DBFF, and the second value is a low-surrogate code

unit in the range U+DC00 through U+DFFF. Surrogate

pairs provide an extension mechanism for encoding

917 476 characters without requiring the use of 32-bit

characters.

SVC dump. A dump that is issued when a z/OS or a

DB2 functional recovery routine detects an error.

sync point. See commit point.

syncpoint tree. The tree of recovery managers and

resource managers that are involved in a logical unit of

work, starting with the recovery manager, that make

the final commit decision.

synonym. In SQL, an alternative name for a table or

view. Synonyms can be used to refer only to objects at

the subsystem in which the synonym is defined.

syntactic character set. A set of 81 graphic characters

that are registered in the IBM registry as character set

00640. This set was originally recommended to the

programming language community to be used for

syntactic purposes toward maximizing portability and

interchangeability across systems and country

boundaries. It is contained in most of the primary

registered character sets, with a few exceptions. See

also invariant character set.

Sysplex. See Parallel Sysplex.

Sysplex query parallelism. Parallel execution of a

single query that is accomplished by using multiple

tasks on more than one DB2 subsystem. See also query

CP parallelism.

system administrator. The person at a computer

installation who designs, controls, and manages the use

of the computer system.

system agent. A work request that DB2 creates

internally such as prefetch processing, deferred writes,

and service tasks.

system conversation. The conversation that two DB2

subsystems must establish to process system messages

before any distributed processing can begin.

system diagnostic work area (SDWA). The data that

is recorded in a SYS1.LOGREC entry that describes a

program or hardware error.

system-directed connection. A connection that a

relational DBMS manages by processing SQL

statements with three-part names.

System Modification Program/Extended (SMP/E). A

z/OS tool for making software changes in

programming systems (such as DB2) and for

controlling those changes.

Systems Network Architecture (SNA). The

description of the logical structure, formats, protocols,

and operational sequences for transmitting information

through and controlling the configuration and

operation of networks.

SYS1.DUMPxx data set. A data set that contains a

system dump (in z/OS).

SYS1.LOGREC. A service aid that contains important

information about program and hardware errors (in

z/OS).

T

table. A named data object consisting of a specific

number of columns and some number of unordered

rows. See also base table or temporary table.

table-controlled partitioning. A type of partitioning in

which partition boundaries for a partitioned table are

controlled by values that are defined in the CREATE

TABLE statement. Partition limits are saved in the

LIMITKEY_INTERNAL column of the

SYSIBM.SYSTABLEPART catalog table.

table function. A function that receives a set of

arguments and returns a table to the SQL statement

that references the function. A table function can be

referenced only in the FROM clause of a subselect.

table locator. A mechanism that allows access to

trigger transition tables in the FROM clause of SELECT

statements, in the subselect of INSERT statements, or

from within user-defined functions. A table locator is a

fullword integer value that represents a transition table.

table space. A page set that is used to store the

records in one or more tables.

934 Utility Guide and Reference

 |
 |
 |
 |
 |
 |

table space set. A set of table spaces and partitions

that should be recovered together for one of these

reasons:

v Each of them contains a table that is a parent or

descendent of a table in one of the others.

v The set contains a base table and associated auxiliary

tables.

A table space set can contain both types of

relationships.

task control block (TCB). A z/OS control block that is

used to communicate information about tasks within an

address space that are connected to DB2. See also

address space connection.

TB. Terabyte (1 099 511 627 776 bytes).

TCB. Task control block (in z/OS).

TCP/IP. A network communication protocol that

computer systems use to exchange information across

telecommunication links.

TCP/IP port. A 2-byte value that identifies an end user

or a TCP/IP network application within a TCP/IP host.

template. A DB2 utilities output data set descriptor

that is used for dynamic allocation. A template is

defined by the TEMPLATE utility control statement.

temporary table. A table that holds temporary data.

Temporary tables are useful for holding or sorting

intermediate results from queries that contain a large

number of rows. The two types of temporary table,

which are created by different SQL statements, are the

created temporary table and the declared temporary

table. Contrast with result table. See also created

temporary table and declared temporary table.

Terminal Monitor Program (TMP). A program that

provides an interface between terminal users and

command processors and has access to many system

services (in z/OS).

thread. The DB2 structure that describes an

application’s connection, traces its progress, processes

resource functions, and delimits its accessibility to DB2

resources and services. Most DB2 functions execute

under a thread structure. See also allied thread and

database access thread.

threadsafe. A characteristic of code that allows

multithreading both by providing private storage areas

for each thread, and by properly serializing shared

(global) storage areas.

three-part name. The full name of a table, view, or

alias. It consists of a location name, authorization ID,

and an object name, separated by a period.

time. A three-part value that designates a time of day

in hours, minutes, and seconds.

time duration. A decimal integer that represents a

number of hours, minutes, and seconds.

timeout. Abnormal termination of either the DB2

subsystem or of an application because of the

unavailability of resources. Installation specifications

are set to determine both the amount of time DB2 is to

wait for IRLM services after starting, and the amount

of time IRLM is to wait if a resource that an application

requests is unavailable. If either of these time

specifications is exceeded, a timeout is declared.

Time-Sharing Option (TSO). An option in MVS that

provides interactive time sharing from remote

terminals.

timestamp. A seven-part value that consists of a date

and time. The timestamp is expressed in years, months,

days, hours, minutes, seconds, and microseconds.

TMP. Terminal Monitor Program.

to-do. A state of a unit of recovery that indicates that

the unit of recovery’s changes to recoverable DB2

resources are indoubt and must either be applied to the

disk media or backed out, as determined by the

commit coordinator.

trace. A DB2 facility that provides the ability to

monitor and collect DB2 monitoring, auditing,

performance, accounting, statistics, and serviceability

(global) data.

transaction lock. A lock that is used to control

concurrent execution of SQL statements.

transaction program name. In SNA LU 6.2

conversations, the name of the program at the remote

logical unit that is to be the other half of the

conversation.

transient XML data type. A data type for XML values

that exists only during query processing.

transition table. A temporary table that contains all

the affected rows of the subject table in their state

before or after the triggering event occurs. Triggered

SQL statements in the trigger definition can reference

the table of changed rows in the old state or the new

state.

transition variable. A variable that contains a column

value of the affected row of the subject table in its state

before or after the triggering event occurs. Triggered

SQL statements in the trigger definition can reference

the set of old values or the set of new values.

tree structure. A data structure that represents entities

in nodes, with a most one parent node for each node,

and with only one root node.

Glossary 935

 |
 |

 |
 |
 |

trigger. A set of SQL statements that are stored in a

DB2 database and executed when a certain event

occurs in a DB2 table.

trigger activation. The process that occurs when the

trigger event that is defined in a trigger definition is

executed. Trigger activation consists of the evaluation

of the triggered action condition and conditional

execution of the triggered SQL statements.

trigger activation time. An indication in the trigger

definition of whether the trigger should be activated

before or after the triggered event.

trigger body. The set of SQL statements that is

executed when a trigger is activated and its triggered

action condition evaluates to true. A trigger body is

also called triggered SQL statements.

trigger cascading. The process that occurs when the

triggered action of a trigger causes the activation of

another trigger.

triggered action. The SQL logic that is performed

when a trigger is activated. The triggered action

consists of an optional triggered action condition and a

set of triggered SQL statements that are executed only

if the condition evaluates to true.

triggered action condition. An optional part of the

triggered action. This Boolean condition appears as a

WHEN clause and specifies a condition that DB2

evaluates to determine if the triggered SQL statements

should be executed.

triggered SQL statements. The set of SQL statements

that is executed when a trigger is activated and its

triggered action condition evaluates to true. Triggered

SQL statements are also called the trigger body.

trigger granularity. A characteristic of a trigger, which

determines whether the trigger is activated:

v Only once for the triggering SQL statement

v Once for each row that the SQL statement modifies

triggering event. The specified operation in a trigger

definition that causes the activation of that trigger. The

triggering event is comprised of a triggering operation

(INSERT, UPDATE, or DELETE) and a subject table on

which the operation is performed.

triggering SQL operation. The SQL operation that

causes a trigger to be activated when performed on the

subject table.

trigger package. A package that is created when a

CREATE TRIGGER statement is executed. The package

is executed when the trigger is activated.

TSO. Time-Sharing Option.

TSO attachment facility. A DB2 facility consisting of

the DSN command processor and DB2I. Applications

that are not written for the CICS or IMS environments

can run under the TSO attachment facility.

typed parameter marker. A parameter marker that is

specified along with its target data type. It has the

general form:

CAST(? AS data-type)

type 1 indexes. Indexes that were created by a release

of DB2 before DB2 Version 4 or that are specified as

type 1 indexes in Version 4. Contrast with type 2

indexes. As of Version 8, type 1 indexes are no longer

supported.

type 2 indexes. Indexes that are created on a release

of DB2 after Version 7 or that are specified as type 2

indexes in Version 4 or later.

U

UCS-2. Universal Character Set, coded in 2 octets,

which means that characters are represented in 16-bits

per character.

UDF. User-defined function.

UDT. User-defined data type. In DB2 UDB for z/OS,

the term distinct type is used instead of user-defined

data type. See distinct type.

uncommitted read (UR). The isolation level that

allows an application to read uncommitted data.

underlying view. The view on which another view is

directly or indirectly defined.

undo. A state of a unit of recovery that indicates that

the changes that the unit of recovery made to

recoverable DB2 resources must be backed out.

Unicode. A standard that parallels the ISO-10646

standard. Several implementations of the Unicode

standard exist, all of which have the ability to represent

a large percentage of the characters that are contained

in the many scripts that are used throughout the world.

uniform resource locator (URL). A Web address,

which offers a way of naming and locating specific

items on the Web.

union. An SQL operation that combines the results of

two SELECT statements. Unions are often used to

merge lists of values that are obtained from several

tables.

unique constraint. An SQL rule that no two values in

a primary key, or in the key of a unique index, can be

the same.

unique index. An index that ensures that no identical

key values are stored in a column or a set of columns

in a table.

936 Utility Guide and Reference

unit of recovery. A recoverable sequence of operations

within a single resource manager, such as an instance

of DB2. Contrast with unit of work.

unit of recovery identifier (URID). The LOGRBA of

the first log record for a unit of recovery. The URID

also appears in all subsequent log records for that unit

of recovery.

unit of work. A recoverable sequence of operations

within an application process. At any time, an

application process is a single unit of work, but the life

of an application process can involve many units of

work as a result of commit or rollback operations. In a

multisite update operation, a single unit of work can

include several units of recovery. Contrast with unit of

recovery.

Universal Unique Identifier (UUID). An identifier

that is immutable and unique across time and space (in

z/OS).

unlock. The act of releasing an object or system

resource that was previously locked and returning it to

general availability within DB2.

untyped parameter marker. A parameter marker that

is specified without its target data type. It has the form

of a single question mark (?).

updatability. The ability of a cursor to perform

positioned updates and deletes. The updatability of a

cursor can be influenced by the SELECT statement and

the cursor sensitivity option that is specified on the

DECLARE CURSOR statement.

update hole. The location on which a cursor is

positioned when a row in a result table is fetched again

and the new values no longer satisfy the search

condition. DB2 marks a row in the result table as an

update hole when an update to the corresponding row

in the database causes that row to no longer qualify for

the result table.

update trigger. A trigger that is defined with the

triggering SQL operation UPDATE.

upstream. The node in the syncpoint tree that is

responsible, in addition to other recovery or resource

managers, for coordinating the execution of a

two-phase commit.

UR. Uncommitted read.

URE. Unit of recovery element.

URID . Unit of recovery identifier.

URL. Uniform resource locator.

user-defined data type (UDT). See distinct type.

user-defined function (UDF). A function that is

defined to DB2 by using the CREATE FUNCTION

statement and that can be referenced thereafter in SQL

statements. A user-defined function can be an external

function, a sourced function, or an SQL function. Contrast

with built-in function.

user view. In logical data modeling, a model or

representation of critical information that the business

requires.

UTF-8. Unicode Transformation Format, 8-bit

encoding form, which is designed for ease of use with

existing ASCII-based systems. The CCSID value for

data in UTF-8 format is 1208. DB2 UDB for z/OS

supports UTF-8 in mixed data fields.

UTF-16. Unicode Transformation Format, 16-bit

encoding form, which is designed to provide code

values for over a million characters and a superset of

UCS-2. The CCSID value for data in UTF-16 format is

1200. DB2 UDB for z/OS supports UTF-16 in graphic

data fields.

UUID. Universal Unique Identifier.

V

value. The smallest unit of data that is manipulated in

SQL.

variable. A data element that specifies a value that

can be changed. A COBOL elementary data item is an

example of a variable. Contrast with constant.

variant function. See nondeterministic function.

varying-length string. A character or graphic string

whose length varies within set limits. Contrast with

fixed-length string.

version. A member of a set of similar programs,

DBRMs, packages, or LOBs.

 A version of a program is the source code that is

produced by precompiling the program. The

program version is identified by the program name

and a timestamp (consistency token).

 A version of a DBRM is the DBRM that is

produced by precompiling a program. The DBRM

version is identified by the same program name and

timestamp as a corresponding program version.

 A version of a package is the result of binding a

DBRM within a particular database system. The

package version is identified by the same program

name and consistency token as the DBRM.

 A version of a LOB is a copy of a LOB value at a

point in time. The version number for a LOB is

stored in the auxiliary index entry for the LOB.

view. An alternative representation of data from one

or more tables. A view can include all or some of the

columns that are contained in tables on which it is

defined.

Glossary 937

view check option. An option that specifies whether

every row that is inserted or updated through a view

must conform to the definition of that view. A view

check option can be specified with the WITH

CASCADED CHECK OPTION, WITH CHECK

OPTION, or WITH LOCAL CHECK OPTION clauses of

the CREATE VIEW statement.

Virtual Storage Access Method (VSAM). An access

method for direct or sequential processing of fixed- and

varying-length records on disk devices. The records in

a VSAM data set or file can be organized in logical

sequence by a key field (key sequence), in the physical

sequence in which they are written on the data set or

file (entry-sequence), or by relative-record number (in

z/OS).

Virtual Telecommunications Access Method (VTAM).

An IBM licensed program that controls communication

and the flow of data in an SNA network (in z/OS).

volatile table. A table for which SQL operations

choose index access whenever possible.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunication Access Method (in

z/OS).

W

warm start. The normal DB2 restart process, which

involves reading and processing log records so that

data that is under the control of DB2 is consistent.

Contrast with cold start.

WLM application environment. A z/OS Workload

Manager attribute that is associated with one or more

stored procedures. The WLM application environment

determines the address space in which a given DB2

stored procedure runs.

write to operator (WTO). An optional user-coded

service that allows a message to be written to the

system console operator informing the operator of

errors and unusual system conditions that might need

to be corrected (in z/OS).

WTO. Write to operator.

WTOR. Write to operator (WTO) with reply.

X

XCF. See cross-system coupling facility.

XES. See cross-system extended services.

XML. See Extensible Markup Language.

XML attribute. A name-value pair within a tagged

XML element that modifies certain features of the

element.

XML element. A logical structure in an XML

document that is delimited by a start and an end tag.

Anything between the start tag and the end tag is the

content of the element.

XML node. The smallest unit of valid, complete

structure in a document. For example, a node can

represent an element, an attribute, or a text string.

XML publishing functions. Functions that return

XML values from SQL values.

X/Open. An independent, worldwide open systems

organization that is supported by most of the world’s

largest information systems suppliers, user

organizations, and software companies. X/Open's goal

is to increase the portability of applications by

combining existing and emerging standards.

XRF. Extended recovery facility.

Z

z/OS. An operating system for the eServer™ product

line that supports 64-bit real and virtual storage.

z/OS Distributed Computing Environment (z/OS

DCE). A set of technologies that are provided by the

Open Software Foundation to implement distributed

computing.

938 Utility Guide and Reference

|
|

|

 |
 |
 |

 #
 #
 #
 #

 |
 |
 |

 |
 |

 |
 |

Bibliography

DB2 Universal Database for z/OS Version 8

product information:

v DB2 Administration Guide, SC18-7413

v DB2 Application Programming and SQL Guide,

SC18-7415

v DB2 Application Programming Guide and Reference

for Java, SC18-7414

v DB2 Codes, GC18-9603

v DB2 Command Reference, SC18-7416

v DB2 Common Criteria Guide, SC18-9672

v DB2 Data Sharing: Planning and Administration,

SC18-7417

v DB2 Diagnosis Guide and Reference, LY37-3201

v DB2 Diagnostic Quick Reference Card, LY37-3202

v DB2 Image, Audio, and Video Extenders

Administration and Programming, SC26-9947

v DB2 Installation Guide, GC18-7418

v DB2 Licensed Program Specifications, GC18-7420

v DB2 Management Clients Package Program

Directory, GI10-8567

v DB2 Messages, GC18-9602

v DB2 ODBC Guide and Reference, SC18-7423

v The Official Introduction to DB2 UDB for z/OS

v DB2 Program Directory, GI10-8566

v DB2 RACF Access Control Module Guide,

SC18-7433

v DB2 Reference for Remote DRDA Requesters and

Servers, SC18-7424

v DB2 Reference Summary, SX26-3853

v DB2 Release Planning Guide, SC18-7425

v DB2 SQL Reference, SC18-7426

v DB2 Text Extender Administration and

Programming, SC26-9948

v DB2 Utility Guide and Reference, SC18-7427

v DB2 What's New?, GC18-7428

v DB2 XML Extender for z/OS Administration and

Programming, SC18-7431

Books and resources about related products:

APL2®

v APL2 Programming Guide, SH21-1072

v APL2 Programming: Language Reference,

SH21-1061

v APL2 Programming: Using Structured Query

Language (SQL), SH21-1057

BookManager® READ/MVS

v BookManager READ/MVS V1R3: Installation

Planning & Customization, SC38-2035

C language: IBM C/C++ for z/OS

v z/OS C/C++ Programming Guide, SC09-4765

v z/OS C/C++ Run-Time Library Reference,

SA22-7821

Character Data Representation Architecture

v Character Data Representation Architecture

Overview, GC09-2207

v Character Data Representation Architecture

Reference and Registry, SC09-2190

CICS Transaction Server for z/OS

The publication order numbers below are for

Version 2 Release 2 and Version 2 Release 3 (with

the release 2 number listed first).

v CICS Transaction Server for z/OS Information

Center, SK3T-6903 or SK3T-6957.

v CICS Transaction Server for z/OS Application

Programming Guide, SC34-5993 or SC34-6231

v CICS Transaction Server for z/OS Application

Programming Reference, SC34-5994 or SC34-6232

v CICS Transaction Server for z/OS CICS-RACF

Security Guide, SC34-6011 or SC34-6249

v CICS Transaction Server for z/OS CICS Supplied

Transactions, SC34-5992 or SC34-6230

v CICS Transaction Server for z/OS Customization

Guide, SC34-5989 or SC34-6227

v CICS Transaction Server for z/OS Data Areas,

LY33-6100 or LY33-6103

v CICS Transaction Server for z/OS DB2 Guide,

SC34-6014 or SC34-6252

v CICS Transaction Server for z/OS External

Interfaces Guide, SC34-6006 or SC34-6244

v CICS Transaction Server for z/OS Installation

Guide, GC34-5985 or GC34-6224

v CICS Transaction Server for z/OS

Intercommunication Guide, SC34-6005 or

SC34-6243

v CICS Transaction Server for z/OS Messages and

Codes, GC34-6003 or GC34-6241

v CICS Transaction Server for z/OS Operations and

Utilities Guide, SC34-5991 or SC34-6229

© Copyright IBM Corp. 1983, 2008 939

#

#

v CICS Transaction Server for z/OS Performance

Guide, SC34-6009 or SC34-6247

v CICS Transaction Server for z/OS Problem

Determination Guide, SC34-6002 or SC34-6239

v CICS Transaction Server for z/OS Release Guide,

GC34-5983 or GC34-6218

v CICS Transaction Server for z/OS Resource

Definition Guide, SC34-5990 or SC34-6228

v CICS Transaction Server for z/OS System

Definition Guide, SC34-5988 or SC34–6226

v CICS Transaction Server for z/OS System

Programming Reference, SC34-5595 or SC34–6233

CICS Transaction Server for OS/390

v CICS Transaction Server for OS/390 Application

Programming Guide, SC33-1687

v CICS Transaction Server for OS/390 DB2 Guide,

SC33-1939

v CICS Transaction Server for OS/390 External

Interfaces Guide, SC33-1944

v CICS Transaction Server for OS/390 Resource

Definition Guide, SC33-1684

COBOL:

v IBM COBOL Language Reference, SC27-1408

v Enterprise COBOL for z/OS Programming Guide,

SC27-1412

Database Design

v DB2 for z/OS and OS/390 Development for

Performance Volume I by Gabrielle Wiorkowski,

Gabrielle & Associates, ISBN 0-96684-605-2

v DB2 for z/OS and OS/390 Development for

Performance Volume II by Gabrielle Wiorkowski,

Gabrielle & Associates, ISBN 0-96684-606-0

v Handbook of Relational Database Design by C.

Fleming and B. Von Halle, Addison Wesley,

ISBN 0-20111-434-8

DB2 Administration Tool

v DB2 Administration Tool for z/OS User's Guide

and Reference, available on the Web at

www.ibm.com/software/data/db2imstools/

library.html

DB2 Buffer Pool Analyzer for z/OS

v DB2 Buffer Pool Tool for z/OS User's Guide and

Reference, available on the Web at

www.ibm.com/software/data/db2imstools/

library.html

DB2 Connect™

v IBM DB2 Connect Quick Beginnings for DB2

Connect Enterprise Edition, GC09-4833

v IBM DB2 Connect Quick Beginnings for DB2

Connect Personal Edition, GC09-4834

v IBM DB2 Connect User's Guide, SC09-4835

DB2 DataPropagator™

v DB2 Universal Database Replication Guide and

Reference, SC27-1121

DB2 Performance Expert for z/OS, Version 1

The following books are part of the DB2

Performance Expert library. Some of these books

include information about the following tools:

IBM DB2 Performance Expert for z/OS; IBM DB2

Performance Monitor for z/OS; and DB2 Buffer

Pool Analyzer for z/OS.

v OMEGAMON Buffer Pool Analyzer User's Guide,

SC18-7972

v OMEGAMON Configuration and Customization,

SC18-7973

v OMEGAMON Messages, SC18-7974

v OMEGAMON Monitoring Performance from ISPF,

SC18-7975

v OMEGAMON Monitoring Performance from

Performance Expert Client, SC18-7976

v OMEGAMON Program Directory, GI10-8549

v OMEGAMON Report Command Reference,

SC18-7977

v OMEGAMON Report Reference, SC18-7978

v Using IBM Tivoli OMEGAMON XE on z/OS,

SC18-7979

DB2 Query Management Facility (QMF) Version

8.1

v DB2 Query Management Facility: DB2 QMF High

Performance Option User’s Guide for TSO/CICS,

SC18-7450

v DB2 Query Management Facility: DB2 QMF

Messages and Codes, GC18-7447

v DB2 Query Management Facility: DB2 QMF

Reference, SC18-7446

v DB2 Query Management Facility: Developing DB2

QMF Applications, SC18-7651

v DB2 Query Management Facility: Getting Started

with DB2 QMF for Windows and DB2 QMF for

WebSphere, SC18-7449

v DB2 Query Management Facility: Getting Started

with DB2 QMF Query Miner, GC18-7451

v DB2 Query Management Facility: Installing and

Managing DB2 QMF for TSO/CICS, GC18-7444

v DB2 Query Management Facility: Installing and

Managing DB2 QMF for Windows and DB2 QMF

for WebSphere, GC18-7448

940 Utility Guide and Reference

v DB2 Query Management Facility: Introducing DB2

QMF, GC18-7443

v DB2 Query Management Facility: Using DB2

QMF, SC18-7445

v DB2 Query Management Facility: DB2 QMF

Visionary Developer's Guide, SC18-9093

v DB2 Query Management Facility: DB2 QMF

Visionary Getting Started Guide, GC18-9092

DB2 Redbooks™

For access to all IBM Redbooks about DB2, see

the IBM Redbooks Web page at

www.ibm.com/redbooks

DB2 Server for VSE & VM

v DB2 Server for VM: DBS Utility, SC09-2983

DB2 Universal Database Cross-Platform

information

v IBM DB2 Universal Database SQL Reference for

Cross-Platform Development, available at

www.ibm.com/software/data/

developer/cpsqlref/

DB2 Universal Database for iSeries

The following books are available at

www.ibm.com/iseries/infocenter

v DB2 Universal Database for iSeries Performance

and Query Optimization

v DB2 Universal Database for iSeries Database

Programming

v DB2 Universal Database for iSeries SQL

Programming Concepts

v DB2 Universal Database for iSeries SQL

Programming with Host Languages

v DB2 Universal Database for iSeries SQL Reference

v DB2 Universal Database for iSeries Distributed

Data Management

v DB2 Universal Database for iSeries Distributed

Database Programming

DB2 Universal Database for Linux, UNIX, and

Windows:

v DB2 Universal Database Administration Guide:

Planning, SC09-4822

v DB2 Universal Database Administration Guide:

Implementation, SC09-4820

v DB2 Universal Database Administration Guide:

Performance, SC09-4821

v DB2 Universal Database Administrative API

Reference, SC09-4824

v DB2 Universal Database Application Development

Guide: Building and Running Applications,

SC09-4825

v DB2 Universal Database Call Level Interface Guide

and Reference, Volumes 1 and 2, SC09-4849 and

SC09-4850

v DB2 Universal Database Command Reference,

SC09-4828

v DB2 Universal Database SQL Reference Volume 1,

SC09-4844

v DB2 Universal Database SQL Reference Volume 2,

SC09-4845

Device Support Facilities

v Device Support Facilities User's Guide and

Reference, GC35-0033

DFSMS

These books provide information about a variety

of components of DFSMS, including z/OS

DFSMS, z/OS DFSMSdfp™, z/OS DFSMSdss,

z/OS DFSMShsm, and z/OS DFP.

v z/OS DFSMS Access Method Services for Catalogs,

SC26-7394

v z/OS DFSMSdss Storage Administration Guide,

SC35-0423

v z/OS DFSMSdss Storage Administration Reference,

SC35-0424

v z/OS DFSMShsm Managing Your Own Data,

SC35-0420

v z/OS DFSMSdfp: Using DFSMSdfp in the z/OS

Environment, SC26-7473

v z/OS DFSMSdfp Diagnosis Reference, GY27-7618

v z/OS DFSMS: Implementing System-Managed

Storage, SC27-7407

v z/OS DFSMS: Macro Instructions for Data Sets,

SC26-7408

v z/OS DFSMS: Managing Catalogs, SC26-7409

v z/OS MVS: Program Management User's Guide

and Reference, SA22-7643

v z/OS MVS Program Management: Advanced

Facilities, SA22-7644

v z/OS DFSMSdfp Storage Administration Reference,

SC26-7402

v z/OS DFSMS: Using Data Sets, SC26-7410

v DFSMSdfp Advanced Services , SC26-7400

v DFSMS/MVS: Utilities, SC26-7414

DFSORT™

v DFSORT Application Programming: Guide,

SC33-4035

v DFSORT Installation and Customization,

SC33-4034

Distributed Relational Database Architecture

Bibliography 941

v Open Group Technical Standard; the Open Group

presently makes the following DRDA books

available through its Web site at

www.opengroup.org

– Open Group Technical Standard, DRDA Version

3 Vol. 1: Distributed Relational Database

Architecture

– Open Group Technical Standard, DRDA Version

3 Vol. 2: Formatted Data Object Content

Architecture

– Open Group Technical Standard, DRDA Version

3 Vol. 3: Distributed Data Management

Architecture

Domain Name System

v DNS and BIND, Third Edition, Paul Albitz and

Cricket Liu, O’Reilly, ISBN 0-59600-158-4

Education

v Information about IBM educational offerings is

available on the Web at http://www.ibm.com/
software/sw-training/

v A collection of glossaries of IBM terms is

available on the IBM Terminology Web site at

www.ibm.com/ibm/terminology/index.html

eServer zSeries®

v IBM eServer zSeries Processor Resource/System

Manager Planning Guide, SB10-7033

Fortran: VS Fortran

v VS Fortran Version 2: Language and Library

Reference, SC26-4221

v VS Fortran Version 2: Programming Guide for

CMS and MVS, SC26-4222

High Level Assembler

v High Level Assembler for MVS and VM and VSE

Language Reference, SC26-4940

v High Level Assembler for MVS and VM and VSE

Programmer's Guide, SC26-4941

ICSF

v z/OS ICSF Overview, SA22-7519

v Integrated Cryptographic Service Facility

Administrator's Guide, SA22-7521

IMS Version 8

IMS product information is available on the IMS

Library Web page, which you can find at

www.ibm.com/ims

v IMS Administration Guide: System, SC27-1284

v IMS Administration Guide: Transaction Manager,

SC27-1285

v IMS Application Programming: Database Manager,

SC27-1286

v IMS Application Programming: Design Guide,

SC27-1287

v IMS Application Programming: Transaction

Manager, SC27-1289

v IMS Command Reference, SC27-1291

v IMS Customization Guide, SC27-1294

v IMS Install Volume 1: Installation Verification,

GC27-1297

v IMS Install Volume 2: System Definition and

Tailoring, GC27-1298

v IMS Messages and Codes Volumes 1 and 2,

GC27-1301 and GC27-1302

v IMS Open Transaction Manager Access Guide and

Reference, SC18-7829

v IMS Utilities Reference: System, SC27-1309

General information about IMS Batch Terminal

Simulator for z/OS is available on the Web at

www.ibm.com/software/data/db2imstools/

library.html

IMS DataPropagator

v IMS DataPropagator for z/OS Administrator's

Guide for Log, SC27-1216

v IMS DataPropagator: An Introduction, GC27-1211

v IMS DataPropagator for z/OS Reference,

SC27-1210

ISPF

v z/OS ISPF Dialog Developer’s Guide, SC23-4821

v z/OS ISPF Messages and Codes, SC34-4815

v z/OS ISPF Planning and Customizing, GC34-4814

v z/OS ISPF User’s Guide Volumes 1 and 2,

SC34-4822 and SC34-4823

Language Environment

v Debug Tool User's Guide and Reference, SC18-7171

v Debug Tool for z/OS and OS/390 Reference and

Messages, SC18-7172

v z/OS Language Environment Concepts Guide,

SA22-7567

v z/OS Language Environment Customization,

SA22-7564

v z/OS Language Environment Debugging Guide,

GA22-7560

v z/OS Language Environment Programming Guide,

SA22-7561

v z/OS Language Environment Programming

Reference, SA22-7562

MQSeries®

v MQSeries Application Messaging Interface,

SC34-5604

942 Utility Guide and Reference

v MQSeries for OS/390 Concepts and Planning

Guide, GC34-5650

v MQSeries for OS/390 System Setup Guide,

SC34-5651

National Language Support

v National Language Design Guide Volume 1,

SE09-8001

v IBM National Language Support Reference Manual

Volume 2, SE09-8002

NetView®

v Tivoli NetView for z/OS Installation: Getting

Started, SC31-8872

v Tivoli NetView for z/OS User's Guide, GC31-8849

Microsoft ODBC

Information about Microsoft ODBC is available at

http://msdn.microsoft.com/library/

Parallel Sysplex Library

v System/390 9672 Parallel Transaction Server, 9672

Parallel Enterprise Server, 9674 Coupling Facility

System Overview For R1/R2/R3 Based Models,

SB10-7033

v z/OS Parallel Sysplex Application Migration,

SA22-7662

v z/OS Parallel Sysplex Overview: An Introduction to

Data Sharing and Parallelism, SA22-7661

v z/OS Parallel Sysplex Test Report, SA22-7663

The Parallel Sysplex Configuration Assistant is

available at www.ibm.com/s390/pso/psotool

PL/I: Enterprise PL/I for z/OS

v IBM Enterprise PL/I for z/OS Language Reference,

SC27-1460

v IBM Enterprise PL/I for z/OS Programming Guide,

SC27-1457

PL/I: PL/I for MVS & VM

v PL/I for MVS & VM Programming Guide,

SC26-3113

SMP/E

v SMP/E for z/OS and OS/390 Reference, SA22-7772

v SMP/E for z/OS and OS/390 User's Guide,

SA22-7773

Storage Management

v z/OS DFSMS: Implementing System-Managed

Storage, SC26-7407

v MVS/ESA Storage Management Library: Managing

Data, SC26-7397

v MVS/ESA Storage Management Library: Managing

Storage Groups, SC35-0421

v MVS Storage Management Library: Storage

Management Subsystem Migration Planning Guide,

GC26-7398

System Network Architecture (SNA)

v SNA Formats, GA27-3136

v SNA LU 6.2 Peer Protocols Reference, SC31-6808

v SNA Transaction Programmer's Reference Manual

for LU Type 6.2, GC30-3084

v SNA/Management Services Alert Implementation

Guide, GC31-6809

TCP/IP

v IBM TCP/IP for MVS: Customization &

Administration Guide, SC31-7134

v IBM TCP/IP for MVS: Diagnosis Guide,

LY43-0105

v IBM TCP/IP for MVS: Messages and Codes,

SC31-7132

v IBM TCP/IP for MVS: Planning and Migration

Guide, SC31-7189

TotalStorage™ Enterprise Storage Server

v RAMAC Virtual Array: Implementing Peer-to-Peer

Remote Copy, SG24-5680

v Enterprise Storage Server Introduction and

Planning, GC26-7444

v IBM RAMAC Virtual Array, SG24-6424

Unicode

v z/OS Support for Unicode: Using Conversion

Services, SA22-7649

Information about Unicode, the Unicode

consortium, the Unicode standard, and standards

conformance requirements is available at

www.unicode.org

VTAM

v Planning for NetView, NCP, and VTAM,

SC31-8063

v VTAM for MVS/ESA Diagnosis, LY43-0078

v VTAM for MVS/ESA Messages and Codes,

GC31-8369

v VTAM for MVS/ESA Network Implementation

Guide, SC31-8370

v VTAM for MVS/ESA Operation, SC31-8372

v z/OS Communications Server SNA Programming,

SC31-8829

v z/OS Communicatons Server SNA Programmer's

LU 6.2 Reference, SC31-8810

v VTAM for MVS/ESA Resource Definition

Reference, SC31-8377

Bibliography 943

WebSphere® family

v WebSphere MQ Integrator Broker: Administration

Guide, SC34-6171

v WebSphere MQ Integrator Broker for z/OS:

Customization and Administration Guide,

SC34-6175

v WebSphere MQ Integrator Broker: Introduction and

Planning, GC34-5599

v WebSphere MQ Integrator Broker: Using the

Control Center, SC34-6168

z/Architecture™

v z/Architecture Principles of Operation, SA22-7832

z/OS

v z/OS C/C++ Programming Guide, SC09-4765

v z/OS C/C++ Run-Time Library Reference,

SA22-7821

v z/OS C/C++ User's Guide, SC09-4767

v z/OS Communications Server: IP Configuration

Guide, SC31-8875

v z/OS DCE Administration Guide, SC24-5904

v z/OS DCE Introduction, GC24-5911

v z/OS DCE Messages and Codes, SC24-5912

v z/OS Information Roadmap, SA22-7500

v z/OS Introduction and Release Guide, GA22-7502

v z/OS JES2 Initialization and Tuning Guide,

SA22-7532

v z/OS JES3 Initialization and Tuning Guide,

SA22-7549

v z/OS Language Environment Concepts Guide,

SA22-7567

v z/OS Language Environment Customization,

SA22-7564

v z/OS Language Environment Debugging Guide,

GA22-7560

v z/OS Language Environment Programming Guide,

SA22-7561

v z/OS Language Environment Programming

Reference, SA22-7562

v z/OS Managed System Infrastructure for Setup

User's Guide, SC33-7985

v z/OS MVS Diagnosis: Procedures, GA22-7587

v z/OS MVS Diagnosis: Reference, GA22-7588

v z/OS MVS Diagnosis: Tools and Service Aids,

GA22-7589

v z/OS MVS Initialization and Tuning Guide,

SA22-7591

v z/OS MVS Initialization and Tuning Reference,

SA22-7592

v z/OS MVS Installation Exits, SA22-7593

v z/OS MVS JCL Reference, SA22-7597

v z/OS MVS JCL User's Guide, SA22-7598

v z/OS MVS Planning: Global Resource Serialization,

SA22-7600

v z/OS MVS Planning: Operations, SA22-7601

v z/OS MVS Planning: Workload Management,

SA22-7602

v z/OS MVS Programming: Assembler Services

Guide, SA22-7605

v z/OS MVS Programming: Assembler Services

Reference, Volumes 1 and 2, SA22-7606 and

SA22-7607

v z/OS MVS Programming: Authorized Assembler

Services Guide, SA22-7608

v z/OS MVS Programming: Authorized Assembler

Services Reference Volumes 1-4, SA22-7609,

SA22-7610, SA22-7611, and SA22-7612

v z/OS MVS Programming: Callable Services for

High-Level Languages, SA22-7613

v z/OS MVS Programming: Extended Addressability

Guide, SA22-7614

v z/OS MVS Programming: Sysplex Services Guide,

SA22-7617

v z/OS MVS Programming: Sysplex Services

Reference, SA22-7618

v z/OS MVS Programming: Workload Management

Services, SA22-7619

v z/OS MVS Recovery and Reconfiguration Guide,

SA22-7623

v z/OS MVS Routing and Descriptor Codes,

SA22-7624

v z/OS MVS Setting Up a Sysplex, SA22-7625

v z/OS MVS System Codes SA22-7626

v z/OS MVS System Commands, SA22-7627

v z/OS MVS System Messages Volumes 1-10,

SA22-7631, SA22-7632, SA22-7633, SA22-7634,

SA22-7635, SA22-7636, SA22-7637, SA22-7638,

SA22-7639, and SA22-7640

v z/OS MVS Using the Subsystem Interface,

SA22-7642

v z/OS Planning for Multilevel Security and the

Common Criteria, SA22-7509

v z/OS RMF User's Guide, SC33-7990

v z/OS Security Server Network Authentication

Server Administration, SC24-5926

v z/OS Security Server RACF Auditor's Guide,

SA22-7684

v z/OS Security Server RACF Command Language

Reference, SA22-7687

v z/OS Security Server RACF Macros and Interfaces,

SA22-7682

v z/OS Security Server RACF Security

Administrator's Guide, SA22-7683

v z/OS Security Server RACF System Programmer's

Guide, SA22-7681

v z/OS Security Server RACROUTE Macro

Reference, SA22-7692

v z/OS Support for Unicode: Using Conversion

Services, SA22-7649

v z/OS TSO/E CLISTs, SA22-7781

v z/OS TSO/E Command Reference, SA22-7782

944 Utility Guide and Reference

v z/OS TSO/E Customization, SA22-7783

v z/OS TSO/E Messages, SA22-7786

v z/OS TSO/E Programming Guide, SA22-7788

v z/OS TSO/E Programming Services, SA22-7789

v z/OS TSO/E REXX Reference, SA22-7790

v z/OS TSO/E User's Guide, SA22-7794

v z/OS UNIX System Services Command Reference,

SA22-7802

v z/OS UNIX System Services Messages and Codes,

SA22-7807

v z/OS UNIX System Services Planning, GA22-7800

v z/OS UNIX System Services Programming:

Assembler Callable Services Reference, SA22-7803

v z/OS UNIX System Services User's Guide,

SA22-7801

Bibliography 945

946 Utility Guide and Reference

Index

Numerics
32K

option of DSN1COMP utility 712

option of DSN1COPY utility 722

option of DSN1PRNT utility 762

A
abend, forcing 164

ABEND, option of DIAGNOSE utility 162

abnormal-termination, option of TEMPLATE statement 595

Access Method Services, new active log definition 683

access path, catalog table columns used to select 567

ACCESSPATH
option of MODIFY STATISTICS utility 307

option of REORG TABLESPACE utility 442

ACHKP
See auxiliary CHECK-pending (ACHKP) status

ACTION, option of DSN1SDMP utility 776

ACTION2
option of DSN1SDMP utility 777

active log
adding 683

data set with I/O error, deleting 685

defining in BSDS 683

deleting from BSDS 684

enlarging 684

recording from BSDS 684

active status, of a utility 37

AFTER, option of DSN1SDMP utility 776

AFTER2, option of DSN1SDMP utility 778

AGE option of MODIFY STATISTICS utility 307

ALIAS, option of DSNJU003 utility 679

ALL
option of LISTDEF utility 178

option of REBUILD INDEX utility 333

option of RUNSTATS utility 555

ALLDUMPS, option of DIAGNOSE utility 161

ANCHOR, option of DSN1CHKR utility 704

application package
See package

archive log
adding to BSDS 685

deleting from BSDS 685

ARCHLOG, option of REPORT utility 523

ASCII
option of LOAD utility 207

option of UNLOAD utility 613

authorization ID
naming convention x

primary 3

secondary 3

SQL 4

AUXERROR INVALIDATE, option of CHECK DATA

utility 71

AUXERROR REPORT, option of CHECK DATA utility 71

AUXERROR, option of CHECK DATA utility 60

auxiliary CHECK-pending (ACHKP) status
description 849

auxiliary CHECK-pending (ACHKP) status (continued)
resetting

for a LOB table space 849

for a table space 849

set by CHECK DATA utility 60

auxiliary CHECK-pending (ACHKP) status, CHECK DATA

utility 61, 71

auxiliary index, reorganizing after loading data 269

auxiliary warning (AUXW) status
description 850

resetting 850

set by CHECK DATA utility 60, 71

AUXW
See auxiliary warning (AUXW) status

AVGKEYLEN column
SYSINDEXES catalog table 573

SYSINDEXES_HIST catalog table 573

SYSINDEXPART catalog table 573

SYSINDEXPART_HIST catalog table 576

AVGROWLEN column
SYSTABLEPART catalog table 571

SYSTABLEPART_HIST catalog table 573

SYSTABLES catalog table 570

SYSTABLES_HIST catalog table 571

SYSTABLESPACE catalog table 570

AVGSIZE column of SYSLOBSTATS catalog table 576

B
BACKOUT, option of DSNJU003 utility 679

BACKUP SYSTEM utility
authorization 47

compatibility 50

data sets needed 49

description 47

examples
data-only backup 51

full backup 51

execution phases 47

history, printing 691

instructions 48

option descriptions 48

output 47

restarting 50

syntax diagram 48

terminating 50

using the DISPLAY UTILITY command 50

BASE, option of LISTDEF utility 178

basic predicate 434, 636

BETWEEN predicate 435, 636

BIT
option of LOAD utility for CHAR 220, 222

BLOB
option of LOAD utility 229

option of UNLOAD utility 634

BLOBF
option of LOAD utility for CHAR 221, 222

bootstrap data set (BSDS)
See BSDS (bootstrap data set)

BOTH, option of RUNSTATS utility 550, 556

© Copyright IBM Corp. 1983, 2008 X-1

BSDS
active log data set status 700

communication records, printing 691

converting 667

data set references, adding and deleting 687

GENERIC LUNAME parameter, updating 680

LOCATION value, updating 679

LUNAME value, updating 679

PASSWORD value, updating 679

updating 671

VSAM catalog name, changing 679

BUFNO, option of TEMPLATE statement 594

C
CANCEL, option of DSNJU003 utility 678

CARDF column
SYSCOLDIST catalog table 569

SYSINDEXPART catalog table 573

SYSTABLEPART catalog table 571

SYSTABLES catalog table 568

SYSTABSTATS catalog table 568

catalog
updating 55

catalog and directory
reorganizing 461

REPORT utility 526

catalog indexes, rebuilding 344

catalog table spaces, corresponding directory table spaces 462

catalog tables 365

columns used for tuning 570

columns used to select access path 567

integrity, verifying 703

loading data into 231

outdated information, removing 295

RUNSTATS utility 562

statistics history, clearing outdated information 305

statistics, deleting 309

SYSCOLDIST
CARDF column 569

COLGROUPCOLNO column 569

COLVALUE column 569

FREQUENCYF column 569

NUMCOLUMNS column 569

SYSCOLUMNS
COLCARDF column 568

HIGH2KEY column 568

LOW2KEY column 569

SYSCOPY
deleting rows 299

SYSCOPY, removing outdated information 295

SYSINDEXES
AVGKEYLEN column 573

CLUSTERING column 570

CLUSTERRATIOF column 570

data collected by STOSPACE utility 583

FIRSTKEYCARDF column 570

FULLKEYCARDF column 570

NLEAF column 570

NLEVELS column 570

updating space information 584

SYSINDEXES_HIST
AVGKEYLEN column 573

SYSINDEXPART
AVGKEYLEN column 573

CARDF column 573

data collected by STOSPACE utility 583

catalog tables (continued)
SYSINDEXPART (continued)

DSNUM column 573

example of query 403

EXTENTS column 573

FAROFFPOSF column 574

LEAFDIST column 575

LEAFFAR column 574

LEAFNEAR column 574

NEAROFFPOSF column 575

PQTY column 575

PSEUDO_DEL_ENTRIES column 575

SECQTYI column 576

SPACE column 575

SPACEF column 575

SQTY column 575

SYSINDEXPART_HIST
AVGKEYLEN column 576

SYSLGRNX
deleting rows 299

outdated information, removing 295

SYSLOBSTATS
AVGSIZE column 576

FREESPACE column 576

ORGRATIO column 576

SYSSTOGROUP, data collected by STOSPACE utility 583

SYSTABLEPART
AVGROWLEN column 571

CARDF column 571

data collected by STOSPACE utility 583

DSNUM column 571

example of query 457

EXTENTS column 571

FARINDREF column 571

NEARINDREF column 571

PAGESAVE column 572

PERCACTIVE column 572

PERCDROP column 572

PQTY column 572

SECQTYI column 572

SPACE column 572

SPACEF column 572

SQTY column 572

SYSTABLEPART_HIST
AVGROWLEN column 573

SYSTABLES
AVGROWLEN column 570

CARDF column 568

NPAGES column 568

NPAGESF column 568

PCTROWCOMP column 568

SYSTABLES_HIST
AVGROWLEN column 571

SYSTABLESPACE
AVGROWLEN column 570

data collected by STOSPACE utility 583

NACTIVE column 569

NACTIVEF column 569

updating space information 584

SYSTABSTATS
CARDF column 568

NPAGES column 568

CATALOG, option of DSNJU003 utility 675

CATALOG, option of UNLOAD utility 610

catalog, repairing 511

CATENFM utility
description 53

X-2 Utility Guide and Reference

CATMAINT utility
description 55

CCSID
option of LOAD utility 207

option of UNLOAD utility 613

CCSID information, deleting from BSDS 677

CCSIDS, option of DSNJU003 utility 677

change log inventory utility
See DNSJU003 utility

CHANGELIMIT, option of COPY utility 107, 122

CHAR
option of LOAD utility 220

option of UNLOAD utility 625

CHARDEL
option of LOAD utility 206

option of UNLOAD utility 615

CHECK DATA utility
authorization 57

claims and drains 72

compatibility 73

correcting constraint violations 69

data sets needed 67

description 57

examples
AUXERROR 74

checking multiple table spaces 69

creating exception tables 66

deleting invalid data 73

exception tables 73

EXCEPTIONS 75

LOBs 74

maximum number of exceptions 75

PART 75

SCOPE ALL 74

use after LOAD RESUME 269

using exception tables 268

violation messages 69

exception table, creating 64

execution phases 57

finding violations 69

instructions 63, 68, 84

LOB column errors 70

LOB columns 64

option descriptions 59

output 57

restarting 72

specifying scope 68

syntax diagram 59

table spaces, multiple 68

terminating 71

use after LOAD REPLACE 267

CHECK INDEX utility
authorization 77

claims and drains 90

compatibility 90

data sets
shadow 84

data sets needed 81

description 77

examples
ALL 91, 92

checking all indexes 91

checking more than one index 92

checking one index 91

checking partitions 92

LIST 92

LISTDEF 92

CHECK INDEX utility (continued)
examples (continued)

PART 92

SORTDEVT 91

execution phases 77

option descriptions 78

output 77, 89

parallel checking 85

physical or logical partitions 79

restarting 90

single logical partition 84

syntax diagram 78

terminating 89

use after loading table with indexes 269

CHECK LOB utility
authorization 95

claims and drains 100

compatibility 100

data sets needed 98

description 95

example 100

execution phases 95

instructions 98

LOB violations, resolving 99

option descriptions 96

output 95

restarting 99

syntax diagram 96

terminating 99

CHECK-pending (CHECKP) status
resetting

for a LOB table space 99

CHECK-pending (CHKP) status
CHECK DATA utility 57, 70

description 850

indoubt referential integrity 267

resetting 850

for a table space 267

CHECK, option of DSN1COPY utility 722

CHECKPAGE, option of COPY utility 110

checkpoint queue
printing contents 691

updating 681

CHECKPT, option of DSNJU003 utility 681

CHKP
See CHECK-pending (CHKP) status

CHKPTRBA, option of DSNJU003 utility 678

CLOB
option of LOAD utility 229

option of UNLOAD utility 634

CLOBF
option of LOAD utility for CHAR 221, 222

CLUSTERING column of SYSINDEXES catalog table, use by

RUNSTATS 570

CLUSTERRATIOF column, SYSINDEXES catalog table 570

COLCARDF column
SYSCOLUMNS catalog table 568

cold start
example, creating a conditional restart control record 685

specifying for conditional restart 675

COLDEL
option of LOAD utility 206

option of UNLOAD utility 615

COLGROUP, option of RUNSTATS utility 550

COLGROUPCOLNO column, SYSCOLDIST catalog table 569

COLUMN
option of LOAD STATISTICS 200

Index X-3

COLUMN (continued)
option of RUNSTATS utility 549

COLVALUE column, SYSCOLDIST catalog table 569

COMMAND, option of DSN1SDMP utility 777

commit point
DSNU command 30

REPAIR utility LOCATE statement 500

restarting after out-of-space condition 43

comparison operators 435

compatibility
CHECK DATA utility 73

CHECK INDEX utility 90

CHECK LOB utility 100

COPY utility 127

COPYTOCOPY utility 153

declared temporary table 4

DEFINE NO objects 4

DIAGNOSE utility 164

EXEC SQL utility 169

LISTDEF utility 185

LOAD utility 264

MERGECOPY utility 292

MODIFY RECOVERY utility 301

MODIFY STATISTICS utility 309

OPTIONS utility 317

QUIESCE utility 326

REBUILD INDEX utility 345

RECOVER utility 381

REORG INDEX utility 409

REORG TABLESPACE utility 475

REPAIR utility 513

REPORT utility 527

RESTORE SYSTEM utility 542

RUNSTATS utility 564

STOSPACE utility 585

TEMPLATE utility 603

UNLOAD utility 654

utilities access description 38

compression
data, UNLOAD utility description 653

estimating disk savings 711

compression dictionary, building 463

concurrency
BACKUP SYSTEM utility 50

utilities access description 38

utility jobs 39

with real-time statistics 893

concurrent copies
COPYTOCOPY utility restriction 141

invoking 110

making 120

CONCURRENT, option of COPY utility 110, 120

conditional restart control record
creating 677, 685

reading 701

sample 701

status printed by print log map utility 691

connection-name, naming convention x

CONSTANT, option of UNLOAD utility 633

constraint violations, checking 57

CONTINUE, option of RECOVER utility 363

CONTINUEIF, option of LOAD utility 210

continuous operation, recovering an error range 364

control interval
LOAD REPLACE, effect of 238, 270

RECOVER utility, effect of 382

REORG TABLESPACE, effect of 481

control statement
See utility control statement

CONTROL, option of DSNU CLIST command 28

conversion of data, LOAD utility 253

copies
merging 285

online, merging 290

copy pool 47

COPY statement, using more than one 120

COPY utility
adding conditional code 122

allowing other programs to access data 111

authorization 102

block size, specifying 114

catalog table, copying 115

checking pages 110

claims and drains 127

compatibility 126, 127

consistency 118

COPY-pending status, resetting 101

copying a list of objects 118

copying segmented table spaces 120

data sets needed 112

description 101

directory, copying 115

effect on real-time statistics 890

examples
allowing updates 136

CHANGELIMIT 136

conditional copies 136

COPYDDN 129

copying LOB table spaces 137

DFSMSdss concurrent copy 137

filter data sets 137

FILTERDDN 137

full image copy 128, 138

incremental image copy 116, 136

JCL-defined and template-defined data sets 134

list of objects, making full image copy of 129

LISTDEF 135

lists 135

local site and recovery site copies 129

multiple image copies 117

PARALLEL 129, 133

parallel processing 133

RECOVERYDDN 129

reporting information 136

REPORTONLY 136

SHRLEVEL 129

TAPEUNITS 133

templates 135

execution phases 102

full image copy, making 115

informational COPY-pending status, resetting 101

instructions 112

JCL parameters 114

MERGECOPY utility, when to use 291

multiple image copies 116

naming data sets 117

option descriptions 105

output 101

partition, copying 116

performance recommendations 124

processing in parallel
description 109, 119

number of threads 101, 120

recovery, preparing for 123

X-4 Utility Guide and Reference

COPY utility (continued)
restart current 125

restarting
description 126

new data set 126

out-of-space condition 126

restricted states 126

restrictions 116

separate jobs 118

syntax diagram 103

terminating
DD statements 125

description 125

using more than one COPY statement 120

COPY-pending status
COPY utility 107

description 851

LOAD utility 266

REORG TABLESPACE utility 480

resetting
by taking a copy 851

by using COPY 126

by using LOAD 266

copy, consistency 118

COPY, option of LISTDEF utility 175

COPY1, option of DSNJU003 utility 674

COPY1VOL, option of DSNJU003 utility 675

COPY2, option of DSNJU003 utility 674

COPY2VOL, option of DSNJU003 utility 675

COPYDDN
option of COPY utility 106

option of COPYTOCOPY utility 146

option of LOAD utility 199, 249

option of MERGECOPY utility 288

option of REORG TABLESPACE utility 425, 465

COPYDSN, option of DSNU CLIST command 29

COPYDSN2, option of DSNU CLIST command 29

COPYTOCOPY statements, using multiple 150

COPYTOCOPY utility
authorization 141

block size, specifying 148

claims 153

compatibility 153

copying from a specific image copy 150

data sets needed 147

description 141

DFSMS products 151

examples
cataloged copy data set, specifying 155

copying from a specific image copy 150

copying objects from tape 152

FROMCOPY 150, 155

FROMLASTCOPY 154

FROMLASTFULLCOPY 154

FROMVOLUME 155

full image copy 149

incremental image copy 149

input copy data set, specifying 155

list of objects, processing 156

LISTDEF 156

local backup copies, making 154

TEMPLATE 156

uncataloged data set, specifying 155

execution phases 142

generation data groups, defining 151

input copy, determining which to use 151

instructions 147

COPYTOCOPY utility (continued)
JCL parameters 148

lists, copying 144

making copies 149

multiple statements, using 150

objects, copying from tape 151

option descriptions 144

output 141

output data sets
size 148

specifying 146

partitions, copying 144

restarting 153

restrictions 141

syntax diagram 142

SYSIBM.SYSCOPY records, updating 150

tape mounts, retaining 151

terminating 153

using TEMPLATE 150

correlation ID, naming convention xi

COUNT
option of LOAD STATISTICS 201

option of REBUILD INDEX utility 336

option of REORG INDEX utility 396

option of RUNSTATS utility 550

COUNT option
option of RUNSTATS utility 551, 556

CREATE option of DSNJU003 utility 677

CRESTART, option of DSNJU003 utility 677

cross loader function 167

CSRONLY, option of DSNJU003 utility 679

CURRENT DATE, incrementing and decrementing value 640

CURRENT option of REPORT utility 523

current restart, description 41

CURRENTCOPYONLY option of RECOVER utility 356

cursor
naming convention xi

CYL, option of TEMPLATE statement 597

D
data

adding 240

compressing 246

converting 247

converting with LOAD utility 253

deleting 240

DATA
option of CHECK DATA utility 59

option of LOAD utility 196

option of REPAIR DUMP 506

option of REPAIR REPLACE 503

option of REPAIR VERIFY 503

option of UNLOAD utility 609

data compression
dictionary

building 246, 463

number of records needed 246

using again 247

LOAD utility
description 246

KEEPDICTIONARY option 202, 247

REORG TABLESPACE utility, KEEPDICTIONARY

option 439

DATA ONLY, option of BACKUP SYSTEM utility 48

data set
name format in ICF catalog 109

Index X-5

data set (continued)
name limitations 601

data sets
BACKUP SYSTEM utility 49

change log inventory utility (DSNJU003) 682

CHECK DATA utility 67

CHECK INDEX utility 81

CHECK LOB utility 98

concatenating 22

COPY utility 112

copying table space in separate jobs 118

COPYTOCOPY utility 147

definitions, changing during REORG 463

DIAGNOSE utility 163

disposition
defaults for dynamically allocated data sets 596

defaults for dynamically allocated data sets on

RESTART 596

disposition, controlling 22

DSNJCNVB utility 667

for copies, naming 117

input, using 21

LOAD utility 232

MERGECOPY utility 288

MODIFY RECOVERY utility 298

MODIFY STATISTICS utility 308

naming convention xi

output, using 21

QUIESCE utility 324

REBUILD INDEX utility 338, 339

RECOVER utility 360

recovering, partition 363

REORG INDEX utility 399

REORG TABLESPACE utility 449, 456

REPAIR utility 508

REPORT utility 524

RESTORE SYSTEM utility 541

RUNSTATS utility 559

security 23

space parameter, changing 405

space parameter, changing during REORG 463

specifying 19

STOSPACE utility 582

UNLOAD utility 641

use by utilities 19

data sharing
backing up group 47

real-time statistics 893

restoring data 541

running online utilities 39

data type, specifying with LOAD utility 220

data-only backup
example 51

explanation 48

database
limits 787

naming convention xi

DATABASE
option of LISTDEF utility 176

option of REPAIR utility 507

DATACLAS, option of TEMPLATE statement 594

DATAONLY, option of DSN1LOGP utility 743

DataRefresher 247

DATAWKnn
data set of REORG utility 19

purpose 19

DATE EXTERNAL
option of LOAD utility 228

option of UNLOAD utility 632

DATE, option of MODIFY STATISTICS utility 307

DB2I
option of DSNU CLIST command 29

using to invoke online utilities 23

DBCLOB
option of LOAD utility 229

option of UNLOAD utility 635

DBD statement of REPAIR utility 111, 506

DBD, reclaiming space in 300

DBD01 directory table space
MERGECOPY restrictions 287, 292

order of recovering 365

DBID
option of DSN1LOGP utility 744

option of REPAIR utility 507

DBLOBF
option of LOAD utility for CHAR 221, 222

DBRM (database request module)
member naming convention xi

partitioned data set naming convention xi

DD name, naming convention xi

DD statements for data sets 19

DDF (distributed data facility), option of DSNJU003

utility 679

DDNAME, option of DSNJU004 utility 692

DEADLINE
option of REORG INDEX utility 391

option of REORG TABLESPACE utility 427

DECIMAL EXTERNAL
option of LOAD utility 227

option of UNLOAD utility 631

DECIMAL PACKED
option of the LOAD utility 226

option of UNLOAD utility 630

DECIMAL ZONED
option of the LOAD utility 227

option of UNLOAD utility 630

DECIMAL, option of UNLOAD utility 630

declared temporary table
REPAIR utility 506

utility compatibility 4

DECPT
option of LOAD utility 206

option of UNLOAD utility 615

DEFAULTIF, option of LOAD utility 229

defects, calculating, LOAD utility 236

DEFINE NO objects
populating 4

utility compatibility 4

DEFINE NO table space, loading data 242

DELAY
option of REORG INDEX utility 394

option of REORG TABLESPACE utility 430

DELETE
option of CHECK DATA utility 61

option of DSNJU003 utility 677

option of MODIFY RECOVERY utility 297

option of MODIFY STATISTICS utility 307

option of the CHECK DATA utility 69

statement of REPAIR utility, used in LOCATE block 499

DELETE statement of REPAIR utility 504

deleting
active log from BSDS 684

log data sets with errors 685

X-6 Utility Guide and Reference

DELIMITED
option of LOAD utility 205

option of UNLOAD utility 614

delimited file format
acceptable data types 243, 896

default delimiter values 243, 651

description 895

examples 897

loading 205, 242

maximum delimiter values 243

restrictions 242, 896

delimited files
acceptable data type forms for LOAD and UNLOAD

utilities 651

unloading 650

delimiters
column 895

default values 243, 651

maximum values 243

restrictions 650

string 895

using 242

DFSMS (Data Facility Storage Management Subsystem)
concurrent copy

invoking with COPY utility 110, 112, 120

requirements for using 121

restrictions 121

products, using with DB2 125, 151

DFSORT (Data Facility Sort)
data sets for REORG TABLESPACE, specifying device

type 443

messages from REORG TABLESPACE, specifying

destination 452

DIAGNOSE utility
ABEND statement

description 162

syntax diagram 161

authorization 159

compatibility 164

concurrency 164

data sets needed 163

description 159

DISPLAY statement
description 161

syntax diagram 160

examples
ABEND 165

ALLDUMPS 164

diagnosis of a specific type 165

DISPLAY AVAILABLE output 165

DISPLAY AVAILABLE statement 165

displaying installed utilities 165

displaying MEPLs 164

forcing a dump 164

forcing an abend 165

service level, finding 164

suspending utility execution 166

TYPE 165

WAIT 166

forcing an abend 164

instructions 164

option descriptions 161

restarting 164

syntax diagram 159

terminating 164

WAIT statement
description 162

DIAGNOSE utility (continued)
WAIT statement (continued)

syntax diagram 160

DIAGNOSE, option of REPAIR utility 507

DIR, option of TEMPLATE statement 598

directory
integrity, verifying 703

MERGECOPY utility, restrictions 292

order of recovering objects 365

discard data set, specifying DD statement for LOAD

utility 208

DISCARD, option of REORG TABLESPACE utility 444

DISCARDDN
option of LOAD PART 216

option of LOAD utility 208

option of REORG TABLESPACE utility 443

DISCARDS, option of LOAD utility 209

DISCDSN, option of DSNU CLIST command 29

DISP, option of TEMPLATE statement 595

DISPLAY DATABASE command, displaying range of pages in

error 364

DISPLAY Utility command
using with BACKUP SYSTEM for data sharing group 50

DISPLAY UTILITY command
description 37

using with RESTORE SYSTEM utility on a data sharing

group 542

DISPLAY, option of DIAGNOSE utility 161

displaying status of DB2 utilities 37

disposition, data sets, controlling 22

DL/I, loading data 247

DOUBLE, option of UNLOAD utility 632

DRAIN
option of REORG INDEX utility 393

option of REORG TABLESPACE utility 429

DRAIN_WAIT
option of CHECK INDEX utility 80

option of REORG INDEX utility 392

option of REORG TABLESPACE utility 428

DROP, option of REPAIR utility 506

DSN, option of TEMPLATE statement 590

DSN1CHKR utility
anchor point, mapping 704

authorization 705

concurrent copy, compatibility 706

control statement 705

data sets needed 705

description 703

DSN1COPY utility, running before 706

dump format, printing 704

environment 705

examples
table space 708

temporary data set 706

formatting table space pages on output 704

hash value, specifying for DBID 704

option descriptions 703

output 709

pointers, following 704

restrictions 706

running 705

syntax diagram 703

SYSPRINT DD name 705

SYSUT1 DD name 705

valid table spaces 706

DSN1COMP utility
authorization required 714

Index X-7

DSN1COMP utility (continued)
control statement 714

data set size, specifying 712

data sets required 714

DD statements
SYSPRINT 714

SYSUT1 714

description 711

environment 714

examples
free space 718

FREEPAGE 718

full image copy 717

FULLCOPY 717

LARGE 718

NUMPARTS 718

PCTFREE 718

REORG 718

ROWLIMIT 718

free pages, specifying 712

free space
including in compression calculations 716

specifying 713

FREEPAGE 716

full image copy as input, specifying 713

identical data rows 717

LARGE data sets, specifying 712

maximum number of rows to evaluate, specifying 713

message DSN1941 719

option descriptions 711

output
interpreting 719

sample 716, 719

page size of input data set, specifying 712

partitions, specifying number 712

PCTFREE 716

prerequisite actions 713

recommendations 715

REORG 716

running 714, 715

savings comparable to REORG 713

savings estimate 716

syntax diagram 711

DSN1COPY utility
additional volumes, for SYSUT2 732

altering a table before running 734

authorization required 727

checking validity of input 722

comparing to DSN1PRNT 733

control statement 728

copying identity column tables 736

copying tables to other subsystems 736

data set size, determining 733

data set size, specifying 723

data sets
input 728, 730

message 728

OBIDXLAT 728

output 728, 731

required 728

DD statements
SYSPRINT 728

SYSUT1 728

SYSUT2 728

SYSXLAT 729

description 721

environment 727

DSN1COPY utility (continued)
example 730

examples
checking input data 737

copying partitions 738, 739

printing 16 pages 738

printing one page 738

translating internal identifiers 737

full image copy, specifying 723

image copy, using as input 734

inconsistent data, checking for 734

incremental copy, specifying 723

inline copy, specifying 723

internal identifiers, translating 734

LARGE input data set, specifying 724

LOB table space, specifying 724

log RBAs, resetting 735

maximum piece size, specifying 726

multiple data set table spaces 735

OBID translation 727

OBIDXLAT 733

option descriptions 722

output 739

page size of input data set, specifying 722

page size, determining 733

partitions, specifying number 724

preventing inconsistent data 734

printing data sets 736

printing in hexadecimal format 725

recommendation 733

resetting log RBAs 727, 735

restoring indexes 735

restoring table spaces 736

restrictions 732

scanning input data set for value 726

segmented table space, specifying 723

subsystem, copying tables from one to another 736

syntax diagram 722

tasks 734

translating internal identifiers 734

DSN1LOGP utility
archive log data sets on tape, reading 750

authorization 748

control statement 748

data changes, limiting report to 743

data sets required 748

data sharing example 753

data sharing requirements 750

database identifier, using to limit report 744

DBID, using to limit report 744

DD statements
ACTIVE 749

ARCHIVE 749

BSDS 749

SYSIN 748

SYSPRINT 748

SYSSUMRY 749

description 741

detail report
description 756

sample 757

environment 748

error codes, interpreting 759

examples
data sharing 753

extracting information from the active log without the

BSDS 752

X-8 Utility Guide and Reference

DSN1LOGP utility (continued)
examples (continued)

extracting information from the archive log without the

BSDS 752

extracting information from the recovery log with the

BSDS 751

SUMMARY option 752

instructions 750

JCL, requirements 748

log data sets, identifying 749

log range, specifying 743

LUWIDs, reporting on 746

option descriptions 742

output
description 753

reviewing 754

sample 759

page regression report
description 758

page, limiting report to 745

RID, using to limit report 745

running 748

summary report
description 754

description of data propagation information 758

sample 755

sample of data propagation information 758

summary report, specifying 748

syntax diagram 742

SYSCOPY log records, limiting report to 744

table and index identifiers, locating 751

type of log records, limiting report by 746

unit of recovery identifier, using to limit report 745

value in log record, limiting report by 747

DSN1PRNT utility
authorization required 768

comparison with DSN1COPY utility 769

control statement 768

data set size, determining 769

data set size, specifying 764

data sets required 768

DD statements
SYSPRINT 768

SYSUT1 768

description 761

environment 768

examples
printing a data set in hexadecimal format 770

printing a nonpartitioning index 770

printing a partitioned data set 770

printing a single page of an image copy 770

filtering pages by value 766

formatting output 767

full image copy, specifying 763

incremental copy, specifying 763

inline copy, specifying 763

LARGE data set, specifying 763

LOB table space, specifying 763

number of partitions, specifying 765

option descriptions 762

output 771

page size, determining 769

page size, specifying 763

piece size, specifying 764

processing encrypted data 769

recommendations 769

running 768

DSN1PRNT utility (continued)
syntax diagram 762

SYSUT1 data set, printing on SYSPRINT data set 765

DSN1SDMP utility
action, specifying 776, 777

authorization required 778

buffers, assigning 779

control statement 778

DD statements
SDMPIN 778

SDMPPRNT 778

SDMPTRAC 779

SYSABEND 779

SYSTSIN 779

description 773

dump, generating 780

environment 778

examples
abend 781, 782

dump 782

second trace 783

skeleton JCL 780

instructions 779

option descriptions 774

output 784

required data sets 778

running 778

selection criteria, specifying 774

syntax diagram 773

trace destination 774

traces
modifying 780

stopping 780

DSN8G810, updating space information 584

DSN8S81E table space, finding information about space

utilization 584

DSNACCAV stored procedure
description 816

option descriptions 817

output 820

sample JCL 819

syntax diagram 817

DSNACCOR stored procedure
description 826

example call 839

option descriptions 828

output 843

syntax diagram 827

DSNACCQC stored procedure
description 808

option descriptions 810

output 814

sample JCL 813

syntax diagram 809

DSNAME, option of DSNJU003 utility 674

DSNDB01.DBD01
copying restrictions 116

recovery information 526

DSNDB01.SYSCOPYs
copying restrictions 116

DSNDB01.SYSUTILX
copying restrictions 116

recovery information 526

DSNDB06.SYSCOPY
recovery information 526

DSNJCNVB utility
authorization required 667

Index X-9

DSNJCNVB utility (continued)
control statement 667

data sets used 667

description 667

dual BSDSs, converting 667

environment 667

example 668

JOBCAT DD name 667

output 668

prerequisite actions 667

running 668

STEPCAT DD name 667

SYSPRINT DD name 668

SYSUT1 DD name 667

SYSUT2 DD name 667

DSNJLOGF utility
control statement 669

data sets required 669

description 669

environment 669

example 669

output 670

SYSPRINT DD name 669

SYSUT1 DD name 669

DSNJU003 (change log inventory) utility
See change log inventory utility

DSNJU003 utility
active logs

adding 683

changing 683

deleting 684

enlarging 684

recording 684

altering references 687

archive logs
adding 685

changing 685

deleting 685

authorization required 682

BSDS timestamp field, updating 682

comment, in SYSIN records 683

control statement 682

data sets
cataloging 675

declaring 673

data sets needed 682

DELETE statement 687

description 671

environment 681

examples
adding a communication record to BSDS 689

adding a communication record with an alias to

BSDS 689

adding active log 683

adding archive log 685

adding archive log data set 688

alias ports 689

changing high-level qualifier 687

creating conditional restart control record 688

deleting a data set 688

deleting active log 684

deleting archive log 685

recording active log 684

removing aliases from a communication record 689

specifying a point in time for system recovery 689

SYSPITR 689

updating the checkpoint queue 689

DSNJU003 utility (continued)
instructions 683

invoking 683

JOBCAT DD name 682

NEWCAT statement
example output 687

using 687

NEWLOG statement 687

option descriptions 673

renaming log data sets 688

renaming system data sets 687

statements 682

STEPCAT DD name 682

syntax diagram 671

SYSIN DD name 682

SYSIN stream parsing 682

SYSPRINT DD name 682

SYSUT1 DD name 682

SYSUT2 DD name 682

updating dual copy BSDSs 682

DSNJU004 (print log map) utility
See print log map utility

DSNJU004 utility
authorization required 692

BSDS timestamps 698

checkpoints, sample output description of 701

control statement 692

data sets needed 692

description 691

environment 692

example 693

GROUP DD name 692

JOBCAT DD name 692

MnnBSDS DD name 693

option descriptions 691

output
description 693

sample 700

recommendations 693

running 693

STEPCAT DD name 692

syntax diagram 691

SYSIN DD name 692

SYSPRINT DD name 692

SYSUT1 DD name 692

DSNTEJ1 sample 446

DSNTEP2 and DSNTEP4 sample program
specifying SQL terminator 864

DSNTEP2 sample program
how to run 857

parameters 858

program preparation 857

DSNTEP4 sample program
how to run 857

parameters 858

program preparation 857

DSNTIAD sample program
how to run 857

parameters 858

program preparation 857

specifying SQL terminator 862

DSNTIAUL sample program
how to run 857

parameters 858

program preparation 857

DSNTYPE, option of TEMPLATE statement 598

X-10 Utility Guide and Reference

DSNU CLIST command
editing generated JCL 32

examples 32

invoking utilities 26

option descriptions 27

output 31

syntax 27

DSNUM
option of COPY utility 108

option of COPYTOCOPY utility 144

option of MERGECOPY utility 287

option of MODIFY RECOVERY utility 297, 299

option of RECOVER utility 355

option of REPORT utility 522

DSNUM column
SYSINDEXPART catalog table, use by RUNSTATS 573

SYSTABLEPART catalog table 571

DSNUPROC JCL procedure
description 33

option descriptions 33

sample 34

syntax 33

DSNUTILS stored procedure
authorization required 796, 806

data sets 796

description 795

option descriptions 798, 806

output 805

sample JCL 805, 808

syntax diagram 798, 806

DSNUTILU stored procedure
data sets 806

description 805

output 808

DSSIZE
option of DSN1COMP utility 712

option of DSN1COPY utility 723

option of DSN1PRNT utility 764

DSSPRINT
data set of COPY utility 19

purpose 19

DUMP
option of DSN1CHKR utility 704

statement of REPAIR utility 504

used in LOCATE block 499

E
EBCDIC

option of LOAD utility 207

option of UNLOAD utility 613

edit routine
LOAD utility 191

REORG TABLESPACE utility 431

EDIT, option of DSNU CLIST command 29

embedded semicolon
embedded 863

encrypted data
running DSN1PRNT on 769

running REORG TABLESPACE on 446

running REPAIR on 508

running UNLOAD on 641

running utilities on 5

encryption
DSN1PRNT utility effect on 769

REORG TABLESPACE utility effect on 446

REPAIR utility effect on 508

encryption (continued)
UNLOAD utility effect on 641

utilities effect on 5

END, option of DIAGNOSE utility 163

ENDLRSN, option of DSNJU003 utility 676

ENDRBA, option of DSNJU003 utility 675

ENDTIME, option of DSNJU003 utility 677

ENFORCE, option of LOAD utility 208, 246

ERRDDN
option of CHECK DATA utility 62

option of LOAD utility 208

error data set
CHECK DATA utility 62, 67

error range recovery 364

ERROR RANGE, option of RECOVER utility 358

error, calculating, LOAD utility 236

ESA data compression, estimating disk savings 711

ESCAPE clause 438, 637

EVENT, option of OPTIONS statement 315

exception table
columns 65

creating 64

definition 67

example 66

with LOB columns 65

EXCEPTIONS
option of CHECK DATA utility 62

option of CHECK LOB utility 96

exceptions, specifying the maximum number
CHECK DATA utility 62

CHECK LOB utility 96

EXCLUDE
option of LISTDEF 179

EXCLUDE, option of LISTDEF utility 173

EXEC SQL utility
authorization 167

compatibility 169

cursors 168

declare cursor statement
description 168

syntax diagram 168

description 167

dynamic SQL statements 168

examples
creating a table 169

declaring a cursor 169

inserting rows into a table 169

using a mapping table 489

execution phase 167

option descriptions 168

output 167

restarting 168

syntax diagram 167

terminating 168

EXEC statement
built by CLIST 32

description 36

executing
utilities, creating JCL 36

utilities, DB2I 23

utilities, JCL procedure (DSNUPROC) 33

exit procedure, LOAD utility 259

EXPDL, option of TEMPLATE statement 594

EXTENTS column
SYSINDEXPART catalog table, use by RUNSTATS 573

SYSTABLEPART catalog table 571

extracted key, calculating, LOAD utility 235

Index X-11

F
fallback recovery considerations 460

FARINDREF column of SYSTABLEPART catalog table, use by

RUNSTATS 571

FAROFFPOSF column of SYSINDEXPART catalog table
catalog query to retrieve value for 457

description 574

FASTSWITCH
option of REORG INDEX utility 394

option of REORG TABLESPACE utility 430

field procedure, LOAD utility 259

FILSZ, option of OPTIONS statement 315

filter data set, determining size 113

FILTER, option of DSN1LOGP utility 748

FILTER, option of DSN1SDMP utility 777

FILTERDDN, option of COPY utility 111

FIRSTKEYCARDF column, SYSINDEXES catalog table 570

FLOAT
option of LOAD utility 206

option of UNLOAD utility 615, 632

FLOAT EXTERNAL, option of LOAD utility 228

FLOAT, option of LOAD utility 227

FOR EXCEPTION, option of CHECK DATA utility 61

FOR, option of DSN1SDMP utility 777

FOR2, option of DSN1SDMP utility 777

FORCEROLLUP
option of LOAD STATISTICS 202

option of REBUILD INDEX utility 337

option of REORG INDEX utility 397

option of REORG TABLESPACE utility 442

option of RUNSTATS utility 553, 558

foreign key, calculating, LOAD utility 236

FORMAT
option of DSN1CHKR utility 704

option of DSN1PRNT utility 767

option of LOAD utility 204

FORMAT SQL/DS, option of LOAD utility 205

FORMAT UNLOAD, option of LOAD utility 204

FORWARD, option of DSNJU003 utility 678

free space
REORG INDEX utility 410

FREEPAGE, option of DSN1COMP utility 712

FREESPACE column of SYSLOBSTATS catalog table 576

FREQUENCYF column, SYSCOLDIST catalog table 569

FREQVAL
option of LOAD STATISTICS 201

option of REBUILD INDEX utility 336

option of REORG INDEX utility 395

option of RUNSTATS utility 550, 551, 555

FROM TABLE
option of REORG TABLESPACE utility 433

option of UNLOAD utility 617, 656

FROMCOPY
option of COPYTOCOPY utility 145

option of the COPYTOCOPY utility 150

option of UNLOAD utility 610, 643

FROMCOPYDDN, option of UNLOAD utility 611, 643

FROMLASTCOPY, option of COPYTOCOPY utility 145

FROMLASTFULLCOPY, option of COPYTOCOPY utility 145

FROMLASTINCRCOPY, option of COPYTOCOPY utility 145

FROMSEQNO, option of the UNLOAD utility 611

FROMVOLUME
option of COPYTOCOPY utility 146

option of UNLOAD utility 610

FULL
option of BACKUP SYSTEM utility 48

option of COPY utility 107

full backup
description 48

example 51

FULLCOPY
option of DSN1COMP utility 713

option of DSN1COPY utility 723

option of DSN1PRNT utility 763

FULLKEYCARDF column, SYSINDEXES catalog table 570

function
maximum number in select 789

G
GDGLIMIT, option of TEMPLATE statement 595

GDGs
See generation data groups

generation data groups
defining 124, 151

using with conditional copy 123

GENERIC, option of DSNJU003 utility 680

glossary 905

GRAPHIC
option of LOAD utility 224

option of UNLOAD utility 627

GRAPHIC EXTERNAL
option of LOAD utility 224

option of UNLOAD utility 628

GRECP
See group buffer pool RECOVER-pending (GRECP) status

group buffer pool RECOVER-pending (GRECP) status
description 852

resetting 852

H
HALT, option of OPTIONS statement 315

HASH, option of DSN1CHKR utility 704

HEADER, option of UNLOAD utility 621

hexadecimal-constant, naming convention xi

hexadecimal-string, naming convention xi

HIGH2KEY column, SYSCOLUMNS catalog table 568

HIGHRBA, option of DSNJU003 utility 681

HISTORY
option of LOAD STATISTICS 202

option of REBUILD INDEX utility 336

option of REORG INDEX utility 396

option of REORG TABLESPACE utility 442

option of RUNSTATS utility 552, 557

I
ICBACKUP column in SYSIBM.SYSCOPY 117

ICOPY status
See informational COPY-pending status

ICUNIT column
SYSIBM.SYSCOPY 117

identity columns, loading 239

IDENTITYOVERRIDE
option of LOAD PART 213

IGNOREFIELDS, option of LOAD utility 213

image copy
cataloging 114, 148

conditional, specifying 122

COPY utility 101

copying 141

COPYTOCOPY utility 141

X-12 Utility Guide and Reference

image copy (continued)
data set, finding size 113

deleting all 300

full
description 101

making 107, 115

incremental
conditions 117

copying 149

description 101

making 116

merging 285

performance advantage 116

list of objects 118

making after loading a table 266

making in parallel 101

multiple, making 116

obtaining information about 122

putting on tape 125, 151

IMS DPROP 247

IN predicate 437, 637

in-abort state 679

in-commit state 678

INCLUDE, option of LISTDEF utility 173, 179

inconsistent data indicator, resetting 503

INCRCOPY
option of DSN1COPY utility 723

option of DSN1PRNT utility 763

INCURSOR
option of LOAD PART 216

option of LOAD utility 196

INDDN
option of LOAD PART 215

option of LOAD utility 196

INDEREFLIMIT option of REORG TABLESPACE utility 431

index
building during LOAD 255

checking 77, 269

determining when to reorganize 403

naming convention xi

organization 403

REBUILD INDEX utility 331

rebuilding in parallel 340

rebuilt, recoverability 344

version numbers, recycling 270

INDEX
option of CHECK INDEX utility 78

option of COPY utility 106

option of COPYTOCOPY utility 144

option of LISTDEF utility 177

option of MODIFY STATISTICS utility 307

option of REORG INDEX utility 389

option of REPAIR utility
LEVELID statement 496

LOCATE statement 501

SET statement 497

option of REPORT utility 522

option of RUNSTATS utility 550, 555

INDEX ALL, option of REPORT utility 522

INDEX NONE, option of REPORT utility 522

index partitions, rebuilding 340

index space
recovering 331

index space status, resetting 510

INDEX

option of RECOVER utility 355

option of REORG TABLESPACE utility 441

INDEXSPACE
option of COPY utility 105

option of COPYTOCOPY utility 144

option of LISTDEF utility 176

option of MODIFY STATISTICS utility 306

option of REBUILD INDEX utility 333

option of RECOVER utility 354

option of REORG INDEX utility 389

option of REPAIR utility
SET statement 498

option of REPAIR utility for LEVELID statement 496

option of REPORT utility 521

INDEXSPACES, option of LISTDEF utility 174

INDEXSPACESTATS
contents 877

real-time statistics table 870

indoubt state 678

INDSN, option of DSNU CLIST command 28

inflight state 679

informational COPY-pending (ICOPY) status
COPY utility 107

description 852

resetting 101, 123, 852

informational referential constraints, LOAD utility 191

INLCOPY
option of DSN1COPY utility 723

option of DSN1PRNT utility 763

inline COPY
base table space 261

copying 150

creating with LOAD utility 249

creating with REORG TABLESPACE utility 465

inline statistics
collecting during LOAD 261

using in place of RUNSTATS 563

input fields, specifying 254

INSTANCE, option of DIAGNOSE utility 163, 164

INTEGER
option of LOAD utility 226

option of UNLOAD utility 629

INTEGER EXTERNAL
option of LOAD utility 226

option of UNLOAD utility 630

Interactive System Productivity Facility (ISPF) 23

INTO TABLE, option of LOAD utility 210

invalid LOB 70

invalid SQL terminator characters 862

ISPF (Interactive System Productivity Facility), utilities

panels 23

ITEMERROR, option of OPTIONS statement 315

J
JCL (job control language)

COPYTOCOPY utility 149

DSNUPROC utility 26

JCL PARM statement 314

JES3 environment, making copies 291

job control language
See JCL (job control language)

job control language (JCL)
See JCL (job control language)

JOB statement, built by CLIST 31

Index X-13

K
KEEPDICTIONARY

option of LOAD PART 215

option of LOAD utility 202, 247

option of REORG TABLESPACE utility 247, 439

key
calculating, LOAD utility 235

foreign, LOAD operation 245

length
maximum 789

primary, LOAD operation 245

KEY
option of OPTIONS utility 316

option of REPAIR utility on LOCATE statement 500

KEYCARD
option of LOAD STATISTICS 201

option of REBUILD INDEX utility 336

option of REORG INDEX utility 395

option of RUNSTATS utility 551, 555

L
labeled-duration expression 435

LARGE
option of DSN1COMP utility 712

option of DSN1COPY utility 724

option of DSN1PRNT utility 763

large partitioned table spaces, RUNSTATS utility 566

LEAFDIST column of SYSINDEXPART catalog table 575

LEAFDISTLIMIT, option of REORG INDEX utility 394

LEAFFAR column of SYSINDEXPART catalog table 574

LEAFNEAR column of SYSINDEXPART catalog table 574

LEAST, option of RUNSTATS utility 550, 556

LENGTH, option of REPAIR utility 505

level identifier, resetting 495

LEVELID, option of REPAIR utility 495

LIB, option of DSNUPROC utility 33

library of LISTDEF statements 183

LIKE predicate 437, 637

LIMIT, option of UNLOAD utility 623

limits, DB2 787

LIST
option of CHECK INDEX utility 78

option of COPY utility 105

option of COPYTOCOPY utility 144

option of LISTDEF utility 175

option of MERGECOPY utility 286

option of MODIFY RECOVERY utility 297

option of MODIFY STATISTICS utility 306

option of QUIESCE utility 322

option of REBUILD INDEX 334

option of RECOVER utility 354

option of REORG INDEX utility 389

option of REORG TABLESPACE utility 422

option of REPORT utility 522

option of REPORT with INDEXSPACE option 522

option of REPORT with TABLESPACE option 521

option of RUNSTATS INDEX utility 555

option of RUNSTATS TABLESPACE utility 548

option of UNLOAD utility 611

list of objects, copying 101

LISTDEF
EXCLUDE option 179

INCLUDE option 179

objects, excluding 179

objects, including 179

LISTDEF library, specifying 317

LISTDEF utility
authorization 171

catalog and directory objects, specifying 182

compatibility 185

concurrency 185

control statement
creating 179

description 179

placement 183

processing 181

COPY NO indexes, specifying 175

COPY YES indexes, specifying 175

description 171

examples
all objects in a database 186

COPY YES 187

excluding objects 187

including all but one partition 187

including COPY YES indexes 187

library data set 188

lists that reference other lists 187

matching name patterns 186

partition-level lists 186

pattern-matching characters 186

related objects, including 190

RI option 190

simple list 186

using LIST 184

using with QUIESCE utility 188

execution phases 171

indexes, specifying 175

instructions 179

LOB indicator keywords 178

LOB objects, including 178

option descriptions 173

OPTIONS, using 185

output 171

partitions, specifying 178

pattern-matching expressions
characters 182

description 181

restriction 181

using 182

previewing 183

restarting 185

restrictions 171, 181

statement library 183

syntax diagram 172

TEMPLATE, using 185

terminating 185

LISTDEFDD, option of OPTIONS statement 315

lists
objects

excluding 179

including 179

previewing 183

processing order 184

using with other utilities 183

LOAD INTO PART 241

LOAD REPLACE LOG YES 238

LOAD utility
adding more data 240

after loading 266

appending to data 197

authorization 191

auxiliary index, reorganizing after LOAD 269

X-14 Utility Guide and Reference

LOAD utility (continued)
building indexes

in parallel 255

sequentially 255

catalog tables, loading 231

CHECK DATA
after LOAD RESUME 268

data sets used 268

error data sets 268

exception tables 268

running 267

sort data sets 268

compatibility 264

compressing data 246

concatenating records 210

concurrent access to data, setting 197

cursors
identifying 196, 216

preparing to use 232

data conversion 253

data sets needed 232

data type compatibility 253

data type, specifying 220

data with referential constraints 244

default values, setting criteria for 229

defects, calculating number 236

DEFINE NO table space, consequences 242

deleting all data 240

delimited file format
acceptable data types 243

restrictions 242

specifying 205

delimited files 242

delimiters 242

description 191

DFSORT data sets, device type 209

discard data set
declaring 208

maximum number of records 209

discarded rows, inline statistics 261

duplicate keys, effects 237

dynamic SQL 248

effect on real-time statistics 884

ENFORCE NO
actions to take 268

consequences 246

enforcing constraints 208

error work data set, specifying 208

error, calculating 236

examples
CHECK DATA 268

CHECK DATA after LOAD RESUME 269

concatenating records 274

CONTINUEIF 274

COPYDDN 278

CURSOR 283

data 272, 273, 282

declared cursors 283

default values, loading 275

DEFAULTIF 275

DELIMITED 273

delimited files 273

ENFORCE CONSTRAINTS 275

ENFORCE NO 276

field positions, specifying 271

inline copies, creating 278

KEEPDICTIONARY 247

LOAD utility (continued)
examples (continued)

loading 284

loading by partition 241

LOBs 284

null values, loading 275

NULLIF 275

parallel index build 277

PART 272

partition parallelism 282, 283

POSITION 271

referential constraints 275, 276

REPLACE 272

replace table in single-table table space 238

replace tables in multi-table table space 238

replacing data in a given partition 272

selected records, loading 272

SORTKEYS 277

STATISTICS 279

statistics, collecting 279

Unicode input, loading 281

UNICODE option 281

EXEC SQL statements 248

exit procedure 259

extracted keys, calculating number 235

failed job, recovering 269

field length
defaults 219

determining 219

field names, specifying 218

field position, specifying 220

field specifications 218

foreign keys
calculating 236

invalid values 245

format, specifying 204

free space 258

identity columns 239

improving parallel processing 250

improving performance 251

informational referential constraints 191

inline copy 261

inline COPY 249

inline statistics, collecting 261

input data set, specifying 196

input data, preparing 231

input fields, specifying 254

instructions 236

into-table spec 210

KEEPDICTIONARY option 247

keys
calculating 235

estimating number 251

LOAD INTO TABLE options 213

loading data from DL/I 247

LOB column 260

LOG, using on LOB table space 260

logging 203

map, calculating 236

multilevel security restriction on REPLACE option 191

multiple tables, loading 210

null values, setting criteria for 230

option descriptions 196, 213

ordering records 237

output 191

parallel index build
data sets used 256

Index X-15

LOAD utility (continued)
parallel index build (continued)

sort subtasks 257

sort work file, estimating size 257

partitions
copying 266

loading 214, 241

performance recommendations 250

preprocessing 231

primary key
duplicate values 245

missing values 245

REBUILD-pending status 258

resetting 267

RECOVER-pending status 258

recovering failed job 269

recycling version numbers 270

referential constraints 244

REORG-pending status
loading data in 258

REPLACE option 238

replacing data 198

restarting 262

restrictive states, compatibility 238

reusing data sets 203

row selection criteria 216

ROWID columns 239, 259

skipping fields 213

sort work file, specifying 204

statistics, gathering 199

syntax diagram 194

table space, copying 266

terminating 261

Unicode data 207

variable-length data 237

work data sets
declaring 208

estimating size 234

loading
catalog tables 231

data
DL/I 247

dynamic SQL 248

generated by REORG UNLOAD EXTERNAL 239

generated by UNLOAD 239

large amounts 191, 241

referential constraints 244

using a cursor, preparations 232

partitions 241

variable-length data 237

LOB
option of CHECK LOB utility 96

option of DSN1COPY utility 724

violations, resolving 99

LOB (large object)
checking 60

invalid 70

missing 70

option of DSN1PRNT utility 763

option of LISTDEF utility 179

orphan 70

out-of-synch 70

recovering 370

LOB column
checking data 64

definitions, completing 67

errors 70

LOB column (continued)
loading 260

LOB table space
copying 125, 151

LOAD LOG 260

REORG LOG 260

reorganizing 471

LOCALSITE
option of RECOVER utility 359

option of REPORT utility 523

LOCATE INDEX statement of REPAIR utility 501

LOCATE INDEXSPACE statement of REPAIR utility 501

LOCATE statement of REPAIR utility 499

LOCATE TABLESPACE statement of REPAIR utility 500

location name, naming convention xii

LOCATION, option of DSNJU003 utility 679

locking
BACKUP SYSTEM utility 50

CHECK DATA utility 72

CHECK INDEX utility 90

CHECK LOB utility 100

COPY utility 127

COPYTOCOPY utility 153

DIAGNOSE utility 164

EXEC SQL utility 169

LISTDEF utility 185

LOAD utility 264

MERGECOPY utility 292

MODIFY RECOVERY utility 301

MODIFY STATISTICS utility 309

OPTIONS utility 317

QUIESCE utility 326

REBUILD INDEX utility 345

RECOVER utility 380

REORG INDEX utility 409

REORG TABLESPACE utility 475

REPAIR utility 513

REPORT utility 527

RUNSTATS utility 564

STOSPACE utility 585

TEMPLATE utility 603

UNLOAD utility 654

utilities access description 38

log
active

data set status 700

printing available data sets 691

backward recovery 679

command history, printing 691

data set
active, renaming 688

archive, renaming 688

printing map 691

printing names 691

forward recovery 678

record structure, types 746

truncation 688

utilities
DSNJU003 (change log inventory) 671

DSNJU004 (print log map) 691

LOG
option of LOAD utility 203

option of REORG TABLESPACE utility 424

option of REPAIR utility 495

log data sets with errors, deleting 685

log map utility
See print log map utility

X-16 Utility Guide and Reference

log RBAs, resetting 735

logical partition, checking 84

logical unit name, naming convention xii

LOGONLY
option of RECOVER utility 357

option of RESTORE SYSTEM utility 540

LOGRANGES, option of RECOVER utility 359

LONGLOG
option of REORG INDEX utility 393

option of REORG TABLESPACE utility 429

LOW2KEY column, SYSCOLUMNS catalog table 569

LPL status 849

LRSNEND option of DSN1LOGP utility 743

LRSNSTART, option of DSN1LOGP utility 743

LUNAME, option of DSNJU003 utility 680

LUWID option of DSN1LOGP utility 746

M
MAP

option of DSN1CHKR utility 704

option of REPAIR utility 506

map, calculating, LOAD utility 236

MAPDDN, option of LOAD utility 208

MAPPINGTABLE, option of REORG TABLESPACE

utility 428

MAXERR, option of UNLOAD utility 616

MAXPRIME, option of TEMPLATE statement 598

MAXRO
option of REORG INDEX utility 392

option of REORG TABLESPACE utility 428

MAXROWS, option of DSN1COMP utility 713

MB, option of TEMPLATE statement 597

media failure, resolving 99

member name, naming convention xii

MEMBER option of DSNJU004 utility 691

MERGCOPY utility
DBD01 292

SYSCOPY 292

MERGECOPY utility
authorization 285

compatibility 292

COPY utility, when to use 291

data sets needed 288

DBD01 287

description 285

different types, merging restrictions 290

directory table spaces 292

examples
merged full image copy 293

merged incremental copy 292, 293

NEWCOPY NO 292, 293

NEWCOPY YES 293

TEMPLATE 293

full image copy, merging with increment image

copies 287

individual data sets 290

instructions 290

JES3 environment, making copies 291

lists, using 286

LOG information, deleting 291

LOG RBA inconsistencies, avoiding 291

NEWCOPY option 290

online copies, merging 290

option descriptions 286

output 285

MERGECOPY utility (continued)
output data set

local, specifying 288, 289

remote, specifying 288, 289

partitions, merging copies 287

phases of execution 285

restarting 292

restrictions 285

syntax diagram 286

SYSCOPY 287

SYSUTILX 287, 292

temporary data set, specifying 287, 289

terminating 292

type of copy, specifying 290

work data set, specifying 289

message
DSNU command 32

MERGECOPY utility 287

MODIFY RECOVERY utility 295

QUIESCE utility 321

RECOVER utility 351

REORG INDEX utility 385

MESSAGE, option of DIAGNOSE utility 162

MGMTCLAS, option of TEMPLATE statement 594

missing LOB 70

MIXED
option of LOAD utility 229

option of LOAD utility for CHAR 221

MIXED, option of LOAD utility for VARCHAR 222

MODELDCB, option of TEMPLATE statement 594

MODIFY RECOVERY utility
age criteria 297

authorization 295

compatibility 301

copies, deleting 300

data sets needed 298

date criteria 298

DBD, reclaiming space 300

description 295

examples
AGE 302

DATE 302

DELETE 302

deleting all SYSCOPY records 302

deleting SYSCOPY records by age 302

deleting SYSCOPY records by date 302

DSNUM 302

partitions 302

instructions 299

lists, using 297

option descriptions 296

partitions, processing 297

phases of execution 296

records, deleting 297

RECOVER-pending status, restriction 298

recovery index rows, deleting 300

REORG after adding column, improving performance 300

restarting 300

syntax diagram 296

SYSCOPY records, viewing 298

SYSCOPY, deleting rows 299

SYSLGRNX, deleting rows 299

SYSOBDS entries, deleting 300

terminating 300

version numbers, recycling 301

MODIFY STATISTICS utility
authorization 305

Index X-17

MODIFY STATISTICS utility (continued)
compatibility 309

data sets needed 308

description 305

examples
ACCESSPATH 310

AGE 310

DATE 310

deleting access path records by date 310

deleting history records by age 310

deleting index statistics 311

deleting space statistics records by age 310

SPACE 310

instructions 308

lists, using 306

option descriptions 306

output 305

restarting 309

statistics history, deleting 309

syntax diagram 306

terminating 309

monitoring
index organization 403

table space organization 403, 456

utility status 37

MOST, option of RUNSTATS utility 550, 556

multi-byte character sets 17

multilevel security with row-level granularity
authorization restrictions for online utilities 23

authorization restrictions for stand-alone utilities 666

LOAD REPLACE authorization restrictions 191

REORG TABLESPACE authorization restrictions 414

UNLOAD authorization restrictions 607

N
NACTIVE column, SYSTABLESPACE catalog table 569

NACTIVEF column, SYSTABLESPACE catalog table 569

naming convention, variables in command syntax x

NBRSECND, option of TEMPLATE statement 598

NEARINDREF column, SYSTABLEPART catalog table 571

NEAROFFPOSF column of SYSINDEXPART catalog table
catalog query to retrieve value for 457

description 575

NEWCAT, option of DSNJU003 utility 679

NEWCOPY, option of MERGECOPY utility 287

NEWLOG
option of DSNJU003 utility 673

statement 683

NGENERIC, option of DSNJU003 utility 680

NLEAF column, SYSINDEXES catalog table 570

NLEVELS column, SYSINDEXES catalog table 570

NOALIAS, option of DSNJU003 utility 680

NOAREORPENDSTAR, option of REPAIR utility 498

NOAUXCHKP, option of REPAIR utility 498

NOAUXWARN, option of REPAIR utility 498

NOCHECKPEND, option of REPAIR utility 498

NOCOPYPEND
option of LOAD utility 203

option of REPAIR utility 498

NODUMPS, option of DIAGNOSE utility 161

non-DB2 utilities
effect on real-time statistics 891

NOPAD
option of REORG TABLESPACE utility 432

option of UNLOAD utility 614

NOPASSWD, option of DSNJU003 utility 680

NORBDPEND, option of REPAIR utility 498

NORCVRPEND, option of REPAIR utility 498

normal-termination, option of TEMPLATE utility 595

NOSUBS
option of LOAD utility 207

option of UNLOAD utility 614

NOSYSREC, option of REORG TABLESPACE utility 424

not sign, problems with 435

notices, legal 901

NPAGES column, SYSTABLES catalog table 568

NPAGES column, SYSTABSTATS catalog table 568

NPAGESF column, SYSTABLES catalog table 568

NULL predicate 439, 639

NULLIF, option of LOAD utility 230

NUMCOLS
option of LOAD STATISTICS 201

option of REBUILD INDEX utility 336

option of REORG INDEX utility 395

option of RUNSTATS utility 551, 555

NUMCOLUMNS column, SYSCOLDIST catalog table 569

NUMPARTS
option of DSN1COMP utility 712

option of DSN1COPY utility 724

option of DSN1PRNT utility 765

O
OBID, option of DSN1LOGP utility 744

OBIDXLAT, option of DSN1COPY utility 727

object lists
adding related objects 180

creating 171

object status
advisory, resetting 849

restrictive, resetting 849

OBJECT, option of REPAIR utility 495

OFF, option of OPTIONS statement 316

OFFLRBA, option of DSNJU003 utility 681

OFFPOSLIMIT, option of REORG TABLESPACE utility 430

OFFSET
option of DSN1LOGP utility 747

option of REPAIR utility
DUMP statement 505

REPLACE statement 503

VERIFY statement 502

OLDEST_VERSION column, updating 301

online copies, merging 290

online utilities
description 3

invoking 15

option description, example 18

OPTIONS utility
altering return codes 317

authorization 313

compatibility 317

concurrency 317

description 313

errors, handling 315

examples
checking syntax 317

COPY 318

EVENT 318

forcing return code 0 318

ITEMERROR 318

LISTDEF 317

LISTDEF definition libraries 318

LISTDEFDD 318

X-18 Utility Guide and Reference

OPTIONS utility (continued)
examples (continued)

MODIFY RECOVERY 318

PREVIEW 317

SKIP 318

TEMPLATE 317

TEMPLATE definition libraries 318

TEMPLATEDD 318

execution phases 313

instructions 316

LISTDEF definition library, specifying 315

multiple statements, using 317

option descriptions 314

output 313

PREVIEW with LISTDEF 314

PREVIEW with TEMPLATE 314

restarting 317

syntax diagram 313

TEMPLATE definition library, specifying 315

terminating 317

order of recovering objects 365

ORGRATIO column of SYSLOBSTATS catalog table 576

orphan LOB 70

out-of-synch LOB 70

OUTDDN, option of REPAIR utility 507

P
page

checking 110

damaged, repairing 510

recovering 363

size, relationship to number of pages 766

PAGE
option of DSN1CHKR utility 705

option of DSN1LOGP utility 745

option of RECOVER utility 355

option of REPAIR utility on LOCATE statement 500

PAGE option
RECOVER utility 363

REPAIR utility 502

page set REBUILD-pending (PSRBD) status
description 344, 852

resetting 344, 852

PAGES, option of REPAIR utility 505

PAGESAVE column of SYSTABLEPART catalog table, use by

RUNSTATS 572

PAGESIZE
option of DSN1COMP utility 712

option of DSN1COPY utility 722

option of DSN1PRNT utility 763

panel
Control Statement Data Set Names 26

Data Set Names 25

DB2 Utilities 23, 24

PARALLEL
option of COPY utility 101, 109

option of RECOVER utility 356

parallel index build 340

parsing rules, utility control statements 16, 665

PART
option of CHECK DATA utility 60

option of CHECK INDEX utility 79

option of LOAD utility 214, 241

option of QUIESCE utility 323

option of REBUILD INDEX utility 334

option of REORG INDEX utility 390

PART (continued)
option of REORG TABLESPACE utility 423

option of REPAIR utility
LOCATE INDEX and LOCATE INDEXSPACE

statements 502

LOCATE TABLESPACE statement 500

SET TABLESPACE and SETINDEX options 498

option of REPAIR utility for LEVELID 496

option of RUNSTATS utility 549, 551, 555

option of UNLOAD utility 609, 642

partition, copying 116

partitioned table space
loading 241

replacing a partition 241

unloading 642

partitioned table spaces, reorganizing 470

partitions
concatenating copies with UNLOAD utility 644

rebalancing with REORG 464

PARTLEVEL, option of LISTDEF utility 178

PASSWORD, option of DSNJU003 utility 680

pattern-matching characters, LISTDEF 181, 182

patterns
advanced information 439, 639

PCTFREE, option of DSN1COMP utility 713

PCTPRIME, option of TEMPLATE statement 598

PCTROWCOMP column, SYSTABLES catalog table 568

pending status, resetting 849

PERCACTIVE column of SYSTABLEPART catalog table, use by

RUNSTATS 572

PERCDROP column of SYSTABLEPART catalog table, use by

RUNSTATS 572

performance
affected by

I/O activity 457

table space organization 457

COPY utility 124

LOAD utility, improving 250

monitoring with the STOSPACE utility 584

RECOVER utility 376

REORG INDEX utility, improving 406

REORG TABLESPACE utility, improving 466

RUNSTATS utility 562

phase restart, description 41

phases of execution
BACKUP SYSTEM utility 47

CHECK DATA utility 57

CHECK INDEX utility 77

CHECK LOB utility 95

COPY utility 102

COPYTOCOPY utility 142

description 38

EXEC SQL utility 167

LISTDEF utility 171

LOAD utility 191

MERGECOPY utility 285

MODIFY RECOVERY utility 296

MODIFY STATISTICS utility 305

OPTIONS utility 313

QUIESCE utility 321

REBUILD INDEX utility 331

RECOVER utility 352

REORG INDEX utility 386

REORG TABLESPACE utility 415

REPAIR utility 493

REPORT utility 519

RESTORE SYSTEM utility 539

Index X-19

phases of execution (continued)
RUNSTATS utility 546

STOSPACE utility 581

TEMPLATE utility 587

UNLOAD utility 607

PIECESIZ
option of DSN1COPY utility 726

option of DSN1PRNT utility 764

point-in-time recovery
options 354

performing 369, 371

planning for 368

PORT, option of DSNJU003 utility 680

POSITION
option of LOAD utility 220

option of UNLOAD utility 623

PQTY column
SYSINDEXPART catalog table 575

SYSTABLEPART catalog table, use by RUNSTATS 572

predicate
basic 434

BETWEEN 435

IN 437

LIKE 437

NULL 439

overview 434

predicates
basic 636

BETWEEN 636

IN 637

LIKE 637

NULL 639

PREFORMAT
option of LOAD PART 214

option of LOAD utility 196, 251

option of REORG INDEX utility 397

option of REORG TABLESPACE utility 444

option of REORG utility 251

preformatting active logs
data sets required 669

description 669

example 669

output 670

PREVIEW
option of OPTIONS utility 314

using with LISTDEF utility 183

preview mode 316

PREVIEW mode, executing utilities in 602

PRINT
option of DSN1COPY utility 725

option of DSN1PRNT utility 765

print log map utility (DSNJU004)
JCL requirements 692

SYSIN stream parsing 692

privilege
description 3

granting 4

revoking 4

privilege set of a process 3

process, privilege set of 3

PSEUDO_DEL_ENTRIES column of SYSINDEXPART catalog

table 575

pseudo-deleted keys 575

PUNCHDDN
option of REORG TABLESPACE utility 443

option of UNLOAD utility 611

PUNCHDSN, option of DSNU CLIST command 29

Q
qualifier-name, naming convention xii

quiesce point, establishing 321

QUIESCE utility
authorization 321

catalog and directory objects 324

compatibility 326

data sets needed 324

description 321

examples
list 328

quiesce point for three table spaces 327

table space set 328

WRITE NO 329

history record, printing 691

instructions 324

lists 325

lists, using 322

option descriptions 322

output 321

partitions 323

phases of execution 321

quiesce point, establishing 325

recovery preparations 324

restarting 326

restrictive states, compatibility 325

syntax diagram 322

table space set 323

table space, specifying 322

terminating 326

write to disk, failure 326

writing changed pages to disk 323

R
RBA (relative byte address), range printed by print log

map 693

RBAEND, option of DSN1LOGP utility 743

RBASTART, option of DSN1LOGP utility 743

RBDP
See REBUILD-pending (RBDP) status

RBDP (REBUILD-pending) status
description 344, 378

resetting 378

RBDP* (REBUILD-pending star) status, resetting 344

RC0, option of OPTIONS statement 316

RC4, option of OPTIONS statement 316

RC8, option of OPTIONS statement 316

RCPYDSN1, option of DSNU CLIST command 29

RCPYDSN2, option of DSNU CLIST command 29

REAL TIME STATS
field of panel DSNTIPO 871

real-time statistics
accuracy 894

for DEFINE NO objects 891

for read-only objects 891

for TEMP table spaces 891

for work file table spaces 891

improving concurrency 893

in data sharing 893

when DB2 externalizes 883

real-time statistics tables
altering 870

contents 871

creating 870

description 869

X-20 Utility Guide and Reference

real-time statistics tables (continued)
effect of dropping objects 891

effect of mass delete operations 893

effect of SQL operations 892

effect of updating partitioning keys 892

establishing base values 871

INDEXSPACESTATS 870

recovering 893

setting up 869

setting update interval 871

starting 871

TABLESPACESTATS 870

REAL, option of UNLOAD utility 632

REBALANCE, option of REORG TABLESPACE utility 423

rebinding, recommended after LOAD 261

REBUILD INDEX utility
authorization 331

building indexes in parallel 340

catalog indexes 344

compatibility 345

control statement, creating 339

data sets needed 338, 339

description 331

dynamic DFSORT and SORTDATA allocation,

overriding 343

effect on real-time statistics 888

effects 346

examples
all indexes in a table space, rebuilding 348

index partitions, rebuilding 347

inline statistics 348

multiple partitions, rebuilding 347

partitions, rebuilding all 348

restrictive states, condition 348

single index, rebuilding 347

index partitions 340

instructions 339

option descriptions 333

performance recommendations 340

phases of execution 331

prerequisites 337

REBUILD-pending status, resetting 344

recoverability of rebuilt index 344

recycling version numbers 346

restarting 345

several indexes
performance 340

sort subtasks for parallel build 343

sort subtasks for parallel index build, determining

number 343

sort work file size 343

syntax diagram 332

terminating 345

work data sets, calculating size 338

REBUILD-pending (RBDP) status
description 344, 852

resetting 378, 852

REBUILD-pending (RDBP) status
set by LOAD utility 267

REBUILD-pending star (RBDP*) status, resetting 344

REBUILD, option of REPAIR utility 507

RECDS, option of DSNU CLIST command 29

records, loaded, ordering 237

RECOVER utility
authorization 351

catalog and directory objects 365

catalog table spaces, recovering 369

RECOVER utility (continued)
CHECK-pending status, resetting 374

compatibility 381

compressed data, recovering 375

concurrent copies, improving recovery performance 356

damaged media, avoiding 379

data sets needed 360

description 351

DFSMShsm data sets 377

effects 382

error range, recovering 364

examples
concurrent copies 383

CURRENTCOPYONLY 383

different tape devices 383

DSNUM 362, 382

error range 364

index image copy, recovering to 383

last image copy, recovering to 382

LIST 384

list of objects, recovering in parallel 383

list of objects, recovering to point in time 384

LRSN, recovering to 383

multiple table spaces 361

PARALLEL 383

partition, recovering 382

partitions 362

point-in-time recovery 383

single table space 361

table space, recovering 382

TAPEUNITS 383

TOLASTCOPY 382

TOLASTFULLCOPY 383

TOLOGPOINT 383

TORBA 361

fallback 379

hierarchy of dependencies 367

incremental image copies 363

input data sets 361

instructions 361

JES3 environment 378

lists of objects 362

lists, using 354

LOB data 370

LOGAPPLY phase, optimizing 376

mixed volume IDs 380

non-DB2 data sets 364

option descriptions 354

order of recovery 367

output 351

pages, recovering 355, 363

parallel recovery 356, 362

partitions, recovering 355, 363

performance recommendations 376

phases of execution 352

point-in-time recovery
performing 369

planning for 368

point-time-recovery
planning for 373

RBA, recovering to 356

rebalancing partitions with REORG 372

REBUILD-pending status 351

recovery status 372

restarting 380

restriction 351

skipping SYSLGRNX during LOGAPPLY phase 359

Index X-21

RECOVER utility (continued)
specific data set, skipping 375

syntax diagram 353

table space sets 351

TABLESPACE option 123

tape mounts, retaining 379

terminating 380

RECOVER-pending (RECP) status
description 378, 853

resetting 267, 378, 853

recovery
catalog objects 365

compressed data 375

consistency, ensuring 374

data set, partition 363

database
LOB table space 123

REBUILD INDEX utility 331

RECOVER utility 351

REORG makes image copies invalid 115

directory objects 365

error range 364

image copies 378

JES3 environment 378

page 363

partial 371

preparing for with copies 123

real-time statistics tables 893

reporting information 525

table space
description 361

multiple spaces 361

recovery information, reporting 521

recovery log
backward 679

forward 678

RECOVERY, option of REPORT utility 521

RECOVERYDDN
option of COPY utility 106

option of COPYTOCOPY utility 147

option of LOAD utility 199, 249

option of MERGECOPY utility 288

option of REORG TABLESPACE utility 425, 465

RECOVERYSITE
option of RECOVER utility 359

option of REPORT utility 523

RECP
See RECOVER-pending (RECP) status

referential constraint
loading data 244

violations, correcting 246

REFP
See REFRESH-pending (REFP) status

REFRESH-pending (REFP) status
description 854

resetting 854

remote site recovery 117

REORG INDEX utility
access, allowing 390

access, specifying 404

authorization 385

catalog updates 411

CHECK-pending status, compatibility 399

compatibility 409

control statement, creating 402

data set
shadow, determining name 401

REORG INDEX utility (continued)
data sets

defintions, changing 405

needed 399

shadow 402

shadow, estimating size 402

unload, specifying 397

user-managed 401

data-sharing considerations 398

description 385

drain behavior, specifying 393

DRAIN_WAIT, when to use 406

examples
HISTORY 411

KEYCARD 411

LIST 412

MAXRO 412

OPTIONS 412

REPORT 411

SHRLEVEL 411

single index 411

STATISTICS 411

TEMPLATE 412

UNLOAD PAUSE 411

UPDATE 411

WORKDDN 412

fallback recovery, considerations 405

inline statistics
gathering 395

reporting 395

instructions 402

interrupting 405

lists, using 389

long logs, actions for 393

no action 394

option descriptions 389

output 385, 410

partitions, specifying 390

performance 406

phases of execution 386

preformatting pages 397

REBUILD-pending status, compatibility 398

RECOVER-pending status, compatibility 398

region size 398

report only 394

restart-pending status, compatibility with SHRELEVEL

CHANGE 398

restarting 407

retries, specifying maximum number 392

shadow data sets, defining 401

shadow objects 401

SHRLEVEL CHANGE
log processing 404

when to use 406

SHRLEVEL option 404

slow log processing, operator actions 404

switch methodology, specifying 394

SWITCH phase deadline, specifying 391

syntax diagram 387

terminating 407

time for log processing, specifying 392

time-out condition, actions for 394

unloading data, action after 394

version numbers, recycling 411

versions, effect on 411

waiting time when draining for SQL 392

X-22 Utility Guide and Reference

REORG TABLESPACE utility
access, specifying 425, 458

actions after running 479

authorization 414

building indexes in parallel 467

catalog and directory
considerations 445

determining when to reorganize 461

limitations for reorganizing 462

phases for reorganizing 462

reorganizing 461

compatibility
with all other utilities 475

with CHECK-pending status 449

with REBUILD-pending status 448

with RECOVER-pending status 448

with REORG-pending status 449

compression dictionary
building 463

not building new 439

control statement, creating 456

CURRENT DATE option
decrementing 436

incrementing 436

data set
copy, specifying 425

discard, specifying 443

shadow, determining name 453

unload 460

data sets
shadow 455

unload 450

unload, specifying name 443

work 452

data sets needed 449, 456

deadline for SWITCH phase, specifying 427

description 413

DFSORT messages, specifying destination 452

drain behavior, specifying 429

DRAIN_WAIT, when to use 467

DSNDB07 database, restriction 413

dynamic DFSORT and SORTDATA allocation,

overriding 463

effects 480

error in RELOAD phase 470

examples
conditional reorganization 485

DEADLINE 483

deadline for SWITCH phase, specifying 483

determining whether to reorganize 484

discarding records 490, 491

DRAIN_WAIT 486

draining table space 486

LONGLOG 483

mapping table, using 489

maximum processing time, specifying 483

parallel index build 482

partition, reorganizing 481

range of partitions, reorganizing 483

read-write access, allowing 482

rebalancing partitions 464

RETRY 486

RETRY_DELAY 486

sample REORG output for conditional REORG 485

sample REORG output for draining table space 489

sample REORG output that shows if REORG limits

have been met 485

REORG TABLESPACE utility (continued)
examples (continued)

SCOPE PENDING 492

SHRLEVEL CHANGE 482

sort input data set, specifying 481

statistics, updating 483, 484

table space, reorganizing 481

unload data set, specifying 481

failed job, recovering 473

fallback recovery considerations 460

indexes, building in parallel 467

inline copy 465

instructions 456

interrupting temporarily 463

lists, using 422

LOB table space
reorganizing 471

restriction 416

log processing, specifying max time 428

logging, specifying 424

long logs, action taken 429

LONGLOG action, specifying interval 430

mapping table
example 446

preventing concurrent use 446

specifying name 428

using 445

multilevel security restrictions 414

option descriptions 422

output 413, 479

partitioned table spaces, reorganizing 470

partitions, REORG-pending status considerations 464

performance recommendations
after adding column 300

general 466

phases of execution
BUILD phase 415

BUILD2 phase 415

LOG phase 415

RELOAD phase, description 415

RELOAD phase, error 470

SORT phase 415

SORTBLD phase 415

SWITCH phase 415

UNLOAD phase 415

UTILINIT phase 415

UTILTERM phase 415

preformatting pages 444

processing encrypted data 446

REBALANCE
restrictions 446

rebalancing partitions 464

reclaiming space from dropped tables 460

records, discarding 444

recycling version numbers 480

region size recommendation 445

RELOAD phase
counting records loaded 471

RELOAD phase, encountering an error in 470

reload, skipping 460

restarting 473

restriction 413

sample generated LOAD statement 433

scope, specifying 423

segmented table spaces, reorganizing 470

selection condition 434

shadow data sets, defining 453

Index X-23

REORG TABLESPACE utility (continued)
shadow objects 452

SHRLEVEL
specifying 458

user-managed data sets with 452

SHRLEVEL CHANGE
compatibility with restart-pending status 448

log processing 459

performance implications 466

when to use 466

slow processing, operator actions 459

sort device type, specifying 443

sort subtasks
allocation 469

determining number 469

sort work file, estimating size 469

statistics, specifying 440

switch methodology, specifying 430

syntax diagram 417

temporary data sets, specifying number 444

time to wait for drain, specifying 428

time-out, specifying action 430

timestamps
decrementing 437

incrementing 437

unload, specifying action 431

unloading data, methods of 470

versions, effect on 480

REORG utility
See also REORG INDEX utility

See also REORG TABLESPACE utility

compressing data 247

effect on real-time statistics 886

KEEPDICTIONARY option 247

REORG-pending (REORP) status
description 854

resetting 854

REORG, option of DSN1COMP utility 713

reorganizing
indexes 403

table spaces 403

table spaces, determining when to reorganize 456

REORP
See REORG-pending (REORP) status

REPAIR utility
authorization 493

before running
copying table space 508

restoring indexes 508

catalog, repairing 511

CHECK-pending status 516

commit point for LOCATE statement 500

compatibility 513

control statement, creating 509

damaged page, repairing 510

data sets needed 508

DBD statement
declared temporary table 506

description 506

option descriptions 506

syntax diagram 506

using 510

declared temporary table compatibility 4, 506

DELETE statement
description 504

syntax diagram 504

DELETE statement, using with VERIFY 511

REPAIR utility (continued)
description 493

DUMP statement
description 504

option descriptions 505

syntax diagram 505

examples
damaged data, replacing 516

DBDs 517

nonindexed row, removing 516

orphan row, repairing 517

restrictive states, resetting 517

versions, updating 518

instructions 509

LOCATE INDEX statement 501

LOCATE INDEXSPACE statement 501

LOCATE statement
description 499

syntax diagram 499

LOCATE TABLESPACE KEY
example messages 511

restricition for multiple-column indexes 511

LOCATE TABLESPACE statement 500

logging, specifying 495

option descriptions 495

output 493, 515

output data sets
calculating size 509

description 509

partitions 496

phases of execution 493

processing encrypted data 508

REPLACE statement
description 503

option descriptions 503

syntax diagram 503

REPLACE statement, using with VERIFY 511

resetting states, options 497

restarting 513

rows, locating by key 511

SET INDEX statement
description 496

option descriptions 497

syntax diagram 497

SET INDEXSPACE statement
description 496

option descriptions 497

syntax diagram 497

SET TABLESPACE statement
description 496

option descriptions 497

syntax diagram 497

status, resetting 509, 510

syntax diagram 494

terminating 513

VERIFY statement
description 502

option descriptions 502

syntax diagram 502

VERIFY statement, using with REPLACE and

DELETE 511

version information
updating on the same system 496

version information, updating when moving to another

system 511

warning 508

X-24 Utility Guide and Reference

REPLACE
option of LOAD PART 215

option of LOAD utility 198

statement of REPAIR utility
description 503

used in LOCATE block 499

replacing data in a table space 238

REPORT
option of LOAD STATISTICS 201

option of REBUILD INDEX utility 335

option of REORG INDEX utility 395

option of REORG TABLESPACE utility 442

option of RUNSTATS utility 552, 556

REPORT utility
authorization 519

catalog and directory 526

compatibility 527

control statement, creating 524

data sets needed 524

description 519

examples
recovery information for index 537

recovery information for partition 537

recovery information for table space 534

referential relationships 535

TABLESPACESET 535

instructions 525

option descriptions 521

output 519

phases of execution 519

RECOVERY
output 528

sample output 525, 529

recovery information, reporting 521

restarting 527

syntax diagram 520

table space recovery information 525

TABLESPACESET
output 527

sample output 527

terminating 527

REPORTONLY
option of COPY utility 108

option of REORG INDEX utility 394

option of REORG TABLESPACE utility 431

REPORTONLY, option of COPY utility 122

RESET
option of DSN1COPY utility 727

option of REPAIR utility 503

resetting
pending status

advisory 849

auxiliary CHECK-pending (ACHKP) 849

CHECK-pending (CHKP) 850

COPY-pending 851

group buffer pool RECOVER-pending (GRECP) 852

informational COPY-pending (ICOPY) 123, 852

page set REBUILD-pending (PSRBD) 852

REBUILD-pending (RBDP) 344

REBUILD-pending (RBDP), for the RECOVER

utility 378

REBUILD-pending (RBDP), summary 852

RECOVER-pending (RECP), for the RECOVER

utility 378

RECOVER-pending (RECP), summary 853

REORG-pending (REORP) 854

restart-pending 855

resetting (continued)
refresh status, REFRESH-pending (REFP) 854

warning status, auxiliary warning (AUXW) 850

RESPORT, option of DSNJU003 utility 681

restart
conditional control record

reading 701

sample 701

restart-pending (RESTP) status
description 855

resetting 855

RESTART, option of DSNU CLIST command 30

restarting
performing first two phases only 679

problems
cannot restart REPAIR 513

cannot restart REPORT 527

utilities
BACKUP SYSTEM 50

CHECK DATA 72

CHECK INDEX 90

CHECK LOB 99

COPY 126

COPYTOCOPY 153

COPYTOCOPY utility 153

creating your own JCL 43

current restart 41

data set name 44

data sharing 39

DIAGNOSE 164

EXEC SQL 168

EXEC statement 36

JCL, updating 42

LISTDEF 185

LISTS 44

LOAD 262

MERGECOPY 292

methods of restart 42

MODIFY RECOVERY utility 300

MODIFY STATISTICS 309

OPTIONS 317

out-of-space condition 43

phase restart 41

QUIESCE 326

REBUILD INDEX 345

RECOVER 380

REORG INDEX 407

REORG TABLESPACE 472, 473

RESTORE SYSTEM 542

RUNSTATS 564

STATISTICS keyword 45

STOSPACE 585

TEMPLATE 603

templates 43

UNLOAD 654

using DB2I 42

using the DSNU CLIST command 42

utility statements 43

UTPROC 34

volume serial 44

RESTORE SYSTEM utility
actions after running 542

authorization 539

compatibility 542

creating system point in time for 677

data sets needed 541

data sharing environment 541

Index X-25

RESTORE SYSTEM utility (continued)
description 539

DISPLAY UTILITY command 542

examples
LOGONLY 543

recovering a system 542

instructions 541

option descriptions 540

output 539

phases of execution 539

preparation 541

restarting 542

syntax diagram 540

terminating 542

RESTP
See restart-pending (RESTP) status

restrictive status
resetting 509, 510, 849

RESUME, option of LOAD PART 214

RESUME, option of LOAD utility 197

RETPD, option of TEMPLATE statement 594

RETRY
option of CHECK INDEX utility 80

option of REORG INDEX utility 392

option of REORG TABLESPACE utility 428

RETRY_DELAY
option of CHECK INDEX utility 80

return code, altering 317

return code, CHANGELIMIT 122

REUSE
option of LOAD PART 215

option of LOAD utility 203

option of REBUILD INDEX 334

option of RECOVER utility 356

option of REORG INDEX utility 390

option of REORG TABLESPACE utility 422

RI, option of LISTDEF utility 178

RID
option of DSN1CHKR utility 704

option of DSN1LOGP utility 745

option of REPAIR utility on LOCATE statement 500

RNPRIN01
data set of RUNSTATS utility 19

purpose 19

ROWID
option of LOAD utility 229

option of REPAIR utility on LOCATE statement 501

option of UNLOAD utility 634

ROWID columns
generating 259

loading 239, 259

ROWLIMIT, option of DSN1COMP utility 713

running online utilities
data sharing environment 39

JCL 36

RUNSTATS utility
access, specifying 551, 556

actions after running 576

after LOAD 261

aggregation of statistics, specifying 553, 558

assessing table spaces 561

authorization 545

catalog table spaces
processing 562

sample output 562

catalog table updates 566

COLGROUP option 545

RUNSTATS utility (continued)
column frequency statistics, gathering 550

column information, gathering 549

compatibility 564

control statement, creating 560

data sets needed 559

deciding when to run 561

description 545

device type for DFSORT, specifying 553, 557

distribution statistics for column groups 561

effect on real-time statistics 889

examples
collecting distribution statistics 578

generating a report 577

invalidating statements in the dynamic statement

cache 579

reporting statistics only 577

updating access path statistics 577

updating all statistics 577

updating catalog and history statistics 578

updating frequency statistics 578

updating index statistics 577

updating key column statistics 578

updating statistics for a partition 578

updating statistics for a table space 577

updating statistics for several tables 577

updating statistics while allowing changes 576

updating statistics while not allowing changes 577

grouping columns 550

HISTORY option 563

index frequency statistics, gathering 551

INDEX option 545

index partitions, gathering statistics 551

index partitions, specifying 555

INDEX syntax diagram 554

instructions 561

key column combinations, gathering information 551

large partitioned table spaces 566

lists, using 548, 555

LOB table space, space statistics 564

option descriptions
options for RUNSTATS INDEX 554

options for RUNSTATS TABLESPACE 548

output 545, 565, 566

partitioned table space, updating statistics 562

performance recommendations 562

phases of execution 546

preparation 558

reporting information 552, 556

restarting 564

sample of columns, gathering statistics 549

SAMPLE option 549

sort work data sets, specifying number 553, 557

space columns updated 570

table space partitions, gathering statistics 549

TABLESPACE option 545

TABLESPACE syntax diagram 547

terminating 564

updating catalog information 552, 556

work data sets
using for frequency statistics 563

S
SAMPLE

option of LOAD STATISTICS 200

option of REORG TABLESPACE utility 441

X-26 Utility Guide and Reference

SAMPLE (continued)
option of RUNSTATS utility 549

option of UNLOAD utility 623

scanning rules, utility control statements 16, 665

SCOPE
option of CHECK DATA utility 60, 68

option of REBUILD INDEX utility 334

option of REORG TABLESPACE utility 423

SCOPE PENDING, CHECK DATA after LOAD utility 269

SECQTYI column
SYSINDEXPART catalog table 576

SYSTABLEPART catalog table, use by RUNSTATS 572

security
multilevel with row-level granularity

authorization restrictions for online utilities 23

authorization restrictions for stand-alone utilities 666

security, data sets 23

SEGMENT, option of DSN1COPY utility 723

segmented table spaces, reorganizing 470

SELECT statement
list

maximum number of elements 789

SYSIBM.SYSTABLESPACE, example 584

select-statement, option of EXEC SQL utility 168

SELECT, option of DSN1SDMP utility 774

SELECT2, option of DSN1SDMP utility 778

semicolon
embedded 863

SET INDEX statement of REPAIR utility 496

SET INDEXSPACE statement of REPAIR utility 496

SET TABLESPACE statement of REPAIR utility 496

setting SQL terminator
DSNTIAD 862

shadow data sets
CHECK INDEX utility 82

defining
REORG INDEX utility 402

REORG TABLESPACE utility 455

estimating size, REORG INDEX utility 402

shift-in character, LOAD utility 218

shift-out character, LOAD utility 218

SHRLEVEL
option of CHECK INDEX utility 79

option of COPY utility
CHANGE 111, 119

REFERENCE 111, 119

option of LOAD utility 197

option of REORG INDEX utility 390

option of REORG TABLESPACE utility 425

option of RUNSTATS utility 551, 556

option of UNLOAD utility 616

SIZE, option of DSNUPROC utility 34

SKIP, option of OPTIONS statement 315

SMALLINT
option of LOAD utility 226

option of UNLOAD utility 629

SORTDATA, option of REORG TABLESPACE utility 424

SORTDEVT
option of CHECK DATA utility 62

option of CHECK INDEX utility 80

option of CHECK LOB utility 97

option of LOAD utility 209

option of REBUILD INDEX 335

option of REORG INDEX 396

option of REORG TABLESPACE utility 443

option of RUNSTATS utility 553, 557

SORTKEYS
option of LOAD utility 204, 251

SORTNUM
option of CHECK DATA utility 63

option of CHECK INDEX utility 81

option of CHECK LOB utility 97

option of LOAD utility 209

option of REBUILD INDEX 335

option of REORG INDEX 396

option of REORG TABLESPACE utility 444

option of RUNSTATS utility 553, 557

SORTOUT
data set of CHECK DATA utility 19

data set of LOAD utility, estimating size 234

purpose 19

SORTWKnn data set 19

space
DBD, reclaiming 300

unused, finding for nonsegmented table space 457

SPACE
option of MODIFY STATISTICS utility 307

option of REORG TABLESPACE utility 442

option of TEMPLATE utility 597

SPACE column
analyzing values 584

SYSTABLEPART catalog table, use by RUNSTATS 572

SPACE column of SYSINDEXPART catalog table 575

space statistics 570

SPACEF column
SYSINDEXPART catalog table 575

SYSTABLEPART catalog table, use by RUNSTATS 572

SQL (Structured Query Language)
limits 787

statement terminator 862

SQL statement terminator
modifying in DSNTEP2 and DSNTEP4 864

modifying in DSNTIAD 862

SQL terminator, specifying in DSNTEP2 and DSNTEP4 864

SQL terminator, specifying in DSNTIAD 862

SQTY column
SYSINDEXPART catalog table 575

SYSTABLEPART catalog table, use by RUNSTATS 572

ST01WKnn data set 20

STACK, option of TEMPLATE statement 599

stand-alone utilities
control statement, creating 665

description 3

invoking 665

JCL EXEC PARM, using to specify options 665

multilevel security with row-level granularity, effects 666

specifying options 665

START TRACE command, option of DSN1SDMP utility 774

STARTIME, option of DSNJU003 utility 676

STARTRBA, option of DSNJU003 utility 674

state, utility execution 37

statistics
deciding when to gather 561

gathering 545

STATISTICS
option of LOAD utility 199

option of REBUILD INDEX 335

option of REORG INDEX utility 395

option of REORG TABLESPACE utility 440

statistics history
deleting specific entries 309

reasons to delete 309

statistics, space utilization and the REORG INDEX utility 403

Index X-27

status
CHECK-pending, resetting 267

COPY-pending, resetting 266

displaying 849

option of TEMPLATE statement 595

page set REBUILD-pending (PSRBD) 344

REBUILD-pending (RBDP) 344

REBUILD-pending star (RBDP*) 344

status of utility
active 37

stopped 37

terminated 38

STATWK01 data set 20

STOGROUP, option of STOSPACE utility 582

stopped status, of a utility 37

stopping, state of utility execution 38

storage group, DB2
disk space 584

storage allocated 584

STORCLAS, option of TEMPLATE statement 594

stored procedure
DSNACCAV 816

DSNACCOR 826

DSNACCQC 808

DSNUTILS 795

DSNUTILU 805

STOSPACE utility
authorization 581

availability of objects, ensuring 583

catalog updates 583

compatibility 585

control statement, creating 583

data sets needed 582

description 581

examples
all storage groups, updating space values 586

one storage group, updating space values 585

several storage groups, updating space values 586

stogroup names 586

instructions 583

monitoring disk space for a storage group 584

option descriptions 582

output 581, 585

phases of execution 581

restarting 585

statistical information, obtaining 583

syntax diagram 582

terminating 585

user-defined spaces, processing 584

STPRIN01 data set 20

string, naming convention xii

strings
advanced information 439, 639

STRIP
option of LOAD utility

CHAR data type 221, 254

GRAPHIC data type 224, 254

GRAPHIC EXTERNAL data type 225

VARCHAR data type 222, 254

VARGRAPHIC data type 226, 254

STRIP, option of UNLOAD utility 626, 628

STRTLRSN, option of DSNJU003 utility 676

STTRACE, option of DSN1SDMP utility 776

SUBMIT, option of DSNU CLIST command 30

substring notation, TEMPLATE utility 591

subsystem
backing up 47

subsystem (continued)
restoring 539

subsystem, naming convention xii

SUBTYPE, option of DSN1LOGP utility 746

SUMMARY
option of DSN1LOGP utility 748

option of REPORT utility 523

SWmmWKnn data set 20

syntax diagram
BACKUP SYSTEM utility 48

change log inventory utility (DSNJU003) 671

CHECK DATA utility 59

CHECK INDEX utility 78

CHECK LOB utility 96

COPY utility 103

COPYTOCOPY utility 142

DIAGNOSE utility 159

DSN1CHKR utility 703

DSN1COMP utility 711

DSN1COPY utility 722

DSN1LOGP utility 742

DSN1PRNT utility 762

DSN1SDMP utility 773

DSNJU003 utility 671

DSNJU004 utility 691

DSNU CLIST command 27

DSNUPROC JCL procedure 33

DSNUTILS stored procedure 798, 806

EXEC SQL utility 167

how to read xiii

LISTDEF utility 172

LOAD utility 194

MERGECOPY utility 286

MODIFY RECOVERY utility 296

MODIFY STATISTICS utility 306

OPTIONS statement 313

print log map utility 691

QUIESCE utility 322

REBUILD INDEX utility 332

RECOVER utility 353

REORG INDEX utility 387

REORG TABLESPACE utility 417

REPAIR utility 494

REPORT utility 520

RESTORE SYSTEM utility 540

RUNSTATS INDEX 554

RUNSTATS TABLESPACE 547

STOSPACE utility 582

TEMPLATE statement 588

UNLOAD utility 608

SYSCOPY
catalog table, information from REPORT utility 525

data set 20

directory table space, MERGECOPY restrictions 287, 292

option of DSN1LOGP utility 744

SYSCOPY, deleting rows 299

SYSDISC data set
description for LOAD and REORG 20

LOAD utility, estimating size 234

SYSERR data set
description for CHECK DATA and LOAD 20

LOAD utility, estimating size 234

SYSIBM.SYSCOPY
ICBACKUP column 117

ICUNIT column 117

LOAD, effect of 270

SYSIN data set 20

X-28 Utility Guide and Reference

SYSIN DD statement, built by CLIST 32

SYSLGRNX directory table, information from REPORT

utility 525

SYSLGRNX, deleting rows 299

SYSMAP data set
description 20

estimating size 234

SYSOBDS entries, deleting 300

SYSPITR, option of DSNJU003 utility 677

SYSPRINT data set 20

SYSPRINT DD statement, built by CLIST 32

SYSPUNCH data set 21

SYSREC data set 21

SYSTEM
option of DSNU CLIST command 30

option of DSNUPROC utility 34

system data sets, renaming 687

system monitoring
index organization 403

table space organization 403, 456

system point in time, creating 677

system, limits 787

SYSTEMPAGES, option of COPY utility 110

SYSUT1 data set 21

SYSUT1 data set for LOAD utility, estimating size 234

SYSUTILX directory table space
MERGECOPY restrictions 287, 292

order of recovering 365

T
table

dropping, reclaiming space 460

exception, creating 64

multiple, loading 210

replacing 238

replacing data 238

TABLE
option of LISTDEF utility 177

option of LOAD STATISTICS 200

option of REORG TABLESPACE utility 440

option of RUNSTATS utility 549

table name, naming convention xii

table space
assessing status with RUNSTATS 561

checking 57

checking multiple 68

determining when to reorganize 403, 456

merging copies 285

mixed volume IDs, copying 124

naming convention xii

nonsegmented, finding unused space 457

partitioned, updating statistics 562

reorganizing
determining when to reorganize 456

using SORTDATA option of REORG utility 457

utilization 403

segmented
copying 120

LOAD utility 238

status, resetting 509

TABLESPACE
option of CHECK DATA utility 60

option of CHECK INDEX utility 79

option of CHECK LOB utility 96

option of COPY utility 105

option of COPYTOCOPY utility 144

TABLESPACE (continued)
option of LISTDEF utility 176

option of MERGECOPY utility 286

option of MODIFY RECOVERY utility 297

option of MODIFY STATISTICS utility 306

option of QUIESCE utility 322

option of REBUILD INDEX utility 333

option of RECOVER utility 354

option of REORG TABLESPACE utility 422

option of REPAIR utility
general description 495

on LOCATE TABLESPACE statement 500

on SET TABLESPACE and SET INDEX statements 497

option of REPORT utility 521

option of RUNSTATS utility 548, 555

option of UNLOAD utility 609

TABLESPACES, option of LISTDEF utility 174

TABLESPACESET
option of QUIESCE utility 323

option of REPORT utility 524

TABLESPACESTATS
contents 871

real-time statistics table 870

TAPEUNITS
option of COPY utility 110

option of RECOVER utility 357

TEMPLATE library 600

TEMPLATE library, specifying 317

TEMPLATE utility
authorization 587

BSAM buffers, specifying number 594

compatibility 603

data set names
convention for specifying 590

creating 601

guidelines 601

data set size
controlling 601

default space calculations 602

letting DB2 estimate 601

description 587

devices
specifying 594

specifying number 595

disposition of data set
defaults for dynamically allocated data sets for new

utility executions 596

defaults for dynamically allocated data sets on

RESTART 596

specifying 595

examples
basic template 603

COPY job with LISTDEF and TEMPLATE 600

COPY job with TEMPLATE and LISTDEF 605

creating a GDG data set 605

GDG data set, copying to tape 605

LOB objects, unloading 606

specifying an expiration date 604

specifying disposition 605

specifying space parameters 604

using default size 604

variable substring notation 604

expiration date for data set, specifying 594

GDG base, specifying number of entries 595

GDGs, working with 603

instructions 600

model data set, specifying 594

Index X-29

TEMPLATE utility (continued)
operations 600

option descriptions 590

LRECL 593

RECFM 594

SUBSYS 593

output 587

phases of execution 587

PREVIEW mode, executing in 602

previewing data set names 602

restarting 603

retention period for data set, specifying 594

scope of control statement 600

SMS data class, specifying 594

SMS management class, specifying 594

SMS storage class, specifying 594

space parameters, specifying 597

substring notation 591

syntax diagram 588

tape, working with 602

terminating 603

track recording technique, specifying 599

variables
DATE 593

example meaningful data set name 601

JOB 591

OBJECT 592

TIME 593

using in the data set name 590

UTILITY 592

volume serial numbers, specifying 595

volumes, specifying maximum number 595

TEMPLATEDD, option of OPTIONS statement 315

TERM UTILITY command
description 40

effect on
RECOVER utility 380

rerunning UNLOAD 654

LOAD 261

terminated status, of a utility 38

terminating
state of utility execution 38

utilities
BACKUP SYSTEM 50

CHECK DATA 71

CHECK INDEX 89

CHECK LOB 99

COPY 125

COPYTOCOPY 153

data sharing 40

description 40

DIAGNOSE 164

EXEC SQL 168

LISTDEF 185

LOAD 261

MERGECOPY 292

MODIFY RECOVERY 300

MODIFY STATISTICS 309

OPTIONS 317

QUIESCE 326

REBUILD INDEX 345

RECOVER 380

REORG INDEX 407

REORG TABLESPACE 471

REPAIR 513

REPORT 527

RESTORE SYSTEM 542

terminating (continued)
utilities (continued)

RUNSTATS 564

STOSPACE 585

TEMPLATE 603

UNLOAD 654

TEST, option of REPAIR utility 507

TIME EXTERNAL
option of LOAD utility 228

option of UNLOAD utility 633

TIME, option of DSNJU003 utility 681

TIMEOUT
option of REORG INDEX utility 394

option of REORG TABLESPACE utility 430

TIMESTAMP EXTERNAL
option of LOAD utility 229

option of UNLOAD utility 633

timestamp, BSDS 698

timestamp, incrementing and decrementing value 641

timestamps, printing system and utility 691

TOCOPY, option of RECOVER utility 357

TOLASTCOPY, option of RECOVER utility 358

TOLASTFULLCOPY option of RECOVER utility 358

TOLOGPOINT, option of RECOVER utility 356

TORBA option of RECOVER utility 356

TOSEQNO, option of RECOVER utility 358

TOVOLUME, option of RECOVER utility 358

TRACEID, option of DIAGNOSE utility 163, 164

TRK, option of TEMPLATE statement 597

TRTCH, option of TEMPLATE statement 599

TRUNCATE
option of LOAD utility

CHAR data type 222, 254

GRAPHIC data type 224, 254

GRAPHIC EXTERNAL data type 225

VARCHAR data type 223, 254

VARGRAPHIC data type 226, 254

TYPE
option of DIAGNOSE utility 161

option of DSN1LOGP utility 746

U
UID

option of DSNU command 30

option of DSNUPROC utility 34

UNCNT, option of TEMPLATE statement 595

UNICODE
option of LOAD utility 207

option of UNLOAD utility 613

unicode example 17

UNIT
option of DSNJU003 utility 675

option of DSNU CLIST command 31

option of TEMPLATE statement 594

unit of recovery
in-abort 679

inflight 679

unit of work
See also unit of recovery

in-commit 678

indoubt, conditional restart 678

UNLDDN
option of REORG TABLESPACE utility 443

option of UNLOAD utility 612

UNLOAD
option of REORG INDEX utility 394

X-30 Utility Guide and Reference

UNLOAD (continued)
option of REORG TABLESPACE utility 431

UNLOAD utility
64-bit floating point notation, specifying 632

access, specifying 616

ASCII format, specifying 613

authorization required 607

binary floating-point number format, specifying 632

blanks in VARCHAR fields, removing 626

blanks in VARGRAPHIC fields, removing 628

BLOB data type, specifying 634

BLOB strings, truncating 634

CCSID format, specifying 613

CHAR data type, specifying 625

character string representation of date, specifying 632

character string representation of time, specifying 633

character strings, truncating 625

CLOB data type, specifying 634

CLOB strings, truncating 635

compatibility 654

compressed data 653

constant field, specifying 633

converting data types 644

copies, concatenating 644

data sets used 641

data type compatibility 645

data, identifying 609

DBCLOB format, specifying 635

DBCS string, truncating 635

DD name of unload data set, specifying 612

DD statement for image copy, specifying 611

decimal format, specifying 630

decimal point character, specifying for delimited

formats 615

delimited files 650

delimited format, specifying 614

delimiters
column 615

string 615

description 607

EBCDIC format, specifying 613

examples
delimited file format 660

FROMCOPY option 657

HEADER option 657

LOBs 660

partitioned table space 658

SAMPLE option 657

specifying a header 657

unloading a sample of rows 657

unloading all columns 656

unloading data from an image copy 657

unloading data in parallel 658

unloading from two tables 657

unloading LOBs 660

unloading multiple table spaces 659

unloading specific columns 656

unloading specified partitions 658, 660

using a field specification list 656

using LISTDEF 658, 659, 660

using TEMPLATE 658

field position, specifying 623

field specification errors, interpreting 654

field specifications 617

floating-point data, specifying format 615

FROM TABLE clause 642

compatibility with LIST 617

UNLOAD utility (continued)
FROM TABLE clause (continued)

parentheses 617

FROM TABLE option descriptions 621

FROM TABLE syntax diagram 617

graphic type, specifying 627

graphic type, truncating 627

header field, specifying 621

image copies, unloading 643

image copy, specifying 610

instructions 642

integer format, specifying 629

labeled duration expression 639

lists, specifying 611

LOAD statements, generating 653

LOAD statements, specifying data set for 611

maximum errors allowed, specifying 616

maximum number of rows to unload, specifying 623

multilevel security restrictions 607

multiple tables, unloading 617

option descriptions 609

output 607

output columns
ordering 643

selecting 643

output field position, specifying 646

output field size, specifying 646

output field types, specifying 645

output fields, determining layout 647

padding for variable length data, not using 614

partitions, identifying 609, 642

phases of execution 607

preparation 641

processing encrypted data 641

real format, specifying 632

restarting 654

ROWID type, specifying for output data 634

running 641

sampling rows 623

selection condition 635

small integer, specifying 629

source partitions, selecting 642

source tables, selecting 642

STRIP option 652

substitutions, not using 614

syntax diagram 608

table space, specifying 609

terminating 654

TRUNCATE option 652

Unicode format, specifying 613

varying-length data format, specifying 625

varying-length graphic type, specifying 628

WHEN clause 635

unloading partitions 642

UPDATE
option of LOAD STATISTICS 201

option of REBUILD INDEX utility 336

option of REORG INDEX utility 396

option of REORG TABLESPACE utility 442

option of RUNSTATS utility 552, 556

URID (unit of recovery ID), option of DSN1LOGP utility 745

utilities
controlling 37

data set disposition 22

data sets used 19

effect on real-time statistics 884

Index X-31

utilities (continued)
executing

DB2I 23

DSNU CLIST command 26

JCL 33, 36

problems during 38

restart 41

failure, determining cause 38

loading 7

mixed-release data sharing environment, operating in 8

monitoring 37

online 36

description 3

invoking 15

packaging 7

phase, determining 38

running concurrently 39

SMP/E jobs 7

stand-alone
description 3

invoking 665

suite
installing 8

target objects, declared temporary table 4

types
BACKUP SYSTEM 47

CATENFM 53

CATMAINT 55

change log inventory (DSNJU003) 671

CHECK DATA 57

CHECK INDEX 77

CHECK LOB 95

COPY 101

COPYTOCOPY 141

DIAGNOSE 159

DSN1CHKR 703

DSN1COMP 711

DSN1COPY 721

DSN1LOGP 741

DSN1PRNT 761

DSN1SDMP 773

DSNJCNVB 667

EXEC SQL 167

LISTDEF 171

LOAD 191

MERGECOPY 285

MODIFY RECOVERY 295

MODIFY STATISTICS 305

OPTIONS 313

preformat active log (DSNJLOGF) 669

print log map (DSNJU004) 691

QUIESCE 321

REBUILD INDEX 331

RECOVER 351

REORG 410

REORG INDEX 385

REORG TABLESPACE 413

REPAIR 493

REPORT 519

RESTORE SYSTEM 539

RUNSTATS 545

STOSPACE 581

TEMPLATE 587

UNLOAD 607

UTILITIES panel, DB2 23

utility control statements
creating 15

utility control statements (continued)
parsing rules 16

scanning rules 16

utility-id naming convention xii

UTILITY, option of DSNU CLIST command 27

UTPRINmm data set 21

UTPRINT data set 21

UTPRINT DD statement, built by CLIST 32

UTPROC, option of DSNUPROC utility 34

V
validation routine

LOAD utility 191

REORG TABLESPACE utility 431

VALUE
option of DSN1COPY utility 726

option of DSN1LOGP utility 747

option of DSN1PRNT utility 766

VARCHAR
data type, loading 237

option of LOAD utility 222

option of UNLOAD utility 625

VARGRAPHIC
data type, loading 237

option of LOAD utility 225

option of UNLOAD utility 628

varying-length rows, relocated to other pages, finding number

of 457

VERIFY, statement of REPAIR utility 499, 502

version information
updating when moving to another system 511

version number management 301

LOAD utility 270

REBUILD INDEX utility 346

REORG INDEX utility 411

REORG TABLESPACE utility 480

version numbers, recycling 301

VERSION, option of REPAIR utility on LOCATE

statement 501

VERSIONS, option of REPAIR utility 496

versions, REORG TABLESPACE effect on 480

violation messages 69

violations
correcting 69

finding 69

virtual storage access method (VSAM)
See VSAM (virtual storage access method)

VOLCNT, option of TEMPLATE statement 595

VOLUME, option of DSNU CLIST command 31

VOLUMES, option of TEMPLATE statement 595

VSAM (Virtual Storage Access Method)
used by REORG TABLESPACE 451

used by STOSPACE 583

VSAMCAT, option of DSNJU003 utility 679

W
WAIT, option of DIAGNOSE utility 162

WARNING, option of OPTIONS statement 316

WHEN
option of LOAD utility 216

option of REORG TABLESPACE utility 434

option of UNLOAD utility 635

work data sets
CHECK DATA utility 62, 67

X-32 Utility Guide and Reference

work data sets (continued)
CHECK INDEX utility 82

LOAD utility 234

WORKDDN
option of CHECK DATA utility 62

option of CHECK INDEX utility 80

option of CHECK LOB utility 98

option of LOAD utility 204

option of MERGECOPY utility 287

option of REBUILD INDEX utility 339

option of REORG INDEX utility 397

option of REORG TABLESPACE utility 456

WRITE, option of QUIESCE utility 323

Index X-33

X-34 Utility Guide and Reference

����

Program Number: 5625-DB2

Printed in USA

SC18-7427-05

	Contents
	About this book
	Who should read this book
	Conventions and terminology used in this book
	Terminology and citations
	Naming conventions used in this book

	How to read the syntax diagrams
	Accessibility
	How to send your comments

	Summary of changes to this book
	Part 1. Introduction
	Chapter 1. Basic information about the DB2 utilities
	Types of DB2 utilities
	Description of online utilities
	Description of stand-alone utilities

	Privileges and authorization IDs
	Utilities that can be run on declared temporary objects
	The effect of utilities on objects that have the DEFINE NO attribute
	The effect of utilities on encrypted data

	Chapter 2. DB2 utilities packaging
	SMP/E jobs for DB2 utility products
	The operation of DB2 utilities in a mixed-release data sharing environment

	Part 2. DB2 online utilities
	Chapter 3. Invoking DB2 online utilities
	Creating utility control statements
	Control statement coding rules
	Unicode character strings
	Tips for using multi-byte character sets
	Using the concatenation operator
	Descriptions of utility options

	Data sets that online utilities use
	Data set concatenation
	Controlling data set disposition
	Preventing unauthorized access to data sets

	Required authorizations for invoking online utilities on tables that have multilevel security with row-level granularity
	Using the DB2 Utilities panel in DB2I
	Using the DSNU CLIST command in TSO
	DSNU CLIST command syntax
	DSNU CLIST option descriptions
	DSNU CLIST command output
	Editing the generated JCL data set
	Examples

	Using the supplied JCL procedure (DSNUPROC)
	DSNUPROC syntax
	DSNUPROC option descriptions
	Sample DSNUPROC listing

	Creating the JCL data set yourself by using the EXEC statement

	Chapter 4. Monitoring and controlling online utilities
	Monitoring utilities with the DISPLAY UTILITY command
	Determining the status of a utility
	Determining which utility phase is currently executing
	Determining why a utility failed to complete

	Running utilities concurrently
	Running online utilities in a data sharing environment
	Terminating an online utility with the TERM UTILITY command
	Restarting an online utility
	Using the RESTART parameter
	Adding or deleting utility statements
	Modifying utility control statements
	Restarting after the output data set is full
	Restarting with templates
	Restarting with lists
	Other restart hints

	Chapter 5. BACKUP SYSTEM
	Syntax and options of the BACKUP SYSTEM control statement
	Syntax diagram
	Option descriptions

	Instructions for running BACKUP SYSTEM
	Before running BACKUP SYSTEM
	Data sets that BACKUP SYSTEM uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting BACKUP SYSTEM

	Concurrency and compatibility for BACKUP SYSTEM
	Sample BACKUP SYSTEM control statements

	Chapter 6. CATENFM
	Chapter 7. CATMAINT
	Chapter 8. CHECK DATA
	Syntax and options of the CHECK DATA control statement
	Syntax diagram
	Option descriptions

	Instructions for running CHECK DATA
	Before running CHECK DATA
	Data sets that CHECK DATA uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting CHECK DATA

	Concurrency and compatibility for CHECK DATA
	Sample CHECK DATA control statements

	Chapter 9. CHECK INDEX
	Syntax and options of the CHECK INDEX control statement
	Syntax diagram
	Option descriptions

	Instructions for running CHECK INDEX
	Data sets that CHECK INDEX uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting CHECK INDEX

	Concurrency and compatibility for CHECK INDEX
	Sample CHECK INDEX control statements

	Chapter 10. CHECK LOB
	Syntax and options of the CHECK LOB control statement
	Syntax diagram
	Option descriptions

	Instructions for running CHECK LOB
	Before running CHECK LOB
	Data sets that CHECK LOB uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting CHECK LOB

	Concurrency and compatibility for CHECK LOB
	Sample CHECK LOB control statements

	Chapter 11. COPY
	Syntax and options of the COPY control statement
	Syntax diagram
	Option descriptions

	Instructions for running COPY
	Before running COPY
	Data sets that COPY uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting COPY

	Concurrency and compatibility for COPY
	Sample COPY control statements

	Chapter 12. COPYTOCOPY
	Syntax and options of the COPYTOCOPY control statement
	Syntax diagram
	Option descriptions

	Instructions for running COPYTOCOPY
	Before running COPYTOCOPY
	Data sets that COPYTOCOPY uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting COPYTOCOPY

	Concurrency and compatibility for COPYTOCOPY
	Sample COPYTOCOPY control statements

	Chapter 13. DIAGNOSE
	Syntax and options of the DIAGNOSE control statement
	Syntax diagram
	Option descriptions

	Instructions for running DIAGNOSE
	Data sets that DIAGNOSE uses
	Instructions for specific tasks: Forcing a utility abend
	Terminating or restarting DIAGNOSE

	Concurrency and compatibility for DIAGNOSE
	Sample DIAGNOSE control statements

	Chapter 14. EXEC SQL
	Syntax and options of the EXEC SQL control statement
	Syntax diagram
	Option descriptions

	Terminating or restarting EXEC SQL
	Concurrency and compatibility for EXEC SQL
	Sample EXEC SQL control statements

	Chapter 15. LISTDEF
	Syntax and options of the LISTDEF control statement
	Syntax diagram
	Option descriptions

	Instructions for using LISTDEF
	Creating the control statement
	Including objects in a list
	Previewing the contents of a list
	Creating LISTDEF libraries
	Using lists in other utility jobs
	Using the TEMPLATE utility with LISTDEF
	Using the OPTIONS utility with LISTDEF
	Terminating or restarting LISTDEF

	Concurrency and compatibility for LISTDEF
	Sample LISTDEF control statements

	Chapter 16. LOAD
	Syntax and options of the LOAD control statement
	Syntax diagram
	Option descriptions
	INTO-TABLE-spec
	Option descriptions for INTO TABLE

	Instructions for running LOAD
	Before running LOAD
	Data sets that LOAD uses
	Instructions for specific tasks
	Terminating or restarting LOAD

	Concurrency and compatibility for LOAD
	After running LOAD
	Copying the loaded table space or partition
	Resetting COPY-pending status
	Resetting REBUILD-pending status
	Resetting the CHECK-pending status
	Running CHECK INDEX after loading a table that has indexes
	Recovering a failed LOAD job
	Reorganizing an auxiliary index after LOAD

	Effects of running LOAD
	The effect of LOAD on index version numbers
	The effect of LOAD REPLACE on the control interval
	The effect of LOAD on SYSIBM.SYSCOPY

	Sample LOAD control statements

	Chapter 17. MERGECOPY
	Syntax and options of the MERGECOPY control statement
	Syntax diagram
	Option descriptions

	Instructions for running MERGECOPY
	Data sets that MERGECOPY uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting MERGECOPY

	Concurrency and compatibility for MERGECOPY
	Sample MERGECOPY control statements

	Chapter 18. MODIFY RECOVERY
	Syntax and options of the MODIFY RECOVERY control statement
	Syntax diagram
	Option descriptions

	Instructions for running MODIFY RECOVERY
	Before running MODIFY RECOVERY
	Data sets that MODIFY RECOVERY uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting MODIFY RECOVERY

	Concurrency and compatibility for MODIFY RECOVERY
	The effect of MODIFY RECOVERY on version numbers
	Sample MODIFY RECOVERY control statements

	Chapter 19. MODIFY STATISTICS
	Syntax and options of the MODIFY STATISTICS control statement
	Syntax diagram
	Option descriptions

	Instructions for running MODIFY STATISTICS
	Data sets that MODIFY STATISTICS uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting MODIFY STATISTICS

	Concurrency and compatibility for MODIFY STATISTICS
	Sample MODIFY STATISTICS control statements

	Chapter 20. OPTIONS
	Syntax and options of the OPTIONS control statement
	Syntax diagram
	Option descriptions

	Instructions for using OPTIONS
	Executing statements in preview mode
	Specifying LISTDEF and TEMPLATE libraries
	Overriding standard utility processing behavior
	Using Multiple OPTIONS control statements
	Terminating or restarting OPTIONS

	Concurrency and compatibility for OPTIONS
	Sample OPTIONS control statements

	Chapter 21. QUIESCE
	Syntax and options of the QUIESCE control statement
	Syntax diagram
	Option descriptions

	Instructions for running QUIESCE
	Before running QUIESCE
	Data sets that QUIESCE uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting QUIESCE

	Concurrency and compatibility for QUIESCE
	Sample QUIESCE control statements

	Chapter 22. REBUILD INDEX
	Syntax and options of the REBUILD INDEX control statement
	Syntax diagram
	Option descriptions

	Instructions for running REBUILD INDEX
	Before running REBUILD INDEX
	Data sets that REBUILD INDEX uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting REBUILD INDEX

	Concurrency and compatibility for REBUILD INDEX
	The effect of REBUILD INDEX on index version numbers
	Sample REBUILD INDEX control statements

	Chapter 23. RECOVER
	Syntax and options of the RECOVER control statement
	Syntax diagram
	Option descriptions

	Instructions for running RECOVER
	Before running RECOVER
	Data sets that RECOVER uses
	Instructions for specific tasks

	Terminating or restarting RECOVER
	Terminating RECOVER
	Restarting RECOVER

	Concurrency and compatibility for RECOVER
	Effects of running RECOVER
	Sample RECOVER control statements

	Chapter 24. REORG INDEX
	Syntax and options of the REORG INDEX control statement
	Syntax diagram
	Option descriptions

	Instructions for running REORG INDEX
	Before running REORG INDEX
	Data sets that REORG INDEX uses
	Shadow data sets
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting REORG INDEX

	Concurrency and compatibility for REORG INDEX
	Reviewing REORG INDEX output
	The effect of REORG INDEX on index version numbers
	Sample REORG INDEX control statements

	Chapter 25. REORG TABLESPACE
	Syntax and options of the REORG TABLESPACE control statement
	Syntax diagram
	Option descriptions

	Instructions for running REORG TABLESPACE
	Before running REORG TABLESPACE
	Data sets that REORG TABLESPACE uses
	Shadow data sets
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting REORG TABLESPACE

	Concurrency and compatibility for REORG TABLESPACE
	Reviewing REORG TABLESPACE output
	After running REORG TABLESPACE
	Effects of running REORG TABLESPACE
	The effect of REORG TABLESPACE on index version numbers and the version of the data
	The effect of REORG TABLESPACE on the control interval

	Sample REORG TABLESPACE control statements

	Chapter 26. REPAIR
	Syntax and options of the REPAIR control statement
	REPAIR syntax diagram
	REPAIR option descriptions
	SET statement syntax
	SET statement option descriptions
	LOCATE block syntax
	LOCATE TABLESPACE statement option descriptions
	LOCATE INDEX statement and LOCATE INDEXSPACE statement option descriptions
	VERIFY statement syntax
	VERIFY statement option descriptions
	REPLACE statement syntax
	REPLACE statement option descriptions
	DELETE statement syntax and description
	DUMP statement syntax
	DUMP statement option descriptions
	DBD statement syntax
	DBD statement option descriptions

	Instructions for running REPAIR
	Before running REPAIR
	Data sets that REPAIR uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting REPAIR

	Concurrency and compatibility for REPAIR
	Reviewing REPAIR output
	After running REPAIR
	Sample REPAIR control statements

	Chapter 27. REPORT
	Syntax and options of the REPORT control statement
	Syntax diagram
	Option descriptions

	Instructions for running REPORT
	Data sets that REPORT uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting REPORT

	Concurrency and compatibility for REPORT
	Reviewing REPORT output
	Sample REPORT control statements

	Chapter 28. RESTORE SYSTEM
	Syntax and options of the RESTORE SYSTEM control statement
	Syntax diagram
	Option descriptions

	Instructions for running RESTORE SYSTEM
	Before running RESTORE SYSTEM
	Data sets that RESTORE SYSTEM uses
	Instructions for specific tasks
	Terminating and restarting RESTORE SYSTEM

	Concurrency and compatibility for RESTORE SYSTEM
	After running RESTORE SYSTEM
	Sample RESTORE SYSTEM control statements

	Chapter 29. RUNSTATS
	Syntax and options of the RUNSTATS control statement
	RUNSTATS TABLESPACE syntax diagram
	RUNSTATS TABLESPACE option descriptions
	RUNSTATS INDEX syntax diagram
	RUNSTATS INDEX option descriptions

	Instructions for running RUNSTATS
	Before running RUNSTATS
	Data sets that RUNSTATS uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting RUNSTATS

	Concurrency and compatibility for RUNSTATS
	Reviewing RUNSTATS output
	Access path statistics
	Space statistics (columns for tuning information)

	After running RUNSTATS
	Sample RUNSTATS control statements

	Chapter 30. STOSPACE
	Syntax and options of the STOSPACE control statement
	Syntax diagram
	Option descriptions

	Instructions for running STOSPACE
	Data sets that STOSPACE uses
	Creating the control statement
	Instructions for specific tasks
	Terminating or restarting STOSPACE

	Concurrency and compatibility for STOSPACE
	Reviewing STOSPACE output
	Sample STOSPACE control statement

	Chapter 31. TEMPLATE
	Syntax and options of the TEMPLATE control statement
	Syntax diagram
	Option descriptions

	Instructions for using TEMPLATE
	Key TEMPLATE operations
	Default space calculations
	Working with TAPE
	Working with GDGs
	Terminating or restarting TEMPLATE

	Concurrency and compatibility for TEMPLATE
	Sample TEMPLATE control statements

	Chapter 32. UNLOAD
	Syntax and options of the UNLOAD control statement
	Syntax diagram
	Option descriptions
	FROM-TABLE-spec
	Option descriptions for FROM TABLE

	Instructions for running UNLOAD
	Before running UNLOAD
	Data sets that UNLOAD uses
	Instructions for specific tasks
	Terminating or restarting UNLOAD

	Concurrency and compatibility for UNLOAD
	Sample UNLOAD control statements

	Part 3. DB2 stand-alone utilities
	Chapter 33. Invoking stand-alone utilities
	Creating utility control statements
	Specifying options by using the JCL EXEC PARM parameter
	Effects of invoking stand-alone utilities on tables that have multilevel security with row-level granularity

	Chapter 34. DSNJCNVB
	Before running DSNJCNVB
	Environment
	Authorization required
	Prerequisite actions
	Control statement
	Required and optional data sets

	Running DSNJCNVB
	Sample DSNJCNVB control statement
	DSNJCNVB output

	Chapter 35. DSNJLOGF (preformat active log)
	Before running DSNJLOGF
	Environment
	Control statement

	Sample DSNJLOGF control statement
	DSNJLOGF output

	Chapter 36. DSNJU003 (change log inventory)
	Syntax and options of the DSNJU003 control statement
	DSNJU003 (change log inventory) syntax diagram
	Option descriptions

	Before running DSNJU003
	Environment
	Authorization required
	Control statement

	Using DSNJU003 to modify the BSDS
	Running DSNJU003
	Making changes for active logs
	Making changes for archive logs
	Creating a conditional restart control record
	Deleting log data sets with errors
	Altering references to NEWLOG and DELETE data sets
	Defining the high-level qualifier for catalog and directory objects
	Renaming DB2 system data sets
	Renaming DB2 active log data sets
	Renaming DB2 archive log data sets

	Sample DSNJU003 control statements

	Chapter 37. DSNJU004 (print log map)
	Syntax and options of the DSNJU004 control statement
	DSNJU004 (print log map) syntax diagram
	Option descriptions

	Before running DSNJU004
	Environment
	Authorization required
	Control statement
	Recommendations

	Sample DSNJU004 control statement
	DSNJU004 (print log map) output
	Timestamps in the BSDS
	Active log data set status
	Archive log command history
	Reading conditional restart control records

	Chapter 38. DSN1CHKR
	Syntax and options of the DSN1CHKR control statement
	DSN1CHKR syntax diagram
	Option descriptions

	Before running DSN1CHKR
	Environment
	Authorization required
	Control statement
	Restrictions

	Sample DSN1CHKR control statements
	DSN1CHKR output

	Chapter 39. DSN1COMP
	Syntax and options of the DSN1COMP control statement
	DSN1COMP syntax diagram
	Option descriptions

	Before running DSN1COMP
	Environment
	Authorization required
	Control statement
	Recommendation

	Using DSN1COMP to estimate space savings from DB2 data compression
	The effect of the REORG option on compression savings estimates
	Free space in compression calculations
	The effect of running DSN1COMP on a table space with identical rows

	Sample DSN1COMP control statements
	DSN1COMP output
	Message DSN1941
	Sample DSN1COMP report

	Chapter 40. DSN1COPY
	Syntax and options of the DSN1COPY control statement
	DSN1COPY syntax diagram
	Option descriptions

	Before running DSN1COPY
	Environment
	Authorization required
	Control statement
	Defining the input data set
	Defining the output data set
	Restrictions
	Recommendations

	Using DSN1COPY to copy data sets
	The effect of altering a table before running DSN1COPY
	Checking for inconsistent data
	The effects of not specifying the OBIDXLAT option
	Requirements for using an image copy as input to DSN1COPY
	Resetting page log RBAs
	Copying from an image copy
	Restoring indexes with DSN1COPY
	Restoring table spaces with DSN1COPY
	Printing with DSN1COPY
	Copying tables from one subsystem to another

	Sample DSN1COPY control statements
	DSN1COPY output

	Chapter 41. DSN1LOGP
	Syntax and options of the DSN1LOGP control statement
	DSN1LOGP syntax diagram
	Option descriptions

	Before running DSN1LOGP
	Environment
	Authorization required
	Control statement

	Using DSN1LOGP to format the contents of the recovery log
	Reading archive log data sets on tape
	Locating table and index identifiers

	Sample DSN1LOGP control statements
	DSN1LOGP output
	Reviewing DSN1LOGP output
	Interpreting error codes

	Chapter 42. DSN1PRNT
	Syntax and options of the DSN1PRNT control statement
	DSN1PRNT syntax diagram
	Option descriptions

	Before running DSN1PRNT
	Environment
	Authorization required
	Control statement
	Recommendations

	Sample DSN1PRNT control statements
	DSN1PRNT output

	Chapter 43. DSN1SDMP
	Syntax and options of the DSN1SDMP control statement
	DSN1SDMP syntax diagram
	Option descriptions

	Before running DSN1SDMP
	Environment
	Authorization required
	Control statement

	Using DSN1SDMP to force dumps and write trace records
	Assigning buffers
	Conditions for generating a dump
	Stopping or modifying DSN1SDMP traces

	Sample DSN1SDMP control statements
	DSN1SDMP output

	Part 4. Appendixes
	Appendix A. Limits in DB2 UDB for z/OS
	Appendix B. DB2-supplied stored procedures
	Invoking utilities as a stored procedure (DSNUTILS)
	Environment for DSNUTILS
	Authorization required for DSNUTILS
	Control statement for DSNUTILS
	DSNUTILS stored procedure syntax diagram
	DSNUTILS option descriptions
	Modifying the WLM-established address space for DSNUTILS
	Sample program for calling DSNUTILS
	DSNUTILS output

	DSNUTILU stored procedure
	Environment for DSNUTILU
	Authorization required for DSNUTILU
	Control statement for DSNUTILU
	DSNUTILU stored procedure syntax diagram
	DSNUTILU option descriptions
	Modifying the WLM-established address space for DSNUTILU
	Sample program for calling DSNUTILU
	DSNUTILU output

	The Control Center table space and index information stored procedure (DSNACCQC)
	Environment for DSNACCQC
	Authorization required for DSNACCQC
	DSNACCQC syntax diagram
	DSNACCQC option descriptions
	Example of DSNACCQC invocation
	DSNACCQC output

	The Control Center partition information stored procedure (DSNACCAV)
	Environment for DSNACCAV
	Authorization required for DSNACCAV
	DSNACCAV syntax diagram
	DSNACCAV option descriptions
	Example of DSNACCAV invocation
	DSNACCAV output

	The DB2 real-time statistics stored procedure
	Environment for DSNACCOR
	Authorization required for DSNACCOR
	DSNACCOR syntax diagram
	DSNACCOR option descriptions
	DSNACCOR formulas for recommending actions
	Using an exception table
	Example of DSNACCOR invocation
	DSNACCOR output

	Appendix C. Advisory or restrictive states
	Auxiliary CHECK-pending status
	Auxiliary warning status
	CHECK-pending status
	COPY-pending status
	Group buffer pool RECOVER-pending status
	Informational COPY-pending status
	REBUILD-pending status
	RECOVER-pending status
	REFRESH-pending status
	REORG-pending status
	Restart-pending status

	Appendix D. Running the productivity-aid sample programs
	Running DSNTIAUL
	Running DSNTIAD
	Running DSNTEP2 and DSNTEP4

	Appendix E. Real-time statistics tables
	Setting up your system for real-time statistics
	Creating and altering the real-time statistics objects
	Setting the interval for writing real-time statistics
	Starting the real-time statistics database
	Establishing base values for real-time statistics

	Contents of the real-time statistics tables
	Operating with real-time statistics
	When DB2 externalizes real-time statistics
	How DB2 utilities affect the real-time statistics
	How non-DB2 utilities affect real-time statistics
	Real-time statistics on objects in work file databases and the TEMP database
	Real-time statistics for DEFINE NO objects
	Real-time statistics on read-only or nonmodified objects
	How dropping objects affects real-time statistics
	How SQL operations affect real-time statistics counters
	Real-time statistics in data sharing
	Improving concurrency with real-time statistics
	Recovering the real-time statistics tables
	Statistics accuracy

	Appendix F. Delimited file format
	Restrictions
	Delimited data types
	Examples of delimited files

	Appendix G. How to use the DB2 library
	Notices
	Programming interface information
	Trademarks

	Glossary
	Bibliography
	Index

