COBOL for 0OS/390® & VM
COBOL Set for AIX®
VisualAge® COBOL

..ll

Language Reterence

SC26-9046-04

— Note!

Before using this information and the product it supports, be sure to read the general
information under “Notices” on page [520}

Fifth Edition (September 2000)

This edition applies to:

IBM COBOL for OS/390 & VM Version 2 Release 2 Modification 0 (program number 5648-A25)
IBM COBOL Set for AIX Release 1 (program number 5765-548)
IBM VisualAge COBOL Version 3.0.1 (program number 5639-B92)

and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between

8:30 a.m. and 7:00 p.m. Eastern Standard Time (EST). The phone number is (800) 879-2755. The fax number is
(800) 445-9269. You can also order publications through your IBM representative or the IBM branch office serving
your locality. Publications are not stocked at the address below.

Editions marked “softcopy only” cannot be ordered as printed publications. For information about obtaining these
editions, see “Softcopy publications for IBM COBOL” on page

A form for reader's comments appears at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, Department HHX/H3
P.O. Box 49023

San Jose, CA 95161-9023

USA

or fax it to this U.S. number: 800-426-7773
or use the form on the Web at:
http:/ /www.ibm.com/software/ad/rcf/

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book vi
Compatibility with previous IBM COBOL products

(OS/390 and VM only) vi
IBM extensions vi
Obsolete language elements vi
How to read the syntax diagrams vii
DBCS notation ix
Acknowledgment X
Summary of changes Xi
Fifth edition (September 2000) xi
Fourth edition (November 1998) xi
Third edition (August 1998, softcopy only) xii
Second edition (April 1998) xii

Part 1. COBOL language structure . 1

Characters 2
Character-strings 3
Figurative constants 7
Special registers L. 9
Literals 17
Separators 24
Sections and paragraphs 26
Statements and clauses 26
Reference format 28
Sequence number area 28
Indicatorarea 28
Area A . . . Lo 29
AreaBo 30
Area Aor AreaB 32
Scopeofnames 35
Types of names 35
External and internal resources 37
Resolution of names 38
Referencing data names, copy

libraries, and Procedure Division

hames 39
Uniqueness of reference 39
Transfer of control 50
Millennium Language Extensions and

date fields 52
Millennium Language Extensions syntax 52
Terms and concepts 53

© Copyright IBM Corp. 1991, 2000

Part 2. COBOL source unit

structure 57
COBOL program structure 58
Nested programs 60
COBOL class definition structure 63
COBOL method definition structure 65
Part 3. Identification Division 67
Identification Division 68
PROGRAM-ID paragraph 70
CLASS-ID paragraph 72
METHOD-ID paragraph 74
Optional paragraphs 76
Part 4. Environment Division 79
Configuration Section 80
SOURCE-COMPUTER paragraph 80
OBJECT-COMPUTER paragraph 82
SPECIAL-NAMES paragraph 83
ALPHABET clause 86
SYMBOLIC CHARACTERS clause 89
CLASS clause 89
CURRENCY SIGN clause 90
REPOSITORY paragraph 91
Input-Output Section 93
FILE-CONTROL paragraph 94
SELECT clause 97
ASSIGN clause 97
RESERVE clause 103
ORGANIZATION clause 103
PADDING CHARACTER clause 106
RECORD DELIMITER clause 107
ACCESS MODE clause 107
RECORD KEY clause 109
ALTERNATE RECORD KEY clause 110
RELATIVE KEY clause 111
PASSWORD clause 111
FILE STATUS clause 112
I-O-CONTROL paragraph 114
RERUN clause 115
SAME AREA clause 116
SAME RECORD AREA clause 117

iii

SAME SORT AREA clause 117
SAME SORT-MERGE AREA clause 118
MULTIPLE FILE TAPE clause 118
APPLY WRITE-ONLY clause 118
Part 5. Data Division 119
Data Division overview 120
File Section 121
Working-Storage Section 121
Local-Storage Section 123
Linkage Section 123

Datatypes 124

Data relationships 124
Data Division—file description entries 131
File Section 133
EXTERNAL clause 134
GLOBALCclause 134
BLOCK CONTAINS clause 135
RECORD clause 136
LABEL RECORDS clause 139
VALUE OF clause 139
DATA RECORDS clause 140
LINAGE clause 140
RECORDING MODE clause 142
CODE-SET clause 143
Data Division—data description entry . 145
Format1 145
Format2 146
Format3 146
Level-numbers 146
BLANK WHEN ZERO clause 147

DATE FORMAT clause 148

EXTERNAL clause 153
GLOBALclause 153
JUSTIFIED clause 154

OCCURScclause 154

PICTURE clause 160
REDEFINES clause 174
RENAMES clause 178
SIGN clause 179
SYNCHRONIZED clause 181
USAGE clause 187
VALUE clause 195
Part 6. Procedure Division 201
Procedure Division structure 202
Requirements for a method Procedure Division . 203
The Procedure Division header 204
Declaratives 207
Procedures 208
Arithmetic expressions 209
Conditional expressions 214
Statement categories 234

iv COBOL Language Reference

Statement operations 238
Procedure Division statements 250
ACCEPT statement 250
ADD statement 255
ALTER statement 258
CALL statement 260
CANCEL statement 266
CLOSE statement 268
COMPUTE statement 272
CONTINUE statement 274
DELETE statement 275
DISPLAY statement 277
DIVIDE statement 280
ENTRY statement 283
EVALUATE statement 284
EXIT statement 288
EXIT METHOD statement 289
EXIT PROGRAM statement 290
GOBACK statement 291
GO TO statement 292
IF statement 294
INITIALIZE statement 296
INSPECT statement 298
INVOKE statement 307
MERGE statement 314
MOVE statement 320
MULTIPLY statement 325
OPEN statement 327
PERFORM statement 332
READ statement 342
RELEASE statement 349
RETURN statement 351
REWRITE statement 353
SEARCH statement 356
SET statement 362
SORT statement 368
START statement 375
STOP statement 378
STRING statement 379
SUBTRACT statement 383
UNSTRING statement 386
WRITE statement 393
Part 7. Intrinsic functions 401
Intrinsic functions 402
Specifying a function 402
Function definitions 408
ACOS 412
ANNUITY o 413
ASIN . . 414
ATAN 415
CHAR 416
COS . . . 417
CURRENT-DATE 418
DATE-OF-INTEGER 419
DATE-TO-YYYYMMDD 420
DATEVAL 421
DAY-OF-INTEGER 423

DAY-TO-YYYYDDD 424

FACTORIAL 425
INTEGER 426
INTEGER-OF-DATE 427
INTEGER-OF-DAY 428
INTEGER-PART 429
LENGTH 430
LOG 431
LOGIO 432
LOWER-CASE 433
MAX . .. 434
MEAN 435
MEDIAN 436
MIDRANGE 437
MIN . .. 438
MOD 439
NUMVAL o 440
NUMVAL-C o . 441
ORD e 443
ORD-MAX 444
ORD-MIN 445
PRESENT-VALUE 446
RANDOM 447
RANGE 448
REM 449
REVERSE 450
SIN . . 451
SORT 452
STANDARD-DEVIATION 453
SUM e 454
TAN 455
UNDATE 456
UPPER-CASE 457
VARIANCE 458
WHEN-COMPILED 459
YEAR-TO-YYYY 460
YEARWINDOW 461
Part 8. Compiler-directing

statements 463
Compiler-directing statements 464
BASIS statement 464
CBL (PROCESS) statement 465
*CONTROL (*CBL) statement 466
COPY statement 468
DELETE statement 474
EJECT statement 475
ENTER statement 475
INSERT statement 476
READY or RESET TRACE statement 476
REPLACE statement 477
SERVICE LABEL statement 480
SERVICE RELOAD statement 481
SKIP1/2/3 statements 481
TITLE statement 482

USE statement 482
Compiler directives 489
CALLINTERFACE 489
Part 9. Appendixes 493
Appendix A. Compiler limits 494
Appendix B. EBCDIC and ASCII

collating sequences 498
EBCDIC collating sequence 498
US English ASCII code page (ISO 646) 500
Appendix C. Source language

debugging 504
Coding debugging lines 504
Coding debugging sections 504
DEBUG-ITEM special register 505
Activate compile-time switch 505
Activate object-time switch 505
Appendix D. Reserved words 506
Appendix E. ASCII considerations for
os/390 andVM 512
Environment Division 512
Data Division 513
Procedure Division 514
Appendix F. Locale considerations
(workstationonly) 515
Appendix G. Summary of language
difference: host COBOL and

workstation COBOL 516

Appendix H. Industry specifications . 518

Notices 520
Programming interface information 520
Trademarks 521
Bibliography 522
Glossary 525
Index 544

Contents V

About this book

This book presents the syntax of COBOL for OS/390 & VM, COBOL Set for AIX,
and VisualAge COBOL (collectively referred to in this book as IBM COBOL). To
indicate platform-specific information, this book use the following methods:

* Prefix the text with platform-specific indicators (for example, Under AIX and
Windows...)

* Add parenthetical qualifications (for example, (Workstation only))
e Prefix the text with icons. This book uses the following icons:

Informs you of information specific to COBOL for OS/390 & VM.

Informs you of information specific to COBOL Set for AIX and
VisualAge COBOL for Windows.

Informs you of information specific to COBOL Set for AIX.

Notes:

1. This book documents extensions for object-oriented COBOL. Object-oriented
COBOL is not supported under VM.

2. This book documents support for 31-digit decimal data, which is available
when the ARITH(EXTEND) compiler option is in effect. The ARITH compiler
option, and the 31-digit support, are currently only available in COBOL for
0S5/390 & VM.

Use this book in conjunction with the IBM COBOL Programming Guide for your
platform.

Compatibility with previous IBM COBOL products (0S/390 and VM

only)

This book does not describe language supported under the CMPR2 compiler
option. The CMPR2 compiler option is intended only as an aid in moving from
the VS COBOL II Release 2 language to the NOCMPR2 language that is described
by this book. For a description of the language supported under CMPR?2, see VS
COBOL II Release 2 Application Programming: Language Reference, GC26-4047.

IBM extensions

IBM extensions generally add to language element rules or restrictions. In the
hardcopy, published book, IBM extensions appear in blue ink. For example:

IBM extensions in text are shown this way.

IBM extensions are not indicated in the appendixes, glossary, or index.

Obsolete language elements

vi

© Copyright IBM Corp. 1991, 2000

Obsolete language elements are COBOL 85 Standard language elements that will
be deleted from the next revision of the Standard. (This does not imply that these
elements will be eliminated from a future release of an IBM COBOL compiler.)

The language elements that will be deleted from the next revision of the COBOL
85 Standard are:

ALTER statement

AUTHOR paragraph

Comment entry

DATA RECORDS clause
DATE-COMPILED paragraph
DATE-WRITTEN paragraph

DEBUG-ITEM special register

Debugging sections

ENTER statement

GO TO without a specified procedure name
INSTALLATION paragraph

LABEL RECORDS clause

MEMORY SIZE clause

MULTIPLE FILE TAPE clause

RERUN clause

REVERSED phrase

SECURITY paragraph

SEGMENT-LIMIT

SEGMENTATION

STOP literal format of the STOP statement
USE FOR DEBUGGING declarative

VALUE OF clause

The figurative constant ALL literal, when associated with a numeric or
numeric-edited item and with a length greater than one

How to read the syntax diagrams

Throughout this book, syntax is described using the structure defined below.

Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The »—— symbol indicates the beginning of a syntax diagram.

The — symbol indicates that the syntax diagram is continued on the next
line.

The »— symbol indicates that the syntax diagram is continued from the
previous line.

The —»<« symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the
»— symbol and end with the — symbol.

Required items appear on the horizontal line (the main path).

— Format

»»>—STATEMENT—required item

\4
A

Optional items appear below the main path.

About this book Vii

—— Format
»»—STATEMENT

\ 4
A

l—opt1’ona1 1'temJ

* When you can choose from two or more items, they appear vertically, in a
stack.

If you must choose one of the items, one item of the stack appears on the main
path.

—— Format

\4
A

»—STATEMENT—Erequired choice 1
required choice 2J

If choosing one of the items is optional, the entire stack appears below the
main path.

—— Format

A\
A

optional choice 1

»»>—STATEMENT ':
optional choice 2

* An arrow returning to the left above the main line indicates an item that can
be repeated.

—— Format

»—STATEMENT—LrepeataMe item |

A\
A

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

* Variables appear in all lowercase letters (for example, parmx). They represent
user-supplied names or values.

e If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

The following example shows how the syntax is used.

viii COBOL Language Reference

—— Format

»—STATEMENT—U-)—[identifier-l o ¥ | J’TO—ideni,‘ifz'er-.?
— \—{ item 1 |—<34J Lrounpep-

literal-1

| w >

(5)

\ 4
A

item 1

Llil—s IZE ERROR—imperative-s tatement-]J |—END-STAT EMENT—@J
ON

Notes:

ROUNDED.

delimiter.

optional.

identifier-2
literal-2
arithmetic-expression-1—2-

1 The STATEMENT key word must be specified and coded as shown.
2 This operand is required. Either identifier-1 or literal-1 must be coded.

3 The item 1 fragment is optional; it can be coded or not, as required by the application. If item 1
is coded, it can be repeated with each entry separated by one or more COBOL separators. Entry
selections allowed for this fragment are described at the bottom of the diagram.

4 The operand identifier-3 and associated TO key word are required and can be repeated with one
or more COBOL separators separating each entry. Each entry can be assigned the key word

5 The ON SIZE ERROR phrase with associated imperative-statement-1 are optional. If the ON
SIZE ERROR phrase is coded, the key word ON is optional.
¢ The END-STATEMENT key word can be coded to end the statement. It is not a required

7 The blue text indicates that arithmetic-expression-1 is an IBM extension. This operand is

DBCS notation

Double-Byte Character Strings (DBCS) in literals, comments, and
user-defined words are delimited by shift-out and shift-in characters. In this
manual, the shift-out delimiter is represented pictorially by the < character, and the
shift-in character is represented pictorially by the > character. The EBCDIC codes
for the shift-out and shift-in delimiters are X'0E' and X'OF', respectively.

The <> symbol denotes contiguous shift-out and shift-in characters. The >< symbol
denotes contiguous shift-in and shift-out characters.

Double-byte characters are represented in this form: D1D2D3. EBCDIC characters
in double-byte form are represented in this form:.A.B.C. The dots separating the
letters represent the hexadecimal value X'42'.

Under AIX and Windows, you do not delimit DBCS character strings
by shift-in or shift-out characters.

About this book 1X

Acknowledgment

The following extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report as the
basis for an instruction manual or for any other purpose is free to do so.
However, all such organizations are requested to reproduce this section as
part of the introduction to the document. Those using a short passage, as
in a book review, are requested to mention COBOL in acknowledgment of
the source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection there with.

Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data Systems
Languages.

The authors and copyright holders of copyrighted material:

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data
Automation Systems copyrighted 1958, 1959, by

Sperry Rand Corporation; IBM Commercial Translator,
Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

X COBOL Language Reference

Summary of changes

Major changes to the COBOL for OS/390 & VM, COBOL Set for AIX, and
VisualAge COBOL languages are listed below, according to the edition in which
they first appeared. Changes to the language since the previous edition of this
book are marked by a vertical bar in the left margin.

Fifth edition (September 2000)

Enhanced support for decimal data, raising the maximum number of decimal
digits from 18 to 31 and providing an extended-precision mode for arithmetic
calculations (“PICTURE clause” on page

Support for COMP-5 data type extended to OS/390 and VM (“USAGE clause”
on page [187)

Support for line-sequential files extended to OS/390 (“File organization” on
page [104)

Use of an environment variable in the SELECT ... ASSIGN clause (to specify

file attributes for dynamic allocation at run-time) extended to OS/390
(“ASSIGN clause” on page [97)

Support for format 5 of the SET statement (SET pointer TO ADDRESS OF
identifier-7) extended to the Working-Storage Section and the Local-Storage
Section (“Format 5: SET for USAGE IS POINTER data items” on page [364)
The limit on the block size for a QSAM file is raised from 32767 to
2,147,483,647 (2GB - 1) bytes (Appendix A, “Compiler limits” on page [494)

Fourth edition (November 1998)

Enhancements to the millennium language extensions:

— Additional date patterns for the DATE FORMAT clause, including
“year-last” dates.

— DATE FORMAT for binary numeric items.

— Relaxation of the USING/RETURNING parameter rules for windowed
date fields.

— Special semantics for “trigger” and “limit” date values. For
more information, see “Semantics of windowed date fields” on page

New sub-option TRIG/NOTRIG of the DATEPROC compiler option, to enable
or disable trigger and limit processing.

© Copyright IBM Corp. 1991, 2000 xi

Third edition (August 1998, softcopy only)

Extensions to support the Euro currency sign in numeric-edited data items.
These extensions introduce a PICTURE SYMBOL phrase to the CURRENCY
SIGN clause in the SPECIAL-NAMES paragraph of the Environment Division.
The PICTURE SYMBOL phrase allows a PICTURE clause currency symbol to
represent a currency sign value that is different from the currency symbol, and
not restricted to a single character. For example, the currency symbol '$'
could be used to represent a code point for the Euro currency sign, or the
characters 'EUR'. The extensions also allow multiple currency symbols and
currency sign values to be defined. For details, see “CURRENCY SIGN
clause” on page

Update to the millennium language extensions to allow signed numeric date
fields.

Second edition (April 1998)

xii

The millennium language extensions, enabling compiler-assisted date
processing for dates containing 2-digit and 4-digit years.

For information on the millennium language extensions, see “Millennium
Language Extensions and date fields” on page

New language elements in support of the millennium language extensions:

— DATE FORMAT clause in data description entries
— Intrinsic functions:

- DATEVAL

- UNDATE

- YEARWINDOW

New compiler options in support of the millennium language extensions:

— DATEPROC/NODATEPROC
— YEARWINDOW

New compiler option, ANALYZE, to check the syntax of imbedded SQL and
CICS® statements.

New date intrinsic functions to cover the recommendation in the Working Draft
for Proposed Revision of 1ISO 1989:1985 Programming Language COBOL:

— DATE-TO-YYYYMMDD
— DAY-TO-YYYYDDD
— YEAR-TO-YYYY

Extension of the ACCEPT statement to cover the recommendation in the
Working Draft for Proposed Revision of ISO 1989:1985 Programming Language
COBOL:

— ACCEPT FROM DATE YYYYMMDD
— ACCEPT FROM DAY YYYYDDD

COBOL Language Reference

Part 1. COBOL language structure

Characters 2
Character-strings 3
Figurative constants 7
Special registers 9
Literals 17
Separators 24
Sections and paragraphs 26
Statements and clauses 26
Reference format 28
Sequence number area 28
Indicatorarea 28
Area A 29
AreaB 30
Area AorAreaB 32

© Copyright IBM Corp. 1991, 2000

Scope of names
Types of names
External and internal resources
Resolution of names

Referencing data names, copy
libraries, and Procedure Division

names
Uniqueness of reference

Transfer of control

Millennium Language Extensions and
date fields

Millennium Language Extensions syntax
Terms and concepts

Characters

Characters

The most basic and indivisible unit of the COBOL language is the character. The
IBM COBOL character set includes the letters of the alphabet, digits, and special
characters. The complete set of characters that form the IBM COBOL character set
is shown in Table 1 on page

The basic IBM COBOL language is restricted to the character set shown in Table 1
on page Bl but the content of nonnumeric literals, comment lines, comment entries,
and data can include any of the characters from the character set of the computer.

In some cases, the basic character set is extended with the national character set.
The national character set support includes the Double-Byte Character Set (DBCS)
and, additionally for AIX, the Extended Unix Code (EUC) code page.

Double-byte characters, as the name implies, occupy two adjacent bytes to
represent 1 character. A character string containing DBCS characters is called a
DBCS character-string.

Under AIX, characters from the EUC code page can be from one to four
bytes long.

DBCS and EUC characters are valid characters in certain COBOL character-strings.
For details, see “COBOL words with multi-byte characters” on page j and “DBCS
literals” on page

Individual characters are joined to form character-strings, separators, and text
words.

A character-string is a character or a sequence of contiguous characters that forms
a COBOL word, a literal, a PICTURE character-string, or a comment-entry. A
character-string is delimited by separators.

A separator is a string of one or two contiguous characters used to delimit
character strings. Separators are described in detail under “Separators” on

page

A text word is a character or a sequence of contiguous characters between
character positions 8 and 72 inclusive on a line in a COBOL library, source
program, or in pseudo-text. For more information on pseudo-text, see
“Pseudo-text” on page

© Copyright IBM Corp. 1991, 2000

Character-strings

Table 1. Characters—meanings

Character Meaning

Space

Plus sign

Minus sign or Hyphen
Asterisk

Slant, Solidus, Stroke, or Slash
Equal sign

Currency sign

Comma

Semicolon

Decimal point or Period
Quotation mark

(Left parenthesis

) Right parenthesis
>

<

SN~ * | + T

~e o~

Greater than

Less than

Colon

Apostrophe
A-Z Alphabet (uppercase)
a—z Alphabet (lowercase)
0-9 Numeric characters

Character-strings

You can use EBCDIC and/or DBCS character strings under OS/390 and VM or
ASCII and/or DBCS/EUC character-strings under AIX and Windows to form the

following;:
e COBOL words
e Literals

PICTURE character-strings (EBCDIC or ASCII character-strings only)
* Comment text

COBOL words with single-byte characters

A COBOL word is a character-string of not more than 30 characters that forms a
user-defined word, a system-name, or a reserved word. Except for arithmetic
operators and relation characters, each character of a COBOL word is selected from
the following:

* A through Z
* athrough z
* 0 through 9
e - (hyphen)

The hyphen cannot appear as the first or last character in such words. All
user-defined words (except for section-names, paragraph-names, segment-numbers,
and level-numbers) must contain at least one alphabetic character. Segment
numbers and level numbers need not be unique; a given specification of a
segment-number or level-number can be identical to any other segment-number or
level-number. Each lowercase letter is considered to be equivalent to its
corresponding uppercase letter, except in nonnumeric literals.

Part 1. COBOL language structure 3

Character-strings

Within a source program the following rules apply for all COBOL words with

single-byte characters:

* A reserved word cannot be used as a user-defined word or as a system-name.

¢ The same COBOL word, however, can be used as both a user-defined word
and as a system-name. The classification of a specific occurrence of a COBOL
word is determined by the context of the clause or phrase in which it occurs.

COBOL words with multi-byte characters

DBCS/EUC characters must conform to the normal COBOL rules for user-defined
words. The following are the rules for forming user-defined words from

multi-byte characters:

Table 2. Rules for forming user-defined words from multi-byte characters

Rule 0S/390 and VM AIX and Windows
Use of DBCS user-defined words begin with a Not required
shift-out shift-out character and end with a shift-in

shift-in character.

characters

Value range

DBCS user-defined words can contain
characters whose values range from X'41' to
X'FE' for both bytes.

Valid value ranges for multi-byte characters
depend on the specific code page being used.

Containing DBCS user-defined words can contain only A user-defined word can consist of both
characters double-byte characters, and must contain at single-byte or multiple-byte (including
least one non-EBCDIC character. double-byte) characters. If a character exists in
(Double-byte EBCDIC characters are both single-byte and multiple-byte forms, its
represented by X'42' in the first byte.) single-byte and multi-byte representations are
Single-byte characters are not allowed in a not equivalent.
DBCS word.
DBCS user-defined words can contain both
double-byte EBCDIC and double-byte non
EBCDIC characters. The only double-byte
EBCDIC characters allowed are: A -7, a -z,
0 -9, and the hyphen (-). The hyphen cannot
appear as the first or last character.
Continuation Words cannot be continued across lines. Words cannot be continued across lines.
rules
Uppercase / Equivalent Not equivalent
lowercase
letters
Maximum 14 characters 15 characters for a DBCS code page
length

Under AIX only:

e 7 characters for EUC code page
IBM_eucTW

e 10 characters for EUC code pages,
IBM_euc]P, IBM_eucKR, and IBM_eucCN

User-defined words

The following sets of user-defined words are supported:

Alphabet-name

4 COBOL Language Reference

Multi-byte characters allowed?
Yes

Character-strings

Class-name Yes
Condition-name Yes
Data-name Yes
File-name Yes
Index-name Yes
Level-numbers: 01-49, 66, 77, 88 Yes
Library-name No
Method-name No
Mnemonic-name Yes
Object-oriented class-name No
Paragraph-name Yes
Priority-numbers: 00-99 Yes
Program-name No
Record-name Yes
Section-name Yes
Symbolic-character Yes
Text-name No

For level-numbers and priority numbers, each word must be a 1-digit or 2-digit
integer.

Within a given source program or class definition, but excluding any contained
program or method, each user-defined word (except level-numbers and
priority-numbers) can belong to only one of these sets. Each user-defined word
within a set must be unique, except as specified in “Referencing data names, copy
libraries, and Procedure Division names” on page

The following types of user-defined words can be referenced by statements and
entries in that program in which the user-defined word is declared:

e Paragraph-name
e Section-name

The following types of user-defined words can be referenced by any COBOL
program, provided that the compiling system supports the associated library or
other system, and the entities referenced are known to that system:

e Library-name
¢ Text-name

The following types of names, when they are declared within a Configuration
Section, can be referenced by statements and entries either in that program which
contains a Configuration Section or in any program contained within that program:

e Alphabet-name

¢ (lass-name

¢ (Condition-name

e Mnemonic-name

e Symbolic-character

The function of each user-defined word is described in the clause or statement in
which it appears.

Part 1. COBOL language structure 5

Character-strings

System-names

A system-name is a character string that has a specific meaning to the system.
There are three types of system-names:

e Computer-name
* Language-name
* Implementor-name

There are three types of implementor-names:

¢ Environment-name
e External class-name
* Assignment-name

The meaning of each system-name is described with the format in which it
appears.

Under OS/390 and VM, the only DBCS character string system-name
allowed is computer-name.

Under AIX and Windows, multi-byte characters are allowed for
system-name.

Function-names

A function-name specifies the mechanism provided to determine the value of an
intrinsic function. The same word, in a different context, can appear in a program
as a user-defined word or a system-name. For a list of function-names and their
definitions, see Table 51 on page

Reserved words

A reserved word is a character-string with a predefined meaning in a COBOL
source program. IBM COBOL reserved words are listed in Appendix D,
“Reserved words” on page

For information on selecting an alternate reserved word table, see the IBM COBOL
Programming Guide for your platform.

There are six types of reserved words:

* Keywords

* Optional words

* TFigurative constants

* Special character words
e Special object identifiers
* Special registers

Keywords
Keywords are reserved words that are required within a given clause, entry, or
statement. Within each format, such words appear in uppercase on the main
path.

Optional words
Optional words are reserved words that can be included in the format of a
clause, entry, or statement in order to improve readability. They have no
effect on the execution of the program.

6 COBOL Language Reference

Figurative constants

Figurative constants
See “Figurative constants” on page [7}

Special character words
There are two types of special characters, which are only recognized as special
characters when represented in single-byte.

* Arithmetic operators: + - [/ * **

See “Arithmetic expressions” on page

* Relational operators: < > = <= >=
See “Conditional expressions” on page

Special object identifiers
COBOL provides two special object identifiers, SELF and SUPER, used in a
method Procedure Division:

SELF
A special object identifier you can use in the Procedure Division of a
method. SELF refers to the object instance used to invoke the
currently-executing method. You can specify SELF only in source program
positions that are explicitly listed in the syntax diagrams.

SUPER
A special object identifier you can use in the Procedure Division of a
method only as the object identifier in an INVOKE statement. When used
in this way, SUPER refers to the object instance used to invoke the
currently-executing method. The resolution of the method to be invoked
ignores any methods declared in the class definition of the
currently-executing method and methods defined in any class derived
from that class. Thus, the method invoked is inherited from an ancestor
class.

Special registers
See “Special registers” on page P]

Figurative constants

Figurative constants are reserved words that name and refer to specific constant
values. The reserved words for figurative constants and their meanings are:

ZERO/ZEROS/ZEROES
Represents the numeric value zero (0), or one or more occurrences of the
nonnumeric character zero (0), depending on context.

When the context cannot be determined, a nonnumeric zero is used.

SPACE/SPACES
Represents one or more blanks or spaces. SPACE is treated as a nonnumeric
literal.

HIGH-VALUE/HIGH-VALUES
Represents one or more occurrences of the character that has the highest
ordinal position in the collating sequence used. For the EBCDIC collating
sequence, the character is X'FF'; for other collating sequences, the actual
character used depends on the collating sequence indicated by the locale. For
more information on locale, see Appendix F, “Locale considerations

Part 1. COBOL language structure 7

Figurative constants

8 coBOL Language Refe

(workstation only)” on page HIGH-VALUE is treated as a nonnumeric
literal.

LOW-VALUE/LOW-VALUES
Represents one or more occurrences of the character that has the lowest
ordinal position in the collating sequence used. For the EBCDIC collating
sequence, the character is X'00"'; for other collating sequences, the actual
character used depends on the collating sequence. LOW-VALUE is treated as
a nonnumeric literal.

QUOTE/QUOTES
Represents one or more occurrences Of!

* The quotation mark character ("), if the QUOTE compiler option is in effect
or
e The apostrophe character (), if the APOST compiler option is in effect

QUOTE or QUOTES cannot be used in place of a quotation mark or an
apostrophe to enclose a nonnumeric literal.

ALL literal
Represents one or more occurrences of the string of characters composing the
literal. The literal must be either a nonnumeric literal or a figurative constant
other than the ALL literal. When a figurative constant, other than the ALL
literal is used, the word ALL is redundant and is used for readability only.
The figurative constant ALL literal must not be used with the CALL,
INSPECT, INVOKE, STOP, or STRING statements.

symbolic-character
Represents one or more of the characters specified as a value of the
symbolic-character in the SYMBOLIC CHARACTERS clause of the
SPECIAL-NAMES paragraph.

Under AIX and Windows, you cannot specify the SYMBOLIC
CHARACTER clause if a DBCS or EUC code page is indicated by the locale
setting. For more information on locale, see Appendix F, “Locale

considerations (workstation only)” on page

NULL/NULLS
Represents a value used to indicate that data items defined with USAGE IS
POINTER, USAGE IS PROCEDURE-POINTER, USAGE IS OBJECT
REFERENCE, or the ADDRESS OF special register do not contain a valid
address. NULL can be used only where explicitly allowed in the syntax
format. NULL has the value of zero.

The singular and plural forms of ZERO, SPACE, HIGH-VALUE, LOW-VALUE,
and QUOTE can be used interchangeably. For example, if data-name-1 is a
5-character data item, each of the following statements will fill data-name-1 with
five spaces:

MOVE SPACE TO DATA-NAME-1
MOVE SPACES TO DATA-NAME-1
MOVE ALL SPACES TO DATA-NAME-1

You can use a figurative constant wherever “literal” appears in a syntax diagram,
except where explicitly prohibited. When a numeric literal appears in a syntax
diagram, only the figurative constant ZERO (ZEROS, ZEROES) can be used.
Figurative constants are not allowed as function arguments except in an arithmetic
expression, where they are arguments to a function.

rence

Special registers

The length of a figurative constant depends on the context of the program. The
following rules apply:

* When a figurative constant is specified in a VALUE clause or associated with a
data item (for example, when it is moved to or compared with another item),
the length of the figurative constant character-string is equal to 1 or the
number of character positions in the associated data item, whichever is greater.

* When a figurative constant, other than the ALL literal, is not associated with
another data item (for example, in a CALL, INVOKE, STOP, STRING, or
UNSTRING statement), the length of the character-string is 1 character.

Special registers

Special registers are reserved words that name storage areas generated by the
compiler. Their primary use is to store information produced through specific
COBOL features. Each such storage area has a fixed name, and must not be
defined within the program.

Unless otherwise explicitly restricted, a special register can be used wherever a
data-name or identifier having the same definition as the implicit definition of the
special register, (which is specified later in this section).

If qualification is allowed, special registers can be qualified as necessary to provide
uniqueness. (For more information, see “Qualification” on page [39)

For the first CALL to a program or INVOKE of a method, the compiler initializes
the special register fields to their initial values.

In the following cases:

* For subsequent CALLs to a CANCELed program

* Programs that possess the INITIAL attribute

e Programs that possess the RECURSIVE attribute

* Programs compiled with the THREAD option (Workstation only)

The following special registers are reset to their initial value on each program or
method entry:

* ADDRESS OF (for each record in the Linkage Section)
e RETURN-CODE

* SORT-CONTROL

* SORT-CORE-SIZE

e SORT-FILE-SIZE

SORT-MESSAGE

SORT-MODE-SIZE

SORT-RETURN

TALLY

In all other cases, the special registers will not be reset; they will be unchanged
from the value contained on the previous CALL or INVOKE.

You can specify an alphanumeric special register in a function wherever an
alphanumeric argument to a function is allowed, unless specifically prohibited.

ADDRESS OF

The ADDRESS OF special register exists for each record (01 or 77) in the Linkage
Section, except for those records that redefine each other. In such cases, the
ADDRESS OF special register is similarly redefined.

Part 1. COBOL language structure 9

Special registers
The ADDRESS OF special register is implicitly defined USAGE IS POINTER.
You can specify the ADDRESS OF special register as an argument to the LENGTH
function. If the ADDRESS OF special register is used as the argument to the

LENGTH function, the result will always be 4, independent of the argument
specified for ADDRESS OF.

A function-identifier is not allowed as the operand of the ADDRESS OF special
register.

DEBUG-ITEM

The DEBUG-ITEM special register provides information for a debugging
declarative procedure about the conditions causing debugging section execution.
DEBUG-ITEM has the following implicit description:

01 DEBUG-ITEM.
02 DEBUG-LINE PICTURE IS X(6).

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-NAME PICTURE IS X(30).

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-CONTENTS PICTURE IS X(n).

Before each debugging section is executed, DEBUG-ITEM is filled with spaces.
The contents of the DEBUG-ITEM subfields are updated according to the rules for
the MOVE statement, with one exception: DEBUG-CONTENTS is updated as if
the move were an alphanumeric-to-alphanumeric elementary move without
conversion of data from one form of internal representation to another.

After updating, each field contains:

DEBUG-LINE
The source-statement sequence number (or the compiler-generated sequence
number, depending on the compiler option chosen) that caused execution of
the debugging section.

DEBUG-NAME
The first 30 characters of the name that caused execution of the debugging
section. Any qualifiers are separated by the word “OF.”

DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3
If the DEBUG-NAME is subscripted or indexed, the occurrence number of each
level is entered in the respective DEBUG-SUB-n. If the item is not subscripted
or indexed, these fields remain as spaces. You must not reference the
DEBUG-ITEM special register if your program uses more than three levels of
subscripting or indexing.

DEBUG-CONTENTS
Data is moved into DEBUG-CONTENTS, as shown in Table 3 on page

10 cosoL Language Reference

Special registers

Table 3. DEBUG-ITEM subfield contents

Cause of
debugging section
execution

Statement referred to
in DEBUG-LINE

Contents of
DEBUG-NAME

Contents of
DEBUG-CONTENTS

procedure-name-1

ALTER statement

procedure-name-1

procedure-name—n

ALTER reference in TO PROCEED
TO phrase
GO TO GO TO statement procedure-name-n spaces

procedure—name—n

procedure-name-n
in SORT/MERGE

SORT/MERGE
statement

procedure—name—n

“SORT INPUT”
“SORT OUTPUT”

input/output “MERGE OUTPUT”
procedure (as applicable)
PERFORM This PERFORM procedure-name-n “PERFORM LOOP”
statement transfer statement

of control

procedure-name-n
in a USE procedure

Statement causing
USE procedure
execution

procedure-name-n

“USE
PROCEDURE”

Implicit transfer
from previous

Previous statement
executed in previous

procedure-name-n

“FALL THROUGH”

sequential sequential procedure

procedure *

First execution of Line number of first first “START
first nondeclarative nondeclarative nondeclarative PROGRAM”
procedure procedure-name procedure

Note:

* If this procedure is preceded by a section header, and control is passed through the

section header, the statement number refers to the section header.

LENGTH OF

The LENGTH OF special register contains the number of bytes used by an

identifier.

LENGTH OF creates an implicit special register whose content is equal to the

current byte length of the data item referenced by the identifier.

Note: For DBCS data items, each character occupies 2 bytes of storage.

LENGTH OF can be used in the Procedure Division anywhere a numeric data item
having the same definition as the implied definition of the LENGTH OF special
register can be used. The LENGTH OF special register has the implicit definition:

USAGE IS BINARY PICTURE 9(9)

If the data item referenced by the identifier contains the GLOBAL clause, the
LENGTH OF special register is a global data item.

The LENGTH OF special register can appear within either the starting character
position or the length expressions of a reference modification specification.
However, the LENGTH OF special register cannot be applied to any operand that

is reference-modified.

The LENGTH OF operand cannot be a function, but the LENGTH OF special
register is allowed in a function where an integer argument is allowed.

Part 1. COBOL language structure 11

Special registers

If the LENGTH OF special register is used as the argument to the LENGTH
function, the result is always 4, independent of the argument specified for
LENGTH OF.

LENGTH OF can not be either of the following;:

* A receiving data item
* A subscript

When the LENGTH OF special register is used as a parameter in a CALL
statement, the parameter must be a BY CONTENT parameter.

When a table element is specified, the LENGTH OF special register contains the
length, in bytes, of one occurrence. When referring to a table element, it need not
be subscripted.

A value is returned for any identifier whose length can be determined, even if the
area referenced by the identifier is currently not available to the program.

A separate LENGTH OF special register exists for each identifier referenced with
the LENGTH OF phrase, for example:

MOVE LENGTH OF A TO B

DISPLAY LENGTH OF A, A

ADD LENGTH OF A TO B

CALL "PROGX" USING BY REFERENCE A BY CONTENT LENGTH OF A

Note: The number of bytes occupied by a COBOL item is also accessible through
the intrinsic function LENGTH (see “LENGTH” on page [430). LENGTH supports
nonnumeric literals in addition to data names.

LINAGE-COUNTER

A separate LINAGE-COUNTER special register is generated for each FD entry
containing a LINAGE clause. When more than one is generated, you must qualify
each reference to a LINAGE-COUNTER with its related file-name.

The implicit description of the LINAGE-COUNTER special register is one of the
following:

e If the LINAGE clause specifies a data-name, LINAGE-COUNTER has the same
PICTURE and USAGE as that data-name.

e If the LINAGE clause specifies an integer, LINAGE-COUNTER is a binary item
with the same number of digits as that integer.

For more information, see “LINAGE clause” on page

The value in LINAGE-COUNTER at any given time is the line number at which
the device is positioned within the current page. LINAGE-COUNTER can be
referred to in Procedure Division statements; it must not be modified by them.

LINAGE-COUNTER is initialized to 1 when an OPEN statement for its associated
file is executed.

LINAGE-COUNTER is automatically modified by any WRITE statement for this
file. (See “WRITE statement” on page B93])

If the file description entry for a sequential file contains the LINAGE clause and
the EXTERNAL clause, the LINAGE-COUNTER data item is an external data item.
If the file description entry for a sequential file contains the LINAGE clause and
the GLOBAL clause, the LINAGE-COUNTER data item is a global data item.

12 cosoL Language Reference

Special registers

You can specify the LINAGE-COUNTER special register wherever an integer
argument to a function is allowed.

RETURN-CODE

The RETURN-CODE special register can be used to pass a return code to the
calling program or operating system when the current COBOL program ends.
When a COBOL program ends:

e If control returns to the operating system, the value of the RETURN-CODE
special register is passed to the operating system as a user return code. The
supported user return code values are determined by the operating system,
and might not include the full range of RETURN-CODE special register values.

For information on user return code values under AIX, see the IBM
COBOL Set for AIX Programming Guide. AIX

e If control returns to a calling program, the value of the RETURN-CODE special
register is passed to the calling program. If the calling program is a COBOL
program, the RETURN-CODE special register in the calling program is set to
the value of the RETURN-CODE special register in the called program.

The RETURN-CODE special register has the implicit definition:
01 RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

The following are examples of how to set the RETURN-CODE special register:
COMPUTE RETURN-CODE = 8

or
MOVE 8 to RETURN-CODE.

When used in nested programs, this special register is implicitly defined in the
outermost program.

Note: The RETURN-CODE special register does not return a value from an
invoked method or from a program that uses CALL..RETURNING. For more
information, see “INVOKE statement” on page or “CALL statement” on

page

You can specify the RETURN-CODE special register in a function wherever an
integer argument is allowed.

The RETURN-CODE special register will not contain return code information:

* On the host, from a service call for a Language Environment callable service.
For more information, see the IBM COBOL for OS/390 & VM Programming
Guide and Language Environment Programming Guide.

e On the workstation, from a date/time callable service. For more information,
see the IBM COBOL Programming Guide for your platform.

SHIFT-OUT and SHIFT-IN

The SHIFT-OUT and SHIFT-IN special registers are supported;
however, the code pages for AIX and Windows do not recognize them as
delimiters for double-byte characters.

The SHIFT-OUT and SHIFT-IN special registers are implicitly defined as
alphanumeric data items of the format:

01 SHIFT-OUT GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OE"
01 SHIFT-IN GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OF"

Part 1. COBOL language structure 13

Special registers
These special registers represent shift-out and shift-in control characters without
the use of unprintable characters.

You can specify the SHIFT-OUT and SHIFT-IN special registers in a function
wherever an alphanumeric argument is allowed.

These special registers cannot be receiving items. SHIFT-OUT and SHIFT-IN
cannot be used in place of the keyboard control characters when defining DBCS
user-defined words and when specifying DBCS literals.

Following is an example of how SHIFT-OUT and SHIFT-IN might be used:

DATA DIVISION.
WORKING-STORAGE.

01 DBCSGRP.
05 SO PIC X.
05 DBCSITEM PIC G(3) USAGE DISPLAY-1
05 SI PIC X.

PROCEDURE DIVISION.

MOVE SHIFT-OUT TO SO

MOVE G"<D1D2D3>" TO DBCSITEM
MOVE SHIFT-IN TO SI

DISPLAY DBCSGRP

When used in nested programs, this special register is implicitly defined in the
outermost program.

SORT-CONTROL

The SORT-CONTROL special register is the name of an alphanumeric data item.

Under AIX and Windows, it is implicitly defined as:

01 SORT-CONTROL GLOBAL PICTURE X(160) VALUE "file name".

Where "file name" is the file name used by SMARTSort as the source for additional
sort/merge options.

Under OS/390 and VM it is implicitly defined as:

01 SORT-CONTROL GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "IGZSRTCD"

This register contains the ddname of the data set that holds the control statements
used to improve the performance of a sorting or merging operation.

Under OS/390, you can provide a DD statement for the data set identified by the
SORT-CONTROL special register, and COBOL for OS/390 & VM will attempt to
open the data set at execution time. Any error will be diagnosed with an
informational message.

You can specify the SORT-CONTROL special register in a function wherever an
alphanumeric argument is allowed.

The SORT-CONTROL special register is not necessary for a successful sorting or
merging operation.

Note that the sort control file takes precedence over the SORT special registers.

When used in nested programs, this special register is implicitly defined in the
outermost program.

14 COBOL Language Reference

Special registers

SORT-CORE-SIZE

The SORT-CORE-SIZE special register is the name of a binary data item that you
can use to specify the number of bytes of storage available to the sort utility. It
has the implicit definition:

01 SORT-CORE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO

Under AIX and Windows, the amount of storage indicated in the
SORT-CORE-SIZE special register does not include memory areas required by
COBOL library functions not related to the SORT or MERGE function. It also does
not include fixed amount of memory areas (modules, control blocks, fixed size
work areas) required for the sort and merge implementation.

Under OS/390 and CMS, SORT-CORE-SIZE can be used in place of the
MAINSIZE or RESINV control statements in the sort control file.

The 'MAINSIZE=" option control statement key word is equivalent to
SORT-CORE-SIZE with a positive value.

The 'RESINV=" option control statement key word is equivalent to
SORT-CORE-SIZE with a negative value.

The 'MAINSIZE=MAX" option control statement key word is equivalent to
SORT-CORE-SIZE with a value of +999999 or +99999999.

You can specify the SORT-CORE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

SORT-FILE-SIZE

The SORT-FILE-SIZE special register is the name of a binary data item that you
can use to specify the estimated number of records in the sort input file,
filename-1. It has the implicit definition:

01 SORT-FILE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO

Under AIX and Windows, references to the SORT-FILE-SIZE special
register are resolved by the compiler; however, the value in the special register has
no impact for the execution of a SORT or MERGE statement.

Under OS/390 and CMS, SORT-FILE-SIZE is equivalent to the
'FILSZ=Ennn' control statement in the sort control file.

You can specify the SORT-FILE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

SORT-MESSAGE

The SORT-MESSAGE special register is the name of an alphanumeric data item
that is available to both sort and merge programs.

Under AIX and Windows, references to the SORT-MESSAGE special
register are resolved by the compiler; however, the value in the special register has
no impact for the execution of a SORT or MERGE statement.

Part 1. COBOL language structure 15

Special registers
Under OS/390 and CMS, it has the implicit definition:
01 SORT-MESSAGE GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "SYSOUT"

You can use the SORT-MESSAGE special register to specify the ddname of a data
set that the sort utility should use in place of the SYSOUT data set.

The ddname specified in SORT-MESSAGE is equivalent to the name specified on
the 'MSGDDN=" control statement in the sort control file.

You can specify the SORT-MESSAGE special register in a function wherever an
alphanumeric argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

SORT-MODE-SIZE

The SORT-MODE-SIZE special register is the name of a binary data item that you
can use to specify the length of variable-length records that occur most frequently.
It has the implicit definition:

01 SORT-MODE-SIZE GLOBAL PICTURE S9(5) USAGE BINARY VALUE ZERO

Under AIX and Windows, references to the SORT-MODE-SIZE special
register are resolved by the compiler; however, the value in the special register has
no impact for the execution of a SORT or MERGE statement.

SORT-MODE-SIZE is equivalent to the 'SMS=" control statement in the
sort control file.

You can specify the SORT-MODE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

SORT-RETURN

The SORT-RETURN special register is the name of a binary data item and is
available to both sort and merge programs.

The SORT-RETURN special register has the implicit definition:
01 SORT-RETURN GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

It contains a return code of 0 (successful) or 16 (unsuccessful) at the completion of
a sort/merge operation. If the sort/merge is unsuccessful and there is no
reference to this special register anywhere in the program, a message is displayed
on the terminal.

You can set the SORT-RETURN special register to 16 in an error declarative or
input/output procedure to terminate a sort/merge operation before all records are
processed. The operation is terminated on the next input or output function for
the SORT or MERGE operation.

You can specify the SORT-RETURN special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

16 COBOL Language Reference

Literals

TALLY

The TALLY special register is the name of a binary data item with the following
definition:

01 TALLY GLOBAL PICTURE 9(5) USAGE BINARY VALUE ZERO
You can refer to or modify the contents of TALLY.

You can specify the TALLY special register in a function wherever an integer
argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

WHEN-COMPILED

The WHEN-COMPILED special register contains the date at the start of the
compilation. WHEN-COMPILED is an alphanumeric data item with the implicit
definition:

01 WHEN-COMPILED GLOBAL PICTURE X(16) USAGE DISPLAY

The WHEN-COMPILED special register has the format:
MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

For example, if compilation began at 2:04 PM on 27 April 1995,
WHEN-COMPILED would contain the value 04/27/9514.04.00.

WHEN-COMPILED can only be used as the sending field in a MOVE statement.
WHEN-COMPILED special register data cannot be reference-modified.

When used in nested programs, this special register is implicitly defined in the
outermost program.

Note: The compilation date and time is also accessible via the date/time intrinsic
function WHEN-COMPILED (See “WHEN-COMPILED” on page [459). That
function supports 4-digit year values, and provides additional information.

Literals

A literal is a character-string whose value is specified either by the characters of
which it is composed, or by the use of a figurative constant. (See “Figurative
constants” on page [7]) The literal types are nonnumeric, DBCS, and numeric.

Nonnumeric literals

A nonnumeric literal is a character string enclosed in quotation marks ("), and can
contain any allowable character from the character set of the computer. The
maximum length of a nonnumeric literal is 160 characters.

The enclosing quotation marks are excluded from the literal when the program is
compiled. An embedded quotation mark must be represented by a pair of
quotation marks (""). For example,

"THIS ISN""T WRONG"

Part 1. COBOL language structure 17

Literals

As an IBM extension, you can use apostrophes as the literal delimiters instead of
quotes (independent of the APOST/QUOTE compiler option). An embedded
apostrophe must be represented by a pair of apostrophes (''). For example,

"THIS ISN''T WRONG'

The delimiter character used as the opening delimiter for a literal must be used as

the closing delimiter for that literal. For example,

'THIS IS RIGHT'
"THIS IS RIGHT"
'THIS IS WRONG"

Any punctuation characters included within a nonnumeric literal are part of the

value of the literal.

Every nonnumeric literal is in the alphanumeric data category. (Data categories

are described in “Classes and categories of data” on page [127})

Table 4 lists when nonnumeric literals with double-byte or multiple-byte

characters cannot be used.

Table 4. When multi-byte characters are not allowed in nonnumeric literals

0S/390 and VM

AIX and Windows

As a literal in the following;:

ALPHABET clause

ASSIGN clause

CALL statement program-id
CANCEL statement

CLASS clause

CURRENCY SIGN clause
END METHOD header
END PROGRAM header
ENTRY statement

As a literal in the following:

ALPHABET clause

ASSIGN clause

CLASS clause

CURRENCY SIGN clause

END METHOD header
METHOD-ID paragraph
PADDING CHARACTER clause
RERUN clause

STOP statement

METHOD-ID paragraph
PADDING CHARACTER clause
PROGRAM-ID paragraph
RERUN clause

STOP statement

BASIS statement (basis-name)

COPY statement (text-name)

COPY statement (library-name)

Under AIX and Windows, you can include multi-byte as well as
single-byte DBCS or EUC characters as alphanumeric literals (such as to initialize
display fields). However, COBOL semantics applied to literals that contain both
multi-byte and single-byte characters are not sensitive to the length (in bytes) of
the individual characters.

The rule of formation for mixed literals are as follows:

* A nonnumeric literal (whether it contains any multi-byte characters or not) is
delimited by either an opening and closing " or an opening and closing '. The

or ' must be represented as a single-byte character.
e Nonnumeric literals containing a multi-byte character cannot be continued.

The maximum length of a nonnumeric literal with multi-byte characters is
limited only by the available positions in Area B on a single source line.

Workstation

18 COBOL Language Reference

Literals

Under OS5/390 and VM, with the DBCS compiler option, the characters
X'0E' and X'OF' in a nonnumeric literal will be recognized as shift codes for
DBCS characters. That is, the characters between paired shift codes will be
recognized as DBCS characters. Unlike a nonnumeric literal compiled under the
NODBCS option, additional syntax rules apply to DBCS characters in a
nonnumeric literal.

These nonnumeric literals with double-byte characters have the following format:

— Nonnumeric literals with double-byte characters
"EBCDIC-data<D1D2>EBCDIC-data"

The opening and closing delimiter (Alternatively, you can use apostrophes (')
as delimiters.)

< Represents the shift-out control character (X'0E")
> Represents the shift-in control character (X'0F")

Shift-out and shift-in control characters are part of the literal and must be paired
with zero or an even number of intervening bytes.

Nested shift codes are not allowed in the DBCS portion of the literal.

The syntax rules for EBCDIC parts of the literal follow the rules for nonnumeric
literals. The syntax rules for DBCS parts of the literal follow the rules for DBCS
literals. The move and comparison rules for nonnumeric literals with double-byte
characters are the same as those for any nonnumeric literal.

The length of a nonnumeric literal with double-byte characters is its byte length,
including the shift control characters. The maximum length is limited by the
available space on one line in Area B. A nonnumeric literal with double-byte
characters cannot be continued.

A nonnumeric literal with double-byte characters is of the alphanumeric category.

Under COBOL for OS/390 & VM, COBOL statements process nonnumeric literals
with double-byte characters without sensitivity to the shift codes and character
codes. The use of statements that operate on a byte-to-byte basis (for example,
STRING and UNSTRING) can result in strings that are not valid mixtures of
EBCDIC and double-byte characters. You must be certain that the statements use
DBCS characters. See IBM COBOL for OS/390 & VM Programming Guide for more
information on using nonnumeric literals and data items with double-byte
characters in statements that operate on a byte-by-byte basis.

Hexadecimal notation can be used for nonnumeric literals. This hexadecimal
notation has the following format:

—— Hexadecimal notation format for nonnumeric literals

X"hexadecimal-digits"

X" The opening delimiter for hexadecimal notation of a nonnumeric literal.
(Alternatively, you can use apostrophes (') as delimiters.)

The closing delimiter for the hexadecimal notation of a nonnumeric literal.
(Alternatively, you can use apostrophes (') as delimiters.)

Hexadecimal digits can be characters in the range '0' to '9', 'a' to 'f', and 'A'

Part 1. COBOL language structure 19

Literals

to 'F', inclusive. Two hexadecimal digits represent a single character in the
EBCDIC/ASCII character set. An even number of hexadecimal digits must be
specified. The maximum length of a hexadecimal literal is 320 hexadecimal digits.

The continuation rules are the same as those for any nonnumeric literal. The
opening delimiter (X" or X') cannot be split across lines.

The DBCS compiler option has no effect on the processing of hexadecimal notation
of nonnumeric literals.

The compiler will convert the hexadecimal literal into a normal nonnumeric literal.
Hexadecimal notation for nonnumeric literals can be used anywhere nonnumeric
literals can appear.

The padding character for hexadecimal notation of nonnumeric literals is the blank
(X'40"' for OS/390 and VM) or (X'20' for AIX and Windows).

Nonnumeric literals can be null-terminated, with the following format:

Format for null-terminated nonnumeric literals
Z"ddddd"

Z" The opening delimiter for null-terminated notation of a nonnumeric literal.
(Alternatively, you can use apostrophes (') as delimiters.)

The closing delimiter for a null-terminated notation of a nonnumeric literal.
(Alternatively, you can use apostrophes (') as delimiters.)

Null-terminated nonnumeric literals can be from 0 to 159 characters. You can
specify any character except X'00', which is the null string automatically
appended to the end of the literal. The length of the literal includes the
terminating null character.

Null-terminated literals can be used anywhere a nonnumeric literal can be
specified and have the normal semantics of nonnumeric literals.

Both characters of the opening delimiter for null-terminated literals (Z" or Z') must
be on the same source line.

The LENGTH intrinsic function, when applied to a null-terminated literal, returns
the number of characters in the literal prior to but not including the terminating
null. (The LENGTH special register does not support literal operands.)

Null-terminated literals are not supported in “ALL literal” constructions.

Numeric literals

A numeric literal is a character-string whose characters are selected from the digits
0 through 9, a sign character (+ or -), and the decimal point. If the literal contains
no decimal point, it is an integer. (In this manual, the word integer appearing in a
format represents a numeric literal of nonzero value that contains no sign and no
decimal point; any other restrictions are included with the description of the
format.) The following rules apply:

e If the ARITH(COMPAT) compiler option is in effect, then one through 18
digits are allowed. If the ARITH(EXTEND) compiler option is in effect, then
one through 31 digits are allowed.

e Only one sign character is allowed. If included, it must be the leftmost
character of the literal. If the literal is unsigned, it is a positive value.

20 COBOL Language Reference

Literals

* Only one decimal point is allowed. If a decimal point is included, it is treated
as an assumed decimal point (that is, as not taking up a character position in
the literal). The decimal point can appear anywhere within the literal except
as the rightmost character.

The value of a numeric literal is the algebraic quantity expressed by the characters
in the literal. The size of a numeric literal in standard data format characters is
equal to the number of digits specified by the user.

Numeric literals can be fixed-point or floating-point numbers.
Rules for floating-point literal values:

* A floating-point literal is written in the form:

>> mantissa E exponent—»<

+
+

e The sign is optional before the mantissa and the exponent; if you omit the
sign, the compiler assumes a positive number.

* The mantissa can contain between 1 and 16 digits. A decimal point must be
included in the mantissa.

e The exponent is represented by an E followed by an optional sign and 1 or 2
digits.

. Under OS5/390 and VM, the magnitude of a floating-point literal
value must fall between 0.54E-78 and 0.72E+76. For values outside of this

range, an E-level diagnostic will be produced and the value will be replaced by
either 0 or 0.72E+76, respectively.

o Under AIX and Windows, the magnitude of a floating-point
literal value must fall between:

— 32-bit representation—1.175(10-%) to 3.403(10%)
— 64-bit representation—2.225(10-3%) to 1.798(10%%)

Every numeric literal is in the numeric data category. (Data categories are
described under “Classes and categories of data” on page [127])

DBCS literals

Table 5 lists the formats and rules for DBCS literals. You can use either quotes or
apostrophes for the opening and closing delimiters.

Table 5 (Page 1 of 2). Format and rules for forming DBCS literals

Rules 0S/390 and VM AIX and Windows
Format G"<D1D2D3>" G"D1D2D3"
N"<D1D2D3>" N"D1D2D3"

Part 1. COBOL language structure 21

Literals

Table 5 (Page 2 of 2). Format and rules for forming DBCS literals

Rules

0S/390 and VM

AIX and Windows

GII Nll

Opening delimiters. They must be followed
immediately by a shift-out control character.

For N-literals, when embedded
quotes/apostrophes are specified as part of
DBCS characters in a DBCS literal, a single
embedded DBCS quote/apostrophe is
represented by 2 DBCS quotes/apostrophes.
If a single embedded DBCS
quote/apostrophe is found, an E-level
compiler message will be issued and a second
embedded DBCS quote/apostrophe will be
assumed.

Opening delimiters.

Represents the shift-out control character
(X'OE")

N/A

Represents the shift-in control character
(X'OF")

N/A

The closing delimiter. They must appear
immediately after the shift-in control
character.

Single-byte quotation marks or apostrophes
can appear as part of DBCS characters in a
DBCS literal between the shift-out and
shift-in control characters.

The closing delimiter.

Character
range

X'00" to X'FF' for both bytes, except for
X'0F7F" (or X'0F7D" if using apostrophes as
the opening and closing delimiters).

Any double-byte character in a DBCS code
page.

Maximum
length

28 characters

N/A

Continuation
rules

Cannot be continued across lines.

Cannot be continued across lines.

When DBCS literals are allowed

DBCS literals are allowed in the following:

e Data Division

— In the VALUE clause of DBCS data description entries. If you specify a
DBCS literal in a VALUE clause for a data item, the length of the literal
must not exceed the size indicated by the data item's PICTURE clause.
Explicitly or implicitly defining a DBCS data item as USAGE DISPLAY-1
specifies that the data item is to be stored in character form, one character

to each 2 bytes.

— In the VALUE OF clause of file description entries.

e Procedure Division

— As the sending item when a DBCS or group item is the receiving item.

— In a relation condition when the comparand is a DBCS or group item.

— As the figurative constants SPACE/SPACES, ALL SPACE/SPACES, or
ALL DBCS literal. These are the only figurative constants that can be
DBCS literals. (The value of a DBCS space is X'4040".)

22 COBOL Language Reference

Literals

When DBCS literals are not allowed

DBCS literals are not allowed in the following:
* Non-Procedure Division

— ALPHABET clause

— ASSIGN clause

— CLASS clause

— CURRENCY SIGN clause

— END METHOD header

— END PROGRAM header

— METHOD-ID paragraph

— PADDING CHARACTER clause
— PROGRAM-ID paragraph

— RERUN clause

e Procedure Division

— CALL statement (program-name)

— CANCEL statement

— ENTRY statement

— INVOKE statement

— SET procedure-pointer to ENTRY literal
— STOP statement

e As a file assignment name

* As a function argument

* As a basis-name in a BASIS statement

* As a text-name or library-name in a COPY statement

PICTURE character-strings

A PICTURE character-string is composed of the currency symbol and certain
combinations of characters in the COBOL character set. PICTURE character-strings
are delimited only by the separator space, separator comma, separator semicolon,
or separator period.

A chart of PICTURE clause symbols appears in Table 11 on page [161]

Comments

A comment is a character-string that can contain any combination of characters
from the character set of the computer. It has no effect on the execution of the
program. There are two forms of comments:

Comment entry (Identification Division)
This form is described under “Optional paragraphs” on page [76

Comment line (any division)
This form is described under “Comment lines” on page [32}

Character-strings that form comments can contain:

o Under OS/390 and VM, DBCS characters or a combination of DBCS
and EBCDIC characters.

o Under AIX and Windows any character from the code page in
effect.

Multiple comment lines containing DBCS/EUC strings are allowed. The
embedding of DBCS/EUC characters in a comment line must be done on a

Part 1. COBOL language structure 23

Separators

line-by-line basis. DBCS/EUC words cannot be continued to a following line. No
syntax checking for valid DBCS/EUC strings is provided in comment lines.

Separators

A separator is a string of one or more contiguous characters as shown in Table 6.

Table 6. Separator characters

Separator Meaning

b Space

b Comma

b Period

;b Semicolon

(Left parenthesis

) Right parenthesis

: Colon

"b Quotation marks

'b Apostrophe

X" Opening delimiter for a nonnumeric literal
z" Opening delimiter for a null-terminated nonnumeric literal
N" Opening delimiter for a DBCS literal

G" Opening delimiter for a DBCS literal

== Pseudo-text delimiter

Rules for separators

In the following description, {} enclose each separator. Anywhere a space is used
as a separator, or as part of a separator, more than one space can be used.

The IBM COBOL character set does not include a tab character (ASCII
code 9). You cannot use the tab character as a separator in IBM COBOL.

Workstation

Space {b}
A space can immediately precede or follow any separator except:

* The opening pseudo-text delimiter, where the preceding space is required.

* Within quotation marks. Spaces between quotation marks are considered
part of the nonnumeric literal; they are not considered separators.

Period {.b}, Comma {,b}, Semicolon {;b}
A separator comma is composed of a comma followed by a space; a separator
period is composed of a period followed by a space; a separator semicolon is
composed of a semicolon followed by a space.

The separator period must be used only to indicate the end of a sentence, or as
shown in formats. The separator comma and separator semicolon can be used
anywhere the separator space is used.

* In the Identification Division, each paragraph must end with a separator
period.

¢ In the Environment Division, the SOURCE-COMPUTER,
OBJECT-COMPUTER, SPECIAL-NAMES, and I-O-CONTROL paragraphs
must each end with a separator period. In the FILE-CONTROL paragraph,
each File-Control entry must end with a separator period.

* In the Data Division, file (FD), sort/merge file (SD), and data description
entries must each end with a separator period.

24 COBOL Language Reference

Separators

* In the Procedure Division, separator commas or separator semicolons can
separate statements within a sentence, and operands within a statement.
Each sentence and each procedure must end with a separator period.

Parentheses { (}...{) }
Except in pseudo-text, parentheses can appear only in balanced pairs of left
and right parentheses. They delimit subscripts, a list of function arguments,
reference-modifiers, arithmetic expressions, or conditions.

Colon { : }
The colon is a separator and is required when shown in general formats.

Quotation marks {"} ... {"}
An opening quotation mark must be immediately preceded by a space or a left
parenthesis. A closing quotation mark must be immediately followed by a
separator (space, comma, semicolon, period, right parenthesis, or pseudo-text
delimiter). Quotation marks must appear as balanced pairs. They delimit
nonnumeric literals, except when the literal is continued (see “Continuation
lines” on page [B1).

Apostrophes {'} ... {"}
An opening apostrophe must be immediately preceded by a space or a left
parenthesis. A closing apostrophe must be immediately followed by a
separator (space, comma, semicolon, period, or right parenthesis).
Apostrophes must appear as balanced pairs. They delimit nonnumeric literals,
except when the literal is continued (see “Continuation lines” on page B1).

Pseudo-text delimiters {b==}. .. {==b}
An opening pseudo-text delimiter must be immediately preceded by a space.
A closing pseudo-text delimiter must be immediately followed by a separator
(space, comma, semicolon, or period). Pseudo-text delimiters must appear as
balanced pairs. They delimit pseudo-text. (See “COPY statement” on

page [468))
Note: Any punctuation character included in a PICTURE character-string, a

comment character-string, or a nonnumeric literal is not considered as a
punctuation character, but rather as part of the character-string or literal.

Part 1. COBOL language structure 25

Statement and clauses

Sections and paragraphs

Sections and paragraphs define a program. They are subdivided into clauses and
statements. For more information on sections, paragraphs, and statements, see
“Procedures” on page

Statements and clauses

Unless the associated rules explicitly state otherwise, each required clause or
statement must be written in the sequence shown in its format. If optional clauses
or statements are used, they must be written in the sequence shown in their
formats. These rules are true even for clauses and statements treated as comments.

The grammatical hierarchy follows this form:

¢ Identification Division
Paragraphs
Entries
Clauses

e Environment Division
Sections
Paragraphs
Entries
Clauses
Phrases

Data Division
Sections
Entries
Clauses
Phrases

Procedure Division
Sections
Paragraphs
Sentences
Statements
Phrases

Entries

An entry is a series of clauses ending with a separator period. Entries are
constructed in the Identification, Environment, and Data Divisions.

Clauses

A clause is an ordered set of consecutive COBOL character-strings that specifies an
attribute of an entry. Clauses are constructed in the Identification, Environment,
and Data Divisions.

26 © Copyright IBM Corp. 1991, 2000

Statement and clauses

Sentences

A sentence is a sequence of one or more statements, ending with a separator
period. Sentences are constructed in the Procedure Division.

Statements

A statement is a valid combination of a COBOL verb and its operands. It specifies
an action to be taken by the object program. Statements are constructed in the
Procedure Division. For descriptions of the different types of statements, see:

Phrases

“Imperative statements” on page 235]
“Conditional statements” oage 236

“Scope of names” on page
“Compiler-directing statements” on page @

Each clause or statement in the program can be subdivided into smaller units
called phrases.

Part 1. COBOL language structure 27

Indicator area

Reference format

COBOL programs must be written in the COBOL reference format. Figure 1
shows the reference format for a COBOL source line.

12345 |6|7{8]9]10]11]|12]13]...]71]72

Sequence Number Area b Area A Area B
Indicator Area

Figure 1. Reference format for COBOL source line

The following areas are described below in terms of a 72-character line:

Sequence number area
Columns 1 through 6

Indicator area
Column 7

Area A
Columns 8 through 11

Area B
Columns 12 through 72

Sequence number area

The sequence number area can be used to label a source statement line. The
content of this area can consist of any character in the character set of the
computer.

Indicator area

28

Use the indicator area to specify:

* The continuation of words or nonnumeric literals from the previous line onto
the current line

* The treatment of text as documentation

* Debugging lines

See “Continuation lines” on page “Comment lines” on page and
“Debugging lines” on page é'

The indicator area can be used for source listing formatting. A slash (“/”) placed
in the indicator column will cause the compiler to start a new page for the source
listing, and the corresponding source record to be treated as a comment. The
effect may be dependent on the LINECOUNT compiler option. For information on
the LINECOUNT compiler option, see the IBM COBOL Programming Guide for
your platform.

© Copyright IBM Corp. 1991, 2000

Area A

Area A

The following items must begin in Area A:

Division header

Section header

Paragraph header or paragraph name

Level indicator or level-number (01 and 77)
DECLARATIVES and END DECLARATIVES
End program, end class, and end method header

Division header

A division header is a combination of words, followed by a separator period, that
indicates the beginning of a division:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

A division header (except when a USING phrase is specified with a Procedure
Division header) must be immediately followed by a separator period. Except for
the USING phrase, no text can appear on the same line.

Section header

In the Environment and Procedure Divisions, a section header indicates the
beginning of a series of paragraphs; for example:

INPUT-OUTPUT SECTION.
In the Data Division, a section header indicates the beginning of an entry; for
example:

FILE SECTION.

LINKAGE SECTION.

WORKING-STORAGE SECTION.

A section header must be immediately followed by a separator period.

Paragraph header or paragraph name

A paragraph header or paragraph name indicates the beginning of a paragraph.

In the Environment Division, a paragraph consists of a paragraph header followed
by one or more entries. For example:

OBJECT-COMPUTER. computer-name

In the Procedure Division, a paragraph consists of a paragraph-name followed by
one or more sentences.

Level indicator (FD and SD) or level-number (01 and 77)

A level indicator can be either FD or SD. It must begin in Area A and be followed
by a space. (See “File Section” on page [133]) A level-number that must begin in

Part 1. COBOL language structure 29

Area B

Area A is a 1- or 2-digit integer with a value of 01 or 77. It must be followed by a
space or separator period.

DECLARATIVES and END DECLARATIVES

DECLARATIVES and END DECLARATIVES are key words that begin and end the
declaratives part of the source program.

In the Procedure Division, each of the key words DECLARATIVES and END
DECLARATIVES must begin in Area A and be followed immediately by a
separator period; no other text can appear on the same line. After the key words
END DECLARATIVES, no text can appear before the following section header.
(See “Declaratives” on page [207)

End Program, End Class, and End Method headers

The “end” headers are a combination of words, followed by a separator period,
that indicate the end of a COBOL source program, class definition, or method
definition. For example:

END PROGRAM PROGRAM-NAME.
END CLASS CLASS-NAME.
END METHOD METHOD-NAME.

For programs
Program-name must be identical to the program-name of the corresponding
PROGRAM-ID paragraph. Every COBOL program, except an outermost
program that contains no nested programs and is not followed by another
batch program, must end with an END PROGRAM header.

For classes
Class-name must be identical to the class-name of the corresponding CLASS-ID
paragraph.

For methods
Method-name must be identical to the method-name of the corresponding
METHOD-ID paragraph.

Area B

The following items must begin in Area B:

¢ Entries, sentences, statements, clauses
¢ Continuation lines

Entries, sentences, statements, clauses

The first entry, sentence, statement, or clause begins on either the same line as the
header or paragraph-name it follows, or in Area B of the next nonblank line that is
not a comment line. Successive sentences or entries either begin in Area B of the
same line as the preceding sentence or entry or in Area B of the next nonblank line
that is not a comment line.

Within an entry or sentence, successive lines in Area B can have the same format,
or can be indented to clarify program logic. The output listing is indented only if
the input statements are indented. Indentation does not affect the meaning of the
program. The programmer can choose the amount of indentation, subject only to

30 coBoOL Language Reference

Area B

the restrictions on the width of Area B. See also “Sections and paragraphs” on

page
Continuation lines

Any sentence, entry, clause, or phrase that requires more than one line can be
continued in Area B of the next line that is neither a comment line nor a blank
line. The line being continued is a continued line; the succeeding lines are
continuation lines. Area A of a continuation line must be blank.

If there is no hyphen (-) in the indicator area (column 7) of a line, the last character
of the preceding line is assumed to be followed by a space.

DBCS literals and user-defined words containing multi-byte characters cannot be
continued.

Both characters making up the opening delimiter must be on the same line for the:

¢ Hexadecimal notation of a nonnumeric literal (X" or X')
¢ Hexadecimal notation of a null-terminated nonnumeric literal (Z" or Z')

If there is a hyphen in the indicator area of a line, the first nonblank character of
this continuation line immediately follows the last nonblank character of the
continued line without an intervening space.

If the continued line contains a nonnumeric literal without a closing quotation
mark, all spaces at the end of the continued line (through column 72) are
considered to be part of the literal. The continuation line must contain a hyphen
in the indicator area, and the first nonblank character must be a quotation mark.
The continuation of the literal begins with the character immediately following the
quotation mark.

If a nonnumeric literal that is to be continued on the next line has as its last
character a quotation mark in column 72, the continuation line must start with two
consecutive quotation marks. This will result in a single quotation mark as part of
the value of the nonnumeric literal.

If the last character on the continued line of a nonnumeric literal is a single
quotation mark in Area B, the continuation line can start with a single quotation
mark. This will result in two consecutive nonnumeric literals instead of one
continued nonnumeric literal.

Both characters making up the pseudo-text delimiter separator “==" must be on
the same line.

To continue a literal such that the continued lines and the continuation lines are
part of one literal:

* Code a hyphen in the indicator area of each continuation line.

* Do not terminate the continued lines with a single quotation mark followed by
a space.

* Code the literal value using all columns of the continued lines, up to and
including column 72.

* Code a quotation mark before the first character of the literal on each
continuation line.

* Terminate the last continuation line with a single quotation mark followed by
a space.

Part 1. COBOL language structure 31

Area A or Area B

Given the following examples, the number and size of literals created are as
follows:

e Literal 000001 is interpreted as one literal that is 120 bytes long. Each character
between the starting quotation mark and up to and including column 72 of
continued lines are counted as part of the literal.

» Literal 000005 is interpreted as one literal that is 140 bytes long. The blanks at
the end of each continued line are counted as part of the literal because the
continued lines do not end with a quotation mark.

e Literal 000010 is interpreted as three separate literals, each having a length of
50, 50, and 20, respectively. The quotation mark with the following space
terminates the continued line. Only the characters within the quotation marks
are counted as part of the literals. Literal 000010 is not valid as a VALUE
clause literal for non-level 88 data items.

Example
P DU U U SN ORI SUUY SUTE Y PUUE SO : SO SO SN
000001 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
- "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJIIJIIIIKKKKKKKKKK
- “LLLLLLLLLLMMMMMMMMMM®
000005 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
- "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJIIIIIKKKKKKKKKK
- "LLLLLLLLLLMMMMMMMMMM"
000010 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE"
- "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJIIIIIKKKKKKKKKK"
- “LLLLLLLLLLMMMMMMMMMM®

Note: To code a continued literal where the length of each continued segment of
the literal is less than the length of Area-B, adjust the starting column such that the
last character of the continued segment is in column 72.

Area A or Area B

The following items can begin in either Area A or Area B:

e Level-numbers

* Comment lines

* Compiler-directing statements
e Debugging lines

e Pseudo-text

Level-numbers

A level-number that can begin in Area A or B is a 1- or 2-digit integer with a value
of 02 through 49; 66, or 88. A level-number that must begin in Area A is a 1- or
2-digit integer with a value of 01 or 77. It must be followed by a space or a
separator period. For more information, see “Level-numbers” on page

Comment lines

A comment line is any line with an asterisk (*) or slash (/) in the indicator area
(column 7) of the line. The comment can be written anywhere in Area A and Area
B of that line, and can consist of any combination of characters from the character

32 coBOL Language Reference

Area A or Area B

set of the computer. A comment line can be placed anywhere in the program
following the Identification Division header.

Comment lines are permitted to appear before the Identification Division, but they
must follow any control cards (for example, PROCESS or CBL).

Note: Comments intermixed with control cards could nullify some of the control
cards and cause them to be diagnosed as errors.

Multiple comment lines are allowed. Each must begin with either an asterisk (*) or
a slash (/) in the indicator area.

An asterisk (*) comment line is printed on the next available line in the output
listing. The effect may be dependent on the LINECOUNT compiler option. For
information on the LINECOUNT compiler option, see the IBM COBOL
Programming Guide for your platform. A slash (/) comment line is printed on the
first line of the next page, and the current page of the output listing is ejected.

The compiler treats a comment line as documentation, and does not check it
syntactically.

Compiler-directing statements

Most compiler-directing statements can start in either Area A or Area B, including
COPY and REPLACE.

As an IBM extension BASIS, CBL (PROCESS), *CBL (*CONTROL), DELETE,
EJECT, INSERT, SKIP1/2/3, and TITLE can also start in Area A or Area B.

Compiler directives (workstation only)

Compiler directives can start only in Area B. Currently, the only compiler
directive is CALLINTERFACE. For more information, see “Compiler directives”

on page
Debugging lines

A debugging line is any line with a 'D"' (or 'd') in the indicator area of the line.
Debugging lines can be written in the Environment Division (after the
OBJECT-COMPUTER paragraph), the Data Division, and the Procedure Division.
If a debugging line contains only spaces in Area A and Area B, it is considered a
blank line.

See “WITH DEBUGGING MODE” in “SOURCE-COMPUTER paragraph” on
page
Pseudo-text

The character-strings and separators comprising pseudo-text can start in either

Area A or Area B. If, however, there is a hyphen in the indicator area (column 7)
of a line which follows the opening pseudo-text delimiter, Area A of the line must
be blank, and the rules for continuation lines apply to the formation of text words.

Part 1. COBOL language structure 33

Area A or Area B
Blank lines

A blank line contains nothing but spaces from column 7 through column 72. A
blank line can appear anywhere in a program.

34 coBOL Language Reference

Scope of names

Scope of names

A COBOL resource is any resource in a COBOL program that is referenced via a
user-defined word. You can use names to identify COBOL resources. This section
describes COBOL names and their scope. It explains the range of where the names
can be referenced and the range of their usability and accessibility.

Types of names

In addition to identifying a resource, a name can have global or local attributes.
Some names are always global, some names are always local, and some names are
either local or global depending on specifications in the program in which the
names are declared.

For programs

A global name can be used to refer to the resource with which it is associated
both:

* From within the program in which the global name is declared

* From within any other program that is contained in the program that
declares the global name

You use the GLOBAL clause in the data description entry to indicate that a
name is global. For more information on using the GLOBAL clause, see
“GLOBAL clause” on page

A local name can be used only to refer to the resource with which it is
associated from within the program in which the local name is declared.

By default, if a data-name, a file-name, a record-name, or a condition-name
declaration in a data description entry does not include the GLOBAL clause,
the name is local.

For classes and methods
Names declared in a class definition are global to all the methods contained in
that class definition. All names declared in methods are implicitly local.

Note: Specific rules sometimes prohibit specifying the GLOBAL clause for certain
data description, file description, or record description entries.

The following list indicates the names you can use and whether the name can be
local or global:

data-name
Data-name assigns a name to a data item.

A data-name is global if the GLOBAL clause is specified either in the data
description entry that declares the data-name, or in another entry to which that
data description entry is subordinate.

file-name
File-name assigns a name to a file connector.

A file-name is global if the GLOBAL clause is specified in the file description
entry for that file-name.

© Copyright IBM Corp. 1991, 2000 35

Scope of names

record-name
Record-name assigns a name to a record.

A record-name is global if the GLOBAL clause is specified in the record
description that declares the record-name, or in the case of record description
entries in the File Section, if the GLOBAL clause is specified in the file
description entry for the file name associated with the record description entry.

condition-name
Condition-name associates a value with a conditional variable.

A condition-name that is declared in a data description entry is global if that
entry is subordinate to another entry that specifies the GLOBAL clause.

A condition-name that is declared within the Configuration Section is always
global.

program-name
Program-name assigns a name to a program, either external or internal (nested).
For more information, see “Conventions for program-names” on page

A program-name is neither local nor global. For more information, see
“Conventions for program-names” on page

method-name
Method-name assigns a name to a method. A method-name is neither local nor
global.

section-name
Section-name assigns a name to a section in the Procedure Division.

A section-name is always local.

paragraph-name
Paragraph-name assigns a name to a paragraph in the Procedure Division.

A paragraph-name is always local.

basis-name
Basis-names are treated consistently as defined for text-names without the
library-name qualification.

library-name
Library-name specifies the COBOL library that the compiler uses for including
COPY text. For details, see “COPY statement” on page

text-name
Text-name specifies the name of COPY text to be included by the compiler into
the source program. For details, see “COPY statement” on page [468

alphabet-name
Alphabet-name assigns a name to a specific character set and/or collating
sequence in the SPECIAL-NAMES paragraph of the Environment Division.

An alphabet-name is always global.

class-name
Class-name assigns a name to the proposition in the SPECIAL-NAMES
paragraph of the Environment Division for which a truth value can be defined.

A class-name is always global.

36 COBOL Language Reference

External and internal resources

object-oriented class-name
Object-oriented class-name assigns a name to a class, subclass, or metaclass.
An object-oriented class-name is always global.

object-oriented class Working-Storage
Object-oriented class Working-Storage data items are always global to the
methods contained in the class definition. They are accessible from any
contained method.

mnemonic-name
Mnemonic-name assigns a user-defined word to an implementer-name.

A mnemonic-name is always global.

symbolic-character
Symbolic-character specifies a user-defined figurative constant.

A symbolic-name is always global.

index-name
Index-name assigns a name to an index associated with a specific table.

If a data item possessing the GLOBAL attribute includes a table accessed with
an index, that index also possesses the GLOBAL attribute. In addition, the
scope of that index-name is identical to the scope of the data-name that
includes the table.

External and internal resources

Accessible data items usually require that certain representations of data be stored.
File connectors usually require that certain information concerning files be stored.
The storage associated with a data item or a file connector can be external or
internal to the program or method in which the resource is declared.

A data item or file connector is external if the storage associated with that resource
is associated with the run unit rather than with any particular program or method
within the run unit. An external resource can be referenced by any program or
method in the run unit that describes the resource. References to an external
resource from different programs or methods using separate descriptions of the
resource are always to the same resource. In a run unit, there is only one
representation of an external resource.

A resource is internal if the storage associated with that resource is associated only
with the program or method that describes the resource.

External and internal resources can have either global or local names.

A data record described in the Working-Storage Section is given the external
attribute by the presence of the EXTERNAL clause in its data description entry.
Any data item described by a data description entry subordinate to an entry
describing an external record also attains the external attribute. If a record or data
item does not have the external attribute, it is part of the internal data of the
program or method in which it is described.

Scope of names 37

Resolution of names

Two programs or methods in a run unit can reference the same file connector in
the following circumstances:

* An external file connector can be referenced from any program or method that
describes that file connector.

e If a program is contained within another program, both programs can refer to
a global file connector by referring to an associated global file-name either in
the containing program, or in any program that directly or indirectly contains
the containing program.

Two programs or methods in a run unit can reference common data in the
following circumstances:

* The data content of an external data record can be referenced from any
program or method provided that program or method has described that data
record.

e If a program is contained within another program, both programs can refer to
data possessing the global attribute either in the program or in any program
that directly or indirectly contains the containing program.

The data records described as subordinate to a file description entry that does not
contain the EXTERNAL clause or a sort-merge file description entry, as well as any
data items described subordinate to the data description entries for such records,
are always internal to the program or method describing the file-name. If the
EXTERNAL clause is included in the file description entry, the data records and
the data items attain the external attribute.

Resolution of names

When a program, program B, is directly contained within another program,
program A, both programs can define a condition-name, a data-name, a file-name,
or a record-name using the same user-defined word. When such a duplicated
name is referenced in program B, the following steps determine the referenced
resource (note, these rules also apply to classes and contained methods):

1. The referenced resource is identified from the set of all names which are
defined in program B and all global names defined in program A and in any
programs which directly or indirectly contain program A. Using this set of
names, the normal rules for qualification and any other rules for uniqueness of
reference are applied until one or more resource is identified.

2. If only one resource is identified, it is the referenced resource.

3. If more than one resource is identified, no more than one of them can have a
name local to program B. If zero or one of the resources has a name local to
program B, the following applies:

e If the name is declared in program B, the resource in program B is the
referenced resource.

e If the name is not declared in program B, the referenced resource is:
— The resource in program A if the name is declared in program A.

— The resource in the containing program if the name is declared in the
program containing program A.

This rule is applied to further containing programs until a valid resource is
found.

38 coBsoL Language Reference

Uniqueness of reference

Referencing data names, copy libraries, and Procedure
Division names
References can be made to external and internal resources. References to data and

procedures can be either explicit or implicit. This section contains the rules for
qualification and for explicit and implicit data references.

Uniqueness of reference

Every user-defined name in a COBOL program is assigned by the user to name a
resource for solving a data processing problem. To use a resource, a statement in
a COBOL program must contain a reference which uniquely identifies that
resource. To ensure uniqueness of reference, a user-defined name can be qualified,
subscripted, or reference-modified.

When the same name has been assigned in separate programs to two or more
occurrences of a resource of a given type, and when qualification by itself does not
allow the references in one of those programs to differentiate between the
identically named resources, then certain conventions that limit the scope of names
apply. The conventions ensure that the resource identified is that described in the
program containing the reference. For more information on resolving
program-names, see “Resolution of names” on page

Unless otherwise specified by the rules for a statement, any subscripts and
reference modification are evaluated only once as the first step in executing that
statement.

Qualification

A name can be made unique if it exists within a hierarchy of names by specifying
one or more higher-level names in the hierarchy. The higher-level names are
called qualifiers, and the process by which such names are made unique is called
qualification.

Qualification is specified by placing one or more phrases after a user-specified
name, with each phrase made up of the word IN or OF followed by a qualifier (IN
and OF are logically equivalent).

In any hierarchy, the data name associated with the highest level must be unique if
it is referenced, and cannot be qualified.

You must specify enough qualification to make the name unique; however, it is
not always necessary to specify all the levels of the hierarchy. For example, if
there is more than one file whose records contain the field EMPLOYEE-NO, but only
one of the files has a record named MASTER-RECORD:

e EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies EMPLOYEE-NO
e EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but unnecessary

Qualification rules

The rules for qualifying a name are:

* A name can be qualified even though it does not need qualification except in a
REDEFINES clause, in which case it must not be qualified.

© Copyright IBM Corp. 1991, 2000 39

Uniqueness of reference
* Each qualifier must be of a higher level than the name it qualifies, and must be
within the same hierarchy.

e If there is more than one combination of qualifiers that ensures uniqueness,
then any of these combinations can be used.

Data attribute specification

Explicit data attributes are those you specify in actual COBOL coding.

Implicit data attributes are default values. If you do not explicitly code a data
attribute, the compiler assumes a default value.

For example, you need not specify the USAGE of a data item. If it is omitted and
the symbol N is not specified in the PICTURE clause, the default is USAGE
DISPLAY, which is the implicit data attribute.

When PICTURE clause symbol N is used, USAGE DISPLAY-1 is assumed (for
DBCS items). If, however, you specify USAGE DISPLAY in COBOL coding, it
becomes an explicit data attribute.

Identical names

When programs are directly or indirectly contained within other programs, each
program can use identical user-defined words to name resources. With
identically-named resources, a program will reference the resource which that
program describes rather than the same-named resource described in another
program, even when it is a different type of user-defined word.

These same rules apply to classes and their contained methods.

References to COPY libraries

—— Format

\ 4
A

»»—text-name-1 a
IN:,—Z ibrary-name-1
OF

If more than one COBOL library is available to the compiler during compilation, as
an IBM extension, text-name-1 need not be qualified each time it is referenced; a
qualification of SYSLIB is assumed.

For rules on referencing COPY libraries, see “COPY statement” on page [468

References to Procedure Division names

—— Format 1

\4
A

»»—paragraph-name-1 : m
INj—sectzon-name—l
OF

—— Format 2

\ 4
A

»>—section-name-1

40 coBOL Language Reference

Uniqueness of reference

Procedure Division names that are explicitly referenced in a program must be
unique within a section. A section-name, described under “Procedures” on
page is the highest and only qualifier available for a paragraph-name and
must be unique if referenced.

If explicitly referenced, a paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referred to within the
section in which it appears. A paragraph-name or section-name appearing in a
program cannot be referenced from any other program.

References to Data Division names

Simple data reference

The most basic method of referencing data items in a COBOL program is simple
data reference, which is data-name-1 without qualification, subscripting, or
reference modification. Simple data reference is used to reference a single
elementary or group item.

—— Format

»»—data-name-1

\4
A

data-name-1
Can be any data description entry.

Data-name-1 must be unique in a program.
Identifier

When used in a syntax diagram in this manual, the term identifier refers to a
valid combination of a data-name or function-identifier with its qualifiers,
subscripts, and reference-modifiers as required for uniqueness of reference. Rules
for identifiers associated with a format can, however, specifically prohibit
qualification, subscripting, or reference-modification.

The term data-name refers to a name that must not be qualified, subscripted, or
reference modified, unless specifically permitted by the rules for the format.

e For a description of qualification, see “Qualification” on page B9

 For a description of subscripting, see “Subscripting” on page {43

* For a description of reference modification, see “Reference modification” on

page

—— Format 1

v

v

»»—data-name-1

|
IN:I—data-name-Z—‘ IN:,—]‘ile-name-lJ
OF OF

v |
|—(—subscript‘—)J

\ 4

v

\

\ 4
A

|—(—Zeftmost-character-position :—L—_l—)J
length

Part 1. COBOL language structure 41

Uniqueness of reference

data-name-1, data-name-2
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be unique within this program.

—— Format 1

»—[condition-name-l v |
data—name-l4 IN:,—data—name-ZJ
OF

A\
A

\ 4

IN:I—file—name—l—‘
OF

— Format 2
»»>—| INAGE-COUNTER

A\
A

IN:’—fi le—name-ZJ
OF

data-name-1, data-name-2
Can be a record-name.

condition-name-1
Can be referenced by statements and entries either in that program containing
the Configuration Section or in a program contained within that program.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

Must be unique within this program.

LINAGE-COUNTER
Must be qualified each time it is referenced if more than one file description
entry containing a LINAGE clause has been specified in the source program.

file-name-2
Must be identified by the FD or SD entry in the Data Division. File-name-2
must be unique within this program.

Duplication of data-names must not occur in those places where the data-name
cannot be made unique by qualification.

In the same program, the data-name specified as the subject of the entry whose
level-number is 01 that includes the EXTERNAL clause must not be the same
data-name specified for any other data description entry that includes the
EXTERNAL clause.

In the same Data Division, the data description entries for any two data items for
which the same data-name is specified must not include the GLOBAL clause.

Data Division names that are explicitly referenced must either be uniquely defined
or made unique through qualification. Unreferenced data items need not be
uniquely defined. The highest level in a data hierarchy must be uniquely named,
if referenced. This is a data item associated with a level indicator (FD or SD in the
File Section) or with a level-number 01. Data items associated with level-numbers
02 through 49 are successively lower levels of the hierarchy.

42 COBOL Language Reference

Uniqueness of reference

Condition-name

—— Format 1 (Data Division)

v

»»—condition-name-1 v a |
INj—data-name-l
OF

\4
A

. _
IN le- -1
—fitenme-i= | e |

—— Format 2 (Special-Names paragraph)
v

»»—condition-name-1

A\
A

. |
IN:’—mnemonic—name-l
OF

condition-name-1
Can be referenced by statements and entries either in the program containing
the definition of condition-name-1, or in a program contained within that
program.

If explicitly referenced, a condition-name must be unique or be made unique
through qualification and/or subscripting except when the scope of names
conventions by themselves ensure uniqueness of reference.

If qualification is used to make a condition-name unique, the associated
conditional variable can be used as the first qualifier. If qualification is used,
the hierarchy of names associated with the conditional variable itself must be
used to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any of
its condition-names also requires the same combination of subscripting.

In the general format of the chapters that follow, "condition-name" refers to a
condition-name qualified or subscripted, as necessary.

data-name-1
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be unique within this program.

mnemonic-name-1
For information on acceptable values for mnemonic-name-1, see
“SPECIAL-NAMES paragraph” on page

Subscripting

Subscripting is a method of providing table references through the use of
subscripts. A subscript is a positive integer whose value specifies the occurrence
number of a table element.

Part 1. COBOL language structure 43

Uniqueness of reference

— Format
»—[condition-name-l v | >
data—name-l4 IN:,—data—name-ZJ
OF
IN:l—fi le—name—l—‘ .
OF
—(integer-1 |) ><

ALL

data-name-3 .
+ integer-2
gintes
index-name-1 .
+ integer-3
Tintes

condition-name-1
The conditional variable for condition-name-1 must contain an OCCURS clause
or must be subordinate to a data description entry which contains an OCCURS
clause.

data-name-1
Must contain an OCCURS clause or must be subordinate to a data description
entry which contains an OCCURS clause.

data-name-2, file-name-1
Must name data items or records that contain data-name-1.

integer-1
Can be signed. If signed, it must be positive.

data-name-3
Must be a numeric elementary item representing an integer.

Data-name-3 can be qualified. Data-name-3 cannot be a windowed date field.

index-name-1
Corresponds to a data description entry in the hierarchy of the table being
referenced which contains an INDEXED BY phrase specifying that name.

integer-2, integer-3
Cannot be signed.

The subscripts, enclosed in parentheses, are written immediately following any
qualification for the name of the table element. The number of subscripts in such
a reference must equal the number of dimensions in the table whose element is
being referenced. That is, there must be a subscript for each OCCURS clause in
the hierarchy containing the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of
successively less inclusive dimensions of the data organization. If a
multi-dimensional table is thought of as a series of nested tables and the most
inclusive or outermost table in the nest is considered to be the major table with the
innermost or least inclusive table being the minor table, the subscripts are written
from left to right in the order major, intermediate, and minor.

44 COBOL Language Reference

Uniqueness of reference

For example, if TABLE-THREE is defined as:

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.
10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES PIC X(8).

a valid subscripted reference to TABLE-THREE is:
ELEMENT-THREE (2 2 1)

Subscripted references can also be reference modified. See the third example
under “Reference modification examples” on page 8. A reference to an item
must not be subscripted unless the item is a table element or an item or
condition-name associated with a table element.

Each table element reference must be subscripted except when such reference
appears:

e In a USE FOR DEBUGGING statement

* As the subject of a SEARCH statement

* In a REDEFINES clause

e In the KEY is phrase of an OCCURS clause

The lowest permissible occurrence number represented by a subscript is 1. The
highest permissible occurrence number in any particular case is the maximum
number of occurrences of the item as specified in the OCCURS clause.

Subscripting using data-names

When a data-name is used to represent a subscript, it can be used to reference
items within different tables. These tables need not have elements of the same
size. The same data-name can appear as the only subscript with one item and as
one of two or more subscripts with another item. A data-name subscript can be
qualified; it cannot be subscripted or indexed. For example, valid subscripted
references to TABLE-THREE — assuming that SUB1, SUB2, and SUB3 are all items
subordinate to SUBSCRIPT-ITEM — include:

ELEMENT-THREE (SUB1 SUB2 SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF SUBSCRIPT-ITEM,
SUB2 OF SUBSCRIPT-ITEM, SUB3 OF SUBSCRIPT-ITEM)

Subscripting using index-names (indexing)

Indexing allows such operations as table searching and manipulating specific
items. To use indexing you associate one or more index-names with an item
whose data description entry contains an OCCURS clause. An index associated
with an index-name acts as a subscript, and its value corresponds to an occurrence
number for the item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated
with its table, is an optional part of the OCCURS clause. There is no separate
entry to describe the index associated with index-name. At run time, the contents
of the index corresponds to an occurrence number for that specific dimension of
the table with which the index is associated.

The initial value of an index at run time is undefined, and the index must be
initialized before it is used as a subscript. An initial value is assigned to an index
with one of the following:

e The PERFORM statement with the VARYING phrase

Part 1. COBOL language structure 45

Uniqueness of reference

e The SEARCH statement with the ALL phrase
e The SET statement

The use of an integer or data-name as a subscript referencing a table element or an
item within a table element does not cause the alteration of any index associated
with that table.

As an IBM extension, an index-name can be used to reference any table. However,
the table element length of the table being referenced and of the table that the
index-name is associated with should match. Otherwise, the reference will not be
to the same table element in each table, and you might get run-time errors.

Data that is arranged in the form of a table is often searched. The SEARCH
statement provides facilities for producing serial and non-serial searches. It is used
to search for a table element that satisfies a specific condition and to adjust the
value of the associated index to indicate that table element.

To be valid during execution, an index value must correspond to a table element
occurrence of neither less than one, nor greater than the highest permissible
occurrence number.

For more information on index-names, see “INDEXED BY phrase” on page
Relative subscripting

In relative subscripting, the name of a table element is followed by a subscript of
the form data-name or index-name followed by the operator + or -, and an
unsigned integer literal.

As an IBM extension, the integer can be positively signed.

The operators + and - must be preceded and followed by a space. The value of
the subscript used is the same as if the index-name or data-name had been set up
or down by the value of the integer. The use of relative indexing does not cause
the program to alter the value of the index.

Reference modification

Reference modification defines a data item by specifying a leftmost character and
optional length for the data item.

—— Format

v

data-name-1 I

FUNCTION—function-name-1 L J
(—¥-argument-1-1—)

»—(—leftmost-character-position: B]
length

\4
A

data-name-1
Must reference a data item whose usage is DISPLAY or DISPLAY-1.

Data-name-1 can be qualified or subscripted. Data-name-1 cannot be a
windowed date field.

leftmost-character-position
Must be an arithmetic expression. The evaluation of leftmost-character-position
must result in a positive nonzero integer that is less than or equal to the
number of characters in the data item referenced by data-name-1.

46 COBOL Language Reference

Uniqueness of reference

The evaluation of leftmost-character-position must not result in a windowed date
field.

length
Must be an arithmetic expression.

The sum of leftmost-character-position and length minus the value one must be
less than or equal to the number of characters in data-name-1. If length is
omitted, than the length used will be equal to the number of characters in
data-name-1 plus one minus leftmost-character-position. When data-name-1 is a
DISPLAY-1 data item, reference modification refers to the starting position and
length of the data item being referenced in characters, not bytes. The
evaluation of length must result in a positive nonzero integer.

The evaluation of length must not result in a windowed date field.

Unless otherwise specified, reference modification is allowed anywhere an
identifier referencing an alphanumeric data item is permitted.

Each character of data-name-1 is assigned an ordinal number incrementing by one
from the leftmost position to the rightmost position. The leftmost position is
assigned the ordinal number one. If the data description entry for data-name-1
contains a SIGN IS SEPARATE clause, the sign position is assigned an ordinal
number within that data item.

If data-name-1 is described as numeric, numeric-edited, alphabetic, or
alphanumeric-edited, it is operated upon for purposes of reference modification as
if it were redefined as an alphanumeric data item of the same size as the data item
referenced by data-name-1.

If data-name-1 is an expanded date field, then the result of reference modification
is a non-date.

Reference modification creates a unique data item which is a subset of data-name-1
or by function-name-1 and its arguments, if any. This unique data item is
considered an elementary data item without the JUSTIFIED clause.

When a function is reference-modified, the unique data item has the class and
category of alphanumeric. When data-name-1 is reference-modified, the unique
data item has the same class and category as that defined for the data item
referenced by data-name-1; however, if the category of data-name-1 is numeric,
numeric-edited, or alphanumeric-edited, the unique data item has the class and
category alphanumeric.

If the category of data-name-1 is external floating-point, the unique data item has
the class and category alphanumeric.

If length is not specified, the unique data item created extends from and includes
the character identified by leftmost-character-position up to and including the
rightmost character of the data item referenced by data-name-1.

Evaluation of operands

Reference modification for an operand is evaluated as follows:

* If subscripting is specified for the operand, the reference modification is
evaluated immediately after evaluation of the subscript.

* If subscripting is not specified for the operand, the reference modification is
evaluated at the time subscripting would be evaluated if subscripts had been
specified.

Part 1. COBOL language structure 47

Uniqueness of reference

Reference modification examples

The following statement transfers the first 10 characters of the data-item referenced
by WHOLE-NAME to the data-item referenced by FIRST-NAME.

77 WHOLE-NAME PIC X(25).
77 FIRST-NAME PIC X(10).

MOVE WHOLE-NAME(1:10) TO FIRST-NAME.

The following statement transfers the last 15 characters of the data-item referenced
by WHOLE-NAME to the data-item referenced by LAST-NAME.

77 WHOLE-NAME PIC X(25).
77 LAST-NAME PIC X(15).

MOVE WHOLE-NAME(11:) TO LAST-NAME.

The following statement transfers the fourth and fifth characters of the third
occurrence of TAB to the variable SUFFIX.

01 TABLE-1.
02 TAB OCCURS 10 TIMES PICTURE X(5).

77 SUFFIX PICTURE X(2).

MOVE TAB OF TABLE-1 (3) (4:2) TO SUFFIX.

Function-identifier

A function-identifier is a syntactically correct sequence of character strings and
separators that uniquely references the data item resulting from the evaluation of a
function.

— Format

»»>—FUNCTION—function-name-1

Leiigﬁ;ZFLAJ

A\
A

»
| 2

'—r‘efer‘ence—modifier—l

argument-1
Must be an identifier, literal (other than a figurative constant), or arithmetic
expression.

For more information, see “Intrinsic functions” on page

function-name-1
Function-name-1 must be one of the Intrinsic Function names.

reference-modifier
Can be specified only for functions of the category alphanumeric

A function-identifier that makes reference to an alphanumeric function can be
specified anywhere that an identifier is permitted and where references to
functions are not specifically prohibited, except as follows:

48 COBOL Language Reference

Uniqueness of reference

* As a receiving operand of any statement

* Where a data item is required to have particular characteristics (such as class
and category, size, sign, and permissible values) and the evaluation of the
function according to its definition and the particular arguments specified
would not have these characteristics.

A function-identifier that makes reference to an integer or numeric function can be
used wherever an arithmetic expression is allowed.

Part 1. COBOL language structure 49

Transfer of control

Transfer of control

In the Procedure Division, unless there is an explicit control transfer or there is no
next executable statement, program flow transfers control from statement to
statement in the order in which the statements are written. (See Note below.)
This normal program flow is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without the
execution of a procedure branching statement. The following examples show
implicit transfers of control, overriding statement-to-statement transfer of control:

* After execution of the last statement of a procedure being executed under
control of another COBOL statement, control implicitly transfers. (COBOL
statements that control procedure execution are, for example: MERGE,
PERFORM, SORT, and USE.) Further, if a paragraph is being executed under
the control of a PERFORM statement which causes iterative execution, and that
paragraph is the first paragraph in the range of that PERFORM statement, an
implicit transfer of control occurs between the control mechanism associated
with that PERFORM statement and the first statement in that paragraph for
each iterative execution of the paragraph.

* During SORT or MERGE statement execution, control is implicitly transferred
to an input or output procedure.

* During execution of any COBOL statement that causes execution of a
declarative procedure, control is implicitly transferred to that procedure.

* At the end of execution of any declarative procedure, control is implicitly
transferred back to the control mechanism associated with the statement that
caused its execution.

COBOL also provides explicit control transfers through the execution of any
procedure branching, program call, or conditional statement. (Lists of procedure
branching and conditional statements are contained in “Statement categories” on

page [234})

Note: The term “next executable statement” refers to the next COBOL statement
to which control is transferred, according to the rules given above. There is no
next executable statement under these circumstances:

* When the program contains no Procedure Division

* Following the last statement in a declarative section when the paragraph in
which it appears is not being executed under the control of some other COBOL
statement

* Following the last statement in a program or method when the paragraph in
which it appears is not being executed under the control of some other COBOL
statement in that program

* Following the last statement in a declarative section when the statement is in
the range of an active PERFORM statement executed in a different section and
this last statement of the declarative section is not also the last statement of the
procedure that is the exit of the active PERFORM statement

* Following a STOP RUN statement or EXIT PROGRAM statement that transfers
control outside the COBOL program

e Following a GOBACK statement that transfers control outside the COBOL
program

50 © Copyright IBM Corp. 1991, 2000

Transfer of control

e Following an EXIT METHOD statement that transfers control outside the
COBOL method

* The end program or end method header

When there is no next executable statement and control is not transferred outside
the COBOL program, the program flow of control is undefined unless the program
execution is in the nondeclarative procedures portion of a program under control
of a CALL statement, in which case an implicit EXIT PROGRAM statement is

executed.

Similarly, if control reaches the end of the Procedure Division of a method, and
there is no next executable statement, an implicit EXIT METHOD statement is
executed.

Part 1. COBOL language structure 51

Millennium Language Extensions and date fields

Millennium Language Extensions and date fields

Many applications use 2 digits rather than 4 digits to represent the year in date
fields, and assume that these values represent years from 1900 to 1999. This
compact date format works well for the 1900s, but it does not work for the year
2000 and beyond because these applications interpret “00” as 1900 rather than
2000, producing incorrect results.

The millennium language extensions are designed to allow applications that use
2-digit years to continue performing correctly in the year 2000 and beyond, with
minimal modification to existing code. This is achieved using a technique known
as windowing, which removes the assumption that all 2-digit year fields represent
years from 1900 to 1999. Instead, windowing enables 2-digit year fields to
represent years within any 100-year range, known as a century window.

For example, if a 2-digit year field contains the value 15, many applications would
interpret the year as 1915. However, with a century window of 1960-2059, the
year would be interpreted as 2015.

The millennium language extensions provide support for the most common
operations on date fields: comparisons, moving and storing, incrementing and
decrementing. This support is limited to date fields of certain formats; for details,
see “DATE FORMAT clause” on page

For information on supported operations and restrictions when using date fields,
see “Restrictions on using date fields” on page

Millennium Language Extensions syntax

The millennium language extensions introduce the following language elements to
IBM COBOL:

e The DATE FORMAT clause in data description entries, which defines data
items as date fields.

e The following intrinsic functions:
DATEVAL Converts a non-date to a date field.
UNDATE Converts a date field to a non-date.
YEARWINDOW Returns the first year of the century window specified
by the YEARWINDOW compiler option.

For details on using the millennium language extensions in applications, see the
IBM COBOL Programming Guide for your platform.

52 © Copyright IBM Corp. 1991, 2000

Millennium Language Extensions and date fields

Note: The millennium language extensions have no effect unless your COBOL
program is compiled using the DATEPROC compiler option (with the
century window specified by the YEARWINDOW compiler option).

Terms and concepts

This book uses the following terms when referring to the millennium language
extensions.

Date field

A date field can be any of the following:
e A data item whose data description entry includes a DATE FORMAT clause.
* A value returned by one of the following intrinsic functions:

DATE-OF-INTEGER
DATE-TO-YYYYMMDD
DATEVAL
DAY-OF-INTEGER
DAY-TO-YYYYDDD
YEAR-TO-YYYY
YEARWINDOW

* The conceptual data items DATE, DATE YYYYMMDD, DAY, and DAY
YYYYDDD of the ACCEPT statement.

e The result of certain arithmetic operations (for details, see “Arithmetic with

date fields” on page [211).

The term date field refers to both expanded date fields and windowed date fields.

Windowed date field

A windowed date field is a date field that contains a windowed year. A
windowed year consists of 2 digits, representing a year within the century
window.

Expanded date field

An expanded date field is a date field that contains an expanded year. An
expanded year consists of 4 digits.

Note: The main use of expanded date fields is to provide correct results when
these are used in combination with windowed date fields; for example, where
migration to 4-digit year dates is not complete. If all the dates in an application
use 4-digit years, there is no need to use the millennium language extensions.

Part 1. COBOL language structure 53

Millennium Language Extensions and date fields

Year-last date field

A year-last date field is a date field whose DATE FORMAT clause specifies one or
more Xs preceding the YY or YYYY. Year-last date fields are supported in a
limited number of operations, typically involving another date with the same
(year-last) date format, or a non-date.

Date format

Date format refers to the date pattern of a date field, specified either:

e Explicitly, by the DATE FORMAT clause or DATEVAL intrinsic function
argument-2

or

e Implicitly, by statements and intrinsic functions that return date fields (for
details, see “Date field” on page

Compatible date field

The meaning of the term compatible, when applied to date fields, depends on the
COBOL division in which the usage occurs:
Data Division
Two date fields are compatible if they have identical USAGE and meet at
least one of the following conditions:
e They have the same date format

* Both are windowed date fields, where one consists only of a
windowed year, DATE FORMAT YY

* Both are expanded date fields, where one consists only of an expanded
year, DATE FORMAT YYYY
¢ One has DATE FORMAT YYXXXX, the other, YYXX

* One has DATE FORMAT YYYYXXXX, the other, YYYYXX

A windowed date field can be subordinate to an expanded date group
data item. The two date fields are compatible if the subordinate date field
has USAGE DISPLAY, starts two bytes after the start of the group
expanded date field, and the two fields meet at least one of the following
conditions:

e The subordinate date field has a DATE FORMAT pattern with the
same number of Xs as the DATE FORMAT pattern of the group date
field.

¢ The subordinate date field has DATE FORMAT YY.

e The group date field has DATE FORMAT YYYYXXXX and the
subordinate date field has DATE FORMAT YYXX.

Procedure Division
Two date fields are compatible if they have the same date format except
for the year part, which can be windowed or expanded. For example, a
windowed date field with DATE FORMAT YYXXX is compatible with:

e Another windowed date field with DATE FORMAT YYXXX
* An expanded date field with DATE FORMAT YYYYXXX

54 COBOL Language Reference

Non-date

Millennium Language Extensions and date fields

A non-date can be any of the following;:

A data item whose date description entry does not include the DATE
FORMAT clause

A date field that has been converted using the UNDATE function
A literal
A reference-modified date field

The result of certain arithmetic operations that can include date field operands;
for example, the difference between two compatible date fields

Century window

A century window is a 100-year interval within which any 2-digit year is unique.
There are several types of century window available to COBOL programmers:

1.

For windowed date fields, it is specified by the YEARWINDOW compiler
option

For windowing intrinsic functions DATE-TO-YYYYMMDD,
DAY-TO-YYYYDDD, and YEAR-TO-YYYY, it is specified by argument-2

For Language Environment callable services, it is specified in CEESCEN

Part 1. COBOL language structure 55

Millennium Language Extensions and date fields

56 COBOL Language Reference

Part 2. COBOL source unit structure

COBOL program structure

Nested programs

© Copyright IBM Corp. 1991, 2000

58
60

COBOL class definition structure

COBOL method definition structure . .

63

65

57

COBOL program structure

COBOL program structure

58

A COBOL source program is a syntactically correct set of COBOL statements.

Nested programs
A nested program is a program that is contained in another program. These
contained programs can reference some of the resources of the programs that
contain them. If program B is contained in program A, it is directly contained
if there is no program contained in program A that also contains program B.
Program B is indirectly contained in program A if there exists a program
contained in program A that also contains program contained and containing
programs, see B. For more information on nested programs, see “Nested
programs” on page [60 and the IBM COBOL Programming Guide for your
platform.

Object program
An object program is a set or group of executable machine language
instructions and other material designed to interact with data to provide
problem solutions. An object program is generally the machine language
result of the operation of a COBOL compiler on a source program.

Run unit
A run unit is one or more object programs that interact with one another and
that function at object time as an entity to provide problem solutions.

Sibling program
Sibling programs are programs that are directly contained by the same
program.

With the exception of the COPY and REPLACE statements and the end program
header, the statements, entries, paragraphs, and sections of a COBOL source
program are grouped into the following four divisions:

¢ Identification Division

¢ Environment Division

e Data Division

¢ Procedure Division

The end of a COBOL source program is indicated by the END PROGRAM header.
If there are no nested programs, the absence of additional source program lines
also indicates the end of a COBOL program.

Following is the format for the entries and statements that constitute a
separately-compiled COBOL source program.

© Copyright IBM Corp. 1991, 2000

—— Format—COBOL source program

COBOL program structure

\ 4

> IDENTIFICATIONj—DIVISION.—PROGRAM—ID.—m—program—name—l >
ID
" T § >
RECURSIVE identification-division-content
|—ISJ '—INITIAL—’ |—PROGRAMJ

\

|—ENVIRONMENT DIVISION .—envir‘onment—division—comfentJ

v

|—DATA DIVISION.—da'ta-division-cont‘entJ

A\

’—PROCEDURE DIVISION .—procedure-division—contemtJ

\4

> |

A\
A

END PROGRAM—progr‘am-name-1.J

J—| nested source program }J—

nested source program

A\

IDENTIFICATIONj—DIVISION.—PROGRAM-ID.—ﬂJ—program-name-Z >
1D
" T i
COMMON identification-division-content
|—IS—J L ’—INITIAL——| |—PROGRAM—J
INITIAL—L—_I—
COMMON

\

|—ENVIRONMENT DIVISION .—envir‘onment-division-contentJ

v

\ 4

|—DATA DIVISION.—data-division-com.‘entJ

Note:

|—PROCEDURE DIVISION .—procedur'e—division—contentJ

v

| nested source program |—|J

»—END PROGRAM—program-name-2. I

1 This separator period is optional as an IBM extension.

A sequence of separate COBOL programs can also be input to the compiler.
Following is the format for the entries and statements that constitute a sequence
source programs (batch compile).

of

—— Format—sequence of COBOL source programs

»—LCOBOL-source-program |

\{
A

END PROGRAM program-name

An end program header separates each program in the sequence of programs.

The program-name must conform to the rules for forming a user-defined
word. It must be identical to a program-name declared in a preceding
PROGRAM-ID paragraph.

Program-name can be a nonnumeric literal, but cannot be a figurative constant.

The content of the literal must follow the rules for formation of program
names. Any lowercase letters in this literal will be folded to uppercase.

An end program header is optional for the last program in the sequence only

if that program does not contain any nested-source-programs.

Part 2. COBOL source unit structure

59

COBOL program structure

Nested programs

A COBOL program can contain other COBOL programs, which in turn can contain
still other COBOL programs. These contained programs are called nested
programs. Nested programs can be directly or indirectly contained in the
containing program.

A COBOL program can contain other COBOL programs. The contained (or
nested) programs can themselves contain yet other programs. A contained
program can be directly or indirectly contained within another program. Figure 2
describes a nested program structure with directly and indirectly contained
programs.

——— Id Division.
Program-Id. X.
Procedure Division.
Display “I’m in X
Call “x1”
Call “x2”

Stop Run.

— Id Division.

Program-Id. XI1.

Procedure Division.

Display “I’m in X1”
Call “x11”

Call “x12”

Exit Program.

Id Division.

Program-Id. X11.

Procedure Division.

Display “I’m in X117
Exit Program.

End Program X11.

Id Division.

Program-Id. X12.

Procedure Division.

Display “I’m in X12”
Exit Program.

End Program X12.

End Program X1.

ID Division.

Program-Id. X2.

Procedure Division.

Display “I’m in X2»
Exit Program.
— End Program X2.
——End Program X.

X is the outermost program

and directly contains X1 and =————p
X2, and indirectly contains

X11 and X12

X1 is directly contained
in X and directly N
contains X11 and X12

X11 is directly
contained in X1
and indirectly
contained in X

X12 is directly
contained in X1
and indirectly
contained in X

I e T R —

X2 is directly
contained in X

Figure 2. Nested program structure with directly and indirectly contained programs

Conventions for program-names

The program-name of a program is specified in the PROGRAM-ID paragraph of
the program's Identification Division. A program-name can be referenced only by
the CALL statement, the CANCEL statement, the SET statement, or the END
PROGRAM header. Names of programs constituting a run unit are not necessarily
unique, but when two programs in a run unit are identically named, at least one of
the programs must be directly or indirectly contained within another separately
compiled program that does not contain the other of those two programs.

60 CoBOL Language Reference

COBOL program structure

A separately compiled program and all of its directly and indirectly contained
programs must have unique program-names within that separately compiled
program.

Rules for program-names

The following rules regulate the scope of a program-name:

e If the program-name is that of a program which does not possess the
COMMON attribute, and which is directly contained within another program,
that program-name can be referenced only by statements included in that
containing program.

* If the program-name is that of a program which does possess the COMMON
attribute, and which is directly contained within another program, that
program-name can be referenced only by statements included in that
containing program and any programs directly or indirectly contained within
that containing program, except that program possessing the COMMON
attribute and any programs contained within it.

e If the program-name is that of a program which is separately compiled, that
program-name can be referenced by statements included in any other program
in the run unit, except programs it directly or indirectly contains.

The mechanism used to determine which program to call is as follows:

— If one of two programs having the same name as that specified in the
CALL statement is directly contained within the program that includes the
CALL statement, that program is called.

— If one of two programs having the same name as that specified in the
CALL statement possesses the COMMON attribute and is directly
contained within another program that directly or indirectly contains the
program that includes the CALL statement, that common program is called
unless the calling program is contained within that common program.

— Otherwise, the separately compiled program is called.
The following rules apply to referencing a program-name of a program that is
contained within another program. For this discussion, we will say that

Program-A contains Program-B and Program-C, Program-C contains Program-D
and Program-F, and Program-D contains Program-E.

Part 2. COBOL source unit structure 61

COBOL program structure

Program-A

Program-B

Program-C

Program-D

Program-E

Program-F

If Program-D does not possess the COMMON attribute, then Program-D can only
be referenced by the program that directly contains Program-D, that is, Program-C.

If Program-D does possess the COMMON attribute, then Program-D can be
referenced by Program-C since it contains Program-D and by any programs
contained in Program-C except for programs contained in Program-D. In other
words, if Program-D possesses the COMMON attribute, Program-D can be
referenced in Program-C and Program-F but not by statements in Program-E,
Program-A or Program-B.

62 COBOL Language Reference

COBOL class definition

COBOL class definition structure

A COBOL class definition describes a class or a metaclass. A class definition
constitutes a compilation unit.

Class
The entity that defines common behavior and implementation for zero, one, or
more objects. The objects that share the same implementation are considered
to be objects of the same class.

Method
Procedural code that defines one of the operations supported by an object, and
that is executed by an INVOKE statement on that object.

Instance data
Data defining the state of an object. The instance data introduced by a class is
defined in the Working-Storage Section of the Data Division of the class
definition. The state of an object also includes the state of the instance
variables introduced by bases classes that are inherited by the current class. A
separate copy of the instance data is created for each object instance.

Subclass
A class that inherits methods and instance data from another class. When two
classes in an inheritance relationship are considered together, the subclass is
the inheritor or inheriting class; the super-class is the inheritee or inherited
class.

Metaclass
A special type of class whose instances are called class-objects. Class-objects
are the run-time objects that represent SOM® classes. Any class descended
from SOMClass is a metaclass.

With the exception of the COPY and REPLACE statements and the END CLASS
header, the statements, entries, paragraphs, and sections of a COBOL class
definition are grouped into the following four divisions:

e Identification Division

* Environment Division (Configuration Section only)

e Data Division

e Procedure Division

The end of a COBOL class definition is indicated by the END CLASS header.

Following is the format for the entries and statements that constitute a
separately-compiled COBOL class definition.

© Copyright IBM Corp. 1991, 2000 63

COBOL class definition

—— Format—COBOL class definition

> IDENTIFICATION DIVISION.]—CLASS—ID.—class-name—]—.—>
ID DIVISION.

»
»

|—identification-divz'sion—contentJ

»——ENVIRONMENT DIVISION.—class-environment-division-content >

|—DATA DIVISION.—class-data-division-cont‘ent—I

|—PROCEDURE DIVISION.
|—‘—method—definition

»——END CLASS—class-name-1.

»
> | >

\4
A

END CLASS
Specifies the end of a class definition.

64 COBOL Language Reference

COBOL method definition

COBOL method definition structure

A COBOL method definition describes a method. You can only specify a method
definition within a class definition.

With the exception of the COPY and REPLACE statements and the END METHOD
header, the statements, entries, paragraphs, and sections of a COBOL method
definition are grouped into the following four divisions:

e Identification Division

e Environment Division (Input-Output section only)

e Data Division

e Procedure Division

The end of a COBOL method definition is indicated by the END METHOD header.

Following is the format for the entries and statements that constitute a
separately-compiled COBOL method definition.

—— Format—COBOL method definition

IDENTIFICATION DIVISION. |_ _J
ID DIVISION. identification-division-content

v

»
>

v

I—ENVIRONMENT DIVISION.—method-envir'onment-division-conl‘entJ

\ 4

I—DATA DIVISION.—method-data-divisz’on-contemtJ

\ 4

v

|—PROCEDURE DIVISION.method-procedure-divis ion—contentJ
»——END METHOD—method-name-1.

\ 4
A

END METHOD
Specifies the end of a method definition.

Methods defined in a class can access instance data (class Working-Storage Section
data items) introduced in the same class but not instance data introduced by a
parent class or metaclass. Therefore, instance data is always private to the class
that introduces it.

Methods introduced in class-name-1 must have unique names within the class
definition.

© Copyright IBM Corp. 1991, 2000 65

COBOL method definition

66 COBOL Language Reference

Part 3. Identification Division

Identification Division 68
PROGRAM-ID paragraph 70

© Copyright IBM Corp. 1991, 2000

CLASS-ID paragraph

METHOD-ID paragraph

Optional paragraphs

67

Identification Division

Identification Division

68

The Identification Division must be the first division in every COBOL source
program, class definition, and method definition. It names the program, class, or
method, and can include the date the program, class, or method was written, the
date of compilation, and other such documentary information. The Identification
Division must begin with the words IDENTIFICATION DIVISION or ID
DIVISION followed by a separator period.

Program IDENTIFICATION DIVISION
For a program, the first paragraph of the Identification Division must be the
PROGRAM-ID paragraph.

The other paragraphs are optional, and as an IBM extension, can appear in any
order.

Class IDENTIFICATION DIVISION
For a class, the first paragraph of the Identification Division must be the
CLASS-ID paragraph.

The other paragraphs are optional, and can appear in any order.

Method IDENTIFICATION DIVISION
For a method, the first paragraph of the Identification Division must be the
METHOD-ID paragraph.

The other paragraphs are optional, and can appear in any order.

© Copyright IBM Corp. 1991, 2000

Identification Division

—— Format—program Identification Division

IDENTIFICATIONj—DIVISION.—PROGRAM—ID.—‘D—program—namc >
ID
> — In) >
RECURSIVE
IS COMMON—L—_|— |—PROGRAMJ
INITIAL
INITIAL—L—_|—
COMMON

I—AUTHOR. =
comment-entryJ—

LINSTALLATION. =

A\
v

—Lcomment—entry—]—

A\

v

|—DATE-WRITTEN. t |
—Lcomment-entryJ—

\ 4
\/

I—DATE-COMPILED. L LL

comment-entry—J—

l—SECURITY.) |
comment-entryJ—

Note:
! This separator period is optional as an IBM extension.

\

\4
A

—— Format—class Identification Division

IDENTIFICATION DIVISIONj—CLASS-ID.—CZGSS-name-J >
ID DIVISION

>—INHERITS—EcZass-name-2

v

L]
METAC LASS—L—_,—C lass-name-3
IS

|—AUTHOR.
comment-entry

|—INSTALLATION. |
—Lcomment-entryJ—

\ 4
v

|—DATE—\/\IRITTEN .

—Lcomment—entryL

|—DATE—COMPI LED.
comment-entry

|—SECURITY. |

\—-Lcomment-entry—J—

| -

\ 4
A

Part 3. Identification Division 69

PROGRAM-ID paragraph

—— Format—method Identification Division

>>—|:IDENTIFICATION DIVISION =
ID DIVISION—J

»—METHOD-ID.—method-name-1

v

()VERRIDE—I
|—IS—I |—METHOD—I

'—AUTHOR. |
comment-entry:

|—INSTALLATION. |
—Lcomment-entryJ—

A\
v

\ 4

\ 4

|—DATE—WRITTEN .

—Lcommen t-en tryL

|—DATE—COMPI LED.
comment-entry

|—SECURITY. |

LLcomment—en i,‘ryL

\ 4
4

| -

\4
A

\ 4

PROGRAM-ID paragraph

The PROGRAM-ID paragraph specifies the name by which the program is known
and assigns selected program attributes to that program. It is required and must
be the first paragraph in the Identification Division.

program-name
A user-defined word or nonnumeric literal that identifies your program. It
must follow the following rules of formation, depending on the setting of the
PGMNAME compiler option:

Table 7 (Page 1 of 2). Formation rules for program names based on PGMNAME compiler option

Formation rules

PGMNAME

setting 0S/390 and VM AIX and Windows
PGMNAME The name can be up to 30 characters in Flagged with a warning message and
(COMPAT) length. treated as PGMNAME(UPPER).

Only the hyphen, digit, and alphabetic
characters are allowed in the name.

At least one character must alphabetic.

The hyphen cannot be used as the first or
last character.

If program-name is a nonnumeric literal,
(other than a figurative constant), it can
include the extension characters $, #, and @
in the outermost program only.

70 COBOL Language Reference

PROGRAM-ID paragraph

Table 7 (Page 2 of 2). Formation rules for program names based on PGMNAME compiler option

Formation rules

PGMNAME
setting 0S/390 and VM AIX and Windows
PGMNAME If program-name is a user-defined word, it can be up to 30 characters in length.
(LONGUPPER)
If program-name is a nonnumeric literal, it can be up to 160 characters in length. It cannot
be a figurative constant.
Only the hyphen, digit, and alphabetic characters are allowed in the name.
At least one character must alphabetic.
The hyphen cannot be used as the first or last character.
PGMNAME Program-name must be specified as a literal. Program-name must be specified as a literal.
(LONGMIXED) It cannot be a figurative constant. It cannot be a figurative constant.
The name can be up to 160 characters in The name can be up to 160 characters in
length. length.
Program-name can consist of any character Wherever alphabetic characters are allowed,
in the range X'41' to X'FE'. you can use multi-byte characters.

For information on the PGMNAME compiler option and how the compiler
processes the names, see the IBM COBOL Programming Guide for your
platform.

RECURSIVE
An optional clause that allows COBOL programs to be recursively reentered.

You can specify the RECURSIVE clause only on the outermost program of a
compilation unit. Recursive programs cannot contain nested subprograms.

If the RECURSIVE clause is specified, program-name-1 can be recursively
reentered while a previous invocation is still active. If the RECURSIVE clause
is not specified, an active program cannot be recursively reentered.

The Working-Storage Section of a recursive program defines storage that is
statically allocated and initialized on the first entry to a program, and is
available in a last-used state to any of the recursive invocations.

The Local-Storage Section of a recursive program (as well as a non-recursive
program) defines storage that is automatically allocated, initialized, and
deallocated on a per-invocation basis.

Internal file connectors corresponding to FDs in the File Section of a recursive
program are statically allocated. The status of internal file connectors is part of
the last-used state of a program that persists across invocations.

The following language elements are not supported in a recursive program:

e ALTER
e GO TO without a specified procedure name
e RERUN

e SEGMENTATION
e USE FOR DEBUGGING

Note: Methods are always recursive by default. The RECURSIVE clause
cannot be specified on the METHOD-ID statement.

Part 3. Identification Division 71

CLASS-ID paragraph

COMMON
Specifies that the program named by program-name is contained within
another program, and it can be called from siblings of the common program
and programs contained within them. The COMMON clause can be used only
in nested programs. For more information on conventions for program names,
see the IBM COBOL Programming Guide for your platform.

INITIAL
Specifies that when program-name is called, program-name and any programs
contained within it are placed in their initial state.

A program is in the initial state:

* The first time the program is called in a run unit
* Every time the program is called, if it possesses the initial attribute

e The first time the program is called after the execution of a CANCEL
statement referencing the program or a CANCEL statement referencing a
program that directly or indirectly contains the program

* The first time the program is called after the execution of a CALL
statement referencing a program that possesses the initial attribute, and
that directly or indirectly contains the program.

When a program is in the initial state, the following occur:

* The program's internal data contained in the Working-Storage Section are
initialized. If a VALUE clause is used in the description of the data item,
the data item is initialized to the defined value. If a VALUE clause is not
associated with a data item, the initial value of the data item is undefined.

* Files with internal file connectors associated with the program are not in
the open mode.

e The control mechanisms for all PERFORM statements contained in the
program are set to their initial states.

* An altered GO TO statement contained in the program is set to its initial
state.

For the rules governing non-unique program names, see “Rules for
program-names” on page

CLASS-ID paragraph

The CLASS-ID paragraph specifies the name by which the class is known and
assigns selected attributes to that class. It is required and must be the first
paragraph in a class Identification Division.

class-name-1
A user-defined word that identifies the class.

If you want to use more flexible naming conventions for class-name-1, specify
class-name-1 in the REPOSITORY paragraph of the class definition. (This
defines an external class name to identify the class outside of this class
definition.)

INHERITS
A clause that defines class-name-1 to be a subclass (or derived class) of
class-name-2 (the parent class). Class-name-1 cannot directly or indirectly

inherit from class-name-1. A class name can only appear once in the
INHERITS clause.

72 COBOL Language Reference

CLASS-ID paragraph

class-name-2
The name of a class inherited by class-name-1. If class-name-2 is repeated,
multiple inheritance is present. You must specify class-name-2 in the
REPOSITORY paragraph of the Configuration Section of the class definition.

METACLASS
A clause that identifies the metaclass for class-name-1. A metaclass is a special
class whose instances are class objects. For more information on metaclasses,
see the IBM COBOL Programming Guide for your platform.

Do not specify the METACLASS clause when defining a metaclass.

Note: The INHERITS and METACLASS clauses can appear in either order in
the CLASS-ID paragraph.

class-name-3
The name of a metaclass that is responsible for creating and/or managing
objects of the class being defined. You must specify class-name-3 in the
REPOSITORY paragraph of the Configuration Section of the class definition.

General rules

Class-name-1, class-name-2, and class-name-3 must conform to the normal rules of
formation for a COBOL user-defined word, as described in “COBOL words with
single-byte characters” on page

See “REPOSITORY paragraph” on page 1] for details on:

e (Class names mapping to CORBA compliant names
* Specification of external class-names with more flexible rules of formation

You can specify a sequence of class definitions and program definitions in a single
COBOL source file, forming a batch compile.

Inheritance

Every method available on instances of a class is also available on instances of any
subclass directly or indirectly derived from it. A subclass can introduce new
methods that do not exist in the parent (or ancestor) class or can override a
method from the parent class. When a subclass overrides an existing method from
the parent class, it defines a new implementation for that method, which replaces
the inherited implementation.

The instance data of class-name-1 is a copy of the instance data from class-name-2
together with the data declared in the Working-Storage Section of class-name-1.
Note however, instance data is always private to the class that introduces it.

The semantics of inheritance are defined by the IBM SOM. All classes must be
derived directly or indirectly from the SOMODbject class. All metaclasses must be
derived directly or indirectly from SOMClass.

Multiple inheritance

Multiple inheritance is when more than one class name is specified on the
INHERITS phrase. With multiple inheritance, a class might inherit the same
methods and instance data from different parents (if each of these parents have a
common ancestor). In this situation, (“diamond inheritance”) the subclass inherits
only one set of method implementations and one copy of the instance data.

Part 3. Identification Division 73

METHOD-ID paragraph

When a subclass inherits two methods with the same name, the two methods must
comply to the following conformance rules:

The number of formal parameters on the Procedure Division USING phrase
must be the same for both methods.

The presence or absence of the Procedure Division RETURNING phrase must
be consistent for the two methods.

Corresponding parameters in the Procedure Division USING and RETURNING
phrases must satisfy the following:

— If a formal parameter is a COBOL elementary data item not described with
USAGE IS OBJECT REFERENCE, the corresponding parameter must have
the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTIFIED, and
BLANK WHEN ZERO clauses. Note that periods and commas can be
interchanged if using the DECIMAL POINT IS COMMA clause, and the
PICTURE clause currency symbols can differ.

— If a formal parameter is a COBOL elementary data item described with
USAGE IS OBJECT REFERENCE, the corresponding parameter must be
defined with an identical USAGE clause or USAGE IS OBJECT
REFERENCE clause.

— For the purpose of conformance checking, a fixed-length group data item
is considered to be equivalent to an elementary alphanumeric data item of
the same length.

A variable-length group conforms only to other variable-length groups that
have the same maximum length.

METHOD-ID paragraph

The METHOD-ID paragraph specifies the name by which a method is known and
assigns selected attributes to that method. It is required and must be the first
paragraph in a method Identification Division.

method-name-1

A user-defined word or a nonnumeric literal that identifies the method.
The rules of formation for method-name-1 are as follows:
e If the method name is specified in the user-defined word format, then
normal COBOL rules for a user-defined word apply.
e If the method name is specified as a nonnumeric literal, then:
— The name can be up to 160 characters in length.

— The characters used in the name must be uppercase or lowercase
alphabetic, digit, hyphen, or underscore.

— At least one character must be alphabetic.
— Hyphen cannot be used as the first or last character.

OVERRIDE

A clause that allows a subclass to override an existing method implementation
when it inherits a method from a parent class.

You must specify the OVERRIDE clause in the METHOD-ID paragraph, if
method-name-1 is overriding a method with the same name that is inherited
from a parent class.

Do not specify the OVERRIDE clause if the method is not inherited from an
ancestor class, and is being introduced by the current class definition.

74 COBOL Language Reference

METHOD-ID paragraph
General rules

1. Method names that are defined for a class must be unique. (The set of
methods "defined for a class" includes the methods introduced by the class
definition and the methods inherited from parent classes.)

Note: Method names that differ only in case are not considered unique. For
example, naming one method “SAYHELLO” and another method “sayHELLO”
is invalid.

2. Method names are processed by the compiler as follows:

e Literal-format methods names are processed in a case-sensitive manner.
However, when processing method resolution as part of INVOKE
statements or method names that are specified as user-defined words, the
compiler ignores any difference in case.

e If necessary, the compiler translates method names to conform to CORBA
requirements:

— Hyphens are translated to zero

— If the first character of the name is a digit, it is converted as follows:
— 1 through 9 are changed to A through I
— 01is changed to]

3. If a method in class-name-1 overrides a method in class-name-2, these two
methods must satisfy the following conformance rules:

* The number of formal parameters on the Procedure Division USING
phrase must be the same for both methods.

e The presence or absence of the Procedure Division RETURNING phrase
must be consistent on the two methods.

e Corresponding parameters in the Procedure Division USING phrases must
satisfy the following:

— If a formal parameter is a COBOL elementary data item not described
with USAGE IS OBJECT REFERENCE, then the corresponding
parameter must have the same PICTURE, USAGE, SIGN,
SYNCHRONIZED, JUSTIFIED, and BLANK WHEN ZERO clauses.
Note that periods and commas can be interchanged if using the
DECIMAL POINT IS COMMA clause, and the PICTURE clause
currency symbols can differ.

— If a formal parameter is a COBOL elementary data item described with
USAGE IS OBJECT REFERENCE, then the corresponding parameter
must be defined with an identical USAGE IS OBJECT REFERENCE
clause.

— BY VALUE and BY REFERENCE specifications must be consistent.

e The identifiers specified on the Procedure Division RETURNING phrases
must satisfy the following;:

— If one of the identifiers is a COBOL elementary data item not described
with USAGE IS OBJECT REFERENCE, then the corresponding
identifier must have the same PICTURE, USAGE, SIGN,
SYNCHRONIZED, JUSTIFIED, and BLANK WHEN ZERO clauses.
Note that periods and commas can be interchanged if using the
DECIMAL POINT IS COMMA clause, and the PICTURE clause
currency symbols can differ.

— If the class-name-2 Procedure Division RETURNING identifier is a
universal object reference, the class-name-1 Procedure Division

Part 3. Identification Division 75

Optional paragraphs

RETURNING identifier must be an object reference (either a universal
object reference or an object reference typed to a specific class).

Universal object references are described with USAGE OBJECT
REFERENCE and typed object references are described with USAGE
OBJECT REFERENCE class-name.

— 1If the class-name-2 Procedure Division RETURNING identifier is an
object reference typed to a specific class, the class-name-1 Procedure
Division RETURNING identifier must be an object reference typed to
the same class or a derived class.

e For the purpose of conformance checking, a fixed-length group data item

is considered to be equivalent to an elementary alphanumeric data item of
the same length.

A variable-length group conforms only to other variable-length groups that
have the same maximum length.

Optional paragraphs

These optional paragraphs in the Identification Division can be omitted:

AUTHOR
Name of the author of the program.

INSTALLATION
Name of the company or location.

DATE-WRITTEN
Date the program was written.

DATE-COMPILED
Date the program was compiled.

SECURITY
Level of confidentiality of the program.

The comment-entry in any of the optional paragraphs can be any combination of
characters from the character set of the computer. The comment-entry is written in
Area B on one or more lines.

The paragraph name DATE-COMPILED and any comment-entry associated with it
appear in the output program listing with the current date inserted:

DATE-COMPILED. 04/27/95.

Comment-entries serve only as documentation; they do not affect the meaning of
the program. A hyphen in the indicator area (column 7) is not permitted in
comment-entries.

Under AIX and Windows, you can include multi-byte as well as
single-byte characters in an EUC or DBCS code page in comment entries in the
Identification Division of your program. Multiple lines are allowed in a
comment-entry containing multi-byte characters.

Under OS/390 and VM, you can include DBCS character strings as
comment-entries in the Identification Division of your program. Multiple lines are
allowed in a comment-entry containing DBCS strings.

76 COBOL Language Reference

Optional paragraphs

A DBCS string must be preceded by a shift-out control character and followed by
a shift-in control character. For example:

AUTHOR. <.A.U.T.H.0.R.-.N.A.M.E>, XYZ CORPORATION
DATE-WRITTEN. <.D.A.T.E>

When using DBCS characters in a comment-entry contained on multiple lines,
shift-out and shift-in characters must be paired on a line.

DBCS strings are described under “Character-strings” on page

Part 3. Identification Division 77

Optional paragraphs

78 COBOL Language Reference

Part 4. Environment Division

Configuration Section 80
SOURCE-COMPUTER paragraph 80
OBJECT-COMPUTER paragraph 82
SPECIAL-NAMES paragraph 83
ALPHABET clause 86
SYMBOLIC CHARACTERS clause 89
CLASS clause 89
CURRENCY SIGN clause 90
REPOSITORY paragraph 91
Input-Output Section 93
FILE-CONTROL paragraph 94
SELECT clause 97
ASSIGN clause 97
RESERVE clause 103
ORGANIZATION clause 103

© Copyright IBM Corp. 1991, 2000

PADDING CHARACTER clause 106
RECORD DELIMITER clause 107
ACCESS MODE clause 107
RECORD KEY clause 109
ALTERNATE RECORD KEY clause 110
RELATIVE KEY clause 111
PASSWORD clause 111
FILE STATUS clause 112
I-O-CONTROL paragraph 114
RERUN clause 115
SAME AREA clause 116
SAME RECORD AREA clause 117
SAME SORT AREA clause 117
SAME SORT-MERGE AREA clause 118
MULTIPLE FILE TAPE clause 118
APPLY WRITE-ONLY clause 118

79

SOURCE-COMPUTER paragraph

Configuration Section

The Configuration Section is an optional section for programs and classes, which
can describe the computer environment on which the program is compiled and
executed.

Program Configuration Section

The Configuration Section can be specified only in the Environment Division
of the outermost program of a COBOL source program.

You should not specify the Configuration Section in a program that is
contained within another program. The entries specified in the Configuration
Section of a program apply to any program contained within that program.

Class Configuration Section

Specify the Configuration Section only in the Environment Division of the
outermost program of a class definition.

Entries in a class Configuration Section apply to the entire class definition,
including all methods introduced by that class.

Method Configuration Section

— Format—programs and classes
»>—CONFIGURATION SECTION.

\ 4

The Configuration Section is not valid for method definitions.

\4

|—sour‘ce-compu1fer-paragraph—J

\

v

|—object‘-compu t‘er—paragraphJ |—special -names —par‘agraphJ

\ 4
A

|—repos i 7.‘0)")/-paragmphJ

The Configuration Section can:

Relate IBM-defined environment-names to user-defined mnemonic names
Specify the collating sequence

Specify a currency sign value, and the currency symbol used in the PICTURE
clause to represent the currency sign value

Exchange the functions of the comma and the period in PICTURE clauses and
numeric literals

Relate alphabet-names to character sets or collating sequences
Specify symbolic-characters
Relate class names to sets of characters

Relate object-oriented class names to the class names in the SOM interface
repository

SOURCE-COMPUTER paragraph

80

The SOURCE-COMPUTER paragraph describes the computer on which the source
program is to be compiled.

© Copyright IBM Corp. 1991, 2000

SOURCE-COMPUTER paragraph

—— Format
»»—SOURCE-COMPUTER.

> <
>«

|—(:omputer-namc]
ﬁDEBUGGING MODE:
WITH

computer-name
A system-name. For example:

IBM-390

WITH DEBUGGING MODE
Activates a compile-time switch for debugging lines written in the source
program.

A debugging line is a statement that is compiled only when the compile-time
switch is activated. Debugging lines allow you, for example, to check the value
of a data-name at certain points in a procedure.

To specify a debugging line in your program, code a 'D' in column 7
(indicator area). You can include successive debugging lines, but each must
have a 'D' in column 7 and you cannot break character strings across lines.

All your debugging lines must be written so that the program is syntactically
correct, whether the debugging lines are compiled or treated as comments.

The presence or absence of the DEBUGGING MODE clause is logically
determined after all COPY and REPLACE statements have been processed.

You can code debugging lines in the Environment (after the
OBJECT-COMPUTER paragraph), Data, or Procedure Divisions.

If a debugging line contains only spaces in Area A and in Area B, it is treated
the same as a blank line.

Except for the WITH DEBUGGING MODE clause, the SOURCE-COMPUTER
paragraph is syntax checked, but has no effect on the execution of the program.

Part 4. Environment Division 81

OBJECT-COMPUTER paragraph

OBJECT-COMPUTER paragraph

—— Format

»
| 2

The OBJECT-COMPUTER paragraph specifies the system for which the object
program is designated.

»»—0BJECT-COMPUTER.

v

entry 1
|

|—computer'-namc

I | entry 1 I——J

I—MEMORY B] integer WORDS
SIZE CHARACTERS—
MODULES——

v

]

SEQUENCE—E——G Iphabet-name
|—PROG.RAMJ |—COLLATINGJ IS

»
| 2

S - i
EGMENT-LIMIT—m—prwmty-number
IS

computer-name
A system-name. For example:

IBM-390

MEMORY SIZE
The amount of main storage needed to run the object program. The MEMORY
SIZE clause is syntax checked, but it has no effect on the execution of the
program.

integer
Expressed in words, characters, or modules.

PROGRAM COLLATING SEQUENCE IS
The collating sequence used in this program is the collating sequence
associated with the specified alphabet-name.

The collating sequence pertains to this program and any programs it might
contain.

alphabet-name
The collating sequence.

PROGRAM COLLATING SEQUENCE determines the truth value of the following
nonnumeric comparisons:

* Those explicitly specified in relation conditions
* Those explicitly specified in condition-name conditions

The PROGRAM COLLATING SEQUENCE clause also applies to any nonnumeric
merge or sort keys, unless the COLLATING SEQUENCE phrase is specified in the
MERGE or SORT statement.

Under OS/390 and VM, the PROGRAM COLLATING SEQUENCE
clause is not applied to the DBCS character set.

Under AIX and Windows, the PROGRAM COLLATING SEQUENCE
clause is not allowed if the code page in effect is a DBCS or EUC code page.

Workstation

82 CcoBOL Language Reference

SPECIAL-NAMES paragraph

When the PROGRAM COLLATING SEQUENCE clause is omitted:

Under OS/390 and VM, the EBCDIC collating sequence is used.
(See Appendix B, “EBCDIC and ASCII collating sequences” on page [98])

Under AIX and Windows, the COLLSEQ compiler option
indicates the collating sequence used. For example, if COLLSEQ(EBCDIC) is
specified and the PROGRAM COLLATING SEQUENCE is not specified (or is
NATIVE), the EBCDIC collating sequence is applied.

SEGMENT-LIMIT IS

Certain permanent segments can be overlaid by independent segments while
still retaining the logical properties of fixed portion segments. (Fixed portion
segments are made up of fixed permanent and fixed overlayable segments.)

Priority-number
An integer ranging from 1 through 49.

When SEGMENT-LIMIT is specified:

* A fixed permanent segment is one with a priority-number less than
the priority-number specified.

* A fixed overlayable segment is one with a priority-number ranging
from that specified through 49, inclusive.

For example, if SEGMENT-LIMIT IS 25 is specified:

* Sections with priority-numbers 0 through 24 are fixed permanent
segments.

* Sections with priority-numbers 25 through 49 are fixed overlayable

segments.

When SEGMENT-LIMIT is omitted, all sections with priority-numbers 0
through 49 are fixed permanent segments.

Except for the PROGRAM COLLATING SEQUENCE clause, the
OBJECT-COMPUTER paragraph is syntax checked, but it has no effect on the
execution of the program.

SPECIAL-NAMES paragraph

The SPECIAL-NAMES paragraph:

Relates IBM-specified environment-names to user-defined mnemonic-names
Relates alphabetic-names to character sets or collating sequences

Specifies symbolic characters

Relates class names to sets of characters

Specifies a currency sign value, and the currency symbol used in the PICTURE
clause to represent the currency sign value (multiple currency sign values and
currency symbols can be specified)

Specifies that the functions of the comma and decimal point are to be
interchanged in PICTURE clauses and numeric literals

Note: The clauses in the SPECIAL-NAMES paragraph can appear in any order.

Part 4. Environment Division 83

SPECIAL-NAMES paragraph

—— Format

v

envi ronment-name—]—l_—_l—mnemon ic-name-1
IS

environment-name-2: nemonic-name-2
IS l—{ entry 1 }—‘
entry 1 }

—LALPHABET—Gthabet—name—l STANDARD-1
IS STANDARD-2

NATIVE

EBCDIC

literal-1—| phrase 1 }J—

»>—SPECIAL-NAMES. v |:

\
v

L% symBoLIC B . | symbolic } C . |
CHARACTERS IN—alphabet-name-2

—l—CLASS—class-name-l—L—J—Lliteral-4 |
IS THRO

UGH Zit‘er‘al-5J
THRU—_,_

SIGN IS \—L—‘lfpl(:TURE—SYMBOL—litel"al—7

WITH
’—DECIMAL-POINT—L—_I—COMMA—J l——ﬂ-)J
IS
entry 1
I ON |_ J l_ J condition-1 |_ _] I
STATUS IS OFF B T o] condition-2
STATUS N
OFF condition-2
STATUS IS
phrase 1
|

THROUGH literal-2—
TTHRUI i
—LALSO—Z iteral—3;

symbolic
LLsymbolic-character‘—] integer-1 |
I
ARE
IS
Note:

! This separator period must be used if any of the optional clauses are selected.

84 coBOL Language Reference

SPECIAL-NAMES paragraph

environment-name-1
System devices or standard system actions taken by the compiler.

Valid specifications for environment-name-1 are:

Table 8. Meanings of environment names

Environment Meaning Allowed in

Name-1

SYSIN System logical input unit ACCEPT

SYSIPT

SYSOUT System logical output unit DISPLAY

SYSLIST

SYSLST

SYSPUNCH System punch device DISPLAY

SYSPCH

CONSOLE Console ACCEPT and DISPLAY
C01-C12 Skip to channel 1 through 12, respectively WRITE ADVANCING

(Under AIX and
Windows, with C01-C12,
one line is advanced.)

csp Suppress spacing WRITE ADVANCING

S01-S05 Pocket select 1-5 on punch devices WRITE ADVANCING
(Under AIX and
Windows, with S01-S05,
one line is advanced.)

AFP-5A Advanced Function Printing™ WRITE ADVANCING

environment-name-2
A 1-byte User Programmable Status Indicator (UPSI) switch. Valid
specifications for environment-name-2 are UPSI-0 through UPSI-7.

mnemonic-name-1, mnemonic-name-2
Mnemonic-name-1 and mnemonic-name-2 follow the rules of formation for
user-defined names. Mnemonic-name-1 can be used in ACCEPT, DISPLAY,
and WRITE statements. Mnemonic-name-2 can be referenced only in the SET
statement. Mnemonic-name-2 can qualify cond-1 or cond-2 names.

Mnemonic-names and environment-names need not be unique. If you choose
a mnemonic-name that is also an environment-name, its definition as a
mnemonic-name will take precedence over its definition as an
environment-name.

ON STATUS IS, OFF STATUS IS
UPSI switches process special conditions within a program, such as
year-beginning or year-ending processing. For example, at the beginning of
the Procedure Division, an UPSI switch can be tested; if it is ON, the special
branch is taken. (See “Switch-status condition” on page 229])

cond-1, cond-2
Condition-names follow the rules for user-defined names. At least one
character must be alphabetic. The value associated with the condition-name is
considered to be alphanumeric. A condition-name can be associated with the
on status and/or off status of each UPSI switch specified.

In the Procedure Division, the UPSI switch status is tested through the
associated condition-name. Each condition-name is the equivalent of a level-88

Part 4. Environment Division 85

ALPHABET clause

item; the associated mnemonic-name, if specified, is considered the conditional
variable and can be used for qualification.

Condition-names specified in a containing program's SPECIAL-NAMES
paragraph can be referenced from any contained program.

ALPHABET clause

ALPHABET alphabet-name-1 IS

Provides a means of relating an alphabet-name to a specified character code set
or collating sequence.

It specifies a collating sequence when used in either:

¢ The PROGRAM COLLATING SEQUENCE clause of the
OBJECT-COMPUTER paragraph
e The COLLATING SEQUENCE phrase of the SORT or MERGE statement

It specifies a character code set when specified in either:

e The FD entry CODE-SET clause
e The SYMBOLIC CHARACTERS clause

Under AIX and Windows, you cannot specify the ALPHABET
clause if the code page in effect is a DBCS or EUC code page. For details, see
the IBM COBOL Programming Guide for your platform.

STANDARD-1
Under OS/390 and VM, specifies the ASCII character set.

Under AIX and Windows, specifies that the collating
sequence is based on the binary code values of the characters, ignoring the

locale setting.
STANDARD-2
Under OS/390 and VM, specifies the International Reference

Version of the ISO 7-bit code defined in International Standard 646, 7-bit
Coded Character Set for Information Processing Interchange.

Under AIX and Windows, specifies that the collating
sequence is based on the binary code values of the characters, ignoring the

locale setting. <@

NATIVE
Specifies the native character code set. If the alphabet-name clause is
omitted:

Under OS/390 and VM, EBCDIC is assumed.

Under AIX and Windows, the alphabet-name is associated
with the character set (ASCII or EUC) indicated by the locale in effect.

Workstation

EBCDIC
Specifies the EBCDIC character set.

86 CoOBOL Language Reference

literal-1
literal-2
literal-3

ALPHABET clause

Specifies that the collating sequence is to be determined by the program,
according to the following rules:

The order in which literals appear specifies the ordinal number, in
ascending sequence, of the character(s) in this collating sequence.

Each numeric literal specified must be an unsigned integer.

Each numeric literal must have a value that corresponds to a valid
ordinal position within the collating sequence in effect.

Appendix B, “EBCDIC and ASCII collating sequences” on page
lists the ordinal number for characters in the EBCDIC and ASCII
collating sequences.

Each character in a nonnumeric literal represents that actual character
in the character set. (If the nonnumeric literal contains more than one
character, each character, starting with the leftmost, is assigned a
successively ascending position within this collating sequence.)

Any characters that are not explicitly specified assume positions in this
collating sequence higher than any of the explicitly specified
characters. The relative order within the set of these unspecified
characters within the character set remains unchanged.

Within one alphabet-name clause, a given character must not be
specified more than once.

Each nonnumeric literal associated with a THROUGH or ALSO phrase
must be 1 character in length.

When the THROUGH phrase is specified, the contiguous characters in
the native character set beginning with the character specified by
literal-1 and ending with the character specified by literal-2 are
assigned successively ascending positions in this collating sequence.
This sequence can be either ascending or descending within the
original native character set. That is, if "Z" THROUGH "A" is
specified, the ascending values, left-to-right, for the uppercase letters
are:

ZYXWVUTSRQPONMLKJIHGFEDCBA

When the ALSO phrase is specified, the characters specified as literal-1,
literal-3, etc., are assigned to the same position in this collating
sequence. For example, if you specify:

IIDII ALSO IINII ALSO IIG/OII

the characters D, N, and % are all considered to be in the same
position in the collating sequence.

When the ALSO phrase is specified and alphabet-name-1 is referenced
in a SYMBOLIC CHARACTERS clause, only literal-1 is used to
represent the character in the character set.

The character having the highest ordinal position in this collating
sequence is associated with the figurative constant HIGH-VALUE. If
more than one character has the highest position, because of
specification of the ALSO phrase, the last character specified (or
defaulted to when any characters are not explicitly specified) is
considered to be the HIGH-VALUE character for procedural statements
such as DISPLAY, or as the sending field in a MOVE statement. (If all
characters and the ALSO phrase example given above were specified

Part 4. Environment Division 87

ALPHABET clause

as the high-order characters of this collating sequence, the
HIGH-VALUE character would be %.)

* The character having the lowest ordinal position in this collating
sequence is associated with the figurative constant LOW-VALUE. If
more than one character has the lowest position, because of
specification of the ALSO phrase, the first character specified is the
LOW-VALUE character. (If the ALSO phrase example given above
were specified as the low-order characters of the collating sequence,
the LOW-VALUE character would be D.)

When literal-1, literal-2, or literal-3 is specified, the alphabet-name must
not be referred to in a CODE-SET clause (see “CODE-SET clause” on

page [143).

Literal-1, literal-2, and literal-3 must not specify a symbolic-character
figurative constant.

Floating-point literals cannot be used in a user-specified collating sequence.

DBCS literals cannot be used in a user-specified collating sequence.

88 coBOL Language Reference

CLASS clause

SYMBOLIC CHARACTERS clause

SYMBOLIC CHARACTERS symbolic-character-1
Provides a means of specifying one or more symbolic characters.
Symbolic-character-1 is a user-defined word and must contain at least one

alphabetic character. The same symbolic-character can appear only once in a
SYMBOLIC CHARACTERS clause.

Under OS/390 and VM, the symbolic character can be a DBCS
user-defined word.

Under AIX and Windows, you cannot use the SYMBOLIC
CHARACTERS clause if the code page is DBCS or EUC.

The internal representation of symbolic-character-1 is the internal
representation of the character that is represented in the specified character set.
The following rules apply:

* The relationship between each symbolic-character-1 and the corresponding
integer-1 is by their position in the SYMBOLIC CHARACTERS clause. The
first symbolic-character-1 is paired with the first integer-1; the second
symbolic-character-1 is paired with the second integer-1; and so forth.

* There must be a one-to-one correspondence between occurrences of
symbolic-character-1 and occurrences of integer-1 in a SYMBOLIC
CHARACTERS clause.

e If the IN phrase is specified, integer-1 specifies the ordinal position of the
character that is represented in the character set named by
alphabet-name-2. This ordinal position must exist.

* If the IN phrase is not specified, symbolic-character-1 represents the
character whose ordinal position in the native character set is specified by
integer-1.

Note: Ordinal positions are numbered starting from 1.

CLASS clause

Under AIX and Windows, you cannot specify the CLASS clause if the
code page in effect is a DBCS or EUC code page.

CLASS class-name-1 IS
Provides a means for relating a name to the specified set of characters listed in
that clause. Class-name can be referenced only in a class condition. The
characters specified by the values of the literals in this clause define the
exclusive set of characters of which this class-name consists.

Under OS5/390 and VM, the class-name in the CLASS clause can be
a DBCS user-defined word.

literal-4, literal-5
If numeric, must be unsigned integers and must have a value that is greater
than or equal to 1 and less than or equal to the number of characters in the
alphabet specified. Each number corresponds to the ordinal position of each
character in the EBCDIC or ASCII collating series. Cannot be specified as
floating-point literals or as DBCS literals.

If nonnumeric, the literal is the actual EBCDIC or ASCII character. Literal-4
and literal-5 must not specify a symbolic-character figurative constant. If the

Part 4. Environment Division 89

CURRENCY SIGN clause

value of the nonnumeric literal contains multiple characters, each character in
the literal is included in the set of characters identified by class-name.

If the nonnumeric literal is associated with a THROUGH phrase, it must be
one character in length.

THROUGH, THRU
THROUGH and THRU are equivalent. If THROUGH is specified,
class-name includes those characters beginning with the value of literal-4
and ending with the value of literal-5. In addition, the characters specified
by a THROUGH phrase can specify characters in either ascending or
descending order.

CURRENCY SIGN clause

The CURRENCY SIGN clause affects numeric-edited data items whose PICTURE
clause character-strings contain a currency symbol. A currency symbol represents a
currency sign value that is:

* Inserted in such data items, when they are used as receiving items

* Removed from such data items, when they are used as sending items for a
numeric or numeric-edited receiver

Typically, currency sign values identify the monetary units stored in a data item.
For example: '$', '"EUR', 'FRF', 'F', '"HK$', '"HKD', or X'9F' (hexadecimal
code point in some host-based code pages for € , the Euro currency sign). For
more details on programming techniques for handling the Euro, see the IBM
COBOL Programming Guide for your platform.

The CURRENCY SIGN clause specifies a currency sign value and the currency
symbol used to represent that currency sign value in a PICTURE clause.

The SPECIAL-NAMES paragraph can contain multiple CURRENCY SIGN clauses.
Each CURRENCY SIGN clause must specify a different currency symbol. Unlike
all other PICTURE clause symbols, currency symbols are case-sensitive: for
example, 'D' and 'd' specify different currency symbols.

CURRENCY SIGN IS literal-6
Literal-6 must be a nonnumeric literal. Literal-6 must not be a figurative
constant, a DBCS literal, or a null-terminated literal.

If the PICTURE SYMBOL phrase is not specified, literal-6:

* Specifies both a currency sign value and the currency symbol for this
currency sign value.

* Must be a single character.

* Must not be any of the following:
— Digits 0 through 9

— Alphabetic characters A, B,C, D, E, G, N, P, R, S, V, X, Z, their
lowercase equivalents, or the space

— Special characters +-,.* /; ()" =

e Can be one of the following lowercase alphabetic characters: f, h, i, j, k, 1,
m, o, q/ t/ u, w, y

If the PICTURE SYMBOL phrase is specified, literal-6:
e Specifies a currency sign value. Literal-7, in the PICTURE SYMBOL

phrase, specifies the currency symbol for this currency sign value.

90 coBOL Language Reference

REPOSITORY paragraph
e Can consist of one or more characters.
* Must not contain any of the following:
— Digits 0 through 9
— Special characters + - .,

PICTURE SYMBOL literal-7
Specifies a currency symbol, which can be used in a PICTURE clause to
represent the currency sign value specified by literal-6.

Literal-7 must be a nonnumeric literal consisting of a single character. Literal-7
must not be any of the following:

e A figurative constant

* Digits 0 through 9

* Alphabetic characters A, B,C, D, E, G, N, P, R, S, V, X, Z, their lowercase
equivalents, or the space

e Special characters +-,.%/; ()" ="

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and
the NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the
default currency sign value and currency symbol. For more information about the
CURRENCY and NOCURRENCY compiler options, see the IBM COBOL
Programming Guide for your platform.

Some uses of the CURRENCY SIGN clause prevent use of the NUMVAL-C
intrinsic function. For details, see “NUMVAL-C” on page

DECIMAL-POINT IS COMMA
Exchanges the functions of the period and the comma in PICTURE character
strings and in numeric literals.

REPOSITORY paragraph

The REPOSITORY paragraph defines the names of the classes that you can use in a
class definition or program. Optionally, the REPOSITORY paragraph defines
associations between class-names and external class-names.

—— Format
»»—REPOSITORY.

v
A

|—CLASS—class-name-l]
\—L—‘Ifexternal—class—name—l
IS

class-name-1
A user-defined word that identifies the class.

external-class-name-1
A name that enables a COBOL program to define or access classes with names
that are defined using CORBA rules of formation. (Class names defined using
CORBA rules of formation might not be expressible as a COBOL user-defined
word, such as the case-sensitive SOM class names (SOMObject for example), or
a class implemented in C with a name containing underscores.)

You must specify external-class-name-1 as a nonnumeric literal, conforming to
the following rules of formation:

* The name must not be a figurative constant.

Part 4. Environment Division 91

REPOSITORY paragraph

e The name can be up to 160 characters in length.

* The characters used in the name must be uppercase or lowercase
alphabetic, digit, or underscore.

e The leading character must be alphabetic.

General rules

1. All class names (whether referenced in a program, class definition, or method
introduced by the class) must have an entry in the REPOSITORY paragraph.
(You do not have to put the name of the class you are defining in the
REPOSITORY paragraph. Note, if you don't, the class name is stored in all
uppercase in the SOM repository.)

You can only specify a class name once in a given REPOSITORY paragraph.

2. Entries in a class REPOSITORY paragraph apply to the entire class definition,
including all methods introduced by that class. Entries in a program
REPOSITORY paragraph apply globally to all nested programs contained
within the program.

Identifying and referencing the class

The external class-name is used to identify and reference the class outside of the
source file containing the class definition (for example, to identify the entry for the
class in the SOM Interface Repository). The external class-name is determined by
using the contents of either external-class-name-1 or class-name-1 (as specified in the
REPOSITORY paragraph of a class), as described below:

1. external-class-name-1—is used directly, without translations. The external
class-names are processed in a case-sensitive manner.

2. class-name-1—is used if external-class-name-1 is not specified. To create a
CORBA-compliant external name that identifies the class, class-name-1 is
processed as follows:

* The name is converted to uppercase.

e Hyphens are translated to zero.

o If the first character of the name is a digit, it is converted as follows:
— 1 though 9 are changed to A through I
— 0 is changed to]

92 COBOL Language Reference

Input-Output Section

Input-Output Section

The Input-Output Section of the Environment Division contains two paragraphs:

* FILE-CONTROL paragraph
e [-O-CONTROL paragraph

The exact contents of the Input-Output Section depend on the file organization and
access methods used. See “ORGANIZATION clause” on page and “ACCESS
MODE clause” on page

Program Input-Output Section
The same rules apply to program and method I-O Sections.

Class Input-Output Section
The Input-Output Section is not valid for class definitions.

Method Input-Output Section
The same rules apply to program and method I-O Sections.

— Programs and methods

»»—INPUT-OUTPUT SECTION.—FILE-CONTROL .—(?'-)—¢—fi le-control —paragraph—@;»

»
»

> <
|

|—I-O-CONTROL. |_L J |
i-o-control -paragraphJ—.

Notes:

1 If there are no files defined in the program and the INPUT-OUTPUT
SECTION is specified and no file-control-paragraph is specified, then the
FILE-CONTROL paragraph-name is optional as an IBM extension.

2 If there are no files defined in the program and the FILE-CONTROL
paragraph-name is specified, then the file-control-paragraph is optional as
an IBM extension.

FILE-CONTROL
The key word FILE-CONTROL names the FILE-CONTROL paragraph. This
key word can appear only once, at the beginning of the FILE-CONTROL
paragraph. It must begin in Area A, and be followed by a separator period.

file-control-paragraph
Names the files and associates them with the external data sets.

Must begin in Area B with a SELECT clause. It must end with a separator
period. See “FILE-CONTROL paragraph” on page @

I-O-CONTROL
The key word [-O-CONTROL names the I-O-CONTROL paragraph.

input-output-control-paragraph
Specifies information needed for efficient transmission of data between the
external data set and the COBOL program. The series of entries must end
with a separator period. See “I-O-CONTROL paragraph” on page [114

© Copyright IBM Corp. 1991, 2000 93

FILE-CONTROL paragraph

FILE-CONTROL paragraph

The FILE-CONTROL paragraph associates each file in the COBOL program with
an external data set, and specifies file organization, access mode, and other
information.

The following are the formats for the FILE-CONTROL paragraph:

* Sequential file entries

* Indexed file entries

* Relative file entries

* Line-sequential file entries (not supported under VM)

Table 9 lists the different type of files available to mainframe and workstation

COBOL programs.

Table 9. Types of files
File Access method File systems

Organization 0S/390 and VM AIX Windows
Sequential QSAM, VSAM VSAM!, STL VSAM2, Btrieve, STL
Relative VSAM VSAM!, STL VSAM?2, Btrieve, STL
Indexed VSAM VSAM], STL VSAM?, Btrieve, STL
Line Native3 Native Native
Sequential
Note:

1 Under AIX, you can access the SFS file system through VSAM.
2 Under Windows, only remote file access is available.

3 Line-sequential support on the host is limited to HFS files under OS/390. Line-sequential files
are not supported under VM.

The FILE-CONTROL paragraph begins with the word "FILE-CONTROL", followed
by a separator period. It must contain one and only one entry for each file
described in an FD or SD entry in the Data Division. Within each entry, the
SELECT clause must appear first. The other clauses can appear in any order.

Under OS/390 and VM, there is one exception to the rule about order.
For indexed files, the PASSWORD clause, if specified, must immediately follow the
RECORD KEY or ALTERNATE RECORD KEY data-name with which it is

associated.

94 CoOBOL Language Reference

FILE-CONTROL paragraph

— Format 1—sequential-file-control-entries

»»—SELECT B B -file-name-1—ASSIGN assignment-name-1 |
OPTIONAL T0
USING—data-name-9—D————

» »
»

|—RESERVE—im‘:eger‘ I B SEQUENTIALJ
AREA ORGANIZATIONﬁ—l
AREAS IS

v

\
4

L G j_l -
PADDING data-name-5
|—CHARACTERJ |—ISJ |—l iteral-2

|—RECORD DELIMITER—E——[STANDARD- 1ﬁ_‘
IS assignment-name-2

|—ACCES° SE J |— —l
S UENTIAL PASSWORD data- -6
Cvooed Lisd o T e

\

v

\
4

> |

STATUS data-name-1
|—FILE—J ’—IS—J |—data—name—8—J

Note:
1 The USING data-name phrase of the ASSIGN clause is only valid under AIX and Windows.

—— Format 2—indexed-file-control-entries

»»—SELECT B B -file-name-1—ASSIGN assignment-name-1 |
OPTIONAL T0
USING—data-name-9—-D———

> INDEXED
|—RESERVE—im‘:eger‘ | LORGANIZATIONﬁ
EAREA— IS

v

v

\ 4

RECORD data-name-2———»
|—/-\CCESS |_ J l_ J SEQUENTIAL—J |—KEYJ |—ISJ

MODE IS —RANDOM———

—DYNAMIC——

\ 4

v

v |
Lpassworn data-name-6- L]
-name-6 entry 1
L ps]

> |

STATUS data-name-1
|—FILE—‘ LIS—| ’—data—name—BJ

entry 1

F—ALTERNATE RECORD—2 data-name-3 >
l—KEY—‘ |—IS—‘ Lm——DUPLICATESJ
WITH

> |
>

PASSWORD—m—data name
L - - 7J
IS

Notes:
! The USING data-name phrase of the ASSIGN clause is only valid under AIX and Windows.

2 RECORD is optional as an IBM extension.

Part 4. Environment Division 95

FILE-CONTROL paragraph

—— Format 3—relative-file-control-entries

»—SELECT—L—_'—fiZe-name-l—ASSIGN assignment-name-1 |
OPTIONAL T0
USING—data-name-9—D————

v

> RELATIVE
l—RESERVE—integer‘ | LORGANIZATIONﬁ
EAREA— IS
AREAS—

\

l—ACCES° SEQ |
S UENTIAL
|—MODEJ l—ISJ |—RELATIVE oo T Lol data—name-4J
KEY- IS

RANDOM—_'—RELATIVE data-name-4——
—EDYNAMIC |—KEYJ |—ISJ

A\

L |
PASSWORD—L—_'—data—name—é
IS

A\

l l

STATUS data-name-1
|—FILEJ l—ISJ |—dat‘a-name-8J

Note:

! The USING data-name phrase of the ASSIGN clause is only valid under AIX and Windows.

\
A

— Format 4—line-sequential-file-control-entries (all platforms except VM)

»—SELECT—L—_'—fi le-name-1—ASSIGN assignment-name-1 |
OPTIONAL TO
USING—data-name-9—D——

\ 4

> B LINE SEQUENTIAL T]
ORGANIZATION—E—J ACCESS [T o] SEQUENTIAL
IS MODE IS

\ 4

v

L-m——STATUS data-name-1 |
FILE [Isj ’—dat‘a—name—B—u-)J

Note:
! The USING data-name-9 phrase and data-name-8 are only valid under AIX and Windows.

v
A

96 COBOL Language Reference

ASSIGN clause

SELECT clause

The SELECT clause chooses a file in the COBOL program to be associated with an
external data set.

SELECT OPTIONAL
Can be specified only for files opened in the input, I-O, or extend mode. You
must specify SELECT OPTIONAL for such input files that are not necessarily
present each time the object program is executed. For more information, see
the IBM COBOL Programming Guide for your platform.

file-name-1
Must be identified by an FD or SD entry in the Data Division. A file-name
must conform to the rules for a COBOL user-defined name, must contain at
least one alphabetic character, and must be unique within this program.

When file-name-1 specifies a sort or a merge file, only the ASSIGN clause can
follow the SELECT clause.

If the file connector referenced by file-name-1 is an external file connector, all file
control entries in the run unit that reference this file connector must have the same
specification for the OPTIONAL phrase.

ASSIGN clause

The ASSIGN clause associates the program's name for a file with the external
name for the actual data file.

0S/390 and VM syntax

assignment-name-1
Can be specified as a user-defined word or a nonnumeric literal. Any
assignment-name after the first is syntax checked, but it has no effect on the
execution of the program.

Assignment-name-1 has the following formats:

—— Format—QSAM file
~ |—label- J |—S- J e

\4
A

—— Format—VSAM sequential file

»> AS- —name
I—Zabel—]

A\
A

—— Format—Line-sequential, VSAM indexed or VSAM relative file

NS name
|—label- ll

\ 4
A

label-
Documents the device and device class to which a file is assigned. If specified,
it must end with a hyphen.

Part 4. Environment Division 97

ASSIGN clause
S- For QSAM files, the S- (organization) field can be omitted.

AS-
For VSAM sequential files, the AS- (organization) field must be specified.

For VSAM indexed and relative files, the organization field must be omitted.

name
A required field that specifies the external name for this file.

Under OS/390, it must be either the name specified in the DD statement for
this file or the name of an environment variable containing file allocation
information. For details on specifying an environment variable, see
“Assignment name for environment variable (OS/390).”

The name must conform to the following rules of formation:

e If assignment-name-1 is a user-defined word:

— The name can contain from 1 - 8 characters.
— The name can contain the characters A-Z, a-z, 0-9.
— The leading character must be alphabetic.

e If assignment-name-1 is a literal:

— The name can contain from 1 - 8 characters.
— The name can contain the characters A-Z, a-z, 0-9, @, #, $.
— The leading character must be alphabetic.

For both user-defined words and literals, the compiler folds name to upper case
to form the ddname for the file.

In a sort or merge file, name is treated as a comment.

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, all file control entries in the run unit that reference this file
connector must have a consistent specification for assignment-name-1 in the
ASSIGN clause. For QSAM files and VSAM indexed and relative files, the name
specified on the first assignment- name-1 must be identical. For VSAM sequential
files, it must be specified as AS-name.

Assignment name for environment variable (OS/390)

Under OS/390, the name component of assignment-name-1 is initially treated as a
ddname. If no file has been allocated using this ddname, then name is treated as
an environment variable.

Note: The environment variable name must be defined using only upper case,
since the COBOL compiler automatically folds the external file name to upper case.

If this environment variable exists, and contains a valid PATH or DSN option
(described below), then the file is dynamically allocated using the information
supplied by that option.

If the environment variable does not contain a valid PATH or DSN option, or if
the dynamic allocation fails, then attempting to open the file results in file status
98.

The contents of the environment variable are checked at each OPEN statement. If
a file was dynamically allocated by a previous OPEN statement and the contents
of the environment variable have changed since the previous OPEN, then the
previous allocation is dynamically deallocated prior to dynamically reallocating the
file using the options currently set in the environment variable.

98 cCoBOL Language Reference

ASSIGN clause

When the run-unit terminates, the COBOL run-time system automatically
deallocates all automatically generated dynamic allocations.

Environment variable contents for a QSAM file: For a QSAM file, the
environment variable must contain either a PATH option or a DSN option in the
following format:

The options following DSN (such as NEW, TRACKS etc.) must be separated by a
comma or by one or more blanks.

— Environment variable format (0OS/390 QSAM files)—DSN option
) >

»»—DSN— (—data-set-name

l—(member-name)J NEW TRACKS—
OLD CYL——
SHR
MOD

A\

|—SPACE(nnn,mmmm)J |—VOL(volume-seriaZ)—I |—UNIT(type)J

>

\

KEEP: |—STORCLAS(stor‘age-class)J
DELETE—
CATALOG—

UNCATALOG—

\ 4

|—MGMTC LAS (management-cl ass)J l—DATAC LAS (data-c Zass)J

The data-set-name must be fully qualified. The data set must not be a temporary
data set (that is, it must not start with an ampersand). After data-set-name or
member-name, the data set attributes can follow in any order.

For information on specifying the values of the data set attributes, see the
description of the DD statement in the OS5/390 MV'S JCL Reference, GC28-1757.

— Environment variable format (OS/390)—PATH option

»»—PATH— (—path-name—)—><«

The path-name must be an absolute path name (that is, it must begin with a slash).
For more information on specifying path-name, see the description of the PATH
parameter in the OS/390 MVS JCL Reference, GC28-1757.

Blanks at the beginning and end of the environment variable contents are ignored.
Blanks are not allowed within the parentheses.

Environment variable contents for a line-sequential file: For a line-sequential
file, the environment variable must contain a PATH option in the following
format:

— Environment variable format (OS/390)—PATH option
»»—PATH— (—path-name—)—><«

The path-name must be an absolute path name (that is, it must begin with a slash).
For more information on specifying path-name, see the description of the PATH
parameter in the OS/390 MVS JCL Reference, GC28-1757.

Blanks at the beginning and end of the environment variable contents are ignored.
Blanks are not allowed within the parentheses.

Part 4. Environment Division 99

ASSIGN clause

Environment variable contents for an indexed, relative or sequential VSAM
file: For an indexed, relative or sequential VSAM file, the environment variable
must contain a DSN option in the following format:

—— Environment variable format (OS/390 VSAM)—DSN option

»—DSN—(—dato-set-name—)—EOLD <
SHR

The data-set-name specifies the data set name for the base cluster. The data-set-name
must be fully qualified, and must reference an existing predefined and cataloged
VSAM data set.

If an indexed file has alternate indexes, then additional environment variables
must be defined containing DSN options (as above) for each of the alternate index
paths. The names of these environment variables must follow the same naming
convention as used for alternate index ddnames. That is:

* The environment variable name for each alternate index path is formed by
concatenating the base cluster environment variable name with an integer,
beginning with 1 for the path associated with the first alternate index and
incrementing by 1 for the path associated with each successive alternate index.
(For example, if the environment variable name for the base cluster is CUST,
then the environment variable names for the alternate indexes would be
CUST1, CUST2 etc.)

* If the length of the base cluster environment variable name is already 8
characters, then the environment variable names for the alternate indexes are
formed by truncating the base cluster portion of the environment variable
name on the right, to reduce the concatenated result to 8 characters. (For
example, if the environment variable name for the base cluster is DATAFILE,
then the environment variable names for the alternate clusters would be
DATAFIL1, DATAFIL2 etc.)

Blanks at the beginning and end of the environment variable contents are ignored.
Blanks are not allowed within the parentheses.

The options following DSN (such as SHR) must be separated by a comma or by
one or more blanks.

AIX and Windows syntax

assignment-name-1
Can be either a user-defined word or a literal.

User-defined word
Assignment-name-1 must follow the rules for a COBOL word. The
name component of the assignment name can be up to 30 characters in
length. A user-defined word is treated as one of the following:

* Environment variable name— At program initialization, the name
is used as an environment variable. If the environment variable
value is set, that value is treated as the system file name optionally
preceded by the file-system ID. See “Assignment name for
data-names and environment variables (AIX and Windows)” on

page for details.

* System file ID of the platform— If the environment variable
indicated by the name is not set, the user-defined word is treated as
the system file name, optionally preceded by the file-system ID

100 cosoL Language Reference

ASSIGN clause

and a comment character string. See “Assignment name for
non-environment variables and literals (AIX and Windows)” on

page for details.

Literal
Assignment-name-1 is treated as the actual file ID for the platform.
Assignment-name-1 must follow the rules for a COBOL literal with the
length of one to 160 characters. See “Assignment name for
non-environment variables and literals (AIX and Windows)” for
details.

All characters specified within the literal delimiters are used without
any mapping.
USING data-name-9
Must be defined as an alphanumeric data item, and must not be subordinate to
the file description for file-name-1. The content is evaluated when OPENed to

identify the assignment name. See “Assignment name for data-names and
environment variables (AIX and Windows)” on page for details.

Assignment name for non-environment variables and literals
(AIX and Windows)

If a literal or non-data-name word is specified for the name, the assignment name
is processed as follows:

—— ASSIGNment name format

»h
»p»

v

|—comment—J |—file system ID—J

system file name _1
alt_index }—J

environment variable name

\4
A

alt_index

F—(—alt-inx-file-name-1 ¢|_ ||) |

s

|—alt-inx-fiZe-name-ZJ

comment
All characters to the left of the system-file ID are treated as comments.
Comments can be hyphenated, for example, my-comment or
this-is-my-comment.

file-system ID
The first three characters of the file-system ID are used to determine the
file-system identifier. If the character string for the file-system ID is less than
three characters, then the entire character string (along with any character
strings to the left of it) is treated as a comment. If you include comments
(hyphenated or not), you must include the separating hyphen between the
comment and the file-system ID.

For example, take the following two assignment-name formats:
my-comment-vsam-myfile

In this example, my-comment is the comment, vsam is the file-system ID, and
myfile is the system file or environment variable name.

my-comment-am-myfile

Part 4. Environment Division 101

ASSIGN clause

In this example, my-comment-am is the comment, and myfile is the system file
or environment variable name.

system file name / environment variable name
If the assignment name is not specified in the literal form and the environment
variable matching the character string is found at run time, the environment
variable value is used to identify the file system and the system file name.
Otherwise, the character string is used as the system file name.

Specifying alternate indexes— The compiler normally assigns default alternate
index file names; however, you must override the default assignment when:

* The file is not a local VSAM file and has different alternate index file name
specification rules. For example, an SFS file where SFS requires an
alternate index file name to start with the base file name followed by ;
followed by a character string of your choice.

* The file already exists and has alternate index files with names not
corresponding to the default alternate index file names that are assigned
by the compiler. For example, a remote OS/390 VSAM file or a local
VSAM file create through a different language, such as PL/L

If specifying alternate index names, they must be specified in the same order
as the alternate record keys are specified in the source program. You can omit
alternate index names, but any other alternate index names must correspond to
the position in the file definition. The following example shows how to
specify the first and third alternate index names:

base-file-name(first-index-file-name,,third-index-file-name)

In the above example, the compiler will assign a default file name for the
second alternate index file.

Alternate index file names are ignored for file systems that do not require
separate alternate index files, such as the STL file system.

Assignment name for data-names and environment variables
(AIX and Windows)

If the environment variable or data-name is specified for the assignment name, the
data-name value or the environment variable value is processed as follows:

—— Environment variable and data name value format

»>
>

system file name

v

|—fi le system ID—J

\4
A

L(—Glt-inx-file—name—] ¢|_ ||)J

s

’—alt—inx—file—name—Z—]

file-system ID
If the file-system ID is specified explicitly using the environment variable value
or the data-name value, that specification for the file system overrides any file
system specification made by the ASSIGNment name.

The environment variable value for a file is obtained when the program
containing the file is first run (or called) in its initial state. This value is kept
for the file for subsequent calls to the program in the last used state.

102 cosoOL Language Reference

ORGANIZATION clause

The value of the file ID specified with a data-name is obtained when the file is
OPENed. On each subsequent OPEN for the file, the value is reobtained.

File declarations for an external file must have the same file-system identifier.
If they are not, the error is caught during run time, and the application is
terminated with an error message.

system file name
If there is a hyphen in the environment variable or the data name value, the
first three characters to the left of the left-most hyphen are treated as the
file-system identifier. The character string to right of the left most hyphen is
then used as the system file name (possibly including drive and path names).

If there is no hyphen or the character string to the left of the left-most hyphen
is less than three characters long, the entire character string is used as the
system file name (possibly including drive and path names).

For information on specifying alternate indexes, see “Specifying alternate
indexes” under “Assignment name for non-environment variables and literals

(AIX and Windows)” on page

RESERVE clause

The RESERVE clause is not supported for line-sequential files.

Under AIX and Windows, the RESERVE clause is syntax checked, but
has no effect on the execution of the program.

The RESERVE clause allows the user to specify the number of input/output
buffers to be allocated at run-time for the files.

If the RESERVE clause is omitted, the number of buffers at run time is taken from
the DD statement when running under OS/390. If none is specified, the system
default is taken.

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, all file control entries in the run unit that reference this file
connector must have the same value for the integer specified in the RESERVE
clause.

ORGANIZATION clause

The ORGANIZATION clause identifies the logical structure of the file. The logical
structure is established at the time the file is created and cannot subsequently be
changed.

You can find a discussion of the different ways in which data can be organized
and of the different access methods that you can use to retrieve the data under
“File organization and access modes” on page [108

ORGANIZATION IS SEQUENTIAL (format 1)
A predecessor-successor relationship among the records in the file is
established by the order in which records are placed in the file when it is
created or extended.

ORGANIZATION IS INDEXED (format 2)
The position of each logical record in the file is determined by indexes created
with the file and maintained by the system. The indexes are based on
embedded keys within the file's records.

Part 4. Environment Division 103

ORGANIZATION clause

ORGANIZATION IS RELATIVE (format 3)
The position of each logical record in the file is determined by its relative
record number.

ORGANIZATION IS LINE SEQUENTIAL (format 4)
Supported under all platforms except VM: a predecessor-successor relationship
among the records in the file is established by the order in which records are
placed in the file when it is created or extended. A record in a LINE
SEQUENTIAL file can consist only of printable characters.

If you omit the ORGANIZATION clause, the compiler assumes ORGANIZATION
IS SEQUENTIAL.

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, all file control entries in the run unit that reference this file
connector must have the same organization.

File organization

You establish the organization of the data when you create the file. Once the file
has been created, you can expand the file, but you cannot change the organization.

Sequential organization

The physical order in which the records are placed in the file determines the
sequence of records. The relationships among records in the file do not change,
except that the file can be extended. Records can be fixed-length or
variable-length; there are no keys.

Each record in the file, except the first, has a unique predecessor record, and each
record, except the last, also has a unique successor record.

Indexed organization

Each record in the file has one or more embedded keys (referred to as key data
items); each key is associated with an index. An index provides a logical path to
the data records, according to the contents of the associated embedded record key
data items. Indexed files must be direct-access storage files. Records can be
fixed-length or variable-length.

Each record in an indexed file must have an embedded prime key data item.
When records are inserted, updated, or deleted, they are identified solely by the
values of their prime keys. Thus, the value in each prime key data item must be
unique and must not be changed when the record is updated. You tell COBOL
the name of the prime key data item on the RECORD KEY clause of the
FILE-CONTROL paragraph.

In addition, each record in an indexed file can contain one or more embedded
alternate key data items. Each alternate key provides another means of identifying
which record to retrieve. You tell COBOL the name of any alternate key data
items on the ALTERNATE RECORD KEY clause of the FILE-CONTROL
paragraph.

The key used for any specific input-output request is known as the key of
reference.

104 cosoL Language Reference

ORGANIZATION clause
Relative organization

Think of the file as a string of record areas, each of which contains a single record.
Each record area is identified by a relative record number; the access method
stores and retrieves a record, based on its relative record number. For example,
the first record area is addressed by relative record number 1, and the 10th is
addressed by relative record number 10. The physical sequence in which the
records were placed in the file has no bearing on the record area in which they are
stored, and thus on each record's relative record number. Relative files must be
direct-access files. Records can be fixed-length or variable-length.

Line-sequential organization

In a line-sequential file, each record contains a sequence of characters ending with
a record delimiter. The delimiter is not counted in the length of the record.

Upon writing, any trailing blanks are removed prior to adding the record
delimiter. The characters in the record area from the first character up to and
including the added record delimiter constitute one record and are written to the
file.

Upon reading the record, characters are read one at a time into the record area
until:

e The first record delimiter is encountered. The record delimiter is discarded
and the remainder of the record is filled with spaces.

¢ The entire record area is filled with characters. If the first unread character is
the record delimiter, it is discarded. Otherwise, the first unread character
becomes the first character read by the next READ statement.

Records written to line-sequential files must consist of USAGE...DISPLAY and/or
DISPLAY-1 data items. An external decimal data item must either be unsigned or,
if signed, must be declared with the SEPARATE CHARACTER phrase.

A line-sequential file must only contain printable characters and the following
control characters:

Alarm
Backspace
Form feed
New-line
Carriage-return
Horizontal tab
Vertical tab
DBCS shift-out
DBCS shift-in

New-line characters are processed as record delimiters, while other control
characters are treated by COBOL as part of the data for the records in the file.

The following are not supported for line-sequential files:

e APPLY WRITE ONLY clause

e CODE-SET clause

e DATA RECORDS clause

e LABEL RECORDS clause

e LINAGE clause

e OPEN I-O option

e PADDING CHARACTER clause
e RECORD CONTAINS 0 clause

Part 4. Environment Division 105

PADDING CHARACTER clause

e RECORD CONTAINS clause (format 2; for example, RECORD CONTAINS 100
to 200 CHARACTERS)

RECORD DELIMITER clause

RECORDING MODE clause

RERUN clause

RESERVE clause

REVERSED phrase of OPEN statement
REWRITE statement

VALUE OF clause of file description entry
WRITE...AFTER ADVANCING mnemonic-name
WRITE... AT END-OF-PAGE

WRITE...BEFORE ADVANCING

Language elements treated as comments (workstation only)

Under AIX and Windows for other files (sequential, relative, and indexed), the
following language elements are syntax checked, but have no effect on the
execution of the program:

APPLY WRITE ONLY clause
CLOSE....FOR REMOVAL

CLOSE....WITH NO REWIND

CODE-SET clause

DATA RECORDS clause

LABEL RECORDS clause

MULTIPLE FILE TAPE clause
OPEN...REVERSE

PADDING CHARACTER clause
PASSWORD clause

RECORD CONTAINS 0 clause

RECORD DELIMITER clause
RECORDING MODE clause (for relative and indexed files)
RERUN clause

RESERVE clause

SAME AREA clause

SAME SORT AREA clause

SAME SORT-MERGE AREA clause
VALUE OF clause of file description entry

No error messages are generated (with the exception of the data name option for
the LABEL RECORDS, USE...AFTER...LABEL PROCEDURE, and GO TO
MORE-LABELS clauses).

PADDING CHARACTER clause

The PADDING CHARACTER clause specifies the character which is to be used for
block padding on sequential files.

data-name-5
Must be defined in the Data Division as an alphanumeric 1-character data
item, and must not be defined in the File Section. Data-name-5 can be
qualified.

literal-2
Must be a 1-character nonnumeric literal.

For EXTERNAL files, if data-name-5 is specified, it must reference an external data
item.

106 coBoL Language Reference

ACCESS MODE clause

The PADDING CHARACTER clause is syntax checked, but no compile-time or
run-time verification checking is done, and the clause has no effect on the
execution of the program.

RECORD DELIMITER clause

The RECORD DELIMITER clause indicates the method of determining the length
of a variable-length record on an external medium. It can be specified only for
variable-length records.

STANDARD-1
If STANDARD-1 is specified, the external medium must be a magnetic tape
file.

assignment-name-2
Can be any COBOL word.

The RECORD DELIMITER clause is syntax checked, but no compile-time or
run-time verification checking is done, and the clause has no effect on the
execution of the program.

ACCESS MODE clause

The ACCESS MODE clause defines the manner in which the records of the file are
made available for processing. If the ACCESS MODE clause is not specified,
sequential access is assumed.

For sequentially accessed relative files, the ACCESS MODE clause does not have to
precede the RELATIVE KEY clause.

ACCESS MODE IS SEQUENTIAL
Can be specified in all four formats.

Format 1—sequential
Records in the file are accessed in the sequence established when the file is
created or extended. Format 1 supports only sequential access.

Format 2—indexed
Records in the file are accessed in the sequence of ascending record key
values according to the collating sequence of the file.

Format 3—relative
Records in the file are accessed in the ascending sequence of relative
record numbers of existing records in the file.

Format 4—line-sequential
Records in the file are accessed in the sequence established when the file is
created or extended. Format 4 supports only sequential access.

ACCESS MODE IS RANDOM
Can be specified in formats 2 and 3 only.

Format 2—indexed
The value placed in a record key data item specifies the record to be
accessed.

Format 3—relative
The value placed in a relative key data item specifies the record to be
accessed.

Part 4. Environment Division 107

ACCESS MODE clause

ACCESS MODE IS DYNAMIC
Can be specified in formats 2 and 3 only.

Format 2—indexed
Records in the file can be accessed sequentially or randomly, depending on
the form of the specific input-output statement used.

Format 3—relative
Records in the file can be accessed sequentially or randomly, depending on
the form of the specific input-output request.

File organization and access modes

File organization is the permanent logical structure of the file. You tell the
computer how to retrieve records from the file by specifying the access mode
(sequential, random, or dynamic). For details on the access methods and data
organization, see Table 9 on page

Note: Sequentially organized data can only be accessed sequentially; however,
data that has indexed or relative organization can be accessed with any of the
three access methods.

Access modes

Sequential-access mode
Allows reading and writing records of a file in a serial manner; the order of
reference is implicitly determined by the position of a record in the file.

Random-access mode
Allows reading and writing records in a programmer-specified manner; the
control of successive references to the file is expressed by specifically defined
keys supplied by the user.

Dynamic-access mode
Allows the specific input-output statement to determine the access mode.
Therefore, records can be processed sequentially and/or randomly.

For EXTERNAL files, every file control entry in the run unit that is associated with
that external file must specify the same access mode. In addition, for relative file
entries, data-name-4 must reference an external data item and the RELATIVE KEY
phrase in each associated file control entry must reference that same external data
item in each case.

Relationship between data organizations and access modes

The following lists which access modes are valid for each type of data
organization.

Sequential files
Files with sequential organization can be accessed only sequentially. The
sequence in which records are accessed is the order in which the records were
originally written.

Line-sequential files
Same as for sequential files (described above).

108 cosoL Language Reference

RECORD KEY clause

Indexed files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is
the ascending order (or optionally under AIX and Windows, descending order)
of the record key value. The order of retrieval within a set of records having
duplicate alternate record key values is the order in which records were
written into the set.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing the value of its key(s) in
the RECORD KEY data item (and the ALTERNATE RECORD KEY data item).
If a set of records has duplicate alternate record key values, only the first
record written is available.

In the dynamic access mode, you can change, as necessary, from sequential
access to random access, using appropriate forms of input-output statements.

Relative files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is
the ascending order (or optionally under AIX and Windows, descending order)
of the relative record numbers of all records that currently exist within the file.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing its relative record number
in the RELATIVE KEY data item; the RELATIVE KEY must not be defined
within the record description entry for this file.

In the dynamic access mode, you can change, as necessary, from sequential
access to random access, using the appropriate forms of input-output
statements.

RECORD KEY clause

The RECORD KEY clause (format 2) specifies the data item within the record that
is the prime RECORD KEY for an indexed file. The values contained in the prime
RECORD KEY data item must be unique among records in the file.

data-name-2
The prime RECORD KEY data item. It must be described as an alphanumeric
item within a record description entry associated with the file.

As an IBM extension, data-name-2 can be numeric, numeric-edited,
alphanumeric-edited, alphabetic, floating-point (both external and internal), or
a DBCS data item. The key is treated as an alphanumeric item for the input
and output statements for the file named in the SELECT clause. When you
specify data-name-2 as a DBCS data item, a key specified on the READ
statement must also be a DBCS data item.

Data-name-2 must not reference a group item that contains a variable
occurrence data item. Data-name-2 can be qualified.

As an IBM extension, if the indexed file contains variable-length records,
data-name-2 need not be contained within the first “x” character positions of
the record, where “x” equals the minimum record size specified for the file.
That is, data-name-2 can be beyond the first “x” character positions of the

record, but this is not recommended.

Part 4. Environment Division 109

ALTERNATE RECORD KEY clause

Data-name-2 cannot be a windowed date field.

The data description of data-name-2 and its relative location within the record
must be the same as those used when the file was defined.

If the file has more than one record description entry, data-name-2 need only be
described in one of these record description entries. The identical character
positions referenced by data-name-2 in any one record description entry are
implicitly referenced as keys for all other record description entries of that file.

For EXTERNAL files, all file description entries in the run unit that are associated
with the EXTERNAL file must specify the same data description entry for
data-name-2 with the same relative location within the associated record.

The requirement for identical data description entries is not enforced, but the key
must have the same relative location in the records, as well as the same length.

ALTERNATE RECORD KEY clause

The ALTERNATE RECORD KEY clause (format 2) specifies a data item within the
record that provides an alternative path to the data in an indexed file.

data-name-3
An ALTERNATE RECORD KEY data item. It must be described as an
alphanumeric item within a record description entry associated with the file.

As an IBM extension, data-name-3 can be a numeric, numeric-edited,
alphanumeric-edited, alphabetic, floating-point (both external and internal), or
DBCS data item. The key is treated as an alphanumeric item for the input and
output statements for the file named in the SELECT clause.

Data-name-3 must not reference a group item that contains a variable
occurrence data item. Data-name-3 can be qualified.

As an IBM extension, if the indexed file contains variable-length records,
data-name-3 need not be contained within the first “x” character positions of
the record, where “x” equals the minimum record size specified for the file.
That is, data-name-3 can be beyond the first “x” character positions of the

record, but this is not recommended.
Data-name-3 cannot be a windowed date field.

If the file has more than one record description entry, data-name-3 need be
described in only one of these record description entries. The identical
character positions referenced by data-name-3 in any one record description
entry are implicitly referenced as keys for all other record description entries of
that file.

The data description of data-name-3 and its relative location within the record
must be the same as those used when the file was defined. The number of
alternate record keys for the file must also be the same as that used when the
file was created.

The leftmost character position of data-name-3 must not be the same as the
leftmost character position of the RECORD KEY or of any other ALTERNATE
RECORD KEY.

If the DUPLICATES phrase is not specified, the values contained in the
ALTERNATE RECORD KEY data item must be unique among records in the file.

110 cosoL Language Reference

PASSWORD clause

If the DUPLICATES phrase is specified, the values contained in the ALTERNATE
RECORD KEY data item can be duplicated within any records in the file. In
sequential access, the records with duplicate keys are retrieved in the order in
which they were placed in the file. In random access, only the first record written
of a series of records with duplicate keys can be retrieved.

For EXTERNAL files, all file description entries in the run unit that are associated
with the EXTERNAL file must specify the same data description entry for
data-name-3, the same relative location within the associated record, the same
number of alternate record keys, and the same DUPLICATES phrase.

The requirement for identical data description entries is not enforced, but the key
must have the same relative location in the records, as well as the same length.

RELATIVE KEY clause

The RELATIVE KEY clause (format 3) identifies a data-name that specifies the
relative record number for a specific logical record within a relative file.

data-name-4
Must be defined as an unsigned integer data item whose description does not
contain the PICTURE symbol P. Data-name-4 must not be defined in a record
description entry associated with this relative file. That is, the RELATIVE KEY
is not part of the record. Data-name-4 can be qualified.

Data-name-4 cannot be a windowed date field.

Data-name-4 is required for ACCESS IS SEQUENTIAL only when the START
statement is to be used. It is always required for ACCESS IS RANDOM and
ACCESS IS DYNAMIC. When the START statement is issued, the system uses
the contents of the RELATIVE KEY data item to determine the record at which
sequential processing is to begin.

If a value is placed in data-name-4, and a START statement is not issued, the
value is ignored and processing begins with the first record in the file.

If a relative file is to be referenced by a START statement, you must specify
the RELATIVE KEY clause for that file.

For EXTERNAL files, data-name-4 must reference an external data item and
the RELATIVE KEY phrase in each associated file control entry must reference
that same external data item in each case.

The ACCESS MODE IS RANDOM clause must not be specified for file-names
specified in the USING or GIVING phrase of a SORT or MERGE statement.

PASSWORD clause

Under AIX and Windows the PASSWORD clause is syntax checked,
but has no effect on the execution of the program.

The PASSWORD clause controls access to files.

data-name-6

data-name-7
Password data items. Each must be defined in the Working-Storage Section (of
the Data Division) as an alphanumeric item. The first 8 characters are used as
the password; a shorter field is padded with blanks to 8 characters. Each
password data item must be equivalent to one that is externally defined.

Part 4. Environment Division 111

FILE STATUS clause

When the PASSWORD clause is specified, at object time the PASSWORD data item
must contain the valid password for this file before the file can be successfully
opened.

Format 1 considerations:
The PASSWORD clause is not valid for QSAM sequential files.
Format 2 and 3 considerations:

When the PASSWORD clause is specified, it must immediately follow the
RECORD KEY or ALTERNATE RECORD KEY data-name with which it is
associated.

For indexed files, if the file has been completely predefined to VSAM, only the
PASSWORD data item for the RECORD KEY need contain the valid password
before the file can be successfully opened at file creation time.

For any other type of file processing (including the processing of dynamic CALLs
at file creation time through a COBOL object-time subroutine), every PASSWORD
data item for this file must contain a valid password before the file can be
successfully opened, whether or not all paths to the data are used in this object
program.

For EXTERNAL files, data-name-6 and data-name-7 must reference external data
items. The PASSWORD clauses in each associated file control entry must reference
the same external data items.

FILE STATUS clause

The FILE STATUS clause monitors the execution of each input-output operation
for the file.

When the FILE STATUS clause is specified, the system moves a value into the
status key data item after each input-output operation that explicitly or implicitly
refers to this file. The value indicates the status of execution of the statement.
(See the “status key” description under “Common processing facilities” on

page [244)

data-name-1
The status key data item can be defined in the Working-Storage, Local-Storage,
or Linkage sections as either of the following:

* A 2-character alphanumeric item
* A 2-character numeric data item, with explicit or implicit USAGE IS
DISPLAY. It is treated as an alphanumeric item.

Note: Data-name-1 must not contain the PICTURE symbol 'P'.
Data-name-1 can be qualified.

The status key data item must not be variably located; that is, the data item
cannot follow a data item containing an OCCURS DEPENDING ON clause.

data-name-8
Represents information returned from the file system. Since the definitions are
specific to the file systems and platforms, applications that depend on the
specific values in data-name-8 might not be portable across platforms.

112 COBOL Language Reference

FILE STATUS clause

Under OS5/390 and VM, data-name-8 must be defined as a group
item of 6 bytes in the Working-Storage or Linkage Section of the Data Division.

Specify data-name-8 only if the file is a VSAM file (that is, ESDS, KSDS,
RRDS).

Under OS/390 and VM, for VSAM files the 6-byte VSAM return code is
comprised of the following:

e The first 2 bytes of data-name-8 contain the VSAM return code in binary
notation. The value for this code is defined (by VSAM) as 0, 8, or 12.

e The next 2 bytes of data-name-8 contain the VSAM function code in
binary notation. The value for this code is defined (by VSAM) as 0, 1, 2, 3,
4, or 5.

e The last 2 bytes of data-name-8 contain the VSAM feedback code in binary
notation. The code value is 0 through 255.

If VSAM returns a nonzero return code, data-name-8 is set.
If FILE STATUS is returned without having called VSAM, data-name-8 is zero.

If data-name-1 is set to zero, the content of data-name-8 is undefined. VSAM
status return code information is available without transformation in the
currently defined COBOL FILE STATUS code. User identification and
handling of exception conditions are allowed at the same level as that defined
by VSAM.

Function code and feedback code are set if and only if the return code is set
to nonzero. If they are referenced when the return code is set to zero, the
contents of the fields are not dependable.

Definitions of values in the return code, function code, and feedback code
fields are defined by VSAM. There are no COBOL additions, deletions, or
modifications to the VSAM definitions. For more information, see VSAM
Administration: Macro Instruction Reference.

Under AIX and Windows, how you define data-name-8 is
dependent on the file system you are using.

Btrieve, STL, and native platform file systems
You must define data-name-8 with PICTURE 9(6) and USAGE
DISPLAY attributes. However, you can define an additional field with
PICTURE X(n). The file system defines the feedback values, which are
converted to the six digit external decimal representation with leading
zeros, when the file systems feedback value is less than 100000. If you
have defined an additional field using PICTURE X(n), then X(n)
contains additional information describing any non-zero feedback code.
(For most programs, an 'n' value of 100 should be adequate to show
the complete message text. If the file is defined with a large number
of alternate keys then allow 100 bytes plus 20 bytes per alternate key.)

VSAM file system
You must define data-name-8 with PICTURE X(n) and USAGE
DISPLAY attributes, where n'is 6 or greater. The PICTURE string
value represents the first 'n' bytes of the VSAM reply message
structure (defined by VSAM). If the size of the reply message
structure (m) is shorter than 'n', only the first 'm' bytes contain useful
information.

Note: This also applies to SFS files accessed through VSAM on AIX.

Part 4. Environment Division 113

I-O-CONTROL paragraph
For information on VSAM file handling on the workstation, see:

e For AIX: SMARTdata UTILITIES for AIX: VSAM in a Distributed
Environment

e For Windows: SMARTdata UTILITIES User’s Guide for Windows

I-O-CONTROL paragraph

The I-O-CONTROL paragraph of the Input-Output Section specifies when
checkpoints are to be taken and the storage areas to be shared by different files.
This paragraph is optional in a COBOL program.

The key word I-O-CONTROL can appear only once, at the beginning of the

paragraph. The word I-O-CONTROL must begin in Area A, and must be followed

by a separator period.

Each clause within the paragraph can be separated from the next by a separator
comma or a separator semicolon. The order in which I-O-CONTROL paragraph
clauses are written is not significant. The I-O-CONTROL paragraph ends with a
separator period.

—— Sequential I-O-control entries

»»——RERUN—ON assignment-m phrase 1 |
-file-name-1 EVERY

—SAME fi Ze-name-3—Lfi le-name-4—2
|—RECORD—‘ |—ARE/-\J |—FORJ

\
A

—MULTIPLE FILE-® J’file-name-E
l—T/—\PE—J l—CONTAINS—J LPOSITION—integer-Z—J

—APPLY WRITE—ONLYW
ON

phrase 1
}——[integer-l—RECORDS file-name-1 I
END_I_—_I_EREEL? |:OF:|
OF UNIT
Notes:

1 ON is optional as an IBM extension.
2 File-name-4 is optional as an IBM extension.

3 The MULTIPLE FILE clause and APPLY WRITE-ONLY clause are not supported for OS/390
VSAM files. On AIX and Windows, these clauses are syntax checked, but have no effect on the
execution of the program.

— Relative and indexed I-O-control entries
RERUN—ON assz’gnment-%—L—J—{ phrase 1 |
-file-name-1 EVERY

SAME fi Ze—name-3—¢—fi le—name—4—®J—
|—RECORD—‘ |—AREAJ |—FORJ

A\
A

phrase 1

I—integer-l—RECORDS—L—_I—fi le-name-1 ,
OF

Notes:
1 ON is optional as an IBM extension.

2 File-name-4 is optional as an IBM extension.

114 cosoL Language Reference

— Line-sequential I-O-control entries (all platforms except VM)

RERUN clause

»>——SAME
|—RECORD—I |—AREAJ |—FOR

A\
A

] file-name-3—-[file-name-4

>
| 2 g

— Sort Merge I-O-control entries (0OS/390 and VM only)

L ;]
RERU N—L—_|—ass ignment-name-1
ON

v

>—LSAME

phrase 1

Note:

RECORD

H

SORT

SORT-MERGE—

\
A

| ph 1
Carend Lrord ' P !

I_file-ﬂﬂme—S—Lfile—name—4 w |

1 File-name-4 is optional as an IBM extension.

RERUN clause

Under AIX and Windows, the RERUN clause is not supported for
programs compiled with the THREAD compiler option. If you use NOTHREAD,
the RERUN clause is treated as a comment.

The RERUN clause specifies that checkpoint records are to be taken. Subject to the
restrictions given with each phrase, more than one RERUN clause can be specified.

For information regarding the checkpoint data set definition and the checkpoint
method required for complete compliance to the COBOL 85 Standard, see IBM
COBOL for OS/390 & VM Programming Guide.

Do not use the RERUN clause:

On files with the EXTERNAL attribute

In programs with the RECURSIVE attribute

In programs compiled with the THREAD option (Workstation only)
In methods

file-name-1
Must be a sequentially organized file.

assignment-name-1
The external data set for the checkpoint file. It must not be the same
assignment-name as that specified in any ASSIGN clause throughout the entire
program, including contained and containing programs. For QSAM files, it
has the format:

—— Format—QSAM file
T Daper- J Lo J

\é
A

That is, it must be a QSAM file. It must reside on a tape or direct access
device. See also Appendix E, “ASCII considerations for OS/390 and VM” on

page
VSAM and QSAM considerations:

Part 4. Environment Division 115

SAME AREA clause

The file named in the RERUN clause must be a file defined in the same
program as the I-O-CONTROL paragraph, even if the file is defined as
GLOBAL.

SORT/MERGE considerations:

When the RERUN clause is specified in the I-O-CONTROL paragraph,
checkpoint records are written at logical intervals determined by the
sort/merge program during execution of each SORT or MERGE statement in
the program. When it is omitted, checkpoint records are not written.

There can be only one SORT/MERGE [-O-CONTROL paragraph in a program,
and it cannot be specified in contained programs. It will have a global effect
on all SORT and MERGE statements in the program unit.

EVERY integer-1 RECORDS
A checkpoint record is to be written for every integer-1 record in file-name-1
that is processed.

When multiple integer-1 RECORDS phrases are specified, no two of them can
specify the same file-name-1.

If you specify the integer-1 RECORDS phrase, you must specify
assignment-name-1.

EVERY END OF REEL/UNIT
A checkpoint record is to be written whenever end-of-volume for file-name-1
occurs. The terms REEL and UNIT are interchangeable.

Note: This clause is not supported. If you code it in your program, it will be
syntax checked, but have no effect on the execution of the program.

When multiple END OF REEL/UNIT phrases are specified, no two of them
can specify the same file-name-1.

The END OF REEL/UNIT phrase can only be used if file-name-1 is a
sequentially organized file.

SAME AREA clause

Under AIX and Windows, the SAME AREA clause is syntax checked,
but has no effect on the execution of the program.

The SAME AREA clause specifies that two or more files, that do not represent sort
or merge files, are to use the same main storage area during processing.

The files named in a SAME AREA clause need not have the same organization or
access.

file-name-3

file-name-4
Must be specified in the FILE-CONTROL paragraph of the same program.
File-name-3 and file-name-4 cannot reference an external file connector.

e For QSAM files, the SAME clause is treated as documentation.
e For OS/390 VSAM files, the SAME clause is treated as if equivalent to the
SAME RECORD AREA.

More than one SAME AREA clause can be included in a program. However:
* A specific file-name must not appear in more than one SAME AREA clause.

116 cosoL Language Reference

SAME SORT AREA clause

* If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all the file-names in that SAME AREA clause must
appear in that SAME RECORD AREA clause. However, the SAME RECORD
AREA clause can contain additional file-names that do not appear in the
SAME AREA clause.

* The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

SAME RECORD AREA clause

The SAME RECORD AREA clause specifies that two or more files are to use the
same main storage area for processing the current logical record. All of the files
can be open at the same time. A logical record in the shared storage area is
considered to be both of the following:

* Alogical record of each opened output file in the SAME RECORD AREA
clause

* A logical record of the most recently read input file in the SAME RECORD
AREA clause.

More than one SAME RECORD AREA clause can be included in a program.
However:

* A specific file-name must not appear in more than one SAME RECORD AREA
clause.

e If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all the file-names in that SAME AREA clause must
appear in that SAME RECORD AREA clause. However, the SAME RECORD
AREA clause can contain additional file-names that do not appear in the
SAME AREA clause.

* The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

e If the SAME RECORD AREA clause is specified for several files, the record
description entries or the file description entries for these files must not
include the GLOBAL clause.

e The SAME RECORD AREA clause must not be specified when the RECORD
CONTAINS 0 CHARACTERS clause is specified.

The files named in the SAME RECORD AREA clause need not have the same
organization or access.

SAME SORT AREA clause

The SAME SORT AREA clause is syntax checked but has no effect on the
execution of the program.

file-name-3

file-name-4
Must be specified in the FILE-CONTROL paragraph of the same program.
File-name-3 and file-name-4 cannot reference an external file connector.

When the SAME SORT AREA clause is specified, at least one file-name specified
must name a sort file. Files that are not sort files can also be specified. The
following rules apply:

Part 4. Environment Division 117

APPLY WRITE-ONLY clause

* More than one SAME SORT AREA clause can be specified. However, a given
sort file must not be named in more than one such clause.

e If a file that is not a sort file is named in both a SAME AREA clause and in
one or more SAME SORT AREA clauses, all the files in the SAME AREA
clause must also appear in that SAME SORT AREA clause.

¢ Files named in a SAME SORT AREA clause need not have the same
organization or access.

* Files named in a SAME SORT AREA clause that are not sort files do not share
storage with each other unless the user names them in a SAME AREA or
SAME RECORD AREA clause.

* During the execution of a SORT or MERGE statement that refers to a sort or
merge file named in this clause, any nonsort or nonmerge files associated with
file-names named in this clause must not be in the open mode.

SAME SORT-MERGE AREA clause

The SAME SORT-MERGE AREA clause is equivalent to the SAME SORT AREA
clause.

MULTIPLE FILE TAPE clause

The MULTIPLE FILE TAPE clause (format 1) specifies that two or more files share
the same physical reel of tape.

This clause is syntax checked, but it has no effect on the execution of the program.
On 0OS/390, the function is performed by the system through the LABEL
parameter of the DD statement.

APPLY WRITE-ONLY clause

Under AIX and Windows, the APPLY WRITE-ONLY clause is syntax
checked, but has no effect on the execution of the program.

The APPLY WRITE-ONLY clause optimizes buffer and device space allocation for
files that have standard sequential organization, have variable-length records, and
are blocked. If you specify this phrase, the buffer is truncated only when the
space available in the buffer is smaller than the size of the next record. Otherwise,
the buffer is truncated when the space remaining in the buffer is smaller than the
maximum record size for the file.

APPLY WRITE-ONLY is effective only for QSAM files.

file-name-2
Each file must have standard sequential organization.

APPLY WRITE-ONLY clauses must agree among corresponding external file
description entries. For an alternate method of achieving the APPLY
WRITE-ONLY results, see the description of the AWO compiler option in the IBM
COBOL Programming Guide for your platform.

118 cosoL Language Reference

Part 5. Data Division

Data Division overview 120
File Section 121
Working-Storage Section 121
Local-Storage Section 123
Linkage Section 123
Datatypes 124

Data relationships

Data Division—file description entries 131

File Section 133
EXTERNAL clause 134
GLOBAL clause 134
BLOCK CONTAINS clause 135
RECORD clause 136
LABEL RECORDS clause 139
VALUE OF clause 139
DATA RECORDS clause 140
LINAGE clause 140
RECORDING MODE clause 142

© Copyright IBM Corp. 1991, 2000

CODE-SET clause 143

Data Division—data description entry . 145

Format1 145
Format2 146
Format3 146
Level-numbers 146
BLANK WHEN ZERO clause 147
DATE FORMAT clause 148
EXTERNAL clause 153
GLOBAL clause 153
JUSTIFIED clause 154
OCCURS clause 154
PICTURE clause 160
REDEFINES clause 174
RENAMES clause 178
SIGN clause 179
SYNCHRONIZED clause 181
USAGE clause 187
VALUE clause 195

119

Data Division overview

Data Division overview

»
»

— Format—program and method Data Division
»>—DATA DIVISION.

This overview describes the structure of the Data Division for programs, classes,
and methods. Each section in the Data Division has a specific logical function
within a COBOL source program or method and can be omitted when that logical
function is not needed. If included, the sections must be written in the order
shown. The Data Division is optional.

Program Data Division
The Data Division of a COBOL source program describes, in a structured
manner, all the data to be processed by the object program.

Class Data Division
The Class Data Division section contains data description entries for
object-instance data. The Class Data Division contains only the
Working-Storage Section.

Method Data Division
A method has two visible Data Divisions: the Class Data Division and the
Method Data Division. If the same data-name is used in both the Class Data
Division and the Method Data Division, when a method references the
data-name, the data-name in the Method Data Division takes precedence.

v

LFILE SECTION v |
i

fi le-description-entry—Lrecord-descrl’ption-entry—u

A\

|—WORKING-STOR/-\GE SECTION. v |: |

v

record-description-entry
data-item-description-entry—

A\

l—LOCAL-STORAGE SECTION. ' i: |

v

record—description—entryﬁ
data-item-description-entry

A\

l—LINK/-\GE SECTION. v |: |

\
A

record-description-entry
data-item-description-entry—

Format—class Data Division

LWORKING-STORAGE SECTION. ' E |

\4
A

record-description-entry
data-item-description-entry—

120

© Copyright IBM Corp. 1991, 2000

Data Division overview

File Section

The File Section defines the structure of data files. The File Section must begin
with the header FILE SECTION, followed by a separator period.

file-description-entry
Represents the highest level of organization in the File Section. It provides
information about the physical structure and identification of a file, and gives
the record-name(s) associated with that file. For the format and the clauses
required in a file description entry, see “Data Division—file description
entries” on page

record-description-entry
A set of data description entries (described in “Data Division—data description
entry” on page [145) that describe the particular record(s) contained within a
particular file.

More than one record description entry can be specified; each is an alternative
description of the same record storage area.

Data areas described in the File Section are not available for processing unless the
file containing the data area is open.

Note: A method File Section can define EXTERNAL files only. A single run-unit
level file connector is shared by all programs and methods containing a declaration
of a given EXTERNAL file.

Working-Storage Section

The Working-Storage Section describes data records that are not part of data files
but are developed and processed by a program or method. It also describes data
items whose values are assigned in the source program or method and do not
change during execution of the object program.

The Working-Storage Section must begin with the section header Working-Storage
Section, followed by a separator period.

Program Working-Storage
The Working-Storage Section for programs (and methods) can also describe
external data records, which are shared by programs and methods throughout
the run-unit. All clauses that are used in record descriptions in the File Section
as well as the VALUE and EXTERNAL clauses (which might not be specified
in record description entries in the File Section) can be used in record
descriptions in the Working-Storage Section.

Method Working-Storage
A single copy of the Working-Storage for a method is statically allocated and
persists in a last-used state for the duration of the run-unit. The same single
copy is used whenever the method is invoked, regardless of which object the
method is invoked upon.

If a VALUE clause is specified on a method Working-Storage data item, the
data item is initialized to the VALUE clause value on the first invocation.

If the EXTERNAL attribute is specified on a data description entry in a method
Working-Storage Section, a single copy of the storage for that data item is
allocated once for the duration of the run-unit. That storage is shared by all

Part 5. Data Division 121

Data Division overview

programs and methods in the run-unit containing a definition for the external
data item.

Class Working-Storage
A separate copy of the Class Working-Storage data items is allocated for each
object instance and remains until that object is destroyed.

By default, Class Working-Storage data items are global to all of the methods
introduced by the class.

To initialize instance data (Class Working-Storage data items), you can write a
somlnit method override. For an example of how to write an override method
using somlnit, see Figure 3. VALUE clauses are not supported for initializing
instance data.

IDENTIFICATION DIVISION.
CLASS-ID. 00Class INHERITS SOMObject.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
CLASS SOMObject IS "SOMObject"
CLASS 00Class IS "0OCTass".
DATA DIVISION.
Working-Storage Section.
01 instance-data PIC X(3).
PROCEDURE DIVISION.

IDENTIFICATION DIVISION.
METHOD-ID. "somInit" OVERRIDE.
PROCEDURE DIVISION.
MOVE "new" TO instance-data.
EXIT METHOD.
END METHOD "somInit".

IDENTIFICATION DIVISION.
METHOD-ID. "MyMethod".
PROCEDURE DIVISION.
IF instance-data = "new"
CALL "Creating"
MOVE "old" TO instance-data
ELSE
CALL "Existing"
END-IF.
EXIT METHOD.
END METHOD "MyMethod".

END CLASS 00CTass.

Figure 3. Example of a sominit method override

The Working-Storage Section contains record description entries and data
description entries for independent data items, called data item description
entries.

record-description-entry
Data entries in the Working-Storage Section that bear a definite hierarchic
relationship to one another must be grouped into records structured by level
number. See “Data Division—data description entry” on page for
description.

122 COBOL Language Reference

Data Division overview

data-item-description-entry
Independent items in the Working-Storage Section that bear no hierarchic
relationship to one another need not be grouped into records, provided that
they do not need to be further subdivided. Instead, they are classified and
defined as independent elementary items. Each is defined in a separate
data-item description entry that begins with either the level number 77 or 01.
See “Data Division—data description entry” on page for description.

Note: The data description entries for a class differ from a program and
method in that:

* You cannot specify the EXTERNAL attribute in a data description entry.
e The GLOBAL attribute has no effect.
* You can only specify the VALUE clause on condition names.

Local-Storage Section

The Local-Storage Section defines storage that is allocated and freed on a
per-invocation basis. On each invocation, data items defined in the Local-Storage
Section are reallocated and initialized to the value assigned in their VALUE clause.
(For nested programs, data items defined in the Local-Storage Section are allocated
upon each invocation of the containing outermost program. However, they are
reinitialized to the value assigned in their VALUE clause each time the nested
program is invoked.) Data items defined in the Local-Storage Section cannot
specify the EXTERNAL clause.

The Local-Storage Section must begin with the header LOCAL-STORAGE
SECTION followed by a separator period.

You can specify the Local-Storage Section in recursive programs, in non-recursive
programs, and in methods.

Note: Method Local-Storage content is the same as a program Local-Storage
content except that the GLOBAL attribute has no effect (since methods cannot be
nested).

A separate copy of the data defined in a method Local-Storage section is created
each time the method is invoked. The storage allocated for the data is freed when
the method returns.

Linkage Section
The Linkage Section describes data made available from another program or
method.

record-description-entry
See “Working-Storage Section” on page [121] for description.

data-item-description-entry
See “Working-Storage Section” on page [121]for description.

Record description entries and data item description entries in the Linkage Section
provide names and descriptions, but storage within the program or method is not
reserved because the data area exists elsewhere.

Any data description clause can be used to describe items in the Linkage Section
with the following exceptions:

Part 5. Data Division 123

Data relationships

* You cannot specify the VALUE clause for items other than level-88 items.
* You cannot specify the EXTERNAL clause in the Linkage Section.

As an IBM extension, you can specify the GLOBAL clause in the Linkage Section.
(Note, the GLOBAL attribute has no effect for methods.)

Data types

Two types of data can be processed: file data and program data.

File data

File data is contained in files. (See “File Section” on page [133]) A fileis a
collection of data records existing on some input-output device. A file can be
considered as a group of physical records; it can also be considered as a group of
logical records. The Data Division describes the relationship between physical and
logical records.

A physical record is a unit of data that is treated as an entity when moved into or
out of storage. The size of a physical record is determined by the particular
input-output device on which it is stored. The size does not necessarily have a
direct relationship to the size or content of the logical information contained in the
file.

A logical record is a unit of data whose subdivisions have a logical relationship.
A logical record can itself be a physical record (that is, be contained completely
within one physical unit of data); several logical records can be contained within
one physical record, or one logical record can extend across several physical
records.

File description entries specify the physical aspects of the data (such as the size
relationship between physical and logical records, the size and name(s) of the
logical record(s), labeling information, and so forth).

Record description entries describe the logical records in the file, including the
category and format of data within each field of the logical record, different values
the data might be assigned, and so forth.

After the relationship between physical and logical records has been established,
only logical records are made available to you. For this reason, a reference in this
manual to “records” means logical records, unless the term “physical records” is
used.

Program data

Program data is created by a program, instead of being read from a file.

The concept of logical records applies to program data as well as to file data.
Program data can thus be grouped into logical records, and be defined by a series
of record description entries. Items that need not be so grouped can be defined in
independent data description entries (called data item description entries).

Data relationships

The relationships among all data to be used in a program are defined in the Data
Division, through a system of level indicators and level-numbers.

124 cosoL Language Reference

Data relationships

A level indicator, with its descriptive entry, identifies each file in a program.
Level indicators represent the highest level of any data hierarchy with which they
are associated; FD is the file description level indicator and SD is the sort-merge
file description level indicator.

A level-number, with its descriptive entry, indicates the properties of specific data.
Level-numbers can be used to describe a data hierarchy; they can indicate that this
data has a special purpose, and while they can be associated with (and subordinate
to) level indicators, they can also be used independently to describe internal data
or data common to two or more programs. (See “Level-numbers” on page for
level-number rules.)

Levels of data

After a record has been defined, it can be subdivided to provide more detailed
data references.

For example, in a customer file for a department store, one complete record could
contain all data pertaining to one customer. Subdivisions within that record could
be: customer name, customer address, account number, department number of
sale, unit amount of sale, dollar amount of sale, previous balance, plus other
pertinent information.

The basic subdivisions of a record (that is, those fields not further subdivided) are
called elementary items. Thus, a record can be made up of a series of elementary
items, or it can itself be an elementary item.

It might be necessary to refer to a set of elementary items; thus, elementary items
can be combined into group items. Groups themselves can be combined into a
more inclusive group that contains one or more subgroups. Thus, within one
hierarchy of data items, an elementary item can belong to more than one group
item.

A system of level-numbers specifies the organization of elementary and group
items into records. Special level-numbers are also used; they identify data items
used for special purposes.

Levels of data in a record description entry

Each group and elementary item in a record requires a separate entry, and each
must be assigned a level-number.

A level-number is a 1- or 2-digit integer between 01 and 49, or one of three special
level-numbers: 66, 77, or 88. The following level-numbers are used to structure
records:

01 This level-number specifies the record itself, and is the most inclusive
level-number possible. A level-01 entry can be either a group item or an
elementary item. It must begin in Area A.

02-49
These level-numbers specify group and elementary items within a record.
They can begin in Area A or Area B. Less inclusive data items are assigned
higher (not necessarily consecutive) level-numbers in this series.

A group item includes all group and elementary items following it, until a
level-number less than or equal to the level-number of this group is encountered.

Part 5. Data Division 125

Data relationships

All elementary or group items immediately subordinate to one group item must be

assigned identical level-numbers higher than the level-number of this group item.

Figure 4 illustrates the concept. Note that all groups immediately subordinate to
the level-01 entry have the same level-number. Note also that elementary items

from different subgroups do not necessarily have the same level numbers, and that

elementary items can be specified at any level within the hierarchy.

The COBOL record description
entry written as follows:

01 RECORD-ENTRY.
05 GROUP-1.
10 SUBGROUP-1.

15 ELEM-1 PIC...
15 ELEM-2 PIC...

10 SUBGROUP-2.

15 ELEM-3 PIC...
15 ELEM-4 PIC...

05 GROUP-2
15 SUBGROUP-3.

25 ELEM-5 PIC...
25 ELEM-6 PIC...

15 SUBGROUP-4 PIC... .

05 ELEM-7 PIC... .

is subdivided as indicated below:

«<— This entry includes
«—— This entry includes—

«—— This entry includes

«—— This entry includes—

«<— This entry includes

«—— This entry includes—j

This entry includes itself.

This entry includes itself.

The storage arrangement of the record description entry is illustrated below:

«—— GROUP 1

GROUP 2

<«— SUBGROUP 1—>| +— SUBGROUP 2— | «— SUBGROUP 3— |

| ELEM-1 | ELEM-2 | ELEM-3 | ELEM-4 | ELEM-5 |ELEM—6| SUBGROUP-4 | ELEM-7 |

Figure 4. Levels in a record description

126 coBOL Language Reference

Data relationships

IBM COBOL accepts nonstandard level-numbers that are not identical to others at
the same level. For example, the following two record description entries are
equivalent:

01 EMPLOYEE-RECORD.
05 EMPLOYEE-NAME.
10 FIRST-NAME PICTURE X(10).
10 LAST-NAME PICTURE X(10).
05 EMPLOYEE-ADDRESS.
10 STREET PICTURE X(10).
10 CITY PICTURE X(10).
01 EMPLOYEE-RECORD.
05 EMPLOYEE-NAME.
10 FIRST-NAME PICTURE X(10).
10 LAST-NAME PICTURE X(10).
04 EMPLOYEE-ADDRESS.
08 STREET PICTURE X(10).
08 CITY PICTURE X(10).

Special level-numbers

Special level-numbers identify items that do not structure a record. The special
level-numbers are:

66 Identifies items that must contain a RENAMES clause; such items regroup
previously defined data items.

(For details, see “RENAMES clause” on page)

77 ldentifies data item description entries — independent Working-Storage or
Linkage Section items that are not subdivisions of other items, and are not
subdivided themselves. Level-77 items must begin in Area A.

88 Identifies any condition-name entry that is associated with a particular value of
a conditional variable. (For details, see “VALUE clause” on page .)

Note: Level-77 and level-01 entries in the Working-Storage and Linkage Sections
that are referenced in the program must be given unique data-names, because
neither can be qualified. Subordinate data-names that are referenced in the
program must be either uniquely defined, or made unique through qualification.
Unreferenced data-names need not be uniquely defined.

Indentation

Successive data description entries can begin in the same column as preceding
entries, or can be indented. Indentation is useful for documentation, but does not
affect the action of the compiler.

Classes and categories of data

All data used in a COBOL program can be divided into classes and categories.

Every group item belongs to the alphanumeric class, even if the subordinate
elementary items belong to another class.

Every elementary item in a program belongs to one of the classes as well as to one
of the categories. Table 10 on page shows the relationship among data
classes and categories.

Part 5. Data Division 127

Data relationships

Every data item which is a function is an elementary item, and belongs to the
category alphanumeric or numeric, and to the corresponding class; the category of
each function is determined by the definition of the function.

Table 10. Classes and categories of data

Level of item Class Category
Elementary Alphabetic Alphabetic
Numeric Numeric
Internal floating-point
External floating-point
Alphanumeric Numeric-edited
Alphanumeric-edited
Alphanumeric
DBCS
Group Alphanumeric Alphabetic
Numeric

Internal floating-point

External floating-point

Numeric-edited

Alphanumeric-edited

Alphanumeric

DBCS

Alignment rules

The standard alignment rules for positioning data in an elementary item depend
on the category of a receiving item (that is, an item into which the data is moved;
see “Elementary moves” on page [321).

Numeric
For such receiving items, the following rules apply:

1. The data is aligned on the assumed decimal point and, if necessary,
truncated or padded with zeros. (An assumed decimal point is one
that has logical meaning but that does not exist as an actual character
in the data.)

2. If an assumed decimal point is not explicitly specified, the receiving
item is treated as though an assumed decimal point is specified
immediately to the right of the field. The data is then treated
according to the preceding rule.

Numeric-edited
The data is aligned on the decimal point, and (if necessary) truncated or
padded with zeros at either end, except when editing causes replacement
of leading zeros.

Internal floating-point
A decimal point is assumed immediately to the left of the field. The data
is aligned then on the leftmost digit position following the decimal point,
with the exponent adjusted accordingly.

128 cosoL Language Reference

Data relationships

External floating-point
The data is aligned on the leftmost digit position; the exponent is adjusted
accordingly.

Alphanumeric, alphanumeric-edited, alphabetic, DBCS
For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if necessary)
truncated or padded with spaces at the right.

2. If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified, as described in “JUSTIFIED clause” on page

Under AIX and Windows, using control characters X'00'
through X'1F' within an alphanumeric literal can give unpredictable
results, which are not diagnosed by the compiler. Use hex literals instead.

Standard data format

COBOL makes data description as machine independent as possible. For this
reason, the properties of the data are described in relation to a standard data
format rather than a machine-oriented format.

The standard data format uses the decimal system to represent numbers, no matter
what base is used by the system, and uses all the characters of the character set of
the computer to represent nonnumeric data.

Character-string and item size

In your program, the size of an elementary item is determined through the number
of character positions specified in its PICTURE character-string. In storage,
however, the size is determined by the actual number of bytes the item occupies,
as determined by the combination of its PICTURE character-string and its USAGE
clause.

For internal floating-point items, the size of the item in storage is determined by its
USAGE clause. USAGE COMPUTATIONAL-1 reserves 4 bytes of storage for the
item; USAGE COMPUTATIONAL-2 reserves 8 bytes of storage.

Normally, when an arithmetic item is moved from a longer field into a shorter
one, the compiler truncates the data to the number of characters represented in the
shorter item's PICTURE character-string.

For example, if a sending field with PICTURE 599999, and containing the value
+12345, is moved to a BINARY receiving field with PICTURE S99, the data is
truncated to +45. For additional information see “USAGE clause” on page

The TRUNC compiler option can affect the value of a binary numeric item. For
information on TRUNC, see the IBM COBOL Programming Guide for your platform.

Signed data

There are two categories of algebraic signs used in IBM COBOL: operational signs
and editing signs.

Part 5. Data Division 129

Data relationships

Operational signs

Operational signs are associated with signed numeric items, and indicate their
algebraic properties. The internal representation of an algebraic sign depends on
the item's USAGE clause, its SIGN clause (if present), and on the operating
environment involved. (For further details about the internal representation, see
“USAGE clause” on page [187]) Zero is considered a unique value, regardless of
the operational sign. An unsigned field is always assumed to be either positive or
zero.

Editing signs

Editing signs are associated with numeric-edited items; editing signs are PICTURE
symbols that identify the sign of the item in edited output.

130 cosoL Language Reference

Data Division—File Description Entries

Data Division—file description entries

In a COBOL program, the File Description (FD) Entry (or Sort File Description
(SD) Entry for sort/merge files) represents the highest level of organization in the
File Section. The order in which the optional clauses follow the FD or SD entry is
not important.

—— Format 1—sequential files

»»—FD—file-name-1 7 7
‘—EI—EXTERNAL \—L—JfGLOBAL
IS IS

»
>

v

v

LgL ; j
0CK: 1nteger-2—|:CHARACTERS
|—CONTAINSJ |—integer-l—TOJ RECORDS
|

L . 2
RECORD integer-3
|—CONTAINSJ |—CHARACTERS—]

—L—_|—integer-4—TO—integer-5 B]
CONTAINS CHARACTERS
' clause 1 |

L _
DEPENDING—L—_'—data—name—l
ON

\ 4

v

L ABEL——RECORD] STANDARD————
t IS —OMITTED—————————
RECORDS

|—data—name-ZJ

\
v

—VALUE OF—Lsys tem-name—l—l_—_l—[data—nameﬁ,—L
IS literal-1

A\
v

—DATA RECORD { data-name-4]—
L s

RECORDS—lj—
ARE

\

v

C 5 u
LINAGE data-name-5 | clause 2
IS integer—8—| |—LI NESJ

\

\4
A

]

L g L
RECORDING mode CODE-SET—L—_[—GZ habet-name
|—MODE—J |—IS—J IS g

clause 1
|

VARYING

|

l—ISJ |—IN—I |—SIZEJ L-m——integer-6J |—TO—integer-7J
FROM

>
>

v

l—CHARACTERSJ

clause 2
|

\4

FOOTING data—name—6—~|—| | TOP—Edata—name—7-~|—|
|—WITHJ |—AT—I |—integer-9 |—LINES—l |—AT—l integer-10

»
> I

|
BOTTOM—Edata-name-84<|—J
|—LINES—I |—AT—I integer-11

© Copyright IBM Corp. 1991, 2000 131

Data Division—File Description Entries

—— Format 2—relative/indexed files

»»—FD—file-name-1 >
|—L—J—EXTERNALJ |—L—4|7GLOBALJ
IS IS

» >
»

I—BLOCK]
1nteger-2—ECHARACTERS
|—CONTAINSJ |—integer’-l—TOJ RECORDS

\ 4

v

L ; 2 |
RECORD integer-3
|—CONTAINSJ |—CHARACTERS—]

—L—_|—integer-4—T0—integer-5 B]
CONTAINS CHARACTERS

clause 1 |

L _
DEPENDING—L—_'—data—name—l
ON

LLABEL RECORD] LSTANDARDLI—‘
t IS OMITTED
RECORDS—m—
ARE

—VALUE OF—Lsys tem-name-l—m—-Edata-name-34~|—L
IS literal-1

—DATA RECORD ! data-name-4:|—
Lis

RECORDS—L—_|—
ARE

clause 1
|

VARYING

| Ajv)

LIS—| '—IN—] ’—SIZEJ ﬁintegerﬁJ '—TO—integer—7J
FROM

»
| 2

v

LCHARACTERS—l

—— Format 3—Iline-sequential files

»»>—FD—file-name-1
I—iJfEXTERNALJ LﬁGLOBALJ
IS IS

»
>

v

v

L .
BLOCK mteger—Z—[CHARACTERS
|—CONTAINSJ Linteger—l—TOJ RECORDS

\

\4
A

|—RECORD integer-3 |

|—CONTAINSJ |—CHARACTERS—]

clause 1 |

L _
DEPENDI NG—L—_I—data—name—l
ON

clause 1
|

VARYING
' l UL Lzl ; 1 Lyo—;]
|—IS IN SIZE integer-6 TO—integer-7
FROM

>
| 2

v

|—CHAR/—\CTERSJ

132 coBoL Language Reference

File Section

—— Format 4—sort/merge files

PSS ttesnane- |—RECORD r] integer-3 C g | g
CONTAINS CHARACTERS

—l_—_l—integer-4—T0—integer-5 B o
CONTAINS CHARACTERS

L clause 1 |

L _
DEPENDING—L—_'—data—name—I
ON

{ data-name-4j—|

\ 4

v

L—DATA RECORD
Lis]

RECORDS—l_—_|—
ARE

\ 4

v

[.
BLOCK znteger-Z—ECHARACTERS
|—CONT/—\INSJ |—integer—l—TOJ RECORDS

\ 4

v

l—LABEL RECORD] STANDARD—J
t IS BTI TTED——

RECORDS
L are]
LVALUE OF—Lsys tem—name—1—l_—_l—Edatc7—name—3‘—~|—L
IS literal-1

LLINAGE—L—_l—l:data—name—5—~,—L—‘|—{ clause 2 }J
IS integer-8 LINES

data—name—ZJ—

\ 4

v

\ 4
v

\ 4
\ 4
A

L]
CODE—SET—L—_I—athabet—name
IS

clause 1
' VARYING >
| Ajv)

LIS—| '—IN—] ’—SIZEJ \—L—‘lfinteger—6J '—TO—integer—7J

FROM

> |
g I

LCHARACTERS—J
clause 2

Tl

v

FOOTING data—name—6;|——‘ ' TOP data—name—7j——‘
|—WITH—‘ I—AT—] ,—integer-9 |—LINES—I I—AT—] l—z'nteger—]()
> |

[j_l !
BOTTOM—Edata—nume—B
LLINES—J |—AT——| integer-11

File Section

The File Section must contain a level indicator for each input and output file:

* For all files except sort/merge, the File Section must contain an FD entry.
* For each sort or merge file, the File Section must contain an SD entry.

file-name
Must follow the level indicator (FD or SD), and must be the same as that
specified in the associated SELECT clause. The file-name must adhere to the
rules of formation for a user-defined word; at least one character must be
alphabetic. The file-name must be unique within this program.

Part 5. Data Division 133

GLOBAL clause

One or more record description entries must follow the file-name. When more
than one record description entry is specified, each entry implies a redefinition
of the same storage area.

The clauses that follow file-name are optional; they can appear in any order.

FD (formats 1, 2, and 3)
The last clause in the FD entry must be immediately followed by a separator
period.

SD (format 4)
An SD entry must be written for each sort or merge file in the program. The
last clause in the SD entry must be immediately followed by a separator
period.

The following example illustrates the File Section entries needed for a sort or
merge file:

SD SORT-FILE.

01 SORT-RECORD PICTURE X(80).

EXTERNAL clause

The EXTERNAL clause specifies that a file connector is external, and permits
communication between two programs by the sharing of files. A file connector is
external if the storage associated with that file is associated with the run unit
rather than with any particular program within the run unit. An external file can
be referenced by any program in the run unit that describes the file. References to
an external file from different programs using separate descriptions of the file are
always to the same file. In a run unit, there is only one representative of an
external file.

In the File Section, the EXTERNAL clause can only be specified in file description
entries.

The records appearing in the file description entry need not have the same name
in corresponding external file description entries. In addition, the number of such
records need not be the same in corresponding file description entries.

Use of the EXTERNAL clause does not imply that the associated file-name is a
global name. See the IBM COBOL Programming Guide for your platform for
specific information on the use of the EXTERNAL clause.

GLOBAL clause

The GLOBAL clause specifies that the file connector named by a file-name is a
global name. A global file-name is available to the program that declares it and to
every program that is contained directly or indirectly in that program.

A file-name is global if the GLOBAL clause is specified in the file description entry
for that file-name. A record-name is global if the GLOBAL clause is specified in
the record description entry by which the record-name is declared or, in the case
of record description entries in the File Section, if the GLOBAL clause is specified
in the file description entry for the file-name associated with the record description
entry. (For details on using the GLOBAL clause, see the IBM COBOL Programming
Guide for your platform

134 coBoOL Language Reference

BLOCK CONTAINS clause

Two programs in a run unit can reference global file connectors in the following
circumstances:

1. An external file connector can be referenced from any program that describes
that file connector.

2. If a program is contained within another program, both programs can refer to
a global file connector by referring to an associated global file-name either in
the containing program or in any program that directly or indirectly contains
the containing program.

BLOCK CONTAINS clause

The BLOCK CONTAINS clause specifies the size of the physical records. The
characters in the BLOCK CONTAINS clause reflect the number of bytes in the
record.

For example, if you have a block with 10 DBCS characters, the BLOCK
CONTAINS clause should say BLOCK CONTAINS 20 CHARACTERS.

If the records in the file are not blocked, the BLOCK CONTAINS clause can be
omitted. When it is omitted, the compiler assumes that records are not blocked.
Even if each physical record contains only one complete logical record, coding
BLOCK CONTAINS 1 RECORD would result in fixed blocked records.

The BLOCK CONTAINS clause can be omitted when the associated File Control
entry specifies a VSAM file; the concept of blocking has no meaning for VSAM
files; the clause is syntax checked, but it has no effect on the execution of the
program.

For EXTERNAL files, the value of all BLOCK CONTAINS clauses of corresponding
EXTERNAL files must match within the run unit. This conformance is in terms of
character positions and does not depend upon whether the value was specified as
CHARACTERS or as RECORDS.

integer-1, integer-2
Must be nonzero unsigned integers. They specify the number of:

CHARACTERS
Specifies the number of character positions required to store the physical
record, no matter what USAGE the characters have within the data record.

If only integer-2 is specified, it specifies the exact character size of the
physical record. When integer-1 and integer-2 are both specified, they
represent, respectively, the minimum and maximum character sizes of the
physical record.

Integer-1 and integer-2 must include any control bytes and padding
contained in the physical record. (Logical records do not include
padding.)

The CHARACTERS phrase is the default. CHARACTERS must be
specified when:

e The physical record contains padding.

* Logical records are grouped so that an inaccurate physical record size
could be implied. For example, suppose you describe a variable-length
record of 100 characters, yet each time you write a block of 4, one
50-character record is written followed by three 100-character records.
If the RECORDS phrase were specified, the compiler would calculate

Part 5. Data Division 135

RECORD clause

the block size as 420 characters instead of the actual size, 370
characters. (This calculation includes block and record descriptors.)

RECORDS
Specifies the number of logical records contained in each physical record.

The compiler assumes that the block size must provide for integer-2
records of maximum size, and provides any additional space needed for
control bytes.

When running under OS/390, BLOCK CONTAINS 0 can be specified
for QSAM files; the block size is determined at run time from the DD parameters
or the data set label.

If the RECORD CONTAINS 0 CHARACTERS clause is specified, and the BLOCK
CONTAINS 0 CHARACTERS clause is specified (or omitted), the block size is
determined at run time from the DD parameters or the data set label of the file.
For output data sets, with either of the above conditions, the DCB used by
Language Environment will have a zero block size value. If you do not specify a
block size value, the operating system might select a System Determined Block
Size (SDB). See the operating system specifications for further information on SDB.

BLOCK CONTAINS can be omitted for SYSIN/SYSOUT files under OS/390. The
blocking is determined by the operating system.

When running under CMS, BLOCK CONTAINS 0 can be specified for QSAM files;
the block size is determined at run time from the FILEDEF parameters or the data
set label. If the RECORD CONTAINS 0 CHARACTERS clause is specified, and the
BLOCK CONTAINS clause is omitted (or if the BLOCK CONTAINS 0
CHARACTERS clause is specified), the block size is determined at run time from
the FILEDEF parameters or the data set label of the file.

Under VM, the BLOCK CONTAINS 0 clause might cause blocked or unblocked
records to be used for an output file, depending on the FILEDEF options specified.
The DCB used by Language Environment will have a zero block size, so the
FILEDEF uses the CMS defaults. The defaults are documented in the CMS
Command Reference, under the FILEDEF command.

The BLOCK CONTAINS clause is syntax checked, but has no effect on the
execution of the program, when specified under an SD.

The BLOCK CONTAINS clause cannot be used with the RECORDING MODE U
clause.

RECORD clause

When the RECORD clause is used, the record size must be specified as the number
of character positions needed to store the record internally. That is, it must specify
the number of bytes occupied internally by the characters of the record (not the
number of characters used to represent the item within the record).

For example, if you have a record with 10 DBCS characters, the RECORD clause
should say RECORD CONTAINS 20 CHARACTERS.

The size of a record is determined according to the rules for obtaining the size of a
group item. (See “USAGE clause” on page and “SYNCHRONIZED clause”

on page [181])

When the RECORD clause is omitted, the compiler determines the record lengths
from the record descriptions. When one of the entries within a record description

136 COBOL Language Reference

RECORD clause

contains an OCCURS DEPENDING ON clause, the compiler uses the maximum
value of the variable-length item to calculate the number of character positions
needed to store the record internally.

If the associated file connector is an external file connector, all file description
entries in the run unit that are associated with that file connector must specify the
same maximum number of character positions.

Format 1

Format 1 specifies the number of character positions for fixed-length records.

— Format 1
»»—RECORD

\4
A

integer-3

|—CONTAINS—J l—CHARACTERS—J

integer-3
Must be an unsigned integer that specifies the number of character positions
contained in each record in the file.

Under AIX and Windows, the RECORD CONTAINS 0 characters
clause is syntax checked, but has no effect on the execution of the program.

Workstation

Under OS/390, the RECORD CONTAINS 0 CHARACTERS clause
can be specified for input QSAM files containing fixed-length records; the
record size is determined at object time from the DD statement parameters or
the data set label. If, at object time, the actual record is larger than the 01
record description, only the 01 record length is available. If the actual record
is shorter, only the actual record length can be referred to. Otherwise,
uninitialized data or an addressing exception can be produced.

Note: If the RECORD CONTAINS 0 clause is specified, then the SAME
AREA, SAME RECORD AREA, or APPLY WRITE-ONLY clauses cannot be

specified.
Do not specify the RECORD CONTAINS 0 clause for an SD entry.

Format 2

Format 2 specifies the number of character positions for either fixed-length or
variable-length records. Fixed-length records are obtained when all 01 record
description entry lengths are the same. The format 2 RECORD CONTAINS clause
is never required, because the minimum and maximum record lengths are
determined from the record description entries.

—— Format 2
»»—RECORD

integer-4—T0—integer-5

|—CONTAINSJ |—CHARACTERS—I

integer-4

integer-5
Must be unsigned integers. Integer-4 specifies the size of the smallest data
record, and integer-5 specifies the size of the largest data record.

Part 5. Data Division 137

RECORD clause
Format 3

Format 3 is used to specify variable-length records.

— Format 3

»»—RECORD VARYING
I—IS—‘ l—INJ l—SIZEJ \—L—‘Ifinteger‘—6—]
FROM

»
| 2

> <
>

Lro—i 1 L 1 L J
TO—integer-7 CHARACTERS DEPENDING—L—_I—data-name-I
ON

integer-6
Specifies the minimum number of character positions to be contained in any
record of the file. If integer-6 is not specified, the minimum number of
character positions to be contained in any record of the file is equal to the least
number of character positions described for a record in that file.

integer-7
Specifies the maximum number of character positions in any record of the file.
If integer-7 is not specified, the maximum number of character positions to be
contained in any record of the file is equal to the greatest number of character
positions described for a record in that file.

The number of character positions associated with a record description is
determined by the sum of the number of character positions in all elementary data
items (excluding redefinitions and renamings), plus any implicit FILLER due to
synchronization. If a table is specified:

* The minimum number of table elements described in the record is used in the
summation above to determine the minimum number of character positions
associated with the record description.

e The maximum number of table elements described in the record is used in the
summation above to determine the maximum number of character positions
associated with the record description.

If data-name-1 is specified:
e Data-name-1 must be an elementary unsigned integer.
* Data-name-1 cannot be a windowed date field.

* The number of character positions in the record must be placed into the data
item referenced by data-name-1 before any RELEASE, REWRITE, or WRITE
statement is executed for the file.

¢ The execution of a DELETE, RELEASE, REWRITE, START, or WRITE
statement or the unsuccessful execution of a READ or RETURN statement does
not alter the content of the data item referenced by data-name-1.

e After the successful execution of a READ or RETURN statement for the file,
the contents of the data item referenced by data-name-1 indicate the number of
character positions in the record just read.

During the execution of a RELEASE, REWRITE, or WRITE statement, the number
of character positions in the record is determined by the following conditions:

* If data-name-1 is specified, by the content of the data item referenced by
data-name-1.

e If data-name-1 is not specified and the record does not contain a variable
occurrence data item, by the number of character positions in the record.

138 coBoL Language Reference

VALUE OF clause

* If data-name-1 is not specified and the record contains a variable occurrence
data item, by the sum of the fixed position and that portion of the table
described by the number of occurrences at the time of execution of the output
statement.

During the execution of a READ ... INTO or RETURN ... INTO statement, the
number of character positions in the current record that participate as the sending
data items in the implicit MOVE statement is determined by the following
conditions:

e If data-name-1 is specified, by the content of the data item referenced by
data-name-1.

» If data-name-1 is not specified, by the value that would have been moved into
the data item referenced by data-name-1 had data-name-1 been specified.

LABEL RECORDS clause

Under AIX and Windows, the LABEL RECORDS clause is syntax
checked, but has no effect on the execution of the program. A warning message is
issued if you use any of the following language elements:

e LABEL RECORD IS data-name
e USE...AFTER...LABEL PROCEDURE
¢ GO TO MORE-LABELS

The LABEL RECORDS clause indicates the presence or absence of labels. If it is
not specified for a file, label records for that file must conform to the system label
specifications.

For VSAM files, the LABEL RECORDS clause is syntax checked, but it has no
effect on the execution of the program. COBOL label processing, therefore, is not
performed.

STANDARD
Labels conforming to system specifications exist for this file.

STANDARD is permitted for mass storage devices and tape devices.

OMITTED
No labels exist for this file.

OMITTED is permitted for tape devices.

data-name-2
User labels are present in addition to standard labels. Data-name-2 specifies
the name of a user label record. Data-name-2 must appear as the subject of a
record description entry associated with the file.

The LABEL RECORDS clause is treated as a comment under an SD.

VALUE OF clause

The VALUE OF clause describes an item in the label records associated with this
file. The clause is syntax checked, but has no effect on the execution of the
program.

data-name-3
Should be qualified when necessary, but cannot be subscripted. It must be
described in the Working-Storage Section. It cannot be described with the
USAGE IS INDEX clause.

Part 5. Data Division 139

LINAGE clause

literal-1
Can be numeric or nonnumeric, or a figurative constant of category numeric or
nonnumeric.

Cannot be a floating-point literal.

The VALUE OF clause is syntax checked, but has no effect on the execution of the
program when specified under an SD.

DATA RECORDS clause

The DATA RECORDS clause is syntax checked, but it serves only as
documentation for the names of data records associated with this file.

data-name-4
The names of record description entries associated with this file.

As an IBM extension, the data-name need not have an 01 level number record
description with the same name associated with it.

LINAGE clause

The LINAGE clause specifies the depth of a logical page in terms of number of
lines. Optionally, it also specifies the line number at which the footing area
begins, as well as the top and bottom margins of the logical page. (The logical
page and the physical page cannot be the same size.)

The LINAGE clause is effective for sequential files opened OUTPUT and, as an
IBM extension, EXTEND.

All integers must be unsigned. All data-names must be described as unsigned
integer data items.

data-name-5

integer-8
The number of lines that can be written and/or spaced on this logical page.
The area of the page that these lines represent is called the page body. The
value must be greater than zero.

WITH FOOTING AT
Integer-9 or the value of the data item in data-name-6 specifies the first line
number of the footing area within the page body. The footing line number
must be greater than zero, and not greater than the last line of the page body.
The footing area extends between those two lines.

LINES AT TOP
Integer-10 or the value of the data item in data-name-7 specifies the number of
lines in the top margin of the logical page. The value can be zero.

LINES AT BOTTOM
Integer-11 or the value of the data item in data-name-8 specifies the number of
lines in the bottom margin of the logical page. The value can be zero.

Figure 5 illustrates the use of each phrase of the LINAGE clause.

140 cosoOL Language Reference

LINAGE clause

) 'S
)JLINES AT TOP integer-10 (top|margin)
)

logical
page body page depth

WITH FOOTING integer-9

footing area
LINAGE integer-8

)
) LINES AT BOTTOM integer-11 (bottom|{margin)
)

'y

Figure 5. LINAGE clause phrases

The logical page size specified in the LINAGE clause is the sum of all values
specified in each phrase except the FOOTING phrase. If the LINES AT TOP
and/or the LINES AT BOTTOM phrase is omitted, the assumed value for top and
bottom margins is zero. Each logical page immediately follows the preceding
logical page, with no additional spacing provided.

If the FOOTING phrase is omitted, its assumed value is equal to that of the page
body (integer-8 or data-name-5).

At the time an OPEN OUTPUT statement is executed, the values of integer-8,
integer-9, integer-10, and integer-11, if specified, are used to determine the page
body, first footing line, top margin, and bottom margin of the logical page for this
file. See Figure 5 above. These values are then used for all logical pages printed
for this file during a given execution of the program.

At the time an OPEN statement with the OUTPUT phrase is executed for the file,
data-name-5, data-name-6, data-name-7, and data-name-8 determine the page
body, first footing line, top margin, and bottom margin for the first logical page
only.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed
or a page overflow condition occurs, the values of data-name-5, data-name-6,
data-name-7, and data-name-8 if specified, are used to determine the page body,
first footing line, top margin, and bottom margin for the next logical page.

If an external file connector is associated with this file description entry, all file
description entries in the run unit that are associated with this file connector must
have:

* A LINAGE clause, if any file description entry has a LINAGE clause.

* The same corresponding values for integer-8, integer-9, integer-10, and
integer-11, if specified.

* The same corresponding external data items referenced by data-name-5,
data-name-6, data-name-7, and data-name-8.

See “ADVANCING phrase” on page for the behavior of carriage control
characters in EXTERNAL files.

The LINAGE clause is treated as a comment under an SD.

Part 5. Data Division 141

RECORDING MODE clause
LINAGE-COUNTER special register

For information about the LINAGE-COUNTER special register, see
“LINAGE-COUNTER” on page

RECORDING MODE clause

Under 0S/390 and VM

The RECORDING MODE clause specifies the format of the physical records in a
QSAM file. The clause is ignored for a VSAM file.

Permitted values for RECORDING MODE are:

Recording Mode F (Fixed)
All the records in a file are the same length and each is wholly contained
within one block. Blocks can contain more than one record, and there is
usually a fixed number of records for each block. In this mode, there are no
record-length or block-descriptor fields.

Recording Mode V (Variable)
The records can be either fixed-length or variable-length, and each must be
wholly contained within one block. Blocks can contain more than one record.
Each data record includes a record-length field and each block includes a
block-descriptor field. These fields are not described in the Data Division.
They are each 4 bytes long and provision is automatically made for them.
These fields are not available to you.

Recording Mode U (Fixed or Variable)
The records can be either fixed-length or variable-length. However, there is
only one record for each block. There are no record-length or block-descriptor
fields.

Note: You cannot use RECORDING MODE U if you are using the BLOCK
CONTAINS clause.

Recording Mode S (Spanned)
The records can be either fixed-length or variable-length, and can be larger
than a block. If a record is larger than the remaining space in a block, a
segment of the record is written to fill the block. The remainder of the record
is stored in the next block (or blocks, if required). Only complete records are
made available to you. Each segment of a record in a block, even if it is the
entire record, includes a segment-descriptor field, and each block includes a
block-descriptor field. These fields are not described in the Data Division;
provision is automatically made for them. These fields are not available to
you.

Note: When recording mode S is used, the BLOCK CONTAINS CHARACTERS
clause must be used. Recording mode S is not allowed for ASCII files.

If the RECORDING MODE clause is not specified for a QSAM file, the COBOL for
0S5/390 & VM compiler determines the recording mode as follows:

F The compiler determines the recording mode to be F if the largest level-01
record associated with the file is not greater than the block size specified in
the BLOCK CONTAINS clause, and you do one of the following;:

142 COBOL Language Reference

CODE-SET clause
e Use the RECORD CONTAINS integer clause (for more information, see
IBM COBOL for OS/390 & VM Compiler and Run-Time Migration Guide.)

e Omit the RECORD clause and make sure all level-01 records associated
with the file are the same size and none contain an OCCURS
DEPENDING ON clause.

V The compiler determines the recording mode to be V if the largest level-01
record associated with the file is not greater than the block size specified in
the BLOCK CONTAINS clause, and you do one of the following:

e Use the RECORD IS VARYING clause

e Omit the RECORD clause and make sure all level-01 records associated
with the file are not the same size or some contain an OCCURS
DEPENDING ON clause

e Use the RECORD CONTAINS integer-1 TO integer-2 clause with integer-1
the minimum length and integer-2 the maximum length of the level-01
records associated with the file. The two integers must be different, with

values matching minimum and maximum length of either different length
records or record(s) with an OCCURS DEPENDING ON clause.

S The compiler determines the recording mode to be S if the maximum block
size is smaller than the largest record size.

U Recording mode U is never obtained by default. The RECORDING MODE U
clause must be explicitly used.

Under AIX and Windows

Under AIX and Windows, the RECORDING MODE clause for record sequential
files is treated as follows:

F Record descriptions are validated as fixed. Do not specify RECORDING
MODE F if the record descriptions are variable.

V Variable length record format is assumed (even if the record descriptions are
fixed).

U Treated as a comment.

S Treated the same as V.

CODE-SET clause

Under AIX and Windows, the CODE-SET clause is syntax checked,
but has no effect on the execution of the program.

The CODE-SET clause specifies the character code used to represent data on a
magnetic tape file. When the CODE-SET clause is specified, an alphabet-name
identifies the character code convention used to represent data on the input-output
device.

Alphabet-name must be defined in the SPECIAL-NAMES paragraph as
STANDARD-1 (for ASCII-encoded files), as STANDARD-2 (for ISO 7-bit encoded
files), as EBCDIC (for EBCDIC-encoded files), or as NATIVE. When NATIVE is
specified, the CODE-SET clause is syntax checked, but it has no effect on the
execution of the program.

The CODE-SET clause also specifies the algorithm for converting the character
codes on the input-output medium from/to the internal EBCDIC character set.

Part 5. Data Division 143

CODE-SET clause

When the CODE-SET clause is specified for a file, all data in this file must have
USAGE DISPLAY, and, if signed numeric data is present, it must be described
with the SIGN IS SEPARATE clause.

When the CODE-SET clause is omitted, the EBCDIC character set is assumed for
this file.

If the associated file connector is an external file connector, all CODE-SET clauses
in the run unit that are associated with that file connector must have the same
character set.

The CODE-SET clause is valid only for magnetic tape files.

The CODE-SET clause is syntax checked, but has no effect on the execution of the
program when specified under an SD.

144 cosoOL Language Reference

Data Division—data description entry

Data Division—data description entry

A data description entry specifies the characteristics of a data item.

This chapter describes the coding of data description entries and record description
entries (which are sets of data description entries). The single term data
description entry is used in this chapter to refer to data and record description
entries.

Data description entries that define independent data items do not make up a
record. These are known as data item description entries.

The data description entry has three general formats. All data description entries
must end with a separator period.

Format 1

Format 1 is used for data description entries in all Data Division sections.

— Format 1

»»—Ilevel-number

v

data-name-1— Lredefines—c lauseJ
FILLER

A\
v

'—b lank-when-zero-cl ause—| Lexlterna l-cl nuse—] '—g lobal —cZauseJ

|—jus tifi ed-clauseJ |—occurs-c l c:use—I |—picture-c l ause—I

\
v

|—sign-c Zause—J |—synchron ized-c Zause—J |—usage-clause—J

\ 4
A

|—value—clauseJ |—daife—format—cZauseJ

Note: The clauses can be written in any order with two exceptions:

If data-name or FILLER is specified, it must immediately follow the
level-number.

When the REDEFINES clause is specified, it must immediately follow
data-name or FILLER, if either is specified. If data-name or FILLER is not
specified, the REDEFINES clause must immediately follow the level-number.

Level-number in format 1 can be any number from 01-49 or 77.

A space, a separator comma, or a separator semicolon must separate clauses.

© Copyright IBM Corp. 1991, 2000 145

Level-numbers

Format 2

Format 2 regroups previously defined items.

—— Format 2

\4
A

»»—66—data-name-1—renames-clause.

A level-66 entry cannot rename another level-66 entry, nor can it rename a level-01,
level-77, or level-88 entry.

All level-66 entries associated with one record must immediately follow the last
data description entry in that record.

Details are contained in “RENAMES clause” on page

Format 3

Format 3 describes condition-names.

—— Format 3

\4
A

»»—88—condition-name-1—value-clause.

condition-name
A user-specified name that associates a value, a set of values, or a range of
values with a conditional variable.

A conditional variable is a data item that can assume one or more values, that
can, in turn, be associated with a condition-name.

Format 3 can be used to describe both elementary and group items. Further
information on condition-name entries can be found under “VALUE clause” on

page

Level-numbers

The level-number specifies the hierarchy of data within a record, and identifies
special-purpose data entries. A level-number begins a data description entry, a
renamed or redefined item, or a condition-name entry. A level-number has a
value taken from the set of integers between 1 and 49, or from one of the special
level-numbers, 66, 77, or 88.

—— Format

\4
A

»»—Ilevel-number
data-name-1—
FILLER

level-number
01 and 77 must begin in Area A and must be followed either by a separator
period; or by a space, followed by its associated data-name, FILLER, or
appropriate data description clause.

Level numbers 02 through 49 can begin in Areas A or B and must be followed
by a space or a separator period.

146 coBoOL Language Reference

BLANK WHEN ZERO clause

Level numbers 66 and 88 can begin in Areas A or B and must be followed by a
space.

Single-digit level-numbers 1 through 9 can be substituted for level-numbers 01
through 09.

Successive data description entries can start in the same column as the first or
they can be indented according to the level-number. Indentation does not
affect the magnitude of a level-number.

When level-numbers are indented, each new level-number can begin any
number of spaces to the right of Area A. The extent of indentation to the right
is limited only by the width of Area B.

For more information, see “Levels of data” on page

data-name
Explicitly identifies the data being described.

If specified, a data-name identifies a data item used in the program. The
data-name must be the first word following the level-number.

The data item can be changed during program execution.

Data-name must be specified for level-66 and level-88 items. It must also be
specified for any entry containing the GLOBAL or EXTERNAL clause, and for
record description entries associated with file description entries having the
GLOBAL or EXTERNAL clauses.

FILLER
Is a data item that is not explicitly referred to in a program. The key word
FILLER is optional. If specified, FILLER must be the first word following the
level-number.

The key word FILLER can be used with a conditional variable, if explicit
reference is never made to the conditional variable but only to values it can
assume. FILLER cannot be used with a condition-name.

In a MOVE CORRESPONDING statement, or in an ADD CORRESPONDING
or SUBTRACT CORRESPONDING statement, FILLER items are ignored. In an
INITIALIZE statement, elementary FILLER items are ignored.

If the data-name or FILLER clause is omitted, the data item being described is
treated as though FILLER had been specified.

BLANK WHEN ZERO clause

The BLANK WHEN ZERO clause specifies that an item contains nothing but
spaces when its value is zero.

— Format

»»—BLANK ZERO
’—NH ENJ I:ZEROS
ZEROES

A\
A

The BLANK WHEN ZERO clause can be specified only for elementary numeric or
numeric-edited items. These items must be described, either implicitly or
explicitly, as USAGE IS DISPLAY. When the BLANK WHEN ZERO clause is
specified for a numeric item, the item is considered a numeric-edited item.

Part 5. Data Division 147

DATE FORMAT clause

The BLANK WHEN ZERO clause must not be specified for level-66 or level-88
items.

The BLANK WHEN ZERO clause must not be specified for the same entry as the
PICTURE symbols S or *.

The BLANK WHEN ZERO clause is not allowed for:

Items described with the USAGE IS INDEX clause

Date fields

DBCS items

External or internal floating-point items

Items described with USAGE IS POINTER, USAGE IS
PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE

DATE FORMAT clause

The DATE FORMAT clause specifies that a data item is a windowed or expanded
date field:

Windowed date fields
Contain a windowed (2-digit) year, specified by a DATE FORMAT clause
containing YY.

Expanded date fields
Contain an expanded (4-digit) year, specified by a DATE FORMAT clause
containing YYYY.

If the NODATEPROC compiler option is in effect, the DATE FORMAT clause is
syntax checked, but has no effect on the execution of the program.
NODATEPROC disables date processing. The rules and restrictions described in
this reference for the DATE FORMAT clause and date fields apply only if the
DATEPROC compiler option is in effect.

— Format
»»—DATE FORMAT—’_—]——date-pattern
IS

A\
A

The date-pattern is a character string, such as YYXXXX, representing a windowed or
expanded year optionally followed or preceded by one through four characters
representing other parts of a date, such as the month and day:

Date-pattern string... Specifies that the data item contains...

YY A windowed (2-digit) year.

YYYY An expanded (4-digit) year.

X A single character; for example, a digit representing
a semester or quarter (1-4).

XX Two characters; for example, digits representing a
month (01-12).

XXX Three characters; for example, digits representing a
day of the year (001-366).

XXXX Four characters; for example, 2 digits representing a

month (01-12) and 2 digits representing a day of the
month (01-31).

For an introduction to date fields and related terms, see “Millennium Language
Extensions and date fields” on page [52} For details on using date fields in

148 COBOL Language Reference

DATE FORMAT clause

applications, see the IBM COBOL Programming Guide for your platform, or the IBM
COBOL Millennium Language Extensions Guide.

Semantics of windowed date fields

Windowed date fields undergo automatic expansion relative to the century
window when they are used as operands in arithmetic expressions or arithmetic
statements. However, the result of incrementing or decrementing a windowed
date is still treated as a windowed date for further computation, comparison, and
storing.

When used in the following situations, windowed date fields are treated as if they
were converted to expanded date format:

e Operands in subtractions in which the other operand is an expanded date

* Operands in relation conditions

* A sending field in arithmetic or MOVE statements

The details of the conversion to expanded date format depend on whether the
windowed date field is numeric or alphanumeric.

Given a century window starting year of 19nn, the year part (yy) of a numeric
windowed date field is treated as if it was expanded as follows:

e If yy is less than nn, then add 2000 to yy
e If yy is equal to or greater than nn, then add 1900 to yy

For signed numeric windowed date fields, this means that there can be two

representations of some years. For instance, windowed year values 99 and -01 are
both treated as 1999, since 1900 + 99 = 2000 + -01.

Alphanumeric windowed date fields are treated in a similar manner, but using a
prefix of “19” or “20” instead of adding 1900 or 2000.

For example, when used as an operand of a relation condition, a windowed date
field defined by:

01 DATE-FIELD DATE FORMAT YYXXXX PICTURE 9(6)
VALUE IS 450101.

is treated as if it was an expanded date field with a value of:

e 19450101, if the century window starting year is 1945 or earlier
or
e 20450101, if the century window starting year is later than 1945

Date trigger values (host only)

When the DATEPROC(TRIG) compiler option is in effect, expansion of
windowed date fields is sensitive to certain trigger or limit values in the
windowed date field.

For alphanumeric windowed date fields, these special values are LOW-VALUE,
HIGH-VALUE, and SPACE. For alphanumeric and numeric windowed date fields
with at least one X in the DATE FORMAT clause (that is, windowed date fields
other than just a windowed year), values of all zeros or all nines are also treated as
triggers.

The all-zero value is intended to act as a date earlier than any valid date. The
purpose of the all-nines value is to behave like a date later than any valid date.

Part 5. Data Division 149

DATE FORMAT clause

When a windowed date field contains a trigger in this way, it is expanded as if the
trigger value were copied to the century part of the expanded date result, rather
than inferring 19 or 20 as the century value.

This special trigger expansion is done when a windowed date field is used either
as an operand in a relation condition or as the sending field in an arithmetic or
MOVE statement. Trigger expansion is not done when windowed date fields are
used as operands in arithmetic expressions, but can be applied to the final
windowed date result of an arithmetic expression.

Restrictions on using date fields

The following pages describe restrictions on using date fields in these contexts:

* Combining the DATE FORMAT clause with other clauses

* Group items consisting only of a date field

* Language elements that treat date fields as non-dates

* Language elements that do not accept date fields as arguments

For restrictions on using date fields in other contexts, see:
“Arithmetic with date fields” on page
“Date fields” (in conditional expressions) on page
“ADD statement” on page
“SUBTRACT statement” on p

B20)

“MOVE statement” on page [3

Combining the DATE FORMAT clause with other clauses

The only phrases of the USAGE clause that can be combined with the DATE
FORMAT clause are DISPLAY, COMPUTATIONAL (or its equivalents,
COMPUTATIONAL-4 and BINARY), and COMPUTATIONAL-3 (or its equivalent,
PACKED-DECIMAL). The DATE FORMAT clause is not allowed for USAGE
COMP data items if the TRUNC(BIN) compiler option is in effect.

The PICTURE clause character-string must specify the same number of characters
or digits as the DATE FORMAT clause. For alphanumeric date fields, the only
PICTURE character-string symbols allowed are A, 9, and X, with at least one X.
For numeric date fields, the only PICTURE character-string symbols allowed are 9
and S.

The following clauses are not allowed for a data item defined with DATE
FORMAT:

BLANK WHEN ZERO
JUSTIFIED
SEPARATE CHARACTER phrase of the SIGN clause

The EXTERNAL clause is not allowed for a windowed date field or a group item
containing a windowed date field subordinate item.

Some restrictions apply when combining the following clauses with DATE
FORMAT:

REDEFINES (see page [174)
VALUE (see page[195)

150 COBOL Language Reference

DATE FORMAT cla
Group items that are date fields

If a group item is defined with a DATE FORMAT clause, then the following
restrictions apply:

e The elementary items in the group must all be USAGE DISPLAY.
* The length of the group item must be the same number of characters as the
date-pattern in the DATE FORMAT clause.

e If the group consists solely of a date field with USAGE DISPLAY, and both
group and the single subordinate item have DATE FORMAT clauses, then t
DATE FORMAT clauses must be identical.

e If the group item contains subordinate items that subdivide the group, then
the following restrictions apply:

use

the
he

1. If a named (not FILLER) subordinate item consists of exactly the year part
of the group item date field, and has a DATE FORMAT clause, then the

DATE FORMAT clause must be YY or YYYY, with the same number of
year characters as the group item.

2. If the group item is a Gregorian date with a DATE FORMAT clause of

YYXXXX, YYYYXXXX, XXXXYY, or XXXXYYYY, and a named subordinate
date data item consists of the year and month part of the Gregorian date,

then its DATE FORMAT clause must be YYXX, YYYYXX, XXYY, or
XXYYYY, respectively (or, for a group date format of YYYYXXXX, a
subordinate date format of YYXX as described below).

3. A windowed date field can be subordinate to an expanded date field
group item if the subordinate item starts two characters after the group
item, neither date is in year-last format, and the date format of the

subordinate item either has no Xs, or has the same number of Xs following

the Ys as the group item, or is YYXX under a group date format of
YYYYXXXX.

4. The only subordinate items that can have a DATE FORMAT clause are
those that define the year part of the group item, the windowed part of

an

expanded date field group item, or the year and month part of a Gregorian

date group item, as discussed in the above restrictions.

For example, the following defines a valid group item:
01 YYMMDD DATE FORMAT YYXXXX.

02 YYMM DATE FORMAT YYXX.

03 YY DATE FORMAT YY PICTURE 99.
03 PICTURE 99.
02 DD PICTURE 99.

Language elements that treat date fields as non-dates

If date fields are used in the following language elements, they are treated as
non-dates. That is, the DATE FORMAT is ignored, and the content of the date
data item is used without undergoing automatic expansion.

e In the Environment Division FILE-CONTROL paragraph:
SELECT ... ASSIGN USING data-name
SELECT ... PASSWORD IS data-name
SELECT ... FILE STATUS IS data-name

¢ In Data Division entries:

LABEL RECORD IS data-name

LABEL RECORDS ARE data-name

LINAGE IS data-name FOOTING data-name TOP data-name BOTTOM
data-name

Part 5. Data Division

151

DATE FORMAT clause

¢ In class conditions
e In sign conditions
e In DISPLAY statements

Language elements that do not accept windowed date fields as
arguments

Windowed date fields cannot be used as:
e Data-names in the following formats of the Environment Division
FILE-CONTROL paragraph:

SELECT ... RECORD KEY IS
SELECT ... ALTERNATE RECORD KEY IS
SELECT ... RELATIVE KEY IS
* A data-name in the RECORD IS VARYING DEPENDING ON clause of a Data
Division File Description (FD) or Sort Description (SD) entry.
e The object of an OCCURS DEPENDING ON clause of a Data Division data
definition entry.
* The key in an ASCENDING KEY or DESCENDING KEY phrase of an
OCCURS clause of a Data Division data definition entry.
* Any data-name or identifier in the following statements:
CANCEL
GO TO ... DEPENDING ON
INSPECT
SET
SORT
STRING
UNSTRING
e In the CALL statement, as the identifier containing the program name.
e In the INVOKE statement, as the identifier specifying the object on which the
method is invoked, or the identifier containing the method name.
e Identifiers in the TIMES and VARYING phrases of the PERFORM statement
(windowed date fields are allowed in the PERFORM conditions).

* An identifier in the VARYING phrase of a serial (format 1) SEARCH
statement, or any identifier in a binary (format 2) SEARCH statement
(windowed date fields are allowed in the SEARCH conditions).

* An identifier in the ADVANCING phrase of the WRITE statement.
e Arguments to intrinsic functions, except the UNDATE intrinsic function.

Under AIX and Windows, windowed date fields cannot be used as
ascending or descending keys in MERGE or SORT statements.

Under OS/390 and VM, windowed date fields can be used as ascending
or descending keys in MERGE and SORT statements, with some restrictions. For
details, see “MERGE statement” on page and “SORT statement” on page [36§

Language elements that do not accept date fields as arguments

Neither windowed date fields nor expanded date fields can be used:

e In the DIVIDE statement, except as an identifier in the GIVING or
REMAINDER clause.

e In the MULTIPLY statement, except as an identifier in the GIVING clause.

152 COBOL Language Reference

GLOBAL clause

(Date fields cannot be used as operands in division or multiplication.)

EXTERNAL clause

The EXTERNAL clause specifies that the storage associated with a data item is
associated with the run unit rather than with any particular program or method
within the run unit. An external data item can be referenced by any program or
method in the run unit that describes the data item. References to an external data
item from different programs or methods using separate descriptions of the data
item are always to the same data item. In a run unit, there is only one
representative of an external data item.

The EXTERNAL clause can be specified only in data description entries whose
level-number is 01. It can only be specified on data description entries that are in
the Working-Storage Section of a program or method. It cannot be specified in
Linkage Section or File Section data description entries. Any data item described
by a data description entry subordinate to an entry describing an external record
also attains the EXTERNAL attribute. Indexes in an external data record do not
possess the external attribute.

The data contained in the record named by the data-name clause is external and
can be accessed and processed by any program or method in the run unit that
describes and, optionally, redefines it. This data is subject to the following rules:

* If two or more programs or methods within a run unit describe the same
external data record, each record-name of the associated record description
entries must be the same and the records must define the same number of
standard data format characters. However, a program or method that
describes an external record can contain a data description entry including the
REDEFINES clause that redefines the complete external record, and this
complete redefinition need not occur identically in other programs or methods
in the run unit.

* Use of the EXTERNAL clause does not imply that the associated data-name is
a global name.

GLOBAL clause

The GLOBAL clause specifies that a data-name is available to every program
contained within the program that declares it, as long as the contained program
does not itself have a declaration for that name. All data-names subordinate to or
condition-names or indexes associated with a global name are global names.

A data-name is global if the GLOBAL clause is specified either in the data
description entry by which the data-name is declared or in another entry to which
that data description entry is subordinate. The GLOBAL clause can be specified in
the Working-Storage Section, the File Section, the Linkage Section, and the
Local-Storage Section, but only in data description entries whose level-number is
01.

In the same Data Division, the data description entries for any two data items for
which the same data-name is specified must not include the GLOBAL clause.

A statement in a program contained directly or indirectly within a program which
describes a global name can reference that name without describing it again.

Two programs in a run unit can reference common data in the following
circumstances:

Part 5. Data Division 153

OCCURS clause

1. The data content of an external data record can be referenced from any
program provided that program has described that data record.

2. If a program is contained within another program, both programs can refer to
data possessing the global attribute either in the containing program or in any
program that directly or indirectly contains the containing program.

JUSTIFIED clause

The JUSTIFIED clause overrides standard positioning rules for a receiving item of
the alphabetic or alphanumeric categories.

—— Format

JUSTIFIED
JUST4 l—RIGHTJ

\4
A

You can only specify the JUSTIFIED clause at the elementary level. JUST is an
abbreviation for JUSTIFIED, and has the same meaning.

You cannot specify the JUSTIFIED clause:

e For numeric, numeric-edited, or alphanumeric-edited items

* In descriptions of items described with the USAGE IS INDEX clause

e For items described as USAGE IS POINTER, USAGE IS
PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE

e For external or internal floating-point items

e For an edited DBCS item

e For date fields

e With level-66 (RENAMES) and level-88 (condition-name) entries

When the JUSTIFIED clause is specified for a receiving item, the data is aligned at

the rightmost character position in the receiving item. Also:

e If the sending item is larger than the receiving item, the leftmost characters are
truncated.

* If the sending item is smaller than the receiving item, the unused character
positions at the left are filled with spaces.

The JUSTIFIED clause can be specified for a DBCS item (except edited DBCS
items). When JUSTIFIED is specified for a receiving item, the data is aligned on
the rightmost character position. If the sending item is larger than the receiving
item, extra characters are truncated on the left. If the sending item is smaller than
the receiving item, any unused positions on the left are filled with DBCS blanks.

If you omit the JUSTIFIED clause, the rules for standard alignment are followed
(see “Alignment rules” on page [128).

The JUSTIFIED clause does not affect initial settings, as determined by the VALUE
clause.

OCCURS clause

The Data Division clauses used for table handling are the OCCURS clause and
USAGE IS INDEX clause. For the USAGE IS INDEX description, see “USAGE

clause” on page

154 coBoOL Language Reference

OCCURS clause

The OCCURS clause specifies tables whose elements can be referred to by indexing
or subscripting. It also eliminates the need for separate entries for repeated data
items.

Formats for the OCCURS clause include fixed-length tables or variable-length
tables.

The subject of an OCCURS clause is the data-name of the data item containing the
OCCURS clause. Except for the OCCURS clause itself, data description clauses
used with the subject apply to each occurrence of the item described.

Whenever the subject of an OCCURS clause or any data-item subordinate to it is
referenced, it must be subscripted or indexed with the following exceptions:

* When the subject of the OCCURS clause is used as the subject of a SEARCH
statement.

* When the subject or subordinate data item is the object of the
ASCENDING/DESCENDING KEY clause.

* When the subordinate data item is the object of the REDEFINES clause.
When subscripted or indexed, the subject refers to one occurrence within the table.
When not subscripted or indexed, the subject represents the entire table.

The OCCURS clause cannot be specified in a data description entry that:

e Has a level number of 01, 66, 77, or 88.

¢ Describes a redefined data item. (However, a redefined item can be
subordinate to an item containing an OCCURS clause.) See “REDEFINES
clause” on page

Fixed-length tables

Fixed-length tables are specified using the OCCURS clause. Because seven
subscripts or indexes are allowed, six nested levels and one outermost level of the
format 1 OCCURS clause are allowed. The format 1 OCCURS clause can be
specified as subordinate to the OCCURS DEPENDING ON clause. In this way, a
table of up to seven dimensions can be specified.

—— Format 1—fixed-length tables

v

»»—(0CCURS—integer-2 B m
TIMES

v I

ASCENDING ! data-name-Zj—‘

—[DESCENDII‘NGJ l—KEY—I |—IS—I

BY

integer-2
The exact number of occurrences. Integer-2 must be greater than zero.

\ 4

v

\ 4
A

Part 5. Data Division 155

OCCURS clause

ASCENDING/DESCENDING KEY phrase

Data is arranged in ascending or descending order (depending on the key word
specified) according to the values contained in data-name-2. The data-names are
listed in their descending order of significance.

The order is determined by the rules for comparison of operands (see “Relation
condition” on page [218). The ASCENDING and DESCENDING KEY data items
are used in OCCURS clauses and the SEARCH ALL statement for a binary search
of the table element.

data-name-2

Must be the name of the subject entry, or the name of an entry subordinate to
the subject entry. Data-name-2 cannot be a windowed date field. Data-name-2
can be qualified.

If data-name-2 names the subject entry, that entire entry becomes the
ASCENDING/DESCENDING KEY, and is the only key that can be specified
for this table element.

If data-name-2 does not name the subject entry, then data-name-2:

e Must be subordinate to the subject of the table entry itself

e Must not be subordinate to, or follow, any other entry that contains an
OCCURS clause

* Must not contain an OCCURS clause.

Data-name-2 must not have subordinate items that contain OCCURS
DEPENDING ON clauses.

When the ASCENDING/DESCENDING KEY phrase is specified, the following
rules apply:

Keys must be listed in decreasing order of significance.
The total number of keys for a given table element must not exceed 12.

You must arrange the data in the table in ASCENDING or DESCENDING
sequence according to the collating sequence in use.

A key can have DISPLAY, BINARY, PACKED-DECIMAL, or
COMPUTATIONAL usage.

The sum of the lengths of all the keys associated with one table element must
not exceed 256.

Under OS/390 and VM, a key can have COMPUTATIONAL-1,
COMPUTATIONAL-2, COMPUTATIONAL-3, or COMPUTATIONAL-4 usage.

Under AIX and Windows, a key can have COMPUTATIONAL-1,
COMPUTATIONAL-2, COMPUTATIONAL-3, COMPUTATIONAL-4, or
COMPUTATIONAL-5 usage.

The ASCENDING/DESCENDING KEY phrase (for a SEARCH ALL statement
only) can be specified in the OCCURS clause for a DBCS item.

If a key is specified without qualifiers and it is not a unique name, the key will

be implicitly qualified with the subject of the OCCURS clause and all qualifiers

of the OCCURS clause subject.

The following example illustrates the specification of ASCENDING KEY data item:

156 coBOL Language Reference

OCCURS clause

WORKING-STORAGE SECTION.
01 TABLE-RECORD.
05 EMPLOYEE-TABLE OCCURS 100 TIMES
ASCENDING KEY IS WAGE-RATE EMPLOYEE-NO
INDEXED BY A, B.

10 EMPLOYEE-NAME PIC X(20).
10 EMPLOYEE-NO PIC 9(6).
10 WAGE-RATE PIC 9999V99.

10 WEEK-RECORD OCCURS 52 TIMES
ASCENDING KEY IS WEEK-NO INDEXED BY C.

15 WEEK-NO PIC 99.
15 AUTHORIZED-ABSENCES PIC 9.
15 UNAUTHORIZED-ABSENCES PIC 9.
15 LATE-ARRIVALS PIC 9.

The keys for EMPLOYEE-TABLE are subordinate to that entry, while the key for
WEEK-RECORD is subordinate to that subordinate entry.

In the preceding example, records in EMPLOYEE-TABLE must be arranged in
ascending order of WAGE-RATE, and in ascending order of EMPLOYEE-NO
within WAGE-RATE. Records in WEEK-RECORD must be arranged in ascending
order of WEEK-NO. If they are not, results of any SEARCH ALL statement will be
unpredictable.

INDEXED BY phrase

The INDEXED BY phrase specifies the indexes that can be used with a table. The
INDEXED BY phrase is required if indexing is used to refer a this table element.
See “Subscripting using index-names (indexing)” on page

A table without an INDEXED BY option can be referred to through indexing.

Indexes normally are allocated in static memory associated with the program
containing the table. Thus, indexes are in the last-used state when a program is
reentered. However, in the following cases, indexes are allocated on a
per-invocation basis. Thus, you must SET the value of the index on every entry
for indexes on tables in the:

e Local-Storage Section
* Working-Storage Section of a class definition (object instance variables)
e Linkage Section of a:

— Method
— Program compiled with the RECURSIVE attribute
— Program compiled with the THREAD option (workstation only)

Note: Indexes specified in an External data record do not possess the external
attribute.

index-name-1
Must follow the rules for formation of user-defined words. At least one
character must be alphabetic.

Each index-name specifies an index to be created by the compiler for use by
the program. These index-names are not data-names, and are not identified
elsewhere in the COBOL program; instead, they can be regarded as private
special registers for the use of this object program only. They are not data, or
part of any data hierarchy.

As an IBM extension, unreferenced index names need not be uniquely defined.

Part 5. Data Division 157

OCCURS DEPENDING ON clause

In one table entry, up to 12 index-names can be specified.

If a data item possessing the GLOBAL attribute includes a table accessed with
an index, that index also possesses the GLOBAL attribute. Therefore, the
scope of an index-name is identical to that of the data-name which names the

table whose index is named by that index-name and the scope of name rules
for data-names apply.

Variable-length tables

Variable-length tables are specified using the OCCURS DEPENDING ON clause.

—— Format 2—variable-length tables

»»—(0CCU RS—integer-l—@—TO—integer-Z—L—_‘—DEPENDING]
TIMES ON

»—data-name-1 v
L[ASCENDIPJG data-name-2

DESCENDING—-| |—KEY—J |—IS—J

BY

Note:
! Integer-1 is optional as an IBM extension. If integer-1 is omitted, a value
of 1 is assumed and the key word TO must also be omitted.

v

|

\4

integer-1
The minimum number of occurrences.

The value of integer-1 must be greater than or equal to zero; it must also be
less than the value of integer-2.

integer-2
The maximum number of occurrences.

Integer-2 must be greater than integer-1.

The length of the subject item is fixed; it is only the number of repetitions of the
subject item that is variable.

OCCURS DEPENDING ON clause

The OCCURS DEPENDING ON clause specifies variable-length tables.

data-name-1
Specifies the object of the OCCURS DEPENDING ON clause; that is, the data
item whose current value represents the current number of occurrences of the
subject item. The contents of items whose occurrence numbers exceed the
value of the object are undefined.

The object of the OCCURS DEPENDING ON clause must describe an integer
data item. The object cannot be a windowed date field.

The object of the OCCURS DEPENDING ON clause must not occupy any
storage position within the range of the table (that is, any storage position

158 coBoL Language Reference

OCCURS DEPENDING ON clause

from the first character position in the table through the last character position
in the table).

The object of the OCCURS DEPENDING ON clause cannot be variably located;
the object cannot follow an item that contains an OCCURS DEPENDING ON
clause.

If the OCCURS clause is specified in a data description entry included in a
record description entry containing the EXTERNAL clause, data-name-1, if
specified, must reference a data item possessing the external attribute which is
described in the same Data Division.

If the OCCURS clause is specified in a data description entry subordinate to
one containing the GLOBAL clause, data-name-1, if specified, must be a global
name and must reference a data item which is described in the same Data
Division.

At the time that the group item, or any data item that contains a subordinate
OCCURS DEPENDING ON item or that follows but is not subordinate to the
OCCURS DEPENDING ON item, is referenced, the value of the object of the
OCCURS DEPENDING ON clause must fall within the range integer-1 through
integer-2.

When a group item containing a subordinate OCCURS DEPENDING ON item is
referred to, the part of the table area used in the operation is determined as
follows:

e If the object is outside the group, only that part of the table area that is
specified by the object at the start of the operation will be used.

e If the object is included in the same group and the group data item is
referenced as a sending item, only that part of the table area that is specified
by the value of the object at the start of the operation will be used in the
operation.

* If the object is included in the same group and the group data item is
referenced as a receiving item, the maximum length of the group item will be
used in the operation.

Following are the verbs that are affected by the maximum length rule:

ACCEPT identifier (format 1 and 2)
CALL ... USING BY REFERENCE
INVOKE ... USING BY REFERENCE
MOVE ... TO identifier

READ ... INTO identifier

RELEASE identifier FROM ...
RETURN ... INTO identifier
REWRITE identifier FROM ...
STRING ... INTO identifier
UNSTRING ... INTO identifier DELIMITER IN identifier
WRITE identifier FROM ...

The maximum length of variable-length groups is always used when they appear
as the identifier on the CALL ... USING BY REFERENCE identifier statement.
Therefore, the object of the OCCURS DEPENDING ON clause does not need to be
set, unless the group is variably-located.

If the group item is followed by a non-subordinate item, the actual length, rather
than the maximum length, will be used. At the time the subject of entry is
referenced, or any data item subordinate or superordinate to the subject of entry is

Part 5. Data Division 159

PICTURE clause

referenced, the object of the OCCURS DEPENDING ON clause must fall within the
range integer-1 through integer-2.

In one record description entry, any entry that contains an OCCURS DEPENDING
ON clause can be followed only by items subordinate to it.

The OCCURS DEPENDING ON clause cannot be specified as subordinate to
another OCCURS clause.

The following constitute complex OCCURS DEPENDING ON:
* Subordinate items can contain OCCURS DEPENDING ON clauses.

* Entries containing an OCCURS DEPENDING ON clause can be followed by
non-subordinate items. Non-subordinate items, however, cannot be the object
of an OCCURS DEPENDING ON clause.

e The location of any subordinate or non-subordinate item, following an item
containing an OCCURS DEPENDING ON clause, is affected by the value of
the OCCURS DEPENDING ON object.

* Entries subordinate to the subject of an OCCURS DEPENDING ON clause can
contain OCCURS DEPENDING ON clauses.

e When implicit redefinition is used in a File Description (FD) entry, subordinate
level items can contain OCCURS DEPENDING ON clauses.

e The INDEXED BY phrase can be specified for a table that has a subordinate
item that contains an OCCURS DEPENDING ON clause.

For more information on complex OCCURS DEPENDING ON, see the IBM
COBOL Programming Guide for your platform.

All data-names used in the OCCURS clause can be qualified; they can not be
subscripted or indexed.

The ASCENDING/DESCENDING KEY and INDEXED BY clauses are described
under “Fixed-length tables” on page

PICTURE clause

The PICTURE clause specifies the general characteristics and editing requirements
of an elementary item.

— Format

PICTURE character-string
PIC IS

\4
A

PICTURE or PIC
The PICTURE clause must be specified for every elementary item except an
index data item or the subject of the RENAMES clause. In these cases, use of
this clause is prohibited.

The PICTURE clause can be specified only at the elementary level.
PIC is an abbreviation for PICTURE and has the same meaning.

character-string
PICTURE character-string is made up of certain COBOL characters used as
symbols. The allowable combinations determine the category of the
elementary data item.

160 cosoOL Language Reference

PICTURE clause

The PICTURE character-string can contain a maximum of 30 characters.

As an IBM extension, the PICTURE character-string can contain a maximum of

50 characters.

The PICTURE clause is not allowed:

* For index data items or the subject of the RENAMES clause

e In descriptions of items described with USAGE IS INDEX

* For USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or USAGE IS
OBJECT REFERENCE data items

e For internal floating-point data items

Symbols used in the PICTURE clause

The meaning of each PICTURE clause symbol is defined in Table 11 on page
The sequence in which PICTURE clause symbols must be specified is shown in
Figure 6 on page More detailed explanations of PICTURE clause symbols

follow the figures.

Any punctuation character appearing within the PICTURE character-string is not
considered a punctuation character, but rather a PICTURE character-string symbol.

When specified in the SPECIAL-NAMES paragraph, DECIMAL-POINT IS
COMMA exchanges the functions of the period and the comma in PICTURE
character strings and in numeric literals.

The lowercase letters corresponding to the uppercase letters representing the
following PICTURE symbols are equivalent to their uppercase representations in a
PICTURE character-string:

A, B, P, S, V, X, Z, CR, DB

E, G, N

All other lowercase letters are not equivalent to their corresponding uppercase

representations.

The heading Size refers to the number of bytes the symbol contributes to the
actual size of the data item.

In the following description of the PICTURE clause, cs indicates any valid currency
symbol. For details, see “Currency symbol” on page

Table 11 (Page 1 of 4). PICTURE clause symbol meanings

Symbol

Meaning

Size Restrictions

A

A character position that can
contain only a letter of the
alphabet or a space.

Occupies 1 byte

For Non-DBCS data—a
character position into which
the space character is inserted.

Occupies 1 byte

For DBCS data—a character
position into which a DBCS
space is inserted. Represents a
single DBCS character position
containing a DBCS space.

Occupies 2 bytes

Marks the start of the
exponent in an external
floating-point item.

Occupies 1 byte

Part 5. Data Division 161

PICTURE clause

Table 11 (Page 2 of 4). PICTURE clause symbol meanings

Symbol Meaning

Size

Restrictions

G A DBCS character position

Occupies 2 bytes

Cannot be specified for a
non-DBCS item.

Under AIX and Windows, the
locale you select must indicate a
DBCS code page. For
information on locale, see
Appendix F, “Locale
considerations (workstation

only)” on page

A DBCS character position

Occupies 2 bytes

Cannot be specified for a
non-DBCS item.

Under AIX and Windows, the
locale you select must indicate a
DBCS code page. For
information on locale, see
Appendix F, “Locale
considerations (workstation

only)” on page

An assumed decimal scaling
position. Used to specify the
location of an assumed
decimal point when the point
is not within the number that
appears in the data item. See
also “P symbol” on page

Not counted in the size of the
data item. Scaling position
characters are counted in
determining the maximum
number of digit positions in
numeric-edited items or in
items that appear as arithmetic
operands.

The size of the value is the
number of digit positions
represented by the PICTURE
character-string.

Can appear only as a continuous
string of Ps in the leftmost or
rightmost digit positions within
a PICTURE character-string.

An indicator of the presence
(but not the representation nor,
necessarily, the position) of an
operational sign. An
operational sign indicates
whether the value of an item
involved in an operation is
positive or negative.

Not counted in determining
the size of the elementary item,
unless an associated SIGN
clause specifies the SEPARATE
CHARACTER phrase (which
would occupy 1 byte).

Must be written as the leftmost
character in the PICTURE string.

An indicator of the location of
the assumed decimal point.
Does not represent a character
position.

When the assumed decimal
point is to the right of the
rightmost symbol in the string,
the V is redundant.

Not counted in the size of the
elementary item

Can appear only once in a
character-string.

A character position that can
contain any allowable
character from the character
set of the computer.

Occupies 1 byte

162 coBOL Language Reference

PICTURE clause

Table 11 (Page 3 of 4). PICTURE clause symbol meanings

Symbol Meaning Size Restrictions
V4 A leading numeric character Each 'Z' is counted in the size
position. When that position of the data item.
contains a zero, a space
character replaces the zero.
9 A character position that Each '9' is counted in the size
contains a numeral. of the data item.
0 A character position into Each '0' is counted in the size
which the numeral zero is of the data item.
inserted.
/ A character position into Each '/'is counted in the size
which the slash character is of the data item.
inserted.
, A character position into Each ', is counted in the size If the comma insertion character
which a comma is inserted. of the data item. is the last symbol in the
PICTURE character-string, the
PICTURE clause must be the last
clause of the data description
entry and must be immediately
followed by the separator period.
A trailing comma insertion
character can be immediately
followed by the separator
comma or separator semicolon;
in this case, the PICTURE clause
need not be the last clause of the
data description entry.
An editing symbol that Each " is counted in the size If the period insertion character
represents the decimal point of the data item. is the last symbol in the
for alignment purposes. In PICTURE character-string, the
addition, it represents a PICTURE clause must be the last
character position into which a clause of that data description
period is inserted. entry and must be immediately
followed by the separator period.
A trailing period insertion
character can be immediately
followed by the separator
comma or separator semicolon;
in this case, the PICTURE clause
need not be the last clause of the
data description entry.
+ Editing sign control symbols. Each character used in the The symbols are mutually
- Each represents the character symbol is counted in exclusive in one character-string.
CR position into which the editing determining the size of the
DB sign control symbol is placed. data item.

A check protect symbol—a
leading numeric character
position into which an asterisk
is placed when that position
contains a zero.

Each asterisk (*) is counted in
the size of the item.

Part 5. Data Division 163

PICTURE clause

Table 11 (Page 4 of 4). PICTURE clause symbol meanings

Symbol Meaning Size Restrictions
cs Currency symbol, representing The first occurrence of a

a character position into which currency symbol adds the

a currency sign value is number of characters in the

placed. The default currency currency sign value to the size

symbol is the dollar sign ($). of the data item. Each

For details, see “Currency subsequent occurrence adds

symbol” on page @ one character to the size of the

data item.

Figure 6 shows the sequence in which PICTURE clause symbols must be specified.

FIRST

Non-Floating Floating Other Symbols
QYMBOL Insertion Symbols Insertion Symbols
SECOND + [+ \[[cr zZWZY+ 0+ A
SYMBOL BlO| /[|- -}-}[DB}CS {{}{}}cs cs|9|x|s|v|P|P
Ble|le|o|oe|e|e ° oo e |0 0|0 0|0 ° o |m
o|le|e|e|e|e]|e ° oo e |0 o0 0|0 ° °
| |e|e|o |0 |0 |@ (] o|o (0o |00 0|00 ° °
% o (o |0 (0|0 |0 ° o|o (0o (0|0 e e ° °
Az
g % o o o o ® [] [) [) [) []
e B
28
= % {* oo (0|00 o|H|o |0 oo |0 oo e
[0]
g [gg} o|o|o|e|e ° oo oo e o|eo|oe
cs °
E [N]]]
= ﬂ e|o| o | o ° o °
& Iz
A { cle|e|e|e|e|e ° o |o ° °
EE
9 é [* oo |00 ° °
g % [* o|lo (0|0 |e ° ole ° °
'UO_J cs|loe|e |o|e@ ° °
@ cs|e|e (oo]|0 e oo ° °
9|e|e|e|e|e|e ° [] [[o | o0 |oO []
Q oo e o | e
S
2o lv|e|e|ele ° ° ° ° ° ° ° °
5
O |p|e|e|e|e ° ° ° ° ° ° ° °
6 v}
p ° ° o|e °
G| ®m]
N | |
Figure 6. PICTURE clause symbol sequence
Figure legend:
J Closed circle indicates that the symbol(s) at the top of

the column can, in a given character-string, appear
anywhere to the left of the symbol(s) at the left of the

TOW.

u Closed square indicates that the item is an IBM
extension.

{} Braces indicate items that are mutually exclusive.

164 coBOL Language Reference

PICTURE clause

Symbols that appear twice
Nonfloating insertion symbols + and -, floating
insertion symbols Z, *, +, -, and cs, and the symbol P
appear twice. The leftmost column and uppermost
row for each symbol represents its use to the left of the
decimal point position. The second appearance of the
symbol in the table represents its use to the right of the
decimal point position.

P symbol

Because the scaling position character P implies an assumed decimal point (to the
left of the Ps, if the Ps are leftmost PICTURE characters; to the right of the Ps, if
the Ps are rightmost PICTURE characters), the assumed decimal point symbol, V,
is redundant as either the leftmost or rightmost character within such a PICTURE
description.

In certain operations that reference a data item whose PICTURE character-string
contains the symbol P, the algebraic value of the data item is used rather than the
actual character representation of the data item. This algebraic value assumes the
decimal point in the prescribed location and zero in place of the digit position
specified by the symbol P. The size of the value is the number of digit positions
represented by the PICTURE character-string. These operations are any of the
following:

* Any operation requiring a numeric sending operand.

* A MOVE statement where the sending operand is numeric and its PICTURE
character-string contains the symbol P.

* A MOVE statement where the sending operand is numeric-edited and its
PICTURE character-string contains the symbol P and the receiving operand is
numeric or numeric-edited.

* A comparison operation where both operands are numeric.

In all other operations the digit positions specified with the symbol P are ignored
and are not counted in the size of the operand.

Currency symbol

The currency symbol in a character-string is represented by the symbol $, or by a
single character specified either in the CURRENCY compiler option or in the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the Environment
Division.

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and
the NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the
default currency sign value and currency symbol. For more information about the
CURRENCY SIGN clause, see “CURRENCY SIGN clause” on page [90f For more
information about the CURRENCY and NOCURRENCY compiler options, see the
IBM COBOL Programming Guide for your platform.

A currency symbol can be repeated within the PICTURE character-string to specify
floating insertion. Different currency symbols must not be used in the same
PICTURE character-string.

Unlike all other PICTURE clause symbols, currency symbols are case-sensitive: for
example, 'D' and 'd' specify different currency symbols.

Part 5. Data Division 165

PICTURE clause

A currency symbol can be used only to define a numeric-edited item with USAGE
DISPLAY.

In the following description of the PICTURE clause, cs indicates any valid currency
symbol.

Character-string representation

Symbols that can appear more than once
The following symbols can appear more than once in one PICTURE
character-string:

ABPXZ 9606/ , + - % cs
G N

At least one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, -,
or ¢s must be present in a PICTURE string.

The symbol G or N can appear alone in the PICTURE character-string.

An unsigned nonzero integer enclosed in parentheses immediately following
any of these symbols specifies the number of consecutive occurrences of that
symbol.

Example: The following two PICTURE clause specifications are equivalent:
PICTURE IS $99999.99CR

PICTURE IS $9(5).9(2)CR

Symbols that can appear only once
The following symbols can appear only once in one PICTURE character-string:

S v . CR DB
E

Except for the PICTURE symbol V, each time any of the above symbols
appears in the character-string, it represents an occurrence of that character or
set of allowable characters in the data item.

Data categories and PICTURE rules

The allowable combinations of PICTURE symbols determine the data category of
the item:

Alphabetic items

Numeric Items
Numeric-edited items
Alphanumeric items
Alphanumeric-edited items
DBCS items

External floating-point items

Alphabetic items

The PICTURE character-string can contain only the symbol A.

The contents of the item in standard data format must consist of any of the letters
of the English alphabet and the space character.

166 coBOL Language Reference

PICTURE clause
Other clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal containing only
alphabetic characters, SPACE, or a symbolic-character as the value of a figurative
constant.

Numeric items

Types of numeric items are:

* Binary

e Packed decimal (internal decimal)
e Zoned decimal (external decimal)

The PICTURE character-string can contain only the symbols 9, P, S, and V. For
numeric date fields, the PICTURE character-string can contain only the symbols 9
and S.

For binary items, the number of digit positions must range from 1 through 18
inclusive. For packed decimal and zoned decimal items the number of digit
positions must range from 1 through 18, inclusive, when the ARITH(COMPAT)
compiler option is in effect, or from 1 through 31, inclusive, when the
ARITH(EXTEND) compiler option is in effect. For numeric date fields, the number
of digit positions must match the number of characters specified by the DATE
FORMAT clause.

If unsigned, the contents of the item in standard data format must contain a
combination of the Arabic numerals 0-9. If signed, it can also contain a +, —, or
other representation of the operational sign.

Examples of valid ranges
PICTURE Valid Range of Values

9999 0 through 9999
S99 -99 through +99
S999V9 -999.9 through +999.9
PPP999 0 through .000999
S999PPP -1000 through -999000 and
+1000 through +999000 or zero

Other clauses: The USAGE of the item can be DISPLAY, BINARY,
COMPUTATIONAL, PACKED-DECIMAL, COMPUTATIONAL-3,
COMPUTATIONAL-4, or COMPUTATIONAL-5.

A VALUE clause can specify a figurative constant ZERO.

A VALUE clause associated with an elementary numeric item must specify a
numeric literal or the figurative constant ZERO. A VALUE clause associated with
a group item consisting of elementary numeric items must specify a nonnumeric
literal or a figurative constant, because the group is considered alphanumeric. In
both cases, the literal is treated exactly as specified; no editing is performed.

The BINARY (AIX and Windows only), NUMPROC (OS/390 and VM only), and
TRUNC compiler options can affect the use of numeric data items. For details, see
the IBM COBOL Programming Guide for your platform.

Numeric-edited items

The PICTURE character-string can contain the following symbols:
B PV ZO9O0/ , . + - CRDB * cs

Part 5. Data Division 167

PICTURE clause

The combinations of symbols allowed are determined from the PICTURE clause
symbol order allowed (see Figure 6 on page [164), and the editing rules (see
“PICTURE clause editing” on page [L70).

The following rules also apply:

* Either the BLANK WHEN ZERO clause must be specified for the item, or the
string must contain at least one of the following symbols:

B / Z 06 , . * + - CR DB cs

e If the ARITH(COMPAT) compiler option is in effect, then the number of digit
positions represented in the character-string must be in the range 1 through 18,
inclusive. If the ARITH(EXTEND) compiler option is in effect, then the
number of digit positions represented in the character-string must be in the
range 1 through 31, inclusive.

* The total number of character positions in the string (including
editing-character positions) must not exceed 249.

The contents of those character positions representing digits in standard data
format must be one of the 10 Arabic numerals.

Other clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative
constant. The literal is treated exactly as specified; no editing is done.

Alphanumeric items

The PICTURE character-string must consist of either of the following:
e The symbol X

* Combinations of the symbols A, X, and 9 (A character-string containing all As
or all 9s does not define an alphanumeric item.)

The item is treated as if the character-string contained only the symbol X.

The contents of the item in standard data format can be any allowable characters
from the character set of the computer.

Other clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative
constant.

Alphanumeric-edited items

The PICTURE character-string can contain the following symbols:
A X 9 B 0 /

The string must contain at least one A or X, and at least one B or 0 (zero) or /.

The contents of the item in standard data format must be two or more characters
from the character set of the computer.

Other clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative
constant. The literal is treated exactly as specified; no editing is done.

168 coBOL Language Reference

PICTURE clause
DBCS items

The PICTURE character-string can contain the symbol(s) G, G and B, or N. Each
G, B or N represents a single DBCS character position.

The entire range of characters for a DBCS literal can be used.

Under AIX and Windows, do not include a single byte character of a
DBCS code page in a DBCS data item. (The locale you select must indicate a
DBCS code page. For information on locale, see Appendix F, “Locale
considerations (workstation only)” on page [15)

For a code page with characters represented in double bytes, the following

padding and truncation rules apply:

e Padding—For DBCS data items, padding is done using the double byte space
characters until the data area is filled (based on the number of byte positions
allocated for the data item).

Single-byte characters are used for padding when the padding needed is not a
multiple of the code page width (for example, a group item moved to a DBCS
data item).

e Truncation—For DBCS data items, truncation is done based on the size of the
target data area on the byte boundary of the end of the data area. You must
ensure that a truncation does not result in truncation of bytes representing a
partial DBCS character.

Other clauses: When PICTURE clause symbol G is used, USAGE DISPLAY-1
must be specified.

When PICTURE clause symbol N is used, USAGE DISPLAY-1 is assumed and
does not need to be specified.

Any associated VALUE clause must specify a DBCS literal or the figurative
constant SPACE/SPACES.

External floating-point items

—— Format

>>—m—mant issa E—m—exponen t—><
+ +

+or -
A sign character must immediately precede both the mantissa and the
exponent.

A + sign indicates that a positive sign will be used in the output to represent
positive values and that a negative sign will represent negative values.

A - sign indicates that a blank will be used in the output to represent positive
values and that a negative sign will represent negative values.

Each sign position occupies one byte of storage.

Part 5. Data Division 169

PICTURE clause
mantissa
The mantissa can contain the symbols:
9.V

An actual decimal point can be represented with a period (.) while an assumed
decimal point is represented by a V.

Either an actual or an assumed decimal point must be present in the mantissa;
the decimal point can be leading, embedded, or trailing.

The mantissa can contain from 1 to 16 numeric characters.
E Indicates the exponent.

exponent
The exponent must consist of the symbol 99.

Other clauses: The OCCURS, REDEFINES, RENAMES, and USAGE clauses can
be associated with external floating-point items.

The SIGN clause is accepted as documentation and has no effect on the
representation of the sign.

The SYNCHRONIZED clause is treated as documentation.

The following clauses are invalid with external floating-point items:

e BLANK WHEN ZERO
e JUSTIFIED
e VALUE

PICTURE clause editing

There are two general methods of editing in a PICTURE clause:
* Insertion editing

— Simple insertion
— Special insertion
— Fixed insertion

— Floating insertion

* Suppression and replacement editing

— Zero suppression and replacement with asterisks
— Zero suppression and replacement with spaces.

The type of editing allowed for an item depends on its data category. The type of
editing that is valid for each category is shown in Table 12.

Table 12 (Page 1 of 2). Data categories

Data category Type of editing Insertion symbol
Alphabetic None None
Numeric None None

170 cosoL Language Reference

PICTURE clause

Table 12 (Page 2 of 2). Data categories

Numeric-edited Simple insertion B0/,

Special insertion

Fixed insertion ¢s + - CR DB
Floating insertion cs + -
Zero suppression z*
Replacement Z*+-cs
Alphanumeric None None
Alphanumeric-edited Simple insertion B0/
DBCS Simple insertion B
External floating-point Special insertion

Simple insertion editing

This type of editing is valid for alphanumeric-edited, numeric-edited, and DBCS
items.

Each insertion symbol is counted in the size of the item, and represents the
position within the item where the equivalent character is to be inserted. For
edited DBCS items, each insertion symbol (B) is counted in the size of the item and
represents the position within the item where the DBCS space is to be inserted.

For example:

PICTURE Value of Data Edited Result
X(10) /XX ALPHANUMERO1 ALPHANUMER/01
X(5)BX(7) ALPHANUMERIC ALPHA NUMERIC
99,B999,B000 1234 01,b234,H000
99,999 12345 12,345

GGBBGG D1D2D3D4 D1D2bbbbD3D4

Special insertion editing

This type of editing is valid for either numeric-edited items or external
floating-point items.

The period (.) is the special insertion symbol; it also represents the actual decimal
point for alignment purposes.

The period insertion symbol is counted in the size of the item, and represents the
position within the item where the actual decimal point is inserted.

Either the actual decimal point or the symbol V as the assumed decimal point, but
not both, must be specified in one PICTURE character-string.

For example:

PICTURE Value of Data Edited Results
999.99 1.234 001.23

999.99 12.34 012.34

999.99 123.45 123.45

999.99 1234.5 234.50
+999.99E+99 12345 +123.45E+02

Part 5. Data Division 171

PICTURE clause

Fixed insertion editing

This type of editing is valid only for numeric-edited items. The following insertion
symbols are used:

cs

+ — CR DB (editing-sign control symbols)

In fixed insertion editing, only one currency symbol and one editing sign control
symbol can be specified in one PICTURE character-string.

Unless it is preceded by a + or — symbol, the currency symbol must be the first
character in the character-string.

When either + or - is used as a symbol, it must be the first or last character in the
character-string.

When CR or DB is used as a symbol, it must occupy the rightmost two character
positions in the character-string. If these two character positions contain the
symbols CR or DB, the uppercase letters are the insertion characters.

Editing sign control symbols produce results that depend on the value of the data
item, as shown below:

Editing Symbol Result: Result:
in PICTURE Data Item Data Item
Character-String Positive or Zero Negative
+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

For example:

PICTURE Value of Data Edited Result

999.99+ +6555.556 555.55+
+9999.99 -6555.555 -6555.55
9999.99 +1234.56 1234.56
$999.99 -123.45 $123.45
-$999.99 -123.456 -$123.45
-$999.99 +123.456 $123.45
$9999.99CR +123.45 $0123.45
$9999.99DB -123.45 $0123.45DB

Floating insertion editing

This type of editing is valid only for numeric-edited items.

The following symbols are used:
cs + -

Within one PICTURE character-string, these symbols are mutually exclusive as
floating insertion characters.

Floating insertion editing is specified by using a string of at least two of the
allowable floating insertion symbols to represent leftmost character positions into
which these actual characters can be inserted.

The leftmost floating insertion symbol in the character-string represents the
leftmost limit at which this actual character can appear in the data item. The

172 cosoL Language Reference

PICTURE clause

rightmost floating insertion symbol represents the rightmost limit at which this
actual character can appear.

The second leftmost floating insertion symbol in the character-string represents the
leftmost limit at which numeric data can appear within the data item. Nonzero
numeric data can replace all characters at or to the right of this limit.

Any simple-insertion symbols (B 0 / ,) within or to the immediate right of the
string of floating insertion symbols are considered part of the floating
character-string. If the period (.) special-insertion symbol is included within the
floating string, it is considered to be part of the character-string.

To avoid truncation, the minimum size of the PICTURE character-string must be:

e The number of character positions in the sending item, plus
e The number of nonfloating insertion symbols in the receiving item, plus
* One character for the floating insertion symbol.

Representing floating insertion editing

In a PICTURE character-string, there are two ways to represent floating insertion
editing and, thus, two ways in which editing is performed:

1. Any or all leading numeric character positions to the left of the decimal point
are represented by the floating insertion symbol. When editing is performed, a
single floating insertion character is placed to the immediate left of the first
nonzero digit in the data, or of the decimal point, whichever is farther to the
left. The character positions to the left of the inserted character are filled with
spaces.

If all numeric character positions in the PICTURE character-string are
represented by the insertion character, then at least one of the insertion
characters must be to the left of the decimal point.

2. All the numeric character positions are represented by the floating insertion
symbol. When editing is performed, then:
e If the value of the data is zero, the entire data item will contain spaces.
o If the value of the data is nonzero, the result is the same as in rule 1.

For example:

PICTURE Value of Data Edited Result
$$$$.99 .123 $.12
$$$9.99 .12 $0.12

$,$$$,999.99 -1234.56 $1,234.56

+,+++,999.99 -123456.789 -123,456.78

$$,$5%,5$5.99CR -1234567 $1,234,567.00CR

++,+4++, 4+ HH 0000.00

Zero suppression and replacement editing

This type of editing is valid only for numeric-edited items.

In zero suppression editing, the symbols Z and * are used. These symbols are
mutually exclusive in one PICTURE character-string.

The following symbols are mutually exclusive as floating replacement symbols in
one PICTURE character-string:

Z * + —cs

Part 5. Data Division 173

REDEFINES clause

Specify zero suppression and replacement editing with a string of one or more of
the allowable symbols to represent leftmost character positions in which zero
suppression and replacement editing can be performed.

Any simple insertion symbols (B 0 / ,) within or to the immediate right of the
string of floating editing symbols are considered part of the string. If the period (.)
special insertion symbol is included within the floating editing string, it is
considered to be part of the character-string.

Representing zero suppression

In a PICTURE character-string, there are two ways to represent zero suppression,
and two ways in which editing is performed:

1.

Any or all of the leading numeric character positions to the left of the decimal
point are represented by suppression symbols. When editing is performed, the
replacement character replaces any leading zero in the data that appears in the
same character position as a suppression symbol. Suppression stops at the
leftmost character:

* That does not correspond to a suppression symbol
e That contains nonzero data
e That is the decimal point.

All the numeric character positions in the PICTURE character-string are
represented by the suppression symbols. When editing is performed, and the
value of the data is nonzero, the result is the same as in the preceding rule. If
the value of the data is zero, then:

* If Z has been specified, the entire data item will contain spaces.

* If * has been specified, the entire data item, except the actual decimal
point, will contain asterisks.

For example:

PICTURE Value of Data Edited Result
*kkk kK 0000.00 *kkk KK
17771.77 0000.00
7777.99 0000.00 .00
**xx%,99 0000.00 **xx%, 00
7799.99 0000.00 00.00

1,777.77+ +123.456 123.45+

* kkk Kkt -123.45 *%123.45-
Kk kkk kkk kkt +12345678.9 12,345,678.90+
$2,777,777.72CR +12345.67 $ 12,345.67
$Bx, w4k *xx, xxBBDB -12345.67 $ *%%12,345.67 DB

Do not specify both the asterisk (*) as a suppression symbol and the BLANK

WHEN ZERO clause for the same entry.

REDEFINES clause

The REDEFINES clause allows you to use different data description entries to
describe the same computer storage area.

—— Format

»»—Ilevel-number REDEFINES—data-name-2

\ 4
A

data-name-1—
FILLER

174 coBoOL Language Reference

REDEFINES clause

Note: Level-number, data-name-1, and FILLER are not part of the REDEFINES
clause itself, and are included in the format only for clarity.

When specified, the REDEFINES clause must be the first entry following
data-name-1 or FILLER. If data-name-1 or FILLER is not specified, the
REDEFINES clause must be the first entry following the level-number.

The level-numbers of data-name-1 and data-name-2 must be identical, and must
not be level 66 or level 88.

data-name-1, FILLER
Identifies an alternate description for the same area, and is the redefining item
or the REDEFINES subject.

data-name-2
Is the redefined item or the REDEFINES object.

When more than one level-01 entry is written subordinate to an FD entry, a
condition known as implicit redefinition occurs. That is, the second level-01 entry
implicitly redefines the storage allotted for the first entry. In such level-01 entries,
the REDEFINES clause must not be specified.

Redefinition begins at data-name-1 and ends when a level-number less than or
equal to that of data-name-1 is encountered. No entry having a level-number
numerically lower than those of data-name-1 and data-name-2 can occur between
these entries. For example:

05 A PICTURE X(6).

05 B REDEFINES A.

-1 PICTURE X(2).

-2 PICTURE 9(4).
PICTURE 99V99.

10
10

O W W

05

In this example, A is the redefined item, and B is the redefining item. Redefinition
begins with B and includes the two subordinate items B-1 and B-2. Redefinition
ends when the level-05 item C is encountered.

The data description entry for data-name-2, the redefined item, can contain a
REDEFINES clause.

The data description entry for the redefined item cannot contain an OCCURS
clause. However, the redefined item can be subordinate to an item whose data
description entry contains an OCCURS clause. In this case, the reference to the
redefined item in the REDEFINES clause must not be subscripted. Neither the
redefined item nor the redefining item, or any items subordinate to them, can
contain an OCCURS DEPENDING ON clause.

If the GLOBAL clause is used in the data description entry which contains the
REDEFINES clause, it is only the subject of that REDEFINES clause that possesses
the global attribute.

The EXTERNAL clause must not be specified on the same data description entry
as a REDEFINES clause.

If the data item referenced by data-name-2 is either declared to be an external data
record or is specified with a level-number other than 01, the number of character
positions it contains must be greater than or equal to the number of character
positions in the data item referenced by the subject of this entry. If the data-name
referenced by data-name-2 is specified with a level-number of 01 and is not
declared to be an external data record, there is no such constraint.

Part 5. Data Division 175

REDEFINES clause

When the data item implicitly redefines multiple O1-level records in a file
description (FD) entry, items subordinate to the redefining or redefined item can
contain an OCCURS DEPENDING ON clause.

One or more redefinitions of the same storage area are permitted. The entries
giving the new descriptions of the storage area must immediately follow the
description of the redefined area without intervening entries that define new
character positions. Multiple redefinitions must all use the data-name of the
original entry that defined this storage area. For example:

05 A PICTURE 9999.

05 B REDEFINES A PICTURE 9V999.
05 C REDEFINES A PICTURE 99V99.

The redefining entry (identified by data-name-1), and any subordinate entries,
must not contain any VALUE clauses.

An item described as USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or
USAGE IS OBJECT REFERENCE can be the subject or object of a REDEFINES
clause.

An external or internal floating-point item can be the subject or object of a
REDEFINES clause.

REDEFINES clause considerations

Data items within an area can be redefined without changing their lengths. For
example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.
05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE XXX.
10 EMP-NO PICTURE X(9).
10 YEAR PICTURE XX.

Data item lengths and types can also be re-specified within an area. For example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE 999V999.
10 EMP-NO PICTURE X(6).
10 YEAR PICTURE XX.

When an area is redefined, all descriptions of the area are always in effect; that is,
redefinition does not cause any data to be erased and never supersedes a previous
description. Thus, if B REDEFINES C has been specified, either of the two
procedural statements, MOVE X TO B and MOVE Y TO C, could be executed at any
point in the program.

In the first case, the area described as B would assume the value and format of X.
In the second case, the same physical area (described now as C) would assume the
value and format of Y. Note that, if the second statement is executed immediately
after the first, the value of Y replaces the value of X in the one storage area.

The usage of a redefining data item need not be the same as that of a redefined
item. This does not, however, cause any change in existing data. For example:

176 cosoL Language Reference

REDEFINES clause

05 B PICTURE 99 USAGE DISPLAY VALUE 8.
05 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL-4.
05 A PICTURE S99 USAGE COMPUTATIONAL-4.

Redefining B does not change the bit configuration of the data in the storage area.
Therefore, the following two statements produce different results:

ADD B TO A
ADD C TO A

In the first case, the value 8 is added to A (because B has USAGE DISPLAY). In the
second statement, the value -3848 is added to A (because C has USAGE
COMPUTATIONAL-4), and the bit configuration of the storage area has the binary
value -3848.

The above example demonstrates how the improper use of redefinition can give
unexpected or incorrect results.

REDEFINES clause examples

The REDEFINES clause can be specified for an item within the scope of an area
being redefined (that is, an item subordinate to a redefined item). For example:

05 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 9999V99.

10 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY
PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause can also be specified for an item subordinate to a
redefining item. For example:

05 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

10 GRADE PICTURE X(4).

10 SEMI-MONTHLY-PAY PICTURE 999V999.
05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

10 FILLER PICTURE X(6).

10 HOURLY-PAY PICTURE 99V99.

10 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

Undefined results

Undefined results can occur when:

* A redefining item is moved to a redefined item (that is, if B REDEFINES C and
the statement MOVE B TO C is executed).

* A redefined item is moved to a redefining item (that is, if B REDEFINES C and if
the statement MOVE C TO B is executed).

Part 5. Data Division 177

RENAMES clause

RENAMES clause

The RENAMES clause specifies alternative, possibly overlapping, groupings of
elementary data items.

—— Format

»»—66—data-name-1—RENAMES—data-name-2] > <
THROUGH data-name-3
THRUI

The special level-number 66 must be specified for data description entries that
contain the RENAMES clause. Level-number 66 and data-name-1 are not part of
the RENAMES clause itself, and are included in the format only for clarity.

One or more RENAMES entries can be written for a logical record. All RENAMES

entries associated with one logical record must immediately follow that record's
last data description entry.

data-name-1
Identifies an alternative grouping of data items.

A level-66 entry cannot rename a level-01, level-77, level-88, or another level-66

entry.

Data-name-1 cannot be used as a qualifier; it can be qualified only by the
names of level indicator entries or level-01 entries.

Can specify a DBCS data item if data-name-2 specifies a DBCS data item and
the THROUGH phrase is not specified.

data-name-2, data-name-3
Identify the original grouping of elementary data items; that is, they must

name elementary or group items within the associated level-01 entry, and must

not be the same data-name. Both data-names can be qualified.

The OCCURS clause must not be specified in the data entries for data-name-2
and data-name-3, or for any group entry to which they are subordinate. In
addition, the OCCURS DEPENDING ON clause must not be specified for any
item defined between data-name-2 and data-name-3.

When data-name-3 is specified, data-name-1 is treated as a group item that
includes all elementary items:

» Starting with data-name-2 (if it is an elementary item) or the first
elementary item within data-name-2 (if it is a group item).

* Ending with data-name-3 (if it is an elementary item) or the last
elementary item within data-name-3 (if it is a group item).

The key words THROUGH and THRU are equivalent.

The leftmost character in data-name-3 must not precede the leftmost character
in data-name-2; the rightmost character in data-name-3 must not precede the
rightmost character in data-name-2. This means that data-name-3 cannot be
totally subordinate to data-name-2.

When data-name-3 is not specified, all of the data attributes of data-name-2
become the data attributes for data-name-1. That is:

* When data-name-2 is a group item, data-name-1 is treated as a group item.

178 coBoL Language Reference

SIGN clause

When data-name-2 is an elementary item, data-name-1 is treated as an
elementary item.

Figure 7 illustrates valid and invalid RENAMES clause specifications.

COBOL Specifications

Example 1 (Valid)

01

66

RECORD-T.
05 DN-1...
05 DN-2...
05 DN-3...
05 DN-4...

Storage Layouts

«—— RECORD-T ——— |
DN-1 DN-2 DN-3 | DN-4 |
DN-6 |

DN-6 RENAMES DN-1 THROUGH DN-3.

Example 2 (Valid)

01

66

RECORD-II.
05 DN-1.
10 DN-2...
10 DN-2A...
05 DN-1A REDEFINES DN-1.
10 DN-3A...
10 DN-3...
10 DN-3B...
05 DN-5...

«— RECORD-II——— |

DN-1

DN-2A
DN-1A
DN-3A | DN-3 | DN-3B

——DN-6—*I

DN-2 |

|
‘ DN-5
|

DN-6 RENAMES DN-2 THROUGH DN-3.

Example 3 (Invalid)

01

66

RECORD-III.
05 DN-2.
10 DN-3...
10 DN-4...
05 DN-5...

DN-6 RENAMES DN-2 THROUGH DN-3.

Example 4 (Invalid)

01

66

RECORD-IV.

05 DN-1.
10 DN-2A...
10 DN-2B...

10 DN-2C REDEFINES DN-2B.

15 DN-2...
15 DN-2D... .
05 DN-3...

DN-4 RENAMES DN-1 THROUGH DN-2.

|<— RECORD-IT] ——

DN-2 |
| DN-3 | DN-4

DN-5

DN-6 is indeterminate

|<— RECORD-IV —— |

DN-1
DN-2B

| DN-2A | ‘ DN-3 |

| VDN-2A | DN-3 |

DN-4 is indeterminate

Figure 7. RENAMES clause—valid and invalid specifications

SIGN clause

The SIGN clause specifies the position and mode of representation of the
operational sign for a numeric entry.

Part 5. Data Division

179

SIGN clause

\ 4
A

LEADING
LSIGN_EIJ |—TRAILING—I |—SEPARATE B] |
IS CHARACTER

The SIGN clause can be specified only for a signed numeric data description entry
(that is, one whose PICTURE character-string contains an S), or for a group item
that contains at least one such elementary entry. USAGE IS DISPLAY must be
specified, explicitly or implicitly.

If a SIGN clause is specified in either an elementary or group entry subordinate to
a group item for which a SIGN clause is specified, the SIGN clause for the
subordinate entry takes precedence for the subordinate entry.

If you specify the CODE-SET clause in an FD entry, any signed numeric data
description entries associated with that file description entry must be described
with the SIGN IS SEPARATE clause.

The SIGN clause is required only when an explicit description of the properties
and/or position of the operational sign is necessary.

When specified, the SIGN clause defines the position and mode of representation
of the operational sign for the numeric data description entry to which it applies,
or for each signed numeric data description entry subordinate to the group to
which it applies.

If the SEPARATE CHARACTER phrase is not specified, then:

* The operational sign is presumed to be associated with the LEADING or
TRAILING digit position, whichever is specified, of the elementary numeric
data item. (In this instance, specification of SIGN IS TRAILING is the
equivalent of the standard action of the compiler.)

* The character S in the PICTURE character string is not counted in determining
the size of the item (in terms of standard data format characters).

If the SEPARATE CHARACTER phrase is specified, then:

* The operational sign is presumed to be the LEADING or TRAILING character
position, whichever is specified, of the elementary numeric data item. This
character position is not a digit position.

* The character S in the PICTURE character string is counted in determining the
size of the data item (in terms of standard data format characters).

* + is the character used for the positive operational sign.
* - is the character used for the negative operational sign.

The SEPARATE CHARACTER phrase cannot be specified for a date field.

Every numeric data description entry whose PICTURE contains the symbol S is a
signed numeric data description entry. If the SIGN clause is also specified for
such an entry, and conversion is necessary for computations or comparisons, the
conversion takes place automatically.

The SIGN clause is treated as documentation for external floating-point items. For
internal floating-point items, the SIGN clause must not be specified.

180 coBoOL Language Reference

SYNCHRONIZED clause

SYNCHRONIZED clause

The SYNCHRONIZED clause specifies the alignment of an elementary item on a
natural boundary in storage.

—— Format

SYNCHRONIZED
SYNC—I LEFT
RIGHT

\4
A

SYNC is an abbreviation for SYNCHRONIZED and has the same meaning.

The SYNCHRONIZED clause is never required, but can improve performance on
some systems for binary items used in arithmetic.

The SYNCHRONIZED clause can be specified for elementary items or for level-01
group items, in which case, every elementary item within this group level item is
synchronized.

LEFT
Specifies that the elementary item is to be positioned so that it will begin at the
left character position of the natural boundary in which the elementary item is
placed.

RIGHT
Specifies that the elementary item is to be positioned such that it will terminate
on the right character position of the natural boundary in which it has been
placed.

When specified, the LEFT and the RIGHT phrases are syntax checked, but they
have no effect on the execution of the program.

The length of an elementary item is not affected by the SYNCHRONIZED clause.
Table 13 lists the effect of the SYNCHRONIZE clause on other language elements.

Table 13 (Page 1 of 2). SYNCHRONIZE clause effect on other language elements

Language element Comments

OCCURS clause When specified for an item within the scope of an OCCURS
clause, each occurrence of the item is synchronized.

DISPLAY or Each item is syntax checked, but it has no effect on the

PACKED-DECIMAL execution of the program.

Part 5. Data Division 181

SYNCHRONIZED clause

Table 13 (Page 2 of 2). SYNCHRONIZE clause effect on other language elements

Language element

Comments

BINARY or
COMPUTATIONAL

When the item is the first elementary item subordinate to an
item that contains a REDEFINES clause, the item must not
require the addition of unused character positions.

When the synchronized clause is not specified for a
subordinate data item (one with a level number of 02 through
49):

e The item is aligned at a displacement that is a multiple of
2 relative to the beginning of the record, if its USAGE is
BINARY and its PICTURE is in the range of S9 through
S9(4).

e The item is aligned at a displacement that is a multiple of
4 relative to the beginning of the record, if its USAGE is
BINARY and its PICTURE is in the range of S9(5) through
S9(18), or its USAGE is INDEX.

When SYNCHRONIZED is not specified for binary items, no
space is reserved for slack bytes.

USAGE IS POINTER,
USAGE IS
PROCEDURE-POINTER,
or USAGE IS OBJECT
REFERENCE

The data is aligned on a fullword boundary.

COMPUTATIONAL-1

The data is aligned on a fullword boundary.

COMPUTATIONAL-2

The data is aligned on a doubleword boundary.

COMPUTATIONAL-3

The data is treated the same as the SYNCHRONIZED clause
for a PACKED-DECIMAL item.

COMPUTATIONAL-4

The data is treated the same as the SYNCHRONIZED clause
for a COMPUTATIONAL item.

COMPUTATIONAL-5

The data is treated the same as the SYNCHRONIZED clause
for a COMPUTATIONAL item.

DBCS and floating point
item

The SYNCHRONIZED clause is ignored.

REDEFINES clause

For an item that contains a REDEFINES clause, the data item
that is redefined must have the proper boundary alignment
for the data item that redefines it. For example, if you write
the following, be sure that data item A begins on a fullword
boundary:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) BINARY SYNC.

In the File Section, the compiler assumes that all level-01 records containing
SYNCHRONIZED items are aligned on doubleword boundaries in the buffer. You
must provide the necessary slack bytes between records to ensure alignment when
there are multiple records in a block.

In the Working-Storage Section, the compiler aligns all level-01 entries on a

doubleword boundary.

For the purposes of aligning binary items in the Linkage Section, all level-01 items
are assumed to begin on doubleword boundaries. Therefore, if you issue a CALL
statement, such operands of any USING phrase within it must be aligned

correspondingly.

182 cosoL Language Reference

SYNCHRONIZED clause
Slack bytes

There are two types of slack bytes:

Slack bytes within records
Unused character positions preceding each synchronized item in the record.

Slack bytes between records
Unused character positions added between blocked logical records.

Slack bytes within records

For any data description that has binary items that are not on their natural
boundaries, the compiler inserts slack bytes within a record to ensure that all
SYNCHRONIZED items are on their proper boundaries.

Because it is important that you know the length of the records in a file, you need
to determine whether slack bytes are required and, if necessary, how many the
compiler will add. The algorithm the compiler uses to calculate this is as follows:

e The total number of bytes occupied by all elementary data items preceding the
binary item are added together, including any slack bytes previously added.
e This sum is divided by m, where:
m = 2 for binary items of 4-digit length or less
m = 4 for binary items of 5-digit length or more: USAGE IS INDEX,

USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, USAGE IS
OBJECT REFERENCE, and COMPUTATIONAL-1 data items

m = 8 for COMPUTATIONAL-2 data items.

e If the remainder (r) of this division is equal to zero, no slack bytes are
required. If the remainder is not equal to zero, the number of slack bytes that
must be added is equal to m - r.

These slack bytes are added to each record immediately following the elementary
data item preceding the binary item. They are defined as if they constituted an
item with a level number equal to that of the elementary item that immediately
precedes the SYNCHRONIZED binary item, and are included in the size of the
group that contains them.

For example:

01 FIELD-A.
05 FIELD-B PICTURE X(5).
05 FIELD-C.
10 FIELD-D PICTURE XX.
[10 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
10 FIELD-E COMPUTATIONAL PICTURE S9(6) SYNC.
01 FIELD-L.
05 FIELD-M PICTURE X(5).
05 FIELD-N PICTURE XX.
[65 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
05 FIELD-O0.

10 FIELD-P COMPUTATIONAL PICTURE S9(6) SYNC.

Slack bytes can also be added by the compiler when a group item is defined with
an OCCURS clause and contains within it a SYNCHRONIZED binary data item.
To determine whether slack bytes are to be added, the following action is taken:

Part 5. Data Division 183

SYNCHRONIZED clause

* The compiler calculates the size of the group, including all the necessary slack
bytes within a record.

* This sum is divided by the largest m required by any elementary item within
the group.

e If ris equal to zero, no slack bytes are required. If r is not equal to zero, m - r
slack bytes must be added.

The slack bytes are inserted at the end of each occurrence of the group item
containing the OCCURS clause. For example, a record defined as follows will
appear in storage, as shown, in Figure 8:

01 WORK-RECORD.

05 WORK-CODE PICTURE X.
05 COMP-TABLE OCCURS 10 TIMES.
10 COMP-TYPE PICTURE X.
[10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HRS PICTURE S9(3) COMP SYNC.
10 COMP-NAME PICTURE X(5).

WORK-CODE

le

COMP-TYPE

First Occurrence of COMP-TABLE ——!«—Second Occurrence of COMP-TABLE —/

S
B

i .
Iﬁgl;\ comp-pay | GOMP-

\
\
| | | i
I I I
I Slack
HOURs| ~ COMP-NAME | gytes

I I I
L L Lol ! |

D

T+t —

D =doublewordboundary
F =fullword boundary
H=halfwordboundary

L] |

| |
| |
| |
| |
| |
| |
H H H H H H H

D D D D

Figure 8. Insertion of slack bytes within a record

In order to align COMP-PAY and COMP-HRS upon their proper boundaries, the
compiler has added two slack bytes within the record.

In the example previous, without further adjustment, the second occurrence of
COMP-TABLE would begin one byte before a doubleword boundary, and the
alignment of COMP-PAY and COMP-HRS would not be valid for any occurrence of the
table after the first. Therefore, the compiler must add slack bytes at the end of the
group, as though the record had been written as follows:

01 WORK-RECORD.

05 WORK-CODE PICTURE X.
05 COMP-TABLE OCCURS 10 TIMES.
10 COMP-TYPE PICTURE X.
[10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HRS PICTURE S9(3) COMP SYNC.
10 COMP-NAME PICTURE X(5).
[10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]

In this example, the second (and each succeeding) occurrence of COMP-TABLE begins
one byte beyond a doubleword boundary. The storage layout for the first
occurrence of COMP-TABLE will now appear as shown in Figure 9.

184 coBoOL Language Reference

SYNCHRONIZED clause

«— Firstoccurrence of COMP-TABLE ——

| Slack COMP- |

COMP-PAY HOURS | COMP-NAME

COMP-TYPE

WORK-CODE

| |
| |
| |
| |
| |
| | |
I | | |
H H H H H

D D D D

D =doublewordboundary
F =fullwordboundary
H=halfwordboundary

Figure 9. Insertion of slack bytes between records

Each succeeding occurrence within the table will now begin at the same relative
position as the first.

Slack bytes between records

Under OS/390 and VM, if the file contains blocked logical records that
are to be processed in a buffer, and any of the records contain binary entries for

which the SYNCHRONIZED clause is specified, you can improve performance by
adding any needed slack bytes between records for proper alignment.

The lengths of all the elementary data items in the record, including all slack bytes,
are added. (For variable-length records under OS/390 and VM, it is necessary to
add an additional 4 bytes for the count field.) The total is then divided by the
highest value of m for any one of the elementary items in the record.

If r (the remainder) is equal to zero, no slack bytes are required. If r is not equal
to zero, m - r slack bytes are required. These slack bytes can be specified by
writing a level-02 FILLER at the end of the record.

To show the method of calculating slack bytes both within and between records,
consider the following record description:

01 COMP-RECORD.

05 A-1 PICTURE X(5).

05 A-2 PICTURE X(3).

05 A-3 PICTURE X(3).
05 B-1 PICTURE $S9999 USAGE COMP SYNCHRONIZED.
05 B-2 PICTURE $99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

The number of bytes in A-1, A-2, and A-3 totals 11. B-1 is a 4-digit
COMPUTATIONAL item and 1 slack byte must therefore be added before B-1.
With this byte added, the number of bytes preceding B-2 totals 14. Because B-2 is
a COMPUTATIONAL item of 5 digits in length, two slack bytes must be added
before it. No slack bytes are needed before B-3.

The revised record description entry now appears as:

Part 5. Data Division 185

SYNCHRONIZED clause
COMP-RECORD.

01
05
05
05
[05
05
[05
05
05

A-1
A-2
A-3
SLACK-BYTE-1
B-1
SLACK-BYTE-2
B-2
B-3

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

X(5).

X(3).

X(3).

X. INSERTED BY COMPILER]
59999 USAGE COMP SYNCHRONIZED.
XX. INSERTED BY COMPILER]
S99999 USAGE COMP SYNCHRONIZED.
S9999 USAGE COMP SYNCHRONIZED.

There is a total of 22 bytes in COMP-RECORD, but, from the rules given in the

preceding discussion, it appears that m = 4 and r =

2. Therefore, to attain proper

alignment for blocked records, you must add 2 slack bytes at the end of the record.

The final record description entry appears as:

01
05
05
05
[05
05
[05
05
05
05

COMP-RECORD.

A-1

A-2

A-3
SLACK-BYTE-1
B-1
SLACK-BYTE-2
B-2

B-3

FILLER

186 coBoOL Language Reference

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

X(5).

X(3).

X(3).

X. INSERTED BY COMPILER]
$9999 USAGE COMP SYNCHRONIZED.
XX. INSERTED BY COMPILER]
$99999 USAGE COMP SYNCHRONIZED.
$9999 USAGE COMP SYNCHRONIZED.
XX. [SLACK BYTES YOU ADD]

USAGE clause

USAGE clause

The USAGE clause specifies the format of a data item in computer storage.

—— Format 1

BINARY
|—USAGE—|j—‘ |—N/-\TIVE—(J-)J
IS —COMP:

—COMP-1
Lyarrve-a]

—COMP-2

Lyarrve-a]
—COMP-3
—COMP-4

Lyarive—]

—COMP-5
—COMPUTATIONAL

—COMPUTATIONAL- l_l_—_u.)_|—
NATIVE

—COMPUTATI ONAL_Z_I_—_L.L)_'—
NATIVE

—COMPUTATIONAL-3

—COMPUTATI 0NAL-4—m—
NATIVE

—COMPUTATIONAL-5
—DISPLAY
|—NAT I VE—‘“J

—DISPLAY-1
|—NATIVE—(J-)J
—INDEX

— objref phrase pb———
—PACKED-DECIMAL:
—POINTER
'—PROCEDURE-POINTER

>
| 2.2

\4
A

objref phrase
—OBJECT REFERENCE | }

[‘,lass-name-]J
METACLASSﬁ

OF
Note:

1 The NATIVE phrase is treated as a comment for COMP-3,
COMPUTATIONAL-3, COMP-5, COMPUTATIONAL-5, and
PACKED-DECIMAL data items. Under OS/390 and VM, NATIVE has no
effect.

The USAGE clause can be specified for a data description entry with a
level-number other than 66 or 88. However, if it is specified at the group level, it
applies to each elementary item in the group. The usage of an elementary item
must not contradict the usage of a group to which the elementary item belongs.

The USAGE clause specifies the format in which data is represented in storage.
The format can be restricted if certain Procedure Division statements are used.

When the USAGE clause is not specified at either the group or elementary level, it
is assumed that the usage is DISPLAY.

For data items defined with the DATE FORMAT clause, only usage DISPLAY and
COMP-3 (or its equivalents, COMPUTATIONAL-3 and PACKED-DECIMAL) are
allowed. For details, see “Combining the DATE FORMAT clause with other

clauses” on page

Part 5. Data Division 187

USAGE clause

Computational items

A computational item is a value used in arithmetic operations. It must be
numeric. If the USAGE of a group item is described with any of these items, the
elementary items within the group have this usage.

The maximum length of a computational item is 18 decimal digits, except for a
PACKED-DECIMAL item. If the ARITH(COMPAT) compiler option is in effect,
then the maximum length of a PACKED-DECIMAL item is 18 decimal digits. If
the ARITH(EXTEND) compiler option is in effect, then the maximum length of a
PACKED-DECIMAL item is 31 decimal digits.

The PICTURE of a computational item can contain only:

9 One or more numeric character positions
S One operational sign

V One implied decimal point

P One or more decimal scaling positions

COMPUTATIONAL-1 and COMPUTATIONAL-2 items (internal floating-point)
cannot have PICTURE strings.

BINARY
Specified for binary data items. Such items have a decimal equivalent
consisting of the decimal digits 0 through 9, plus a sign. Negative numbers
are represented as the two's complement of the positive number with the same
absolute value.

The amount of storage occupied by a binary item depends on the number of
decimal digits defined in its PICTURE clause:

Digits in PICTURE clause Storage occupied
1 through 4 2 bytes (halfword)
5 through 9 4 bytes (fullword)
10 through 18 8 bytes (doubleword)

The operational sign for “big-endian” binary data (such as OS/390 and VM) is
contained in the left most bit of the binary data. The operational sign for
“little-endian” binary data is contained in the left most bit of the right most
byte of the binary data.

Note: BINARY, COMPUTATIONAL, and COMPUTATIONAL-4 data items
can be affected by the BINARY and TRUNC compiler option specifications.
For information on the effect of these compiler options, see the IBM COBOL
Programming Guide for your platform. (The BINARY compiler option is
applicable only to Windows programs.)

PACKED-DECIMAL
Specified for internal decimal items. Such an item appears in storage in
packed decimal format. There are 2 digits for each character position, except
for the trailing character position, which is occupied by the low-order digit and
the sign. Such an item can contain any of the digits 0 through 9, plus a sign,
representing a value not exceeding 18 decimal digits.

The sign representation uses the same bit configuration as the 4-bit sign
representation in zoned decimal fields. For details, see the IBM COBOL
Programming Guide for your platform.

188 coBoL Language Reference

USAGE clause

COMPUTATIONAL or COMP (binary)
This is the equivalent of BINARY. The COMPUTATIONAL phrase is
synonymous with BINARY.

COMPUTATIONAL-1 or COMP-1 (floating-point)
Specified for internal floating-point items (single precision). COMP-1 items are
4 bytes long.

COMP-1 data items are affected by the FLOAT(NATIVE | HEX)
compiler option. For details, see the IBM COBOL Programming Guide for your

platform < SEHT

COMPUTATIONAL-2 or COMP-2 (long floating-point)
Specified for internal floating-point items (double precision). COMP-2 items
are 8 bytes long.

COMP-2 data items are affected by the FLOAT(NATIVE | HEX)
compiler option. For details, see the IBM COBOL Programming Guide for your

platform <@y

COMPUTATIONAL-3 or COMP-3 (internal decimal)
This is the equivalent of PACKED-DECIMAL.

COMPUTATIONAL-4 or COMP-4 (binary)
This is the equivalent of BINARY.

COMPUTATIONAL-5 or COMP-5 (native binary)
These data items are represented in storage as binary data. The data items can
contain values up to the capacity of the native binary representation (2, 4 or 8
bytes), rather than being limited to the value implied by the number of nines
in the picture for the item (as is the case for USAGE BINARY data). When
numeric data is moved or stored into a COMP-5 item, truncation occurs at the
binary field size, rather than at the COBOL picture size limit. When a
COMP-5 item is referenced, the full binary field size is used in the operation.

Note: The TRUNC(BIN) compiler option causes all binary data items (USAGE
COMP, COMP-4) to be handled as if they were declared with USAGE
COMP-5.

Picture Storage representation Numeric values
S9(1) through S9(4) Binary half-word (2 bytes) -32768 through +32767
S9(5) through S9(9) Binary full-word (4 bytes) -2,147,483,648 through
+2,147,483,647
S9(10) through S9(18) Binary double-word (8 -9,223,372,036,854,775,308
bytes) through
+9.223,372,036,854,775,807
9(1) through 9(4) Binary half-word (2 bytes) 0 through 65535
9(5) through 9(9) Binary full-word (4 bytes) 0 through 4,294,967,295
9(10) through 9(18) Binary double-word (8 0 through
bytes) 18,446,744,073,709,551,615

The picture for a COMP-5 data item can specify a scaling factor (that is,
decimal positions or implied integer positions). In this case, the maximal
capacities listed in the table above must be scaled appropriately. For example,
a data item with description PICTURE S99V99 COMP-5 is represented in
storage as a binary half-word, and supports a range of values from -327.68 to
+327.67.

Part 5. Data Division 189

USAGE clause

DISPLAY phrase

The data item is stored in character form, 1 character for each 8-bit byte. This
corresponds to the format used for printed output. DISPLAY can be explicit or
implicit.

USAGE IS DISPLAY is valid for the following types of items:

Alphabetic

Alphanumeric
Alphanumeric-edited
Numeric-edited

External floating-point
External decimal (numeric)

Alphabetic, alphanumeric, alphanumeric-edited, and numeric-edited items are
discussed in “Data categories and PICTURE rules” on page

External Decimal Items are sometimes referred to as zoned decimal items. Each
digit of a number is represented by a single byte. The 4 high-order bits of each
byte are zone bits; the 4 high-order bits of the low-order byte represent the sign of
the item. The 4 low-order bits of each byte contain the value of the digit.

If the ARITH(COMPAT) compiler option is in effect, then the maximum length of
an external decimal item is 18 digits. If the ARITH(EXTEND) compiler option is in
effect, then the maximum length of an external decimal item is 31 digits.

The PICTURE character-string of an external decimal item can contain only 9s; the
operational-sign, S; the assumed decimal point, V; and one or more Ps.

Effect of CHAR(EBCDIC) compiler option (workstation only): Character data
items are treated as EBCDIC when the CHAR(EBCDIC) option is used, unless the
character data is defined with the NATIVE phrase. Also note, group items are
affected by the CHAR options as well. A group item is treated as a USAGE
DISPLAY item and consists of either native single byte characters (with
CHAR(NATIVE)) or EBCDIC characters (with CHAR(EBCDIC)). Any USAGE
clause specified on a group applies to the elementary items within the group and
not to the group itself for the purpose of defining semantics involving group items.

Command-line arguments are always passed in as native data types. If you
specify the host data type compiler options (CHAR(EBCDID), FLOAT(HEX), or
BINARY(S390)), you must specify the NATIVE phrase on any arguments with data
types affected by these compiler options.

DISPLAY-1 phrase

The DISPLAY-1 phrase defines an item as DBCS.

INDEX phrase

A data item defined with the INDEX phrase is an index data item.

An index data item is a 4-byte elementary item (not necessarily connected with
any table) that can be used to save index-name values for future reference.
Through a SET statement, an index data item can be assigned an index-name
value; such a value corresponds to the occurrence number in a table.

190 cosoL Language Reference

USAGE clause

Direct references to an index data item can be made only in a SEARCH statement,
a SET statement, a relation condition, the USING phrase of the Procedure Division
header, or the USING phrase of the CALL statement.

An index data item can be referred to directly in the USING phrase of an ENTRY
statement.

An index data item can be part of a group item referred to in a MOVE statement
or an input/output statement.

An index data item saves values that represent table occurrences, yet is not
necessarily defined as part of any table. Thus, when it is referred to directly in a
SEARCH or SET statement, or indirectly in a MOVE or input/output statement,
there is no conversion of values when the statement is executed.

The USAGE IS INDEX clause can be written at any level. If a group item is
described with the USAGE IS INDEX clause, the elementary items within the
group are index data items; the group itself is not an index data item, and the
group name cannot be used in SEARCH and SET statements or in relation
conditions. The USAGE clause of an elementary item cannot contradict the
USAGE clause of a group to which the item belongs.

An index data item cannot be a conditional variable.

The DATE FORMAT, JUSTIFIED, PICTURE, BLANK WHEN ZERO,
SYNCHRONIZED, or VALUE clauses cannot be used to describe group or
elementary items described with the USAGE IS INDEX clause.

SYNCHRONIZED can be used with USAGE IS INDEX to obtain efficient use of
the index data item.

OBJECT REFERENCE phrase

A data item defined with the OBJECT REFERENCE phrase is an object reference.

class-name-1
An optional class name.

You must declare class-name-1 in the REPOSITORY paragraph in the
Configuration Section of the containing class or outermost program. If
specified, class-name-1 indicates that data-name always refers to an
object-instance of class class-name-1 or a class derived from class-name-1.

If class-name-1 is not specified, data-name can refer to an object of any class.
In this case, data-name-1 is a “universal” object reference.

You can specify data-name-1 within a group item without affecting the
semantics of the group item. There is no conversion of values or other special
handling of the object references when statements are executed that operate on
the group. The group continues to behave as an alphanumeric data item.

METACLASS
Indicates that the data-name always refers to a class object reference that is an
instance of the metaclass of class-name-1 or of a metaclass derived from the
metaclass of class-name-1.

You can use these object references to INVOKE methods that are defined in
the metaclass.

Part 5. Data Division 191

USAGE clause

The USAGE IS OBJECT REFERENCE clause can be used at any level except level
66 or 88. If a group item is described with the USAGE IS OBJECT REFERENCE
clause, the elementary items within the group are object-reference data items. The
group itself is not an object reference. The USAGE clause of an elementary item
cannot contradict the USAGE clause of a group that contains the item.

An object reference can be defined in any section of the data division of a class,
method, or program, although it does not belong to any class or category. An
object-reference data item can be used in only:

A SET statement (format 7 only)

A relation condition

An INVOKE statement

The USING or RETURNING phrase of an INVOKE statement

The USING or RETURNING phrase of a CALL statement

A program Procedure Division or ENTRY statement USING or RETURNING
phrase

* A method Procedure Division USING or RETURNING phrase

Object reference data items:

Are ignored in CORRESPONDING operations

Are unaffected by INITIALIZE statements

Can be the subject or object of a REDEFINES clause

Cannot be a conditional variable

Can be written to a file (but upon subsequent reading of the record the content
of the object reference is undefined)

A VALUE clause for an object-reference data item can contain only NULL or
NULLS.

You can use the SYNCHRONIZED clause with USAGE IS OBJECT REFERENCE to
obtain efficient alignment of the object-reference data item.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items defined with the USAGE IS
OBJECT REFERENCE clause.

POINTER phrase

A data item defined with USAGE IS POINTER is a pointer data item. A pointer
data item is a 4-byte elementary item,

You can use pointer data items to accomplish limited base addressing. Pointer
data items can be compared for equality or moved to other pointer items.

A pointer data item can only be used:
e In a SET statement (format 5 only)
e In a relation condition

e In the USING phrase of a CALL statement, an ENTRY statement, or the
Procedure Division header.

The USAGE IS POINTER clause can be written at any level except level 88. If a
group item is described with the USAGE IS POINTER clause, the elementary items
within the group are pointer data items; the group itself is not a pointer data item
and cannot be used in the syntax where a pointer data item is allowed. The
USAGE clause of an elementary item cannot contradict the USAGE clause of a
group to which the item belongs.

192 COBOL Language Reference

USAGE clause

Pointer data items can be part of a group that is referred to in a MOVE statement
or an input/output statement. However, if a pointer data item is part of a group,
there is no conversion of values when the statement is executed.

A pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS POINTER to obtain efficient use of
the pointer data item.

A VALUE clause for a pointer data item can contain only NULL or NULLS.
A pointer data item cannot be a conditional variable.
A pointer data item does not belong to any class or category.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items defined with the USAGE IS
POINTER clause.

Pointer data items are ignored in CORRESPONDING operations.

A pointer data item can be written to a data set, but, upon subsequent reading of
the record containing the pointer, the address contained can no longer represent a
valid pointer.

Note: USAGE IS POINTER is implicitly specified for the ADDRESS OF special
register. For more information, see the IBM COBOL Programming Guide for your
platform.

PROCEDURE-POINTER phrase

A procedure-pointer data item can contain the address of a procedure entry point.
Procedure-pointer data items can be compared for equality or moved to other
procedure-pointer data items.

Under OS/390 and VM, a procedure-pointer data item is an 8-byte
elementary item.

Under AIX and Windows, a procedure-pointer data item is a 4-byte
elementary item.

The entry point for a procedure-pointer data item can be:

e The primary entry point of a COBOL program as defined by the
PROGRAM-ID statement of the outermost program of a compilation unit; it
must not be the PROGRAM-ID of a nested program.

* An alternate entry point of a COBOL program as defined by a COBOL ENTRY
statement

* An entry point in a non-COBOL program.

The entry point address and code address are contained in the first word. The
second word is binary zero.

A procedure-pointer data item can only be used:

In a SET statement (format 6 only)

In a CALL statement

In a relation condition

In the USING phrase of an ENTRY statement or the Procedure Division header

Part 5. Data Division 193

USAGE clause

The USAGE IS PROCEDURE-POINTER clause can be written at any level except
level 88. If a group item is described with the USAGE IS PROCEDURE-POINTER
clause, the elementary items within the group are procedure-pointer data items;
the group itself is not a procedure-pointer and cannot be used in the syntax where
a procedure-pointer data item is allowed. The USAGE clause of an elementary
item cannot contradict the USAGE clause of a group to which the item belongs.

Procedure-pointer data items can be part of a group that is referred to in a MOVE
statement or an input/output statement. However, there is no conversion of
values when the statement is executed. If a procedure-pointer data item is written
to a data set, subsequent reading of the record containing the procedure-pointer
can result in an invalid value in the procedure-pointer.

A procedure-pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS PROCEDURE-POINTER to obtain
efficient alignment of the procedure-pointer data item.

The GLOBAL, EXTERNAL, and OCCURS clause can be used with USAGE IS
PROCEDURE-POINTER.

A VALUE clause for a procedure-pointer data item can contain only NULL or
NULLS.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items defined with the USAGE IS
PROCEDURE-POINTER clause.

A procedure-pointer data item cannot be a conditional variable.
A procedure-pointer data item does not belong to any class or category.

Procedure-pointer data items are ignored in CORRESPONDING operations.

NATIVE phrase

Under OS/390 and VM, the NATIVE phrase is treated as a comment.

Using the NATIVE phrase, you can mix characters, floating point, and binary data
as represented on the S390 and native platform. The NATIVE phrase overrides the
CHAR(EBCDIC), FLOAT(HEX), and BINARY(S390) compiler options, which
indicate host data type usages. (Note, the BINARY compiler option is applicable
only to Windows programs.)

Using both host and native data types within a program (ASCII and EBCDIC, Hex
Floating point and IEEE floating point, and/or big endian and little endian binary)
is only valid for those data items specifically defined with the NATIVE phrase.

Specifying NATIVE does not change the class or the category of the data item.

Numeric data items are treated in arithmetic operations (numeric comparisons,
arithmetic expressions, assignment to numeric targets, arithmetic statement) based
on their logical numeric values, regardless of their internal representations.

Characters are converted to the representation of the target item prior to an
assignment.

Comparisons are done based on the collating sequence rules applicable to the
operands. If native and non-native characters are compared, the comparison is
based on the COLLSEQ option in effect.

194 COBOL Language Reference

VALUE clause

VALUE clause

The VALUE clause specifies the initial contents of a data item or the value(s)
associated with a condition name. The use of the VALUE clause differs depending
on the Data Division section in which it is specified.

In the class Working-Storage Section, the VALUE clause can only be used in
condition-name entries.

As an IBM extension, in the File and Linkage Sections, if the VALUE clause is used
in entries other than condition-name entries, the VALUE clause is treated as a
comment.

In the Working-Storage Section, the VALUE clause can be used in condition-name
entries, or in specifying the initial value of any data item. The data item assumes
the specified value at the beginning of program execution. If the initial value is
not explicitly specified, it is unpredictable.

Format 1

—— Format 1—literal value

\4
A

»»—VALUE] literal
IS

Format 1 specifies the initial value of a data item. Initialization is independent of
any BLANK WHEN ZERO or JUSTIFIED clause specified.

A format 1 VALUE clause specified in a data description entry that contains or is
subordinate to an OCCURS clause causes every occurrence of the associated data
item to be assigned the specified value. Each structure that contains the
DEPENDING ON phrase of the OCCURS clause is assumed to contain the
maximum number of occurrences for the purposes of VALUE initialization.

The VALUE clause must not be specified for a data description entry that contains,
or is subordinate to, an entry containing either an EXTERNAL or a REDEFINES
clause. This rule does not apply to condition-name entries.

If the VALUE clause is specified at the group level, the literal must be a
nonnumeric literal or a figurative constant. The group area is initialized without
consideration for the subordinate entries within this group. In addition, the
VALUE clause must not be specified for subordinate entries within this group.

For group entries, the VALUE clause must not be specified if the entry also
contains any of the following clauses: JUSTIFIED, SYNCHRONIZED, or USAGE
(other than USAGE DISPLAY).

The VALUE clause must not conflict with other clauses in the data description
entry, or in the data description of this entry's hierarchy.

Any VALUE clause associated with COMPUTATIONAL-1 or
COMPUTATIONAL-2 (internal floating-point) items must specify a floating-point
literal. The condition-name VALUE phrase must also specify a floating-point
literal. In addition, the figurative constant ZERO and both integer and decimal
forms of the zero literal can be specified in a floating-point VALUE clause or
condition-name VALUE phrase.

Part 5. Data Division 195

VALUE clause

For information on floating-point literal values, see “Rules for floating-point literal
values:” on page 21}

A VALUE clause cannot be specified for external floating-point items.

A VALUE clause associated with a DBCS item must contain a DBCS literal or the
figurative constant SPACE.

A data item cannot contain a VALUE clause if the prior data item contains a
OCCURS clause with the DEPENDING ON phrase.

Rules for literal values:

* Wherever a literal is specified, a figurative constant can be substituted.

e If the item is numeric, all VALUE clause literals must be numeric. If the literal
defines the value of a Working-Storage item, the literal is aligned according to
the rules for numeric moves, with one additional restriction: The literal must
not have a value that requires truncation of nonzero digits. If the literal is
signed, the associated PICTURE character-string must contain a sign symbol
(S).

e All numeric literals in a VALUE clause of an item must have a value that is
within the range of values indicated by the PICTURE clause for that item. For
example, for PICTURE 99PPP, the literal must be within the range 1000
through 99000, or zero. For PICTURE PPP99, the literal must be within the
range 0.00000 through 0.00099.

e If the item is an elementary or group alphabetic, alphanumeric,
alphanumeric-edited, or numeric-edited item, all VALUE clause literals must
be nonnumeric literals. The literal is aligned according to the alphanumeric
alignment rules, with one additional restriction: the number of characters in
the literal must not exceed the size of the item.

* The functions of the editing characters in a PICTURE clause are ignored in
determining the initial appearance of the item described. However, editing
characters are included in determining the size of the item. Therefore, any
editing characters must be included in the literal. For example, if the item is
defined as PICTURE +999.99 and the value is to be +12.34, then the VALUE
clause should be specified as VALUE "+012.34".

Format 2

—— Format 2—condition-name value

v

»»—88—condition-name-1 VALUE
L L s
VALUES—i—
ARE

>—Lliter'al-1 . |
THRO%—Z iteral-2

THRU

A\
A

This format associates a value, values, and/or range(s) of values with a
condition-name. Each such condition-name requires a separate level-88 entry.
Level-number 88 and condition-name are not part of the format 2 VALUE clause
itself. They are included in the format only for clarity.

196 coBoOL Language Reference

VALUE clause

condition-name-1
A user-specified name that associates a value with a conditional variable. If
the associated conditional variable requires subscripts or indexes, each
procedural reference to the condition-name must be subscripted or indexed as
required for the conditional variable.

Condition-names are tested procedurally in condition-name conditions (see
“Conditional expressions” on page [214).

literal-1
When literal-1 is specified alone, the condition-name is associated with a single
value.

literal-1 THROUGH literal-2
The condition-name is associated with at least one range of values. Whenever
the THROUGH phrase is used, literal-1 must be less than literal-2, unless the
associated data item is a non-year-last windowed date field. For details, see
“Rules for condition-name values:.”

In the VALUE clause of a data description entry (format 2), all the literals specified
for the THROUGH phrase must be DBCS literals if the associated conditional
variable is a DBCS data item. The figurative constants SPACE and SPACES can be
used as DBCS literals.

Under OS/390 and VM, the range of DBCS literals specified for the
THROUGH phrase is based on the binary collating sequence of the hexadecimal
values of the DBCS characters.

Under AIX and Windows, the range of nonnumeric literals or DBCS
literals specified for the THROUGH phrase is based on the collating sequence
indicated by the locale (except for single-byte character comparisons when a
non-NATIVE collating sequence is in effect). For more information on locale, see
Appendix F, “Locale considerations (workstation only)” on page

Rules for condition-name values:

* The VALUE clause is required in a condition-name entry, and must be the
only clause in the entry. Each condition-name entry is associated with a
preceding conditional variable. Thus, every level-88 entry must always be
preceded either by the entry for the conditional variable, or by another level-88
entry when several condition-names apply to one conditional variable. Each
such level-88 entry implicitly has the PICTURE characteristics of the
conditional variable.

* The key words THROUGH and THRU are equivalent.

The condition-name entries associated with a particular conditional variable
must immediately follow the conditional variable entry. The conditional
variable can be any elementary data description entry except another
condition-name, a RENAMES clause (level-66 item), or an item with USAGE IS
INDEX.

The conditional variable cannot be an item with USAGE IS POINTER, USAGE
IS PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE.

A condition-name can be associated with a group item data description entry.
In this case:

— The condition-name value must be specified as a nonnumeric literal or
figurative constant.

Part 5. Data Division 197

VALUE clause

— The size of the condition-name value must not exceed the sum of the sizes
of all the elementary items within the group.

— No element within the group can contain a JUSTIFIED or
SYNCHRONIZED clause.

— No USAGE other than DISPLAY can be specified within the group.
USAGE other than USAGE IS DISPLAY can be specified within the group.

Condition-names can be specified both at the group level and at subordinate
levels within the group.

The relation test implied by the definition of a condition-name at the group
level is performed in accordance with the rules for comparison of nonnumeric
operands, regardless of the nature of elementary items within the group.

The VALUE clause is allowed for internal floating-point data items.

The VALUE clause is allowed for DBCS data items. Relation tests for DBCS
data items are performed according to the rules for comparison of DBCS items.
These rules can be found in “Comparison of DBCS operands” on page

A space, a separator comma, or a separator semicolon, must separate
successive operands.

Each entry must end with a separator period.

The type of literal in a condition-name entry must be consistent with the data
type of its conditional variable. In the following example:

— CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables.

The PICTURE associated with COUNTY-NO limits the condition-name
value to a 2-digit numeric literal.

The PICTURE associated with CITY limits the condition-name value to a
3-character nonnumeric literal.

— The associated condition-names are level-88 entries.

Any values for the condition-names associated with CITY-COUNTY-INFO
cannot exceed 5 characters.

Because this is a group item, the literal must be nonnumeric.
05 CITY-COUNTY-INFO.

88 BRONX VALUE "O3NYC".
88 BROOKLYN VALUE "24NYC".
88 MANHATTAN VALUE "31INYC".
88 QUEENS VALUE "41NYC".
88 STATEN-ISLAND VALUE "43NYC".
10 COUNTY-NO PICTURE 99.
88 DUTCHESS VALUE 14.
88 KINGS VALUE 24.
88 NEW-YORK VALUE 31.
88 RICHMOND VALUE 43.
10 CITY PICTURE X(3).
88 BUFFALO VALUE "BUF".
88 NEW-YORK-CITY VALUE "NYC".
88 POUGHKEEPSIE VALUE "POK".

05 POPULATION...

198 cosoL Language Reference

VALUE clause

e If the item is a windowed date field, the following restrictions apply:
— For alphanumeric conditional variables:

— Both literal-1 and literal-2 (if specified) must be alphanumeric literals
of the same length as the conditional variable.

— The literals must not be specified as figurative constants.
- If literal-2 is specified, then both literals must contain only decimal
digits.
— If the YEARWINDOW compiler option is specified as a negative integer,
then literal-2 must not be specified.

— If literal-2 is specified, then literal-1 must be less than literal-2 after
applying the century window specified by the YEARWINDOW compiler
option. That is, the expanded date value of literal-1 must be less than the
expanded date value of literal-2.

For more information on using condition-names with windowed date fields,
see “Condition-name conditions and windowed date field comparisons” on

page
Format 3

—— Format 3—NULL value

»»—VALUE NULL
|—I SJ l—NU LLSJ

\4
A

This format assigns an invalid address as the initial value of an item defined as
USAGE IS POINTER or USAGE IS PROCEDURE-POINTER. It also assigns an
invalid object reference as the initial value of an item defined as USAGE IS
OBJECT REFERENCE.

VALUE IS NULL can only be specified for elementary items described implicitly
or explicitly as USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or
USAGE IS OBJECT REFERENCE.

Part 5. Data Division 199

VALUE clause

200 CoBOL Language Reference

Part 6. Procedure Division

Procedure Division structure 202
Requirements for a method Procedure Division . 203
The Procedure Division header 204
Declaratives 207
Procedures 208
Arithmetic expressions 209
Conditional expressions 214
Statement categories 234
Statement operations 238
Procedure Division statements 250
ACCEPT statement 250
ADD statement 255
ALTER statement 258
CALL statement 260
CANCEL statement 266
CLOSE statement 268
COMPUTE statement 272
CONTINUE statement 274
DELETE statement 275
DISPLAY statement 277
DIVIDE statement 280
ENTRY statement 283
EVALUATE statement 284
EXIT statement 288

© Copyright IBM Corp. 1991, 2000

EXIT METHOD statement 289
EXIT PROGRAM statement 290
GOBACK statement 291
GO TO statement 292
IF statement 294
INITIALIZE statement 296
INSPECT statement 298
INVOKE statement 307
MERGE statement 314
MOVE statement 320
MULTIPLY statement 325
OPEN statement 327
PERFORM statement 332
READ statement 342
RELEASE statement 349
RETURN statement 351
REWRITE statement 353
SEARCH statement 356
SET statement 362
SORT statement 368
START statement 375
STOP statement 378
STRING statement 379
SUBTRACT statement 383
UNSTRING statement 386
WRITE statement 393

201

Procedure Division Structure

Procedure Division structure

The Procedure Division is optional in a COBOL source program, class definition,
and method definition.

Program Procedure Division
A program Procedure Division consists of optional declaratives, and
procedures that contain sections and/or paragraphs, sentences, and statements.

Class Procedure Division
The class Procedure Division contains only method definitions. All methods
introduced in a COBOL class compilation unit must be defined in that
compilation unit's Procedure Division.

Method Procedure Division
A method Procedure Division consists of optional declaratives, and procedures
that contain sections and/or paragraphs, sentences, and statements. A method
can INVOKE other methods, be recursively INVOKEd, and issue a CALL to a
program. A method Procedure Division cannot contain nested programs or
methods.

For additional details on a method Procedure Division, see “Requirements for
a method Procedure Division” on page
—— Format—program and method Procedure Division

>

|-—pr‘ocedur‘e division header—-I

\ 4

LDECLARATIVES.—J'—| sect |—.—USE
paragraph-name.
sentence

»—¥ section-name—L—SECTION . I

|-—priorit_y-number—ﬂ-)—| | ‘

paragraph-name.
sentence:
sect

F—section-name—SECTION '
|-—priorz't.y-number—iz)—|

| END DECLARATIVES.—J
|

\4
A

Notes:
1 As an IBM extension, section-name can be omitted. If you omit section-name, paragraph-name
can be omitted.

2 Priority-numbers are not valid for methods, recursive programs, or (under AIX and Windows)
programs compiled with the THREAD option.

—— Format—class Procedure Division
»»—PROCEDURE DIVISION.

\
A

—Lmethod-definitionj—l

202 © Copyright IBM Corp. 1991, 2000

Procedure Division Structure

Requirements for a method Procedure Division

When using a method Procedure Division, you need to know that:

You can use the EXIT METHOD statement or the GOBACK statement to
return control to the invoking method or program. An implicit EXIT
METHOD statement is generated as the last statement of every method
procedure division.

For details on the EXIT METHOD statement, see “EXIT METHOD statement”
on page

You can use the STOP RUN statement (which terminates the run unit) in a
method.

You can use the RETURN-CODE special register within a method Procedure
Division to access return codes from CALLed subprograms, but the
RETURN-CODE value is not returned to the invoker of the current method.
Use the Procedure Division RETURNING data name to return a value to the
invoker of the current method. For details, see the discussion of RETURNING
data-name-2 under “The Procedure Division header” on page

You cannot specify the following statements in a method PROCEDURE DIVISION:

ALTER

ENTRY

EXIT PROGRAM

GO TO without a specified procedure name
SEGMENTATION

USE FOR DEBUGGING

The following special registers are allocated on a per-invocation basis for methods;
thus, they are in initial state on each method entry.

ADDRESS OF (for each record in the Linkage Section)
RETURN-CODE

SORT-CONTROL

SORT-CORE-SIZE

SORT-FILE-SIZE

SORT-MESSAGE

SORT-MODE-SIZE

SORT-RETURN

TALLY

Part 6. Procedure Division 203

Procedure Division header

The Procedure Division header

The Procedure Division, if specified, is identified by one of the following headers,
depending on whether you are defining a program, method, or class.

—— Format—Procedure Division header for programs and methods
»>—PROCEDURE DIVISION

v

y
v

\'USING ldai.‘a-name-]
—L—_I—REFERENCE—
BY
VALUE
Lgy

\4
A

»
| 2

I—RETURNING—data-name—Z—J

— Format—Procedure Division header for classes
»»>—PROCEDURE DIVISION—.

A\
A

USING
The USING phrase makes data items defined in a calling program available to
a called subprogram or an invoked method.

Only specify the USING phrase if the program is invoked by a CALL
statement or a method is invoked by the INVOKE statement and the CALL or
INVOKE statement includes a USING phrase.

The USING phrase is valid in the Procedure Division header of a called
subprogram entered at the beginning of the nondeclaratives portion; each
USING identifier must be defined as a level-01 or level-77 item in the Linkage
Section of the called subprogram or invoked method; it must not contain a
REDEFINES clause.

A data item in the USING phrase of the Procedure Division header can have a
REDEFINES clause in its data description entry.

In a called subprogram entered at the first executable statement following an
ENTRY statement, the USING option is valid in the ENTRY statement; each
USING identifier must be defined as a level-01 or level-77 item in the Linkage
Section of the called subprogram or invoked method. In a calling program, the
USING phrase is valid for the CALL or INVOKE statement; each USING
identifier must be defined as a level-01, level-77, or an elementary item in the
Data Division.

Each USING identifier in a calling program can be a data item of any level in
the Data Division.

It is possible to call from non-COBOL programs or pass user parameters from
a system command to a COBOL main program.

For AIX and Windows, command-line arguments are always
passed in as native data types. If you specify the host data type compiler
options (CHAR(EBCDIC), FLOAT(HEX), or BINARY(S390)), you must specify
the NATIVE phrase on any arguments with data types affected by these

204 COBOL Language Reference

Procedure Division header

compiler options. (Note, the BINARY compiler option is applicable only to
Windows programs.)

The order of appearance of USING identifiers in both calling and called
subprograms or invoking and invoked methods, determines the
correspondence of single sets of data available to both programs. The
correspondence is positional and not by name. For calling and called
subprograms, corresponding identifiers must contain the same number of
characters, although their data descriptions need not be the same. For
invoking and invoked methods, see “Conformance requirements for USING

phrase” on page

For index-names, no correspondence is established; index-names in calling and
called programs or invoking and invoked methods always refer to separate
indexes.

The identifiers specified in a CALL USING or INVOKE USING statement

name data items available to the calling program or invoking method that can
be referred to in the called program or invoked method; a given identifier can
appear more than once. These items are defined in any Data Division section.

As an IBM extension, an identifier can appear more than once in a Procedure
Division USING phrase. The last value passed to it by a CALL USING or
INVOKE USING statement is used. The BY REFERENCE or BY VALUE
phrase applies to all parameters that follow until overridden by another BY
REFERENCE or BY VALUE phrase.

BY REFERENCE
When a CALL or INVOKE argument is passed BY CONTENT or BY
REFERENCE, BY REFERENCE must be specified or implied for the
corresponding formal parameter on the PROCEDURE/ENTRY USING
phrase.

BY REFERENCE is the default if neither BY REFERENCE or BY VALUE is
specified.

If the reference to the corresponding data item in the CALL or INVOKE
statement declares the parameter to be passed BY REFERENCE (explicit or
implicit), the object program executes as if each reference to a USING
identifier in the called subprogram or invoked method Procedure Division
is replaced by a reference to the corresponding USING identifier in the
calling program or invoked method.

If the reference to the corresponding data item in the CALL or INVOKE
statement declares the parameter to be passed BY CONTENT, the value of
the item is moved when the CALL or INVOKE statement is executed and
placed into a system-defined storage item possessing the attributes
declared in the Linkage Section for data-name-1. The data description of
each parameter in the BY CONTENT phrase of the CALL or INVOKE
statement must be the same, meaning no conversion or extension or
truncation, as the data description of the corresponding parameter in the
USING phrase of the Procedure Division header.

BY VALUE
If the reference to the corresponding data item in the CALL or INVOKE
statement declares the parameter to be passed BY VALUE, then the value
of the argument is passed, not a reference to the sending data item. Since
CALLed subprograms and INVOKEd methods have access only to a
temporary copy of the sending data item, any modifications made to the

Part 6. Procedure Division 205

Procedure Division header

formal parameters corresponding to the BY VALUE argument do not affect
the argument.

Examples illustrating these concepts can be found in IBM COBOL
Programming Guide for your platform.

RETURNING data-name-2
Is the RETURNING phrase identifier. It specifies a data item to be returned as
a program or method result. You must define data-name-2 as either a level 01
or 77 entry in the Linkage Section.

Data-name-2 is an output-only parameter. The initial state of data-name-2 has
an undefined and unpredictable value when the program or method is
entered. You must initialize data-name-2 in the program or method before
you reference its value. When a program or method returns to its invoker, the
final value in data-name-2 is implicitly stored into the identifier specified in
the CALL RETURNING phrase or the INVOKE RETURNING phrase, as
described in “CALL statement” on page or “INVOKE statement” on

page

When you specify Procedure Division RETURNING data-name-2, the
RETURN-CODE special register can be used within the PROCEDURE
DIVISION only as a means of accessing return codes from CALLed
subprograms. The RETURN-CODE value is not returned to the caller of the
current program (the value in data-name-2 is).

When the RETURNING phrase is specified on the PROCEDURE DIVISION
header of a program or method, the CALL or INVOKE statement used to pass
control to the program or method must also specify a RETURNING phrase.
The data-name-2 and the identifier specified on the CALL or INVOKE
RETURNING must have the same PICTURE, USAGE, SIGN, SYNCHRONIZE,
JUSTIFIED, and BLANK WHEN ZERO clauses (except that PICTURE clause
currency symbols can differ, and periods and commas can be interchanged due
to the DECIMAL POINT IS COMMA clause).

Do not use the Procedure Division RETURNING phrase in:

e Programs that contain the ENTRY statement
* Nested programs

* Main programs— results of specifying Procedure Division RETURNING
on a main program are undefined. You should only specify the Procedure
Division RETURNING phrase on called subprograms. For main programs,
use the RETURN-CODE special register to return a value to the operating
environment.

. Under OS/390 and VM, on programs that use CEEPIPI—results
of specifying Procedure Division RETURNING on programs that are called
with the Language Environment preinitialization service (CEEPIPI) are

undefined.

Data items defined in the Linkage Section of the called program or invoked
method, can be referenced within the Procedure Division of that program if, and
only if, they satisfy one of the following conditions:

* They are operands of the USING phrase of the Procedure Division header or
the ENTRY statement

* They are operands of SET ADDRESS OF, CALL...BY REFERENCE ADDRESS
OF, or INVOKE...BY REFERENCE ADDRESS OF

206 COBOL Language Reference

Declaratives
* They are defined with a REDEFINES or RENAMES clause, the object of which
satisfies the above conditions
* They are items subordinate to any item that satisfies the condition in the rules
above

* They are condition-names or index-names associated with data items that
satisfy any of the above conditions

Declaratives

Declaratives provide one or more special-purpose sections that are executed when
an exceptional condition occurs.

When Declarative Sections are specified, they must be grouped at the beginning of
the Procedure Division, and the entire Procedure Division must be divided into
sections.

Each Declarative Section starts with a USE statement that identifies the section's
function; the series of procedures that follow specify what actions are to be taken
when the exceptional condition occurs. Each Declarative Section ends with
another section-name followed by a USE statement, or with the key words END
DECLARATIVES. See “USE statement” on page for more information on the
USE statement.

The entire group of Declarative Sections is preceded by the key word
DECLARATIVES, written on the line after the Procedure Division header; the
group is followed by the key words END DECLARATIVES. The key words
DECLARATIVES and END DECLARATIVES must each begin in Area A and be
followed by a separator period. No other text can appear on the same line.

In the declaratives part of the Procedure Division, each section header must be
followed by a separator period, and must be followed by a USE statement,
followed by a separator period. No other text can appear on the same line.

The USE statement has three formats:

1. EXCEPTION declarative (see “USE statement” on page {82)
2. DEBUGGING declarative (see “USE statement” on page [482)
3. LABEL declarative (see “USE statement” on page [482)

The USE statement itself is never executed; instead, the USE statement defines the
conditions that execute the succeeding procedural paragraphs, which specify the
actions to be taken. After the procedure is executed, control is returned to the
routine that activated it.

Within a declarative procedure, except for the USE statement itself, there must be
no reference to any nondeclarative procedure.

As IBM extensions, the following apply to declarative procedures:
Under AIX, Windows, OS/390, and VM:

* A declarative procedure can be performed from a nondeclarative
procedure.

Additionally, under OS/390 and VM:

* A nondeclarative procedure can be performed from a declarative
procedure.

e A declarative procedure can be referenced in a GO TO statement in a
declarative procedure.

Part 6. Procedure Division 207

Procedures

* A nondeclarative procedure can be referenced in a GO TO statement in a
declarative procedure.

Within a declarative procedure, no statement should be included that would cause
the execution of a USE procedure that had been previously called and had not yet
returned control to the calling routine.

You can include a statement that executes a previously called USE procedure that
is still in control. However, to avoid an infinite loop, you must be sure there is an
eventual exit at the bottom.

The declarative procedure is exited when the last statement in the procedure is
executed.

Procedures

Within the Procedure Division, a procedure consists of:

* A section or a group of sections
* A paragraph or group of paragraphs

A procedure-name is a user-defined name that identifies a section or a paragraph.

Section
A section-header optionally followed by one or more paragraphs.

Section-header
A section-name followed by the key word SECTION, optionally followed,
by a priority-number, followed by a separator period.

Section-headers are optional after the key words END DECLARATIVES or
if there are no declaratives.

Section-name
A user-defined word that identifies a section. A referenced
section-name, because it cannot be qualified, must be unique within
the program in which it is defined.

Priority-number
An integer or a positive signed numeric literal ranging in value from 0
through 99.

Sections in the declaratives portion must contain priority numbers in the
range of 0 through 49.

You cannot specify priority-numbers:

* In a method definition

* In a program that is declared with the RECURSIVE attribute

* In a program that specifies the THREAD compiler option (Workstation
only)

A section ends immediately before the next section header, or at the end of
the Procedure Division, or, in the declaratives portion, at the key words
END DECLARATIVES.

Paragraph
A paragraph-name followed by a separator period, optionally followed by one
or more sentences.

208 COBOL Language Reference

Arithmetic expressions

Note: Paragraphs must be preceded by a period because paragraphs always
follow either the ID Division header, a Section, or another paragraph, all of
which must end with a period.

Paragraph-name
A user-defined word that identifies a paragraph. A paragraph-name,
because it can be qualified, need not be unique.

If there are no declaratives (format-2), a paragraph-name is not required in
the Procedure Division.

A paragraph ends immediately before the next paragraph-name or section
header, or at the end of the Procedure Division, or, in the declaratives portion,
at the key words END DECLARATIVES.

As an IBM extension, all paragraphs do not need to be contained within
sections, even if one or more paragraphs are so contained.

Sentence
One or more statements terminated by a separator period.

Statement
A syntactically valid combination of identifiers and symbols (literals,
relational-operators, and so forth) beginning with a COBOL verb.

identifier
The word or words necessary to make unique reference to a data
item, optionally including qualification, subscripting, indexing, and
reference-modification. In any Procedure Division reference
(except the class test), the contents of an identifier must be
compatible with the class specified through its PICTURE clause, or
results are unpredictable.

Execution begins with the first statement in the Procedure Division, excluding
declaratives. Statements are executed in the order in which they are presented
for compilation, unless the statement rules dictate some other order of
execution.

The end of the Procedure Division is indicated by one of the following:

¢ An Identification Division header, which indicates the start of a nested
source program

¢ The END PROGRAM header

e The physical end of the program; that is, the physical position in a source
program after which no further source program lines occur

Arithmetic expressions

Arithmetic expressions are used as operands of certain conditional and arithmetic
statements.

An arithmetic expression can consist of any of the following:

1.

An identifier described as a numeric elementary item (including numeric
functions)

A numeric literal
The figurative constant ZERO

Identifiers and literals, as defined in items 1, 2, and 3, separated by arithmetic
operators

Part 6. Procedure Division 209

Arithmetic expressions
5. Two arithmetic expressions, as defined in items 1, 2, 3, and/or 4, separated by
an arithmetic operator

6. An arithmetic expression, as defined in items 1, 2, 3, 4, and/or 5, enclosed in
parentheses.

Any arithmetic expression can be preceded by a unary operator.

Identifiers and literals appearing in arithmetic expressions must represent either
numeric elementary items or numeric literals on which arithmetic can be
performed.

If an exponential expression is evaluated as both a positive and a negative number,
the result will always be the positive number. The square root of 4, for example,
4 %% 0.5 (the square root of 4)

is evaluated as +2 and -2. IBM COBOL always returns +2.

If the value of an expression to be raised to a power is zero, the exponent must
have a value greater than zero. Otherwise, the size error condition exists. In any
case where no real number exists as the result of the evaluation, the size error
condition exists.

Arithmetic operators

Five binary arithmetic operators and two unary arithmetic operators (Table 14) can
be used in arithmetic expressions. They are represented by specific characters that
must be preceded and followed by a space.

Table 14. Binary and unary operators

Binary Unary

operator Meaning operator Meaning
+ Addition + Multiplication by +1
- Subtraction - Multiplication by -1
* Multiplication
/ Division
* Exponentiation

Note: Exponents in fixed-point exponential expressions cannot contain more than
9 digits. The compiler will truncate any exponent with more than 9 digits. In this
case, the compiler will issue a diagnostic message if the exponent is a literal or
constant; if the exponent is a variable or data-name, a diagnostic is issued at
run-time.

Parentheses can be used in arithmetic expressions to specify the order in which
elements are to be evaluated.

Expressions within parentheses are evaluated first. When expressions are
contained within a nest of parentheses, evaluation proceeds from the least
inclusive to the most inclusive set.

When parentheses are not used, or parenthesized expressions are at the same level
of inclusiveness, the following hierarchic order is implied:

1. Unary operator

2. Exponentiation

3. Multiplication and division

4. Addition and subtraction.

210 COBOL Language Reference

Arithmetic expressions

Parentheses either eliminate ambiguities in logic where consecutive operations
appear at the same hierarchic level or modify the normal hierarchic sequence of
execution when this is necessary. When the order of consecutive operations at the
same hierarchic level is not completely specified by parentheses, the order is from
left to right.

An arithmetic expression can begin only with a left parenthesis, a unary operator,
or an operand (that is, an identifier or a literal). It can end only with a right
parenthesis or an operand. An arithmetic expression must contain at least one
reference to an identifier or a literal.

There must be a one-to-one correspondence between left and right parentheses in
an arithmetic expression, with each left parenthesis placed to the left of its
corresponding right parenthesis.

If the first operator in an arithmetic expression is a unary operator, it must be
immediately preceded by a left parenthesis if that arithmetic expression
immediately follows an identifier or another arithmetic expression.

Table 15 shows permissible arithmetic symbol pairs. An arithmetic symbol pair is
the combination of two such symbols in sequence. In the table:

Yes indicates a permissible pairing.
No indicates that the pairing is not permitted.

Table 15. Valid arithmetic symbol pairs

Second symbol

Unary +
Identifier [y or
First symbol or literal - unary - ()
Identifier or literal No Yes No No Yes
O 4 - Yes No Yes Yes No
Unary + or unary - Yes No No Yes No
(Yes No Yes Yes No
) No Yes No No Yes

Arithmetic with date fields

Arithmetic operations that include a date field are restricted to:

e Adding a non-date to a date field

e Subtracting a non-date from a date field

e Subtracting a date field from a compatible date field

Date field operands are compatible if they have the same date format except for
the year part, which can be windowed or expanded.

The following operations are not allowed:

* Any operation between incompatible dates

* Adding two date fields

* Subtracting a date field from a non-date

e Unary minus, applied to a date field

* Division, exponentiation, or multiplication of or by a date field
e Arithmetic expressions that specify a year-last date field

Part 6. Procedure Division 211

Arithmetic expressions

* Arithmetic statements that specify a year-last date field, except as a receiving
data item when the sending field is a non-date

The following pages describe the result of using date fields in the supported
addition and subtraction operations.

For more information on using date fields in arithmetic operations, see:
* “ADD statement” on page

e “COMPUTE statement” on page
e “SUBTRACT statement” on page

Notes:

1. Arithmetic operations treat date fields as numeric items; they do not recognize
any date-specific internal structure. For example, adding 1 to a windowed
date field containing the value 991231 (that might be used in an application to
represent December 31, 1999) results in the value 991232, not 000101.

2. When used as operands in arithmetic expressions or arithmetic statements,
windowed date fields are automatically expanded according to the century
window specified by the YEARWINDOW compiler option. When
the DATEPROC(TRIG) compiler option is in effect, this expansion is sensitive
to trigger values in the windowed date field. For details of
both regular and trigger-sensitive windowed expansion,
see “Semantics of windowed date fields” on page

Addition involving date fields

The following table shows the result of using a date field with a compatible
operand in an addition.

Table 16. Results of using date fields in addition

Second operand
First operand Non-date Date field
Non-date Non-date Date field
Date field Date field Not allowed

For details on how a result is stored in a receiving field, see “Storing arithmetic
results that involve date fields” on page

Subtraction involving date fields

The following table shows the result of using a date field with a compatible
operand in the subtraction:

first operand — second operand
In a SUBTRACT statement, these operands appear in the reverse order:
SUBTRACT second operand FROM first operand

Table 17. Results of Using date fields in subtraction

Second operand
First operand Non-date Date field
Non-date Non-date Not allowed
Date field Date field Non-date

212 COBOL Language Reference

Arithmetic expressions

Storing arithmetic results that involve date fields

The following statements perform arithmetic, then store the result, or sending field,
into one or more receiving fields:

ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

Note: In a MULTIPLY statement, only GIVING identifiers can be date fields. In a
DIVIDE statement, only GIVING identifiers or the REMAINDER identifier can be
date fields.

Any windowed date fields that are operands of the arithmetic expression or
statement are treated as if they were expanded before use, as described under
“Semantics of windowed date fields” on page

If the sending field is a date field, then the receiving field must be a compatible
date field. That is, both fields must have the same date format, except for the year
part, which can be windowed or expanded.

If the ON SIZE ERROR clause is not specified on the statement, the store operation
follows the existing COBOL rules for the statement, and proceeds as if the
receiving and sending fields (after any automatic expansion of windowed date
field operands or result) were both non-dates.

When the ON SIZE ERROR clause is specified, Table 18 on page shows how
these statements store the value of a sending field in a receiving field, where either
field may be a date field.

Table 18 on page uses the following terms to describe how the store is
performed:

Non-windowed
The statement performs the store with no special date-sensitive size error
processing, as described under “SIZE ERROR phrases” on page [240]

Windowed...

...with non-date sending field

The non-date sending field is treated as a windowed date field compatible
with the windowed date receiving field, but with the year part
representing the number of years since 1900. (This representation is
similar to a windowed date field with a base year of 1900, except that the
year part is not limited to a positive number of at most 2 digits.) The store
proceeds as if this assumed year part of the sending field were expanded
by adding 1900 to it.

...with date sending field

The store proceeds as if all windowed date field operands had been
expanded as necessary, so that the sending field is a compatible expanded
date field.

Size error processing: For both kinds of sending field, if the assumed or
actual year part of the sending field falls within the century window, then
the sending field is stored in the receiving field after removing the century
component of the year part. That is, the low-order or rightmost 2 digits of
the expanded year part are retained, and the high-order or leftmost 2
digits are discarded.

Part 6. Procedure Division 213

Conditional expressions

If the year part does not fall within the century window, then the receiving
field is unmodified, and the size error imperative statement is executed
when any remaining arithmetic operations are complete.

For example:

77 DUE-DATE PICTURE 9(5) DATE FORMAT YYXXX.
77 IN-DATE PICTURE 9(8) DATE FORMAT YYYYXXX VALUE 1995001.

COMPUTE DUE-DATE = IN-DATE + 10000
ON SIZE ERROR imperative-statement
END-COMPUTE

The sending field is an expanded date field representing January 1, 2005.
Assuming that 2005 falls within the century window, the value stored in
DUE-DATE is 05001—the sending value of 2005001 without the century
component 20.

Size error processing and trigger values: If the DATEPROC(TRIG) compiler
option is in effect, and the sending field contains a trigger value (either zero or all
nines) the size error imperative statement is executed, and the result is not stored
in the receiving field.

A non-date is considered to have a trigger value of all nines if it has a nine in
every digit position of its assumed date format. Thus, for a receiving date format
of YYXXX, the non-date value 99,999 is a trigger, but the values 9,999 and 999,999
are not, although the larger value of 999,999 will cause a size error anyway.

Table 18. Storing arithmetic results involving date fields when ON SIZE ERROR is specified

Sending field
Receiving field Non-date Date field
Non-date Non-windowed Not allowed
Windowed date field Windowed Windowed
Expanded date field Non-windowed Non-windowed

Conditional expressions

A conditional expression causes the object program to select alternative paths of
control, depending on the truth value of a test. Conditional expressions are
specified in EVALUATE, IF, PERFORM, and SEARCH statements.

A conditional expression can be specified in either simple conditions or complex
conditions. Both simple and complex conditions can be enclosed within any
number of paired parentheses; the parentheses do not change whether the
condition is simple or complex.

Simple conditions

There are five simple conditions:

¢ (lass condition

¢ Condition-name condition
¢ Relation condition

* Sign condition

e Switch-status condition

214 COBOL Language Reference

Conditional expressions

A simple condition has a truth value of either true or false.

Class condition

The class condition determines whether the content of a data item is alphabetic,
alphabetic-lower, alphabetic-upper, numeric, or contains only the characters in the
set of characters specified by the CLASS clause as defined in the SPECIAL-NAMES
paragraph of the Environment Division.

The class condition determines whether the contents of a data item are DBCS or

KANTJIL
— Format
»»—identifier-1 NUMERIC)
|—IS—J |—NOT—J ALPHABETIC

ALPHABETIC-LOWER—
ALPHABETIC-UPPER—
class-name
DBCS

KANJI

identifier-1
Must reference a data item whose usage is explicitly or implicitly DISPLAY.

Identifier-1 can reference a data item whose usage is explicitly or implicitly
DISPLAY-1.

If identifier-1 is a function-identifier, it must reference an alphanumeric
function.

NOT
When used, NOT and the next key word define the class test to be executed
for truth value. For example, NOT NUMERIC is a truth test for determining
that an identifier is nonnumeric.

NUMERIC
Identifier consists entirely of the characters 0 through 9, with or without an
operational sign.

If its PICTURE does not contain an operational sign, the identifier being tested
is determined to be numeric only if the contents are numeric and an
operational sign is not present.

If its PICTURE does contain an operational sign, the identifier being tested is
determined to be numeric only if the item is an elementary item, the contents
are numeric, and a valid operational sign is present.

The NUMERIC test cannot be used with an identifier described as alphabetic
or as a group item that contains one or more signed elementary items.

For numeric data items, the identifier being tested can be described as USAGE
DISPLAY or (as IBM extensions) USAGE COMPUTATIONAL-3, or USAGE
PACKED-DECIMAL.

ALPHABETIC
Identifier consists entirely of any combination of the lowercase or uppercase
alphabetic characters A through Z and the space.

The ALPHABETIC test cannot be used with an identifier described as numeric.

Part 6. Procedure Division 215

Conditional expressions

ALPHABETIC-LOWER
Identifier consists entirely of any combination of the lowercase alphabetic
characters a through z and the space.

The ALPHABETIC-LOWER test cannot be used with an identifier described as
numeric.

ALPHABETIC-UPPER
Identifier consists entirely of any combination of the uppercase alphabetic
characters A through Z and the space.

The ALPHABETIC-UPPER test cannot be used with an identifier described as
numeric.

class-name
Identifier consists entirely of the characters listed in the definition of
class-name in the SPECIAL-NAMES paragraph.

The class-name test must not be used with an identifier described as numeric.

DBCS
Under OS/390 and VM, the identifier consists entirely of DBCS
characters. For DBCS data items, the identifier being tested must be described
explicitly or implicitly as USAGE DISPLAY-1. Each byte of the DBCS
identifier being tested can contain characters that range in value from X'00'

through X'FF'.

Under AIX and Windows, the identifier contains DBCS characters
that correspond to valid OS/390 DBCS characters.

For all platforms, a range check is performed on the data portion of the item
for valid character representation. The valid range is X'41' through X'FE' for
both bytes of each DBCS character and X'4040"' for the DBCS blank. (These
ranges are for the equivalent DBCS character representation for OS/390, not
the actual DBCS character value ranges of the workstation DBCS characters.)

KAN]JI
Under OS/390 and VM, the identifier consists entirely of DBCS
characters. For KAN]JI data items, the identifier being tested must be described
explicitly or implicitly as USAGE DISPLAY-1. Each byte of the DBCS
identifier being tested can contain characters that range in value from X'00'

through X'FF'.

Under AIX and Windows the identifier contains DBCS characters
that correspond to valid OS/390 DBCS characters.

For all platforms, a range check is performed on the data portion of the item
for valid character representation. The valid range is from X'41' through
X'7F" for the first byte, from X'41" through X'FE' for the second byte, and
X'4040" for the DBCS blank. (These ranges are for the equivalent DBCS
character representation for OS/390, not the actual DBCS character value
ranges of the workstation DBCS characters.)

The class test is not valid for items defined as USAGE IS INDEX, as these items do
not belong to any class or category.

The class test is not valid for items defined as USAGE IS POINTER or USAGE IS
PROCEDURE-POINTER, as these items do not belong to any class or category.

The class condition cannot be used for external floating-point (USAGE DISPLAY)
or internal floating-point (USAGE COMP-1 and USAGE COMP-2) items.

216 COBOL Language Reference

Conditional expressions

Table 19 shows valid forms of the class test.

Table 19. Valid forms of the class test for different types of identifiers

Type of identifier Valid forms of the class test

Alphabetic ALPHABETIC NOT ALPHABETIC
ALPHABETIC-LOWER NOT ALPHABETIC-LOWER
ALPHABETIC-UPPER NOT ALPHABETIC-UPPER

class-name NOT class-name
Alphanumeric, ALPHABETIC NOT ALPHABETIC
alphanumeric-edited, or ALPHABETIC-LOWER NOT ALPHABETIC-LOWER
numeric-edited ALPHABETIC-UPPER NOT ALPHABETIC-UPPER

NUMERIC NOT NUMERIC

class-name NOT class-name
External-decimal NUMERIC NOT NUMERIC
or internal-decimal
DBCS DBCS NOT DBCS

KANTJI NOT KAN]JI

Condition-name condition

A condition-name condition tests a conditional variable to determine whether its
value is equal to any value(s) associated with the condition-name.

—— Format

\4
A

»»—condition-name

A condition-name is used in conditions as an abbreviation for the relation
condition. The rules for comparing a conditional variable with a condition-name
value are the same as those specified for relation conditions.

If the condition-name has been associated with a range of values (or with several
ranges of values), the conditional variable is tested to determine whether or not its
value falls within the range(s), including the end values. The result of the test is
true if one of the values corresponding to the condition-name equals the value of
its associated conditional variable.

Condition-names with DBCS and floating-point values are allowed.

The following example illustrates the use of conditional variables and
condition-names:

01 AGE-GROUP PIC 99.
88 INFANT VALUE 0.
88 BABY VALUE 1, 2.
88 CHILD VALUE 3 THRU 12.
88 TEEN-AGER VALUE 13 THRU 19.

AGE-GROUP is the conditional variable; INFANT, BABY, CHILD, and
TEEN-AGER are condition-names. For individual records in the file, only one of
the values specified in the condition-name entries can be present.

The following IF statements can be added to the above example to determine the
age group of a specific record:

IF INFANT... (Tests for value 0)

IF BABY... (Tests for values 1, 2)

IF CHILD... (Tests for values 3 through 12)
IF TEEN-AGER... (Tests for values 13 through 19)

Part 6. Procedure Division 217

Conditional expressions

Depending on the evaluation of the condition-name condition, alternative paths of
execution are taken by the object program.

Condition-name conditions and windowed date field
comparisons

If the conditional variable is a windowed date field, then the values associated
with its condition-names are treated like values of the windowed date field; that is,
they are treated as if they were converted to expanded date format, as described
under “Semantics of windowed date fields” on page

For example, given YEARWINDOW(1945), specifying a century window of
1945-2044, and the following definition:

05 DATE-FIELD PIC 9(6) DATE FORMAT YYXXXX.
88 DATE-TARGET VALUE 051220.

then a value of 051220 in DATE-FIELD would cause the following condition to be
true:
IF DATE-TARGET...

because the value associated with DATE-TARGET and the value of DATE-FIELD
would both be treated as if they were prefixed by “20” before comparison.

However, the following condition would be false:
IF DATE-FIELD = 051220...
because, in a comparison with a windowed date field, literals are treated as if they

are prefixed by “19”, regardless of the century window. So the above condition
effectively becomes:

IF 20051220 = 19051220...

For more information on using windowed date fields in conditional expressions,
see “Date fields” on page

Relation condition

A relation condition compares two operands, either of which can be an identifier,
literal, arithmetic expression, or index-name. A nonnumeric literal can be enclosed
in parentheses within a relation condition.

—— Format 1
»»—operand-1 GREATER operand-2—»<
P l—ISJ |—NOTJ |—THANJ P

R B
THAN

—<

AT T
TO

218 COBOL Language Reference

Conditional expressions

operand-1
The subject of the relation condition. Can be an identifier, literal,
function-identifier, arithmetic expression, or index-name.

operand-2
The object of the relation condition. Can be an identifier, literal,
function-identifier, arithmetic expression, or index-name.

The relation condition must contain at least one reference to an identifier.

The relational operator specifies the type of comparison to be made. Table 20
shows relational operators and their meanings. Each relational operator must be
preceded and followed by a space. The relational operators >= and <= must not
have a space between them.

Table 20. Relational operators and their meanings

Relational operator Can be written Meaning

IS GREATER THAN IS > Greater than

IS NOT GREATER THAN IS NOT > Not greater than

IS LESS THAN IS < Less than

IS NOT LESS THAN IS NOT < Not less than

IS EQUAL TO IS = Equal to

IS NOT EQUAL TO IS NOT = Not equal to

IS GREATER THAN OR IS >= Is greater than or equal to
EQUAL TO

IS LESS THAN OR EQUAL IS <= Is less than or equal to
TO

Date fields

Date fields can be alphanumeric, external decimal, or internal decimal; the existing
rules for the validity and mode (numeric or nonnumeric) of comparing such items
still apply. For example, an alphanumeric date field cannot be compared with an
internal decimal date field. In addition to these rules, two date fields can be
compared only if they are compatible; they must have the same date format except
for the year part, which can be windowed or expanded.

For year-last date fields, the only comparisons that are supported are IS EQUAL
TO and IS NOT EQUAL TO between two year-last date fields with identical date
formats, or between a year-last date field and a non-date.

Table 21 on page 20 shows supported comparisons for non-year-last date fields.
This table uses the following terms to describe how the comparisons are
performed:

Non-windowed
The comparison is performed with no windowing, as if the operands were
both non-dates.

Windowed
The comparison is performed as if:

1. Any windowed date field in the relation were expanded according to
the century window specified by the YEARWINDOW compiler option,
as described under “Semantics of windowed date fields” on page

Part 6. Procedure Division 219

Conditional expressions

This expansion is sensitive to trigger values in the date field
comparand if the DATEPROC(TRIG) compiler option is in effect.

2. Any repetitive alphanumeric figurative constant were expanded to the
size of the windowed date field with which it is compared, giving an
alphanumeric non-date comparand. Repetitive alphanumeric

figurative constants include ZERO (in an alphanumeric context),
SPACE, LOW-VALUE, HIGH-VALUE, QUOTE and ALL literal.

3. Any non-date operands were treated as if they had the same date
format as the date field, but with a base year of 1900.

If the DATEPROC(NOTRIG) compiler option is in effect, the
comparison is performed as if the non-date operand were expanded by
assuming 19 for the century part of the expanded year.

If the DATEPROC(TRIG) compiler option is in effect, the comparison is
sensitive to date trigger values in the non-date operand. For
alphanumeric operands, these trigger values are LOW-VALUE,
HIGH-VALUE, and SPACE. For alphanumeric and numeric operands
compared with windowed date fields with at least one X in the DATE
FORMAT clause (that is, windowed date fields other than just a
windowed year), values of all zeros or all nines are also treated as
triggers. If a non-date operand contains a trigger value, the
comparison proceeds as if the non-date operand were expanded by
copying the trigger value to the assumed century part of the expanded
year. If the non-date operand does not contain a trigger value, the
century part of the expanded year is assumed to be 19.

The comparison is then performed according to normal COBOL rules.
Nonnumeric comparisons are not changed to numeric comparisons by the
prefixing of the century value.

Table 21. Comparisons with date fields

Second operand
Windowed date
First operand Non-date field Expanded date field
Non-date Non-windowed | Windowed! Non-windowed
Windowed date field Windowed! Windowed Windowed
Expanded date field Non-windowed | Windowed Non-windowed
Note:

1. When compared with windowed date fields, non-dates are assumed to contain a
windowed year relative to 1900. For details, see items 3 and 4 under the definition of
“Windowed” comparison.

Relation conditions can contain arithmetic expressions. For information about the
treatment of date fields in arithmetic expressions, see “Arithmetic with date fields”

on page
DBCS items

Under OS/390 and VM, DBCS data items and literals can be used with
all relational operators. Comparisons are based on the binary collating sequence of
the hexadecimal values of the DBCS characters. If the DBCS items are not the
same length, the smaller item is padded on the right with DBCS spaces.

220 COBOL Language Reference

Conditional expressions

Under AIX and Windows, comparisons of DBCS data items and
literals are based on a collation sequence according to the COLLSEQ compiler
option:

e If the COLLSEQ(NATIVE) compiler option is in effect, then the collating
sequence is determined by the locale. For information on the locale, see
Appendix F, “Locale considerations (workstation only)” on page

e Otherwise, the collating sequence is determined by the binary values of the
DBCS characters.

Note: The PROGRAM COLLATING SEQUENCE clause will not be applied in
comparisons of DBCS data items and literals.

DBCS items can be compared only with DBCS items.
Pointer data items

Only EQUAL and NOT EQUAL are allowed as relational operators when
specifying pointer data items. Pointer data items are items defined explicitly as
USAGE IS POINTER, or are ADDRESS OF special registers, which are implicitly
defined as USAGE IS POINTER.

The operands are equal if the two addresses used in the comparison would both
result in the same storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH
format 1 statements. It is not allowed in SEARCH format 2 (SEARCH ALL)
statements, because there is no meaningful ordering that can be applied to pointer
data items.

—— Format 2

> ADDRESS OF—identifier-1 EQUAL >
Eidentifier-z— Lisd Lyord Lo

NULL =
NULLS

ADDRESS OF—identifier-3
identifier-4———
NULL

NULLS

A\
A

identifier-1
identifier-3
Can specify any level item defined in the Linkage Section, except 66 and 88.

identifier-2
identifier-4
Must be described as USAGE IS POINTER.

NULL(S)
As in this syntax diagram, can be used only if the other operand is defined as
USAGE IS POINTER. That is, NULL=NULL is not allowed.

Table 22 summarizes the permissible comparisons for USAGE IS POINTER,
NULL, and ADDRESS OF.

Part 6. Procedure Division 221

Conditional expressions

Table 22. Permissible comparisons for USAGE IS POINTER, NULL, and ADDRESS OF

Second operand

USAGE IS
First operand POINTER ADDRESS OF NULL/NULLS
USAGE IS POINTER Yes Yes Yes
ADDRESS OF Yes Yes Yes
NULL/NULLS Yes Yes No

Note:

YES = Comparison allowed only for EQUAL, NOT EQUAL
NO = No comparison allowed

Procedure-pointer data items

Only EQUAL and NOT EQUAL are allowed as relational operators when
specifying procedure-pointer data items. Procedure-pointer data items are items
defined explicitly as USAGE IS PROCEDURE-POINTER.

The operands are equal if the two addresses used in the comparison would both
result in the same storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH
format 1 statements. It is not allowed in SEARCH format 2 (SEARCH ALL)
statements, because there is no meaningful ordering that can be applied to
procedure-pointer data items.

— Format 3

> EQUAL
Eidenti fier-1- L1s- Lyor Lo
NULL————— }

v

\4
A

NULL

Eidentiﬁer-z—
NULLS

identifier-1
identifier-2
Must be described as USAGE IS PROCEDURE-POINTER.

NULL(S)
As in this syntax diagram, can be used only if the other operand is defined as
USAGE IS PROCEDURE-POINTER. That is, NULL=NULL is not allowed.

Object reference data items

A data item of USAGE OBJECT REFERENCE can be compared for equality or
inequality with another data item of USAGE OBJECT REFERENCE or with NULL,
NULLS, or SELF. (A comparison with SELF is only allowed in a method.) Two
object-references compare equal only if the data items identify the same object.

222 COBOL Language Reference

Conditional expressions

— Format 4

>> object-reference-identifier-1 EQUAL >
ESELF LIS—J LNOT—J |—TO——'

NULL =
NULLS

object-reference-identifier-2
SELF

NULL

NULLS

Comparison of numeric and nonnumeric operands

v
A

Comparing numeric operands

The algebraic values of numeric operands are compared.

The length (number of digits) of the operands is not significant.
Unsigned numeric operands are considered positive.

Zero is considered to be a unique value, regardless of sign.
Comparison of numeric operands is permitted, regardless of the type of
USAGE specified for each.

Table 23 on page summarizes permissible comparisons with numeric
operands.
The symbols used in Table 23 and Table 24 are as follows:

NN = Comparison for nonnumeric operands
NU = Comparison for numeric operands
Blank = Comparison is not allowed.

Part 6. Procedure Division 223

Conditional expressions

Table 23. Permissible comparisons with numeric second operands

Second operand

First operand ZR NL ED BI AE ID IFP EFP FPL
Nonnumeric operand

Group (GR) NN NN! NN! NN
Alphabetic (AL) NN NN! NN! NN
Alphanumeric (AN) NN NN! NNt NN
Alphanumeric-edited (ANE) NN NN! NNt NN
Numeric-edited (NE) NN NN! NNt NN
Figurative constant (FC2) NNt NN
Nonnumeric literal (NNL) NN! NN

Numeric operand

Figurative constant ZERO NU NUNUNU NU NU

(ZR)

Numeric literal (NL) NU NUNUNU NU NU
External decimal (ED) NU NU NU NUNUNU NU NU NU
Binary (BI) NU NU NU NUNUNU NU NU NU
Arithmetic expression (AE) NU NU NU NUNUNU NU NU NU
Internal decimal ID) NU NU NU NUNUNU NU NU NU
Internal floating-point IFP) NU NU NU NUNUNU NU NU NU
External floating-point (EFP) NU NU NU NUNUNU NU NU NU

Floating-point literal (FPL) NU NUNUNU NU NU

Note:

1 Integer item only.
2 Includes all figurative constants except ZERO.

Comparing nonnumeric operands

Comparisons of nonnumeric operands are made with respect to the collating
sequence of the character set in use.

* For the EBCDIC character set, the EBCDIC collating sequence is used.

e For the ASCII character set, the ASCII collating sequence is used. (See
Appendix B, “EBCDIC and ASCII collating sequences” on page .)

. Under AIX and Windows if the collating sequence specified is
NATIVE (explicitly or by default), the comparisons of characters are based on
the collating sequence indicated by the locale setting. For more information on
locale, see Appendix F, “Locale considerations (workstation only)” on
page

e When the PROGRAM COLLATING SEQUENCE clause is specified in the
OBJECT-COMPUTER paragraph, the collating sequence associated with the
alphabet-name clause in the SPECIAL-NAMES paragraph is used.

The size of each operand is the total number of characters in that operand; the size
affects the result of the comparison. There are two cases to consider:

224 COBOL Language Reference

Conditional expressions

Operands of equal size
Characters in corresponding positions of the two operands are compared,
beginning with the leftmost character and continuing through the
rightmost character.

If all pairs of characters through the last pair test as equal, the operands
are considered as equal.

If a pair of unequal characters is encountered, the characters are tested to
determine their relative positions in the collating sequence. The operand
containing the character higher in the sequence is considered the greater

operand.

Operands of unequal size
If the operands are of unequal size, the comparison is made as though the
shorter operand were extended to the right with enough spaces to make
the operands equal in size.

Table 24 on page summarizes permissible comparisons with nonnumeric
operands.

Part 6. Procedure Division 225

Conditional expressions

Table 24. Permissible comparisons with nonnumeric second operands

First operand

Second operand

GR

AL

AN

ANE

NE

FC2

NNL

Nonnumeric operand

Group (GR)

NN

NN

NN

NN

NN

NN

NN

Alphabetic (AL)

NN

NN

NN

NN

NN

NN

NN

Alphanumeric
(AN)

NN

NN

NN

NN

NN

NN

NN

Alphanumeric-edited

(ANE)

NN

NN

NN

NN

NN

NN

NN

Numeric-edited
(NE)

NN

NN

NN

NN

NN

NN

NN

Figurative
constant (FC?)

NN

NN

NN

NN

NN

Nonnumeric
literal (NNL)

NN

NN

NN

NN

NN

Numeric operand

Figurative
constant ZERO
(ZR)

NN

NN

NN

NN

NN

Numeric literal
(NL)

NN1

NN1

NN1

NN1

NN1

External decimal
(ED)

NN!

NN!

NN1

NN1

NN1

NN1

NNt

Binary (BI)

Arithmetic
expression (AE)

Internal decimal
(ID)

Internal
floating-point
(IFP)

External
floating-point
(EFP)

NN

NN

NN

NN

NN

NN

NN

Floating-point
literal (FPL)

Note:

1 Integer item only.
2 Includes all figurative constants except ZERO.

226 COBOL Language Reference

Conditional expressions

Comparing numeric and nonnumeric operands

The nonnumeric comparison rules, discussed above, apply. In addition, when
numeric and nonnumeric operands are being compared, their USAGE must be the
same. In such comparisons:

e The numeric operand must be described as an integer literal or data item.

* Non-integer literals and data items must not be compared with nonnumeric
operands.

e External floating-point items can be compared with nonnumeric operands.

If either of the operands is a group item, the nonnumeric comparison rules,
discussed above, apply. In addition to those rules:

e If the nonnumeric operand is a literal or an elementary data item, the numeric
operand is treated as though it were moved to an alphanumeric elementary
data item of the same size, and the contents of this alphanumeric data item
were then compared with the nonnumeric operand.

e If the nonnumeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size, and the contents of
this group item were compared then with the nonnumeric operand.

See “MOVE statement” on page
Comparing index-names and index data items

Comparisons involving index-names and/or index data items conform to the
following rules:

* The comparison of two index-names is actually the comparison of the
corresponding occurrence numbers.

* In the comparison of an index-name with a data item (other than an index data
item), or in the comparison of an index-name with a literal, the occurrence
number that corresponds to the value of the index-name is compared with the
data item or literal.

e In the comparison of an index-name with an arithmetic expression, the
occurrence number that corresponds to the value of the index-name is
compared with the arithmetic expression.

Since an integer function can be used wherever an arithmetic expres