
COBOL for OS/390 & VM
COBOL Set for AIX
VisualAge COBOL IBM

Language Reference

 SC26-9046-04

COBOL for OS/390 & VM
COBOL Set for AIX
VisualAge COBOL IBM

Language Reference

 SC26-9046-04

 Note!

Before using this information and the product it supports, be sure to read the general
information under “Notices” on page 520.

Fifth Edition (September 2000)

This edition applies to:

IBM COBOL for OS/390 & VM Version 2 Release 2 Modification 0 (program number 5648-A25)
IBM COBOL Set for AIX Release 1 (program number 5765-548)
IBM VisualAge COBOL Version 3.0.1 (program number 5639-B92)

and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between
8:30 a.m. and 7:00 p.m. Eastern Standard Time (EST). The phone number is (800) 879-2755. The fax number is
(800) 445-9269. You can also order publications through your IBM representative or the IBM branch office serving
your locality. Publications are not stocked at the address below.

Editions marked “softcopy only” cannot be ordered as printed publications. For information about obtaining these
editions, see “Softcopy publications for IBM COBOL” on page 524.

A form for reader's comments appears at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, Department HHX/H3
P.O. Box 49023
San Jose, CA 95161-9023
USA

or fax it to this U.S. number: 800-426-7773

or use the form on the Web at:

http://www.ibm.com/software/ad/rcf/

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1991, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Millennium Language Extensions and
date fields
Millennium Language Extensions syntax
Terms and concepts

COBOL class definition structure

COBOL method definition structure

CLASS-ID paragraph
METHOD-ID paragraph

REPOSITORY paragraph

PASSWORD clause

Contents

About this book vi
Compatibility with previous IBM COBOL products
(OS/390 and VM only) vi
IBM extensions . vi
Obsolete language elements vi
How to read the syntax diagrams vii
DBCS notation . ix
Acknowledgment . x

Summary of changes xi
Fifth edition (September 2000) xi
Fourth edition (November 1998) xi
Third edition (August 1998, softcopy only) xii
Second edition (April 1998) xii

Part 1. COBOL language structure . 1

Characters . 2
Character-strings . 3
Figurative constants 7
Special registers . 9
Literals . 17
Separators . 24

Sections and paragraphs 26
Statements and clauses 26

Reference format 28
Sequence number area 28
Indicator area . 28
Area A . 29
Area B . 30
Area A or Area B 32

Scope of names 35
Types of names . 35
External and internal resources 37
Resolution of names 38

Referencing data names, copy
libraries, and Procedure Division
names . 39
Uniqueness of reference 39

Transfer of control 50

 52
. 52

. 53

Part 2. COBOL source unit
structure . 57

COBOL program structure 58
Nested programs 60

. . . . 63

. . 65

Part 3. Identification Division 67

Identification Division 68
PROGRAM-ID paragraph 70

 72
 74

Optional paragraphs 76

Part 4. Environment Division 79

Configuration Section 80
SOURCE-COMPUTER paragraph 80
OBJECT-COMPUTER paragraph 82
SPECIAL-NAMES paragraph 83
ALPHABET clause 86
SYMBOLIC CHARACTERS clause 89
CLASS clause . 89
CURRENCY SIGN clause 90

 91

Input-Output Section 93
FILE-CONTROL paragraph 94
SELECT clause . 97
ASSIGN clause . 97
RESERVE clause 103
ORGANIZATION clause 103
PADDING CHARACTER clause 106
RECORD DELIMITER clause 107
ACCESS MODE clause 107
RECORD KEY clause 109
ALTERNATE RECORD KEY clause 110
RELATIVE KEY clause 111

 111
FILE STATUS clause 112
I-O-CONTROL paragraph 114
RERUN clause 115
SAME AREA clause 116
SAME RECORD AREA clause 117

 Copyright IBM Corp. 1991, 2000 iii

APPLY WRITE-ONLY clause

Local-Storage Section

RECORDING MODE clause

DATE FORMAT clause

Requirements for a method Procedure Division

ENTRY statement

EXIT METHOD statement

GOBACK statement

INVOKE statement

DATE-TO-YYYYMMDD
DATEVAL

SAME SORT AREA clause 117
SAME SORT-MERGE AREA clause 118
MULTIPLE FILE TAPE clause 118

. 118

Part 5. Data Division 119

Data Division overview 120
File Section . 121
Working-Storage Section 121

 123
Linkage Section 123
Data types . 124
Data relationships 124

Data Division—file description entries 131
File Section . 133
EXTERNAL clause 134
GLOBAL clause 134
BLOCK CONTAINS clause 135
RECORD clause 136
LABEL RECORDS clause 139
VALUE OF clause 139
DATA RECORDS clause 140
LINAGE clause 140

. 142
CODE-SET clause 143

Data Division—data description entry . 145
Format 1 . 145
Format 2 . 146
Format 3 . 146
Level-numbers 146
BLANK WHEN ZERO clause 147

. 148
EXTERNAL clause 153
GLOBAL clause 153
JUSTIFIED clause 154
OCCURS clause 154
PICTURE clause 160
REDEFINES clause 174
RENAMES clause 178
SIGN clause . 179
SYNCHRONIZED clause 181
USAGE clause 187
VALUE clause 195

Part 6. Procedure Division 201

Procedure Division structure 202
. 203

The Procedure Division header 204
Declaratives . 207
Procedures . 208
Arithmetic expressions 209
Conditional expressions 214
Statement categories 234

Statement operations 238

Procedure Division statements 250
ACCEPT statement 250
ADD statement 255
ALTER statement 258
CALL statement 260
CANCEL statement 266
CLOSE statement 268
COMPUTE statement 272
CONTINUE statement 274
DELETE statement 275
DISPLAY statement 277
DIVIDE statement 280

 283
EVALUATE statement 284
EXIT statement 288

. 289
EXIT PROGRAM statement 290

 291
GO TO statement 292
IF statement . 294
INITIALIZE statement 296
INSPECT statement 298

 307
MERGE statement 314
MOVE statement 320
MULTIPLY statement 325
OPEN statement 327
PERFORM statement 332
READ statement 342
RELEASE statement 349
RETURN statement 351
REWRITE statement 353
SEARCH statement 356
SET statement . 362
SORT statement 368
START statement 375
STOP statement 378
STRING statement 379
SUBTRACT statement 383
UNSTRING statement 386
WRITE statement 393

Part 7. Intrinsic functions 401

Intrinsic functions 402
Specifying a function 402
Function definitions 408
ACOS . 412
ANNUITY . 413
ASIN . 414
ATAN . 415
CHAR . 416
COS . 417
CURRENT-DATE 418
DATE-OF-INTEGER 419

 420
 . 421

DAY-OF-INTEGER 423

iv COBOL Language Reference

DAY-TO-YYYYDDD

UNDATE

YEAR-TO-YYYY
YEARWINDOW

BASIS statement
CBL (PROCESS) statement
*CONTROL (*CBL) statement

DELETE statement
EJECT statement

INSERT statement
READY or RESET TRACE statement

SERVICE LABEL statement
SERVICE RELOAD statement
SKIP1/2/3 statements
TITLE statement

Compiler directives
CALLINTERFACE

 424
FACTORIAL . 425
INTEGER . 426
INTEGER-OF-DATE 427
INTEGER-OF-DAY 428
INTEGER-PART 429
LENGTH . 430
LOG . 431
LOG10 . 432
LOWER-CASE 433
MAX . 434
MEAN . 435
MEDIAN . 436
MIDRANGE . 437
MIN . 438
MOD . 439
NUMVAL . 440
NUMVAL-C . 441
ORD . 443
ORD-MAX . 444
ORD-MIN . 445
PRESENT-VALUE 446
RANDOM . 447
RANGE . 448
REM . 449
REVERSE . 450
SIN . 451
SQRT . 452
STANDARD-DEVIATION 453
SUM . 454
TAN . 455

 . 456
UPPER-CASE . 457
VARIANCE . 458
WHEN-COMPILED 459

 460
 461

Part 8. Compiler-directing
statements 463

Compiler-directing statements 464
 464

. 465
. 466

COPY statement 468
 474

 475
ENTER statement 475

 476
. 476

REPLACE statement 477
. 480

. 481
 481

 482

USE statement 482

 489
 489

Part 9. Appendixes 493

Appendix A. Compiler limits 494

Appendix B. EBCDIC and ASCII
collating sequences 498
EBCDIC collating sequence 498
US English ASCII code page (ISO 646) 500

Appendix C. Source language
debugging 504
Coding debugging lines 504
Coding debugging sections 504
DEBUG-ITEM special register 505
Activate compile-time switch 505
Activate object-time switch 505

Appendix D. Reserved words 506

Appendix E. ASCII considerations for
OS/390 and VM 512
Environment Division 512
Data Division . 513
Procedure Division 514

Appendix F. Locale considerations
(workstation only) 515

Appendix G. Summary of language
difference: host COBOL and
workstation COBOL 516

Appendix H. Industry specifications . 518

Notices . 520
Programming interface information 520
Trademarks . 521

Bibliography 522

Glossary . 525

Index . 544

Contents v

IBM extensions in text are shown this way.

About this book

This book presents the syntax of COBOL for OS/390 & VM, COBOL Set for AIX,
and VisualAge COBOL (collectively referred to in this book as IBM COBOL). To
indicate platform-specific information, this book use the following methods:
� Prefix the text with platform-specific indicators (for example, Under AIX and

Windows...)
� Add parenthetical qualifications (for example, (Workstation only))
� Prefix the text with icons. This book uses the following icons:

 Informs you of information specific to COBOL for OS/390 & VM.

 Informs you of information specific to COBOL Set for AIX and
VisualAge COBOL for Windows.

 Informs you of information specific to COBOL Set for AIX.

Notes:

1. This book documents extensions for object-oriented COBOL. Object-oriented
COBOL is not supported under VM.

| 2. This book documents support for 31-digit decimal data, which is available
| when the ARITH(EXTEND) compiler option is in effect. The ARITH compiler
| option, and the 31-digit support, are currently only available in COBOL for
| OS/390 & VM.

Use this book in conjunction with the IBM COBOL Programming Guide for your
platform.

Compatibility with previous IBM COBOL products (OS/390 and VM
only)

This book does not describe language supported under the CMPR2 compiler
option. The CMPR2 compiler option is intended only as an aid in moving from
the VS COBOL II Release 2 language to the NOCMPR2 language that is described
by this book. For a description of the language supported under CMPR2, see VS
COBOL II Release 2 Application Programming: Language Reference, GC26-4047.

 IBM extensions

IBM extensions generally add to language element rules or restrictions. In the
hardcopy, published book, IBM extensions appear in blue ink. For example:

IBM extensions are not indicated in the appendixes, glossary, or index.

Obsolete language elements

vi  Copyright IBM Corp. 1991, 2000

Obsolete language elements are COBOL 85 Standard language elements that will
be deleted from the next revision of the Standard. (This does not imply that these
elements will be eliminated from a future release of an IBM COBOL compiler.)

The language elements that will be deleted from the next revision of the COBOL
85 Standard are:
� ALTER statement
� AUTHOR paragraph
� Comment entry
� DATA RECORDS clause
� DATE-COMPILED paragraph
� DATE-WRITTEN paragraph
� DEBUG-ITEM special register
� Debugging sections
� ENTER statement
� GO TO without a specified procedure name
� INSTALLATION paragraph
� LABEL RECORDS clause
� MEMORY SIZE clause
� MULTIPLE FILE TAPE clause
� RERUN clause
� REVERSED phrase
� SECURITY paragraph
� SEGMENT-LIMIT
� SEGMENTATION
� STOP literal format of the STOP statement
� USE FOR DEBUGGING declarative
� VALUE OF clause
� The figurative constant ALL literal, when associated with a numeric or

numeric-edited item and with a length greater than one

How to read the syntax diagrams

Throughout this book, syntax is described using the structure defined below.
� Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a syntax diagram.

The ───� symbol indicates that the syntax diagram is continued on the next
line.

The �─── symbol indicates that the syntax diagram is continued from the
previous line.

The ───�� symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the
�─── symbol and end with the ───� symbol.

� Required items appear on the horizontal line (the main path).

 Format
��──STATEMENT──required item───��

� Optional items appear below the main path.

About this book vii

 Format
��──STATEMENT─ ──┬ ┬─────────────── ──────────────────────────────────────��
 └ ┘─optional item─

� When you can choose from two or more items, they appear vertically, in a
stack.

If you must choose one of the items, one item of the stack appears on the main
path.

 Format
��──STATEMENT─ ──┬ ┬─required choice 1─ ──────────────────────────────────��

└ ┘─required choice 2─

If choosing one of the items is optional, the entire stack appears below the
main path.

 Format
��──STATEMENT─ ──┬ ┬─────────────────── ──────────────────────────────────��

├ ┤─optional choice 1─
└ ┘─optional choice 2─

� An arrow returning to the left above the main line indicates an item that can
be repeated.

 Format
 ┌ ┐───────────────────
��──STATEMENT─ ───/ ┴─repeatable item─ ────────────────────────────────────��

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

� Variables appear in all lowercase letters (for example, parmx). They represent
user-supplied names or values.

� If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

The following example shows how the syntax is used.

viii COBOL Language Reference

arithmetic-expression-1

The blue text indicates that arithmetic-expression-1 is an IBM extension. This operand is
optional.

 Format
 ┌ ┐──────────────────── ┌ ┐─────────────────────────────────
��──STATEMENT───(1) ──┬ ┬─identifier-1───(2) ───/ ┴──┬ ┬────────────── ──(4)───/ ┴ ─TO──identifier-3─ ──┬ ┬───────── ────�

└ ┘─literal-1────── └ ┘─┤ item 1 ├───(3) └ ┘─ROUNDED─

�─ ──(5)──┬ ┬── ──┬ ┬───────────────── ─────────────────────────��
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─ └ ┘─END-STATEMENT───(6)

 └ ┘─ON─

item 1
├─ ──┬ ┬─identifier-2────────────── ──┤
 ├ ┤─literal-2─────────────────
 └ ┘─ ───(7)

Notes:
1 The STATEMENT key word must be specified and coded as shown.
2 This operand is required. Either identifier-1 or literal-1 must be coded.
3 The item 1 fragment is optional; it can be coded or not, as required by the application. If item 1

is coded, it can be repeated with each entry separated by one or more COBOL separators. Entry
selections allowed for this fragment are described at the bottom of the diagram.

4 The operand identifier-3 and associated TO key word are required and can be repeated with one
or more COBOL separators separating each entry. Each entry can be assigned the key word
ROUNDED.

5 The ON SIZE ERROR phrase with associated imperative-statement-1 are optional. If the ON
SIZE ERROR phrase is coded, the key word ON is optional.

6 The END-STATEMENT key word can be coded to end the statement. It is not a required
delimiter.

7

 DBCS notation

 Double-Byte Character Strings (DBCS) in literals, comments, and
user-defined words are delimited by shift-out and shift-in characters. In this
manual, the shift-out delimiter is represented pictorially by the < character, and the
shift-in character is represented pictorially by the > character. The EBCDIC codes
for the shift-out and shift-in delimiters are X'0E' and X'0F', respectively.

The <> symbol denotes contiguous shift-out and shift-in characters. The >< symbol
denotes contiguous shift-in and shift-out characters.

Double-byte characters are represented in this form: D1D2D3. EBCDIC characters
in double-byte form are represented in this form:.A.B.C. The dots separating the
letters represent the hexadecimal value X'42'.

 Under AIX and Windows, you do not delimit DBCS character strings
by shift-in or shift-out characters.

About this book ix

 Acknowledgment

The following extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report as the
basis for an instruction manual or for any other purpose is free to do so.
However, all such organizations are requested to reproduce this section as
part of the introduction to the document. Those using a short passage, as
in a book review, are requested to mention COBOL in acknowledgment of
the source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection there with.

Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data Systems
Languages.

The authors and copyright holders of copyrighted material:

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data
Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator,
Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

x COBOL Language Reference

� Enhanced support for decimal data, raising the maximum number of decimal
digits from 18 to 31 and providing an extended-precision mode for arithmetic
calculations (“PICTURE clause” on page 160)

� Support for COMP-5 data type extended to OS/390 and VM (“USAGE clause”
on page 187)

� Support for line-sequential files extended to OS/390 (“File organization” on
page 104)

� Support for format 5 of the SET statement (SET pointer TO ADDRESS OF
identifier-7) extended to the Working-Storage Section and the Local-Storage
Section (“Format 5: SET for USAGE IS POINTER data items” on page 364)

� The limit on the block size for a QSAM file is raised from 32767 to
2,147,483,647 (2GB - 1) bytes (Appendix A, “Compiler limits” on page 494)

� Enhancements to the millennium language extensions:
— Additional date patterns for the DATE FORMAT clause, including

“year-last” dates.
— DATE FORMAT for binary numeric items.
— Relaxation of the USING/RETURNING parameter rules for windowed

date fields.
— Special semantics for “trigger” and “limit” date values. For

more information, see “Semantics of windowed date fields” on page 149.
� New sub-option TRIG/NOTRIG of the DATEPROC compiler option, to enable

or disable trigger and limit processing.

Summary of changes

Major changes to the COBOL for OS/390 & VM, COBOL Set for AIX, and
VisualAge COBOL languages are listed below, according to the edition in which
they first appeared. Changes to the language since the previous edition of this
book are marked by a vertical bar in the left margin.

Fifth edition (September 2000)

� Use of an environment variable in the SELECT ... ASSIGN clause (to specify
file attributes for dynamic allocation at run-time) extended to OS/390
(“ASSIGN clause” on page 97)

Fourth edition (November 1998)

 Copyright IBM Corp. 1991, 2000 xi

� Extensions to support the Euro currency sign in numeric-edited data items.
These extensions introduce a PICTURE SYMBOL phrase to the CURRENCY
SIGN clause in the SPECIAL-NAMES paragraph of the Environment Division.
The PICTURE SYMBOL phrase allows a PICTURE clause currency symbol to
represent a currency sign value that is different from the currency symbol, and
not restricted to a single character. For example, the currency symbol '$'
could be used to represent a code point for the Euro currency sign, or the
characters 'EUR'. The extensions also allow multiple currency symbols and
currency sign values to be defined. For details, see “CURRENCY SIGN
clause” on page 90.

� Update to the millennium language extensions to allow signed numeric date
fields.

� The millennium language extensions, enabling compiler-assisted date
processing for dates containing 2-digit and 4-digit years.

For information on the millennium language extensions, see “Millennium
Language Extensions and date fields” on page 52.

� New language elements in support of the millennium language extensions:
— DATE FORMAT clause in data description entries
— Intrinsic functions:

– DATEVAL
– UNDATE
– YEARWINDOW

� New compiler options in support of the millennium language extensions:
— DATEPROC/NODATEPROC
— YEARWINDOW

� New compiler option, ANALYZE, to check the syntax of imbedded SQL and
CICS statements.

� New date intrinsic functions to cover the recommendation in the Working Draft
for Proposed Revision of ISO 1989:1985 Programming Language COBOL:
— DATE-TO-YYYYMMDD
— DAY-TO-YYYYDDD
— YEAR-TO-YYYY

� Extension of the ACCEPT statement to cover the recommendation in the
Working Draft for Proposed Revision of ISO 1989:1985 Programming Language
COBOL:
— ACCEPT FROM DATE YYYYMMDD
— ACCEPT FROM DAY YYYYDDD

Third edition (August 1998, softcopy only)

Second edition (April 1998)

xii COBOL Language Reference

Millennium Language Extensions and
date fields
Millennium Language Extensions syntax
Terms and concepts

Part 1. COBOL language structure

Characters . 2
Character-strings . 3
Figurative constants 7
Special registers . 9
Literals . 17
Separators . 24

Sections and paragraphs 26
Statements and clauses 26

Reference format 28
Sequence number area 28
Indicator area . 28
Area A . 29
Area B . 30
Area A or Area B 32

Scope of names 35
Types of names . 35
External and internal resources 37
Resolution of names 38

Referencing data names, copy
libraries, and Procedure Division
names . 39
Uniqueness of reference 39

Transfer of control 50

 52
. 52

. 53

 Copyright IBM Corp. 1991, 2000 1

In some cases, the basic character set is extended with the national character set.
The national character set support includes the Double-Byte Character Set (DBCS)
and, additionally for AIX, the Extended Unix Code (EUC) code page.

Double-byte characters, as the name implies, occupy two adjacent bytes to
represent 1 character. A character string containing DBCS characters is called a
DBCS character-string.

 Under AIX, characters from the EUC code page can be from one to four
bytes long.

DBCS and EUC characters are valid characters in certain COBOL character-strings.
For details, see “COBOL words with multi-byte characters” on page 4 and “DBCS
literals” on page 21.

Characters

Characters

The most basic and indivisible unit of the COBOL language is the character. The
IBM COBOL character set includes the letters of the alphabet, digits, and special
characters. The complete set of characters that form the IBM COBOL character set
is shown in Table 1 on page 3.

The basic IBM COBOL language is restricted to the character set shown in Table 1
on page 3, but the content of nonnumeric literals, comment lines, comment entries,
and data can include any of the characters from the character set of the computer.

Individual characters are joined to form character-strings, separators, and text
words.

A character-string is a character or a sequence of contiguous characters that forms
a COBOL word, a literal, a PICTURE character-string, or a comment-entry. A
character-string is delimited by separators.

A separator is a string of one or two contiguous characters used to delimit
character strings. Separators are described in detail under “Separators” on
page 24.

A text word is a character or a sequence of contiguous characters between
character positions 8 and 72 inclusive on a line in a COBOL library, source
program, or in pseudo-text. For more information on pseudo-text, see
“Pseudo-text” on page 33.

2  Copyright IBM Corp. 1991, 2000

' Apostrophe

 DBCS
 DBCS/EUC

Character-strings

Table 1. Characters—meanings

Character Meaning

␣
+
–
*
/
=
$
,
;
.
"
(
)
>
<
:

A–Z
a–z
0–9

Space
Plus sign
Minus sign or Hyphen
Asterisk
Slant, Solidus, Stroke, or Slash
Equal sign
Currency sign
Comma
Semicolon
Decimal point or Period
Quotation mark
Left parenthesis
Right parenthesis
Greater than
Less than
Colon

Alphabet (uppercase)
Alphabet (lowercase)
Numeric characters

 Character-strings

You can use EBCDIC and/or character strings under OS/390 and VM or
ASCII and/or character-strings under AIX and Windows to form the
following:
� COBOL words
� Literals
� PICTURE character-strings (EBCDIC or ASCII character-strings only)
� Comment text

COBOL words with single-byte characters

A COBOL word is a character-string of not more than 30 characters that forms a
user-defined word, a system-name, or a reserved word. Except for arithmetic
operators and relation characters, each character of a COBOL word is selected from
the following:
� A through Z
� a through z
� 0 through 9
� - (hyphen)

The hyphen cannot appear as the first or last character in such words. All
user-defined words (except for section-names, paragraph-names, segment-numbers,
and level-numbers) must contain at least one alphabetic character. Segment
numbers and level numbers need not be unique; a given specification of a
segment-number or level-number can be identical to any other segment-number or
level-number. Each lowercase letter is considered to be equivalent to its
corresponding uppercase letter, except in nonnumeric literals.

Part 1. COBOL language structure 3

COBOL words with multi-byte characters

DBCS/EUC characters must conform to the normal COBOL rules for user-defined
words. The following are the rules for forming user-defined words from
multi-byte characters:

Table 2. Rules for forming user-defined words from multi-byte characters

Rule OS/390 and VM AIX and Windows

Use of
shift-out
shift-in
characters

DBCS user-defined words begin with a
shift-out character and end with a shift-in
character.

Not required

Value range DBCS user-defined words can contain
characters whose values range from X'41' to
X'FE' for both bytes.

Valid value ranges for multi-byte characters
depend on the specific code page being used.

Containing
characters

DBCS user-defined words can contain only
double-byte characters, and must contain at
least one non-EBCDIC character.
(Double-byte EBCDIC characters are
represented by X'42' in the first byte.)
Single-byte characters are not allowed in a
DBCS word.

DBCS user-defined words can contain both
double-byte EBCDIC and double-byte non
EBCDIC characters. The only double-byte
EBCDIC characters allowed are: A - Z, a - z,
0 - 9, and the hyphen (-). The hyphen cannot
appear as the first or last character.

A user-defined word can consist of both
single-byte or multiple-byte (including
double-byte) characters. If a character exists in
both single-byte and multiple-byte forms, its
single-byte and multi-byte representations are
not equivalent.

Continuation
rules

Words cannot be continued across lines. Words cannot be continued across lines.

Uppercase /
lowercase
letters

Equivalent Not equivalent

Maximum
length

14 characters 15 characters for a DBCS code page

Under AIX only:

� 7 characters for EUC code page
IBM_eucTW

� 10 characters for EUC code pages,
IBM_eucJP, IBM_eucKR, and IBM_eucCN

Multi-byte characters allowed?
Yes

Character-strings

Within a source program the following rules apply for all COBOL words with
single-byte characters:
� A reserved word cannot be used as a user-defined word or as a system-name.
� The same COBOL word, however, can be used as both a user-defined word

and as a system-name. The classification of a specific occurrence of a COBOL
word is determined by the context of the clause or phrase in which it occurs.

 User-defined words

The following sets of user-defined words are supported:

Alphabet-name

4 COBOL Language Reference

Yes
Yes
Yes
Yes
Yes
Yes
No

Method-name No
Yes

Object-oriented class-name No
Yes
Yes
No
Yes
Yes
Yes
No

 or class definition,
 or method,

Character-strings

Class-name
Condition-name
Data-name
File-name
Index-name
Level-numbers: 01–49, 66, 77, 88
Library-name

Mnemonic-name

Paragraph-name
Priority-numbers: 00–99
Program-name
Record-name
Section-name
Symbolic-character
Text-name

For level-numbers and priority numbers, each word must be a 1-digit or 2-digit
integer.

Within a given source program but excluding any contained
program each user-defined word (except level-numbers and
priority-numbers) can belong to only one of these sets. Each user-defined word
within a set must be unique, except as specified in “Referencing data names, copy
libraries, and Procedure Division names” on page 39.

The following types of user-defined words can be referenced by statements and
entries in that program in which the user-defined word is declared:
� Paragraph-name
� Section-name

The following types of user-defined words can be referenced by any COBOL
program, provided that the compiling system supports the associated library or
other system, and the entities referenced are known to that system:
� Library-name
� Text-name

The following types of names, when they are declared within a Configuration
Section, can be referenced by statements and entries either in that program which
contains a Configuration Section or in any program contained within that program:
� Alphabet-name
� Class-name
� Condition-name
� Mnemonic-name
� Symbolic-character

The function of each user-defined word is described in the clause or statement in
which it appears.

Part 1. COBOL language structure 5

� External class-name

 Under OS/390 and VM, the only DBCS character string system-name
allowed is computer-name.

 Under AIX and Windows, multi-byte characters are allowed for
system-name.

For information on selecting an alternate reserved word table, see the IBM COBOL
Programming Guide for your platform.

� Special object identifiers

Character-strings

 System-names

A system-name is a character string that has a specific meaning to the system.
There are three types of system-names:
� Computer-name
� Language-name
� Implementor-name

There are three types of implementor-names:
� Environment-name

� Assignment-name

The meaning of each system-name is described with the format in which it
appears.

 Function-names

A function-name specifies the mechanism provided to determine the value of an
intrinsic function. The same word, in a different context, can appear in a program
as a user-defined word or a system-name. For a list of function-names and their
definitions, see Table 51 on page 409.

 Reserved words

A reserved word is a character-string with a predefined meaning in a COBOL
source program. IBM COBOL reserved words are listed in Appendix D,
“Reserved words” on page 506.

There are six types of reserved words:
� Keywords
� Optional words
� Figurative constants
� Special character words

� Special registers

Keywords
Keywords are reserved words that are required within a given clause, entry, or
statement. Within each format, such words appear in uppercase on the main
path.

Optional words
Optional words are reserved words that can be included in the format of a
clause, entry, or statement in order to improve readability. They have no
effect on the execution of the program.

6 COBOL Language Reference

Special object identifiers
COBOL provides two special object identifiers, SELF and SUPER, used in a
method Procedure Division:

SELF
A special object identifier you can use in the Procedure Division of a
method. SELF refers to the object instance used to invoke the
currently-executing method. You can specify SELF only in source program
positions that are explicitly listed in the syntax diagrams.

SUPER
A special object identifier you can use in the Procedure Division of a
method only as the object identifier in an INVOKE statement. When used
in this way, SUPER refers to the object instance used to invoke the
currently-executing method. The resolution of the method to be invoked
ignores any methods declared in the class definition of the
currently-executing method and methods defined in any class derived
from that class. Thus, the method invoked is inherited from an ancestor
class.

Figurative constants

Figurative constants
See “Figurative constants” on page 7.

Special character words
There are two types of special characters, which are only recognized as special
characters when represented in single-byte.

� Arithmetic operators: + - / * **

See “Arithmetic expressions” on page 209.
� Relational operators: < > = <= >=

See “Conditional expressions” on page 214.

Special registers
See “Special registers” on page 9.

 Figurative constants

Figurative constants are reserved words that name and refer to specific constant
values. The reserved words for figurative constants and their meanings are:

ZERO/ZEROS/ZEROES
Represents the numeric value zero (0), or one or more occurrences of the
nonnumeric character zero (0), depending on context.

When the context cannot be determined, a nonnumeric zero is used.

SPACE/SPACES
Represents one or more blanks or spaces. SPACE is treated as a nonnumeric
literal.

HIGH-VALUE/HIGH-VALUES
Represents one or more occurrences of the character that has the highest
ordinal position in the collating sequence used. For the EBCDIC collating
sequence, the character is X'FF'; for other collating sequences, the actual
character used depends on the collating sequence indicated by the locale. For
more information on locale, see Appendix F, “Locale considerations

Part 1. COBOL language structure 7

 if the QUOTE compiler option is in effect
or
� The apostrophe character ('), if the APOST compiler option is in effect

 or an
apostrophe

 INVOKE,

 Under AIX and Windows, you cannot specify the SYMBOLIC
CHARACTER clause if a DBCS or EUC code page is indicated by the locale
setting. For more information on locale, see Appendix F, “Locale
considerations (workstation only)” on page 515.

NULL/NULLS
Represents a value used to indicate that data items defined with USAGE IS
POINTER, USAGE IS PROCEDURE-POINTER, USAGE IS OBJECT
REFERENCE, or the ADDRESS OF special register do not contain a valid
address. NULL can be used only where explicitly allowed in the syntax
format. NULL has the value of zero.

Figurative constants

(workstation only)” on page 515. HIGH-VALUE is treated as a nonnumeric
literal.

LOW-VALUE/LOW-VALUES
Represents one or more occurrences of the character that has the lowest
ordinal position in the collating sequence used. For the EBCDIC collating
sequence, the character is X'00'; for other collating sequences, the actual
character used depends on the collating sequence. LOW-VALUE is treated as
a nonnumeric literal.

QUOTE/QUOTES
Represents one or more occurrences of:

� The quotation mark character ("),

QUOTE or QUOTES cannot be used in place of a quotation mark
 to enclose a nonnumeric literal.

ALL literal
Represents one or more occurrences of the string of characters composing the
literal. The literal must be either a nonnumeric literal or a figurative constant
other than the ALL literal. When a figurative constant, other than the ALL
literal is used, the word ALL is redundant and is used for readability only.
The figurative constant ALL literal must not be used with the CALL,
INSPECT, STOP, or STRING statements.

symbolic-character
Represents one or more of the characters specified as a value of the
symbolic-character in the SYMBOLIC CHARACTERS clause of the
SPECIAL-NAMES paragraph.

The singular and plural forms of ZERO, SPACE, HIGH-VALUE, LOW-VALUE,
and QUOTE can be used interchangeably. For example, if data-name-1 is a
5-character data item, each of the following statements will fill data-name-1 with
five spaces:

 MOVE SPACE TO DATA-NAME-1
 MOVE SPACES TO DATA-NAME-1

MOVE ALL SPACES TO DATA-NAME-1

You can use a figurative constant wherever “literal” appears in a syntax diagram,
except where explicitly prohibited. When a numeric literal appears in a syntax
diagram, only the figurative constant ZERO (ZEROS, ZEROES) can be used.
Figurative constants are not allowed as function arguments except in an arithmetic
expression, where they are arguments to a function.

8 COBOL Language Reference

 INVOKE,

 or INVOKE of a method,

� Programs that possess the RECURSIVE attribute
� Programs compiled with the THREAD option (Workstation only)

 or
method
� ADDRESS OF (for each record in the Linkage Section)
� RETURN-CODE
� SORT-CONTROL
� SORT-CORE-SIZE
� SORT-FILE-SIZE
� SORT-MESSAGE
� SORT-MODE-SIZE
� SORT-RETURN
� TALLY

 or INVOKE

 ADDRESS OF

The ADDRESS OF special register exists for each record (01 or 77) in the Linkage
Section, except for those records that redefine each other. In such cases, the
ADDRESS OF special register is similarly redefined.

Special registers

The length of a figurative constant depends on the context of the program. The
following rules apply:
� When a figurative constant is specified in a VALUE clause or associated with a

data item (for example, when it is moved to or compared with another item),
the length of the figurative constant character-string is equal to 1 or the
number of character positions in the associated data item, whichever is greater.

� When a figurative constant, other than the ALL literal, is not associated with
another data item (for example, in a CALL, STOP, STRING, or
UNSTRING statement), the length of the character-string is 1 character.

 Special registers

Special registers are reserved words that name storage areas generated by the
compiler. Their primary use is to store information produced through specific
COBOL features. Each such storage area has a fixed name, and must not be
defined within the program.

Unless otherwise explicitly restricted, a special register can be used wherever a
data-name or identifier having the same definition as the implicit definition of the
special register, (which is specified later in this section).

If qualification is allowed, special registers can be qualified as necessary to provide
uniqueness. (For more information, see “Qualification” on page 39.)

For the first CALL to a program the compiler initializes
the special register fields to their initial values.

In the following cases:
� For subsequent CALLs to a CANCELed program
� Programs that possess the INITIAL attribute

The following special registers are reset to their initial value on each program
 entry:

In all other cases, the special registers will not be reset; they will be unchanged
from the value contained on the previous CALL .

You can specify an alphanumeric special register in a function wherever an
alphanumeric argument to a function is allowed, unless specifically prohibited.

Part 1. COBOL language structure 9

The ADDRESS OF special register is implicitly defined USAGE IS POINTER.

You can specify the ADDRESS OF special register as an argument to the LENGTH
function. If the ADDRESS OF special register is used as the argument to the
LENGTH function, the result will always be 4, independent of the argument
specified for ADDRESS OF.

A function-identifier is not allowed as the operand of the ADDRESS OF special
register.

Special registers

 DEBUG-ITEM

The DEBUG-ITEM special register provides information for a debugging
declarative procedure about the conditions causing debugging section execution.

DEBUG-ITEM has the following implicit description:

?1 DEBUG-ITEM.
?2 DEBUG-LINE PICTURE IS X(6).
?2 FILLER PICTURE IS X VALUE SPACE.
?2 DEBUG-NAME PICTURE IS X(3?).
?2 FILLER PICTURE IS X VALUE SPACE.
?2 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
?2 FILLER PICTURE IS X VALUE SPACE.
?2 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
?2 FILLER PICTURE IS X VALUE SPACE.
?2 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
?2 FILLER PICTURE IS X VALUE SPACE.
?2 DEBUG-CONTENTS PICTURE IS X(n).

Before each debugging section is executed, DEBUG-ITEM is filled with spaces.
The contents of the DEBUG-ITEM subfields are updated according to the rules for
the MOVE statement, with one exception: DEBUG-CONTENTS is updated as if
the move were an alphanumeric-to-alphanumeric elementary move without
conversion of data from one form of internal representation to another.

After updating, each field contains:

DEBUG-LINE
The source-statement sequence number (or the compiler-generated sequence
number, depending on the compiler option chosen) that caused execution of
the debugging section.

DEBUG-NAME
The first 30 characters of the name that caused execution of the debugging
section. Any qualifiers are separated by the word “OF.”

DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3
If the DEBUG-NAME is subscripted or indexed, the occurrence number of each
level is entered in the respective DEBUG-SUB-n. If the item is not subscripted
or indexed, these fields remain as spaces. You must not reference the
DEBUG-ITEM special register if your program uses more than three levels of
subscripting or indexing.

DEBUG-CONTENTS
Data is moved into DEBUG-CONTENTS, as shown in Table 3 on page 11.

10 COBOL Language Reference

 LENGTH OF

The LENGTH OF special register contains the number of bytes used by an
identifier.

LENGTH OF creates an implicit special register whose content is equal to the
current byte length of the data item referenced by the identifier.

Note: For DBCS data items, each character occupies 2 bytes of storage.

LENGTH OF can be used in the Procedure Division anywhere a numeric data item
having the same definition as the implied definition of the LENGTH OF special
register can be used. The LENGTH OF special register has the implicit definition:

USAGE IS BINARY PICTURE 9(9)

If the data item referenced by the identifier contains the GLOBAL clause, the
LENGTH OF special register is a global data item.

The LENGTH OF special register can appear within either the starting character
position or the length expressions of a reference modification specification.
However, the LENGTH OF special register cannot be applied to any operand that
is reference-modified.

The LENGTH OF operand cannot be a function, but the LENGTH OF special
register is allowed in a function where an integer argument is allowed.

Special registers

Table 3. DEBUG-ITEM subfield contents

Cause of
debugging section
execution

Statement referred to
in DEBUG-LINE

Contents of
DEBUG-NAME

Contents of
DEBUG-CONTENTS

procedure-name-1
ALTER reference

ALTER statement procedure-name-1 procedure-name-n
in TO PROCEED
TO phrase

GO TO
procedure-name-n

GO TO statement procedure-name-n spaces

procedure-name-n
in SORT/MERGE
input/output
procedure

SORT/MERGE
statement

procedure-name-n “SORT INPUT”
“SORT OUTPUT”
“MERGE OUTPUT”
(as applicable)

PERFORM
statement transfer
of control

This PERFORM
statement

procedure-name-n “PERFORM LOOP”

procedure-name-n
in a USE procedure

Statement causing
USE procedure
execution

procedure-name-n “USE
PROCEDURE”

Implicit transfer
from previous
sequential
procedure

Previous statement
executed in previous
sequential procedure
*

procedure-name-n “FALL THROUGH”

First execution of
first nondeclarative
procedure

Line number of first
nondeclarative
procedure-name

first
nondeclarative
procedure

“START
PROGRAM”

Note:

* If this procedure is preceded by a section header, and control is passed through the
section header, the statement number refers to the section header.

Part 1. COBOL language structure 11

If the LENGTH OF special register is used as the argument to the LENGTH
function, the result is always 4, independent of the argument specified for
LENGTH OF.

LENGTH OF can not be either of the following:
� A receiving data item
� A subscript

When the LENGTH OF special register is used as a parameter in a CALL
statement, the parameter must be a BY CONTENT parameter.

When a table element is specified, the LENGTH OF special register contains the
length, in bytes, of one occurrence. When referring to a table element, it need not
be subscripted.

A value is returned for any identifier whose length can be determined, even if the
area referenced by the identifier is currently not available to the program.

A separate LENGTH OF special register exists for each identifier referenced with
the LENGTH OF phrase, for example:

MOVE LENGTH OF A TO B
DISPLAY LENGTH OF A, A
ADD LENGTH OF A TO B
CALL "PROGX" USING BY REFERENCE A BY CONTENT LENGTH OF A

Note: The number of bytes occupied by a COBOL item is also accessible through
the intrinsic function LENGTH (see “LENGTH” on page 430). LENGTH supports
nonnumeric literals in addition to data names.

Special registers

 LINAGE-COUNTER

A separate LINAGE-COUNTER special register is generated for each FD entry
containing a LINAGE clause. When more than one is generated, you must qualify
each reference to a LINAGE-COUNTER with its related file-name.

The implicit description of the LINAGE-COUNTER special register is one of the
following:
� If the LINAGE clause specifies a data-name, LINAGE-COUNTER has the same

PICTURE and USAGE as that data-name.
� If the LINAGE clause specifies an integer, LINAGE-COUNTER is a binary item

with the same number of digits as that integer.

For more information, see “LINAGE clause” on page 140.

The value in LINAGE-COUNTER at any given time is the line number at which
the device is positioned within the current page. LINAGE-COUNTER can be
referred to in Procedure Division statements; it must not be modified by them.

LINAGE-COUNTER is initialized to 1 when an OPEN statement for its associated
file is executed.

LINAGE-COUNTER is automatically modified by any WRITE statement for this
file. (See “WRITE statement” on page 393.)

If the file description entry for a sequential file contains the LINAGE clause and
the EXTERNAL clause, the LINAGE-COUNTER data item is an external data item.
If the file description entry for a sequential file contains the LINAGE clause and
the GLOBAL clause, the LINAGE-COUNTER data item is a global data item.

12 COBOL Language Reference

 RETURN-CODE

The RETURN-CODE special register can be used to pass a return code to the
calling program or operating system when the current COBOL program ends.
When a COBOL program ends:
� If control returns to the operating system, the value of the RETURN-CODE

special register is passed to the operating system as a user return code. The
supported user return code values are determined by the operating system,
and might not include the full range of RETURN-CODE special register values.

 For information on user return code values under AIX, see the IBM
COBOL Set for AIX Programming Guide.

� If control returns to a calling program, the value of the RETURN-CODE special
register is passed to the calling program. If the calling program is a COBOL
program, the RETURN-CODE special register in the calling program is set to
the value of the RETURN-CODE special register in the called program.

The RETURN-CODE special register has the implicit definition:

?1 RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

The following are examples of how to set the RETURN-CODE special register:

COMPUTE RETURN-CODE = 8

or

MOVE 8 to RETURN-CODE.

When used in nested programs, this special register is implicitly defined in the
outermost program.

Note: The RETURN-CODE special register does not return a value from an
invoked method or from a program that uses CALL...RETURNING. For more
information, see “INVOKE statement” on page 307 or “CALL statement” on
page 260.

You can specify the RETURN-CODE special register in a function wherever an
integer argument is allowed.

The RETURN-CODE special register will not contain return code information:
� On the host, from a service call for a Language Environment callable service.

For more information, see the IBM COBOL for OS/390 & VM Programming
Guide and Language Environment Programming Guide.

� On the workstation, from a date/time callable service. For more information,
see the IBM COBOL Programming Guide for your platform.

SHIFT-OUT and SHIFT-IN

 The SHIFT-OUT and SHIFT-IN special registers are supported;
however, the code pages for AIX and Windows do not recognize them as
delimiters for double-byte characters.

The SHIFT-OUT and SHIFT-IN special registers are implicitly defined as
alphanumeric data items of the format:

?1 SHIFT-OUT GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"?E"
?1 SHIFT-IN GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"?F"

Special registers

You can specify the LINAGE-COUNTER special register wherever an integer
argument to a function is allowed.

Part 1. COBOL language structure 13

These special registers represent shift-out and shift-in control characters without
the use of unprintable characters.

You can specify the SHIFT-OUT and SHIFT-IN special registers in a function
wherever an alphanumeric argument is allowed.

These special registers cannot be receiving items. SHIFT-OUT and SHIFT-IN
cannot be used in place of the keyboard control characters when defining DBCS
user-defined words and when specifying DBCS literals.

Following is an example of how SHIFT-OUT and SHIFT-IN might be used:

DATA DIVISION.
WORKING-STORAGE.

?1 DBCSGRP.
 ?5 SO PIC X.

?5 DBCSITEM PIC G(3) USAGE DISPLAY-1
 ?5 SI PIC X.

...

PROCEDURE DIVISION.

MOVE SHIFT-OUT TO SO
MOVE G"<D1D2D3>" TO DBCSITEM
MOVE SHIFT-IN TO SI

 DISPLAY DBCSGRP

When used in nested programs, this special register is implicitly defined in the
outermost program.

 SORT-CONTROL

The SORT-CONTROL special register is the name of an alphanumeric data item.

 Under AIX and Windows, it is implicitly defined as:

?1 SORT-CONTROL GLOBAL PICTURE X(16?) VALUE "file name".

Where "file name" is the file name used by SMARTSort as the source for additional
sort/merge options.

 Under OS/390 and VM it is implicitly defined as:

?1 SORT-CONTROL GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "IGZSRTCD"

This register contains the ddname of the data set that holds the control statements
used to improve the performance of a sorting or merging operation.

Under OS/390, you can provide a DD statement for the data set identified by the
SORT-CONTROL special register, and COBOL for OS/390 & VM will attempt to
open the data set at execution time. Any error will be diagnosed with an
informational message.

You can specify the SORT-CONTROL special register in a function wherever an
alphanumeric argument is allowed.

The SORT-CONTROL special register is not necessary for a successful sorting or
merging operation.

Note that the sort control file takes precedence over the SORT special registers.

When used in nested programs, this special register is implicitly defined in the
outermost program.

Special registers

14 COBOL Language Reference

 SORT-CORE-SIZE

The SORT-CORE-SIZE special register is the name of a binary data item that you
can use to specify the number of bytes of storage available to the sort utility. It
has the implicit definition:

?1 SORT-CORE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO

 Under AIX and Windows, the amount of storage indicated in the
SORT-CORE-SIZE special register does not include memory areas required by
COBOL library functions not related to the SORT or MERGE function. It also does
not include fixed amount of memory areas (modules, control blocks, fixed size
work areas) required for the sort and merge implementation.

 Under OS/390 and CMS, SORT-CORE-SIZE can be used in place of the
MAINSIZE or RESINV control statements in the sort control file.

The 'MAINSIZE=' option control statement key word is equivalent to
SORT-CORE-SIZE with a positive value.
The 'RESINV=' option control statement key word is equivalent to
SORT-CORE-SIZE with a negative value.
The 'MAINSIZE=MAX' option control statement key word is equivalent to
SORT-CORE-SIZE with a value of +999999 or +99999999.

You can specify the SORT-CORE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

 SORT-FILE-SIZE

The SORT-FILE-SIZE special register is the name of a binary data item that you
can use to specify the estimated number of records in the sort input file,
file-name-1. It has the implicit definition:

?1 SORT-FILE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO

 Under AIX and Windows, references to the SORT-FILE-SIZE special
register are resolved by the compiler; however, the value in the special register has
no impact for the execution of a SORT or MERGE statement.

 Under OS/390 and CMS, SORT-FILE-SIZE is equivalent to the
'FILSZ=Ennn' control statement in the sort control file.

You can specify the SORT-FILE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

 SORT-MESSAGE

The SORT-MESSAGE special register is the name of an alphanumeric data item
that is available to both sort and merge programs.

 Under AIX and Windows, references to the SORT-MESSAGE special
register are resolved by the compiler; however, the value in the special register has
no impact for the execution of a SORT or MERGE statement.

Special registers

Part 1. COBOL language structure 15

 Under OS/390 and CMS, it has the implicit definition:

?1 SORT-MESSAGE GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "SYSOUT"

You can use the SORT-MESSAGE special register to specify the ddname of a data
set that the sort utility should use in place of the SYSOUT data set.

The ddname specified in SORT-MESSAGE is equivalent to the name specified on
the 'MSGDDN=' control statement in the sort control file.

You can specify the SORT-MESSAGE special register in a function wherever an
alphanumeric argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

 SORT-MODE-SIZE

The SORT-MODE-SIZE special register is the name of a binary data item that you
can use to specify the length of variable-length records that occur most frequently.
It has the implicit definition:

?1 SORT-MODE-SIZE GLOBAL PICTURE S9(5) USAGE BINARY VALUE ZERO

 Under AIX and Windows, references to the SORT-MODE-SIZE special
register are resolved by the compiler; however, the value in the special register has
no impact for the execution of a SORT or MERGE statement.

 SORT-MODE-SIZE is equivalent to the 'SMS=' control statement in the
sort control file.

You can specify the SORT-MODE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

 SORT-RETURN

The SORT-RETURN special register is the name of a binary data item and is
available to both sort and merge programs.

The SORT-RETURN special register has the implicit definition:

?1 SORT-RETURN GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

It contains a return code of 0 (successful) or 16 (unsuccessful) at the completion of
a sort/merge operation. If the sort/merge is unsuccessful and there is no
reference to this special register anywhere in the program, a message is displayed
on the terminal.

You can set the SORT-RETURN special register to 16 in an error declarative or
input/output procedure to terminate a sort/merge operation before all records are
processed. The operation is terminated on the next input or output function for
the SORT or MERGE operation.

You can specify the SORT-RETURN special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

Special registers

16 COBOL Language Reference

 TALLY

The TALLY special register is the name of a binary data item with the following
definition:

?1 TALLY GLOBAL PICTURE 9(5) USAGE BINARY VALUE ZERO

You can refer to or modify the contents of TALLY.

You can specify the TALLY special register in a function wherever an integer
argument is allowed.

When used in nested programs, this special register is implicitly defined in the
outermost program.

 WHEN-COMPILED

The WHEN-COMPILED special register contains the date at the start of the
compilation. WHEN-COMPILED is an alphanumeric data item with the implicit
definition:

?1 WHEN-COMPILED GLOBAL PICTURE X(16) USAGE DISPLAY

The WHEN-COMPILED special register has the format:

MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

For example, if compilation began at 2:04 PM on 27 April 1995,
WHEN-COMPILED would contain the value 04/27/9514.04.00.

WHEN-COMPILED can only be used as the sending field in a MOVE statement.

WHEN-COMPILED special register data cannot be reference-modified.

When used in nested programs, this special register is implicitly defined in the
outermost program.

Note: The compilation date and time is also accessible via the date/time intrinsic
function WHEN-COMPILED (See “WHEN-COMPILED” on page 459). That
function supports 4-digit year values, and provides additional information.

 DBCS,

Literals

 Literals

A literal is a character-string whose value is specified either by the characters of
which it is composed, or by the use of a figurative constant. (See “Figurative
constants” on page 7.) The literal types are nonnumeric, and numeric.

 Nonnumeric literals

A nonnumeric literal is a character string enclosed in quotation marks ("), and can
contain any allowable character from the character set of the computer. The
maximum length of a nonnumeric literal is 160 characters.

The enclosing quotation marks are excluded from the literal when the program is
compiled. An embedded quotation mark must be represented by a pair of
quotation marks (""). For example,

"THIS ISN""T WRONG"

Part 1. COBOL language structure 17

As an IBM extension, you can use apostrophes as the literal delimiters instead of
quotes (independent of the APOST/QUOTE compiler option). An embedded
apostrophe must be represented by a pair of apostrophes (''). For example,

'THIS ISN''T WRONG'

'THIS IS RIGHT'

Table 4 lists when nonnumeric literals with double-byte or multiple-byte
characters cannot be used.

 Under AIX and Windows, you can include multi-byte as well as
single-byte DBCS or EUC characters as alphanumeric literals (such as to initialize
display fields). However, COBOL semantics applied to literals that contain both
multi-byte and single-byte characters are not sensitive to the length (in bytes) of
the individual characters.

The rule of formation for mixed literals are as follows:
� A nonnumeric literal (whether it contains any multi-byte characters or not) is

delimited by either an opening and closing " or an opening and closing '. The
" or ' must be represented as a single-byte character.

� Nonnumeric literals containing a multi-byte character cannot be continued.
The maximum length of a nonnumeric literal with multi-byte characters is
limited only by the available positions in Area B on a single source line.

Table 4. When multi-byte characters are not allowed in nonnumeric literals

OS/390 and VM AIX and Windows

As a literal in the following:

ALPHABET clause
ASSIGN clause
CALL statement program-id
CANCEL statement
CLASS clause
CURRENCY SIGN clause
END METHOD header
END PROGRAM header
ENTRY statement
METHOD-ID paragraph
PADDING CHARACTER clause
PROGRAM-ID paragraph
RERUN clause
STOP statement

As a literal in the following:

ALPHABET clause
ASSIGN clause
CLASS clause
CURRENCY SIGN clause
END METHOD header
METHOD-ID paragraph
PADDING CHARACTER clause
RERUN clause
STOP statement

BASIS statement (basis-name)

COPY statement (text-name)

COPY statement (library-name)

Literals

The delimiter character used as the opening delimiter for a literal must be used as
the closing delimiter for that literal. For example,

"THIS IS RIGHT"
'THIS IS WRONG"

Any punctuation characters included within a nonnumeric literal are part of the
value of the literal.

Every nonnumeric literal is in the alphanumeric data category. (Data categories
are described in “Classes and categories of data” on page 127.)

18 COBOL Language Reference

 Under OS/390 and VM, with the DBCS compiler option, the characters
X'0E' and X'0F' in a nonnumeric literal will be recognized as shift codes for
DBCS characters. That is, the characters between paired shift codes will be
recognized as DBCS characters. Unlike a nonnumeric literal compiled under the
NODBCS option, additional syntax rules apply to DBCS characters in a
nonnumeric literal.

These nonnumeric literals with double-byte characters have the following format:

Nonnumeric literals with double-byte characters

"EBCDIC–data<D1D2>EBCDIC–data"

" The opening and closing delimiter (Alternatively, you can use apostrophes (')
as delimiters.)

< Represents the shift-out control character (X'0E')

> Represents the shift-in control character (X'0F')

Shift-out and shift-in control characters are part of the literal and must be paired
with zero or an even number of intervening bytes.

Nested shift codes are not allowed in the DBCS portion of the literal.

The syntax rules for EBCDIC parts of the literal follow the rules for nonnumeric
literals. The syntax rules for DBCS parts of the literal follow the rules for DBCS
literals. The move and comparison rules for nonnumeric literals with double-byte
characters are the same as those for any nonnumeric literal.

The length of a nonnumeric literal with double-byte characters is its byte length,
including the shift control characters. The maximum length is limited by the
available space on one line in Area B. A nonnumeric literal with double-byte
characters cannot be continued.

A nonnumeric literal with double-byte characters is of the alphanumeric category.

Under COBOL for OS/390 & VM, COBOL statements process nonnumeric literals
with double-byte characters without sensitivity to the shift codes and character
codes. The use of statements that operate on a byte-to-byte basis (for example,
STRING and UNSTRING) can result in strings that are not valid mixtures of
EBCDIC and double-byte characters. You must be certain that the statements use
DBCS characters. See IBM COBOL for OS/390 & VM Programming Guide for more
information on using nonnumeric literals and data items with double-byte
characters in statements that operate on a byte-by-byte basis.

Hexadecimal notation can be used for nonnumeric literals. This hexadecimal
notation has the following format:

Hexadecimal notation format for nonnumeric literals

X"hexadecimal–digits"

X" The opening delimiter for hexadecimal notation of a nonnumeric literal.
(Alternatively, you can use apostrophes (') as delimiters.)

" The closing delimiter for the hexadecimal notation of a nonnumeric literal.
(Alternatively, you can use apostrophes (') as delimiters.)

Hexadecimal digits can be characters in the range '0' to '9', 'a' to 'f', and 'A'

Literals

Part 1. COBOL language structure 19

to 'F', inclusive. Two hexadecimal digits represent a single character in the
EBCDIC/ASCII character set. An even number of hexadecimal digits must be
specified. The maximum length of a hexadecimal literal is 320 hexadecimal digits.

The continuation rules are the same as those for any nonnumeric literal. The
opening delimiter (X" or X') cannot be split across lines.

The DBCS compiler option has no effect on the processing of hexadecimal notation
of nonnumeric literals.

The compiler will convert the hexadecimal literal into a normal nonnumeric literal.
Hexadecimal notation for nonnumeric literals can be used anywhere nonnumeric
literals can appear.

The padding character for hexadecimal notation of nonnumeric literals is the blank
(X'40' for OS/390 and VM) or (X'20' for AIX and Windows).

Nonnumeric literals can be null-terminated, with the following format:

Format for null-terminated nonnumeric literals

Z"ddddd"

Z" The opening delimiter for null-terminated notation of a nonnumeric literal.
(Alternatively, you can use apostrophes (') as delimiters.)

" The closing delimiter for a null-terminated notation of a nonnumeric literal.
(Alternatively, you can use apostrophes (') as delimiters.)

Null-terminated nonnumeric literals can be from 0 to 159 characters. You can
specify any character except X'00', which is the null string automatically
appended to the end of the literal. The length of the literal includes the
terminating null character.

Null-terminated literals can be used anywhere a nonnumeric literal can be
specified and have the normal semantics of nonnumeric literals.

Both characters of the opening delimiter for null-terminated literals (Z" or Z') must
be on the same source line.

The LENGTH intrinsic function, when applied to a null-terminated literal, returns
the number of characters in the literal prior to but not including the terminating
null. (The LENGTH special register does not support literal operands.)

Null-terminated literals are not supported in “ALL literal” constructions.

If the ARITH(EXTEND) compiler option is in effect, then
one through 31 digits are allowed.

Literals

 Numeric literals

A numeric literal is a character-string whose characters are selected from the digits
0 through 9, a sign character (+ or -), and the decimal point. If the literal contains
no decimal point, it is an integer. (In this manual, the word integer appearing in a
format represents a numeric literal of nonzero value that contains no sign and no
decimal point; any other restrictions are included with the description of the
format.) The following rules apply:

| � If the ARITH(COMPAT) compiler option is in effect, then one through 18
| digits are allowed.
|

� Only one sign character is allowed. If included, it must be the leftmost
character of the literal. If the literal is unsigned, it is a positive value.

20 COBOL Language Reference

 or floating-point

Rules for floating-point literal values:

� A floating-point literal is written in the form:

��─ ──┬ ┬─── ─mantissa E─ ──┬ ┬─── ─exponent──��
 ├ ┤─+─ ├ ┤─+─
 └ ┘─-─ └ ┘─-─

� The sign is optional before the mantissa and the exponent; if you omit the
sign, the compiler assumes a positive number.

� The mantissa can contain between 1 and 16 digits. A decimal point must be
included in the mantissa.

� The exponent is represented by an E followed by an optional sign and 1 or 2
digits.

� Under OS/390 and VM, the magnitude of a floating-point literal
value must fall between 0.54E-78 and 0.72E+76. For values outside of this
range, an E-level diagnostic will be produced and the value will be replaced by
either 0 or 0.72E+76, respectively.

� Under AIX and Windows, the magnitude of a floating-point
literal value must fall between:
— 32-bit representation—1.175(10-38) to 3.403(1038)
— 64-bit representation—2.225(10-308) to 1.798(10308)

Every numeric literal is in the numeric data category. (Data categories are
described under “Classes and categories of data” on page 127.)

 DBCS literals

Table 5 lists the formats and rules for DBCS literals. You can use either quotes or
apostrophes for the opening and closing delimiters.

Table 5 (Page 1 of 2). Format and rules for forming DBCS literals

Rules OS/390 and VM AIX and Windows

Format G"<D1D2D3>"
N"<D1D2D3>"

G"D1D2D3"
N"D1D2D3"

Literals

� Only one decimal point is allowed. If a decimal point is included, it is treated
as an assumed decimal point (that is, as not taking up a character position in
the literal). The decimal point can appear anywhere within the literal except
as the rightmost character.

The value of a numeric literal is the algebraic quantity expressed by the characters
in the literal. The size of a numeric literal in standard data format characters is
equal to the number of digits specified by the user.

Numeric literals can be fixed-point numbers.

Part 1. COBOL language structure 21

Table 5 (Page 2 of 2). Format and rules for forming DBCS literals

Rules OS/390 and VM AIX and Windows

G" N" Opening delimiters. They must be followed
immediately by a shift-out control character.

For N-literals, when embedded
quotes/apostrophes are specified as part of
DBCS characters in a DBCS literal, a single
embedded DBCS quote/apostrophe is
represented by 2 DBCS quotes/apostrophes.
If a single embedded DBCS
quote/apostrophe is found, an E-level
compiler message will be issued and a second
embedded DBCS quote/apostrophe will be
assumed.

Opening delimiters.

< Represents the shift-out control character
(X'0E')

N/A

> Represents the shift-in control character
(X'0F')

N/A

" The closing delimiter. They must appear
immediately after the shift-in control
character.

Single-byte quotation marks or apostrophes
can appear as part of DBCS characters in a
DBCS literal between the shift-out and
shift-in control characters.

The closing delimiter.

Character
range

X'00' to X'FF' for both bytes, except for
X'0F7F' (or X'0F7D' if using apostrophes as
the opening and closing delimiters).

Any double-byte character in a DBCS code
page.

Maximum
length

28 characters N/A

Continuation
rules

Cannot be continued across lines. Cannot be continued across lines.

When DBCS literals are allowed

DBCS literals are allowed in the following:
� Data Division

— In the VALUE clause of DBCS data description entries. If you specify a
DBCS literal in a VALUE clause for a data item, the length of the literal
must not exceed the size indicated by the data item's PICTURE clause.
Explicitly or implicitly defining a DBCS data item as USAGE DISPLAY-1
specifies that the data item is to be stored in character form, one character
to each 2 bytes.

— In the VALUE OF clause of file description entries.
� Procedure Division

— As the sending item when a DBCS or group item is the receiving item.
— In a relation condition when the comparand is a DBCS or group item.
— As the figurative constants SPACE/SPACES, ALL SPACE/SPACES, or

ALL DBCS literal. These are the only figurative constants that can be
DBCS literals. (The value of a DBCS space is X'4040'.)

Literals

22 COBOL Language Reference

When DBCS literals are not allowed

DBCS literals are not allowed in the following:
� Non-Procedure Division

— ALPHABET clause
— ASSIGN clause
— CLASS clause
— CURRENCY SIGN clause
— END METHOD header
— END PROGRAM header
— METHOD-ID paragraph
— PADDING CHARACTER clause
— PROGRAM-ID paragraph
— RERUN clause

� Procedure Division
— CALL statement (program-name)
— CANCEL statement
— ENTRY statement
— INVOKE statement
— SET procedure-pointer to ENTRY literal
— STOP statement

� As a file assignment name
� As a function argument
� As a basis-name in a BASIS statement
� As a text-name or library-name in a COPY statement

Character-strings that form comments can contain:
� Under OS/390 and VM, DBCS characters or a combination of DBCS

and EBCDIC characters.
� Under AIX and Windows any character from the code page in

effect.

Multiple comment lines containing DBCS/EUC strings are allowed. The
embedding of DBCS/EUC characters in a comment line must be done on a

Literals

 PICTURE character-strings

A PICTURE character-string is composed of the currency symbol and certain
combinations of characters in the COBOL character set. PICTURE character-strings
are delimited only by the separator space, separator comma, separator semicolon,
or separator period.

A chart of PICTURE clause symbols appears in Table 11 on page 161.

 Comments

A comment is a character-string that can contain any combination of characters
from the character set of the computer. It has no effect on the execution of the
program. There are two forms of comments:

Comment entry (Identification Division)
This form is described under “Optional paragraphs” on page 76.

Comment line (any division)
This form is described under “Comment lines” on page 32.

Part 1. COBOL language structure 23

line-by-line basis. DBCS/EUC words cannot be continued to a following line. No
syntax checking for valid DBCS/EUC strings is provided in comment lines.

'␣ Apostrophe
X" Opening delimiter for a nonnumeric literal
Z" Opening delimiter for a null-terminated nonnumeric literal
N" Opening delimiter for a DBCS literal
G" Opening delimiter for a DBCS literal

Separators

 Separators

A separator is a string of one or more contiguous characters as shown in Table 6.

Table 6. Separator characters

Separator Meaning

␣ Space
,␣ Comma
.␣ Period
;␣ Semicolon
(Left parenthesis
) Right parenthesis
: Colon
"␣ Quotation marks

== Pseudo-text delimiter

Rules for separators

In the following description, {} enclose each separator. Anywhere a space is used
as a separator, or as part of a separator, more than one space can be used.

 The IBM COBOL character set does not include a tab character (ASCII
code 9). You cannot use the tab character as a separator in IBM COBOL.

Space {␣}
A space can immediately precede or follow any separator except:

� The opening pseudo-text delimiter, where the preceding space is required.
� Within quotation marks. Spaces between quotation marks are considered

part of the nonnumeric literal; they are not considered separators.

Period {.␣}, Comma {,␣}, Semicolon {;␣}
A separator comma is composed of a comma followed by a space; a separator
period is composed of a period followed by a space; a separator semicolon is
composed of a semicolon followed by a space.

The separator period must be used only to indicate the end of a sentence, or as
shown in formats. The separator comma and separator semicolon can be used
anywhere the separator space is used.

� In the Identification Division, each paragraph must end with a separator
period.

� In the Environment Division, the SOURCE-COMPUTER,
OBJECT-COMPUTER, SPECIAL-NAMES, and I-O-CONTROL paragraphs
must each end with a separator period. In the FILE-CONTROL paragraph,
each File-Control entry must end with a separator period.

� In the Data Division, file (FD), sort/merge file (SD), and data description
entries must each end with a separator period.

24 COBOL Language Reference

Apostrophes {'} ... {'}
An opening apostrophe must be immediately preceded by a space or a left
parenthesis. A closing apostrophe must be immediately followed by a
separator (space, comma, semicolon, period, or right parenthesis).
Apostrophes must appear as balanced pairs. They delimit nonnumeric literals,
except when the literal is continued (see “Continuation lines” on page 31).

Separators

� In the Procedure Division, separator commas or separator semicolons can
separate statements within a sentence, and operands within a statement.
Each sentence and each procedure must end with a separator period.

Parentheses { (} ... {) }
Except in pseudo-text, parentheses can appear only in balanced pairs of left
and right parentheses. They delimit subscripts, a list of function arguments,
reference-modifiers, arithmetic expressions, or conditions.

Colon { : }
The colon is a separator and is required when shown in general formats.

Quotation marks {"} . . . {"}
An opening quotation mark must be immediately preceded by a space or a left
parenthesis. A closing quotation mark must be immediately followed by a
separator (space, comma, semicolon, period, right parenthesis, or pseudo-text
delimiter). Quotation marks must appear as balanced pairs. They delimit
nonnumeric literals, except when the literal is continued (see “Continuation
lines” on page 31).

Pseudo-text delimiters {␣==} . . . {==␣}
An opening pseudo-text delimiter must be immediately preceded by a space.
A closing pseudo-text delimiter must be immediately followed by a separator
(space, comma, semicolon, or period). Pseudo-text delimiters must appear as
balanced pairs. They delimit pseudo-text. (See “COPY statement” on
page 468.)

Note: Any punctuation character included in a PICTURE character-string, a
comment character-string, or a nonnumeric literal is not considered as a
punctuation character, but rather as part of the character-string or literal.

Part 1. COBOL language structure 25

Statement and clauses

Sections and paragraphs

Sections and paragraphs define a program. They are subdivided into clauses and
statements. For more information on sections, paragraphs, and statements, see
“Procedures” on page 208.

Statements and clauses

Unless the associated rules explicitly state otherwise, each required clause or
statement must be written in the sequence shown in its format. If optional clauses
or statements are used, they must be written in the sequence shown in their
formats. These rules are true even for clauses and statements treated as comments.

The grammatical hierarchy follows this form:
� Identification Division

 Paragraphs
 Entries
 Clauses

� Environment Division
 Sections
 Paragraphs
 Entries
 Clauses
 Phrases

� Data Division
 Sections
 Entries
 Clauses
 Phrases

� Procedure Division
 Sections
 Paragraphs
 Sentences
 Statements
 Phrases

 Entries

An entry is a series of clauses ending with a separator period. Entries are
constructed in the Identification, Environment, and Data Divisions.

 Clauses

A clause is an ordered set of consecutive COBOL character-strings that specifies an
attribute of an entry. Clauses are constructed in the Identification, Environment,
and Data Divisions.

26  Copyright IBM Corp. 1991, 2000

Statement and clauses

 Sentences

A sentence is a sequence of one or more statements, ending with a separator
period. Sentences are constructed in the Procedure Division.

 Statements

A statement is a valid combination of a COBOL verb and its operands. It specifies
an action to be taken by the object program. Statements are constructed in the
Procedure Division. For descriptions of the different types of statements, see:
� “Imperative statements” on page 235
� “Conditional statements” on page 236
� “Scope of names” on page 35
� “Compiler-directing statements” on page 464

 Phrases

Each clause or statement in the program can be subdivided into smaller units
called phrases.

Part 1. COBOL language structure 27

Indicator area

Reference format

COBOL programs must be written in the COBOL reference format. Figure 1
shows the reference format for a COBOL source line.

Figure 1. Reference format for COBOL source line

The following areas are described below in terms of a 72-character line:

Sequence number area
Columns 1 through 6

Indicator area
Column 7

Area A
Columns 8 through 11

Area B
Columns 12 through 72

Sequence number area

The sequence number area can be used to label a source statement line. The
content of this area can consist of any character in the character set of the
computer.

 Indicator area

Use the indicator area to specify:
� The continuation of words or nonnumeric literals from the previous line onto

the current line
� The treatment of text as documentation
� Debugging lines

See “Continuation lines” on page 31, “Comment lines” on page 32, and
“Debugging lines” on page 33.

The indicator area can be used for source listing formatting. A slash (“/”) placed
in the indicator column will cause the compiler to start a new page for the source
listing, and the corresponding source record to be treated as a comment. The
effect may be dependent on the LINECOUNT compiler option. For information on
the LINECOUNT compiler option, see the IBM COBOL Programming Guide for
your platform.

28  Copyright IBM Corp. 1991, 2000

 end class, and end method

Area A

 Area A

The following items must begin in Area A:
� Division header
� Section header
� Paragraph header or paragraph name
� Level indicator or level-number (01 and 77)
� DECLARATIVES and END DECLARATIVES
� End program, header

 Division header

A division header is a combination of words, followed by a separator period, that
indicates the beginning of a division:
 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 PROCEDURE DIVISION.

A division header (except when a USING phrase is specified with a Procedure
Division header) must be immediately followed by a separator period. Except for
the USING phrase, no text can appear on the same line.

 Section header

In the Environment and Procedure Divisions, a section header indicates the
beginning of a series of paragraphs; for example:
 INPUT-OUTPUT SECTION.

In the Data Division, a section header indicates the beginning of an entry; for
example:
 FILE SECTION.
 LINKAGE SECTION.
 WORKING-STORAGE SECTION.

A section header must be immediately followed by a separator period.

Paragraph header or paragraph name

A paragraph header or paragraph name indicates the beginning of a paragraph.

In the Environment Division, a paragraph consists of a paragraph header followed
by one or more entries. For example:
 OBJECT-COMPUTER. computer-name

In the Procedure Division, a paragraph consists of a paragraph-name followed by
one or more sentences.

Level indicator (FD and SD) or level-number (01 and 77)

A level indicator can be either FD or SD. It must begin in Area A and be followed
by a space. (See “File Section” on page 133.) A level-number that must begin in

Part 1. COBOL language structure 29

End Class, and End Method

 class definition, or method
definition.

END CLASS CLASS-NAME.
END METHOD METHOD-NAME.

For classes
Class-name must be identical to the class-name of the corresponding CLASS-ID
paragraph.

For methods
Method-name must be identical to the method-name of the corresponding
METHOD-ID paragraph.

Area B

Area A is a 1- or 2-digit integer with a value of 01 or 77. It must be followed by a
space or separator period.

DECLARATIVES and END DECLARATIVES

DECLARATIVES and END DECLARATIVES are key words that begin and end the
declaratives part of the source program.

In the Procedure Division, each of the key words DECLARATIVES and END
DECLARATIVES must begin in Area A and be followed immediately by a
separator period; no other text can appear on the same line. After the key words
END DECLARATIVES, no text can appear before the following section header.
(See “Declaratives” on page 207.)

End Program, headers

The “end” headers are a combination of words, followed by a separator period,
that indicate the end of a COBOL source program,

 For example:

END PROGRAM PROGRAM-NAME.

For programs
Program-name must be identical to the program-name of the corresponding
PROGRAM-ID paragraph. Every COBOL program, except an outermost
program that contains no nested programs and is not followed by another
batch program, must end with an END PROGRAM header.

 Area B

The following items must begin in Area B:
� Entries, sentences, statements, clauses
� Continuation lines

Entries, sentences, statements, clauses

The first entry, sentence, statement, or clause begins on either the same line as the
header or paragraph-name it follows, or in Area B of the next nonblank line that is
not a comment line. Successive sentences or entries either begin in Area B of the
same line as the preceding sentence or entry or in Area B of the next nonblank line
that is not a comment line.

Within an entry or sentence, successive lines in Area B can have the same format,
or can be indented to clarify program logic. The output listing is indented only if
the input statements are indented. Indentation does not affect the meaning of the
program. The programmer can choose the amount of indentation, subject only to

30 COBOL Language Reference

DBCS literals and user-defined words containing multi-byte characters cannot be
continued.

Both characters making up the opening delimiter must be on the same line for the:
� Hexadecimal notation of a nonnumeric literal (X" or X')
� Hexadecimal notation of a null-terminated nonnumeric literal (Z" or Z')

If the last character on the continued line of a nonnumeric literal is a single
quotation mark in Area B, the continuation line can start with a single quotation
mark. This will result in two consecutive nonnumeric literals instead of one
continued nonnumeric literal.

Area B

the restrictions on the width of Area B. See also “Sections and paragraphs” on
page 26.

 Continuation lines

Any sentence, entry, clause, or phrase that requires more than one line can be
continued in Area B of the next line that is neither a comment line nor a blank
line. The line being continued is a continued line; the succeeding lines are
continuation lines. Area A of a continuation line must be blank.

If there is no hyphen (-) in the indicator area (column 7) of a line, the last character
of the preceding line is assumed to be followed by a space.

If there is a hyphen in the indicator area of a line, the first nonblank character of
this continuation line immediately follows the last nonblank character of the
continued line without an intervening space.

If the continued line contains a nonnumeric literal without a closing quotation
mark, all spaces at the end of the continued line (through column 72) are
considered to be part of the literal. The continuation line must contain a hyphen
in the indicator area, and the first nonblank character must be a quotation mark.
The continuation of the literal begins with the character immediately following the
quotation mark.

| If a nonnumeric literal that is to be continued on the next line has as its last
| character a quotation mark in column 72, the continuation line must start with two
| consecutive quotation marks. This will result in a single quotation mark as part of

the value of the nonnumeric literal.

Both characters making up the pseudo-text delimiter separator “==” must be on
the same line.

To continue a literal such that the continued lines and the continuation lines are
part of one literal:
� Code a hyphen in the indicator area of each continuation line.
� Do not terminate the continued lines with a single quotation mark followed by

a space.
� Code the literal value using all columns of the continued lines, up to and

including column 72.
� Code a quotation mark before the first character of the literal on each

continuation line.
� Terminate the last continuation line with a single quotation mark followed by

a space.

Part 1. COBOL language structure 31

Area A or Area B

Given the following examples, the number and size of literals created are as
follows:
� Literal 000001 is interpreted as one literal that is 120 bytes long. Each character

between the starting quotation mark and up to and including column 72 of
continued lines are counted as part of the literal.

� Literal 000005 is interpreted as one literal that is 140 bytes long. The blanks at
the end of each continued line are counted as part of the literal because the
continued lines do not end with a quotation mark.

� Literal 000010 is interpreted as three separate literals, each having a length of
50, 50, and 20, respectively. The quotation mark with the following space
terminates the continued line. Only the characters within the quotation marks
are counted as part of the literals. Literal 000010 is not valid as a VALUE
clause literal for non-level 88 data items.

 Example

|...+.V..1....+....2....+....3....+....4....+....5....+....6....+....7..
?????1 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK
 - "LLLLLLLLLLMMMMMMMMMM"

?????5 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK
 - "LLLLLLLLLLMMMMMMMMMM"

????1? "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE"
 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK"
 - "LLLLLLLLLLMMMMMMMMMM"

Note: To code a continued literal where the length of each continued segment of
the literal is less than the length of Area-B, adjust the starting column such that the
last character of the continued segment is in column 72.

Area A or Area B

The following items can begin in either Area A or Area B:
� Level-numbers
� Comment lines
� Compiler-directing statements
� Debugging lines
� Pseudo-text

 Level-numbers

A level-number that can begin in Area A or B is a 1- or 2-digit integer with a value
of 02 through 49; 66, or 88. A level-number that must begin in Area A is a 1- or
2-digit integer with a value of 01 or 77. It must be followed by a space or a
separator period. For more information, see “Level-numbers” on page 146.

 Comment lines

A comment line is any line with an asterisk (*) or slash (/) in the indicator area
(column 7) of the line. The comment can be written anywhere in Area A and Area
B of that line, and can consist of any combination of characters from the character

32 COBOL Language Reference

Comment lines are permitted to appear before the Identification Division, but they
must follow any control cards (for example, PROCESS or CBL).

Note: Comments intermixed with control cards could nullify some of the control
cards and cause them to be diagnosed as errors.

As an IBM extension BASIS, CBL (PROCESS), *CBL (*CONTROL), DELETE,
EJECT, INSERT, SKIP1/2/3, and TITLE can also start in Area A or Area B.

Compiler directives (workstation only)

Compiler directives can start only in Area B. Currently, the only compiler
directive is CALLINTERFACE. For more information, see “Compiler directives”
on page 489.

Area A or Area B

set of the computer. A comment line can be placed anywhere in the program
following the Identification Division header.

Multiple comment lines are allowed. Each must begin with either an asterisk (*) or
a slash (/) in the indicator area.

An asterisk (*) comment line is printed on the next available line in the output
listing. The effect may be dependent on the LINECOUNT compiler option. For
information on the LINECOUNT compiler option, see the IBM COBOL
Programming Guide for your platform. A slash (/) comment line is printed on the
first line of the next page, and the current page of the output listing is ejected.

The compiler treats a comment line as documentation, and does not check it
syntactically.

 Compiler-directing statements

Most compiler-directing statements can start in either Area A or Area B, including
COPY and REPLACE.

 Debugging lines

A debugging line is any line with a 'D' (or 'd') in the indicator area of the line.
Debugging lines can be written in the Environment Division (after the
OBJECT-COMPUTER paragraph), the Data Division, and the Procedure Division.
If a debugging line contains only spaces in Area A and Area B, it is considered a
blank line.

See “WITH DEBUGGING MODE” in “SOURCE-COMPUTER paragraph” on
page 80.

 Pseudo-text

The character-strings and separators comprising pseudo-text can start in either
Area A or Area B. If, however, there is a hyphen in the indicator area (column 7)
of a line which follows the opening pseudo-text delimiter, Area A of the line must
be blank, and the rules for continuation lines apply to the formation of text words.

Part 1. COBOL language structure 33

Area A or Area B

 Blank lines

A blank line contains nothing but spaces from column 7 through column 72. A
blank line can appear anywhere in a program.

34 COBOL Language Reference

For classes and methods
Names declared in a class definition are global to all the methods contained in
that class definition. All names declared in methods are implicitly local.

Scope of names

Scope of names

A COBOL resource is any resource in a COBOL program that is referenced via a
user-defined word. You can use names to identify COBOL resources. This section
describes COBOL names and their scope. It explains the range of where the names
can be referenced and the range of their usability and accessibility.

Types of names

In addition to identifying a resource, a name can have global or local attributes.
Some names are always global, some names are always local, and some names are
either local or global depending on specifications in the program in which the
names are declared.

For programs
A global name can be used to refer to the resource with which it is associated
both:

� From within the program in which the global name is declared
� From within any other program that is contained in the program that

declares the global name

You use the GLOBAL clause in the data description entry to indicate that a
name is global. For more information on using the GLOBAL clause, see
“GLOBAL clause” on page 134.

A local name can be used only to refer to the resource with which it is
associated from within the program in which the local name is declared.

By default, if a data-name, a file-name, a record-name, or a condition-name
declaration in a data description entry does not include the GLOBAL clause,
the name is local.

Note: Specific rules sometimes prohibit specifying the GLOBAL clause for certain
data description, file description, or record description entries.

The following list indicates the names you can use and whether the name can be
local or global:

data-name
Data-name assigns a name to a data item.

A data-name is global if the GLOBAL clause is specified either in the data
description entry that declares the data-name, or in another entry to which that
data description entry is subordinate.

file-name
File-name assigns a name to a file connector.

A file-name is global if the GLOBAL clause is specified in the file description
entry for that file-name.

 Copyright IBM Corp. 1991, 2000 35

method-name
Method-name assigns a name to a method. A method-name is neither local nor
global.

Scope of names

record-name
Record-name assigns a name to a record.

A record-name is global if the GLOBAL clause is specified in the record
description that declares the record-name, or in the case of record description
entries in the File Section, if the GLOBAL clause is specified in the file
description entry for the file name associated with the record description entry.

condition-name
Condition-name associates a value with a conditional variable.

A condition-name that is declared in a data description entry is global if that
entry is subordinate to another entry that specifies the GLOBAL clause.

A condition-name that is declared within the Configuration Section is always
global.

program-name
Program-name assigns a name to a program, either external or internal (nested).
For more information, see “Conventions for program-names” on page 60.

A program-name is neither local nor global. For more information, see
“Conventions for program-names” on page 60.

section-name
Section-name assigns a name to a section in the Procedure Division.

A section-name is always local.

paragraph-name
Paragraph-name assigns a name to a paragraph in the Procedure Division.

A paragraph-name is always local.

basis-name
Basis-names are treated consistently as defined for text-names without the
library-name qualification.

library-name
Library-name specifies the COBOL library that the compiler uses for including
COPY text. For details, see “COPY statement” on page 468.

text-name
Text-name specifies the name of COPY text to be included by the compiler into
the source program. For details, see “COPY statement” on page 468.

alphabet-name
Alphabet-name assigns a name to a specific character set and/or collating
sequence in the SPECIAL-NAMES paragraph of the Environment Division.

An alphabet-name is always global.

class-name
Class-name assigns a name to the proposition in the SPECIAL-NAMES
paragraph of the Environment Division for which a truth value can be defined.

A class-name is always global.

36 COBOL Language Reference

object-oriented class-name
Object-oriented class-name assigns a name to a class, subclass, or metaclass.
An object-oriented class-name is always global.

object-oriented class Working-Storage
Object-oriented class Working-Storage data items are always global to the
methods contained in the class definition. They are accessible from any
contained method.

 or method

 or method
 or

method
 or methods

 or method

 or method

External and internal resources

mnemonic-name
Mnemonic-name assigns a user-defined word to an implementer-name.

A mnemonic-name is always global.

symbolic-character
Symbolic-character specifies a user-defined figurative constant.

A symbolic-name is always global.

index-name
Index-name assigns a name to an index associated with a specific table.

If a data item possessing the GLOBAL attribute includes a table accessed with
an index, that index also possesses the GLOBAL attribute. In addition, the
scope of that index-name is identical to the scope of the data-name that
includes the table.

External and internal resources

Accessible data items usually require that certain representations of data be stored.
File connectors usually require that certain information concerning files be stored.
The storage associated with a data item or a file connector can be external or
internal to the program in which the resource is declared.

A data item or file connector is external if the storage associated with that resource
is associated with the run unit rather than with any particular program
within the run unit. An external resource can be referenced by any program

 in the run unit that describes the resource. References to an external
resource from different programs using separate descriptions of the
resource are always to the same resource. In a run unit, there is only one
representation of an external resource.

A resource is internal if the storage associated with that resource is associated only
with the program that describes the resource.

External and internal resources can have either global or local names.

A data record described in the Working-Storage Section is given the external
attribute by the presence of the EXTERNAL clause in its data description entry.
Any data item described by a data description entry subordinate to an entry
describing an external record also attains the external attribute. If a record or data
item does not have the external attribute, it is part of the internal data of the
program in which it is described.

Scope of names 37

 or methods

 or method

 or methods

 or method or method

 or method

 (note, these rules also apply to classes and contained methods)

Resolution of names

Two programs in a run unit can reference the same file connector in
the following circumstances:
� An external file connector can be referenced from any program that

describes that file connector.
� If a program is contained within another program, both programs can refer to

a global file connector by referring to an associated global file-name either in
the containing program, or in any program that directly or indirectly contains
the containing program.

Two programs in a run unit can reference common data in the
following circumstances:
� The data content of an external data record can be referenced from any

program provided that program has described that data
record.

� If a program is contained within another program, both programs can refer to
data possessing the global attribute either in the program or in any program
that directly or indirectly contains the containing program.

The data records described as subordinate to a file description entry that does not
contain the EXTERNAL clause or a sort-merge file description entry, as well as any
data items described subordinate to the data description entries for such records,
are always internal to the program describing the file-name. If the
EXTERNAL clause is included in the file description entry, the data records and
the data items attain the external attribute.

Resolution of names

When a program, program B, is directly contained within another program,
program A, both programs can define a condition-name, a data-name, a file-name,
or a record-name using the same user-defined word. When such a duplicated
name is referenced in program B, the following steps determine the referenced
resource :
1. The referenced resource is identified from the set of all names which are

defined in program B and all global names defined in program A and in any
programs which directly or indirectly contain program A. Using this set of
names, the normal rules for qualification and any other rules for uniqueness of
reference are applied until one or more resource is identified.

2. If only one resource is identified, it is the referenced resource.
3. If more than one resource is identified, no more than one of them can have a

name local to program B. If zero or one of the resources has a name local to
program B, the following applies:
� If the name is declared in program B, the resource in program B is the

referenced resource.
� If the name is not declared in program B, the referenced resource is:

— The resource in program A if the name is declared in program A.
— The resource in the containing program if the name is declared in the

program containing program A.

This rule is applied to further containing programs until a valid resource is
found.

38 COBOL Language Reference

Uniqueness of reference

Referencing data names, copy libraries, and Procedure
Division names

References can be made to external and internal resources. References to data and
procedures can be either explicit or implicit. This section contains the rules for
qualification and for explicit and implicit data references.

Uniqueness of reference

Every user-defined name in a COBOL program is assigned by the user to name a
resource for solving a data processing problem. To use a resource, a statement in
a COBOL program must contain a reference which uniquely identifies that
resource. To ensure uniqueness of reference, a user-defined name can be qualified,
subscripted, or reference-modified.

When the same name has been assigned in separate programs to two or more
occurrences of a resource of a given type, and when qualification by itself does not
allow the references in one of those programs to differentiate between the
identically named resources, then certain conventions that limit the scope of names
apply. The conventions ensure that the resource identified is that described in the
program containing the reference. For more information on resolving
program-names, see “Resolution of names” on page 38.

Unless otherwise specified by the rules for a statement, any subscripts and
reference modification are evaluated only once as the first step in executing that
statement.

 Qualification

A name can be made unique if it exists within a hierarchy of names by specifying
one or more higher-level names in the hierarchy. The higher-level names are
called qualifiers, and the process by which such names are made unique is called
qualification.

Qualification is specified by placing one or more phrases after a user-specified
name, with each phrase made up of the word IN or OF followed by a qualifier (IN
and OF are logically equivalent).

In any hierarchy, the data name associated with the highest level must be unique if
it is referenced, and cannot be qualified.

You must specify enough qualification to make the name unique; however, it is
not always necessary to specify all the levels of the hierarchy. For example, if
there is more than one file whose records contain the field EMPLOYEE-NO, but only
one of the files has a record named MASTER-RECORD:
� EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies EMPLOYEE-NO
� EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but unnecessary

 Qualification rules

The rules for qualifying a name are:
� A name can be qualified even though it does not need qualification except in a

REDEFINES clause, in which case it must not be qualified.

 Copyright IBM Corp. 1991, 2000 39

When PICTURE clause symbol N is used, USAGE DISPLAY-1 is assumed (for
DBCS items).

These same rules apply to classes and their contained methods.

 as
an IBM extension, text-name-1 need not be qualified each time it is referenced; a
qualification of SYSLIB is assumed.

Uniqueness of reference

� Each qualifier must be of a higher level than the name it qualifies, and must be
within the same hierarchy.

� If there is more than one combination of qualifiers that ensures uniqueness,
then any of these combinations can be used.

Data attribute specification

Explicit data attributes are those you specify in actual COBOL coding.

Implicit data attributes are default values. If you do not explicitly code a data
attribute, the compiler assumes a default value.

For example, you need not specify the USAGE of a data item. If it is omitted and
the symbol N is not specified in the PICTURE clause, the default is USAGE
DISPLAY, which is the implicit data attribute.

If, however, you specify USAGE DISPLAY in COBOL coding, it
becomes an explicit data attribute.

 Identical names

When programs are directly or indirectly contained within other programs, each
program can use identical user-defined words to name resources. With
identically-named resources, a program will reference the resource which that
program describes rather than the same-named resource described in another
program, even when it is a different type of user-defined word.

References to COPY libraries

 Format
��──text-name-1─ ──┬ ┬──────────────────────── ───────────────────────────────��
 └ ┘ ──┬ ┬─IN─ ─library-name-1─
 └ ┘─OF─

If more than one COBOL library is available to the compiler during compilation,

For rules on referencing COPY libraries, see “COPY statement” on page 468.

References to Procedure Division names

 Format 1
��──paragraph-name-1─ ──┬ ┬──────────────────────── ──────────────────────────��
 └ ┘ ──┬ ┬─IN─ ─section-name-1─
 └ ┘─OF─

 Format 2
��──section-name-1───��

40 COBOL Language Reference

Uniqueness of reference

Procedure Division names that are explicitly referenced in a program must be
unique within a section. A section-name, described under “Procedures” on
page 208, is the highest and only qualifier available for a paragraph-name and
must be unique if referenced.

If explicitly referenced, a paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referred to within the
section in which it appears. A paragraph-name or section-name appearing in a
program cannot be referenced from any other program.

References to Data Division names

Simple data reference

The most basic method of referencing data items in a COBOL program is simple
data reference, which is data-name-1 without qualification, subscripting, or
reference modification. Simple data reference is used to reference a single
elementary or group item.

 Format
��──data-name-1──��

data-name-1
Can be any data description entry.

Data-name-1 must be unique in a program.

 Identifier

When used in a syntax diagram in this manual, the term identifier refers to a
valid combination of a data-name or function-identifier with its qualifiers,
subscripts, and reference-modifiers as required for uniqueness of reference. Rules
for identifiers associated with a format can, however, specifically prohibit
qualification, subscripting, or reference-modification.

The term data-name refers to a name that must not be qualified, subscripted, or
reference modified, unless specifically permitted by the rules for the format.
� For a description of qualification, see “Qualification” on page 39.
� For a description of subscripting, see “Subscripting” on page 43.
� For a description of reference modification, see “Reference modification” on

page 46.

 Format 1
 ┌ ┐───────────────────────────
��─ ─data-name-1─ ───/ ┴──┬ ┬───────────────────── ──┬ ┬───────────────────── ──────�
 └ ┘ ──┬ ┬─IN─ ─data-name-2─ └ ┘ ──┬ ┬─IN─ ─file-name-1─
 └ ┘─OF─ └ ┘─OF─

 ┌ ┐───────────────────────
�─ ───/ ┴──┬ ┬───────────────── ───�
 └ ┘─(──subscript──)─

�─ ──┬ ┬── ─────────────────────��
 └ ┘─(─ ──leftmost-character-position: ──┬ ┬──────── ─)─
 └ ┘─length─

Part 1. COBOL language structure 41

Uniqueness of reference

data-name-1, data-name-2
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be unique within this program.

 Format 1
 ┌ ┐───────────────────────────
��─ ──┬ ┬─condition-name-1─ ───/ ┴──┬ ┬───────────────────── ──────────────────────�
 └ ┘─data-name-1────── └ ┘ ──┬ ┬─IN─ ─data-name-2─
 └ ┘─OF─

�─ ──┬ ┬───────────────────── ──��
 └ ┘ ──┬ ┬─IN─ ─file-name-1─
 └ ┘─OF─

 Format 2
��──LINAGE-COUNTER─ ──┬ ┬───────────────────── ───────────────────────────────��
 └ ┘ ──┬ ┬─IN─ ─file-name-2─
 └ ┘─OF─

data-name-1, data-name-2
Can be a record-name.

condition-name-1
Can be referenced by statements and entries either in that program containing
the Configuration Section or in a program contained within that program.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

Must be unique within this program.

LINAGE-COUNTER
Must be qualified each time it is referenced if more than one file description
entry containing a LINAGE clause has been specified in the source program.

file-name-2
Must be identified by the FD or SD entry in the Data Division. File-name-2
must be unique within this program.

Duplication of data-names must not occur in those places where the data-name
cannot be made unique by qualification.

In the same program, the data-name specified as the subject of the entry whose
level-number is 01 that includes the EXTERNAL clause must not be the same
data-name specified for any other data description entry that includes the
EXTERNAL clause.

In the same Data Division, the data description entries for any two data items for
which the same data-name is specified must not include the GLOBAL clause.

Data Division names that are explicitly referenced must either be uniquely defined
or made unique through qualification. Unreferenced data items need not be
uniquely defined. The highest level in a data hierarchy must be uniquely named,
if referenced. This is a data item associated with a level indicator (FD or SD in the
File Section) or with a level-number 01. Data items associated with level-numbers
02 through 49 are successively lower levels of the hierarchy.

42 COBOL Language Reference

Uniqueness of reference

 Condition-name

Format 1 (Data Division)
 ┌ ┐───────────────────────────
��─ ─condition-name-1─ ───/ ┴──┬ ┬───────────────────── ──────────────────────────�
 └ ┘ ──┬ ┬─IN─ ─data-name-1─
 └ ┘─OF─

�─ ──┬ ┬───────────────────── ──┬ ┬───────────────────── ───────────────────────��
 └ ┘ ──┬ ┬─IN─ ─file-name-1─ │ │┌ ┐─────────────
 └ ┘─OF─ └ ┘ ─(─ ───/ ┴─subscript─ ─)─

Format 2 (Special-Names paragraph)
 ┌ ┐───────────────────────────────
��─ ─condition-name-1─ ───/ ┴──┬ ┬───────────────────────── ─────────────────────��
 └ ┘ ──┬ ┬─IN─ ─mnemonic-name-1─
 └ ┘─OF─

condition-name-1
Can be referenced by statements and entries either in the program containing
the definition of condition-name-1, or in a program contained within that
program.

If explicitly referenced, a condition-name must be unique or be made unique
through qualification and/or subscripting except when the scope of names
conventions by themselves ensure uniqueness of reference.

If qualification is used to make a condition-name unique, the associated
conditional variable can be used as the first qualifier. If qualification is used,
the hierarchy of names associated with the conditional variable itself must be
used to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any of
its condition-names also requires the same combination of subscripting.

In the general format of the chapters that follow, "condition-name" refers to a
condition-name qualified or subscripted, as necessary.

data-name-1
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be unique within this program.

mnemonic-name-1
For information on acceptable values for mnemonic-name-1, see
“SPECIAL-NAMES paragraph” on page 83.

 Subscripting

Subscripting is a method of providing table references through the use of
subscripts. A subscript is a positive integer whose value specifies the occurrence
number of a table element.

Part 1. COBOL language structure 43

Data-name-3 cannot be a windowed date field.

Uniqueness of reference

 Format
 ┌ ┐───────────────────────────
��─ ──┬ ┬─condition-name-1─ ───/ ┴──┬ ┬───────────────────── ──────────────────────�
 └ ┘─data-name-1────── └ ┘ ──┬ ┬─IN─ ─data-name-2─
 └ ┘─OF─

�─ ──┬ ┬───────────────────── ───�
 └ ┘ ──┬ ┬─IN─ ─file-name-1─
 └ ┘─OF─

 ┌ ┐──
�──(─ ───/ ┴──┬ ┬─integer-1────────────────────────── ─)────────────────────────��
 ├ ┤─ALL────────────────────────────────
 ├ ┤ ─data-name-3─ ──┬ ┬────────────────── ─
 │ │└ ┘ ──┬ ┬─+─ ─integer-2─
 │ │└ ┘─-─
 └ ┘ ─index-name-1─ ──┬ ┬──────────────────
 └ ┘ ──┬ ┬─+─ ─integer-3─
 └ ┘─-─

condition-name-1
The conditional variable for condition-name-1 must contain an OCCURS clause
or must be subordinate to a data description entry which contains an OCCURS
clause.

data-name-1
Must contain an OCCURS clause or must be subordinate to a data description
entry which contains an OCCURS clause.

data-name-2, file-name-1
Must name data items or records that contain data-name-1.

integer-1
Can be signed. If signed, it must be positive.

data-name-3
Must be a numeric elementary item representing an integer.

Data-name-3 can be qualified.

index-name-1
Corresponds to a data description entry in the hierarchy of the table being
referenced which contains an INDEXED BY phrase specifying that name.

integer-2, integer-3
Cannot be signed.

The subscripts, enclosed in parentheses, are written immediately following any
qualification for the name of the table element. The number of subscripts in such
a reference must equal the number of dimensions in the table whose element is
being referenced. That is, there must be a subscript for each OCCURS clause in
the hierarchy containing the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of
successively less inclusive dimensions of the data organization. If a
multi-dimensional table is thought of as a series of nested tables and the most
inclusive or outermost table in the nest is considered to be the major table with the
innermost or least inclusive table being the minor table, the subscripts are written
from left to right in the order major, intermediate, and minor.

44 COBOL Language Reference

Uniqueness of reference

For example, if TABLE-THREE is defined as:

?1 TABLE-THREE.
?5 ELEMENT-ONE OCCURS 3 TIMES.

1? ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES PIC X(8).

a valid subscripted reference to TABLE-THREE is:

ELEMENT-THREE (2 2 1)

Subscripted references can also be reference modified. See the third example
under “Reference modification examples” on page 48. A reference to an item
must not be subscripted unless the item is a table element or an item or
condition-name associated with a table element.

Each table element reference must be subscripted except when such reference
appears:
� In a USE FOR DEBUGGING statement
� As the subject of a SEARCH statement
� In a REDEFINES clause
� In the KEY is phrase of an OCCURS clause

The lowest permissible occurrence number represented by a subscript is 1. The
highest permissible occurrence number in any particular case is the maximum
number of occurrences of the item as specified in the OCCURS clause.

Subscripting using data-names

When a data-name is used to represent a subscript, it can be used to reference
items within different tables. These tables need not have elements of the same
size. The same data-name can appear as the only subscript with one item and as
one of two or more subscripts with another item. A data-name subscript can be
qualified; it cannot be subscripted or indexed. For example, valid subscripted
references to TABLE-THREE — assuming that SUB1, SUB2, and SUB3 are all items
subordinate to SUBSCRIPT-ITEM — include:

ELEMENT-THREE (SUB1 SUB2 SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF SUBSCRIPT-ITEM,
SUB2 OF SUBSCRIPT-ITEM, SUB3 OF SUBSCRIPT-ITEM)

Subscripting using index-names (indexing)

Indexing allows such operations as table searching and manipulating specific
items. To use indexing you associate one or more index-names with an item
whose data description entry contains an OCCURS clause. An index associated
with an index-name acts as a subscript, and its value corresponds to an occurrence
number for the item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated
with its table, is an optional part of the OCCURS clause. There is no separate
entry to describe the index associated with index-name. At run time, the contents
of the index corresponds to an occurrence number for that specific dimension of
the table with which the index is associated.

The initial value of an index at run time is undefined, and the index must be
initialized before it is used as a subscript. An initial value is assigned to an index
with one of the following:
� The PERFORM statement with the VARYING phrase

Part 1. COBOL language structure 45

As an IBM extension, an index-name can be used to reference any table. However,
the table element length of the table being referenced and of the table that the
index-name is associated with should match. Otherwise, the reference will not be
to the same table element in each table, and you might get run-time errors.

As an IBM extension, the integer can be positively signed.

 or DISPLAY-1

Data-name-1 cannot be a
windowed date field.

Uniqueness of reference

� The SEARCH statement with the ALL phrase
� The SET statement

The use of an integer or data-name as a subscript referencing a table element or an
item within a table element does not cause the alteration of any index associated
with that table.

Data that is arranged in the form of a table is often searched. The SEARCH
statement provides facilities for producing serial and non-serial searches. It is used
to search for a table element that satisfies a specific condition and to adjust the
value of the associated index to indicate that table element.

To be valid during execution, an index value must correspond to a table element
occurrence of neither less than one, nor greater than the highest permissible
occurrence number.

For more information on index-names, see “INDEXED BY phrase” on page 157.

 Relative subscripting

In relative subscripting, the name of a table element is followed by a subscript of
the form data-name or index-name followed by the operator + or -, and an
unsigned integer literal.

The operators + and - must be preceded and followed by a space. The value of
the subscript used is the same as if the index-name or data-name had been set up
or down by the value of the integer. The use of relative indexing does not cause
the program to alter the value of the index.

 Reference modification

Reference modification defines a data item by specifying a leftmost character and
optional length for the data item.

 Format
��─ ──┬ ┬─data-name-1─── ────────────────�
 └ ┘ ─FUNCTION──function-name-1─ ──┬ ┬──────────────────────
 │ │┌ ┐──────────────
 └ ┘ ─(─ ───/ ┴─argument-1─ ─)─

�──(─ ──leftmost-character-position: ──┬ ┬──────── ─)──────────────────────────��
 └ ┘─length─

data-name-1
Must reference a data item whose usage is DISPLAY .

Data-name-1 can be qualified or subscripted.

leftmost-character-position
Must be an arithmetic expression. The evaluation of leftmost-character-position
must result in a positive nonzero integer that is less than or equal to the
number of characters in the data item referenced by data-name-1.

46 COBOL Language Reference

The evaluation of leftmost-character-position must not result in a windowed date
field.

When data-name-1 is a
DISPLAY-1 data item, reference modification refers to the starting position and
length of the data item being referenced in characters, not bytes.

The evaluation of length must not result in a windowed date field.

If data-name-1 is an expanded date field, then the result of reference modification
is a non-date.

If the category of data-name-1 is external floating-point, the unique data item has
the class and category alphanumeric.

Uniqueness of reference

length
Must be an arithmetic expression.

The sum of leftmost-character-position and length minus the value one must be
less than or equal to the number of characters in data-name-1. If length is
omitted, than the length used will be equal to the number of characters in
data-name-1 plus one minus leftmost-character-position.

The
evaluation of length must result in a positive nonzero integer.

Unless otherwise specified, reference modification is allowed anywhere an
identifier referencing an alphanumeric data item is permitted.

Each character of data-name-1 is assigned an ordinal number incrementing by one
from the leftmost position to the rightmost position. The leftmost position is
assigned the ordinal number one. If the data description entry for data-name-1
contains a SIGN IS SEPARATE clause, the sign position is assigned an ordinal
number within that data item.

If data-name-1 is described as numeric, numeric-edited, alphabetic, or
alphanumeric-edited, it is operated upon for purposes of reference modification as
if it were redefined as an alphanumeric data item of the same size as the data item
referenced by data-name-1.

Reference modification creates a unique data item which is a subset of data-name-1
or by function-name-1 and its arguments, if any. This unique data item is
considered an elementary data item without the JUSTIFIED clause.

When a function is reference-modified, the unique data item has the class and
category of alphanumeric. When data-name-1 is reference-modified, the unique
data item has the same class and category as that defined for the data item
referenced by data-name-1; however, if the category of data-name-1 is numeric,
numeric-edited, or alphanumeric-edited, the unique data item has the class and
category alphanumeric.

If length is not specified, the unique data item created extends from and includes
the character identified by leftmost-character-position up to and including the
rightmost character of the data item referenced by data-name-1.

Evaluation of operands

Reference modification for an operand is evaluated as follows:
� If subscripting is specified for the operand, the reference modification is

evaluated immediately after evaluation of the subscript.
� If subscripting is not specified for the operand, the reference modification is

evaluated at the time subscripting would be evaluated if subscripts had been
specified.

Part 1. COBOL language structure 47

Uniqueness of reference

Reference modification examples

The following statement transfers the first 10 characters of the data-item referenced
by WHOLE-NAME to the data-item referenced by FIRST-NAME.

77 WHOLE-NAME PIC X(25).
77 FIRST-NAME PIC X(1?).

...

MOVE WHOLE-NAME(1:1?) TO FIRST-NAME.

The following statement transfers the last 15 characters of the data-item referenced
by WHOLE-NAME to the data-item referenced by LAST-NAME.

77 WHOLE-NAME PIC X(25).
77 LAST-NAME PIC X(15).

...

MOVE WHOLE-NAME(11:) TO LAST-NAME.

The following statement transfers the fourth and fifth characters of the third
occurrence of TAB to the variable SUFFIX.

?1 TABLE-1.
?2 TAB OCCURS 1? TIMES PICTURE X(5).

77 SUFFIX PICTURE X(2).
...

MOVE TAB OF TABLE-1 (3) (4:2) TO SUFFIX.

 Function-identifier

A function-identifier is a syntactically correct sequence of character strings and
separators that uniquely references the data item resulting from the evaluation of a
function.

 Format
��──FUNCTION──function-name-1─ ──┬ ┬────────────────────── ────────────────────�
 │ │┌ ┐──────────────
 └ ┘ ─(─ ───/ ┴─argument-1─ ─)─

�─ ──┬ ┬──────────────────── ───��
 └ ┘─reference-modifier─

argument-1
Must be an identifier, literal (other than a figurative constant), or arithmetic
expression.

For more information, see “Intrinsic functions” on page 402.

function-name-1
Function-name-1 must be one of the Intrinsic Function names.

reference-modifier
Can be specified only for functions of the category alphanumeric

A function-identifier that makes reference to an alphanumeric function can be
specified anywhere that an identifier is permitted and where references to
functions are not specifically prohibited, except as follows:

48 COBOL Language Reference

Uniqueness of reference

� As a receiving operand of any statement
� Where a data item is required to have particular characteristics (such as class

and category, size, sign, and permissible values) and the evaluation of the
function according to its definition and the particular arguments specified
would not have these characteristics.

A function-identifier that makes reference to an integer or numeric function can be
used wherever an arithmetic expression is allowed.

Part 1. COBOL language structure 49

� Following a GOBACK statement that transfers control outside the COBOL
program

Transfer of control

Transfer of control

In the Procedure Division, unless there is an explicit control transfer or there is no
next executable statement, program flow transfers control from statement to
statement in the order in which the statements are written. (See Note below.)
This normal program flow is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without the
execution of a procedure branching statement. The following examples show
implicit transfers of control, overriding statement-to-statement transfer of control:
� After execution of the last statement of a procedure being executed under

control of another COBOL statement, control implicitly transfers. (COBOL
statements that control procedure execution are, for example: MERGE,
PERFORM, SORT, and USE.) Further, if a paragraph is being executed under
the control of a PERFORM statement which causes iterative execution, and that
paragraph is the first paragraph in the range of that PERFORM statement, an
implicit transfer of control occurs between the control mechanism associated
with that PERFORM statement and the first statement in that paragraph for
each iterative execution of the paragraph.

� During SORT or MERGE statement execution, control is implicitly transferred
to an input or output procedure.

� During execution of any COBOL statement that causes execution of a
declarative procedure, control is implicitly transferred to that procedure.

� At the end of execution of any declarative procedure, control is implicitly
transferred back to the control mechanism associated with the statement that
caused its execution.

COBOL also provides explicit control transfers through the execution of any
procedure branching, program call, or conditional statement. (Lists of procedure
branching and conditional statements are contained in “Statement categories” on
page 234.)

Note: The term “next executable statement” refers to the next COBOL statement
to which control is transferred, according to the rules given above. There is no
next executable statement under these circumstances:
� When the program contains no Procedure Division
� Following the last statement in a declarative section when the paragraph in

which it appears is not being executed under the control of some other COBOL
statement

� Following the last statement in a program or method when the paragraph in
which it appears is not being executed under the control of some other COBOL
statement in that program

� Following the last statement in a declarative section when the statement is in
the range of an active PERFORM statement executed in a different section and
this last statement of the declarative section is not also the last statement of the
procedure that is the exit of the active PERFORM statement

� Following a STOP RUN statement or EXIT PROGRAM statement that transfers
control outside the COBOL program

50  Copyright IBM Corp. 1991, 2000

� Following an EXIT METHOD statement that transfers control outside the
COBOL method

 or end method

Similarly, if control reaches the end of the Procedure Division of a method, and
there is no next executable statement, an implicit EXIT METHOD statement is
executed.

Transfer of control

� The end program header

When there is no next executable statement and control is not transferred outside
the COBOL program, the program flow of control is undefined unless the program
execution is in the nondeclarative procedures portion of a program under control
of a CALL statement, in which case an implicit EXIT PROGRAM statement is
executed.

Part 1. COBOL language structure 51

Millennium Language Extensions and date fields

Millennium Language Extensions and date fields

Many applications use 2 digits rather than 4 digits to represent the year in date
fields, and assume that these values represent years from 1900 to 1999. This
compact date format works well for the 1900s, but it does not work for the year
2000 and beyond because these applications interpret “00” as 1900 rather than
2000, producing incorrect results.

The millennium language extensions are designed to allow applications that use
2-digit years to continue performing correctly in the year 2000 and beyond, with
minimal modification to existing code. This is achieved using a technique known
as windowing, which removes the assumption that all 2-digit year fields represent
years from 1900 to 1999. Instead, windowing enables 2-digit year fields to
represent years within any 100-year range, known as a century window.

For example, if a 2-digit year field contains the value 15, many applications would
interpret the year as 1915. However, with a century window of 1960–2059, the
year would be interpreted as 2015.

The millennium language extensions provide support for the most common
operations on date fields: comparisons, moving and storing, incrementing and
decrementing. This support is limited to date fields of certain formats; for details,
see “DATE FORMAT clause” on page 148.

For information on supported operations and restrictions when using date fields,
see “Restrictions on using date fields” on page 150.

Millennium Language Extensions syntax

The millennium language extensions introduce the following language elements to
IBM COBOL:
� The DATE FORMAT clause in data description entries, which defines data

items as date fields.
� The following intrinsic functions:

DATEVAL Converts a non-date to a date field.

UNDATE Converts a date field to a non-date.

YEARWINDOW Returns the first year of the century window specified
by the YEARWINDOW compiler option.

For details on using the millennium language extensions in applications, see the
IBM COBOL Programming Guide for your platform.

52  Copyright IBM Corp. 1991, 2000

Millennium Language Extensions and date fields

Note: The millennium language extensions have no effect unless your COBOL
program is compiled using the DATEPROC compiler option (with the
century window specified by the YEARWINDOW compiler option).

Terms and concepts

This book uses the following terms when referring to the millennium language
extensions.

 Date field

A date field can be any of the following:
� A data item whose data description entry includes a DATE FORMAT clause.
� A value returned by one of the following intrinsic functions:
 DATE-OF-INTEGER
 DATE-TO-YYYYMMDD
 DATEVAL
 DAY-OF-INTEGER
 DAY-TO-YYYYDDD
 YEAR-TO-YYYY
 YEARWINDOW
� The conceptual data items DATE, DATE YYYYMMDD, DAY, and DAY

YYYYDDD of the ACCEPT statement.
� The result of certain arithmetic operations (for details, see “Arithmetic with

date fields” on page 211).

The term date field refers to both expanded date fields and windowed date fields.

Windowed date field

A windowed date field is a date field that contains a windowed year. A
windowed year consists of 2 digits, representing a year within the century
window.

Expanded date field

An expanded date field is a date field that contains an expanded year. An
expanded year consists of 4 digits.

Note: The main use of expanded date fields is to provide correct results when
these are used in combination with windowed date fields; for example, where
migration to 4-digit year dates is not complete. If all the dates in an application
use 4-digit years, there is no need to use the millennium language extensions.

|
|
|

Part 1. COBOL language structure 53

Millennium Language Extensions and date fields

Year-last date field

A year-last date field is a date field whose DATE FORMAT clause specifies one or
more Xs preceding the YY or YYYY. Year-last date fields are supported in a
limited number of operations, typically involving another date with the same
(year-last) date format, or a non-date.

 Date format

Date format refers to the date pattern of a date field, specified either:
� Explicitly, by the DATE FORMAT clause or DATEVAL intrinsic function

argument-2
or
� Implicitly, by statements and intrinsic functions that return date fields (for

details, see “Date field” on page 53)

Compatible date field

The meaning of the term compatible, when applied to date fields, depends on the
COBOL division in which the usage occurs:

Data Division
Two date fields are compatible if they have identical USAGE and meet at
least one of the following conditions:

� They have the same date format
� Both are windowed date fields, where one consists only of a

windowed year, DATE FORMAT YY
� Both are expanded date fields, where one consists only of an expanded

year, DATE FORMAT YYYY
� One has DATE FORMAT YYXXXX, the other, YYXX
� One has DATE FORMAT YYYYXXXX, the other, YYYYXX

A windowed date field can be subordinate to an expanded date group
data item. The two date fields are compatible if the subordinate date field
has USAGE DISPLAY, starts two bytes after the start of the group
expanded date field, and the two fields meet at least one of the following
conditions:

� The subordinate date field has a DATE FORMAT pattern with the
same number of Xs as the DATE FORMAT pattern of the group date
field.

� The subordinate date field has DATE FORMAT YY.
� The group date field has DATE FORMAT YYYYXXXX and the

subordinate date field has DATE FORMAT YYXX.

Procedure Division
Two date fields are compatible if they have the same date format except
for the year part, which can be windowed or expanded. For example, a
windowed date field with DATE FORMAT YYXXX is compatible with:

� Another windowed date field with DATE FORMAT YYXXX
� An expanded date field with DATE FORMAT YYYYXXX

54 COBOL Language Reference

Millennium Language Extensions and date fields

 Non-date

A non-date can be any of the following:
� A data item whose date description entry does not include the DATE

FORMAT clause
� A date field that has been converted using the UNDATE function
� A literal
� A reference-modified date field
� The result of certain arithmetic operations that can include date field operands;

for example, the difference between two compatible date fields

 Century window

A century window is a 100-year interval within which any 2-digit year is unique.
There are several types of century window available to COBOL programmers:
1. For windowed date fields, it is specified by the YEARWINDOW compiler

option
2. For windowing intrinsic functions DATE-TO-YYYYMMDD,

DAY-TO-YYYYDDD, and YEAR-TO-YYYY, it is specified by argument-2
3. For Language Environment callable services, it is specified in CEESCEN

Part 1. COBOL language structure 55

Millennium Language Extensions and date fields

56 COBOL Language Reference

COBOL class definition structure

COBOL method definition structure

Part 2. COBOL source unit structure

COBOL program structure 58
Nested programs 60

. . . . 63

. . 65

 Copyright IBM Corp. 1991, 2000 57

COBOL program structure

COBOL program structure

A COBOL source program is a syntactically correct set of COBOL statements.

Nested programs
A nested program is a program that is contained in another program. These
contained programs can reference some of the resources of the programs that
contain them. If program B is contained in program A, it is directly contained
if there is no program contained in program A that also contains program B.
Program B is indirectly contained in program A if there exists a program
contained in program A that also contains program contained and containing
programs, see B. For more information on nested programs, see “Nested
programs” on page 60 and the IBM COBOL Programming Guide for your
platform.

Object program
An object program is a set or group of executable machine language
instructions and other material designed to interact with data to provide
problem solutions. An object program is generally the machine language
result of the operation of a COBOL compiler on a source program.

Run unit
A run unit is one or more object programs that interact with one another and
that function at object time as an entity to provide problem solutions.

Sibling program
Sibling programs are programs that are directly contained by the same
program.

With the exception of the COPY and REPLACE statements and the end program
header, the statements, entries, paragraphs, and sections of a COBOL source
program are grouped into the following four divisions:
� Identification Division
� Environment Division
� Data Division
� Procedure Division

The end of a COBOL source program is indicated by the END PROGRAM header.
If there are no nested programs, the absence of additional source program lines
also indicates the end of a COBOL program.

Following is the format for the entries and statements that constitute a
separately-compiled COBOL source program.

58  Copyright IBM Corp. 1991, 2000

ID

RECURSIVE

ID

This separator period is optional as an IBM extension.

Program-name can be a nonnumeric literal, but cannot be a figurative constant.
The content of the literal must follow the rules for formation of program
names. Any lowercase letters in this literal will be folded to uppercase.

COBOL program structure

Format—COBOL source program
��─ ──┬ ┬─IDENTIFICATION─ ─DIVISION.──PROGRAM-ID.───(1) ─program-name-1───────────────────────────────────�
 └ ┘ ─ ─────────────

�─ ──┬ ┬──────────────────────────────────── ─.───(1) ──┬ ┬───────────────────────────────── ───────────────�
 └ ┘ ──┬ ┬──── ──┬ ┬─ ─ ──┬ ┬───────── └ ┘─identification-division-content─
 └ ┘─IS─ └ ┘─INITIAL─── └ ┘─PROGRAM─

�─ ──┬ ┬─── ──�
 └ ┘ ─ENVIRONMENT DIVISION.──environment-division-content─

�─ ──┬ ┬─────────────────────────────────────── ──�
 └ ┘ ─DATA DIVISION.──data-division-content─

�─ ──┬ ┬─── ──�
 └ ┘ ─PROCEDURE DIVISION.──procedure-division-content─

�─ ──┬ ┬─── ───────────────────────────��
 └ ┘ ──┬ ┬─────────────────────────────── ─END PROGRAM──program-name-1.─
 │ │┌ ┐─────────────────────────────
 └ ┘───/ ┴─┤ nested source program ├─

nested source program
├─ ──┬ ┬─IDENTIFICATION─ ─DIVISION.──PROGRAM-ID.───(1) ─program-name-2────────────────────────────────────�
 └ ┘ ─ ─────────────

�─ ──┬ ┬── ─.───(1) ──┬ ┬───────────────────────────────── ─────�
 └ ┘ ──┬ ┬──── ──┬ ┬ ─COMMON─ ──┬ ┬───────── ──┬ ┬───────── └ ┘─identification-division-content─
 └ ┘─IS─ │ │└ ┘─INITIAL─ └ ┘─PROGRAM─
 └ ┘ ─INITIAL─ ──┬ ┬────────
 └ ┘─COMMON─

�─ ──┬ ┬─── ──�
 └ ┘ ─ENVIRONMENT DIVISION.──environment-division-content─

�─ ──┬ ┬─────────────────────────────────────── ──�
 └ ┘ ─DATA DIVISION.──data-division-content─

�─ ──┬ ┬─── ──┬ ┬─────────────────────────────── ─────────�
 └ ┘ ─PROCEDURE DIVISION.──procedure-division-content─ │ │┌ ┐─────────────────────────────
 └ ┘───/ ┴─| nested source program |─

�──END PROGRAM──program-name-2.──┤

Note:
1

A sequence of separate COBOL programs can also be input to the compiler.
Following is the format for the entries and statements that constitute a sequence of
source programs (batch compile).

Format—sequence of COBOL source programs
 ┌ ┐────────────────────────
��─ ───/ ┴─COBOL-source-program─ ──��

END PROGRAM program-name
An end program header separates each program in the sequence of programs.
The program-name must conform to the rules for forming a user-defined
word. It must be identical to a program-name declared in a preceding
PROGRAM-ID paragraph.

An end program header is optional for the last program in the sequence only
if that program does not contain any nested-source-programs.

Part 2. COBOL source unit structure 59

COBOL program structure

 Nested programs

A COBOL program can contain other COBOL programs, which in turn can contain
still other COBOL programs. These contained programs are called nested
programs. Nested programs can be directly or indirectly contained in the
containing program.

A COBOL program can contain other COBOL programs. The contained (or
nested) programs can themselves contain yet other programs. A contained
program can be directly or indirectly contained within another program. Figure 2
describes a nested program structure with directly and indirectly contained
programs.

Figure 2. Nested program structure with directly and indirectly contained programs

Conventions for program-names

The program-name of a program is specified in the PROGRAM-ID paragraph of
the program's Identification Division. A program-name can be referenced only by
the CALL statement, the CANCEL statement, the SET statement, or the END
PROGRAM header. Names of programs constituting a run unit are not necessarily
unique, but when two programs in a run unit are identically named, at least one of
the programs must be directly or indirectly contained within another separately
compiled program that does not contain the other of those two programs.

60 COBOL Language Reference

COBOL program structure

A separately compiled program and all of its directly and indirectly contained
programs must have unique program-names within that separately compiled
program.

Rules for program-names

The following rules regulate the scope of a program-name:
� If the program-name is that of a program which does not possess the

COMMON attribute, and which is directly contained within another program,
that program-name can be referenced only by statements included in that
containing program.

� If the program-name is that of a program which does possess the COMMON
attribute, and which is directly contained within another program, that
program-name can be referenced only by statements included in that
containing program and any programs directly or indirectly contained within
that containing program, except that program possessing the COMMON
attribute and any programs contained within it.

� If the program-name is that of a program which is separately compiled, that
program-name can be referenced by statements included in any other program
in the run unit, except programs it directly or indirectly contains.

The mechanism used to determine which program to call is as follows:
— If one of two programs having the same name as that specified in the

CALL statement is directly contained within the program that includes the
CALL statement, that program is called.

— If one of two programs having the same name as that specified in the
CALL statement possesses the COMMON attribute and is directly
contained within another program that directly or indirectly contains the
program that includes the CALL statement, that common program is called
unless the calling program is contained within that common program.

— Otherwise, the separately compiled program is called.

The following rules apply to referencing a program-name of a program that is
contained within another program. For this discussion, we will say that
Program-A contains Program-B and Program-C, Program-C contains Program-D
and Program-F, and Program-D contains Program-E.

Part 2. COBOL source unit structure 61

COBOL program structure

If Program-D does not possess the COMMON attribute, then Program-D can only
be referenced by the program that directly contains Program-D, that is, Program-C.

If Program-D does possess the COMMON attribute, then Program-D can be
referenced by Program-C since it contains Program-D and by any programs
contained in Program-C except for programs contained in Program-D. In other
words, if Program-D possesses the COMMON attribute, Program-D can be
referenced in Program-C and Program-F but not by statements in Program-E,
Program-A or Program-B.

62 COBOL Language Reference

COBOL class definition

COBOL class definition structure

A COBOL class definition describes a class or a metaclass. A class definition
constitutes a compilation unit.

Class
The entity that defines common behavior and implementation for zero, one, or
more objects. The objects that share the same implementation are considered
to be objects of the same class.

Method
Procedural code that defines one of the operations supported by an object, and
that is executed by an INVOKE statement on that object.

Instance data
Data defining the state of an object. The instance data introduced by a class is
defined in the Working-Storage Section of the Data Division of the class
definition. The state of an object also includes the state of the instance
variables introduced by bases classes that are inherited by the current class. A
separate copy of the instance data is created for each object instance.

Subclass
A class that inherits methods and instance data from another class. When two
classes in an inheritance relationship are considered together, the subclass is
the inheritor or inheriting class; the super-class is the inheritee or inherited
class.

Metaclass
A special type of class whose instances are called class-objects. Class-objects
are the run-time objects that represent SOM classes. Any class descended
from SOMClass is a metaclass.

With the exception of the COPY and REPLACE statements and the END CLASS
header, the statements, entries, paragraphs, and sections of a COBOL class
definition are grouped into the following four divisions:
� Identification Division
� Environment Division (Configuration Section only)
� Data Division
� Procedure Division

The end of a COBOL class definition is indicated by the END CLASS header.

Following is the format for the entries and statements that constitute a
separately-compiled COBOL class definition.

 Copyright IBM Corp. 1991, 2000 63

COBOL class definition

Format—COBOL class definition
��─ ──┬ ┬─IDENTIFICATION DIVISION.─ ── ─CLASS-ID.──class-name-1─ ─.──────────────�
 └ ┘─ID DIVISION.─────────────

�─ ──┬ ┬───────────────────────────────── ─────────────────────────────────────�
 └ ┘──identification-division-content

�─ ── ─ENVIRONMENT DIVISION.─ ─class-environment-division-content─ ─────────────�

�─ ──┬ ┬─── ───────────────────────�
 └ ┘── ─DATA DIVISION.─ ─class-data-division-content─

�─ ──┬ ┬── ────────────────────�
 └ ┘── ─PROCEDURE DIVISION.─ ──┬ ┬───────────────────────
 │ │┌ ┐─────────────────────
 └ ┘───/ ┴─method-definition─

�─ ── ─END CLASS─ ─class-name-1.─ ───��

END CLASS
Specifies the end of a class definition.

64 COBOL Language Reference

COBOL method definition

COBOL method definition structure

A COBOL method definition describes a method. You can only specify a method
definition within a class definition.

With the exception of the COPY and REPLACE statements and the END METHOD
header, the statements, entries, paragraphs, and sections of a COBOL method
definition are grouped into the following four divisions:
� Identification Division
� Environment Division (Input-Output section only)
� Data Division
� Procedure Division

The end of a COBOL method definition is indicated by the END METHOD header.

Following is the format for the entries and statements that constitute a
separately-compiled COBOL method definition.

Format—COBOL method definition
��─ ──┬ ┬─IDENTIFICATION DIVISION.─ ──┬ ┬───────────────────────────────── ──────�
 └ ┘─ID DIVISION.───────────── └ ┘─identification-division-content─

�─ ──┬ ┬── ────────�
 └ ┘── ─ENVIRONMENT DIVISION.─ ─method-environment-division-content─

�─ ──┬ ┬── ──────────────────────�
 └ ┘── ─DATA DIVISION.─ ─method-data-division-content─

�─ ──┬ ┬── ────────────────�
 └ ┘──PROCEDURE DIVISION.method-procedure-division-content

�─ ── ─END METHOD─ ─method-name-1.─ ───��

END METHOD
Specifies the end of a method definition.

Methods defined in a class can access instance data (class Working-Storage Section
data items) introduced in the same class but not instance data introduced by a
parent class or metaclass. Therefore, instance data is always private to the class
that introduces it.

Methods introduced in class-name-1 must have unique names within the class
definition.

 Copyright IBM Corp. 1991, 2000 65

COBOL method definition

66 COBOL Language Reference

CLASS-ID paragraph
METHOD-ID paragraph

Part 3. Identification Division

Identification Division 68
PROGRAM-ID paragraph 70

 72
 74

Optional paragraphs 76

 Copyright IBM Corp. 1991, 2000 67

 class definition, and method definition. class, or
method, class, or method

 or ID
DIVISION

 and as an IBM extension, can appear in any
order.

Class IDENTIFICATION DIVISION
For a class, the first paragraph of the Identification Division must be the
CLASS-ID paragraph.

The other paragraphs are optional, and can appear in any order.

Method IDENTIFICATION DIVISION
For a method, the first paragraph of the Identification Division must be the
METHOD-ID paragraph.

The other paragraphs are optional, and can appear in any order.

Identification Division

Identification Division

The Identification Division must be the first division in every COBOL source
program, It names the program,

 and can include the date the program, was written, the
date of compilation, and other such documentary information. The Identification
Division must begin with the words IDENTIFICATION DIVISION

 followed by a separator period.

Program IDENTIFICATION DIVISION
For a program, the first paragraph of the Identification Division must be the
PROGRAM-ID paragraph.

The other paragraphs are optional,

68  Copyright IBM Corp. 1991, 2000

ID

RECURSIVE

This separator period is optional as an IBM extension.

Format—class Identification Division
��─ ──┬ ┬─IDENTIFICATION DIVISION─ ─CLASS-ID.──class-name-1────────────────────�
 └ ┘─ID DIVISION─────────────

 ┌ ┐────────────────
�─ ─INHERITS─ ───/ ┴─class-name-2─ ──┬ ┬───────────────────────────────── ─.───────�
 └ ┘ ─METACLASS─ ──┬ ┬──── ─class-name-3─
 └ ┘ ─IS─

�─ ──┬ ┬──────────────────────────────── ──────────────────────────────────────�
 └ ┘ ─AUTHOR.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬────────────────────────────────────── ────────────────────────────────�
 └ ┘ ─INSTALLATION.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬────────────────────────────────────── ────────────────────────────────�
 └ ┘ ─DATE-WRITTEN.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬─────────────────────────────────────── ───────────────────────────────�
 └ ┘ ─DATE-COMPILED.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬────────────────────────────────── ───────────────────────────────────��
 └ ┘ ─SECURITY.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

Identification Division

Format—program Identification Division
��─ ──┬ ┬─IDENTIFICATION─ ─DIVISION.──PROGRAM-ID.───(1) ─program-name──────────────�
 └ ┘ ─ ─────────────

�─ ──┬ ┬── ─.───(1) ───────────────────�
 └ ┘ ──┬ ┬──── ──┬ ┬─ ─────────── ──┬ ┬─────────
 └ ┘─IS─ ├ ┤ ─COMMON─ ──┬ ┬───────── └ ┘─PROGRAM─
 │ │└ ┘─INITIAL─
 └ ┘ ─INITIAL─ ──┬ ┬────────
 └ ┘─COMMON─

�─ ──┬ ┬────────────────────────────────── ────────────────────────────────────�
 └ ┘ ─AUTHOR.───(1) ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬── ──────────────────────────────�
 └ ┘ ─INSTALLATION.───(1) ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬── ──────────────────────────────�
 └ ┘ ─DATE-WRITTEN.───(1) ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬─── ─────────────────────────────�
 └ ┘ ─DATE-COMPILED.───(1) ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬──────────────────────────────────── ─────────────────────────────────��
 └ ┘ ─SECURITY.───(1) ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

Note:
1

Part 3. Identification Division 69

Format—method Identification Division
��─ ──┬ ┬─IDENTIFICATION DIVISION─ ──�
 └ ┘─ID DIVISION─────────────

�──METHOD-ID.──method-name-1─ ──┬ ┬────────────────────────────── ─.───────────�
 └ ┘ ──┬ ┬──── ──┬ ┬──────── ─OVERRIDE─
 └ ┘─IS─ └ ┘─METHOD─

�─ ──┬ ┬──────────────────────────────── ──────────────────────────────────────�
 └ ┘ ─AUTHOR.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬────────────────────────────────────── ────────────────────────────────�
 └ ┘ ─INSTALLATION.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬────────────────────────────────────── ────────────────────────────────�
 └ ┘ ─DATE-WRITTEN.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬─────────────────────────────────────── ───────────────────────────────�
 └ ┘ ─DATE-COMPILED.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

�─ ──┬ ┬────────────────────────────────── ───────────────────────────────────��
 └ ┘ ─SECURITY.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───/ ┴─comment-entry─

 or nonnumeric literal

If program-name is a nonnumeric literal,
(other than a figurative constant), it can
include the extension characters $, #, and @
in the outermost program only.

PROGRAM-ID paragraph

 PROGRAM-ID paragraph

The PROGRAM-ID paragraph specifies the name by which the program is known
and assigns selected program attributes to that program. It is required and must
be the first paragraph in the Identification Division.

program-name
A user-defined word that identifies your program. It
must follow the following rules of formation, depending on the setting of the
PGMNAME compiler option:

Table 7 (Page 1 of 2). Formation rules for program names based on PGMNAME compiler option

PGMNAME
setting

Formation rules

OS/390 and VM AIX and Windows

PGMNAME
(COMPAT)

The name can be up to 30 characters in
length.

Only the hyphen, digit, and alphabetic
characters are allowed in the name.

At least one character must alphabetic.

The hyphen cannot be used as the first or
last character.

Flagged with a warning message and
treated as PGMNAME(UPPER).

70 COBOL Language Reference

If program-name is a nonnumeric literal, it can be up to 160 characters in length. It cannot
be a figurative constant.

PGMNAME
(LONGMIXED)

Program-name must be specified as a literal.
It cannot be a figurative constant.

The name can be up to 160 characters in
length.

Program-name can consist of any character
in the range X'41' to X'FE'.

Program-name must be specified as a literal.
It cannot be a figurative constant.

The name can be up to 160 characters in
length.

Wherever alphabetic characters are allowed,
you can use multi-byte characters.

For information on the PGMNAME compiler option and how the compiler
processes the names, see the IBM COBOL Programming Guide for your
platform.

RECURSIVE
An optional clause that allows COBOL programs to be recursively reentered.

You can specify the RECURSIVE clause only on the outermost program of a
compilation unit. Recursive programs cannot contain nested subprograms.

If the RECURSIVE clause is specified, program-name-1 can be recursively
reentered while a previous invocation is still active. If the RECURSIVE clause
is not specified, an active program cannot be recursively reentered.

The Working-Storage Section of a recursive program defines storage that is
statically allocated and initialized on the first entry to a program, and is
available in a last-used state to any of the recursive invocations.

The Local-Storage Section of a recursive program (as well as a non-recursive
program) defines storage that is automatically allocated, initialized, and
deallocated on a per-invocation basis.

Internal file connectors corresponding to FDs in the File Section of a recursive
program are statically allocated. The status of internal file connectors is part of
the last-used state of a program that persists across invocations.

The following language elements are not supported in a recursive program:

� ALTER
� GO TO without a specified procedure name
� RERUN
� SEGMENTATION
� USE FOR DEBUGGING

Note: Methods are always recursive by default. The RECURSIVE clause
cannot be specified on the METHOD-ID statement.

PROGRAM-ID paragraph

Table 7 (Page 2 of 2). Formation rules for program names based on PGMNAME compiler option

PGMNAME
setting

Formation rules

OS/390 and VM AIX and Windows

PGMNAME
(LONGUPPER)

If program-name is a user-defined word, it can be up to 30 characters in length.

Only the hyphen, digit, and alphabetic characters are allowed in the name.

At least one character must alphabetic.

The hyphen cannot be used as the first or last character.

Part 3. Identification Division 71

CLASS-ID paragraph

 CLASS-ID paragraph

The CLASS-ID paragraph specifies the name by which the class is known and
assigns selected attributes to that class. It is required and must be the first
paragraph in a class Identification Division.

class-name-1
A user-defined word that identifies the class.

If you want to use more flexible naming conventions for class-name-1, specify
class-name-1 in the REPOSITORY paragraph of the class definition. (This
defines an external class name to identify the class outside of this class
definition.)

INHERITS
A clause that defines class-name-1 to be a subclass (or derived class) of
class-name-2 (the parent class). Class-name-1 cannot directly or indirectly
inherit from class-name-1. A class name can only appear once in the
INHERITS clause.

COMMON
Specifies that the program named by program-name is contained within
another program, and it can be called from siblings of the common program
and programs contained within them. The COMMON clause can be used only
in nested programs. For more information on conventions for program names,
see the IBM COBOL Programming Guide for your platform.

INITIAL
Specifies that when program-name is called, program-name and any programs
contained within it are placed in their initial state.

A program is in the initial state:

� The first time the program is called in a run unit
� Every time the program is called, if it possesses the initial attribute
� The first time the program is called after the execution of a CANCEL

statement referencing the program or a CANCEL statement referencing a
program that directly or indirectly contains the program

� The first time the program is called after the execution of a CALL
statement referencing a program that possesses the initial attribute, and
that directly or indirectly contains the program.

When a program is in the initial state, the following occur:

� The program's internal data contained in the Working-Storage Section are
initialized. If a VALUE clause is used in the description of the data item,
the data item is initialized to the defined value. If a VALUE clause is not
associated with a data item, the initial value of the data item is undefined.

� Files with internal file connectors associated with the program are not in
the open mode.

� The control mechanisms for all PERFORM statements contained in the
program are set to their initial states.

� An altered GO TO statement contained in the program is set to its initial
state.

For the rules governing non-unique program names, see “Rules for
program-names” on page 61.

72 COBOL Language Reference

CLASS-ID paragraph

class-name-2
The name of a class inherited by class-name-1. If class-name-2 is repeated,
multiple inheritance is present. You must specify class-name-2 in the
REPOSITORY paragraph of the Configuration Section of the class definition.

METACLASS
A clause that identifies the metaclass for class-name-1. A metaclass is a special
class whose instances are class objects. For more information on metaclasses,
see the IBM COBOL Programming Guide for your platform.

Do not specify the METACLASS clause when defining a metaclass.

Note: The INHERITS and METACLASS clauses can appear in either order in
the CLASS-ID paragraph.

class-name-3
The name of a metaclass that is responsible for creating and/or managing
objects of the class being defined. You must specify class-name-3 in the
REPOSITORY paragraph of the Configuration Section of the class definition.

 General rules

Class-name-1, class-name-2, and class-name-3 must conform to the normal rules of
formation for a COBOL user-defined word, as described in “COBOL words with
single-byte characters” on page 3.

See “REPOSITORY paragraph” on page 91 for details on:
� Class names mapping to CORBA compliant names
� Specification of external class-names with more flexible rules of formation

You can specify a sequence of class definitions and program definitions in a single
COBOL source file, forming a batch compile.

 Inheritance

Every method available on instances of a class is also available on instances of any
subclass directly or indirectly derived from it. A subclass can introduce new
methods that do not exist in the parent (or ancestor) class or can override a
method from the parent class. When a subclass overrides an existing method from
the parent class, it defines a new implementation for that method, which replaces
the inherited implementation.

The instance data of class-name-1 is a copy of the instance data from class-name-2
together with the data declared in the Working-Storage Section of class-name-1.
Note however, instance data is always private to the class that introduces it.

The semantics of inheritance are defined by the IBM SOM. All classes must be
derived directly or indirectly from the SOMObject class. All metaclasses must be
derived directly or indirectly from SOMClass.

 Multiple inheritance

Multiple inheritance is when more than one class name is specified on the
INHERITS phrase. With multiple inheritance, a class might inherit the same
methods and instance data from different parents (if each of these parents have a
common ancestor). In this situation, (“diamond inheritance”) the subclass inherits
only one set of method implementations and one copy of the instance data.

Part 3. Identification Division 73

METHOD-ID paragraph

When a subclass inherits two methods with the same name, the two methods must
comply to the following conformance rules:
� The number of formal parameters on the Procedure Division USING phrase

must be the same for both methods.
� The presence or absence of the Procedure Division RETURNING phrase must

be consistent for the two methods.
� Corresponding parameters in the Procedure Division USING and RETURNING

phrases must satisfy the following:
— If a formal parameter is a COBOL elementary data item not described with

USAGE IS OBJECT REFERENCE, the corresponding parameter must have
the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTIFIED, and
BLANK WHEN ZERO clauses. Note that periods and commas can be
interchanged if using the DECIMAL POINT IS COMMA clause, and the
PICTURE clause currency symbols can differ.

— If a formal parameter is a COBOL elementary data item described with
USAGE IS OBJECT REFERENCE, the corresponding parameter must be
defined with an identical USAGE clause or USAGE IS OBJECT
REFERENCE clause.

— For the purpose of conformance checking, a fixed-length group data item
is considered to be equivalent to an elementary alphanumeric data item of
the same length.

A variable-length group conforms only to other variable-length groups that
have the same maximum length.

 METHOD-ID paragraph

The METHOD-ID paragraph specifies the name by which a method is known and
assigns selected attributes to that method. It is required and must be the first
paragraph in a method Identification Division.

method-name-1
A user-defined word or a nonnumeric literal that identifies the method.

The rules of formation for method-name-1 are as follows:

� If the method name is specified in the user-defined word format, then
normal COBOL rules for a user-defined word apply.

� If the method name is specified as a nonnumeric literal, then:
— The name can be up to 160 characters in length.
— The characters used in the name must be uppercase or lowercase

alphabetic, digit, hyphen, or underscore.
— At least one character must be alphabetic.
— Hyphen cannot be used as the first or last character.

OVERRIDE
A clause that allows a subclass to override an existing method implementation
when it inherits a method from a parent class.

You must specify the OVERRIDE clause in the METHOD-ID paragraph, if
method-name-1 is overriding a method with the same name that is inherited
from a parent class.

Do not specify the OVERRIDE clause if the method is not inherited from an
ancestor class, and is being introduced by the current class definition.

74 COBOL Language Reference

METHOD-ID paragraph

 General rules

1. Method names that are defined for a class must be unique. (The set of
methods "defined for a class" includes the methods introduced by the class
definition and the methods inherited from parent classes.)

Note: Method names that differ only in case are not considered unique. For
example, naming one method “SAYHELLO” and another method “sayHELLO”
is invalid.

2. Method names are processed by the compiler as follows:
� Literal-format methods names are processed in a case-sensitive manner.

However, when processing method resolution as part of INVOKE
statements or method names that are specified as user-defined words, the
compiler ignores any difference in case.

� If necessary, the compiler translates method names to conform to CORBA
requirements:
— Hyphens are translated to zero
— If the first character of the name is a digit, it is converted as follows:

– 1 through 9 are changed to A through I
– 0 is changed to J

3. If a method in class-name-1 overrides a method in class-name-2, these two
methods must satisfy the following conformance rules:
� The number of formal parameters on the Procedure Division USING

phrase must be the same for both methods.
� The presence or absence of the Procedure Division RETURNING phrase

must be consistent on the two methods.
� Corresponding parameters in the Procedure Division USING phrases must

satisfy the following:
— If a formal parameter is a COBOL elementary data item not described

with USAGE IS OBJECT REFERENCE, then the corresponding
parameter must have the same PICTURE, USAGE, SIGN,
SYNCHRONIZED, JUSTIFIED, and BLANK WHEN ZERO clauses.
Note that periods and commas can be interchanged if using the
DECIMAL POINT IS COMMA clause, and the PICTURE clause
currency symbols can differ.

— If a formal parameter is a COBOL elementary data item described with
USAGE IS OBJECT REFERENCE, then the corresponding parameter
must be defined with an identical USAGE IS OBJECT REFERENCE
clause.

— BY VALUE and BY REFERENCE specifications must be consistent.
� The identifiers specified on the Procedure Division RETURNING phrases

must satisfy the following:
— If one of the identifiers is a COBOL elementary data item not described

with USAGE IS OBJECT REFERENCE, then the corresponding
identifier must have the same PICTURE, USAGE, SIGN,
SYNCHRONIZED, JUSTIFIED, and BLANK WHEN ZERO clauses.
Note that periods and commas can be interchanged if using the
DECIMAL POINT IS COMMA clause, and the PICTURE clause
currency symbols can differ.

— If the class-name-2 Procedure Division RETURNING identifier is a
universal object reference, the class-name-1 Procedure Division

Part 3. Identification Division 75

RETURNING identifier must be an object reference (either a universal
object reference or an object reference typed to a specific class).

Universal object references are described with USAGE OBJECT
REFERENCE and typed object references are described with USAGE
OBJECT REFERENCE class-name.

— If the class-name-2 Procedure Division RETURNING identifier is an
object reference typed to a specific class, the class-name-1 Procedure
Division RETURNING identifier must be an object reference typed to
the same class or a derived class.

� For the purpose of conformance checking, a fixed-length group data item
is considered to be equivalent to an elementary alphanumeric data item of
the same length.

A variable-length group conforms only to other variable-length groups that
have the same maximum length.

 Under AIX and Windows, you can include multi-byte as well as
single-byte characters in an EUC or DBCS code page in comment entries in the
Identification Division of your program. Multiple lines are allowed in a
comment-entry containing multi-byte characters.

 Under OS/390 and VM, you can include DBCS character strings as
comment-entries in the Identification Division of your program. Multiple lines are
allowed in a comment-entry containing DBCS strings.

Optional paragraphs

 Optional paragraphs

These optional paragraphs in the Identification Division can be omitted:

AUTHOR
Name of the author of the program.

INSTALLATION
Name of the company or location.

DATE-WRITTEN
Date the program was written.

DATE-COMPILED
Date the program was compiled.

SECURITY
Level of confidentiality of the program.

The comment-entry in any of the optional paragraphs can be any combination of
characters from the character set of the computer. The comment-entry is written in
Area B on one or more lines.

The paragraph name DATE-COMPILED and any comment-entry associated with it
appear in the output program listing with the current date inserted:

 DATE-COMPILED. ?4/27/95.

Comment-entries serve only as documentation; they do not affect the meaning of
the program. A hyphen in the indicator area (column 7) is not permitted in
comment-entries.

76 COBOL Language Reference

A DBCS string must be preceded by a shift-out control character and followed by
a shift-in control character. For example:

AUTHOR. <.A.U.T.H.O.R.-.N.A.M.E>, XYZ CORPORATION
DATE-WRITTEN. <.D.A.T.E>

When using DBCS characters in a comment-entry contained on multiple lines,
shift-out and shift-in characters must be paired on a line.

DBCS strings are described under “Character-strings” on page 3.

Optional paragraphs

Part 3. Identification Division 77

Optional paragraphs

78 COBOL Language Reference

REPOSITORY paragraph

PASSWORD clause

APPLY WRITE-ONLY clause

Part 4. Environment Division

Configuration Section 80
SOURCE-COMPUTER paragraph 80
OBJECT-COMPUTER paragraph 82
SPECIAL-NAMES paragraph 83
ALPHABET clause 86
SYMBOLIC CHARACTERS clause 89
CLASS clause . 89
CURRENCY SIGN clause 90

 91

Input-Output Section 93
FILE-CONTROL paragraph 94
SELECT clause . 97
ASSIGN clause . 97
RESERVE clause 103
ORGANIZATION clause 103

PADDING CHARACTER clause 106
RECORD DELIMITER clause 107
ACCESS MODE clause 107
RECORD KEY clause 109
ALTERNATE RECORD KEY clause 110
RELATIVE KEY clause 111

 111
FILE STATUS clause 112
I-O-CONTROL paragraph 114
RERUN clause 115
SAME AREA clause 116
SAME RECORD AREA clause 117
SAME SORT AREA clause 117
SAME SORT-MERGE AREA clause 118
MULTIPLE FILE TAPE clause 118

. 118

 Copyright IBM Corp. 1991, 2000 79

 and classes,

Class Configuration Section
Specify the Configuration Section only in the Environment Division of the
outermost program of a class definition.

Entries in a class Configuration Section apply to the entire class definition,
including all methods introduced by that class.

Method Configuration Section
The Configuration Section is not valid for method definitions.

and classes

repository-paragraph

� Relate object-oriented class names to the class names in the SOM interface
repository

SOURCE-COMPUTER paragraph

Configuration Section

The Configuration Section is an optional section for programs which
can describe the computer environment on which the program is compiled and
executed.

Program Configuration Section
The Configuration Section can be specified only in the Environment Division
of the outermost program of a COBOL source program.

You should not specify the Configuration Section in a program that is
contained within another program. The entries specified in the Configuration
Section of a program apply to any program contained within that program.

Format—programs
��──CONFIGURATION SECTION.─ ──┬ ┬─────────────────────────── ──────────────────�
 └ ┘─source-computer-paragraph─

�─ ──┬ ┬─────────────────────────── ──┬ ┬───────────────────────── ──────────────�
 └ ┘─object-computer-paragraph─ └ ┘─special-names-paragraph─

�─ ──┬ ┬────────────────────── ───��
 └ ┘─ ─

The Configuration Section can:
� Relate IBM-defined environment-names to user-defined mnemonic names
� Specify the collating sequence
� Specify a currency sign value, and the currency symbol used in the PICTURE

clause to represent the currency sign value
� Exchange the functions of the comma and the period in PICTURE clauses and

numeric literals
� Relate alphabet-names to character sets or collating sequences
� Specify symbolic-characters
� Relate class names to sets of characters

 SOURCE-COMPUTER paragraph

The SOURCE-COMPUTER paragraph describes the computer on which the source
program is to be compiled.

80  Copyright IBM Corp. 1991, 2000

SOURCE-COMPUTER paragraph

 Format
��──SOURCE-COMPUTER.─ ──┬ ┬── ──��
 └ ┘ ─computer-name─ ──┬ ┬────────────────────────── ─.─
 └ ┘ ──┬ ┬────── ─DEBUGGING MODE─
 └ ┘─WITH─

computer-name
A system-name. For example:

IBM-39?

WITH DEBUGGING MODE
Activates a compile-time switch for debugging lines written in the source
program.

A debugging line is a statement that is compiled only when the compile-time
switch is activated. Debugging lines allow you, for example, to check the value
of a data-name at certain points in a procedure.

To specify a debugging line in your program, code a 'D' in column 7
(indicator area). You can include successive debugging lines, but each must
have a 'D' in column 7 and you cannot break character strings across lines.

All your debugging lines must be written so that the program is syntactically
correct, whether the debugging lines are compiled or treated as comments.

The presence or absence of the DEBUGGING MODE clause is logically
determined after all COPY and REPLACE statements have been processed.

You can code debugging lines in the Environment (after the
OBJECT-COMPUTER paragraph), Data, or Procedure Divisions.

If a debugging line contains only spaces in Area A and in Area B, it is treated
the same as a blank line.

Except for the WITH DEBUGGING MODE clause, the SOURCE-COMPUTER
paragraph is syntax checked, but has no effect on the execution of the program.

Part 4. Environment Division 81

 Under OS/390 and VM, the PROGRAM COLLATING SEQUENCE
clause is not applied to the DBCS character set.

 Under AIX and Windows, the PROGRAM COLLATING SEQUENCE
clause is not allowed if the code page in effect is a DBCS or EUC code page.

OBJECT-COMPUTER paragraph

 OBJECT-COMPUTER paragraph

The OBJECT-COMPUTER paragraph specifies the system for which the object
program is designated.

 Format
��──OBJECT-COMPUTER.───�

�─ ──┬ ┬── ──────────────��
 └ ┘─computer-name─ ──┬ ┬─── ─┤ entry 1 ├──.─
 └ ┘ ─MEMORY─ ──┬ ┬────── ─integer─ ──┬ ┬─WORDS──────

└ ┘─SIZE─ ├ ┤─CHARACTERS─
 └ ┘─MODULES────

entry 1
├─ ──┬ ┬─── ────────────────────────────────�
 └ ┘ ──┬ ┬───────── ──┬ ┬─────────── ─SEQUENCE─ ──┬ ┬──── ─alphabet-name─
 └ ┘─PROGRAM─ └ ┘─COLLATING─ └ ┘─IS─

�─ ──┬ ┬── ───┤
 └ ┘ ─SEGMENT-LIMIT─ ──┬ ┬──── ─priority-number─
 └ ┘─IS─

computer-name
A system-name. For example:

IBM-39?

MEMORY SIZE
The amount of main storage needed to run the object program. The MEMORY
SIZE clause is syntax checked, but it has no effect on the execution of the
program.

integer
Expressed in words, characters, or modules.

PROGRAM COLLATING SEQUENCE IS
The collating sequence used in this program is the collating sequence
associated with the specified alphabet-name.

The collating sequence pertains to this program and any programs it might
contain.

alphabet-name
The collating sequence.

PROGRAM COLLATING SEQUENCE determines the truth value of the following
nonnumeric comparisons:
� Those explicitly specified in relation conditions
� Those explicitly specified in condition-name conditions

The PROGRAM COLLATING SEQUENCE clause also applies to any nonnumeric
merge or sort keys, unless the COLLATING SEQUENCE phrase is specified in the
MERGE or SORT statement.

82 COBOL Language Reference

 (multiple currency sign values and
currency symbols can be specified)

Note: The clauses in the SPECIAL-NAMES paragraph can appear in any order.

SPECIAL-NAMES paragraph

When the PROGRAM COLLATING SEQUENCE clause is omitted:
� Under OS/390 and VM, the EBCDIC collating sequence is used.

(See Appendix B, “EBCDIC and ASCII collating sequences” on page 498.)

� Under AIX and Windows, the COLLSEQ compiler option
indicates the collating sequence used. For example, if COLLSEQ(EBCDIC) is
specified and the PROGRAM COLLATING SEQUENCE is not specified (or is
NATIVE), the EBCDIC collating sequence is applied.

SEGMENT-LIMIT IS
Certain permanent segments can be overlaid by independent segments while
still retaining the logical properties of fixed portion segments. (Fixed portion
segments are made up of fixed permanent and fixed overlayable segments.)

Priority-number
An integer ranging from 1 through 49.

When SEGMENT-LIMIT is specified:

� A fixed permanent segment is one with a priority-number less than
the priority-number specified.

� A fixed overlayable segment is one with a priority-number ranging
from that specified through 49, inclusive.

For example, if SEGMENT-LIMIT IS 25 is specified:

� Sections with priority-numbers 0 through 24 are fixed permanent
segments.

� Sections with priority-numbers 25 through 49 are fixed overlayable
segments.

When SEGMENT-LIMIT is omitted, all sections with priority-numbers 0
through 49 are fixed permanent segments.

Except for the PROGRAM COLLATING SEQUENCE clause, the
OBJECT-COMPUTER paragraph is syntax checked, but it has no effect on the
execution of the program.

 SPECIAL-NAMES paragraph

The SPECIAL-NAMES paragraph:
� Relates IBM-specified environment-names to user-defined mnemonic-names
� Relates alphabetic-names to character sets or collating sequences
� Specifies symbolic characters
� Relates class names to sets of characters
� Specifies a currency sign value, and the currency symbol used in the PICTURE

clause to represent the currency sign value

� Specifies that the functions of the comma and decimal point are to be
interchanged in PICTURE clauses and numeric literals

Part 4. Environment Division 83

PICTURE SYMBOL literal-7
WITH

This separator period must be used if any of the optional clauses are selected.

SPECIAL-NAMES paragraph

 Format
 ┌ ┐──
��──SPECIAL-NAMES.─ ───/ ┴──┬ ┬── ──────�
 ├ ┤ ─environment-name-1─ ──┬ ┬──── ─mnemonic-name-1──────────────────────
 │ │└ ┘─IS─
 └ ┘ ─environment-name-2─ ──┬ ┬ ──┬ ┬──── ─mnemonic-name-2─ ──┬ ┬─────────────

│ │└ ┘─IS─ └ ┘─┤ entry 1 ├─
└ ┘─┤ entry 1 ├──────────────────────────────

�─ ──┬ ┬── ─────────────────────�
 │ │┌ ┐──
 └ ┘ ───/ ┴ ─ALPHABET──alphabet-name-1─ ──┬ ┬──── ──┬ ┬─STANDARD-1──────────────────
 └ ┘─IS─ ├ ┤─STANDARD-2──────────────────
 ├ ┤─NATIVE──────────────────────
 ├ ┤─EBCDIC──────────────────────
 │ │┌ ┐───────────────────────────
 └ ┘───/ ┴ ─literal-1──┤ phrase 1 ├─

�─ ──┬ ┬─── ────────────────────────�
 │ │┌ ┐───
 └ ┘ ───/ ┴─SYMBOLIC─ ──┬ ┬──────────── ─┤ symbolic ├─ ──┬ ┬─────────────────────
 └ ┘─CHARACTERS─ └ ┘ ─IN──alphabet-name-2─

�─ ──┬ ┬── ─────────────────�
 │ │┌ ┐──
 │ ││ │┌ ┐───
 └ ┘ ───/ ┴ ─CLASS──class-name-1─ ──┬ ┬──── ───/ ┴ ─literal-4─ ──┬ ┬────────────────────────
 └ ┘─IS─ └ ┘ ──┬ ┬─THROUGH─ ─literal-5─
 └ ┘─THRU────

�─ ──┬ ┬─── ────────�
| │ │┌ ┐───

 └ ┘ ───/ ┴ ─CURRENCY─ ──┬ ┬────── ──┬ ┬──── ─literal-6─ ──┬ ┬──────────────────────────────────────
 └ ┘─SIGN─ └ ┘─IS─ └ ┘──┬ ┬────── ─ ── ── ─
 └ ┘─ ─

�─ ──┬ ┬────────────────────────────── ──┬ ┬───── ───��
 └ ┘ ─DECIMAL-POINT─ ──┬ ┬──── ─COMMA─ └ ┘─.───(1)

 └ ┘─IS─

entry 1
├─ ──┬ ┬ ─ON─ ──┬ ┬──────── ──┬ ┬──── ─condition-1─ ──┬ ┬────────────────────────────────────── ──────────────┤
 │ │└ ┘─STATUS─ └ ┘─IS─ └ ┘ ─OFF─ ──┬ ┬──────── ──┬ ┬──── ─condition-2─
 │ │└ ┘─STATUS─ └ ┘─IS─
 └ ┘ ─OFF─ ──┬ ┬──────── ──┬ ┬──── ─condition-2─ ──┬ ┬─────────────────────────────────────
 └ ┘─STATUS─ └ ┘─IS─ └ ┘ ─ON─ ──┬ ┬──────── ──┬ ┬──── ─condition-1─
 └ ┘─STATUS─ └ ┘─IS─

phrase 1
├─ ──┬ ┬──────────────────────── ───┤
 ├ ┤ ──┬ ┬─THROUGH─ ─literal-2─
 │ │└ ┘─THRU────
 │ │┌ ┐───────────────────
 └ ┘───/ ┴ ─ALSO──literal-3─ ───

symbolic
 ┌ ┐──
 │ │┌ ┐──────────────────────── ┌ ┐─────────────
├─ ───/ ┴ ───/ ┴─symbolic-character-1─ ──┬ ┬───── ───/ ┴─integer-1─ ───┤
 ├ ┤─ARE─
 └ ┘─IS──

Note:
1

84 COBOL Language Reference

SPECIAL-NAMES paragraph

environment-name-1
System devices or standard system actions taken by the compiler.

Valid specifications for environment-name-1 are:

environment-name-2
A 1-byte User Programmable Status Indicator (UPSI) switch. Valid
specifications for environment-name-2 are UPSI-0 through UPSI-7.

mnemonic-name-1, mnemonic-name-2
Mnemonic-name-1 and mnemonic-name-2 follow the rules of formation for
user-defined names. Mnemonic-name-1 can be used in ACCEPT, DISPLAY,
and WRITE statements. Mnemonic-name-2 can be referenced only in the SET
statement. Mnemonic-name-2 can qualify cond-1 or cond-2 names.

Mnemonic-names and environment-names need not be unique. If you choose
a mnemonic-name that is also an environment-name, its definition as a
mnemonic-name will take precedence over its definition as an
environment-name.

ON STATUS IS, OFF STATUS IS
UPSI switches process special conditions within a program, such as
year-beginning or year-ending processing. For example, at the beginning of
the Procedure Division, an UPSI switch can be tested; if it is ON, the special
branch is taken. (See “Switch-status condition” on page 229.)

cond-1, cond-2
Condition-names follow the rules for user-defined names. At least one
character must be alphabetic. The value associated with the condition-name is
considered to be alphanumeric. A condition-name can be associated with the
on status and/or off status of each UPSI switch specified.

In the Procedure Division, the UPSI switch status is tested through the
associated condition-name. Each condition-name is the equivalent of a level-88

Table 8. Meanings of environment names

Environment
Name-1

Meaning Allowed in

SYSIN
SYSIPT

System logical input unit ACCEPT

SYSOUT
SYSLIST
SYSLST

System logical output unit DISPLAY

SYSPUNCH
SYSPCH

System punch device DISPLAY

CONSOLE Console ACCEPT and DISPLAY

C01–C12 Skip to channel 1 through 12, respectively WRITE ADVANCING
(Under AIX and
Windows, with C01–C12,
one line is advanced.)

CSP Suppress spacing WRITE ADVANCING

S01–S05 Pocket select 1–5 on punch devices WRITE ADVANCING
(Under AIX and
Windows, with S01–S05,
one line is advanced.)

AFP-5A Advanced Function Printing WRITE ADVANCING

Part 4. Environment Division 85

 Under AIX and Windows, you cannot specify the ALPHABET
clause if the code page in effect is a DBCS or EUC code page. For details, see
the IBM COBOL Programming Guide for your platform.

 or EUC

ALPHABET clause

item; the associated mnemonic-name, if specified, is considered the conditional
variable and can be used for qualification.

Condition-names specified in a containing program's SPECIAL-NAMES
paragraph can be referenced from any contained program.

 ALPHABET clause

ALPHABET alphabet-name-1 IS
Provides a means of relating an alphabet-name to a specified character code set
or collating sequence.

It specifies a collating sequence when used in either:

� The PROGRAM COLLATING SEQUENCE clause of the
OBJECT-COMPUTER paragraph

� The COLLATING SEQUENCE phrase of the SORT or MERGE statement

It specifies a character code set when specified in either:

� The FD entry CODE-SET clause
� The SYMBOLIC CHARACTERS clause

STANDARD-1
 Under OS/390 and VM, specifies the ASCII character set.

 Under AIX and Windows, specifies that the collating
sequence is based on the binary code values of the characters, ignoring the
locale setting.

STANDARD-2
 Under OS/390 and VM, specifies the International Reference

Version of the ISO 7-bit code defined in International Standard 646, 7-bit
Coded Character Set for Information Processing Interchange.

 Under AIX and Windows, specifies that the collating
sequence is based on the binary code values of the characters, ignoring the
locale setting.

NATIVE
Specifies the native character code set. If the alphabet-name clause is
omitted:

 Under OS/390 and VM, EBCDIC is assumed.

 Under AIX and Windows, the alphabet-name is associated
with the character set (ASCII) indicated by the locale in effect.

EBCDIC
Specifies the EBCDIC character set.

86 COBOL Language Reference

ALPHABET clause

literal-1
literal-2
literal-3

Specifies that the collating sequence is to be determined by the program,
according to the following rules:

� The order in which literals appear specifies the ordinal number, in
ascending sequence, of the character(s) in this collating sequence.

� Each numeric literal specified must be an unsigned integer.
� Each numeric literal must have a value that corresponds to a valid

ordinal position within the collating sequence in effect.

Appendix B, “EBCDIC and ASCII collating sequences” on page 498,
lists the ordinal number for characters in the EBCDIC and ASCII
collating sequences.

� Each character in a nonnumeric literal represents that actual character
in the character set. (If the nonnumeric literal contains more than one
character, each character, starting with the leftmost, is assigned a
successively ascending position within this collating sequence.)

� Any characters that are not explicitly specified assume positions in this
collating sequence higher than any of the explicitly specified
characters. The relative order within the set of these unspecified
characters within the character set remains unchanged.

� Within one alphabet-name clause, a given character must not be
specified more than once.

� Each nonnumeric literal associated with a THROUGH or ALSO phrase
must be 1 character in length.

� When the THROUGH phrase is specified, the contiguous characters in
the native character set beginning with the character specified by
literal-1 and ending with the character specified by literal-2 are
assigned successively ascending positions in this collating sequence.
This sequence can be either ascending or descending within the
original native character set. That is, if "Z" THROUGH "A" is
specified, the ascending values, left-to-right, for the uppercase letters
are:

ZYXWVUTSRQPONMLKJIHGFEDCBA

� When the ALSO phrase is specified, the characters specified as literal-1,
literal-3, etc., are assigned to the same position in this collating
sequence. For example, if you specify:

"D" ALSO "N" ALSO "%"

the characters D, N, and % are all considered to be in the same
position in the collating sequence.

� When the ALSO phrase is specified and alphabet-name-1 is referenced
in a SYMBOLIC CHARACTERS clause, only literal-1 is used to
represent the character in the character set.

� The character having the highest ordinal position in this collating
sequence is associated with the figurative constant HIGH-VALUE. If
more than one character has the highest position, because of
specification of the ALSO phrase, the last character specified (or
defaulted to when any characters are not explicitly specified) is
considered to be the HIGH-VALUE character for procedural statements
such as DISPLAY, or as the sending field in a MOVE statement. (If all
characters and the ALSO phrase example given above were specified

Part 4. Environment Division 87

Floating-point literals cannot be used in a user-specified collating sequence.

DBCS literals cannot be used in a user-specified collating sequence.

ALPHABET clause

as the high-order characters of this collating sequence, the
HIGH-VALUE character would be %.)

� The character having the lowest ordinal position in this collating
sequence is associated with the figurative constant LOW-VALUE. If
more than one character has the lowest position, because of
specification of the ALSO phrase, the first character specified is the
LOW-VALUE character. (If the ALSO phrase example given above
were specified as the low-order characters of the collating sequence,
the LOW-VALUE character would be D.)

When literal-1, literal-2, or literal-3 is specified, the alphabet-name must
not be referred to in a CODE-SET clause (see “CODE-SET clause” on
page 143).

Literal-1, literal-2, and literal-3 must not specify a symbolic-character
figurative constant.

88 COBOL Language Reference

 Under OS/390 and VM, the symbolic character can be a DBCS
user-defined word.

 Under AIX and Windows, you cannot use the SYMBOLIC
CHARACTERS clause if the code page is DBCS or EUC.

 Under AIX and Windows, you cannot specify the CLASS clause if the
code page in effect is a DBCS or EUC code page.

 Under OS/390 and VM, the class-name in the CLASS clause can be
a DBCS user-defined word.

Cannot be specified as
floating-point literals or as DBCS literals.

CLASS clause

SYMBOLIC CHARACTERS clause

SYMBOLIC CHARACTERS symbolic-character-1
Provides a means of specifying one or more symbolic characters.
Symbolic-character-1 is a user-defined word and must contain at least one
alphabetic character. The same symbolic-character can appear only once in a
SYMBOLIC CHARACTERS clause.

The internal representation of symbolic-character-1 is the internal
representation of the character that is represented in the specified character set.
The following rules apply:

� The relationship between each symbolic-character-1 and the corresponding
integer-1 is by their position in the SYMBOLIC CHARACTERS clause. The
first symbolic-character-1 is paired with the first integer-1; the second
symbolic-character-1 is paired with the second integer-1; and so forth.

� There must be a one-to-one correspondence between occurrences of
symbolic-character-1 and occurrences of integer-1 in a SYMBOLIC
CHARACTERS clause.

� If the IN phrase is specified, integer-1 specifies the ordinal position of the
character that is represented in the character set named by
alphabet-name-2. This ordinal position must exist.

� If the IN phrase is not specified, symbolic-character-1 represents the
character whose ordinal position in the native character set is specified by
integer-1.

Note: Ordinal positions are numbered starting from 1.

 CLASS clause

CLASS class-name-1 IS
Provides a means for relating a name to the specified set of characters listed in
that clause. Class-name can be referenced only in a class condition. The
characters specified by the values of the literals in this clause define the
exclusive set of characters of which this class-name consists.

literal-4, literal-5
If numeric, must be unsigned integers and must have a value that is greater
than or equal to 1 and less than or equal to the number of characters in the
alphabet specified. Each number corresponds to the ordinal position of each
character in the EBCDIC or ASCII collating series.

If nonnumeric, the literal is the actual EBCDIC or ASCII character. Literal-4
and literal-5 must not specify a symbolic-character figurative constant. If the

Part 4. Environment Division 89

 'EUR', 'FRF', 'HK$', 'HKD', or X'9F' (hexadecimal
code point in some host-based code pages for , the Euro currency sign). For
more details on programming techniques for handling the Euro, see the IBM
COBOL Programming Guide for your platform.

The SPECIAL-NAMES paragraph can contain multiple CURRENCY SIGN clauses.
Each CURRENCY SIGN clause must specify a different currency symbol. Unlike
all other PICTURE clause symbols, currency symbols are case-sensitive: for
example, 'D' and 'd' specify different currency symbols.

 a DBCS literal, or a null-terminated literal.

If the PICTURE SYMBOL phrase is not specified,

 E, G, N,

'
� Can be one of the following lowercase alphabetic characters: f, h, i, j, k, l,

m, o, q, t, u, w, y

If the PICTURE SYMBOL phrase is specified, literal-6:

� Specifies a currency sign value. Literal-7, in the PICTURE SYMBOL
phrase, specifies the currency symbol for this currency sign value.

CURRENCY SIGN clause

value of the nonnumeric literal contains multiple characters, each character in
the literal is included in the set of characters identified by class-name.

If the nonnumeric literal is associated with a THROUGH phrase, it must be
one character in length.

THROUGH, THRU
THROUGH and THRU are equivalent. If THROUGH is specified,
class-name includes those characters beginning with the value of literal-4
and ending with the value of literal-5. In addition, the characters specified
by a THROUGH phrase can specify characters in either ascending or
descending order.

CURRENCY SIGN clause

The CURRENCY SIGN clause affects numeric-edited data items whose PICTURE
clause character-strings contain a currency symbol. A currency symbol represents a
currency sign value that is:
� Inserted in such data items, when they are used as receiving items
� Removed from such data items, when they are used as sending items for a

numeric or numeric-edited receiver

Typically, currency sign values identify the monetary units stored in a data item.
For example: '$', 'F',

The CURRENCY SIGN clause specifies a currency sign value and the currency
symbol used to represent that currency sign value in a PICTURE clause.

CURRENCY SIGN IS literal-6
Literal-6 must be a nonnumeric literal. Literal-6 must not be a figurative
constant,

 literal-6:

� Specifies both a currency sign value and the currency symbol for this
currency sign value.

� Must be a single character.
� Must not be any of the following:

— Digits 0 through 9
— Alphabetic characters A, B, C, D, P, R, S, V, X, Z, their

lowercase equivalents, or the space
— Special characters + - , . * / ; () " =

90 COBOL Language Reference

REPOSITORY paragraph

� Can consist of one or more characters.
� Must not contain any of the following:

— Digits 0 through 9
— Special characters + - . ,

PICTURE SYMBOL literal-7
Specifies a currency symbol, which can be used in a PICTURE clause to
represent the currency sign value specified by literal-6.

Literal-7 must be a nonnumeric literal consisting of a single character. Literal-7
must not be any of the following:

� A figurative constant
� Digits 0 through 9
� Alphabetic characters A, B, C, D, E, G, N, P, R, S, V, X, Z, their lowercase

equivalents, or the space
� Special characters + - , . * / ; () " = '

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and
the NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the
default currency sign value and currency symbol. For more information about the
CURRENCY and NOCURRENCY compiler options, see the IBM COBOL
Programming Guide for your platform.

Some uses of the CURRENCY SIGN clause prevent use of the NUMVAL-C
intrinsic function. For details, see “NUMVAL-C” on page 441.

 REPOSITORY paragraph

The REPOSITORY paragraph defines the names of the classes that you can use in a
class definition or program. Optionally, the REPOSITORY paragraph defines
associations between class-names and external class-names.

 Format
��──REPOSITORY.─ ──┬ ┬── ─.────────────────────��
 └ ┘ ─CLASS──class-name-1─ ──┬ ┬───────────────────────────────
 └ ┘ ──┬ ┬──── ─external-class-name-1─
 └ ┘─IS─

class-name-1
A user-defined word that identifies the class.

external-class-name-1
A name that enables a COBOL program to define or access classes with names
that are defined using CORBA rules of formation. (Class names defined using
CORBA rules of formation might not be expressible as a COBOL user-defined
word, such as the case-sensitive SOM class names (SOMObject for example), or
a class implemented in C with a name containing underscores.)

You must specify external-class-name-1 as a nonnumeric literal, conforming to
the following rules of formation:

� The name must not be a figurative constant.

DECIMAL-POINT IS COMMA
Exchanges the functions of the period and the comma in PICTURE character
strings and in numeric literals.

Part 4. Environment Division 91

REPOSITORY paragraph

� The name can be up to 160 characters in length.
� The characters used in the name must be uppercase or lowercase

alphabetic, digit, or underscore.
� The leading character must be alphabetic.

 General rules

1. All class names (whether referenced in a program, class definition, or method
introduced by the class) must have an entry in the REPOSITORY paragraph.
(You do not have to put the name of the class you are defining in the
REPOSITORY paragraph. Note, if you don't, the class name is stored in all
uppercase in the SOM repository.)

You can only specify a class name once in a given REPOSITORY paragraph.
2. Entries in a class REPOSITORY paragraph apply to the entire class definition,

including all methods introduced by that class. Entries in a program
REPOSITORY paragraph apply globally to all nested programs contained
within the program.

Identifying and referencing the class

The external class-name is used to identify and reference the class outside of the
source file containing the class definition (for example, to identify the entry for the
class in the SOM Interface Repository). The external class-name is determined by
using the contents of either external-class-name-1 or class-name-1 (as specified in the
REPOSITORY paragraph of a class), as described below:
1. external-class-name-1—is used directly, without translations. The external

class-names are processed in a case-sensitive manner.
2. class-name-1—is used if external-class-name-1 is not specified. To create a

CORBA-compliant external name that identifies the class, class-name-1 is
processed as follows:
� The name is converted to uppercase.
� Hyphens are translated to zero.
� If the first character of the name is a digit, it is converted as follows:

— 1 though 9 are changed to A through I
— 0 is changed to J

92 COBOL Language Reference

Class Input-Output Section
The Input-Output Section is not valid for class definitions.

Method Input-Output Section
The same rules apply to program and method I-O Sections.

and methods

If there are no files defined in the program and the INPUT-OUTPUT
SECTION is specified and no file-control-paragraph is specified, then the
FILE-CONTROL paragraph-name is optional as an IBM extension.
If there are no files defined in the program and the FILE-CONTROL
paragraph-name is specified, then the file-control-paragraph is optional as
an IBM extension.

Input-Output Section

Input-Output Section

The Input-Output Section of the Environment Division contains two paragraphs:
� FILE-CONTROL paragraph
� I-O-CONTROL paragraph

The exact contents of the Input-Output Section depend on the file organization and
access methods used. See “ORGANIZATION clause” on page 103 and “ACCESS
MODE clause” on page 107.

Program Input-Output Section
The same rules apply to program and method I-O Sections.

Programs
 ┌ ┐────────────────────────────
��──INPUT-OUTPUT SECTION.──FILE-CONTROL.───(1) ───/ ┴─file-control-paragraph───(2) ───�

�─ ──┬ ┬── ─────────────────────��
 └ ┘ ─I-O-CONTROL.─ ──┬ ┬──────────────────────────────
 │ │┌ ┐─────────────────────────
 └ ┘ ───/ ┴─i-o-control-paragraph─ ─.─

Notes:
1

2

FILE-CONTROL
The key word FILE-CONTROL names the FILE-CONTROL paragraph. This
key word can appear only once, at the beginning of the FILE-CONTROL
paragraph. It must begin in Area A, and be followed by a separator period.

file-control-paragraph
Names the files and associates them with the external data sets.

Must begin in Area B with a SELECT clause. It must end with a separator
period. See “FILE-CONTROL paragraph” on page 94.

I-O-CONTROL
The key word I-O-CONTROL names the I-O-CONTROL paragraph.

input-output-control-paragraph
Specifies information needed for efficient transmission of data between the
external data set and the COBOL program. The series of entries must end
with a separator period. See “I-O-CONTROL paragraph” on page 114.

 Copyright IBM Corp. 1991, 2000 93

� Line-sequential file entries (not supported under VM)

 Under OS/390 and VM, there is one exception to the rule about order.
For indexed files, the PASSWORD clause, if specified, must immediately follow the
RECORD KEY or ALTERNATE RECORD KEY data-name with which it is
associated.

Line
Sequential

Native3 Native Native

FILE-CONTROL paragraph

 FILE-CONTROL paragraph

The FILE-CONTROL paragraph associates each file in the COBOL program with
an external data set, and specifies file organization, access mode, and other
information.

The following are the formats for the FILE-CONTROL paragraph:
� Sequential file entries
� Indexed file entries
� Relative file entries

|

Table 9 lists the different type of files available to mainframe and workstation
COBOL programs.

The FILE-CONTROL paragraph begins with the word "FILE-CONTROL", followed
by a separator period. It must contain one and only one entry for each file
described in an FD or SD entry in the Data Division. Within each entry, the
SELECT clause must appear first. The other clauses can appear in any order.

Table 9. Types of files

File
Organization

Access method
OS/390 and VM

File systems

AIX Windows

Sequential QSAM, VSAM VSAM1, STL VSAM2, Btrieve, STL

Relative VSAM VSAM1, STL VSAM2, Btrieve, STL

Indexed VSAM VSAM1, STL VSAM2, Btrieve, STL

|

Note:

1 Under AIX, you can access the SFS file system through VSAM.

2 Under Windows, only remote file access is available.

| 3 Line-sequential support on the host is limited to HFS files under OS/390. Line-sequential files
| are not supported under VM.

94 COBOL Language Reference

USING data-name-9

PASSWORD data-name-6
IS

data-name-8

The USING data-name phrase of the ASSIGN clause is only valid under AIX and Windows.

USING data-name-9

PASSWORD data-name-6
IS

data-name-8

PASSWORD data-name-7
IS

The USING data-name phrase of the ASSIGN clause is only valid under AIX and Windows.
RECORD is optional as an IBM extension.

FILE-CONTROL paragraph
 Format 1—sequential-file-control-entries

 ┌ ┐─────────────────────
��──SELECT─ ──┬ ┬────────── ─file-name-1─ ─ASSIGN─ ──┬ ┬ ──┬ ┬──── ───/ ┴─assignment-name-1─ ──────────────────�
 └ ┘─OPTIONAL─ │ │└ ┘─TO─
 └ ┘─ ── ───(1) ─────────

�─ ──┬ ┬───────────────────────────── ──┬ ┬────────────────────────────────────── ──────────────────────�
 └ ┘ ─RESERVE──integer─ ──┬ ┬─────── └ ┘ ──┬ ┬────────────────────── ─SEQUENTIAL─
 ├ ┤─AREA── └ ┘ ─ORGANIZATION─ ──┬ ┬────
 └ ┘─AREAS─ └ ┘─IS─

�─ ──┬ ┬─── ──�
 └ ┘ ─PADDING─ ──┬ ┬─────────── ──┬ ┬──── ──┬ ┬─data-name-5─
 └ ┘─CHARACTER─ └ ┘─IS─ └ ┘─literal-2───

�─ ──┬ ┬─── ──�
 └ ┘ ─RECORD DELIMITER─ ──┬ ┬──── ──┬ ┬─STANDARD-1────────
 └ ┘─IS─ └ ┘─assignment-name-2─

�─ ──┬ ┬────────────────────────────────────── ──┬ ┬─────────────────────────────── ────────────────────�
 └ ┘ ─ACCESS─ ──┬ ┬────── ──┬ ┬──── ─SEQUENTIAL─ └ ┘ ─ ─ ──┬ ┬──── ─ ─
 └ ┘─MODE─ └ ┘─IS─ └ ┘─ ─

�─ ──┬ ┬── ─.──────────────────────────────────��
 └ ┘ ──┬ ┬────── ─STATUS─ ──┬ ┬──── ─data-name-1─ ──┬ ┬─────────────
 └ ┘─FILE─ └ ┘─IS─ └ ┘ ─ ─

Note:
1

 Format 2—indexed-file-control-entries
 ┌ ┐─────────────────────
��──SELECT─ ──┬ ┬────────── ─file-name-1─ ─ASSIGN─ ──┬ ┬ ──┬ ┬──── ───/ ┴─assignment-name-1─ ──────────────────�
 └ ┘─OPTIONAL─ │ │└ ┘─TO─
 └ ┘─ ── ───(1) ─────────

�─ ──┬ ┬───────────────────────────── ──┬ ┬────────────────────── ─INDEXED──────────────────────────────�
 └ ┘ ─RESERVE──integer─ ──┬ ┬─────── └ ┘ ─ORGANIZATION─ ──┬ ┬────
 ├ ┤─AREA── └ ┘─IS─
 └ ┘─AREAS─

�─ ──┬ ┬── ─RECORD─ ──┬ ┬───── ──┬ ┬──── ─data-name-2──────────────�
 └ ┘ ─ACCESS─ ──┬ ┬────── ──┬ ┬──── ──┬ ┬─SEQUENTIAL─ └ ┘─KEY─ └ ┘─IS─
 └ ┘─MODE─ └ ┘─IS─ ├ ┤─RANDOM─────
 └ ┘─DYNAMIC────

 ┌ ┐───────────────────
�─ ──┬ ┬─────────────────────────────── ───/ ┴──┬ ┬───────────── ───�
 └ ┘ ─ ─ ──┬ ┬──── ─ ─ └ ┘─┤ entry 1 ├─
 └ ┘─ ─

�─ ──┬ ┬── ─.──────────────────────────────────��
 └ ┘ ──┬ ┬────── ─STATUS─ ──┬ ┬──── ─data-name-1─ ──┬ ┬─────────────
 └ ┘─FILE─ └ ┘─IS─ └ ┘ ─ ─

entry 1
├──ALTERNATE RECORD───(2) ──┬ ┬───── ──┬ ┬──── ─data-name-3─ ──┬ ┬────────────────────── ─────────────────────�
 └ ┘─KEY─ └ ┘─IS─ └ ┘ ──┬ ┬────── ─DUPLICATES─
 └ ┘─WITH─

�─ ──┬ ┬─────────────────────────────── ──┤
 └ ┘ ─ ─ ──┬ ┬──── ─ ─
 └ ┘─ ─

Notes:
1

2

Part 4. Environment Division 95

USING data-name-9

PASSWORD data-name-6
IS

data-name-8

The USING data-name phrase of the ASSIGN clause is only valid under AIX and Windows.

Format 4—line-sequential-file-control-entries (all platforms except VM)
 ┌ ┐─────────────────────
��──SELECT─ ──┬ ┬────────── ─file-name-1─ ─ASSIGN─ ──┬ ┬ ──┬ ┬──── ───/ ┴─assignment-name-1─ ──────────────────�
 └ ┘─OPTIONAL─ │ │└ ┘─TO─
 └ ┘─USING──data-name-9───(1) ─────────

�─ ──┬ ┬────────────────────── ─LINE SEQUENTIAL─ ──┬ ┬────────────────────────────────────── ────────────�
 └ ┘ ─ORGANIZATION─ ──┬ ┬──── └ ┘ ─ACCESS─ ──┬ ┬────── ──┬ ┬──── ─SEQUENTIAL─
 └ ┘─IS─ └ ┘─MODE─ └ ┘─IS─

�─ ──┬ ┬── ─.────────────────────────────────��
 └ ┘ ──┬ ┬────── ─STATUS─ ──┬ ┬──── ─data-name-1─ ──┬ ┬───────────────
 └ ┘─FILE─ └ ┘─IS─ └ ┘ ─data-name-8───(1)

Note:
1 The USING data-name-9 phrase and data-name-8 are only valid under AIX and Windows.

FILE-CONTROL paragraph
 Format 3—relative-file-control-entries

 ┌ ┐─────────────────────
��──SELECT─ ──┬ ┬────────── ─file-name-1─ ─ASSIGN─ ──┬ ┬ ──┬ ┬──── ───/ ┴─assignment-name-1─ ──────────────────�
 └ ┘─OPTIONAL─ │ │└ ┘─TO─
 └ ┘─ ── ───(1) ─────────

�─ ──┬ ┬───────────────────────────── ──┬ ┬────────────────────── ─RELATIVE─────────────────────────────�
 └ ┘ ─RESERVE──integer─ ──┬ ┬─────── └ ┘ ─ORGANIZATION─ ──┬ ┬────
 ├ ┤─AREA── └ ┘─IS─
 └ ┘─AREAS─

�─ ──┬ ┬── ───────�
 └ ┘ ─ACCESS─ ──┬ ┬────── ──┬ ┬──── ──┬ ┬ ─SEQUENTIAL─ ──┬ ┬──
 └ ┘─MODE─ └ ┘─IS─ │ │└ ┘ ─RELATIVE─ ──┬ ┬───── ──┬ ┬──── ─data-name-4─
 │ │└ ┘─KEY─ └ ┘─IS─
 └ ┘ ──┬ ┬─RANDOM── ─RELATIVE─ ──┬ ┬───── ──┬ ┬──── ─data-name-4────
 └ ┘─DYNAMIC─ └ ┘─KEY─ └ ┘─IS─

�─ ──┬ ┬─────────────────────────────── ──�
 └ ┘ ─ ─ ──┬ ┬──── ─ ─
 └ ┘─ ─

�─ ──┬ ┬── ─.──────────────────────────────────��
 └ ┘ ──┬ ┬────── ─STATUS─ ──┬ ┬──── ─data-name-1─ ──┬ ┬─────────────
 └ ┘─FILE─ └ ┘─IS─ └ ┘ ─ ─

Note:
1

||

96 COBOL Language Reference

ASSIGN clause

 SELECT clause

The SELECT clause chooses a file in the COBOL program to be associated with an
external data set.

SELECT OPTIONAL
Can be specified only for files opened in the input, I-O, or extend mode. You
must specify SELECT OPTIONAL for such input files that are not necessarily
present each time the object program is executed. For more information, see
the IBM COBOL Programming Guide for your platform.

file-name-1
Must be identified by an FD or SD entry in the Data Division. A file-name
must conform to the rules for a COBOL user-defined name, must contain at
least one alphabetic character, and must be unique within this program.

When file-name-1 specifies a sort or a merge file, only the ASSIGN clause can
follow the SELECT clause.

If the file connector referenced by file-name-1 is an external file connector, all file
control entries in the run unit that reference this file connector must have the same
specification for the OPTIONAL phrase.

 ASSIGN clause

The ASSIGN clause associates the program's name for a file with the external
name for the actual data file.

OS/390 and VM syntax

assignment-name-1
Can be specified as a user-defined word or a nonnumeric literal. Any
assignment-name after the first is syntax checked, but it has no effect on the
execution of the program.

Assignment-name-1 has the following formats:

 Format—QSAM file
��─ ──┬ ┬───────── ──┬ ┬───── ─name───��

└ ┘──label- └ ┘─S- ─

Format—VSAM sequential file
��─ ──┬ ┬───────── ─AS- ──name──��

└ ┘──label-

| Format—Line-sequential, VSAM indexed or VSAM relative file|

��─ ──┬ ┬───────── ─name──��
└ ┘──label-

label-
Documents the device and device class to which a file is assigned. If specified,
it must end with a hyphen.

Part 4. Environment Division 97

ASSIGN clause

S- For QSAM files, the S- (organization) field can be omitted.

AS-
For VSAM sequential files, the AS- (organization) field must be specified.

For VSAM indexed and relative files, the organization field must be omitted.

name
A required field that specifies the external name for this file.

| Under OS/390, it must be either the name specified in the DD statement for
| this file or the name of an environment variable containing file allocation
| information. For details on specifying an environment variable, see
| “Assignment name for environment variable (OS/390).”

The name must conform to the following rules of formation:

� If assignment-name-1 is a user-defined word:
— The name can contain from 1 - 8 characters.
— The name can contain the characters A-Z, a-z, 0-9.
— The leading character must be alphabetic.

� If assignment-name-1 is a literal:
— The name can contain from 1 - 8 characters.
— The name can contain the characters A-Z, a-z, 0-9, @, #, $.
— The leading character must be alphabetic.

For both user-defined words and literals, the compiler folds name to upper case
to form the ddname for the file.

In a sort or merge file, name is treated as a comment.

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, all file control entries in the run unit that reference this file
connector must have a consistent specification for assignment-name-1 in the
ASSIGN clause. For QSAM files and VSAM indexed and relative files, the name
specified on the first assignment- name-1 must be identical. For VSAM sequential
files, it must be specified as AS-name.

| Assignment name for environment variable (OS/390)

| Under OS/390, the name component of assignment-name-1 is initially treated as a
| ddname. If no file has been allocated using this ddname, then name is treated as
| an environment variable.

| Note: The environment variable name must be defined using only upper case,
| since the COBOL compiler automatically folds the external file name to upper case.

| If this environment variable exists, and contains a valid PATH or DSN option
| (described below), then the file is dynamically allocated using the information
| supplied by that option.

| If the environment variable does not contain a valid PATH or DSN option, or if
| the dynamic allocation fails, then attempting to open the file results in file status
| 98.

| The contents of the environment variable are checked at each OPEN statement. If
| a file was dynamically allocated by a previous OPEN statement and the contents
| of the environment variable have changed since the previous OPEN, then the
| previous allocation is dynamically deallocated prior to dynamically reallocating the
| file using the options currently set in the environment variable.

98 COBOL Language Reference

ASSIGN clause

| When the run-unit terminates, the COBOL run-time system automatically
| deallocates all automatically generated dynamic allocations.

| Environment variable contents for a QSAM file: For a QSAM file, the
| environment variable must contain either a PATH option or a DSN option in the
| following format:

| The options following DSN (such as NEW, TRACKS etc.) must be separated by a
| comma or by one or more blanks.

| Environment variable format (OS/390 QSAM files)—DSN option|

| ��──DSN──(──data-set-name─ ──┬ ┬─────────────── ─)─ ──┬ ┬───── ──┬ ┬──────── ─�
| └ ┘──(member-name) ├ ┤─NEW─ ├ ┤─TRACKS─
| ├ ┤─OLD─ └ ┘─CYL────
| ├ ┤─SHR─
| └ ┘─MOD─

| �─ ──┬ ┬───────────────── ──┬ ┬──────────────────── ──┬ ┬──────────── ─�
| └ ┘──SPACE(nnn,mmmm) └ ┘──VOL(volume-serial) └ ┘──UNIT(type)

| �─ ──┬ ┬─────────── ──┬ ┬───────────────────────── ─�
| ├ ┤─KEEP────── └ ┘──STORCLAS(storage-class)
| ├ ┤─DELETE────
| ├ ┤─CATALOG───
| └ ┘─UNCATALOG─

| �─ ──┬ ┬──────────────────────────── ──┬ ┬────────────────────── ─��
| └ ┘──MGMTCLAS(management-class) └ ┘──DATACLAS(data-class)

| The data-set-name must be fully qualified. The data set must not be a temporary
| data set (that is, it must not start with an ampersand). After data-set-name or
| member-name, the data set attributes can follow in any order.

| For information on specifying the values of the data set attributes, see the
| description of the DD statement in the OS/390 MVS JCL Reference, GC28-1757.

| Environment variable format (OS/390)—PATH option|

| ��──PATH──(──path-name──)──��

| The path-name must be an absolute path name (that is, it must begin with a slash).
| For more information on specifying path-name, see the description of the PATH
| parameter in the OS/390 MVS JCL Reference, GC28-1757.

| Blanks at the beginning and end of the environment variable contents are ignored.
| Blanks are not allowed within the parentheses.

| Environment variable contents for a line-sequential file: For a line-sequential
| file, the environment variable must contain a PATH option in the following
| format:

| Environment variable format (OS/390)—PATH option|

| ��──PATH──(──path-name──)──��

| The path-name must be an absolute path name (that is, it must begin with a slash).
| For more information on specifying path-name, see the description of the PATH
| parameter in the OS/390 MVS JCL Reference, GC28-1757.

| Blanks at the beginning and end of the environment variable contents are ignored.
| Blanks are not allowed within the parentheses.

Part 4. Environment Division 99

ASSIGN clause

| Environment variable contents for an indexed, relative or sequential VSAM
| file: For an indexed, relative or sequential VSAM file, the environment variable
| must contain a DSN option in the following format:

| Environment variable format (OS/390 VSAM)—DSN option|

| ��──DSN──(──data-set-name──)─ ──┬ ┬─OLD─ ─��
| └ ┘─SHR─

| The data-set-name specifies the data set name for the base cluster. The data-set-name
| must be fully qualified, and must reference an existing predefined and cataloged
| VSAM data set.

| If an indexed file has alternate indexes, then additional environment variables
| must be defined containing DSN options (as above) for each of the alternate index
| paths. The names of these environment variables must follow the same naming
| convention as used for alternate index ddnames. That is:
| � The environment variable name for each alternate index path is formed by
| concatenating the base cluster environment variable name with an integer,
| beginning with 1 for the path associated with the first alternate index and
| incrementing by 1 for the path associated with each successive alternate index.
| (For example, if the environment variable name for the base cluster is CUST,
| then the environment variable names for the alternate indexes would be
| CUST1, CUST2 etc.)
| � If the length of the base cluster environment variable name is already 8
| characters, then the environment variable names for the alternate indexes are
| formed by truncating the base cluster portion of the environment variable
| name on the right, to reduce the concatenated result to 8 characters. (For
| example, if the environment variable name for the base cluster is DATAFILE,
| then the environment variable names for the alternate clusters would be
| DATAFIL1, DATAFIL2 etc.)

| Blanks at the beginning and end of the environment variable contents are ignored.
| Blanks are not allowed within the parentheses.

| The options following DSN (such as SHR) must be separated by a comma or by
| one or more blanks.

AIX and Windows syntax

assignment-name-1
Can be either a user-defined word or a literal.

User-defined word
Assignment-name-1 must follow the rules for a COBOL word. The
name component of the assignment name can be up to 30 characters in
length. A user-defined word is treated as one of the following:

� Environment variable name— At program initialization, the name
is used as an environment variable. If the environment variable
value is set, that value is treated as the system file name optionally
preceded by the file-system ID. See “Assignment name for
data-names and environment variables (AIX and Windows)” on
page 102 for details.

� System file ID of the platform— If the environment variable
indicated by the name is not set, the user-defined word is treated as
the system file name, optionally preceded by the file-system ID

100 COBOL Language Reference

USING data-name-9
Must be defined as an alphanumeric data item, and must not be subordinate to
the file description for file-name-1. The content is evaluated when OPENed to
identify the assignment name. See “Assignment name for data-names and
environment variables (AIX and Windows)” on page 102 for details.

ASSIGN clause

and a comment character string. See “Assignment name for
non-environment variables and literals (AIX and Windows)” on
page 101 for details.

Literal
Assignment-name-1 is treated as the actual file ID for the platform.
Assignment-name-1 must follow the rules for a COBOL literal with the
length of one to 160 characters. See “Assignment name for
non-environment variables and literals (AIX and Windows)” for
details.

All characters specified within the literal delimiters are used without
any mapping.

Assignment name for non-environment variables and literals
(AIX and Windows)

If a literal or non-data-name word is specified for the name, the assignment name
is processed as follows:

ASSIGNment name format
��─ ──┬ ┬────────── ──┬ ┬───────────────── ──────────────────────────────────────�

└ ┘─comment-─ └ ┘─file system ID-─

�─ ──┬ ┬─system file name─ ──┬ ┬─────────────── ────────────────────────────────��
 │ │└ ┘─┤ alt_index ├─

└ ┘─environment variable name───────────

alt_index
 ┌ ┐────────────────────────────────
├──(──alt-inx-file-name-1─ ───/ ┴┬ ┬──────────────────────────── ─)──────────────┤
 └ ┘ ─,─ ──┬ ┬─────────────────────
 └ ┘─alt-inx-file-name-2─

comment
All characters to the left of the system-file ID are treated as comments.
Comments can be hyphenated, for example, my-comment or
this-is-my-comment.

file-system ID
The first three characters of the file-system ID are used to determine the
file-system identifier. If the character string for the file-system ID is less than
three characters, then the entire character string (along with any character
strings to the left of it) is treated as a comment. If you include comments
(hyphenated or not), you must include the separating hyphen between the
comment and the file-system ID.

For example, take the following two assignment-name formats:

my-comment-vsam-myfile

In this example, my-comment is the comment, vsam is the file-system ID, and
myfile is the system file or environment variable name.

my-comment-am-myfile

Part 4. Environment Division 101

ASSIGN clause

In this example, my-comment-am is the comment, and myfile is the system file
or environment variable name.

system file name / environment variable name
If the assignment name is not specified in the literal form and the environment
variable matching the character string is found at run time, the environment
variable value is used to identify the file system and the system file name.
Otherwise, the character string is used as the system file name.

Specifying alternate indexes— The compiler normally assigns default alternate
index file names; however, you must override the default assignment when:

� The file is not a local VSAM file and has different alternate index file name
specification rules. For example, an SFS file where SFS requires an
alternate index file name to start with the base file name followed by ;
followed by a character string of your choice.

� The file already exists and has alternate index files with names not
corresponding to the default alternate index file names that are assigned
by the compiler. For example, a remote OS/390 VSAM file or a local
VSAM file create through a different language, such as PL/I.

If specifying alternate index names, they must be specified in the same order
as the alternate record keys are specified in the source program. You can omit
alternate index names, but any other alternate index names must correspond to
the position in the file definition. The following example shows how to
specify the first and third alternate index names:

base-file-name(first-index-file-name,,third-index-file-name)

In the above example, the compiler will assign a default file name for the
second alternate index file.

Alternate index file names are ignored for file systems that do not require
separate alternate index files, such as the STL file system.

Assignment name for data-names and environment variables
(AIX and Windows)

If the environment variable or data-name is specified for the assignment name, the
data-name value or the environment variable value is processed as follows:

Environment variable and data name value format
��─ ──┬ ┬───────────────── ─system file name───────────────────────────────────�

└ ┘─file system ID-─

�─ ──┬ ┬─── ────────��
 │ │┌ ┐────────────────────────────────
 └ ┘ ─(──alt-inx-file-name-1─ ───/ ┴┬ ┬──────────────────────────── ─)─
 └ ┘ ─,─ ──┬ ┬─────────────────────
 └ ┘─alt-inx-file-name-2─

file-system ID
If the file-system ID is specified explicitly using the environment variable value
or the data-name value, that specification for the file system overrides any file
system specification made by the ASSIGNment name.

The environment variable value for a file is obtained when the program
containing the file is first run (or called) in its initial state. This value is kept
for the file for subsequent calls to the program in the last used state.

102 COBOL Language Reference

The RESERVE clause is not supported for line-sequential files.

 Under AIX and Windows,

ORGANIZATION clause

The value of the file ID specified with a data-name is obtained when the file is
OPENed. On each subsequent OPEN for the file, the value is reobtained.

File declarations for an external file must have the same file-system identifier.
If they are not, the error is caught during run time, and the application is
terminated with an error message.

system file name
If there is a hyphen in the environment variable or the data name value, the
first three characters to the left of the left-most hyphen are treated as the
file-system identifier. The character string to right of the left most hyphen is
then used as the system file name (possibly including drive and path names).

If there is no hyphen or the character string to the left of the left-most hyphen
is less than three characters long, the entire character string is used as the
system file name (possibly including drive and path names).

For information on specifying alternate indexes, see “Specifying alternate
indexes” under “Assignment name for non-environment variables and literals
(AIX and Windows)” on page 101.

 RESERVE clause

|

 the RESERVE clause is syntax checked, but
has no effect on the execution of the program.

The RESERVE clause allows the user to specify the number of input/output
buffers to be allocated at run-time for the files.

If the RESERVE clause is omitted, the number of buffers at run time is taken from
the DD statement when running under OS/390. If none is specified, the system
default is taken.

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, all file control entries in the run unit that reference this file
connector must have the same value for the integer specified in the RESERVE
clause.

 ORGANIZATION clause

The ORGANIZATION clause identifies the logical structure of the file. The logical
structure is established at the time the file is created and cannot subsequently be
changed.

You can find a discussion of the different ways in which data can be organized
and of the different access methods that you can use to retrieve the data under
“File organization and access modes” on page 108.

ORGANIZATION IS SEQUENTIAL (format 1)
A predecessor-successor relationship among the records in the file is
established by the order in which records are placed in the file when it is
created or extended.

ORGANIZATION IS INDEXED (format 2)
The position of each logical record in the file is determined by indexes created
with the file and maintained by the system. The indexes are based on
embedded keys within the file's records.

Part 4. Environment Division 103

ORGANIZATION IS LINE SEQUENTIAL (format 4)
Supported under all platforms except VM: a predecessor-successor relationship
among the records in the file is established by the order in which records are
placed in the file when it is created or extended. A record in a LINE
SEQUENTIAL file can consist only of printable characters.

ORGANIZATION clause

ORGANIZATION IS RELATIVE (format 3)
The position of each logical record in the file is determined by its relative
record number.

|
|

If you omit the ORGANIZATION clause, the compiler assumes ORGANIZATION
IS SEQUENTIAL.

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, all file control entries in the run unit that reference this file
connector must have the same organization.

 File organization

You establish the organization of the data when you create the file. Once the file
has been created, you can expand the file, but you cannot change the organization.

 Sequential organization

The physical order in which the records are placed in the file determines the
sequence of records. The relationships among records in the file do not change,
except that the file can be extended. Records can be fixed-length or
variable-length; there are no keys.

Each record in the file, except the first, has a unique predecessor record, and each
record, except the last, also has a unique successor record.

 Indexed organization

Each record in the file has one or more embedded keys (referred to as key data
items); each key is associated with an index. An index provides a logical path to
the data records, according to the contents of the associated embedded record key
data items. Indexed files must be direct-access storage files. Records can be
fixed-length or variable-length.

Each record in an indexed file must have an embedded prime key data item.
When records are inserted, updated, or deleted, they are identified solely by the
values of their prime keys. Thus, the value in each prime key data item must be
unique and must not be changed when the record is updated. You tell COBOL
the name of the prime key data item on the RECORD KEY clause of the
FILE-CONTROL paragraph.

In addition, each record in an indexed file can contain one or more embedded
alternate key data items. Each alternate key provides another means of identifying
which record to retrieve. You tell COBOL the name of any alternate key data
items on the ALTERNATE RECORD KEY clause of the FILE-CONTROL
paragraph.

The key used for any specific input-output request is known as the key of
reference.

104 COBOL Language Reference

 Line-sequential organization

In a line-sequential file, each record contains a sequence of characters ending with
a record delimiter. The delimiter is not counted in the length of the record.

Upon writing, any trailing blanks are removed prior to adding the record
delimiter. The characters in the record area from the first character up to and
including the added record delimiter constitute one record and are written to the
file.

Upon reading the record, characters are read one at a time into the record area
until:
� The first record delimiter is encountered. The record delimiter is discarded

and the remainder of the record is filled with spaces.
� The entire record area is filled with characters. If the first unread character is

the record delimiter, it is discarded. Otherwise, the first unread character
becomes the first character read by the next READ statement.

Records written to line-sequential files must consist of USAGE...DISPLAY and/or
DISPLAY-1 data items. An external decimal data item must either be unsigned or,
if signed, must be declared with the SEPARATE CHARACTER phrase.

A line-sequential file must only contain printable characters and the following
control characters:
 Alarm
 Backspace
 Form feed
 New-line
 Carriage-return
 Horizontal tab
 Vertical tab
 DBCS shift-out
 DBCS shift-in

New-line characters are processed as record delimiters, while other control
characters are treated by COBOL as part of the data for the records in the file.

The following are not supported for line-sequential files:
� APPLY WRITE ONLY clause
� CODE-SET clause
� DATA RECORDS clause
� LABEL RECORDS clause
� LINAGE clause
� OPEN I-O option
� PADDING CHARACTER clause
� RECORD CONTAINS 0 clause

ORGANIZATION clause

 Relative organization

Think of the file as a string of record areas, each of which contains a single record.
Each record area is identified by a relative record number; the access method
stores and retrieves a record, based on its relative record number. For example,
the first record area is addressed by relative record number 1, and the 10th is
addressed by relative record number 10. The physical sequence in which the
records were placed in the file has no bearing on the record area in which they are
stored, and thus on each record's relative record number. Relative files must be
direct-access files. Records can be fixed-length or variable-length.

|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

Part 4. Environment Division 105

� RECORD CONTAINS clause (format 2; for example, RECORD CONTAINS 100
to 200 CHARACTERS)

� RECORD DELIMITER clause
� RECORDING MODE clause
� RERUN clause
� RESERVE clause
� REVERSED phrase of OPEN statement
� REWRITE statement
� VALUE OF clause of file description entry
� WRITE...AFTER ADVANCING mnemonic-name
� WRITE...AT END-OF-PAGE
� WRITE...BEFORE ADVANCING

� APPLY WRITE ONLY clause

� PASSWORD clause

� RECORDING MODE clause (for relative and indexed files)

 (with the exception of the data name option for
the LABEL RECORDS, USE...AFTER...LABEL PROCEDURE, and GO TO
MORE-LABELS clauses).

PADDING CHARACTER clause

|
|
|
|
|
|
|
|
|
|
|
|

Language elements treated as comments (workstation only)

Under AIX and Windows for other files (sequential, relative, and indexed), the
| following language elements are syntax checked, but have no effect on the
| execution of the program:

� CLOSE....FOR REMOVAL
� CLOSE....WITH NO REWIND
� CODE-SET clause
� DATA RECORDS clause
� LABEL RECORDS clause
� MULTIPLE FILE TAPE clause
� OPEN...REVERSE
� PADDING CHARACTER clause

� RECORD CONTAINS 0 clause
� RECORD DELIMITER clause

� RERUN clause
� RESERVE clause
� SAME AREA clause
� SAME SORT AREA clause
� SAME SORT-MERGE AREA clause
� VALUE OF clause of file description entry

No error messages are generated

PADDING CHARACTER clause

The PADDING CHARACTER clause specifies the character which is to be used for
block padding on sequential files.

data-name-5
Must be defined in the Data Division as an alphanumeric 1-character data
item, and must not be defined in the File Section. Data-name-5 can be
qualified.

literal-2
Must be a 1-character nonnumeric literal.

For EXTERNAL files, if data-name-5 is specified, it must reference an external data
item.

106 COBOL Language Reference

For sequentially accessed relative files, the ACCESS MODE clause does not have to
precede the RELATIVE KEY clause.

Format 4—line-sequential
Records in the file are accessed in the sequence established when the file is
created or extended. Format 4 supports only sequential access.

ACCESS MODE clause

The PADDING CHARACTER clause is syntax checked, but no compile-time or
run-time verification checking is done, and the clause has no effect on the
execution of the program.

RECORD DELIMITER clause

The RECORD DELIMITER clause indicates the method of determining the length
of a variable-length record on an external medium. It can be specified only for
variable-length records.

STANDARD-1
If STANDARD-1 is specified, the external medium must be a magnetic tape
file.

assignment-name-2
Can be any COBOL word.

The RECORD DELIMITER clause is syntax checked, but no compile-time or
run-time verification checking is done, and the clause has no effect on the
execution of the program.

ACCESS MODE clause

The ACCESS MODE clause defines the manner in which the records of the file are
made available for processing. If the ACCESS MODE clause is not specified,
sequential access is assumed.

ACCESS MODE IS SEQUENTIAL
Can be specified in all four formats.

Format 1—sequential
Records in the file are accessed in the sequence established when the file is
created or extended. Format 1 supports only sequential access.

Format 2—indexed
Records in the file are accessed in the sequence of ascending record key
values according to the collating sequence of the file.

Format 3—relative
Records in the file are accessed in the ascending sequence of relative
record numbers of existing records in the file.

ACCESS MODE IS RANDOM
Can be specified in formats 2 and 3 only.

Format 2—indexed
The value placed in a record key data item specifies the record to be
accessed.

Format 3—relative
The value placed in a relative key data item specifies the record to be
accessed.

Part 4. Environment Division 107

Line-sequential files
Same as for sequential files (described above).

ACCESS MODE clause

ACCESS MODE IS DYNAMIC
Can be specified in formats 2 and 3 only.

Format 2—indexed
Records in the file can be accessed sequentially or randomly, depending on
the form of the specific input-output statement used.

Format 3—relative
Records in the file can be accessed sequentially or randomly, depending on
the form of the specific input-output request.

File organization and access modes

File organization is the permanent logical structure of the file. You tell the
computer how to retrieve records from the file by specifying the access mode
(sequential, random, or dynamic). For details on the access methods and data
organization, see Table 9 on page 94.

Note: Sequentially organized data can only be accessed sequentially; however,
data that has indexed or relative organization can be accessed with any of the
three access methods.

 Access modes

Sequential-access mode
Allows reading and writing records of a file in a serial manner; the order of
reference is implicitly determined by the position of a record in the file.

Random-access mode
Allows reading and writing records in a programmer-specified manner; the
control of successive references to the file is expressed by specifically defined
keys supplied by the user.

Dynamic-access mode
Allows the specific input-output statement to determine the access mode.
Therefore, records can be processed sequentially and/or randomly.

For EXTERNAL files, every file control entry in the run unit that is associated with
that external file must specify the same access mode. In addition, for relative file
entries, data-name-4 must reference an external data item and the RELATIVE KEY
phrase in each associated file control entry must reference that same external data
item in each case.

Relationship between data organizations and access modes

The following lists which access modes are valid for each type of data
organization.

Sequential files
Files with sequential organization can be accessed only sequentially. The
sequence in which records are accessed is the order in which the records were
originally written.

108 COBOL Language Reference

 (or optionally under AIX and Windows, descending order)

 (or optionally under AIX and Windows, descending order)

As an IBM extension, data-name-2 can be numeric, numeric-edited,
alphanumeric-edited, alphabetic, floating-point (both external and internal), or
a DBCS data item. The key is treated as an alphanumeric item for the input
and output statements for the file named in the SELECT clause. When you
specify data-name-2 as a DBCS data item, a key specified on the READ
statement must also be a DBCS data item.

As an IBM extension, if the indexed file contains variable-length records,
data-name-2 need not be contained within the first “x” character positions of
the record, where “x” equals the minimum record size specified for the file.
That is, data-name-2 can be beyond the first “x” character positions of the
record, but this is not recommended.

RECORD KEY clause

Indexed files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is
the ascending order
of the record key value. The order of retrieval within a set of records having
duplicate alternate record key values is the order in which records were
written into the set.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing the value of its key(s) in
the RECORD KEY data item (and the ALTERNATE RECORD KEY data item).
If a set of records has duplicate alternate record key values, only the first
record written is available.

In the dynamic access mode, you can change, as necessary, from sequential
access to random access, using appropriate forms of input-output statements.

Relative files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is
the ascending order
of the relative record numbers of all records that currently exist within the file.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing its relative record number
in the RELATIVE KEY data item; the RELATIVE KEY must not be defined
within the record description entry for this file.

In the dynamic access mode, you can change, as necessary, from sequential
access to random access, using the appropriate forms of input-output
statements.

RECORD KEY clause

The RECORD KEY clause (format 2) specifies the data item within the record that
is the prime RECORD KEY for an indexed file. The values contained in the prime
RECORD KEY data item must be unique among records in the file.

data-name-2
The prime RECORD KEY data item. It must be described as an alphanumeric
item within a record description entry associated with the file.

Data-name-2 must not reference a group item that contains a variable
occurrence data item. Data-name-2 can be qualified.

Part 4. Environment Division 109

Data-name-2 cannot be a windowed date field.

The requirement for identical data description entries is not enforced, but the key
must have the same relative location in the records, as well as the same length.

As an IBM extension, data-name-3 can be a numeric, numeric-edited,
alphanumeric-edited, alphabetic, floating-point (both external and internal), or
DBCS data item. The key is treated as an alphanumeric item for the input and
output statements for the file named in the SELECT clause.

As an IBM extension, if the indexed file contains variable-length records,
data-name-3 need not be contained within the first “x” character positions of
the record, where “x” equals the minimum record size specified for the file.
That is, data-name-3 can be beyond the first “x” character positions of the
record, but this is not recommended.

Data-name-3 cannot be a windowed date field.

ALTERNATE RECORD KEY clause

The data description of data-name-2 and its relative location within the record
must be the same as those used when the file was defined.

If the file has more than one record description entry, data-name-2 need only be
described in one of these record description entries. The identical character
positions referenced by data-name-2 in any one record description entry are
implicitly referenced as keys for all other record description entries of that file.

For EXTERNAL files, all file description entries in the run unit that are associated
with the EXTERNAL file must specify the same data description entry for
data-name-2 with the same relative location within the associated record.

ALTERNATE RECORD KEY clause

The ALTERNATE RECORD KEY clause (format 2) specifies a data item within the
record that provides an alternative path to the data in an indexed file.

data-name-3
An ALTERNATE RECORD KEY data item. It must be described as an
alphanumeric item within a record description entry associated with the file.

Data-name-3 must not reference a group item that contains a variable
occurrence data item. Data-name-3 can be qualified.

If the file has more than one record description entry, data-name-3 need be
described in only one of these record description entries. The identical
character positions referenced by data-name-3 in any one record description
entry are implicitly referenced as keys for all other record description entries of
that file.

The data description of data-name-3 and its relative location within the record
must be the same as those used when the file was defined. The number of
alternate record keys for the file must also be the same as that used when the
file was created.

The leftmost character position of data-name-3 must not be the same as the
leftmost character position of the RECORD KEY or of any other ALTERNATE
RECORD KEY.

If the DUPLICATES phrase is not specified, the values contained in the
ALTERNATE RECORD KEY data item must be unique among records in the file.

110 COBOL Language Reference

PASSWORD clause

The requirement for identical data description entries is not enforced, but the key
must have the same relative location in the records, as well as the same length.

Data-name-4 cannot be a windowed date field.

 PASSWORD clause

 Under AIX and Windows the PASSWORD clause is syntax checked,
but has no effect on the execution of the program.

The PASSWORD clause controls access to files.

data-name-6
data-name-7

Password data items. Each must be defined in the Working-Storage Section (of
the Data Division) as an alphanumeric item. The first 8 characters are used as
the password; a shorter field is padded with blanks to 8 characters. Each
password data item must be equivalent to one that is externally defined.

If the DUPLICATES phrase is specified, the values contained in the ALTERNATE
RECORD KEY data item can be duplicated within any records in the file. In
sequential access, the records with duplicate keys are retrieved in the order in
which they were placed in the file. In random access, only the first record written
of a series of records with duplicate keys can be retrieved.

For EXTERNAL files, all file description entries in the run unit that are associated
with the EXTERNAL file must specify the same data description entry for
data-name-3, the same relative location within the associated record, the same
number of alternate record keys, and the same DUPLICATES phrase.

RELATIVE KEY clause

The RELATIVE KEY clause (format 3) identifies a data-name that specifies the
relative record number for a specific logical record within a relative file.

data-name-4
Must be defined as an unsigned integer data item whose description does not
contain the PICTURE symbol P. Data-name-4 must not be defined in a record
description entry associated with this relative file. That is, the RELATIVE KEY
is not part of the record. Data-name-4 can be qualified.

Data-name-4 is required for ACCESS IS SEQUENTIAL only when the START
statement is to be used. It is always required for ACCESS IS RANDOM and
ACCESS IS DYNAMIC. When the START statement is issued, the system uses
the contents of the RELATIVE KEY data item to determine the record at which
sequential processing is to begin.

If a value is placed in data-name-4, and a START statement is not issued, the
value is ignored and processing begins with the first record in the file.

If a relative file is to be referenced by a START statement, you must specify
the RELATIVE KEY clause for that file.

For EXTERNAL files, data-name-4 must reference an external data item and
the RELATIVE KEY phrase in each associated file control entry must reference
that same external data item in each case.

The ACCESS MODE IS RANDOM clause must not be specified for file-names
specified in the USING or GIVING phrase of a SORT or MERGE statement.

Part 4. Environment Division 111

When the PASSWORD clause is specified, at object time the PASSWORD data item
must contain the valid password for this file before the file can be successfully
opened.

Format 1 considerations:

The PASSWORD clause is not valid for QSAM sequential files.

Format 2 and 3 considerations:

When the PASSWORD clause is specified, it must immediately follow the
RECORD KEY or ALTERNATE RECORD KEY data-name with which it is
associated.

For indexed files, if the file has been completely predefined to VSAM, only the
PASSWORD data item for the RECORD KEY need contain the valid password
before the file can be successfully opened at file creation time.

For any other type of file processing (including the processing of dynamic CALLs
at file creation time through a COBOL object-time subroutine), every PASSWORD
data item for this file must contain a valid password before the file can be
successfully opened, whether or not all paths to the data are used in this object
program.

For EXTERNAL files, data-name-6 and data-name-7 must reference external data
items. The PASSWORD clauses in each associated file control entry must reference
the same external data items.

 Local-Storage,

� A 2-character numeric data item, with explicit or implicit USAGE IS
DISPLAY. It is treated as an alphanumeric item.

Note: Data-name-1 must not contain the PICTURE symbol 'P'.

The status key data item must not be variably located; that is, the data item
cannot follow a data item containing an OCCURS DEPENDING ON clause.

data-name-8
Represents information returned from the file system. Since the definitions are
specific to the file systems and platforms, applications that depend on the
specific values in data-name-8 might not be portable across platforms.

FILE STATUS clause

FILE STATUS clause

The FILE STATUS clause monitors the execution of each input-output operation
for the file.

When the FILE STATUS clause is specified, the system moves a value into the
status key data item after each input-output operation that explicitly or implicitly
refers to this file. The value indicates the status of execution of the statement.
(See the “status key” description under “Common processing facilities” on
page 244.)

data-name-1
The status key data item can be defined in the Working-Storage,
or Linkage sections as either of the following:

� A 2-character alphanumeric item

Data-name-1 can be qualified.

112 COBOL Language Reference

 Under OS/390 and VM, data-name-8 must be defined as a group
item of 6 bytes in the Working-Storage or Linkage Section of the Data Division.

Specify data-name-8 only if the file is a VSAM file (that is, ESDS, KSDS,
RRDS).

Under OS/390 and VM, for VSAM files the 6-byte VSAM return code is
comprised of the following:

� The first 2 bytes of data-name-8 contain the VSAM return code in binary
notation. The value for this code is defined (by VSAM) as 0, 8, or 12.

� The next 2 bytes of data-name-8 contain the VSAM function code in
binary notation. The value for this code is defined (by VSAM) as 0, 1, 2, 3,
4, or 5.

� The last 2 bytes of data-name-8 contain the VSAM feedback code in binary
notation. The code value is 0 through 255.

If VSAM returns a nonzero return code, data-name-8 is set.

If FILE STATUS is returned without having called VSAM, data-name-8 is zero.

If data-name-1 is set to zero, the content of data-name-8 is undefined. VSAM
status return code information is available without transformation in the
currently defined COBOL FILE STATUS code. User identification and
handling of exception conditions are allowed at the same level as that defined
by VSAM.

Function code and feedback code are set if and only if the return code is set
to nonzero. If they are referenced when the return code is set to zero, the
contents of the fields are not dependable.

Definitions of values in the return code, function code, and feedback code
fields are defined by VSAM. There are no COBOL additions, deletions, or
modifications to the VSAM definitions. For more information, see VSAM
Administration: Macro Instruction Reference.

 Under AIX and Windows, how you define data-name-8 is
dependent on the file system you are using.

Btrieve, STL, and native platform file systems
You must define data-name-8 with PICTURE 9(6) and USAGE
DISPLAY attributes. However, you can define an additional field with
PICTURE X(n). The file system defines the feedback values, which are
converted to the six digit external decimal representation with leading
zeros, when the file systems feedback value is less than 100000. If you
have defined an additional field using PICTURE X(n), then X(n)
contains additional information describing any non-zero feedback code.
(For most programs, an 'n' value of 100 should be adequate to show
the complete message text. If the file is defined with a large number
of alternate keys then allow 100 bytes plus 20 bytes per alternate key.)

VSAM file system
You must define data-name-8 with PICTURE X(n) and USAGE
DISPLAY attributes, where 'n' is 6 or greater. The PICTURE string
value represents the first 'n' bytes of the VSAM reply message
structure (defined by VSAM). If the size of the reply message
structure (m) is shorter than 'n', only the first 'm' bytes contain useful
information.

Note: This also applies to SFS files accessed through VSAM on AIX.

FILE STATUS clause

Part 4. Environment Division 113

For information on VSAM file handling on the workstation, see:

� For AIX: SMARTdata UTILITIES for AIX: VSAM in a Distributed
Environment

� For Windows: SMARTdata UTILITIES User's Guide for Windows

APPLY WRITE-ONLY file-name-2
ON

ON is optional as an IBM extension.
File-name-4 is optional as an IBM extension.

 and APPLY WRITE-ONLY clause

ON is optional as an IBM extension.
File-name-4 is optional as an IBM extension.

I-O-CONTROL paragraph

 I-O-CONTROL paragraph

The I-O-CONTROL paragraph of the Input-Output Section specifies when
checkpoints are to be taken and the storage areas to be shared by different files.
This paragraph is optional in a COBOL program.

The key word I-O-CONTROL can appear only once, at the beginning of the
paragraph. The word I-O-CONTROL must begin in Area A, and must be followed
by a separator period.

Each clause within the paragraph can be separated from the next by a separator
comma or a separator semicolon. The order in which I-O-CONTROL paragraph
clauses are written is not significant. The I-O-CONTROL paragraph ends with a
separator period.

Sequential I-O-control entries
��─ ──┬ ┬─RERUN──ON───(1) ──┬ ┬─assignment-name-1─ ──┬ ┬─────── ─┤ phrase 1 ├─────────────────────── ────────��
 │ │└ ┘─file-name-1─────── └ ┘─EVERY─
 │ │┌ ┐─────────────────
 ├ ┤ ─SAME─ ──┬ ┬──────── ──┬ ┬────── ──┬ ┬───── ─file-name-3─ ───/ ┴─file-name-4───(2) ──────────────
 │ │└ ┘─RECORD─ └ ┘─AREA─ └ ┘─FOR─
 │ │┌ ┐──
 ├ ┤ ─MULTIPLE FILE───(3) ──┬ ┬────── ──┬ ┬────────── ───/ ┴ ─file-name-5─ ──┬ ┬─────────────────────
 │ │└ ┘─TAPE─ └ ┘─CONTAINS─ └ ┘ ─POSITION──integer-2─
 │ │┌ ┐───────────────
 └ ┘ ─ ───(3) ──┬ ┬──── ───/ ┴─ ─ ──────────────────────────────────────
 └ ┘─ ─

phrase 1
├─ ──┬ ┬─integer-1──RECORDS──── ──┬ ┬──── ─file-name-1──┤
 └ ┘ ─END─ ──┬ ┬──── ──┬ ┬─REEL─ └ ┘─OF─
 └ ┘─OF─ └ ┘─UNIT─

Notes:
1

2

3 The MULTIPLE FILE clause are not supported for OS/390
| VSAM files. On AIX and Windows, these clauses are syntax checked, but have no effect on the
| execution of the program.

Relative and indexed I-O-control entries
��─ ──┬ ┬─RERUN──ON───(1) ──┬ ┬─assignment-name-1─ ──┬ ┬─────── ─┤ phrase 1 ├───────── ──────────────────────��
 │ │└ ┘─file-name-1─────── └ ┘─EVERY─
 │ │┌ ┐─────────────────
 └ ┘ ─SAME─ ──┬ ┬──────── ──┬ ┬────── ──┬ ┬───── ─file-name-3─ ───/ ┴─file-name-4───(2)

 └ ┘─RECORD─ └ ┘─AREA─ └ ┘─FOR─

phrase 1
├─ ─integer-1──RECORDS─ ──┬ ┬──── ─file-name-1───┤
 └ ┘─OF─

Notes:
1

2

114 COBOL Language Reference

Line-sequential I-O-control entries (all platforms except VM)
 ┌ ┐───────────────
��─ ─── ─ ─SAME─ ──┬ ┬──────── ──┬ ┬────── ──┬ ┬───── ─file-name-3─ ───/ ┴─file-name-4─ ────────────────────────��
 └ ┘─RECORD─ └ ┘─AREA─ └ ┘─FOR─

RERUN assignment-name-1
ON

File-name-4 is optional as an IBM extension.

 Under AIX and Windows, the RERUN clause is not supported for
programs compiled with the THREAD compiler option. If you use NOTHREAD,
the RERUN clause is treated as a comment.

� In programs with the RECURSIVE attribute
� In programs compiled with the THREAD option (Workstation only)
� In methods

RERUN clause
||

Sort Merge I-O-control entries (OS/390 and VM only)
��─ ──┬ ┬────────────────────────────────── ──�
 └ ┘ ─ ─ ──┬ ┬──── ─ ─
 └ ┘─ ─

 ┌ ┐───
�─ ───/ ┴─SAME─ ──┬ ┬─RECORD───── ──┬ ┬────── ──┬ ┬───── ─┤ phrase 1 ├─ ─────────────────────────────────────��
 ├ ┤─SORT─────── └ ┘─AREA─ └ ┘─FOR─
 └ ┘─SORT-MERGE─

phrase 1
 ┌ ┐─────────────────
├──file-name-3─ ───/ ┴─file-name-4───(1) ───┤

Note:
1

 RERUN clause

|
|
|

The RERUN clause specifies that checkpoint records are to be taken. Subject to the
restrictions given with each phrase, more than one RERUN clause can be specified.

For information regarding the checkpoint data set definition and the checkpoint
method required for complete compliance to the COBOL 85 Standard, see IBM
COBOL for OS/390 & VM Programming Guide.

Do not use the RERUN clause:
� On files with the EXTERNAL attribute

file-name-1
Must be a sequentially organized file.

assignment-name-1
The external data set for the checkpoint file. It must not be the same
assignment-name as that specified in any ASSIGN clause throughout the entire
program, including contained and containing programs. For QSAM files, it
has the format:

 Format—QSAM file
��─ ──┬ ┬───────── ──┬ ┬───── ─name───��

└ ┘──label- └ ┘─S- ─

That is, it must be a QSAM file. It must reside on a tape or direct access
device. See also Appendix E, “ASCII considerations for OS/390 and VM” on
page 512.

VSAM and QSAM considerations:

Part 4. Environment Division 115

SORT/MERGE considerations:

When the RERUN clause is specified in the I-O-CONTROL paragraph,
checkpoint records are written at logical intervals determined by the
sort/merge program during execution of each SORT or MERGE statement in
the program. When it is omitted, checkpoint records are not written.

There can be only one SORT/MERGE I-O-CONTROL paragraph in a program,
and it cannot be specified in contained programs. It will have a global effect
on all SORT and MERGE statements in the program unit.

SAME AREA clause

The file named in the RERUN clause must be a file defined in the same
program as the I-O-CONTROL paragraph, even if the file is defined as
GLOBAL.

EVERY integer-1 RECORDS
A checkpoint record is to be written for every integer-1 record in file-name-1
that is processed.

When multiple integer-1 RECORDS phrases are specified, no two of them can
specify the same file-name-1.

If you specify the integer-1 RECORDS phrase, you must specify
assignment-name-1.

EVERY END OF REEL/UNIT
A checkpoint record is to be written whenever end-of-volume for file-name-1
occurs. The terms REEL and UNIT are interchangeable.

Note: This clause is not supported. If you code it in your program, it will be
syntax checked, but have no effect on the execution of the program.

When multiple END OF REEL/UNIT phrases are specified, no two of them
can specify the same file-name-1.

The END OF REEL/UNIT phrase can only be used if file-name-1 is a
sequentially organized file.

SAME AREA clause

 Under AIX and Windows, the SAME AREA clause is syntax checked,
but has no effect on the execution of the program.

The SAME AREA clause specifies that two or more files, that do not represent sort
or merge files, are to use the same main storage area during processing.

The files named in a SAME AREA clause need not have the same organization or
access.

file-name-3
file-name-4

Must be specified in the FILE-CONTROL paragraph of the same program.
File-name-3 and file-name-4 cannot reference an external file connector.

� For QSAM files, the SAME clause is treated as documentation.
� For OS/390 VSAM files, the SAME clause is treated as if equivalent to the

SAME RECORD AREA.

More than one SAME AREA clause can be included in a program. However:
� A specific file-name must not appear in more than one SAME AREA clause.

116 COBOL Language Reference

� The SAME RECORD AREA clause must not be specified when the RECORD
CONTAINS 0 CHARACTERS clause is specified.

SAME SORT AREA clause

� If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all the file-names in that SAME AREA clause must
appear in that SAME RECORD AREA clause. However, the SAME RECORD
AREA clause can contain additional file-names that do not appear in the
SAME AREA clause.

� The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

SAME RECORD AREA clause

The SAME RECORD AREA clause specifies that two or more files are to use the
same main storage area for processing the current logical record. All of the files
can be open at the same time. A logical record in the shared storage area is
considered to be both of the following:
� A logical record of each opened output file in the SAME RECORD AREA

clause
� A logical record of the most recently read input file in the SAME RECORD

AREA clause.

More than one SAME RECORD AREA clause can be included in a program.
However:
� A specific file-name must not appear in more than one SAME RECORD AREA

clause.
� If one or more file-names of a SAME AREA clause appear in a SAME

RECORD AREA clause, all the file-names in that SAME AREA clause must
appear in that SAME RECORD AREA clause. However, the SAME RECORD
AREA clause can contain additional file-names that do not appear in the
SAME AREA clause.

� The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

� If the SAME RECORD AREA clause is specified for several files, the record
description entries or the file description entries for these files must not
include the GLOBAL clause.

The files named in the SAME RECORD AREA clause need not have the same
organization or access.

SAME SORT AREA clause

The SAME SORT AREA clause is syntax checked but has no effect on the
execution of the program.

file-name-3
file-name-4

Must be specified in the FILE-CONTROL paragraph of the same program.
File-name-3 and file-name-4 cannot reference an external file connector.

When the SAME SORT AREA clause is specified, at least one file-name specified
must name a sort file. Files that are not sort files can also be specified. The
following rules apply:

Part 4. Environment Division 117

APPLY WRITE-ONLY clause

APPLY WRITE-ONLY clause

 Under AIX and Windows, the APPLY WRITE-ONLY clause is syntax
checked, but has no effect on the execution of the program.

The APPLY WRITE-ONLY clause optimizes buffer and device space allocation for
files that have standard sequential organization, have variable-length records, and
are blocked. If you specify this phrase, the buffer is truncated only when the
space available in the buffer is smaller than the size of the next record. Otherwise,
the buffer is truncated when the space remaining in the buffer is smaller than the
maximum record size for the file.

APPLY WRITE-ONLY is effective only for QSAM files.

file-name-2
Each file must have standard sequential organization.

APPLY WRITE-ONLY clauses must agree among corresponding external file
description entries. For an alternate method of achieving the APPLY
WRITE-ONLY results, see the description of the AWO compiler option in the IBM
COBOL Programming Guide for your platform.

� More than one SAME SORT AREA clause can be specified. However, a given
sort file must not be named in more than one such clause.

� If a file that is not a sort file is named in both a SAME AREA clause and in
one or more SAME SORT AREA clauses, all the files in the SAME AREA
clause must also appear in that SAME SORT AREA clause.

� Files named in a SAME SORT AREA clause need not have the same
organization or access.

� Files named in a SAME SORT AREA clause that are not sort files do not share
storage with each other unless the user names them in a SAME AREA or
SAME RECORD AREA clause.

� During the execution of a SORT or MERGE statement that refers to a sort or
merge file named in this clause, any nonsort or nonmerge files associated with
file-names named in this clause must not be in the open mode.

SAME SORT-MERGE AREA clause

The SAME SORT-MERGE AREA clause is equivalent to the SAME SORT AREA
clause.

MULTIPLE FILE TAPE clause

The MULTIPLE FILE TAPE clause (format 1) specifies that two or more files share
the same physical reel of tape.

This clause is syntax checked, but it has no effect on the execution of the program.
| On OS/390, the function is performed by the system through the LABEL

parameter of the DD statement.

|
|

118 COBOL Language Reference

Local-Storage Section

RECORDING MODE clause

DATE FORMAT clause

Part 5. Data Division

Data Division overview 120
File Section . 121
Working-Storage Section 121

 123
Linkage Section 123
Data types . 124
Data relationships 124

Data Division—file description entries 131
File Section . 133
EXTERNAL clause 134
GLOBAL clause 134
BLOCK CONTAINS clause 135
RECORD clause 136
LABEL RECORDS clause 139
VALUE OF clause 139
DATA RECORDS clause 140
LINAGE clause 140

. 142

CODE-SET clause 143

Data Division—data description entry . 145
Format 1 . 145
Format 2 . 146
Format 3 . 146
Level-numbers 146
BLANK WHEN ZERO clause 147

. 148
EXTERNAL clause 153
GLOBAL clause 153
JUSTIFIED clause 154
OCCURS clause 154
PICTURE clause 160
REDEFINES clause 174
RENAMES clause 178
SIGN clause . 179
SYNCHRONIZED clause 181
USAGE clause 187
VALUE clause 195

 Copyright IBM Corp. 1991, 2000 119

 classes,
and methods.

 or method

Class Data Division
The Class Data Division section contains data description entries for
object-instance data. The Class Data Division contains only the
Working-Storage Section.

Method Data Division
A method has two visible Data Divisions: the Class Data Division and the
Method Data Division. If the same data-name is used in both the Class Data
Division and the Method Data Division, when a method references the
data-name, the data-name in the Method Data Division takes precedence.

and method

LOCAL-STORAGE SECTION.
record-description-entry
data-item-description-entry

 Format—class Data Division
��─ ──┬ ┬─── ──────────────────────────��
 │ │┌ ┐───────────────────────────────────
 └ ┘── ─WORKING-STORAGE SECTION.─ ───/ ┴──┬ ┬─────────────────────────────
 ├ ┤─record-description-entry────
 └ ┘─data-item-description-entry─

Data Division overview

Data Division overview

This overview describes the structure of the Data Division for programs,
Each section in the Data Division has a specific logical function

within a COBOL source program and can be omitted when that logical
function is not needed. If included, the sections must be written in the order
shown. The Data Division is optional.

Program Data Division
The Data Division of a COBOL source program describes, in a structured
manner, all the data to be processed by the object program.

Format—program Data Division
��──DATA DIVISION.───�

�─ ──┬ ┬─── ────────────────�
 │ │┌ ┐──
 └ ┘ ─FILE SECTION.─ ───/ ┴──┬ ┬──
 │ │┌ ┐────────────────────────────
 └ ┘ ─file-description-entry─ ───/ ┴─record-description-entry─

�─ ──┬ ┬─── ──────────────────────────────�
 │ │┌ ┐───────────────────────────────────
 └ ┘ ─WORKING-STORAGE SECTION.─ ───/ ┴──┬ ┬─────────────────────────────
 ├ ┤─record-description-entry────
 └ ┘─data-item-description-entry─

�─ ──┬ ┬─── ────────────────────────────────�
 │ │┌ ┐───────────────────────────────────
 └ ┘ ─ ─ ───/ ┴──┬ ┬─────────────────────────────
 ├ ┤─ ────
 └ ┘─ ─

�─ ──┬ ┬─── ─────────────────────────────────────��
 │ │┌ ┐───────────────────────────────────
 └ ┘ ─LINKAGE SECTION.─ ───/ ┴──┬ ┬─────────────────────────────
 ├ ┤─record-description-entry────
 └ ┘─data-item-description-entry─

120  Copyright IBM Corp. 1991, 2000

Note: A method File Section can define EXTERNAL files only. A single run-unit
level file connector is shared by all programs and methods containing a declaration
of a given EXTERNAL file.

 or method.
 or method

 (and methods)
 and methods

Method Working-Storage
A single copy of the Working-Storage for a method is statically allocated and
persists in a last-used state for the duration of the run-unit. The same single
copy is used whenever the method is invoked, regardless of which object the
method is invoked upon.

If a VALUE clause is specified on a method Working-Storage data item, the
data item is initialized to the VALUE clause value on the first invocation.

If the EXTERNAL attribute is specified on a data description entry in a method
Working-Storage Section, a single copy of the storage for that data item is
allocated once for the duration of the run-unit. That storage is shared by all

Data Division overview

 File Section

The File Section defines the structure of data files. The File Section must begin
with the header FILE SECTION, followed by a separator period.

file-description-entry
Represents the highest level of organization in the File Section. It provides
information about the physical structure and identification of a file, and gives
the record-name(s) associated with that file. For the format and the clauses
required in a file description entry, see “Data Division—file description
entries” on page 131.

record-description-entry
A set of data description entries (described in “Data Division—data description
entry” on page 145) that describe the particular record(s) contained within a
particular file.

More than one record description entry can be specified; each is an alternative
description of the same record storage area.

Data areas described in the File Section are not available for processing unless the
file containing the data area is open.

 Working-Storage Section

The Working-Storage Section describes data records that are not part of data files
but are developed and processed by a program It also describes data
items whose values are assigned in the source program and do not
change during execution of the object program.

The Working-Storage Section must begin with the section header Working-Storage
Section, followed by a separator period.

Program Working-Storage
The Working-Storage Section for programs can also describe
external data records, which are shared by programs throughout
the run-unit. All clauses that are used in record descriptions in the File Section
as well as the VALUE and EXTERNAL clauses (which might not be specified
in record description entries in the File Section) can be used in record
descriptions in the Working-Storage Section.

Part 5. Data Division 121

programs and methods in the run-unit containing a definition for the external
data item.

Class Working-Storage
A separate copy of the Class Working-Storage data items is allocated for each
object instance and remains until that object is destroyed.

By default, Class Working-Storage data items are global to all of the methods
introduced by the class.

To initialize instance data (Class Working-Storage data items), you can write a
somInit method override. For an example of how to write an override method
using somInit, see Figure 3. VALUE clauses are not supported for initializing
instance data.

IDENTIFICATION DIVISION.
CLASS-ID. OOClass INHERITS SOMObject.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.

CLASS SOMObject IS "SOMObject"
CLASS OOClass IS "OOClass".

DATA DIVISION.
Working-Storage Section.
?1 instance-data PIC X(3).
PROCEDURE DIVISION.

IDENTIFICATION DIVISION.
METHOD-ID. "somInit" OVERRIDE.
PROCEDURE DIVISION.

MOVE "new" TO instance-data.
 EXIT METHOD.
END METHOD "somInit".

IDENTIFICATION DIVISION.
METHOD-ID. "MyMethod".
PROCEDURE DIVISION.

IF instance-data = "new"
 CALL "Creating"

MOVE "old" TO instance-data
 ELSE
 CALL "Existing"
 END-IF.
 EXIT METHOD.
END METHOD "MyMethod".

END CLASS OOClass.

Figure 3. Example of a somInit method override

Data Division overview

The Working-Storage Section contains record description entries and data
description entries for independent data items, called data item description
entries.

record-description-entry
Data entries in the Working-Storage Section that bear a definite hierarchic
relationship to one another must be grouped into records structured by level
number. See “Data Division—data description entry” on page 145 for
description.

122 COBOL Language Reference

Note: The data description entries for a class differ from a program and
method in that:

� You cannot specify the EXTERNAL attribute in a data description entry.
� The GLOBAL attribute has no effect.
� You can only specify the VALUE clause on condition names.

 Local-Storage Section

The Local-Storage Section defines storage that is allocated and freed on a
per-invocation basis. On each invocation, data items defined in the Local-Storage
Section are reallocated and initialized to the value assigned in their VALUE clause.
(For nested programs, data items defined in the Local-Storage Section are allocated
upon each invocation of the containing outermost program. However, they are
reinitialized to the value assigned in their VALUE clause each time the nested
program is invoked.) Data items defined in the Local-Storage Section cannot
specify the EXTERNAL clause.

The Local-Storage Section must begin with the header LOCAL-STORAGE
SECTION followed by a separator period.

You can specify the Local-Storage Section in recursive programs, in non-recursive
programs, and in methods.

Note: Method Local-Storage content is the same as a program Local-Storage
content except that the GLOBAL attribute has no effect (since methods cannot be
nested).

A separate copy of the data defined in a method Local-Storage section is created
each time the method is invoked. The storage allocated for the data is freed when
the method returns.

Data Division overview

data-item-description-entry
Independent items in the Working-Storage Section that bear no hierarchic
relationship to one another need not be grouped into records, provided that
they do not need to be further subdivided. Instead, they are classified and
defined as independent elementary items. Each is defined in a separate
data-item description entry that begins with either the level number 77 or 01.
See “Data Division—data description entry” on page 145 for description.

|
|
|
|
|
|
|
|

 Linkage Section

The Linkage Section describes data made available from another program or
method.

record-description-entry
See “Working-Storage Section” on page 121 for description.

data-item-description-entry
See “Working-Storage Section” on page 121 for description.

Record description entries and data item description entries in the Linkage Section
provide names and descriptions, but storage within the program or method is not
reserved because the data area exists elsewhere.

Any data description clause can be used to describe items in the Linkage Section
with the following exceptions:

Part 5. Data Division 123

As an IBM extension, you can specify the GLOBAL clause in the Linkage Section.
(Note, the GLOBAL attribute has no effect for methods.)

Data relationships

� You cannot specify the VALUE clause for items other than level-88 items.
� You cannot specify the EXTERNAL clause in the Linkage Section.

 Data types

Two types of data can be processed: file data and program data.

 File data

File data is contained in files. (See “File Section” on page 133.) A file is a
collection of data records existing on some input-output device. A file can be
considered as a group of physical records; it can also be considered as a group of
logical records. The Data Division describes the relationship between physical and
logical records.

A physical record is a unit of data that is treated as an entity when moved into or
out of storage. The size of a physical record is determined by the particular
input-output device on which it is stored. The size does not necessarily have a
direct relationship to the size or content of the logical information contained in the
file.

A logical record is a unit of data whose subdivisions have a logical relationship.
A logical record can itself be a physical record (that is, be contained completely
within one physical unit of data); several logical records can be contained within
one physical record, or one logical record can extend across several physical
records.

File description entries specify the physical aspects of the data (such as the size
relationship between physical and logical records, the size and name(s) of the
logical record(s), labeling information, and so forth).

Record description entries describe the logical records in the file, including the
category and format of data within each field of the logical record, different values
the data might be assigned, and so forth.

After the relationship between physical and logical records has been established,
only logical records are made available to you. For this reason, a reference in this
manual to “records” means logical records, unless the term “physical records” is
used.

 Program data

Program data is created by a program, instead of being read from a file.

The concept of logical records applies to program data as well as to file data.
Program data can thus be grouped into logical records, and be defined by a series
of record description entries. Items that need not be so grouped can be defined in
independent data description entries (called data item description entries).

 Data relationships

The relationships among all data to be used in a program are defined in the Data
Division, through a system of level indicators and level-numbers.

124 COBOL Language Reference

Data relationships

A level indicator, with its descriptive entry, identifies each file in a program.
Level indicators represent the highest level of any data hierarchy with which they
are associated; FD is the file description level indicator and SD is the sort-merge
file description level indicator.

A level-number, with its descriptive entry, indicates the properties of specific data.
Level-numbers can be used to describe a data hierarchy; they can indicate that this
data has a special purpose, and while they can be associated with (and subordinate
to) level indicators, they can also be used independently to describe internal data
or data common to two or more programs. (See “Level-numbers” on page 146 for
level-number rules.)

Levels of data

After a record has been defined, it can be subdivided to provide more detailed
data references.

For example, in a customer file for a department store, one complete record could
contain all data pertaining to one customer. Subdivisions within that record could
be: customer name, customer address, account number, department number of
sale, unit amount of sale, dollar amount of sale, previous balance, plus other
pertinent information.

The basic subdivisions of a record (that is, those fields not further subdivided) are
called elementary items. Thus, a record can be made up of a series of elementary
items, or it can itself be an elementary item.

It might be necessary to refer to a set of elementary items; thus, elementary items
can be combined into group items. Groups themselves can be combined into a
more inclusive group that contains one or more subgroups. Thus, within one
hierarchy of data items, an elementary item can belong to more than one group
item.

A system of level-numbers specifies the organization of elementary and group
items into records. Special level-numbers are also used; they identify data items
used for special purposes.

Levels of data in a record description entry

Each group and elementary item in a record requires a separate entry, and each
must be assigned a level-number.

A level-number is a 1- or 2-digit integer between 01 and 49, or one of three special
level-numbers: 66, 77, or 88. The following level-numbers are used to structure
records:

01 This level-number specifies the record itself, and is the most inclusive
level-number possible. A level-01 entry can be either a group item or an
elementary item. It must begin in Area A.

02–49
These level-numbers specify group and elementary items within a record.
They can begin in Area A or Area B. Less inclusive data items are assigned
higher (not necessarily consecutive) level-numbers in this series.

A group item includes all group and elementary items following it, until a
level-number less than or equal to the level-number of this group is encountered.

Part 5. Data Division 125

Data relationships

All elementary or group items immediately subordinate to one group item must be
assigned identical level-numbers higher than the level-number of this group item.

Figure 4 illustrates the concept. Note that all groups immediately subordinate to
the level-01 entry have the same level-number. Note also that elementary items
from different subgroups do not necessarily have the same level numbers, and that
elementary items can be specified at any level within the hierarchy.

Figure 4. Levels in a record description

126 COBOL Language Reference

IBM COBOL accepts nonstandard level-numbers that are not identical to others at
the same level. For example, the following two record description entries are
equivalent:

 ?1 EMPLOYEE-RECORD.
 ?5 EMPLOYEE-NAME.
 1? FIRST-NAME PICTURE X(1?).

1? LAST-NAME PICTURE X(1?).
 ?4 EMPLOYEE-ADDRESS.
 ?8 STREET PICTURE X(1?).
 ?8 CITY PICTURE X(1?).

Data relationships

 ?1 EMPLOYEE-RECORD.
 ?5 EMPLOYEE-NAME.
 1? FIRST-NAME PICTURE X(1?).

1? LAST-NAME PICTURE X(1?).
 ?5 EMPLOYEE-ADDRESS.
 1? STREET PICTURE X(1?).
 1? CITY PICTURE X(1?).

 Special level-numbers

Special level-numbers identify items that do not structure a record. The special
level-numbers are:

66 Identifies items that must contain a RENAMES clause; such items regroup
previously defined data items.

(For details, see “RENAMES clause” on page 178.)

77 Identifies data item description entries — independent Working-Storage or
Linkage Section items that are not subdivisions of other items, and are not
subdivided themselves. Level-77 items must begin in Area A.

88 Identifies any condition-name entry that is associated with a particular value of
a conditional variable. (For details, see “VALUE clause” on page 195.)

Note: Level-77 and level-01 entries in the Working-Storage and Linkage Sections
that are referenced in the program must be given unique data-names, because
neither can be qualified. Subordinate data-names that are referenced in the
program must be either uniquely defined, or made unique through qualification.
Unreferenced data-names need not be uniquely defined.

 Indentation

Successive data description entries can begin in the same column as preceding
entries, or can be indented. Indentation is useful for documentation, but does not
affect the action of the compiler.

Classes and categories of data

All data used in a COBOL program can be divided into classes and categories.

Every group item belongs to the alphanumeric class, even if the subordinate
elementary items belong to another class.

Every elementary item in a program belongs to one of the classes as well as to one
of the categories. Table 10 on page 128 shows the relationship among data
classes and categories.

Part 5. Data Division 127

Internal floating-point

External floating-point

DBCS

Internal floating-point

External floating-point

DBCS

Internal floating-point
A decimal point is assumed immediately to the left of the field. The data
is aligned then on the leftmost digit position following the decimal point,
with the exponent adjusted accordingly.

Data relationships

Every data item which is a function is an elementary item, and belongs to the
category alphanumeric or numeric, and to the corresponding class; the category of
each function is determined by the definition of the function.

Table 10. Classes and categories of data

Level of item Class Category

Elementary Alphabetic Alphabetic

Numeric Numeric

Alphanumeric Numeric-edited

Alphanumeric-edited

Alphanumeric

Group Alphanumeric Alphabetic

Numeric

Numeric-edited

Alphanumeric-edited

Alphanumeric

 Alignment rules

The standard alignment rules for positioning data in an elementary item depend
on the category of a receiving item (that is, an item into which the data is moved;
see “Elementary moves” on page 321).

Numeric
For such receiving items, the following rules apply:

1. The data is aligned on the assumed decimal point and, if necessary,
truncated or padded with zeros. (An assumed decimal point is one
that has logical meaning but that does not exist as an actual character
in the data.)

2. If an assumed decimal point is not explicitly specified, the receiving
item is treated as though an assumed decimal point is specified
immediately to the right of the field. The data is then treated
according to the preceding rule.

Numeric-edited
The data is aligned on the decimal point, and (if necessary) truncated or
padded with zeros at either end, except when editing causes replacement
of leading zeros.

128 COBOL Language Reference

External floating-point
The data is aligned on the leftmost digit position; the exponent is adjusted
accordingly.

For internal floating-point items, the size of the item in storage is determined by its
USAGE clause. USAGE COMPUTATIONAL-1 reserves 4 bytes of storage for the
item; USAGE COMPUTATIONAL-2 reserves 8 bytes of storage.

The TRUNC compiler option can affect the value of a binary numeric item. For
information on TRUNC, see the IBM COBOL Programming Guide for your platform.

Data relationships

Alphanumeric, alphanumeric-edited, alphabetic, DBCS
For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if necessary)
truncated or padded with spaces at the right.

2. If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified, as described in “JUSTIFIED clause” on page 154.

 Under AIX and Windows, using control characters X'00'
through X'1F' within an alphanumeric literal can give unpredictable
results, which are not diagnosed by the compiler. Use hex literals instead.

Standard data format

COBOL makes data description as machine independent as possible. For this
reason, the properties of the data are described in relation to a standard data
format rather than a machine-oriented format.

The standard data format uses the decimal system to represent numbers, no matter
what base is used by the system, and uses all the characters of the character set of
the computer to represent nonnumeric data.

Character-string and item size

In your program, the size of an elementary item is determined through the number
of character positions specified in its PICTURE character-string. In storage,
however, the size is determined by the actual number of bytes the item occupies,
as determined by the combination of its PICTURE character-string and its USAGE
clause.

Normally, when an arithmetic item is moved from a longer field into a shorter
one, the compiler truncates the data to the number of characters represented in the
shorter item's PICTURE character-string.

For example, if a sending field with PICTURE S99999, and containing the value
+12345, is moved to a BINARY receiving field with PICTURE S99, the data is
truncated to +45. For additional information see “USAGE clause” on page 187.

 Signed data

There are two categories of algebraic signs used in IBM COBOL: operational signs
and editing signs.

Part 5. Data Division 129

Data relationships

 Operational signs

Operational signs are associated with signed numeric items, and indicate their
algebraic properties. The internal representation of an algebraic sign depends on
the item's USAGE clause, its SIGN clause (if present), and on the operating
environment involved. (For further details about the internal representation, see
“USAGE clause” on page 187.) Zero is considered a unique value, regardless of
the operational sign. An unsigned field is always assumed to be either positive or
zero.

 Editing signs

Editing signs are associated with numeric-edited items; editing signs are PICTURE
symbols that identify the sign of the item in edited output.

130 COBOL Language Reference

data-name-2

RECORDING mode
MODE IS

Data Division—File Description Entries

Data Division—file description entries

In a COBOL program, the File Description (FD) Entry (or Sort File Description
(SD) Entry for sort/merge files) represents the highest level of organization in the
File Section. The order in which the optional clauses follow the FD or SD entry is
not important.

Format 1—sequential files
��──FD──file-name-1─ ──┬ ┬────────────────── ──┬ ┬──────────────── ─────────────────────────────────────�
 └ ┘ ──┬ ┬──── ─EXTERNAL─ └ ┘ ──┬ ┬──── ─GLOBAL─
 └ ┘─IS─ └ ┘─IS─

�─ ──┬ ┬─── ──────────────────────────�
 └ ┘ ─BLOCK─ ──┬ ┬────────── ──┬ ┬─────────────── ─integer-2─ ──┬ ┬─CHARACTERS─
 └ ┘─CONTAINS─ └ ┘ ─integer-1──TO─ └ ┘─RECORDS────

�─ ──┬ ┬── ─────────────────────────�
 └ ┘ ─RECORD─ ──┬ ┬ ──┬ ┬────────── ─integer-3─ ──┬ ┬──────────── ───────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 ├ ┤──┬ ┬────────── ─integer-4──TO──integer-5─ ──┬ ┬────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 └ ┘─┤ clause 1 ├─ ──┬ ┬──────────────────────────────── ──────
 └ ┘ ─DEPENDING─ ──┬ ┬──── ─data-name-1─
 └ ┘─ON─

�─ ──┬ ┬── ───────────────────────────────────────�
 └ ┘ ─LABEL─ ──┬ ┬ ─RECORD─ ──┬ ┬──── ── ──┬ ┬─STANDARD────────────
 │ │└ ┘─IS─ ├ ┤─OMITTED─────────────
 └ ┘ ─RECORDS─ ──┬ ┬───── │ │┌ ┐───────────────────
 └ ┘─ARE─ └ ┘───/ ┴──┬ ┬─────────────
 └ ┘─ ─

�─ ──┬ ┬── ───────────────────────────────────────�
 │ │┌ ┐──
 └ ┘ ─VALUE OF─ ───/ ┴ ─system-name-1─ ──┬ ┬──── ──┬ ┬─data-name-3─
 └ ┘─IS─ └ ┘─literal-1───

�─ ──┬ ┬─── ──�
 │ │┌ ┐───────────────
 └ ┘ ─DATA─ ──┬ ┬ ─RECORD─ ──┬ ┬──── ── ───/ ┴─data-name-4─
 │ │└ ┘─IS─
 └ ┘ ─RECORDS─ ──┬ ┬─────
 └ ┘─ARE─

�─ ──┬ ┬── ───────────────────────────────────�
 └ ┘─LINAGE─ ──┬ ┬──── ──┬ ┬─data-name-5─ ──┬ ┬─────── ─┤ clause 2 ├─
 └ ┘─IS─ └ ┘─integer-8─── └ ┘─LINES─

�─ ──┬ ┬─────────────────────────────────── ──┬ ┬───────────────────────────────── ─.──────────────────��
 └ ┘ ─ ─ ──┬ ┬────── ──┬ ┬──── ─ ─ └ ┘ ─CODE-SET─ ──┬ ┬──── ─alphabet-name─
 └ ┘─ ─ └ ┘─ ─ └ ┘─IS─

clause 1
├─ ──┬ ┬──── ─VARYING─ ──┬ ┬──── ──┬ ┬────── ──┬ ┬───────────────────── ──┬ ┬─────────────── ──────────────────�
 └ ┘─IS─ └ ┘─IN─ └ ┘─SIZE─ └ ┘ ──┬ ┬────── ─integer-6─ └ ┘ ─TO──integer-7─
 └ ┘─FROM─

�─ ──┬ ┬──────────── ───┤
 └ ┘─CHARACTERS─

clause 2
├─ ──┬ ┬── ──┬ ┬─── ────�
 └ ┘ ──┬ ┬────── ─FOOTING─ ──┬ ┬──── ──┬ ┬─data-name-6─ └ ┘ ──┬ ┬─────── ──┬ ┬──── ─TOP─ ──┬ ┬─data-name-7─

└ ┘─WITH─ └ ┘─AT─ └ ┘─integer-9─── └ ┘─LINES─ └ ┘─AT─ └ ┘─integer-1+──

�─ ──┬ ┬── ───┤
 └ ┘ ──┬ ┬─────── ──┬ ┬──── ─BOTTOM─ ──┬ ┬─data-name-8─
 └ ┘─LINES─ └ ┘─AT─ └ ┘─integer-11──

 Copyright IBM Corp. 1991, 2000 131

Format 3—line-sequential files
��──FD──file-name-1─ ──┬ ┬────────────────── ──┬ ┬──────────────── ─────────────────────────────────────�
 └ ┘ ──┬ ┬──── ─EXTERNAL─ └ ┘ ──┬ ┬──── ─GLOBAL─
 └ ┘─IS─ └ ┘─IS─

�─ ──┬ ┬─── ──────────────────────────�
 └ ┘ ─BLOCK─ ──┬ ┬────────── ──┬ ┬─────────────── ─integer-2─ ──┬ ┬─CHARACTERS─
 └ ┘─CONTAINS─ └ ┘ ─integer-1──TO─ └ ┘─RECORDS────

�─ ──┬ ┬── ─.────────────────────────────��
 └ ┘ ─RECORD─ ──┬ ┬ ──┬ ┬────────── ─integer-3─ ──┬ ┬──────────── ─────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 └ ┘─┤ clause 1 ├─ ──┬ ┬────────────────────────────────
 └ ┘ ─DEPENDING─ ──┬ ┬──── ─data-name-1─
 └ ┘─ON─

clause 1
├─ ──┬ ┬──── ─VARYING─ ──┬ ┬──── ──┬ ┬────── ──┬ ┬───────────────────── ──┬ ┬─────────────── ──────────────────�
 └ ┘─IS─ └ ┘─IN─ └ ┘─SIZE─ └ ┘ ──┬ ┬────── ─integer-6─ └ ┘ ─TO──integer-7─
 └ ┘─FROM─

�─ ──┬ ┬──────────── ───┤
 └ ┘─CHARACTERS─

Data Division—File Description Entries

Format 2—relative/indexed files
��──FD──file-name-1─ ──┬ ┬────────────────── ──┬ ┬──────────────── ─────────────────────────────────────�
 └ ┘ ──┬ ┬──── ─EXTERNAL─ └ ┘ ──┬ ┬──── ─GLOBAL─
 └ ┘─IS─ └ ┘─IS─

�─ ──┬ ┬─── ──────────────────────────�
 └ ┘ ─BLOCK─ ──┬ ┬────────── ──┬ ┬─────────────── ─integer-2─ ──┬ ┬─CHARACTERS─
 └ ┘─CONTAINS─ └ ┘ ─integer-1──TO─ └ ┘─RECORDS────

�─ ──┬ ┬── ─────────────────────────�
 └ ┘ ─RECORD─ ──┬ ┬ ──┬ ┬────────── ─integer-3─ ──┬ ┬──────────── ───────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 ├ ┤──┬ ┬────────── ─integer-4──TO──integer-5─ ──┬ ┬────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 └ ┘─┤ clause 1 ├─ ──┬ ┬──────────────────────────────── ──────
 └ ┘ ─DEPENDING─ ──┬ ┬──── ─data-name-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──�
 └ ┘ ─LABEL─ ──┬ ┬ ─RECORD─ ──┬ ┬──── ── ──┬ ┬─STANDARD─
 │ │└ ┘─IS─ └ ┘─OMITTED──
 └ ┘ ─RECORDS─ ──┬ ┬─────
 └ ┘─ARE─

�─ ──┬ ┬── ───────────────────────────────────────�
 │ │┌ ┐──
 └ ┘ ─VALUE OF─ ───/ ┴ ─system-name-1─ ──┬ ┬──── ──┬ ┬─data-name-3─
 └ ┘─IS─ └ ┘─literal-1───

�─ ──┬ ┬─── ─.───��
 │ │┌ ┐───────────────
 └ ┘ ─DATA─ ──┬ ┬ ─RECORD─ ──┬ ┬──── ── ───/ ┴─data-name-4─
 │ │└ ┘─IS─
 └ ┘ ─RECORDS─ ──┬ ┬─────
 └ ┘─ARE─

clause 1
├─ ──┬ ┬──── ─VARYING─ ──┬ ┬──── ──┬ ┬────── ──┬ ┬───────────────────── ──┬ ┬─────────────── ──────────────────�
 └ ┘─IS─ └ ┘─IN─ └ ┘─SIZE─ └ ┘ ──┬ ┬────── ─integer-6─ └ ┘ ─TO──integer-7─
 └ ┘─FROM─

�─ ──┬ ┬──────────── ───┤
 └ ┘─CHARACTERS─

132 COBOL Language Reference

BLOCK integer-2 CHARACTERS
CONTAINS integer-1 TO RECORDS

LABEL RECORD STANDARD
IS OMITTED

RECORDS
ARE data-name-2

VALUE OF system-name-1 data-name-3
IS literal-1

LINAGE data-name-5
IS integer-8 LINES

CODE-SET alphabet-name
IS

FOOTING data-name-6 TOP data-name-7
WITH AT integer-9 LINES AT integer-1+

BOTTOM data-name-8
LINES AT integer-11

File Section

Format 4—sort/merge files
��──SD──file-name-1─ ──┬ ┬── ───────�
 └ ┘ ─RECORD─ ──┬ ┬ ──┬ ┬────────── ─integer-3─ ──┬ ┬──────────── ───────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 ├ ┤──┬ ┬────────── ─integer-4──TO──integer-5─ ──┬ ┬────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 └ ┘─┤ clause 1 ├─ ──┬ ┬──────────────────────────────── ──────
 └ ┘ ─DEPENDING─ ──┬ ┬──── ─data-name-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──�
 │ │┌ ┐───────────────
 └ ┘ ─DATA─ ──┬ ┬ ─RECORD─ ──┬ ┬──── ── ───/ ┴─data-name-4─
 │ │└ ┘─IS─
 └ ┘ ─RECORDS─ ──┬ ┬─────
 └ ┘─ARE─

�─ ──┬ ┬─── ──────────────────────────�
 └ ┘ ─ ─ ──┬ ┬────────── ──┬ ┬─────────────── ─ ─ ──┬ ┬─ ─
 └ ┘─ ─ └ ┘ ─ ── ─ └ ┘─ ────

�─ ──┬ ┬── ───�
 └ ┘ ─ ─ ──┬ ┬ ─ ─ ──┬ ┬──── ── ──┬ ┬─ ────────
 │ │└ ┘─ ─ ├ ┤─ ─────────
 └ ┘ ─ ─ ──┬ ┬───── │ │┌ ┐───────────────
 └ ┘─ ─ └ ┘───/ ┴─ ─

�─ ──┬ ┬── ───────────────────────────────────────�
 │ │┌ ┐──
 └ ┘ ─ ─ ───/ ┴ ─ ─ ──┬ ┬──── ──┬ ┬─ ─
 └ ┘─ ─ └ ┘─ ───

�─ ──┬ ┬── ───────────────────────────────────�
 └ ┘─ ─ ──┬ ┬──── ──┬ ┬─ ─ ──┬ ┬─────── ─┤ clause 2 ├─
 └ ┘─ ─ └ ┘─ ─── └ ┘─ ─

�─ ──┬ ┬───────────────────────────────── ─.───��
 └ ┘ ─ ─ ──┬ ┬──── ─ ─
 └ ┘─ ─

clause 1
├─ ──┬ ┬──── ─VARYING─ ──┬ ┬──── ──┬ ┬────── ──┬ ┬───────────────────── ──┬ ┬─────────────── ──────────────────�
 └ ┘─IS─ └ ┘─IN─ └ ┘─SIZE─ └ ┘ ──┬ ┬────── ─integer-6─ └ ┘ ─TO──integer-7─
 └ ┘─FROM─

�─ ──┬ ┬──────────── ───┤
 └ ┘─CHARACTERS─

clause 2
├─ ──┬ ┬── ──┬ ┬─── ────�
 └ ┘ ──┬ ┬────── ─ ─ ──┬ ┬──── ──┬ ┬─ ─ └ ┘ ──┬ ┬─────── ──┬ ┬──── ─ ─ ──┬ ┬─ ─

└ ┘─ ─ └ ┘─ ─ └ ┘─ ─── └ ┘─ ─ └ ┘─ ─ └ ┘─ ──

�─ ──┬ ┬── ───┤
 └ ┘ ──┬ ┬─────── ──┬ ┬──── ─ ─ ──┬ ┬─ ─
 └ ┘─ ─ └ ┘─ ─ └ ┘─ ──

 File Section

The File Section must contain a level indicator for each input and output file:
� For all files except sort/merge, the File Section must contain an FD entry.
� For each sort or merge file, the File Section must contain an SD entry.

file-name
Must follow the level indicator (FD or SD), and must be the same as that
specified in the associated SELECT clause. The file-name must adhere to the
rules of formation for a user-defined word; at least one character must be
alphabetic. The file-name must be unique within this program.

Part 5. Data Division 133

GLOBAL clause

One or more record description entries must follow the file-name. When more
than one record description entry is specified, each entry implies a redefinition
of the same storage area.

The clauses that follow file-name are optional; they can appear in any order.

FD (formats 1, 2, and 3)
The last clause in the FD entry must be immediately followed by a separator
period.

SD (format 4)
An SD entry must be written for each sort or merge file in the program. The
last clause in the SD entry must be immediately followed by a separator
period.

The following example illustrates the File Section entries needed for a sort or
merge file:

SD SORT-FILE.

?1 SORT-RECORD PICTURE X(8?).

 EXTERNAL clause

The EXTERNAL clause specifies that a file connector is external, and permits
communication between two programs by the sharing of files. A file connector is
external if the storage associated with that file is associated with the run unit
rather than with any particular program within the run unit. An external file can
be referenced by any program in the run unit that describes the file. References to
an external file from different programs using separate descriptions of the file are
always to the same file. In a run unit, there is only one representative of an
external file.

In the File Section, the EXTERNAL clause can only be specified in file description
entries.

The records appearing in the file description entry need not have the same name
in corresponding external file description entries. In addition, the number of such
records need not be the same in corresponding file description entries.

Use of the EXTERNAL clause does not imply that the associated file-name is a
global name. See the IBM COBOL Programming Guide for your platform for
specific information on the use of the EXTERNAL clause.

 GLOBAL clause

The GLOBAL clause specifies that the file connector named by a file-name is a
global name. A global file-name is available to the program that declares it and to
every program that is contained directly or indirectly in that program.

A file-name is global if the GLOBAL clause is specified in the file description entry
for that file-name. A record-name is global if the GLOBAL clause is specified in
the record description entry by which the record-name is declared or, in the case
of record description entries in the File Section, if the GLOBAL clause is specified
in the file description entry for the file-name associated with the record description
entry. (For details on using the GLOBAL clause, see the IBM COBOL Programming
Guide for your platform

134 COBOL Language Reference

For example, if you have a block with 10 DBCS characters, the BLOCK
CONTAINS clause should say BLOCK CONTAINS 2? CHARACTERS.

BLOCK CONTAINS clause

Two programs in a run unit can reference global file connectors in the following
circumstances:
1. An external file connector can be referenced from any program that describes

that file connector.
2. If a program is contained within another program, both programs can refer to

a global file connector by referring to an associated global file-name either in
the containing program or in any program that directly or indirectly contains
the containing program.

BLOCK CONTAINS clause

The BLOCK CONTAINS clause specifies the size of the physical records. The
characters in the BLOCK CONTAINS clause reflect the number of bytes in the
record.

If the records in the file are not blocked, the BLOCK CONTAINS clause can be
omitted. When it is omitted, the compiler assumes that records are not blocked.
Even if each physical record contains only one complete logical record, coding
BLOCK CONTAINS 1 RECORD would result in fixed blocked records.

The BLOCK CONTAINS clause can be omitted when the associated File Control
entry specifies a VSAM file; the concept of blocking has no meaning for VSAM
files; the clause is syntax checked, but it has no effect on the execution of the
program.

For EXTERNAL files, the value of all BLOCK CONTAINS clauses of corresponding
EXTERNAL files must match within the run unit. This conformance is in terms of
character positions and does not depend upon whether the value was specified as
CHARACTERS or as RECORDS.

integer-1, integer-2
Must be nonzero unsigned integers. They specify the number of:

CHARACTERS
Specifies the number of character positions required to store the physical
record, no matter what USAGE the characters have within the data record.

If only integer-2 is specified, it specifies the exact character size of the
physical record. When integer-1 and integer-2 are both specified, they
represent, respectively, the minimum and maximum character sizes of the
physical record.

Integer-1 and integer-2 must include any control bytes and padding
contained in the physical record. (Logical records do not include
padding.)

The CHARACTERS phrase is the default. CHARACTERS must be
specified when:

� The physical record contains padding.
� Logical records are grouped so that an inaccurate physical record size

could be implied. For example, suppose you describe a variable-length
record of 100 characters, yet each time you write a block of 4, one
50-character record is written followed by three 100-character records.
If the RECORDS phrase were specified, the compiler would calculate

Part 5. Data Division 135

 When running under OS/390, BLOCK CONTAINS 0 can be specified
for QSAM files; the block size is determined at run time from the DD parameters
or the data set label.

If the RECORD CONTAINS 0 CHARACTERS clause is specified, and the BLOCK
CONTAINS 0 CHARACTERS clause is specified (or omitted), the block size is
determined at run time from the DD parameters or the data set label of the file.
For output data sets, with either of the above conditions, the DCB used by
Language Environment will have a zero block size value. If you do not specify a
block size value, the operating system might select a System Determined Block
Size (SDB). See the operating system specifications for further information on SDB.

BLOCK CONTAINS can be omitted for SYSIN/SYSOUT files under OS/390. The
blocking is determined by the operating system.

When running under CMS, BLOCK CONTAINS 0 can be specified for QSAM files;
the block size is determined at run time from the FILEDEF parameters or the data
set label. If the RECORD CONTAINS 0 CHARACTERS clause is specified, and the
BLOCK CONTAINS clause is omitted (or if the BLOCK CONTAINS 0
CHARACTERS clause is specified), the block size is determined at run time from
the FILEDEF parameters or the data set label of the file.

Under VM, the BLOCK CONTAINS 0 clause might cause blocked or unblocked
records to be used for an output file, depending on the FILEDEF options specified.
The DCB used by Language Environment will have a zero block size, so the
FILEDEF uses the CMS defaults. The defaults are documented in the CMS
Command Reference, under the FILEDEF command.

The BLOCK CONTAINS clause is syntax checked, but has no effect on the
execution of the program, when specified under an SD.

The BLOCK CONTAINS clause cannot be used with the RECORDING MODE U
clause.

For example, if you have a record with 10 DBCS characters, the RECORD clause
should say RECORD CONTAINS 2? CHARACTERS.

RECORD clause

the block size as 420 characters instead of the actual size, 370
characters. (This calculation includes block and record descriptors.)

RECORDS
Specifies the number of logical records contained in each physical record.

The compiler assumes that the block size must provide for integer-2
records of maximum size, and provides any additional space needed for
control bytes.

 RECORD clause

When the RECORD clause is used, the record size must be specified as the number
of character positions needed to store the record internally. That is, it must specify
the number of bytes occupied internally by the characters of the record (not the
number of characters used to represent the item within the record).

The size of a record is determined according to the rules for obtaining the size of a
group item. (See “USAGE clause” on page 187 and “SYNCHRONIZED clause”
on page 181.)

When the RECORD clause is omitted, the compiler determines the record lengths
from the record descriptions. When one of the entries within a record description

136 COBOL Language Reference

 Under OS/390, the RECORD CONTAINS 0 CHARACTERS clause
can be specified for input QSAM files containing fixed-length records; the
record size is determined at object time from the DD statement parameters or
the data set label. If, at object time, the actual record is larger than the 01
record description, only the 01 record length is available. If the actual record
is shorter, only the actual record length can be referred to. Otherwise,
uninitialized data or an addressing exception can be produced.

Note: If the RECORD CONTAINS 0 clause is specified, then the SAME
AREA, SAME RECORD AREA, or APPLY WRITE-ONLY clauses cannot be
specified.

Do not specify the RECORD CONTAINS 0 clause for an SD entry.

RECORD clause

contains an OCCURS DEPENDING ON clause, the compiler uses the maximum
value of the variable-length item to calculate the number of character positions
needed to store the record internally.

If the associated file connector is an external file connector, all file description
entries in the run unit that are associated with that file connector must specify the
same maximum number of character positions.

 Format 1

Format 1 specifies the number of character positions for fixed-length records.

 Format 1
��──RECORD─ ──┬ ┬────────── ─integer-3─ ──┬ ┬──────────── ───────────────────────��
 └ ┘─CONTAINS─ └ ┘─CHARACTERS─

integer-3
Must be an unsigned integer that specifies the number of character positions
contained in each record in the file.

| Under AIX and Windows, the RECORD CONTAINS 0 characters
| clause is syntax checked, but has no effect on the execution of the program.
|

 Format 2

Format 2 specifies the number of character positions for either fixed-length or
variable-length records. Fixed-length records are obtained when all 01 record
description entry lengths are the same. The format 2 RECORD CONTAINS clause
is never required, because the minimum and maximum record lengths are
determined from the record description entries.

 Format 2
��──RECORD─ ──┬ ┬────────── ─integer-4──TO──integer-5─ ──┬ ┬──────────── ────────��
 └ ┘─CONTAINS─ └ ┘─CHARACTERS─

integer-4
integer-5

Must be unsigned integers. Integer-4 specifies the size of the smallest data
record, and integer-5 specifies the size of the largest data record.

Part 5. Data Division 137

� Data-name-1 cannot be a windowed date field.

RECORD clause

 Format 3

Format 3 is used to specify variable-length records.

 Format 3
��──RECORD─ ──┬ ┬──── ─VARYING─ ──┬ ┬──── ──┬ ┬────── ──┬ ┬───────────────────── ─────�
 └ ┘─IS─ └ ┘─IN─ └ ┘─SIZE─ └ ┘ ──┬ ┬────── ─integer-6─
 └ ┘─FROM─

�─ ──┬ ┬─────────────── ──┬ ┬──────────── ──┬ ┬──────────────────────────────── ──��
 └ ┘ ─TO──integer-7─ └ ┘─CHARACTERS─ └ ┘ ─DEPENDING─ ──┬ ┬──── ─data-name-1─
 └ ┘─ON─

integer-6
Specifies the minimum number of character positions to be contained in any
record of the file. If integer-6 is not specified, the minimum number of
character positions to be contained in any record of the file is equal to the least
number of character positions described for a record in that file.

integer-7
Specifies the maximum number of character positions in any record of the file.
If integer-7 is not specified, the maximum number of character positions to be
contained in any record of the file is equal to the greatest number of character
positions described for a record in that file.

The number of character positions associated with a record description is
determined by the sum of the number of character positions in all elementary data
items (excluding redefinitions and renamings), plus any implicit FILLER due to
synchronization. If a table is specified:
� The minimum number of table elements described in the record is used in the

summation above to determine the minimum number of character positions
associated with the record description.

� The maximum number of table elements described in the record is used in the
summation above to determine the maximum number of character positions
associated with the record description.

If data-name-1 is specified:
� Data-name-1 must be an elementary unsigned integer.

� The number of character positions in the record must be placed into the data
item referenced by data-name-1 before any RELEASE, REWRITE, or WRITE
statement is executed for the file.

� The execution of a DELETE, RELEASE, REWRITE, START, or WRITE
statement or the unsuccessful execution of a READ or RETURN statement does
not alter the content of the data item referenced by data-name-1.

� After the successful execution of a READ or RETURN statement for the file,
the contents of the data item referenced by data-name-1 indicate the number of
character positions in the record just read.

During the execution of a RELEASE, REWRITE, or WRITE statement, the number
of character positions in the record is determined by the following conditions:
� If data-name-1 is specified, by the content of the data item referenced by

data-name-1.
� If data-name-1 is not specified and the record does not contain a variable

occurrence data item, by the number of character positions in the record.

138 COBOL Language Reference

� LABEL RECORD IS data-name

data-name-2
User labels are present in addition to standard labels. Data-name-2 specifies
the name of a user label record. Data-name-2 must appear as the subject of a
record description entry associated with the file.

The LABEL RECORDS clause is treated as a comment under an SD.

VALUE OF clause

� If data-name-1 is not specified and the record contains a variable occurrence
data item, by the sum of the fixed position and that portion of the table
described by the number of occurrences at the time of execution of the output
statement.

During the execution of a READ ... INTO or RETURN ... INTO statement, the
number of character positions in the current record that participate as the sending
data items in the implicit MOVE statement is determined by the following
conditions:
� If data-name-1 is specified, by the content of the data item referenced by

data-name-1.
� If data-name-1 is not specified, by the value that would have been moved into

the data item referenced by data-name-1 had data-name-1 been specified.

LABEL RECORDS clause

 Under AIX and Windows, the LABEL RECORDS clause is syntax
checked, but has no effect on the execution of the program. A warning message is
issued if you use any of the following language elements:

� USE...AFTER...LABEL PROCEDURE
� GO TO MORE-LABELS

The LABEL RECORDS clause indicates the presence or absence of labels. If it is
not specified for a file, label records for that file must conform to the system label
specifications.

For VSAM files, the LABEL RECORDS clause is syntax checked, but it has no
effect on the execution of the program. COBOL label processing, therefore, is not
performed.

STANDARD
Labels conforming to system specifications exist for this file.

STANDARD is permitted for mass storage devices and tape devices.

OMITTED
No labels exist for this file.

OMITTED is permitted for tape devices.

VALUE OF clause

The VALUE OF clause describes an item in the label records associated with this
file. The clause is syntax checked, but has no effect on the execution of the
program.

data-name-3
Should be qualified when necessary, but cannot be subscripted. It must be
described in the Working-Storage Section. It cannot be described with the
USAGE IS INDEX clause.

Part 5. Data Division 139

The VALUE OF clause is syntax checked, but has no effect on the execution of the
program when specified under an SD.

As an IBM extension, the data-name need not have an 01 level number record
description with the same name associated with it.

 and, as an
IBM extension, EXTEND.

LINAGE clause

literal-1
Can be numeric or nonnumeric, or a figurative constant of category numeric or
nonnumeric.

Cannot be a floating-point literal.

DATA RECORDS clause

The DATA RECORDS clause is syntax checked, but it serves only as
documentation for the names of data records associated with this file.

data-name-4
The names of record description entries associated with this file.

 LINAGE clause

The LINAGE clause specifies the depth of a logical page in terms of number of
lines. Optionally, it also specifies the line number at which the footing area
begins, as well as the top and bottom margins of the logical page. (The logical
page and the physical page cannot be the same size.)

The LINAGE clause is effective for sequential files opened OUTPUT

All integers must be unsigned. All data-names must be described as unsigned
integer data items.

data-name-5
integer-8

The number of lines that can be written and/or spaced on this logical page.
The area of the page that these lines represent is called the page body. The
value must be greater than zero.

WITH FOOTING AT
Integer-9 or the value of the data item in data-name-6 specifies the first line
number of the footing area within the page body. The footing line number
must be greater than zero, and not greater than the last line of the page body.
The footing area extends between those two lines.

LINES AT TOP
Integer-10 or the value of the data item in data-name-7 specifies the number of
lines in the top margin of the logical page. The value can be zero.

LINES AT BOTTOM
Integer-11 or the value of the data item in data-name-8 specifies the number of
lines in the bottom margin of the logical page. The value can be zero.

Figure 5 illustrates the use of each phrase of the LINAGE clause.

140 COBOL Language Reference

The LINAGE clause is treated as a comment under an SD.

LINAGE clause

Figure 5. LINAGE clause phrases

The logical page size specified in the LINAGE clause is the sum of all values
specified in each phrase except the FOOTING phrase. If the LINES AT TOP
and/or the LINES AT BOTTOM phrase is omitted, the assumed value for top and
bottom margins is zero. Each logical page immediately follows the preceding
logical page, with no additional spacing provided.

If the FOOTING phrase is omitted, its assumed value is equal to that of the page
body (integer-8 or data-name-5).

At the time an OPEN OUTPUT statement is executed, the values of integer-8,
integer-9, integer-10, and integer-11, if specified, are used to determine the page
body, first footing line, top margin, and bottom margin of the logical page for this
file. See Figure 5 above. These values are then used for all logical pages printed
for this file during a given execution of the program.

At the time an OPEN statement with the OUTPUT phrase is executed for the file,
data-name-5, data-name-6, data-name-7, and data-name-8 determine the page
body, first footing line, top margin, and bottom margin for the first logical page
only.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed
or a page overflow condition occurs, the values of data-name-5, data-name-6,
data-name-7, and data-name-8 if specified, are used to determine the page body,
first footing line, top margin, and bottom margin for the next logical page.

If an external file connector is associated with this file description entry, all file
description entries in the run unit that are associated with this file connector must
have:
� A LINAGE clause, if any file description entry has a LINAGE clause.
� The same corresponding values for integer-8, integer-9, integer-10, and

integer-11, if specified.
� The same corresponding external data items referenced by data-name-5,

data-name-6, data-name-7, and data-name-8.

See “ADVANCING phrase” on page 394 for the behavior of carriage control
characters in EXTERNAL files.

Part 5. Data Division 141

RECORDING MODE clause

RECORDING MODE clause

Under OS/390 and VM

The RECORDING MODE clause specifies the format of the physical records in a
QSAM file. The clause is ignored for a VSAM file.

Permitted values for RECORDING MODE are:

Recording Mode F (Fixed)
All the records in a file are the same length and each is wholly contained
within one block. Blocks can contain more than one record, and there is
usually a fixed number of records for each block. In this mode, there are no
record-length or block-descriptor fields.

Recording Mode V (Variable)
The records can be either fixed-length or variable-length, and each must be
wholly contained within one block. Blocks can contain more than one record.
Each data record includes a record-length field and each block includes a
block-descriptor field. These fields are not described in the Data Division.
They are each 4 bytes long and provision is automatically made for them.
These fields are not available to you.

Recording Mode U (Fixed or Variable)
The records can be either fixed-length or variable-length. However, there is
only one record for each block. There are no record-length or block-descriptor
fields.

Note: You cannot use RECORDING MODE U if you are using the BLOCK
CONTAINS clause.

Recording Mode S (Spanned)
The records can be either fixed-length or variable-length, and can be larger
than a block. If a record is larger than the remaining space in a block, a
segment of the record is written to fill the block. The remainder of the record
is stored in the next block (or blocks, if required). Only complete records are
made available to you. Each segment of a record in a block, even if it is the
entire record, includes a segment-descriptor field, and each block includes a
block-descriptor field. These fields are not described in the Data Division;
provision is automatically made for them. These fields are not available to
you.

Note: When recording mode S is used, the BLOCK CONTAINS CHARACTERS
clause must be used. Recording mode S is not allowed for ASCII files.

If the RECORDING MODE clause is not specified for a QSAM file, the COBOL for
OS/390 & VM compiler determines the recording mode as follows:

F The compiler determines the recording mode to be F if the largest level-01
record associated with the file is not greater than the block size specified in
the BLOCK CONTAINS clause, and you do one of the following:

LINAGE-COUNTER special register

For information about the LINAGE-COUNTER special register, see
“LINAGE-COUNTER” on page 12.

142 COBOL Language Reference

� Use the RECORD CONTAINS integer clause (for more information, see
IBM COBOL for OS/390 & VM Compiler and Run-Time Migration Guide.)

� Omit the RECORD clause and make sure all level-01 records associated
with the file are the same size and none contain an OCCURS
DEPENDING ON clause.

V The compiler determines the recording mode to be V if the largest level-01
record associated with the file is not greater than the block size specified in
the BLOCK CONTAINS clause, and you do one of the following:

� Use the RECORD IS VARYING clause
� Omit the RECORD clause and make sure all level-01 records associated

with the file are not the same size or some contain an OCCURS
DEPENDING ON clause

� Use the RECORD CONTAINS integer-1 TO integer-2 clause with integer-1
the minimum length and integer-2 the maximum length of the level-01
records associated with the file. The two integers must be different, with
values matching minimum and maximum length of either different length
records or record(s) with an OCCURS DEPENDING ON clause.

S The compiler determines the recording mode to be S if the maximum block
size is smaller than the largest record size.

U Recording mode U is never obtained by default. The RECORDING MODE U
clause must be explicitly used.

Under AIX and Windows

Under AIX and Windows, the RECORDING MODE clause for record sequential
files is treated as follows:

F Record descriptions are validated as fixed. Do not specify RECORDING
MODE F if the record descriptions are variable.

V Variable length record format is assumed (even if the record descriptions are
fixed).

U Treated as a comment.

S Treated the same as V.

 Under AIX and Windows, the CODE-SET clause is syntax checked,
but has no effect on the execution of the program.

CODE-SET clause

|
|

 CODE-SET clause

|
|

The CODE-SET clause specifies the character code used to represent data on a
magnetic tape file. When the CODE-SET clause is specified, an alphabet-name
identifies the character code convention used to represent data on the input-output
device.

Alphabet-name must be defined in the SPECIAL-NAMES paragraph as
STANDARD-1 (for ASCII-encoded files), as STANDARD-2 (for ISO 7-bit encoded
files), as EBCDIC (for EBCDIC-encoded files), or as NATIVE. When NATIVE is
specified, the CODE-SET clause is syntax checked, but it has no effect on the
execution of the program.

The CODE-SET clause also specifies the algorithm for converting the character
codes on the input-output medium from/to the internal EBCDIC character set.

Part 5. Data Division 143

The CODE-SET clause is syntax checked, but has no effect on the execution of the
program when specified under an SD.

CODE-SET clause

When the CODE-SET clause is specified for a file, all data in this file must have
USAGE DISPLAY, and, if signed numeric data is present, it must be described
with the SIGN IS SEPARATE clause.

When the CODE-SET clause is omitted, the EBCDIC character set is assumed for
this file.

If the associated file connector is an external file connector, all CODE-SET clauses
in the run unit that are associated with that file connector must have the same
character set.

The CODE-SET clause is valid only for magnetic tape files.

|
|

144 COBOL Language Reference

date-format-clause

Data Division—data description entry

Data Division—data description entry

A data description entry specifies the characteristics of a data item.

This chapter describes the coding of data description entries and record description
entries (which are sets of data description entries). The single term data
description entry is used in this chapter to refer to data and record description
entries.

Data description entries that define independent data items do not make up a
record. These are known as data item description entries.

The data description entry has three general formats. All data description entries
must end with a separator period.

 Format 1

Format 1 is used for data description entries in all Data Division sections.

 Format 1
��──level-number─ ──┬ ┬───────────── ──┬ ┬────────────────── ────────────────────�
 ├ ┤─data-name-1─ └ ┘─redefines-clause─
 └ ┘─FILLER──────

�─ ──┬ ┬──────────────────────── ──┬ ┬───────────────── ──┬ ┬─────────────── ──────�
 └ ┘─blank-when-zero-clause─ └ ┘─external-clause─ └ ┘─global-clause─

�─ ──┬ ┬────────────────── ──┬ ┬─────────────── ──┬ ┬──────────────── ─────────────�
 └ ┘─justified-clause─ └ ┘─occurs-clause─ └ ┘─picture-clause─

�─ ──┬ ┬───────────── ──┬ ┬───────────────────── ──┬ ┬────────────── ──────────────�
 └ ┘─sign-clause─ └ ┘─synchronized-clause─ └ ┘─usage-clause─

�─ ──┬ ┬────────────── ──┬ ┬──────────────────── ───────────────────────────────��
 └ ┘─value-clause─ └ ┘─ ─

Note: The clauses can be written in any order with two exceptions:
If data-name or FILLER is specified, it must immediately follow the
level-number.
When the REDEFINES clause is specified, it must immediately follow
data-name or FILLER, if either is specified. If data-name or FILLER is not
specified, the REDEFINES clause must immediately follow the level-number.

Level-number in format 1 can be any number from 01–49 or 77.

A space, a separator comma, or a separator semicolon must separate clauses.

 Copyright IBM Corp. 1991, 2000 145

Level-numbers

 Format 2

Format 2 regroups previously defined items.

 Format 2
��──66──data-name-1──renames-clause.───────────────────────────────────────��

A level-66 entry cannot rename another level-66 entry, nor can it rename a level-01,
level-77, or level-88 entry.

All level-66 entries associated with one record must immediately follow the last
data description entry in that record.

Details are contained in “RENAMES clause” on page 178.

 Format 3

Format 3 describes condition-names.

 Format 3
��──88──condition-name-1──value-clause.────────────────────────────────────��

condition-name
A user-specified name that associates a value, a set of values, or a range of
values with a conditional variable.

A conditional variable is a data item that can assume one or more values, that
can, in turn, be associated with a condition-name.

Format 3 can be used to describe both elementary and group items. Further
information on condition-name entries can be found under “VALUE clause” on
page 195.

 Level-numbers

The level-number specifies the hierarchy of data within a record, and identifies
special-purpose data entries. A level-number begins a data description entry, a
renamed or redefined item, or a condition-name entry. A level-number has a
value taken from the set of integers between 1 and 49, or from one of the special
level-numbers, 66, 77, or 88.

 Format
��──level-number─ ──┬ ┬───────────── ───��
 ├ ┤─data-name-1─
 └ ┘─FILLER──────

level-number
01 and 77 must begin in Area A and must be followed either by a separator
period; or by a space, followed by its associated data-name, FILLER, or
appropriate data description clause.

Level numbers 02 through 49 can begin in Areas A or B and must be followed
by a space or a separator period.

146 COBOL Language Reference

ZEROS
ZEROES

BLANK WHEN ZERO clause

Level numbers 66 and 88 can begin in Areas A or B and must be followed by a
space.

Single-digit level-numbers 1 through 9 can be substituted for level-numbers 01
through 09.

Successive data description entries can start in the same column as the first or
they can be indented according to the level-number. Indentation does not
affect the magnitude of a level-number.

When level-numbers are indented, each new level-number can begin any
number of spaces to the right of Area A. The extent of indentation to the right
is limited only by the width of Area B.

For more information, see “Levels of data” on page 125

data-name
Explicitly identifies the data being described.

If specified, a data-name identifies a data item used in the program. The
data-name must be the first word following the level-number.

The data item can be changed during program execution.

Data-name must be specified for level-66 and level-88 items. It must also be
specified for any entry containing the GLOBAL or EXTERNAL clause, and for
record description entries associated with file description entries having the
GLOBAL or EXTERNAL clauses.

FILLER
Is a data item that is not explicitly referred to in a program. The key word
FILLER is optional. If specified, FILLER must be the first word following the
level-number.

The key word FILLER can be used with a conditional variable, if explicit
reference is never made to the conditional variable but only to values it can
assume. FILLER cannot be used with a condition-name.

In a MOVE CORRESPONDING statement, or in an ADD CORRESPONDING
or SUBTRACT CORRESPONDING statement, FILLER items are ignored. In an
INITIALIZE statement, elementary FILLER items are ignored.

If the data-name or FILLER clause is omitted, the data item being described is
treated as though FILLER had been specified.

BLANK WHEN ZERO clause

The BLANK WHEN ZERO clause specifies that an item contains nothing but
spaces when its value is zero.

 Format
��──BLANK─ ──┬ ┬────── ──┬ ┬─ZERO─── ───��
 └ ┘─WHEN─ ├ ┤─ ──
 └ ┘─ ─

The BLANK WHEN ZERO clause can be specified only for elementary numeric or
numeric-edited items. These items must be described, either implicitly or
explicitly, as USAGE IS DISPLAY. When the BLANK WHEN ZERO clause is
specified for a numeric item, the item is considered a numeric-edited item.

Part 5. Data Division 147

DATE FORMAT clause

� Date fields
� DBCS items
� External or internal floating-point items
� Items described with USAGE IS POINTER, USAGE IS

PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE

DATE FORMAT clause

The DATE FORMAT clause specifies that a data item is a windowed or expanded
date field:

Windowed date fields
Contain a windowed (2-digit) year, specified by a DATE FORMAT clause
containing YY.

Expanded date fields
Contain an expanded (4-digit) year, specified by a DATE FORMAT clause
containing YYYY.

If the NODATEPROC compiler option is in effect, the DATE FORMAT clause is
syntax checked, but has no effect on the execution of the program.
NODATEPROC disables date processing. The rules and restrictions described in
this reference for the DATE FORMAT clause and date fields apply only if the
DATEPROC compiler option is in effect.

 Format
��──DATE FORMAT─ ──┬ ┬──── ─date-pattern──────────────────────────────────────��
 └ ┘─IS─

The date-pattern is a character string, such as YYXXXX, representing a windowed or
expanded year optionally followed or preceded by one through four characters
representing other parts of a date, such as the month and day:

Date-pattern string... Specifies that the data item contains...

YY A windowed (2-digit) year.

YYYY An expanded (4-digit) year.

X A single character; for example, a digit representing
a semester or quarter (1–4).

XX Two characters; for example, digits representing a
month (01–12).

XXX Three characters; for example, digits representing a
day of the year (001–366).

XXXX Four characters; for example, 2 digits representing a
month (01–12) and 2 digits representing a day of the
month (01–31).

For an introduction to date fields and related terms, see “Millennium Language
Extensions and date fields” on page 52. For details on using date fields in

The BLANK WHEN ZERO clause must not be specified for level-66 or level-88
items.

The BLANK WHEN ZERO clause must not be specified for the same entry as the
PICTURE symbols S or *.

The BLANK WHEN ZERO clause is not allowed for:
� Items described with the USAGE IS INDEX clause

148 COBOL Language Reference

DATE FORMAT clause

applications, see the IBM COBOL Programming Guide for your platform, or the IBM
COBOL Millennium Language Extensions Guide.

Semantics of windowed date fields

Windowed date fields undergo automatic expansion relative to the century
window when they are used as operands in arithmetic expressions or arithmetic
statements. However, the result of incrementing or decrementing a windowed
date is still treated as a windowed date for further computation, comparison, and
storing.

When used in the following situations, windowed date fields are treated as if they
were converted to expanded date format:
� Operands in subtractions in which the other operand is an expanded date
� Operands in relation conditions
� A sending field in arithmetic or MOVE statements

The details of the conversion to expanded date format depend on whether the
windowed date field is numeric or alphanumeric.

Given a century window starting year of 19nn, the year part (yy) of a numeric
windowed date field is treated as if it was expanded as follows:
� If yy is less than nn, then add 2000 to yy

� If yy is equal to or greater than nn, then add 1900 to yy

For signed numeric windowed date fields, this means that there can be two
representations of some years. For instance, windowed year values 99 and -01 are
both treated as 1999, since 1900 + 99 = 2000 + -01.

Alphanumeric windowed date fields are treated in a similar manner, but using a
prefix of “19” or “20” instead of adding 1900 or 2000.

For example, when used as an operand of a relation condition, a windowed date
field defined by:

?1 DATE-FIELD DATE FORMAT YYXXXX PICTURE 9(6)
VALUE IS 45?1?1.

is treated as if it was an expanded date field with a value of:
� 19450101, if the century window starting year is 1945 or earlier
or
� 20450101, if the century window starting year is later than 1945

Date trigger values (host only)

 When the DATEPROC(TRIG) compiler option is in effect, expansion of
windowed date fields is sensitive to certain trigger or limit values in the
windowed date field.

For alphanumeric windowed date fields, these special values are LOW-VALUE,
HIGH-VALUE, and SPACE. For alphanumeric and numeric windowed date fields
with at least one X in the DATE FORMAT clause (that is, windowed date fields
other than just a windowed year), values of all zeros or all nines are also treated as
triggers.

The all-zero value is intended to act as a date earlier than any valid date. The
purpose of the all-nines value is to behave like a date later than any valid date.

Part 5. Data Division 149

DATE FORMAT clause

When a windowed date field contains a trigger in this way, it is expanded as if the
trigger value were copied to the century part of the expanded date result, rather
than inferring 19 or 20 as the century value.

This special trigger expansion is done when a windowed date field is used either
as an operand in a relation condition or as the sending field in an arithmetic or
MOVE statement. Trigger expansion is not done when windowed date fields are
used as operands in arithmetic expressions, but can be applied to the final
windowed date result of an arithmetic expression.

Restrictions on using date fields

The following pages describe restrictions on using date fields in these contexts:
� Combining the DATE FORMAT clause with other clauses
� Group items consisting only of a date field
� Language elements that treat date fields as non-dates
� Language elements that do not accept date fields as arguments

For restrictions on using date fields in other contexts, see:
� “Arithmetic with date fields” on page 211
� “Date fields” (in conditional expressions) on page 219
� “ADD statement” on page 255
� “SUBTRACT statement” on page 383
� “MOVE statement” on page 320

Combining the DATE FORMAT clause with other clauses

The only phrases of the USAGE clause that can be combined with the DATE
FORMAT clause are DISPLAY, COMPUTATIONAL (or its equivalents,
COMPUTATIONAL-4 and BINARY), and COMPUTATIONAL-3 (or its equivalent,
PACKED-DECIMAL). The DATE FORMAT clause is not allowed for USAGE
COMP data items if the TRUNC(BIN) compiler option is in effect.

The PICTURE clause character-string must specify the same number of characters
or digits as the DATE FORMAT clause. For alphanumeric date fields, the only
PICTURE character-string symbols allowed are A, 9, and X, with at least one X.
For numeric date fields, the only PICTURE character-string symbols allowed are 9
and S.

The following clauses are not allowed for a data item defined with DATE
FORMAT:

BLANK WHEN ZERO
 JUSTIFIED

SEPARATE CHARACTER phrase of the SIGN clause

The EXTERNAL clause is not allowed for a windowed date field or a group item
containing a windowed date field subordinate item.

Some restrictions apply when combining the following clauses with DATE
FORMAT:

REDEFINES (see page 174)
VALUE (see page 195)

150 COBOL Language Reference

DATE FORMAT clause

Group items that are date fields

If a group item is defined with a DATE FORMAT clause, then the following
restrictions apply:
� The elementary items in the group must all be USAGE DISPLAY.
� The length of the group item must be the same number of characters as the

date-pattern in the DATE FORMAT clause.
� If the group consists solely of a date field with USAGE DISPLAY, and both the

group and the single subordinate item have DATE FORMAT clauses, then the
DATE FORMAT clauses must be identical.

� If the group item contains subordinate items that subdivide the group, then
the following restrictions apply:
1. If a named (not FILLER) subordinate item consists of exactly the year part

of the group item date field, and has a DATE FORMAT clause, then the
DATE FORMAT clause must be YY or YYYY, with the same number of
year characters as the group item.

2. If the group item is a Gregorian date with a DATE FORMAT clause of
YYXXXX, YYYYXXXX, XXXXYY, or XXXXYYYY, and a named subordinate
date data item consists of the year and month part of the Gregorian date,
then its DATE FORMAT clause must be YYXX, YYYYXX, XXYY, or
XXYYYY, respectively (or, for a group date format of YYYYXXXX, a
subordinate date format of YYXX as described below).

3. A windowed date field can be subordinate to an expanded date field
group item if the subordinate item starts two characters after the group
item, neither date is in year-last format, and the date format of the
subordinate item either has no Xs, or has the same number of Xs following
the Ys as the group item, or is YYXX under a group date format of
YYYYXXXX.

4. The only subordinate items that can have a DATE FORMAT clause are
those that define the year part of the group item, the windowed part of an
expanded date field group item, or the year and month part of a Gregorian
date group item, as discussed in the above restrictions.

For example, the following defines a valid group item:

 ?1 YYMMDD DATE FORMAT YYXXXX.
?2 YYMM DATE FORMAT YYXX.
?3 YY DATE FORMAT YY PICTURE 99.

 ?3 PICTURE 99.
 ?2 DD PICTURE 99.

Language elements that treat date fields as non-dates

If date fields are used in the following language elements, they are treated as
non-dates. That is, the DATE FORMAT is ignored, and the content of the date
data item is used without undergoing automatic expansion.
� In the Environment Division FILE-CONTROL paragraph:

SELECT ... ASSIGN USING data-name
SELECT ... PASSWORD IS data-name
SELECT ... FILE STATUS IS data-name

� In Data Division entries:
LABEL RECORD IS data-name
LABEL RECORDS ARE data-name
LINAGE IS data-name FOOTING data-name TOP data-name BOTTOM
data-name

Part 5. Data Division 151

DATE FORMAT clause

� In class conditions
� In sign conditions
� In DISPLAY statements

Language elements that do not accept windowed date fields as
arguments

Windowed date fields cannot be used as:
� Data-names in the following formats of the Environment Division

FILE-CONTROL paragraph:
SELECT ... RECORD KEY IS
SELECT ... ALTERNATE RECORD KEY IS
SELECT ... RELATIVE KEY IS

� A data-name in the RECORD IS VARYING DEPENDING ON clause of a Data
Division File Description (FD) or Sort Description (SD) entry.

� The object of an OCCURS DEPENDING ON clause of a Data Division data
definition entry.

� The key in an ASCENDING KEY or DESCENDING KEY phrase of an
OCCURS clause of a Data Division data definition entry.

� Any data-name or identifier in the following statements:
 CANCEL

GO TO ... DEPENDING ON
 INSPECT
 SET
 SORT
 STRING
 UNSTRING
� In the CALL statement, as the identifier containing the program name.
� In the INVOKE statement, as the identifier specifying the object on which the

method is invoked, or the identifier containing the method name.
� Identifiers in the TIMES and VARYING phrases of the PERFORM statement

(windowed date fields are allowed in the PERFORM conditions).
� An identifier in the VARYING phrase of a serial (format 1) SEARCH

statement, or any identifier in a binary (format 2) SEARCH statement
(windowed date fields are allowed in the SEARCH conditions).

� An identifier in the ADVANCING phrase of the WRITE statement.
� Arguments to intrinsic functions, except the UNDATE intrinsic function.

 Under AIX and Windows, windowed date fields cannot be used as
ascending or descending keys in MERGE or SORT statements.

 Under OS/390 and VM, windowed date fields can be used as ascending
or descending keys in MERGE and SORT statements, with some restrictions. For
details, see “MERGE statement” on page 314 and “SORT statement” on page 368.

Language elements that do not accept date fields as arguments

Neither windowed date fields nor expanded date fields can be used:
� In the DIVIDE statement, except as an identifier in the GIVING or

REMAINDER clause.
� In the MULTIPLY statement, except as an identifier in the GIVING clause.

152 COBOL Language Reference

(Date fields cannot be used as operands in division or multiplication.)

 or method
 or

method
 or methods

 or method

 or method

 or methods

 or method

 the Linkage Section, and the
Local-Storage Section,

GLOBAL clause

 EXTERNAL clause

The EXTERNAL clause specifies that the storage associated with a data item is
associated with the run unit rather than with any particular program
within the run unit. An external data item can be referenced by any program

 in the run unit that describes the data item. References to an external data
item from different programs using separate descriptions of the data
item are always to the same data item. In a run unit, there is only one
representative of an external data item.

The EXTERNAL clause can be specified only in data description entries whose
level-number is 01. It can only be specified on data description entries that are in
the Working-Storage Section of a program . It cannot be specified in
Linkage Section or File Section data description entries. Any data item described
by a data description entry subordinate to an entry describing an external record
also attains the EXTERNAL attribute. Indexes in an external data record do not
possess the external attribute.

The data contained in the record named by the data-name clause is external and
can be accessed and processed by any program in the run unit that
describes and, optionally, redefines it. This data is subject to the following rules:
� If two or more programs within a run unit describe the same

external data record, each record-name of the associated record description
entries must be the same and the records must define the same number of
standard data format characters. However, a program that
describes an external record can contain a data description entry including the
REDEFINES clause that redefines the complete external record, and this
complete redefinition need not occur identically in other programs or methods
in the run unit.

� Use of the EXTERNAL clause does not imply that the associated data-name is
a global name.

 GLOBAL clause

The GLOBAL clause specifies that a data-name is available to every program
contained within the program that declares it, as long as the contained program
does not itself have a declaration for that name. All data-names subordinate to or
condition-names or indexes associated with a global name are global names.

A data-name is global if the GLOBAL clause is specified either in the data
description entry by which the data-name is declared or in another entry to which
that data description entry is subordinate. The GLOBAL clause can be specified in
the Working-Storage Section, the File Section,

 but only in data description entries whose level-number is
01.

In the same Data Division, the data description entries for any two data items for
which the same data-name is specified must not include the GLOBAL clause.

A statement in a program contained directly or indirectly within a program which
describes a global name can reference that name without describing it again.

Two programs in a run unit can reference common data in the following
circumstances:

Part 5. Data Division 153

� For items described as USAGE IS POINTER, USAGE IS
PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE

� For external or internal floating-point items
� For an edited DBCS item
� For date fields

The JUSTIFIED clause can be specified for a DBCS item (except edited DBCS
items). When JUSTIFIED is specified for a receiving item, the data is aligned on
the rightmost character position. If the sending item is larger than the receiving
item, extra characters are truncated on the left. If the sending item is smaller than
the receiving item, any unused positions on the left are filled with DBCS blanks.

OCCURS clause

1. The data content of an external data record can be referenced from any
program provided that program has described that data record.

2. If a program is contained within another program, both programs can refer to
data possessing the global attribute either in the containing program or in any
program that directly or indirectly contains the containing program.

 JUSTIFIED clause

The JUSTIFIED clause overrides standard positioning rules for a receiving item of
the alphabetic or alphanumeric categories.

 Format
��─ ──┬ ┬─JUSTIFIED─ ──┬ ┬─────── ──��
 └ ┘─JUST────── └ ┘─RIGHT─

You can only specify the JUSTIFIED clause at the elementary level. JUST is an
abbreviation for JUSTIFIED, and has the same meaning.

You cannot specify the JUSTIFIED clause:
� For numeric, numeric-edited, or alphanumeric-edited items
� In descriptions of items described with the USAGE IS INDEX clause

� With level-66 (RENAMES) and level-88 (condition-name) entries

When the JUSTIFIED clause is specified for a receiving item, the data is aligned at
the rightmost character position in the receiving item. Also:
� If the sending item is larger than the receiving item, the leftmost characters are

truncated.
� If the sending item is smaller than the receiving item, the unused character

positions at the left are filled with spaces.

If you omit the JUSTIFIED clause, the rules for standard alignment are followed
(see “Alignment rules” on page 128).

The JUSTIFIED clause does not affect initial settings, as determined by the VALUE
clause.

 OCCURS clause

The Data Division clauses used for table handling are the OCCURS clause and
USAGE IS INDEX clause. For the USAGE IS INDEX description, see “USAGE
clause” on page 187.

154 COBOL Language Reference

OCCURS clause

The OCCURS clause specifies tables whose elements can be referred to by indexing
or subscripting. It also eliminates the need for separate entries for repeated data
items.

Formats for the OCCURS clause include fixed-length tables or variable-length
tables.

The subject of an OCCURS clause is the data-name of the data item containing the
OCCURS clause. Except for the OCCURS clause itself, data description clauses
used with the subject apply to each occurrence of the item described.

Whenever the subject of an OCCURS clause or any data-item subordinate to it is
referenced, it must be subscripted or indexed with the following exceptions:
� When the subject of the OCCURS clause is used as the subject of a SEARCH

statement.
� When the subject or subordinate data item is the object of the

ASCENDING/DESCENDING KEY clause.
� When the subordinate data item is the object of the REDEFINES clause.

When subscripted or indexed, the subject refers to one occurrence within the table.

When not subscripted or indexed, the subject represents the entire table.

The OCCURS clause cannot be specified in a data description entry that:
� Has a level number of 01, 66, 77, or 88.
� Describes a redefined data item. (However, a redefined item can be

subordinate to an item containing an OCCURS clause.) See “REDEFINES
clause” on page 174.

 Fixed-length tables

Fixed-length tables are specified using the OCCURS clause. Because seven
subscripts or indexes are allowed, six nested levels and one outermost level of the
format 1 OCCURS clause are allowed. The format 1 OCCURS clause can be
specified as subordinate to the OCCURS DEPENDING ON clause. In this way, a
table of up to seven dimensions can be specified.

Format 1—fixed-length tables
��──OCCURS──integer-2─ ──┬ ┬─────── ───�
 └ ┘─TIMES─

 ┌ ┐──
�─ ───/ ┴──┬ ┬── ────────────────�
 │ │┌ ┐───────────────
 └ ┘ ──┬ ┬─ASCENDING── ──┬ ┬───── ──┬ ┬──── ───/ ┴─data-name-2─
 └ ┘─DESCENDING─ └ ┘─KEY─ └ ┘─IS─

�─ ──┬ ┬─────────────────────────────────── ──────────────────────────────────��
 │ │┌ ┐────────────────
 └ ┘ ─INDEXED─ ──┬ ┬──── ───/ ┴─index-name-1─
 └ ┘─BY─

integer-2
The exact number of occurrences. Integer-2 must be greater than zero.

Part 5. Data Division 155

Data-name-2 cannot be a windowed date field.

� Under OS/390 and VM, a key can have COMPUTATIONAL-1,
COMPUTATIONAL-2, COMPUTATIONAL-3, or COMPUTATIONAL-4 usage.

� Under AIX and Windows, a key can have COMPUTATIONAL-1,
COMPUTATIONAL-2, COMPUTATIONAL-3, COMPUTATIONAL-4, or
COMPUTATIONAL-5 usage.

� The ASCENDING/DESCENDING KEY phrase (for a SEARCH ALL statement
only) can be specified in the OCCURS clause for a DBCS item.

� If a key is specified without qualifiers and it is not a unique name, the key will
be implicitly qualified with the subject of the OCCURS clause and all qualifiers
of the OCCURS clause subject.

OCCURS clause

ASCENDING/DESCENDING KEY phrase

Data is arranged in ascending or descending order (depending on the key word
specified) according to the values contained in data-name-2. The data-names are
listed in their descending order of significance.

The order is determined by the rules for comparison of operands (see “Relation
condition” on page 218). The ASCENDING and DESCENDING KEY data items
are used in OCCURS clauses and the SEARCH ALL statement for a binary search
of the table element.

data-name-2
Must be the name of the subject entry, or the name of an entry subordinate to
the subject entry. Data-name-2
can be qualified.

If data-name-2 names the subject entry, that entire entry becomes the
ASCENDING/DESCENDING KEY, and is the only key that can be specified
for this table element.

If data-name-2 does not name the subject entry, then data-name-2:

� Must be subordinate to the subject of the table entry itself
� Must not be subordinate to, or follow, any other entry that contains an

OCCURS clause
� Must not contain an OCCURS clause.

Data-name-2 must not have subordinate items that contain OCCURS
DEPENDING ON clauses.

When the ASCENDING/DESCENDING KEY phrase is specified, the following
rules apply:
� Keys must be listed in decreasing order of significance.
� The total number of keys for a given table element must not exceed 12.
� You must arrange the data in the table in ASCENDING or DESCENDING

sequence according to the collating sequence in use.
� A key can have DISPLAY, BINARY, PACKED-DECIMAL, or

COMPUTATIONAL usage.
� The sum of the lengths of all the keys associated with one table element must

not exceed 256.

The following example illustrates the specification of ASCENDING KEY data item:

156 COBOL Language Reference

A table without an INDEXED BY option can be referred to through indexing.

However, in the following cases, indexes are allocated on a
per-invocation basis. Thus, you must SET the value of the index on every entry
for indexes on tables in the:
� Local-Storage Section
� Working-Storage Section of a class definition (object instance variables)
� Linkage Section of a:

— Method
— Program compiled with the RECURSIVE attribute
— Program compiled with the THREAD option (workstation only)

As an IBM extension, unreferenced index names need not be uniquely defined.

OCCURS clause
WORKING-STORAGE SECTION.
?1 TABLE-RECORD.
 ?5 EMPLOYEE-TABLE OCCURS 1?? TIMES

ASCENDING KEY IS WAGE-RATE EMPLOYEE-NO
INDEXED BY A, B.

 1? EMPLOYEE-NAME PIC X(2?).
 1? EMPLOYEE-NO PIC 9(6).
 1? WAGE-RATE PIC 9999V99.

1? WEEK-RECORD OCCURS 52 TIMES
ASCENDING KEY IS WEEK-NO INDEXED BY C.

 15 WEEK-NO PIC 99.
 15 AUTHORIZED-ABSENCES PIC 9.
 15 UNAUTHORIZED-ABSENCES PIC 9.
 15 LATE-ARRIVALS PIC 9.

The keys for EMPLOYEE-TABLE are subordinate to that entry, while the key for
WEEK-RECORD is subordinate to that subordinate entry.

In the preceding example, records in EMPLOYEE-TABLE must be arranged in
ascending order of WAGE-RATE, and in ascending order of EMPLOYEE-NO
within WAGE-RATE. Records in WEEK-RECORD must be arranged in ascending
order of WEEK-NO. If they are not, results of any SEARCH ALL statement will be
unpredictable.

INDEXED BY phrase

The INDEXED BY phrase specifies the indexes that can be used with a table. The
INDEXED BY phrase is required if indexing is used to refer a this table element.
See “Subscripting using index-names (indexing)” on page 45.

Indexes normally are allocated in static memory associated with the program
containing the table. Thus, indexes are in the last-used state when a program is
reentered.

Note: Indexes specified in an External data record do not possess the external
attribute.

index-name-1
Must follow the rules for formation of user-defined words. At least one
character must be alphabetic.

Each index-name specifies an index to be created by the compiler for use by
the program. These index-names are not data-names, and are not identified
elsewhere in the COBOL program; instead, they can be regarded as private
special registers for the use of this object program only. They are not data, or
part of any data hierarchy.

Part 5. Data Division 157

Integer-1 is optional as an IBM extension. If integer-1 is omitted, a value
of 1 is assumed and the key word TO must also be omitted.

The object cannot be a windowed date field.

OCCURS DEPENDING ON clause

In one table entry, up to 12 index-names can be specified.

If a data item possessing the GLOBAL attribute includes a table accessed with
an index, that index also possesses the GLOBAL attribute. Therefore, the
scope of an index-name is identical to that of the data-name which names the
table whose index is named by that index-name and the scope of name rules
for data-names apply.

 Variable-length tables

Variable-length tables are specified using the OCCURS DEPENDING ON clause.

Format 2—variable-length tables
��──OCCURS──integer-1───(1) ─TO──integer-2─ ──┬ ┬─────── ─DEPENDING─ ──┬ ┬──── ───────�
 └ ┘─TIMES─ └ ┘─ON─

 ┌ ┐──
�──data-name-1─ ───/ ┴──┬ ┬── ───�
 │ │┌ ┐───────────────
 └ ┘ ──┬ ┬─ASCENDING── ──┬ ┬───── ──┬ ┬──── ───/ ┴─data-name-2─
 └ ┘─DESCENDING─ └ ┘─KEY─ └ ┘─IS─

�─ ──┬ ┬─────────────────────────────────── ──────────────────────────────────��
 │ │┌ ┐────────────────
 └ ┘ ─INDEXED─ ──┬ ┬──── ───/ ┴─index-name-1─
 └ ┘─BY─

Note:
1

integer-1
The minimum number of occurrences.

The value of integer-1 must be greater than or equal to zero; it must also be
less than the value of integer-2.

integer-2
The maximum number of occurrences.

Integer-2 must be greater than integer-1.

The length of the subject item is fixed; it is only the number of repetitions of the
subject item that is variable.

OCCURS DEPENDING ON clause

The OCCURS DEPENDING ON clause specifies variable-length tables.

data-name-1
Specifies the object of the OCCURS DEPENDING ON clause; that is, the data
item whose current value represents the current number of occurrences of the
subject item. The contents of items whose occurrence numbers exceed the
value of the object are undefined.

The object of the OCCURS DEPENDING ON clause must describe an integer
data item.

The object of the OCCURS DEPENDING ON clause must not occupy any
storage position within the range of the table (that is, any storage position

158 COBOL Language Reference

The object of the OCCURS DEPENDING ON clause cannot be variably located;
the object cannot follow an item that contains an OCCURS DEPENDING ON
clause.

 or that follows but is not subordinate to the
OCCURS DEPENDING ON item,

� INVOKE ... USING BY REFERENCE

If the group item is followed by a non-subordinate item, the actual length, rather
than the maximum length, will be used. At the time the subject of entry is
referenced, or any data item subordinate or superordinate to the subject of entry is

OCCURS DEPENDING ON clause

from the first character position in the table through the last character position
in the table).

If the OCCURS clause is specified in a data description entry included in a
record description entry containing the EXTERNAL clause, data-name-1, if
specified, must reference a data item possessing the external attribute which is
described in the same Data Division.

If the OCCURS clause is specified in a data description entry subordinate to
one containing the GLOBAL clause, data-name-1, if specified, must be a global
name and must reference a data item which is described in the same Data
Division.

At the time that the group item, or any data item that contains a subordinate
OCCURS DEPENDING ON item

 is referenced, the value of the object of the
OCCURS DEPENDING ON clause must fall within the range integer-1 through
integer-2.

When a group item containing a subordinate OCCURS DEPENDING ON item is
referred to, the part of the table area used in the operation is determined as
follows:
� If the object is outside the group, only that part of the table area that is

specified by the object at the start of the operation will be used.
� If the object is included in the same group and the group data item is

referenced as a sending item, only that part of the table area that is specified
by the value of the object at the start of the operation will be used in the
operation.

� If the object is included in the same group and the group data item is
referenced as a receiving item, the maximum length of the group item will be
used in the operation.

Following are the verbs that are affected by the maximum length rule:
� ACCEPT identifier (format 1 and 2)
� CALL ... USING BY REFERENCE

� MOVE ... TO identifier
� READ ... INTO identifier
� RELEASE identifier FROM ...
� RETURN ... INTO identifier
� REWRITE identifier FROM ...
� STRING ... INTO identifier
� UNSTRING ... INTO identifier DELIMITER IN identifier
� WRITE identifier FROM ...

The maximum length of variable-length groups is always used when they appear
as the identifier on the CALL ... USING BY REFERENCE identifier statement.
Therefore, the object of the OCCURS DEPENDING ON clause does not need to be
set, unless the group is variably-located.

Part 5. Data Division 159

referenced, the object of the OCCURS DEPENDING ON clause must fall within the
range integer-1 through integer-2.

The following constitute complex OCCURS DEPENDING ON:
� Subordinate items can contain OCCURS DEPENDING ON clauses.
� Entries containing an OCCURS DEPENDING ON clause can be followed by

non-subordinate items. Non-subordinate items, however, cannot be the object
of an OCCURS DEPENDING ON clause.

� The location of any subordinate or non-subordinate item, following an item
containing an OCCURS DEPENDING ON clause, is affected by the value of
the OCCURS DEPENDING ON object.

� Entries subordinate to the subject of an OCCURS DEPENDING ON clause can
contain OCCURS DEPENDING ON clauses.

� When implicit redefinition is used in a File Description (FD) entry, subordinate
level items can contain OCCURS DEPENDING ON clauses.

� The INDEXED BY phrase can be specified for a table that has a subordinate
item that contains an OCCURS DEPENDING ON clause.

For more information on complex OCCURS DEPENDING ON, see the IBM
COBOL Programming Guide for your platform.

PICTURE clause

In one record description entry, any entry that contains an OCCURS DEPENDING
ON clause can be followed only by items subordinate to it.

The OCCURS DEPENDING ON clause cannot be specified as subordinate to
another OCCURS clause.

All data-names used in the OCCURS clause can be qualified; they can not be
subscripted or indexed.

The ASCENDING/DESCENDING KEY and INDEXED BY clauses are described
under “Fixed-length tables” on page 155.

 PICTURE clause

The PICTURE clause specifies the general characteristics and editing requirements
of an elementary item.

 Format
��─ ──┬ ┬─PICTURE─ ──┬ ┬──── ─character-string──────────────────────────────────��
 └ ┘─PIC───── └ ┘─IS─

PICTURE or PIC
The PICTURE clause must be specified for every elementary item except an
index data item or the subject of the RENAMES clause. In these cases, use of
this clause is prohibited.

The PICTURE clause can be specified only at the elementary level.

PIC is an abbreviation for PICTURE and has the same meaning.

character-string
PICTURE character-string is made up of certain COBOL characters used as
symbols. The allowable combinations determine the category of the
elementary data item.

160 COBOL Language Reference

As an IBM extension, the PICTURE character-string can contain a maximum of
50 characters.

� For USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or USAGE IS
OBJECT REFERENCE data items

� For internal floating-point data items

E, G, N

All other lowercase letters are not equivalent to their corresponding uppercase
representations.

For DBCS data—a character
position into which a DBCS
space is inserted. Represents a
single DBCS character position
containing a DBCS space.

Occupies 2 bytes

E Marks the start of the
exponent in an external
floating-point item.

Occupies 1 byte

PICTURE clause

The PICTURE character-string can contain a maximum of 30 characters.

|
|

The PICTURE clause is not allowed:
� For index data items or the subject of the RENAMES clause
� In descriptions of items described with USAGE IS INDEX

Symbols used in the PICTURE clause

The meaning of each PICTURE clause symbol is defined in Table 11 on page 161.
The sequence in which PICTURE clause symbols must be specified is shown in
Figure 6 on page 164. More detailed explanations of PICTURE clause symbols
follow the figures.

Any punctuation character appearing within the PICTURE character-string is not
considered a punctuation character, but rather a PICTURE character-string symbol.

When specified in the SPECIAL-NAMES paragraph, DECIMAL-POINT IS
COMMA exchanges the functions of the period and the comma in PICTURE
character strings and in numeric literals.

The lowercase letters corresponding to the uppercase letters representing the
following PICTURE symbols are equivalent to their uppercase representations in a
PICTURE character-string:

A, B, P, S, V, X, Z, CR, DB

The heading Size refers to the number of bytes the symbol contributes to the
actual size of the data item.

In the following description of the PICTURE clause, cs indicates any valid currency
symbol. For details, see “Currency symbol” on page 165.

Table 11 (Page 1 of 4). PICTURE clause symbol meanings

Symbol Meaning Size Restrictions

A A character position that can
contain only a letter of the
alphabet or a space.

Occupies 1 byte

B For Non-DBCS data—a
character position into which
the space character is inserted.

Occupies 1 byte

Part 5. Data Division 161

G A DBCS character position Occupies 2 bytes Cannot be specified for a
non-DBCS item.

Under AIX and Windows, the
locale you select must indicate a
DBCS code page. For
information on locale, see
Appendix F, “Locale
considerations (workstation
only)” on page 515.

N A DBCS character position Occupies 2 bytes Cannot be specified for a
non-DBCS item.

Under AIX and Windows, the
locale you select must indicate a
DBCS code page. For
information on locale, see
Appendix F, “Locale
considerations (workstation
only)” on page 515.

PICTURE clause

Table 11 (Page 2 of 4). PICTURE clause symbol meanings

Symbol Meaning Size Restrictions

P An assumed decimal scaling
position. Used to specify the
location of an assumed
decimal point when the point
is not within the number that
appears in the data item. See
also “P symbol” on page 165.

Not counted in the size of the
data item. Scaling position
characters are counted in
determining the maximum
number of digit positions in
numeric-edited items or in
items that appear as arithmetic
operands.

The size of the value is the
number of digit positions
represented by the PICTURE
character-string.

Can appear only as a continuous
string of Ps in the leftmost or
rightmost digit positions within
a PICTURE character-string.

S An indicator of the presence
(but not the representation nor,
necessarily, the position) of an
operational sign. An
operational sign indicates
whether the value of an item
involved in an operation is
positive or negative.

Not counted in determining
the size of the elementary item,
unless an associated SIGN
clause specifies the SEPARATE
CHARACTER phrase (which
would occupy 1 byte).

Must be written as the leftmost
character in the PICTURE string.

V An indicator of the location of
the assumed decimal point.
Does not represent a character
position.

When the assumed decimal
point is to the right of the
rightmost symbol in the string,
the V is redundant.

Not counted in the size of the
elementary item

Can appear only once in a
character-string.

X A character position that can
contain any allowable
character from the character
set of the computer.

Occupies 1 byte

162 COBOL Language Reference

A trailing comma insertion
character can be immediately
followed by the separator
comma or separator semicolon;
in this case, the PICTURE clause
need not be the last clause of the
data description entry.

A trailing period insertion
character can be immediately
followed by the separator
comma or separator semicolon;
in this case, the PICTURE clause
need not be the last clause of the
data description entry.

PICTURE clause

Table 11 (Page 3 of 4). PICTURE clause symbol meanings

Symbol Meaning Size Restrictions

Z A leading numeric character
position. When that position
contains a zero, a space
character replaces the zero.

Each 'Z' is counted in the size
of the data item.

9 A character position that
contains a numeral.

Each '9' is counted in the size
of the data item.

0 A character position into
which the numeral zero is
inserted.

Each '0' is counted in the size
of the data item.

/ A character position into
which the slash character is
inserted.

Each '/' is counted in the size
of the data item.

, A character position into
which a comma is inserted.

Each ',' is counted in the size
of the data item.

If the comma insertion character
is the last symbol in the
PICTURE character-string, the
PICTURE clause must be the last
clause of the data description
entry and must be immediately
followed by the separator period.

. An editing symbol that
represents the decimal point
for alignment purposes. In
addition, it represents a
character position into which a
period is inserted.

Each '.' is counted in the size
of the data item.

If the period insertion character
is the last symbol in the
PICTURE character-string, the
PICTURE clause must be the last
clause of that data description
entry and must be immediately
followed by the separator period.

+
-
CR
DB

Editing sign control symbols.
Each represents the character
position into which the editing
sign control symbol is placed.

Each character used in the
symbol is counted in
determining the size of the
data item.

The symbols are mutually
exclusive in one character-string.

* A check protect symbol—a
leading numeric character
position into which an asterisk
is placed when that position
contains a zero.

Each asterisk (*) is counted in
the size of the item.

Part 5. Data Division 163

■ Closed square indicates that the item is an IBM
extension.

PICTURE clause

Table 11 (Page 4 of 4). PICTURE clause symbol meanings

Symbol Meaning Size Restrictions

cs Currency symbol, representing
a character position into which
a currency sign value is
placed. The default currency
symbol is the dollar sign ($).
For details, see “Currency
symbol” on page 165.

The first occurrence of a
currency symbol adds the
number of characters in the
currency sign value to the size
of the data item. Each
subsequent occurrence adds
one character to the size of the
data item.

Figure 6 shows the sequence in which PICTURE clause symbols must be specified.

Figure 6. PICTURE clause symbol sequence

Figure legend:

� Closed circle indicates that the symbol(s) at the top of
the column can, in a given character-string, appear
anywhere to the left of the symbol(s) at the left of the
row.

{ } Braces indicate items that are mutually exclusive.

164 COBOL Language Reference

 either in the CURRENCY compiler option or

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and
the NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the
default currency sign value and currency symbol. For more information about the
CURRENCY SIGN clause, see “CURRENCY SIGN clause” on page 90. For more
information about the CURRENCY and NOCURRENCY compiler options, see the
IBM COBOL Programming Guide for your platform.

Different currency symbols must not be used in the same
PICTURE character-string.

Unlike all other PICTURE clause symbols, currency symbols are case-sensitive: for
example, 'D' and 'd' specify different currency symbols.

PICTURE clause

Symbols that appear twice
Nonfloating insertion symbols + and -, floating
insertion symbols Z, *, +, -, and cs, and the symbol P
appear twice. The leftmost column and uppermost
row for each symbol represents its use to the left of the
decimal point position. The second appearance of the
symbol in the table represents its use to the right of the
decimal point position.

 P symbol

Because the scaling position character P implies an assumed decimal point (to the
left of the Ps, if the Ps are leftmost PICTURE characters; to the right of the Ps, if
the Ps are rightmost PICTURE characters), the assumed decimal point symbol, V,
is redundant as either the leftmost or rightmost character within such a PICTURE
description.

In certain operations that reference a data item whose PICTURE character-string
contains the symbol P, the algebraic value of the data item is used rather than the
actual character representation of the data item. This algebraic value assumes the
decimal point in the prescribed location and zero in place of the digit position
specified by the symbol P. The size of the value is the number of digit positions
represented by the PICTURE character-string. These operations are any of the
following:
� Any operation requiring a numeric sending operand.
� A MOVE statement where the sending operand is numeric and its PICTURE

character-string contains the symbol P.
� A MOVE statement where the sending operand is numeric-edited and its

PICTURE character-string contains the symbol P and the receiving operand is
numeric or numeric-edited.

� A comparison operation where both operands are numeric.

In all other operations the digit positions specified with the symbol P are ignored
and are not counted in the size of the operand.

 Currency symbol

The currency symbol in a character-string is represented by the symbol $, or by a
single character specified in the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the Environment
Division.

A currency symbol can be repeated within the PICTURE character-string to specify
floating insertion.

Part 5. Data Division 165

G N

The symbol G or N can appear alone in the PICTURE character-string.

E

� DBCS items
� External floating-point items

PICTURE clause

A currency symbol can be used only to define a numeric-edited item with USAGE
DISPLAY.

In the following description of the PICTURE clause, cs indicates any valid currency
symbol.

 Character-string representation

Symbols that can appear more than once
The following symbols can appear more than once in one PICTURE
character-string:

A B P X Z 9 ? / , + - V cs

At least one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, -,
or cs must be present in a PICTURE string.

An unsigned nonzero integer enclosed in parentheses immediately following
any of these symbols specifies the number of consecutive occurrences of that
symbol.

Example: The following two PICTURE clause specifications are equivalent:

PICTURE IS $99999.99CR

PICTURE IS $9(5).9(2)CR

Symbols that can appear only once
The following symbols can appear only once in one PICTURE character-string:

S V . CR DB

Except for the PICTURE symbol V, each time any of the above symbols
appears in the character-string, it represents an occurrence of that character or
set of allowable characters in the data item.

Data categories and PICTURE rules

The allowable combinations of PICTURE symbols determine the data category of
the item:
� Alphabetic items
� Numeric Items
� Numeric-edited items
� Alphanumeric items
� Alphanumeric-edited items

 Alphabetic items

The PICTURE character-string can contain only the symbol A.

The contents of the item in standard data format must consist of any of the letters
of the English alphabet and the space character.

166 COBOL Language Reference

For
numeric date fields, the PICTURE character-string can contain only the symbols 9
and S.

 when the ARITH(COMPAT)
compiler option is in effect, or from 1 through 31, inclusive, when the
ARITH(EXTEND) compiler option is in effect. For numeric date fields, the number
of digit positions must match the number of characters specified by the DATE
FORMAT clause.

 COMPUTATIONAL-3,
COMPUTATIONAL-4, or COMPUTATIONAL-5.

The BINARY (AIX and Windows only), NUMPROC (OS/390 and VM only), and
TRUNC compiler options can affect the use of numeric data items. For details, see
the IBM COBOL Programming Guide for your platform.

PICTURE clause

Other clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal containing only
alphabetic characters, SPACE, or a symbolic-character as the value of a figurative
constant.

 Numeric items

Types of numeric items are:
� Binary
� Packed decimal (internal decimal)
� Zoned decimal (external decimal)

The PICTURE character-string can contain only the symbols 9, P, S, and V.

| For binary items, the number of digit positions must range from 1 through 18
| inclusive. For packed decimal and zoned decimal items the number of digit
| positions must range from 1 through 18, inclusive,
|
|

If unsigned, the contents of the item in standard data format must contain a
combination of the Arabic numerals 0-9. If signed, it can also contain a +, −, or
other representation of the operational sign.

Examples of valid ranges

PICTURE Valid Range of Values

9999 ? through 9999
S99 -99 through +99

 S999V9 -999.9 through +999.9
PPP999 ? through .???999
S999PPP -1??? through -999??? and

+1??? through +999??? or zero

Other clauses: The USAGE of the item can be DISPLAY, BINARY,
COMPUTATIONAL, PACKED-DECIMAL,

A VALUE clause can specify a figurative constant ZERO.

A VALUE clause associated with an elementary numeric item must specify a
numeric literal or the figurative constant ZERO. A VALUE clause associated with
a group item consisting of elementary numeric items must specify a nonnumeric
literal or a figurative constant, because the group is considered alphanumeric. In
both cases, the literal is treated exactly as specified; no editing is performed.

|

 Numeric-edited items

The PICTURE character-string can contain the following symbols:

B P V Z 9 ? / , . + - CR DB V cs

Part 5. Data Division 167

If the ARITH(EXTEND) compiler option is in effect, then the
number of digit positions represented in the character-string must be in the
range 1 through 31, inclusive.

PICTURE clause

The combinations of symbols allowed are determined from the PICTURE clause
symbol order allowed (see Figure 6 on page 164), and the editing rules (see
“PICTURE clause editing” on page 170).

The following rules also apply:
� Either the BLANK WHEN ZERO clause must be specified for the item, or the

string must contain at least one of the following symbols:

B / Z ? , . V + - CR DB cs

| � If the ARITH(COMPAT) compiler option is in effect, then the number of digit
| positions represented in the character-string must be in the range 1 through 18,
| inclusive.
|
|

� The total number of character positions in the string (including
editing-character positions) must not exceed 249.

The contents of those character positions representing digits in standard data
format must be one of the 10 Arabic numerals.

Other clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative
constant. The literal is treated exactly as specified; no editing is done.

 Alphanumeric items

The PICTURE character-string must consist of either of the following:
� The symbol X
� Combinations of the symbols A, X, and 9 (A character-string containing all As

or all 9s does not define an alphanumeric item.)

The item is treated as if the character-string contained only the symbol X.

The contents of the item in standard data format can be any allowable characters
from the character set of the computer.

Other clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative
constant.

 Alphanumeric-edited items

The PICTURE character-string can contain the following symbols:

A X 9 B ? /

The string must contain at least one A or X, and at least one B or 0 (zero) or /.

The contents of the item in standard data format must be two or more characters
from the character set of the computer.

Other clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative
constant. The literal is treated exactly as specified; no editing is done.

168 COBOL Language Reference

 DBCS items

The PICTURE character-string can contain the symbol(s) G, G and B, or N. Each
G, B or N represents a single DBCS character position.

The entire range of characters for a DBCS literal can be used.

 Under AIX and Windows, do not include a single byte character of a
DBCS code page in a DBCS data item. (The locale you select must indicate a
DBCS code page. For information on locale, see Appendix F, “Locale
considerations (workstation only)” on page 515.)

For a code page with characters represented in double bytes, the following
padding and truncation rules apply:
� Padding—For DBCS data items, padding is done using the double byte space

characters until the data area is filled (based on the number of byte positions
allocated for the data item).

Single-byte characters are used for padding when the padding needed is not a
multiple of the code page width (for example, a group item moved to a DBCS
data item).

� Truncation—For DBCS data items, truncation is done based on the size of the
target data area on the byte boundary of the end of the data area. You must
ensure that a truncation does not result in truncation of bytes representing a
partial DBCS character.

Other clauses: When PICTURE clause symbol G is used, USAGE DISPLAY-1
must be specified.

When PICTURE clause symbol N is used, USAGE DISPLAY-1 is assumed and
does not need to be specified.

Any associated VALUE clause must specify a DBCS literal or the figurative
constant SPACE/SPACES.

External floating-point items

 Format
��─ ──┬ ┬───── ─mantissa E─ ──┬ ┬───── ─exponent──��

├ ┤─ + ─ ├ ┤─ + ─
└ ┘─ – ─ └ ┘─ – ─

+ or −
A sign character must immediately precede both the mantissa and the
exponent.

A + sign indicates that a positive sign will be used in the output to represent
positive values and that a negative sign will represent negative values.

A − sign indicates that a blank will be used in the output to represent positive
values and that a negative sign will represent negative values.

Each sign position occupies one byte of storage.

PICTURE clause

Part 5. Data Division 169

mantissa
The mantissa can contain the symbols:

9 . V

An actual decimal point can be represented with a period (.) while an assumed
decimal point is represented by a V.

Either an actual or an assumed decimal point must be present in the mantissa;
the decimal point can be leading, embedded, or trailing.

The mantissa can contain from 1 to 16 numeric characters.

E Indicates the exponent.

exponent
The exponent must consist of the symbol 99.

Other clauses: The OCCURS, REDEFINES, RENAMES, and USAGE clauses can
be associated with external floating-point items.

The SIGN clause is accepted as documentation and has no effect on the
representation of the sign.

The SYNCHRONIZED clause is treated as documentation.

The following clauses are invalid with external floating-point items:
� BLANK WHEN ZERO
� JUSTIFIED
� VALUE

PICTURE clause

PICTURE clause editing

There are two general methods of editing in a PICTURE clause:
� Insertion editing

— Simple insertion
— Special insertion
— Fixed insertion
— Floating insertion

� Suppression and replacement editing
— Zero suppression and replacement with asterisks
— Zero suppression and replacement with spaces.

The type of editing allowed for an item depends on its data category. The type of
editing that is valid for each category is shown in Table 12.

Table 12 (Page 1 of 2). Data categories

Data category Type of editing Insertion symbol

Alphabetic None None

Numeric None None

170 COBOL Language Reference

DBCS Simple insertion B

External floating-point Special insertion .

 DBCS
items.

For
edited DBCS items, each insertion symbol (B) is counted in the size of the item and
represents the position within the item where the DBCS space is to be inserted.

 GGBBGG D1D2D3D4 D1D2␣␣␣␣D3D4

 either or external
floating-point items.

 +999.99E+99 12345 +123.45E+?2

PICTURE clause

Table 12 (Page 2 of 2). Data categories

Numeric-edited Simple insertion

Special insertion

Fixed insertion

Floating insertion

Zero suppression

Replacement

B 0 / ,

.

cs + − CR DB

cs + −

Z *

Z * + − cs

Alphanumeric None None

Alphanumeric-edited Simple insertion B 0 /

Simple insertion editing

This type of editing is valid for alphanumeric-edited, numeric-edited, and

Each insertion symbol is counted in the size of the item, and represents the
position within the item where the equivalent character is to be inserted.

For example:

PICTURE Value of Data Edited Result

X(1?)/XX ALPHANUMER?1 ALPHANUMER/?1
 X(5)BX(7) ALPHANUMERIC ALPHA NUMERIC
 99,B999,B??? 1234 ?1,␣234,␣???
 99,999 12345 12,345

Special insertion editing

This type of editing is valid for numeric-edited items

The period (.) is the special insertion symbol; it also represents the actual decimal
point for alignment purposes.

The period insertion symbol is counted in the size of the item, and represents the
position within the item where the actual decimal point is inserted.

Either the actual decimal point or the symbol V as the assumed decimal point, but
not both, must be specified in one PICTURE character-string.

For example:

PICTURE Value of Data Edited Results

 999.99 1.234 ??1.23
 999.99 12.34 ?12.34

999.99 123.45 123.45
 999.99 1234.5 234.5?

Part 5. Data Division 171

PICTURE clause

Fixed insertion editing

This type of editing is valid only for numeric-edited items. The following insertion
symbols are used:
 cs

+ − CR DB (editing-sign control symbols)

In fixed insertion editing, only one currency symbol and one editing sign control
symbol can be specified in one PICTURE character-string.

Unless it is preceded by a + or − symbol, the currency symbol must be the first
character in the character-string.

When either + or − is used as a symbol, it must be the first or last character in the
character-string.

When CR or DB is used as a symbol, it must occupy the rightmost two character
positions in the character-string. If these two character positions contain the
symbols CR or DB, the uppercase letters are the insertion characters.

Editing sign control symbols produce results that depend on the value of the data
item, as shown below:

 Editing Symbol Result: Result:
 in PICTURE Data Item Data Item

Character-String Positive or Zero Negative

+ + -
 - space -
 CR 2 spaces CR
 DB 2 spaces DB

For example:

PICTURE Value of Data Edited Result

999.99+ +6555.556 555.55+
 +9999.99 -6555.555 -6555.55
 9999.99 +1234.56 1234.56
 $999.99 -123.45 $123.45
 -$999.99 -123.456 -$123.45
 -$999.99 +123.456 $123.45
 $9999.99CR +123.45 $?123.45
 $9999.99DB -123.45 $?123.45DB

Floating insertion editing

This type of editing is valid only for numeric-edited items.

The following symbols are used:
cs + −

Within one PICTURE character-string, these symbols are mutually exclusive as
floating insertion characters.

Floating insertion editing is specified by using a string of at least two of the
allowable floating insertion symbols to represent leftmost character positions into
which these actual characters can be inserted.

The leftmost floating insertion symbol in the character-string represents the
leftmost limit at which this actual character can appear in the data item. The

172 COBOL Language Reference

PICTURE clause

rightmost floating insertion symbol represents the rightmost limit at which this
actual character can appear.

The second leftmost floating insertion symbol in the character-string represents the
leftmost limit at which numeric data can appear within the data item. Nonzero
numeric data can replace all characters at or to the right of this limit.

Any simple-insertion symbols (B 0 / ,) within or to the immediate right of the
string of floating insertion symbols are considered part of the floating
character-string. If the period (.) special-insertion symbol is included within the
floating string, it is considered to be part of the character-string.

To avoid truncation, the minimum size of the PICTURE character-string must be:
� The number of character positions in the sending item, plus
� The number of nonfloating insertion symbols in the receiving item, plus
� One character for the floating insertion symbol.

Representing floating insertion editing

In a PICTURE character-string, there are two ways to represent floating insertion
editing and, thus, two ways in which editing is performed:
1. Any or all leading numeric character positions to the left of the decimal point

are represented by the floating insertion symbol. When editing is performed, a
single floating insertion character is placed to the immediate left of the first
nonzero digit in the data, or of the decimal point, whichever is farther to the
left. The character positions to the left of the inserted character are filled with
spaces.

If all numeric character positions in the PICTURE character-string are
represented by the insertion character, then at least one of the insertion
characters must be to the left of the decimal point.

2. All the numeric character positions are represented by the floating insertion
symbol. When editing is performed, then:
� If the value of the data is zero, the entire data item will contain spaces.
� If the value of the data is nonzero, the result is the same as in rule 1.

For example:

PICTURE Value of Data Edited Result

 $$$$.99 .123 $.12
 $$$9.99 .12 $?.12
 $,$$$,999.99 -1234.56 $1,234.56
 +,+++,999.99 -123456.789 -123,456.78
 $$,$$$,$$$.99CR -1234567 $1,234,567.??CR
 ++,+++,+++.+++ ????.??

Zero suppression and replacement editing

This type of editing is valid only for numeric-edited items.

In zero suppression editing, the symbols Z and * are used. These symbols are
mutually exclusive in one PICTURE character-string.

The following symbols are mutually exclusive as floating replacement symbols in
one PICTURE character-string:

Z * + − cs

Part 5. Data Division 173

REDEFINES clause

Specify zero suppression and replacement editing with a string of one or more of
the allowable symbols to represent leftmost character positions in which zero
suppression and replacement editing can be performed.

Any simple insertion symbols (B 0 / ,) within or to the immediate right of the
string of floating editing symbols are considered part of the string. If the period (.)
special insertion symbol is included within the floating editing string, it is
considered to be part of the character-string.

Representing zero suppression

In a PICTURE character-string, there are two ways to represent zero suppression,
and two ways in which editing is performed:
1. Any or all of the leading numeric character positions to the left of the decimal

point are represented by suppression symbols. When editing is performed, the
replacement character replaces any leading zero in the data that appears in the
same character position as a suppression symbol. Suppression stops at the
leftmost character:
� That does not correspond to a suppression symbol
� That contains nonzero data
� That is the decimal point.

2. All the numeric character positions in the PICTURE character-string are
represented by the suppression symbols. When editing is performed, and the
value of the data is nonzero, the result is the same as in the preceding rule. If
the value of the data is zero, then:
� If Z has been specified, the entire data item will contain spaces.
� If * has been specified, the entire data item, except the actual decimal

point, will contain asterisks.

For example:

PICTURE Value of Data Edited Result

VVVV.VV ????.?? VVVV.VV
 ZZZZ.ZZ ????.??
 ZZZZ.99 ????.?? .??

VVVV.99 ????.?? VVVV.??
 ZZ99.99 ????.?? ??.??
 Z,ZZZ.ZZ+ +123.456 123.45+

V,VVV.VV+ -123.45 VV123.45-
 VV,VVV,VVV.VV+ +12345678.9 12,345,678.9?+
 $Z,ZZZ,ZZZ.ZZCR +12345.67 $ 12,345.67
 $BV,VVV,VVV.VVBBDB -12345.67 $ VVV12,345.67 DB

Do not specify both the asterisk (*) as a suppression symbol and the BLANK
WHEN ZERO clause for the same entry.

 REDEFINES clause

The REDEFINES clause allows you to use different data description entries to
describe the same computer storage area.

 Format
��──level-number─ ──┬ ┬───────────── ─REDEFINES──data-name-2──────────────────��
 ├ ┤─data-name-1─
 └ ┘─FILLER──────

174 COBOL Language Reference

The data description entry for data-name-2, the redefined item, can contain a
REDEFINES clause.

REDEFINES clause

Note: Level-number, data-name-1, and FILLER are not part of the REDEFINES
clause itself, and are included in the format only for clarity.

When specified, the REDEFINES clause must be the first entry following
data-name-1 or FILLER. If data-name-1 or FILLER is not specified, the
REDEFINES clause must be the first entry following the level-number.

The level-numbers of data-name-1 and data-name-2 must be identical, and must
not be level 66 or level 88.

data-name-1, FILLER
Identifies an alternate description for the same area, and is the redefining item
or the REDEFINES subject.

data-name-2
Is the redefined item or the REDEFINES object.

When more than one level-01 entry is written subordinate to an FD entry, a
condition known as implicit redefinition occurs. That is, the second level-01 entry
implicitly redefines the storage allotted for the first entry. In such level-01 entries,
the REDEFINES clause must not be specified.

Redefinition begins at data-name-1 and ends when a level-number less than or
equal to that of data-name-1 is encountered. No entry having a level-number
numerically lower than those of data-name-1 and data-name-2 can occur between
these entries. For example:

?5 A PICTURE X(6).
?5 B REDEFINES A.
 1? B-1 PICTURE X(2).
 1? B-2 PICTURE 9(4).
?5 C PICTURE 99V99.

In this example, A is the redefined item, and B is the redefining item. Redefinition
begins with B and includes the two subordinate items B-1 and B-2. Redefinition
ends when the level-05 item C is encountered.

The data description entry for the redefined item cannot contain an OCCURS
clause. However, the redefined item can be subordinate to an item whose data
description entry contains an OCCURS clause. In this case, the reference to the
redefined item in the REDEFINES clause must not be subscripted. Neither the
redefined item nor the redefining item, or any items subordinate to them, can
contain an OCCURS DEPENDING ON clause.

If the GLOBAL clause is used in the data description entry which contains the
REDEFINES clause, it is only the subject of that REDEFINES clause that possesses
the global attribute.

The EXTERNAL clause must not be specified on the same data description entry
as a REDEFINES clause.

If the data item referenced by data-name-2 is either declared to be an external data
record or is specified with a level-number other than 01, the number of character
positions it contains must be greater than or equal to the number of character
positions in the data item referenced by the subject of this entry. If the data-name
referenced by data-name-2 is specified with a level-number of 01 and is not
declared to be an external data record, there is no such constraint.

Part 5. Data Division 175

When the data item implicitly redefines multiple 01-level records in a file
description (FD) entry, items subordinate to the redefining or redefined item can
contain an OCCURS DEPENDING ON clause.

An item described as USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or
USAGE IS OBJECT REFERENCE can be the subject or object of a REDEFINES
clause.

An external or internal floating-point item can be the subject or object of a
REDEFINES clause.

REDEFINES clause

One or more redefinitions of the same storage area are permitted. The entries
giving the new descriptions of the storage area must immediately follow the
description of the redefined area without intervening entries that define new
character positions. Multiple redefinitions must all use the data-name of the
original entry that defined this storage area. For example:

?5 A PICTURE 9999.
?5 B REDEFINES A PICTURE 9V999.
?5 C REDEFINES A PICTURE 99V99.

The redefining entry (identified by data-name-1), and any subordinate entries,
must not contain any VALUE clauses.

REDEFINES clause considerations

Data items within an area can be redefined without changing their lengths. For
example:

?5 NAME-2.
 1? SALARY PICTURE XXX.
 1? SO-SEC-NO PICTURE X(9).
 1? MONTH PICTURE XX.
?5 NAME-1 REDEFINES NAME-2.
 1? WAGE PICTURE XXX.
 1? EMP-NO PICTURE X(9).
 1? YEAR PICTURE XX.

Data item lengths and types can also be re-specified within an area. For example:

?5 NAME-2.
 1? SALARY PICTURE XXX.
 1? SO-SEC-NO PICTURE X(9).
 1? MONTH PICTURE XX.
?5 NAME-1 REDEFINES NAME-2.
 1? WAGE PICTURE 999V999.
 1? EMP-NO PICTURE X(6).
 1? YEAR PICTURE XX.

When an area is redefined, all descriptions of the area are always in effect; that is,
redefinition does not cause any data to be erased and never supersedes a previous
description. Thus, if B REDEFINES C has been specified, either of the two
procedural statements, MOVE X TO B and MOVE Y TO C, could be executed at any
point in the program.

In the first case, the area described as B would assume the value and format of X.
In the second case, the same physical area (described now as C) would assume the
value and format of Y. Note that, if the second statement is executed immediately
after the first, the value of Y replaces the value of X in the one storage area.

The usage of a redefining data item need not be the same as that of a redefined
item. This does not, however, cause any change in existing data. For example:

176 COBOL Language Reference

REDEFINES clause
?5 B PICTURE 99 USAGE DISPLAY VALUE 8.
?5 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL-4.
?5 A PICTURE S99 USAGE COMPUTATIONAL-4.

Redefining B does not change the bit configuration of the data in the storage area.
Therefore, the following two statements produce different results:

ADD B TO A
ADD C TO A

In the first case, the value 8 is added to A (because B has USAGE DISPLAY). In the
second statement, the value -3848 is added to A (because C has USAGE
COMPUTATIONAL-4), and the bit configuration of the storage area has the binary
value -3848.

The above example demonstrates how the improper use of redefinition can give
unexpected or incorrect results.

REDEFINES clause examples

The REDEFINES clause can be specified for an item within the scope of an area
being redefined (that is, an item subordinate to a redefined item). For example:

?5 REGULAR-EMPLOYEE.
 1? LOCATION PICTURE A(8).
 1? GRADE PICTURE X(4).
 1? SEMI-MONTHLY-PAY PICTURE 9999V99.
 1? WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY
 PICTURE 999V999.

?5 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
 1? LOCATION PICTURE A(8).
 1? FILLER PICTURE X(6).
 1? HOURLY-PAY PICTURE 99V99.

The REDEFINES clause can also be specified for an item subordinate to a
redefining item. For example:

?5 REGULAR-EMPLOYEE.
 1? LOCATION PICTURE A(8).
 1? GRADE PICTURE X(4).
 1? SEMI-MONTHLY-PAY PICTURE 999V999.

?5 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
 1? LOCATION PICTURE A(8).
 1? FILLER PICTURE X(6).
 1? HOURLY-PAY PICTURE 99V99.
 1? CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

 Undefined results

Undefined results can occur when:
� A redefining item is moved to a redefined item (that is, if B REDEFINES C and

the statement MOVE B TO C is executed).
� A redefined item is moved to a redefining item (that is, if B REDEFINES C and if

the statement MOVE C TO B is executed).

Part 5. Data Division 177

Can specify a DBCS data item if data-name-2 specifies a DBCS data item and
the THROUGH phrase is not specified.

RENAMES clause

 RENAMES clause

The RENAMES clause specifies alternative, possibly overlapping, groupings of
elementary data items.

 Format
��──66──data-name-1──RENAMES──data-name-2─ ──┬ ┬────────────────────────── ───��
 └ ┘ ──┬ ┬─THROUGH─ ─data-name-3─
 └ ┘─THRU────

The special level-number 66 must be specified for data description entries that
contain the RENAMES clause. Level-number 66 and data-name-1 are not part of
the RENAMES clause itself, and are included in the format only for clarity.

One or more RENAMES entries can be written for a logical record. All RENAMES
entries associated with one logical record must immediately follow that record's
last data description entry.

data-name-1
Identifies an alternative grouping of data items.

A level-66 entry cannot rename a level-01, level-77, level-88, or another level-66
entry.

Data-name-1 cannot be used as a qualifier; it can be qualified only by the
names of level indicator entries or level-01 entries.

data-name-2, data-name-3
Identify the original grouping of elementary data items; that is, they must
name elementary or group items within the associated level-01 entry, and must
not be the same data-name. Both data-names can be qualified.

The OCCURS clause must not be specified in the data entries for data-name-2
and data-name-3, or for any group entry to which they are subordinate. In
addition, the OCCURS DEPENDING ON clause must not be specified for any
item defined between data-name-2 and data-name-3.

When data-name-3 is specified, data-name-1 is treated as a group item that
includes all elementary items:

� Starting with data-name-2 (if it is an elementary item) or the first
elementary item within data-name-2 (if it is a group item).

� Ending with data-name-3 (if it is an elementary item) or the last
elementary item within data-name-3 (if it is a group item).

The key words THROUGH and THRU are equivalent.

The leftmost character in data-name-3 must not precede the leftmost character
in data-name-2; the rightmost character in data-name-3 must not precede the
rightmost character in data-name-2. This means that data-name-3 cannot be
totally subordinate to data-name-2.

When data-name-3 is not specified, all of the data attributes of data-name-2
become the data attributes for data-name-1. That is:

� When data-name-2 is a group item, data-name-1 is treated as a group item.

178 COBOL Language Reference

SIGN clause

� When data-name-2 is an elementary item, data-name-1 is treated as an
elementary item.

Figure 7 illustrates valid and invalid RENAMES clause specifications.

Figure 7. RENAMES clause—valid and invalid specifications

 SIGN clause

The SIGN clause specifies the position and mode of representation of the
operational sign for a numeric entry.

Part 5. Data Division 179

The SEPARATE CHARACTER phrase cannot be specified for a date field.

The SIGN clause is treated as documentation for external floating-point items. For
internal floating-point items, the SIGN clause must not be specified.

SIGN clause

 Format
��─ ──┬ ┬────────────── ──┬ ┬─LEADING── ──┬ ┬───────────────────────── ───────────��
 └ ┘ ─SIGN─ ──┬ ┬──── └ ┘─TRAILING─ └ ┘ ─SEPARATE─ ──┬ ┬───────────
 └ ┘─IS─ └ ┘─CHARACTER─

The SIGN clause can be specified only for a signed numeric data description entry
(that is, one whose PICTURE character-string contains an S), or for a group item
that contains at least one such elementary entry. USAGE IS DISPLAY must be
specified, explicitly or implicitly.

If a SIGN clause is specified in either an elementary or group entry subordinate to
a group item for which a SIGN clause is specified, the SIGN clause for the
subordinate entry takes precedence for the subordinate entry.

If you specify the CODE-SET clause in an FD entry, any signed numeric data
description entries associated with that file description entry must be described
with the SIGN IS SEPARATE clause.

The SIGN clause is required only when an explicit description of the properties
and/or position of the operational sign is necessary.

When specified, the SIGN clause defines the position and mode of representation
of the operational sign for the numeric data description entry to which it applies,
or for each signed numeric data description entry subordinate to the group to
which it applies.

If the SEPARATE CHARACTER phrase is not specified, then:
� The operational sign is presumed to be associated with the LEADING or

TRAILING digit position, whichever is specified, of the elementary numeric
data item. (In this instance, specification of SIGN IS TRAILING is the
equivalent of the standard action of the compiler.)

� The character S in the PICTURE character string is not counted in determining
the size of the item (in terms of standard data format characters).

If the SEPARATE CHARACTER phrase is specified, then:
� The operational sign is presumed to be the LEADING or TRAILING character

position, whichever is specified, of the elementary numeric data item. This
character position is not a digit position.

� The character S in the PICTURE character string is counted in determining the
size of the data item (in terms of standard data format characters).

� + is the character used for the positive operational sign.
� - is the character used for the negative operational sign.

Every numeric data description entry whose PICTURE contains the symbol S is a
signed numeric data description entry. If the SIGN clause is also specified for
such an entry, and conversion is necessary for computations or comparisons, the
conversion takes place automatically.

180 COBOL Language Reference

 or for level-01
group items, in which case, every elementary item within this group level item is
synchronized.

SYNCHRONIZED clause

 SYNCHRONIZED clause

The SYNCHRONIZED clause specifies the alignment of an elementary item on a
natural boundary in storage.

 Format
��─ ──┬ ┬─SYNCHRONIZED─ ──┬ ┬─────── ───��
 └ ┘─SYNC───────── ├ ┤─LEFT──
 └ ┘─RIGHT─

SYNC is an abbreviation for SYNCHRONIZED and has the same meaning.

The SYNCHRONIZED clause is never required, but can improve performance on
some systems for binary items used in arithmetic.

| The SYNCHRONIZED clause can be specified for elementary items
|

LEFT
Specifies that the elementary item is to be positioned so that it will begin at the
left character position of the natural boundary in which the elementary item is
placed.

RIGHT
Specifies that the elementary item is to be positioned such that it will terminate
on the right character position of the natural boundary in which it has been
placed.

When specified, the LEFT and the RIGHT phrases are syntax checked, but they
have no effect on the execution of the program.

The length of an elementary item is not affected by the SYNCHRONIZED clause.

Table 13 lists the effect of the SYNCHRONIZE clause on other language elements.

Table 13 (Page 1 of 2). SYNCHRONIZE clause effect on other language elements

Language element Comments

OCCURS clause When specified for an item within the scope of an OCCURS
clause, each occurrence of the item is synchronized.

DISPLAY or
PACKED-DECIMAL

Each item is syntax checked, but it has no effect on the
execution of the program.

Part 5. Data Division 181

 or its USAGE is INDEX.

USAGE IS POINTER,
USAGE IS
PROCEDURE-POINTER,
or USAGE IS OBJECT
REFERENCE

The data is aligned on a fullword boundary.

COMPUTATIONAL-1 The data is aligned on a fullword boundary.

COMPUTATIONAL-2 The data is aligned on a doubleword boundary.

COMPUTATIONAL-3 The data is treated the same as the SYNCHRONIZED clause
for a PACKED-DECIMAL item.

COMPUTATIONAL-4 The data is treated the same as the SYNCHRONIZED clause
for a COMPUTATIONAL item.

COMPUTATIONAL-5 The data is treated the same as the SYNCHRONIZED clause
for a COMPUTATIONAL item.

DBCS and floating point
item

The SYNCHRONIZED clause is ignored.

SYNCHRONIZED clause

In the File Section, the compiler assumes that all level-01 records containing
SYNCHRONIZED items are aligned on doubleword boundaries in the buffer. You
must provide the necessary slack bytes between records to ensure alignment when
there are multiple records in a block.

In the Working-Storage Section, the compiler aligns all level-01 entries on a
doubleword boundary.

For the purposes of aligning binary items in the Linkage Section, all level-01 items
are assumed to begin on doubleword boundaries. Therefore, if you issue a CALL
statement, such operands of any USING phrase within it must be aligned
correspondingly.

Table 13 (Page 2 of 2). SYNCHRONIZE clause effect on other language elements

Language element Comments

BINARY or
COMPUTATIONAL

When the item is the first elementary item subordinate to an
item that contains a REDEFINES clause, the item must not
require the addition of unused character positions.

When the synchronized clause is not specified for a
subordinate data item (one with a level number of 02 through
49):

� The item is aligned at a displacement that is a multiple of
2 relative to the beginning of the record, if its USAGE is
BINARY and its PICTURE is in the range of S9 through
S9(4).

� The item is aligned at a displacement that is a multiple of
4 relative to the beginning of the record, if its USAGE is
BINARY and its PICTURE is in the range of S9(5) through
S9(18),

When SYNCHRONIZED is not specified for binary items, no
space is reserved for slack bytes.

|

REDEFINES clause For an item that contains a REDEFINES clause, the data item
that is redefined must have the proper boundary alignment
for the data item that redefines it. For example, if you write
the following, be sure that data item A begins on a fullword
boundary:

?2 A PICTURE X(4).
?2 B REDEFINES A PICTURE S9(9) BINARY SYNC.

182 COBOL Language Reference

USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, USAGE IS
OBJECT REFERENCE, and COMPUTATIONAL-1 data items

 for COMPUTATIONAL-2 data items.

SYNCHRONIZED clause

 Slack bytes

There are two types of slack bytes:

Slack bytes within records
Unused character positions preceding each synchronized item in the record.

Slack bytes between records
Unused character positions added between blocked logical records.

Slack bytes within records

For any data description that has binary items that are not on their natural
boundaries, the compiler inserts slack bytes within a record to ensure that all
SYNCHRONIZED items are on their proper boundaries.

Because it is important that you know the length of the records in a file, you need
to determine whether slack bytes are required and, if necessary, how many the
compiler will add. The algorithm the compiler uses to calculate this is as follows:
� The total number of bytes occupied by all elementary data items preceding the

binary item are added together, including any slack bytes previously added.
� This sum is divided by m, where:

m = 2 for binary items of 4-digit length or less
m = 4 for binary items of 5-digit length or more: USAGE IS INDEX,

m = 8
� If the remainder (r) of this division is equal to zero, no slack bytes are

required. If the remainder is not equal to zero, the number of slack bytes that
must be added is equal to m - r.

These slack bytes are added to each record immediately following the elementary
data item preceding the binary item. They are defined as if they constituted an
item with a level number equal to that of the elementary item that immediately
precedes the SYNCHRONIZED binary item, and are included in the size of the
group that contains them.

For example:

?1 FIELD-A.
 ?5 FIELD-B PICTURE X(5).
 ?5 FIELD-C.
 1? FIELD-D PICTURE XX.

[1? SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
1? FIELD-E COMPUTATIONAL PICTURE S9(6) SYNC.

?1 FIELD-L.
 ?5 FIELD-M PICTURE X(5).
 ?5 FIELD-N PICTURE XX.
 [?5 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
 ?5 FIELD-O.

1? FIELD-P COMPUTATIONAL PICTURE S9(6) SYNC.

Slack bytes can also be added by the compiler when a group item is defined with
an OCCURS clause and contains within it a SYNCHRONIZED binary data item.
To determine whether slack bytes are to be added, the following action is taken:

Part 5. Data Division 183

SYNCHRONIZED clause

� The compiler calculates the size of the group, including all the necessary slack
bytes within a record.

� This sum is divided by the largest m required by any elementary item within
the group.

� If r is equal to zero, no slack bytes are required. If r is not equal to zero, m - r
slack bytes must be added.

The slack bytes are inserted at the end of each occurrence of the group item
containing the OCCURS clause. For example, a record defined as follows will
appear in storage, as shown, in Figure 8:

?1 WORK-RECORD.
 ?5 WORK-CODE PICTURE X.
 ?5 COMP-TABLE OCCURS 1? TIMES.
 1? COMP-TYPE PICTURE X.

[1? SLACK-BYTES PIC XX. INSERTED BY COMPILER]
1? COMP-PAY PICTURE S9(4)V99 COMP SYNC.
1? COMP-HRS PICTURE S9(3) COMP SYNC.

 1? COMP-NAME PICTURE X(5).

Figure 8. Insertion of slack bytes within a record

In order to align COMP-PAY and COMP-HRS upon their proper boundaries, the
compiler has added two slack bytes within the record.

In the example previous, without further adjustment, the second occurrence of
COMP-TABLE would begin one byte before a doubleword boundary, and the
alignment of COMP-PAY and COMP-HRS would not be valid for any occurrence of the
table after the first. Therefore, the compiler must add slack bytes at the end of the
group, as though the record had been written as follows:

?1 WORK-RECORD.
 ?5 WORK-CODE PICTURE X.
 ?5 COMP-TABLE OCCURS 1? TIMES.
 1? COMP-TYPE PICTURE X.

[1? SLACK-BYTES PIC XX. INSERTED BY COMPILER]
1? COMP-PAY PICTURE S9(4)V99 COMP SYNC.

 1? COMP-HRS PICTURE S9(3) COMP SYNC.
 1? COMP-NAME PICTURE X(5).

[1? SLACK-BYTES PIC XX. INSERTED BY COMPILER]

In this example, the second (and each succeeding) occurrence of COMP-TABLE begins
one byte beyond a doubleword boundary. The storage layout for the first
occurrence of COMP-TABLE will now appear as shown in Figure 9.

184 COBOL Language Reference

SYNCHRONIZED clause

Figure 9. Insertion of slack bytes between records

Each succeeding occurrence within the table will now begin at the same relative
position as the first.

Slack bytes between records

 Under OS/390 and VM, if the file contains blocked logical records that
are to be processed in a buffer, and any of the records contain binary entries for
which the SYNCHRONIZED clause is specified, you can improve performance by
adding any needed slack bytes between records for proper alignment.

The lengths of all the elementary data items in the record, including all slack bytes,
are added. (For variable-length records under OS/390 and VM, it is necessary to
add an additional 4 bytes for the count field.) The total is then divided by the
highest value of m for any one of the elementary items in the record.

If r (the remainder) is equal to zero, no slack bytes are required. If r is not equal
to zero, m - r slack bytes are required. These slack bytes can be specified by
writing a level-02 FILLER at the end of the record.

To show the method of calculating slack bytes both within and between records,
consider the following record description:

?1 COMP-RECORD.
 ?5 A-1 PICTURE X(5).
 ?5 A-2 PICTURE X(3).
 ?5 A-3 PICTURE X(3).
 ?5 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 ?5 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
 ?5 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

The number of bytes in A-1, A-2, and A-3 totals 11. B-1 is a 4-digit
COMPUTATIONAL item and 1 slack byte must therefore be added before B-1.
With this byte added, the number of bytes preceding B-2 totals 14. Because B-2 is
a COMPUTATIONAL item of 5 digits in length, two slack bytes must be added
before it. No slack bytes are needed before B-3.

The revised record description entry now appears as:

Part 5. Data Division 185

SYNCHRONIZED clause
?1 COMP-RECORD.
 ?5 A-1 PICTURE X(5).
 ?5 A-2 PICTURE X(3).
 ?5 A-3 PICTURE X(3).
 [?5 SLACK-BYTE-1 PICTURE X. INSERTED BY COMPILER]
 ?5 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 [?5 SLACK-BYTE-2 PICTURE XX. INSERTED BY COMPILER]
 ?5 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
 ?5 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

There is a total of 22 bytes in COMP-RECORD, but, from the rules given in the
preceding discussion, it appears that m = 4 and r = 2. Therefore, to attain proper
alignment for blocked records, you must add 2 slack bytes at the end of the record.

The final record description entry appears as:

?1 COMP-RECORD.
 ?5 A-1 PICTURE X(5).
 ?5 A-2 PICTURE X(3).
 ?5 A-3 PICTURE X(3).
 [?5 SLACK-BYTE-1 PICTURE X. INSERTED BY COMPILER]
 ?5 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 [?5 SLACK-BYTE-2 PICTURE XX. INSERTED BY COMPILER]
 ?5 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
 ?5 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 ?5 FILLER PICTURE XX. [SLACK BYTES YOU ADD]

186 COBOL Language Reference

NATIVE

COMP-1
NATIVE

COMP-2
NATIVE

COMP-3
COMP-4

NATIVE
COMP-5

COMPUTATIONAL-1
NATIVE

COMPUTATIONAL-2
NATIVE

COMPUTATIONAL-3
COMPUTATIONAL-4

NATIVE
COMPUTATIONAL-5

NATIVE
DISPLAY-1

NATIVE
INDEX
objref phrase

POINTER
PROCEDURE-POINTER

objref phrase
OBJECT REFERENCE

class-name-1
METACLASS

OF

 The NATIVE phrase is treated as a comment for COMP-3,
COMPUTATIONAL-3, COMP-5, COMPUTATIONAL-5, and
PACKED-DECIMAL data items. Under OS/390 and VM, NATIVE has no
effect.

For data items defined with the DATE FORMAT clause, only usage DISPLAY and
COMP-3 (or its equivalents, COMPUTATIONAL-3 and PACKED-DECIMAL) are
allowed. For details, see “Combining the DATE FORMAT clause with other
clauses” on page 150.

USAGE clause

 USAGE clause

The USAGE clause specifies the format of a data item in computer storage.

 Format 1
��─ ──┬ ┬─────────────── ──┬ ┬─BINARY─ ──┬ ┬────────── ───────── ──────────────────��
 └ ┘ ─USAGE─ ──┬ ┬──── │ │└ ┘─ ───(1)

 └ ┘─IS─ ├ ┤─COMP──────────────────────────
 ├ ┤ ─ ─ ──┬ ┬────────── ─────────
 │ │└ ┘─ ───(1)

 ├ ┤ ─ ─ ──┬ ┬────────── ─────────
 │ │└ ┘─ ───(1)

 ├ ┤─ ────────────────────────
 ├ ┤ ─ ─ ──┬ ┬────────── ─────────
 │ │└ ┘─ ───(1)

| ├ ┤─ ────────────────────────
 ├ ┤─COMPUTATIONAL─────────────────
 ├ ┤ ─ ─ ──┬ ┬──────────
 │ │└ ┘─ ───(1)

 ├ ┤ ─ ─ ──┬ ┬──────────
 │ │└ ┘─ ───(1)

 ├ ┤─ ───────────────
 ├ ┤ ─ ─ ──┬ ┬──────────
 │ │└ ┘─ ───(1)

| ├ ┤─ ───────────────
 ├ ┤ ─DISPLAY─ ──┬ ┬────────── ────────
 │ │└ ┘─ ───(1)

 ├ ┤ ─ ─ ──┬ ┬────────── ──────
 │ │└ ┘─ ───(1)

 ├ ┤─ ─────────────────────────
├ ┤─┤ ├─────────────

 ├ ┤─PACKED-DECIMAL────────────────
 ├ ┤─ ───────────────────────
 └ ┘─ ─────────────

├─ ─ ─ ──┬ ┬───────────────────────────────────── ───────────────┤
 └ ┘ ──┬ ┬─────────────────── ─ ─
 └ ┘ ─ ─ ──┬ ┬────
 └ ┘─ ─

Note:
1

The USAGE clause can be specified for a data description entry with a
level-number other than 66 or 88. However, if it is specified at the group level, it
applies to each elementary item in the group. The usage of an elementary item
must not contradict the usage of a group to which the elementary item belongs.

The USAGE clause specifies the format in which data is represented in storage.
The format can be restricted if certain Procedure Division statements are used.

When the USAGE clause is not specified at either the group or elementary level, it
is assumed that the usage is DISPLAY.

Part 5. Data Division 187

 except for a
PACKED-DECIMAL item.

If
the ARITH(EXTEND) compiler option is in effect, then the maximum length of a
PACKED-DECIMAL item is 31 decimal digits.

COMPUTATIONAL-1 and COMPUTATIONAL-2 items (internal floating-point)
cannot have PICTURE strings.

Note: BINARY, COMPUTATIONAL, and COMPUTATIONAL-4 data items
can be affected by the BINARY and TRUNC compiler option specifications.
For information on the effect of these compiler options, see the IBM COBOL
Programming Guide for your platform. (The BINARY compiler option is
applicable only to Windows programs.)

USAGE clause

 Computational items

A computational item is a value used in arithmetic operations. It must be
numeric. If the USAGE of a group item is described with any of these items, the
elementary items within the group have this usage.

| The maximum length of a computational item is 18 decimal digits,
| If the ARITH(COMPAT) compiler option is in effect,
| then the maximum length of a PACKED-DECIMAL item is 18 decimal digits.
|
|

The PICTURE of a computational item can contain only:

9 One or more numeric character positions
S One operational sign
V One implied decimal point
P One or more decimal scaling positions

BINARY
Specified for binary data items. Such items have a decimal equivalent
consisting of the decimal digits 0 through 9, plus a sign. Negative numbers
are represented as the two's complement of the positive number with the same
absolute value.

The amount of storage occupied by a binary item depends on the number of
decimal digits defined in its PICTURE clause:

The operational sign for “big-endian” binary data (such as OS/390 and VM) is
contained in the left most bit of the binary data. The operational sign for
“little-endian” binary data is contained in the left most bit of the right most
byte of the binary data.

PACKED-DECIMAL
Specified for internal decimal items. Such an item appears in storage in
packed decimal format. There are 2 digits for each character position, except
for the trailing character position, which is occupied by the low-order digit and
the sign. Such an item can contain any of the digits 0 through 9, plus a sign,
representing a value not exceeding 18 decimal digits.

The sign representation uses the same bit configuration as the 4-bit sign
representation in zoned decimal fields. For details, see the IBM COBOL
Programming Guide for your platform.

Digits in PICTURE clause Storage occupied

1 through 4 2 bytes (halfword)
5 through 9 4 bytes (fullword)
10 through 18 8 bytes (doubleword)

188 COBOL Language Reference

COMPUTATIONAL-1 or COMP-1 (floating-point)
Specified for internal floating-point items (single precision). COMP-1 items are
4 bytes long.

 COMP-1 data items are affected by the FLOAT(NATIVE|HEX)
compiler option. For details, see the IBM COBOL Programming Guide for your
platform

COMPUTATIONAL-2 or COMP-2 (long floating-point)
Specified for internal floating-point items (double precision). COMP-2 items
are 8 bytes long.

 COMP-2 data items are affected by the FLOAT(NATIVE|HEX)
compiler option. For details, see the IBM COBOL Programming Guide for your
platform

COMPUTATIONAL-3 or COMP-3 (internal decimal)
This is the equivalent of PACKED-DECIMAL.

COMPUTATIONAL-4 or COMP-4 (binary)
This is the equivalent of BINARY.

COMPUTATIONAL-5 or COMP-5 (native binary)
These data items are represented in storage as binary data. The data items can
contain values up to the capacity of the native binary representation (2, 4 or 8
bytes), rather than being limited to the value implied by the number of nines
in the picture for the item (as is the case for USAGE BINARY data). When
numeric data is moved or stored into a COMP-5 item, truncation occurs at the
binary field size, rather than at the COBOL picture size limit. When a
COMP-5 item is referenced, the full binary field size is used in the operation.

Note: The TRUNC(BIN) compiler option causes all binary data items (USAGE
COMP, COMP-4) to be handled as if they were declared with USAGE
COMP-5.

The picture for a COMP-5 data item can specify a scaling factor (that is,
decimal positions or implied integer positions). In this case, the maximal
capacities listed in the table above must be scaled appropriately. For example,
a data item with description PICTURE S99V99 COMP-5 is represented in
storage as a binary half-word, and supports a range of values from -327.68 to
+327.67.

Picture Storage representation Numeric values

S9(1) through S9(4) Binary half-word (2 bytes) -32768 through +32767

S9(5) through S9(9) Binary full-word (4 bytes) -2,147,483,648 through
+2,147,483,647

S9(10) through S9(18) Binary double-word (8
bytes)

-9,223,372,036,854,775,808
through
+9.223,372,036,854,775,807

9(1) through 9(4) Binary half-word (2 bytes) 0 through 65535

9(5) through 9(9) Binary full-word (4 bytes) 0 through 4,294,967,295

9(10) through 9(18) Binary double-word (8
bytes)

0 through
18,446,744,073,709,551,615

USAGE clause

COMPUTATIONAL or COMP (binary)
This is the equivalent of BINARY. The COMPUTATIONAL phrase is
synonymous with BINARY.

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|||

|||

|||
|

||
|
|
|
|

|||

|||

||
|
|
|

Part 5. Data Division 189

� External floating-point

If the ARITH(EXTEND) compiler option is in
effect, then the maximum length of an external decimal item is 31 digits.

Effect of CHAR(EBCDIC) compiler option (workstation only): Character data
items are treated as EBCDIC when the CHAR(EBCDIC) option is used, unless the
character data is defined with the NATIVE phrase. Also note, group items are
affected by the CHAR options as well. A group item is treated as a USAGE
DISPLAY item and consists of either native single byte characters (with
CHAR(NATIVE)) or EBCDIC characters (with CHAR(EBCDIC)). Any USAGE
clause specified on a group applies to the elementary items within the group and
not to the group itself for the purpose of defining semantics involving group items.

Command-line arguments are always passed in as native data types. If you
specify the host data type compiler options (CHAR(EBCDID), FLOAT(HEX), or
BINARY(S390)), you must specify the NATIVE phrase on any arguments with data
types affected by these compiler options.

 DISPLAY-1 phrase

The DISPLAY-1 phrase defines an item as DBCS.

USAGE clause

 DISPLAY phrase

The data item is stored in character form, 1 character for each 8-bit byte. This
corresponds to the format used for printed output. DISPLAY can be explicit or
implicit.

USAGE IS DISPLAY is valid for the following types of items:
� Alphabetic
� Alphanumeric
� Alphanumeric-edited
� Numeric-edited

� External decimal (numeric)

Alphabetic, alphanumeric, alphanumeric-edited, and numeric-edited items are
discussed in “Data categories and PICTURE rules” on page 166.

External Decimal Items are sometimes referred to as zoned decimal items. Each
digit of a number is represented by a single byte. The 4 high-order bits of each
byte are zone bits; the 4 high-order bits of the low-order byte represent the sign of
the item. The 4 low-order bits of each byte contain the value of the digit.

| If the ARITH(COMPAT) compiler option is in effect, then the maximum length of
| an external decimal item is 18 digits.
|

The PICTURE character-string of an external decimal item can contain only 9s; the
operational-sign, S; the assumed decimal point, V; and one or more Ps.

 INDEX phrase

A data item defined with the INDEX phrase is an index data item.

An index data item is a 4-byte elementary item (not necessarily connected with
any table) that can be used to save index-name values for future reference.
Through a SET statement, an index data item can be assigned an index-name
value; such a value corresponds to the occurrence number in a table.

190 COBOL Language Reference

An index data item can be referred to directly in the USING phrase of an ENTRY
statement.

 DATE FORMAT,

SYNCHRONIZED can be used with USAGE IS INDEX to obtain efficient use of
the index data item.

OBJECT REFERENCE phrase

A data item defined with the OBJECT REFERENCE phrase is an object reference.

class-name-1
An optional class name.

You must declare class-name-1 in the REPOSITORY paragraph in the
Configuration Section of the containing class or outermost program. If
specified, class-name-1 indicates that data-name always refers to an
object-instance of class class-name-1 or a class derived from class-name-1.

If class-name-1 is not specified, data-name can refer to an object of any class.
In this case, data-name-1 is a “universal” object reference.

You can specify data-name-1 within a group item without affecting the
semantics of the group item. There is no conversion of values or other special
handling of the object references when statements are executed that operate on
the group. The group continues to behave as an alphanumeric data item.

METACLASS
Indicates that the data-name always refers to a class object reference that is an
instance of the metaclass of class-name-1 or of a metaclass derived from the
metaclass of class-name-1.

You can use these object references to INVOKE methods that are defined in
the metaclass.

USAGE clause

Direct references to an index data item can be made only in a SEARCH statement,
a SET statement, a relation condition, the USING phrase of the Procedure Division
header, or the USING phrase of the CALL statement.

An index data item can be part of a group item referred to in a MOVE statement
or an input/output statement.

An index data item saves values that represent table occurrences, yet is not
necessarily defined as part of any table. Thus, when it is referred to directly in a
SEARCH or SET statement, or indirectly in a MOVE or input/output statement,
there is no conversion of values when the statement is executed.

The USAGE IS INDEX clause can be written at any level. If a group item is
described with the USAGE IS INDEX clause, the elementary items within the
group are index data items; the group itself is not an index data item, and the
group name cannot be used in SEARCH and SET statements or in relation
conditions. The USAGE clause of an elementary item cannot contradict the
USAGE clause of a group to which the item belongs.

An index data item cannot be a conditional variable.

The JUSTIFIED, PICTURE, BLANK WHEN ZERO,
SYNCHRONIZED, or VALUE clauses cannot be used to describe group or
elementary items described with the USAGE IS INDEX clause.

Part 5. Data Division 191

The USAGE IS OBJECT REFERENCE clause can be used at any level except level
66 or 88. If a group item is described with the USAGE IS OBJECT REFERENCE
clause, the elementary items within the group are object-reference data items. The
group itself is not an object reference. The USAGE clause of an elementary item
cannot contradict the USAGE clause of a group that contains the item.

An object reference can be defined in any section of the data division of a class,
method, or program, although it does not belong to any class or category. An
object-reference data item can be used in only:
� A SET statement (format 7 only)
� A relation condition
� An INVOKE statement
� The USING or RETURNING phrase of an INVOKE statement
� The USING or RETURNING phrase of a CALL statement
� A program Procedure Division or ENTRY statement USING or RETURNING

phrase
� A method Procedure Division USING or RETURNING phrase

Object reference data items:
� Are ignored in CORRESPONDING operations
� Are unaffected by INITIALIZE statements
� Can be the subject or object of a REDEFINES clause
� Cannot be a conditional variable
� Can be written to a file (but upon subsequent reading of the record the content

of the object reference is undefined)

A VALUE clause for an object-reference data item can contain only NULL or
NULLS.

You can use the SYNCHRONIZED clause with USAGE IS OBJECT REFERENCE to
obtain efficient alignment of the object-reference data item.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items defined with the USAGE IS
OBJECT REFERENCE clause.

 POINTER phrase

A data item defined with USAGE IS POINTER is a pointer data item. A pointer
data item is a 4-byte elementary item,

You can use pointer data items to accomplish limited base addressing. Pointer
data items can be compared for equality or moved to other pointer items.

A pointer data item can only be used:
� In a SET statement (format 5 only)
� In a relation condition
� In the USING phrase of a CALL statement, an ENTRY statement, or the

Procedure Division header.

The USAGE IS POINTER clause can be written at any level except level 88. If a
group item is described with the USAGE IS POINTER clause, the elementary items
within the group are pointer data items; the group itself is not a pointer data item
and cannot be used in the syntax where a pointer data item is allowed. The
USAGE clause of an elementary item cannot contradict the USAGE clause of a
group to which the item belongs.

USAGE clause

192 COBOL Language Reference

Pointer data items can be part of a group that is referred to in a MOVE statement
or an input/output statement. However, if a pointer data item is part of a group,
there is no conversion of values when the statement is executed.

A pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS POINTER to obtain efficient use of
the pointer data item.

A VALUE clause for a pointer data item can contain only NULL or NULLS.

A pointer data item cannot be a conditional variable.

A pointer data item does not belong to any class or category.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items defined with the USAGE IS
POINTER clause.

Pointer data items are ignored in CORRESPONDING operations.

A pointer data item can be written to a data set, but, upon subsequent reading of
the record containing the pointer, the address contained can no longer represent a
valid pointer.

Note: USAGE IS POINTER is implicitly specified for the ADDRESS OF special
register. For more information, see the IBM COBOL Programming Guide for your
platform.

 PROCEDURE-POINTER phrase

A procedure-pointer data item can contain the address of a procedure entry point.
Procedure-pointer data items can be compared for equality or moved to other
procedure-pointer data items.

 Under OS/390 and VM, a procedure-pointer data item is an 8-byte
elementary item.

 Under AIX and Windows, a procedure-pointer data item is a 4-byte
elementary item.

The entry point for a procedure-pointer data item can be:
� The primary entry point of a COBOL program as defined by the

PROGRAM-ID statement of the outermost program of a compilation unit; it
must not be the PROGRAM-ID of a nested program.

� An alternate entry point of a COBOL program as defined by a COBOL ENTRY
statement

� An entry point in a non-COBOL program.

The entry point address and code address are contained in the first word. The
second word is binary zero.

A procedure-pointer data item can only be used:
� In a SET statement (format 6 only)
� In a CALL statement
� In a relation condition
� In the USING phrase of an ENTRY statement or the Procedure Division header

USAGE clause

Part 5. Data Division 193

The USAGE IS PROCEDURE-POINTER clause can be written at any level except
level 88. If a group item is described with the USAGE IS PROCEDURE-POINTER
clause, the elementary items within the group are procedure-pointer data items;
the group itself is not a procedure-pointer and cannot be used in the syntax where
a procedure-pointer data item is allowed. The USAGE clause of an elementary
item cannot contradict the USAGE clause of a group to which the item belongs.

Procedure-pointer data items can be part of a group that is referred to in a MOVE
statement or an input/output statement. However, there is no conversion of
values when the statement is executed. If a procedure-pointer data item is written
to a data set, subsequent reading of the record containing the procedure-pointer
can result in an invalid value in the procedure-pointer.

A procedure-pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS PROCEDURE-POINTER to obtain
efficient alignment of the procedure-pointer data item.

The GLOBAL, EXTERNAL, and OCCURS clause can be used with USAGE IS
PROCEDURE-POINTER.

A VALUE clause for a procedure-pointer data item can contain only NULL or
NULLS.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items defined with the USAGE IS
PROCEDURE-POINTER clause.

A procedure-pointer data item cannot be a conditional variable.

A procedure-pointer data item does not belong to any class or category.

Procedure-pointer data items are ignored in CORRESPONDING operations.

 NATIVE phrase

 Under OS/390 and VM, the NATIVE phrase is treated as a comment.

Using the NATIVE phrase, you can mix characters, floating point, and binary data
as represented on the S390 and native platform. The NATIVE phrase overrides the
CHAR(EBCDIC), FLOAT(HEX), and BINARY(S390) compiler options, which
indicate host data type usages. (Note, the BINARY compiler option is applicable
only to Windows programs.)

Using both host and native data types within a program (ASCII and EBCDIC, Hex
Floating point and IEEE floating point, and/or big endian and little endian binary)
is only valid for those data items specifically defined with the NATIVE phrase.

Specifying NATIVE does not change the class or the category of the data item.

Numeric data items are treated in arithmetic operations (numeric comparisons,
arithmetic expressions, assignment to numeric targets, arithmetic statement) based
on their logical numeric values, regardless of their internal representations.

Characters are converted to the representation of the target item prior to an
assignment.

Comparisons are done based on the collating sequence rules applicable to the
operands. If native and non-native characters are compared, the comparison is
based on the COLLSEQ option in effect.

USAGE clause

194 COBOL Language Reference

In the class Working-Storage Section, the VALUE clause can only be used in
condition-name entries.

As an IBM extension, in the File and Linkage Sections, if the VALUE clause is used
in entries other than condition-name entries, the VALUE clause is treated as a
comment.

Any VALUE clause associated with COMPUTATIONAL-1 or
COMPUTATIONAL-2 (internal floating-point) items must specify a floating-point
literal. The condition-name VALUE phrase must also specify a floating-point
literal. In addition, the figurative constant ZERO and both integer and decimal
forms of the zero literal can be specified in a floating-point VALUE clause or
condition-name VALUE phrase.

VALUE clause

 VALUE clause

The VALUE clause specifies the initial contents of a data item or the value(s)
associated with a condition name. The use of the VALUE clause differs depending
on the Data Division section in which it is specified.

In the Working-Storage Section, the VALUE clause can be used in condition-name
entries, or in specifying the initial value of any data item. The data item assumes
the specified value at the beginning of program execution. If the initial value is
not explicitly specified, it is unpredictable.

 Format 1

Format 1—literal value
��──VALUE─ ──┬ ┬──── ─literal───��
 └ ┘─IS─

Format 1 specifies the initial value of a data item. Initialization is independent of
any BLANK WHEN ZERO or JUSTIFIED clause specified.

A format 1 VALUE clause specified in a data description entry that contains or is
subordinate to an OCCURS clause causes every occurrence of the associated data
item to be assigned the specified value. Each structure that contains the
DEPENDING ON phrase of the OCCURS clause is assumed to contain the
maximum number of occurrences for the purposes of VALUE initialization.

The VALUE clause must not be specified for a data description entry that contains,
or is subordinate to, an entry containing either an EXTERNAL or a REDEFINES
clause. This rule does not apply to condition-name entries.

If the VALUE clause is specified at the group level, the literal must be a
nonnumeric literal or a figurative constant. The group area is initialized without
consideration for the subordinate entries within this group. In addition, the
VALUE clause must not be specified for subordinate entries within this group.

For group entries, the VALUE clause must not be specified if the entry also
contains any of the following clauses: JUSTIFIED, SYNCHRONIZED, or USAGE
(other than USAGE DISPLAY).

The VALUE clause must not conflict with other clauses in the data description
entry, or in the data description of this entry's hierarchy.

Part 5. Data Division 195

For information on floating-point literal values, see “Rules for floating-point literal
values:” on page 21.

A VALUE clause cannot be specified for external floating-point items.

A VALUE clause associated with a DBCS item must contain a DBCS literal or the
figurative constant SPACE.

A data item cannot contain a VALUE clause if the prior data item contains a
OCCURS clause with the DEPENDING ON phrase.

VALUE clause

Rules for literal values:

� Wherever a literal is specified, a figurative constant can be substituted.
� If the item is numeric, all VALUE clause literals must be numeric. If the literal

defines the value of a Working-Storage item, the literal is aligned according to
the rules for numeric moves, with one additional restriction: The literal must
not have a value that requires truncation of nonzero digits. If the literal is
signed, the associated PICTURE character-string must contain a sign symbol
(S).

� All numeric literals in a VALUE clause of an item must have a value that is
within the range of values indicated by the PICTURE clause for that item. For
example, for PICTURE 99PPP, the literal must be within the range 1000
through 99000, or zero. For PICTURE PPP99, the literal must be within the
range 0.00000 through 0.00099.

� If the item is an elementary or group alphabetic, alphanumeric,
alphanumeric-edited, or numeric-edited item, all VALUE clause literals must
be nonnumeric literals. The literal is aligned according to the alphanumeric
alignment rules, with one additional restriction: the number of characters in
the literal must not exceed the size of the item.

� The functions of the editing characters in a PICTURE clause are ignored in
determining the initial appearance of the item described. However, editing
characters are included in determining the size of the item. Therefore, any
editing characters must be included in the literal. For example, if the item is
defined as PICTURE +999.99 and the value is to be +12.34, then the VALUE
clause should be specified as VALUE "+012.34".

 Format 2

Format 2—condition-name value
��──88──condition-name-1─ ──┬ ┬─VALUE─ ──┬ ┬──── ── ──────────────────────────────�
 │ │└ ┘─IS─
 └ ┘ ─VALUES─ ──┬ ┬─────
 └ ┘─ARE─

 ┌ ┐───
�─ ───/ ┴─literal-1─ ──┬ ┬──────────────────────── ─.────────────────────────────��
 └ ┘ ──┬ ┬─THROUGH─ ─literal-2─
 └ ┘─THRU────

This format associates a value, values, and/or range(s) of values with a
condition-name. Each such condition-name requires a separate level-88 entry.
Level-number 88 and condition-name are not part of the format 2 VALUE clause
itself. They are included in the format only for clarity.

196 COBOL Language Reference

 unless the
associated data item is a non-year-last windowed date field. For details, see
“Rules for condition-name values:.”

In the VALUE clause of a data description entry (format 2), all the literals specified
for the THROUGH phrase must be DBCS literals if the associated conditional
variable is a DBCS data item. The figurative constants SPACE and SPACES can be
used as DBCS literals.

 Under OS/390 and VM, the range of DBCS literals specified for the
THROUGH phrase is based on the binary collating sequence of the hexadecimal
values of the DBCS characters.

 Under AIX and Windows, the range of nonnumeric literals or DBCS
literals specified for the THROUGH phrase is based on the collating sequence
indicated by the locale (except for single-byte character comparisons when a
non-NATIVE collating sequence is in effect). For more information on locale, see
Appendix F, “Locale considerations (workstation only)” on page 515.

The conditional variable cannot be an item with USAGE IS POINTER, USAGE
IS PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE.

VALUE clause

condition-name-1
A user-specified name that associates a value with a conditional variable. If
the associated conditional variable requires subscripts or indexes, each
procedural reference to the condition-name must be subscripted or indexed as
required for the conditional variable.

Condition-names are tested procedurally in condition-name conditions (see
“Conditional expressions” on page 214).

literal-1
When literal-1 is specified alone, the condition-name is associated with a single
value.

literal-1 THROUGH literal-2
The condition-name is associated with at least one range of values. Whenever
the THROUGH phrase is used, literal-1 must be less than literal-2,

Rules for condition-name values:

� The VALUE clause is required in a condition-name entry, and must be the
only clause in the entry. Each condition-name entry is associated with a
preceding conditional variable. Thus, every level-88 entry must always be
preceded either by the entry for the conditional variable, or by another level-88
entry when several condition-names apply to one conditional variable. Each
such level-88 entry implicitly has the PICTURE characteristics of the
conditional variable.

� The key words THROUGH and THRU are equivalent.

The condition-name entries associated with a particular conditional variable
must immediately follow the conditional variable entry. The conditional
variable can be any elementary data description entry except another
condition-name, a RENAMES clause (level-66 item), or an item with USAGE IS
INDEX.

A condition-name can be associated with a group item data description entry.
In this case:
— The condition-name value must be specified as a nonnumeric literal or

figurative constant.

Part 5. Data Division 197

USAGE other than USAGE IS DISPLAY can be specified within the group.

The VALUE clause is allowed for internal floating-point data items.

The VALUE clause is allowed for DBCS data items. Relation tests for DBCS
data items are performed according to the rules for comparison of DBCS items.
These rules can be found in “Comparison of DBCS operands” on page 228.

VALUE clause

— The size of the condition-name value must not exceed the sum of the sizes
of all the elementary items within the group.

— No element within the group can contain a JUSTIFIED or
SYNCHRONIZED clause.

— No USAGE other than DISPLAY can be specified within the group.

Condition-names can be specified both at the group level and at subordinate
levels within the group.

The relation test implied by the definition of a condition-name at the group
level is performed in accordance with the rules for comparison of nonnumeric
operands, regardless of the nature of elementary items within the group.

A space, a separator comma, or a separator semicolon, must separate
successive operands.

Each entry must end with a separator period.
� The type of literal in a condition-name entry must be consistent with the data

type of its conditional variable. In the following example:
— CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables.

The PICTURE associated with COUNTY-NO limits the condition-name
value to a 2-digit numeric literal.

The PICTURE associated with CITY limits the condition-name value to a
3-character nonnumeric literal.

— The associated condition-names are level-88 entries.

Any values for the condition-names associated with CITY-COUNTY-INFO
cannot exceed 5 characters.

Because this is a group item, the literal must be nonnumeric.

?5 CITY-COUNTY-INFO.
 88 BRONX VALUE "?3NYC".
 88 BROOKLYN VALUE "24NYC".
 88 MANHATTAN VALUE "31NYC".
 88 QUEENS VALUE "41NYC".
 88 STATEN-ISLAND VALUE "43NYC".

 1? COUNTY-NO PICTURE 99.
 88 DUTCHESS VALUE 14.
 88 KINGS VALUE 24.
 88 NEW-YORK VALUE 31.
 88 RICHMOND VALUE 43.
 1? CITY PICTURE X(3).
 88 BUFFALO VALUE "BUF".
 88 NEW-YORK-CITY VALUE "NYC".
 88 POUGHKEEPSIE VALUE "POK".
?5 POPULATION...

198 COBOL Language Reference

� If the item is a windowed date field, the following restrictions apply:
— For alphanumeric conditional variables:

– Both literal-1 and literal-2 (if specified) must be alphanumeric literals
of the same length as the conditional variable.

– The literals must not be specified as figurative constants.
– If literal-2 is specified, then both literals must contain only decimal

digits.
— If the YEARWINDOW compiler option is specified as a negative integer,

then literal-2 must not be specified.
— If literal-2 is specified, then literal-1 must be less than literal-2 after

applying the century window specified by the YEARWINDOW compiler
option. That is, the expanded date value of literal-1 must be less than the
expanded date value of literal-2.

For more information on using condition-names with windowed date fields,
see “Condition-name conditions and windowed date field comparisons” on
page 218.

 Format 3

Format 3—NULL value
��──VALUE─ ──┬ ┬──── ──┬ ┬─NULL── ──��
 └ ┘─IS─ └ ┘─NULLS─

This format assigns an invalid address as the initial value of an item defined as
USAGE IS POINTER or USAGE IS PROCEDURE-POINTER. It also assigns an
invalid object reference as the initial value of an item defined as USAGE IS
OBJECT REFERENCE.

VALUE IS NULL can only be specified for elementary items described implicitly
or explicitly as USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or
USAGE IS OBJECT REFERENCE.

VALUE clause

Part 5. Data Division 199

VALUE clause

200 COBOL Language Reference

Requirements for a method Procedure Division

ENTRY statement

EXIT METHOD statement

GOBACK statement

INVOKE statement

Part 6. Procedure Division

Procedure Division structure 202
. 203

The Procedure Division header 204
Declaratives . 207
Procedures . 208
Arithmetic expressions 209
Conditional expressions 214
Statement categories 234
Statement operations 238

Procedure Division statements 250
ACCEPT statement 250
ADD statement 255
ALTER statement 258
CALL statement 260
CANCEL statement 266
CLOSE statement 268
COMPUTE statement 272
CONTINUE statement 274
DELETE statement 275
DISPLAY statement 277
DIVIDE statement 280

 283
EVALUATE statement 284
EXIT statement 288

. 289
EXIT PROGRAM statement 290

 291
GO TO statement 292
IF statement . 294
INITIALIZE statement 296
INSPECT statement 298

 307
MERGE statement 314
MOVE statement 320
MULTIPLY statement 325
OPEN statement 327
PERFORM statement 332
READ statement 342
RELEASE statement 349
RETURN statement 351
REWRITE statement 353
SEARCH statement 356
SET statement . 362
SORT statement 368
START statement 375
STOP statement 378
STRING statement 379
SUBTRACT statement 383
UNSTRING statement 386
WRITE statement 393

 Copyright IBM Corp. 1991, 2000 201

 class definition,
and method definition.

Class Procedure Division
The class Procedure Division contains only method definitions. All methods
introduced in a COBOL class compilation unit must be defined in that
compilation unit's Procedure Division.

Method Procedure Division
A method Procedure Division consists of optional declaratives, and procedures
that contain sections and/or paragraphs, sentences, and statements. A method
can INVOKE other methods, be recursively INVOKEd, and issue a CALL to a
program. A method Procedure Division cannot contain nested programs or
methods.

For additional details on a method Procedure Division, see “Requirements for
a method Procedure Division” on page 203.

and method

As an IBM extension, section-name can be omitted. If you omit section-name, paragraph-name
can be omitted.
Priority-numbers are not valid for methods, recursive programs, or (under AIX and Windows)
programs compiled with the THREAD option.

Format—class Procedure Division
��─ ─PROCEDURE DIVISION.─ ──┬ ┬─────────────────────── ───��
 │ │┌ ┐─────────────────────
 └ ┘───/ ┴─method-definition─

Procedure Division Structure

Procedure Division structure

The Procedure Division is optional in a COBOL source program,

Program Procedure Division
A program Procedure Division consists of optional declaratives, and
procedures that contain sections and/or paragraphs, sentences, and statements.

Format—program Procedure Division
��─ ──┬ ┬─────────────────────────── ───�

└ ┘─procedure division header─

�─ ──┬ ┬─── ──────�
 │ │┌ ┐───
 └ ┘ ─DECLARATIVES.─ ───/ ┴─┤ sect ├──.──USE─ ──┬ ┬─────────────────────────────────────── ─END DECLARATIVES.─
 │ │┌ ┐─────────────────────────────────────
 └ ┘ ───/ ┴ ─paragraph-name.─ ──┬ ┬──────────────
 │ │┌ ┐────────────
 └ ┘ ───/ ┴─sentence─

 ┌ ┐──
�─ ───/ ┴ ─section-name───(1)─SECTION─ ──┬ ┬─────────────────── ─.─ ──┬ ┬─────────────────────────────────────── ──────────��
 └ ┘─priority-number───(2) │ │┌ ┐─────────────────────────────────────
 └ ┘ ───/ ┴ ─paragraph-name.─ ──┬ ┬──────────────
 │ │┌ ┐────────────
 └ ┘ ───/ ┴─sentence─

sect
├──section-name──SECTION─ ──┬ ┬─────────────────── ───┤
 └ ┘─priority-number───(2)

Notes:
1

2

202  Copyright IBM Corp. 1991, 2000

Requirements for a method Procedure Division

When using a method Procedure Division, you need to know that:
� You can use the EXIT METHOD statement or the GOBACK statement to

return control to the invoking method or program. An implicit EXIT
METHOD statement is generated as the last statement of every method
procedure division.

For details on the EXIT METHOD statement, see “EXIT METHOD statement”
on page 289.

� You can use the STOP RUN statement (which terminates the run unit) in a
method.

� You can use the RETURN-CODE special register within a method Procedure
Division to access return codes from CALLed subprograms, but the
RETURN-CODE value is not returned to the invoker of the current method.
Use the Procedure Division RETURNING data name to return a value to the
invoker of the current method. For details, see the discussion of RETURNING
data-name-2 under “The Procedure Division header” on page 204.

You cannot specify the following statements in a method PROCEDURE DIVISION:
� ALTER
� ENTRY
� EXIT PROGRAM
� GO TO without a specified procedure name
� SEGMENTATION
� USE FOR DEBUGGING

The following special registers are allocated on a per-invocation basis for methods;
thus, they are in initial state on each method entry.
� ADDRESS OF (for each record in the Linkage Section)
� RETURN-CODE
� SORT-CONTROL
� SORT-CORE-SIZE
� SORT-FILE-SIZE
� SORT-MESSAGE
� SORT-MODE-SIZE
� SORT-RETURN
� TALLY

Procedure Division Structure

Part 6. Procedure Division 203

and methods

REFERENCE
BY

VALUE
BY

RETURNING data-name-2

Format—Procedure Division header for classes
��──PROCEDURE DIVISION──.──��

 or an invoked method.

 or a method is invoked by the INVOKE statement or
INVOKE

 or invoked method

A data item in the USING phrase of the Procedure Division header can have a
REDEFINES clause in its data description entry.

In a called subprogram entered at the first executable statement following an
ENTRY statement, the USING option is valid in the ENTRY statement; each
USING identifier must be defined as a level-01 or level-77 item in the Linkage
Section of the called subprogram or invoked method.

 or INVOKE

Each USING identifier in a calling program can be a data item of any level in
the Data Division.

If you specify the host data type compiler
options (CHAR(EBCDIC), FLOAT(HEX), or BINARY(S390)), you must specify
the NATIVE phrase on any arguments with data types affected by these

Procedure Division header

The Procedure Division header

The Procedure Division, if specified, is identified by one of the following headers,
depending on whether you are defining a program, method, or class.

Format—Procedure Division header for programs
��──PROCEDURE DIVISION──�

�─ ──┬ ┬─── ───────────────────�
 │ │┌ ┐──
 │ ││ │┌ ┐─────────────
 └ ┘ ─USING─ ───/ ┴─ ─ ──┬ ┬─────────────────── ───/ ┴data-name-1
 ├ ┤ ──┬ ┬──── ─ ─
 │ │└ ┘─ ─
 └ ┘ ──┬ ┬──── ─ ─────
 └ ┘─ ─

�─ ──┬ ┬────────────────────────── ─.───��
 └ ┘── ─ ─ ─ ─

USING
The USING phrase makes data items defined in a calling program available to
a called subprogram

Only specify the USING phrase if the program is invoked by a CALL
statement and the CALL

 statement includes a USING phrase.

The USING phrase is valid in the Procedure Division header of a called
subprogram entered at the beginning of the nondeclaratives portion; each
USING identifier must be defined as a level-01 or level-77 item in the Linkage
Section of the called subprogram ; it must not contain a
REDEFINES clause.

In a calling program, the
USING phrase is valid for the CALL statement; each USING
identifier must be defined as a level-01, level-77, or an elementary item in the
Data Division.

It is possible to call from non-COBOL programs or pass user parameters from
a system command to a COBOL main program.

 For AIX and Windows, command-line arguments are always
passed in as native data types.

204 COBOL Language Reference

compiler options. (Note, the BINARY compiler option is applicable only to
Windows programs.)

 or invoking and invoked methods

For
invoking and invoked methods, see “Conformance requirements for USING
phrase” on page 310.

 or invoking and invoked methods

 or INVOKE USING
 or invoking method

 or invoked method

As an IBM extension, an identifier can appear more than once in a Procedure
Division USING phrase. The last value passed to it by a CALL USING or
INVOKE USING statement is used. The BY REFERENCE or BY VALUE
phrase applies to all parameters that follow until overridden by another BY
REFERENCE or BY VALUE phrase.

BY REFERENCE
When a CALL or INVOKE argument is passed BY CONTENT or BY
REFERENCE, BY REFERENCE must be specified or implied for the
corresponding formal parameter on the PROCEDURE/ENTRY USING
phrase.

BY REFERENCE is the default if neither BY REFERENCE or BY VALUE is
specified.

If the reference to the corresponding data item in the CALL or INVOKE
statement declares the parameter to be passed BY REFERENCE (explicit or
implicit), the object program executes as if each reference to a USING
identifier in the called subprogram or invoked method Procedure Division
is replaced by a reference to the corresponding USING identifier in the
calling program or invoked method.

If the reference to the corresponding data item in the CALL or INVOKE
statement declares the parameter to be passed BY CONTENT, the value of
the item is moved when the CALL or INVOKE statement is executed and
placed into a system-defined storage item possessing the attributes
declared in the Linkage Section for data-name-1. The data description of
each parameter in the BY CONTENT phrase of the CALL or INVOKE
statement must be the same, meaning no conversion or extension or
truncation, as the data description of the corresponding parameter in the
USING phrase of the Procedure Division header.

BY VALUE
If the reference to the corresponding data item in the CALL or INVOKE
statement declares the parameter to be passed BY VALUE, then the value
of the argument is passed, not a reference to the sending data item. Since
CALLed subprograms and INVOKEd methods have access only to a
temporary copy of the sending data item, any modifications made to the

Procedure Division header

The order of appearance of USING identifiers in both calling and called
subprograms , determines the
correspondence of single sets of data available to both programs. The
correspondence is positional and not by name. For calling and called
subprograms, corresponding identifiers must contain the same number of
characters, although their data descriptions need not be the same.

For index-names, no correspondence is established; index-names in calling and
called programs always refer to separate
indexes.

The identifiers specified in a CALL USING statement
name data items available to the calling program that can
be referred to in the called program ; a given identifier can
appear more than once. These items are defined in any Data Division section.

Part 6. Procedure Division 205

formal parameters corresponding to the BY VALUE argument do not affect
the argument.

Examples illustrating these concepts can be found in IBM COBOL
Programming Guide for your platform.

RETURNING data-name-2
Is the RETURNING phrase identifier. It specifies a data item to be returned as
a program or method result. You must define data-name-2 as either a level 01
or 77 entry in the Linkage Section.

Data-name-2 is an output-only parameter. The initial state of data-name-2 has
an undefined and unpredictable value when the program or method is
entered. You must initialize data-name-2 in the program or method before
you reference its value. When a program or method returns to its invoker, the
final value in data-name-2 is implicitly stored into the identifier specified in
the CALL RETURNING phrase or the INVOKE RETURNING phrase, as
described in “CALL statement” on page 260 or “INVOKE statement” on
page 307.

When you specify Procedure Division RETURNING data-name-2, the
RETURN-CODE special register can be used within the PROCEDURE
DIVISION only as a means of accessing return codes from CALLed
subprograms. The RETURN-CODE value is not returned to the caller of the
current program (the value in data-name-2 is).

When the RETURNING phrase is specified on the PROCEDURE DIVISION
header of a program or method, the CALL or INVOKE statement used to pass
control to the program or method must also specify a RETURNING phrase.
The data-name-2 and the identifier specified on the CALL or INVOKE
RETURNING must have the same PICTURE, USAGE, SIGN, SYNCHRONIZE,
JUSTIFIED, and BLANK WHEN ZERO clauses (except that PICTURE clause
currency symbols can differ, and periods and commas can be interchanged due
to the DECIMAL POINT IS COMMA clause).

Do not use the Procedure Division RETURNING phrase in:

� Programs that contain the ENTRY statement
� Nested programs
� Main programs— results of specifying Procedure Division RETURNING

on a main program are undefined. You should only specify the Procedure
Division RETURNING phrase on called subprograms. For main programs,
use the RETURN-CODE special register to return a value to the operating
environment.

� Under OS/390 and VM, on programs that use CEEPIPI—results
of specifying Procedure Division RETURNING on programs that are called
with the Language Environment preinitialization service (CEEPIPI) are
undefined.

 or invoked
method

 or
the ENTRY statement

� They are operands of SET ADDRESS OF, CALL...BY REFERENCE ADDRESS
OF, or INVOKE...BY REFERENCE ADDRESS OF

Procedure Division header

Data items defined in the Linkage Section of the called program
, can be referenced within the Procedure Division of that program if, and

only if, they satisfy one of the following conditions:
� They are operands of the USING phrase of the Procedure Division header

206 COBOL Language Reference

3. LABEL declarative (see “USE statement” on page 482)

As IBM extensions, the following apply to declarative procedures:
Under AIX, Windows, OS/390, and VM:
� A declarative procedure can be performed from a nondeclarative

procedure.
Additionally, under OS/390 and VM:
� A nondeclarative procedure can be performed from a declarative

procedure.
� A declarative procedure can be referenced in a GO TO statement in a

declarative procedure.

Declaratives

� They are defined with a REDEFINES or RENAMES clause, the object of which
satisfies the above conditions

� They are items subordinate to any item that satisfies the condition in the rules
above

� They are condition-names or index-names associated with data items that
satisfy any of the above conditions

 Declaratives

Declaratives provide one or more special-purpose sections that are executed when
an exceptional condition occurs.

When Declarative Sections are specified, they must be grouped at the beginning of
the Procedure Division, and the entire Procedure Division must be divided into
sections.

Each Declarative Section starts with a USE statement that identifies the section's
function; the series of procedures that follow specify what actions are to be taken
when the exceptional condition occurs. Each Declarative Section ends with
another section-name followed by a USE statement, or with the key words END
DECLARATIVES. See “USE statement” on page 482 for more information on the
USE statement.

The entire group of Declarative Sections is preceded by the key word
DECLARATIVES, written on the line after the Procedure Division header; the
group is followed by the key words END DECLARATIVES. The key words
DECLARATIVES and END DECLARATIVES must each begin in Area A and be
followed by a separator period. No other text can appear on the same line.

In the declaratives part of the Procedure Division, each section header must be
followed by a separator period, and must be followed by a USE statement,
followed by a separator period. No other text can appear on the same line.

The USE statement has three formats:
1. EXCEPTION declarative (see “USE statement” on page 482)
2. DEBUGGING declarative (see “USE statement” on page 482)

The USE statement itself is never executed; instead, the USE statement defines the
conditions that execute the succeeding procedural paragraphs, which specify the
actions to be taken. After the procedure is executed, control is returned to the
routine that activated it.

Within a declarative procedure, except for the USE statement itself, there must be
no reference to any nondeclarative procedure.

Part 6. Procedure Division 207

� A nondeclarative procedure can be referenced in a GO TO statement in a
declarative procedure.

You can include a statement that executes a previously called USE procedure that
is still in control. However, to avoid an infinite loop, you must be sure there is an
eventual exit at the bottom.

Section-headers are optional after the key words END DECLARATIVES or
if there are no declaratives.

 or a positive signed numeric literal

You cannot specify priority-numbers:

� In a method definition
� In a program that is declared with the RECURSIVE attribute
� In a program that specifies the THREAD compiler option (Workstation

only)

Procedures

Within a declarative procedure, no statement should be included that would cause
the execution of a USE procedure that had been previously called and had not yet
returned control to the calling routine.

The declarative procedure is exited when the last statement in the procedure is
executed.

 Procedures

Within the Procedure Division, a procedure consists of:
� A section or a group of sections
� A paragraph or group of paragraphs

A procedure-name is a user-defined name that identifies a section or a paragraph.

Section
A section-header optionally followed by one or more paragraphs.

Section-header
A section-name followed by the key word SECTION, optionally followed,
by a priority-number, followed by a separator period.

Section-name
A user-defined word that identifies a section. A referenced
section-name, because it cannot be qualified, must be unique within
the program in which it is defined.

Priority-number
An integer ranging in value from 0
through 99.

Sections in the declaratives portion must contain priority numbers in the
range of 0 through 49.

A section ends immediately before the next section header, or at the end of
the Procedure Division, or, in the declaratives portion, at the key words
END DECLARATIVES.

Paragraph
A paragraph-name followed by a separator period, optionally followed by one
or more sentences.

208 COBOL Language Reference

If there are no declaratives (format-2), a paragraph-name is not required in
the Procedure Division.

As an IBM extension, all paragraphs do not need to be contained within
sections, even if one or more paragraphs are so contained.

Arithmetic expressions

Note: Paragraphs must be preceded by a period because paragraphs always
follow either the ID Division header, a Section, or another paragraph, all of
which must end with a period.

Paragraph-name
A user-defined word that identifies a paragraph. A paragraph-name,
because it can be qualified, need not be unique.

A paragraph ends immediately before the next paragraph-name or section
header, or at the end of the Procedure Division, or, in the declaratives portion,
at the key words END DECLARATIVES.

Sentence
One or more statements terminated by a separator period.

Statement
A syntactically valid combination of identifiers and symbols (literals,
relational-operators, and so forth) beginning with a COBOL verb.

identifier
The word or words necessary to make unique reference to a data
item, optionally including qualification, subscripting, indexing, and
reference-modification. In any Procedure Division reference
(except the class test), the contents of an identifier must be
compatible with the class specified through its PICTURE clause, or
results are unpredictable.

Execution begins with the first statement in the Procedure Division, excluding
declaratives. Statements are executed in the order in which they are presented
for compilation, unless the statement rules dictate some other order of
execution.

The end of the Procedure Division is indicated by one of the following:

� An Identification Division header, which indicates the start of a nested
source program

� The END PROGRAM header
� The physical end of the program; that is, the physical position in a source

program after which no further source program lines occur

 Arithmetic expressions

Arithmetic expressions are used as operands of certain conditional and arithmetic
statements.

An arithmetic expression can consist of any of the following:
1. An identifier described as a numeric elementary item (including numeric

functions)
2. A numeric literal
3. The figurative constant ZERO
4. Identifiers and literals, as defined in items 1, 2, and 3, separated by arithmetic

operators

Part 6. Procedure Division 209

Arithmetic expressions

5. Two arithmetic expressions, as defined in items 1, 2, 3, and/or 4, separated by
an arithmetic operator

6. An arithmetic expression, as defined in items 1, 2, 3, 4, and/or 5, enclosed in
parentheses.

Any arithmetic expression can be preceded by a unary operator.

Identifiers and literals appearing in arithmetic expressions must represent either
numeric elementary items or numeric literals on which arithmetic can be
performed.

If an exponential expression is evaluated as both a positive and a negative number,
the result will always be the positive number. The square root of 4, for example,

4 VV ?.5 (the square root of 4)

is evaluated as +2 and -2. IBM COBOL always returns +2.

If the value of an expression to be raised to a power is zero, the exponent must
have a value greater than zero. Otherwise, the size error condition exists. In any
case where no real number exists as the result of the evaluation, the size error
condition exists.

 Arithmetic operators

Five binary arithmetic operators and two unary arithmetic operators (Table 14) can
be used in arithmetic expressions. They are represented by specific characters that
must be preceded and followed by a space.

Note: Exponents in fixed-point exponential expressions cannot contain more than
9 digits. The compiler will truncate any exponent with more than 9 digits. In this
case, the compiler will issue a diagnostic message if the exponent is a literal or
constant; if the exponent is a variable or data-name, a diagnostic is issued at
run-time.

Parentheses can be used in arithmetic expressions to specify the order in which
elements are to be evaluated.

Expressions within parentheses are evaluated first. When expressions are
contained within a nest of parentheses, evaluation proceeds from the least
inclusive to the most inclusive set.

When parentheses are not used, or parenthesized expressions are at the same level
of inclusiveness, the following hierarchic order is implied:
1. Unary operator
2. Exponentiation
3. Multiplication and division
4. Addition and subtraction.

Table 14. Binary and unary operators

Binary
operator Meaning

Unary
operator Meaning

+ Addition + Multiplication by +1

− Subtraction − Multiplication by −1

* Multiplication

/ Division

** Exponentiation

210 COBOL Language Reference

Arithmetic with date fields

Arithmetic operations that include a date field are restricted to:
� Adding a non-date to a date field
� Subtracting a non-date from a date field
� Subtracting a date field from a compatible date field

Date field operands are compatible if they have the same date format except for
the year part, which can be windowed or expanded.

The following operations are not allowed:
� Any operation between incompatible dates
� Adding two date fields
� Subtracting a date field from a non-date
� Unary minus, applied to a date field
� Division, exponentiation, or multiplication of or by a date field
� Arithmetic expressions that specify a year-last date field

Arithmetic expressions

Parentheses either eliminate ambiguities in logic where consecutive operations
appear at the same hierarchic level or modify the normal hierarchic sequence of
execution when this is necessary. When the order of consecutive operations at the
same hierarchic level is not completely specified by parentheses, the order is from
left to right.

An arithmetic expression can begin only with a left parenthesis, a unary operator,
or an operand (that is, an identifier or a literal). It can end only with a right
parenthesis or an operand. An arithmetic expression must contain at least one
reference to an identifier or a literal.

There must be a one-to-one correspondence between left and right parentheses in
an arithmetic expression, with each left parenthesis placed to the left of its
corresponding right parenthesis.

If the first operator in an arithmetic expression is a unary operator, it must be
immediately preceded by a left parenthesis if that arithmetic expression
immediately follows an identifier or another arithmetic expression.

Table 15 shows permissible arithmetic symbol pairs. An arithmetic symbol pair is
the combination of two such symbols in sequence. In the table:

Yes indicates a permissible pairing.
No indicates that the pairing is not permitted.

Table 15. Valid arithmetic symbol pairs

First symbol

Second symbol

Identifier
or literal

* / ** +
−

Unary +
or
unary − ()

Identifier or literal No Yes No No Yes

* / ** + − Yes No Yes Yes No

Unary + or unary − Yes No No Yes No

 (Yes No Yes Yes No

) No Yes No No Yes

Part 6. Procedure Division 211

� Arithmetic statements that specify a year-last date field, except as a receiving
data item when the sending field is a non-date

The following pages describe the result of using date fields in the supported
addition and subtraction operations.

For more information on using date fields in arithmetic operations, see:
� “ADD statement” on page 255
� “COMPUTE statement” on page 272
� “SUBTRACT statement” on page 383

Notes:

1. Arithmetic operations treat date fields as numeric items; they do not recognize
any date-specific internal structure. For example, adding 1 to a windowed
date field containing the value 991231 (that might be used in an application to
represent December 31, 1999) results in the value 991232, not 000101.

2. When used as operands in arithmetic expressions or arithmetic statements,
windowed date fields are automatically expanded according to the century
window specified by the YEARWINDOW compiler option. When
the DATEPROC(TRIG) compiler option is in effect, this expansion is sensitive
to trigger values in the windowed date field. For details of

 both regular and trigger-sensitive windowed expansion,
see “Semantics of windowed date fields” on page 149.

Addition involving date fields

The following table shows the result of using a date field with a compatible
operand in an addition.

For details on how a result is stored in a receiving field, see “Storing arithmetic
results that involve date fields” on page 213.

Subtraction involving date fields

The following table shows the result of using a date field with a compatible
operand in the subtraction:

first operand − second operand

In a SUBTRACT statement, these operands appear in the reverse order:

SUBTRACT second operand FROM first operand

Table 16. Results of using date fields in addition

First operand

Second operand

Non-date Date field

Non-date Non-date Date field

Date field Date field Not allowed

Table 17. Results of Using date fields in subtraction

First operand

Second operand

Non-date Date field

Non-date Non-date Not allowed

Date field Date field Non-date

Arithmetic expressions

212 COBOL Language Reference

Storing arithmetic results that involve date fields

The following statements perform arithmetic, then store the result, or sending field,
into one or more receiving fields:
 ADD
 COMPUTE
 DIVIDE
 MULTIPLY
 SUBTRACT

Note: In a MULTIPLY statement, only GIVING identifiers can be date fields. In a
DIVIDE statement, only GIVING identifiers or the REMAINDER identifier can be
date fields.

Any windowed date fields that are operands of the arithmetic expression or
statement are treated as if they were expanded before use, as described under
“Semantics of windowed date fields” on page 149.

If the sending field is a date field, then the receiving field must be a compatible
date field. That is, both fields must have the same date format, except for the year
part, which can be windowed or expanded.

If the ON SIZE ERROR clause is not specified on the statement, the store operation
follows the existing COBOL rules for the statement, and proceeds as if the
receiving and sending fields (after any automatic expansion of windowed date
field operands or result) were both non-dates.

When the ON SIZE ERROR clause is specified, Table 18 on page 214 shows how
these statements store the value of a sending field in a receiving field, where either
field may be a date field.

Table 18 on page 214 uses the following terms to describe how the store is
performed:

Non-windowed
The statement performs the store with no special date-sensitive size error
processing, as described under “SIZE ERROR phrases” on page 240.

Windowed...

...with non-date sending field
The non-date sending field is treated as a windowed date field compatible
with the windowed date receiving field, but with the year part
representing the number of years since 1900. (This representation is
similar to a windowed date field with a base year of 1900, except that the
year part is not limited to a positive number of at most 2 digits.) The store
proceeds as if this assumed year part of the sending field were expanded
by adding 1900 to it.

...with date sending field
The store proceeds as if all windowed date field operands had been
expanded as necessary, so that the sending field is a compatible expanded
date field.

Size error processing: For both kinds of sending field, if the assumed or
actual year part of the sending field falls within the century window, then
the sending field is stored in the receiving field after removing the century
component of the year part. That is, the low-order or rightmost 2 digits of
the expanded year part are retained, and the high-order or leftmost 2
digits are discarded.

Arithmetic expressions

Part 6. Procedure Division 213

If the year part does not fall within the century window, then the receiving
field is unmodified, and the size error imperative statement is executed
when any remaining arithmetic operations are complete.

For example:

77 DUE-DATE PICTURE 9(5) DATE FORMAT YYXXX.
77 IN-DATE PICTURE 9(8) DATE FORMAT YYYYXXX VALUE 1995??1.

...
COMPUTE DUE-DATE = IN-DATE + 1????
ON SIZE ERROR imperative-statement

 END-COMPUTE

The sending field is an expanded date field representing January 1, 2005.
Assuming that 2005 falls within the century window, the value stored in
DUE-DATE is 05001—the sending value of 2005001 without the century
component 20.

Size error processing and trigger values: If the DATEPROC(TRIG) compiler
option is in effect, and the sending field contains a trigger value (either zero or all
nines) the size error imperative statement is executed, and the result is not stored
in the receiving field.

A non-date is considered to have a trigger value of all nines if it has a nine in
every digit position of its assumed date format. Thus, for a receiving date format
of YYXXX, the non-date value 99,999 is a trigger, but the values 9,999 and 999,999
are not, although the larger value of 999,999 will cause a size error anyway.

Table 18. Storing arithmetic results involving date fields when ON SIZE ERROR is specified

Receiving field

Sending field

Non-date Date field

Non-date Non-windowed Not allowed

Windowed date field Windowed Windowed

Expanded date field Non-windowed Non-windowed

Conditional expressions

 Conditional expressions

A conditional expression causes the object program to select alternative paths of
control, depending on the truth value of a test. Conditional expressions are
specified in EVALUATE, IF, PERFORM, and SEARCH statements.

A conditional expression can be specified in either simple conditions or complex
conditions. Both simple and complex conditions can be enclosed within any
number of paired parentheses; the parentheses do not change whether the
condition is simple or complex.

 Simple conditions

There are five simple conditions:
� Class condition
� Condition-name condition
� Relation condition
� Sign condition
� Switch-status condition

214 COBOL Language Reference

The class condition determines whether the contents of a data item are DBCS or
KANJI.

DBCS
KANJI

Identifier-1 can reference a data item whose usage is explicitly or implicitly
DISPLAY-1.

 or (as IBM extensions) USAGE COMPUTATIONAL-3, or USAGE
PACKED-DECIMAL

Conditional expressions

A simple condition has a truth value of either true or false.

 Class condition

The class condition determines whether the content of a data item is alphabetic,
alphabetic-lower, alphabetic-upper, numeric, or contains only the characters in the
set of characters specified by the CLASS clause as defined in the SPECIAL-NAMES
paragraph of the Environment Division.

 Format
��──identifier-1─ ──┬ ┬──── ──┬ ┬───── ──┬ ┬─NUMERIC────────── ───────────────────��
 └ ┘─IS─ └ ┘─NOT─ ├ ┤─ALPHABETIC───────
 ├ ┤─ALPHABETIC-LOWER─
 ├ ┤─ALPHABETIC-UPPER─
 ├ ┤─class-name───────
 ├ ┤─ ─────────────
 └ ┘─ ────────────

identifier-1
Must reference a data item whose usage is explicitly or implicitly DISPLAY.

If identifier-1 is a function-identifier, it must reference an alphanumeric
function.

NOT
When used, NOT and the next key word define the class test to be executed
for truth value. For example, NOT NUMERIC is a truth test for determining
that an identifier is nonnumeric.

NUMERIC
Identifier consists entirely of the characters 0 through 9, with or without an
operational sign.

If its PICTURE does not contain an operational sign, the identifier being tested
is determined to be numeric only if the contents are numeric and an
operational sign is not present.

If its PICTURE does contain an operational sign, the identifier being tested is
determined to be numeric only if the item is an elementary item, the contents
are numeric, and a valid operational sign is present.

The NUMERIC test cannot be used with an identifier described as alphabetic
or as a group item that contains one or more signed elementary items.

For numeric data items, the identifier being tested can be described as USAGE
DISPLAY

.

ALPHABETIC
Identifier consists entirely of any combination of the lowercase or uppercase
alphabetic characters A through Z and the space.

The ALPHABETIC test cannot be used with an identifier described as numeric.

Part 6. Procedure Division 215

DBCS
 Under OS/390 and VM, the identifier consists entirely of DBCS

characters. For DBCS data items, the identifier being tested must be described
explicitly or implicitly as USAGE DISPLAY-1. Each byte of the DBCS
identifier being tested can contain characters that range in value from X'00'
through X'FF'.

 Under AIX and Windows, the identifier contains DBCS characters
that correspond to valid OS/390 DBCS characters.

For all platforms, a range check is performed on the data portion of the item
for valid character representation. The valid range is X'41' through X'FE' for
both bytes of each DBCS character and X'4040' for the DBCS blank. (These
ranges are for the equivalent DBCS character representation for OS/390, not
the actual DBCS character value ranges of the workstation DBCS characters.)

KANJI
 Under OS/390 and VM, the identifier consists entirely of DBCS

characters. For KANJI data items, the identifier being tested must be described
explicitly or implicitly as USAGE DISPLAY-1. Each byte of the DBCS
identifier being tested can contain characters that range in value from X'00'
through X'FF'.

 Under AIX and Windows the identifier contains DBCS characters
that correspond to valid OS/390 DBCS characters.

For all platforms, a range check is performed on the data portion of the item
for valid character representation. The valid range is from X'41' through
X'7F' for the first byte, from X'41' through X'FE' for the second byte, and
X'4040' for the DBCS blank. (These ranges are for the equivalent DBCS
character representation for OS/390, not the actual DBCS character value
ranges of the workstation DBCS characters.)

The class test is not valid for items defined as USAGE IS POINTER or USAGE IS
PROCEDURE-POINTER, as these items do not belong to any class or category.

The class condition cannot be used for external floating-point (USAGE DISPLAY)
or internal floating-point (USAGE COMP-1 and USAGE COMP-2) items.

Conditional expressions

ALPHABETIC-LOWER
Identifier consists entirely of any combination of the lowercase alphabetic
characters a through z and the space.

The ALPHABETIC-LOWER test cannot be used with an identifier described as
numeric.

ALPHABETIC-UPPER
Identifier consists entirely of any combination of the uppercase alphabetic
characters A through Z and the space.

The ALPHABETIC-UPPER test cannot be used with an identifier described as
numeric.

class-name
Identifier consists entirely of the characters listed in the definition of
class-name in the SPECIAL-NAMES paragraph.

The class-name test must not be used with an identifier described as numeric.

The class test is not valid for items defined as USAGE IS INDEX, as these items do
not belong to any class or category.

216 COBOL Language Reference

or internal-decimal

DBCS DBCS
KANJI

NOT DBCS
NOT KANJI

Condition-names with DBCS and floating-point values are allowed.

Conditional expressions

Table 19 shows valid forms of the class test.

Table 19. Valid forms of the class test for different types of identifiers

Type of identifier Valid forms of the class test

Alphabetic ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
class-name

NOT ALPHABETIC
NOT ALPHABETIC-LOWER
NOT ALPHABETIC-UPPER
NOT class-name

Alphanumeric,
alphanumeric-edited, or
numeric-edited

ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
NUMERIC
class-name

NOT ALPHABETIC
NOT ALPHABETIC-LOWER
NOT ALPHABETIC-UPPER
NOT NUMERIC
NOT class-name

External-decimal NUMERIC NOT NUMERIC

 Condition-name condition

A condition-name condition tests a conditional variable to determine whether its
value is equal to any value(s) associated with the condition-name.

 Format
��──condition-name───��

A condition-name is used in conditions as an abbreviation for the relation
condition. The rules for comparing a conditional variable with a condition-name
value are the same as those specified for relation conditions.

If the condition-name has been associated with a range of values (or with several
ranges of values), the conditional variable is tested to determine whether or not its
value falls within the range(s), including the end values. The result of the test is
true if one of the values corresponding to the condition-name equals the value of
its associated conditional variable.

The following example illustrates the use of conditional variables and
condition-names:

?1 AGE-GROUP PIC 99.
 88 INFANT VALUE ?.

88 BABY VALUE 1, 2.
88 CHILD VALUE 3 THRU 12.
88 TEEN-AGER VALUE 13 THRU 19.

AGE-GROUP is the conditional variable; INFANT, BABY, CHILD, and
TEEN-AGER are condition-names. For individual records in the file, only one of
the values specified in the condition-name entries can be present.

The following IF statements can be added to the above example to determine the
age group of a specific record:

IF INFANT... (Tests for value ?)
IF BABY... (Tests for values 1, 2)
IF CHILD... (Tests for values 3 through 12)
IF TEEN-AGER... (Tests for values 13 through 19)

Part 6. Procedure Division 217

Condition-name conditions and windowed date field
comparisons

If the conditional variable is a windowed date field, then the values associated
with its condition-names are treated like values of the windowed date field; that is,
they are treated as if they were converted to expanded date format, as described
under “Semantics of windowed date fields” on page 149.

For example, given YEARWINDOW(1945), specifying a century window of
1945–2044, and the following definition:

?5 DATE-FIELD PIC 9(6) DATE FORMAT YYXXXX.
 88 DATE-TARGET VALUE ?5122?.

then a value of 051220 in DATE-FIELD would cause the following condition to be
true:

IF DATE-TARGET...

because the value associated with DATE-TARGET and the value of DATE-FIELD
would both be treated as if they were prefixed by “20” before comparison.

However, the following condition would be false:

IF DATE-FIELD = ?5122?...

because, in a comparison with a windowed date field, literals are treated as if they
are prefixed by “19”, regardless of the century window. So the above condition
effectively becomes:

IF 2??5122? = 19?5122?...

For more information on using windowed date fields in conditional expressions,
see “Date fields” on page 219.

A nonnumeric literal can be enclosed
in parentheses within a relation condition.

Conditional expressions

Depending on the evaluation of the condition-name condition, alternative paths of
execution are taken by the object program.

 Relation condition

A relation condition compares two operands, either of which can be an identifier,
literal, arithmetic expression, or index-name.

 Format 1
��──operand-1─ ──┬ ┬──── ──┬ ┬ ──┬ ┬───── ──┬ ┬ ─GREATER─ ──┬ ┬────── ───── ─operand-2──��
 └ ┘─IS─ │ │└ ┘─NOT─ │ │└ ┘─THAN─
 │ │├ ┤─>─────────────────
 │ │├ ┤ ─LESS─ ──┬ ┬────── ───
 │ ││ │└ ┘─THAN─
 │ │├ ┤─<─────────────────
 │ │├ ┤ ─EQUAL─ ──┬ ┬──── ────
 │ ││ │└ ┘─TO─
 │ │└ ┘─=─────────────────
 ├ ┤ ─GREATER─ ──┬ ┬────── ─OR EQUAL─ ──┬ ┬────
 │ │└ ┘─THAN─ └ ┘─TO─
 ├ ┤─>=──────────────────────────────────
 ├ ┤ ─LESS─ ──┬ ┬────── ─OR EQUAL─ ──┬ ┬──── ───
 │ │└ ┘─THAN─ └ ┘─TO─
 └ ┘─<=──────────────────────────────────

218 COBOL Language Reference

 Date fields

Date fields can be alphanumeric, external decimal, or internal decimal; the existing
rules for the validity and mode (numeric or nonnumeric) of comparing such items
still apply. For example, an alphanumeric date field cannot be compared with an
internal decimal date field. In addition to these rules, two date fields can be
compared only if they are compatible; they must have the same date format except
for the year part, which can be windowed or expanded.

For year-last date fields, the only comparisons that are supported are IS EQUAL
TO and IS NOT EQUAL TO between two year-last date fields with identical date
formats, or between a year-last date field and a non-date.

Table 21 on page 220 shows supported comparisons for non-year-last date fields.
This table uses the following terms to describe how the comparisons are
performed:

Non-windowed
The comparison is performed with no windowing, as if the operands were
both non-dates.

Windowed
The comparison is performed as if:

1. Any windowed date field in the relation were expanded according to
the century window specified by the YEARWINDOW compiler option,
as described under “Semantics of windowed date fields” on page 149.

Conditional expressions

operand-1
The subject of the relation condition. Can be an identifier, literal,
function-identifier, arithmetic expression, or index-name.

operand-2
The object of the relation condition. Can be an identifier, literal,
function-identifier, arithmetic expression, or index-name.

The relation condition must contain at least one reference to an identifier.

The relational operator specifies the type of comparison to be made. Table 20
shows relational operators and their meanings. Each relational operator must be
preceded and followed by a space. The relational operators >= and <= must not
have a space between them.

Table 20. Relational operators and their meanings

Relational operator Can be written Meaning

IS GREATER THAN IS > Greater than

IS NOT GREATER THAN IS NOT > Not greater than

IS LESS THAN IS < Less than

IS NOT LESS THAN IS NOT < Not less than

IS EQUAL TO IS = Equal to

IS NOT EQUAL TO IS NOT = Not equal to

IS GREATER THAN OR
EQUAL TO

IS >= Is greater than or equal to

IS LESS THAN OR EQUAL
TO

IS <= Is less than or equal to

Part 6. Procedure Division 219

 This expansion is sensitive to trigger values in the date field
comparand if the DATEPROC(TRIG) compiler option is in effect.

2. Any repetitive alphanumeric figurative constant were expanded to the
size of the windowed date field with which it is compared, giving an
alphanumeric non-date comparand. Repetitive alphanumeric
figurative constants include ZERO (in an alphanumeric context),
SPACE, LOW-VALUE, HIGH-VALUE, QUOTE and ALL literal.

3. Any non-date operands were treated as if they had the same date
format as the date field, but with a base year of 1900.

 If the DATEPROC(NOTRIG) compiler option is in effect, the
comparison is performed as if the non-date operand were expanded by
assuming 19 for the century part of the expanded year.

If the DATEPROC(TRIG) compiler option is in effect, the comparison is
sensitive to date trigger values in the non-date operand. For
alphanumeric operands, these trigger values are LOW-VALUE,
HIGH-VALUE, and SPACE. For alphanumeric and numeric operands
compared with windowed date fields with at least one X in the DATE
FORMAT clause (that is, windowed date fields other than just a
windowed year), values of all zeros or all nines are also treated as
triggers. If a non-date operand contains a trigger value, the
comparison proceeds as if the non-date operand were expanded by
copying the trigger value to the assumed century part of the expanded
year. If the non-date operand does not contain a trigger value, the
century part of the expanded year is assumed to be 19.

The comparison is then performed according to normal COBOL rules.
Nonnumeric comparisons are not changed to numeric comparisons by the
prefixing of the century value.

Relation conditions can contain arithmetic expressions. For information about the
treatment of date fields in arithmetic expressions, see “Arithmetic with date fields”
on page 211.

 DBCS items

 Under OS/390 and VM, DBCS data items and literals can be used with
all relational operators. Comparisons are based on the binary collating sequence of
the hexadecimal values of the DBCS characters. If the DBCS items are not the
same length, the smaller item is padded on the right with DBCS spaces.

Table 21. Comparisons with date fields

First operand

Second operand

Non-date
Windowed date
field Expanded date field

Non-date Non-windowed Windowed1 Non-windowed

Windowed date field Windowed1 Windowed Windowed

Expanded date field Non-windowed Windowed Non-windowed

Note:

1. When compared with windowed date fields, non-dates are assumed to contain a
windowed year relative to 1900. For details, see items 3 and 4 under the definition of
“Windowed” comparison.

Conditional expressions

220 COBOL Language Reference

 Under AIX and Windows, comparisons of DBCS data items and
literals are based on a collation sequence according to the COLLSEQ compiler
option:
� If the COLLSEQ(NATIVE) compiler option is in effect, then the collating

sequence is determined by the locale. For information on the locale, see
Appendix F, “Locale considerations (workstation only)” on page 515.

� Otherwise, the collating sequence is determined by the binary values of the
DBCS characters.

Note: The PROGRAM COLLATING SEQUENCE clause will not be applied in
comparisons of DBCS data items and literals.

DBCS items can be compared only with DBCS items.

Pointer data items

Only EQUAL and NOT EQUAL are allowed as relational operators when
specifying pointer data items. Pointer data items are items defined explicitly as
USAGE IS POINTER, or are ADDRESS OF special registers, which are implicitly
defined as USAGE IS POINTER.

The operands are equal if the two addresses used in the comparison would both
result in the same storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH
format 1 statements. It is not allowed in SEARCH format 2 (SEARCH ALL)
statements, because there is no meaningful ordering that can be applied to pointer
data items.

 Format 2
��─ ──┬ ┬ ─ADDRESS OF──identifier-1─ ──┬ ┬──── ──┬ ┬───── ──┬ ┬ ─EQUAL─ ──┬ ┬──── ───────�
 ├ ┤─identifier-2───────────── └ ┘─IS─ └ ┘─NOT─ │ │└ ┘─TO─
 ├ ┤─NULL───────────────────── └ ┘─=─────────────
 └ ┘─NULLS────────────────────

�─ ──┬ ┬ ─ADDRESS OF──identifier-3─ ───��
 ├ ┤─identifier-4─────────────
 ├ ┤─NULL─────────────────────
 └ ┘─NULLS────────────────────

identifier-1
identifier-3

Can specify any level item defined in the Linkage Section, except 66 and 88.

identifier-2
identifier-4

Must be described as USAGE IS POINTER.

NULL(S)
As in this syntax diagram, can be used only if the other operand is defined as
USAGE IS POINTER. That is, NULL=NULL is not allowed.

Table 22 summarizes the permissible comparisons for USAGE IS POINTER,
NULL, and ADDRESS OF.

Conditional expressions

Part 6. Procedure Division 221

Procedure-pointer data items

Only EQUAL and NOT EQUAL are allowed as relational operators when
specifying procedure-pointer data items. Procedure-pointer data items are items
defined explicitly as USAGE IS PROCEDURE-POINTER.

The operands are equal if the two addresses used in the comparison would both
result in the same storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH
format 1 statements. It is not allowed in SEARCH format 2 (SEARCH ALL)
statements, because there is no meaningful ordering that can be applied to
procedure-pointer data items.

 Format 3
��─ ──┬ ┬────────────── ──┬ ┬──── ──┬ ┬───── ──┬ ┬ ─EQUAL─ ──┬ ┬──── ───────────────────�
 ├ ┤─identifier-1─ └ ┘─IS─ └ ┘─NOT─ │ │└ ┘─TO─
 ├ ┤─NULL───────── └ ┘─=─────────────
 └ ┘─NULLS────────

�─ ──┬ ┬────────────── ───��
 ├ ┤─identifier-2─
 ├ ┤─NULL─────────
 └ ┘─NULLS────────

identifier-1
identifier-2

Must be described as USAGE IS PROCEDURE-POINTER.

NULL(S)
As in this syntax diagram, can be used only if the other operand is defined as
USAGE IS PROCEDURE-POINTER. That is, NULL=NULL is not allowed.

Object reference data items

A data item of USAGE OBJECT REFERENCE can be compared for equality or
inequality with another data item of USAGE OBJECT REFERENCE or with NULL,
NULLS, or SELF. (A comparison with SELF is only allowed in a method.) Two
object-references compare equal only if the data items identify the same object.

Table 22. Permissible comparisons for USAGE IS POINTER, NULL, and ADDRESS OF

First operand

Second operand

USAGE IS
POINTER ADDRESS OF NULL/NULLS

USAGE IS POINTER Yes Yes Yes

ADDRESS OF Yes Yes Yes

NULL/NULLS Yes Yes No

Note:

 YES = Comparison allowed only for EQUAL, NOT EQUAL
 NO = No comparison allowed

Conditional expressions

222 COBOL Language Reference

 Format 4
��─ ──┬ ┬─object-reference-identifier-1─ ──┬ ┬──── ──┬ ┬───── ──┬ ┬ ─EQUAL─ ──┬ ┬──── ──�
 ├ ┤─SELF────────────────────────── └ ┘─IS─ └ ┘─NOT─ │ │└ ┘─TO─
 ├ ┤─NULL────────────────────────── └ ┘ ─=─────────────
 └ ┘─NULLS─────────────────────────

�─ ──┬ ┬─object-reference-identifier-2─ ──────────────────────────────────────��
 ├ ┤─SELF──────────────────────────
 ├ ┤─NULL──────────────────────────
 └ ┘─NULLS─────────────────────────

Conditional expressions

Comparison of numeric and nonnumeric operands

Comparing numeric operands

The algebraic values of numeric operands are compared.
� The length (number of digits) of the operands is not significant.
� Unsigned numeric operands are considered positive.
� Zero is considered to be a unique value, regardless of sign.
� Comparison of numeric operands is permitted, regardless of the type of

USAGE specified for each.

Table 23 on page 224 summarizes permissible comparisons with numeric
operands.

The symbols used in Table 23 and Table 24 are as follows:
NN = Comparison for nonnumeric operands
NU = Comparison for numeric operands
Blank = Comparison is not allowed.

Part 6. Procedure Division 223

IFP EFP FPL

NN

NN

NN

NN

NN

NN

NN

NU NU

NU NU

NU NU NU

NU NU NU

NU NU NU

NU NU NU

Internal floating-point (IFP) NU NU NU NUNUNU NU NU NU

External floating-point (EFP) NU NU NU NUNUNU NU NU NU

Floating-point literal (FPL) NU NUNUNU NU NU

Conditional expressions

Comparing nonnumeric operands

Comparisons of nonnumeric operands are made with respect to the collating
sequence of the character set in use.
� For the EBCDIC character set, the EBCDIC collating sequence is used.
� For the ASCII character set, the ASCII collating sequence is used. (See

Appendix B, “EBCDIC and ASCII collating sequences” on page 498.)
� Under AIX and Windows if the collating sequence specified is

NATIVE (explicitly or by default), the comparisons of characters are based on
the collating sequence indicated by the locale setting. For more information on
locale, see Appendix F, “Locale considerations (workstation only)” on
page 515.

� When the PROGRAM COLLATING SEQUENCE clause is specified in the
OBJECT-COMPUTER paragraph, the collating sequence associated with the
alphabet-name clause in the SPECIAL-NAMES paragraph is used.

The size of each operand is the total number of characters in that operand; the size
affects the result of the comparison. There are two cases to consider:

Table 23. Permissible comparisons with numeric second operands

First operand

Second operand

ZR NL ED BI AE ID

Nonnumeric operand

Group (GR) NN NN1 NN1

Alphabetic (AL) NN NN1 NN1

Alphanumeric (AN) NN NN1 NN1

Alphanumeric-edited (ANE) NN NN1 NN1

Numeric-edited (NE) NN NN1 NN1

Figurative constant (FC2) NN1

Nonnumeric literal (NNL) NN1

Numeric operand

Figurative constant ZERO
(ZR)

NU NUNUNU

Numeric literal (NL) NU NUNUNU

External decimal (ED) NU NU NU NUNUNU

Binary (BI) NU NU NU NUNUNU

Arithmetic expression (AE) NU NU NU NUNUNU

Internal decimal (ID) NU NU NU NUNUNU

Note:
1 Integer item only.
2 Includes all figurative constants except ZERO.

224 COBOL Language Reference

Conditional expressions

Operands of equal size
Characters in corresponding positions of the two operands are compared,
beginning with the leftmost character and continuing through the
rightmost character.

If all pairs of characters through the last pair test as equal, the operands
are considered as equal.

If a pair of unequal characters is encountered, the characters are tested to
determine their relative positions in the collating sequence. The operand
containing the character higher in the sequence is considered the greater
operand.

Operands of unequal size
If the operands are of unequal size, the comparison is made as though the
shorter operand were extended to the right with enough spaces to make
the operands equal in size.

Table 24 on page 226 summarizes permissible comparisons with nonnumeric
operands.

Part 6. Procedure Division 225

Internal
floating-point

(IFP)

External
floating-point

(EFP)

NN NN NN NN NN NN NN

Floating-point
literal (FPL)

Conditional expressions

Table 24. Permissible comparisons with nonnumeric second operands

First operand

Second operand

GR AL AN ANE NE FC2 NNL

Nonnumeric operand

Group (GR) NN NN NN NN NN NN NN

Alphabetic (AL) NN NN NN NN NN NN NN

Alphanumeric
(AN)

NN NN NN NN NN NN NN

Alphanumeric-edited
(ANE)

NN NN NN NN NN NN NN

Numeric-edited
(NE)

NN NN NN NN NN NN NN

Figurative
constant (FC2)

NN NN NN NN NN

Nonnumeric
literal (NNL)

NN NN NN NN NN

Numeric operand

Figurative
constant ZERO

(ZR)

NN NN NN NN NN

Numeric literal
(NL)

NN1 NN1 NN1 NN1 NN1

External decimal
(ED)

NN1 NN1 NN1 NN1 NN1 NN1 NN1

Binary (BI)

Arithmetic
expression (AE)

Internal decimal
(ID)

Note:
1 Integer item only.
2 Includes all figurative constants except ZERO.

226 COBOL Language Reference

� External floating-point items can be compared with nonnumeric operands.

� In the comparison of an index-name with an arithmetic expression, the
occurrence number that corresponds to the value of the index-name is
compared with the arithmetic expression.

Since an integer function can be used wherever an arithmetic expression can be
used, this extension allows you to compare an index-name to an integer or
numeric function.

Arithmetic
Expression

Compare
occurrence
number with
arithmetic
expression

Conditional expressions

Comparing numeric and nonnumeric operands

The nonnumeric comparison rules, discussed above, apply. In addition, when
numeric and nonnumeric operands are being compared, their USAGE must be the
same. In such comparisons:
� The numeric operand must be described as an integer literal or data item.
� Non-integer literals and data items must not be compared with nonnumeric

operands.

If either of the operands is a group item, the nonnumeric comparison rules,
discussed above, apply. In addition to those rules:
� If the nonnumeric operand is a literal or an elementary data item, the numeric

operand is treated as though it were moved to an alphanumeric elementary
data item of the same size, and the contents of this alphanumeric data item
were then compared with the nonnumeric operand.

� If the nonnumeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size, and the contents of
this group item were compared then with the nonnumeric operand.

See “MOVE statement” on page 320.

Comparing index-names and index data items

Comparisons involving index-names and/or index data items conform to the
following rules:
� The comparison of two index-names is actually the comparison of the

corresponding occurrence numbers.
� In the comparison of an index-name with a data item (other than an index data

item), or in the comparison of an index-name with a literal, the occurrence
number that corresponds to the value of the index-name is compared with the
data item or literal.

� In the comparison of an index data item with an index-name or another index
data item, the actual values are compared without conversion. Results of any
other comparison involving an index data item are undefined.

Table 25 shows valid comparisons for index-names and index data items.

Table 25 (Page 1 of 2). Comparisons for index-names and index data items

Operands
compared Index-name

Index data
item

Data-name
(numeric
integer
only)

Literal
(numeric
integer
only)

Index-name Compare
occurrence
number

Compare
without
conversion

Compare
occurrence
number
with
data-name

Compare
occurrence
number
with literal

Part 6. Procedure Division 227

Comparison of DBCS operands

The rules for comparing DBCS operands are the same as those for the comparison
of nonnumeric operands.

 Under OS/390 and VM, the comparison is based on a binary collating
sequence of the hexadecimal values of the DBCS characters.

 Under AIX and Windows if the collating sequence specified is
NATIVE (explicitly or by default), the comparisons of characters are based on the
collating sequence indicated by the locale setting. For more information on locale,
see Appendix F, “Locale considerations (workstation only)” on page 515.

Note: The PROGRAM COLLATING SEQUENCE clause will not be applied to
comparisons of DBCS operands.

Arithmetic
Expression

Illegal

Operand-1 can be
defined as a floating-point identifier.

 Under OS/390 and VM, if you are using the NUMPROC compiler
option, the results of the sign condition test can be affected. For details, see
the IBM COBOL for OS/390 & VM Programming Guide.

Conditional expressions

Table 25 (Page 2 of 2). Comparisons for index-names and index data items

Operands
compared Index-name

Index data
item

Data-name
(numeric
integer
only)

Literal
(numeric
integer
only)

Index data
item

Compare
without
conversion

Compare
without
conversion

Illegal Illegal

 Sign condition

The sign condition determines whether or not the algebraic value of a numeric
operand is greater than, less than, or equal to zero.

 Format
��──operand-1─ ──┬ ┬──── ──┬ ┬───── ──┬ ┬─POSITIVE─ ──────────────────────────────��
 └ ┘─IS─ └ ┘─NOT─ ├ ┤─NEGATIVE─
 └ ┘─ZERO─────

operand-1
Must be defined as a numeric identifier, or it must be defined as an arithmetic
expression that contains at least one reference to a variable.

The operand is:

� POSITIVE if its value is greater than zero
� NEGATIVE if its value is less than zero
� ZERO if its value is equal to zero

An unsigned operand is either POSITIVE or ZERO.

NOT
One algebraic test is executed for the truth value of the sign condition. For
example, NOT ZERO is regarded as true when the operand tested is positive
or negative in value.

228 COBOL Language Reference

Date fields in sign conditions

The operand in a sign condition can be a date field, but is treated as a non-date for
the sign condition test. Thus, if the operand is an identifier of a windowed date
field, date windowing is not done, so the sign condition can be used to test a
windowed date field for an all-zero value.

However, if the operand is an arithmetic expression, then any windowed date
fields in the expression will be expanded during the computation of the arithmetic
result, prior to using the result for the sign condition test.

For example, given that:
� Identifier WIN-DATE is defined as a windowed date field, and contains a

value of zero
� Compiler option DATEPROC is in effect
� Compiler option YEARWINDOW(starting-year) is in effect, with a starting-year

other than 1900

then this sign condition would evaluate to true:

WIN-DATE IS ZERO

whereas this sign condition would evaluate to false:

WIN-DATE + ? IS ZERO

Conditional expressions

 Switch-status condition

The switch-status condition determines the on or off status of an UPSI switch.

 Format
��──condition-name───��

condition-name
Must be defined in the SPECIAL-NAMES paragraph as associated with the ON
or OFF value of an UPSI switch. (See “SPECIAL-NAMES paragraph” on
page 83.)

The switch-status condition tests the value associated with the condition-name.
(The value associated with the condition-name is considered to be alphanumeric.)
The result of the test is true if the UPSI switch is set to the value (0 or 1)
corresponding to condition-name. See “UPSI” in the IBM COBOL Programming
Guide for your platform.

 Complex conditions

A complex condition is formed by combining simple conditions, combined
conditions, and/or complex conditions with logical operators, or negating these
conditions with logical negation.

Each logical operator must be preceded and followed by a space. The following
table shows the logical operators and their meanings.

Part 6. Procedure Division 229

Conditional expressions

Unless modified by parentheses, the following precedence rules (from highest to
lowest) apply:
1. Arithmetic operations
2. Simple conditions
3. NOT
4. AND
5. OR

The truth value of a complex condition (whether parenthesized or not) is the truth
value that results from the interaction of all the stated logical operators on either of
the following:
� The individual truth values of simple conditions
� The intermediate truth values of conditions logically combined or logically

negated.

A complex condition can be either of the following:
� A negated simple condition
� A combined condition (which can be negated)

Table 26. Logical operators and their meanings

Logical
operator

Name Meaning

AND Logical
conjunction

The truth value is true when both conditions are true.

OR Logical
inclusive
OR

The truth value is true when either or both conditions are
true.

NOT Logical
negation

Reversal of truth value (the truth value is true if the
condition is false).

Negated simple conditions

A simple condition is negated through the use of the logical operator NOT.

 Format
��──NOT──condition-1───��

The negated simple condition gives the opposite truth value of the simple
condition. That is, if the truth value of the simple condition is true, then the truth
value of that same negated simple condition is false, and vice versa.

Placing a negated simple condition within parentheses does not change its truth
value. That is, the following two statements are equivalent:

NOT A IS EQUAL TO B.

NOT (A IS EQUAL TO B).

230 COBOL Language Reference

Conditional expressions

 Combined conditions

Two or more conditions can be logically connected to form a combined condition.

 Format
 ┌ ┐────────────────────────
��──condition-1─ ───/ ┴──┬ ┬─AND─ ─condition-2─ ─────────────────────────────────��
 └ ┘─OR──

The condition to be combined can be any of the following:
� A simple-condition
� A negated simple-condition
� A combined condition
� A negated combined condition (that is, the NOT logical operator followed by a

combined condition enclosed in parentheses)
� Combinations of the preceding conditions that are specified according to the

rules in the following table.

Parentheses are never needed when either ANDs or ORs (but not both) are used
exclusively in one combined condition. However, parentheses can be needed to
modify the implicit precedence rules to maintain the correct logical relation of
operators and operands.

There must be a one-to-one correspondence between left and right parentheses,
with each left parenthesis to the left of its corresponding right parenthesis.

Table 28 illustrates the relationships between logical operators and conditions C1
and C2.

Table 27. Combined conditions—permissible element sequences

Combined
condition
element

Left
most

When not leftmost, can
be immediately
preceded by:

Right
most

When not rightmost, can
be immediately followed
by:

simple-
condition

Yes OR NOT AND (Yes OR AND)

OR AND No simple-condition) No simple-condition NOT (

NOT Yes OR AND (No simple-condition (

(Yes OR NOT AND (No simple-condition NOT (

) No simple-condition) Yes OR AND)

Table 28. Logical operators and evaluation results of combined conditions

Value
for C1

Value
for C2

C1
AND
C2

C1 OR
C2

NOT
(C1
AND
C2)

NOT
C1
AND
C2

NOT
(C1
OR
C2)

NOT C1
OR C2

True True True True False False False True

False True False True True True False True

True False False True True False False False

False False False False True False True True

Part 6. Procedure Division 231

Conditional expressions

Order of evaluation of conditions

Parentheses, both explicit and implicit, define the level of inclusiveness within a
complex condition. Two or more conditions connected by only the logical
operators AND or OR at the same level of inclusiveness establish a hierarchical
level within a complex condition. An entire complex condition, therefore, is a
nested structure of hierarchical levels with the entire complex condition being the
most inclusive hierarchical level.

Within this context, the evaluation of the conditions within an entire complex
condition begins at the left of the condition. The constituent connected conditions
within a hierarchical level are evaluated in order from left to right, and evaluation
of that hierarchical level terminates as soon as a truth value for it is determined,
regardless of whether all the constituent connected conditions within that
hierarchical level have been evaluated.

Values are established for arithmetic expressions and functions if and when the
conditions containing them are evaluated. Similarly, negated conditions are
evaluated if and when it is necessary to evaluate the complex condition that they
represent. For example:

NOT A IS GREATER THAN B OR A + B IS EQUAL TO C AND D IS POSITIVE

is evaluated as if parenthesized as follows:

(NOT (A IS GREATER THAN B)) OR
(((A + B) IS EQUAL TO C) AND (D IS POSITIVE))

Order of evaluation:

1. (NOT (A IS GREATER THAN B)) is evaluated, giving some intermediate truth
value, t1. If t1 is true, the combined condition is true, and no further
evaluation takes place. If t1 is false, evaluation continues as follows.

2. (A + B) is evaluated, giving some intermediate result, x.
3. (x IS EQUAL TO C) is evaluated, giving some intermediate truth value, t2. If t2

is false, the combined condition is false, and no further evaluation takes place.
If t2 is true, the evaluation continues as follows.

4. (D IS POSITIVE) is evaluated, giving some intermediate truth value, t3. If t3 is
false, the combined condition is false. If t3 is true, the combined condition is
true.

Abbreviated combined relation conditions

When relation-conditions are written consecutively, any relation-condition after the
first can be abbreviated in one of two ways:
� Omission of the subject
� Omission of the subject and relational operator.

 Format
��──relation-condition──�

 ┌ ┐───
�─ ───/ ┴──┬ ┬─AND─ ──┬ ┬───── ──┬ ┬───────────────────── ─object─ ──────────────────��
 └ ┘─OR── └ ┘─NOT─ └ ┘─relational-operator─

In any consecutive sequence of relation-conditions, both forms of abbreviation can
be specified. The abbreviated condition is evaluated as if:
1. The last stated subject is the missing subject.

232 COBOL Language Reference

 Using parentheses

You can use parentheses in combined relation conditions to specify an intended
order of evaluation. Using parentheses can also help you to improve the
readability of conditional expressions.

The following rules govern the use of parentheses in abbreviated combined
relation conditions:
1. Parentheses can be used to change the order of evaluation of the logical

operators AND and OR.
2. The word NOT participates as part of the relational operator when it is

immediately followed by GREATER THAN, >, LESS THAN, <, EQUAL TO,
and =.

3. NOT in any other position is considered a logical operator and thus results in
a negated relation-condition. If you use NOT as a logical operator, only the
relation condition immediately following the NOT is negated; the negation is
not propagated through the abbreviated combined relation condition along
with the subject and relational operator.

4. The logical NOT operator can appear within a parenthetical expression that
immediately follows a relational operator.

5. When a left parenthesis appears immediately after the relational operator, the
relational operator is distributed to all objects enclosed in the parentheses. In
the case of a “distributed” relational operator, the subject and relational
operator remain current after the right parenthesis which ends the distribution.
The following three restrictions apply to cases where the relational operator is
distributed throughout the expression:
a. A simple condition cannot appear within the scope of the distribution.
b. Another relational operator cannot appear within the scope of the

distribution.
c. The logical operator NOT cannot appear immediately after the left

parenthesis, which defines the scope of the distribution.
6. Evaluation proceeds from the least to the most inclusive condition.
7. There must be a one-to-one correspondence between left and right parentheses,

with each left parenthesis to the left of its corresponding right parenthesis. If
the parentheses are unbalanced, the compiler inserts a parenthesis and issues
an E-level message. Note, however, that if the compiler-inserted parenthesis
results in the truncation of the expression, you will receive an S-level
diagnostic message.

8. The last stated subject is inserted in place of the missing subject.
9. The last stated relational operator is inserted in place of the missing relational

operator.
10. Insertion of the omitted subject and/or relational operator ends when:

a. Another simple condition is encountered,
b. A condition-name is encountered,

Conditional expressions

2. The last stated relational operator is the missing relational operator.

The resulting combined condition must comply with the rules for element
sequence in combined conditions, as shown in Table 27 on page 231.

If the word immediately following NOT is GREATER THAN, >, LESS THAN, <,
EQUAL TO, and =, then the NOT participates as part of the relational operator.

NOT in any other position is considered a logical operator (and thus results in a
negated relation-condition).

Part 6. Procedure Division 233

c. A right parenthesis is encountered that matches a left parenthesis that
appears to the left of the subject.

11. In any consecutive sequence of relation conditions, you can use both
abbreviated relation conditions that contain parentheses and those that don't.

12. Consecutive logical NOT operators cancel each other and result in an S-level
message. Note, however, that an abbreviated combined relation condition can
contain two consecutive NOT operators when the second NOT is part of a
relational operator. For example, you can abbreviate the first condition as the
second condition listed below.

A = B and not A not = C
A = B and not not = C

The following table summarizes the rules for forming an abbreviated combined
relation condition.

Table 29. Abbreviated combined conditions—permissible element sequences

Combined
condition
element

Left
most

When not leftmost, can
be immediately
preceded by:

Right
most

When not rightmost, can
be immediately followed
by:

Subject Yes NOT (No Relational operator

Object No Relational operator AND
OR NOT (

Yes AND OR)

Relational
operator

No Subject AND OR NOT No Object (

AND OR No Object) No Object Relational operator
NOT (

NOT Yes AND OR (No Subject Object Relational
operator (

(Yes Relational operator AND
OR NOT (

No Subject Object NOT (

) No Object) Yes AND OR)

NOT (A = B OR < C) NOT ((A = B) OR (A < C))

NOT (A NOT = B AND C AND NOT D) NOT ((((A NOT = B) AND (A NOT = C))
AND (NOT (A NOT = D))))

Statement categories

The following examples illustrate abbreviated combined relation conditions, with
and without parentheses, and their unabbreviated equivalents.

Table 30. Abbreviated combined conditions—unabbreviated equivalents

Abbreviated combined relation condition Equivalent

A = B AND NOT < C OR D ((A = B) AND (A NOT < C)) OR (A NOT
< D)

A NOT > B OR C (A NOT > B) OR (A NOT > C)

NOT A = B OR C (NOT (A = B)) OR (A = C)

 Statement categories

There are four categories of COBOL statements:
� Imperative
� Conditional
� Delimited scope

234 COBOL Language Reference

EXIT METHOD
GOBACK

Statement categories

� Compiler directing

 Imperative statements

An imperative statement either specifies an unconditional action to be taken by
the program, or is a conditional statement terminated by its explicit scope
terminator (see “Delimited scope statements” on page 237). A series of imperative
statements can be specified whenever an imperative statement is allowed. A
conditional statement that is terminated by its explicit scope terminator is also
classified as an imperative statement (see “Delimited scope statements” on
page 237). Table 31 lists COBOL imperative statements.

Table 31 (Page 1 of 2). Imperative statements

Arithmetic

 ADD1

 COMPUTE1

 DIVIDE1

 MULTIPLY1

 SUBTRACT1

Data movement

 ACCEPT (DATE,DAY,DAY-OF-WEEK,TIME)
 INITIALIZE
 INSPECT
 MOVE
 SET
 STRING2

 UNSTRING2

Ending

 STOP RUN
 EXIT PROGRAM

Input-output

 ACCEPT identifier
 CLOSE
 DELETE3

 DISPLAY
 OPEN
 READ4

 REWRITE3

 START3

 STOP literal
 WRITE5

Ordering

 MERGE
 RELEASE
 RETURN6

 SORT

Part 6. Procedure Division 235

or method

INVOKE

Statement categories

Table 31 (Page 2 of 2). Imperative statements

Procedure branching

 ALTER
 EXIT
 GO TO
 PERFORM

Program linkage

 CALL7

 CANCEL

Table handling

 SET

Note:
1 Without the ON SIZE ERROR and/or the NOT ON SIZE ERROR phrase.
2 Without the ON OVERFLOW and/or the NOT ON OVERFLOW phrase.
3 Without the INVALID KEY and/or the NOT INVALID KEY phrase.
4 Without the AT END, NOT AT END, INVALID KEY, and/or NOT INVALID KEY

phrases.
5 Without the INVALID KEY, NOT INVALID KEY, END-OF-PAGE, and/or NOT

END-OF-PAGE phrases.
6 Without the AT END and/or NOT AT END phrase.
7 Without the ON OVERFLOW phrase, and without the ON EXCEPTION and/or NOT

ON EXCEPTION phrase.

 Conditional statements

A conditional statement specifies that the truth value of a condition is to be
determined, and that the subsequent action of the object program is dependent on
this truth value. (See “Conditional expressions” on page 214.) Table 32 lists
COBOL statements that become conditional when a condition (for example, ON
SIZE ERROR or ON OVERFLOW) is included, and when the statement is not
terminated by its explicit scope terminator.

Table 32 (Page 1 of 2). Conditional statements

Arithmetic

ADD...ON SIZE ERROR
ADD...NOT ON SIZE ERROR
COMPUTE...ON SIZE ERROR
COMPUTE...NOT ON SIZE ERROR
DIVIDE...ON SIZE ERROR
DIVIDE...NOT ON SIZE ERROR
MULTIPLY...ON SIZE ERROR
MULTIPLY...NOT ON SIZE ERROR
SUBTRACT...ON SIZE ERROR
SUBTRACT...NOT ON SIZE ERROR

Data movement

 STRING...ON OVERFLOW
STRING...NOT ON OVERFLOW

 UNSTRING...ON OVERFLOW
UNSTRING...NOT ON OVERFLOW

236 COBOL Language Reference

or method

INVOKE...ON EXCEPTION
INVOKE...NOT ON EXCEPTION

Statement categories

Table 32 (Page 2 of 2). Conditional statements

Decision

 IF
 EVALUATE

Input-output

 DELETE...INVALID KEY
DELETE...NOT INVALID KEY

 READ...AT END
READ...NOT AT END

 READ...INVALID KEY
READ...NOT INVALID KEY

 REWRITE...INVALID KEY
REWRITE...NOT INVALID KEY

 START...INVALID KEY
START...NOT INVALID KEY

 WRITE...AT END-OF-PAGE
WRITE...NOT AT END-OF-PAGE

 WRITE...INVALID KEY
WRITE...NOT INVALID KEY

Ordering

 RETURN...AT END
RETURN...NOT AT END

Program linkage

 CALL...ON OVERFLOW
 CALL...ON EXCEPTION

CALL...NOT ON EXCEPTION

Table handling

 SEARCH

Delimited scope statements

In general, a DELIMITED SCOPE statement uses an explicit scope terminator to
turn a conditional statement into an imperative statement; the resulting imperative
statement can then be nested. Explicit scope terminators can also be used,
however, to terminate the scope of an imperative statement. Explicit scope
terminators are provided for all COBOL verbs that can have conditional phrases.

Unless explicitly specified otherwise, a delimited scope statement can be specified
wherever an imperative statement is allowed by the rules of the language.

Explicit scope terminators

An EXPLICIT SCOPE TERMINATOR marks the end of certain Procedure Division
statements. A conditional statement that is delimited by its explicit scope
terminator is considered an imperative statement and must follow the rules for
imperative statements.

Part 6. Procedure Division 237

END-INVOKE

Statement operations

The following are explicit scope terminators:

END-ADD
END-CALL
END-COMPUTE
END-DELETE
END-DIVIDE
END-EVALUATE
END-IF

END-MULTIPLY
END-PERFORM

END-READ
END-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE

Implicit scope terminators

At the end of any sentence, an IMPLICIT SCOPE TERMINATOR is a separator
period that terminates the scope of all previous statements not yet terminated.

An unterminated conditional statement cannot be contained by another statement.

Note: Except for nesting conditional statements within IF statements, nested
statements must be imperative statements, and must follow the rules for
imperative statements. You should not nest conditional statements.

 Compiler-directing statements

Statements that direct the compiler to take a specified action are discussed in
“Compiler-directing statements” on page 464.

 Statement operations

COBOL statements perform the following types of operations:
� Arithmetic
� Data manipulation
� Input/output
� Procedure branching

There are several phrases common to arithmetic and data manipulation statements,
such as:
� CORRESPONDING Phrase
� GIVING Phrase
� ROUNDED Phrase
� SIZE ERROR Phrases

 CORRESPONDING phrase

The CORRESPONDING phrase (CORR) allows ADD, SUBTRACT, and MOVE
operations to be performed on elementary data items of the same name if the
group items to which they belong are specified.

Both identifiers following the key word CORRESPONDING must name group
items. In this discussion, these identifiers are referred to as identifier-1 and
identifier-2.

A pair of data items (subordinate items), one from identifier-1 and one from
identifier-2, correspond if the following conditions are true:
� In an ADD or SUBTRACT statement, both of the data items are elementary

numeric data items. Other data items are ignored.

238 COBOL Language Reference

 USAGE IS POINTER, USAGE IS PROCEDURE-POINTER,
or USAGE IS OBJECT REFERENCE

� Neither identifier-1 nor identifier-2 is described as a USAGE IS POINTER,
USAGE IS PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE

� identifier-1 and/or identifier-2 can be subordinate to a FILLER item.

Statement operations

� In a MOVE statement, at least one of the data items is an elementary item, and
the move is permitted by the move rules.

� The two subordinate items have the same name and the same qualifiers up to
but not including identifier-1 and identifier-2.

� The subordinate items are not identified by the key word FILLER.
� Neither identifier-1 nor identifier-2 is described as a level 66, 77, or 88 item,

nor is either described as a USAGE IS INDEX item. Neither identifier-1 nor
identifier-2 can be reference-modified.

� The subordinate items do not include a REDEFINES, RENAMES, OCCURS,
USAGE IS INDEX,

 clause in their descriptions.

However, identifier-1 and identifier-2 themselves can contain or be subordinate
to items containing a REDEFINES or OCCURS clause in their descriptions.

For example, if two data hierarchies are defined as follows:

?5 ITEM-1 OCCURS 6.
 1? ITEM-A PIC S9(3).
 1? ITEM-B PIC +99.9.
 1? ITEM-C PIC X(4).
 1? ITEM-D REDEFINES ITEM-C PIC 9(4).
 1? ITEM-E USAGE COMP-1.
 1? ITEM-F USAGE INDEX.
?5 ITEM-2.
 1? ITEM-A PIC 99.
 1? ITEM-B PIC +9V9.
 1? ITEM-C PIC A(4).
 1? ITEM-D PIC 9(4).
 1? ITEM-E PIC 9(9) USAGE COMP.
 1? ITEM-F USAGE INDEX.

Then, if ADD CORR ITEM-2 TO ITEM-1(X) is specified, ITEM-A and ITEM-A(X),
ITEM-B and ITEM-B(X), and ITEM-E and ITEM-E(X) are considered to be
corresponding and are added together. ITEM-C and ITEM-C(X) are not included
because they are not numeric. ITEM-D and ITEM-D(X) are not included because
ITEM-D(X) includes a REDEFINES clause in its data description. ITEM-F and
ITEM-F(X) are not included because they are defined as USAGE IS INDEX. Note
that ITEM-1 is valid as either identifier-1 or identifier-2.

If any of the individual operations in the ADD CORRESPONDING statement
produces a size error condition, imperative-statement-1 in the ON SIZE ERROR
phrase is not executed until all of the individual additions are completed.

 GIVING phrase

The value of the identifier that follows the word GIVING is set equal to the
calculated result of the arithmetic operation. Because this identifier is not involved
in the computation, it can be a numeric-edited item.

 ROUNDED phrase

Part 6. Procedure Division 239

In a floating-point arithmetic operation, the ROUNDED phrase has no effect; the
result of a floating-point operation is always rounded. For more information on
floating-point arithmetic expressions, see the IBM COBOL Programming Guide for
your platform.

When the ARITH(EXTEND) compiler option is in effect, the ROUNDED phrase is
not supported for arithmetic receivers with 31 digit positions to the right of the
decimal point. For example, neither X nor Y below are valid as receivers with the
ROUNDED phrase:

?1 X PIC V31.
?1 Y PIC P(3?)9(1).

COMPUTE X ROUNDED = A + B
COMPUTE Y ROUNDED = A - B

Otherwise, the ROUNDED phrase is fully supported for extended-precision
arithmetic statements.

� When the result of an arithmetic statement is stored in a windowed date field,
and the year of the result falls outside the century window. For example,
given YEARWINDOW(1940), which specifies a century window of 1940–2039,
the following SUBTRACT statement causes a size error:

?1 WINDOWED-YEAR DATE FORMAT YY PICTURE 99
VALUE IS 5?.

...

SUBTRACT 2? FROM WINDOWED-YEAR
ON SIZE ERROR imperative-statement

The size error occurs because the result of the subtraction, a windowed date
field, has an effective year value of 1930, which falls outside the century
window. For details on how windowed date fields are treated as if they were
converted to expanded date format, see “Subtraction involving date fields” on
page 212.

For more information on how size errors can occur when using date fields, see
“Storing arithmetic results that involve date fields” on page 213.

Statement operations

After decimal point alignment, the number of places in the fraction of the result of
an arithmetic operation is compared with the number of places provided for the
fraction of the resultant identifier.

When the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless ROUNDED is specified. When ROUNDED is
specified, the least significant digit of the resultant identifier is increased by 1
whenever the most significant digit of the excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs, relative to the
rightmost integer position for which storage is allocated.

|
|
|
|

|
|

|
|

|
|

SIZE ERROR phrases

A size error condition can occur in four different ways:
� When the absolute value of the result of an arithmetic evaluation, after decimal

point alignment, exceeds the largest value that can be contained in the result
field

� When division by zero occurs

240 COBOL Language Reference

or COMPUTATIONAL-4,

Statement operations

� In an exponential expression, as indicated in the following table:

The size error condition applies only to final results, not to any intermediate
results.

If the resultant identifier is defined with USAGE IS BINARY, COMPUTATIONAL,
 the largest value that can be contained in it is the

maximum value implied by its associated decimal PICTURE character-string.

If the ROUNDED phrase is specified, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the ON SIZE ERROR phrase is specified.

If the ON SIZE ERROR phrase is not specified and a size error condition occurs,
truncation rules apply and the value of the affected resultant identifier is
computed.

If the ON SIZE ERROR phrase is specified and a size error condition occurs, the
value of the resultant identifier affected by the size error is not altered—that is, the
error results are not placed in the receiving identifier. After completion of the
execution of the arithmetic operation, the imperative statement in the ON SIZE
ERROR phrase is executed, control is transferred to the end of the arithmetic
statement, and the NOT ON SIZE ERROR phrase, if specified, is ignored.

For ADD CORRESPONDING and SUBTRACT CORRESPONDING statements, if
an individual arithmetic operation causes a size error condition, the ON SIZE
ERROR imperative statement is not executed until all the individual additions or
subtractions have been completed.

If the NOT ON SIZE ERROR phrase has been specified and, after execution of an
arithmetic operation, a size error condition does not exist, the NOT ON SIZE
ERROR phrase is executed.

When both ON SIZE ERROR and NOT ON SIZE ERROR phrases are specified,
and the statement in the phrase that is executed does not contain any explicit
transfer of control, then, if necessary, an implicit transfer of control is made after
execution of the phrase to the end of the arithmetic statement.

Table 33. Exponentiation size error conditions

Size error

Action taken when a
SIZE ERROR clause is
present

Action taken when a SIZE
ERROR clause is not
present

Zero raised to zero power The SIZE ERROR
imperative is executed.

The value returned is 1, and
a message is issued.

Zero raised to a negative
number

The SIZE ERROR
imperative is executed.

Program is terminated
abnormally.

A negative number raised to
a fractional power

The SIZE ERROR
imperative is executed.

The absolute value of the
base is used, and a message
is issued.

 Arithmetic statements

The arithmetic statements are used for computations. Individual operations are
specified by the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements. These
operations can be combined symbolically in a formula, using the COMPUTE
statement.

Part 6. Procedure Division 241

If the ARITH(EXTEND) compiler option is in
effect, then the maximum size of each operand is 31 decimal digits.

As an IBM
extension, the composite of operands can be more than 18 digits.

In the ADD and SUBTRACT statements, if the composite of operands is 30 digits
or less (with the ARITH(COMPAT) compiler option), or 31 digits or less (with the
ARITH(EXTEND) compiler option),

Statement operations

Arithmetic statement operands

The data description of operands in an arithmetic statement need not be the same.
Throughout the calculation, the compiler performs any necessary data conversion
and decimal point alignment.

Size of operands

| If the ARITH(COMPAT) compiler option is in effect, then the maximum size of
| each operand is 18 decimal digits.
|

The composite of operands is a hypothetical data item resulting from aligning the
operands at the decimal point and then superimposing them on one another.

| The composite of operands must not contain more than 18 digits.
|

| The following table shows how the composite of operands is determined for
| arithmetic statements:

For example, assume that each item is defined as follows in the Data Division:

A PICTURE 9(7)V9(5).
B PICTURE 9(11)V99.
C PICTURE 9(12)V9(3).

If the following statement is executed, the composite of operands consists of 17
decimal digits:

ADD A B TO C

It has the following implicit description:

COMPOSITE-OF-OPERANDS PICTURE 9(12)V9(5).

|
|
| the compiler ensures that enough places are
| carried so that no significant digits are lost during execution.

In all arithmetic statements, it is important to define data with enough digits and
decimal places to ensure the desired accuracy in the final result. For more
information, see the section on intermediate results in the IBM COBOL
Programming Guide for your platform.

 Overlapping operands

When operands in an arithmetic statement share part of their storage (that is, when
the operands overlap), the result of the execution of such a statement is
unpredictable.

| Table 34. How the composite of operands is determined

| Statement| Determination of the composite of operands

| SUBTRACT
| ADD
| Superimposing all operands in a given statement (except those following
| the word GIVING)

| MULTIPLY| Superimposing all receiving data items

| DIVIDE| Superimposing all receiving data items, except the REMAINDER data item

| COMPUTE| Restriction does not apply

242 COBOL Language Reference

Statement operations

 Multiple results

When an arithmetic statement has multiple results, execution conceptually
proceeds as follows:
� The statement performs all arithmetic operations to find the result to be placed

in the receiving items, and stores that result in a temporary location.
� A sequence of statements transfers or combines the value of this temporary

result with each single receiving field. The statements are considered to be
written in the same left-to-right order as the multiple results are listed.

For example, executing the following statement:

ADD A, B, C, TO C, D(C), E.

is equivalent to executing the following series of statements:

ADD A, B, C GIVING TEMP.
ADD TEMP TO C.
ADD TEMP TO D(C).
ADD TEMP TO E.

In the above example, TEMP is a compiler-supplied temporary result field. When
the addition operation for D(C) is performed, the subscript C contains the new
value of C.

Data manipulation statements

The following COBOL statements move and inspect data: ACCEPT, INITIALIZE,
INSPECT, MOVE, READ, RELEASE, RETURN, REWRITE, SET, STRING,
UNSTRING, and WRITE.

 Overlapping operands

When the sending and receiving fields of a data manipulation statement share a
part of their storage (that is, when the operands overlap), the result of the
execution of such a statement is unpredictable.

 Input-output statements

COBOL input-output statements transfer data to and from files stored on external
media, and also control low-volume data that is obtained from or sent to an
input/output device.

In COBOL, the unit of file data made available to the program is a record, and you
need only be concerned with such records. Provision is automatically made for
such operations as the movement of data into buffers and/or internal storage,
validity checking, error correction (where feasible), blocking and deblocking, and
volume switching procedures.

The description of the file in the Environment Division and Data Division governs
which input-output statements are allowed in the Procedure Division. Permissible
statements for each type of file organization are shown in Table 44 on page 330
and Table 45 on page 331.

Discussions in the following section use the terms volume and reel. The term
volume refers to all non-unit-record input-output devices. The term reel applies
only to tape devices. Treatment of direct access devices in the sequential access
mode is logically equivalent to the treatment of tape devices.

Part 6. Procedure Division 243

The other status key is described by data-name-8 in the FILE STATUS clause of the
FILE-CONTROL entry. Data-name-8 does not apply to QSAM files (OS/390 and
VM only) or to line-sequential files (Workstation only). For more information on
data-name-8, see “FILE STATUS clause” on page 112.

This does not apply to OS/390
and VM VSAM sequential files.

Statement operations

Common processing facilities

There are several common processing facilities that apply to more than one
input-output statement. The common processing facilities provided are:
� Status key
� Invalid key condition
� INTO/FROM identifier phrase
� File position indicator

 Status key

If the FILE STATUS clause is specified in the FILE-CONTROL entry, a value is
placed in the specified status key (the 2-character data item named in the FILE
STATUS clause) during execution of any request on that file; the value indicates
the status of that request. The value is placed in the status key before execution of
any EXCEPTION/ERROR declarative or INVALID KEY/AT END phrase
associated with the request.

There are two status key data-names. One is described by data-name-1 in the FILE
STATUS clause of the FILE-CONTROL entry. This is a two character data item
with the first character known as status key 1 and the second character known as
status key 2. The combinations of possible values and their meanings are shown
in Table 35.

Table 35 (Page 1 of 4). Status key values and meanings

High-
order
digit

Meaning Low-
order
digit

Meaning

0 Successful
completion

0 No further information

2 This file status value only applies to indexed files with alternate keys that
allow duplicates.

The input-output statement was successfully executed, but a duplicate key
was detected. For a READ statement the key value for the current key of
reference was equal to the value of the same key in the next record within
the current key of reference. For a REWRITE or WRITE statement, the
record just written created a duplicate key value for at least one alternate
record key for which duplicates are allowed.

4 A READ statement was successfully executed, but the length of the record
being processed did not conform to the fixed file attributes for that file.

5 An OPEN statement is successfully executed but the referenced optional file
is not present at the time the OPEN statement is executed. The file has been
created if the open mode is I-O or EXTEND.

7 For a CLOSE statement with the NO REWIND, REEL/UNIT, or FOR
REMOVAL phrase or for an OPEN statement with the NO REWIND phrase,
the referenced file was on a non-reel/unit medium.

244 COBOL Language Reference

Under AIX and Windows, file status 39 is not supported for line-sequential
files or Btrieve files.

Statement operations

Table 35 (Page 2 of 4). Status key values and meanings

High-
order
digit

Meaning Low-
order
digit

Meaning

1 At end
condition

0 A sequential READ statement was attempted and no next logical record
existed in the file because the end of the file had been reached, or the first
READ was attempted on an optional input file that was not present.

4 A sequential READ statement was attempted for a relative file and the
number of significant digits in the relative record number was larger than
the size of the relative key data item described for the file.

2 Invalid key
condition

1 A sequence error exists for a sequentially accessed indexed file. The prime
record key value has been changed by the program between the successful
execution of a READ statement and the execution of the next REWRITE
statement for that file, or the ascending requirements for successive record
key values were violated.

2 An attempt was made to write a record that would create a duplicate key in
a relative file; or an attempt was made to write or rewrite a record that
would create a duplicate prime record key or a duplicate alternate record
key without the DUPLICATES phrase in an indexed file.

3 An attempt was made to randomly access a record that does not exist in the
file, or a START or random READ statement was attempted on an optional
input file that was not present.

4 An attempt was made to write beyond the externally defined boundaries of a
relative or indexed file. Or, a sequential WRITE statement was attempted for
a relative file and the number of significant digits in the relative record
number was larger than the size of the relative key data item described for
the file.

3 Permanent
error
condition

0 No further information

4 A permanent error exists because of a boundary violation; an attempt was
made to write beyond the externally-defined boundaries of a sequential file.

5 An OPEN statement with the INPUT, I-O, or EXTEND phrase was attempted
on a non-optional file that was not present.

7 An OPEN statement was attempted on a file that would not support the
open mode specified in the OPEN statement. Possible violations are:

1. The EXTEND or OUTPUT phrase was specified but the file would not
support write operations.

2. The I-O phrase was specified but the file would not support the input
and output operations permitted.

3. The INPUT phrase was specified but the file would not support read
operations.

8 An OPEN statement was attempted on a file previously closed with lock.

9 The OPEN statement was unsuccessful because a conflict was detected
between the fixed file attributes and the attributes specified for that file in
the program. These attributes include the organization of the file (sequential,
relative, or indexed), the prime record key, the alternate record keys, the
code set, the maximum record size, the record type (fixed or variable), and
the blocking factor.

Part 6. Procedure Division 245

Statement operations

Table 35 (Page 3 of 4). Status key values and meanings

High-
order
digit

Meaning Low-
order
digit

Meaning

4 Logic error
condition

1 An OPEN statement was attempted for a file in the open mode.

2 A CLOSE statement was attempted for a file not in the open mode.

3 For a mass storage file in the sequential access mode, the last input-output
statement executed for the associated file prior to the execution of a
REWRITE statement was not a successfully executed READ statement.

For relative and indexed files in the sequential access mode, the last
input-output statement executed for the file prior to the execution of a
DELETE or REWRITE statement was not a successfully executed READ
statement.

4 A boundary violation exists because an attempt was made to rewrite a
record to a file and the record was not the same size as the record being
replaced, or an attempt was made to write or rewrite a record that was
larger than the largest or smaller than the smallest record allowed by the
RECORD IS VARYING clause of the associated file-name.

6 A sequential READ statement was attempted on a file open in the input or
I-O mode and no valid next record had been established because:

1. The preceding READ statement was unsuccessful but did not cause an at
end condition

2. The preceding READ statement caused an at end condition.

7 The execution of a READ statement was attempted on a file not open in the
input or I-O mode.

8 The execution of a WRITE statement was attempted on a file not open in the
I-O, output, or extend mode.

9 The execution of a DELETE or REWRITE statement was attempted on a file
not open in the I-O mode.

246 COBOL Language Reference

Statement operations

Table 35 (Page 4 of 4). Status key values and meanings

High-
order
digit

Meaning Low-
order
digit

Meaning

9 Implementor-
defined
condition

0| Under AIX and Windows: No further information.

| For VSAM only under OS/390 and VM: See the information on VSAM
| return codes in the IBM COBOL for OS/390 & VM Programming Guide.

1 For VSAM only under OS/390 and VM: Password failure.

Under AIX and Windows: Authorization failure.

2 Logic error.

3 For all files, except QSAM: Resource not available.

4 For VSAM under OS/390 and VM with CMPR2 compiler-option only: No
file position indicator for sequential request.

Under AIX and Windows: Concurrent open error.

5 For all files, except QSAM: Invalid or incomplete file information.

6| For VSAM file under OS/390 and VM: An OPEN statement with the
| OUTPUT phrase was attempted, or an OPEN statement with the I-O or
| EXTEND phrase was attempted for an optional file, but no DD statement
| was specified for the file.

| For QSAM file under OS/390 and VM: An OPEN statement with the
| OUTPUT phrase was attempted, or an OPEN statement with the I-O or
| EXTEND phrase was attempted for an optional file, but no DD statement
| was specified for the file and the CBLQDA(OFF) run-time option was
| specified.

Under AIX and Windows: File system not available.

7 For VSAM only under OS/390 and VM: OPEN statement execution
successful: File integrity verified.

Under AIX and Windows: Errors related to remote file access.

8 Under AIX and Windows: Open failed due to locked file.

| Under OS/390: Open failed due to either the invalid contents of an
| environment variable specified in a SELECT ... ASSIGN clause, or failed
| dynamic allocation. For more information about the conditions under which
| this status can occur, see “ASSIGN clause” on page 97.

9 Under AIX and Windows: Record access failed due to locked record.

Invalid key condition

The invalid key condition can occur during execution of a START, READ, WRITE,
REWRITE, or DELETE statement. (For details of the causes for the condition, see
the appropriate statement in Part 4, “Environment Division” on page 79.) When
an invalid key condition occurs, the input-output statement that caused the
condition is unsuccessful.

When the invalid key condition is recognized, actions are taken in the following
order:
1. If the FILE STATUS clause is specified in the FILE-CONTROL entry, a value is

placed into the status key to indicate an invalid key condition. (See Table 35
on page 244.)

2. If the INVALID KEY phrase is specified in the statement causing the condition,
control is transferred to the INVALID KEY imperative-statement. Any

Part 6. Procedure Division 247

Both the INVALID KEY phrase and the EXCEPTION/ERROR procedure can be
omitted.

Statement operations

EXCEPTION/ERROR declarative procedure specified for this file is not
executed. Execution then continues according to the rules for each statement
specified in the imperative-statement.

3. If the INVALID KEY phrase is not specified in the input-output statement for a
file, an EXCEPTION/ERROR procedure must be specified, and that procedure
is executed. The NOT INVALID KEY phrase, if specified, is ignored.

If the invalid key condition does not exist after execution of the input-output
operation, the INVALID KEY phrase is ignored, if specified, and the following
actions are taken:
1. If an exception condition which is not an invalid key condition exists, control

is transferred according to the rules of the USE statement following the
execution of any USE AFTER EXCEPTION procedure.

2. If no exception condition exists, control is transferred to the end of the
input-output statement or the imperative statement specified in the NOT
INVALID KEY phrase, if it is specified.

INTO/FROM identifier phrase

This phrase is valid for READ, RETURN, RELEASE, REWRITE, and WRITE
statements. The identifier specified must be the name of an entry in the
Working-Storage Section or the Linkage Section, or of a record description for
another previously opened file. Record-name/file-name and identifier must not
refer to the same storage area.

 Format
��─ ──┬ ┬ ──┬ ┬─READ─── ─file-name-1─ ──┬ ┬──────── ──┬ ┬──────────────────── ───────��
 │ │└ ┘─RETURN─ └ ┘─RECORD─ └ ┘ ─INTO──identifier-1─
 └ ┘ ──┬ ┬─RELEASE─ ─record-name-1─ ──┬ ┬──────────────────── ─────────
 ├ ┤─REWRITE─ └ ┘ ─FROM──identifier-1─
 └ ┘─WRITE───

� The INTO phrase can be specified in a READ or RETURN statement.

The result of the execution of a READ or RETURN statement with the INTO
phrase is equivalent to the application of the following rules in the order
specified:
— The execution of the same READ or RETURN statement without the INTO

phrase.
— The current record is moved from the record area to the area specified by

identifier-1 according to the rules for the MOVE statement without the
CORRESPONDING phrase. The size of the current record is determined
by rules specified in the RECORD clause. If the file description entry
contains a RECORD IS VARYING clause, the implied move is a group
move. The implied MOVE statement does not occur if the execution of the
READ or RETURN statement was unsuccessful. Any subscripting or
reference-modification associated with identifier-1 is evaluated after the
record has been read or returned and immediately before it is moved to
the data item. The record is available in both the record area and the data
item referenced by identifier-1.

� The FROM phrase can be specified in a RELEASE, REWRITE, or WRITE
statement.

248 COBOL Language Reference

 GOBACK,

Statement operations

The result of the execution of a RELEASE, REWRITE, or WRITE statement
with the FROM phrase is equivalent to the execution of the following
statements in the order specified:

MOVE identifier-1 TO record-name-1

The same RELEASE, REWRITE, or WRITE statement without the FROM
phrase.

After the execution of the RELEASE, REWRITE or WRITE statement is
complete, the information in the area referenced by identifier-1 is available,
even though the information in the area referenced by record-name-1 is not
available, except specified by the SAME RECORD AREA clause.

File position indicator

The file position indicator is a conceptual entity used in this document to facilitate
exact specification of the next record (or alternatively under AIX and Windows, the
previous record) to be accessed within a given file during certain sequences of
input-output operations. The setting of the file position indicator is affected only
by the OPEN, CLOSE, READ and START statements. The concept of a file position
indicator has no meaning for a file opened in the output or extend mode.

Statements, sentences, and paragraphs in the Procedure Division are executed
sequentially, except when a procedure branching statement such as EXIT, GO TO,
PERFORM, or STOP is used.

Part 6. Procedure Division 249

environment-name

 using
line-sequential file I-O or

It can also be a DBCS data item or an external floating-point item.

ACCEPT Statement

Procedure Division statements

 ACCEPT statement

The ACCEPT statement transfers data into the specified identifier. There is no
editing or error checking of the incoming data.

 Data transfer

Format 1—data transfer
��──ACCEPT──identifier-1─ ──┬ ┬──────────────────────────── ──────────────────��
 └ ┘ ─FROM─ ──┬ ┬─mnemonic-name-1──
 └ ┘ ─ ─

Format 1 transfers data from an input/output device into identifier-1. When the
FROM phrase is omitted, the system input device is assumed.

Format 1 is useful for exceptional situations in a program when operator
intervention (to supply a given message, code, or exception indicator) is required.
The operator must, of course, be supplied with the appropriate messages with
which to reply.

 Under AIX and Windows, the input file must be a byte stream file
(for example, a file consisting of text data with records delimited by a record
terminator). You can create a byte stream file in your COBOL program

 with the DISPLAY statement. (Most text editors can be
used to create a byte stream file as well.)

The input file cannot be a VSAM, Btrieve, SFS, or STL file (including sequential,
relative, or indexed files).

If the source of the ACCEPT statement is a file and identifier-1 is filled without
using the full record delimited by the record terminator, the remainder of the
input record is used in the next ACCEPT statement for the file. The record
delimiter characters are removed from the input data before the input records are
moved into the ACCEPT receiving area.

If the source of the ACCEPT statement is a terminal, the data entered at the
terminal, followed by the enter key, is treated as the input data. If the input data
is shorter than identifier-1, the area is padded with spaces.

identifier-1
Can be any group item, or an elementary alphabetic, alphanumeric,
alphanumeric-edited, numeric-edited or external decimal item.

mnemonic-name
Must be associated in the SPECIAL-NAMES paragraph with an input/output
device: either a system input device or a console. For more information on
acceptable values for mnemonic-name, see “SPECIAL-NAMES paragraph” on
page 83.

250  Copyright IBM Corp. 1991, 2000

ACCEPT Statement

� System input device
Record length of 80 characters is assumed even if a logical record
length of other than 80 characters is specified.
The system input device is read until identifier-1 is filled or EOF is
encountered. If the length of identifier-1 is not an even multiple of the
system input device record length, the final record will be truncated as
required. If EOF is encountered after data has been moved, and before
identifier-1 has been filled, identifier-1 is padded with blanks. If EOF
is encountered before any data has been moved to identifier-1,
padding will not take place and identifier-1 contents will remain
unchanged. Each input record is concatenated with the previous input
record.
If the input record is of the fixed-length format, the entire input record
is used. No editing is performed to remove trailing or leading blanks.

 Under OS/390 and VM, if the input record is of the
variable-length format, the actual record length is used to determine
the amount of data received. With variable format records, the Record
Definition Word (RDW) is removed from the beginning of the input
record. Only the actual input data is transferred to identifier-1.

� Console

 Under OS/390 and VM:
1. A system-generated message code is automatically displayed, followed

by the literal AWAITING REPLY.

The maximum length of an input message is 114 characters.
2. Execution is suspended.
3. After the message code (the same code as in item 1) is entered from

the console and recognized by the system, ACCEPT statement
execution is resumed. The message is moved to identifier-1 and
left-justified, regardless of its PICTURE clause.

The ACCEPT statement is terminated after any of the following occurs:
— If no data is received from the console. For example, if the operator

hits the ENTER key
— The identifier is filled with data
— Fewer than 114 characters of data are entered

If 114 bytes of data are entered and the identifier is still not filled with
data, then more requests for data are issued to the console.

If more than 114 characters of data are entered, only the first 114
characters will be recognized by the system.

If the identifier is longer than the incoming message, the rightmost
characters are padded with spaces.

If the incoming message is longer than the identifier, the character
positions beyond the length of the identifier are truncated.

| For information about obtaining ACCEPT input from an HFS file or
| stdin, see the IBM COBOL Programming Guide for your platform.

Part 6. Procedure Division 251

environment-name
A valid environment-name can be specified. See Table 8 on page 85 for a list
of valid environment-names.

 Under AIX and Windows, ACCEPT (or DISPLAY) with an
environment name is directed to the destination based on the assignment of
the system target for the environment name via the environment variable
assignment.

If the environment variable is not set, the first three are directed to the system
logic input device, the system logic output device, and the user terminal,
respectively as determined by COBOL for the platform. (For example,
CONSOLE would be stdin as the default.) DISPLAY to SYSPUNCH/SYSPCH
fails unless you set the corresponding environment variable to indicate a valid
target. The target file is determined by checking the COBOL
environment-name (CONSOLE, SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST,
SYSPUNCH, and SYSPCH). If an environment variable is defined
corresponding to the COBOL environment variable, the value of the
environment variable is used as the system file identifier. For more
information on environment-variables, see the IBM COBOL Programming
Guide for your platform.

Note: If the device is the same as that used for READ statements, results are
unpredictable.

 DATE
YYYYMMDD, DAY YYYYDDD,

YYYYMMDD

YYYYDDD

, internal
floating-point, or external floating-point item

ACCEPT statement

 Under AIX and Windows: ACCEPT or DISPLAY with an
environment name is directed to the destination based on the value of the
environment variable corresponding to the COBOL environment name (SYSIN
or CONSOLE).

If the environment variable corresponding to the COBOL environment name is
not set, ACCEPT from SYSIN, SYSIPT, or CONSOLE is from the system logical
input device (stdin) and DISPLAY on SYSOUT, SYSLIST, or SYSLST is to the
system logical output device (stdout). DISPLAY to SYSPUNCH or SYSPCH is
supported only if the environment variable for SYSPUNCH is set to a valid
display target.

System information transfer

System information contained in the specified conceptual data items DATE,
 DAY, DAY-OF-WEEK, or TIME, can be

transferred into the identifier. The transfer must follow the rules for the MOVE
statement without the CORRESPONDING phrase. See “MOVE statement” on
page 320.

Format 2—system information transfer
��──ACCEPT──identifier-2──FROM─ ──┬ ┬ ─DATE─ ──┬ ┬────────── ────────────────────��
 │ │└ ┘─ ─
 ├ ┤ ─DAY─ ──┬ ┬───────── ──
 │ │└ ┘─ ─
 ├ ┤─DAY-OF-WEEK────────
 └ ┘─TIME───────────────

identifier-2
Can be a group, elementary alphanumeric, alphanumeric-edited,
numeric-edited, external decimal, internal decimal, binary

.

252 COBOL Language Reference

DATE YYYYMMDD, DAY YYYYDDD,

 DATE YYYYMMDD, DAY YYYYDDD,

If the DATEPROC compiler option is in effect,
then the returned value has implicit DATE FORMAT YYXXXX, and identifier-2
must be defined with this date format.

DATE YYYYMMDD
Has the implicit PICTURE 9(8). If the DATEPROC compiler option is in effect,
then the returned value has implicit DATE FORMAT YYYYXXXX, and
identifier-2 must be defined with this date format.

The sequence of data elements (from left to right) is:

4 digits for the year
2 digits for the month
2 digits for the day

Thus, 27 April 1995 is expressed as: 1995?427

If the DATEPROC compiler option is in effect,
then the returned value has implicit DATE FORMAT YYXXX, and identifier-2
must be defined with this date format.

DAY YYYYDDD
Has the implicit PICTURE 9(7). If the DATEPROC compiler option is in effect,
then the returned value has implicit DATE FORMAT YYYYXXX, and
identifier-2 must be defined with this date format.

The sequence of data elements (from left to right) is:

4 digits for the year
3 digits for the day

ACCEPT statement

Format 2 accesses the current date in two formats—the day of the week or the
time of day as carried by the system, which can be useful in identifying when a
particular run of an object program was executed. You can also use format 2 to
supply the date in headings and footings.

Note: The current date and time is also accessible via the date/time intrinsic
function CURRENT-DATE, which also supports 4-digit year values and provide
additional information (see “Intrinsic functions” on page 402).

DATE, DAY,
DAY-OF-WEEK, and TIME

The conceptual data items DATE, DAY,
DAY-OF-WEEK, and TIME implicitly have USAGE DISPLAY. Because these are
conceptual data items, they cannot be described in the COBOL program.

DATE
Has the implicit PICTURE 9(6).

The sequence of data elements (from left to right) is:

2 digits for the year
2 digits for the month
2 digits for the day

Thus, 27 April 1995 is expressed as: 95?427

DAY
Has the implicit PICTURE 9(5).

The sequence of data elements (from left to right) is:

2 digits for the year
3 digits for the day

Thus, 27 April 1995 is expressed as: 95117

Part 6. Procedure Division 253

Thus, 27 April 1995 is expressed as: 1995117

ACCEPT statement

DAY-OF-WEEK
Has the implicit PICTURE 9(1).

The single data element represents the day of the week according to the
following values:

1 represents Monday 5 represents Friday
2 represents Tuesday 6 represents Saturday
3 represents Wednesday 7 represents Sunday
4 represents Thursday

Thus, Wednesday is expressed as: 3

TIME
Has the implicit PICTURE 9(8).

The sequence of data elements (from left to right) is:

2 digits for hour of day
2 digits for minute of hour
2 digits for second of minute
2 digits for hundredths of second

Thus, 2:41 PM is expressed as: 1441????

254 COBOL Language Reference

ADD statement

 ADD statement

The ADD statement sums two or more numeric operands and stores the result.

 Format 1
 ┌ ┐──────────────────── ┌ ┐─────────────────────────────
��──ADD─ ───/ ┴──┬ ┬─identifier-1─ ─TO─ ───/ ┴ ─identifier-2─ ──┬ ┬───────── ───────────�
 └ ┘─literal-1──── └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬───────── ───────��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-ADD─
 └ ┘─ON─

All identifiers or literals preceding the key word TO are added together, and this
sum is added to and stored in identifier-2. This process is repeated for each
successive occurrence of identifier-2, in the left-to-right order in which identifier-2
is specified.

 Format 2
 ┌ ┐────────────────────
��──ADD─ ───/ ┴──┬ ┬─identifier-1─ ──┬ ┬──── ──┬ ┬─identifier-2─ ────────────────────�
 └ ┘─literal-1──── └ ┘─TO─ └ ┘─literal-2────

 ┌ ┐─────────────────────────────
�─ ─GIVING─ ───/ ┴ ─identifier-3─ ──┬ ┬───────── ───────────────────────────────────�
 └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬───────── ───────��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-ADD─
 └ ┘─ON─

The values of the operands preceding the word GIVING are added together, and
the sum is stored as the new value of each data item referenced by identifier-3.

 Format 3
��──ADD─ ──┬ ┬─CORRESPONDING─ ─identifier-1──TO──identifier-2─ ──┬ ┬───────── ────�
 └ ┘─CORR────────── └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬───────── ───────��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-ADD─
 └ ┘─ON─

Elementary data items within identifier-1 are added to and stored in the
corresponding elementary items within identifier-2.

Part 6. Procedure Division 255

The following restrictions apply to date fields:

� In format 1, identifier-2 can specify one or more date fields; identifier-1
must not specify a date field.

� In format 2, either identifier-1 or identifier-2 (but not both) can specify at
most one date field. If identifier-1 or identifier-2 specifies a date field, then
every instance of identifier-3 must specify a date field that is compatible
with the date field specified by identifier-1 or identifier-2. That is, they
must have the same date format, except for the year part, which can be
windowed or expanded.

If neither identifier-1 nor identifier-2 specifies a date field, then identifier-3
can specify one or more date fields without any restriction on the date
formats.

� In format 3, only corresponding elementary items within identifier-2 can be
date fields. There is no restriction on the format of these date fields.

� A year-last date field is allowed in an ADD statement only as identifier-1
and when the result of the addition is a non-date

There are two steps to determining the result of an ADD statement that
involves one or more date fields:

1. Addition: determine the result of the addition operation, as described
under “Addition involving date fields” on page 212.

2. Storage: determine how the result is stored in the receiving field. (In
formats 1 and 3, the receiving field is identifier-2; in Format 3, the
receiving field is the GIVING identifier-3.) For details, see “Storing
arithmetic results that involve date fields” on page 213.

Floating-point data items and literals can be used anywhere a numeric data
item or literal can be specified.

As an IBM extension, the composite of operands can contain more than 18 digits.

ADD statement

For all formats:

identifier
In format 1, must name an elementary numeric item.

In format 2, must name an elementary numeric item, except when following
the word GIVING. Each identifier following the word GIVING must name an
elementary numeric or numeric-edited item.

In format 3, must name a group item.

literal
Must be a numeric literal.

The composite of operands must not contain more than 18 digits.

|
| For more information, see “Arithmetic statement operands” on page 242 and the
| details on arithmetic intermediate results in the IBM COBOL Programming
| Guide for your platform.

 ROUNDED phrase

For formats 1, 2, and 3, see “ROUNDED phrase” on page 239.

256 COBOL Language Reference

ADD statement

SIZE ERROR phrases

For formats 1, 2, and 3, see “SIZE ERROR phrases” on page 240.

CORRESPONDING phrase (format 3)

See “CORRESPONDING phrase” on page 238.

 END-ADD phrase

This explicit scope terminator serves to delimit the scope of the ADD statement.
END-ADD permits a conditional ADD statement to be nested in another
conditional statement. END-ADD can also be used with an imperative ADD
statement.

For more information, see “Delimited scope statements” on page 237.

Part 6. Procedure Division 257

Do not use the ALTER statement in programs that have the RECURSIVE attribute,
in methods, or in AIX or Windows programs compiled with the THREAD option.

ALTER statement

 ALTER statement

The ALTER statement changes the transfer point specified in a GO TO statement.

The ALTER statement encourages the use of unstructured programming practices;
the EVALUATE statement provides the same function as the ALTER statement and
helps to ensure that your program will be well-structured.

 ┌ ┐──
��──ALTER─ ───/ ┴─procedure-name-1──TO─ ──┬ ┬──────────── ─procedure-name-2─ ─────��
 └ ┘─PROCEED TO─

The ALTER statement modifies the GO TO statement in the paragraph named by
procedure-name-1. Subsequent executions of the modified GO TO statement(s)
transfer control to procedure-name-2.

procedure-name-1
Must name a Procedure Division paragraph that contains only one sentence: a
GO TO statement without the DEPENDING ON phrase.

procedure-name-2
Must name a Procedure Division section or paragraph.

Before the ALTER statement is executed, when control reaches the paragraph
specified in procedure-name-1, the GO TO statement transfers control to the
paragraph specified in the GO TO statement. After execution of the ALTER
statement, however, the next time control reaches the paragraph specified in
procedure-name-1, the GO TO statement transfers control to the paragraph
specified in procedure-name-2.

The ALTER statement acts as a program switch, allowing, for example, one
sequence of execution during initialization and another sequence during the bulk
of file processing.

Altered GO TO statements in programs with the INITIAL attribute are returned to
their initial states each time the program is entered.

258 COBOL Language Reference

ALTER statement

 Segmentation considerations

A GO TO statement in a section whose priority is greater than or equal to 50 must
not be referred to by an ALTER statement in a section with a different priority.
All other uses of the ALTER statement are valid and are performed, even if the
GO TO to which the ALTER refers is in a fixed overlayable segment.

Altered GO TO statements in independent segments are returned to their initial
states when control is transferred to the independent segment that contains the
ALTERED GO TO from another independent segment with a different priority.

This transfer of control can take place because of:
� The effect of previous statements
� An explicit transfer of control with a PERFORM or GO TO statement
� A sort or merge statement with the INPUT or OUTPUT phrase specified

Part 6. Procedure Division 259

Programs defined with the RECURSIVE attribute can execute a CALL statement
that directly or indirectly CALLs itself.

Do not specify the name of a class or a method in the CALL statement.

procedure-ptr-1

ADDRESS OF
file-name-1
OMITTED

ADDRESS OF
LENGTH OF

literal-2
OMITTED

VALUE identifier-4
BY ADDRESS OF

LENGTH OF
literal-3

RETURNING identifier-5

File-name-1 is supported under OS/390 and VM only.

The rules of formation for program names are dependent on the PGMNAME
compiler option. For details, see the discussion of program names in
“PROGRAM-ID paragraph” on page 70 and also the description of the
PGMNAME compiler option in the IBM COBOL Programming Guide for your
platform.

Identifier-1 can be an alphabetic or zoned decimal data item. Identifier-1
cannot be a windowed date field.

CALL statement

 CALL statement

The CALL statement transfers control from one object program to another within
the run unit.

The program containing the CALL statement is the calling program; the program
identified in the CALL statement is the called subprogram. Called programs can
contain CALL statements; however, a called program must not execute a CALL
statement that directly or indirectly calls the calling program.

 Format
��──CALL─ ──┬ ┬─identifier-1──── ───�
 ├ ┤─literal-1───────
 └ ┘─ ─

�─ ──┬ ┬── ─────────────────────────────�
 │ │┌ ┐───
 │ ││ │┌ ┐────────────────────────────────────
 └ ┘ ─USING─ ───/ ┴──┬ ┬ ──┬ ┬─────────────────── ───/ ┴──┬ ┬ ──┬ ┬──────────── ─identifier-2─
 │ │└ ┘ ──┬ ┬──── ─REFERENCE─ │ │└ ┘─ ─
 │ │└ ┘─BY─ ├ ┤ ─ ───(1)───────────────
 │ │└ ┘ ─ ──────────────────────
 │ │┌ ┐────────────────────────────────────
 ├ ┤ ──┬ ┬──── ─CONTENT─ ───/ ┴──┬ ┬ ──┬ ┬──────────── ─identifier-3─ ──────
 │ │└ ┘─BY─ │ │├ ┤ ─ ─
 │ ││ │└ ┘ ─ ──
 │ │├ ┤ ─ ────────────────────
 │ │└ ┘ ─ ──────────────────────
 │ │┌ ┐────────────────────────────────────
 └ ┘ ──┬ ┬──── ─ ─ ───/ ┴──┬ ┬ ──┬ ┬──────────── ─ ─ ────────
 └ ┘─ ─ │ │├ ┤ ─ ─
 │ │└ ┘ ─ ──
 └ ┘ ─ ────────────────────

�─ ──┬ ┬─────────────────────────── ──�
 └ ┘── ─ ── ─

�─ ──┬ ┬─── ──────�
 ├ ┤ ──┬ ┬─── ──┬ ┬──
 │ │└ ┘ ──┬ ┬──── ─EXCEPTION──imperative-statement-1─ └ ┘ ─NOT─ ──┬ ┬──── ─EXCEPTION──imperative-statement-2─
 │ │└ ┘─ON─ └ ┘─ON─
 └ ┘──┬ ┬──── ─OVERFLOW──imperative-statement-3──
 └ ┘─ON─

�─ ──┬ ┬────────── ──��
 └ ┘─END-CALL─

Note:
1

identifier-1, literal-1
Literal-1 must be a nonnumeric literal. Identifier-1 must be an alphanumeric
data item such that its value can be a program name.

260 COBOL Language Reference

procedure-pointer-1
Must be defined with USAGE IS PROCEDURE-POINTER, and must be set to a
valid program entry point; otherwise, the results of the CALL statement are
undefined.

After a program has been canceled by COBOL, released by PL/I or C, or
deleted by assembler, any procedure-pointers that had been set to that
program's entry point are no longer valid.

When the called subprogram is entered through an ENTRY statement, literal-1 or
the contents of identifier-1 must be the same as the name specified in the called
subprogram's ENTRY statement.

 or the ENTRY statement

The sequence of appearance of the identifiers in the USING phrase of the CALL
statement and in the corresponding USING phrase in the called program's ENTRY
statement determines the correspondence between the identifiers used by the
calling and called programs.

 and BY VALUE
 or BY VALUE

 or BY VALUE

CALL statement

When the called subprogram is to be entered at the beginning of the Procedure
Division, literal-1 or the contents of identifier-1 must specify the program-name of
the called subprogram.

For information on how the compiler resolves CALLs to program names found in
multiple programs, see “Conventions for program-names” on page 60.

 USING phrase

The USING phrase specifies arguments that are passed to the target program.

Include the USING phrase in the CALL statement only if there is a USING phrase
in the Procedure Division header through which the
called program is run. The number of operands in each USING phrase must be
identical.

For more information on the USING phrase see “The Procedure Division header”
on page 204.

The sequence of appearance of the identifiers in the USING phrase of the CALL
statement and in the corresponding USING phrase in the called subprogram's
Procedure Division header determines the correspondence between the identifiers
used by the calling and called programs. This correspondence is positional.

The values of the parameters referenced in the USING phrase of the CALL
statement are made available to the called subprogram at the time the CALL
statement is executed. The description of the data item in the called program must
describe the same number of character positions as the description of the
corresponding data item in the calling program.

The BY CONTENT, BY REFERENCE phrases apply to parameters
that follow them until another BY CONTENT, BY REFERENCE,
phrase is encountered. BY REFERENCE is assumed if you do not specify a BY
CONTENT, BY REFERENCE, phrase prior to the first parameter.

BY REFERENCE phrase

If the BY REFERENCE phrase is either specified or implied for a parameter, the
corresponding data item in the calling program occupies the same storage area as
the data item in the called program.

Part 6. Procedure Division 261

Can be a data item of any level in the Data Division.

file-name-1 (OS/390 and VM only)
 Under OS/390 and VM, a file-name for a QSAM file. See IBM

COBOL for OS/390 & VM Programming Guide for details on using file-name
with the CALL statement.

ADDRESS OF special register
For information on the ADDRESS OF special register, see “ADDRESS OF” on
page 9.

OMITTED
Indicates that no argument is passed.

Can be a data item of any level in the Data Division.

literal-2
Can be:

� A nonnumeric literal
� A figurative constant (except ALL literal or NULL/NULLS)
� A DBCS literal

LENGTH OF special register
For information on the LENGTH OF special register, see “LENGTH OF” on
page 11.

ADDRESS OF special register
For information on the ADDRESS OF special register, see “ADDRESS OF” on
page 9.

OMITTED
Indicates that no argument is passed.

For nonnumeric literals, the called subprogram should describe the parameter as
PIC X(n) USAGE DISPLAY, where "n" is the number of characters in the literal.

CALL statement

identifier-2
Identifier-2 cannot be a

function identifier.

Note: If defined in the Linkage Section or File Section, you must have already
provided addressability for identifier-2 prior to invocation of the CALL
statement. You can do this by coding either one of the following: SET
ADDRESS OF identifier-2 TO pointer or PROCEDURE/ENTRY USING.

BY CONTENT phrase

If the BY CONTENT phrase is specified or implied for a parameter, the called
program cannot change the value of this parameter as referenced in the CALL
statement's USING phrase, though the called program can change the value of the
data item referenced by the corresponding data-name in the called program's
Procedure Division header. Changes to the parameter in the called program do
not affect the corresponding argument in the calling program.

identifier-3
Identifier-3 cannot be a

function identifier.

Note: If defined in the Linkage Section or File Section, you must have already
provided addressability for identifier-3 prior to invocation of the CALL
statement. You can do this by coding either one of the following: SET
ADDRESS OF identifier-3 TO pointer or PROCEDURE/ENTRY USING.

262 COBOL Language Reference

For DBCS literals, the called subprogram should describe the parameter as PIC
G(n) USAGE DISPLAY-1, or PIC N(n) with implicit or explicit USAGE DISPLAY-1,
where "n" is the length of the literal.

BY VALUE phrase

The BY VALUE phrase applies to all arguments that follow until overridden by
another BY REFERENCE or BY CONTENT phrase.

If the BY VALUE phrase is specified or implied for an argument, the value of the
argument is passed, not a reference to the sending data item. The called program
can modify the formal parameter corresponding to the BY VALUE argument, but
any such changes do not affect the argument since the called program has access
to a temporary copy of the sending data item.

While BY VALUE arguments are primarily intended for communication with
non-COBOL programs (such as C), they can also be used for COBOL-to-COBOL
invocations. In this case, BY VALUE must be specified or implied for both the
argument in the CALL USING phrase and the corresponding formal parameter in
the Procedure Division USING phrase.

identifier-4
Must be an elementary data item in the Data Division. It must be one of the
following:

� Binary (USAGE BINARY, COMP, COMP-4, or COMP-5)
� Floating point (USAGE COMP-1 or COMP-2)
� Pointer (USAGE POINTER)
� Procedure-pointer (USAGE PROCEDURE-POINTER)
� Object reference (USAGE OBJECT REFERENCE)
� Single-byte alphanumeric (such as PIC X or PIC A)

The following can also be passed BY VALUE:

� Reference modified item with length one
� SHIFT-IN and SHIFT-OUT special registers
� LINAGE-COUNTER special register when it is usage binary

ADDRESS OF special register
An ADDRESS OF special register passed BY VALUE is treated as a pointer.
For information on the ADDRESS OF special register, see “ADDRESS OF” on
page 9.

LENGTH OF special register
A LENGTH OF special register passed BY VALUE is treated as a PIC 9(9)
binary. For information on the LENGTH OF special register, see “LENGTH
OF” on page 11.

literal-3
Must be one of the following:

� Numeric literal
� ZERO
� 1-character nonnumeric literal
� Symbolic character
� Single byte figurative constant

— SPACE
— QUOTE
— HIGH-VALUE

CALL statement

Part 6. Procedure Division 263

— LOW-VALUE

ZERO is treated as a numeric value; a fullword binary zero is passed.

If literal-3 is a fixed point numeric literal, it must have a precision of 9 or less
digits. In this case, a fullword binary representation of the literal value is
passed.

If literal-3 is a floating point numeric literal, an 8-byte internal floating point
(COMP-2) representation of the value is passed.

Literal-3 must not be a DBCS literal.

 RETURNING phrase

identifier-5
The RETURNING data item, which must be defined in the DATA DIVISION.
The return value of the CALLed program is implicitly stored into identifier-5.

You can specify the RETURNING phrase for calls to functions written in COBOL,
C, or in other programming languages that use C linkage conventions. If you
specify the RETURNING phrase on a CALL to a COBOL subprogram:
� The CALLed subprogram must specify the RETURNING phrase on its

Procedure Division header.
� Identifier-5 and the corresponding Procedure Division RETURNING identifier

in the target program must have the same PICTURE, USAGE, SIGN,
SYNCHRONIZE, JUSTIFIED, and BLANK WHEN ZERO clauses (except that
PICTURE clause currency symbols can differ, and periods and commas can be
interchanged due to the DECIMAL POINT IS COMMA clause).

When the target returns, its return value is assigned to identifier-5, using either
the rules for SET statement, if identifier-6 is USAGE IS INDEX, USAGE IS
POINTER, USAGE IS PROCEDURE-POINTER, or USAGE IS OBJECT
REFERENCE; otherwise, the rules for the MOVE statement are used.

Note: The CALL... RETURNING data item is an output-only parameter. On entry
to the called program, the initial state of the PROCEDURE DIVISION
RETURNING data item has an undefined and unpredictable value. You must
initialize the PROCEDURE DIVISION RETURNING data item in the called
program before you reference its value. The value that is passed back to the
calling program is the final value of the PROCEDURE DIVISION RETURNING
data item when the called program returns.

If an EXCEPTION or OVERFLOW occurs, identifier-5 is not changed. Identifier-5
must not be reference-modified.

The RETURN-CODE special register is not set by execution of CALL statements
that include the RETURNING phrase.

CALL statement

ON EXCEPTION phrase

An exception condition occurs when the called subprogram cannot be made
available. At that time, one of the following two actions will occur:
1. If the ON EXCEPTION phrase is specified, control is transferred to

imperative-statement-1. Execution then continues according to the rules for
each statement specified in imperative-statement-1. If a procedure branching
or conditional statement that causes explicit transfer of control is executed,

264 COBOL Language Reference

CALL statement

control is transferred in accordance with the rules for that statement;
otherwise, upon completion of the execution of imperative-statement-1, control
is transferred to the end of the CALL statement and the NOT ON EXCEPTION
phrase, if specified, is ignored.

2. If the ON EXCEPTION phrase is not specified in the CALL statement, the
NOT ON EXCEPTION phrase, if specified, is ignored.

NOT ON EXCEPTION phrase

If an exception condition does not occur (that is, the called subprogram can be
made available), control is transferred to the called program. After control is
returned from the called program, control is transferred to:
� Imperative-statement-2, if the NOT ON EXCEPTION phrase is specified.
� The end of the CALL statement in any other case (if the ON EXCEPTION

phrase is specified, it is ignored).

If control is transferred to imperative-statement-2, execution continues according to
the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement that causes explicit transfer of control is
executed, control is transferred in accordance with the rules for that statement;
otherwise, upon completion of the execution of imperative-statement-2, control is
transferred to the end of the CALL statement.

ON OVERFLOW phrase

The ON OVERFLOW phrase has the same effect as the ON EXCEPTION phrase.

 END-CALL phrase

This explicit scope terminator serves to delimit the scope of the CALL statement.
END-CALL permits a conditional CALL statement to be nested in another
conditional statement. END-CALL can also be used with an imperative CALL
statement.

For more information, see “Delimited scope statements” on page 237.

Part 6. Procedure Division 265

Identifier-1 can be alphabetic or zoned decimal data item. It cannot be a
windowed date field.

The program-name referenced in the CANCEL statement can be affected by
the PGMNAME compiler option. For details, see the IBM COBOL Programming
Guide for your platform.

Do not specify the name of a class or a method in the CANCEL statement.

 or GOBACK statement

CANCEL statement

 CANCEL statement

The CANCEL statement ensures that the next time the referenced subprogram is
called it will be entered in its initial state.

 Format
 ┌ ┐────────────────────
��──CANCEL─ ───/ ┴──┬ ┬─identifier-1─ ──��
 └ ┘─literal-1────

identifier-1, literal-1
Literal-1 must be a nonnumeric literal. Identifier-1 must be an alphanumeric
data item such that its value can be a program name. The rules of formation
for program names are dependent on the PGMNAME compiler option. For
details, see the discussion of program names in “PROGRAM-ID paragraph” on
page 70 and also the description of the PGMNAME compiler option in the
IBM COBOL Programming Guide for your platform.

Each literal or contents of the identifier specified in the CANCEL statement
must be the same as the literal or contents of the identifier specified in an
associated CALL statement.

After a CANCEL statement for a called subprogram has been executed, that
subprogram no longer has a logical connection to the program. The contents of
data items in external data records described by the subprogram are not changed
when that subprogram is canceled. If a CALL statement is executed later by any
program in the run unit naming the same subprogram, that subprogram will be
entered in its initial state.

When a CANCEL statement is executed, all programs contained within the
program referenced by the CANCEL statement are also canceled. The result is the
same as if a valid CANCEL were executed for each contained program in the
reverse order in which the programs appear in the separately compiled program.

A CANCEL statement closes all open files that are associated with an internal file
connector in the program named in the explicit CANCEL statement. Any USE
procedures associated with any of these files are not executed.

You can cancel a called subprogram by referencing it as the operand of a CANCEL
statement, by terminating the run unit of which the subprogram is a member, or
by executing an EXIT PROGRAM statement in the called
subprogram if that subprogram possesses the INITIAL attribute.

No action is taken when a CANCEL statement is executed, naming a program that
either:
1.

266 COBOL Language Reference

 or a GOBACK

CANCEL statement

� Under OS/390 and VM, has not been dynamically called in this run unit
by another COBOL for MVS & VM, COBOL for OS/390 & VM, VS
COBOL II, or OS/VS COBOL program.

� Under AIX and Windows, has not been called in this run unit by another
IBM COBOL program.

2. Has been called and subsequently canceled.

Called subprograms can contain CANCEL statements. However, a called program
must not execute a CANCEL statement that directly or indirectly cancels the
calling program itself, or any other program higher than itself in the calling
hierarchy. In such a case, the run unit is terminated.

A program named in a CANCEL statement must not refer to any program that has
been called and has not yet executed an EXIT PROGRAM
statement.

A program can, however, cancel a program that it did not call, providing that, in
the calling hierarchy, it is higher than or equal to the program it is canceling. For
example:

A calls B and B calls C (When A receives control,
it can cancel C.)

A calls B and A calls C (When C receives control,
it can cancel B.)

Part 6. Procedure Division 267

WITH NO REWIND

Format 3—line-sequential files
 ┌ ┐───
��──CLOSE─ ───/ ┴─file-name-1─ ──┬ ┬────────────────────────────────── ──────────��
 ├ ┤ ──┬ ┬─REEL───(1) ──┬ ┬──────────────────
 │ │└ ┘─UNIT───(1) ├ ┤ ──┬ ┬───── ─REMOVAL─
 │ ││ │└ ┘─FOR─
 │ │└ ┘─WITH NO REWIND───
 └ ┘ ──┬ ┬────── ──┬ ┬─NO REWIND───(1) ───────
 └ ┘─WITH─ └ ┘─LOCK────────

Note:
1 Under AIX and Windows, the UNIT, REEL, and NO REWIND phases are

treated as a comment. Although, the file status will be set to 07,
indicating a successful completion of a CLOSE for a non-reel/unit
medium.

CLOSE statement

 CLOSE statement

The CLOSE statement terminates the processing of volumes and files.

 Format 1—sequential
 ┌ ┐───
��──CLOSE─ ───/ ┴─file-name-1─ ──┬ ┬────────────────────────────────── ──────────��
 ├ ┤ ──┬ ┬─REEL───(1) ──┬ ┬──────────────────
 │ │└ ┘─UNIT───(1) ├ ┤ ──┬ ┬───── ─REMOVAL─
 │ ││ │└ ┘─FOR─
 │ │└ ┘─ ───
 └ ┘ ──┬ ┬────── ──┬ ┬─NO REWIND───(1) ───────
 └ ┘─WITH─ └ ┘─LOCK────────

Note:
1 Under OS/390, the REEL, UNIT, and NO REWIND phrases are not valid

for VSAM files. Under AIX and Windows, the UNIT, REEL, and NO
REWIND phases are treated as a comment. Although, the file status will
be set to 07, indicating a successful completion of a CLOSE for a
non-reel/unit medium.

Format 2—indexed and relative files
 ┌ ┐───────────────────────────────────
��──CLOSE─ ───/ ┴─file-name-1─ ──┬ ┬──────────────── ────────────────────────────��
 └ ┘ ──┬ ┬────── ─LOCK─
 └ ┘─WITH─

file-name-1
Designates the file upon which the CLOSE statement is to operate. If more
than one file-name is specified, the files need not have the same organization
or access. File-name-1 must not be a sort or merge file.

REEL/UNIT
Under OS/390 and VM, you can specify these phrases only for QSAM
multivolume or single volume files. The terms REEL and UNIT are
interchangeable.

| Under AIX and Windows, REEL and UNIT are syntax checked, but have no
| effect on the execution of the program.

WITH NO REWIND and FOR REMOVAL
Under OS/390 and VM, these phrases apply only to QSAM tape files. If they
are specified for storage devices to which they do not apply, they are ignored.

268 COBOL Language Reference

� Table 38 on page 270 for line-sequential files

CLOSE statement

Under AIX and Windows, WITH NO REWIND and FOR REMOVAL are
| syntax checked, but have no effect on the execution of the program.

A CLOSE statement can be executed only for a file in an open mode. After
successful execution of a CLOSE statement (without the REEL/UNIT phrase if
using format 1):
� The record area associated with the file-name is no longer available.

Unsuccessful execution of a CLOSE statement leaves availability of the record
data undefined.

� An OPEN statement for the file must be executed before any other
input/output statement.

� Under AIX and Windows any record locks and file locks held by the file
connector on the closed file are released.

If the FILE STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the CLOSE statement is executed.

If the file is in an open status and the execution of a CLOSE statement is
unsuccessful, the EXCEPTION/ERROR procedure (if specified) for this file is
executed.

Effect of CLOSE statement on file types

If the SELECT OPTIONAL clause is specified in the FILE-CONTROL entry for a
file, and the file is not present at run time, standard end-of-file processing is not
performed. For QSAM files, the file position indicator and current volume pointer
are unchanged.

Files are divided into the following types:

Non-Reel/Unit
A file whose input or output medium is such that rewinding, reels, and
units have no meaning. All VSAM, Btrieve, and STL files are
non-reel/unit file types. QSAM files can be non-reel/unit file types.

Sequential single volume
A sequential file that is contained entirely on one volume. More than one
file can be contained on this volume. All VSAM, Btrieve, and STL files are
single volume. QSAM files can be single volume.

Sequential multivolume
A sequential file that is contained on more than one volume. QSAM files
are the only files that can be multivolume. The concept of volume has no
meaning for VSAM, Btrieve, or STL files.

The permissible combinations of CLOSE statement phrases are included in:
� Table 36 for sequential files
� Table 37 on page 270 for indexed and relative files

The meaning of each key letter is shown in Table 39 on page 270.

Table 36 (Page 1 of 2). Sequential files and CLOSE statement phrases

CLOSE statement phrases
Non-Reel/
Unit

Sequential
single-volume

Sequential
multi-volume

CLOSE C C, G A, C, G

CLOSE REEL/UNIT F F, G F, G

Part 6. Procedure Division 269

CLOSE REEL/UNIT WITH
NO REWIND

F B, F B, F

Table 38. Line-sequential file types and CLOSE statement phrases

CLOSE statement phrases Action

CLOSE C

CLOSE WITH LOCK C,E

CLOSE statement

Table 36 (Page 2 of 2). Sequential files and CLOSE statement phrases

CLOSE statement phrases
Non-Reel/
Unit

Sequential
single-volume

Sequential
multi-volume

CLOSE REEL/UNIT FOR REMOVAL D D D

CLOSE WITH NO REWIND C, H B, C A, B, C

CLOSE WITH LOCK C, E C, E, G A, C, E, G

Table 37. Indexed and relative file types and CLOSE statement phrases

CLOSE statement phrases Action

CLOSE C

CLOSE WITH LOCK C,E

Table 39 (Page 1 of 2). Meanings of key letters for sequential file types

Key Actions taken

 A Previous volumes unaffected

Input and input-output files—Standard volume-switch processing is performed
for all previous volumes (except those controlled by a previous CLOSE
REEL/UNIT statement). Any subsequent volumes are not processed.

Output files—Standard volume-switch processing is performed for all previous
volumes (except those controlled by a previous CLOSE REEL/UNIT statement).

 B No rewinding of current reel—the current volume is left in its current position.

 C Close file

Input and input-output files—If the file is at its end, and label records are
specified, the standard ending label procedure is performed. Standard system
closing procedures are then performed.

If the file is at its end, and label records are not specified, label processing does
not take place, but standard system closing procedures are performed.

If the file is not at its end, standard system closing procedures are performed, but
there is no ending label processing.

Output files—If label records are specified, standard ending label procedures are
performed. Standard system closing procedures are then performed.

If label records are not specified, ending label procedures are not performed, but
standard system closing procedures are performed.

 D Volume removal—Treated as a comment.

270 COBOL Language Reference

CLOSE statement

Table 39 (Page 2 of 2). Meanings of key letters for sequential file types

Key Actions taken

 E File lock—The compiler ensures that this file cannot be opened again during this
| execution of the object program. If the file is a tape unit it will be rewound and
| unloaded.

 F Close volume

Input and input-output files—If the current reel/unit is the last and/or only
reel/unit for the file or if the reel is on a non-reel/unit medium, no volume
switching is performed. If another reel/unit exists for the file, the following
operations are performed: a volume switch, beginning volume label procedure,
and the first record on the new volume is made available for reading. If no data
records exist for the current volume, another volume switch occurs.

Output (reel/unit media) files—The following operations are performed: the
ending volume label procedure, a volume switch, and the beginning volume label
procedure. The next executed WRITE statement places the next logical record on
the next direct access volume available. A close statement with the REEL phrase
does not close the output file; only an end-of-volume condition occurs.

Output (non-reel/unit media) files—Execution of the CLOSE statement is
considered successful. The file remains in the open mode and no action takes
place except that the value of the I-O status associated with the file is updated.

 G Rewind—The current volume is positioned at its physical beginning.

 H Optional phrases ignored—The CLOSE statement is executed as if none of the
optional phrases were present.

Part 6. Procedure Division 271

EQUAL

Can name an elementary floating-point data item.

The word EQUAL can be used in place of =.

If identifier-1 or the result of the arithmetic expression (or both) are date fields,
see “Storing arithmetic results that involve date fields” on page 213 for details
on how the result is stored in identifier-1. If a year-last date field is specified
as identifier-1, then the result of the arithmetic expression must be a non-date.

A year-last date field must not be specified in the arithmetic expression.

COMPUTE statement

 COMPUTE statement

The COMPUTE statement assigns the value of an arithmetic expression to one or
more data items.

With the COMPUTE statement, arithmetic operations can be combined without the
restrictions on receiving data items imposed by the rules for the ADD, SUBTRACT,
MULTIPLY, and DIVIDE statements.

When arithmetic operations are combined, the COMPUTE statement can be more
efficient than the separate arithmetic statements written in a series.

 Format
 ┌ ┐─────────────────────────────
��──COMPUTE─ ───/ ┴ ─identifier-1─ ──┬ ┬───────── ──┬ ┬─=───── ──────────────────────�
 └ ┘─ROUNDED─ └ ┘ ─ ─

�──arithmetic-expression─ ──┬ ┬── ───�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬───────────── ───��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-COMPUTE─
 └ ┘─ON─

identifier-1
Must name elementary numeric item(s) or elementary numeric-edited item(s).

arithmetic-expression
Can be any arithmetic expression, as defined in “Arithmetic expressions” on
page 209.

When the COMPUTE statement is executed, the value of the arithmetic
expression is calculated, and this value is stored as the new value of each data
item referenced by identifier-1.

An arithmetic expression consisting of a single identifier, numeric function, or
literal allows the user to set the value of the data item(s) referenced by
identifier-1 equal to the value of that identifier or literal.

 ROUNDED phrase

For a discussion of the ROUNDED phrase, see “ROUNDED phrase” on page 239.

SIZE ERROR phrases

For a discussion of the SIZE ERROR phrases, see “SIZE ERROR phrases” on
page 240.

272 COBOL Language Reference

COMPUTE statement

 END-COMPUTE phrase

This explicit scope terminator serves to delimit the scope of the COMPUTE
statement. END-COMPUTE permits a conditional COMPUTE statement to be
nested in another conditional statement. END-COMPUTE can also be used with
an imperative COMPUTE statement.

For more information, see “Delimited scope statements” on page 237.

Part 6. Procedure Division 273

CONTINUE statement

 CONTINUE statement

The CONTINUE statement allows you to specify a no operation statement.
CONTINUE indicates that no executable instruction is present.

 Format
��──CONTINUE───��

274 COBOL Language Reference

DELETE statement

 DELETE statement

The DELETE statement removes a record from an indexed or relative file. For
indexed files, the key can then be reused for record addition. For relative files, the
space is then available for a new record with the same RELATIVE KEY value.

When the DELETE statement is executed, the associated file must be open in I-O
mode.

 Format
��──DELETE──file-name-1─ ──┬ ┬──────── ──�
 └ ┘─RECORD─

�─ ──┬ ┬── ────────────────────────────�
 └ ┘ ─INVALID─ ──┬ ┬───── ─imperative-statement-1─
 └ ┘─KEY─

�─ ──┬ ┬── ──┬ ┬──────────── ───────��
 └ ┘ ─NOT INVALID─ ──┬ ┬───── ─imperative-statement-2─ └ ┘─END-DELETE─
 └ ┘─KEY─

file-name-1
Must be defined in an FD entry in the Data Division and must be the name of
an indexed or relative file.

After successful execution of a DELETE statement, the record is removed from the
file and can no longer be accessed.

Execution of the DELETE statement does not affect the contents of the record area
associated with file-name-1 or the content of the data item referenced by the
data-name specified in the DEPENDING ON phrase of the RECORD clause
associated with file-name-1.

If the FILE STATUS clause is specified in the File-Control entry, the associated
status key is updated when the DELETE statement is executed.

The file position indicator is not affected by execution of the DELETE statement.

Sequential access mode

For a file in sequential access mode, the last previous input/output statement must
be a successfully executed READ statement. When the DELETE statement is
executed, the system removes the record retrieved by that READ statement.

For a file in sequential access mode, the INVALID KEY and NOT INVALID KEY
phrases must not be specified. However, an EXCEPTION/ERROR procedure can
be specified.

Random or dynamic access mode

In random or dynamic access mode, DELETE statement execution results depend
on the file organization: indexed or relative.

When the DELETE statement is executed, the system removes the record identified
by the contents of the prime RECORD KEY data item for indexed files, or the
RELATIVE KEY data item for relative files. If the file does not contain such a
record, an INVALID KEY condition exists. (See “Invalid key condition” under
“Common processing facilities” on page 244.)

Part 6. Procedure Division 275

As an IBM extension, the INVALID KEY phrase does not need to be specified for a
DELETE statement that references a file in random or dynamic access and for
which an EXCEPTION/ERROR procedure is not specified.

DELETE statement

Transfer of control after the successful execution of a DELETE statement, with the
NOT INVALID KEY phrase specified, is to the imperative statement associated
with the phrase.

 END-DELETE phrase

This explicit scope terminator serves to delimit the scope of the DELETE statement.
END-DELETE permits a conditional DELETE statement to be nested in another
conditional statement. END-DELETE can also be used with an imperative
DELETE statement.

For more information, see “Delimited scope statements” on page 237.

276 COBOL Language Reference

environment-name-1

� Internal floating-point numbers are converted to external floating-point
numbers for display, such that:
— A COMP-1 item will display as if it had an external floating-point

PICTURE clause of -.9(8)E-99
— A COMP-2 item will display as if it had an external floating-point

PICTURE clause of -.9(17)E-99

Data items defined with USAGE IS POINTER are converted to an external decimal
number that would have a PICTURE clause of PIC 9(10).

Data items defined with USAGE IS PROCEDURE-POINTER or USAGE IS OBJECT
REFERENCE cannot be specified in a DISPLAY statement.

Date fields are treated as non-dates when specified in a DISPLAY statement. That
is, the DATE FORMAT is ignored, and the content of the data item is transferred
to the output device as is.

DBCS data items, explicitly or implicitly defined as USAGE DISPLAY-1, are
transferred to the sending field of the output device. Under OS/390 and VM, for
proper results, the output device must have the capability to recognize DBCS
shift-out and shift-in control characters.

DISPLAY statement

 DISPLAY statement

The DISPLAY statement transfers the contents of each operand to the output
device. The contents are displayed on the output device in the order, left to right,
in which the operands are listed.

 Under AIX and Windows, the target file is determined by checking
the COBOL environment-name (CONSOLE, SYSIN, SYSIPT, SYSOUT, SYSLIST,
SYSLST, SYSPUNCH, and SYSPCH). If an environment variable is defined
corresponding to the COBOL environment-name, the value of the
environment-variable is used as the system file identifier. For more information on
environment-variables, see the IBM COBOL Programming Guide for your platform.

For SYSPUNCH and SYSPCH, the DISPLAY statement will fail unless the
corresponding environment variable is set to point to a valid target.

 Format
 ┌ ┐────────────────────
��──DISPLAY─ ───/ ┴──┬ ┬─identifier-1─ ──┬ ┬────────────────────────────── ────────�
 └ ┘─literal-1──── └ ┘ ─UPON─ ──┬ ┬─mnemonic-name-1────
 └ ┘ ─ ─

�─ ──┬ ┬──────────────────────── ───��
 └ ┘ ──┬ ┬────── ─NO ADVANCING─
 └ ┘─WITH─

identifier-1
If it is numeric and is not described as an external decimal, the identifier-1 is
converted automatically to external format, as follows:

� Binary or internal decimal items are converted to external decimal.
Negative signed values cause a low-order sign overpunch.

No other identifiers require conversion.

Index names or data items defined with USAGE IS INDEX cannot be specified in a
DISPLAY statement.

Part 6. Procedure Division 277

Both DBCS and non-DBCS operands can be specified in a single DISPLAY verb.

Signed numeric literals and non-integer numeric literals are allowed.

Floating-point literals are allowed.

DBCS literals are allowed.

The ALL figurative constant can be used with DBCS literals in a DISPLAY
verb.

 or environment-name

The list of valid environment-names in a DISPLAY statement is
contained in Table 8 on page 85.

 For details on routing DISPLAY output to stdout, see the IBM
COBOL Programming Guide for your platform.

DISPLAY Statement

literal-1
Can be any figurative constant. When a figurative constant is specified, only a
single occurrence of that figurative constant is displayed.

Each numeric literal must be an unsigned integer.

UPON
mnemonic-name must be associated in the
SPECIAL-NAMES paragraph with an output device.

 A default logical record size is assumed for each device, as follows:

The system logical output device = 120 characters
The system punch device = 80 characters
The console = 100 characters

A maximum logical record size is allowed for each device, as follows:

The system logical output device = 255 characters
The system punch device = 255 characters
The console = 100 characters

Note: On the system punch device, the last eight characters are used for
PROGRAM-ID name.

When the UPON phrase is omitted, the system's logical output device is
assumed.

|
|

WITH NO ADVANCING
When specified, the positioning of the output device will not be changed in
any way following the display of the last operand. If the output device is
capable of positioning to a specific character position, it will remain positioned
at the character position immediately following the last character of the last
operand displayed. If the output device is not capable of positioning to a
specific character position, only the vertical position, if applicable, is affected.
This can cause overprinting.

If the WITH NO ADVANCING phrase is not specified, then after the last
operand has been transferred to the output device, the positioning of the
output device will be reset to the leftmost position of the next line of the
device.

 Under OS/390 and VM, COBOL does not support output devices
that are capable of positioning to a specific character position. See the IBM
COBOL Programming Guide for your platform for more information about the
DISPLAY statement.

278 COBOL Language Reference

If a DBCS operand must be split across multiple records, it will be split only on a
double-byte boundary.

 Under OS/390 and VM, the shift code compensation is required under
this case. That is, when a DBCS operand is split across multiple records, the
shift-in character needs to be inserted at the end of the current record, and the
shift-out character needs to be inserted at the beginning of the next record. A
space is padded after the shift-in character, if necessary. These additional inserted
shift codes and spaces are included in the count while the compiler is calculating
the number of records required.

After the last operand has been transferred to the output device, the device is reset
to the leftmost position of the next line of the device.

If a DBCS data item or literal is specified in a DISPLAY verb, the size of the
sending field is the total character count of all operands listed, with each DBCS
character counted twice, plus the necessary shift codes for DBCS.

DISPLAY Statement

The DISPLAY statement transfers the data in the sending field to the output
device. The size of the sending field is the total character count of all operands
listed. If the output device is capable of receiving data of the same size as the data
item being transferred, then the data item is transferred. If the output device is
not capable of receiving data of the same size as the data item being transferred,
then one of the following applies:
� If the total character count is less than the device maximum character count,

the remaining rightmost characters are padded with spaces.
� If the total character count exceeds the maximum, as many records are written

as are needed to display all operands. Any operand being printed or
displayed when the end of a record is reached is continued in the next record.

Notes:

1. The DISPLAY statement causes the printer to space before printing.

2. The DISPLAY statement can be used to identify data records that have caused
one of the following conditions:

a. A size error
b. An invalid key
c. An overflow condition
d. A status key returned as a value other than zero

Such records can be printed, with an identifying message, on some other
medium than that used for valid output. Thus, all records for one execution
that need special handling are separately printed.

Part 6. Procedure Division 279

DIVIDE statement

 DIVIDE statement

The DIVIDE statement divides one numeric data item into or by other(s) and sets
the values of data items equal to the quotient and remainder.

 Format 1
 ┌ ┐─────────────────────────────
��──DIVIDE─ ──┬ ┬─identifier-1─ ─INTO─ ───/ ┴ ─identifier-2─ ──┬ ┬───────── ──────────�
 └ ┘─literal-1──── └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬──────────── ────��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-DIVIDE─
 └ ┘─ON─

In format 1, the value of identifier-1 or literal-1 is divided into the value of
identifier-2, and the quotient is then stored in identifier-2. For each successive
occurrence of identifier-2, the division takes place in the left-to-right order in
which identifier-2 is specified.

 Format 2
��──DIVIDE─ ──┬ ┬─identifier-1─ ─INTO─ ──┬ ┬─identifier-2─ ───────────────────────�
 └ ┘─literal-1──── └ ┘─literal-2────

 ┌ ┐─────────────────────────────
�─ ─GIVING─ ───/ ┴ ─identifier-3─ ──┬ ┬───────── ───────────────────────────────────�
 └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬──────────── ────��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-DIVIDE─
 └ ┘─ON─

In format 2, the value of identifier-1 or literal-1 is divided into the value of
identifier-2 or literal-2. The value of the quotient is stored in each data item
referenced by identifier-3.

 Format 3
��──DIVIDE─ ──┬ ┬─identifier-1─ ─BY─ ──┬ ┬─identifier-2─ ─────────────────────────�
 └ ┘─literal-1──── └ ┘─literal-2────

 ┌ ┐─────────────────────────────
�─ ─GIVING─ ───/ ┴ ─identifier-3─ ──┬ ┬───────── ───────────────────────────────────�
 └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬──────────── ────��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-DIVIDE─
 └ ┘─ON─

In format 3, the value of identifier-1 or literal-1 is divided by the value of
identifier-2 or literal-2. The value of the quotient is stored in each data item
referenced by identifier-3.

280 COBOL Language Reference

Identifier-1 and identifier-2 cannot be
date fields.

If identifier-3 or identifier-4 is a date field, then see “Storing arithmetic results
that involve date fields” on page 213 for details on how the quotient or
remainder is stored in identifier-3.

In formats 1, 2, and 3, floating-point data items and literals can be used anywhere
that a numeric data item or literal can be specified.

In formats 4 and 5, floating-point data items or literals cannot be used.

DIVIDE statement
 Format 4

��──DIVIDE─ ──┬ ┬─identifier-1─ ─INTO─ ──┬ ┬─identifier-2─ ───────────────────────�
 └ ┘─literal-1──── └ ┘─literal-2────

�──GIVING──identifier-3─ ──┬ ┬───────── ─REMAINDER──identifier-4───────────────�
 └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬──────────── ────��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-DIVIDE─
 └ ┘─ON─

In format 4, the value of identifier-1 or literal-1 is divided into identifier-2 or
literal-2. The value of the quotient is stored in identifier-3, and the value of the
remainder is stored in identifier-4.

 Format 5
��──DIVIDE─ ──┬ ┬─identifier-1─ ─BY─ ──┬ ┬─identifier-2─ ─────────────────────────�
 └ ┘─literal-1──── └ ┘─literal-2────

�──GIVING──identifier-3─ ──┬ ┬───────── ─REMAINDER──identifier-4───────────────�
 └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬──────────── ────��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-DIVIDE─
 └ ┘─ON─

In format 5, the value of identifier-1 or literal-1 is divided by identifier-2 or
literal-2. The value of the quotient is stored in identifier-3, and the value of the
remainder is stored in identifier-4.

For all formats:

identifier-1, identifier-2
Must name an elementary numeric item.

identifier-3, identifier-4
Must name an elementary numeric or numeric-edited item.

literal-1, literal-2
Must be a numeric literal.

 ROUNDED phrase

For formats 1, 2, and 3, see “ROUNDED phrase” on page 239.

Part 6. Procedure Division 281

The REMAINDER phrase is invalid if the receiver or any of the operands is a
floating-point item.

DIVIDE statement

For formats 4 and 5, the quotient used to calculate the remainder is in an
intermediate field. The value of the intermediate field is truncated rather than
rounded.

 REMAINDER phrase

The result of subtracting the product of the quotient and the divisor from the
dividend is stored in identifier-4. If identifier-3, the quotient, is a numeric-edited
item, the quotient used to calculate the remainder is an intermediate field that
contains the unedited quotient.

Any subscripts for identifier-4 in the REMAINDER phrase are evaluated after the
result of the divide operation is stored in identifier-3 of the GIVING phrase.

SIZE ERROR phrases

For formats 1, 2, and 3, see “SIZE ERROR phrases” on page 240.

For formats 4 and 5, if a size error occurs in the quotient, no remainder calculation
is meaningful. Therefore, the contents of the quotient field (identifier-3) and the
remainder field (identifier-4) are unchanged.

If size error occurs in the remainder, the contents of the remainder field
(identifier-4) are unchanged.

In either of these cases, you must analyze the results to determine which situation
has actually occurred.

For information on the NOT ON SIZE ERROR phrase, see “SIZE ERROR phrases”
on page 240.

 END-DIVIDE phrase

This explicit scope terminator serves to delimit the scope of the DIVIDE statement.
END-DIVIDE permits a conditional DIVIDE statement to an imperative statement
so that it can be nested in another conditional statement. END-DIVIDE can also be
used with an imperative DIVIDE statement.

For more information, see “Delimited scope statements” on page 237.

282 COBOL Language Reference

ENTRY statement

 ENTRY statement

The ENTRY statement establishes an alternate entry point into a COBOL called
subprogram.

The ENTRY statement cannot be used in:
� Programs that specify a return value using the Procedure Division

RETURNING phrase. For details, see the discussion of the RETURNING
phrase under “The Procedure Division header” on page 204.

� Nested program. See “Nested programs” on page 60 for a description of
nested programs.

When a CALL statement naming the alternate entry point is executed in a calling
program, control is transferred to the next executable statement following the
ENTRY statement.

 Format
��─ ── ─ENTRY─ ─literal-1─ ───�

�─ ──┬ ┬── ─.───────────────��
 │ │┌ ┐───
 │ ││ │┌ ┐──────────────
 └ ┘ ─USING─ ───/ ┴─ ─ ──┬ ┬─────────────────── ───/ ┴identifier-1
 ├ ┤ ──┬ ┬──── ─REFERENCE─
 │ │└ ┘─BY─
 └ ┘ ──┬ ┬──── ─VALUE─────
 └ ┘─BY─

literal
Must be nonnumeric and conform to the rules for the formation of a
program-name in the outermost program (see “PROGRAM-ID paragraph” on
page 70).

Must not match the program-id or any other ENTRY literal in this program.

Must not be a figurative constant.

Execution of the called program begins at the first executable statement following
the ENTRY statement whose literal corresponds to the CALL statement literal or
identifier.

The entry point name on the ENTRY statement can be affected by the PGMNAME
compiler option. For details, see the IBM COBOL Programming Guide for your
platform.

 USING phrase

Do not specify the ENTRY statement in a program that contains a Procedure
Division ...RETURNING phrase.

For a discussion of the USING phrase, see “The Procedure Division header” on
page 204.

Part 6. Procedure Division 283

EVALUATE statement

 EVALUATE statement

The EVALUATE statement provides a shorthand notation for a series of nested IF
statements. It can evaluate multiple conditions. That is, the IF statements can be
made up of compound conditions. The subsequent action of the object program
depends on the results of these evaluations.

 Format
��──EVALUATE─ ──┬ ┬─identifier-1─ ──┬ ┬───────────────────────────── ───────────────────────────────────�
 ├ ┤─literal-1──── │ │┌ ┐───────────────────────────
 ├ ┤─expression-1─ └ ┘ ───/ ┴ ─ ALSO─ ──┬ ┬─identifier-2─
 ├ ┤─TRUE───────── ├ ┤─literal-2────
 └ ┘─FALSE──────── ├ ┤─expression-2─
 ├ ┤─TRUE─────────
 └ ┘─FALSE────────

 ┌ ┐──
 │ │┌ ┐──
�─ ───/ ┴ ───/ ┴─WHEN──┤ phrase 1 ├─ ──┬ ┬──────────────────────── ─imperative-statement-1─ ─────────────────�
 │ │┌ ┐──────────────────────
 └ ┘ ───/ ┴─ALSO──┤ phrase 2 ├─

�─ ──┬ ┬──────────────────────────────────── ──┬ ┬────────────── ──────────────────────────────────────��
 └ ┘ ─WHEN OTHER──imperative-statement-2─ └ ┘─END-EVALUATE─

phrase 1
├─ ──┬ ┬─ANY── ─────────┤
 ├ ┤─condition-1──
 ├ ┤─TRUE───
 ├ ┤─FALSE──
 └ ┘ ──┬ ┬───── ──┬ ┬─identifier-3──────────── ──┬ ┬──
 └ ┘─NOT─ ├ ┤─literal-3─────────────── └ ┘ ──┬ ┬─THROUGH─ ──┬ ┬─identifier-4────────────
 └ ┘─arithmetic-expression-1─ └ ┘─THRU──── ├ ┤─literal-4───────────────
 └ ┘─arithmetic-expression-2─

phrase 2
├─ ──┬ ┬─ANY── ─────────┤
 ├ ┤─condition-2──
 ├ ┤─TRUE───
 ├ ┤─FALSE──
 └ ┘ ──┬ ┬───── ──┬ ┬─identifier-5──────────── ──┬ ┬──
 └ ┘─NOT─ ├ ┤─literal-5─────────────── └ ┘ ──┬ ┬─THROUGH─ ──┬ ┬─identifier-6────────────
 └ ┘─arithmetic-expression-3─ └ ┘─THRU──── ├ ┤─literal-6───────────────
 └ ┘─arithmetic-expression-4─

Operands before the WHEN phrase
Are interpreted in one of two ways, depending on how they are specified:

� Individually, they are called selection subjects
� Collectively, they are called a set of selection subjects.

Operands in the WHEN phrase
Are interpreted in one of two ways, depending on how they are specified:

� Individually, they are called selection objects
� Collectively, they are called a set of selection objects.

ALSO
Separates selection subjects within a set of selection subjects; separates
selection objects within a set of selection objects.

THROUGH and THRU
Are equivalent.

Two operands connected by a THRU phrase must be of the same class. The two
operands thus connected constitute a single selection object.

284 COBOL Language Reference

For comparisons involving date fields, see “Date
fields” on page 219.

� Where identifiers are permitted, they can reference date field, DBCS,
floating-point, USAGE POINTER, USAGE PROCEDURE-POINTER, or USAGE
IS OBJECT REFERENCE or USAGE PROCEDURE-POINTER data items.

� Where nonnumeric literals are permitted, DBCS literals are permitted.
� Where numeric literals are permitted, floating-point literals are permitted.

EVALUATE statement

The number of selection objects within each set of selection objects must be equal
to the number of selection subjects.

Each selection object within a set of selection objects must correspond to the
selection subject having the same ordinal position within the set of selection
subjects, according to the following rules:
� Identifiers, literals, or arithmetic expressions appearing within a selection

object must be valid operands for comparison to the corresponding operand in
the set of selection subjects.

� Condition-1, condition-2, or the word TRUE or FALSE appearing as a selection
object must correspond to a conditional expression or the word TRUE or
FALSE in the set of selection subjects.

� The word ANY can correspond to a selection subject of any type.

 END-EVALUATE phrase

This explicit scope terminator serves to delimit the scope of the EVALUATE
statement. END-EVALUATE permits a conditional EVALUATE statement to be
nested in another conditional statement.

For more information, see “Delimited scope statements” on page 237.

 Determining values

The execution of the EVALUATE statement operates as if each selection subject
and selection object were evaluated and assigned a numeric or nonnumeric value,
a range of numeric or nonnumeric values, or a truth value. These values are
determined as follows:
� Any selection subject specified by identifier-1, identifier-2, ... and any selection

object specified by identifier-3 and/or identifier-5 without the NOT or THRU
phrase, are assigned the value and class of the data item that they reference.

� Any selection subject specified by literal-1, literal-2, ... and any selection object
specified by literal-3 and/or literal-5 without the NOT or THRU phrase, are
assigned the value and class of the specified literal. If literal-3 and/or literal-5
is the figurative constant ZERO, it is assigned the class of the corresponding
selection subject.

� Any selection subject in which expression-1, expression-2, ... is specified as an
arithmetic expression, and any selection object without the NOT or THRU
phrase in which arithmetic-expression-1 and/or arithmetic-expression-3 is
specified, are assigned numeric values according to the rules for evaluating an
arithmetic expression. (See “Arithmetic expressions” on page 209.)

� Any selection subject in which expression-1, expression-2, ... is specified as a
conditional expression, and any selection object in which condition-1 and/or
condition-2 is specified, are assigned a truth value according to the rules for
evaluating conditional expressions. (See “Conditional expressions” on
page 214.)

Part 6. Procedure Division 285

EVALUATE statement

� Any selection subject or any selection object specified by the words TRUE or
FALSE is assigned a truth value. The truth value "true" is assigned to those
items specified with the word TRUE, and the truth value "false" is assigned to
those items specified with the word FALSE.

� Any selection object specified by the word ANY is not further evaluated.
� If the THRU phrase is specified for a selection object without the NOT phrase,

the range of values is all values that, when compared to the selection subject,
are greater than or equal to the first operand and less than or equal to the
second operand, according to the rules for comparison. If the first operand is
greater than the second operand, there are no values in the range.

� If the NOT phrase is specified for a selection object, the values assigned to that
item are all values not equal to the value, or range of values, that would have
been assigned to the item had the NOT phrase been omitted.

Comparing selection subjects and objects

The execution of the EVALUATE statement then proceeds as if the values assigned
to the selection subjects and selection objects were compared to determine whether
any WHEN phrase satisfies the set of selection subjects. This comparison proceeds
as follows:
1. Each selection object within the set of selection objects for the first WHEN

phrase is compared to the selection subject having the same ordinal position
within the set of selection subjects. One of the following conditions must be
satisfied if the comparison is to be satisfied:
a. If the items being compared are assigned numeric or nonnumeric values,

or a range of numeric or nonnumeric values, the comparison is satisfied if
the value, or one value in the range of values, assigned to the selection
object is equal to the value assigned to the selection subject, according to
the rules for comparison.

b. If the items being compared are assigned truth values, the comparison is
satisfied if the items are assigned identical truth values.

c. If the selection object being compared is specified by the word ANY, the
comparison is always satisfied, regardless of the value of the selection
subject.

2. If the above comparison is satisfied for every selection object within the set of
selection objects being compared, the WHEN phrase containing that set of
selection objects is selected as the one satisfying the set of selection subjects.

3. If the above comparison is not satisfied for every selection object within the set
of selection objects being compared, that set of selection objects does not satisfy
the set of selection subjects.

4. This procedure is repeated for subsequent sets of selection objects in the order
of their appearance in the source program, until either a WHEN phrase
satisfying the set of selection subjects is selected or until all sets of selection
objects are exhausted.

Executing the EVALUATE statement

After the comparison operation is completed, execution of the EVALUATE
statement proceeds as follows:
� If a WHEN phrase is selected, execution continues with the first

imperative-statement-1 following the selected WHEN phrase. Note that
multiple WHEN statements are allowed for a single imperative-statement-1.

286 COBOL Language Reference

EVALUATE statement

� If no WHEN phrase is selected and a WHEN OTHER phrase is specified,
execution continues with imperative-statement-2.

� If no WHEN phrase is selected and no WHEN OTHER phrase is specified,
execution continues with the next executable statement following the scope
delimiter.

� The scope of execution of the EVALUATE statement is terminated when
execution reaches the end of the scope of the selected WHEN phrase or WHEN
OTHER phrase, or when no WHEN phrase is selected and no WHEN OTHER
phrase is specified.

Part 6. Procedure Division 287

As an IBM extension, the EXIT statement does not need to appear in a sentence by
itself. Any statements following the EXIT statement are executed; the EXIT
statement is treated as the CONTINUE statement.

EXIT statement

 EXIT statement

The EXIT statement provides a common end point for a series of procedures.

 Format
��─ ──paragraph-name. ─EXIT.───��

The EXIT statement enables you to assign a procedure-name to a given point in a
program.

288 COBOL Language Reference

EXIT METHOD statement

EXIT METHOD statement

The EXIT METHOD statement specifies the end of an invoked method.

 Format
��──EXIT METHOD.───��

You can specify EXIT METHOD only in the Procedure Division of a method. EXIT
METHOD causes the executing method to terminate, and control returns to the
invoking statement. If the containing method specifies the Procedure Division
RETURNING phrase, the value in the data item referred to by the RETURNING
phrase becomes the result of the method invocation.

If you need method-specific data to be in the last-used state on each invocation,
declare it in method Working-Storage. If you need method-specific data to be in
the initial state on each invocation, declare it in method Local-Storage.

If control reaches an EXIT METHOD statement in a method definition, control
returns to the point in the invoking program or method immediately following the
INVOKE statement. The state of the invoking program or method is identical to
that which existed at the time it executed the INVOKE statement.

The contents of data items and the contents of data files shared between the
invoking program or method and the invoked method could have changed. The
state of the invoked method is not altered except that the end of the ranges of all
PERFORM statement executed by the method are considered to have been reached.

The EXIT METHOD statement does not have to be the last statement in a sequence
of imperative statements, but the statements following the EXIT METHOD will not
be executed.

When there is no next executable statement in an invoked method, an implicit
EXIT METHOD statement is executed.

Part 6. Procedure Division 289

As an IBM extension, the EXIT PROGRAM statement does not have to be the last
statement in a sequence of imperative statements, but the statements following the
EXIT PROGRAM will not be executed if a CALL statement is active.

EXIT PROGRAM statement

EXIT PROGRAM statement

The EXIT PROGRAM statement specifies the end of a called program and returns
control to the calling program.

You can specify EXIT PROGRAM only in the Procedure Division of a program. It
must not be used in a declarative procedure in which the GLOBAL phrase is
specified.

 Format
��──EXIT PROGRAM.──��

If control reaches an EXIT PROGRAM statement in a program that does not
possess the INITIAL attribute while operating under the control of a CALL
statement (that is, the CALL statement is active), control returns to the point in the
calling program immediately following the CALL statement. The program state of
the calling program is identical to that which existed at the time it executed the
CALL statement. The contents of data items and the contents of data files shared
between the calling and called program could have been changed. The program
state of the called program is not altered except that the ends of the ranges of all
PERFORM statements executed by that called program are considered to have
been reached.

The execution of an EXIT PROGRAM statement in a called program that possesses
the INITIAL attribute is equivalent also to executing a CANCEL statement
referencing that program.

If control reaches an EXIT PROGRAM statement, and no CALL statement is active,
control passes through the exit point to the next executable statement.

If a subprogram specifies the Procedure Division RETURNING phrase, the value in
the data item referred to by the RETURNING phrase becomes the result of the
subprogram invocation.

When there is no next executable statement in a called program, an implicit EXIT
PROGRAM statement is executed.

290 COBOL Language Reference

GOBACK statement

 GOBACK statement

The GOBACK statement functions like the EXIT PROGRAM statement when it is
coded as part of a called program (or the EXIT METHOD statement when it is
coded as part of an invoked method) and like the STOP RUN statement when
coded in a main program.

The GOBACK statement specifies the logical end of a called program or invoked
method.

 Format
��──GOBACK───��

A GOBACK statement should appear as the only statement or as the last of a
series of imperative statements in a sentence because any statements following the
GOBACK are not executed. It must not be used in a declarative procedure in
which the GLOBAL phrase is specified.

If control reaches a GOBACK statement while a CALL statement is active, control
returns to the point in the calling program immediately following the CALL
statement, as in the EXIT PROGRAM statement.

If control reaches a GOBACK statement while an INVOKE statement is active,
control returns to the point in the invoking program or method immediately
following the INVOKE statement, as in the EXIT METHOD statement.

In addition, the execution of a GOBACK statement in a called program that
possesses the INITIAL attribute is equivalent to executing a CANCEL statement
referencing that program.

The table below shows the action taken for the GOBACK statement in both a main
program and a subprogram.

Termination
statement Main program Subprogram

GOBACK Return to calling program. (Can
be the system and thus causes
the application to end.)

Return to calling program.

Part 6. Procedure Division 291

As an IBM extension, the unconditional GO TO statement does not have to be the
last statement in a sequence of imperative statements. However, any statements
following the GO TO are not executed.

Identifier-1
cannot be a windowed date field.

GO TO statement

GO TO statement

The GO TO statement transfers control from one part of the Procedure Division to
another. The types of GO TO statements are:
� Unconditional
� Conditional
� Altered

Unconditional GO TO

The unconditional GO TO statement transfers control to the first statement in the
paragraph or section named in procedure-name, unless the GO TO statement has
been modified by an ALTER statement. (See “ALTER statement” on page 258.)

 Format 1—unconditional
��──GO─ ──┬ ┬──── ─procedure-name-1───��
 └ ┘─TO─

procedure-name-1
Must name a procedure or a section in the same Procedure Division as the GO
TO statement.

When a paragraph is referred to by an ALTER statement, the paragraph must
consist of a paragraph-name followed by an unconditional or altered GO TO
statement.

Conditional GO TO

The conditional GO TO statement transfers control to one of a series of procedures,
depending on the value of the identifier.

 Format 2—conditional
 ┌ ┐────────────────────
��──GO─ ──┬ ┬──── ───/ ┴─procedure-name-1─ ─DEPENDING─ ──┬ ┬──── ─identifier-1──────��
 └ ┘─TO─ └ ┘─ON─

procedure-name-1
Must be a procedure or a section in the same Procedure Division as the GO
TO statement. The number of procedure-names must not exceed 255.

identifier-1
Must be a numeric elementary data item which is an integer.

If 1, control is transferred to the first statement in the procedure named by the
first occurrence of procedure-name-1.

If 2, control is transferred to the first statement in the procedure named by the
second occurrence of procedure-name-1, and so forth.

292 COBOL Language Reference

� A program or method that has the RECURSIVE attribute.
� A program compiled with the THREAD compiler option (Workstation only)

Otherwise,
as an IBM extension, the GO TO statement acts like a CONTINUE statement.

MORE-LABELS GO TO

 Under AIX and Windows, GO TO MORE-LABELS is syntax checked,
but has no effect on the execution of the program.

The GO TO MORE-LABELS statement can only be specified in a LABEL
declarative.

 Format 4—MORE-LABELS
��──GO─ ──┬ ┬──── ─MORE-LABELS──��
 └ ┘─TO─

For more details, see the IBM COBOL for OS/390 & VM Programming Guide.

GO TO statement

If the value of identifier is anything other than a value within the range of 1
through n (where n is the number of procedure-names specified in this GO TO
statement), no control transfer occurs. Instead, control passes to the next
statement in the normal sequence of execution.

Altered GO TO

The altered GO TO statement transfers control to the first statement of the
paragraph named in the ALTER statement.

You cannot specify the altered GO TO statement in the following:

An ALTER statement referring to the paragraph containing an altered GO TO
statement must be executed before the GO TO statement is executed.

 Format 3—altered
��─ ──paragraph-name. ─GO─ ──┬ ┬──── ─.───��
 └ ┘─TO─

When an ALTER statement refers to a paragraph, the paragraph can consist only
of the paragraph-name followed by an unconditional or altered GO TO statement.

Part 6. Procedure Division 293

END-IF can be specified with NEXT SENTENCE as an IBM extension.

END-IF can be specified with NEXT SENTENCE. However, if the NEXT
SENTENCE phrase is executed, control will not pass to the next statement
following the END-IF but instead will pass to the statement after the closest
following period.

IF statement

 IF statement

The IF statement evaluates a condition and provides for alternative actions in the
object program, depending on the evaluation.

 Format
 ┌ ┐───────────────
��──IF──condition-1─ ──┬ ┬────── ──┬ ┬───/ ┴─statement-1─ ─────────────────────────�
 └ ┘─THEN─ └ ┘─NEXT SENTENCE───

�─ ──┬ ┬─────────────────────────── ──┬ ┬────────── ────────────────────────────��
 │ │┌ ┐─────────────── └ ┘─END-IF───(1)

 └ ┘ ─ELSE─ ──┬ ┬───/ ┴─statement-2─
 └ ┘─NEXT SENTENCE───

Note:
1

condition
Can be any simple or complex condition, as described in “Conditional
expressions” on page 214.

statement-1, statement-2
Can be any one of the following:

� An imperative statement
� A conditional statement
� An imperative statement followed by a conditional statement

NEXT SENTENCE
If the NEXT SENTENCE phrase is specified, then the END-IF phrase must not
be specified.

 END-IF phrase

This explicit scope terminator serves to delimit the scope of the IF statement.
END-IF permits a conditional IF statement to be nested in another conditional
statement. For more information on explicit scope terminators, see “Delimited
scope statements” on page 237.

The scope of an IF statement can be terminated by any of the following:
� An END-IF phrase at the same level of nesting
� A separator period
� If nested, by an ELSE phrase associated with an IF statement at a higher level

of nesting

 Transferring control

If the condition tested is true, one of the following actions takes place:
� If statement-1 is specified, it is executed. If statement-1 contains a procedure

branching or conditional statement, control is transferred, according to the
rules for that statement. If statement-1 does not contain a procedure-branching

294 COBOL Language Reference

statement, the ELSE phrase, if specified, is ignored, and control passes to the
next executable statement after the corresponding END-IF or separator period.

� If NEXT SENTENCE is specified, control passes to an implicit CONTINUE
statement immediately preceding the next separator period.

If the condition tested is false, one of the following actions takes place:
� If ELSE statement-2 is specified, it is executed. If statement-2 contains a

procedure-branching or conditional statement, control is transferred, according
to the rules for that statement. If statement-2 does not contain a
procedure-branching or conditional statement, control is passed to the next
executable statement after the corresponding END-IF or separator period.

� If ELSE NEXT SENTENCE is specified, control passes to an implicit
CONTINUE STATEMENT immediately preceding the next separator period.

� If neither ELSE statement-2 nor ELSE NEXT STATEMENT is specified, control
passes to the next executable statement after the corresponding END-IF or
separator period.

Note: When the ELSE phrase is omitted, all statements following the condition
and preceding the corresponding END-IF or the separator period for the sentence
are considered to be part of statement-1.

Nested IF statements

When an IF statement appears as statement-1 or statement-2, or as part of
statement-1 or statement-2, it is nested.

Nested IF statements (when IF statements contain IF statements) are considered to
be matched IF, ELSE, and END-IF combinations proceeding from left to right.
Thus, any ELSE encountered is matched with the nearest preceding IF that either
has not been already matched with an ELSE, or has not been implicitly or
explicitly terminated. Any END-IF encountered is matched with the nearest
preceding IF that has not been implicitly or explicitly terminated.

Part 6. Procedure Division 295

 and DBCS

DBCS
EGCS

The data
description entry for identifier-1 can contain the DEPENDING phrase of the
OCCURS clause.

Note: You cannot use the INITIALIZE statement to initialize a variably located
item or group that follows a DEPENDING ON phrase of the OCCURS clause
within the same 01 level.

A floating-point data item or literal can be used anywhere a numeric identifier or
literal is specified.

A DBCS data item or literal can be used anywhere an identifier or literal is
specified.

INITIALIZE statement

 INITIALIZE statement

The INITIALIZE statement sets selected categories of data fields to predetermined
values. It is functionally equivalent to one or more MOVE statements.

When the REPLACING phrase is not used:
� SPACE is the implied sending field for alphabetic, alphanumeric,

alphanumeric-edited, items.
� ZERO is the implied sending field for numeric and numeric-edited items.

 Format
 ┌ ┐────────────────
��──INITIALIZE─ ───/ ┴─identifier-1─ ───�

�─ ──┬ ┬── ───────��
 │ │┌ ┐───
 └ ┘ ─REPLACING─ ───/ ┴ ──┬ ┬─ALPHABETIC────────── ──┬ ┬────── ─BY─ ──┬ ┬─identifier-2─
 ├ ┤─ALPHANUMERIC──────── └ ┘─DATA─ └ ┘─literal-1────
 ├ ┤─NUMERIC─────────────
 ├ ┤─ALPHANUMERIC-EDITED─
 ├ ┤─NUMERIC-EDITED──────
 ├ ┤─ ────────────────
 └ ┘─ ────────────────

identifier-1
Receiving area(s).

identifier-2, literal-1
Sending area(s).

A subscripted item can be specified for identifier-1. A complete table can be
initialized only by specifying identifier-1 as a group that contains the complete
table.

The data description entry for identifier-1 or any items subordinate to identifier-1
cannot contain the DEPENDING ON phrase of the OCCURS clause.

The data description entry for identifier-1 must not contain a RENAMES clause.
An index data item cannot be an operand of INITIALIZE.

Special registers can be specified for identifier-1 and identifier-2 only if they are
valid receiving fields or sending fields, respectively, for the implied MOVE
statement(s).

296 COBOL Language Reference

A floating-point data item or floating-point literal will be treated as if
it is in the NUMERIC category.

DBCS
EGCS

Refers to the characters allowed for DBCS literals.

� Object references
� Data items defined with USAGE IS POINTER or USAGE IS

PROCEDURE-POINTER

INITIALIZE statement

 REPLACING phrase

When the REPLACING phrase is used:
� The category of identifier-2 or literal-1 must be compatible with the category

indicated in the corresponding REPLACING phrase, according to the rules for
MOVE.

� The same category cannot be repeated in a REPLACING phrase.
� The key word following the word REPLACING corresponds to a category of

data shown in “Classes and categories of data” on page 127.

INITIALIZE statement rules

1. Whether identifier-1 references an elementary or group item, all operations are
performed as if a series of MOVE statements had been written, each of which
had an elementary item as a receiving field.

If the REPLACING phrase is specified:
� If identifier-1 references a group item, any elementary item within the data

item referenced by identifier-1 is initialized only if it belongs to the
category specified in the REPLACING phrase.

� If identifier-1 references an elementary item, that item is initialized only if
it belongs to the category specified in the REPLACING phrase.

This initialization takes place as if the data item referenced by identifier-2 or
literal-1 acts as the sending operand in an implicit MOVE statement to the
identified item.

All such elementary receiving fields, including all occurrences of table items
within the group, are affected, with the following exceptions:
� Index data items

� Elementary FILLER data items
� Items that are subordinate to identifier-1 and contain a REDEFINES clause,

or any items subordinate to such an item. (However, identifier-1 can
contain a REDEFINES clause or be subordinate to a redefining item.)

2. The areas referenced by identifier-1 are initialized in the order (left to right) of
the appearance of identifier-1 in the statement. Within a group receiving field,
affected elementary items are initialized in the order of their definition within
the group.

3. If identifier-1 occupies the same storage area as identifier-2, the result of the
execution of this statement is undefined, even if these operands are defined by
the same data description entry.

Part 6. Procedure Division 297

INSPECT statement

 INSPECT statement

The INSPECT statement specifies that characters, or groups of characters, in a data
item are to be counted (tallied) or replaced or both.
� It counts the occurrence of a specific character (alphabetic, numeric, or special

character) in a data item (formats 1 and 3).
� It fills all or portions of a data item with specified characters, such as spaces or

zeros (formats 2 and 3).
� It converts all occurrences of specific characters in a data item to user-supplied

replacement characters (format 4).
 Format 1

��──INSPECT──identifier-1──TALLYING──�

 ┌ ┐──
 │ │┌ ┐───
 │ ││ │┌ ┐────────────────────
�─ ───/ ┴ ─identifier-2──FOR─ ───/ ┴──┬ ┬ ─CHARACTERS─ ───/ ┴──┬ ┬────────────── ─────────────────────── ────────��

│ │└ ┘─┤ phrase 1 ├─
 │ │┌ ┐──
 │ ││ │┌ ┐────────────────────
 └ ┘ ──┬ ┬─ALL───── ───/ ┴ ──┬ ┬─identifier-3─ ───/ ┴──┬ ┬──────────────

└ ┘─LEADING─ └ ┘─literal-1──── └ ┘─┤ phrase 1 ├─

phrase 1
├─ ──┬ ┬─BEFORE─ ──┬ ┬───────── ──┬ ┬─identifier-4─ ──┤
 └ ┘─AFTER── └ ┘─INITIAL─ └ ┘─literal-2────

 Format 2
��──INSPECT──identifier-1──REPLACING───�

 ┌ ┐───
 │ │┌ ┐────────────────────
�─ ───/ ┴──┬ ┬─CHARACTERS BY─ ──┬ ┬─identifier-5─ ───/ ┴──┬ ┬────────────── ──────────────────────── ─────────��

│ │└ ┘─literal-3──── └ ┘─┤ phrase 1 ├─
 │ │┌ ┐──
 │ ││ │┌ ┐────────────────────
 └ ┘ ──┬ ┬─ALL───── ───/ ┴ ──┬ ┬─identifier-3─ ─BY─ ──┬ ┬─identifier-5─ ───/ ┴──┬ ┬──────────────

├ ┤─LEADING─ └ ┘─literal-1──── └ ┘─literal-3──── └ ┘─┤ phrase 1 ├─
 └ ┘─FIRST───

phrase 1
├─ ──┬ ┬─BEFORE─ ──┬ ┬───────── ──┬ ┬─identifier-4─ ──┤
 └ ┘─AFTER── └ ┘─INITIAL─ └ ┘─literal-2────

298 COBOL Language Reference

None of the identifiers in an INSPECT statement can be windowed date fields.

� An external floating point item

Effect of DBCS

All identifiers and literals (except identifier-2) must be DBCS items, either DBCS
literals or DBCS data items, if any are DBCS items. Identifier-2 cannot be a DBCS
item. DBCS characters, not bytes of data, are tallied in identifier-2.

INSPECT statement
 Format 3

��──INSPECT──identifier-1──TALLYING──�

 ┌ ┐──
 │ │┌ ┐───
 │ ││ │┌ ┐────────────────────
�─ ───/ ┴ ─identifier-2──FOR─ ───/ ┴──┬ ┬ ─CHARACTERS─ ───/ ┴──┬ ┬────────────── ─────────────────────── ─────────�

│ │└ ┘─┤ phrase 1 ├─
 │ │┌ ┐──
 │ ││ │┌ ┐────────────────────
 └ ┘ ──┬ ┬─ALL───── ───/ ┴ ──┬ ┬─identifier-3─ ───/ ┴──┬ ┬──────────────

└ ┘─LEADING─ └ ┘─literal-1──── └ ┘─┤ phrase 1 ├─

�──REPLACING───�

 ┌ ┐───
 │ │┌ ┐────────────────────
�─ ───/ ┴──┬ ┬─CHARACTERS BY─ ──┬ ┬─identifier-5─ ───/ ┴──┬ ┬────────────── ──────────────────────── ─────────��

│ │└ ┘─literal-3──── └ ┘─┤ phrase 1 ├─
 │ │┌ ┐──
 │ ││ │┌ ┐────────────────────
 └ ┘ ──┬ ┬─ALL───── ───/ ┴ ──┬ ┬─identifier-3─ ─BY─ ──┬ ┬─identifier-5─ ───/ ┴──┬ ┬──────────────

├ ┤─LEADING─ └ ┘─literal-1──── └ ┘─literal-3──── └ ┘─┤ phrase 1 ├─
 └ ┘─FIRST───

phrase 1
├─ ──┬ ┬─BEFORE─ ──┬ ┬───────── ──┬ ┬─identifier-4─ ──┤
 └ ┘─AFTER── └ ┘─INITIAL─ └ ┘─literal-2────

 Format 4
��──INSPECT──identifier-1──CONVERTING─ ──┬ ┬─identifier-6─ ─TO─ ──┬ ┬─identifier-7─ ─────────────────────�
 └ ┘─literal-4──── └ ┘─literal-5────

 ┌ ┐───
�─ ───/ ┴──┬ ┬─BEFORE─ ──┬ ┬───────── ──┬ ┬─identifier-4─ ───��
 └ ┘─AFTER── └ ┘─INITIAL─ └ ┘─literal-2────

identifier-1
Is the inspected item and can be any of the following:

� An alphanumeric data item
� A numeric data item with USAGE DISPLAY

TALLYING phrase (formats 1 and 3)

This phrase counts the occurrence of a specific character (alphabetic, numeric, or
special character) in a data item.

identifier-2
Is the count field, and must be an elementary integer item defined without the
symbol P in its PICTURE character-string.

Part 6. Procedure Division 299

Identifier-2 cannot be:

� A DBCS item
� An external floating point item

� External floating point item

INSPECT statement

You must initialize identifier-2 before execution of the INSPECT statement
begins.

identifier-3 or literal-1
Is the tallying field (the item whose occurrences will be tallied).

Identifier-3 can be any of the following:

� Elementary alphanumeric data item
� Numeric data item with USAGE DISPLAY

Literal-1 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. (If literal-1 is a figurative constant, it is considered
to be a 1-character nonnumeric literal.)

CHARACTERS
When CHARACTERS is specified and neither the BEFORE nor AFTER phrase
is specified, the count field (identifier-2) is increased by 1 for each character
(including the space character) in the inspected item (identifier-1). Thus,
execution of the INSPECT TALLYING statement increases the value in the
count field by the number of characters in the inspected item.

ALL
When ALL is specified and neither the BEFORE nor AFTER phrase is
specified, the count field (identifier-2) is increased by 1 for each
non-overlapping occurrence of the tallying comparand in the inspected item
(identifier-1), beginning at the leftmost character position and continuing to the
rightmost.

LEADING
When LEADING is specified and neither the BEFORE nor AFTER phrase is
specified, the count field (identifier-2) is increased by 1 for each contiguous
non-overlapping occurrence of the tallying comparand in the inspected item
(identifier-1), provided that the leftmost such occurrence is at the point where
comparison began in the first comparison cycle for which the tallying
comparand is eligible to participate.

FIRST (format 3 only)
When FIRST is specified and neither the BEFORE nor AFTER phrase is
specified, the substitution field replaces the leftmost occurrence of the subject
field in the inspected item (identifier-1).

300 COBOL Language Reference

� An external floating point item

� An external floating point item

INSPECT statement

REPLACING phrase (formats 2 and 3)

This phrase fills all or portions of a data item with specified characters, such as
spaces or zeros.

identifier-3 or literal-1
Is the subject field (the item whose occurrences are replaced).

Identifier-3 can be:

� An elementary alphanumeric data item
� A numeric data item with USAGE DISPLAY

Literal-1 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. If literal-1 is a figurative constant, it is considered
to be a 1-character nonnumeric literal.

identifier-5 or literal-3
Is the substitution field (the item that replaces the subject field).

Identifier-5 can be:

� An elementary alphanumeric data item
� A numeric data item with USAGE DISPLAY

Literal-3 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL.

If literal-3 is a figurative constant, it is considered to be the same length as the
subject field.

The subject field and the substitution field must be the same length.

CHARACTERS BY
When the CHARACTERS BY phrase is used, the substitution field must be 1
character in length.

When CHARACTERS BY is specified and neither the BEFORE nor AFTER
phrase is specified, the substitution field replaces each character in the
inspected item (identifier-1), beginning at the leftmost character and continuing
to the rightmost.

ALL
When ALL is specified and neither the BEFORE nor AFTER phrase is
specified, the substitution field replaces each non-overlapping occurrence of
the subject field in the inspected item (identifier-1), beginning at the leftmost
character position and continuing to the rightmost.

LEADING
When LEADING is specified and neither the BEFORE nor AFTER phrase is
specified, the substitution field replaces each contiguous non-overlapping
occurrence of the subject field in the inspected item (identifier-1), provided that
the leftmost such occurrence is at the point where comparison began in the
first comparison cycle for which this substitution field is eligible to participate.

FIRST
When FIRST is specified and neither the BEFORE nor AFTER phrase is
specified, the substitution field replaces the leftmost occurrence of the subject
field in the inspected item (identifier-1).

Part 6. Procedure Division 301

� An external floating point item

INSPECT statement

When both the TALLYING and REPLACING phrases are specified (format 3), the
INSPECT statement is executed as if an INSPECT TALLYING statement (format 1)
were specified, immediately followed by an INSPECT REPLACING statement
(format 2).

 Replacement rules

The following replacement rules apply:
� When the subject field is a figurative constant, the single-character substitution

field (which must be 1 character in length) replaces each character in the
inspected item equivalent to the figurative constant.

� When the substitution field is a figurative constant, the substitution field
replaces each non-overlapping occurrence of the subject field in the inspected
item.

� When the subject and substitution fields are character-strings, the
character-string specified in the substitution field replaces each
non-overlapping occurrence of the subject field in the inspected item.

� After replacement has occurred in a given character position in the inspected
item, no further replacement for that character position is made in this
execution of the INSPECT statement.

BEFORE and AFTER phrases (all formats)

This phrase narrows the set of items being tallied or replaced.

No more than one BEFORE phrase and one AFTER phrase can be specified for any
one ALL, LEADING, CHARACTERS, FIRST or CONVERTING phrase.

identifier-4 or literal-2
Is the delimiter.

Identifier-4 can be:

� An elementary alphanumeric data item
� A numeric data item with USAGE DISPLAY

Literal-2 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. If literal-2 is a figurative constant, it is considered
to be 1 character in length.

Delimiters are not counted or replaced. However, the counting and/or
replacing of the inspected item is bounded by the presence of the identifiers
and literals.

INITIAL
The first occurrence of a specified item.

The BEFORE and AFTER phrases change how counting and replacing are done:
� When BEFORE is specified, counting and/or replacing of the inspected item

(identifier-1) begins at the leftmost character and continues until the first
occurrence of the delimiter is encountered. If no delimiter is present in the
inspected item, counting and/or replacing continues toward the rightmost
character.

� When AFTER is specified, counting and/or replacing of the inspected item
(identifier-1) begins with the first character to the right of the delimiter and

302 COBOL Language Reference

� An external floating point item

� An external floating point item

INSPECT statement

continues toward the rightmost character in the inspected item. If no delimiter
is present in the inspected item, no counting or replacement takes place.

CONVERTING phrase (format 4)

This phrase converts all occurrences of specific characters in a data item to
user-supplied replacement characters. It can express a string of replacement
values.

identifier-6 or literal-4
Is the sending location.

Identifier-6 can be:

� An elementary alphanumeric data item
� A numeric data item with USAGE DISPLAY

Literal-4 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. If literal-4 is a figurative constant, it refers to an
implicit 1 character data item.

identifier-7 or literal-5
Is the receiving location.

The receiving location (identifier-7 or literal-5) must be the same size as the
sending location (identifier-6 or literal-4).

Identifier-7 can be:

� An elementary alphanumeric data item
� A numeric data item with USAGE DISPLAY

Literal-5 must be nonnumeric and can be any figurative constant that does not
begin with the word ALL. When a figurative constant is used, the size should
be equal to the size of literal-4 or identifier-6.

The same character must not appear more than once in either literal-4 or
identifier-6.

A Format 4 INSPECT statement is interpreted and executed as if a Format 2
INSPECT statement had been written with a series of ALL phrases (one for each
character of literal-4), specifying the same identifier-1. The effect is as if each
single character of literal-4 were referenced as literal-1, and the corresponding
single character of literal-5 referenced as literal-3. Correspondence between the
characters of literal-4 and the characters of literal-5 is by ordinal position within
the data item.

If identifier-4, identifier-6, or identifier-7 occupies the same storage area as
identifier-1, the result of the execution of this statement is undefined, even if they
are defined by the same data description entry.

Part 6. Procedure Division 303

external floating point item as if redefined as alphanumeric, with the
INSPECT statement referring to the
alphanumeric item

INSPECT statement

Data types for identifiers and literals

Table 40. Treatment of the content of data items

When referenced by any identifier except
identifier-2, the content of each... Is treated...

alphanumeric or alphabetic item as a character-string

alphanumeric-edited, numeric-edited, or
unsigned numeric (external decimal) item

as if redefined as alphanumeric, with the
INSPECT statement referring to the
alphanumeric item

signed numeric (external decimal) item as if moved to an unsigned external
decimal item of the same length and then
redefined as alphanumeric, with the
INSPECT statement referring to the
alphanumeric item.

If the sign is a separate character, the byte
containing the sign is not examined and,
therefore, not replaced.

 Data flow

Except when the BEFORE or AFTER phrase is specified, inspection begins at the
leftmost character position of the inspected item (identifier-1) and proceeds
character-by-character to the rightmost position.

The comparands of the following phrases are compared in the left-to-right order in
which they are specified in the INSPECT statement:
� TALLYING (literal-1 or identifier-3, ...)
� REPLACING (literal-3 or identifier-5, ...)

If any identifier is subscripted, reference modified, or is a function-identifier, the
subscript, reference-modifier, or function is evaluated only once as the first
operation in the execution of the INSPECT statement.

For examples of TALLYING and REPLACING, see the IBM COBOL Programming
Guide for your platform.

 Comparison cycle

The comparison cycle consists of the following actions:
1. The first comparand is compared with an equal number of leftmost contiguous

characters in the inspected item. The comparand matches the inspected
characters only if both are equal, character-for-character.

If the CHARACTERS phrase is specified, an implied 1-character comparand is
used. The implied character is always considered to match the inspected
character in the inspected item.

2. If no match occurs for the first comparand and there are more comparands, the
comparison is repeated for each successive comparand until either a match is
found or all comparands have been acted upon.

3. Depending on whether a match is found, these actions are taken:

304 COBOL Language Reference

INSPECT statement

� If a match is found, tallying or replacing takes place, as described in the
TALLYING and REPLACING phrase descriptions.

If there are more characters in the inspected item, the first character
following the rightmost matching character is now considered to be in the
leftmost character position. The process described in actions 1 and 2 is
then repeated.

� If no match is found and there are more characters in the inspected item,
the first character following the leftmost inspected character is now
considered to be in the leftmost character position. The process described
in actions 1 and 2 is then repeated.

4. Actions 1 through 3 are repeated until the rightmost character in the inspected
item either has been matched or has been considered as being in the leftmost
character position.

When the BEFORE or AFTER phrase is specified, the comparison cycle is modified,
as described in “BEFORE and AFTER phrases (all formats)” on page 302.

Example of the INSPECT statement

Figure 10 on page 306 is an example of INSPECT statement results.

Part 6. Procedure Division 305

INSPECT statement

Figure 10. Example of INSPECT statement execution results

306 COBOL Language Reference

INVOKE statement

 INVOKE statement

The INVOKE statement invokes a method defined in a class or a metaclass.
Methods can contain INVOKE statements, and a method can execute an INVOKE
statement that directly or indirectly invokes itself. Therefore, all methods are
implicitly recursive (unlike COBOL programs, which support recursion only if the
RECURSIVE attribute is specified in the PROGRAM-ID paragraph.)

The process for resolving the method name specified on the INVOKE statement to
a method implementation is as specified by the IBM SOM. The method resolution
is not case sensitive.

 Format
��──INVOKE─ ──┬ ┬─identifier-1─────────────── ──┬ ┬─literal-1──── ──────────────────────────────────────�
 ├ ┤─class-name-1─────────────── └ ┘─identifier-2─
 ├ ┤─SELF───────────────────────
 └ ┘ ──┬ ┬───────────────── ─SUPER─
 └ ┘─class-name-2 OF─

�─ ──┬ ┬── ─────────────────�
 │ │┌ ┐───
 │ ││ │┌ ┐────────────────────────────────────
 └ ┘ ─USING─ ───/ ┴──┬ ┬ ──┬ ┬─────────────────── ───/ ┴──┬ ┬ ──┬ ┬──────────── ─identifier-3─
 │ │└ ┘ ──┬ ┬──── ─REFERENCE─ │ │└ ┘─ADDRESS OF─
 │ │└ ┘─BY─ └ ┘ ─OMITTED──────────────────────
 │ │┌ ┐────────────────────────────────────
 ├ ┤ ──┬ ┬──── ─CONTENT─ ───/ ┴──┬ ┬ ──┬ ┬──────────── ─identifier-4─ ──────
 │ │└ ┘─BY─ │ │├ ┤ ─ADDRESS OF─
 │ ││ │└ ┘ ─LENGTH OF──
 │ │├ ┤ ─literal-2────────────────────
 │ │└ ┘ ─OMITTED──────────────────────
 │ │┌ ┐────────────────────────────────────
 └ ┘ ──┬ ┬──── ─VALUE─ ───/ ┴──┬ ┬ ──┬ ┬──────────── ─identifier-5─ ────────
 └ ┘─BY─ │ │├ ┤ ─ADDRESS OF─
 │ │└ ┘ ─LENGTH OF──
 └ ┘ ─literal-3────────────────────

�─ ──┬ ┬─────────────────────────── ──┬ ┬─── ─────────────────�
 └ ┘── ─RETURNING──identifier-6─ └ ┘── ──┬ ┬──── ─EXCEPTION──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬── ──┬ ┬──────────── ──────────────────────────��
 └ ┘── ─NOT─ ──┬ ┬──── ─EXCEPTION──imperative-statement-2─ └ ┘─END-INVOKE─
 └ ┘─ON─

identifier-1
Must be defined as USAGE OBJECT REFERENCE. The contents of identifier-1
specify the object on which a method is invoked.

The results of the INVOKE statement are undefined if:

� identifier-1 does not contain a valid reference to an object or
� identifier-1 contains NULL

class-name-1
If class-name-1 is specified, the method is invoked on the class object of
class-name-1.

You must specify class-name-1 in the REPOSITORY paragraph of the
Configuration Section of the class or program that contains the INVOKE
statement.

SELF
An implicit reference to the object upon which the currently executing method
was invoked. When SELF is specified, the INVOKE statement must appear
within the Procedure Division of a method.

Part 6. Procedure Division 307

INVOKE statement

SUPER
A reference to the object that was used in the invocation of the currently
executing method. The resolution of the method to be invoked will ignore any
methods declared in the class definition of the currently executing method and
methods defined in any class derived from that class, thus the method invoked
will be one that is inherited from an ancestor class. To invoke a method that is
inherited from a specific class, you can qualify SUPER with a class name
(class-name-2).

class-name-2
The class to which the inherited method belongs.

You must specify class-name-2 if the reference to SUPER is in a method
definition of a class that uses multiple inheritance. Specify class-name-2 in the
REPOSITORY paragraph of the Configuration Section of the class or program
that contains the INVOKE statement. Class-name-2 must be a direct or
indirect parent class.

literal-1
The name of the method to be invoked. The referenced object must support
the method identified by literal-1.

Literal-1 must be a nonnumeric literal.

identifier-2
A nonnumeric data item whose value is a method name. The referenced object
must support the method identified by identifier-2.

If identifier-2 is specified, identifier-1 must be defined as USAGE OBJECT
REFERENCE without any optional phrases.

Identifier-2 cannot be a windowed date field.

 USING phrase

The USING phrase specifies arguments that are passed to the target method. For
details on the USING phrase, see “The Procedure Division header” on page 204.

For conformance requirements for the USING phrase, see “Conformance
requirements for USING phrase” on page 310.

BY REFERENCE phrase

If the BY REFERENCE phrase is either specified or implied for a parameter, the
corresponding data item in the invoking method occupies the same storage area as
the data item in the invoked method.

identifier-3
Can be a data item of any level in the DATA DIVISION. Identifier-3 cannot be
a function-identifier.

If defined in the Linkage Section, you must have already provided
addressability for identifier-3 prior to execution of the INVOKE statement.
You can do this by coding either one of the following: SET ADDRESS OF
identifier-3 TO pointer or PROCEDURE/ENTRY USING.

ADDRESS OF special register
See “ADDRESS OF” on page 9.

308 COBOL Language Reference

INVOKE statement

OMITTED
Indicates that no argument is passed.

BY CONTENT phrase

If the BY CONTENT phrase is specified or implied for a parameter, the invoked
method cannot change the value of this parameter as referenced in the INVOKE
statement's USING phrase. Although, the invoked method can change the value of
the data item referenced by the corresponding data-name in the invoked method's
Procedure Division header. Changes to the parameter in the invoked method do
not affect the corresponding argument in the invoking program.

identifier-4
Can be a data item of any level in the Data Division. Identifier-4 cannot be a
function-identifier.

If defined in the Linkage Section, you must have already provided
addressability for identifier-4 prior to execution of the INVOKE statement.
You can do this by coding either one of the following: SET ADDRESS OF
identifier-4 TO pointer or PROCEDURE/ENTRY USING.

literal-2
Can be:

� A nonnumeric literal
� A figurative constant (except ALL literal or NULL/NULLS)
� A DBCS literal

ADDRESS OF special register
See “ADDRESS OF” on page 9.

LENGTH OF special register
See “LENGTH OF” on page 11.

OMITTED
Indicates that no argument is passed.

BY VALUE phrase

The BY VALUE phrase applies to all arguments that follow until overridden by
another BY REFERENCE or BY CONTENT phrase.

If the BY VALUE phrase is specified or implied for an argument, the value of the
argument is passed, not a reference to the sending data item. The invoked method
can modify the formal parameter corresponding to the BY VALUE argument, but
any changes do not affect the argument since the invoked method has access to a
temporary copy of the sending data item.

While BY VALUE arguments are primarily intended for communication with
non-COBOL programs (such as C), they can also be used for COBOL-to-COBOL
invocations. In this case, BY VALUE must be specified or implied for both the
argument in the INVOKE USING phrase and the corresponding formal parameter
in the Procedure Division USING phrase.

identifier-5
Must be an elementary data item in the DATA DIVISION. Identifier-5 must be
one of the following:

Part 6. Procedure Division 309

INVOKE statement

� Binary (USAGE BINARY, COMP, COMP-4, or COMP-5)
� Floating point (USAGE COMP-1 or COMP-2)
� Pointer (USAGE POINTER)
� Procedure-pointer (USAGE PROCEDURE-POINTER)
� Object reference (USAGE OBJECT REFERENCE)
� Single-byte alphanumeric (PIC X or PIC A)

The following can also be passed BY VALUE:

� Reference modified item with length one
� SHIFT-IN and SHIFT-OUT special registers
� LINAGE-COUNTER special register when it is usage binary

ADDRESS OF special register
An ADDRESS OF special register passed BY VALUE is treated as a pointer.
For information on the ADDRESS OF special register, see “ADDRESS OF” on
page 9.

LENGTH OF special register
A LENGTH OF special register passed BY VALUE is treated as a PIC 9(9)
binary. For information on the LENGTH OF special register, see “LENGTH
OF” on page 11.

literal-3
Must be one of the following:

� Numeric literal
� ZERO
� 1-character nonnumeric literal
� Symbolic character
� Single byte figurative constant

— SPACE
— QUOTE
— HIGH-VALUE
— LOW-VALUE

ZERO is treated as a numeric value; a fullword binary zero is passed.

If literal-3 is a fixed point numeric literal, it must have a precision of 9 or less
digits. In this case, a fullword binary representation of the literal value is
passed.

If literal-3 is a floating point numeric literal, an 8-byte internal floating point
(COMP-2) representation of the value is passed.

Literal-3 must not be a DBCS literal.

Conformance requirements for USING phrase

The arguments specified on the USING phrase and the formal parameters specified
on the method PROCEDURE-DIVISION USING must satisfy the following:
� An invoked COBOL method must have the same number of formal parameters

on its procedure division USING phrase as there are arguments on the
INVOKE USING phrase. The presence or absence of USING...BY VALUE must
be consistent on the INVOKE statement and the Procedure Division header of
the target method.

� If a formal parameter is a COBOL elementary data item not described with
USAGE IS OBJECT REFERENCE, then the corresponding argument must have
the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTIFIED, and

310 COBOL Language Reference

INVOKE statement

BLANK WHEN ZERO clauses. Note that periods and commas can be
interchanged if specifying the DECIMAL POINT IS COMMA clause, and
PICTURE clause currency symbols can differ.

� If a formal parameter is a COBOL elementary data item described with
USAGE IS OBJECT REFERENCE then:
— If the argument is passed BY REFERENCE, then the argument and the

parameter must be defined with identical USAGE clauses.
— If the argument is passed BY VALUE or BY CONTENT, and the parameter

specified on the method Procedure Division USING phrase is a universal
object reference, then the argument can be any object reference.

— If the argument is passed BY VALUE or BY CONTENT, and the parameter
specified on the method Procedure Division USING phrase is an object
reference typed to a specific class, then the argument must be an object
reference typed to the same or a derived class.

 RETURNING phrase

You can specify the RETURNING phrase for invoking methods written in COBOL,
C, or in other programming languages that use C linkage conventions.

identifier-6
The RETURNING data item. Identifier-6:

� Must be defined in the DATA DIVISION
� Must not be reference-modified
� Is not changed if an EXCEPTION occurs
� Contains the return value of the invoked method

If identifier-6 is specified and the target method is written in COBOL, then the
target method must have a RETURNING phrase on its Procedure Division
statement. When the target returns, its return value is assigned to identifier-6,
using the rules for the SET statement if identifier-6 is USAGE IS INDEX,
USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or USAGE IS
OBJECT REFERENCE; otherwise, the rules for the MOVE statement are used.

Note: The INVOKE... RETURNING data item is an output-only parameter. On
entry to the called method, the initial state of the PROCEDURE DIVISION
RETURNING data item has an undefined and unpredictable value. You must
initialize the PROCEDURE DIVISION RETURNING data item in the invoked
method before you reference its value. The value that is passed back to the
invoker is the final value of the PROCEDURE DIVISION RETURNING data item
when the invoked method returns.

The RETURN-CODE special register is not set by execution of INVOKE statements.

Conformance requirements for RETURNING phrase: The identifiers specified on
an INVOKE RETURNING phrase and the corresponding method Procedure
Division RETURNING phrase must satisfy the following:
� The presence or absence of the RETURNING phrase must be consistent on the

INVOKE statement and the Procedure Division header of the target method.
� If one of the identifiers is a COBOL elementary data item not described with

USAGE IS OBJECT REFERENCE, then the corresponding identifier must have
the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTIFIED, and
BLANK WHEN ZERO clauses. Note that periods and commas can be
interchanged if specifying the DECIMAL POINT IS COMMA clause, and
PICTURE clause currency symbols can differ.

Part 6. Procedure Division 311

INVOKE statement

� If the INVOKE RETURNING identifier is a universal object reference, then the
method Procedure Division RETURNING identifier must be an object reference
(either a universal object reference or an object reference typed to a specific
class).

� If the INVOKE RETURNING identifier is an object reference typed to a specific
class, then the method Procedure Division RETURNING identifier must be an
object reference typed to the same class or a derived class.

ON EXCEPTION phrase

An exception condition occurs when invoked methods are not supported by the
method identified by literal-1 or identifier-2. When an exception condition occurs,
one of the following two actions occur:
1. If the ON EXCEPTION phrase is specified, control is transferred to

imperative-statement-1.
2. If the ON EXCEPTION phrase is not specified, then a condition is raised at

run time.

Exceptions can occur if conformance requirements are not met. Conformance
requirements include:
� For the USING phrase, see “Conformance requirements for USING phrase” on

page 310
� For the RETURNING phrase, see “Conformance requirements for

RETURNING phrase” on page 311
� For the purpose of conformance checking, a fixed-length group data item is

considered to be equivalent to an elementary alphanumeric data item of the
same length.

A variable-length group conforms only to other variable-length groups that
have the same maximum length.

For an example, see “INVOKE parameter type conformance—example” on
page 313.

NOT ON EXCEPTION phrase

If an exception condition does not occur (that is, the invoked method is supported
by the specified object), control is transferred to the invoked method. After control
is returned from the invoked method, control is then transferred:
1. To imperative-statement-2, if the NOT ON EXCEPTION phrase is specified.
2. To the end of the INVOKE statement if the NOT ON EXCEPTION phrase is

not specified.

 END-INVOKE phrase

This explicit scope terminator serves to delimit the scope of the INVOKE
statement. END-INVOKE permits a conditional INVOKE statement to be nested in
another conditional statement.

Note: The RETURN-CODE special register is not set by execution of INVOKE
statements.

312 COBOL Language Reference

INVOKE statement

INVOKE parameter type conformance—example

WORKING-STORAGE SECTION.
?1 anA USAGE OBJECT REFERENCE A.
?1 aB USAGE OBJECT REFERENCE B.
?1 aC USAGE OBJECT REFERENCE C.

...
PROCEDURE DIVISION
INVOKE anX "METHOD-1" USING BY REFERENCE anA.
 BY VALUE aB.
 RETURNING aC.
CLASS-ID. X.

...
METHOD-ID. METHOD-1.

...
LINKAGE SECTION.
?1 aP USAGE OBJECT REFERENCE P.
?1 aQ USAGE OBJECT REFERENCE Q.
?1 anR USAGE OBJECT REFERENCE R.

...
PROCEDURE DIVISION USING BY REFERENCE aP
 BY VALUE aQ
 RETURNING anR.

In the above examples:
� Class P and class A must be the same class.
� Class Q must be the same class or a parent of B.
� Class R must be the same class or a subclass of C.

Part 6. Procedure Division 313

 The MERGE statement is not supported under OS/390 Unix.

As an IBM extension, any file-names in a MERGE statement can be specified in
the same SAME RECORD AREA clause.

MERGE statement

 MERGE statement

The MERGE statement combines two or more identically sequenced files (that is,
files that have already been sorted according to an identical set of
ascending/descending keys) on one or more keys and makes records available in
merged order to an output procedure or output file.

A MERGE statement can appear anywhere in the Procedure Division except in a
Declarative Section.

|
 Format
 ┌ ┐──
 │ │┌ ┐───────────────
��──MERGE──file-name-1─ ───/ ┴ ──┬ ┬──── ──┬ ┬─ASCENDING── ──┬ ┬───── ───/ ┴─data-name-1─ ──────────────────────�
 └ ┘─ON─ └ ┘─DESCENDING─ └ ┘─KEY─

 ┌ ┐───────────────
�─ ──┬ ┬── ─USING──file-name-2─ ───/ ┴─file-name-3─ ──────�
 └ ┘ ──┬ ┬─────────── ─SEQUENCE─ ──┬ ┬──── ─alphabet-name-1─
 └ ┘─COLLATING─ └ ┘─IS─

�─ ──┬ ┬ ─OUTPUT PROCEDURE─ ──┬ ┬──── ─procedure-name-1─ ──┬ ┬─────────────────────────────── ─────────────��
 │ │└ ┘─IS─ └ ┘ ──┬ ┬─THROUGH─ ─procedure-name-2─
 │ │└ ┘─THRU────
 │ │┌ ┐───────────────
 └ ┘ ─GIVING─ ───/ ┴─file-name-4─ ──

file-name-1
The name given in the SD entry that describes the records to be merged.

No file-name can be repeated in the MERGE statement.

No pair of file-names in a MERGE statement can be specified in the same
SAME AREA, SAME SORT AREA, or SAME SORT-MERGE AREA clause.

When the MERGE statement is executed, all records contained in file-name-2,
file-name-3,..., are accepted by the merge program and then merged according to
the key(s) specified.

ASCENDING/DESCENDING KEY phrase

This phrase specifies that records are to be processed in an ascending or
descending sequence (depending on the phrase specified), based on the specified
merge keys.

data-name-1
Specifies a KEY data item on which the merge will be based. Each such
data-name must identify a data item in a record associated with file-name-1.
The data-names following the word KEY are listed from left to right in the
MERGE statement in order of decreasing significance without regard to how
they are divided into KEY phrases. The left-most data-name is the major key,
the next data-name is the next most significant key, and so forth.

314 COBOL Language Reference

� KEY data items can be floating-point items.
� KEY data items cannot be variably-located.
� Under AIX and Windows, KEY data items cannot be

windowed date fields.

 Under OS/390 and VM, KEY data items can be windowed date
fields, under these conditions:
— The input files specified in the USING phrase can be sequential,

relative, or indexed, but must not have any RECORD KEY,
ALTERNATE RECORD KEY, or RELATIVE KEY in the same position
as a windowed date merge key. The file system does not support
windowed date fields as keys, so any ordering imposed by the file
system could conflict with the windowed date field support for the
merge operation. In fact, if the merge is to succeed, then input files
must have already been sorted into the same order as that specified by
the MERGE statement, including any windowed date ordering.

— The GIVING phrase must not specify an indexed file, because the
(binary) ordering assumed or imposed by the file system conflicts with
the windowed date ordering provided in the output of the merge.
Attempting to write the windowed date merge output to such an
indexed file will either fail or re-impose binary ordering, depending on
how the file is accessed (the ACCESS MODE in the file-control entry).

— If an alphanumeric windowed date field is specified as a KEY for a
MERGE statement, the collating sequence in effect for the merge
operation must be EBCDIC. Thus the COLLATING SEQUENCE
phrase of the MERGE statement or, if this phrase is not specified, then
any PROGRAM COLLATING SEQUENCE clause in the
OBJECT-COMPUTER paragraph, must not specify a collating sequence
other than EBCDIC or NATIVE.

If the MERGE statement meets these conditions, then the merge operation
takes advantage of SORT Year 2000 features, assuming that the execution
environment includes a sort product that supports century windowing.

A year-last windowed date field can be specified as a KEY for a MERGE
statement, and can thereby exploit the corresponding century windowing
capability of the sort product.

For more information on using windowed date fields as KEY data items,
see the IBM COBOL Programming Guide for your platform.

MERGE statement

The following rules apply:

� A specific key data item must be physically located in the same position
and have the same data format in each input file. However, it need not
have the same data-name.

� If file-name-1 has more than one record description, then the KEY data
items need be described in only one of the record descriptions.

� If file-name-1 contains variable-length records, all of the KEY data-items
must be contained within the first n character positions of the record,
where n equals the minimum records size specified for file-name-1.

� KEY data items must not contain an OCCURS clause or be subordinate to
an item that contains an OCCURS clause.

� KEY data items can be qualified.
� KEY data items cannot be group items that contain variable occurrence

data items.

Part 6. Procedure Division 315

� Under OS/390 and VM, if the KEY is a DBCS item, the
sequence of the KEY values are based on the binary collating sequence of
the hexadecimal values of the DBCS characters.

� Under AIX and Windows, if the KEY is a DBCS item, then
the sequence of the KEY values is based on a collation sequence according
to the COLLSEQ compiler option:
— If the COLLSEQ(NATIVE) compiler option is in effect, then the

collating sequence is determined by the locale. For information on the
locale, see Appendix F, “Locale considerations (workstation only)” on
page 515.

— Otherwise, the collating sequence is determined by the binary values
of the DBCS characters.

� If the KEY is an external floating-point item, the key is treated as
alphanumeric. The sequence in which the records are merged depends on
the collating sequence used.

� If the KEY is an internal floating-point item, the sequence of key values
will be in numeric order.

MERGE statement

The direction of the merge operation depends on the specification of the
ASCENDING or DESCENDING key words as follows:

� When ASCENDING is specified, the sequence is from the lowest key value
to the highest key value.

� When DESCENDING is specified, the sequence is from the highest key
value to the lowest.

� If the KEY data item is alphabetic, alphanumeric, alphanumeric-edited, or
numeric-edited, the sequence of key values depends on the collating
sequence used (see “COLLATING SEQUENCE phrase” below).

The key comparisons are performed according to the rules for comparison of
operands in a relation condition (see “Relation condition” on page 218).

COLLATING SEQUENCE phrase

This phrase specifies the collating sequence to be used in nonnumeric comparisons
for the KEY data items in this merge operation.

 Under AIX and Windows, the COLLATING SEQUENCE phrase is
only valid when an ASCII code page is in effect.

alphabet-name-1
Must be specified in the ALPHABET clause of the SPECIAL-NAMES
paragraph. Any one of the alphabet-name clause phrases can be specified,
with the following results:

STANDARD-1
 Under OS/390 and VM, the ASCII collating sequence is used for

all nonnumeric comparisons. (The ASCII collating sequence is in
Appendix B, “EBCDIC and ASCII collating sequences” on page 498.)

 Under AIX and Windows, the collating sequence is based on
the character's hex value order.

316 COBOL Language Reference

MERGE statement

STANDARD-2
 Under OS/390 and VM, the International Reference Version of

the ISO 7-bit code defined in International Standard 646, 7-bit Coded
Character Set for Information Processing Interchange is used for all
nonnumeric comparisons.

 Under AIX and Windows the collating sequence is based on
the character's hex value order.

NATIVE
 Under OS/390 and VM, the EBCDIC collating sequence is used

for all nonnumeric comparisons. (The EBCDIC collating sequence is in
Appendix B, “EBCDIC and ASCII collating sequences” on page 498.)

 Under AIX and Windows, the collating sequence indicated by
the locale is selected.

EBCDIC
The EBCDIC collating sequence is used for all nonnumeric comparisons.
(The EBCDIC collating sequence is in Appendix B, “EBCDIC and ASCII
collating sequences” on page 498.)

literal
The collating sequence established by the specification of literals in the
alphabet-name clause is used for all nonnumeric comparisons.

When the COLLATING SEQUENCE phrase is omitted, the PROGRAM
COLLATING SEQUENCE clause (if specified) in the OBJECT-COMPUTER
paragraph specifies the collating sequence to be used. When both the
COLLATING SEQUENCE phrase and the PROGRAM COLLATING SEQUENCE
clause are omitted,
� Under OS/390 and VM, the EBCDIC collating sequence is used.

(See Appendix B, “EBCDIC and ASCII collating sequences” on page 498.)

� Under AIX and Windows, the COLLSEQ compiler option
indicates the collating sequence used. If COLLSEQ(EBCDIC) is specified, the
EBCDIC collating sequence is used. If COLLSEQ(NATIVE) is specified, the
collating sequence as indicated by the locale is used. For more information on
locale, see Appendix F, “Locale considerations (workstation only)” on
page 515.

 USING phrase

file-name-2, file-name-3, ...
Specifies the input files.

During the MERGE operation, all the records on file-name-2, file-name-3, ... (that
is, the input files) are transferred to file-name-1. At the time the MERGE statement
is executed, these files must not be open. The input files are automatically opened,
read, and closed, and if DECLARATIVE procedures are specified for these files for
input operations, the files will be driven for errors if errors occur.

All input files must specify sequential or dynamic access mode and be described in
FD entries in the Data Division.

If file-name-1 contains variable-length records, the size of the records contained in
the input files (file-name-2, file-name-3, ...) must not be less than the smallest
record nor greater than the largest record described for file-name-1. If file-name-1

Part 6. Procedure Division 317

MERGE statement

contains fixed-length records, the size of the records contained in the input files
must not be greater than the largest record described for file-name-1. For more
information, see the IBM COBOL Programming Guide for your platform.

 GIVING phrase

file-name-4, ...
Specifies the output files.

When the GIVING phrase is specified, all the merged records in file-name-1 are
automatically transferred to the output files (file-name-4...).

All output files must specify sequential or dynamic access mode and be described
in FD entries in the DATA DIVISION.

If the output files (file-name-4,...) contain variable-length records, the size of the
records contained in file-name-1 must not be less than the smallest record nor
greater than the largest record described for the output files. If the output files
contain fixed-length records, the size of the records contained in file-name-1 must
not be greater than the largest record described for the output files. For more
information, see the IBM COBOL Programming Guide for your platform.

At the time the MERGE statement is executed, the output files (file-name-4,...) must
not be open. The output files are automatically opened, read, and closed, and if
DECLARATIVE procedures are specified for these files for output operations, the
files will be driven for errors if errors occur.

OUTPUT PROCEDURE phrase

This phrase specifies the name of a procedure that is to select or modify output
records from the merge operation.

procedure-name-1
Specifies the first (or only) section or paragraph in the OUTPUT PROCEDURE.

procedure-name-2
Identifies the last section or paragraph of the OUTPUT PROCEDURE.

The OUTPUT PROCEDURE can consist of any procedure needed to select, modify,
or copy the records that are made available one at time by the RETURN statement
in merged order from the file referenced by file-name-1. The range includes all
statements that are executed as the result of a transfer of control by CALL, EXIT,
GO TO, and PERFORM statements in the range of the output procedure. The
range also includes all statements in declarative procedures that are executed as a
result of the execution of statements in the range of the output procedure. The
range of the output procedure must not cause the execution of any MERGE,
RELEASE, or SORT statement.

If an output procedure is specified, control passes to it after the file referenced by
file-name-1 has been sequenced by the MERGE statement. The compiler inserts a
return mechanism at the end of the last statement in the output procedure and
when control passes the last statement in the output procedure, the return
mechanism provides the termination of the merge and then passes control to the
next executable statement after the MERGE statement. Before entering the output
procedure, the merge procedure reaches a point at which it can select the next
record in merged order when requested. The RETURN statements in the output
procedure are the requests for the next record.

318 COBOL Language Reference

MERGE special registers

SORT-CONTROL special register
You define the sort control file (through which you can specify additional
options to the sort/merge function) with the SORT-CONTROL special register.

If you use a sort control file to specify control statements, the values specified
in the sort control file take precedence over those in the special register.

For information, see “SORT-CONTROL” on page 14.

SORT-MESSAGE special register (OS/390 and VM only)
For information, see “SORT-MESSAGE” on page 15.

 The special register SORT-MESSAGE is equivalent to an option
control statement key word in the sort control file.

SORT-RETURN special register
For information, see “SORT-RETURN” on page 16.

MERGE statement

Note: The OUTPUT PROCEDURE phrase is similar to a basic PERFORM
statement. For example, if you name a procedure in an OUTPUT PROCEDURE,
that procedure is executed during the merging operation just as if it were named
in a PERFORM statement. As with the PERFORM statement, execution of the
procedure is terminated after the last statement completes execution. The last
statement in an OUTPUT PROCEDURE can be the EXIT statement (see “EXIT
statement” on page 288).

 Segmentation considerations

If the MERGE statement appears in a section that is not in an independent
segment, then any output procedure referenced by that MERGE statement must
appear:
1. Totally within non-independent segments, or
2. Wholly contained in a single independent segment.

If a MERGE statement appears in an independent segment, then any output
procedure referenced by that MERGE statement must be contained:
1. Totally within non-independent segments, or
2. Wholly within the same independent segment as that MERGE statement.

Part 6. Procedure Division 319

Do not specify a data item defined with USAGE IS POINTER, USAGE IS
PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE in a MOVE
statement.

A data item defined with USAGE IS POINTER, USAGE IS
PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE can be part of a
group that is referred to in a MOVE CORRESPONDING statement; however, no
movement of the data item will take place.

MOVE statement

 MOVE statement

The MOVE statement transfers data from one area of storage to one or more other
areas.

 Format 1
 ┌ ┐────────────────
��──MOVE─ ──┬ ┬─identifier-1─ ─TO─ ───/ ┴─identifier-2─ ──────────────────────────��
 └ ┘─literal-1────

 Format 2
��──MOVE─ ──┬ ┬─CORRESPONDING─ ─identifier-1──TO──identifier-2────────────────��
 └ ┘─CORR──────────

identifier-1, literal-1
Sending area

identifier-2
Receiving area(s)

When format 1 is specified, all identifiers can be either group or elementary items.
The data in the sending area is moved into the data item referenced by each
identifier-2 in the order in which it is specified. See “Elementary moves” on
page 321 and “Group moves” on page 324.

When format 2 is specified, both identifiers must be group items. CORR is an
abbreviation for, and is equivalent to, CORRESPONDING.

When CORRESPONDING is specified, selected items in identifier-1 are moved to
identifier-2, according to the rules for the CORRESPONDING phrase on on page
238. The results are the same as if each pair of CORRESPONDING identifiers
were referenced in a separate MOVE statement.

An index data item cannot be specified in a MOVE statement.

The evaluation of the length of the sending or receiving area can be affected by the
DEPENDING ON phrase of the OCCURS clause (see “OCCURS clause” on
page 154).

If the sending field (identifier-1) is reference-modified, subscripted, or is an
alphanumeric or alphabetic function-identifier, the reference-modifier, subscript, or
function is evaluated only once, immediately before data is moved to the first of
the receiving operands.

Any length evaluation, subscripting, or reference-modification associated with a
receiving field (identifier-2) is evaluated immediately before the data is moved into
that receiving field.

For example, the result of the statement:

320 COBOL Language Reference

Floating-point—includes internal floating-point items (defined as USAGE
COMP-1 or USAGE COMP-2), external floating-point items (defined as USAGE
DISPLAY), and floating-point literals.
DBCS—includes DBCS data items (defined explicitly or implicitly as USAGE
DISPLAY-1) and DBCS literals.

MOVE statement
MOVE A(B) TO B, C(B).

is equivalent to:

MOVE A(B) TO TEMP
MOVE TEMP TO B.
MOVE TEMP TO C(B).

where TEMP is defined as an intermediate result item. The subscript B has changed
in value between the time that the first move took place and the time that the final
move to C(B) is executed.

For further information on intermediate results, see the IBM COBOL Programming
Guide for your platform.

After execution of a MOVE statement, the sending field(s) contain the same data as
before execution.

Note: Overlapping operands in a MOVE statement can cause unpredictable
results.

 Elementary moves

An elementary move is one in which the receiving item is an elementary item, and
the sending item is an elementary item or a literal. Any necessary conversion of
data from one form of internal representation to another takes place during the
move, along with any specified editing in, or de-editing implied by, the receiving
item. Each elementary item belongs to one of the following categories:

Alphabetic—includes alphabetic data items and the figurative constant SPACE.
Alphanumeric—includes alphanumeric data items, nonnumeric literals, and all
figurative constants except SPACE and ZERO (when ZERO is moved to a
numeric or numeric-edited item).
Alphanumeric-edited—includes alphanumeric-edited data items.
Numeric—includes numeric data items, numeric literals, and the figurative
constant ZERO (when ZERO is moved to a numeric or numeric-edited item).
Numeric-edited—includes numeric-edited data items.

The following rules outline the execution of valid elementary moves. When the
receiving field is:

Alphabetic:
� Alignment and any necessary space filling occur as described under

“Alignment rules” on page 128.
� If the size of the sending item is greater than the size of the receiving item,

excess characters on the right are truncated after the receiving item is filled.

Alphanumeric or Alphanumeric-Edited:
� Alignment and any necessary space filling take place, as described under

“Alignment rules” on page 128.
� If the size of the sending item is greater than the size of the receiving item,

excess characters on the right are truncated after the receiving item is filled.

Part 6. Procedure Division 321

� When the sending item is floating-point, the data is first converted to either a
binary or internal decimal representation and is then moved.

Floating-point:
� The sending item is converted first to internal floating-point and then moved.
� When data is moved to or from an external floating-point item, the data is

converted first to or from its equivalent internal floating-point value.

DBCS:

� No conversion takes place.
� If the sending and receiving items are not the same size, the data item will be

either truncated or padded with DBCS spaces on the right.

 Under AIX and Windows, if the padding required is not in a
multiple consistent with double-byte characters, single-byte characters will be
used (for example, a group item moved to a DBCS data item).

MOVE statement

� If the sending item has an operational sign, the unsigned value is used. If the
operational sign occupies a separate character, that character is not moved, and
the size of the sending item is considered to be one less character than the
actual size.

Numeric or Numeric-edited:
� Except where zeros are replaced because of editing requirements, alignment by

decimal point and any necessary zero filling take place, as described under
“Alignment rules” on page 128.

� If the receiving item is signed, the sign of the sending item is placed in the
receiving item, with any necessary sign conversion. If the sending item is
unsigned, a positive operational sign is generated for the receiving item.

� If the receiving item is unsigned, the absolute value of the sending item is
moved, and no operational sign is generated for the receiving item.

� When the sending item is alphanumeric, the data is moved as if the sending
item were described as an unsigned integer.

� De-editing allows moving a numeric-edited data item into a numeric or
numeric-edited receiver. The compiler accomplishes this by first establishing
the unedited value of the numeric-edited item (this value can be signed), then
moving the unedited numeric value to the receiving numeric or
numeric-edited data item.

Notes:

1. If the receiving field is alphanumeric or numeric-edited, and the sending field
is a scaled integer (that is, has a P as the rightmost character in its PICTURE
character-string), the scaling positions are treated as trailing zeros when the
MOVE statement is executed.

2. If the receiving field is numeric and the sending field is alphanumeric literal or
ALL literal, then all characters of the literal must be numeric characters.

Table 41 on page 323 shows valid and invalid elementary moves for each
category. In the table:
� YES = Move is valid.
� NO = Move is invalid.

322 COBOL Language Reference

External
floating
point

Internal
floating
point DBCS1

No No No

 3 3 Yes8 Yes8 No

No No No

Yes Yes No

Yes Yes No

Yes Yes No

Floating point6 No No No Yes Yes Yes Yes No

DBCS7 No No No No No No No Yes

1 Includes DBCS data items.

3 Figurative constants and nonnumeric literals must consist only of numeric characters and will be treated as numeric integer
fields.

6 Includes floating-point literals, external floating-point data items (USAGE DISPLAY), and internal floating-point data items
(USAGE COMP-1 or USAGE COMP-2).

7 Includes DBCS data-items, DBCS literals, and SPACE.

Moves involving date fields

If the sending item is specified as a year-last date field, then all receiving fields
must also be year-last date fields with the same date format as the sending item.
If a year-last date field is specified as a receiving item, then the sending item must
be either a non-date or a year-last date field with the same date format as the
receiving item. In both cases, the move is then performed as if all items were
non-dates.

Table 42 describes the behavior of moves involving non-year-last date fields. If
the sending item is a date field, then the receiving item must be a compatible date
field. If the sending and receiving items are both date fields, then they must be
compatible; that is, they must have the same date format, except for the year part,
which can be windowed or expanded.

This table uses the following terms to describe the moves:

Normal
The move is performed with no date-sensitive behavior, as if the sending
and receiving items were both non-dates.

Expanded
The windowed date field sending item is treated as if it were first
converted to expanded form, as described under “Semantics of windowed
date fields” on page 149.

Invalid
The move is not allowed.

MOVE statement

Table 41. Valid and invalid elementary moves

Sending item category

Receiving item category

Alpha-
betic

Alpha-
numeric

Alpha-
numeric
edited Numeric Numeric-edited

Alphabetic and SPACE Yes Yes Yes No No

Alphanumeric2 Yes Yes Yes Yes Yes

Alphanumeric-edited Yes Yes Yes No No

Numeric integer and ZERO4 No Yes Yes Yes Yes

Numeric non-integer5 No No No Yes Yes

Numeric-edited No Yes Yes Yes Yes

Note:

2 Includes nonnumeric literals.

4 Includes integer numeric literals.
5 Includes non-integer numeric literals.

8 Figurative constants and nonnumeric literals must consist only of numeric characters and will be treated as numeric integer
fields. The ALL literal cannot be used as a sending item.

Part 6. Procedure Division 323

Table 42. Moves involving date fields

Sending item

Receiving item

Non-date Windowed date field Expanded date field

Non-date Normal Normal Normal

Windowed date field Invalid Normal Expanded

Expanded date field Invalid Normal1 Normal

1 A move from an expanded date field to a windowed date field is, in effect, a
“windowed” move, because it truncates the century component of the expanded date
field. If the move is alphanumeric, it treats the receiving windowed date field as if its
data description specified JUSTIFIED RIGHT. This is true even if the receiving
windowed date field is a group item, for which the JUSTIFIED clause cannot be
specified.

MOVE statement

 Group moves

A group move is one in which one or both of the sending and receiving fields are
group items. A group move is treated exactly as though it were an alphanumeric
elementary move, except that there is no conversion of data from one form of
internal representation to another. In a group move, the receiving area is filled
without consideration for the individual elementary items contained within either
the sending area or the receiving area, except as noted in the OCCURS clause.
(See “OCCURS clause” on page 154.) All group moves are valid.

324 COBOL Language Reference

Identifier-1 and identifier-2 cannot be
date fields.

Identifier-3, the GIVING phrase identifier, is the only identifier in the
MULTIPLY statement that can be a date field.

If identifier-3 names a date field, then see “Storing arithmetic results that
involve date fields” on page 213 for details on how the product is stored in
identifier-3.

MULTIPLY statement

 MULTIPLY statement

The MULTIPLY statement multiplies numeric items and sets the values of data
items equal to the results.

 Format 1
 ┌ ┐─────────────────────────────
��──MULTIPLY─ ──┬ ┬─identifier-1─ ─BY─ ───/ ┴ ─identifier-2─ ──┬ ┬───────── ──────────�
 └ ┘─literal-1──── └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬────────────── ──��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-MULTIPLY─
 └ ┘─ON─

In format 1, the value of identifier-1 or literal-1 is multiplied by the value of
identifier-2; the product is then placed in identifier-2. For each successive
occurrence of identifier-2, the multiplication takes place in the left-to-right order in
which identifier-2 is specified.

 Format 2
��──MULTIPLY─ ──┬ ┬─identifier-1─ ─BY─ ──┬ ┬─identifier-2─ ───────────────────────�
 └ ┘─literal-1──── └ ┘─literal-2────

 ┌ ┐─────────────────────────────
�─ ─GIVING─ ───/ ┴ ─identifier-3─ ──┬ ┬───────── ───────────────────────────────────�
 └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬────────────── ──��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-MULTIPLY─
 └ ┘─ON─

In format 2, the value of identifier-1 or literal-1 is multiplied by the value of
identifier-2 or literal-2. The product is then stored in the data item(s) referenced
by identifier-3.

For all formats:

identifier-1, identifier-2
Must name an elementary numeric item.

literal-1, literal-2
Must be a numeric literal.

For format-2:

identifier-3
Must name an elementary numeric or numeric-edited item.

Part 6. Procedure Division 325

Floating-point data items and literals can be used anywhere a numeric data item
or literal can be specified.

As an IBM extension, the composite of operands can contain more than 18 digits.

MULTIPLY statement

The composite of operands must not contain more than 18 digits.

|
| For more information, see “Arithmetic statement operands” on page 242 and the
| details on arithmetic intermediate results in the IBM COBOL Programming
| Guide for your platform.

 ROUNDED phrase

For formats 1 and 2, see “ROUNDED phrase” on page 239.

SIZE ERROR phrases

For formats 1 and 2, see “SIZE ERROR phrases” on page 240.

 END-MULTIPLY phrase

This explicit scope terminator serves to delimit the scope of the MULTIPLY
statement. END-MULTIPLY permits a conditional MULTIPLY statement to be
nested in another conditional statement. END-MULTIPLY can also be used with
an imperative MULTIPLY statement.

For more information, see “Delimited scope statements” on page 237.

326 COBOL Language Reference

Format 3—line-sequential files
 ┌ ┐───────────────────────────────
 │ │┌ ┐───────────────
��──OPEN─ ───/ ┴──┬ ┬ ─INPUT─ ───/ ┴ ─file-name-1─ ─ ─────────────────────────────────��
 │ │┌ ┐───────────────
 ├ ┤ ─OUTPUT─ ───/ ┴ ─file-name-2─
 │ │┌ ┐───────────────
 └ ┘ ─EXTEND─ ───/ ┴─file-name-4─

OPEN statement

 OPEN statement

The OPEN statement initiates the processing of files. It also checks and/or writes
labels.

Format 1—sequential files
 ┌ ┐───
 │ │┌ ┐──
��──OPEN─ ───/ ┴──┬ ┬ ─INPUT─ ───/ ┴ ─file-name-1─ ──┬ ┬─────────────────────── ───────��
 │ │├ ┤─REVERSED───(1) ───────────
 │ │└ ┘ ──┬ ┬────── ─NO REWIND───(1)

 │ │└ ┘─WITH─
 │ │┌ ┐──
 ├ ┤ ─OUTPUT─ ───/ ┴ ─file-name-2─ ──┬ ┬───────────────────── ─
 │ │└ ┘ ──┬ ┬────── ─NO REWIND─
 │ │└ ┘─WITH─
 │ │┌ ┐───────────────
 ├ ┤ ─I-O─ ───/ ┴─file-name-3─ ─────────────────────────────
 │ │┌ ┐───────────────
 └ ┘ ─EXTEND─ ───/ ┴─file-name-4─ ──────────────────────────

Note:
1 Under OS/390, the REVERSED and WITH NO REWIND phrases are not

valid for VSAM files. Under AIX and Windows, the REVERSED and
WITH NO REWIND phrases are syntax checked, but have no effect on the
execution of the program.

Format 2—indexed and relative files
 ┌ ┐───────────────────────────────
 │ │┌ ┐───────────────
��──OPEN─ ───/ ┴──┬ ┬ ─INPUT─ ───/ ┴─file-name-1─ ─ ─────────────────────────────────��
 │ │┌ ┐───────────────
 ├ ┤ ─OUTPUT─ ───/ ┴─file-name-2─
 │ │┌ ┐───────────────
 ├ ┤ ─I-O─ ───/ ┴─file-name-3─ ───
 │ │┌ ┐───────────────
 └ ┘ ─EXTEND─ ───/ ┴─file-name-4─

At least one of the phrases, INPUT, OUTPUT, I-O, or EXTEND, must be specified
with the OPEN key word. The INPUT, OUTPUT, I-O, and EXTEND phrases can
appear in any order.

INPUT
Permits opening the file for input operations.

OUTPUT
Permits opening the file for output operations. This phrase can be specified
when the file is being created.

Note: Do not specify OUTPUT for files that:

Part 6. Procedure Division 327

The I-O phrase is not valid for line-sequential files.

As an IBM extension, the EXTEND phrase is
allowed for files that specify the LINAGE clause.

OPEN statement

� Contain records. The file will be replaced by new data. If the OUTPUT
phrase is specified for a file that already contains records, the data set
must be defined as reusable and cannot have an alternate index. The
records in the file will be replaced by the new data and any ALTERNATE
RECORD KEY clause in the SELECT statement will be ignored.

� Under OS/390, are defined with a DD dummy card. Unpredictable results
can occur.

I-O
Permits opening the file for both input and output operations. The I-O phrase
can be specified only for files assigned to direct access devices.

|

EXTEND
Permits opening the file for output operations.

The EXTEND phrase is only allowed for sequential access files if the new data
is written in ascending sequence.

Under OS/390, for QSAM files, do not specify the EXTEND phrase for a
multiple file reel.

If you want to append to a file, but are unsure if the file exists, use the
SELECT OPTIONAL clause before OPENing the file in EXTEND mode. The
file will be created or appended to, depending on whether the file exists.

file-name-1, file-name-2, file-name-3, file-name-4
Designates a file upon which the OPEN statement is to operate. If more than
one file is specified, the files need not have the same organization or access.
Each file-name must be defined in an FD entry in the Data Division, and must
not name a sort or merge file. The FD entry must be equivalent to the
information supplied when the file was defined.

REVERSED
 Under OS/390 and VM, the REVERSED phrase is only valid for

sequential single reel files. It is not valid for VSAM files.

If the concept of reels has no meaning for the storage medium (for example, a
direct access device), the REVERSED and NO REWIND phrases do not apply.

 Under AIX and Windows, the REVERSED phrase is treated as a
comment.

NO REWIND
 Under OS/390 and VM, the NO REWIND phrase is only valid for

sequential single reel files. It is not valid for VSAM files.

 Under AIX and Windows, the NO REWIND phrase is treated as a
comment.

 General rules

� If a file opened with the INPUT phrase is an optional file which is not present,
the OPEN statement sets the file position indicator to indicate that an optional
input file is not present.

� Execution of an OPEN INPUT or OPEN I-O statement sets the file position
indicator:

328 COBOL Language Reference

 If the PASSWORD clause is specified in the FILE-CONTROL entry, the
password data item must contain the valid password before the OPEN statement is
executed. If the valid password is not present, the OPEN statement execution is
unsuccessful.

OPEN statement

— For indexed files, to the characters with the lowest ordinal position in the
collating sequence associated with the file.

— For sequential and relative files, to 1.
� When the EXTEND phrase is specified, the OPEN statement positions the file

immediately after the last record written in the file. (The record with the
highest prime record key value (for indexed files) or relative key value (for
relative files) is considered the last record.) Subsequent WRITE statements add
records as if the file were opened OUTPUT. The EXTEND option can be
specified when a file is being created; it can also be specified for a file that
contains records, or that has contained records that have been deleted.

� When the EXTEND phrase is not specified, OPEN statement
positions the file at its beginning.

� For OS/390 VSAM files, if no records exist in the file, the file
position indicator is set so that the first format 1 READ statement executed
results in an AT END condition.

� When NO REWIND is specified, the OPEN statement execution does not
reposition the file; prior to OPEN statement execution, the file must be
positioned at its beginning. When the NO REWIND phrase is specified (or
when both the NO REWIND and REVERSE phrases are omitted), file
positioning is specified with the LABEL parameter of the DD statement under
OS/390 and with the "label processing" operand under CMS.

� When REVERSED is specified, OPEN statement execution positions the QSAM
file at its end. Subsequent READ statements make the data records available
in reversed order, starting with the last record.

When OPEN REVERSED is specified, the record format must be fixed.
� When the REVERSED, NO REWIND, or EXTEND phrases are not specified,

OPEN statement execution positions the file at its beginning.

 Label records

 Under AIX and Windows, label processing is not supported. A
warning message is issued if any of the following language elements are
encountered:
� LABEL RECORDS IS data-name
� USE...AFTER...LABEL PROCEDURE
� GO TO MORE-LABELS

If label records are specified for the file when the OPEN statement is executed, the
labels are processed according to the standard label conventions, as follows:

INPUT files The beginning labels are checked.

OUTPUT files The beginning labels are written.

I-O files The labels are checked; new labels are then written.

EXTEND files The following procedures are executed:

� Beginning file labels are processed only if this is a
single-volume file.

Part 6. Procedure Division 329

� Beginning volume labels of the last existing volume are
processed as though the file was being opened with the
INPUT phrase.

� Existing ending file labels are processed as though the file was
being opened with the INPUT phrase; they are then deleted.

� Processing continues as if the file were opened as an OUTPUT
file.

When label records are specified but not present, or are present but not specified,
execution of the OPEN statement is unpredictable.

OPEN statement notes

1. The successful execution of an OPEN statement determines the availability of
the file and results in that file being in open mode. A file is available if it is
physically present and is recognized by the input-output control system.
Table 43 shows the results of opening available and unavailable files. For
more information regarding file availability, see the IBM COBOL Programming
Guide for your platform.

2. The successful execution of the OPEN statement makes the associated record
area available to the program; it does not obtain or release the first data
record.

3. An OPEN statement must be successfully executed prior to the execution of
any of the permissible input-output statements, except a SORT or MERGE
statement with the USING or GIVING phrase. Table 44 shows the permissible
input-output statements for sequential files. An 'X' indicates that the
specified statement can be used with the open mode given at the top of the
column.

Table 43. Availability of a file

OPENed as File is available File is unavailable

INPUT Normal open Open is unsuccessful

INPUT
(optional file)

Normal open Normal open; the first read causes the at end
condition or the invalid key condition

I-O Normal open Open is unsuccessful

I-O (optional
file)

Normal open Open causes the file to be created

OUTPUT Normal open;
the file contains
no records

Open causes the file to be created

EXTEND Normal open Open is unsuccessful

EXTEND
(optional file)

Normal open Open causes the file to be created

Table 44. Permissible statements for sequential files

Statement
Open mode

Input Output I-O Extend

READ X X

WRITE X X

REWRITE X

330 COBOL Language Reference

Table 46 shows the permissible input-output statements for line-sequential
files. An 'X' indicates that the specified statement can be used with the open
mode given at the top of the column.

 and
line-sequential

Table 46. Permissible statements for line-sequential files

Statement
Open mode

Input Output I-O Extend

READ X

WRITE X X

REWRITE

Table 45 on page 331 shows the permissible statements for indexed and
relative files. An 'X' indicates that the specified statement, used in the access
mode given for that row, can be used with the OPEN mode given at the top of
the column.

4. A file can be opened for INPUT, OUTPUT, I-O, or EXTEND (sequential
 files only) in the same program. After the first OPEN statement

execution for a given file, each subsequent OPEN statement execution must be
preceded by a successful CLOSE file statement execution without the REEL or
UNIT phrase (for QSAM files only), or the LOCK phrase.

5. If the FILE STATUS clause is specified in the FILE-CONTROL entry, the
associated status key is updated when the OPEN statement is executed.

6. If an OPEN statement is issued for a file already in the open status, the
EXCEPTION/ERROR procedure (if specified) for this file is executed.

Table 45. Permissible statements for indexed and relative files

File access mode Statement
Open mode

Input Output I-O Extend

Sequential READ X X

WRITE X X

REWRITE X

START X X

DELETE X

Random READ X X

WRITE X X

REWRITE X

START

DELETE X

Dynamic READ X X

WRITE X X

REWRITE X

START X X

DELETE X

|

Part 6. Procedure Division 331

Imperative-statement-1 is optional as an IBM extension.

PERFORM statement

 PERFORM statement

The PERFORM statement transfers control explicitly to one or more procedures
and implicitly returns control to the next executable statement after execution of
the specified procedure(s) is completed.

The PERFORM statement can be:

An out-of-line PERFORM statement
Procedure-name-1 is specified.

An in-line PERFORM statement
Procedure-name-1 is omitted.

An in-line PERFORM must be delimited by the END-PERFORM phrase.

The in-line and out-of-line formats cannot be combined. For example, if
procedure-name-1 is specified, the imperative-statement and the
END-PERFORM phrase must not be specified.

The PERFORM statement formats are:
� Basic PERFORM
� TIMES phrase PERFORM
� UNTIL phrase PERFORM
� VARYING phrase PERFORM

Basic PERFORM statement

The procedure(s) referenced in the basic PERFORM statement are executed once,
and control then passes to the next executable statement following the PERFORM
statement.

Note: A PERFORM statement must not cause itself to be executed. Such a
recursive PERFORM statement can cause unpredictable results.

 Format 1
��──PERFORM─ ──┬ ┬ ─procedure-name-1─ ──┬ ┬─────────────────────────────── ──────��
 │ │└ ┘ ──┬ ┬─THROUGH─ ─procedure-name-2─
 │ │└ ┘─THRU────
 └ ┘ ─imperative-statement-1───(1) ─END-PERFORM───────────────

Note:
1

procedure-name-1, procedure-name-2
Must name a section or paragraph in the Procedure Division.

When both procedure-name-1 and procedure-name-2 are specified, if either is a
procedure-name in a declarative procedure, both must be procedure-names in
the same declarative procedure.

If procedure-name-1 is specified, imperative-statement-1 and the
END-PERFORM phrase must not be specified.

If procedure-name-1 is omitted, imperative-statement and the END-PERFORM
phrase must be specified.

332 COBOL Language Reference

As an IBM extension, two or more active
PERFORM statements can have a common exit.

PERFORM statement

imperative-statement
The statements to be executed for an in-line PERFORM.

An in-line PERFORM statement functions according to the same general rules as
an otherwise identical out-of-line PERFORM statement, except that statements
contained within the in-line PERFORM are executed in place of the statements
contained within the range of procedure-name-1 (through procedure-name-2, if
specified). Unless specifically qualified by the word in-line or out-of-line, all the
rules that apply to the out-of-line PERFORM statement also apply to the in-line
PERFORM.

Whenever an out-of-line PERFORM statement is executed, control is transferred to
the first statement of the procedure named procedure-name-1. Control is always
returned to the statement following the PERFORM statement. The point from
which this control is returned is determined as follows:
� If procedure-name-1 is a paragraph name and procedure-name-2 is not

specified, the return is made after the execution of the last statement of the
procedure-name-1 paragraph.

� If procedure-name-1 is a section name and procedure-name-2 is not specified,
the return is made after the execution of the last statement of the last
paragraph in the procedure-name-1 section.

� If procedure-name-2 is specified and it is a paragraph name, the return is
made after the execution of the last statement of the procedure-name-2
paragraph.

� If procedure-name-2 is specified and it is a section name, the return is made
after the execution of the last statement of the last paragraph in the
procedure-name-2 section.

The only necessary relationship between procedure-name-1 and procedure-name-2
is that a consecutive sequence of operations is executed, beginning at the
procedure named by procedure-name-1 and ending with the execution of the
procedure named by procedure-name-2.

PERFORM statements can be specified within the performed procedure. If there
are two or more logical paths to the return point, then procedure-name-2 can name
a paragraph that consists only of an EXIT statement; all the paths to the return
point must then lead to this paragraph.

When the performed procedures include another PERFORM statement, the
sequence of procedures associated with the embedded PERFORM statement must
be totally included in or totally excluded from the performed procedures of the
first PERFORM statement. That is, an active PERFORM statement whose
execution point begins within the range of performed procedures of another active
PERFORM statement must not allow control to pass through the exit point of the
other active PERFORM statement.

Figure 11 illustrates valid sequences of execution for PERFORM statements.

Part 6. Procedure Division 333

Imperative-statement-1 is optional as an IBM extension.

PERFORM statement

Figure 11. Valid PERFORM statement execution sequences

When control passes to the sequence of procedures by means other than a
PERFORM statement, control passes through the exit point to the next executable
statement, as if no PERFORM statement referred to these procedures.

 END-PERFORM

Delimits the scope of the in-line PERFORM statement. Execution of an in-line
PERFORM is completed after the last statement contained within it has been
executed.

PERFORM with TIMES phrase

The procedure(s) referred to in the TIMES phrase PERFORM statement are
executed the number of times specified by the value in identifier-1 or integer-1.
Control then passes to the next executable statement following the PERFORM
statement.

 Format 2
��──PERFORM─ ──┬ ┬ ─procedure-name-1─ ──┬ ┬────────────── ──┬ ┬─identifier-1─ ─TIMES──── ──────────────────��
 │ │└ ┘─┤ phrase 1 ├─ └ ┘─integer-1────
 └ ┘──┬ ┬─identifier-1─ ─TIMES──imperative-statement-1───(1) ─END-PERFORM─
 └ ┘─integer-1────

phrase 1
├─ ──┬ ┬─THROUGH─ ─procedure-name-2───┤
 └ ┘─THRU────

Note:
1

Note: If procedure-name-1 is specified, imperative-statement and the
END-PERFORM phrase must not be specified.

334 COBOL Language Reference

Identifier-1 cannot be a windowed date field.

Can be a positive signed integer.

Imperative-statement-1 is optional as an IBM extension.

PERFORM statement

identifier-1
Must name an integer item.

If identifier-1 is zero or a negative number at the time the PERFORM
statement is initiated, control passes to the statement following the PERFORM
statement.

After the PERFORM statement has been initiated, any change to identifier-1
has no effect in varying the number of times the procedures are initiated.

integer-1

PERFORM with UNTIL phrase

In the UNTIL phrase format, the procedure(s) referred to are performed until the
condition specified by the UNTIL phrase is true. Control is then passed to the
next executable statement following the PERFORM statement.

 Format 3
��──PERFORM─ ──┬ ┬─procedure-name-1─ ──┬ ┬─────────────────────────────── ─┤ phrase 1 ├─ ───────────────��
 │ │└ ┘ ──┬ ┬─THROUGH─ ─procedure-name-2─
 │ │└ ┘─THRU────
 └ ┘─┤ phrase 1 ├──imperative-statement-1───(1) ─END-PERFORM───────────────

phrase 1
├─ ──┬ ┬──────────────────────────── ─UNTIL──condition-1──┤
 └ ┘ ──┬ ┬────── ─TEST─ ──┬ ┬─BEFORE─
 └ ┘─WITH─ └ ┘─AFTER──

Note:
1

Note: If procedure-name-1 is specified, imperative-statement-1 and the
END-PERFORM phrase must not be specified.

condition-1
Can be any condition described under “Conditional expressions” on page 214.
If the condition is true at the time the PERFORM statement is initiated, the
specified procedure(s) are not executed.

Any subscripting associated with the operands specified in condition-1 is
evaluated each time the condition is tested.

If the TEST BEFORE phrase is specified or assumed, the condition is tested before
any statements are executed (corresponds to DO WHILE).

If the TEST AFTER phrase is specified, the statements to be performed are
executed at least once before the condition is tested (corresponds to DO UNTIL).

In either case, if the condition is true, control is transferred to the next executable
statement following the end of the PERFORM statement. If neither the TEST
BEFORE nor the TEST AFTER phrase is specified, the TEST BEFORE phrase is
assumed.

PERFORM with VARYING phrase

The VARYING phrase increases or decreases the value of one or more identifiers
or index-names, according to certain rules. (See “Varying phrase rules” on
page 341.)

Part 6. Procedure Division 335

Imperative-statement-1 is optional as an IBM extension.

These identifiers cannot be windowed
date fields.

Floating-point data items and literals can be used anywhere a numeric data item
or literal can be specified.

PERFORM statement

The format 4 VARYING phrase PERFORM statement can serially search an entire
7-dimensional table.

 Format 4
��──PERFORM─ ──┬ ┬─procedure-name-1─ ──┬ ┬─────────────────────────────── ─┤ phrase 1 ├──┤ phrase 2 ├─ ─��
 │ │└ ┘ ──┬ ┬─THROUGH─ ─procedure-name-2─
 │ │└ ┘─THRU────
 └ ┘─┤ phrase 1 ├──imperative-statement-1───(1) ─END-PERFORM─────────────────────────────

phrase 1
├─ ──┬ ┬──────────────────────────── ─VARYING─ ──┬ ┬─identifier-2─ ─FROM─ ──┬ ┬─identifier-3─ ─BY───────────�
 └ ┘──┬ ┬────── ─TEST─ ──┬ ┬─BEFORE─ └ ┘─index-name-1─ ├ ┤─index-name-2─
 └ ┘─WITH─ └ ┘─AFTER── └ ┘─literal-1────

�─ ──┬ ┬─identifier-4─ ─UNTIL──condition-1──┤
 └ ┘─literal-2────

phrase 2
├─ ──┬ ┬─── ────┤
 │ │┌ ┐───
 └ ┘ ───/ ┴─AFTER─ ──┬ ┬─identifier-5─ ─FROM─ ──┬ ┬─identifier-6─ ─BY─ ──┬ ┬─identifier-7─ ─┤ phrase 3 ├─
 └ ┘─index-name-3─ ├ ┤─index-name-4─ └ ┘─literal-4────
 └ ┘─literal-3────

phrase 3
├──UNTIL──condition-2──┤

Note:
1

Note: If procedure-name-1 is specified, imperative-statement and the
END-PERFORM phrase must not be specified. If procedure-name-1 is omitted, the
AFTER phrase must not be specified.

identifier-2 thru 7
Must name a numeric elementary item.

literal-1 thru 4
Must represent a numeric literal.

condition-1, condition-2
Can be any condition described under “Conditional expressions” on page 214.
If the condition is true at the time the PERFORM statement is initiated, the
specified procedure(s) are not executed.

After the condition(s) specified in the UNTIL phrase are satisfied, control is
passed to the next executable statement following the PERFORM statement.

If any of the operands specified in condition-1 or condition-2 is subscripted,
reference modified, or is a function-identifier, the subscript, reference-modifier,
or function is evaluated each time the condition is tested.

When TEST BEFORE is indicated, all specified conditions are tested before the first
execution, and the statements to be performed are executed, if at all, only when all
specified tests fail. When TEST AFTER is indicated, the statements to be
performed are executed at least once, before any condition is tested.

If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the TEST
BEFORE phrase is assumed.

336 COBOL Language Reference

PERFORM statement

 Varying identifiers

The way in which operands are increased or decreased depends on the number of
variables specified. In the following discussion, every reference to identifier-n
refers equally to index-name-n (except when identifier-n is the object of the BY
phrase).

If identifier-2 or identifier-5 is subscripted, the subscripts are evaluated each time
the content of the data item referenced by the identifier is set or augmented. If
identifier-3, identifier-4, identifier-6, or identifier-7 is subscripted, the subscripts are
evaluated each time the content of the data item referenced by the identifier is
used in a setting or an augmenting operation.

Figure 12 illustrates the logic of the PERFORM statement when an identifier is
varied with TEST BEFORE.

Figure 12. Varying one identifier—with TEST BEFORE

Figure 13 illustrates the logic of the PERFORM statement when an identifier is
varied with TEST AFTER.

Figure 13. Varying one identifier—with TEST AFTER

Part 6. Procedure Division 337

PERFORM statement

Varying two identifiers

PERFORM PROCEDURE-NAME-1 THROUGH PROCEDURE-NAME-2
VARYING IDENTIFIER-2 FROM IDENTIFIER-3

BY IDENTIFIER-4 UNTIL CONDITION-1
AFTER IDENTIFIER-5 FROM IDENTIFIER-6

BY IDENTIFIER-7 UNTIL CONDITION-2

1. identifier-2 and identifier-5 are set to their initial values, identifier-3 and
identifier-6, respectively.

2. condition-1 is evaluated as follows:
a. If it is false, steps 3 through 7 are executed.
b. If it is true, control passes directly to the statement following the

PERFORM statement.
3. condition-2 is evaluated as follows:

a. If it is false, steps 4 through 6 are executed.
b. If it is true, identifier-2 is augmented by identifier-4, identifier-5 is set to

the current value of identifier-6, and step 2 is repeated.
4. procedure-1 and procedure-2 are executed once (if specified).
5. identifier-5 is augmented by identifier-7.
6. Steps 3 through 5 are repeated until condition-2 is true.
7. Steps 2 through 6 are repeated until condition-1 is true.

At the end of PERFORM statement execution:
� identifier-5

Contains the current value of identifier-6.
� identifier-2

Has a value that exceeds the last-used setting by the increment/decrement
value (unless condition-1 was true at the beginning of PERFORM statement
execution, in which case, identifier-2 contains the current value of identifier-3).

Figure 14 on page 339 illustrates the logic of the PERFORM statement when two
identifiers are varied with TEST BEFORE.

338 COBOL Language Reference

PERFORM statement

Figure 14. Varying two identifiers—with TEST BEFORE

Figure 15 on page 340 illustrates the logic of the PERFORM statement when two
identifiers are varied with TEST AFTER.

Part 6. Procedure Division 339

PERFORM statement

Figure 15. Varying two identifiers—with TEST AFTER

Varying three identifiers

PERFORM PROCEDURE-NAME-1 THROUGH PROCEDURE-NAME-2
VARYING IDENTIFIER-2 FROM IDENTIFIER-3

BY IDENTIFIER-4 UNTIL CONDITION-1
AFTER IDENTIFIER-5 FROM IDENTIFIER-6
BY IDENTIFIER-7 UNTIL CONDITION-2

AFTER IDENTIFIER-8 FROM IDENTIFIER-9
BY IDENTIFIER-1? UNTIL CONDITION-3

The actions are the same as those for two identifiers, except that identifier-8 goes
through the complete cycle each time identifier-5 is augmented by identifier-7,
which, in turn, goes through a complete cycle each time identifier-2 is varied.

At the end of PERFORM statement execution:
� identifier-5 and identifier-8

Contain the current values of identifier-6 and identifier-9, respectively.
� identifier-2

Has a value exceeding its last-used setting by one increment/decrement value
(unless condition-1 was true at the beginning of PERFORM statement
execution, in which case, identifier-2 contains the current value of identifier-3).

340 COBOL Language Reference

PERFORM statement

Varying more than three identifiers

You can produce analogous PERFORM statement actions to the example above
with the addition of up to four AFTER phrases.

Varying phrase rules

No matter how many variables are specified, the following rules apply:
1. In the VARYING/AFTER phrases, when an index-name is specified:

a. The index-name is initialized and incremented or decremented according
to the rules under “INDEX phrase” on page 190. (See also “SET
statement” on page 362.)

b. In the associated FROM phrase, an identifier must be described as an
integer and have a positive value; a literal must be a positive integer.

c. In the associated BY phrase, an identifier must be described as an integer;
a literal must be a nonzero integer.

2. In the FROM phrase, when an index-name is specified:
a. In the associated VARYING/AFTER phrase, an identifier must be

described as an integer. It is initialized, as described in the SET statement.
b. In the associated BY phrase, an identifier must be described as an integer

and have a nonzero value; a literal must be a nonzero integer.
3. In the BY phrase, identifiers and literals must have nonzero values.
4. Changing the values of identifiers and/or index-names in the VARYING,

FROM, and BY phrases during execution changes the number of times the
procedures are executed.

Part 6. Procedure Division 341

PREVIOUS

PREVIOUS is only supported under AIX and Windows.

 Under AIX and Windows, you must specify either the NEXT or
PREVIOUS phrase for files in dynamic access mode, which are retrieved
sequentially.

PREVIOUS RECORD (workstation only)
 Reads the previous record in the logical sequence of records.

PREVIOUS applies to indexed and relative files with DYNAMIC access mode.

You must specify either the NEXT or PREVIOUS phrase for files in dynamic
access mode, which are retrieved sequentially.

READ statement

 READ statement

For sequential access, the READ statement makes the next logical record from a
file available to the object program. For random access, the READ statement
makes a specified record from a direct-access file available to the object program.

When the READ statement is executed, the associated file must be open in INPUT
or I-O mode.

Format 1—sequential retrieval
��──READ──file-name-1─ ──┬ ┬──────────── ──┬ ┬──────── ──┬ ┬──────────────────── ──�
 ├ ┤─NEXT─────── └ ┘─RECORD─ └ ┘ ─INTO──identifier-1─
 └ ┘─ ───(1)

�─ ──┬ ┬───────────────────────────────────── ─────────────────────────────────�
 └ ┘ ──┬ ┬──── ─END──imperative-statement-1─
 └ ┘─AT─

�─ ──┬ ┬── ──┬ ┬────────── ─────────────��
 └ ┘ ─NOT─ ──┬ ┬──── ─END──imperative-statement-2─ └ ┘─END-READ─
 └ ┘─AT─

Note:
1

Format 2—random retrieval
��──READ──file-name-1─ ──┬ ┬──────── ──┬ ┬──────────────────── ──────────────────�
 └ ┘─RECORD─ └ ┘ ─INTO──identifier-1─

�─ ──┬ ┬────────────────────────── ──�
 └ ┘ ─KEY─ ──┬ ┬──── ─data-name-1─
 └ ┘─IS─

�─ ──┬ ┬── ────────────────────────────�
 └ ┘ ─INVALID─ ──┬ ┬───── ─imperative-statement-3─
 └ ┘─KEY─

�─ ──┬ ┬── ──┬ ┬────────── ─────────��
 └ ┘ ─NOT INVALID─ ──┬ ┬───── ─imperative-statement-4─ └ ┘─END-READ─
 └ ┘─KEY─

file-name-1
Must be defined in a Data Division FD entry.

NEXT RECORD
Reads the next record in the logical sequence of records. NEXT is optional
when ACCESS MODE IS SEQUENTIAL; it has no effect on READ statement
execution.

 Under OS/390 and VM, you must specify the NEXT RECORD
phrase for files in dynamic access mode, which are retrieved sequentially.

342 COBOL Language Reference

If you specify READ...PREVIOUS and no previous logical record exists, the AT
END condition occurs and the READ statement is unsuccessful.

When you specify READ...PREVIOUS, the setting of the file position indicator
is used to determine which record to make available according to the following
rules:

� If the file position indicator indicates that no valid previous record has
been established, the READ is unsuccessful.

� If the file position indicator is positioned by the execution of an OPEN
statement, the AT END condition occurs.

� If the file position indicator is established by a previous START statement,
the first existing record in the file whose relative record number (if a
relative file) or whose key value (if an indexed file) is less than or equal to
the file position indicator is selected.

� If the file position indicator is established by a previous READ statement,
the first existing record in the file whose relative record number (if a
relative file) or whose key value (if an indexed file) is less than the file
position indicator is selected.

If identifier-1 is a date field, then the implied MOVE statement is
performed according to the behavior described under “Moves involving
date fields” on page 323.

Identifier-1 (the record area) can be a DBCS or floating point data item.

Multiple non-alphanumeric records can be specified for file-name-1.
Identifier-1 need not describe a group item or an elementary alphanumeric
item. The following rules apply:

READ statement

INTO Identifier-1
Identifier-1 is the receiving field.

The result of the execution of a READ statement with the INTO phrase is
equivalent to the application of the following rules in the order specified:

� The execution of the same READ statement without the INTO phrase.
� The current record is moved from the record area to the area specified by

identifier-1 according to the rules for the MOVE statement without the
CORRESPONDING phrase. The size of the current record is determined
by rules specified for the RECORD clause. If the file description entry
contains a RECORD IS VARYING clause, the implied move is a group
move. The implied MOVE statement does not occur if the execution of the
READ statement was unsuccessful. Any subscripting or reference
modification associated with identifier-1 is evaluated after the record has
been read and immediately before it is moved to the data item. The record
is available in both the record area and the data item referenced by
identifier-1.

The INTO phrase can be specified in a READ if:

� Only one record description is subordinate to the file description entry, or
� All record-names associated with file-name-1, and the data item referenced

by identifier-1, describe a group item or an elementary alphanumeric item.

The record areas associated with file-name-1 and identifier-1 must not be the
same storage area.

Part 6. Procedure Division 343

1. If the file referenced by file-name-1 is described as containing
variable-length records, or as a QSAM file with RECORDING MODE 'S'
or 'U', a group move will take place.

2. If the file referenced by file-name-1 is described as containing fixed-length
records, the movement will take place according to the rules for the MOVE
statement, using, as a sending field description, the record that specifies
the largest number of character positions. If more than one such record
exists, the sending field record selected will be the one among those
records that appears first under the description of file-name-1.

Data-name-1 (the record key) can be defined as a DBCS data item.

When the RECORD KEY clause specifies a DBCS data item, a KEY specified on the
READ statement must be a DBCS data item.

The AT END phrase does not have to be specified if no applicable USE AFTER
STANDARD EXCEPTION procedure is specified for file-name-1.

The INVALID KEY phrase does not have to be specified if no applicable USE
AFTER STANDARD EXCEPTION procedure is specified for file-name-1.

READ statement

KEY IS phrase

The KEY IS phrase can be specified only for indexed files. Data-name-1 must
identify a record key associated with file-name-1. Data-name-1 can be qualified; it
cannot be subscripted.

AT END phrases

For sequential access, the AT END phrase must be specified if no applicable USE
AFTER STANDARD EXCEPTION procedure is specified for file-name-1.

For information on at-end condition processing, see “AT END condition” on
page 345.

INVALID KEY phrases

For random access, the INVALID KEY phrase must be specified if no applicable
USE AFTER STANDARD EXCEPTION procedure is specified for file-name-1.

For information on INVALID KEY phrases processing, see “Invalid key condition”
on page 247.

 END-READ phrase

This explicit scope terminator serves to delimit the scope of the READ statement.
END-READ permits a conditional READ statement to be nested in another
conditional statement. END-READ can also be used with an imperative READ
statement. For more information, see “Delimited scope statements” on page 237.

Multiple record processing

If more than one record description entry is associated with file-name-1, these
records automatically share the same storage area; that is, they are implicitly
redefined. After a READ statement is executed, only those data items within the
range of the current record are replaced; data items stored beyond that range are

344 COBOL Language Reference

READ statement

undefined. Figure 16 illustrates this concept. If the range of the current record
exceeds the record description entries for file-name-1, the record is truncated on
the right to the maximum size. In either of these cases, the READ statement is
successful and an I-O status (04) is set indicating a record length conflict has
occurred.

Figure 16. READ statement with multiple record description

Sequential access mode

Format 1 must be used for all files in sequential access mode.

Execution of a format 1 READ statement retrieves the next logical record from the
file. The next record accessed is determined by the file organization.

 Sequential files

The NEXT RECORD is the next record in a logical sequence of records. The NEXT
phrase need not be specified; it has no effect on READ statement execution.

If SELECT OPTIONAL is specified in the FILE-CONTROL entry for this file, and
the file is absent during this execution of the object program, execution of the first
READ statement causes an at end condition; however, since no file is present, the
system-defined end-of-file processing is not performed.

AT END condition: If the file position indicator indicates that no next logical
record exists, or that an optional input file is not present, the following occurs in
the order specified:
1. A value, derived from the setting of the file position indicator, is placed into

the I-O status associated with file-name-1 to indicate the at end condition.
2. If the AT END phrase is specified in the statement causing the condition,

control is transferred to imperative-statement-1 in the AT END phrase. Any
USE AFTER STANDARD EXCEPTION procedure associated with file-name-1
is not executed.

Part 6. Procedure Division 345

If the AT END phrase is not specified, a USE AFTER STANDARD
EXCEPTION procedure does not have to be associated with file-name-1.

 Under AIX and Windows, PREVIOUS RECORD is the prior logical
record in the key sequence.

READ statement

3. If the AT END phrase is not specified, a USE AFTER STANDARD
EXCEPTION procedure must be specified with this file, and the procedure is
executed. Return from that procedure is to the next executable statement
following the end of the READ statement.

When the at end condition occurs, execution of the READ statement is
unsuccessful. The contents of the associated record area are undefined and the
file position indicator is set to indicate that no valid next record has been
established. Attempts to access or move data into the read record area
following an unsuccessful read can result in a protection exception.

If an at end condition does not occur during the execution of a READ statement,
the AT END phrase is ignored, if specified, and the following actions occur:
1. The file position indicator is set and the I-O status associated with file-name-1

is updated.
2. If an exception condition that is not an at end condition exists, control is

transferred to the end of the READ statement following the execution of any
USE AFTER STANDARD EXCEPTION procedure applicable to file-name-1.

If no USE AFTER STANDARD EXCEPTION procedure is specified, control is
transferred to the end of the READ statement or to imperative-statement-2, if
specified.

3. If no exception condition exists, the record is made available in the record area
and any implicit move resulting from the presence of an INTO phrase is
executed. Control is transferred to the end of the READ statement or to
imperative-statement-2, if specified. In the latter case, execution continues
according to the rules for each statement specified in imperative-statement-2.
If a procedure branching or conditional statement which causes explicit
transfer of control is executed, control is transferred in accordance with the
rules for that statement; otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the READ
statement.

Following the unsuccessful execution of a READ statement, the contents of the
associated record area are undefined and the file position indicator is set to
indicate that no valid next record has been established. Attempts to access or
move data into the record area following an unsuccessful read can result in a
protection exception.

Multivolume QSAM files (OS/390 and VM only): If end-of-volume is recognized
during execution of a READ statement, and logical end-of-file has not been
reached, the following actions are taken:
� The standard ending volume label procedure
� A volume switch
� The standard beginning volume label procedure
� The first data record of the next volume is made available.

Indexed or relative files

The NEXT RECORD is the next logical record in the key sequence.

346 COBOL Language Reference

 (or previous)

 (or alternatively for AIX and
Windows, the PREVIOUS phrase)

 (or alternatively for AIX and Windows, no previous record exists),

 Under AIX and Windows see the discussion on PREVIOUS RECORD
on 342.

READ statement

For indexed files, the key sequence is the sequence of ascending values of the
current key of reference. For relative files, the key sequence is the sequence of
ascending values of relative record numbers for records that exist in the file.

Before the READ statement is executed, the file position indicator must be set by a
successful OPEN, START, or READ statement. When the READ statement is
executed, the record indicated by the file position indicator is made available, if it
is still accessible through the path indicated by the file position indicator.

If the record is no longer accessible (because it has been deleted, for example), the
file position indicator is updated to point to the next existing record
in the file, and that record is made available.

For files in sequential access mode, the NEXT phrase need not be specified.

For files in dynamic access mode, the NEXT phrase
 must be specified for sequential record retrieval.

AT END condition: If the file position indicator indicates that no next logical
record exists, or
that an optional input file is not present.

 Under OS/390 and VM, the same procedure occurs as for sequential
files (see “AT END condition” on page 345).

If neither an at end nor an invalid key condition occurs during the execution of a
READ statement, the AT END or the INVALID KEY phrase is ignored, if specified.
The same actions occur as when the at end condition does not occur with
sequential files (see “AT END condition” on page 345).

Sequentially accessed indexed files: When an ALTERNATE RECORD KEY with
DUPLICATES is the key of reference, file records with duplicate key values are
made available in the order in which they were placed in the file.

Sequentially accessed relative files: If the RELATIVE KEY clause is specified for
this file, READ statement execution updates the RELATIVE KEY data item to
indicate the relative record number of the record being made available.

Random access mode

Format 2 must be specified for indexed and relative files in random access mode,
and also for files in the dynamic access mode when record retrieval is random.

Execution of the READ statement depends on the file organization, as explained in
the following sections.

 Indexed files

Execution of a format 2 READ statement causes the value of the key of reference to
be compared with the value of the corresponding key data item in the file records,
until the first record having an equal value is found. The file position indicator is
positioned to this record, which is then made available. If no record can be so
identified, an INVALID KEY condition exists, and READ statement execution is
unsuccessful. (See “Invalid key condition” under “Common processing facilities”
on page 244.)

Part 6. Procedure Division 347

READ statement

If the KEY phrase is not specified, the prime RECORD KEY becomes the key of
reference for this request. When dynamic access is specified, the prime RECORD
KEY is also used as the key of reference for subsequent executions of sequential
READ statements, until a different key of reference is established.

When the KEY phrase is specified, data-name-1 becomes the key of reference for
this request. When dynamic access is specified, this key of reference is used for
subsequent executions of sequential READ statements, until a different key of
reference is established.

 Relative files

Execution of a format 2 READ statement sets the file position indicator pointer to
the record whose relative record number is contained in the RELATIVE KEY data
item, and makes that record available.

If the file does not contain such a record, the INVALID KEY condition exists, and
READ statement execution is unsuccessful. (See “Invalid key condition” under
“Common processing facilities” on page 244.)

The KEY phrase must not be specified for relative files.

Dynamic access mode

For files with indexed or relative organization, dynamic access mode can be
specified in the FILE-CONTROL entry. In dynamic access mode, either sequential
or random record retrieval can be used, depending on the format used.

Format 1 with the NEXT phrase must be specified for sequential retrieval. All
other rules for sequential access apply.

READ statement notes

If the FILE-STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the READ statement is executed.

Following unsuccessful READ statement execution, the contents of the associated
record area and the value of the file position indicator are undefined. Attempts to
access or move data into the record area following an unsuccessful read can result
in a protection exception.

348 COBOL Language Reference

Can define a floating-point data item or DBCS data item. Identifier-1 must be
a DBCS data item if record-name-1 is a DBCS data item.

Identifier-1 can be a floating-point data item or a DBCS data item.

RELEASE statement

 RELEASE statement

The RELEASE statement transfers records from an input/output area to the initial
phase of a sorting operation.

The RELEASE statement can only be used within the range of an INPUT
PROCEDURE associated with a SORT statement.

 Format
��──RELEASE──record-name-1─ ──┬ ┬──────────────────── ────────────────────────��
 └ ┘ ─FROM──identifier-1─

Within an INPUT PROCEDURE, at least one RELEASE statement must be
specified.

When the RELEASE statement is executed, the current contents of record-name-1
are placed in the sort file; that is, made available to the initial phase of the sorting
operation.

record-name-1
Must specify the name of a logical record in a sort-merge file description entry
(SD). Record-name-1 can be qualified.

FROM phrase
The result of the execution of the RELEASE statement with the FROM
identifier-1 phrase is equivalent to the execution of the following statements in
the order specified.

MOVE identifier-1 to record-name-1.
RELEASE record-name-1.

The MOVE is performed according to the rules for the MOVE statement
without the CORRESPONDING phrase.

identifier-1
Identifier-1 must be one of the following:

� The name of an entry in the Working-Storage Section or the Linkage
Section

� The name of a record description for another previously opened file
� The name of an alphanumeric function identifier

Identifier-1 and record-name-1 must not refer to the same storage area.

After the RELEASE statement is executed, the information is still available in
identifier-1. (See “INTO/FROM Identifier Phrase” under “Common processing
facilities” on page 244.)

If the RELEASE statement is executed without specifying the SD entry for
file-name-1 in a SAME RECORD AREA clause, the information in record-name-1 is
no longer available.

If the SD entry is specified in a SAME RECORD AREA clause, record-name-1 is
still available as a record of the other files named in that clause.

Part 6. Procedure Division 349

RELEASE statement

When FROM identifier-1 is specified, the information is still available in
identifier-1.

When control passes from the INPUT PROCEDURE, the sort file consists of all
those records placed in it by execution of RELEASE statements.

350 COBOL Language Reference

RETURN statement

 RETURN statement

The RETURN statement transfers records from the final phase of a sorting or
merging operation to an OUTPUT PROCEDURE.

The RETURN statement can be used only within the range of an OUTPUT
PROCEDURE associated with a SORT or MERGE statement.

 Format
��──RETURN──file-name-1─ ──┬ ┬──────── ──┬ ┬──────────────────── ────────────────�
 └ ┘─RECORD─ └ ┘ ─INTO──identifier-1─

�─ ──┬ ┬───────────────────────────────────── ─────────────────────────────────�
| └ ┘| ──┬ ┬──── ─END──imperative-statement-1─
| └ ┘─AT─

�─ ──┬ ┬── ──┬ ┬──────────── ───────────��
 └ ┘ ─NOT─ ──┬ ┬──── ─END──imperative-statement-2─ └ ┘─END-RETURN─
 └ ┘─AT─

Within an OUTPUT PROCEDURE, at least one RETURN statement must be
specified.

When the RETURN statement is executed, the next record from file-name-1 is
made available for processing by the OUTPUT PROCEDURE.

file-name-1
Must be described in a Data Division SD entry.

If more than one record description is associated with file-name-1, these
records automatically share the same storage; that is, the area is implicitly
redefined. After RETURN statement execution, only the contents of the
current record are available; if any data items lie beyond the length of the
current record, their contents are undefined.

INTO phrase
The result of the execution of a RETURN statement with the INTO phrase is
equivalent to the application of the following rules in the order specified:

� The execution of the same RETURN statement without the INTO phrase.
� The current record is moved from the record area to the area specified by

identifier-1 according to the rules for the MOVE statement without the
CORRESPONDING phrase. The size of the current record is determined
by rules specified for the RECORD clause. If the file description entry
contains a RECORD IS VARYING clause, the implied move is a group
move. The implied MOVE statement does not occur if the execution of the
RETURN statement was unsuccessful. Any subscripting or reference
modification associated with identifier-1 is evaluated after the record has
been read and immediately before it is moved to the data item. The record
is available in both the record area and the data item referenced by
identifier-1.

The record areas associated with file-name-1 and identifier-1 must not be the same
storage area.

The INTO phrase can be specified in a RETURN statement if one or both of the
following are true:
� If only one record description is subordinate to the sort-merge file description

entry

Part 6. Procedure Division 351

Multiple non-alphanumeric records can be specified for file-name-1. Identifier-1
need not describe a group item or an elementary alphanumeric item. The following
rules apply:
1. If the file referenced by file-name-1 contains variable-length records or, under

OS/390 and VM, a QSAM file with RECORDING MODE 'S' or 'U', a group
move will take place.

2. If the file referenced by file-name-1 contains fixed-length records, the
movement will take place according to the rules for the MOVE statement,
using, as a sending field description, the record that specifies the largest
number of character positions. If more than one such record exists, the sending
field record selected will be the one among those records that appears first
under the description of file-name-1.

RETURN statement

� If all record-names associated with file-name-1 and the data item referenced by
identifier-1 describe a group item or an elementary alphanumeric item.

AT END phrases

The imperative-statement specified on the AT END phrase executes after all
records have been returned from file-name-1. No more RETURN statements can
be executed as part of the current output procedure.

If an at end condition does not occur during the execution of a RETURN
statement, then after the record is made available and after executing any implicit
move resulting from the presence of an INTO phrase, control is transferred to the
imperative statement specified by the NOT AT END phrase, otherwise control is
passed to the end of the RETURN statement.

 END-RETURN phrase

This explicit scope terminator serves to delimit the scope of the RETURN
statement. END-RETURN permits a conditional RETURN statement to be nested
in another conditional statement. END-RETURN can also be used with an
imperative RETURN statement.

For more information, see “Delimited scope statements” on page 237.

352 COBOL Language Reference

The REWRITE statement is not supported for line-sequential files.

Record-name-1 can define a floating-point data item or DBCS data item.
Identifier-1 must be a DBCS data item if record-name-1 is a DBCS data item.

� A floating-point data item or a DBCS data item.

REWRITE statement

 REWRITE statement

The REWRITE statement logically replaces an existing record in a direct-access file.
When the REWRITE statement is executed, the associated direct-access file must be
open in I-O mode.

|

 Format
��──REWRITE──record-name-1─ ──┬ ┬──────────────────── ─────────────────────────�
 └ ┘ ─FROM──identifier-1─

�─ ──┬ ┬── ────────────────────────────�
 └ ┘ ─INVALID─ ──┬ ┬───── ─imperative-statement-1─
 └ ┘─KEY─

�─ ──┬ ┬── ──┬ ┬───────────── ──────��
 └ ┘ ─NOT INVALID─ ──┬ ┬───── ─imperative-statement-2─ └ ┘─END-REWRITE─
 └ ┘─KEY─

record-name-1
Must be the name of a logical record in a Data Division FD entry. The
record-name can be qualified.

FROM phrase
The result of the execution of the REWRITE statement with the FROM
identifier-1 phrase is equivalent to the execution of the following statements in
the order specified.

MOVE identifier-1 TO record-name-1.
REWRITE record-name-1

The MOVE is performed according to the rules for the MOVE statement
without the CORRESPONDING phrase.

identifier-1
Identifier-1 can be one of the following:

� The name of an entry in the Working-Storage Section or Linkage Section
� The name of a record description for another previously opened file
� The name of an alphanumeric function identifier

Identifier-1 and record-name-1 must not refer to the same storage area.

After the REWRITE statement is executed, the information is still available in
identifier-1 (See “INTO/FROM Identifier Phrase” under “Common processing
facilities” on page 244).

INVALID KEY phrases

(See “Invalid key condition” under “Common processing facilities” on page 244.)

An INVALID KEY condition exists when:
� The access mode is sequential, and the value contained in the prime RECORD

KEY of the record to be replaced does not equal the value of the prime
RECORD KEY data item of the last-retrieved record from the file, or

Part 6. Procedure Division 353

The number of character positions in record-name-1 can be different from the
number of character positions in the record being replaced.

REWRITE statement

� The value contained in the prime RECORD KEY does not equal that of any
record in the file, or

� The value of an ALTERNATE RECORD KEY data item for which
DUPLICATES is not specified is equal to that of a record already in the file.

 END-REWRITE phrase

This explicit scope terminator serves to delimit the scope of the REWRITE
statement. END-REWRITE permits a conditional REWRITE statement to be nested
in another conditional statement. END-REWRITE can also be used with an
imperative REWRITE statement.

For more information, see “Delimited scope statements” on page 237.

Reusing a logical record

After successful execution of a REWRITE statement, the logical record is no longer
available in record-name-1 unless the associated file is named in a SAME RECORD
AREA clause (in which case, the record is also available as a record of the other
files named in the SAME RECORD AREA clause).

The file position indicator is not affected by execution of the REWRITE statement.

If the FILE STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the REWRITE statement is executed.

 Sequential files

For files in the sequential access mode, the last prior input/output statement
executed for this file must be a successfully executed READ statement. When the
REWRITE statement is executed, the record retrieved by that READ statement is
logically replaced.

The number of character positions in record-name-1 must equal the number of
character positions in the record being replaced.

The INVALID KEY phrase must not be specified for a file with sequential
organization. An EXCEPTION/ERROR procedure can be specified.

 Indexed files

The number of character positions in record-name-1 must equal the number of
character positions in the record being replaced.

When the access mode is sequential, the record to be replaced is specified by the
value contained in the prime RECORD KEY. When the REWRITE statement is
executed, this value must equal the value of the prime record key data item in the
last record read from this file.

The INVALID KEY phrase must be specified if an applicable USE AFTER
STANDARD EXCEPTION procedure is not specified for the associated file-name.

354 COBOL Language Reference

The INVALID KEY phrase does not have to be specified if an applicable USE
AFTER STANDARD EXCEPTION procedure is not specified for the associated
file-name.

The number of character positions in record-name-1 can be different from the
number of character positions in the record being replaced.

The INVALID KEY phrase does not have to be specified if an appropriate USE
AFTER STANDARD EXCEPTION procedure is not specified.

REWRITE statement

When the access mode is random or dynamic, the record to be replaced is
specified by the value contained in the prime RECORD KEY.

Values of ALTERNATE RECORD KEY data items in the rewritten record can differ
from those in the record being replaced. The system ensures that later access to
the record can be based upon any of the record keys.

If an invalid key condition exists, the execution of the REWRITE statement is
unsuccessful, the updating operation does not take place, and the data in
record-name-1 is unaffected. (See “Invalid key condition” under “Common
processing facilities” on page 244.)

 Relative files

The number of character positions in record-name-1 must equal the number of
character positions in the record being replaced.

For relative files in sequential access mode, the INVALID KEY phrase must not be
specified. An EXCEPTION/ERROR procedure can be specified.

The INVALID KEY phrase must be specified in the REWRITE statement for
relative files in the random or dynamic access mode, and for which an appropriate
USE AFTER STANDARD EXCEPTION procedure is not specified.

When the access mode is random or dynamic, the record to be replaced is
specified in the RELATIVE KEY data item. If the file does not contain the record
specified, an invalid key condition exists, and, if specified, the INVALID KEY
imperative-statement is executed. (See “Invalid key condition” under “Common
processing facilities” on page 244.) The updating operation does not take place,
and the data in record-name is unaffected.

Part 6. Procedure Division 355

� A DBCS data item or a floating-point data item.

SEARCH statement

 SEARCH statement

The SEARCH statement searches a table for an element that satisfies the specified
condition, and adjusts the associated index to indicate that element.

Format 1—serial search
��──SEARCH──identifier-1─ ──┬ ┬─────────────────────────── ──┬ ┬───────────────────────────────────── ──�
 └ ┘ ─VARYING─ ──┬ ┬─identifier-2─ └ ┘ ──┬ ┬──── ─END──imperative-statement-1─
 └ ┘─index-name-1─ └ ┘─AT─

 ┌ ┐───
�─ ───/ ┴ ─WHEN──condition-1─ ──┬ ┬─imperative-statement-2─ ──┬ ┬──────────── ─────────────────────────────��
 └ ┘─NEXT-SENTENCE────────── └ ┘─END-SEARCH─

Format 2—binary search
��──SEARCH ALL──identifier-1─ ──┬ ┬───────────────────────────────────── ─────────────────────────────�
 └ ┘ ──┬ ┬──── ─END──imperative-statement-1─
 └ ┘─AT─

�─ ─WHEN─ ──┬ ┬ ─data-name-1─ ──┬ ┬──── ──┬ ┬ ─EQUAL─ ──┬ ┬──── ──┬ ┬─identifier-3──────────── ──────────────────�
 │ │└ ┘─IS─ │ │└ ┘─TO─ ├ ┤─literal-1───────────────
 │ │└ ┘─=───────────── └ ┘─arithmetic-expression-1─
 └ ┘─condition-name-1──

 ┌ ┐──
�─ ───/ ┴──┬ ┬── ───────────�
 └ ┘ ─AND─ ──┬ ┬ ─data-name-2─ ──┬ ┬──── ──┬ ┬ ─EQUAL─ ──┬ ┬──── ──┬ ┬─identifier-4────────────
 │ │└ ┘─IS─ │ │└ ┘─TO─ ├ ┤─literal-2───────────────
 │ │└ ┘─=───────────── └ ┘─arithmetic-expression-2─
 └ ┘─condition-name-2──

�─ ──┬ ┬─imperative-statement-2─ ──┬ ┬──────────── ──��
 └ ┘─NEXT SENTENCE────────── └ ┘─END-SEARCH─

identifier-1
Can be:

� A data item subordinate to a data item that contains an OCCURS clause;
that is, it can be a part of a multidimensional table. In this case, the data
description entry must specify an INDEXED BY phrase for each dimension
of the table.

� An index data item.

Identifier-1 must refer to all occurrences within the table element; that is, it
must not be subscripted or reference-modified.

The Data Division description of identifier-1 must contain an OCCURS clause
with the INDEXED BY phrase. For format 2, the Data Division description
must also contain the KEY IS phrase in its OCCURS clause.

SEARCH statement execution modifies only the value in the index-name
associated with identifier-1 (and, if present, of index-name-1 or identifier-2).
Therefore, to search an entire 2- to 7-dimensional table, it is necessary to
execute a SEARCH statement for each dimension. Before each execution, SET
statements must be executed to reinitialize the associated index-names.

AT END/WHEN phrases

After imperative-statement-1 or imperative-statement-2 is executed, control passes
to the end of the SEARCH statement, unless imperative-statement-1 or
imperative-statement-2 ends with a GO TO statement.

356 COBOL Language Reference

As an IBM extension, you can specify END-SEARCH with NEXT SENTENCE.
Note, however, that if the NEXT SENTENCE phrase is executed, control will not
pass to the next statement following the END-SEARCH, but instead will pass to
the statement after the closest following period.

As an IBM extension, for the format 2 SEARCH ALL statement, neither
imperative-statement-2 nor NEXT SENTENCE is required. Without them, the
SEARCH statement sets the index to the value in the table that matched the
condition.

SEARCH statement

 NEXT SENTENCE

 END-SEARCH phrase

This explicit scope terminator serves to delimit the scope of the SEARCH
statement. END-SEARCH permits a conditional SEARCH statement to be nested
in another conditional statement.

For more information, see “Delimited scope statements” on page 237.

 Serial search

The format 1 SEARCH statement executes a serial search beginning at the current
index setting. When the search begins, if the value of the index-name associated
with identifier-1 is not greater than the highest possible occurrence number, the
following actions take place:
� The condition(s) in the WHEN phrase are evaluated in the order in which they

are written.
� If none of the conditions is satisfied, the index-name for identifier-1 is

increased to correspond to the next table element, and step 1 is repeated.
� If upon evaluation, one of the WHEN conditions is satisfied, the search is

terminated immediately, and the imperative-statement associated with that
condition is executed. The index-name points to the table element that
satisfied the condition. If NEXT SENTENCE is specified, control passes to the
statement following the closest period.

� If the end of the table is reached (that is, the incremented index-name value is
greater than the highest possible occurrence number) without the WHEN
condition being satisfied, the search is terminated, as described in the next
paragraph.

If, when the search begins, the value of the index-name associated with identifier-1
is greater than the highest possible occurrence number, the search immediately
ends, and, if specified, the AT END imperative-statement is executed. If the AT
END phrase is omitted, control passes to the next statement after the SEARCH
statement.

 VARYING phrase

index-name-1
One of the following actions applies:

� If index-name-1 is an index for identifier-1, this index is used for the
search. Otherwise, the first (or only) index-name is used.

� If index-name-1 is an index for another table element, then the first (or
only) index-name for identifier-1 is used for the search; the occurrence

Part 6. Procedure Division 357

If indexing is used to search a table without an INDEXED BY clause, correct
results are ensured only if both the table defined with the index and the table
defined without the index have table elements of the same length and with the
same number of occurrences.

Identifier-2
cannot be a windowed date field.

SEARCH statement

number represented by index-name-1 is increased by the same amount as
the search index-name and at the same time.

When the VARYING index-name-1 phrase is omitted, the first (or only)
index-name for identifier-1 is used for the search.

identifier-2
Must be either an index data item or an elementary integer item.

Identifier-2 cannot be subscripted by the
first (or only) index-name for identifier-1. During the search, one of the
following actions applies:

� If identifier-2 is an index data item, then, whenever the search index is
increased, the specified index data item is simultaneously increased by the
same amount.

� If identifier-2 is an integer data item, then, whenever the search index is
increased, the specified data item is simultaneously increased by 1.

WHEN phrase (serial search)

condition-1
Can be any condition described under “Conditional expressions” on page 214.

Figure 17 illustrates a format 1 SEARCH operation containing two WHEN phrases.

358 COBOL Language Reference

SEARCH statement

Figure 17. Format 1 SEARCH with two WHEN phrases

 Binary search

The format 2 SEARCH ALL statement executes a binary search. The search index
need not be initialized by SET statements, because its setting is varied during the
search operation so that its value is at no time less than the value of the first table
element, nor ever greater than the value of the last table element. The index used
is always that associated with the first index-name specified in the OCCURS
clause.

The results of a SEARCH ALL operation are predictable only when:
� The data in the table is ordered in ASCENDING/DESCENDING KEY order

Part 6. Procedure Division 359

� A DBCS item if the ASCENDING/DESCENDING KEY is defined as a
DBCS item.

� A floating-point data item
� A data item defined with USAGE IS POINTER, USAGE IS

PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE
� A windowed date field

SEARCH statement

� The contents of the ASCENDING/DESCENDING keys specified in the WHEN
clause provide a unique table reference.

identifier-1
Identifier-1 can be:

� A data item subordinate to a data item that contains an OCCURS clause;
that is, it can be a part of a 2- to 7-dimensional table. In this case, the data
description entry must specify an INDEXED BY phrase for each dimension
of the table.

Identifier-1 cannot be:

� USAGE IS INDEX

Identifier-1 must refer to all occurrences within the table element; that is, it
must not be subscripted or reference-modified.

The Data Division description of identifier-1 must contain an OCCURS clause
with the INDEXED BY option. It must also contain the KEY IS phrase in its
OCCURS clause.

AT END
The condition that exists when the search operation terminates without
satisfying the condition specified in any of the associated WHEN phrases.

WHEN phrase (binary search)

If the WHEN relation-condition is specified, the compare is based on the length
and sign of data-name. For example, if the length of data-name is shorter than the
length of the search argument, the search argument is truncated to the length of
data-name before the compare is done. If the search argument is signed and
data-name is unsigned, the sign is removed from the search argument before the
compare is done.

If the WHEN phrase cannot be satisfied for any setting of the index within this
range, the search is unsuccessful. Control is passed to imperative-statement-1 of
the AT END phrase, when specified, or to the next statement after the SEARCH
statement. In either case, the final setting of the index is not predictable.

If the WHEN option can be satisfied, control passes to imperative-statement-2, if
specified, or to the next executable sentence if the NEXT SENTENCE phrase is
specified. The index contains the value indicating the occurrence that allowed the
WHEN condition(s) to be satisfied.

condition-name-1
condition-name-2

Each condition-name specified must have only a single value, and each must
be associated with an ASCENDING/DESCENDING KEY identifier for this
table element.

360 COBOL Language Reference

� Floating-point data items

� Windowed date fields

Identifier-3 and identifier-4 can be floating-point data items.

Identifier-3 and identifier-4 cannot be data items defined with USAGE IS
POINTER, USAGE IS PROCEDURE-POINTER, or USAGE IS OBJECT
REFERENCE.

Identifier-3 and identifier-4 cannot be windowed date fields.

SEARCH statement

data-name-1
data-name-2

Must specify an ASCENDING/DESCENDING KEY data item in the
identifier-1 table element and must be subscripted by the first identifier-1
index-name. Each data-name can be qualified.

Data-name-1 and data-name-2 cannot be:

� Group items containing variable occurrence data items

identifier-3
identifier-4

Must not be an ASCENDING/DESCENDING KEY data item for identifier-1 or
an item that is subscripted by the first index-name for identifier-1.

arithmetic-expression
Can be any of the expressions defined under “Arithmetic expressions” on
page 209, with the following restriction: Any identifier in the
arithmetic-expression must not be an ASCENDING/DESCENDING KEY data
item for identifier-1 or an item that is subscripted by the first index-name for
identifier-1.

When an ASCENDING/DESCENDING KEY data item is specified, explicitly or
implicitly, in the WHEN phrase, all preceding ASCENDING/DESCENDING KEY
data-names for identifier-1 must also be specified.

Search statement considerations

Index data items cannot be used as subscripts, because of the restrictions on direct
reference to them.

When the object of the VARYING option is an index-name for another table
element, one format 1 SEARCH statement steps through two table elements at
once.

To ensure correct execution of a SEARCH statement for a variable-length table,
make sure the object of the OCCURS DEPENDING ON clause (data-name-1)
contains a value that specifies the current length of the table.

The scope of a SEARCH statement can be terminated by any of the following:
� An END-SEARCH phrase at the same level of nesting
� A separator period
� An ELSE or END-IF phrase associated with a previous IF statement

Part 6. Procedure Division 361

� Setting USAGE IS POINTER data items to a data address
� Setting USAGE IS PROCEDURE-POINTER data items to an entry address
� Setting USAGE OBJECT REFERENCE data items to refer to an object instance

The
receiving fields cannot be windowed date fields.

The sending field cannot be a windowed date field.

SET statement

 SET statement

The SET statement is used to perform one of the following operations:
� Placing values associated with table elements into indexes associated with

index-names
� Incrementing or decrementing an occurrence number
� Setting the status of an external switch to ON or OFF
� Moving data to condition names to make conditions true

Index-names are related to a given table through the INDEXED BY phrase of the
OCCURS clause; they are not further defined in the program.

When the sending and receiving fields in a SET statement share part of their
storage (that is, the operands overlap), the result of the execution of such a SET
statement is undefined.

Format 1: SET for basic table handling

When this form of the SET statement is executed, the current value of the receiving
field is replaced by the value of the sending field (with conversion).

Format 1—SET (basic table handling)
 ┌ ┐────────────────────
��──SET─ ───/ ┴──┬ ┬─index-name-1─ ─TO─ ──┬ ┬─index-name-2─ ───────────────────────��
 └ ┘─identifier-1─ ├ ┤─identifier-2─
 └ ┘─integer-1────

index-name-1, identifier-1
Receiving fields.

Must name either index data items or elementary numeric integer items.

index-name-2
Sending field.

The value before the SET statement is executed must correspond to the
occurrence number of its associated table.

identifier-2
Sending field.

Must name either an index data item or an elementary numeric integer item.

integer-1
Sending field.

Must be a positive integer.

Table 47 shows valid combinations of sending and receiving fields in a format 1
SET statement.

362 COBOL Language Reference

If index-name-2 is for a table that has a subordinate item that contains an OCCURS
DEPENDING ON clause, then undefined values can be received into identifier-1.

For more information on complex OCCURS DEPENDING ON, see the IBM
COBOL Programming Guide for your platform.

Identifier-3
cannot be a windowed date field.

If index-name-3 is for a table that has a subordinate item that contains an OCCURS
DEPENDING ON clause, and if the ODO object is changed before executing a

SET statement

Receiving fields are acted upon in the left-to-right order in which they are
specified. Any subscripting or indexing associated with an identifier's receiving
field is evaluated immediately before the field is acted upon.

The value used for the sending field is the value at the beginning of SET statement
execution.

The value for an index-name after execution of a SEARCH or PERFORM statement
can be undefined; therefore, a format 1 SET statement should reinitialize such
index-names before other table-handling operations are attempted.

Table 47. Sending and receiving fields for format 1 SET statement

Sending field

Receiving field

Index-name
Index data

item
Integer data

item

Index-name Valid Valid* Valid

Index data item Valid* Valid* —

Integer data item Valid — —

Integer literal Valid — —

*No conversion takes place

Format 2: SET for adjusting indexes

When this form of the SET statement is executed, the value of the receiving field is
increased (UP BY) or decreased (DOWN BY) by a value that corresponds to the
value in the sending field.

Format 2—SET (adjusting indexes)
 ┌ ┐────────────────
��──SET─ ───/ ┴─index-name-3─ ──┬ ┬─UP BY─── ──┬ ┬─identifier-3─ ──────────────────��
 └ ┘─DOWN BY─ └ ┘─integer-2────

The receiving field can be specified by index-name-3. This index-name value both
before and after the SET statement execution must correspond to the occurrence
numbers in an associated table.

The sending field can be specified as identifier-3, which must be an elementary
integer data item, or as integer-2, which must be a nonzero integer.

When the format 2 SET statement is executed, the contents of the receiving field
are increased (UP BY) or decreased (DOWN BY) by a value that corresponds to the
number of occurrences represented by the value of identifier-3 or integer-2.
Receiving fields are acted upon in the left-to-right order in which they are
specified. The value of the incrementing or decrementing field at the beginning of
SET statement execution is used for all receiving fields.

Part 6. Procedure Division 363

format 2 SET Statement, then index-name-3 cannot contain a value that
corresponds to an occurrence number of its associated table.

For more information on complex OCCURS DEPENDING ON, see the IBM
COBOL Programming Guide for your platform.

Format 5: SET for USAGE IS POINTER data items

When this form of the SET statement is executed, the current value of the receiving
field is replaced by the address value contained in the sending field.

Format 5—SET (USAGE IS POINTER data items)
 ┌ ┐────────────────────────────────
��──SET─ ───/ ┴──┬ ┬─identifier-4───────────── ──────────────────────────────────�
 └ ┘ ─ADDRESS OF──identifier-5─

�─ ─TO─ ──┬ ┬─identifier-6───────────── ───────────────────────────────────────��
 ├ ┤ ─ADDRESS OF──identifier-7─
 ├ ┤─NULL─────────────────────
 └ ┘─NULLS────────────────────

SET statement

Format 3: SET for external switches

When this form of the SET statement is executed, the status of each external switch
associated with the specified mnemonic-name is turned ON or OFF.

Format 3—SET (external switches)
 ┌ ┐────────────────────────────────────
 │ │┌ ┐───────────────────
��──SET─ ───/ ┴ ───/ ┴─mnemonic-name-1─ ─TO─ ──┬ ┬─ON── ─────────────────────────────��
 └ ┘─OFF─

mnemonic-name
Must be associated with an external switch, the status of which can be altered.

Format 4: SET for condition-names

When this form of the SET statement is executed, the value associated with a
condition-name is placed in its conditional variable according to the rules of the
VALUE clause.

Format 4—SET (condition-names)
 ┌ ┐────────────────────
��──SET─ ───/ ┴─condition-name-1─ ─TO TRUE─────────────────────────────────────��

condition-name-1
Must be associated with a conditional variable.

If more than one literal is specified in the VALUE clause of condition-name-1, its
associated conditional variable is set equal to the first literal.

If multiple condition-names are specified, the results are the same as if a separate
SET statement had been written for each condition-name in the same order in
which they are specified in the SET statement.

364 COBOL Language Reference

identifier-4
Receiving fields.

Must be described as USAGE IS POINTER.

ADDRESS OF identifier-5
Receiving fields.

identifier-5 must be level-01 or level-77 items defined in the Linkage Section.
The addresses of these items are set to the value of the operand specified in
the TO phrase.

Identifier-5 must not be reference-modified.

identifier-6
Sending field.

Must be described as USAGE IS POINTER.

Cannot contain an address within the program's own Working-Storage, File, or
Local-Storage Section.

ADDRESS OF identifier-7
Sending field. Identifier-7 must name an item of any level except 66 or 88 in
the Linkage Section, the Working-Storage Section, or the Local-Storage Section.
ADDRESS OF identifier-7 contains the address of the identifier, and not the
content of the identifier.

NULL
NULLS

Sending field.

Sets the receiving field to contain the value of an invalid address.

Table 48 shows valid combinations of sending and receiving fields in a format 5
SET statement.

Table 48. Sending and receiving fields for format 5 SET statement

Sending field
Receiving field

USAGE IS
POINTER ADDRESS OF NULL/NULLS

USAGE IS POINTER Valid Valid -

ADDRESS OF Valid Valid -

NULL/NULLS Valid Valid -

Format 6: SET for USAGE IS PROCEDURE-POINTER data
items

When this format of the SET statement is executed, the current value of the
receiving field is replaced by the address value contained in the sending field.
Additionally, to enable COBOL programs to interoperate with C programs via C
function pointers, the sending field can be a pointer. The pointer is converted to a
procedure-pointer and is stored in the receiver.

SET statement

|
|

Part 6. Procedure Division 365

Format 6—SET (USAGE IS PROCEDURE-POINTER data items)
 ┌ ┐─────────────────────────────────
��──SET─ ───/ ┴─procedure-pointer-data-item-1─ ─────────────────────────────────�

�─ ─TO─ ──┬ ┬─procedure-pointer-data-item-2─ ──────────────────────────────────��
 ├ ┤ ─ENTRY─ ──┬ ┬─identifier-8─ ──────
 │ │└ ┘─literal-1────
 ├ ┤─NULL──────────────────────────
 ├ ┤─NULLS─────────────────────────
 └ ┘─pointer-data-item-3───────────

procedure-pointer-data-item-1, procedure-pointer-data-item-2
Must be described as USAGE IS PROCEDURE-POINTER.
Procedure-pointer-data-item-1 is the receiving field.

identifier-8
Must be defined as an alphanumeric item such that the value can be a
program name. For more information, see “PROGRAM-ID paragraph” on
page 70. For entry points in non-COBOL programs, identifier-8 can contain
the characters @, #, and, $.

literal-1
Must be nonnumeric and must conform to the rules for formation of
program-names. For details on formation rules, see the discussion of
program-name under “PROGRAM-ID paragraph” on page 70.

Identifier-8 or literal-1 must refer to one of the following types of entry points:

� The primary entry point of a COBOL program as defined by the
PROGRAM-ID statement. The PROGRAM-ID must reference the
outermost program of a compilation unit; it must not reference a nested
program.

� An alternate entry point of a COBOL program as defined by a COBOL
ENTRY statement.

� An entry point in a non-COBOL program.

The program-name referenced by the SET...TO ENTRY statement can be
affected by the PGMNAME compiler option. For details, see the IBM COBOL
Programming Guide for your platform.

NULL
NULLS

Sets the receiving field to contain the value of an invalid address.

pointer-data-item-3
Must be defined with USAGE POINTER. You must set pointer-data-item-3 in
a non-COBOL program, to point to a valid program entry point.

Example of COBOL/C interoperability (OS/390)

The following example demonstrates a COBOL CALL to a C function that returns
a function-pointer to a service, followed by a COBOL CALL to the service:

SET statement

366 COBOL Language Reference

IDENTIFICATION DIVISION.
PROGRAM-ID DEMO.
DATA DIVISION.
WORKING-STORAGE SECTION.
?1 FP USAGE POINTER.
?1 PP USAGE PROCEDURE-POINTER.
PROCEDURE DIVISION.

CALL "c-function" RETURNING FP.
SET PP TO FP.

 CALL PP.

For OS/390 and VM, COBOL PROCEDURE-POINTERs are 8-bytes in length.
Thus, the SET statement is needed to convert the function pointer (FP) to the
COBOL PROCEDURE-POINTER (PP).

Format 7: SET for USAGE OBJECT REFERENCE data items

When this format of the SET statement is executed the value in the receiving item
is replaced by the value in the sending item.

Format 7—SET (USAGE IS OBJECT REFERENCE data items)
��──SET─ ─object-reference-id-1─ ─TO─ ──┬ ┬─object-reference-id-2─ ─────────────��
 ├ ┤─NULL──────────────────
 └ ┘─SELF──────────────────

Object-reference-id-1 and object-reference-id-2 must be defined as USAGE OBJECT
REFERENCE, with object-reference-id-1 being the receiver and object-reference-id-2
being the sender. If object-reference-id-1 is defined as an object reference of a
certain class (defined as "USAGE OBJECT REFERENCE class-name"),
object-reference-id-2 must be an object reference of the same class or a class
derived from that class.

If the figurative constant NULL is specified, the receiving object-reference-id-1 is
set to the NULL value.

If SELF is specified, the SET statement must appear in the procedure division of a
method. In this case, object-reference-id-1 is set to refer to the object upon which
the currently executing method was invoked.

SET statement

Part 6. Procedure Division 367

 The SORT statement is not supported under OS/390 Unix.

File-names associated with the GIVING clause (file-name-3...) can be specified in
the SAME AREA clause.

SORT statement

 SORT statement

The SORT statement accepts records from one or more files, sorts them according
to the specified key(s), and makes the sorted records available either through an
OUTPUT PROCEDURE or in an output file. See also “MERGE statement” on
page 314. The SORT statement can appear anywhere in the Procedure Division
except in the declarative portion.

|
 Format
 ┌ ┐──
 │ │┌ ┐───────────────
��──SORT──file-name-1─ ───/ ┴ ──┬ ┬──── ──┬ ┬─ASCENDING── ──┬ ┬───── ───/ ┴─data-name-1─ ───────────────────────�
 └ ┘─ON─ └ ┘─DESCENDING─ └ ┘─KEY─

�─ ──┬ ┬─── ──�
 └ ┘ ──┬ ┬────── ─DUPLICATES─ ──┬ ┬──── ──┬ ┬───────
 └ ┘─WITH─ └ ┘─IN─ └ ┘─ORDER─

�─ ──┬ ┬── ───�
 └ ┘ ──┬ ┬─────────── ─SEQUENCE─ ──┬ ┬──── ─alphabet-name-1─
 └ ┘─COLLATING─ └ ┘─IS─

 ┌ ┐───────────────
�─ ──┬ ┬─USING─ ───/ ┴─file-name-2─ ── ───────────────�
 └ ┘ ─INPUT PROCEDURE─ ──┬ ┬──── ─procedure-name-1─ ──┬ ┬───────────────────────────────
 └ ┘─IS─ └ ┘ ──┬ ┬─THROUGH─ ─procedure-name-2─
 └ ┘─THRU────

 ┌ ┐───────────────
�─ ──┬ ┬─GIVING─ ───/ ┴─file-name-3─ ── ─────────────��
 └ ┘ ─OUTPUT PROCEDURE─ ──┬ ┬──── ─procedure-name-3─ ──┬ ┬───────────────────────────────
 └ ┘─IS─ └ ┘ ──┬ ┬─THROUGH─ ─procedure-name-4─
 └ ┘─THRU────

file-name-1
The name given in the SD entry that describes the records to be sorted.

No pair of file-names in a SORT statement can be specified in the same SAME
SORT AREA, or SAME SORT-MERGE AREA clause. File-names associated with
the GIVING clause (file-name-3...) cannot be specified in the SAME AREA clause.

ASCENDING/DESCENDING KEY phrase

This phrase specifies that records are to be processed in ascending or descending
sequence (depending on the phrase specified), based on the specified sort keys.

data-name-1
Specifies a KEY data item on which the SORT statement will be based. Each
such data-name must identify a data item in a record associated with
file-name-1. The data-names following the word KEY are listed from left to
right in the SORT statement in order of decreasing significance without regard
to how they are divided into KEY phrases. The left-most data-name is the
major key, the next data-name is the next most significant key, and so forth.
The following rules apply:

� A specific KEY data item must be physically located in the same position
and have the same data format in each input file. However, it need not
have the same data-name.

368 COBOL Language Reference

� KEY data items can be floating-point items.
� KEY data items cannot be variably-located.
� Under AIX and Windows, KEY data items cannot be

windowed date fields.

 Under OS/390 and VM, KEY data items can be windowed date
fields, under these conditions:
— The GIVING phrase must not specify an indexed file, because the

(binary) ordering assumed or imposed by the file system conflicts with
the windowed date ordering provided in the sort output. Attempting
to write the windowed date merge output to such an indexed file will
either fail or re-impose binary ordering, depending on how the file is
accessed (the ACCESS MODE in the file-control entry).

— If an alphanumeric windowed date field is specified as a KEY for a
SORT statement, the collating sequence in effect for the merge
operation must be EBCDIC. Thus the COLLATING SEQUENCE
phrase of the SORT statement or, if this phrase is not specified, then
any PROGRAM COLLATING SEQUENCE clause in the
OBJECT-COMPUTER paragraph, must not specify a collating sequence
other than EBCDIC or NATIVE.

If the SORT statement meets these conditions, then the sort operation takes
advantage of SORT Year 2000 features, assuming that the execution
environment includes a sort product that supports century windowing.

A year-last windowed date field can be specified as a KEY for a SORT
statement, and can thereby exploit the corresponding century windowing
capability of the sort product.

For more information on using windowed date fields as KEY data items,
see the IBM COBOL Programming Guide for your platform.

SORT Statement

� If file-name-1 has more than one record description, then the KEY data
items need be described in only one of the record descriptions.

� If file-name-1 contains variable-length records, all of the KEY data-items
must be contained within the first n character positions of the record,
where n equals the minimum records size specified for file-name-1.

� KEY data items must not contain an OCCURS clause or be subordinate to
an item that contains an OCCURS clause.

� KEY data items can be qualified.
� KEY data items cannot be group items that contain variable occurrence

data items.

If file-name-3 references an indexed file, the first specification of data-name-1 must
be associated with an ASCENDING phrase and the data item referenced by that
data-name-1 must occupy the same character positions in this record as the data
item associated with the major record key for that file.

The direction of the sorting operation depends on the specification of the
ASCENDING or DESCENDING key words as follows:
� When ASCENDING is specified, the sequence is from the lowest key value to

the highest key value.
� When DESCENDING is specified, the sequence is from the highest key value

to the lowest.

Part 6. Procedure Division 369

� Under OS/390 and VM, if the KEY is a DBCS item, the sequence of
the KEY values is based on the binary collating sequence of the hexadecimal
values of the DBCS characters.

� Under AIX and Windows, if the KEY is a DBCS item, then the
sequence of the KEY values is based on a collation sequence according to the
COLLSEQ compiler option:
— If the COLLSEQ(NATIVE) compiler option is in effect, then the collating

sequence is determined by the locale. For information on the locale, see
Appendix F, “Locale considerations (workstation only)” on page 515.

— Otherwise, the collating sequence is determined by the binary values of the
DBCS characters.

� If the KEY is an external floating-point item, the compiler will treat the data
item as character data, rather than numeric data. The sequence in which the
records are sorted depends on the collating sequence used.

� If the KEY data item is internal floating-point, the sequence of key values will
be in numeric order.

SORT Statement

� If the KEY data item is alphabetic, alphanumeric, alphanumeric-edited, or
numeric-edited, the sequence of key values depends on the collating sequence
used (see “COLLATING SEQUENCE phrase” on page 370).

� The key comparisons are performed according to the rules for comparison of
operands in a relation condition (see “Relation Condition” under “Conditional
expressions” on page 214).

 DUPLICATES phrase

If the DUPLICATES phrase is specified, and the contents of all the key elements
associated with one record are equal to the corresponding key elements in one or
more other records, the order of return of these records is as follows:
� The order of the associated input files as specified in the SORT statement.

Within a given file the order is that in which the records are accessed from
that file.

� The order in which these records are released by an input procedure, when an
input procedure is specified.

If the DUPLICATES phrase is not specified, the order of these records is
undefined. For more information about use of the DUPLICATES phrase, see the
related discussion of alternate indexes in the IBM COBOL Programming Guide for
your platform.

COLLATING SEQUENCE phrase

This phrase specifies the collating sequence to be used in nonnumeric comparisons
for the KEY data items in this sorting operation.

alphabet-name-1
Must be specified in the ALPHABET clause of the SPECIAL-NAMES
paragraph. Any one of the alphabet-name clause phrases can be specified with
the following results:

370 COBOL Language Reference

SORT Statement

STANDARD-1
 Under OS/390 and VM, the ASCII collating sequence is used for

all nonnumeric comparisons. (The ASCII collating sequence is in
Appendix B, “EBCDIC and ASCII collating sequences” on page 498.)

 Under AIX and Windows the collating sequence is based on
the character's hex value order.

STANDARD-2
 Under OS/390 and VM, the International Reference Version of

the ISO 7-bit code defined in International Standard 646, 7-bit Coded
Character Set for Information Processing Interchange is used for all
nonnumeric comparisons.

 Under AIX and Windows, the collating sequence is based on
the character's hex value order.

NATIVE
 Under OS/390 and VM, the EBCDIC collating sequence is used

for all nonnumeric comparisons. (The EBCDIC collating sequence is in
Appendix B, “EBCDIC and ASCII collating sequences” on page 498.)

 Under AIX and Windows, the collating sequence indicated by
the locale is selected.

EBCDIC
The EBCDIC collating sequence is used for all nonnumeric comparisons.
(The EBCDIC collating sequence is in Appendix B, “EBCDIC and ASCII
collating sequences” on page 498.)

literal
The collating sequence established by the specification of literals in the
alphabet-name clause is used for all nonnumeric comparisons.

When the COLLATING SEQUENCE phrase is omitted, the PROGRAM
COLLATING SEQUENCE clause (if specified) in the OBJECT-COMPUTER
paragraph specifies the collating sequence to be used. When both the
COLLATING SEQUENCE phrase and the PROGRAM COLLATING
SEQUENCE clauses are omitted, the EBCDIC collating sequence is used.

 USING phrase

file-name-2,...
The input files.

When the USING phrase is specified, all the records in file-name-2,..., (that is,
the input files) are transferred automatically to file-name-1. At the time the
SORT statement is executed, these files must not be open; the compiler opens,
reads, makes records available, and closes these files automatically. If
EXCEPTION/ERROR procedures are specified for these files, the compiler
makes the necessary linkage to these procedures.

All input files must be described in FD entries in the Data Division.

If the USING phrase is specified and if file-name-1 contains variable-length
records, the size of the records contained in the input files (file-name-2,...)
must not be less than the smallest record nor greater than the largest record
described for file-name-1. If file-name-1 contains fixed-length records, the size

Part 6. Procedure Division 371

SORT Statement

of the records contained in the input files must not be greater than the largest
record described for file-name-1. For more information, see the IBM COBOL
Programming Guide for your platform.

INPUT PROCEDURE phrase

This phrase specifies the name of a procedure that is to select or modify input
records before the sorting operation begins.

procedure-name-1
Specifies the first (or only) section or paragraph in the INPUT PROCEDURE.

procedure-name-2
Identifies the last section or paragraph of the INPUT PROCEDURE.

The input procedure can consist of any procedure needed to select, modify, or
copy the records that are made available one at a time by the RELEASE
statement to the file referenced by file-name-1. The range includes all
statements that are executed as the result of a transfer of control by CALL,
EXIT, GO TO, and PERFORM statements in the range of the input procedure,
as well as all statements in declarative procedures that are executed as a result
of the execution of statements in the range of the input procedure. The range
of the input procedure must not cause the execution of any MERGE, RETURN,
or SORT statement.

If an input procedure is specified, control is passed to the input procedure
before the file referenced by file-name-1 is sequenced by the SORT statement.
The compiler inserts a return mechanism at the end of the last statement in the
input procedure. When control passes the last statement in the input
procedure, the records that have been released to the file referenced by
file-name-1 are sorted.

 GIVING phrase

file-name-3,...
The output files.

When the GIVING phrase is specified, all the sorted records in file-name-1 are
automatically transferred to the output files (file-name-3,...).

All output files must be described in FD entries in the Data Division.

If the output files (file-name-3,...) contain variable-length records, the size of
the records contained in file-name-1 must not be less than the smallest record
nor greater than the largest record described for the output files. If the output
files contain fixed-length records, the size of the records contained in
file-name-1 must not be greater than the largest record described for the
output files. For more information, see the IBM COBOL Programming Guide for
your platform.

At the time the SORT statement is executed, the output files (file-name-3,...)
must not be open. For each of the output files, the execution of the SORT
statement causes the following actions to be taken:

� The processing of the file is initiated. The initiation is performed as if an
OPEN statement with the OUTPUT phrase had been executed.

372 COBOL Language Reference

SORT Statement

� The sorted logical records are returned and written onto the file. Each
record is written as if a WRITE statement without any optional phrases
had been executed.

For a relative file, the relative key data item for the first record returned
contains the value '1'; for the second record returned, the value '2', etc..
After execution of the SORT statement, the content of the relative key data
item indicates the last record returned to the file.

� The processing of the file is terminated. The termination is performed as if
a CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE AFTER
EXCEPTION/ERROR procedures are executed; however, the execution of such
a USE procedure must not cause the execution of any statement manipulating
the file referenced by, or accessing the record area associated with, file-name-3.
On the first attempt to write beyond the externally defined boundaries of the
file, any USE AFTER STANDARD EXCEPTION/ERROR procedure specified
for the file is executed. If control is returned from that USE procedure or if no
such USE procedure is specified, the processing of the file is terminated.

OUTPUT PROCEDURE phrase

This phrase specifies the name of a procedure that is to select or modify output
records from the sorting operation.

procedure-name-3
Specifies the first (or only) section or paragraph in the OUTPUT PROCEDURE.

procedure-name-4
Identifies the last section or paragraph of the OUTPUT PROCEDURE.

The output procedure can consist of any procedure needed to select, modify,
or copy the records that are made available one at a time by the RETURN
statement in sorted order from the file referenced by file-name-1. The range
includes all statements that are executed as the result of a transfer of control
by CALL, EXIT, GO TO, and PERFORM statements in the range of the output
procedure. The range also includes all statements in declarative procedures
that are executed as a result of the execution of statements in the range of the
output procedure. The range of the output procedure must not cause the
execution of any MERGE, RELEASE, or SORT statement.

If an output procedure is specified, control passes to it after the file referenced
by file-name-1 has been sequenced by the SORT statement. The compiler
inserts a return mechanism at the end of the last statement in the output
procedure and when control passes the last statement in the output procedure,
the return mechanism provides the termination of the sort and then passes
control to the next executable statement after the SORT statement. Before
entering the output procedure, the sort procedure reaches a point at which it
can select the next record in sorted order when requested. The RETURN
statements in the output procedure are the requests for the next record.

Note: The INPUT and OUTPUT PROCEDURE phrases are similar to those for
a basic PERFORM statement. For example, if you name a procedure in an
OUTPUT PROCEDURE, that procedure is executed during the sorting
operation just as if it were named in a PERFORM statement. As with the
PERFORM statement, execution of the procedure is terminated after the last

Part 6. Procedure Division 373

SORT special registers

The special registers, SORT-CORE-SIZE, SORT-MESSAGE, and SORT-MODE-SIZE,
are equivalent to option control statement key words in the sort control file. You
define the sort control data set with the SORT-CONTROL special register.

Note: If you use a sort control file to specify control statements, the values
specified in the sort control file take precedence over those in the special register.

SORT-MESSAGE special register
See “SORT-MESSAGE” on page 15.

SORT-CORE-SIZE special register
See “SORT-CORE-SIZE” on page 15.

SORT-FILE-SIZE special register
See “SORT-FILE-SIZE” on page 15.

SORT-MODE-SIZE special register
See “SORT-MODE-SIZE” on page 16.

SORT-CONTROL special register
See “SORT-CONTROL” on page 14.

SORT-RETURN special register
See “SORT-RETURN” on page 16.

SORT Statement

statement completes execution. The last statement in an INPUT or OUTPUT
PROCEDURE can be the EXIT statement (see “EXIT statement” on page 288).

 Segmentation considerations

If the SORT statement appears in a section that is not in an independent segment,
then any input or output procedure referenced by that SORT statement must
appear:
� Totally within non-independent segments, or
� Wholly contained in a single independent segment.

If a SORT statement appears in an independent segment, then any input or output
procedure referenced by that SORT statement must be contained:
� Totally within non-independent segments, or
� Wholly within the same independent segment as that SORT statement.

374 COBOL Language Reference

LESS
THAN

<

NOT GREATER
THAN

NOT >
LESS OR EQUAL

THAN TO
<=

 Under AIX and Windows, the following relational operators are
allowed in the KEY phrase:

If you specify the KEY to be 'less than', or 'less than or equal to' the data item, the
file position indicator is positioned to the last logical record currently existing in
the file satisfying the comparison.

For an indexed file, if the key that satisfies the comparison has duplicate entries,
the file position indicator is positioned to the last of these entries.

LESS THAN <
NOT GREATER THAN NOT >
LESS THAN OR EQUAL TO <=

START statement

 START statement

The START statement provides a means of positioning within an indexed or
relative file for subsequent sequential record retrieval.

When the START statement is executed, the associated indexed or relative file
must be open in either INPUT or I-O mode.

 Format
��──START──file-name-1─ ──┬ ┬─── ─────�
 └ ┘ ─KEY─ ──┬ ┬──── ──┬ ┬─EQUAL─ ──┬ ┬──── ────────────────────── ─data-name-1─
 └ ┘─IS─ │ │└ ┘─TO─
 ├ ┤─=───────────────────────────────────
 ├ ┤ ─ ─ ──┬ ┬────── ─────────────────────
 │ │└ ┘─ ─
 ├ ┤─ ───────────────────────────────────
 ├ ┤ ─GREATER─ ──┬ ┬────── ──────────────────
 │ │└ ┘─THAN─
 ├ ┤─>───────────────────────────────────
 ├ ┤ ─NOT LESS─ ──┬ ┬────── ─────────────────
 │ │└ ┘─THAN─
 ├ ┤─NOT <───────────────────────────────
 ├ ┤ ─ ─ ──┬ ┬────── ──────────────
 │ │└ ┘─ ─
 ├ ┤─ ───────────────────────────────
 ├ ┤ ─ ─ ──┬ ┬────── ─ ─ ──┬ ┬──── ───
 │ │└ ┘─ ─ └ ┘─ ─
 ├ ┤─ ──────────────────────────────────
 ├ ┤ ─GREATER─ ──┬ ┬────── ─OR EQUAL─ ──┬ ┬────
 │ │└ ┘─THAN─ └ ┘─TO─
 └ ┘─>=──────────────────────────────────

�─ ──┬ ┬── ───�
 └ ┘ ─INVALID─ ──┬ ┬───── ─imperative-statement-1─
 └ ┘─KEY─

�─ ──┬ ┬── ──┬ ┬─────────── ───────────────────────────────��
 └ ┘ ─NOT INVALID─ ──┬ ┬───── ─imperative-statement-2─ └ ┘─END-START─
 └ ┘─KEY─

file-name-1
Must name a file with sequential or dynamic access. File-name-1 must be
defined in an FD entry in the Data Division, and must not name a sort file.

 KEY phrase

When the KEY phrase is specified, the file position indicator is positioned at the
logical record in the file whose key field satisfies the comparison.

When the KEY phrase is not specified, KEY IS EQUAL (to the prime record key) is
implied.

Part 6. Procedure Division 375

Both the INVALID KEY phrase and the EXCEPTION/ERROR procedure can be
omitted.

Data-name-1 need not be an alphanumeric item. However, for purposes of
the I/O operation, it will be treated as an alphanumeric item.

START statement

data-name-1
Can be qualified; it cannot be subscripted.

When the START statement is executed, a comparison is made between the current
value in the key data-name and the corresponding key field in the file's index.

If the FILE STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the START statement is executed (See “Status key” on
page 244).

INVALID KEY phrases

If the comparison is not satisfied by any record in the file, an invalid key condition
exists; the position of the file position indicator is undefined, and (if specified) the
INVALID KEY imperative-statement is executed. (See “Invalid key condition”
under “Common processing facilities” on page 244.)

The INVALID KEY phrase must be specified if no EXCEPTION/ERROR procedure
is explicitly or implicitly specified for this file.

 END-START phrase

This explicit scope terminator serves to delimit the scope of the START statement.
END-START permits a conditional START statement to be nested in another
conditional statement. END-START can also be used with an imperative START
statement.

For more information, see “Delimited scope statements” on page 237.

 Indexed files

When the KEY phrase is specified, the key data item used for the comparison is
data-name-1.

When the KEY phrase is not specified, the key data item used for the EQUAL TO
comparison is the prime RECORD KEY.

When START statement execution is successful, the RECORD KEY or
ALTERNATE RECORD KEY with which data-name-1 is associated becomes the
key of reference for subsequent READ statements.

data-name-1
Can be any of the following:

� The prime RECORD KEY
� Any ALTERNATE RECORD KEY
� An alphanumeric data item within a record description for a file whose

leftmost character position corresponds to the leftmost character position of
that record key; it can be qualified. The data item must be less than or
equal to the length of the record key for the file.

376 COBOL Language Reference

START statement

The file position indicator points to the first record in the file whose key field
satisfies the comparison. If the operands in the comparison are of unequal lengths,
the comparison proceeds as if the longer field were truncated on the right to the
length of the shorter field. All other numeric and nonnumeric comparison rules
apply, except that the PROGRAM COLLATING SEQUENCE clause, if specified,
has no effect.

When START statement execution is successful, the RECORD KEY with which
data-name-1 is associated becomes the key of reference for subsequent READ
statements.

When START statement execution is unsuccessful, the key of reference is
undefined.

 Relative files

When the KEY phrase is specified, data-name-1 must specify the RELATIVE KEY.

Whether or not the KEY phrase is specified, the key data item used in the
comparison is the RELATIVE KEY data item. The file position indicator points to
the logical record in the file whose key satisfies the comparison.

Part 6. Procedure Division 377

Can be a signed numeric integer or non-integer literal, but cannot be a
floating-point literal.

 Under AIX and Windows, do not use the STOP RUN or STOP literal
statement in programs compiled with the THREAD compiler option.

The STOP RUN statement does not have to be the last statement in a sequence, but
the statements following the STOP RUN will not be executed.

STOP statement

 STOP statement

The STOP statement halts execution of the object program either permanently or
temporarily.

 Format
��──STOP─ ──┬ ┬─RUN───── ───��
 └ ┘─literal─

literal
Can be numeric or nonnumeric, and can be any figurative constant except ALL
literal. If the literal is numeric, it must be an unsigned integer.

When STOP literal is specified, the literal is communicated to the operator, and
object program execution is suspended. Program execution is resumed only after
operator intervention, and continues at the next executable statement in sequence.

The STOP literal statement is useful for special situations (a special tape or disk
must be mounted, a specific daily code must be entered, and so forth) when
operator intervention is needed during program execution. However, the ACCEPT
and DISPLAY statements are preferred when operator intervention is needed.

When STOP RUN is specified, execution of the object program is terminated, and
control is returned to the system. If a STOP RUN statement appears in a sequence
of imperative statements within a sentence, it must be the last or only statement in
the sequence.

The STOP RUN statement closes all files defined in any of the programs
comprising the run unit.

For use of the STOP RUN statement in calling and called programs, see the table
below.

Termination
statement

Main program Subprogram

STOP RUN Return to calling program. (Can
be the system and cause the
application to end.)

Return directly to the program that
called the main program. (Can be
the system and cause the
application to end.)

378 COBOL Language Reference

None of the identifiers in a STRING statement can be windowed date fields.

identifier-1 through identifier-3
Can be DBCS data items. If one of these identifiers is a DBCS item, then all of
them, and all literals, must be DBCS items. Cannot be external floating-point
items.

literal-1 and literal-2
Can be DBCS literals. If one of these is a DBCS literal, then all of them must
be DBCS literals, and identifier-1 through identifier-3 must be DBCS items.

SPACE is the only figurative constant allowed for DBCS items.

STRING statement

 STRING statement

The STRING statement strings together the partial or complete contents of two or
more data items or literals into one single data item.

One STRING statement can be written instead of a series of MOVE statements.

 Format
 ┌ ┐───
 │ │┌ ┐────────────────────
��──STRING─ ───/ ┴ ───/ ┴──┬ ┬─identifier-1─ ─DELIMITED─ ──┬ ┬──── ──┬ ┬─identifier-2─ ──�
 └ ┘─literal-1──── └ ┘─BY─ ├ ┤─literal-2────
 └ ┘─SIZE─────────

�──INTO──identifier-3─ ──┬ ┬───────────────────────────────── ─────────────────�
 └ ┘ ──┬ ┬────── ─POINTER──identifier-4─
 └ ┘─WITH─

�─ ──┬ ┬── ────────────────────────────�
 └ ┘ ──┬ ┬──── ─OVERFLOW──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬──────────── ──────��
 └ ┘ ─NOT─ ──┬ ┬──── ─OVERFLOW──imperative-statement-2─ └ ┘─END-STRING─
 └ ┘─ON─

All identifiers (except identifier-4, the POINTER item) must have USAGE
DISPLAY, explicitly or implicitly.

identifier-1
Represents the sending field(s).

When the sending field or any of the delimiters is an elementary numeric item,
it must be described as an integer, and its PICTURE character-string must not
contain the symbol P.

literal-1
Represents the sending field(s).

All literals must be nonnumeric literals; each can be any figurative constant except
the ALL literal. When a figurative constant is specified, it is considered a
1-character nonnumeric literal.

DELIMITED BY phrase

The DELIMITED BY phrase sets the limits of the string.

Part 6. Procedure Division 379

 or external floating-point item
As an IBM extension,

identifier-3 can be reference-modified.

When identifier-3 (the receiving field) is a DBCS data item, identifier-4
indicates the relative DBCS character position (not the relative byte position) in
the receiving field.

STRING statement

identifier-2, literal-2
Are delimiters; that is, character(s) that delimit the data to be transferred.

If identifier-1 or identifier-2 occupies the same storage area as identifier-3 or
identifier-4, undefined results will occur, even if the identifiers are defined by
the same data description entry.

When a figurative constant is specified, it is considered a 1-character
nonnumeric literal.

SIZE
Transfers the complete sending area.

 INTO phrase

identifier-3
Represents the receiving field.

It must not represent an edited data item and
must not be described with the JUSTIFIED clause.

If identifier-3 and identifier-4 occupy the same storage area, undefined results
will occur, even if the identifiers are defined by the same data description
entry.

 POINTER phrase

identifier-4
Represents the pointer field, which points to a character position in the
receiving field.

It must be an elementary integer data item large enough to contain a value
equal to the length of the receiving area plus 1. The pointer field must not
contain the symbol P in its PICTURE character-string.

ON OVERFLOW phrases

imperative-statement-1
Executed when the pointer value (explicit or implicit):

� Is less than 1
� Exceeds a value equal to the length of the receiving field.

When either of the above conditions occurs, an overflow condition exists, and
no more data is transferred. Then the STRING operation is terminated, the
NOT ON OVERFLOW phrase, if specified, is ignored, and control is
transferred to the end of the STRING statement or, if the ON OVERFLOW
phrase is specified, to imperative-statement-1.

If control is transferred to imperative-statement-1, execution continues
according to the rules for each statement specified in imperative-statement-1.
If a procedure branching or conditional statement that causes explicit transfer
of control is executed, control is transferred according to the rules for that

380 COBOL Language Reference

STRING statement

statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the STRING
statement.

If at the time of execution of a STRING statement, conditions that would cause
an overflow condition are not encountered, then after completion of the
transfer of data, the ON OVERFLOW phrase, if specified, is ignored. Control
is then transferred to the end of the STRING statement, or if the NOT ON
OVERFLOW phrase is specified, to imperative-statement-2.

If control is transferred to imperative-statement-2, execution continues
according to the rules for each statement specified in imperative-statement-2.
If a procedure branching or conditional statement that causes explicit transfer
of control is executed, control is transferred according to the rules for that
statement. Otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the STRING
statement.

 END-STRING phrase

This explicit scope terminator serves to delimit the scope of the STRING statement.
END-STRING permits a conditional STRING statement to be nested in another
conditional statement. END-STRING can also be used with an imperative STRING
statement.

For more information, see “Delimited scope statements” on page 237.

 Data flow

When the STRING statement is executed, data is transferred from the sending
fields to the receiving field. The order in which sending fields are processed is the
order in which they are specified. The following rules apply:
� Characters from the sending fields are transferred to the receiving field,

according to the rules for alphanumeric to alphanumeric elementary moves,
except that no space filling is provided (see “MOVE statement” on page 320).

� When DELIMITED BY identifier/literal is specified, the contents of each
sending item are transferred, character-by-character, beginning with the
leftmost character and continuing until either:
— A delimiter for this sending field is reached (the delimiter itself is not

transferred), or
— The rightmost character of this sending field has been transferred.

� When DELIMITED BY SIZE identifier is specified, each entire sending field is
transferred to the receiving field.

� When the receiving field is filled, or when all the sending fields have been
processed, the operation is ended.

� When the POINTER phrase is specified, an explicit pointer field is available to
the COBOL user to control placement of data in the receiving field. The user
must set the explicit pointer's initial value, which must not be less than 1 and
not more than the character count of the receiving field. (Note that the pointer
field must be defined as a field large enough to contain a value equal to the
length of the receiving field plus 1; this precludes arithmetic overflow when
the system updates the pointer at the end of the transfer.)

Part 6. Procedure Division 381

STRING statement

� When the POINTER phrase is not specified, no pointer is available to the user.
However, a conceptual implicit pointer with an initial value of 1 is used by the
system.

� Conceptually, when the STRING statement is executed, the initial pointer value
(explicit or implicit) is the first character position within the receiving field into
which data is to be transferred. Beginning at that position, data is then
positioned, character-by-character, from left to right. After each character is
positioned, the explicit or implicit pointer is increased by 1. The value in the
pointer field is changed only in this manner. At the end of processing, the
pointer value always indicates a value equal to one character beyond the last
character transferred into the receiving field.

Note: Subscript, reference modification, variable-length or variable location
calculations, and function evaluations are performed only once, at the beginning of
the execution of the STRING statement. Therefore, if identifier-3 or identifier-4 is
used as a subscript, reference-modifier, or function argument in the STRING
statement, or affects the length or location of any of the identifiers in the STRING
statement, these values are determined at the beginning of the STRING statement,
and are not affected by any results of the STRING statement.

After STRING statement execution is completed, only that part of the receiving
field into which data was transferred is changed. The rest of the receiving field
contains the data that was present before this execution of the STRING statement.

When the following STRING statement is executed, the results obtained will be
like those illustrated in Figure 18.

STRING ID-1 ID-2 DELIMITED BY ID-3
ID-4 ID-5 DELIMITED BY SIZE

INTO ID-7 WITH POINTER ID-8
END-STRING

Figure 18. STRING statement execution results

382 COBOL Language Reference

SUBTRACT statement

 SUBTRACT statement

The SUBTRACT statement subtracts one numeric item, or the sum of two or more
numeric items, from one or more numeric items, and stores the result.

 Format 1
 ┌ ┐──────────────────── ┌ ┐─────────────────────────────
��──SUBTRACT─ ───/ ┴──┬ ┬─identifier-1─ ─FROM─ ───/ ┴ ─identifier-2─ ──┬ ┬───────── ────�
 └ ┘─literal-1──── └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬────────────── ──��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-SUBTRACT─
 └ ┘─ON─

All identifiers or literals preceding the key word FROM are added together and
this sum is subtracted from and stored immediately in identifier-2. This process is
repeated for each successive occurrence of identifier-2, in the left-to-right order in
which identifier-2 is specified.

 Format 2
 ┌ ┐────────────────────
��──SUBTRACT─ ───/ ┴──┬ ┬─identifier-1─ ─FROM─ ──┬ ┬─identifier-2─ ─────────────────�
 └ ┘─literal-1──── └ ┘─literal-2────

 ┌ ┐─────────────────────────────
�─ ─GIVING─ ───/ ┴ ─identifier-3─ ──┬ ┬───────── ───────────────────────────────────�
 └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬────────────── ──��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-SUBTRACT─
 └ ┘─ON─

All identifiers or literals preceding the key word FROM are added together and
this sum is subtracted from identifier-2 or literal-2. The result of the subtraction is
stored as the new value of each data item referenced by identifier-3.

 Format 3
��──SUBTRACT─ ──┬ ┬─CORRESPONDING─ ─identifier-1──FROM─────────────────────────�
 └ ┘─CORR──────────

�─ ─identifier-2─ ──┬ ┬───────── ───�
 └ ┘─ROUNDED─

�─ ──┬ ┬── ──────────────────────────�
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬────────────── ──��
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-SUBTRACT─
 └ ┘─ON─

Elementary data items within identifier-1 are subtracted from, and the results are
stored in, the corresponding elementary data items within identifier-2.

The composite of operands must not contain more than 18 digits.

Part 6. Procedure Division 383

As an IBM extension, the composite of operands can contain more than 18 digits.

The following restrictions apply to date fields:

� In format 1, identifier-1 can specify at most one date field. If identifier-1
specifies a date field, then every instance of identifier-2 must specify a date
field that is compatible with the date field specified by identifier-1. If
identifier-1 does not specify a date field, then identifier-2 can specify one
or more date fields, with no restriction on their DATE FORMAT clauses.

� In format 2, identifier-1 and identifier-2 can each specify at most one date
field. If identifier-1 specifies a date field, then the FROM identifier-2 must
be a date field that is compatible with the date field specified by
identifier-1. Identifier-3 can specify one or more date fields. If identifier-2
specifies a date field and identifier-1 does not, then every instance of
identifier-3 must specify a date field that is compatible with the date field
specified by identifier-2.

� In format 3, if an item within identifier-1 is a date field, then the
corresponding item within identifier-2 must be a compatible date field.

� A year-last date field is allowed in a SUBTRACT statement only as
identifier-1 and when the result of the subtraction is a non-date.

There are two steps to determining the result of a SUBTRACT statement that
involves one or more date fields:

1. Subtraction: determine the result of the subtraction operation, as described
under “Subtraction involving date fields” on page 212.

2. Storage: determine how the result is stored in the receiving field. (In
formats 1 and 3, the receiving field is identifier-2; in format 3, the receiving
field is the GIVING identifier-3.) For details, see “Storing arithmetic
results that involve date fields” on page 213.

Floating-point data items and literals can be used anywhere numeric data items
and literals can be specified.

SUBTRACT statement

|
| For more information on arithmetic intermediate results, see the IBM COBOL
| Programming Guide for your platform.

For all formats:

identifier
In format 1, must name an elementary numeric item.

In format 2, must name an elementary numeric item, unless the identifier
follows the word GIVING. Each identifier following the word GIVING must
name a numeric or numeric-edited elementary item.

In format 3, must name a group item.

literal
Must be a numeric literal.

 ROUNDED phrase

For information on the ROUNDED phrase, and for operand considerations, see
“ROUNDED phrase” on page 239.

384 COBOL Language Reference

SUBTRACT statement

SIZE ERROR phrases

For information on the SIZE ERROR phrases, and for operand considerations, see
“SIZE ERROR phrases” on page 240.

CORRESPONDING phrase (format 3)

See “CORRESPONDING phrase” on page 238.

 END-SUBTRACT phrase

This explicit scope terminator serves to delimit the scope of the SUBTRACT
statement. END-SUBTRACT permits a conditional SUBTRACT statement to be
nested in another conditional statement. END-SUBTRACT can also be used with
an imperative SUBTRACT statement.

For more information, see “Delimited scope statements” on page 237.

Part 6. Procedure Division 385

None of the identifiers in an UNSTRING statement can be windowed date fields.

As an IBM extension, identifier-1 can be reference-modified. It can be an
alphanumeric-edited or an alphabetic data item. It can also be a DBCS data
item.

UNSTRING statement

 UNSTRING statement

The UNSTRING statement causes contiguous data in a sending field to be
separated and placed into multiple receiving fields.

 Format
��──UNSTRING──identifier-1───�

�─ ──┬ ┬─── ────────�
 └ ┘ ─DELIMITED─ ──┬ ┬──── ──┬ ┬───── ──┬ ┬─identifier-2─ ──┬ ┬───────────────────────────────────
 └ ┘─BY─ └ ┘─ALL─ └ ┘─literal-1──── │ │┌ ┐─────────────────────────────────
 └ ┘ ───/ ┴ ─OR─ ──┬ ┬───── ──┬ ┬─identifier-3─
 └ ┘─ALL─ └ ┘─literal-2────

 ┌ ┐──
�──INTO─ ───/ ┴ ─identifier-4─ ──┬ ┬───────────────────────────────── ──┬ ┬───────────────────────────── ───�
 └ ┘ ─DELIMITER─ ──┬ ┬──── ─identifier-5─ └ ┘ ─COUNT─ ──┬ ┬──── ─identifier-6─
 └ ┘─IN─ └ ┘─IN─

�─ ──┬ ┬───────────────────────────────── ──┬ ┬──────────────────────────────── ────────────────────────�
 └ ┘ ──┬ ┬────── ─POINTER──identifier-7─ └ ┘ ─TALLYING─ ──┬ ┬──── ─identifier-8─
 └ ┘─WITH─ └ ┘─IN─

�─ ──┬ ┬── ───�
 └ ┘ ──┬ ┬──── ─OVERFLOW──imperative-statement-1─
 └ ┘─ON─

�─ ──┬ ┬─── ──┬ ┬────────────── ───────────────────────────��
 └ ┘ ─NOT─ ──┬ ┬──── ─OVERFLOW──imperative-statement-2─ └ ┘─END-UNSTRING─
 └ ┘─ON─

identifier-1
Represents the sending field. Data is transferred from this field to the data
receiving fields (identifier-4).

It must be an alphanumeric data item.

One UNSTRING statement can take the place of a series of MOVE statements,
except that evaluation or calculation of certain elements is performed only once, at
the beginning of the execution of the UNSTRING statement. For more
information, see “Values at the end of execution of the UNSTRING statement” on
page 391.

The rules for moving an alphanumeric elementary item are the same as those for
the MOVE statement (see “MOVE statement” on page 320).

DELIMITED BY phrase

This phrase specifies delimiters within the data that control the data transfer.

If the DELIMITED BY phrase is not specified, the DELIMITER IN and COUNT IN
phrases must not be specified.

identifier-2
identifier-3

Each represents one delimiter.

Each can be either of the following:

� An alphanumeric data item

386 COBOL Language Reference

� A DBCS data item

If any are DBCS items, then all must be DBCS items. Figurative constants
SPACE and SPACES are allowed for DBCS items.

� A DBCS literal

If any are DBCS literals, all must be DBCS literals. Figurative constants
SPACE and SPACES are allowed for DBCS literals.

 or DBCS

UNSTRING statement

literal-1
literal-2

Each represents one delimiter.

Each can either of the following:

� A nonnumeric literal

Each can be any figurative constant except the ALL literal. When a figurative
constant is specified, it is considered to be a 1-character nonnumeric literal.

ALL
One or more contiguous occurrences of any delimiters are treated as if they
were only one occurrence; this one occurrence is moved to the delimiter
receiving field (identifier-5), if specified. The delimiting characters in the
sending field are treated as an elementary alphanumeric item and are
moved into the current delimiter receiving field, according to the rules of the
MOVE statement.

When DELIMITED BY ALL is not specified, and two or more contiguous
occurrences of any delimiter are encountered, the current data receiving field
(identifier-4) is filled with spaces or zeros, according to the description of the
data receiving field.

Delimiter with two or more characters

A delimiter that contains two or more characters is recognized as a delimiter only
if the delimiting characters are both of the following:
� Contiguous
� In the sequence specified in the sending field

Two or more delimiters

When two or more delimiters are specified, an OR condition exists, and each
non-overlapping occurrence of any one of the delimiters is recognized in the
sending field in the sequence specified.

For example:

DELIMITED BY "AB" or "BC"

An occurrence of either AB or BC in the sending field is considered a delimiter. An
occurrence of ABC is considered an occurrence of AB.

 INTO phrase

This phrase specifies the fields where the data is to be moved.

Part 6. Procedure Division 387

� DBCS

Identifier-4 cannot be defined as a floating-point item.

� A DBCS data item

When identifier-1 (the sending field) is a DBCS data item, identifier-6
indicates the number of DBCS characters (not the number of bytes)
examined in the sending field.

UNSTRING statement

identifier-4
Represents the data receiving fields.

Each must have USAGE DISPLAY. These fields can be defined as any of the
following:

� Alphabetic
� Alphanumeric
� Numeric (without the symbol P in the PICTURE string)—must not be

defined as an alphanumeric-edited item or a numeric-edited item.

DELIMITER IN
If the DELIMITED BY phrase is not specified, the DELIMITER IN phrase must
not be specified.

identifier-5
Represents the delimiter receiving fields. It can be:

� Alphanumeric

COUNT IN
If the DELIMITED BY phrase is not specified, the COUNT IN phrase must not
be specified.

identifier-6
Is the data-count field for each data transfer. Each field holds the count of
examined characters in the sending field, terminated by the delimiters or
the end of the sending field, for the move to this receiving field; the
delimiters are not included in this count.

Identifier-6 must be an integer data item defined without the symbol P in
the PICTURE string.

 POINTER phrase

When the POINTER phrase is specified, the value of the pointer field behaves as if
it were increased by 1 for each examined character in the sending field. When
execution of the UNSTRING statement is completed, the pointer field contains a
value equal to its initial value, plus the number of characters examined in the
sending field.

When this phrase is specified, the user must initialize identifier-7 before execution
of the UNSTRING statement begins.

identifier-7
Is the pointer field. This field contains a value that indicates a relative
position in the sending field.

Identifier-7 must be an integer data item defined without the symbol P in the
PICTURE string.

It must be described as a data item of sufficient size to contain a value equal to
1 plus the size of the data item referenced by identifier-1.

388 COBOL Language Reference

When identifier-1 (the sending field) is a DBCS data item, identifier-7 indicates
the relative DBCS character position (not the relative byte position) in the
sending field.

UNSTRING statement

TALLYING IN phrase

When the TALLYING phrase is specified, the field-count field contains (at the end
of execution of the UNSTRING statement) a value equal to the initial value, plus
the number of data receiving areas acted upon.

When this phrase is specified, the user must initialize identifier-8 before execution
of the UNSTRING statement begins.

identifier-8
Is the field-count field. This field is increased by the number of data
receiving fields acted upon in this execution of the UNSTRING statement.

It must be an integer data item defined without the symbol P in the PICTURE
string.

ON OVERFLOW phrases

An overflow condition exists when:
� The pointer value (explicit or implicit) is less than 1.
� The pointer value (explicit or implicit) exceeds a value equal to the length of

the sending field.
� All data receiving fields have been acted upon, and the sending field still

contains unexamined characters.

When an overflow condition occurs

An overflow condition results in the following:
1. No more data is transferred.
2. The UNSTRING operation is terminated.
3. The NOT ON OVERFLOW phrase, if specified, is ignored.
4. Control is transferred to the end of the UNSTRING statement or, if the ON

OVERFLOW phrase is specified, to imperative-statement-1.

imperative-statement-1
Statement or statements for dealing with an overflow condition.

If control is transferred to imperative-statement-1, execution continues
according to the rules for each statement specified in imperative- statement-1.
If a procedure branching or conditional statement that causes explicit transfer
of control is executed, control is transferred according to the rules for that
statement. Otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the UNSTRING
statement.

When an overflow condition does not occur

When, during execution of an UNSTRING statement, conditions that would cause
an overflow condition are not encountered, then:
1. The transfer of data is completed.
2. The ON OVERFLOW phrase, if specified, is ignored.

Part 6. Procedure Division 389

UNSTRING statement

3. Control is transferred to the end of the UNSTRING statement or, if the NOT
ON OVERFLOW phrase is specified, to imperative-statement-2.

imperative-statement-2
Statement or statements for dealing with an overflow condition that does not
occur.

If control is transferred to imperative-statement-2, execution continues
according to the rules for each statement specified in imperative- statement-2.
If a procedure branching or conditional statement that causes explicit transfer
of control is executed, control is transferred according to the rules for that
statement. Otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the UNSTRING
statement.

 END-UNSTRING phrase

This explicit scope terminator serves to delimit the scope of the UNSTRING
statement. END-UNSTRING permits a conditional UNSTRING statement to be
nested in another conditional statement. END-UNSTRING can also be used with
an imperative UNSTRING statement.

For more information, see “Delimited scope statements” on page 237.

 Data flow

When the UNSTRING statement is initiated, data is transferred from the sending
field to the current data receiving field, according to the following rules:

Stage 1: Examine

1. If the POINTER phrase is specified, the field is examined, beginning at the
relative character position specified by the value in the pointer field.

If the POINTER phrase is not specified, the sending field character-string is
examined, beginning with the leftmost character.

2. If the DELIMITED BY phrase is specified, the examination proceeds from left
to right, character-by-character, until a delimiter is encountered. If the end of
the sending field is reached before a delimiter is found, the examination ends
with the last character in the sending field. If there are more receiving fields,
the next one is selected; otherwise, an overflow condition occurs.

If the DELIMITED BY phrase is not specified, the number of characters
examined is equal to the size of the current data receiving field, which
depends on its data category, as shown in Table 40 on page 304.

Table 49 (Page 1 of 2). Characters examined when DELIMITED BY is not specified

IF the receiving field is...
THEN the number of characters examined
is...

alphanumeric or alphabetic equal to the number of characters in the
current receiving field

numeric equal to the number of characters in integer
portion of the current receiving field

described with the SIGN IS SEPARATE
clause

1 less than the size of the current receiving
field

390 COBOL Language Reference

UNSTRING statement

Stage 2: Move

3. The examined characters (excluding any delimiter characters) are treated as an
alphanumeric elementary item, and are moved into the current data receiving
field, according to the rules for the MOVE statement (see “MOVE statement”
on page 320).

4. If the DELIMITER IN phrase is specified, the delimiting characters in the
sending field are treated as an elementary alphanumeric item and are moved
to the current delimiter receiving field, according to the rules for the MOVE
statement. If the delimiting condition is the end of the sending field, the
current delimiter receiving field is filled with spaces.

5. If the COUNT IN phrase is specified, a value equal to the number of examined
characters (excluding any delimiters) is moved into the data count field,
according to the rules for an elementary move.

Stage 3: Successive Iterations

6. If the DELIMITED BY phrase is specified, the sending field is further
examined, beginning with the first character to the right of the delimiter.

If the DELIMITED BY phrase is not specified, the sending field is further
examined, beginning with the first character to the right of the last character
examined.

7. For each succeeding data receiving field, this process of examining and moving
is repeated until either of the following occurs:
� All the characters in the sending field have been transferred.
� There are no more unfilled data receiving fields.

Values at the end of execution of the UNSTRING statement

The following operations are performed only once, at the beginning of the
execution of the UNSTRING statement:
� Calculations of subscripts, reference modifications, variable-lengths, variable

locations
� Evaluations of functions

Therefore, if identifier-4, identifier-5, identifier-6, identifier-7, or identifier-8 is used
as a subscript, reference-modifier, or function argument in the UNSTRING
statement, or affects the length or location of any of the identifiers in the
UNSTRING statement, then these values are determined at the beginning of the
UNSTRING statement, and are not affected by any results of the UNSTRING
statement.

Table 49 (Page 2 of 2). Characters examined when DELIMITED BY is not specified

IF the receiving field is...
THEN the number of characters examined
is...

described as a variable-length data item determined by the size of the current
receiving field at the beginning of the
UNSTRING operation

Example of the UNSTRING statement

Figure 19 shows the execution results for an example of the UNSTRING statement.

Part 6. Procedure Division 391

UNSTRING statement

Figure 19. Results of UNSTRING statement execution

392 COBOL Language Reference

INVALID imperative-statement-1 NOT INVALID imperative-statement-2
KEY KEY

Format 3—line-sequential files
��──WRITE──record-name-1─ ──┬ ┬──────────────────── ──�
 └ ┘ ─FROM──identifier-1─

�─ ─── ─ ──┬ ┬─── ──┬ ┬─────────── ──────────────��
 └ ┘ ─── ──AFTER─ ──┬ ┬─────────── ──┬ ┬ ──┬ ┬─identifier-2─ ──┬ ┬─────── └ ┘─END-WRITE─
 └ ┘─ADVANCING─ │ │└ ┘─integer-1──── ├ ┤─LINE──
 │ │└ ┘─LINES─
 └ ┘─PAGE────────────────────────

If record-name-1 is defined as a DBCS data item, Identifier-1 must be a DBCS
data item.

For relative files, as an IBM extension, the number of character positions in the
record-name can be different from the number of character positions in the
record being replaced.

WRITE statement

 WRITE statement

The WRITE statement releases a logical record for an output or input/output file.

When the WRITE statement is executed:
� The associated sequential file must be open in OUTPUT or EXTEND mode.
� The associated indexed or relative file must be open in OUTPUT, I-O, or

EXTEND mode.
Format 1—sequential files

��──WRITE──record-name-1─ ──┬ ┬────────────────────── ──�
 └ ┘─FROM──identifier-1───(1)

�─ ──┬ ┬──┬ ┬── ─┤ phrase 1 ├─────────────────── ─────────�
 │ │└ ┘ ──┬ ┬─BEFORE─ ──┬ ┬─────────── ──┬ ┬ ──┬ ┬─identifier-2─ ──┬ ┬───────
 │ │└ ┘─AFTER── └ ┘─ADVANCING─ │ │└ ┘─integer-1──── ├ ┤─LINE──
 │ ││ │└ ┘─LINES─
 │ │├ ┤─mnemonic-name-1─────────────
 │ │└ ┘─PAGE────────────────────────
 └ ┘ ──┬ ┬── ──┬ ┬──
 └ ┘ ─ ─ ──┬ ┬───── ─ ─ └ ┘ ─ ─ ──┬ ┬───── ─ ─
 └ ┘─ ─ └ ┘─ ─

�─ ──┬ ┬─────────── ───��
 └ ┘─END-WRITE─

phrase 1
├─ ──┬ ┬─── ──�
 └ ┘ ──┬ ┬──── ──┬ ┬─END-OF-PAGE─ ─imperative-statement-3─
 └ ┘─AT─ └ ┘─EOP─────────

�─ ──┬ ┬── ───┤
 └ ┘ ─NOT─ ──┬ ┬──── ──┬ ┬─END-OF-PAGE─ ─imperative-statement-4─
 └ ┘─AT─ └ ┘─EOP─────────

Note:
1 The BEFORE, AFTER, INVALID KEY, and AT END OF PAGE phrases are not valid for STL

files, or OS/390 and VM VSAM files.

Format 2—indexed and relative files
��──WRITE──record-name-1─ ──┬ ┬──────────────────── ──┬ ┬── ────�
 └ ┘ ─FROM──identifier-1─ └ ┘ ─INVALID─ ──┬ ┬───── ─imperative-statement-1─
 └ ┘─KEY─

�─ ──┬ ┬── ──┬ ┬─────────── ───────────────────────────────��
 └ ┘ ─NOT INVALID─ ──┬ ┬───── ─imperative-statement-2─ └ ┘─END-WRITE─
 └ ┘─KEY─

record-name-1
Must be defined in a Data Division FD entry. Record-name-1 can be qualified.
It must not be associated with a sort or merge file.

Part 6. Procedure Division 393

� A floating-point data item or a DBCS data item

As an IBM extension, you can specify the ADVANCING PAGE and
END-OF-PAGE phrases in a single WRITE statement.

Identifier-2 cannot name a windowed date field.

WRITE statement

FROM phrase
The result of the execution of the WRITE statement with the FROM identifier-1
phrase is equivalent to the execution of the following statements in the order
specified:

MOVE identifier-1 TO record-name-1.
WRITE record-name-1.

The MOVE is performed according to the rules for the MOVE statement
without the CORRESPONDING phrase.

identifier-1
Identifier-1 can be any of the following:

� The name of an entry in the Working-Storage Section or the LINKAGE
SECTION

� The name of a record description for another previously opened file
� The name of an alphanumeric function identifier

Identifier-1 and record-name-1 must not refer to the same storage area.

After the WRITE statement is executed, the information is still available in
identifier-1. (See “INTO/FROM Identifier Phrase” under “Common processing
facilities” on page 244.)

identifier-2
Must be an integer data item.

 ADVANCING phrase

The ADVANCING phrase controls positioning of the output record on the page.

 Under AIX and Windows, when using WRITE ADVANCING with
environment names C01-C012 or S01-S05, one line is advanced.

 Under OS/390, the BEFORE and AFTER phrases are not supported for
VSAM files. QSAM files are sequentially organized. The ADVANCING and
END-OF-PAGE phrases control the vertical positioning of each line on a printed
page.

If the printed page is held on an intermediate device (a disk, for example), the
format can appear different than the expected output when it is edited or browsed.

ADVANCING phrase rules

When the ADVANCING phrase is specified, the following rules apply:
1. When BEFORE ADVANCING is specified, the line is printed before the page is

advanced.
2. When AFTER ADVANCING is specified, the page is advanced before the line

is printed.
3. When identifier-2 is specified, the page is advanced the number of lines equal

to the current value in identifier-2. Identifier-2 must name an elementary
integer data item.

4. When integer is specified, the page is advanced the number of lines equal to
the value of integer.

394 COBOL Language Reference

The mnemonic-name phrase can also be specified for stacker selection with a
card punch file. When using stacker selection, WRITE AFTER ADVANCING
must be used.

Note: If you use the ADV compiler option, the compiler adds 1 byte
to the record length in order to allow for the control character. If in your record
definition you already reserve the first byte for the control character, you should
use the NOADV option. For files defined with the LINAGE clause, the NOADV
option has no effect. The compiler processes these files as if the ADV option were
specified.

WRITE statement

5. Integer or the value in identifier-2 can be zero.
6. When PAGE is specified, the record is printed on the logical page BEFORE or

AFTER (depending on the phrase used) the device is positioned to the next
logical page. If PAGE has no meaning for the device used, then BEFORE or
AFTER (depending on the phrase specified) ADVANCING 1 LINE is provided.

If the FD entry contains a LINAGE clause, the repositioning is to the first
printable line of the next page, as specified in that clause. If the LINAGE
clause is omitted, the repositioning is to line 1 of the next succeeding page.

7. When mnemonic-name is specified, a skip to channels 1 through
12, or space suppression, takes place. Mnemonic-name must be equated with
environment-name-1 in the SPECIAL-NAMES paragraph.

The ADVANCING phrase of the WRITE statement, or the presence of a LINAGE
clause on the file, causes a carriage control character to be generated in the record
that is written. If the corresponding file connector is EXTERNAL, all file
connectors within the run unit must be defined such that carriage control
characters will be generated for records that are written. That is, if all the files
have a LINAGE clause, some of the programs can use the WRITE statement with
the ADVANCING phrase and other programs can use the WRITE statement
without the ADVANCING phrase. However, if none of the files has a LINAGE
clause, then if any of the programs use the WRITE statement with the
ADVANCING phrase, all of the programs in the run unit that have a WRITE
statement must use the WRITE statement with the ADVANCING phrase.

When the ADVANCING phrase is omitted, automatic line advancing is provided,
as if AFTER ADVANCING 1 LINE had been specified.

 LINAGE-COUNTER rules

If the LINAGE clause is specified for this file, the associated LINAGE-COUNTER
special register is modified during the execution of the WRITE statement,
according to the following rules:

1. If ADVANCING PAGE is specified, LINAGE-COUNTER is reset to 1.

2. If ADVANCING identifier-2 or integer is specified, LINAGE-COUNTER is
increased by the value in identifier-2 or integer.

3. If the ADVANCING phrase is omitted, LINAGE-COUNTER is increased by 1.

4. When the device is repositioned to the first available line of a new page,
LINAGE-COUNTER is reset to 1.

Part 6. Procedure Division 395

As an IBM extension, you can specify both the ADVANCING PAGE and
END-OF-PAGE phrases in a single WRITE statement.

WRITE statement

 END-OF-PAGE phrases

 Under OS/390, the AT END-OF-PAGE phrase is not supported for
VSAM files.

When END-OF-PAGE is specified, and the logical end of the printed page is
reached during execution of the WRITE statement, the END-OF-PAGE
imperative-statement is executed. When the END-OF-PAGE phrase is specified,
the FD entry for this file must contain a LINAGE clause.

The logical end of the printed page is specified in the associated LINAGE clause.

An END-OF-PAGE condition is reached when execution of a WRITE
END-OF-PAGE statement causes printing or spacing within the footing area of a
page body. This occurs when execution of such a WRITE statement causes the
value in the LINAGE-COUNTER special register to equal or exceed the value
specified in the WITH FOOTING phrase of the LINAGE clause. The WRITE
statement is executed, and then the END-OF-PAGE imperative-statement is
executed.

An automatic page overflow condition is reached whenever the execution of any
given WRITE statement (with or without the END-OF-PAGE phrase) cannot be
completely executed within the current page body. This occurs when a WRITE
statement, if executed, would cause the value in the LINAGE-COUNTER to exceed
the number of lines for the page body specified in the LINAGE clause. In this
case, the line is printed BEFORE or AFTER (depending on the option specified) the
device is repositioned to the first printable line on the next logical page, as
specified in the LINAGE clause. If the END-OF-PAGE phrase is specified, the
END-OF-PAGE imperative-statement is then executed.

If the WITH FOOTING phrase of the LINAGE clause is not specified, the
automatic page overflow condition exists because no end-of-page condition (as
distinct from the page overflow condition) can be detected.

If the WITH FOOTING phrase is specified, but the execution of a given WRITE
statement would cause the LINAGE-COUNTER to exceed both the footing value
and the page body value specified in the LINAGE clause, then both the
end-of-page condition and the automatic page overflow condition occur
simultaneously.

The key words END-OF-PAGE and EOP are equivalent.

INVALID KEY phrases

 Under OS/390, the INVALID KEY phrase is not supported for VSAM
sequential files.

An invalid key condition is caused by the following:
� For sequential files:

— An attempt is made to write beyond the externally defined boundary of
the file.

� For indexed files:
— An attempt is made to write beyond the externally defined boundary of

the file.

396 COBOL Language Reference

As an IBM extension, you can omit both the INVALID KEY phrase and the
EXCEPTION/ERROR procedure.

WRITE statement

— ACCESS SEQUENTIAL is specified and the file is opened OUTPUT, and
the value of the prime record key is not greater than that of the previous
record.

— The file is opened OUTPUT or I-O and the value of the prime record key
equals that of an already existing record.

� For relative files:
— An attempt is made to write beyond the externally defined boundary of

the file.
— When the access mode is random or dynamic and the RELATIVE KEY

data item specifies a record that already exists in the file
— The number of significant digits in the relative record number is larger

than the size of the relative key data item for the file.

When an invalid key condition occurs:
� If the INVALID KEY phrase is specified, imperative-statement-1 is executed.

(See Table 35 on page 244).
� Otherwise, the WRITE statement is unsuccessful and the contents of

record-name are unaffected (except for OS/390 QSAM files). And, the
following occurs:
— For sequential files—the status key, if specified, is updated and an

EXCEPTION/ERROR condition exists.

If an explicit or implicit EXCEPTION/ERROR procedure is specified for
the file, the procedure is executed. If no such procedure is specified, the
results are unpredictable.

— For relative and indexed files—program execution proceeds according to
the rules described by “Invalid key condition” under “Status key” on
page 244.

The INVALID KEY conditions that apply to a relative file in OPEN
OUTPUT mode also apply to one in OPEN EXTEND mode.

� If the NOT INVALID KEY phrase is specified and a valid key condition exists
at the end of the execution of the WRITE statement, control is passed to
imperative-statement-4.

 END-WRITE phrase

This explicit scope terminator serves to delimit the scope of the WRITE statement.
END-WRITE permits a conditional WRITE statement to be nested in another
conditional statement. END-WRITE can also be used with an imperative WRITE
statement.

For more information, see “Delimited scope statements” on page 237.

WRITE for sequential files

The maximum record size for the file is established at the time the file is created,
and cannot subsequently be changed.

After the WRITE statement is executed, the logical record is no longer available in
record-name-1, unless:

Part 6. Procedure Division 397

If stacker selection for the punch function file is desired, you can specify the
appropriate stacker function-names in the SPECIAL-NAMES paragraph, and then
issue WRITE ADVANCING statements using the associated mnemonic-names.

WRITE statement

� The associated file is named in a SAME RECORD AREA clause (in which case,
the record is also available as a record of the other files named in the SAME
RECORD AREA clause), or

� The WRITE statement is unsuccessful because of a boundary violation.

In either of these two cases, the logical record is still available in record-name-1.

The file position indicator is not affected by execution of the WRITE statement.

The number of character positions required to store the record in a file might or
might not be the same as the number of character positions defined by the logical
description of that record in the COBOL program. (See “PICTURE clause editing”
on page 170 and “USAGE clause” on page 187.)

If the FILE STATUS clause is specified in the File-Control entry, the associated
status key is updated when the WRITE statement is executed, whether or not
execution is successful.

The WRITE statement can only be executed for a sequential file opened in
OUTPUT or EXTEND mode for QSAM files.

 Multivolume files

 When end-of-volume is recognized for a multivolume OUTPUT file
(tape or sequential direct-access file), the WRITE statement performs the following
operations:
� The standard ending volume label procedure
� A volume switch
� The standard beginning volume label procedure

Punch function files with the IBM 3525

 When the punch function is used, the next I-O operation after the READ
statement must be a WRITE statement for the punch function file.

If you want to punch additional data into some of the cards and not into others, a
dummy WRITE statement must be issued for the null cards, first filling the output
area with SPACES.

Print function files

 After the punch function operations (if specified) are completed, you
can issue WRITE statement(s) for the print function file.

If you wish to print additional data on some of the data cards and not on others,
the WRITE statement for the null cards can be omitted. Any attempt to write
beyond the limits of the card results in abnormal termination of the application,
thus, the END-OF-PAGE phrase cannot be specified.

Depending on the capabilities of the specific IBM 3525 model in use, the print file
can be either a 2-line print file or a multiline print file. Up to 64 characters can be
printed on each line.

398 COBOL Language Reference

WRITE statement

� For a 2-line print file, the lines are printed on line 1 (top edge of card) and line
3 (between rows 11 and 12). Line control cannot be specified. Automatic
spacing is provided.

� For a multiline print file, up to 25 lines of characters can be printed. Line
control can be specified. If line control is not specified, automatic spacing is
provided.

Line control is specified by issuing WRITE AFTER ADVANCING statements for
the print function file. If line control is used for one such statement, it must be
used for all other WRITE statements issued to the file. The maximum number of
printable characters, including any space characters, is 64. Such WRITE statements
must not specify space suppression.

Identifier and integer have the same meanings they have for other WRITE AFTER
ADVANCING statements. However, such WRITE statements must not increase
the line position on the card beyond the card limit, or abnormal termination
results.

The mnemonic-name option of the WRITE AFTER ADVANCING statement can
also be specified. In the SPECIAL-NAMES paragraph, the environment-names can
be associated with the mnemonic-names, as follows:

Advanced Function Printing

 When using the WRITE ADVANCING phrase with a mnemonic-name
associated with environment-name AFP-5A, a Print Services Facility (PSF) control
character is placed in the control character position of the output record. This
control character (X'5A') allows Advanced Function Printing (AFP) services to
be used. For more information, refer to the documentation for the Print Services
Facility products: PSF/OS/390 (5695-040), PSF/VM (5684-141), or PSF/VSE
(5686-040).

Table 50. Meanings of environment-names in SPECIAL NAMES paragraph

Environment-name Meaning

C02 Line 3

C03 Line 5

C04 Line 7

 . .

 . .

 . .

C12 Line 23

WRITE for indexed files

Before the WRITE statement is executed, you must set the prime record key (the
RECORD KEY data item, as defined in the File-Control entry) to the desired value.
(Note that RECORD KEY values must be unique within a file.)

If the ALTERNATE RECORD KEY clause is also specified in the File-Control entry,
each alternate record key must be unique, unless the DUPLICATES phrase is
specified. If the DUPLICATES phrase is specified, alternate record key values
might not be unique. In this case, the system stores the records so that later

Part 6. Procedure Division 399

WRITE statement

sequential access to the records allows retrieval in the same order in which they
were stored.

When ACCESS IS SEQUENTIAL is specified in the File-Control entry, records
must be released in ascending order of RECORD KEY values.

When ACCESS is RANDOM or ACCESS IS DYNAMIC is specified in the
File-Control entry, records can be released in any programmer-specified order.

WRITE for relative files

For OUTPUT files, the WRITE statement causes the following actions:
� If ACCESS IS SEQUENTIAL is specified:

The first record released has relative record number 1, the second record
released has relative record number 2, the third number 3, and so on.

If the RELATIVE KEY is specified in the File-Control entry, the relative record
number of the record just released is placed in the RELATIVE KEY during
execution of the WRITE statement.

� If ACCESS IS RANDOM or ACCESS IS DYNAMIC is specified, the RELATIVE
KEY must contain the desired relative record number for this record before the
WRITE statement is issued. When the WRITE statement is executed, this
record is placed at the specified relative record number position in the file.

For I-O files, either ACCESS IS RANDOM or ACCESS IS DYNAMIC must be
specified; the WRITE statement inserts new records into the file. The RELATIVE
KEY must contain the desired relative record number for this record before the
WRITE statement is issued. When the WRITE statement is executed, this record is
placed at the specified relative record number position in the file.

400 COBOL Language Reference

DATE-TO-YYYYMMDD
DATEVAL

DAY-TO-YYYYDDD

UNDATE

YEAR-TO-YYYY
YEARWINDOW

Part 7. Intrinsic functions

Intrinsic functions 402
Specifying a function 402
Function definitions 408
ACOS . 412
ANNUITY . 413
ASIN . 414
ATAN . 415
CHAR . 416
COS . 417
CURRENT-DATE 418
DATE-OF-INTEGER 419

 420
 . 421

DAY-OF-INTEGER 423
 424

FACTORIAL . 425
INTEGER . 426
INTEGER-OF-DATE 427
INTEGER-OF-DAY 428
INTEGER-PART 429
LENGTH . 430
LOG . 431
LOG10 . 432
LOWER-CASE 433
MAX . 434

MEAN . 435
MEDIAN . 436
MIDRANGE . 437
MIN . 438
MOD . 439
NUMVAL . 440
NUMVAL-C . 441
ORD . 443
ORD-MAX . 444
ORD-MIN . 445
PRESENT-VALUE 446
RANDOM . 447
RANGE . 448
REM . 449
REVERSE . 450
SIN . 451
SQRT . 452
STANDARD-DEVIATION 453
SUM . 454
TAN . 455

 . 456
UPPER-CASE . 457
VARIANCE . 458
WHEN-COMPILED 459

 460
 461

 Copyright IBM Corp. 1991, 2000 401

Argument-1 cannot be a windowed date field, except in
the UNDATE intrinsic function.

Intrinsic functions

Intrinsic functions

Data processing problems often require the use of values that are not directly
accessible in the data storage associated with the object program, but instead must
be derived through performing operations on other data. An intrinsic function is a
function that performs a mathematical, character, or logical operation, and thereby
allows you to make reference to a data item whose value is derived automatically
during the execution of the object program.

The functions can be grouped into six categories, based on the type of service
performed: mathematical, statistical, date/time, financial, character-handling, and
general.

You can reference a function by specifying its name, along with any required
arguments, in a Procedure Division statement.

Functions are elementary data items, and return alphanumeric, numeric or integer
values. Functions cannot serve as receiving operands.

Specifying a function

The general format of a function-identifier is:

 Format
��──FUNCTION──function-name-1─ ──┬ ┬────────────────────── ────────────────────�
 │ │┌ ┐──────────────
 └ ┘ ─(─ ───/ ┴─argument-1─ ─)─

�─ ──┬ ┬──────────────────── ───��
 └ ┘─reference-modifier─

function-name-1
Function-name-1 must be one of the intrinsic function names.

argument-1
Argument-1 must be an identifier, literal (other than a figurative constant), or
arithmetic expression.

reference-modifier
Can be specified only for functions of the category alphanumeric

Below, we will show examples of an intrinsic function invocation for an
alphanumeric source statement and a numeric source statement.

The alphanumeric source statement:

MOVE FUNCTION UPPER-CASE("hello") TO DATA-NAME.

replaces each lowercase letter in the argument with the corresponding uppercase
letter, resulting in the movement of HELLO into DATA-NAME.

The numeric source statement,

COMPUTE NUM-ITEM = FUNCTION SUM(A B C)

Adds the values of A, B, and C and places the result in NUM-ITEM.

402  Copyright IBM Corp. 1991, 2000

Intrinsic functions

Within a Procedure Division statement, each function-identifier is evaluated at the
same time as any reference modification or subscripting associated with an
identifier in that same position would be evaluated.

Function definition and evaluation

The class and characteristics of a function, and the number and types of arguments
it requires, are determined by its function definition. These characteristics include:
� For some functions, the class and characteristics are determined by the

arguments to the function
� For alphanumeric functions, the size of the returned value
� For numeric and integer functions, the sign of the returned value, and whether

the function is integer
� The actual value returned by the function

The evaluation of any intrinsic function is not affected by the context in which it
appears; in other words, function evaluation is not affected by operations or
operands outside the function. However, evaluation of a function can be affected
by the attributes of its arguments.

Types of functions

There are three types of functions:
� Alphanumeric
� Numeric
� Integer

Alphanumeric functions are of the class and category alphanumeric. The value
returned has an implicit usage of DISPLAY and is in standard data format
characters. The number of character positions in the value returned is determined
by the function definition.

Numeric functions are of the class and category numeric. The returned value is
always considered to have an operational sign and is a numeric intermediate
result. For more information, see the IBM COBOL Programming Guide for your
platform.

Integer functions are of the class and category numeric. The returned value is
always considered to have an operational sign and is an integer intermediate
result. The number of digit positions in the value returned is determined by the
function definition. For more information, see the IBM COBOL Programming
Guide for your platform.

Rules for usage

Alphanumeric functions
An alphanumeric function can be specified anywhere in the general formats
that an identifier is permitted and where the rules associated with the general
formats do not specifically prohibit reference to functions, except as follows:

� As a receiving operand of any statement
� Where the rules associated with the general formats require the data item

being referenced to have particular characteristics (such as class and
category, usage, size, and permissible values) and the evaluation of the

Part 7. Intrinsic functions 403

An argument cannot be a DBCS literal or data item. See “Function definitions” on
page 408 for function specific argument specifications.

Intrinsic functions

function according to its definition and the particular arguments specified
would not have these characteristics.

A reference modification for an alphanumeric function is allowed. If reference
modification is specified for a function, the evaluation of the reference
modification takes place immediately after the evaluation of the function.

An alphanumeric function can be referenced as an argument for a function
which allows an alphanumeric argument.

Numeric functions
A numeric function can be used only where an arithmetic expression can be
specified.

A numeric function can be referenced as an argument for a function which
allows a numeric argument.

A numeric function cannot be used where an integer operand is required, even
if the particular reference will yield an integer value. The INTEGER or
INTEGER-PART functions can be used to force the type of a numeric
argument to be an integer.

Integer functions
An integer function can be used only where an arithmetic expression can be
specified.

An integer function can be referenced as an argument for a function which
allows an integer argument.

Special usage notes:
Identifier-2 of the CALL statement must not be a function-identifier.

The COPY statement will allow function-identifiers of all types in the
REPLACING phrase.

 Arguments

The values returned by some functions are determined by the arguments specified
in the function-identifier when the functions are evaluated. Some functions require
no arguments; others require a fixed number of arguments, and still others allow a
variable number of arguments.

An argument must be one of the following:
� An identifier
� An arithmetic expression
� A function-identifier
� A literal other than a figurative constant.
� A special-register

The argument to a function can be any function or an expression containing a
function, including another evaluation of the same function, whose result meets
the category requirement for the argument.

404 COBOL Language Reference

Floating-point literals are allowed wherever a numeric argument is allowed, and in
arithmetic expressions used in functions that allow a numeric argument. They are
not allowed where an integer argument is required.

External floating-point items are allowed wherever a numeric argument is allowed,
and in arithmetic expressions used in functions that allow a numeric argument.

External floating-point items are not allowed where an integer argument is
required, or where an argument of alphanumeric class is allowed in a function
identification, such as in the LOWER-CASE, REVERSE, UPPER-CASE, NUMVAL,
and NUMVAL-C functions.

Intrinsic functions

The types of arguments are:
� Alphabetic. An elementary data item of the class alphabetic or a nonnumeric

literal containing only alphabetic characters. The content of the argument will
be used to determine the value of the function. The length of the argument
can be used to determine the value of the function.

� Alphanumeric. A data item of the class alphabetic or alphanumeric or a
nonnumeric literal. The content of the argument will be used to determine the
value of the function. The length of the argument can be used to determine
the value of the function.

� Integer. An arithmetic expression that will always result in an integer value.
The value of this expression, including its sign, is used to determine the value
of the function.

� Numeric. An arithmetic expression, whose value, including its sign, is used to
determine the value of the function.

Some functions place constraints on their arguments, such as the range of values
acceptable. If the values assigned as arguments for a function do not comply with
specified constraints, the returned value is undefined.

If a nested function is used as an argument, the evaluation of its arguments will
not be affected by the arguments in the outer function.

Only those arguments at the same function level interact with each other. This
interaction occurs in two areas:
� The computation of an arithmetic expression that appears as a function

argument will be affected by other arguments for that function.
� The evaluation of the function takes into consideration the attributes of all of

its arguments.

When a function is evaluated, its arguments are evaluated individually in the
order specified in the list of arguments, from left to right. The argument being
evaluated can be a function-identifier, or it can be an expression containing
function-identifiers.

If an arithmetic expression is specified as an argument, and if the first operator in
the expression is a unary plus or a unary minus, it must be immediately preceded
by a left parenthesis.

 ALL subscripting

When a function allows an argument to be repeated a variable number of times,
you can refer to a table by specifying the data-name and any qualifiers that
identify the table. This can be followed immediately by subscripting where one or
more of the subscripts is the word ALL.

Part 7. Intrinsic functions 405

Intrinsic functions

Note: The evaluation of an ALL subscript must result in at least one argument or
the value returned by the function will be undefined; however, the situation can be
diagnosed at run-time by specifying the SSRANGE compiler option and the
CHECK run-time option.

Specifying ALL as a subscript is equivalent to specifying all table elements possible
using every valid subscript in that subscript position.

For a table argument specified as "Table-name(ALL)", the order of the implicit
specification of each table element as an argument is from left to right, where the
first (or leftmost) argument is "Table-name(1)" and ALL has been replaced by 1.
The next argument is "Table-name(2)", where the subscript has been incremented
by 1. This process continues, with the subscript being incremented by 1 to produce
an implicit argument, until the ALL subscript has been incremented through its
range of values.

For example,

FUNCTION MAX(Table(ALL))

is equivalent to

FUNCTION MAX(Table(1) Table(2) Table(3)... Table(n))

where n is the number of elements in Table.

If there are multiple ALL subscripts, "Table-name(ALL, ALL, ALL)", the first
implicit argument is "Table-name(1, 1, 1)", where each ALL has been replaced by 1.
The next argument is "Table-name(1, 1, 2)", where the rightmost subscript has been
incremented by 1. The subscript represented by the rightmost ALL is incremented
through its range of values to produce an implicit argument for each value.

Once a subscript specified as ALL has been incremented through its range of
values, the next subscript to the left that is specified as ALL is incremented by 1.
Each subscript specified as ALL to the right of the newly incremented subscript is
set to 1 to produce an implicit argument. Once again, the subscript represented by
the rightmost ALL is incremented through its range of values to produce an
implicit argument for each value. This process is repeated until each subscript
specified as ALL has been incremented through its range of values.

For example,

FUNCTION MAX(Table(ALL, ALL))

is equivalent to

FUNCTION MAX(Table(1, 1) Table(1, 2) Table(1, 3)... Table(1, n)
Table(2, 1) Table(2, 2) Table(2, 3)... Table(2, n)
Table(3, 1) Table(3, 2) Table(3, 3)... Table(3, n)

 .
 .
 .

Table(m, 1) Table(m, 2) Table(m, 3)... Table(m, n))

where n is the number of elements in the column dimension of Table, and m is the
number of elements in the row dimension of Table.

ALL subscripts can be combined with literal, data-name, or index-name subscripts
to reference multidimensional tables.

For example,

FUNCTION MAX(Table(ALL, 2))

is equivalent to

406 COBOL Language Reference

Intrinsic functions
FUNCTION MAX(Table(1, 2)
 Table(2, 2)
 Table(3, 2)
 .
 .
 .
 Table(m, 2))

where m is the number of elements in the row dimension of Table.

If an ALL subscript is specified for an argument and the argument is reference
modified, then the reference-modifier is applied to each of the implicitly specified
elements of the table.

If an ALL subscript is specified for an operand that is reference-modified, the
reference-modifier is applied to each of the implicitly specified elements of the
table.

If the ALL subscript is associated with an OCCURS DEPENDING ON clause, the
range of values is determined by the object of the OCCURS DEPENDING ON
clause.

For example, given a payroll record definition such as:

 ?1 PAYROLL.
 ?2 PAYROLL-WEEK PIC 99.

?2 PAYROLL-HOURS PIC 999 OCCURS 1 TO 52
DEPENDING ON PAYROLL-WEEK.

The following COMPUTE statements could be used to identify total year-to-date
hours, the maximum hours worked in any week, and the specific week
corresponding to the maximum hours:

COMPUTE YTD-HOURS = FUNCTION SUM (PAYROLL-HOURS(ALL))
COMPUTE MAX-HOURS = FUNCTION MAX (PAYROLL-HOURS(ALL))
COMPUTE MAX-WEEK = FUNCTION ORD-MAX (PAYROLL-HOURS(ALL))

In these function invocations the subscript ALL is used to reference all elements of
the PAYROLL-HOURS array (depending on the execution time value of the
PAYROLL-WEEK field).

Part 7. Intrinsic functions 407

The behavior of functions marked “DP” depends on whether the DATEPROC or
NODATEPROC compiler option is in effect:
� If the DATEPROC compiler option is in effect, the following intrinsic functions

return date fields:
Returned value has implicit DATE FORMAT...

DATE-OF-INTEGER YYYYXXXX
DATE-TO-YYYYMMDD YYYYXXXX
DAY-OF-INTEGER YYYYXXX
DAY-TO-YYYYDDD YYYYXXX
YEAR-TO-YYYY YYYY
DATEVAL Depends on the format specified by DATEVAL
YEARWINDOW YYYY

� If the NODATEPROC compiler option is in effect:
— The following intrinsic functions return the same values as when

DATEPROC is in effect, but their returned values are non-dates:
 DAY-OF-INTEGER
 DATE-TO-YYYYMMDD
 DAY-TO-YYYYDDD
 YEAR-TO-YYYY

— The DATEVAL and UNDATE intrinsic functions have no effect, and
simply return their (first) arguments unchanged

— The YEARWINDOW intrinsic function returns 0 unconditionally

Intrinsic functions

 Function definitions

Table 51 on page 409 provides an overview of the argument type, function type
and value returned for each of the intrinsic functions. Argument types and
function types are abbreviated as follows:

A = alphabetic
I = integer
N = numeric
X = alphanumeric

Each intrinsic function is described in detail on the pages following the table.

408 COBOL Language Reference

 DP

DATE-TO-YYYYMMDD DP I1, I2 I Standard date equivalent
(YYYYMMDD) of I1 (standard
date with a windowed year,
YYMMDD), according to the
100-year interval whose ending
year is specified by the sum of
I2 and the year at execution
time

DATEVAL DP I1 or I Date field equivalent of I1 or
X1X1

 DP

DAY-TO-YYYYDDD DP I1, I2 I Julian date equivalent
(YYYYDDD) of I1 (Julian date
with a windowed year,
YYDDD), according to the
100-year interval whose ending
year is specified by the sum of
I2 and the year at execution
time

Intrinsic functions

Table 51 (Page 1 of 3). Table of functions

Function name Arguments Type Value returned

ACOS N1 N Arccosine of N1

ANNUITY N1, I2 N Ratio of annuity paid for I2
periods at interest of N1 to
initial investment of one

ASIN N1 N Arcsine of N1

ATAN N1 N Arctangent of N1

CHAR I1 X Character in position I1 of
program collating sequence

COS N1 N Cosine of N1

CURRENT-DATE None X Current date and time and
difference from Greenwich
Mean Time

DATE-OF-INTEGER I1 I Standard date equivalent
(YYYYMMDD) of integer date

X

DAY-OF-INTEGER I1 I Julian date equivalent
(YYYYDDD) of integer date

FACTORIAL I1 I Factorial of I1

INTEGER N1 I The greatest integer not greater
than N1

INTEGER-OF-DATE I1 I Integer date equivalent of
standard date (YYYYMMDD)

INTEGER-OF-DAY I1 I Integer date equivalent of
Julian date (YYYYDDD)

INTEGER-PART N1 I Integer part of N1

LENGTH A1, N1, or X1 I Length of argument

LOG N1 N Natural logarithm of N1

LOG10 N1 N Logarithm to base 10 of N1

LOWER-CASE A1 or X1 X All letters in the argument are
set to lowercase

Part 7. Intrinsic functions 409

Intrinsic functions

Table 51 (Page 2 of 3). Table of functions

Function name Arguments Type Value returned

MAX A1... or X Value of maximum argument;
note that the type of function
depends on the arguments

I1... or I

N1... or N

X1... X

MEAN N1... N Arithmetic mean of arguments

MEDIAN N1... N Median of arguments

MIDRANGE N1... N Mean of minimum and
maximum arguments

MIN A1... or X Value of minimum argument;
note that the type of function
depends on the arguments

I1... or I

N1... or N

X1... X

MOD I1,I2 I I1 modulo I2

NUMVAL X1 N Numeric value of simple
numeric string

NUMVAL-C X1 or

X1,X2

N Numeric value of numeric
string with optional commas
and currency sign

ORD A1 or X1 I Ordinal position of the
argument in collating sequence

ORD-MAX A1..., N1..., or
X1...

I Ordinal position of maximum
argument

ORD-MIN A1..., N1..., or
X1...

I Ordinal position of minimum
argument

PRESENT-VALUE N1 or N2... N Present value of a series of
future period-end amounts,
N2, at a discount rate of N1

RANDOM I1, none N Random number

RANGE I1... or I Value of maximum argument
minus value of minimum
argument; note that the type of
function depends on the
arguments.

N1... N

REM N1,N2 N Remainder of N1/N2

REVERSE A1 or X1 X Reverse order of the characters
of the argument

SIN N1 N Sine of N1

SQRT N1 N Square root of N1

STANDARD-DEVIATION N1... N Standard deviation of
arguments

SUM I1... or I Sum of arguments; note that
the type of function depends
on the arguments.

N1... N

TAN N1 N Tangent of N1

410 COBOL Language Reference

UNDATE DP I1 or I Non-date equivalent of date
field I1 or X1X1 X

YEAR-TO-YYYY DP I1, I2 I Expanded year equivalent
(YYYY) of I1 (windowed year,
YY), according to the 100-year
interval whose ending year is
specified by the sum of I2 and
the year at execution time

YEARWINDOW DP None I If the DATEPROC compiler
option is in effect, returns the
starting year (in the format
YYYY) of the century window
specified by the
YEARWINDOW compiler
option; if NODATEPROC is in
effect, returns 0

Intrinsic functions

The following pages define each of the intrinsic functions summarized in the
previous table.

Table 51 (Page 3 of 3). Table of functions

Function name Arguments Type Value returned

UPPER-CASE A1 or X1 X All letters in the argument are
set to uppercase

VARIANCE N1... N Variance of arguments

WHEN-COMPILED None X Date and time when program
was compiled

Part 7. Intrinsic functions 411

ACOS

 ACOS

The ACOS function returns a numeric value in radians that approximates the
arccosine of the argument specified.

The function type is numeric.

 Format
��──FUNCTION ACOS─ ──(argument-1) ───��

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal
to -1 and less than or equal to +1.

The returned value is the approximation of the arccosine of the argument and is
greater than or equal to zero and less than or equal to Pi.

412 COBOL Language Reference

ANNUITY

 ANNUITY

The ANNUITY function returns a numeric value that approximates the ratio of an
annuity paid at the end of each period, for a given number of periods, at a given
interest rate, to an initial value of one. The number of periods is specified by
argument-2; the rate of interest is specified by argument-1. For example, if
argument-1 is zero and argument-2 is four, the value returned is the
approximation of the ratio 1 / 4.

The function type is numeric.

 Format
��──FUNCTION ANNUITY─ ──(argument-1 argument-2) ─────────────────────────────��

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal
to zero.

argument-2
Must be a positive integer.

When the value of argument-1 is zero, the value returned by the function is the
approximation of:1 / ARGUMENT-2

When the value of argument-1 is not zero, the value of the function is the
approximation of:

ARGUMENT-1 / (1 - (1 + ARGUMENT-1) VV (- ARGUMENT-2))

Part 7. Intrinsic functions 413

ASIN

 ASIN

The ASIN function returns a numeric value in radians that approximates the
arcsine of the argument specified.

The function type is numeric.

 Format
��──FUNCTION ASIN─ ──(argument-1) ───��

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal
to -1 and less than or equal to +1.

The returned value is the approximation of the arcsine of argument-1 and is
greater than or equal to -Pi/2 and less than or equal to +Pi/2.

414 COBOL Language Reference

ATAN

 ATAN

The ATAN function returns a numeric value in radians that approximates the
arctangent of the argument specified.

The function type is numeric.

 Format
��──FUNCTION ATAN─ ──(argument-1) ───��

argument-1
Must be class numeric.

The returned value is the approximation of the arctangent of argument-1 and is
greater than -Pi/2 and less than +Pi/2.

Part 7. Intrinsic functions 415

For example, if COLLSEQ(EBCDIC) is specified and
the PROGRAM COLLATING SEQUENCE is not specified (or is NATIVE), the
EBCDIC collating sequence is applied.

CHAR

 CHAR

The CHAR function returns a 1-character alphanumeric value that is a character in
the program collating sequence having the ordinal position equal to the value of
the argument specified.

The function type is alphanumeric.

 Format
��──FUNCTION CHAR─ ──(argument-1) ───��

argument-1
Must be an integer. The value must be greater than zero and less than or
equal to the number of positions in the collating sequence.

If more than one character has the same position in the program collating
sequence, the character returned as the function value is that of the first literal
specified for that character position in the ALPHABET clause.

If the current program collating sequence was not specified by an ALPHABET
clause:
� Under OS/390 and VM, the EBCDIC collating sequence is used. (See

Appendix B, “EBCDIC and ASCII collating sequences” on page 498.)
� Under AIX and Windows, the COLLSEQ compiler option indicates the

collating sequence used.

416 COBOL Language Reference

COS

 COS

The COS function returns a numeric value that approximates the cosine of the
angle or arc specified by the argument in radians.

The function type is numeric.

 Format
��──FUNCTION COS─ ──(argument-1) ──��

argument-1
Must be class numeric.

The returned value is the approximation of the cosine of the argument and is
greater than or equal to -1 and less than or equal to +1.

Part 7. Intrinsic functions 417

CURRENT-DATE

 CURRENT-DATE

The CURRENT-DATE function returns a 21-character alphanumeric value that
represents the calendar date, time of day, and time differential from Greenwich
Mean Time provided by the system on which the function is evaluated.

The function type is alphanumeric.

 Format
��──FUNCTION CURRENT-DATE──��

Reading from left to right, the 21 character positions in the value returned can be
interpreted as follows:

Character
Positions Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01 through 12.

7-8 Two numeric digits of the day of the month, in the range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in the range 00 through
59.

13-14 Two numeric digits of the seconds past the minute, in the range 00
through 59.

15-16 Two numeric digits of the hundredths of a second past the second, in the
range 00 through 99. The value 00 is returned if the system on which the
function is evaluated does not have the facility to provide the fractional
part of a second.

17 Either the character '-' or the character '+'. The character '-' is returned if
the local time indicated in the previous character positions is behind
Greenwich Mean Time. The character '+' is returned if the local time
indicated is the same as or ahead of Greenwich Mean Time. The character
'0' is returned if the system on which this function is evaluated does not
have the facility to provide the local time differential factor.

18-19 If character position 17 is '-', two numeric digits are returned in the range
00 through 12 indicating the number of hours that the reported time is
behind Greenwich Mean Time. If character position 17 is '+', two numeric
digits are returned in the range 00 through 13 indicating the number of
hours that the reported time is ahead of Greenwich Mean Time. If
character position 17 is '0', the value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59 indicating the
number of additional minutes that the reported time is ahead of or behind
Greenwich Mean Time, depending on whether character position 17 is '+'
or '-', respectively. If character position 17 is '0', the value 00 is returned.

For more information, see the IBM COBOL Programming Guide for your platform.

418 COBOL Language Reference

If the DATEPROC compiler option is in effect, then the returned value is an
expanded date field with implicit DATE FORMAT YYYYXXXX.

 Under OS/390 and VM, the INTDATE compiler option affects the
starting date for the integer date functions. For details, see the IBM COBOL for
OS/390 & VM Programming Guide.

DATE-OF-INTEGER

 DATE-OF-INTEGER

The DATE-OF-INTEGER function converts a date in the Gregorian calendar from
integer date form to standard date form (YYYYMMDD).

The function type is integer.

The function result is an 8-digit integer.

 Format
��──FUNCTION DATE-OF-INTEGER─ ──(argument-1) ────────────────────────────────��

argument-1
A positive integer that represents a number of days succeeding December 31,
1600, in the Gregorian calendar. The valid range is 1 to 3,067,671, which
corresponds to dates ranging from January 1, 1601 thru December 31, 9999.

The returned value represents the International Standards Organization (ISO)
standard date equivalent to the integer specified as argument-1.

The returned value is an integer of the form YYYYMMDD where YYYY represents
a year in the Gregorian calendar; MM represents the month of that year; and DD
represents the day of that month.

Part 7. Intrinsic functions 419

DATE-TO-YYYYMMDD

 DATE-TO-YYYYMMDD

The DATE-TO-YYYYMMDD function converts argument-1 from a date with a
2-digit year (YYnnnn) to a date with a 4-digit year (YYYYnnnn). Argument-2,
when added to the year at the time of execution, defines the ending year of a
100-year interval, or sliding century window, into which the year of argument-1
falls.

The function type is integer.

If the DATEPROC compiler option is in effect, then the returned value is an
expanded date field with implicit DATE FORMAT YYYYXXXX.

 Format
��──FUNCTION DATE-TO-YYYYMMDD─ ──(argument-1 ──┬ ┬────────────) ───────────────��
 └ ┘─argument-2─

argument-1
Must be zero or a positive integer less than 1,000,000.

argument-2
Must be an integer. If argument-2 is omitted, the function is evaluated
assuming the value 50 was specified.

The sum of the year at the time of execution and the value of argument-2 must be
less than 10,000 and greater than 1,699.

 Example

Some examples of returned values from the DATE-TO-YYYYMMDD function
follow:

Current year Argument-1 value Argument-2 value
DATE-TO-YYYYMMDD
return value

2002 851003 120 20851003

2002 851003 -20 18851003

2002 851003 10 19851003

1994 981002 -10 18981002

420 COBOL Language Reference

DATEVAL

 DATEVAL

The DATEVAL function converts a non-date to a date field, for unambiguous use
with date fields.

If the DATEPROC compiler option is in effect, the returned value is a date field
containing the value of argument-1 unchanged. For information on using the
resulting date field:
� In arithmetic, see “Arithmetic with date fields” on page 211
� In conditional expressions, see “Date fields” on page 219

If the NODATEPROC compiler option is in effect, the DATEVAL function has no
effect, and returns the value of argument-1 unchanged.

The function type depends on the type of argument-1:

Argument-1 type Function type

Alphanumeric Alphanumeric

Integer Integer

 Format
��──FUNCTION DATEVAL──(──argument-1──argument-2──)─────────────────────────��

argument-1
Must be one of the following:

� A class alphanumeric item with the same number of characters as the date
format specified by argument-2.

� An integer. This can be used to specify values outside the range specified
by argument-2, including negative values.

The value of argument-1 represents a date of the form specified by
argument-2.

Part 7. Intrinsic functions 421

DATEVAL

argument-2
Must be a nonnumeric literal specifying a date pattern, as defined in “DATE
FORMAT clause” on page 148. The date pattern consists of YY or YYYY
(representing a windowed year or expanded year, respectively), optionally
preceded or followed by one or more Xs (representing other parts of a date,
such as month and day), as follows. Note that the values are case-insensitive;
the letters X and Y in argument-2 can be any mix of uppercase and lowercase.

Date-pattern string... Specifies that argument-1 contains...

YY A windowed (2-digit) year.

YYYY An expanded (4-digit) year.

X A single character; for example, a digit
representing a semester or quarter (1–4).

XX Two characters; for example, digits representing
a month (01–12).

XXX Three characters; for example, digits representing
a day of the year (001–366).

XXXX Four characters; for example, 2 digits
representing a month (01–12) and 2 digits
representing a day of the month (01–31).

Note: You can use apostrophes as the literal delimiters instead of quotes
(independent of the APOST/QUOTE compiler option).

422 COBOL Language Reference

If the DATEPROC compiler option is in effect, then the returned value is an
expanded date field with implicit DATE FORMAT YYYYXXX.

 Under OS/390 and VM, the INTDATE compiler option affects the
starting date for the integer date functions. For details, see the IBM COBOL for
OS/390 & VM Programming Guide.

DAY-OF-INTEGER

 DAY-OF-INTEGER

The DAY-OF-INTEGER function converts a date in the Gregorian calendar from
integer date form to Julian date form (YYYYDDD).

The function type is integer.

The function result is a 7-digit integer.

 Format
��──FUNCTION DAY-OF-INTEGER─ ──(argument-1) ─────────────────────────────────��

argument-1
A positive integer that represents a number of days succeeding December 31,
1600, in the Gregorian calendar. The valid range is 1 to 3,067,671, which
corresponds to dates ranging from January 1, 1601 thru December 31, 9999.

The returned value represents the Julian equivalent of the integer specified as
argument-1. The returned value is an integer of the form YYYYDDD where YYYY
represents a year in the Gregorian calendar and DDD represents the day of that
year.

Part 7. Intrinsic functions 423

DAY-TO-YYYYDDD

 DAY-TO-YYYYDDD

The DAY-TO-YYYYDDD function converts argument-1 from a date with a 2-digit
year (YYnnn) to a date with a 4-digit year (YYYYnnn). Argument-2, when added
to the year at the time of execution, defines the ending year of a 100-year interval,
or sliding century window, into which the year of argument-1 falls.

The function type is integer.

If the DATEPROC compiler option is in effect, then the returned value is an
expanded date field with implicit DATE FORMAT YYYYXXX.

 Format
��──FUNCTION DAY-TO-YYYYDDD─ ──(argument-1 ──┬ ┬────────────) ─────────────────��
 └ ┘─argument-2─

argument-1
Must be zero or a positive integer less than 100,000.

argument-2
Must be an integer. If argument-2 is omitted, the function is evaluated
assuming the value 50 was specified.

The sum of the year at the time of execution and the value of argument-2 must be
less than 10,000 and greater than 1,699.

 Example

Some examples of returned values from the DAY-TO-YYYYDDD function follow:

Current year Argument-1 value Argument-2 value
DAY-TO-YYYYDDD
return value

2002 10004 -20 1910004

2002 10004 -120 1810004

2002 10004 20 2010004

2013 95005 -10 1995005

424 COBOL Language Reference

If the
ARITH(EXTEND) compiler option is in effect, then argument-1 must be an
integer greater than or equal to zero and less than or equal to 29.

FACTORIAL

 FACTORIAL

The FACTORIAL function returns an integer that is the factorial of the argument
specified.

The function type is integer.

 Format
��──FUNCTION FACTORIAL─ ──(argument-1) ──────────────────────────────────────��

argument-1

| If the ARITH(COMPAT) compiler option is in effect, then argument-1 must be
| an integer greater than or equal to zero and less than or equal to 28.
|
|

If the value of argument-1 is zero, the value 1 is returned; otherwise, its factorial is
returned.

Part 7. Intrinsic functions 425

INTEGER

 INTEGER

The INTEGER function returns the greatest integer value that is less than or equal
to the argument specified.

The function type is integer.

 Format
��──FUNCTION INTEGER─ ──(argument-1) ──��

argument-1
Must be class numeric.

The returned value is the greatest integer less than or equal to the value of
argument-1. For example,

FUNCTION INTEGER (2.5)

will return a value of 2; and

FUNCTION INTEGER (-2.5)

will return a value of -3.

426 COBOL Language Reference

 Under OS/390 and VM, the INTDATE compiler option affects the
starting date for the integer date functions. For details, see the IBM COBOL for
OS/390 & VM Programming Guide.

INTEGER-OF-DATE

 INTEGER-OF-DATE

The INTEGER-OF-DATE function converts a date in the Gregorian calendar from
standard date form (YYYYMMDD) to integer date form.

The function type is integer.

The function result is a 7-digit integer with a range from 1 to 3,067,671.

 Format
��──FUNCTION INTEGER-OF-DATE─ ──(argument-1) ────────────────────────────────��

argument-1
Must be an integer of the form YYYYMMDD, whose value is obtained from
the calculation (YYYY * 10,000) + (MM * 100) + DD.

� YYYY represents the year in the Gregorian calendar. It must be an integer
greater than 1600, but not greater than 9999.

� MM represents a month and must be a positive integer less than 13.
� DD represents a day and must be a positive integer less than 32, provided

that it is valid for the specified month and year combination.

The returned value is an integer that is the number of days the date represented
by argument-1, succeeds December 31, 1600 in the Gregorian calendar.

Part 7. Intrinsic functions 427

 Under OS/390 and VM, the INTDATE compiler option affects the
starting date for the integer date functions. For details, see the IBM COBOL for
OS/390 & VM Programming Guide.

INTEGER-OF-DAY

 INTEGER-OF-DAY

The INTEGER-OF-DAY function converts a date in the Gregorian calendar from
Julian date form (YYYYDDD) to integer date form.

The function type is integer.

The function result is a 7-digit integer.

 Format
��──FUNCTION INTEGER-OF-DAY─ ──(argument-1) ─────────────────────────────────��

argument-1
Must be an integer of the form YYYYDDD whose value is obtained from the
calculation (YYYY * 1000) + DDD.

� YYYY represents the year in the Gregorian calendar. It must be an integer
greater than 1600, but not greater than 9999.

� DDD represents the day of the year. It must be a positive integer less than
367, provided that it is valid for the year specified.

The returned value is an integer that is the number of days the date represented
by argument-1, succeeds December 31, 1600 in the Gregorian calendar.

428 COBOL Language Reference

INTEGER-PART

 INTEGER-PART

The INTEGER-PART function returns an integer that is the integer portion of the
argument specified.

The function type is integer.

 Format
��──FUNCTION INTEGER-PART─ ──(argument-1) ───────────────────────────────────��

argument-1
Must be class numeric.

If the value of argument-1 is zero, the returned value is zero. If the value of
argument-1 is positive, the returned value is the greatest integer less than or equal
to the value of argument-1. If the value of argument-1 is negative, the returned
value is the least integer greater than or equal to the value of argument-1.

Part 7. Intrinsic functions 429

 (except
DBCS).

A data item described with USAGE IS POINTER or USAGE IS
PROCEDURE-POINTER can be used as argument-1 to the LENGTH function.

The ADDRESS OF special register can be used as argument-1 to the LENGTH
function.

If the ADDRESS OF special register or LENGTH OF special register is used as
argument-1 to the LENGTH function, the result will always be 4, independent of
the ADDRESS OF or LENGTH OF object.

LENGTH

 LENGTH

The LENGTH function returns an integer equal to the length of the argument in
bytes. The function type is integer.

The function result is a 9-digit integer.

 Format
��──FUNCTION LENGTH─ ──(argument-1) ───��

argument-1
Can be a nonnumeric literal or a data item of any class or category

If argument-1, or any data item subordinate to argument-1, is described with
the DEPENDING phrase of the OCCURS clause, the contents of the data item
referenced by the data-name specified in the DEPENDING phrase are used at
the time the LENGTH function is evaluated.

If argument-1 is a nonnumeric literal, an elementary data item, or a group data
item that does not contain a variable occurrence data item, the value returned is an
integer equal to the length of argument-1 in character positions.

If argument-1 is a group data item containing a variable occurrence data item, the
returned value is an integer determined by evaluation of the data item specified in
the DEPENDING phrase of the OCCURS clause for that variable occurrence data
item. This evaluation is accomplished according to the rules in the OCCURS
clause regarding the data item as a sending data item. For more information, see
the discussions of the OCCURS clause and USAGE clause.

If argument-1 is a null-terminated nonnumeric literal, then the returned value is
the number of characters in the literal excluding the null character that is added at
the end of the literal.

The returned value includes implicit FILLER characters, if any.

430 COBOL Language Reference

LOG

 LOG

The LOG function returns a numeric value that approximates the logarithm to the
base e (natural log) of the argument specified.

The function type is numeric.

 Format
��──FUNCTION LOG─ ──(argument-1) ──��

argument-1
Must be class numeric. The value of argument-1 must be greater than zero.

The returned value is the approximation of the logarithm to the base e of
argument-1.

Part 7. Intrinsic functions 431

LOG10

 LOG10

The LOG10 function returns a numeric value that approximates the logarithm to
the base 10 of the argument specified.

The function type is numeric.

 Format
��──FUNCTION LOG1?─ ──(argument-1) ──��

argument-1
Must be class numeric. The value of argument-1 must be greater than zero.

The returned value is the approximation of the logarithm to the base 10 of
argument-1.

432 COBOL Language Reference

LOWER-CASE

 LOWER-CASE

The LOWER-CASE function returns a character string that is the same length as
the argument specified with each uppercase letter replaced by the corresponding
lowercase letter.

The function type is alphanumeric.

 Format
��──FUNCTION LOWER-CASE─ ──(argument-1) ─────────────────────────────────────��

argument-1
Must be class alphabetic or alphanumeric and must be at least one character in
length.

The same character string as argument-1 is returned, except that each uppercase
letter is replaced by the corresponding lowercase letter.

The character string returned has the same length as argument-1.

Part 7. Intrinsic functions 433

If more than one argument-1 is specified, the combination of alphabetic and
alphanumeric arguments is allowed.

MAX

 MAX

The MAX function returns the content of the argument that contains the maximum
value.

The function type depends on the argument types, as follows:

 Format
 ┌ ┐──────────────
��──FUNCTION MAX──(─ ───/ ┴─argument-1─ ─)─────────────────────────────────────��

argument-1
Must be class numeric, alphanumeric, or alphabetic.

The returned value is the content of argument-1 having the greatest value. The
comparisons used to determine the greatest value are made according to the rules
for simple conditions. For more information, see “Conditional expressions” on
page 214.

If more than one argument has the same greatest value, the leftmost argument
having that value is returned.

If the type of the function is alphanumeric, the size of the returned value is the
same as the size of the selected argument.

Argument type Function type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All arguments integer Integer
Numeric (some arguments can be integer) Numeric

434 COBOL Language Reference

MEAN

 MEAN

The MEAN function returns a numeric value that approximates the arithmetic
average of its arguments.

The function type is numeric.

 Format
 ┌ ┐──────────────
��──FUNCTION MEAN──(─ ───/ ┴─argument-1─ ─)────────────────────────────────────��

argument-1
Must be class numeric.

The returned value is the arithmetic mean of the argument-1 series. The returned
value is defined as the sum of the argument-1 series divided by the number of
occurrences referenced by argument-1.

Part 7. Intrinsic functions 435

MEDIAN

 MEDIAN

The MEDIAN function returns the content of the argument whose value is the
middle value in the list formed by arranging the arguments in sorted order.

The function type is numeric.

 Format
 ┌ ┐──────────────
��──FUNCTION MEDIAN──(─ ───/ ┴─argument-1─ ─)──────────────────────────────────��

argument-1
Must be class numeric.

The returned value is the content of argument-1 having the middle value in the list
formed by arranging all argument-1 values in sorted order.

If the number of occurrences referenced by argument-1 is odd, the returned value
is such that at least half of the occurrences referenced by argument-1 are greater
than or equal to the returned value and at least half are less than or equal. If the
number of occurrences referenced by argument-1 is even, the returned value is the
arithmetic mean of the values referenced by the two middle occurrences.

The comparisons used to arrange the argument values in sorted order are made
according to the rules for simple conditions. For more information, see
“Conditional expressions” on page 214.

436 COBOL Language Reference

MIDRANGE

 MIDRANGE

The MIDRANGE function returns a numeric value that approximates the
arithmetic average of the values of the minimum argument and the maximum
argument.

The function type is numeric.

 Format
 ┌ ┐──────────────
��──FUNCTION MIDRANGE──(─ ───/ ┴─argument-1─ ─)────────────────────────────────��

argument-1
Must be class numeric.

The returned value is the arithmetic mean of the value of the greatest argument-1
and the value of the least argument-1. The comparisons used to determine the
greatest and least values are made according to the rules for simple conditions.
For more information, see “Conditional expressions” on page 214.

Part 7. Intrinsic functions 437

If more than one argument-1 is specified, the combination of alphabetic and
alphanumeric arguments is allowed.

MIN

 MIN

The MIN function returns the content of the argument that contains the minimum
value.

The function type depends on the argument types, as follows:

 Format
 ┌ ┐──────────────
��──FUNCTION MIN──(─ ───/ ┴─argument-1─ ─)─────────────────────────────────────��

argument-1
Must be class numeric, alphanumeric, or alphabetic.

The returned value is the content of argument-1 having the least value. The
comparisons used to determine the least value are made according to the rules for
simple conditions. For more information, see “Conditional expressions” on
page 214.

If more than one argument-1 has the same least value, the leftmost argument-1
having that value is returned.

If the type of the function is alphanumeric, the size of the returned value is the
same as the size of the selected argument-1.

Argument type Function type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All arguments integer Integer
Numeric (some arguments can be integer) Numeric

438 COBOL Language Reference

MOD

 MOD

The MOD function returns an integer value that is argument-1 modulo
argument-2.

The function type is integer.

The function result is an integer with as many digits as the shorter of argument-1
and argument-2.

 Format
��──FUNCTION MOD─ ──(argument-1 argument-2) ─────────────────────────────────��

argument-1
Must be an integer.

argument-2
Must be an integer. Must not be zero.

The returned value is argument-1 modulo argument-2. The returned value is
defined as:

argument-1 - (argument-2 * FUNCTION INTEGER (argument-1 / argument-2))

The following table illustrates the expected results for some values of argument-1
and argument-2.

Argument-1 Argument-2 Return

 11 5 1
-11 5 4
 11 -5 -4
-11 -5 -1

Part 7. Intrinsic functions 439

If the ARITH(EXTEND) compiler option is in effect,
then the total number of digits must not exceed 31.

NUMVAL

 NUMVAL

The NUMVAL function returns the numeric value represented by the
alphanumeric character string specified in an argument. The function strips away
any leading or trailing blanks in the string, producing a numeric value that can be
used in an arithmetic expression.

The function type is numeric.

 Format
��──FUNCTION NUMVAL─ ──(argument-1) ───��

argument-1
must be a nonnumeric literal or an alphanumeric data item whose content has
either of the following formats:

��─ ──┬ ┬─────── ──┬ ┬─── ──┬ ┬─────── ──┬ ┬ ─digit─ ──┬ ┬────────────── ──┬ ┬─────── ───��
└ ┘─space─ ├ ┤─+─ └ ┘─space─ │ │└ ┘─.─ ──┬ ┬─────── └ ┘─space─

 └ ┘─-─ │ │└ ┘─digit─
 └ ┘─.──digit────────────────

��─ ──┬ ┬─────── ──┬ ┬ ─digit─ ──┬ ┬────────────── ──┬ ┬─────── ──┬ ┬──── ──┬ ┬─────── ──��
 └ ┘─space─ │ │└ ┘─.─ ──┬ ┬─────── └ ┘─space─ ├ ┤─+── └ ┘─space─
 │ │└ ┘─digit─ ├ ┤─-──
 └ ┘─.──digit──────────────── ├ ┤─CR─
 └ ┘─DB─

space
A string of one or more spaces.

digit
A string of one or more digits.

| If the ARITH(COMPAT) compiler option is in effect, then the total number of
| digits must not exceed 18.
|

If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES
paragraph, a comma must be used in argument-1 rather than a decimal point.

The returned value is an approximation of the numeric value represented by
argument-1.

440 COBOL Language Reference

The NUMVAL-C function cannot be used if any of the following are true:
� The program contains more than one CURRENCY SIGN clause in the

SPECIAL-NAMES paragraph of the Environment Division.
� Literal-6 in the CURRENCY SIGN clause is a lowercase letter.
� The PICTURE SYMBOL paragraph is specified in the CURRENCY SIGN

clause.

NUMVAL-C

 NUMVAL-C

The NUMVAL-C function returns the numeric value represented by the
alphanumeric character string specified as argument-1. Any optional currency sign
specified by argument-2 and any optional commas preceding the decimal point are
stripped away, producing a numeric value that can be used in an arithmetic
expression.

The function type is numeric.

 Format
��──FUNCTION NUMVAL-C─ ──(argument-1 ──┬ ┬────────────) ───────────────────────��
 └ ┘─argument-2─

argument-1
Must be a nonnumeric literal or an alphanumeric data item whose content has
either of the following formats:

��─ ──┬ ┬─────── ──┬ ┬─── ──┬ ┬─────── ──┬ ┬──── ──┬ ┬─────── ─────────────────────────�
└ ┘─space─ ├ ┤─+─ └ ┘─space─ └ ┘─cs─ └ ┘─space─

 └ ┘─-─

�─ ──┬ ┬ ─digit─ ──┬ ┬────────────── ──┬ ┬────────────── ──┬ ┬─────── ───────────────��
 │ ││ │┌ ┐──────────── └ ┘─.─ ──┬ ┬─────── └ ┘─space─
 │ │└ ┘ ───/ ┴─,──digit─ └ ┘─digit─
 └ ┘─.──digit──────────────────────────────────

��─ ──┬ ┬─────── ──┬ ┬──── ──┬ ┬─────── ───�
 └ ┘─space─ └ ┘─cs─ └ ┘─space─

�─ ──┬ ┬ ─digit─ ──┬ ┬────────────── ──┬ ┬────────────── ──┬ ┬─────── ──┬ ┬──── ────────�
 │ ││ │┌ ┐──────────── └ ┘─.─ ──┬ ┬─────── └ ┘─space─ ├ ┤─+──
 │ │└ ┘ ───/ ┴─,──digit─ └ ┘─digit─ ├ ┤─-──
 └ ┘─.──digit────────────────────────────────── ├ ┤─CR─
 └ ┘─DB─

�─ ──┬ ┬─────── ──��
 └ ┘─space─

space
A string of one or more spaces.

cs The string of one or more characters specified by argument-2. At most, one
copy of the characters specified by cs can occur in argument-1.

digit
A string of one or more digits.

| If the ARITH(COMPAT) compiler option is in effect, then the total number of

Part 7. Intrinsic functions 441

If the ARITH(EXTEND) compiler option is in effect,
then the total number of digits must not exceed 31.

NUMVAL-C

| digits must not exceed 18.
|

If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES
paragraph, the functions of the comma and decimal point in argument-1 are
reversed.

argument-2
If specified, must be a nonnumeric literal or alphanumeric data item, subject to
the following rules:

� argument-2 must not contain any of the digits 0 through 9, any leading or
trailing spaces, or any of the special characters + - . ,

� argument-2 can be of any length valid for an elementary or group data
item, including zero

� Matching of argument-2 is case-sensitive. For example, if you specify
argument-2 as 'Dm', it will not match 'DM', 'dm' or 'dM'.

If argument-2 is not specified, the character used for cs is the currency symbol
specified for the program.

The returned value is an approximation of the numeric value represented by
argument-1.

442 COBOL Language Reference

ORD

 ORD

The ORD function returns an integer value that is the ordinal position of its
argument in the collating sequence for the program. The lowest ordinal position is
1.

The function type is integer.

The function result is a 3-digit integer.

 Format
��──FUNCTION ORD─ ──(argument-1) ──��

argument-1
Must be one character in length and must be class alphabetic or alphanumeric.

The returned value is the ordinal position of argument-1 in the collating sequence
for the program; it ranges from 1 to 256 depending on the collating sequence.

Part 7. Intrinsic functions 443

If more than one argument-1 is specified, the combination of alphabetic and
alphanumeric arguments is allowed.

ORD-MAX

 ORD-MAX

The ORD-MAX function returns a value that is the ordinal number position, in the
argument list, of the argument that contains the maximum value.

The function type is integer.

 Format
 ┌ ┐──────────────
��──FUNCTION ORD-MAX──(─ ───/ ┴─argument-1─ ─)─────────────────────────────────��

argument-1
Must be class numeric, alphanumeric, or alphabetic.

The returned value is the ordinal number that corresponds to the position of
argument-1 having the greatest value in the argument-1 series.

The comparisons used to determine the greatest valued argument-1 are made
according to the rules for simple conditions. For more information, see
“Conditional expressions” on page 214.

If more than one argument-1 has the same greatest value, the number returned
corresponds to the position of the leftmost argument-1 having that value.

444 COBOL Language Reference

If more than one argument-1 is specified, the combination of alphabetic and
alphanumeric arguments is allowed.

ORD-MIN

 ORD-MIN

The ORD-MIN function returns a value that is the ordinal number of the argument
that contains the minimum value.

The function type is integer.

 Format
 ┌ ┐──────────────
��──FUNCTION ORD-MIN──(─ ───/ ┴─argument-1─ ─)─────────────────────────────────��

argument-1
Must be class numeric, alphanumeric, or alphabetic.

The returned value is the ordinal number that corresponds to the position of the
argument-1 having the least value in the argument-1 series.

The comparisons used to determine the least valued argument-1 are made
according to the rules for simple conditions. For more information, see
“Conditional expressions” on page 214.

If more than one argument-1 has the same least value, the number returned
corresponds to the position of the leftmost argument-1 having that value.

Part 7. Intrinsic functions 445

PRESENT-VALUE

 PRESENT-VALUE

The PRESENT-VALUE function returns a value that approximates the present
value of a series of future period-end amounts specified by argument-2 at a
discount rate specified by argument-1.

The function type is numeric.

 Format
 ┌ ┐──────────────
��──FUNCTION PRESENT-VALUE─ ──(argument-1 ───/ ┴─argument-2─ ─)─────────────────��

argument-1
Must be class numeric. Must be greater than -1.

argument-2
Must be class numeric.

The returned value is an approximation of the summation of a series of
calculations with each term in the following form:

argument-2 / (1 + argument-1) ** n

There is one term for each occurrence of argument-2. The exponent, n, is
incremented from one by one for each term in the series.

446 COBOL Language Reference

RANDOM

 RANDOM

The RANDOM function returns a numeric value that is a pseudorandom number
from a rectangular distribution.

The function type is numeric.

 Format
��──FUNCTION RANDOM─ ──┬ ┬────────────── ─────────────────────────────────────��

└ ┘──(argument-1)

argument-1
If argument-1 is specified, it must be zero or a positive integer, up to and
including (10**18)-1 which is the maximum value that can be specified in a
PIC9(18) fixed item; however, only those in the range from zero up to and
including 2,147,483,645 will yield a distinct sequence of pseudorandom
numbers.

If a subsequent reference specifies argument-1, a new sequence of pseudorandom
numbers is started.

If the first reference to this function in the run unit does not specify argument-1,
the seed value used will be zero.

In each case, subsequent references without specifying argument-1 return the next
number in the current sequence.

The returned value is exclusively between zero and one.

For a given seed value, the sequence of pseudorandom numbers will always be the
same.

Part 7. Intrinsic functions 447

RANGE

 RANGE

The RANGE function returns a value that is equal to the value of the maximum
argument minus the value of the minimum argument.

The function type depends on the argument types, as follows:

 Format
 ┌ ┐──────────────
��──FUNCTION RANGE──(─ ───/ ┴─argument-1─ ─)───────────────────────────────────��

argument-1
Must be class numeric.

The returned value is equal to argument-1 with the greatest value minus the
argument-1 with the least value. The comparisons used to determine the greatest
and least values are made according to the rules for simple conditions. For more
information, see “Conditional expressions” on page 214.

Argument type Function type
All arguments integer Integer
Numeric (some arguments can be integer) Numeric

448 COBOL Language Reference

REM

 REM

The REM function returns a numeric value that is the remainder of argument-1
divided by argument-2.

The function type is numeric.

 Format
��──FUNCTION REM─ ──(argument-1 argument-2) ─────────────────────────────────��

argument-1
Must be class numeric

argument-2
Must be class numeric. Must not be zero.

The returned value is the remainder of argument-1 divided by argument-2. It is
defined as the expression:

argument-1 - (argument-2 * FUNCTION INTEGER-PART (argument-1/argument-2))

Part 7. Intrinsic functions 449

REVERSE

 REVERSE

The REVERSE function returns a character string of exactly the same length of the
argument, whose characters are exactly the same as those specified in the
argument, except that they are in reverse order.

The function type is alphanumeric.

 Format
��──FUNCTION REVERSE─ ──(argument-1) ──��

argument-1
Must be class alphabetic or alphanumeric and must be at least one character in
length.

If argument-1 is a character string of length n, the returned value is a character
string of length n such that, for 1 <= j <= n, the character in position j of the
returned value is the character from position n-j+1 of argument-1.

450 COBOL Language Reference

SIN

 SIN

The SIN function returns a numeric value that approximates the sine of the angle
or arc specified by the argument in radians.

The function type is numeric.

 Format
��──FUNCTION SIN─ ──(argument-1) ──��

argument-1
Must be class numeric.

The returned value is the approximation of the sine of argument-1 and is greater
than or equal to -1 and less than or equal to +1.

Part 7. Intrinsic functions 451

SQRT

 SQRT

The SQRT function returns a numeric value that approximates the square root of
the argument specified.

The function type is numeric.

 Format
��──FUNCTION SQRT─ ──(argument-1) ───��

argument-1
Must be class numeric. The value of argument-1 must be zero or positive.

The returned value is the absolute value of the approximation of the square root of
argument-1.

452 COBOL Language Reference

STANDARD-DEVIATION

 STANDARD-DEVIATION

The STANDARD-DEVIATION function returns a numeric value that approximates
the standard deviation of its arguments.

The function type is numeric.

 Format
 ┌ ┐──────────────
��──FUNCTION STANDARD-DEVIATION──(─ ───/ ┴─argument-1─ ─)──────────────────────��

argument-1
Must be class numeric.

The returned value is the approximation of the standard deviation of the
argument-1 series. The returned value is calculated as follows:
1. The difference between each argument-1 and the arithmetic mean of the

argument-1 series is calculated and squared.
2. The values obtained are then added together. This quantity is divided by the

number of values in the argument-1 series.
3. The square root of the quotient obtained is then calculated. The returned

value is the absolute value of this square root.

If the argument-1 series consists of only one value, or if the argument-1 series
consists of all variable occurrence data items and the total number of occurrences
for all of them is one, the returned value is zero.

Part 7. Intrinsic functions 453

SUM

 SUM

The SUM function returns a value that is the sum of the arguments.

The function type depends on the argument types, as follows:

 Format
 ┌ ┐──────────────
��──FUNCTION SUM──(─ ───/ ┴─argument-1─ ─)─────────────────────────────────────��

argument-1
Must be class numeric.

The returned value is the sum of the arguments. If the argument-1 series are all
integers, the value returned is an integer. If the argument-1 series are not all
integers, a numeric value is returned.

Argument type Function type
All arguments integer Integer
Numeric (some arguments can be integer) Numeric

454 COBOL Language Reference

TAN

 TAN

The TAN function returns a numeric value that approximates the tangent of the
angle or arc that is specified by the argument in radians.

The function type is numeric.

 Format
��──FUNCTION TAN─ ──(argument-1) ──��

argument-1
Must be class numeric.

The returned value is the approximation of the tangent of argument-1.

Part 7. Intrinsic functions 455

UNDATE

 UNDATE

The UNDATE function converts a date field to a non-date for unambiguous use
with non-dates.

If the NODATEPROC compiler option is in effect, the UNDATE function has no
effect.

The function type depends on the type of argument-1:

Argument-1 type Function type

Alphanumeric Alphanumeric

Integer Integer

 Format
��──FUNCTION UNDATE─ ──(argument-1) ───��

argument-1
A date field.

The returned value is a non-date that contains the value of argument-1 unchanged.

456 COBOL Language Reference

UPPER-CASE

 UPPER-CASE

The UPPER-CASE function returns a character string that is the same length as the
argument specified, with each lowercase letter replaced by the corresponding
uppercase letter.

The function type is alphanumeric.

 Format
��──FUNCTION UPPER-CASE─ ──(argument-1) ─────────────────────────────────────��

argument-1
Must be class alphabetic or alphanumeric and must be at least one character in
length.

The same character string as argument-1 is returned, except that each lowercase
letter is replaced by the corresponding uppercase letter.

The character string returned has the same length as argument-1.

Part 7. Intrinsic functions 457

VARIANCE

 VARIANCE

The VARIANCE function returns a numeric value that approximates the variance
of its arguments.

The function type is numeric.

 Format
 ┌ ┐──────────────
��──FUNCTION VARIANCE──(─ ───/ ┴─argument-1─ ─)────────────────────────────────��

argument-1
Must be class numeric.

The returned value is the approximation of the variance of the argument-1 series.

The returned value is defined as the square of the standard deviation of the
argument-1 series. This value is calculated as follows:
1. The difference between each argument-1 value and the arithmetic mean of the

argument-1 series is calculated and squared.
2. The values obtained are then added together. This quantity is divided by the

number of values in the argument series.

If the argument-1 series consists of only one value, or if the argument-1 series
consists of all variable occurrence data items and the total number of occurrences
for all of them is one, the returned value is zero.

458 COBOL Language Reference

WHEN-COMPILED

 WHEN-COMPILED

The WHEN-COMPILED function returns the date and time the program was
compiled as provided by the system on which the program was compiled.

The function type is alphanumeric.

 Format
��──FUNCTION WHEN-COMPILED───��

Reading from left to right, the 21 character positions in the value returned can be
interpreted as follows:

Character
Positions Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01 through 12.

7-8 Two numeric digits of the day of the month, in the range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in the range 00 through
59.

13-14 Two numeric digits of the seconds past the minute, in the range 00
through 59.

15-16 Two numeric digits of the hundredths of a second past the second, in the
range 00 through 99. The value 00 is returned if the system on which the
function is evaluated does not have the facility to provide the fractional
part of a second.

17 Either the character '-' or the character '+'. The character '-' is returned if
the local time indicated in the previous character positions is behind
Greenwich Mean Time. The character '+' is returned if the local time
indicated is the same as or ahead of Greenwich Mean Time. The character
'0' is returned if the system on which this function is evaluated does not
have the facility to provide the local time differential factor.

18-19 If character position 17 is '-', two numeric digits are returned in the range
00 through 12 indicating the number of hours that the reported time is
behind Greenwich Mean Time. If character position 17 is '+', two numeric
digits are returned in the range 00 through 13 indicating the number of
hours that the reported time is ahead of Greenwich Mean Time. If
character position 17 is '0', the value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59 indicating the
number of additional minutes that the reported time is ahead of or behind
Greenwich Mean Time, depending on whether character position 17 is '+'
or '-', respectively. If character position 17 is '0', the value 00 is returned.

The returned value is the date and time of compilation of the source program that
contains this function. If the program is a contained program, the returned value
is the compilation date and time associated with the containing program.

Part 7. Intrinsic functions 459

YEAR-TO-YYYY

 YEAR-TO-YYYY

The YEAR-TO-YYYY function converts argument-1, a 2-digit year, to a 4-digit year.
Argument-2, when added to the year at the time of execution, defines the ending
year of a 100-year interval, or sliding century window, into which the year of
argument-1 falls.

The function type is integer.

If the DATEPROC compiler option is in effect, then the returned value is an
expanded date field with implicit DATE FORMAT YYYY.

 Format
��──FUNCTION YEAR-TO-YYYY─ ──(argument-1 ──┬ ┬────────────) ───────────────────��
 └ ┘─argument-2─

argument-1
Must be a non-negative integer that is less than 100.

argument-2
Must be an integer. If argument-2 is omitted, the function is evaluated
assuming the value 50 was specified.

The sum of the year at the time of execution and the value of argument-2 must be
less than 10,000 and greater than 1,699.

 Example

Two examples of return values from the YEAR-TO-YYYY function follow:

Current year Argument-1 value Argument-2 value
YEAR-TO-YYYY
return value

1995 4 23 2004

1995 4 -15 1904

2008 98 23 1998

2008 98 -15 1898

460 COBOL Language Reference

YEARWINDOW

 YEARWINDOW

If the DATEPROC compiler option is in effect, the YEARWINDOW function
returns the starting year of the century window specified by the YEARWINDOW
compiler option. The returned value is an expanded date field with implicit DATE
FORMAT YYYY.

If the NODATEPROC compiler option is in effect, the YEARWINDOW function
returns 0.

The function type is integer.

 Format
��──FUNCTION YEARWINDOW──��

Part 7. Intrinsic functions 461

YEARWINDOW

462 COBOL Language Reference

BASIS statement
CBL (PROCESS) statement
*CONTROL (*CBL) statement

DELETE statement
EJECT statement

INSERT statement
READY or RESET TRACE statement

SERVICE LABEL statement
SERVICE RELOAD statement
SKIP1/2/3 statements
TITLE statement

Compiler directives
CALLINTERFACE

Part 8. Compiler-directing statements

Compiler-directing statements 464
 464

. 465
. 466

COPY statement 468
 474

 475
ENTER statement 475

 476
. 476

REPLACE statement 477
. 480

. 481
 481

 482
USE statement 482

 489
 489

 Copyright IBM Corp. 1991, 2000 463

BASIS statement

 BASIS statement

The BASIS statement is an extended source program library statement. It provides
a complete COBOL program as the source for a compilation.

A complete program can be stored as an entry in a user's library and can be used
as the source for a compilation. Compiler input is a BASIS statement, optionally
followed by any number of INSERT and/or DELETE statements.

 Format
��─ ──┬ ┬───────────────── ─BASIS─ ──┬ ┬─basis-name─ ────────────────────────────��
 └ ┘─sequence-number─ └ ┘─literal-1──

sequence-number
Can optionally appear in columns 1 through 6, followed by a space. The
content of this field is ignored.

BASIS
Can appear anywhere in columns 1 through 72, followed by basis-name.
There must be no other text in the statement.

basis-name, literal-1
It is the name by which the library entry is known to the system environment.

For rules of formation and processing rules, see the description under literal-1
and text-name-1 of the “COPY statement” on page 468.

The source file remains unchanged after execution of the BASIS statement.

Note: If INSERT or DELETE statements are used to modify the COBOL source
program provided by a BASIS statement, the sequence field of the COBOL source
program must contain numeric sequence numbers in ascending order.

Compiler-directing statements

A compiler-directing statement is a statement, beginning with a compiler directing
verb, that causes the compiler to take a specific action during compilation.

464  Copyright IBM Corp. 1991, 2000

CBL (PROCESS) statement

CBL (PROCESS) statement

With the CBL (PROCESS) statement, you can specify compiler options to be used
in the compilation of the program. The CBL (PROCESS) statement is placed before
the Identification Division header of an outermost program.

 Format
��─ ──┬ ┬─CBL───── ──┬ ┬────────────── ───��
 └ ┘─PROCESS─ └ ┘─options-list─

options-list
A series of one or more compiler options, each one separated by a comma or a
space.

For more information on compiler options, see the IBM COBOL Programming
Guide for your platform.

The CBL (PROCESS) statement can be preceded by a sequence number in columns
1 through 6. The first character of the sequence number must be numeric, and
CBL or PROCESS can begin in column 8 or after; if a sequence number is not
specified, CBL or PROCESS can begin in column 1 or after.

The CBL (PROCESS) statement must end before or at column 72, and options
cannot be continued across multiple CBL (PROCESS) statements. However, you
can use more than one CBL (PROCESS) statement. If you use multiple CBL
(PROCESS) statements, they must follow one another with no intervening
statements of any other type.

The CBL (PROCESS) statement must be placed before any comment lines or other
compiler-directing statements.

Part 8. Compiler-directing statements 465

*CONTROL (*CBL) statement

*CONTROL (*CBL) statement

With the *CONTROL (or *CBL) statement, you can selectively display or suppress
the listing of source code, object code, and storage maps throughout the source
program.

 Format
 ┌ ┐────────────────
��─ ──┬ ┬─VCONTROL─ ───/ ┴──┬ ┬─SOURCE─── ──┬ ┬─── ─────────────────────────────────��
 └ ┘─VCBL───── ├ ┤─NOSOURCE─ └ ┘─.─
 ├ ┤─LIST─────
 ├ ┤─NOLIST───
 ├ ┤─MAP──────
 └ ┘─NOMAP────

For a complete discussion of the output produced by these options, see the IBM
COBOL Programming Guide for your platform.

The *CONTROL and *CBL statements are synonymous. Whenever *CONTROL is
used, *CBL is accepted as well.

The characters *CONTROL or *CBL can start in any column beginning with
column 7, followed by at least one space or comma and one or more option key
words. The option key words must be separated by one or more spaces or
commas. This statement must be the only statement on the line, and continuation
is not allowed. The statement can be terminated with a period.

The *CONTROL and *CBL statements must be embedded in a program source.
For example, in the case of batch applications, the *CONTROL and *CBL
statements must be placed between the PROCESS (CBL) statement and the end of
the program (or END PROGRAM header, if specified).

The source line containing the *CONTROL (*CBL) statement will not appear in the
source listing.

If an option is defined at installation as a fixed option, this fixed option takes
precedence over all of the following:
� PARM (if available)
� CBL statement
� *CONTROL (*CBL) statement

The requested options are handled in the following manner:
1. If an option or its negation appears more than once in a *CONTROL

statement, the last occurrence of the option word is used.
2. If the CORRESPONDING option has been requested as a parameter to the

compiler, then a *CONTROL statement with the negation of the option word
must precede the portions of the source program for which listing output is to
be inhibited. Listing output then resumes when a *CONTROL statement with
the affirmative option word is encountered.

3. If the negation of the CORRESPONDING option has been requested as a
parameter to the compiler, then that listing is always inhibited.

4. The *CONTROL statement is in effect only within the source program in
which it is written, including any contained programs. It does not remain in
effect across batch compiles of two or more COBOL source programs.

466 COBOL Language Reference

*CONTROL (*CBL) statement

Source code listing

Listing of the input source program lines is controlled by any of the following
statements:

VCONTROL SOURCE [VCBL SOURCE]
VCONTROL NOSOURCE [VCBL NOSOURCE]

If a *CONTROL NOSOURCE statement is encountered and SOURCE has been
requested as a compilation option, printing of the source listing is suppressed from
this point on. An informational (I-level) message is issued stating that PRINTING
OF THE SOURCE HAS BEEN SUPPRESSED.

Object code listing

Listing of generated object code is controlled by any of the following statements
occurring in the Procedure Division:

VCONTROL LIST [VCBL LIST]
VCONTROL NOLIST [VCBL NOLIST]

If a *CONTROL NOLIST statement is encountered, and LIST has been requested as
a compilation option, listing of generated object code is suppressed from this point
on.

Storage map listing

Listing of storage map entries is controlled by any of the following statements
occurring in the Data Division:

VCONTROL MAP [VCBL MAP]
VCONTROL NOMAP [VCBL NOMAP]

If a *CONTROL NOMAP statement is encountered, and MAP has been requested
as a compilation option, listing of storage map entries is suppressed from this
point on.

For example, either of the following sets of statements produces a storage map
listing in which A and B will not appear:

VCONTROL NOMAP VCBL NOMAP
 ?1 A ?1 A
 ?2 B ?2 B
VCONTROL MAP VCBL MAP

Part 8. Compiler-directing statements 467

literal-1 SUPPRESS
literal-2

literal-1, literal-2
Literal-1 identifies the name of the copy text. Literal-2 identifies where the
copy text exists.

 Under OS/390 and VM, when compiling from JCL, TSO or
VM/CMS:

� Can be from 1-30 characters in length.
� Can contain characters: A-Z, a-z, 0-9, hyphen.
� The first character must be alphabetic.
� The last character must not be a hyphen.
� Only the first eight characters are used as the identifying name.

When compiling with the cob2 command and processing COPY text residing
in the HFS, the literal can be from 1-160 characters in length.

COPY statement

 COPY statement

The COPY statement is a library statement that places prewritten text in a COBOL
program.

Prewritten source program entries can be included in a source program at compile
time. Thus, an installation can use standard file descriptions, record descriptions,
or procedures without recoding them. These entries and procedures can then be
saved in user-created libraries; they can then be included in the source program by
means of the COPY statement.

Compilation of the source program containing COPY statements is logically
equivalent to processing all COPY statements before processing the resulting
source program.

The effect of processing a COPY statement is that the library text associated with
text-name is copied into the source program, logically replacing the entire COPY
statement, beginning with the word COPY and ending with the period, inclusive.
When the REPLACING phrase is not specified, the library text is copied
unchanged.

 Format
��──COPY─ ──┬ ┬─text-name─ ──┬ ┬────────────────────────── ──┬ ┬────────── ────────�
 └ ┘ ─ ─ └ ┘ ──┬ ┬─OF─ ──┬ ┬─library-name─ └ ┘ ─ ─
 └ ┘─IN─ └ ┘─ ────

�─ ──┬ ┬─── ─.──────────────────────────��
 │ │┌ ┐────────────────────────────
 └ ┘ ─REPLACING─ ───/ ┴─operand-1──BY──operand-2─

text-name, library-name
Text-name identifies the name of the copy text. Library-name identifies where
the copy text exists.

| � Can be from 1-30 characters in length.
| � Can contain characters: A-Z, a-z, 0-9, hyphen.
| � The first character must be alphabetic.
| � The last character must not be a hyphen.

| For OS/390 and VM, and compiling from JCL, TSO or VM/CMS,
| only the first eight characters are used as the identifying name. When
| compiling with the cob2 command and processing COPY text residing in the
| Hierarchical File System (HFS), all characters are significant.

|
|

|
|
|
|
|

|
|

468 COBOL Language Reference

 Under AIX and Windows:

� The literal can be from 1-160 characters in length.

As an IBM extension, a user-defined word can be the same as a text-name or a
library-name.

As an IBM extension, if more than one COBOL library is available during
compilation, text-name need not be qualified. If text-name is not qualified, a
library-name of SYSLIB is assumed.

As an IBM extension, COPY statements can be nested.
However, nested COPY statements cannot contain the REPLACING phrase, and a
COPY statement with the REPLACING phrase cannot contain nested COPY
statements.

A COPY statement cannot cause recursion. That is, a COPY member can be
named only once in a set of nested COPY statements until the end-of-file for that
COPY member is reached. For example, assume that the source program contains
the statement: COPY X. and library-text X contains the statement: COPY Y..

In this case, the library-text Y must not have a COPY X or a COPY Y statement.

COPY statement

The uniqueness of text-name and library-name is determined after the formation
and conversion rules for a system-dependent name have been applied.

For information on processing rules, see the IBM COBOL Programming Guide for
your platform.

operand-1, operand-2
Can be either pseudo-text, an identifier, a function-identifier, a literal, or a
COBOL word (except COPY).

Each COPY statement must be preceded by a space and ended with a separator
period.

A COPY statement can appear in the source program anywhere a character string
or a separator can appear.

Debugging lines are permitted within library text and pseudo-text. Text words
within a debugging line participate in the matching rules as if the D did not
appear in the indicator area. A debugging line is specified within pseudo-text if
the debugging line begins in the source program after the opening pseudo-text
delimiter but before the matching closing pseudo-text delimiter.

If additional lines are introduced into the source program as a result of a COPY
statement, each text word introduced appears on a debugging line if the COPY
statement begins on a debugging line or if the text word being introduced appears
on a debugging line in Library text. When a text word specified in the BY phrase
is introduced, it appears on a debugging line if the first library text word being
replaced is specified on a debugging line.

When a COPY statement is specified on a debugging line, the copied text is treated
as though it appeared on a debugging line, except that comment lines in the text
appear as comment lines in the resulting source program.

If the word COPY appears in a comment-entry, or in the place where a
comment-entry can appear, it is considered part of the comment-entry.

After all COPY and REPLACE statements have been processed, a debugging line
will be considered to have all the characteristics of a comment line, if the WITH
DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph.

Part 8. Compiler-directing statements 469

Lines containing *CONTROL (*CBL), EJECT, SKIP1/2/3, or TITLE statements can
occur in library text. Such lines are treated as comment lines during COPY
statement processing.

DBCS words, DBCS literals, and EUC words are allowed in library text and
pseudo-text.

 SUPPRESS phrase

The SUPPRESS phrase specifies that the library text is not to be printed on the
source program listing.

COPY Statement

Comment lines or blank lines can occur in library text. Comment lines or blank
lines appearing in library text are copied into the resultant source program
unchanged with the following exception: a comment line or blank line in library
text is not copied if that comment line or blank line appears within the sequence of
text words that match operand-1 (see “Replacement and comparison rules” on
page 471).

The syntactic correctness of the entire COBOL source program cannot be
determined until all COPY and REPLACE statements have been completely
processed, because the syntactic correctness of the library text cannot be
independently determined.

Library text copied from the library is placed into the same area of the resultant
program as it is in the library. Library text must conform to the rules for standard
COBOL format.

Note: Characters outside the standard COBOL character set must not appear in
library text or pseudo-text, other than as part of nonnumeric literals, comment
lines, or comment-entries.

 REPLACING phrase

In the discussion that follows, each operand can consist of one of the following:
� Pseudo-text
� An identifier
� A literal
� A COBOL word (except COPY)
� Function identifier

When the REPLACING phrase is specified, the library text is copied, and each
properly matched occurrence of operand-1 within the library text is replaced by
the associated operand-2.

pseudo-text
A sequence of character-strings and/or separators bounded by, but not
including, pseudo-text-1 delimiters (==). Both characters of each pseudo-text-1
delimiter must appear on one line; however, character-strings within
pseudo-text-1 can be continued.

Any individual character-string within pseudo-text-1 can be up to 322
characters long. Keep in mind that a character-string must be delimited by
separators. For more information, see “Characters” on page 2.

Pseudo-text-1 refers to pseudo-text when used for operand-1, and
pseudo-text-2 refers to pseudo-text when used for operand-2.

470 COBOL Language Reference

Pseudo-text-1 can consist solely of the separator comma or separator
semicolon.

Pseudo-text can contain DBCS or EUC user-defined words, but the characters
cannot be continued across lines.

Can be a DBCS literal.

You can include the non-separator COBOL characters (for example, +, *, /, $,
<, >, and =) as part of a COBOL word when used as REPLACING operands.
In addition, the hyphen character can be at the beginning or end of the word.

Either operand, or both, can be a DBCS or EUC name or DBCS literal.

COPY Statement

Pseudo-text-1 cannot be null, nor can it consist solely of the space character,
separator comma, separator semicolon, and/or of comment lines. Beginning
and ending blanks are not included in the text comparison process. Embedded
blanks are used in the text comparison process to indicate multiple text words.

Pseudo-text must not contain the word COPY.

Pseudo-text-2 can be null; it can consist solely of space characters and/or
comment lines. Each text word in pseudo-text-2 that is to be copied into the
program is placed in the same area of the resultant program as the area in
which it appears in pseudo-text-2.

identifier
Can be defined in any Data Division section.

literal
Can be numeric or nonnumeric.

word
Can be any single COBOL word (except COPY).

For purposes of matching, each identifier-1, literal-1, or word-1 is treated,
respectively, as pseudo-text containing only identifier-1, literal-1, or word-1.

Replacement and comparison rules

1. Arithmetic and logical operators are considered text words and can be
replaced only through the pseudo-text option.

2. When a figurative constant is operand-1, it will match only if it appears exactly
as it is specified. For example, if ALL “AB” is specified in the library text,
then “ABAB” is not considered a match; only ALL “AB” is considered a
match.

3. When replacing a PICTURE character-string, the pseudo-text option should be
used; to avoid ambiguities, pseudo-text-1 should specify the entire PICTURE
clause, including the key word PICTURE or PIC.

4. Any separator comma, semicolon, and/or space preceding the leftmost word
in the library text is copied into the source program. Beginning with the
leftmost library text word and the first operand-1 specified in the REPLACING
option, the entire REPLACING operand that precedes the key word BY is
compared to an equivalent number of contiguous library text words.

5. Operand-1 matches the library text if, and only if, the ordered sequence of text
words in operand-1 is equal, character for character, to the ordered sequence of
library words. For matching purposes, each occurrence of a comma or
semicolon separator and each sequence of one or more space separators is

Part 8. Compiler-directing statements 471

However, when operand-1 consists solely of a
separator comma or semicolon, it participates in the match as a text-word (in
this case, the space following the comma or semicolon separator can be
omitted).

When the library text contains a closing quotation mark that is not
immediately followed by a separator space, comma, semicolon, or period, the
closing quotation mark will be considered a separator quotation mark.

13. COPY REPLACING does not affect the EJECT, SKIP1/2/3, or TITLE
compiler-directing statements. When text words are placed in the source
program, additional spaces are introduced only between text words where
there already exists a space (including the assumed space between source
lines).

COPY Statement

considered to be a single space.

6. If no match occurs, the comparison is repeated with each successive operand-1,
if specified, until either a match is found or there are no further REPLACING
operands.

7. Whenever a match occurs between operand-1 and the library text, the
associated operand-2 is copied into the source program.

8. The COPY statement with REPLACING phrase can be used to replace parts of
words. By inserting a dummy operand delimited by colons into the program
text, the compiler will replace the dummy operand with the desired text.
Example 3 shows how this is used with the dummy operand :TAG:.

Note: The colons serve as separators and make TAG a stand-alone operand.
9. When all operands have been compared and no match is found, the leftmost

library text word is copied into the source program.
10. The next successive uncopied library text word is then considered to be the

leftmost text word, and the comparison process is repeated, beginning with the
first operand-1. The process continues until the rightmost library text word
has been compared.

11. Comment lines or blank lines occurring in the library text and in pseudo-text-1
are ignored for purposes of matching; and the sequence of text words in the
library text and in pseudo-text-1 is determined by the rules for reference
format. Comment lines or blank lines appearing in pseudo-text-2 are copied
into the resultant program unchanged whenever pseudo-text-2 is placed into
the source program as a result of text replacement. Comment lines or blank
lines appearing in library text are copied into the resultant source program
unchanged with the following exception: a comment line or blank line in
library text is not copied if that comment line or blank line appears within the
sequence of text words that match pseudo-text-1.

12. Text words, after replacement, are placed in the source program according to
standard COBOL format rules.

Sequences of code (such as file and data descriptions, error and exception routines,
etc.) that are common to a number of programs can be saved in a library, and then
used in conjunction with the COPY statement. If naming conventions are
established for such common code, then the REPLACING phrase need not be
specified. If the names will change from one program to another, then the
REPLACING phrase can be used to supply meaningful names for this program.

472 COBOL Language Reference

COPY Statement

Example 1

In this example, the library text PAYLIB consists of the following Data Division
entries:

?1 A.
 ?2 B PIC S99.
 ?2 C PIC S9(5)V99.
 ?2 D PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ON B OF A.

The programmer can use the COPY statement in the Data Division of a program as
follows:

 COPY PAYLIB.

In this program, the library text is copied; the resulting text is treated as if it had
been written as follows:

?1 A.
 ?2 B PIC S99.
 ?2 C PIC S9(5)V99.
 ?2 D PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ON B OF A.

Example 2

To change some (or all) of the names within the library text, the programmer can
use the REPLACING phrase:

COPY PAYLIB REPLACING A BY PAYROLL
B BY PAY-CODE
C BY GROSS-PAY
D BY HOURS.

In this program, the library text is copied; the resulting text is treated as if it had
been written as follows:

?1 PAYROLL.
 ?2 PAY-CODE PIC S99.
 ?2 GROSS-PAY PIC S9(5)V99.
 ?2 HOURS PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ON PAY-CODE OF PAYROLL.

The changes shown are made only for this program. The text, as it appears in the
library, remains unchanged.

Example 3

If the following conventions are followed in library text, then parts of names (for
example the prefix portion of data-names) can be changed with the REPLACING
phrase.

In this example, the library text PAYLIB consists of the following Data Division
entries:

?1 :TAG:.
 ?2 :TAG:-WEEK PIC S99.
 ?2 :TAG:-GROSS-PAY PIC S9(5)V99.
 ?2 :TAG:-HOURS PIC S999 OCCURS 1 TO 52 TIMES

DEPENDING ON :TAG:-WEEK OF :TAG:.

The programmer can use the COPY statement in the Data Division of a program as
follows:

COPY PAYLIB REPLACING ==:TAG:== BY ==Payroll==.

Part 8. Compiler-directing statements 473

DELETE statement

 DELETE statement

The DELETE statement is an extended source library statement. It removes
COBOL statements from the source program included by a BASIS statement.

 Format
��─ ──┬ ┬───────────────── ─DELETE──sequence-number-field─────────────────────��
 └ ┘─sequence-number─

sequence-number
Can optionally appear in columns 1 through 6, followed by a space. The
content of this field is ignored.

DELETE
Can appear anywhere within columns 1 through 72. It must be followed by a
space and the sequence-number-field. There must be no other text in the
statement.

sequence-number-field
Each number must be equal to a sequence-number in the BASIS source
program. This sequence-number is the 6-digit number the programmer assigns
in columns 1 through 6 of the COBOL coding form. The numbers referenced
in the sequence-number-fields of any INSERT or DELETE statements must
always be specified in ascending numeric order.

The sequence-number-field must be any one of the following:

� A single number
� A series of single numbers
� A range of numbers (indicated by separating the two bounding numbers

of the range by a hyphen)
� A series of ranges of numbers
� Any combination of one or more single numbers and one or more ranges

of numbers

Note: It is important to notice in this example the required use of colons or
parentheses as delimiters in the library text. Colons are recommended for clarity
because parentheses can be used for a subscript, for instance in a table.

In this program, the library text is copied; the resulting text is treated as if it had
been written as follows:

?1 PAYROLL.
 ?2 PAYROLL-WEEK PIC S99.
 ?2 PAYROLL-GROSS-PAY PIC S9(5)V99.
 ?2 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES

DEPENDING ON PAYROLL-WEEK OF PAYROLL.

The changes shown are made only for this program. The text, as it appears in the
library, remains unchanged.

Example 4

This example shows how to selectively replace level numbers without replacing
the numbers in the PICTURE clause:

COPY xxx REPLACING ==(?1)== BY ==(?1)==
== ?1 == BY == ?5 ==.

474 COBOL Language Reference

Each entry in the sequence-number-field must be separated from the preceding
entry by a comma followed by a space. For example:

???25? DELETE ????1?-????5?, ???4??, ???45?

Source program statements can follow a DELETE statement. These source
program statements are then inserted into the BASIS source program before the
statement following the last statement deleted (that is, in the example above,
before the next statement following deleted statement 000450).

If a DELETE statement is specified, beginning in column 12 or higher, and a valid
sequence-number-field does not follow the key word DELETE, the compiler
assumes that this DELETE statement is the COBOL DELETE statement.

New source program statements following the DELETE statement can include
DBCS or EUC data items.

Note: If INSERT or DELETE statements are used to modify the COBOL source
program provided by a BASIS statement, the sequence field of the COBOL source
program must contain numeric sequence-numbers in ascending order. The source
file remains unchanged. Any INSERT or DELETE statements referring to these
sequence-numbers must occur in ascending order.

 EJECT statement

The EJECT statement specifies that the next source statement is to be printed at the
top of the next page.

 Format
��──EJECT─ ──┬ ┬─── ──��
 └ ┘─.─

The EJECT statement must be the only statement on the line. It can be written in
either Area A or Area B, and can be terminated with a separator period.

The EJECT statement must be embedded in a program source. For example, in the
case of batch applications, the EJECT statement must be placed between the CBL
(PROCESS) statement and the end of the program (or the END PROGRAM header,
if specified).

The EJECT statement has no effect on the compilation of the source program itself.

ENTER statement

 ENTER statement

The ENTER statement allows the use of more than one source language in the
same source program.

With COBOL for OS/390 & VM, COBOL Set for AIX, and VisualAge COBOL, only
COBOL is allowed in the source program.

Note: The ENTER statement is syntax checked during compilation but has no
effect on the execution of the program.

Part 8. Compiler-directing statements 475

READY or RESET TRACE statement

 INSERT statement

The INSERT statement is a library statement that adds COBOL statements to the
source program included by a BASIS statement.

 Format
��─ ──┬ ┬───────────────── ─INSERT──sequence-number-field─────────────────────��
 └ ┘─sequence-number─

sequence-number
Can optionally appear in columns 1 through 6, followed by a space. The
content of this field is ignored.

INSERT
Can appear anywhere within columns 1 through 72, followed by a space and
the sequence-number-field. There must be no other text in the statement.

sequence-number-field
A number which must be equal to a sequence-number in the BASIS source
program. This sequence-number is the 6-digit number the programmer assigns
in columns 1 through 6 of the COBOL coding form.

The numbers referenced in the sequence-number-fields of any INSERT or
DELETE statements must always be specified in ascending numeric order.

The sequence-number-field must be a single number (for example, 000130). At
least one new source program statement must follow the INSERT statement for
insertion after the statement number specified by the sequence-number-field.

New source program statements following the INSERT statement can include
DBCS or EUC data items.

Note: If INSERT or DELETE statements are used to modify the COBOL source
program provided by a BASIS statement, the sequence field of the COBOL source
program must contain numeric sequence-numbers in ascending order. The source
file remains unchanged. Any INSERT or DELETE statements referring to these
sequence-numbers must occur in ascending order.

READY or RESET TRACE statement

The READY or RESET TRACE statement can only appear in the Procedure
Division, but has no effect on your program.

 Format
��──ENTER──language-name-1─ ──┬ ┬──────────────── ─.──────────────────────────��
 └ ┘─routine-name-1─

language-name-1
A system name that has no defined meaning. It must be either a correctly
formed user-defined word or the word "COBOL". At least one character must
be alphabetic.

routine-name-1
Must follow the rules for formation of a user-defined word. At least one
character must be alphabetic.

476 COBOL Language Reference

 Format
��─ ──┬ ┬─READY─ ─TRACE──.──��
 └ ┘─RESET─

You can reproduce the function of READY TRACE by using the USE FOR
DEBUGGING declarative, DISPLAY statement, and DEBUG-ITEM special register.
For example:

 .
 .
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-39? WITH DEBUGGING MODE.
 .
 DATA DIVISION.
 .
 WORKING-STORAGE SECTION.

?1 TRACE-SWITCH PIC 9 VALUE ?.
 88 READY-TRACE VALUE 1.
 88 RESET-TRACE VALUE ?.
 .
 PROCEDURE DIVISION.
 DECLARATIVES.
 COBOL-II-DEBUG SECTION.

USE FOR DEBUGGING ON ALL PROCEDURES.
 COBOL-II-DEBUG-PARA.

IF READY-TRACE THEN
 DISPLAY DEBUG-NAME
 END-IF.
 END DECLARATIVES.
 MAIN-PROCESSING SECTION.
 .
 PARAGRAPH-3.
 .

SET READY-TRACE TO TRUE.
 PARAGRAPH-4.
 .
 PARAGRAPH-6.
 .

SET RESET-TRACE TO TRUE.
 PARAGRAPH-7.

where DEBUG-NAME is a field of the DEBUG-ITEM special register that displays
the procedure-name causing execution of the debugging procedure. (In this
example, the object program displays the names of procedures PARAGRAPH-4
through PARAGRAPH-6 as control reaches each procedure within the range.)

At run time, you must specify the DEBUG run-time option to activate this
debugging procedure. In this way, you have no need to recompile the program to
activate or deactivate the debugging declarative.

REPLACE statement

 REPLACE statement

The REPLACE statement is used to replace source program text.

A REPLACE statement can occur anywhere in the source program where a
character-string can occur. It must be preceded by a separator period except when
it is the first statement in a separately compiled program. It must be terminated
by a separator period.

Part 8. Compiler-directing statements 477

As an IBM extension, pseudo-text-1 can consist entirely of a separator comma
or a separator semicolon.

The REPLACE statement can be used with DBCS literals and DBCS or EUC names.

Pseudo-text can contain DBCS or EUC character-strings, but the characters cannot
be continued across lines.

REPLACE statement

The REPLACE statement provides a means of applying a change to an entire
COBOL source program, or part of a source program, without manually having to
find and modify all places that need to be changed. It is an easy method of doing
simple string substitutions. It is similar in action to the REPLACING phrase of the
COPY statement, except that it acts on the entire source program, not just on the
text in COPY libraries.

If the word REPLACE appears in a comment-entry or in the place where a
comment-entry can appear, it is considered part of the comment-entry.

 Format 1
 ┌ ┐──
��──REPLACE─ ───/ ┴──==pseudo-text-1== ─BY─ ──==pseudo-text-2== ─.───────────────��

Each matched occurrence of pseudo-text-1 in the source program is replaced by the
corresponding pseudo-text-2.

 Format 2
��──REPLACE OFF.───��

Any text replacement currently in effect is discontinued with the format 2 form of
REPLACE. If format 2 is not specified, a given occurrence of the REPLACE
statement is in effect from the point at which it is specified until the next
occurrence of the statement or the end of the separately compiled program,
respectively.

pseudo-text-1
Must contain one or more text words. Character-strings can be continued.

pseudo-text-2
Can contain zero, one, or more text words. Character strings can be continued.

Any individual character-string within pseudo-text can be up to 322 characters
long.

Note: Characters outside the standard COBOL character set should not appear in
pseudo-text, other than as part of nonnumeric literals, comment lines, or
comment-entries.

The compiler processes REPLACE statements in a source program after the
processing of any COPY statements. COPY must be processed first, to assemble a
complete source program. Then REPLACE can be used to modify that program,
performing simple string substitution. REPLACE statements can themselves
contain COPY statements.

The text produced as a result of the processing of a REPLACE statement must not
contain a REPLACE statement.

478 COBOL Language Reference

However, when pseudo-text-1 consists solely of a separator comma or semicolon, it
participates in the match as a text word (in this case, the space following the
comma or semicolon separator can be omitted).

REPLACE statement

Continuation rules for pseudo-text

The character-strings and separators comprising pseudo-text can start in either area
A or area B. If, however, there is a hyphen in the indicator area of a line which
follows the opening pseudo-text delimiter, area A of the line must be blank; and
the normal rules for continuation of lines apply to the formation of text words.
(See “Continuation lines” on page 31.)

 Comparison operation

The comparison operation to determine text replacement starts with the leftmost
source program text word following the REPLACE statement, and with the first
pseudo-text-1. Pseudo-text-1 is compared to an equivalent number of contiguous
source program text words. Pseudo-text-1 matches the source program text if, and
only if, the ordered sequence of text words that forms pseudo-text-1 is equal,
character for character, to the ordered sequence of source program text words.

For purposes of matching, each occurrence of a separator comma, semicolon, and
space, and each sequence of one or more space separators is considered to be a
single space.

If no match occurs, the comparison is repeated with each successive occurrence of
pseudo-text-1, until either a match is found or there is no next successive
occurrence of pseudo-text-1.

When all occurrences of pseudo-text-1 have been compared and no match has
occurred, the next successive source program text word is then considered as the
leftmost source program text word, and the comparison cycle starts again with the
first occurrence of pseudo-text-1.

Whenever a match occurs between pseudo-text-1 and the source program text, the
corresponding pseudo-text-2 replaces the matched text in the source program. The
source program text word immediately following the rightmost text word that
participated in the match is then considered as the leftmost source program text
word. The comparison cycle starts again with the first occurrence of pseudo-text-1.

The comparison operation continues until the rightmost text word in the source
program text which is within the scope of the REPLACE statement has either
participated in a match or been considered as a leftmost source program text word
and participated in a complete comparison cycle.

REPLACE statement notes

Comment lines or blank lines occurring in the source program text and in
pseudo-text-1 are ignored for purposes of matching. The sequence of text words
in the source program text and in pseudo-text-1 is determined by the rules for
reference format (see “Reference format” on page 28). Comment lines or blank
lines in pseudo-text-2 are placed into the resultant program unchanged whenever
pseudo-text-2 is placed into the source program as a result of text replacement.
Comment lines or blank lines appearing in source program text are retained
unchanged with the following exception: a comment line or blank line in source
program text is not retained if that comment line or blank line appears within the
sequence of text words that match pseudo-text-1.

Part 8. Compiler-directing statements 479

SERVICE LABEL statement

Lines containing *CONTROL (*CBL), EJECT, SKIP1/2/3, or TITLE statements can
occur in source program text. Such lines are treated as comment lines during
REPLACE statement processing.

SERVICE LABEL statement

 Under AIX and Windows, the SERVICE LABEL statement is treated
as a comment.

 Under OS/390 and VM, this statement is generated by the CICS
preprocessor to indicate control flow. It is also used after calls to CEE3SRP when
using Language Environment condition handling. For more information about
CEE3SRP, see the Language Environment Programming Guide.

 Format
��──SERVICE LABEL──��

The SERVICE LABEL statement can appear only in the Procedure Division, not in
the Declaratives Section.

Debugging lines are permitted in pseudo-text. Text words within a debugging line
participate in the matching rules as if the D did not appear in the indicator area.

When a REPLACE statement is specified on a debugging line, the statement is
treated as if the D did not appear in the indicator area.

After all COPY and REPLACE statements have been processed, a debugging line
will be considered to have all the characteristics of a comment line, if the WITH
DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph.

Except for COPY and REPLACE statements, the syntactic correctness of the source
program text cannot be determined until after all COPY and REPLACE statements
have been completely processed.

Text words inserted into the source program as a result of processing a REPLACE
statement are placed in the source program according to the rules for reference
format. When inserting text words of pseudo-text-2 into the source program,
additional spaces are introduced only between text words where there already
exists a space (including the assumed space between source lines).

If additional lines are introduced into the source program as a result of the
processing of REPLACE statements, the indicator area of the introduced lines
contains the same character as the line on which the text being replaced begins,
unless that line contains a hyphen, in which case the introduced line contains a
space.

If any literal within pseudo-text-2 is of a length too great to be accommodated on a
single line without continuation to another line in the resultant program and the
literal is not being placed on a debugging line, additional continuation lines are
introduced that contain the remainder of the literal. If replacement requires the
continued literal to be continued on a debugging line, the program is in error.

Note: Each word in pseudo-text-2 that is to be placed into the resultant program
begins in the same area of the resultant program as it appears in pseudo-text-2.

|
|
|

480 COBOL Language Reference

SKIP1/2/3 statements

At the statement following the SERVICE LABEL statement, all registers that might
no longer be valid are reloaded.

See IBM COBOL for OS/390 & VM Programming Guide for more information.

SERVICE RELOAD statement

The SERVICE RELOAD statement is treated as a comment.

 Format
��──SERVICE RELOAD──identifier-1───��

 SKIP1/2/3 statements

The SKIP1/2/3 statements specify blank lines that the compiler should add when
printing the source listing. SKIP statements have no effect on the compilation of
the source program itself.

 Format
��─ ──┬ ┬─SKIP1─ ──┬ ┬─── ──��

├ ┤─SKIP2─ └ ┘─.─
 └ ┘─SKIP3─

SKIP1
Specifies a single blank line to be inserted in the source listing.

SKIP2
Specifies two blank lines to be inserted in the source listing.

SKIP3
Specifies three blank lines to be inserted in the source listing.

SKIP1, SKIP2, or SKIP3 can be written anywhere in either Area A or Area B, and
can be terminated with a separator period. It must be the only statement on the
line.

The SKIP1/2/3 statement must be embedded in a program source. For example,
in the case of batch applications, the SKIP1/2/3 statement must be placed between
the CBL (PROCESS) statement and the end of the program (or the END
PROGRAM header, if specified).

Part 8. Compiler-directing statements 481

 TITLE statement

The TITLE statement specifies a title to be printed at the top of each page of the
source listing produced during compilation. If no TITLE statement is found, a title
containing the identification of the compiler and the current release level is
generated. The title is left-justified on the title line.

 Format
��──TITLE──literal─ ──┬ ┬─── ───��
 └ ┘─.─

literal
Must be nonnumeric and can be followed by a separator period.

Can be a DBCS or EUC literal.

Must not be a figurative constant.

In addition to the default or chosen title, the right side of the title line contains:
� Name of the program from the PROGRAM-ID paragraph for the outermost

program (This space is blank on pages preceding the PROGRAM-ID paragraph
for the outermost program.)

� Current page number
� Date and time of compilation

The TITLE statement:
� Forces a new page immediately, if the SOURCE compiler option is in effect
� Is not printed on the source listing
� Has no other effect on compilation
� Has no effect on program execution
� Cannot be continued on another line
� Can appear anywhere in any of the divisions

A title line is produced for each page in the listing produced by the LIST option.
This title line uses the last TITLE statement found in the source statements or the
default.

The word TITLE can begin in either Area A or Area B.

The TITLE statement must be embedded in a program source. For example, in the
case of batch applications, the TITLE statement must be placed between the CBL
(PROCESS) statement and the end of the program (or the END PROGRAM header,
if specified).

No other statement can appear on the same line as the TITLE statement.

LABEL declarative (OS/390 and VM Only)

USE statement

 USE statement

The formats for the USE statement are:
 EXCEPTION/ERROR declarative

 DEBUGGING declarative

For general information on declaratives, see “Declaratives” on page 207.

482 COBOL Language Reference

USE statement

 EXCEPTION/ERROR declarative

The EXCEPTION/ERROR declarative specifies procedures for input/output
exception or error handling that are to be executed in addition to the standard
system procedures.

The words EXCEPTION and ERROR are synonymous and can be used
interchangeably.

Format 1—USE (EXCEPTION ERROR declarative)
��──USE─ ──┬ ┬──────── ─AFTER─ ──┬ ┬────────── ──┬ ┬─EXCEPTION─ ─PROCEDURE──────────�

└ ┘─GLOBAL─ └ ┘─STANDARD─ └ ┘─ERROR─────

 ┌ ┐───────────────
�─ ──┬ ┬──── ──┬ ┬───/ ┴─file-name-1─ ──��
 └ ┘─ON─ ├ ┤─INPUT───────────
 ├ ┤─OUTPUT──────────
 ├ ┤─I-O─────────────
 └ ┘─EXTEND──────────

file-name-1
Valid for all files. When this option is specified, the procedure is executed
only for the file(s) named. No file-name can refer to a sort or merge file. For
any given file, only one EXCEPTION/ERROR procedure can be specified; thus,
file-name specification must not cause simultaneous requests for execution of
more than one EXCEPTION/ERROR procedure.

A USE AFTER EXCEPTION/ERROR declarative statement specifying the name
of a file takes precedence over a declarative statement specifying the open
mode of the file.

INPUT
Valid for all files. When this option is specified, the procedure is executed for
all files opened in INPUT mode or in the process of being opened in INPUT
mode that get an error.

OUTPUT
Valid for all files. When this option is specified, the procedure is executed for
all files opened in OUTPUT mode or in the process of being opened in
OUTPUT mode that get an error.

I-O
Valid for all direct-access files. When this option is specified, the procedure is
executed for all files opened in I-O mode or in the process of being opened in
I-O mode that get an error.

EXTEND
Valid for all files. When this option is specified, the procedure is executed for
all files opened in EXTEND mode or in the process of being opened in
EXTEND mode that get an error.

The EXCEPTION/ERROR procedure is executed:
� Either after completing the system-defined input/output error routine, or
� Upon recognition of an INVALID KEY or AT END condition when an

INVALID KEY or AT END phrase has not been specified in the input/output
statement, or

� Upon recognition of an IBM-defined condition that causes status key 1 to be
set to 9. (See “Status key” on page 244.)

Part 8. Compiler-directing statements 483

As IBM extensions to the COBOL 85 Standard, the following apply to declarative
procedures:

For AIX, Windows, OS/390, and VM:
� A declarative procedure can be performed from a nondeclarative

procedure.
Additionally for OS/390 and VM:
� A nondeclarative procedure can be performed from a declarative

procedure.
� A declarative procedure can be referenced in a GO TO statement in a

declarative procedure.
� A nondeclarative procedure can be referenced in a GO TO statement in a

declarative procedure.

You can include a statement that executes a previously called USE procedure that
is still in control. However, to avoid an infinite loop, you must be sure that there
is an eventual exit at the bottom.

USE statement

After execution of the EXCEPTION/ERROR procedure, control is returned to the
invoking routine in the input/output control system. If the input/output status
value does not indicate a critical input/output error, the input/output control
system returns control to the next executable statement following the input/output
statement whose execution caused the exception.

The EXCEPTION/ERROR procedures are activated when an input/output error
occurs during execution of a READ, WRITE, REWRITE, START, OPEN, CLOSE, or
DELETE statement. To determine what conditions are errors see “Common
processing facilities” on page 244.

Within a declarative procedure, there must be no reference to any non-declarative
procedures. In the non-declarative portion of the program, there must be no
reference to procedure-names that appear in an EXCEPTION/ERROR declarative
procedure, except that PERFORM statements can refer to an EXCEPTION/ERROR
procedure or to procedures associated with it.

Within an EXCEPTION/ERROR declarative procedure, no statement should be
included that would cause execution of a USE procedure that had been previously
called and had not yet returned control to the calling routine.

EXCEPTION/ERROR procedures can be used to check the status key values
whenever an input/output error occurs.

Precedence rules for nested programs

Special precedence rules are followed when programs are contained within other
programs. In applying these rules, only the first qualifying declarative that is
selected for execution must satisfy the rules for execution of that declarative. The
order of precedence for selecting a declarative is:
1. A file-specific declarative (that is, a declarative of the form USE AFTER

ERROR ON file-name-1) within the program that contains the statement that
caused the qualifying condition.

2. A mode-specific declarative (that is, a declarative of the form USE AFTER
ERROR ON INPUT) within the program that contains the statement that
caused the qualifying condition.

484 COBOL Language Reference

 LABEL declarative

The LABEL declarative provides user label-handling procedures.

 Under AIX and Windows, USE...AFTER...LABEL PROCEDURE is not
supported. If encountered, they are ignored and a warning message is issued.

Format 2—USE (LABEL declarative)
��──USE─ ──┬ ┬──────── ─AFTER─ ──┬ ┬────────── ──┬ ┬─────────── ──┬ ┬────── ──────────�

└ ┘─GLOBAL─ └ ┘─STANDARD─ ├ ┤─BEGINNING─ ├ ┤─FILE─
 └ ┘─ENDING──── ├ ┤─REEL─
 └ ┘─UNIT─

 ┌ ┐───────────────
�──LABEL PROCEDURE─ ──┬ ┬──── ──┬ ┬───/ ┴─file-name-1─ ───────────────────────────��
 └ ┘─ON─ ├ ┤─INPUT───────────
 ├ ┤─OUTPUT──────────
 ├ ┤─I-O─────────────
 └ ┘─EXTEND──────────

AFTER
User labels follow standard file labels, and are to be processed.

The labels must be listed as data-names in the LABEL RECORDS clause in the
file description entry for the file, and must be described as level-01 data items
subordinate to the file entry.

If neither BEGINNING nor ENDING is specified, the designated procedures
are executed for both beginning and ending labels.

If FILE, REEL, or UNIT is not included, the designated procedures are
executed both for REEL or UNIT, whichever is appropriate, and for FILE
labels.

FILE
The designated procedures are executed at beginning-of-file (on the first
volume) and/or at end-of-file (on the last volume) only.

REEL
The designated procedures are executed at beginning-of-volume (on each
volume except the first) and/or at end-of-volume (on each volume except the
last).

The REEL option is not applicable to direct-access files.

UNIT
The designated procedures are executed at beginning-of-volume (on each
volume except the first) and/or at end-of-volume (on each volume except the
last).

USE statement

3. A file-specific declarative that specifies the GLOBAL phrase and is within the
program directly containing the program that was last examined for a
qualifying declarative.

4. A mode-specific declarative that specifies the GLOBAL phrase and is within
the program directly containing the program that was last examined for a
qualifying condition.

Steps 3. and 4. are repeated until the last examined program is the outermost
program, or until a qualifying declarative has been found.

Part 8. Compiler-directing statements 485

The UNIT phrase is not applicable to files in the random access mode, because
only FILE labels are processed in this mode.

file-name-1
Can appear in different specific arrangements of the format. However,
appearance of a file-name in a USE statement must not cause the simultaneous
request for execution of more than one USE declarative.

file-name-1 must not represent a sort file.

If the file-name-1 option is used, the file description entry for file-name must
not specify a LABEL RECORDS ARE OMITTED clause.

When the INPUT, OUTPUT, or I-O options are specified, user label procedures are
executed as follows:
� When INPUT is specified, only for files opened as input
� When OUTPUT is specified, only for files opened as output
� When I-O is specified, only for files opened as I-O
� When EXTEND is specified, only for files opened EXTEND

If the INPUT, OUTPUT, or I-O phrase is specified, and an input, output, or I-O
file, respectively, is described with a LABEL RECORDS ARE OMITTED clause, the
USE procedures do not apply. The standard system procedures are performed:
� Before the beginning or ending input label check procedure is executed
� Before the beginning or ending output label is created
� After the beginning or ending output label is created, but before it is written

on tape
� Before the beginning or ending input-output label check procedure is executed

Within the procedures of a USE declarative in which the USE sentence specifies an
option other than file-name, references to common label items need not be
qualified by a file-name. A common label item is an elementary data item that
appears in every label record of the program, but does not appear in any data
records of this program. Such items must have identical descriptions and positions
within each label record.

Within a Declarative Section there must be no reference to any non-declarative
procedure. Conversely, in the non-declarative portion there must be no reference
to procedure-names that appear in the Declarative Section, except that the
PERFORM statement can refer to a USE procedure, or to procedures associated
with it.

The exit from a Declarative Section is inserted by the compiler following the last
statement in the section. All logical program paths within the section must lead to
the exit point.

There is one exception: A special exit can be specified by the statement GO TO
MORE-LABELS. When an exit is made from a Declarative Section by means of
this statement, the system will do one of the following:
1. Write the current beginning or ending label and then reenter the USE section

at its beginning for further creating of labels. After creating the last label, the
user must exit by executing the last statement of the section.

2. Read an additional beginning or ending label, and then reenter the USE section
at its beginning for further checking of labels. When processing user labels,
the section will be reentered only if there is another user label to check.
Hence, there need not be a program path that flows through the last statement
in the section.

USE statement

486 COBOL Language Reference

If a GO TO MORE-LABELS statement is not executed for a user label, the
declarative section is not reentered to check or create any immediately succeeding
user labels.

Debugging sections are not permitted in:
� A program or method defined with the RECURSIVE attribute
� A program compiled with the THREAD compiler option (Workstation only)

USE statement

 DEBUGGING declarative

Debugging sections are permitted only in the outermost program; they are not
valid in nested programs. Debugging sections are never triggered by procedures
contained in nested programs.

The WITH DEBUGGING MODE clause of the SOURCE compiler statement
activates all debugging sections and lines that have been compiled into the object
program. See Appendix C, “Source language debugging” on page 504, for
additional details.

When the debugging mode is suppressed by not specifying that option of the
SOURCE compiler, any USE FOR DEBUGGING declarative procedures and all
debugging lines are inhibited.

Automatic execution of a debugging section is not caused by a statement
appearing in a debugging section.

Format 3—USE (DEBUGGING declarative)
 ┌ ┐────────────────────
��──USE─ ──┬ ┬───── ─DEBUGGING─ ──┬ ┬──── ──┬ ┬───/ ┴─procedure-name-1─ ─────────────��
 └ ┘─FOR─ └ ┘─ON─ └ ┘─ALL PROCEDURES───────

USE FOR DEBUGGING
All debugging statements must be written together in a section immediately
after the DECLARATIVES header.

Except for the USE FOR DEBUGGING sentence itself, within the debugging
procedure there must be no reference to any non-declarative procedures.

procedure-name-1
Must not be defined in a debugging session.

Table 52 on page 488 shows, for each valid option, the points during program
execution when the USE FOR DEBUGGING procedures are executed.

Any given procedure-name can appear in only one USE FOR DEBUGGING
sentence, and only once in that sentence. All procedures must appear in the
outermost program.

ALL PROCEDURES
Procedure-name-1 must not be specified in any USE FOR DEBUGGING
sentences. The ALL PROCEDURES phrase can be specified only once in a
program. Only the procedures contained in the outermost program will
trigger execution of the debugging section.

Part 8. Compiler-directing statements 487

USE statement

Table 52. Execution of debugging declaratives

USE FOR DEBUGGING
operand

Upon execution of the following, the USE FOR
DEBUGGING procedures are executed immediately

procedure-name-1 Before each execution of the named procedure

After the execution of an ALTER statement referring to the
named procedure

ALL PROCEDURES Before each execution of every nondebugging procedure in
the outermost program

After the execution of every ALTER statement in the
outermost program (except ALTER statements in declarative
procedures)

488 COBOL Language Reference

CALLINTERFACE

Compiler directives

A compiler directive is a statement that causes the compiler to take a specific
action during compilation.

Currently, CALLINTERFACE is the only compiler directive supported.

 CALLINTERFACE

The CALLINTERFACE directive specifies the interface convention for
CALL...USING statements. The convention specified stays in effect until another
CALLINTERFACE specification is made in the source program.

 Under OS/390 and VM, the CALLINTERFACE directive is not
supported.

 Format
��─ ──┬ ┬─>>CALLINTERFACE─ ──┬ ┬────────── ──┬ ┬────────────── ───────────────────��
 └ ┘─>>CALLINT─────── ├ ┤─SYSTEM─── ├ ┤─DESC─────────
 ├ ┤─OPTLINK── ├ ┤─DESCRIPTOR───
 ├ ┤─FAR16──── ├ ┤─NODESC───────
 ├ ┤─PASCAL16─ └ ┘─NODESCRIPTOR─
 └ ┘─CDECL────

Note: If you specify a suboption that is not applicable to the platform, the entire
CALLINTERFACE directive is ignored for that platform. For example, if
you specify >>CALLINT CDECL for an AIX program, it is ignored.

For more information on which suboptions are in effect for multiple
directive and compiler option specifications, see “Precedence of
sub-options” on page 490.

SYSTEM
Specifies that the system linkage convention of the platform is used as the call
interface convention.

OPTLINK
Specifies that the _Optlink calling convention as defined by C Set++ is used as
the call interface convention.

CDECL
Specifies that the CDECL calling convention as defined by Microsoft Visual
C is used as the call interface convention.

Table 53. CALLINTERFACE options supported by platform

AIX Windows

SYSTEM SYSTEM
OPTLINK
CDECL

DESC
NODESC

DESC
NODESC

++

 Copyright IBM Corp. 1991, 2000 489

CALLINTERFACE

DESC, DESCRIPTOR
Indicates that an argument descriptor is passed for each argument on a CALL
statement.

NODESC, NODESCRIPTOR
Indicates that no argument descriptors are passed for any arguments on a
CALL statement. NODESC/NODESCRIPTOR is the default.

Specify CALLINTERFACE only in the Procedure Division.

The positions of CALL statements relative to the >>CALLINTERFACE directive are
recognized following any processing of COPY and REPLACE statements. For
example, CALL statements and >>CALLINTERFACE statements in COPY text are
processed by the rules specified for the directive.

Syntax and general rules

� You must specify a >>CALLINTERFACE on a line by itself, in Area B.
� You cannot specify >>CALLINTERFACE:

— Within a source text manipulation sentence (for example, COPY or
REPLACING)

— Between the lines of a continued character string
— On a debugging line
— In the middle of a COBOL statement

� The >>CALLINTERFACE specification is limited to the current program.
� The REPLACE statement and REPLACE phrase of the COPY statement do not

affect the CALLINTERFACE specification.

Difference between the directive and compiler option

You can indicate which calling convention you want by using either the
CALLINTERFACE directive or the CALLINT compiler option. Use the directive
when you want to use more than one call convention for the CALL statements in a
compilation unit. Use the compiler option when you want to use the same call
convention for the entire compilation unit.

Precedence of sub-options

If you specify both the CALLINTERFACE directive (with suboptions) and the
CALLINT compiler option, the directive overrides the compiler option specification
for the statements following the directive within a source program.

If you specify the CALLINTERFACE directive without any suboptions, the
CALLINT compiler option specification is in effect.

If you specify only the DESC/NODESC suboption, the calling convention in effect
is the convention specified in the CALLINT compiler option. (DESC/NODESC are
options only for the CALLINTERFACE directive. They are not available in the
CALLINT compiler option.) For example, if the CALLINT compiler option is set
to CALLINT SYSTEM, given the following directives:

490 COBOL Language Reference

CALLINTERFACE
(Section A)
...
>>CALLINTERFACE OPT
(Section B)
...
>>CALLINTERFACE DESC
(Section C)

the following specifications are in effect:
� Section A—SYSTEM
� Section B—OPT
� Section C—SYSTEM DESC

Compiler directives 491

492 COBOL Language Reference

Part 9. Appendixes

 Copyright IBM Corp. 1991, 2000 493

Compiler limits

Appendix A. Compiler limits

The following table lists the compiler limits for IBM COBOL programs running
under OS/390, VM, AIX, and Windows.

Table 54 (Page 1 of 4). Compiler limits

Language element Compiler limit

Size of program 999,999 lines

Size of file record size (AIX and Windows) 64K

Number of literals 4,194,3031

Total length of literals 4,194,303 bytes1

Reserved word table entries 1536

COPY REPLACING ... BY ... (items per COPY
statement)

No limit

Number of COPY libraries No limit

Block size of COPY library 32,767 bytes

Identification Division

Environment Division

Configuration Section

SPECIAL-NAMES paragraph

function-name IS 18

UPSI-n ... (switches) 0-7

alphabet-name IS ... No limit

literal THRU/ALSO ... 256

Input-Output Section

FILE-CONTROL paragraph

SELECT file-name ...| A maximum of 65,535 file names
| can be assigned external names

ASSIGN system-name ...| No limit

ALTERNATE RECORD KEY data-name ... 253

RECORD KEY length No limit3

RESERVE integer (buffers) 2554

I-O-CONTROL paragraph

RERUN ON system-name ... 32,767

 integer RECORDS 16,777,215

SAME RECORD AREA 255

FOR file-name ... 255

SAME SORT/MERGE AREA No limit2

MULTIPLE FILE ... file-name No limit2

Data Division

File Section

FD file-name ... 65,535

494  Copyright IBM Corp. 1991, 2000

Compiler limits

Table 54 (Page 2 of 4). Compiler limits

Language element Compiler limit

LABEL data-name ... (if no optional clauses) 255

Label record length 80 bytes

DATA RECORD dnm ... No limit2

BLOCK CONTAINS integer| 2,147,483,647 (OS/390)8

| 1,048,575 (other platforms)5

RECORD CONTAINS integer 1,048,5755

 Item length 1,048,575 bytes5

LINAGE clause values| 99,999,999

SD file-name ... 65,535

DATA RECORD dnm ... No limit2

Sort record length 32,751 bytes

Working-Storage Section

Items without the EXTERNAL attribute 134,217,727 bytes

Items with the EXTERNAL attribute 134,217,727 bytes

77 data-names 16,777,215 bytes

01-49 data-names 16,777,215 bytes

88 condition-name ... No limit

VALUE literal ... No limit

66 RENAMES ... No limit

PICTURE character-string| 50

Numeric item digit positions| If the ARITH(COMPAT) compiler
| option is in effect: 18

| If the ARITH(EXTEND) compiler
| option is in effect: 31

Numeric-edited character positions 249

PICTURE replication () 16,777,215

PIC repl (editing) 32,767

DBCS Picture replication () 8,388,607

Group item size: File Section 1,048,575 bytes

Elementary item size 16,777,215 bytes

VALUE initialization (Total length of all value
literals)

16,777,215 bytes

OCCURS integer 16,777,215

Total number of ODOs 4,194,3031

 Table size 16,777,215 bytes

Table element size 8,388,607 bytes

ASC/DES KEY ... (per OCCURS clause) 12 KEYS

 Total length 256 bytes

INDEXED BY ... (index names) (per OCCURS
clause)

12

Total num of indexes (index names) 65,535

Appendix A. Compiler limits 495

Compiler limits

Table 54 (Page 3 of 4). Compiler limits

Language element Compiler limit

Size of relative index 32,765

Linkage Section 134,217,727 bytes

Total 01 + 77 (data items) No limit

Procedure Division

Procedure + constant area 4,194,303 bytes1

USING identifier ... 32,767

Procedure-names 1,048,5751

Subscripted data-names per verb 32,767

Verbs per line (TEST) 7

ADD identifier ... No limit

ALTER pn1 TO pn2 ... 4,194,3031

CALL ... BY CONTENT id 2,147,483,647 bytes

CALL id/lit USING id/lit... 16380 (OS/390 and VM) 500 (AIX
and Windows)

CALL literal ... 4,194,3031

Active programs in run unit 32,767

Number of names called (DYN) No limit

CANCEL id/lit ... No limit

CLOSE file-name ... No limit

COMPUTE identifier ... No limit

DISPLAY id/lit ... No limit

DIVIDE identifier ... No limit

ENTRY USING id/lit ... No limit

EVALUATE ... subjects 64

EVALUATE ... WHEN clauses 256

GO pn ... DEPENDING 255

INSPECT TALLY/REPL clauses No limit

MERGE file-name ASC/DES KEY ... No limit

Total key length 4,092 bytes6

USING file-name ... 167

MOVE id/lit TO id ... No limit

MULTIPLY identifier ... No limit

OPEN file-name No limit

PERFORM 4,194,303

SEARCH ... WHEN ... No limit

SET index/id ... TO No limit

SET index ... UP/DOWN No limit

SORT file-name ASC/DES KEY No limit

Total key length 4,092 bytes6

USING file-name ... 167

496 COBOL Language Reference

Compiler limits

Table notes (OS/390 and VM only):
1 Items included in 4,194,303 byte limit for procedure plus constant area.
2 Syntax checked, but has no effect on the execution of the program; there is no

limit.
3 No compiler limit, but VSAM limits it to 255 bytes.
4 QSAM
5 Compiler limit shown, but QSAM limits it to 32,767 bytes.
6 For QSAM and VSAM, the limit is 4088 bytes if EQUALS is coded on the

OPTION control statement.
7 SORT limit for QSAM and VSAM.

| 8 Requires large block interface (LBI) support provided by OS/390 DFSMS
| Version 2 Release 10.0 or later. On OS/390 systems with earlier releases of
| DFSMS, the limit is 32,767 bytes. For more information on using large block
| sizes, see the IBM COBOL for OS/390 & VM Programming Guide.

Table 54 (Page 4 of 4). Compiler limits

Language element Compiler limit

STRING identifier ... No limit

DELIMITED id/lit ... No limit

UNSTRING DELIMITED id/lit OR id/lit ... 255

UNSTRING INTO id/lit ... No limit

USE ... ON file-name ... No limit

Appendix A. Compiler limits 497

EBCDIC and ASCII collating sequences

Appendix B. EBCDIC and ASCII collating sequences

The ascending collating sequences for both the EBCDIC (Extended Binary Coded
Decimal Interchange Code) and ASCII (American National Standard Code for
Information Interchange) character sets are shown in this appendix. In addition to
the symbol and meaning for each character, the ordinal number (beginning with
1), decimal representation, and hexadecimal representation are given.

EBCDIC collating sequence

Table 55 (Page 1 of 3). EBCDIC collating sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

65 ␣ Space 64 40
...

75 ¢ Cent sign 74 4A

76 . Period, decimal point 75 4B

77 < Less than sign 76 4C

78 (Left parenthesis 77 4D

79 + Plus sign 78 4E

80 | Vertical bar, Logical OR 79 4F

81 & Ampersand 80 50
...

91 ! Exclamation point 90 5A

92 $ Dollar sign 91 5B

93 * Asterisk 92 5C

94) Right parenthesis 93 5D

95 ; Semicolon 94 5E

96 ¬ Logical NOT 95 5F

97 - Minus, hyphen 96 60

98 / Slash 97 61
...

108 , Comma 107 6B

109 % Percent sign 108 6C

110 _ Underscore 109 6D

111 > Greater than sign 110 6E

112 ? Question mark 111 6F
...

123 : Colon 122 7A

124 # Number sign, pound sign 123 7B

125 @ At sign 124 7C

126 ' Apostrophe, prime sign 125 7D

498  Copyright IBM Corp. 1991, 2000

EBCDIC and ASCII collating sequences

Table 55 (Page 2 of 3). EBCDIC collating sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

127 = Equal sign 126 7E

128 " Quotation marks 127 7F
...

130 a 129 81

131 b 130 82

132 c 131 83

133 d 132 84

134 e 133 85

135 f 134 86

136 g 135 87

137 h 136 88

138 i 137 89
...

146 j 145 91

147 k 146 92

148 l 147 93

149 m 148 94

150 n 149 95

151 o 150 96

152 p 151 97

153 q 152 98

154 r 153 99
...

163 s 162 A2

164 t 163 A3

165 u 164 A4

166 v 165 A5

167 w 166 A6

168 x 167 A7

169 y 168 A8

170 z 169 A9
...

194 A 193 C1

195 B 194 C2

196 C 195 C3

197 D 196 C4

198 E 197 C5

199 F 198 C6

200 G 199 C7

Appendix B. EBCDIC and ASCII collating sequences 499

ASCII code values

Table 55 (Page 3 of 3). EBCDIC collating sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

201 H 200 C8

202 I 201 C9
...

210 J 209 D1

211 K 210 D2

212 L 211 D3

213 M 212 D4

214 N 213 D5

215 O 214 D6

216 P 215 D7

217 Q 216 D8

218 R 217 D9
...

227 S 226 E2

228 T 227 E3

229 U 228 E4

230 V 229 E5

231 W 230 E6

232 X 231 E7

233 Y 232 E8

234 Z 233 E9
...

241 0 240 F0

242 1 241 F1

243 2 242 F2

244 3 243 F3

245 4 244 F4

246 5 245 F5

247 6 246 F6

248 7 247 F7

249 8 248 F8

250 9 249 F9

US English ASCII code page (ISO 646)

Table 56 (Page 1 of 4). ASCII collating sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

1 Null 0 0

500 COBOL Language Reference

ASCII code values

Table 56 (Page 2 of 4). ASCII collating sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

...

33 ␣ Space 32 20

34 ! Exclamation point 33 21

35 " Quotation mark 34 22

36 # Number sign 35 23

37 $ Dollar sign 36 24

38 % Percent sign 37 25

39 & Ampersand 38 26

40 ' Apostrophe, prime sign 39 27

41 (Opening parenthesis 40 28

42) Closing parenthesis 41 29

43 * Asterisk 42 2A

44 + Plus sign 43 2B

45 , Comma 44 2C

46 - Hyphen, minus 45 2D

47 . Period, decimal point 46 2E

48 / Slant 47 2F

49 0 48 30

50 1 49 31

51 2 50 32

52 3 51 33

53 4 52 34

54 5 53 35

55 6 54 36

56 7 55 37

57 8 56 38

58 9 57 39

59 : Colon 58 3A

60 ; Semicolon 59 3B

61 < Less than sign 60 3C

62 = Equal sign 61 3D

63 > Greater than sign 62 3E

64 ? Question mark 63 3F

65 @ Commercial At sign 64 40

66 A 65 41

67 B 66 42

68 C 67 43

69 D 68 44

70 E 69 45

Appendix B. EBCDIC and ASCII collating sequences 501

ASCII code values

Table 56 (Page 3 of 4). ASCII collating sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

71 F 70 46

72 G 71 47

73 H 72 48

74 I 73 49

75 J 74 4A

76 K 75 4B

77 L 76 4C

78 M 77 4D

79 N 78 4E

80 O 79 4F

81 P 80 50

82 Q 81 51

83 R 82 52

84 S 83 53

85 T 84 54

86 U 85 55

87 V 86 56

88 W 87 57

89 X 88 58

90 Y 89 59

91 Z 90 5A

92 [Opening bracket 91 5B

93 \ Reverse slant 92 5C

94] Closing bracket 93 5D

95 ^ Caret 94 5E

96 _ Underscore 95 5F

97 ` Grave accent 96 60

98 a 97 61

99 b 98 62

00 c 99 63

101 d 100 64

102 e 101 65

103 f 102 66

104 g 103 67

105 h 104 68

106 i 105 69

107 j 106 6A

108 k 107 6B

109 l 108 6C

502 COBOL Language Reference

ASCII code values

Table 56 (Page 4 of 4). ASCII collating sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

110 m 109 6D

111 n 110 6E

112 o 111 6F

113 p 112 70

114 q 113 71

115 r 114 72

116 s 115 73

117 t 116 74

118 u 117 75

119 v 118 76

120 w 119 77

121 x 120 78

122 y 121 79

123 z 122 7A

124 { Opening brace 123 7B

125 ¦ Split vertical bar 124 7C

126 } Closing brace 125 7D

127 ˜ Tilde 126 7E

Appendix B. EBCDIC and ASCII collating sequences 503

Source language debugging

Appendix C. Source language debugging

COBOL language elements that implement the debugging feature are:
� Debugging lines
� Debugging sections
� DEBUG-ITEM special register
� Compile-time switch (WITH DEBUGGING MODE clause)
� Object-time switch

Coding debugging lines

A debugging line is a statement that is compiled only when the compile-time
switch is activated. Debugging lines allow you, for example, to check the value of
a data-name at certain points in a procedure.

To specify a debugging line in your program, code a “D” in column 7 (the
indicator area). You can include successive debugging lines, but each must have a
“D” in column 7 and you cannot break character strings across two lines.

All your debugging lines must be written so that the program is syntactically
correct, whether the debugging lines are compiled or treated as comments.

You can code debugging lines anywhere in your program after the
OBJECT-COMPUTER paragraph.

If a debugging line contains only spaces in Area A and in Area B, it is treated as a
blank line.

Coding debugging sections

Debugging sections are only permitted in the outermost program; they are not
valid in nested programs. Debugging sections are never triggered by procedures
contained in nested programs.

Debugging sections are declarative procedures. Declarative procedures are
described under “USE statement” on page 482. A debugging section can be called,
for example, by a PERFORM statement that causes repeated execution of a
procedure. Any associated procedure-name debugging declarative section is
executed once for each repetition.

A debugging section executes only if both the compile-time switch and the
object-time switch are activated.

The debug feature recognizes each separate occurrence of an imperative statement
within an imperative statement as the beginning of a separate statement.

You cannot refer to a procedure defined within a debugging section in a statement
outside of the debugging section.

References to the DEBUG-ITEM special register can be made only from within a
debugging declarative procedure.

504  Copyright IBM Corp. 1991, 2000

Source language debugging

DEBUG-ITEM special register

For information on the DEBUG-ITEM special register, see “DEBUG-ITEM special
register.”

Activate compile-time switch

The compile-time switch activates the debugging lines and sections. To place the
compile-time switch in effect, specify WITH DEBUGGING MODE in the SOURCE
COMPUTER paragraph of the Configuration Section.

 Format
��──SOURCE-COMPUTER.─ ──┬ ┬── ─────────────────────────��
 └ ┘ ─computer-name─ ──┬ ┬────────────────────────── ─.─
 └ ┘ ──┬ ┬────── ─DEBUGGING MODE─
 └ ┘─WITH─

WITH DEBUGGING MODE
When WITH DEBUGGING MODE is specified, all debugging sections and
debugging lines are compiled.

When WITH DEBUGGING MODE is omitted, all debugging sections and
debugging lines are treated as comments.

Note: If you include a COPY statement as a debugging line, the “D” must appear
on the first line of the COPY statement. IBM COBOL treats the copied text as the
debugging line or lines. The COPY statement is executed, regardless of whether
WITH DEBUGGING MODE is specified or not.

Activate object-time switch

The object-time switch is set when the run-time option DEBUG or NODEBUG is
specified. (DEBUG is the default supplied by IBM.)

For details on the format, see:
� Language Environment Programming Guide for OS/390 and VM
� COBOL Set for AIX Programming Guide for AIX
� VisualAge COBOL Programming Guide for Windows

The USE FOR DEBUGGING declarative procedures are activated when DEBUG is
in effect and inhibited when NODEBUG is in effect.

The debugging lines (D in column 7) are not affected by the DEBUG/NODEBUG
option; they are always active if they have been compiled.

When WITH DEBUGGING MODE is not specified in the SOURCE-COMPUTER
paragraph, the object-time switch has no effect on execution of the object program.

You do not have to recompile the source program to activate or deactivate the
object-time switch.

Appendix C. Source language debugging 505

Reserved words

Appendix D. Reserved words

This list identifies all reserved words in the COBOL for OS/390 & VM, COBOL Set for AIX, and
VisualAge COBOL products. It also identifies words that are reserved in the COBOL 85 Standard (which
are not reserved in the IBM COBOL products), and words reserved for future development.
� Words marked under IBM COBOL are reserved words in the COBOL for OS/390 & VM, COBOL Set

for AIX, and VisualAge COBOL products. These reserved words include both reserved words for
IBM extensions and a subset of the COBOL 85 Standard reserved words.

Reserved words marked 1 are applicable only to AIX and Windows.
� Words marked under Standard Only are COBOL 85 Standard reserved words for function not

implemented in IBM COBOL products. If used as user-defined names, these words are flagged with
an S-LEVEL message.

� Words marked under RFD are reserved for future development and are flagged with an I-LEVEL
message.

Words marked X2 under RFD are reserved for future development under OS/390 and VM only.

|Note: Under OS/390 and VM, you can change which reserved word table is used by using
|the WORD compiler option. For details on how to specify an alternate reserved word table, see the IBM
|COBOL for OS/390 & VM Programming Guide.

Table 57 (Page 1 of 6). Reserved words Table 57 (Page 1 of 6). Reserved words

Reserved word
IBM

COBOL
Standard

only RFD Reserved word
IBM

COBOL
Standard

only RFD

ACCEPT X AUTHOR X

ACCESS X AUTOMATIC 1 X

ADD X B-AND X

ADDRESS X B-EXOR X

ADVANCING X B-LESS X

AFTER X B-NOT X

ALL X B-OR X

ALLOWING X BASIS X

ALPHABET X BEFORE X

ALPHABETIC X BEGINNING X

ALPHABETIC-LOWER X BINARY X

ALPHABETIC-UPPER X BIT X

ALPHANUMERIC X BITS X

ALPHANUMERIC-EDITED X BLANK X

ALSO X BLOCK X

ALTER X BOOLEAN X

ALTERNATE X BOTTOM X

AND X BY X

ANY X CALL X

APPLY X CANCEL X

ARE X CBL X

AREA X CD X

AREAS X CF X

ARITHMETIC X CH X

ASCENDING X CHARACTER X

ASSIGN X CHARACTERS X

AT X CLASS X

506  Copyright IBM Corp. 1991, 2000

Reserved words

Table 57 (Page 2 of 6). Reserved words Table 57 (Page 2 of 6). Reserved words

Reserved word
IBM

COBOL
Standard

only RFD Reserved word
IBM

COBOL
Standard

only RFD

CLASS-ID X DATE X

CLOCK-UNITS X DATE-COMPILED X

CLOSE X DATE-WRITTEN X

COBOL X DAY X

CODE X DAY-OF-WEEK X

CODE-SET X DB X

COLLATING X DB-ACCESS-CONTROL-KEY X

COLUMN X DB-DATA-NAME X

COM-REG X DB-EXCEPTION X

COMMA X DB-RECORD-NAME X

COMMIT X DB-SET-NAME X

COMMON X DB-STATUS X

COMMUNICATION X DBCS X

COMP X DE X

COMP-1 X DEBUG-CONTENTS X

COMP-2 X DEBUG-ITEM X

COMP-3 X DEBUG-LINE X

COMP-4 X DEBUG-NAME X

| COMP-5 X DEBUG-SUB-1 X

COMP-6 X DEBUG-SUB-2 X

COMP-7 X DEBUG-SUB-3 X

COMP-8 X DEBUGGING X

COMP-9 X DECIMAL-POINT X

COMPUTATIONAL X DECLARATIVES X

COMPUTATIONAL-1 X DEFAULT X

COMPUTATIONAL-2 X DELETE X

COMPUTATIONAL-3 X DELIMITED X

COMPUTATIONAL-4 X DELIMITER X

| COMPUTATIONAL-5 X DEPENDING X

COMPUTATIONAL-6 X DESCENDING X

COMPUTATIONAL-7 X DESTINATION X

COMPUTATIONAL-8 X DETAIL X

COMPUTATIONAL-9 X DISABLE X

COMPUTE X DISCONNECT X

CONFIGURATION X DISPLAY X

CONNECT X DISPLAY-1 X

CONTAINED X DISPLAY-2 X

CONTAINS X DISPLAY-3 X

CONTENT X DISPLAY-4 X

CONTINUE X DISPLAY-5 X

CONTROL X DISPLAY-6 X

CONTROLS X DISPLAY-7 X

CONVERTING X DISPLAY-8 X

COPY X DISPLAY-9 X

CORR X DIVIDE X

CORRESPONDING X DIVISION X

COUNT X DOWN X

CURRENCY X DUPLICATE X

CURRENT X DUPLICATES X

CYCLE X DYNAMIC X

DATA X EGCS X

Appendix D. Reserved words 507

Reserved words

Table 57 (Page 3 of 6). Reserved words Table 57 (Page 3 of 6). Reserved words

Reserved word
IBM

COBOL
Standard

only RFD Reserved word
IBM

COBOL
Standard

only RFD

EGI X EXTEND X

EJECT X EXTERNAL X

ELSE X | FACTORY| X

EMI X FALSE X

EMPTY X FD X

ENABLE X FETCH X

END X FILE X

END-ADD X FILE-CONTROL X

END-CALL X FILLER X

END-COMPUTE X FINAL X

END-DELETE X FIND X

END-DISABLE X FINISH X

END-DIVIDE X FIRST X

END-ENABLE X FOOTING X

END-EVALUATE X FOR X

| END-EXEC| X FORM X

END-IF X FORMAT X

END-INVOKE X FREE X

END-MULTIPLY X FROM X

END-OF-PAGE X FUNCTION X

END-PERFORM X GENERATE X

END-READ X GET X

END-RECEIVE X GIVING X

END-RETURN X GLOBAL X

END-REWRITE X GO X

END-SEARCH X GOBACK X

END-SEND X GREATER X

END-START X GROUP X

END-STRING X HEADING X

END-SUBTRACT X HIGH-VALUE X

END-TRANSCEIVE X HIGH-VALUES X

END-UNSTRING X I-O X

END-WRITE X I-O-CONTROL X

ENDING X ID X

ENTER X IDENTIFICATION X

ENTRY X IF X

ENVIRONMENT X IN X

EOP X INDEX X

EQUAL X INDEX-1 X

EQUALS X INDEX-2 X

ERASE X INDEX-3 X

ERROR X INDEX-4 X

ESI X INDEX-5 X

EVALUATE X INDEX-6 X

EVERY X INDEX-7 X

EXACT X INDEX-8 X

EXCEEDS X INDEX-9 X

EXCEPTION X INDEXED X

EXCLUSIVE X INDICATE X

| EXEC| X INHERITS X

EXIT X INITIAL X

508 COBOL Language Reference

Reserved words

Table 57 (Page 4 of 6). Reserved words Table 57 (Page 4 of 6). Reserved words

Reserved word
IBM

COBOL
Standard

only RFD Reserved word
IBM

COBOL
Standard

only RFD

INITIALIZE X NEGATIVE X

INITIATE X NEXT X

INPUT X NO X

INPUT-OUTPUT X NORMAL X

INSERT X NOT X

INSPECT X NULL X

INSTALLATION X NULLS X

INTO X NUMBER X

INVALID X NUMERIC X

INVOKE X NUMERIC-EDITED X

IS X OBJECT X

JUST X OBJECT-COMPUTER X

JUSTIFIED X OCCURS X

KANJI X OF X

KEEP X OFF X

KEY X OMITTED X

LABEL X ON X

LAST X ONLY X

LD X OPEN X

LEADING X OPTIONAL X

LEFT X OR X

LENGTH X ORDER X

LESS X ORGANIZATION X

LIMIT X OTHER X

LIMITS X OUTPUT X

LINAGE X OVERFLOW X

LINAGE-COUNTER X OVERRIDE X

LINE X OWNER X

LINE-COUNTER X PACKED-DECIMAL X

LINES X PADDING X

LINKAGE X PAGE X

LOCALLY X PAGE-COUNTER X

LOCAL-STORAGE X PARAGRAPH X

LOCK X PASSWORD X

LOW-VALUE X PERFORM X

LOW-VALUES X PF X

MEMBER X PH X

MEMORY X PIC X

MERGE X PICTURE X

MESSAGE X PLUS X

METACLASS X POINTER X

METHOD X POSITION X

METHOD-ID X POSITIVE X

MODE X PRESENT X

MODIFY X PREVIOUS 1 X X2

MODULES X PRINTING X

MORE-LABELS X PRIOR X

MOVE X PROCEDURE X

MULTIPLE X PROCEDURE-POINTER X

MULTIPLY X PROCEDURES X

NATIVE X PROCEED X

Appendix D. Reserved words 509

Reserved words

Table 57 (Page 5 of 6). Reserved words Table 57 (Page 5 of 6). Reserved words

Reserved word
IBM

COBOL
Standard

only RFD Reserved word
IBM

COBOL
Standard

only RFD

PROCESSING X RIGHT X

PROGRAM X ROLLBACK X

PROGRAM-ID X ROUNDED X

PROTECTED X RUN X

PURGE X SAME X

QUEUE X SD X

QUOTE X SEARCH X

QUOTES X SECTION X

RANDOM X SECURITY X

RD X SEGMENT X

READ X SEGMENT-LIMIT X

READY X SELECT X

REALM X SELF X

RECEIVE X SEND X

RECONNECT X SENTENCE X

RECORD X SEPARATE X

RECORD-NAME X SEQUENCE X

RECORDING X SEQUENTIAL X

RECORDS X SERVICE X

RECURSIVE X SESSION-ID X

REDEFINES X SET X

REEL X SHARED X

REFERENCE X SHIFT-IN X

REFERENCES X SHIFT-OUT X

RELATION X SIGN X

RELATIVE X SIZE X

RELEASE X SKIP1 X

RELOAD X SKIP2 X

REMAINDER X SKIP3 X

REMOVAL X SORT X

RENAMES X SORT-CONTROL X

REPEATED X SORT-CORE-SIZE X

REPLACE X SORT-FILE-SIZE X

REPLACING X SORT-MERGE X

REPORT X SORT-MESSAGE X

REPORTING X SORT-MODE-SIZE X

REPORTS X SORT-RETURN X

REPOSITORY X SOURCE X

RERUN X SOURCE-COMPUTER X

RESERVE X SPACE X

RESET X SPACES X

RETAINING X SPECIAL-NAMES X

RETRIEVAL X | SQL| X

RETURN X STANDARD X

RETURN-CODE X STANDARD-1 X

RETURNING X STANDARD-2 X

REVERSED X STANDARD-3 X

REWIND X STANDARD-4 X

REWRITE X START X

RF X STATUS X

RH X STOP X

510 COBOL Language Reference

Reserved words

Table 57 (Page 6 of 6). Reserved words Table 57 (Page 6 of 6). Reserved words

Reserved word
IBM

COBOL
Standard

only RFD Reserved word
IBM

COBOL
Standard

only RFD

STORE X VALUES X

STRING X VARYING X

SUB-QUEUE-1 X WAIT X

SUB-QUEUE-2 X WHEN X

SUB-QUEUE-3 X WHEN-COMPILED X

SUB-SCHEMA X WITH X

SUBTRACT X WITHIN X

SUM X WORDS X

SUPER X WORKING-STORAGE X

SUPPRESS X WRITE X

SYMBOLIC X WRITE-ONLY X

SYNC X ZERO X

SYNCHRONIZED X ZEROES X

TABLE X ZEROS X

TALLY X < X

TALLYING X <= X

TAPE X + X

TENANT X * X

TERMINAL X ** X

TERMINATE X - X

TEST X / X

TEXT X > X

THAN X >= X

THEN X = X

THROUGH X Note:

1 These words are reserved under AIX and Windows only.

2 These words are reserved for future development (RFD) under
OS/390 and VM only.

THRU X

TIME X

TIMEOUT X

TIMES X

TITLE X

TO X

TOP X

TRACE X

TRAILING X

TRANSCEIVE X

TRUE X

TYPE X

UNEQUAL X

UNIT X

UNSTRING X

UNTIL X

UP X

UPDATE X

UPON X

USAGE X

USAGE-MODE X

USE X

USING X

VALID X

VALIDATE X

VALUE X

Appendix D. Reserved words 511

ASCII considerations

Appendix E. ASCII considerations for OS/390 and VM

The compiler supports the American National Standard Code for Information
Interchange (ASCII). Thus, the programmer can create and process tape files
recorded in accordance with the following standards:
� American National Standard Code for Information Interchange, X3.4-1977
� American National Standard Magnetic Tape Labels for Information

Interchange, X3.27-1978
� American National Standard Recorded Magnetic Tape for Information

Interchange (800 CPI, NRZI), X3.22-1967

ASCII-encoded tape files, when read into the system, are automatically translated
in the buffers into EBCDIC. Internal manipulation of data is performed exactly as
if the ASCII files were EBCDIC-encoded files. For an output file, the system
translates the EBCDIC characters into ASCII in the buffers before writing the file
on tape. Therefore, there are special considerations concerning ASCII-encoded files
when they are processed in COBOL.

This appendix also applies (with appropriate modifications) to the International
Reference Version of the ISO 7-bit code (ISCII) defined in International Standard
646, 7-Bit Coded Character Set for Information Processing Interchange. The ISCII
code set differs from ASCII only in the graphic representation of two code points:
� Ordinal number 37, which is a dollar sign in ASCII, but a lozenge in ISCII
� Ordinal number 127, which is a tilde (˜) in ASCII, but an overline (or

optionally a tilde) in ISCII.

Note: In the following discussion, the information given for STANDARD-1 also
applies to STANDARD-2 except where otherwise specified.

The following paragraphs discuss the special considerations concerning ASCII- (or
ISCII-) encoded files.

 Environment Division

In the Environment Division, the OBJECT-COMPUTER, SPECIAL-NAMES, and
FILE-CONTROL paragraphs are affected.

OBJECT-COMPUTER and SPECIAL-NAMES paragraphs

When at least one file in the program is an ASCII-encoded file, the alphabet-name
clause of the SPECIAL-NAMES paragraph must be specified; the alphabet-name
must be associated with STANDARD-1 or STANDARD-2 (for ASCII or ISCII
collating sequence or CODE SET, respectively).

When nonnumeric comparisons within the object program are to use the ASCII
collating sequence, the PROGRAM COLLATING SEQUENCE clause of the
OBJECT-COMPUTER paragraph must be specified; the alphabet-name used must
also be specified as an alphabet-name in the SPECIAL-NAMES paragraph, and
associated with STANDARD-1. For example:

Object-computer. IBM-39?
 Program collating sequence is ASCII-sequence.
Special-names. Alphabet ASCII-sequence is standard-1.

512  Copyright IBM Corp. 1991, 2000

ASCII considerations

When both clauses are specified, the ASCII collating sequence is used in this
program to determine the truth value of the following nonnumeric comparisons:
� Those explicitly specified in relation conditions
� Those explicitly specified in condition-name conditions
� Any nonnumeric sort or merge keys (unless the COLLATING SEQUENCE

phrase is specified in the MERGE or SORT statement).

When the PROGRAM COLLATING SEQUENCE clause is omitted, the EBCDIC
collating sequence is used for such comparisons.

The PROGRAM COLLATING SEQUENCE clause, in conjunction with the
alphabet-name clause, can be used to specify EBCDIC nonnumeric comparisons for
an ASCII-encoded tape file or ASCII nonnumeric comparisons for an
EBCDIC-encoded tape file.

The literal option of the alphabet-name clause can be used to process internal data
in a collating sequence other than NATIVE or STANDARD-1.

 FILE-CONTROL paragraph

For ASCII files, the ASSIGN clause assignment-name has the following formats:
 Format—QSAM file

��─ ──┬ ┬───────── ──┬ ┬───── ─name──��
└ ┘──label- └ ┘─S- ─

The file must be a QSAM file assigned to a magnetic tape device.

label-
Documents the device and device class to which a file is assigned. If specified,
it must end with a hyphen.

S- The organization field. Optional for QSAM files, which always have sequential
organization.

name
A required 1- to 8-character field that specifies the external name for this file.

 I-O-CONTROL paragraph

The assignment-name in a RERUN clause must not specify an ASCII-encoded file.

ASCII-encoded files containing checkpoint records cannot be processed.

 Data Division

In the Data Division, there are special considerations for the FD entry and for data
description entries.

For each logical file defined in the Environment Division, there must be a
corresponding FD entry and level-01 record description entry in the File Section of
the Data Division.

FD Entry—CODE-SET clause

Appendix E. ASCII considerations for OS/390 and VM 513

ASCII considerations

The FD Entry for an ASCII-encoded file must contain a CODE-SET clause; the
alphabet-name must be associated with STANDARD-1 (for the ASCII code set) in
the SPECIAL-NAMES paragraph. For example:

Special-names. Alphabet ASCII-sequence is standard-1.
 .
 .
 .
FD ASCII-file label records standard
 Recording mode is f
 Code-set is ASCII-sequence.

Data description entries

For ASCII files, the following data description considerations apply:
� PICTURE clause specifications for all five categories of data are valid.
� For signed numeric items, the SIGN clause with the SEPARATE CHARACTER

phrase must be specified.
� For the USAGE clause, only the DISPLAY phrase is valid.

 Procedure Division

An ASCII collated sort/merge operation can be specified in two ways:
� Through the PROGRAM COLLATING SEQUENCE clause in the

OBJECT-COMPUTER paragraph.

In this case, the ASCII collating sequence is used for nonnumeric comparisons
explicitly specified in relation conditions and condition-name conditions.

� Through the COLLATING SEQUENCE phrase of the SORT or MERGE
statement.

In this case, only this sort/merge operation uses the ASCII collating sequence.

In either case, alphabet-name must be associated with STANDARD-1 (for ASCII
collating sequence) in the SPECIAL-NAMES paragraph.

For this sort/merge operation, the COLLATING SEQUENCE option takes
precedence over the PROGRAM COLLATING SEQUENCE clause.

If both the PROGRAM COLLATING SEQUENCE clause and the COLLATING
SEQUENCE phrase are omitted (or if the one in effect specifies an EBCDIC
collating sequence), the sort/merge is performed using the EBCDIC collating
sequence.

514 COBOL Language Reference

Locale

Appendix F. Locale considerations (workstation only)

A locale is defined by language-specific and cultural-specific conventions for
processing information. All such information should be accessible to a program at
run time so that the same program can display or process data differently for
different countries.

Locale information consists of data from six categories. Each locale is described by
a locale definition file. The following standard categories can be defined in a
locale definition source file:

LC_CTYPE
Defines character classification, case conversion, and other character
attributes. Use this category to define the code page in effect.

LC_COLLATE
Defines string-collation order information. For IBM COBOL workstation
products running on AIX and Windows, this defines the collating sequence
in effect. This only impacts any > or < comparisons, such as relational
conditions and the SORT or MERGE verb.

LC_MESSAGES
Defines the format for affirmative and negative responses and impacts
whether messages (error messages and listing headers for example) are in
US English or Japanese. For any locale other than Japanese, US English is
used.

LC_MONETARY
Defines rules an symbols for formatting monetary numeric information.

For IBM COBOL workstation products running under AIX and Windows,
this attribute has no affect. Monetary value representation is controlled
through the COBOL language syntax.

LC_NUMERIC
Defines rules and symbols for formatting nonmonetary numeric
information.

For IBM COBOL workstation products running under AIX and Windows,
this attribute has no affect. Nonmonetary numeric value representation is
controlled through the COBOL language syntax.

LC_TIME
Lists rules and symbols for formatting time and date information.

For IBM COBOL workstation products running under AIX and Windows,
this attribute only affects the date and time shown on the compiler listings.
All other date and time values are controlled through the COBOL
language syntax.

Locale definition files are named by the language, territory, and code set
information they describe.

 Copyright IBM Corp. 1991, 2000 515

Appendix G. Summary of language difference: host COBOL
and workstation COBOL

Table 58 lists the language elements that are different between COBOL for OS/390
& VM and the IBM Workstation COBOL compilers (COBOL Set for AIX and
VisualAge COBOL). Many COBOL for OS/390 & VM clauses and phrases are

| syntax checked, but have no effect on the execution of the program under AIX and
Windows. However, this will have minimal effect on existing applications that
you download to the workstation. The Workstation compilers recognize and
process most COBOL for OS/390 & VM language syntax, even if the language
element has no functional effect.

Table 58 (Page 1 of 2). Language difference between mainframe and workstation IBM COBOL

Language element Implementation

ACCEPT statement Under AIX and Windows, environment-name determines file identification.

APPLY WRITE-ONLY clause Syntax checked, but has no effect on the execution of the program under
AIX and Windows.

ASSIGN clause Different syntax for the ASSIGNment name. ASSIGN...USING data-name is
not supported under OS/390 and VM.

CALL statement A file-name as a CALL argument is not supported under AIX and
Windows.

CLOSE statement The following phrases are syntax checked, but have no effect on the
execution of the program under AIX and Windows: FOR REMOVAL, WITH
NO REWIND, and UNIT/REEL.

CODE-SET clause Syntax checked, but has no effect on the execution of the program under
AIX and Windows.

DISPLAY statement Under AIX and Windows, environment-name determines file identification.

File status data-name-1 Some values and meanings for file status 9x are different under OS/390 and
VM than under AIX and Windows.

File status data-name-8 The format and values are different depending on the platform and the file
system.

LABEL RECORD clause LABEL RECORD IS data-name, USE...AFTER...LABEL PROCEDURE, and
GO TO MORE-LABELS are syntax checked, but have no effect on the
execution of the program under AIX and Windows. These language
elements are processed by the compiler; however, the user label declaratives
are not called at run time.

MULTIPLE FILE TAPE Syntax checked, but has no effect on the execution of the program under
AIX and Windows. On the workstation, all files are treated as single
volume files.

OPEN statement The following phrases are syntax checked, but have no effect on the
execution of the program under AIX and Windows: REVERSED and WITH
NO REWIND.

PASSWORD clause Syntax checked, but has no effect on the execution of the program under
AIX and Windows.

POINTER and
PROCEDURE-POINTER data items

Under COBOL for OS/390 & VM, a POINTER data item is defined as 4
bytes; a PROCEDURE-POINTER data item is defined as 8 bytes. Under
AIX and Windows, the size of these data items are consistent with the
native pointer definition of the platform (4 bytes for 32-bit machines and 8
bytes for 64-bit machines).

516  Copyright IBM Corp. 1991, 2000

Table 58 (Page 2 of 2). Language difference between mainframe and workstation IBM COBOL

Language element Implementation

READ...PREVIOUS Under AIX and Windows only, allows you to read the previous record for
relative or index files with DYNAMIC access mode.

RECORD CONTAINS clause The RECORD CONTAINS n CHARACTERS clause is accepted with one
exception: RECORD CONTAINS 0 CHARACTERS is syntax checked, but
have no effect on the execution of the program under AIX and Windows.

RECORDING MODE clause Syntax checked, but has no effect on the execution of the program under
AIX and Windows for relative, indexed, and line-sequential files.

RERUN clause Syntax checked, but has no effect on the execution of the program under
AIX and Windows.

RESERVE clause Syntax checked, but has no effect on the execution of the program under
AIX and Windows.

SAME AREA clause Syntax checked, but has no effect on the execution of the program under
AIX and Windows.

SAME SORT clause Syntax checked, but has no effect on the execution of the program under
AIX and Windows.

SORT-CONTROL special register The contents of this special register differ between host and workstation
COBOL.

SORT-CORE-SIZE special register The contents of this special register differ between host and workstation
COBOL.

SORT-FILE-SIZE special register Syntax checked, but has no effect on the execution of the program under
AIX and Windows. Values in this special register are not used.

SORT-MESSAGE special register Syntax checked, but has no effect on the execution of the program under
AIX and Windows.

SORT-MODE-SIZE special register Syntax checked, but has no effect on the execution of the program under
AIX and Windows. Values in this special register are not used.

SORT MERGE AREA clause Syntax checked, but has no effect on the execution of the program under
AIX and Windows.

START...< Under AIX and Windows, the following relational operators are allowed:
IS LESS THAN, IS <, IS NOT GREATER THAN, IS NOT >, IS LESS THAN
OR EQUAL TO, IS <=

WRITE statement Under AIX and Windows, if you specify the WRITE...ADVANCING with
environment names: C01 - C12 or S01 - S05, one line is advanced.

Names known to the platform
environment

The following names are identified differently: program-name, text-name,
library-name, assignment-name, SORT-CONTROL special register,
basis-name, DISPLAY/ACCEPT target identification, and system-dependent
names.

Appendix G. Summary of language difference: host COBOL and workstation COBOL 517

Industry specifications

Appendix H. Industry specifications

| COBOL for OS/390 & VM, COBOL Set for AIX, and VisualAge COBOL support
| the following industry standards in their respective OS/390, VM/ESA, AIX, and
| Windows environments:
| 1. ISO 1989:1985, Programming languages - COBOL.

| ISO 1989/Amendment 1, Programming languages - COBOL - Amendment 1:
| Intrinsic function module.

| ISO 1989:1985 is identical to X3.23-1985, American National Standard for
| Information Systems - Programming Language - COBOL.

| ISO 1989/Amendment 1 is identical to X3.23a-1989, American National
| Standard for Information Systems - Programming Language - Intrinsic
| Function Module for COBOL.

| All required modules are supported at the highest level defined by the
| standard.

| The following optional modules of the standard are supported:
| � Intrinsic Functions (1 ITR 0,1)
| � Debug (1 DEB 0,2)
| � Segmentation (2 SEG 0,2)

| Under OS/390 and VM, the Report Writer optional module of the
| standard is supported with the optional IBM COBOL Report Writer
| Precompiler and Libraries (5798-DYR).

| Under Windows, the Report Writer optional module of the
| standard is supported with the optional VisualAge for COBOL Report Writer.

| The Report Writer optional module is not supported under AIX.

| The following optional modules of the standard are not supported:
| � Communications
| � Debug (2 DEB 0,2)
| 2. X3.23-1985, American National Standard for Information Systems -
| Programming Language - COBOL.

| X3.23a-1989, American National Standard for Information Systems -
| Programming Language - Intrinsic Function Module for COBOL.

| All required modules are supported at the highest level defined by the
| standard.

| The following optional modules of the standard are supported:
| � Intrinsic Functions (1 ITR 0,1)
| � Debug (1 DEB 0,2)
| � Segmentation (2 SEG 0,2)

| The following optional modules of the standard are not supported:
| � Communications
| � Debug (2 DEB 0,2)

518  Copyright IBM Corp. 1991, 2000

Industry specifications

| 3. FIPS Publication 21-4, Federal Information Processing Standard
| 21-4, COBOL high subset.
| 4. International Reference Version of the ISO 7-bit code defined in International
| Standard 646, 7-Bit Coded Character Set for Information Processing Interchange.
| 5. The 7-bit coded character sets defined in American National Standard X3.4-1977,
| Code for Information Interchange.
| 6. SPIRIT (Service Provider's Requirements for Information
| Technology), Part 6—COBOL Language Profile, published by Network
| Management Forum.
| 7. MIA (Multivendor Integration Architecture), technical
| requirements, specified by Nippon Telegraph and Telephone Corp (NTT).
|

| COBOL for OS/390 & VM has the following restrictions related to
| industry standards:
| � OPEN EXTEND is not supported for ASCII encoded tapes (CODESET
| STANDARD-1 or STANDARD-2).
| � On VM/ESA, the RERUN phrase is not supported because there is no
| Checkpoint/Restart feature.

| The following compiler options are required to support the above standards:
| ADV, DYNAM, INTDATE(ANSI), LIB, NOCMPR2, NOCURRENCY, NODBCS,
| NODLL, NOFASTSRT, NONUMBER, NOSEQUENCE, NUMPROC(NOPFD) (or
| NUMPROC(MIG)), TRUNC(STD), NOWORD, and ZWB.

| The following Language Environment run-time options are required to support the
| above standards: AIXBLD, CBLQDA(ON), and TRAP(ON).

| The following Language Environment run-time options are used in support of the
| above standards: UPSI, DEBUG, and NODEBUG.

Appendix H. Industry specifications 519

Notices

Notices

This information was developed for products and services offered in the U.S.A. IBM may
not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

Programming interface information

This Language Reference documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of COBOL for OS/390 & VM, COBOL Set
for AIX, and VisualAge COBOL.

520  Copyright IBM Corp. 1991, 2000

Notices

 Trademarks

The following terms are trademarks of International Business Machines Corporation in the
United States, or other countries, or both:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks of others.

Advanced Function Printing
AFP
AIX
AIX/6000
BookManager
CICS
CICS/ESA
DATABASE 2
DB2
DFSORT
IBM

IMS/ESA
MVS
OS/390
Print Services Facility
SOM
SOMobjects
VisualAge
VM/ESA

Notices 521

Bibliography

IBM COBOL for OS/390 & VM

Compiler and Run-Time Migration Guide, GC26-4764

Customization under OS/390, GC26-9045

Debug Tool User's Guide and Reference, SC09-2137

Diagnosis Guide, GC26-9047

Fact Sheet, GC26-9048

Language Reference, SC26-9046

Licensed Program Specifications, GC26-9044

Programming Guide, SC26-9049

IBM COBOL Millennium Language Extensions Guide, GC26-9266

Related publications for OS/390 and VM
� Language Environment

Concepts Guide, GC28-1945

OS/390 Customization, SC28-1941

Programming Guide, SC28-1939

Programming Reference, SC28-1940

Writing Interlanguage Applications, SC28-1943

Run-Time Migration Guide, SC28-1944

Debugging Guide and Run-Time Messages, SC28-1942

� OS/390 SOMobjects

Configuration and Administration Guide, GC28-1851

Getting Started, GA22-7248

Messages, Codes, and Diagnosis, SC28-1996

Object Services, SC28-1995

Programmer's Guide, GC28-1859

Programmer's Reference Volume 1, SC28-1997

Programmer's Reference Volume 2, SC28-1998

Programmer's Reference Volume 3, SC28-1999

Reference Summary, SC28-1856

� OS/390

JCL Reference, GC28-1757

JCL User's Guide, GC28-1758

System Codes, GC28-1780

System Commands, GC28-1781

� VM/ESA

Application Development Guide, SC24-5450

Application Development Reference, SC24-5451

Command Reference, SC24-5461

User's Guide, SC24-5460

CP Command and Utility Reference, SC24-5519

System Messages and Codes, SC24-5529

XEDIT Command and Macro Reference, SC24-5464

522  Copyright IBM Corp. 1991, 2000

XEDIT User's Guide, SC24-5463

� CICS/ESA

Application Programming Guide, SC33-1169

Application Programming Reference, SC33-1170

Sample Applications Guide, SC33-1173

� DB/2

Application Programming and SQL Guide, SC26-3266

� IMS/ESA

Application Programming and SQL Guide, SC26-3266

� DFSORT

DFSORT Application Guide, SC33-4035

IBM COBOL Set for AIX

Fact Sheet, GC26-8484

Language Reference, SC26-9046

Programming Guide, SC26-8423

Program Builder User's Guide, SC09-2201

LPEX User's Guide and Reference, SC09-2202

Getting Started, GC26-8425

IBM COBOL Millennium Language Extensions Guide, GC26-9266

SMARTdata UTILITIES for AIX
VSAM in a Distributed Environment, SC26-7064

Data Description and Conversion, SC26-7066

Data Description and Conversion A Data Language Reference, SC26-7092

SMARTsort for AIX, SC26-7099

Related publications for AIX
� DB2

DATABASE 2 AIX/6000 Command Reference, SC09-1575

DATABASE 2 AIX/6000 Command Reference for Common Servers, S20H-4645

Application Programming Guide, S20H-4643

SQL Reference, S20H-4665

� CICS

Application Programming Guide, SC33-1568

Application Programming Reference, SC33-1569

Administration Guide, SC33-1562

Administration Reference, SC33-1563

Encina for CICS, SC33-1567

Planning and Installation Guide, GC33-1561

Intercommunication Guide, SC33-1564

Messages and Codes, SC33-1566

Problem Determination Guide, SC33-1565

� SOMobjects for AIX

SOMobjects Base Toolkit User's Guide, SC23-2680-01

SOMobjects Base Toolkit Programmer's Reference Manual, SC23-2681-01

SOMobjects Base Toolkit Quick Reference Guide, SC23-2682-01

� Other

Structured File Server Programmer's Guide and Reference for AIX, Encina, SC33-1610-00

Bibliography 523

IBM VisualAge COBOL

Fact Sheet, GC26-9052

Getting Started on Windows, GC26-8944

Language Reference, SC26-9046

Programming Guide, SC26-9050

Visual Builder User's Guide, SC26-9053

IBM COBOL Millennium Language Extensions Guide, GC26-9266

Related publications for Windows
� SMARTdata UTILITIES for Windows

SdU for Windows Distributed FileManager User's Guide, SC26-7134

Data Description and Conversion, SC26-7091

Data Description and Conversion A Data Language Reference, SC26-7092

VSAM Application Programming Interface Reference, SC26-7133

� CICS for Windows NT

Installation Guide, SC33-1880

Application Programming Guide, SC33-1888

Intercommunication Guide, SC33-1882

Messages & Codes, SC33-1886

Problem Determination Guide, SC33-1883

� Other

Btrieve Programmer's Manual

Softcopy publications for IBM COBOL

The following collection kits contain IBM COBOL or related product publications in
BookManager format:

OS/390 Collection, SK2T-6700

VM Collection, SK2T-2067

To view the latest IBM COBOL product publications in Acrobat PDF format, visit the IBM
COBOL Family home page on the World Wide Web at:

http://www.ibm.com/software/ad/cobol/

524 COBOL Language Reference

Glossary
The terms in this glossary are defined in accordance
with their meaning in COBOL. These terms may or
may not have the same meaning in other languages.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the following publications:

� American National Standard Programming Language
COBOL, ANSI X3.23-1985 (Copyright 1985
American National Standards Institute, Inc.), which
was prepared by Technical Committee X3J4, which
had the task of revising American National
Standard COBOL, X3.23-1974.

� American National Dictionary for Information
Processing Systems (Copyright 1982 by the
Computer and Business Equipment Manufacturers
Association).

American National Standard definitions are preceded
by an asterisk (*).

A
* abbreviated combined relation condition. The
combined condition that results from the explicit
omission of a common subject or a common subject
and common relational operator in a consecutive
sequence of relation conditions.

abend. Abnormal termination of program.

* access mode. The manner in which records are to be
operated upon within a file.

* actual decimal point. The physical representation,
using the decimal point characters period (.) or comma
(,), of the decimal point position in a data item.

* alphabet-name. A user-defined word, in the
SPECIAL-NAMES paragraph of the Environment
Division, that assigns a name to a specific character set
and/or collating sequence.

* alphabetic character. A letter or a space character.

* alphanumeric character. Any character in the
computer’s character set.

alphanumeric-edited character. A character within an
alphanumeric character-string that contains at least one
B, 0 (zero), or / (slash).

* alphanumeric function. A function whose value is
composed of a string of one or more characters from
the computer's character set.

* alternate record key. A key, other than the prime
record key, whose contents identify a record within an
indexed file.

ANSI (American National Standards Institute). An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

* argument. An identifier, a literal, an arithmetic
expression, or a function-identifier that specifies a value
to be used in the evaluation of a function.

* arithmetic expression. An identifier of a numeric
elementary item, a numeric literal, such identifiers and
literals separated by arithmetic operators, two
arithmetic expressions separated by an arithmetic
operator, or an arithmetic expression enclosed in
parentheses.

* arithmetic operation. The process caused by the
execution of an arithmetic statement, or the evaluation
of an arithmetic expression, that results in a
mathematically correct solution to the arguments
presented.

* arithmetic operator. A single character, or a fixed
2-character combination that belongs to the following
set:

Character Meaning
 + addition
 − subtraction
 * multiplication
 / division
 ** exponentiation

* arithmetic statement. A statement that causes an
arithmetic operation to be executed. The arithmetic
statements are the ADD, COMPUTE, DIVIDE,
MULTIPLY, and SUBTRACT statements.

array. In Language Environment, an aggregate
consisting of data objects, each of which may be
uniquely referenced by subscripting. Roughly
analogous to a COBOL table.

* ascending key. A key upon the values of which data
is ordered, starting with the lowest value of the key up
to the highest value of the key, in accordance with the
rules for comparing data items.

ASCII. American National Standard Code for
Information Interchange. The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), used for information
interchange between data processing systems, data
communication systems, and associated equipment.
The ASCII set consists of control characters and graphic
characters.

Extension: IBM has defined an extension to ASCII
code (characters 128-255).

 Copyright IBM Corp. 1991, 2000 525

assignment-name. A name that identifies the
organization of a COBOL file and the name by which it
is known to the system.

* assumed decimal point. A decimal point position
that does not involve the existence of an actual
character in a data item. The assumed decimal point
has logical meaning with no physical representation.

* AT END condition. A condition caused:

1. During the execution of a READ statement for a
sequentially accessed file, when no next logical
record exists in the file, or when the number of
significant digits in the relative record number is
larger than the size of the relative key data item, or
when an optional input file is not present.

2. During the execution of a RETURN statement,
when no next logical record exists for the
associated sort or merge file.

3. During the execution of a SEARCH statement,
when the search operation terminates without
satisfying the condition specified in any of the
associated WHEN phrases.

B
big-endian. Default format used by the mainframe
and the AIX workstation to store binary data. In this
format, the least significant digit is on the highest
address. Compare with “little-endian.”

binary item. A numeric data item represented in
binary notation (on the base 2 numbering system).
Binary items have a decimal equivalent consisting of
the decimal digits 0 through 9, plus an operational
sign. The leftmost bit of the item is the operational
sign.

binary search. A dichotomizing search in which, at
each step of the search, the set of data elements is
divided by two; some appropriate action is taken in the
case of an odd number.

* block. A physical unit of data that is normally
composed of one or more logical records. For mass
storage files, a block can contain a portion of a logical
record. The size of a block has no direct relationship to
the size of the file within which the block is contained
or to the size of the logical record(s) that are either
contained within the block or that overlap the block.
The term is synonymous with physical record.

breakpoint. A place in a computer program, usually
specified by an instruction, where its execution may be
interrupted by external intervention or by a monitor
program.

Btrieve. A key-indexed record management system
that allows applications to manage records by key
value, sequential access method, or random access
method. IBM COBOL supports COBOL sequential and
indexed file I-O language through Btrieve.

buffer. A portion of storage used to hold input or
output data temporarily.

built-in function. See “intrinsic function”.

byte. A string consisting of a certain number of bits,
usually eight, treated as a unit, and representing a
character.

C
callable services. In Language Environment, a set of
services that can be called by a COBOL program using
the conventional Language Environment-defined call
interface, and usable by all programs sharing the
Language Environment conventions.

called program. A program that is the object of a
CALL statement.

* calling program. A program that executes a CALL
to another program.

case structure. A program processing logic in which a
series of conditions is tested in order to make a choice
between a number of resulting actions.

cataloged procedure. A set of job control statements
placed in a partitioned data set called the procedure
library (SYS1.PROCLIB). You can use cataloged
procedures to save time and reduce errors coding JCL.

century window. A century window is a 100-year
interval within which any 2-digit year is unique. There
are several types of century window available to
COBOL programmers:

1. For windowed date fields, it is specified by the
YEARWINDOW compiler option

2. For windowing intrinsic functions
DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
YEAR-TO-YYYY, it is specified by argument-2

3. For Language Environment callable services, it is
specified in CEESCEN

* character. The basic indivisible unit of the language.

character position. The amount of physical storage
required to store a single standard data format
character described as USAGE IS DISPLAY.

character set. All the valid characters for a
programming language or a computer system.

* character-string. A sequence of contiguous
characters that form a COBOL word, a literal, a
PICTURE character-string, or a comment-entry. Must
be delimited by separators.

checkpoint. A point at which information about the
status of a job and the system can be recorded so that
the job step can be later restarted.

* class. The entity that defines common behavior and
implementation for zero, one, or more objects. The
objects that share the same implementation are
considered to be objects of the same class.

526 COBOL Language Reference

* class condition. The proposition, for which a truth
value can be determined, that the content of an item is
wholly alphabetic, is wholly numeric, or consists
exclusively of those characters listed in the definition of
a class-name.

* Class Definition. The COBOL source unit that
defines a class.

* class identification entry. An entry in the CLASS-ID
paragraph of the Identification Division which contains
clauses that specify the class-name and assign selected
attributes to the class definition.

* class-name. A user-defined word defined in the
SPECIAL-NAMES paragraph of the Environment
Division that assigns a name to the proposition for
which a truth value can be defined, that the content of
a data item consists exclusively of those characters
listed in the definition of the class-name.

class object. The run-time object representing a SOM
class.

* clause. An ordered set of consecutive COBOL
character-strings whose purpose is to specify an
attribute of an entry.

CMS (Conversational Monitor System). A virtual
machine operating system that provides general
interactive, time-sharing, problem solving, and program
development capabilities, and that operates only under
the control of the VM/SP control program.

* COBOL character set. The complete COBOL
character set consists of the characters listed below:

Character Meaning
 0,1...,9 digit
 A,B,...,Z uppercase letter
 a,b,...,z lowercase letter
 ␣ space
 + plus sign
 − minus sign (hyphen)
 * asterisk
 / slant (virgule, slash)
 = equal sign
 $ currency sign
 , comma (decimal point)
 ; semicolon
 . period (decimal point, full stop)
 " quotation mark
 (left parenthesis
) right parenthesis
 > greater than symbol
 < less than symbol
 : colon

* COBOL word. See “word.”

code page. An assignment of graphic characters and
control function meanings to all code points; for
example, assignment of characters and meanings to 256
code points for 8-bit code, assignment of characters and
meanings to 128 code points for 7-bit code.

* collating sequence. The sequence in which the
characters that are acceptable to a computer are
ordered for purposes of sorting, merging, comparing,
and for processing indexed files sequentially.

* column. A character position within a print line.
The columns are numbered from 1, by 1, starting at the
leftmost character position of the print line and
extending to the rightmost position of the print line.

* combined condition. A condition that is the result
of connecting two or more conditions with the AND or
the OR logical operator.

* comment-entry. An entry in the Idenfitication
Division that may be any combination of characters
from the computer’s character set.

* comment line. A source program line represented
by an asterisk (*) in the indicator area of the line and
any characters from the computer’s character set in
area A and area B of that line. The comment line
serves only for documentation in a program. A special
form of comment line represented by a slant (/) in the
indicator area of the line and any characters from the
computer’s character set in area A and area B of that
line causes page ejection prior to printing the comment.

* common program. A program which, despite being
directly contained within another program, may be
called from any program directly or indirectly
contained in that other program.

compatible date field. The meaning of the term
“compatible,” when applied to date fields, depends on
the COBOL division in which the usage occurs:

� Data Division
Two date fields are compatible if they have
identical USAGE and meet at least one of the
following conditions:

— They have the same date format.

— Both are windowed date fields, where one
consists only of a windowed year, DATE
FORMAT YY.

— Both are expanded date fields, where one
consists only of an expanded year, DATE
FORMAT YYYY.

— One has DATE FORMAT YYXXXX, the other,
YYXX.

— One has DATE FORMAT YYYYXXXX, the
other, YYYYXX.

A windowed date field can be subordinate to an
expanded date group data item. The two date
fields are compatible if the subordinate date field
has USAGE DISPLAY, starts two bytes after the
start of the group expanded date field, and the two
fields meet at least one of the following conditions:

— The subordinate date field has a DATE
FORMAT pattern with the same number of Xs
as the DATE FORMAT pattern of the group
date field.

Glossary 527

— The subordinate date field has DATE FORMAT
YY.

— The group date field has DATE FORMAT
YYYYXXXX and the subordinate date field has
DATE FORMAT YYXX.

� Procedure Division
Two date fields are compatible if they have the
same date format except for the year part, which
may be windowed or expanded. For example, a
windowed date field with DATE FORMAT YYXXX
is compatible with:

— Another windowed date field with DATE
FORMAT YYXXX

— An expanded date field with DATE FORMAT
YYYYXXX

* compile. (1) To translate a program expressed in a
high-level language into a program expressed in an
intermediate language, assembly language, or a
computer language. (2) To prepare a machine
language program from a computer program written in
another programming language by making use of the
overall logic structure of the program, or generating
more than one computer instruction for each symbolic
statement, or both, as well as performing the function
of an assembler.

* compile time. The time at which a COBOL source
program is translated, by a COBOL compiler, to a
COBOL object program.

compiler. A program that translates a program
written in a higher level language into a machine
language object program.

compiler directing statement. A statement, beginning
with a compiler directing verb, that causes the compiler
to take a specific action during compilation.

compiler directing statement. A statement that
specifies actions to be taken by the compiler during
processing of a COBOL source program. Compiler
directives are contained in the COBOL source program.
Thus, you can specify different suboptions of the
directive within the source program by using multiple
compiler directive statements in the program.

* complex condition. A condition in which one or
more logical operators act upon one or more
conditions. (See also “negated simple condition,”
“combined condition,” and “negated combined
condition.”)

* computer-name. A system-name that identifies the
computer upon which the program is to be compiled or
run.

condition. An exception that has been enabled, or
recognized, by Language Environment and thus is
eligible to activate user and language condition
handlers. Any alteration to the normal programmed
flow of an application. Conditions can be detected by
the hardware/operating system and results in an
interrupt. They can also be detected by

language-specific generated code or language library
code.

* condition. A status of a program at run time for
which a truth value can be determined. Where the
term ‘condition’ (condition-1, condition-2,...) appears in
these language specifications in or in reference to
‘condition’ (condition-1, condition-2,...) of a general
format, it is a conditional expression consisting of
either a simple condition optionally parenthesized, or a
combined condition consisting of the syntactically
correct combination of simple conditions, logical
operators, and parentheses, for which a truth value can
be determined.

* conditional expression. A simple condition or a
complex condition specified in an EVALUATE, IF,
PERFORM, or SEARCH statement. (See also “simple
condition” and “complex condition.”)

* conditional phrase. A conditional phrase specifies
the action to be taken upon determination of the truth
value of a condition resulting from the execution of a
conditional statement.

* conditional statement. A statement specifying that
the truth value of a condition is to be determined and
that the subsequent action of the object program is
dependent on this truth value.

* conditional variable. A data item one or more
values of which has a condition-name assigned to it.

* condition-name. A user-defined word that assigns a
name to a subset of values that a conditional variable
may assume; or a user-defined word assigned to a
status of an implementor defined switch or device.
When ‘condition-name’ is used in the general formats,
it represents a unique data item reference consisting of
a syntactically correct combination of a
‘condition-name’, together with qualifiers and
subscripts, as required for uniqueness of reference.

* condition-name condition. The proposition, for
which a truth value can be determined, that the value
of a conditional variable is a member of the set of
values attributed to a condition-name associated with
the conditional variable.

* Configuration Section. A section of the
Environment Division that describes overall
specifications of source and object programs and class
definitions.

CONSOLE. A COBOL environment-name associated
with the operator console.

* contiguous items. Items that are described by
consecutive entries in the Data Division, and that bear
a definite hierarchic relationship to each other.

copybook. A file or library member containing a
sequence of code that is included in the source
program at compile time using the COPY statement.
The file can be created by the user, supplied by
COBOL, or supplied by another product.

528 COBOL Language Reference

CORBA. The Common Object Request Broker
Architecture established by the Object Management
Group. IBM's Interface Definition Language used to
describe the interface for SOM classes is fully compliant
with CORBA standards.

* counter. A data item used for storing numbers or
number representations in a manner that permits these
numbers to be increased or decreased by the value of
another number, or to be changed or reset to zero or to
an arbitrary positive or negative value.

cross-reference listing. The portion of the compiler
listing that contains information on where files, fields,
and indicators are defined, referenced, and modified in
a program.

currency sign value. A character-string that identifies
the monetary units stored in a numeric-edited item.
Typical examples are '$', 'USD', and 'EUR'. A
currency sign value can be defined by either the
CURRENCY compiler option or the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph of the
Environment Division. If the CURRENCY SIGN clause
is not specified and the NOCURRENCY compiler
option is in effect, the dollar sign ($) is used as the
default currency sign value. See also “currency
symbol.”

currency symbol. A character used in a PICTURE
clause to indicate the position of a currency sign value in
a numeric-edited item. A currency symbol can be
defined by either the CURRENCY compiler option or
by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph of the Environment
Division. If the CURRENCY SIGN clause is not
specified and the NOCURRENCY compiler option is in
effect, the dollar sign ($) is used as the default currency
sign value and currency symbol. Multiple currency
symbols and currency sign values can be defined. See
also “currency sign value.”

* current record. In file processing, the record that is
available in the record area associated with a file.

* current volume pointer. A conceptual entity that
points to the current volume of a sequential file.

D
* data clause. A clause, appearing in a data
description entry in the Data Division of a COBOL
program, that provides information describing a
particular attribute of a data item.

* data description entry . An entry in the Data
Division of a COBOL program that is composed of a
level-number followed by a data-name, if required, and
then followed by a set of data clauses, as required.

Data Division. One of the four main components of a
COBOL program, class definition, or method definition.
The Data Division describes the data to be processed
by the object program, class, or method: files to be
used and the records contained within them; internal

working-storage records that will be needed; data to be
made available in more than one program in the
COBOL run unit. (Note, the Class Data Division
contains only the Working-Storage Section.)

* data item. A unit of data (excluding literals) defined
by a COBOL program or by the rules for function
evaluation.

* data-name. A user-defined word that names a data
item described in a data description entry. When used
in the general formats, ‘data-name’ represents a word
that must not be reference-modified, subscripted or
qualified unless specifically permitted by the rules for
the format.

date field. Any of the following:

� A data item whose data description entry includes
a DATE FORMAT clause.

� A value returned by one of the following intrinsic
functions:

 DATE-OF-INTEGER
 DATE-TO-YYYYMMDD
 DATEVAL
 DAY-OF-INTEGER
 DAY-TO-YYYYDDD
 YEAR-TO-YYYY
 YEARWINDOW

� The conceptual data items DATE, DATE
YYYYMMDD, DAY, and DAY YYYYDDD of the
ACCEPT statement.

� The result of certain arithmetic operations (for
details, see “Arithmetic with date fields” on
page 211).

The term date field refers to both “expanded date
field” and “windowed date field.” See also
“non-date.”

date format. The date pattern of a date field, specified
either:

� Explicitly, by the DATE FORMAT clause or
DATEVAL intrinsic function argument-2

or
� Implicitly, by statements and intrinsic functions

that return date fields (for details, see “Date field”
on page 53)

DBCS (Double-Byte Character Set). See “Double-Byte
Character Set (DBCS).”

* debugging line. A debugging line is any line with a
‘D’ in the indicator area of the line.

* debugging section. A section that contains a USE
FOR DEBUGGING statement.

* declarative sentence. A compiler directing sentence
consisting of a single USE statement terminated by the
separator period.

* declaratives. A set of one or more special purpose
sections, written at the beginning of the Procedure
Division, the first of which is preceded by the key
word DECLARATIVES and the last of which is

Glossary 529

followed by the key words END DECLARATIVES. A
declarative is composed of a section header, followed
by a USE compiler directing sentence, followed by a set
of zero, one, or more associated paragraphs.

* de-edit. The logical removal of all editing characters
from a numeric-edited data item in order to determine
that item's unedited numeric value.

* delimited scope statement. Any statement that
includes its explicit scope terminator.

* delimiter. A character or a sequence of contiguous
characters that identify the end of a string of characters
and separate that string of characters from the
following string of characters. A delimiter is not part
of the string of characters that it delimits.

* descending key. A key upon the values of which
data is ordered starting with the highest value of key
down to the lowest value of key, in accordance with
the rules for comparing data items.

digit. Any of the numerals from 0 through 9. In
COBOL, the term is not used in reference to any other
symbol.

* digit position. The amount of physical storage
required to store a single digit. This amount may vary
depending on the usage specified in the data
description entry that defines the data item.

* direct access. The facility to obtain data from storage
devices or to enter data into a storage device in such a
way that the process depends only on the location of
that data and not on a reference to data previously
accessed.

* division. A collection of zero, one or more sections
or paragraphs, called the division body, that are
formed and combined in accordance with a specific set
of rules. Each division consists of the division header
and the related division body. There are four (4)
divisions in a COBOL program: Identification,
Environment, Data, and Procedure.

* division header. A combination of words followed
by a separator period that indicates the beginning of a
division. The division headers are:

 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 PROCEDURE DIVISION.

do construction. In structured programming, a DO
statement is used to group a number of statements in a
procedure. In COBOL, an in-line PERFORM statement
functions in the same way.

do-until. In structured programming, a do-until loop
will be executed at least once, and until a given
condition is true. In COBOL, a TEST AFTER phrase
used with the PERFORM statement functions in the
same way.

do-while. In structured programming, a do-while loop
will be executed if, and while, a given condition is true.

In COBOL, a TEST BEFORE phrase used with the
PERFORM statement functions in the same way.

Double-Byte Character Set (DBCS). A set of
characters in which each character is represented by
two bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require Double-Byte
Character Sets. Because each character requires two
bytes, entering, displaying, and printing DBCS
characters requires hardware and supporting software
that are DBCS-capable.

* dynamic access. An access mode in which specific
logical records can be obtained from or placed into a
mass storage file in a nonsequential manner and
obtained from a file in a sequential manner during the
scope of the same OPEN statement.

Dynamic Storage Area (DSA). Dynamically acquired
storage composed of a register save area and an area
available for dynamic storage allocation (such as
program variables). DSAs are generally allocated
within STACK segments managed by Language
Environment.

E
* EBCDIC (Extended Binary-Coded Decimal
Interchange Code). A coded character set consisting
of 8-bit coded characters.

EBCDIC character. Any one of the symbols included
in the 8-bit EBCDIC (Extended Binary-Coded-Decimal
Interchange Code) set.

edited data item. A data item that has been modified
by suppressing zeroes and/or inserting editing
characters.

* editing character. A single character or a fixed
2-character combination belonging to the following set:

Character Meaning
 ␣ space
 0 zero
 + plus
 − minus
 CR credit
 DB debit
 Z zero suppress
 * check protect
 $ currency sign

, comma (decimal point)
. period (decimal point)
/ slant (virgule, slash)

element (text element). One logical unit of a string of
text, such as the description of a single data item or
verb, preceded by a unique code identifying the
element type.

* elementary item. A data item that is described as
not being further logically subdivided.

530 COBOL Language Reference

enclave. When running under the Language
Environment product, an enclave is analogous to a run
unit. An enclave can create other enclaves on OS/390
and CMS by a LINK, on CMS by CMSCALL, and the
use of the system () function of C.

*end class header. A combination of words, followed
by a separator period, that indicates the end of a
COBOL class definition. The end class header is:

END CLASS class-name.

*end method header. A combination of words,
followed by a separator period, that indicates the end
of a COBOL method definition. The end method
header is:

END METHOD method-name.

* end of Procedure Division. The physical position of
a COBOL source program after which no further
procedures appear.

* end program header. A combination of words,
followed by a separator period, that indicates the end
of a COBOL source program. The end program header
is:

END PROGRAM program-name.

* entry. Any descriptive set of consecutive clauses
terminated by a separator period and written in the
Identification Division, Environment Division, or Data
Division of a COBOL program.

* environment clause. A clause that appears as part of
an Environment Division entry.

Environment Division. One of the four main
component parts of a COBOL program, class definition,
or method definition. The Environment Division
describes the computers upon which the source
program is compiled and those on which the object
program is executed, and provides a linkage between
the logical concept of files and their records, and the
physical aspects of the devices on which files are
stored.

environment-name. A name, specified by IBM, that
identifies system logical units, printer and card punch
control characters, report codes, and/or program
switches. When an environment-name is associated
with a mnemonic-name in the Environment Division,
the mnemonic-name may then be substituted in any
format in which such substitution is valid.

environment variable. Any of a number of variables
that describe the way an operating system is going to
run and the devices it is going to recognize.

execution time. See “run time.”

execution-time environment. See “run-time
environment.”

expanded date field. A date field containing an
expanded (4-digit) year. See also “date field” and
“expanded year.”

expanded year. A date field that consists only of a
4-digit year. Its value includes the century: for
example, 1998. Compare with “windowed year.”

* explicit scope terminator. A reserved word that
terminates the scope of a particular Procedure Division
statement.

exponent. A number, indicating the power to which
another number (the base) is to be raised. Positive
exponents denote multiplication, negative exponents
denote division, fractional exponents denote a root of a
quantity. In COBOL, an exponential expression is
indicated with the symbol ‘**’ followed by the
exponent.

* expression. An arithmetic or conditional expression.

* extend mode. The state of a file after execution of an
OPEN statement, with the EXTEND phrase specified
for that file, and before the execution of a CLOSE
statement, without the REEL or UNIT phrase for that
file.

extensions. Certain COBOL syntax and semantics
supported by IBM compilers in addition to those
described in ANSI Standard.

* external data. The data described in a program as
external data items and external file connectors.

* external data item. A data item which is described
as part of an external record in one or more programs
of a run unit and which itself may be referenced from
any program in which it is described.

* external data record. A logical record which is
described in one or more programs of a run unit and
whose constituent data items may be referenced from
any program in which they are described.

external decimal item. A format for representing
numbers in which the digit is contained in bits 4
through 7 and the sign is contained in bits 0 through 3
of the rightmost byte. Bits 0 through 3 of all other
bytes contain 1’s (hex F). For example, the decimal
value of +123 is represented as 1111 0001 1111 0010
1111 0011. (Also know as “zoned decimal item.”)

* external file connector. A file connector which is
accessible to one or more object programs in the run
unit.

external floating-point item. A format for
representing numbers in which a real number is
represented by a pair of distinct numerals. In a
floating-point representation, the real number is the
product of the fixed-point part (the first numeral), and
a value obtained by raising the implicit floating-point
base to a power denoted by the exponent (the second
numeral).

For example, a floating-point representation of the
number 0.0001234 is: 0.1234 -3, where 0.1234 is the
mantissa and -3 is the exponent.

Glossary 531

* external switch. A hardware or software device,
defined and named by the implementor, which is used
to indicate that one of two alternate states exists.

F
* figurative constant. A compiler-generated value
referenced through the use of certain reserved words.

* file. A collection of logical records.

* file attribute conflict condition. An unsuccessful
attempt has been made to execute an input-output
operation on a file and the file attributes, as specified
for that file in the program, do not match the fixed
attributes for that file.

* file clause. A clause that appears as part of any of
the following DATA DIVISION entries: file description
entry (FD entry) and sort-merge file description entry
(SD entry).

* file connector. A storage area which contains
information about a file and is used as the linkage
between a file-name and a physical file and between a
file-name and its associated record area.

File-Control. The name of an ENVIRONMENT
DIVISION paragraph in which the data files for a given
source program are declared.

* file control entry. A SELECT clause and all its
subordinate clauses which declare the relevant physical
attributes of a file.

* file description entry. An entry in the File Section of
the Data Division that is composed of the level
indicator FD, followed by a file-name, and then
followed by a set of file clauses as required.

* file-name. A user-defined word that names a file
connector described in a file description entry or a
sort-merge file description entry within the File Section
of the Data Division.

* file organization. The permanent logical file
structure established at the time that a file is created.

*file position indicator. A conceptual entity that
contains the value of the current key within the key of
reference for an indexed file, or the record number of
the current record for a sequential file, or the relative
record number of the current record for a relative file,
or indicates that no next logical record exists, or that an
optional input file is not present, or that the at end
condition already exists, or that no valid next record
has been established.

* File Section. The section of the Data Division that
contains file description entries and sort-merge file
description entries together with their associated record
descriptions.

file system. The collection of files and file
management structures on a physical or logical mass
storage device, such as a diskette or minidisk.

* fixed file attributes. Information about a file which
is established when a file is created and cannot
subsequently be changed during the existence of the
file. These attributes include the organization of the
file (sequential, relative, or indexed), the prime record
key, the alternate record keys, the code set, the
minimum and maximum record size, the record type
(fixed or variable), the collating sequence of the keys
for indexed files, the blocking factor, the padding
character, and the record delimiter.

* fixed length record. A record associated with a file
whose file description or sort-merge description entry
requires that all records contain the same number of
character positions.

fixed-point number. A numeric data item defined
with a PICTURE clause that specifies the location of an
optional sign, the number of digits it contains, and the
location of an optional decimal point. The format may
be either binary, packed decimal, or external decimal.

floating-point number. A numeric data item
containing a fraction and an exponent. Its value is
obtained by multiplying the fraction by the base of the
numeric data item raised to the power specified by the
exponent.

* format. A specific arrangement of a set of data.

* function. A temporary data item whose value is
determined at the time the function is referenced
during the execution of a statement.

* function-identifier. A syntactically correct
combination of character-strings and separators that
references a function. The data item represented by a
function is uniquely identified by a function-name with
its arguments, if any. A function-identifier may
include a reference-modifier. A function-identifier that
references an alphanumeric function may be specified
anywhere in the general formats that an identifier may
be specified, subject to certain restrictions. A
function-identifier that references an integer or numeric
function may be referenced anywhere in the general
formats that an arithmetic expression may be specified.

function-name. A word that names the mechanism
whose invocation, along with required arguments,
determines the value of a function.

G
* global name. A name which is declared in only one
program but which may be referenced from that
program and from any program contained within that
program. Condition-names, data-names, file-names,
record-names, report-names, and some special registers
may be global names.

* group item. A data item that is composed of
subordinate data items.

532 COBOL Language Reference

H
header label. (1) A file label or data set label that
precedes the data records on a unit of recording media.
(2) Synonym for beginning-of-file label.

* high order end. The leftmost character of a string of
characters.

I
IBM COBOL extension. Certain COBOL syntax and
semantics supported by IBM compilers in addition to
those described in ANSI Standard.

Identification Division. One of the four main
component parts of a COBOL program, class definition,
or method definition. The Identification Division
identifies the program name, class name, or method
name. The Identification Division may include the
following documentation: author name, installation, or
date.

* identifier. A syntactically correct combination of
character-strings and separators that names a data item.
When referencing a data item that is not a function, an
identifier consists of a data-name, together with its
qualifiers, subscripts, and reference-modifier, as
required for uniqueness of reference. When referencing
a data item which is a function, a function-identifier is
used.

IGZCBSN. The COBOL for OS/390 & VM bootstrap
routine. It must be link-edited with any module that
contains a COBOL for OS/390 & VM program.

* imperative statement. A statement that either begins
with an imperative verb and specifies an unconditional
action to be taken or is a conditional statement that is
delimited by its explicit scope terminator (delimited
scope statement). An imperative statement may consist
of a sequence of imperative statements.

* implicit scope terminator. A separator period which
terminates the scope of any preceding unterminated
statement, or a phrase of a statement which by its
occurrence indicates the end of the scope of any
statement contained within the preceding phrase.

* index. A computer storage area or register, the
content of which represents the identification of a
particular element in a table.

* index data item. A data item in which the values
associated with an index-name can be stored in a form
specified by the implementor.

indexed data-name. An identifier that is composed of
a data-name, followed by one or more index-names
enclosed in parentheses.

* indexed file. A file with indexed organization.

* indexed organization. The permanent logical file
structure in which each record is identified by the
value of one or more keys within that record.

indexing. Synonymous with subscripting using
index-names.

* index-name. A user-defined word that names an
index associated with a specific table.

* inheritance (for classes). A mechanism for using the
implementation of one or more classes as the basis for
another class. A sub-class inherits from one or more
super-classes. By definition the inheriting class conforms
to the inherited classes.

* initial program. A program that is placed into an
initial state every time the program is called in a run
unit.

* initial state. The state of a program when it is first
called in a run unit.

inline. In a program, instructions that are executed
sequentially, without branching to routines,
subroutines, or other programs.

* input file. A file that is opened in the INPUT mode.

* input mode. The state of a file after execution of an
OPEN statement, with the INPUT phrase specified, for
that file and before the execution of a CLOSE
statement, without the REEL or UNIT phrase for that
file.

* input-output file. A file that is opened in the I-O
mode.

* Input-Output Section. The section of the
Environment Division that names the files and the
external media required by an object program or
method and that provides information required for
transmission and handling of data during execution of
the object program or method definition.

* Input-Output statement. A statement that causes
files to be processed by performing operations upon
individual records or upon the file as a unit. The
input-output statements are: ACCEPT (with the
identifier phrase), CLOSE, DELETE, DISPLAY, OPEN,
READ, REWRITE, SET (with the TO ON or TO OFF
phrase), START, and WRITE.

* input procedure. A set of statements, to which
control is given during the execution of a SORT
statement, for the purpose of controlling the release of
specified records to be sorted.

instance data. Data defining the state of an object.
The instance data introduced by a class is defined in
the Working-Storage Section of the Data Division of the
class definition. The state of an object also includes the
state of the instance variables introduced by base
classes that are inherited by the current class. A
separate copy of the instance data is created for each
object instance.

* integer. (1) A numeric literal that does not include
any digit positions to the right of the decimal point.

Glossary 533

(2) A numeric data item defined in the Data Division
that does not include any digit positions to the right of
the decimal point.

(3) A numeric function whose definition provides that
all digits to the right of the decimal point are zero in
the returned value for any possible evaluation of the
function.

integer function. A function whose category is
numeric and whose definition does not include any
digit positions to the right of the decimal point.

interface. The information that a client must know to
use a class—the names of its attributes and the
signatures of its methods. With direct-to-SOM compilers
such as COBOL, the interface to a class may be defined
by native language syntax for class definitions. Classes
implemented in other languages might have their
interfaces defined directly in SOM Interface Definition
Language (IDL). The COBOL compiler has a compiler
option, IDLGEN, to automatically generate IDL for a
COBOL class.

Interface Definition Language (IDL). The formal
language (independent of any programming language)
by which the interface for a class of objects is defined in
a IDL file, which the SOM compiler then interprets to
create an implementation template file and binding
files. SOM's Interface Definition Language is fully
compliant with standards established by the Object
Management Group's Common Object Request Broker
Architecture (CORBA).

interlanguage communication (ILC). The ability of
routines written in different programming languages to
communicate. ILC support allows the application
writer to readily build applications from component
routines written in a variety of languages.

intermediate result. An intermediate field containing
the results of a succession of arithmetic operations.

* internal data. The data described in a program
excluding all external data items and external file
connectors. Items described in the Linkage Section of a
program are treated as internal data.

* internal data item. A data item which is described
in one program in a run unit. An internal data item
may have a global name.

internal decimal item. A format in which each byte in
a field except the rightmost byte represents two
numeric digits. The rightmost byte contains one digit
and the sign. For example, the decimal value +123 is
represented as 0001 0010 0011 1111. (Also known as
packed decimal.)

* internal file connector. A file connector which is
accessible to only one object program in the run unit.

* intra-record data structure. The entire collection of
groups and elementary data items from a logical record
which is defined by a contiguous subset of the data
description entries which describe that record. These
data description entries include all entries whose
level-number is greater than the level-number of the
first data description entry describing the intra-record
data structure.

intrinsic function. A pre-defined function, such as a
commonly used arithmetic function, called by a built-in
function reference.

* invalid key condition. A condition, at object time,
caused when a specific value of the key associated with
an indexed or relative file is determined to be invalid.

* I-O-CONTROL. The name of an Environment
Division paragraph in which object program
requirements for rerun points, sharing of same areas by
several data files, and multiple file storage on a single
input-output device are specified.

* I-O-CONTROL entry. An entry in the
I-O-CONTROL paragraph of the Environment Division
which contains clauses that provide information
required for the transmission and handling of data on
named files during the execution of a program.

* I-O-Mode. The state of a file after execution of an
OPEN statement, with the I-O phrase specified, for that
file and before the execution of a CLOSE statement
without the REEL or UNIT phase for that file.

* I-O status. A conceptual entity which contains the
2-character value indicating the resulting status of an
input-output operation. This value is made available to
the program through the use of the FILE STATUS
clause in the file control entry for the file.

iteration structure. A program processing logic in
which a series of statements is repeated while a
condition is true or until a condition is true.

K
K. When referring to storage capacity, two to the
tenth power; 1024 in decimal notation.

* key. A data item that identifies the location of a
record, or a set of data items which serve to identify
the ordering of data.

* key of reference. The key, either prime or alternate,
currently being used to access records within an
indexed file.

* key word. A reserved word or function-name whose
presence is required when the format in which the
word appears is used in a source program.

kilobyte (KB). One kilobyte equals 1024 bytes.

534 COBOL Language Reference

L
* language-name. A system-name that specifies a
particular programming language.

Language Environment-conforming. A characteristic
of compiler products (such as COBOL for MVS & VM,
COBOL for OS/390 & VM, C/C++ for MVS and VM,
PL/I for MVS and VM) that produce object code
conforming to the Language Environment format.

last-used state. A program is in last-used state if its
internal values remain the same as when the program
was exited (are not reset to their initial values).

* letter. A character belonging to one of the following
two sets:

1. Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L,
M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

2. Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n,
o, p, q, r, s, t, u, v, w, x, y, z

* level indicator. Two alphabetic characters that
identify a specific type of file or a position in a
hierarchy. The level indicators in the Data Division
are: CD, FD, and SD.

* level-number. A user-defined word, expressed as a
2-digit number, which indicates the hierarchical
position of a data item or the special properties of a
data description entry. Level-numbers in the range
from 1 through 49 indicate the position of a data item
in the hierarchical structure of a logical record.
Level-numbers in the range 1 through 9 may be written
either as a single digit or as a zero followed by a
significant digit. Level-numbers 66, 77 and 88 identify
special properties of a data description entry.

* library-name. A user-defined word that names a
COBOL library that is to be used by the compiler for a
given source program compilation.

* library text. A sequence of text words, comment
lines, the separator space, or the separator pseudo-text
delimiter in a COBOL library.

LILIAN DATE. The number of days since the
beginning of the Gregorian calendar. Day one is
Friday, October 15, 1582. The Lilian date format is
named in honor of Luigi Lilio, the creator of the
Gregorian calendar.

* LINAGE-COUNTER. A special register whose value
points to the current position within the page body.

Linkage Section. The section in the Data Division of
the called program that describes data items available
from the calling program. These data items may be
referred to by both the calling and called program.

literal. A character-string whose value is specified
either by the ordered set of characters comprising the
string, or by the use of a figurative constant.

locale. A set of attributes for a program execution
environment indicating culturally sensitive

considerations, such as: character code page, collating
sequence, date/time format, monetary value
representation, numeric value representation, or
language.

* Local-Storage Section. The section of the Data
Division that defines storage that is allocated and freed
on a per-invocation basis, depending on the value
assigned in their VALUE clauses.

* logical operator. One of the reserved words AND,
OR, or NOT. In the formation of a condition, either
AND, or OR, or both can be used as logical
connectives. NOT can be used for logical negation.

* logical record. The most inclusive data item. The
level-number for a record is 01. A record may be
either an elementary item or a group of items. The
term is synonymous with record.

* low order end. The rightmost character of a string of
characters.

M
main program. In a hierarchy of programs and
subroutines, the first program to receive control when
the programs are run.

* mass storage. A storage medium in which data may
be organized and maintained in both a sequential and
nonsequential manner.

* mass storage device. A device having a large
storage capacity; for example, magnetic disk, magnetic
drum.

* mass storage file. A collection of records that is
assigned to a mass storage medium.

* megabyte (M). One megabyte equals 1,048,576 bytes.

* merge file. A collection of records to be merged by
a MERGE statement. The merge file is created and can
be used only by the merge function.

metaclass. A SOM class whose instances are SOM
class-objects. The methods defined in metaclasses are
executed without requiring any object instances of the
class to exist, and are frequently used to create
instances of the class.

method. Procedural code that defines one of the
operations supported by an object, and that is executed
by an INVOKE statement on that object.

* Method Definition. The COBOL source unit that
defines a method.

* method identification entry. An entry in the
METHOD-ID paragraph of the Identification Division
which contains clauses that specify the method-name
and assign selected attributes to the method definition.

* method-name. A user-defined word that identifies a
method.

Glossary 535

* mnemonic-name. A user-defined word that is
associated in the Environment Division with a specified
implementor-name.

multitasking. Mode of operation that provides for the
concurrent, or interleaved, execution of two or more
tasks. When running under the Language Environment
product, multitasking is synonymous with
multithreading.

N
name. A word composed of not more than 30
characters that defines a COBOL operand.

* native character set. The implementor-defined
character set associated with the computer specified in
the OBJECT-COMPUTER paragraph.

* native collating sequence. The implementor-defined
collating sequence associated with the computer
specified in the OBJECT-COMPUTER paragraph.

* negated combined condition. The ‘NOT’ logical
operator immediately followed by a parenthesized
combined condition.

* negated simple condition. The ‘NOT’ logical
operator immediately followed by a simple condition.

nested program. A program that is directly contained
within another program.

* next executable sentence. The next sentence to
which control will be transferred after execution of the
current statement is complete.

* next executable statement. The next statement to
which control will be transferred after execution of the
current statement is complete.

* next record. The record that logically follows the
current record of a file.

* noncontiguous items. Elementary data items in the
Working-Storage and Linkage Sections that bear no
hierarchic relationship to other data items.

non-date. Any of the following:

� A data item whose date description entry does not
include the DATE FORMAT clause

� A literal

� A date field that has been converted using the
UNDATE function

� A reference-modified date field

� The result of certain arithmetic operations that may
include date field operands; for example, the
difference between two compatible date fields

* nonnumeric item. A data item whose description
permits its content to be composed of any combination
of characters taken from the computer’s character set.
Certain categories of nonnumeric items may be formed
from more restricted character sets.

* nonnumeric literal. A literal bounded by quotation
marks. The string of characters may include any
character in the computer’s character set.

null. Figurative constant used to assign the value of
an invalid address to pointer data items. NULLS can
be used wherever NULL can be used.

* numeric character. A character that belongs to the
following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric-edited item. A numeric item that is in such a
form that it may be used in printed output. It may
consist of external decimal digits from 0 through 9, the
decimal point, commas, the dollar sign, editing sign
control symbols, plus other editing symbols.

* numeric function. A function whose class and
category are numeric but which for some possible
evaluation does not satisfy the requirements of integer
functions.

* numeric item. A data item whose description
restricts its content to a value represented by characters
chosen from the digits from ‘0’ through ‘9’; if signed,
the item may also contain a ‘+’, ‘−’, or other
representation of an operational sign.

* numeric literal. A literal composed of one or more
numeric characters that may contain either a decimal
point, or an algebraic sign, or both. The decimal point
must not be the rightmost character. The algebraic
sign, if present, must be the leftmost character.

O
object. An entity that has state (its data values) and
operations (its methods). An object is a way to
encapsulate state and behavior.

object code. Output from a compiler or assembler that
is itself executable machine code or is suitable for
processing to produce executable machine code.

* OBJECT-COMPUTER. The name of an Environment
Division paragraph in which the computer
environment, within which the object program is
executed, is described.

* object computer entry. An entry in the
OBJECT-COMPUTER paragraph of the Environment
Division which contains clauses that describe the
computer environment in which the object program is
to be executed.

object deck. A portion of an object program suitable
as input to a linkage editor. Synonymous with object
module and text deck.

object module. Synonym for object deck or text deck.

* object of entry. A set of operands and reserved
words, within a Data Division entry of a COBOL
program, that immediately follows the subject of the
entry.

536 COBOL Language Reference

* object program. A set or group of executable
machine language instructions and other material
designed to interact with data to provide problem
solutions. In this context, an object program is
generally the machine language result of the operation
of a COBOL compiler on a source program. Where
there is no danger of ambiguity, the word ‘program’
alone may be used in place of the phrase ‘object
program.’

* object time. The time at which an object program is
executed. The term is synonymous with execution
time.

* obsolete element. A COBOL language element in
Standard COBOL that is to be deleted from the next
revision of Standard COBOL.

ODBC. Open Database Connectivity that provides
you access to data from a variety of databases and file
systems.

ODO object. In the example below,

WORKING-STORAGE SECTION
?1 TABLE-1.
 ?5 X PICS9.

?5 Y OCCURS 3 TIMES
DEPENDING ON X PIC X.

X is the object of the OCCURS DEPENDING ON clause
(ODO object). The value of the ODO object determines
how many of the ODO subject appear in the table.

ODO subject. In the example above, Y is the subject
of the OCCURS DEPENDING ON clause (ODO
subject). The number of Y ODO subjects that appear in
the table depends on the value of X.

* open mode. The state of a file after execution of an
OPEN statement for that file and before the execution
of a CLOSE statement without the REEL or UNIT
phrase for that file. The particular open mode is
specified in the OPEN statement as either INPUT,
OUTPUT, I-O or EXTEND.

* operand. Whereas the general definition of operand
is “that component which is operated upon,” for the
purposes of this document, any lowercase word (or
words) that appears in a statement or entry format may
be considered to be an operand and, as such, is an
implied reference to the data indicated by the operand.

* operational sign. An algebraic sign, associated with
a numeric data item or a numeric literal, to indicate
whether its value is positive or negative.

* optional file. A file which is declared as being not
necessarily present each time the object program is
executed. The object program causes an interrogation
for the presence or absence of the file.

* optional word. A reserved word that is included in
a specific format only to improve the readability of the
language and whose presence is optional to the user
when the format in which the word appears is used in
a source program.

* output file. A file that is opened in either the
OUTPUT mode or EXTEND mode.

* output mode. The state of a file after execution of an
OPEN statement, with the OUTPUT or EXTEND
phrase specified, for that file and before the execution
of a CLOSE statement without the REEL or UNIT
phrase for that file.

* output procedure. A set of statements to which
control is given during execution of a SORT statement
after the sort function is completed, or during
execution of a MERGE statement after the merge
function reaches a point at which it can select the next
record in merged order when requested.

overflow condition. A condition that occurs when a
portion of the result of an operation exceeds the
capacity of the intended unit of storage.

P
packed decimal item. See “internal decimal item.”

* padding character. An alphanumeric character used
to fill the unused character positions in a physical
record.

page. A vertical division of output data representing a
physical separation of such data, the separation being
based on internal logical requirements and/or external
characteristics of the output medium.

* page body. That part of the logical page in which
lines can be written and/or spaced.

* paragraph. In the Procedure Division, a
paragraph-name followed by a separator period and by
zero, one, or more sentences. In the Identification and
Environment Divisions, a paragraph header followed
by zero, one, or more entries.

* paragraph header. A reserved word, followed by the
separator period, that indicates the beginning of a
paragraph in the Identification and Environment
Divisions. The permissible paragraph headers in the
Identification Division are:

PROGRAM-ID. (Program Identification Division)
CLASS-ID. (Class Identification Division)
METHOD-ID. (Method Identification Division)
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the Environment
Division are:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
REPOSITORY. (Program or Class Configuration Section)
FILE-CONTROL.
I-O-CONTROL.

* paragraph-name. A user-defined word that identifies
and begins a paragraph in the Procedure Division.

Glossary 537

parameter. Parameters are used to pass data values
between calling and called programs.

password. A unique string of characters that a
program, computer operator, or user must supply to
meet security requirements before gaining access to
data.

* phrase. A phrase is an ordered set of one or more
consecutive COBOL character-strings that form a
portion of a COBOL procedural statement or of a
COBOL clause.

* physical record. See “block.”

pointer data item. A data item in which address
values can be stored. Data items are explicitly defined
as pointers with the USAGE IS POINTER clause.
ADDRESS OF special registers are implicitly defined as
pointer data items. Pointer data items can be
compared for equality or moved to other pointer data
items.

portability. The ability to transfer an application
program from one application platform to another with
relatively few changes to the source program.

* prime record key. A key whose contents uniquely
identify a record within an indexed file.

* priority-number. A user-defined word which
classifies sections in the Procedure Division for
purposes of segmentation. Segment-numbers may
contain only the characters '0','1', ... , '9'. A
segment-number may be expressed either as a 1- or
2-digit number.

* procedure. A paragraph or group of logically
successive paragraphs, or a section or group of
logically successive sections, within the Procedure
Division.

* procedure branching statement. A statement that
causes the explicit transfer of control to a statement
other than the next executable statement in the
sequence in which the statements are written in the
source program. The procedure branching statements
are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO,
MERGE, (with the OUTPUT PROCEDURE phrase),
PERFORM and SORT (with the INPUT PROCEDURE
or OUTPUT PROCEDURE phrase).

Procedure Division. One of the four main component
parts of a COBOL program, class definition, or method
definition. The Procedure Division contains
instructions for solving a problem. The Program and
Method Procedure Divisions may contain imperative
statements, conditional statements, compiler directing
statements, paragraphs, procedures, and sections. The
Class Procedure Division contains only method
definitions.

procedure integration. One of the functions of the
COBOL optimizer is to simplify calls to performed
procedures or contained programs.

PERFORM procedure integration is the process
whereby a PERFORM statement is replaced by its
performed procedures. Contained program procedure
integration is the process where a CALL to a contained
program is replaced by the program code.

* procedure-name. A user-defined word that is used
to name a paragraph or section in the Procedure
Division. It consists of a paragraph-name (which may
be qualified) or a section-name.

procedure-pointer data item. A data item in which a
pointer to an entry point can be stored. A data item
defined with the USAGE IS PROCEDURE-POINTER
clause contains the address of a procedure entry point.

* program identification entry. An entry in the
PROGRAM-ID paragraph of the Identification Division
which contains clauses that specify the program-name
and assign selected program attributes to the program.

* program-name. In the Identification Division and
the end program header, a user-defined word that
identifies a COBOL source program.

* pseudo-text. A sequence of text words, comment
lines, or the separator space in a source program or
COBOL library bounded by, but not including,
pseudo-text delimiters.

* pseudo-text delimiter. Two contiguous equal sign
characters (==) used to delimit pseudo-text.

* punctuation character. A character that belongs to
the following set:

Character Meaning
 , comma
 ; semicolon
 : colon
 . period (full stop)
 " quotation mark
 (left parenthesis
) right parenthesis
 ␣ space
 = equal sign

Q
QSAM (Queued Sequential Access Method). An
extended version of the basic sequential access method
(BSAM). When this method is used, a queue is formed
of input data blocks that are awaiting processing or of
output data blocks that have been processed and are
awaiting transfer to auxiliary storage or to an output
device.

* qualified data-name. An identifier that is composed
of a data-name followed by one or more sets of either
of the connectives OF and IN followed by a data-name
qualifier.

* qualifier.

1. A data-name or a name associated with a level
indicator which is used in a reference either
together with another data-name which is the name

538 COBOL Language Reference

of an item that is subordinate to the qualifier or
together with a condition-name.

2. A section-name that is used in a reference together
with a paragraph-name specified in that section.

3. A library-name that is used in a reference together
with a text-name associated with that library.

R
* random access. An access mode in which the
program-specified value of a key data item identifies
the logical record that is obtained from, deleted from,
or placed into a relative or indexed file.

* record. See “logical record.”

* record area. A storage area allocated for the purpose
of processing the record described in a record
description entry in the File Section of the Data
Division. In the File Section, the current number of
character positions in the record area is determined by
the explicit or implicit RECORD clause.

* record description. See “record description entry.”

* record description entry. The total set of data
description entries associated with a particular record.
The term is synonymous with record description.

recording mode. The format of the logical records in a
file. Recording mode can be F (fixed-length), V
(variable-length), S (spanned), or U (undefined).

record key. A key whose contents identify a record
within an indexed file.

* record-name. A user-defined word that names a
record described in a record description entry in the
Data Division of a COBOL program.

* record number. The ordinal number of a record in
the file whose organization is sequential.

recursion. A program calling itself or being directly or
indirectly called by a one of its called programs.

recursively capable. A program is recursively capable
(can be called recursively) if the RECURSIVE attribute
is on the PROGRAM-ID statement.

reel. A discrete portion of a storage medium, the
dimensions of which are determined by each
implementor that contains part of a file, all of a file, or
any number of files. The term is synonymous with
unit and volume.

reentrant. The attribute of a program or routine that
allows more than one user to share a single copy of a
load module.

* reference format. A format that provides a standard
method for describing COBOL source programs.

reference modification. A method of defining a new
alphanumeric data item by specifying the leftmost
character and length relative to the leftmost character
of another alphanumeric data item.

* reference-modifier. A syntactically correct
combination of character-strings and separators that
defines a unique data item. It includes a delimiting left
parenthesis separator, the leftmost character position, a
colon separator, optionally a length, and a delimiting
right parenthesis separator.

* relation. See “relational operator” or “relation
condition.”

* relational operator. A reserved word, a relation
character, a group of consecutive reserved words, or a
group of consecutive reserved words and relation
characters used in the construction of a relation
condition. The permissible operators and their
meanings are:

Operator Meaning
IS GREATER THAN Greater than
IS > Greater than
IS NOT GREATER THAN Not greater than
IS NOT > Not greater than

IS LESS THAN Less than
IS < Less than
IS NOT LESS THAN Not less than
IS NOT < Not less than

IS EQUAL TO Equal to
IS = Equal to
IS NOT EQUAL TO Not equal to
IS NOT = Not equal to

IS GREATER THAN OR EQUAL TO
Greater than or equal to

IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO
Less than or equal to

IS <= Less than or equal to

* relation character. A character that belongs to the
following set:

Character Meaning

 > greater than
 < less than
 = equal to

* relation condition. The proposition, for which a
truth value can be determined, that the value of an
arithmetic expression, data item, nonnumeric literal, or
index-name has a specific relationship to the value of
another arithmetic expression, data item, nonnumeric
literal, or index name. (See also “relational operator.”)

* relative file. A file with relative organization.

* relative key. A key whose contents identify a logical
record in a relative file.

* relative organization. The permanent logical file
structure in which each record is uniquely identified by
an integer value greater than zero, which specifies the
record’s logical ordinal position in the file.

Glossary 539

* relative record number. The ordinal number of a
record in a file whose organization is relative. This
number is treated as a numeric literal which is an
integer.

* reserved word. A COBOL word specified in the list
of words that may be used in a COBOL source
program, but that must not appear in the program as
user-defined words or system-names.

* resource. A facility or service, controlled by the
operating system, that can be used by an executing
program.

* resultant identifier. A user-defined data item that is
to contain the result of an arithmetic operation.

reusable environment. A reusable environment is
when you establish an assembler program as the main
program by using either ILBOSTP0 programs,
IGZERRE programs, or the RTEREUS run-time option.

routine. A set of statements in a COBOL program that
causes the computer to perform an operation or series
of related operations. In Language Environment, refers
to either a procedure, function, or subroutine.

* routine-name. A user-defined word that identifies a
procedure written in a language other than COBOL.

* run time. The time at which an object program is
executed. The term is synonymous with object time.

run-time environment. The environment in which a
COBOL program executes.

* run unit. A stand-alone object program, or several
object programs, that interact via COBOL CALL
statements, which function at run time as an entity.

S
SBCS (Single Byte Character Set). See "Single Byte
Character Set (SBCS)".

scope terminator. A COBOL reserved word that
marks the end of certain Procedure Division
statements. It may be either explicit (END-ADD, for
example) or implicit (separator period).

* section. A set of zero, one or more paragraphs or
entities, called a section body, the first of which is
preceded by a section header. Each section consists of
the section header and the related section body.

* section header. A combination of words followed by
a separator period that indicates the beginning of a
section in the Environment, Data, and Procedure
Divisions. In the Environment and Data Divisions, a
section header is composed of reserved words followed
by a separator period. The permissible section headers
in the Environment Division are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the Data Division
are:

FILE SECTION.
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a section header is
composed of a section-name, followed by the reserved
word SECTION, followed by a separator period.

* section-name. A user-defined word that names a
section in the Procedure Division.

selection structure. A program processing logic in
which one or another series of statements is executed,
depending on whether a condition is true or false.

* sentence. A sequence of one or more statements, the
last of which is terminated by a separator period.

* separately compiled program. A program which,
together with its contained programs, is compiled
separately from all other programs.

* separator. A character or two contiguous characters
used to delimit character-strings.

* separator comma. A comma (,) followed by a space
used to delimit character-strings.

* separator period. A period (.) followed by a space
used to delimit character-strings.

* separator semicolon. A semicolon (;) followed by a
space used to delimit character-strings.

sequence structure. A program processing logic in
which a series of statements is executed in sequential
order.

* sequential access. An access mode in which logical
records are obtained from or placed into a file in a
consecutive predecessor-to-successor logical record
sequence determined by the order of records in the file.

* sequential file. A file with sequential organization.

* sequential organization. The permanent logical file
structure in which a record is identified by a
predecessor-successor relationship established when the
record is placed into the file.

serial search. A search in which the members of a set
are consecutively examined, beginning with the first
member and ending with the last.

* 77-level-description-entry. A data description entry
that describes a noncontiguous data item with the
level-number 77.

* sign condition. The proposition, for which a truth
value can be determined, that the algebraic value of a
data item or an arithmetic expression is either less than,
greater than, or equal to zero.

* simple condition. Any single condition chosen from
the set:

 Relation condition
 Class condition
 Condition-name condition
 Switch-status condition

540 COBOL Language Reference

 Sign condition

Single Byte Character Set (SBCS). A set of characters
in which each character is represented by a single byte.
See also "EBCDIC (Extended Binary-Coded Decimal
Interchange Code)."

slack bytes. Bytes inserted between data items or
records to ensure correct alignment of some numeric
items. Slack bytes contain no meaningful data. In
some cases, they are inserted by the compiler; in others,
it is the responsibility of the programmer to insert
them. The SYNCHRONIZED clause instructs the
compiler to insert slack bytes when they are needed for
proper alignment. Slack bytes between records are
inserted by the programmer.

SOM. System Object Model

* sort file. A collection of records to be sorted by a
SORT statement. The sort file is created and can be
used by the sort function only.

* sort-merge file description entry. An entry in the
File Section of the Data Division that is composed of
the level indicator SD, followed by a file-name, and
then followed by a set of file clauses as required.

* SOURCE-COMPUTER. The name of an
Environment Division paragraph in which the
computer environment, within which the source
program is compiled, is described.

* source computer entry. An entry in the
SOURCE-COMPUTER paragraph of the Environment
Division which contains clauses that describe the
computer environment in which the source program is
to be compiled.

* source item. An identifier designated by a SOURCE
clause that provides the value of a printable item.

source program. Although it is recognized that a
source program may be represented by other forms
and symbols, in this document it always refers to a
syntactically correct set of COBOL statements. A
COBOL source program commences with the
IDENTIFICATION DIVISION or a COPY statement. A
COBOL source program is terminated by the end
program header, if specified, or by the absence of
additional source program lines.

* special character. A character that belongs to the
following set:

Character Meaning

 + plus sign
− minus sign (hyphen)

 * asterisk
/ slant (virgule, slash)

 = equal sign
 $ currency sign

, comma (decimal point)
 ; semicolon

. period (decimal point, full stop)
 " quotation mark

 (left parenthesis
) right parenthesis
 > greater than symbol
 < less than symbol
 : colon

* special-character word. A reserved word that is an
arithmetic operator or a relation character.

SPECIAL-NAMES. The name of an Environment
Division paragraph in which environment-names are
related to user-specified mnemonic-names.

* special names entry. An entry in the
SPECIAL-NAMES paragraph of the Environment
Division which provides means for specifying the
currency sign; choosing the decimal point; specifying
symbolic characters; relating implementor-names to
user-specified mnemonic-names; relating
alphabet-names to character sets or collating sequences;
and relating class-names to sets of characters.

* special registers. Certain compiler generated storage
areas whose primary use is to store information
produced in conjunction with the use of a specific
COBOL feature.

* standard data format. The concept used in
describing the characteristics of data in a COBOL Data
Division under which the characteristics or properties
of the data are expressed in a form oriented to the
appearance of the data on a printed page of infinite
length and breadth, rather than a form oriented to the
manner in which the data is stored internally in the
computer, or on a particular external medium.

* statement. A syntactically valid combination of
words, literals, and separators, beginning with a verb,
written in a COBOL source program.

STL File System. STandard Language File System:
native workstation and PC file system for COBOL and
PL/I. Supports sequential, relative, and indexed files,
including the full ANSI 85 COBOL standard I/O
language and all of the extensions described in IBM
COBOL Language Reference, unless exceptions are
explicitly noted.

structured programming. A technique for organizing
and coding a computer program in which the program
comprises a hierarchy of segments, each segment
having a single entry point and a single exit point.
Control is passed downward through the structure
without unconditional branches to higher levels of the
hierarchy.

* sub-class. A class that inherits from another class.
When two classes in an inheritance relationship are
considered together, the sub-class is the inheritor or
inheriting class; the super-class is the inheritee or
inherited class.

* subject of entry. An operand or reserved word that
appears immediately following the level indicator or
the level-number in a Data Division entry.

* subprogram. See “called program.”

Glossary 541

* subscript. An occurrence number represented by
either an integer, a data-name optionally followed by
an integer with the operator + or -, or an index-name
optionally followed by an integer with the operator +
or -, that identifies a particular element in a table. A
subscript may be the word ALL when the subscripted
identifier is used as a function argument for a function
allowing a variable number of arguments.

* subscripted data-name. An identifier that is
composed of a data-name followed by one or more
subscripts enclosed in parentheses.

* super-class. A class that is inherited by another
class. See also sub-class.

switch-status condition. The proposition, for which a
truth value can be determined, that an UPSI switch,
capable of being set to an ‘on’ or ‘off’ status, has been
set to a specific status.

* symbolic-character. A user-defined word that
specifies a user-defined figurative constant.

syntax. (1) The relationship among characters or
groups of characters, independent of their meanings or
the manner of their interpretation and use. (2) The
structure of expressions in a language. (3) The rules
governing the structure of a language. (4) The
relationship among symbols. (5) The rules for the
construction of a statement.

* system-name. A COBOL word that is used to
communicate with the operating environment.

System Object Model (SOM). IBM's object-oriented
programming technology for building, packaging, and
manipulating class libraries. SOM conforms to the
Object Management Group's (OMG) Common Object
Request Broker Architecture (CORBA) standards.

T
* table. A set of logically consecutive items of data
that are defined in the Data Division by means of the
OCCURS clause.

* table element. A data item that belongs to the set of
repeated items comprising a table.

text deck. Synonym for object deck or object module.

* text-name. A user-defined word that identifies
library text.

* text word. A character or a sequence of contiguous
characters between margin A and margin R in a
COBOL library, source program, or in pseudo-text
which is:

� A separator, except for: space; a pseudo-text
delimiter; and the opening and closing delimiters
for nonnumeric literals. The right parenthesis and
left parenthesis characters, regardless of context
within the library, source program, or pseudo-text,
are always considered text words.

� A literal including, in the case of nonnumeric
literals, the opening quotation mark and the closing
quotation mark that bound the literal.

� Any other sequence of contiguous COBOL
characters except comment lines and the word
‘COPY’ bounded by separators that are neither a
separator nor a literal.

top-down design. The design of a computer program
using a hierarchic structure in which related functions
are performed at each level of the structure.

top-down development. See “structured
programming.”

trailer-label. (1) A file or data set label that follows
the data records on a unit of recording medium. (2)
Synonym for end-of-file label.

* truth value. The representation of the result of the
evaluation of a condition in terms of one of two values:
true or false.

U
* unary operator. A plus (+) or a minus (-) sign, that
precedes a variable or a left parenthesis in an
arithmetic expression and that has the effect of
multiplying the expression by +1 or -1, respectively.

unit. A module of direct access, the dimensions of
which are determined by IBM.

universal object reference. A data-name that can refer
to an object of any class.

* unsuccessful execution. The attempted execution of
a statement that does not result in the execution of all
the operations specified by that statement. The
unsuccessful execution of a statement does not affect
any data referenced by that statement, but may affect
status indicators.

UPSI switch. A program switch that performs the
functions of a hardware switch. Eight are provided:
UPSI-0 through UPSI-7.

* user-defined word. A COBOL word that must be
supplied by the user to satisfy the format of a clause or
statement.

V
* variable. A data item whose value may be changed
by execution of the object program. A variable used in
an arithmetic expression must be a numeric elementary
item.

* variable length record. A record associated with a
file whose file description or sort-merge description
entry permits records to contain a varying number of
character positions.

* variable occurrence data item. A variable occurrence
data item is a table element which is repeated a
variable number of times. Such an item must contain

542 COBOL Language Reference

an OCCURS DEPENDING ON clause in its data
description entry, or be subordinate to such an item.

* variably located group.. A group item following,
and not subordinate to, a variable-length table in the
same level-01 record.

* variably located item.. A data item following, and
not subordinate to, a variable-length table in the same
level-01 record.

* verb. A word that expresses an action to be taken by
a COBOL compiler or object program.

VM/SP (Virtual Machine/System Product). An
IBM-licensed program that manages the resources of a
single computer so that multiple computing systems
appear to exist. Each virtual machine is the functional
equivalent of a “real” machine.

volume. A module of external storage. For tape
devices it is a reel; for direct-access devices it is a unit.

volume switch procedures. System specific
procedures executed automatically when the end of a
unit or reel has been reached before end-of-file has
been reached.

W
windowed date field. A date field containing a
windowed (2-digit) year. See also “date field” and
“windowed year.”

windowed year. A date field that consists only of a
2-digit year. This 2-digit year may be interpreted using
a century window. For example, 05 could be
interpreted as 2005. See also “century window.”

Compare with “expanded year.”

* word. A character-string of not more than 30
characters which forms a user-defined word, a
system-name, a reserved word, or a function-name.

* Working-Storage Section. The section of the Data
Division that describes working storage data items,
composed either of noncontiguous items or working
storage records or of both.

Y

Z
zoned decimal item. See “external decimal item.”

Glossary 543

Index

Special
Characters
, (comma)

insertion character 171
symbol in PICTURE

clause 163, 166
/ (slash)

insertion character 171
symbol in PICTURE

clause 163, 166
(/) comment line 33
(period) 163
<= (less than or equal to) 219
< (less than) 219
{ : }

description 25
required use of 473

$ (default currency symbol)
in PICTURE clause 164, 166
insertion character 172

* symbol in PICTURE clause 163
*CBL (*CONTROL) statement 466
+ (plus)

insertion character 172, 173
SIGN clause 180
symbol in PICTURE

clause 166
− (minus)

insertion character 172
SIGN clause 180
symbol in PICTURE

clause 166
= (equal) 219
> (greater than) 219
>= (greater than or equal to) 219

Numerics
0

insertion character 171
symbol in PICTURE

clause 163, 166
66, RENAMES data description

entry 178
77, item description entry 127
88, condition-name data

description entry 146
9, symbol in PICTURE

clause 163, 166

A
A, symbol in PICTURE

clause 161
abbreviated combined relation

condition
examples 234
using parentheses in 233

ACCEPT statement
mnemonic name in 250, 251
overlapping operands,

unpredictable results 242
system information

transfer 252
under AIX and Windows 250

access mode
description 107
dynamic

DELETE statement 275
description 108
READ statement 348

random
DELETE statement 275
description 108
READ statement 347

sequential
DELETE statement 275
description 108
READ statement 345

ACCESS MODE clause 107
ACOS function 412
ADD statement

common phrases 238
CORRESPONDING

phrase 257
description and format 255

ADDRESS OF special register 9
ADDRESS OF under AIX and

Windows 365
ADVANCING phrase 394
AFTER phrase

INSPECT statement 304
PERFORM statement 335
with REPLACING 301
with TALLYING 299
WRITE statement 394

AIX COBOL language differences
ACCEPT statement 250
APPLY WRITE-ONLY 118
ASSIGN clause 100
basis-names, library-names,

text-names 36

AIX COBOL language differences
(continued)

BLOCK CONTAINS 135
CLOSE statement 268
CODE-SET 143
COMP-5 data item 189
compiler limits 494
control characters 129
DBCS 2
environment-name 252
file handling 118
file status data-name-8 112
LABEL RECORDS 139
LINE SEQUENTIAL file

I-O 105
locale definition 515
MORE-LABELS, GO TO 293
pointer data item size 192
RECORD CONTAINS

clause 137
RECORDING MODE

clause 142
RERUN clause 115
RESERVE clause 103
SAME AREA clause 116
SAME SORT AREA clause 117
SAME SORT-MERGE AREA

clause 118
SET statement 365
SORT-CONTROL special

register 14
SORT-FILE-SIZE 15
SORT-MESSAGE 15
SORT-MODE-SIZE 16
status key value and

meaning 244
USE...AFTER...LABEL

PROCEDURE 485
WRITE ADVANCING 85, 394

aligning data 181
ALL

phrase of INSPECT
statement 299, 301

SEARCH statement 359
UNSTRING statement 387

ALL literal
STOP statement 378
STRING statement 379
UNSTRING statement 387

ALL subscripting 405
ALPHABET clause 86
alphabet-name

544  Copyright IBM Corp. 1991, 2000

alphabet-name (continued)
description 86
MERGE statement 316
PROGRAM COLLATING

SEQUENCE clause 82
SORT statement 370

alphabetic character in
ACCEPT 250

alphabetic class and category 127
ALPHABETIC class test 215
alphabetic item

alignment rules 128
elementary move rules 321
PICTURE clause 166

ALPHABETIC-LOWER class
test 216

ALPHABETIC-UPPER class
test 216

alphanumeric arguments 404
alphanumeric class and category

alignment rules 128
description 127

alphanumeric functions 403
alphanumeric item

alignment rules 128
elementary move rules 321
PICTURE clause 168

alphanumeric literal, control
character restrictions 129

alphanumeric-edited item
alignment rules 128
elementary move rules 321
PICTURE clause 168

ALSO phrase
ALPHABET clause 87
EVALUATE statement 284

ALTER statement
description and format 258
GO TO statement and 293
segmentation

considerations 259
altered GO TO statement 293
ALTERNATE RECORD KEY

clause 110
AND logical operator 229
ANNUITY function 413
APPLY WRITE-ONLY clause 118
Area A (cols. 8-11) 29
Area B (cols. 12-72) 30
arguments 404
arithmetic expression

COMPUTE statement 272
description 209
EVALUATE statement 285
relation condition 218

arithmetic operator
description 210
permissible symbol pairs 211

arithmetic statements
ADD 255
common phrases 238
COMPUTE 272
DIVIDE 280
list of 241
multiple results 243
MULTIPLY 325
operands 242
programming notes 242
SUBTRACT 383

ASCENDING KEY phrase
collating sequence 156
description 314
MERGE statement 314
OCCURS clause 156
SORT statement 368

ASCII
collating sequence 500
processing considerations 512
specifying in SPECIAL-NAMES

paragraph 86
ASIN function 414
ASSIGN clause

description 97
format 94
SELECT clause and 97

assigning index values 362
assignment-name

ASSIGN clause 97
RERUN clause 115
under AIX and Windows 100

asterisk (*)
comment line 33
insertion character 173

at end condition
READ statement 347
RETURN statement 352

AT END phrase
READ statement 344
RETURN statement 352
SEARCH statement 356

AT END-OF-PAGE phrases 396
ATAN function 415
AUTHOR paragraph

description 76
format 68

B
B

insertion character 171
symbol in PICTURE

clause 161
BASIS statement 464
basis-names under AIX and

Windows 36

batch compile 59
BEFORE phrase

INSPECT statement 304
PERFORM statement 335
with REPLACING 301
with TALLYING 299
WRITE statement 394

binary arithmetic operators 210
binary data item, DISPLAY

statement 277
BINARY phrase in USAGE

clause 188
binary search 359
blank line 34
BLANK WHEN ZERO clause

description and format 147
USAGE IS INDEX clause 191

BLOCK CONTAINS clause
description 135
format 131

branching
GO TO statement 292
out-of-line PERFORM

statement 333
BY CONTENT phrase

CALL statement 262
on INVOKE statement 309

BY REFERENCE phrase
CALL statement 261
on INVOKE statement 308

BY VALUE phrase
CALL statement 263
on INVOKE statement 309

C
C01-C012 under AIX and

Windows 394
call convention 489
CALL statement

CANCEL statement and 266
description and format 260
Linkage Section 206
ON OVERFLOW phrase 260
Procedure Division

header 204, 206
program termination

statements 260
subprogram linkage 260
transfer of control 51
USING phrase 206

called and calling programs,
description 260

CALLINTERFACE directive 489
CANCEL statement 266
carriage control character 395
category of data

alphabetic items 166

Index 545

category of data (continued)
alphanumeric items 168
alphanumeric-edited items 168
DBCS items 169
numeric items 167
numeric-edited items 167
relationship to class of

data 127
CBL (PROCESS) statement 465
century window

See also date field
definition 55

CHAR function 416
character code set, specifying 86
character-string

COBOL word 3
representation in PICTURE

clause 166
size determination 129

CHARACTERS BY phrase 301
CHARACTERS phrase

BLOCK CONTAINS
clause 135

INSPECT statement 299
MEMORY SIZE clause 82
USAGE clause and 135

characters, valid in COBOL
program 2

checkpoint processing, RERUN
clause 115

class 63
CLASS clause 89
class condition 215, 216
class Data Division 120
class definition

affect of SELF and SUPER 307
class procedure division 202
CLASS-ID paragraph 72
Configuration Section 80
Data Division 120
description 63
Identification Division 69
inheritance rules 73
requirements for indexed

tables 157
class identification division 72
class name, OO 36
class procedure division 202
CLASS-ID paragraph 72
class-name class test 216
classes of data 127
clauses 26, 27
CLOSE statement

format and description 268
COBOL

class definition 63
language structure 2
method definition 65

COBOL (continued)
program structure 58
reference format 28

COBOL word 3
CODE-SET clause

ALPHABET clause and 88
description 143
format 131
NATIVE phrase and 143

collating sequence
ASCENDING/DESCENDING

KEY phrase and 156
ASCII 500
EBCDIC 498
locale definition 515
specified in

OBJECT-COMPUTER
paragraph 82

specified in SPECIAL-NAMES
paragraph 86

COLLATING SEQUENCE
phrase 82

ALPHABET clause 86
MERGE statement 316
SORT statement 370

colon character
description 25
required use of 473

column 7
indicator area 31
specifying comments 32

combined condition
description 231
evaluation rules 232
logical operators and evaluation

results 231
order of evaluation 232
permissible element

sequences 231
comma (,)

Configuration Section 80
DECIMAL-POINT IS COMMA

clause 91
insertion character 171
symbol in PICTURE

clause 163
comment line

description 32
Identification Division 76
in library text 469

COMMON clause 72
common processing facilities 244
COMP-1 through COMP-5 data

items 189
comparison

cycle, INSPECT statement 304
DBCS operands 228
in EVALUATE statement 286

comparison (continued)
nonnumeric operands 224
numeric and nonnumeric

operands 227
numeric operands 223
of index data items 227
of index-names 227
rules for COPY statement 471

compatible date field
See also date field
definition 54

compile-time switch 505
compiler directing statements

BASIS 464
COPY 468
DELETE 474
EJECT 475
ENTER 475
INSERT 476
READY TRACE 476
REPLACE 477
RESET TRACE 476
SERVICE LABEL 480
SERVICE RELOAD 481
SKIP1/2/3 481
TITLE 482
USE 483

compiler limits 494
compiler options

ADV 395
controlling output from 466
DATEPROC 53
NUMPROC 228
specifying 465
THREAD 157
TRUNC 129

complex conditions
abbreviated combined

relation 232
combined condition 231
description 229
negated simple 230

complex OCCURS DEPENDING
ON (CODO) 160

composite of operands 242
COMPUTATIONAL data

items 188
COMPUTE statement

common phrases 239
description and format 272

computer-name 80, 82
condition

abbreviated combined
relation 232

class 215
combined 231
complex 229
condition-name 217

546 COBOL Language Reference

condition (continued)
EVALUATE statement 285
IF statement 294
negated simple 230
PERFORM UNTIL

statement 335
relation 218
SEARCH statement 358
sign 228
simple 214
switch-status 229

condition-name
and conditional variable 146
description and format 217
rules for values 197
SEARCH statement 360
SET statement 364
SPECIAL-NAMES

paragraph 85
switch status condition 85

conditional expression
comparing index-names and

index data items 227
comparison of DBCS

operands 228
description 214
order of evaluation of

operands 232
parentheses in abbreviated

combined relation
conditions 233

conditional statements
description 236
GO TO statement 292
IF statement 294
list of 236
PERFORM statement 335

conditional variable 146
Configuration Section

description (programs, classes,
methods) 80

REPOSITORY paragraph 91
SOURCE-COMPUTER

paragraph 80
SPECIAL-NAMES

paragraph 83
conformance rules

general rules 75
INVOKE...USING 310
multiple inheritance 73
SET...USAGE OBJECT

REFERENCE 367
Contained Programs 58
continuation

area 28
lines 31, 32

CONTINUE statement 274

control characters, using under
AIX and Windows 129

CONTROL statement
(*CONTROL) 466

control transfer 50
conversion of data, DISPLAY

statement 277
CONVERTING phrase 303
COPY statement

comparison rules 471
description and format 468
example 473
replacement rules 471
REPLACING phrase 470
SUPPRESS option 470

CORRESPONDING (CORR)
phrase

ADD statement 257
description 257
MOVE statement 320
SUBTRACT statement 383
with ON SIZE ERROR

phrase 241
COS function 417
COUNT IN phrase, UNSTRING

statement 388
CR (credit)

insertion character 172
symbol in PICTURE

clause 163
cs (currency symbol)

in PICTURE clause 161
CURRENCY SIGN clause

description 90
Euro currency sign 90
restrictions on using

NUMVAL-C function 441
currency sign value 90
currency symbol

in PICTURE clause 164
specifying in CURRENCY SIGN

clause 90
currency symbol, default ($) 172
CURRENT-DATE function 418

D
data

alignment 128
categories 128, 166
classes 127
format of standard 129
hierarchies used in

qualification 125
organization 104
signed 129
truncation of 129, 154

data category
alphabetic items 166
alphanumeric items 168
alphanumeric-edited items 168
DBCS items 169
numeric items 167
numeric-edited items 167

data conversion, DISPLAY
statement 277

data description entry
BLANK WHEN ZERO

clause 147
data-name 147
DATE FORMAT clause 148
description and format 145
FILLER phrase 147
GLOBAL clause 153
indentation and 127
JUSTIFIED clause 154
level-66 format (previously

defined items) 146
level-88 format

(condition-names) 146
level-number description 146
OCCURS clause 154
OCCURS DEPENDING ON

(ODO) clause 158
PICTURE clause 160
REDEFINES clause 174
RENAMES clause 178
SIGN clause 179
SYNCHRONIZED clause 181
USAGE clause 187
VALUE clause 195

DATA DIVISION
ASCII considerations 513
data description entry 145
data relationships 124
data types 124
description (programs, classes,

methods) 120
file description (FD) entry 134
levels of data 125
Linkage Section 123
Local-Storage Section 123
sort description (SD) entry 134
Working-Storage Section 121

data flow
STRING statement 381
UNSTRING statement 390

data item
data description entry 145
description entry

definition 121
EXTERNAL clause 153
record description entry 145

data manipulation statements
ACCEPT 250

Index 547

data manipulation statements
(continued)

INITIALIZE 296
list of 243
MOVE 320
overlapping operands 243
READ 342
RELEASE 349
RETURN 351
REWRITE 353
SET 362
STRING 379
UNSTRING 386
WRITE 393

data organization
access modes and 108
indexed 104
line-sequential 105
relative 105
sequential 104

DATA RECORDS clause
description 140
format 131

data transfer 250
data types

file data 124
program data 124

data-name
data description entry 147

data-names
precedence if duplicate 120

DATE 253
date field

addition 212
arithmetic 211
compatible 54
DATE FORMAT clause 148
DATEPROC compiler

option 53
DATEVAL function 421
definition 53
expansion of windowed date

fields before use 149
group items that are date

fields 151
in relation conditions 219
in sign conditions 229
MOVE statement, behavior

in 323
non-date 55
purpose 52
restrictions 150
size errors 213, 240
storing arithmetic results 213
subtraction 212
trigger values 149
UNDATE function 456
windowed date field

conditional variables 218

date format
See also DATE FORMAT clause
definition 54

DATE FORMAT clause 148
combining with other

clauses 150
DATE YYYYMMDD 253
DATE-COMPILED paragraph

description 76
format 68

DATE-OF-INTEGER function 419
DATE-TO-YYYYMMDD

function 420
DATE-WRITTEN paragraph

description 76
format 68

DATEPROC compiler option 53
DATEVAL function 421
DAY 253
DAY YYYYDDD 253
DAY-OF-INTEGER function 423
DAY-OF-WEEK 254
DAY-TO-YYYYDDD function 424
DB (debit)

insertion character 172
symbol in PICTURE

clause 163
DBCS (Double-Byte Character Set)

See also multi-byte characters
class and category 127
elementary move rules 322
PICTURE clause and 169
use with relational

operators 220
using in comments 76

DBCS class condition 216
DD statements

See environment variables
De-editing 322
DEBUG-ITEM special register 10
debugging 504
DEBUGGING declarative 487
debugging line 33, 81
DEBUGGING MODE clause 81
decimal point (.) 240
DECIMAL-POINT IS COMMA

clause
description 91

declarative procedures
description and format 207
PERFORM statement 332
USE statement 207

declaratives
EXCEPTION/ERROR 483
LABEL 485
precedence rules for nested

programs 484
USE FOR DEBUGGING 487

DECLARATIVES key word
begin in Area A 30
description 207

Declaratives Section 207
DELETE statement

description and format 474
dynamic access 275
format and description 275
INVALID KEY phrases 275
random access 275
sequential access 275

DELIMITED BY phrase
STRING 379
UNSTRING statement 386

delimited scope statement 237
delimiter

INSPECT statement 302
UNSTRING statement 386

DELIMITER IN phrase,
UNSTRING statement 388

DEPENDING phrase
GO TO statement 292
OCCURS clause 158

DESCENDING KEY phrase 156
collating sequence 156
description 314
MERGE statement 314
SORT statement 368

DISPLAY phrase in USAGE
clause 190

DISPLAY statement
description and format 277
external 128, 169
programming notes 279

DIVIDE statement
common phrases 239
description and format 280
REMAINDER phrase 282

division header
format, Environment

Division 80
format, Identification

Division 68
format, Procedure

Division 204
specification of 29

DO-UNTIL structure, PERFORM
statement 335

DO-WHILE structure, PERFORM
statement 335

Double-Byte Character Set (DBCS)
See also multi-byte characters
class and category 127
PICTURE clause and 169
use with relational

operators 220
using in comments 76

548 COBOL Language Reference

DOWN BY phrase, SET
statement 363

duplicate data-names,
precedence 120

DUPLICATES phrase
KEY phrase 375
SORT statement 370
START statement 375

dynamic access mode
data organization and 108
DELETE statement 275
description 108
READ statement 348

E
E, symbol in PICTURE clause 161
EBCDIC

CODE-SET clause and 143
collating sequence 498
specifying in SPECIAL-NAMES

paragraph 86
editing

fixed insertion 172
floating insertion 172
replacement 173
signs 130
simple insertion 171
special insertion 171
suppression 173

editing sign control symbol 163
eject page 33
EJECT statement 475
elementary item

alignment rules 128
basic subdivisions of a

record 125
classes and categories 127
MOVE statement 321
nonnumeric operand

comparison 227
size determination in

program 129
size determination in

storage 129
elementary move rules 321
ELSE NEXT SENTENCE

phrase 294
END DECLARATIVES key

word 207
END PROGRAM 59
end program header 30
END-CALL phrase 265
END-IF phrase 294
END-INVOKE phrase 312
end-of-file processing 268
END-OF-PAGE phrases 396

END-PERFORM phrase 334
ENTER statement 475
entry

definition 26
ENTRY statement

description and format 283
subprogram linkage 283

Environment Division
ASCII considerations 512
compiler limits 494
Configuration Section

ALPHABET clause 86
CURRENCY SIGN

clause 90
OBJECT-COMPUTER

paragraph 82
REPOSITORY paragraph 91
SOURCE-COMPUTER

paragraph 80
SPECIAL-NAMES

paragraph 83, 89
SYMBOLIC CHARACTERS

clause 89
Input-Output Section

FILE-CONTROL
paragraph 94

REPOSITORY paragraph 91
environment names with WRITE

ADVANCING 394
environment variables

in ACCEPT statement 252
in DISPLAY statement 277

environment-name
SPECIAL-NAMES

paragraph 85
environment-name under AIX and

Windows 252
EOP phrases 396
equal sign (=) 218
EQUAL TO relational

operator 218
ERROR declarative statement 483
EUC

description 2
Euro currency sign

specifying in CURRENCY SIGN
clause 90

EVALUATE statement
comparing operands 286
determining truth value 285
format and description 284

evaluation rules
combined conditions 232
EVALUATE statement 286
nested IF statement 295

EXCEPTION declarative
statement 483

EXCEPTION/ERROR declarative
CLOSE statement 269
DELETE statement 275
description and format 483

execution flow
ALTER statement changes 258
PERFORM statement

changes 332
EXIT METHOD statement

format and description 289
EXIT PROGRAM statement

format and description 290
EXIT statement

format and description 288
PERFORM statement 333

expanded date field
See also date field
definition 53

expanded year
See also date field
definition 53

expansion of windowed date fields
before use 149

explicit
scope terminators 237

exponentiation
exponential expression 210

expression, arithmetic 209
EXTEND phrase

OPEN statement 327
EXTERNAL clause

with data item 153
with file name 134

external decimal item
DISPLAY statement 277

external floating point
alignment rules 128
DISPLAY statement 277
PICTURE clause and 169

F
FACTORIAL function 425
FALSE phrase 285
FD (File Description) entry

BLOCK CONTAINS
clause 135

DATA RECORDS clause 140
description 133
format 131
GLOBAL clause 134
LABEL RECORDS clause 139
level indicator 125
VALUE OF clause 139

figurative constant
DISPLAY statement 278
STOP statement 378
STRING statement 379

Index 549

figurative constant (continued)
symbolic-character 8
UNSTRING statement 387

file
data type 124
definition 124
handling, under AIX and

Windows 118
labels 139

File Description entry
See FD (File Description) entry

file organization
definition 108
LINAGE clause 140
line-sequential 105
types of 104

file position indicator
description 249
READ statement 347

File Section 121
EXTERNAL clause 134
RECORD clause 136

FILE STATUS clause
DELETE statement and 275
description 112
format 94
INVALID KEY phrase and 247
status key 244

FILE-CONTROL paragraph
ASSIGN clause 97
description and format 94
FILE STATUS clause 112
ORGANIZATION clause 103
PADDING CHARACTER

clause 106
RECORD KEY clause 109
RELATIVE KEY clause 111
RESERVE clause 103
SELECT clause 97

file-name, specifying on SELECT
clause 97

FILLER phrase
CORRESPONDING

phrase 147
data description entry 147

fixed insertion editing 172
fixed-length

item, maximum length 145
records 135

floating insertion editing 172
floating-point

DISPLAY statement 277
internal 128

FOOTING phrase of LINAGE
clause 140

FOR REMOVAL phrase 268, 269
format notation, rules for vii

FROM phrase
ACCEPT statement 250
REWRITE statement 353
SUBTRACT statement 383
with identifier 248
WRITE statement 394

function
arguments 404
class and category 127
description 402
rules for usage 403
types of functions 403

G
G, symbol in PICTURE

clause 162
GIVING phrase

ADD statement 255
arithmetic 239
DIVIDE statement 282
MERGE statement 318
MULTIPLY statement 325
SORT statement 372
SUBTRACT statement 384

GLOBAL clause
with data item 153
with file name 134

GO TO statement
altered 293
conditional 292
format and description 292
MORE-LABELS 293
SEARCH statement 356
unconditional 292

GOBACK statement 291
GREATER THAN OR EQUAL TO

symbol (>=) 218
GREATER THAN symbol (>) 218
group item

class and categories 127
description 125
MOVE statement 324
nonnumeric operand

comparison 227
group move rules 324

H
halting execution 378
HIGH-VALUE(S) figurative

constant 87
hyphen (-), in indicator area 31

I
IBM extensions, format

description vii

Identification Division
CLASS-ID paragraph 72
format (program, class,

method) 68
METHOD-ID paragraph 74
optional paragraphs 76
PROGRAM-ID paragraph 70

identifier 41, 209
IF statement 294
imperative statement 235
implicit

redefinition of storage
area 134, 175

scope terminators 238
in-line PERFORM statement 332
indentation 30, 127
index

data item 227, 320
relative indexing 46
SET statement 46

index name
assigning values 362
comparisons 227
data item definition 190
OCCURS clause 157
PERFORM statement 341
SEARCH statement 356
SET statement 362

INDEX phrase in USAGE
clause 190

INDEXED BY phrase 157
indexed files

CLOSE statement 269
DELETE statement 275
FILE-CONTROL paragraph

format 94
I-O-CONTROL paragraph

format 114
organization 104
permissible statements for 331
READ statement 346
START statement 376

indexed organization
description 104
FILE-CONTROL paragraph

format 94
I-O-CONTROL paragraph

format 114
indexing

description 45
MOVE statement

evaluation 320
OCCURS clause 45, 154
relative 46
SET statement and 46

indicator area 28
industry specifications 518

550 COBOL Language Reference

INHERITS clause 72
INITIAL clause 72
initial state of program 72
INITIALIZE statement

format and description 296
overlapping operands,

unpredictable results 242
input file, label processing 329
Input-Output Section

description 93
FILE-CONTROL paragraph 94
format 93
I-O-CONTROL paragraph 114

input-output statements
ACCEPT 250
CLOSE 268
common processing

facilities 244
DELETE 275
DISPLAY 277
EXCEPTION/ERROR

procedures 483
general description 243
OPEN 327
READ 342
REWRITE 353
START 375
WRITE 393

INPUT phrase
OPEN statement 327
USE statement 483

INPUT PROCEDURE phrase
RELEASE statement 349
SORT statement 372

Input-Output Section
under AIX and Windows 105

insertion editing
fixed (numeric-edited

items) 172
floating (numeric-edited

items) 172
simple 171
special (numeric-edited

items) 171
INSPECT statement

AFTER phrase 302
BEFORE phrase 302
comparison cycle 304
CONVERTING phrase 303
overlapping operands,

unpredictable results 242
REPLACING phrase 299

INSTALLATION paragraph
description 76
format 68

instance data 65
integer arguments 404

INTEGER function 426
Integer functions 403
INTEGER-OF-DATE function 427
INTEGER-OF-DAY function 428
INTEGER-PART function 429
internal floating-point

alignment rules 128
DISPLAY statement 277

INTO phrase
DIVIDE statement 280
READ statement 342
RETURN statement 351
STRING statement 380
UNSTRING statement 387
with identifier 248

intrinsic functions
ACOS 412
alphanumeric function 403
ANNUITY 413
ASIN 414
ATAN 415
CHAR 416
COS 417
CURRENT-DATE 418
DATE-OF-INTEGER 419
DATE-TO-YYYYMMDD 420
DATEVAL 421
DAY-OF-INTEGER 423
DAY-TO-YYYYDDD 424
FACTORIAL 425
floating-point literals 405
INTEGER 426
integer function 403
INTEGER-OF-DATE 427
INTEGER-OF-DAY 428
INTEGER-PART 429
LENGTH 430
LOG 431
LOG10 432
LOWER-CASE 433
MAX 434
MEAN 435
MEDIAN 436
MIDRANGE 437
MIN 438
MOD 439
numeric function 403
NUMVAL 440
NUMVAL-C 441
ORD 443
ORD-MAX 444
ORD-MIN 445
PRESENT-VALUE 446
RANDOM 447
RANGE 448
REM 449
REVERSE 450
SIN 451

intrinsic functions (continued)
SQRT 452
STANDARD-DEVIATION 453
SUM 454
summary of 409
TAN 455
UNDATE 456
UPPER-CASE 457
VARIANCE 458
WHEN-COMPILED 459
YEAR-TO-YYYY 460
YEARWINDOW 461

invalid key condition 247
INVALID KEY phrase

DELETE statement 275
READ statement 344
REWRITE statement 353
START statement 376
WRITE statement 396

INVOKE statement
BY CONTENT phrase 309
BY REFERENCE phrase 308
BY VALUE phrase 309
format and description 307
NOT ON EXCEPTION

phrase 312
ON EXCEPTION phrase 312
RETURNING phrase 311
USING phrase 308

I-O-CONTROL paragraph
APPLY WRITE-ONLY

clause 118
checkpoint processing in 115
description 93, 114
MULTIPLE FILE TAPE

clause 118
order of entries 114
RERUN clause 115
SAME AREA clause 116
SAME RECORD AREA

clause 117
SAME SORT AREA clause 117
SAME SORT-MERGE AREA

clause 118
ISCII processing

considerations 512

J
JUSTIFIED clause

description and format 154
effect on initial settings 154
STRING statement 380
truncation of data 154
USAGE IS INDEX clause

and 154
VALUE clause and 195

Index 551

K
Kanji 216
key of reference 104
KEY phrase

OCCURS clause 156
READ statement 344
SEARCH statement 356
SORT statement 368
START statement 375

L
LABEL declarative 485
label processing, OPEN

statement 329
LABEL RECORDS clause

description 139
format 131

Language Environment Callable
Services

description 260
LEADING phrase

INSPECT statement 299, 301
SIGN clause 180

LENGTH function 430
LENGTH OF special register 11
LESS THAN OR EQUAL TO

symbol (<=) 218
LESS THAN symbol (<) 218
level

01 item 125
02-49 item 125
66 item 127
77 item 127
88 item 127
indicator, definition of 125

level number
definition 125
description and format 146
FILLER phrase 147

library-name
COPY statement 468

library-names
under AIX and Windows 36

limit values, date field 149
limits of the compiler 494
LINAGE clause

description 140
diagram of phrases 140
format 131

LINAGE-COUNTER special
register

description 12
WRITE statement 395

line advancing 394
line-sequential file

organization 105

LINE/LINES, WRITE
statement 394

LINES AT BOTTOM phrase 140
LINES AT TOP phrase 140
Linkage Section

called subprogram 206
description 123
levels under AIX and

Windows 365
requirement for indexed

items 157
VALUE clause 195

literal
and arithmetic expressions 209
ASSIGN clause 97
CODE-SET clause and

ALPHABET clause 88
CURRENCY SIGN clause 90
description 17
nonnumeric operand

comparison 227
null-terminated

nonnumeric 20
STOP statement 378
VALUE clause 196

local storage
defining with RECURSIVE

clause 71
requirement for indexed

items 157
Local-Storage Section 123
locale 515
LOG function 431
LOG10 function 432
logical operator

complex condition 229
in evaluation of combined

conditions 231
list of 229

logical record
definition 124
file data 124
program data 124
record description entry

and 124
RECORDS phrase 136

LOW-VALUE(S) figurative
constant 88

LOWER-CASE function 433

M
MAX function 434
maximum index value 46
MEAN function 435
MEDIAN function 436
MEMORY SIZE clause 82

MERGE statement
ASCENDING/DESCENDING

KEY phrase 314
COLLATING SEQUENCE

phrase 316
format and description 314
GIVING phrase 318
OUTPUT PROCEDURE

phrase 318
USING phrase 317

METACLASS clause 72, 191
metaclass, description 63
method data division 120
method definition

affect of SELF and SUPER 307
Data Division 120
description 65
Identification Division 70
inheritance rules 73
method procedure

division 202
METHOD-ID paragraph 74

method identification division 74
method name 36
method procedure division 202
METHOD-ID paragraph 74
methods

available to subclasses 73
exiting 289
invoking 307
recursively reentering 71
reusing 72

MIDRANGE function 437
millennium language extensions

syntax 52
millennium language extensions

(MLE)
See also date field
description 52

MIN function 438
minus sign (-)

COBOL character 2
fixed insertion symbol 172
floating insertion symbol 172,

173
SIGN clause 180

mnemonic-name
ACCEPT statement 250
DISPLAY statement 278
SET statement 364
SPECIAL-NAMES

paragraph 85
WRITE statement 395

MOD function 439
MORE-LABELS GO TO

statement 293
MOVE statement

CORRESPONDING
phrase 320

552 COBOL Language Reference

MOVE statement (continued)
elementary moves 321
format and description 320
group moves 324

multi-byte characters
in COBOL words 4
in literals 18

MULTIPLE FILE TAPE
clause 118

multiple inheritance 73
multiple record processing, READ

statement 344
multiple results, arithmetic

statements 243
multiple volume files, treatment

under AIX and Windows 118
MULTIPLY statement

common phrases 239
format and description 325

multivolume files
READ statement 346
WRITE statement 398

N
native binary data item 189
native character set 86
native collating sequence 86
negated combined condition 231
negated simple condition 230
NEGATIVE 228
nested IF structure

description 295
EVALUATE statement 284

nested programs
description 58
precedence rules for 484

NEXT RECORD phrase, READ
statement 342

NEXT SENTENCE phrase
IF statement 294
SEARCH statement 357

NO ADVANCING phrase,
DISPLAY statement 278

NO REWIND phrase
OPEN statement 327
under AIX and Windows 268

non-date
See also date field
definition 55

non-reel file, definition 269
nonnumeric literals 20
nonnumeric operands,

comparing 224
NOT AT END phrase

READ statement 344
RETURN statement 352

NOT INVALID KEY phrase
DELETE statement 275
READ statement 344
REWRITE statement 353
START statement 376

NOT ON EXCEPTION phrase
CALL statement 265
on INVOKE statement 312

NOT ON OVERFLOW phrase
STRING statement 381
UNSTRING statement 389

NOT ON SIZE ERROR phrase
ADD statement 257
DIVIDE statement 282
general description 240
MULTIPLY statement 326
SUBTRACT statement 384, 385

NULL 199
null block branch, CONTINUE

statement 274
null-terminated nonnumeric

literals 20
numeric arguments 404
numeric class and category 127
NUMERIC class test 215
numeric function 403
numeric item 167
numeric operands,

comparing 223
numeric-edited item

alignment rules 128
editing signs 130
elementary move rules 322
PICTURE clause 167

NUMVAL function 440
NUMVAL-C function 441

O
object program 58
OBJECT REFERENCE phrase 191
object time switch 505
OBJECT-COMPUTER

paragraph 82
object-oriented COBOL

class definition 63
comparison rules 222
conformance rules

general rules 75
INVOKE...USING 310
multiple inheritance 73
SET...USAGE OBJECT

REFERENCE 367
Data Division (class and

method) 120
effect of GLOBAL

attribute 121
Identification Division (class

and method) 68

object-oriented COBOL (continued)
INHERITS clause 72
INVOKE statement 307
method definition 65
method name 36
multiple inheritance 73
OO class name 36
Procedure Division (class and

method) 202
REPOSITORY paragraph 91
SELF and SUPER special

characters 7
specifying configuration

section 80
subclasses and methods 73
USAGE OBJECT REFERENCE

clause 191
objects in EVALUATE

statement 284
obsolete language elements vii
OCCURS clause

ASCENDING/DESCENDING
KEY phrase 156

description 154
INDEXED BY phrase 157
restrictions 155
variable-length tables

format 158
OCCURS DEPENDING ON (ODO)

clause
complex 160
description 158
format 158
RECORD clause 137
REDEFINES clause and 155
SEARCH statement and 155
subject and object of 158
subject of 155
subscripting 43

OFF phrase, SET statement 364
OMITTED 262
ON EXCEPTION phrase

CALL statement 264
on INVOKE statement 312

ON OVERFLOW phrase
CALL statement 265
DISPLAY statement 279
STRING statement 380, 389

ON phrase, SET statement 364
ON SIZE ERROR phrase

ADD statement 257
arithmetic statements 240
COMPUTE statement 272
DIVIDE statement 282
MULTIPLY statement 326
SUBTRACT statement 384, 385

OPEN statement
for new/existing files 328

Index 553

OPEN statement (continued)
format and description 327
I-O phrase 327
label processing 329
phrases 327
programming notes 330
system dependencies 331

operands
comparison of nonnumeric 224
comparison of numeric 223
composite of 242
overlapping 242, 243

operational sign
algebraic, description of 130
SIGN clause and 130
USAGE clause and 130

optional file
See SELECT OPTIONAL clause

ORD function 443
ORD-MAX function 444
ORD-MIN function 445
order of entries

clauses in FILE-CONTROL
paragraph 94

IO CONTROL paragraph 114
order of evaluation in combined

conditions 232
ORGANIZATION clause

description 103
format 94
ORGANIZATION IS INDEXED

clause 103
ORGANIZATION IS LINE

SEQUENTIAL clause 104
ORGANIZATION IS RELATIVE

clause 104
ORGANIZATION IS

SEQUENTIAL clause 103
out-of-line PERFORM

statement 333
outermost programs,

debugging 487
output file, label processing 329
OUTPUT phrase 327
OUTPUT PROCEDURE phrase

MERGE statement 318
RETURN statement 351
SORT statement 373

OVERFLOW phrase
CALL statement 265
STRING statement 380, 389

overlapping operands invalid in
arithmetic statements 242
data manipulation

statements 243

P
P, symbol in PICTURE clause 162
PACKED-DECIMAL phrase in

USAGE clause 188
PADDING CHARACTER

clause 106
page eject 33
paragraph

description 26, 208
header, specification of 29
termination, EXIT

statement 288
paragraph name

description 208
specification of 29

parentheses
combined conditions, use 231
in arithmetic expressions 210

partial listings 466
PASSWORD clause

description 111
system dependencies 112

PERFORM statement
branching 333
conditional 335
END-PERFORM phrase 334
EVALUATE statement 284
execution sequences 334
EXIT statement 288
format and description 332
in-line 333
out-of-line 333
TIMES phrase 334
VARYING phrase 335, 338

period (.)
actual decimal point 171

phrase, definition 27
physical record

BLOCK CONTAINS
clause 135

definition 124
file data 124
file description entry and 124
RECORDS phrase 136

PICTURE clause
and class condition 215
computational items and 188
CURRENCY SIGN clause 90
data categories in 166
DECIMAL-POINT IS COMMA

clause 91, 161
description 160
editing 170
format 160
sequence of symbols 164
symbols used in 161

PICTURE SYMBOL phrase 91
plus (+)

fixed insertion symbol 172
floating insertion symbol 172,

173
insertion character 173
SIGN clause 180

pointer data item
defined with USAGE

clause 192
relation condition 221
SET statement 364
size on Workstation 192

POINTER phrase
STRING statement 380
UNSTRING statement 388

POSITIVE 228
PRESENT-VALUE function 446
PREVIOUS RECORD phrase,

READ statement 342
print files, WRITE statement 398
procedure branching

GO TO statement 292
statements, executed

sequentially 249
Procedure Branching

Statements 249
Procedure Division

declarative procedures 207
format (programs, methods,

classes) 202
header 204
statements 250

procedure-name
GO TO statement 292
MERGE statement 318
PERFORM statement 332
SORT statement 372

PROCEDURE-POINTER data item
defined with USAGE

clause 193
relation condition 222
SET statement 365
size on Workstation 192

procedure, description 208
PROCESS (CBL) statement 465
PROGRAM COLLATING

SEQUENCE clause
ALPHABET clause 86
SPECIAL-NAMES paragraph

and 82
program termination

GOBACK statement 291
STOP statement 378

PROGRAM-ID paragraph
description 70
format 68

554 COBOL Language Reference

program-name, rules for
referencing 61

program, separately-compiled 58
programming notes

ACCEPT statement 250
altered GO TO statement 258
arithmetic statements 242
data manipulation

statements 379, 386
DELETE statement 275
DISPLAY statement 279
EXCEPTION/ERROR

procedures 484
OPEN statement 330
PERFORM statement 334
RECORDS clause 136
STRING statement 379
UNSTRING statement 386

programming structures 335
programs, recursive 71
pseudo-text

COPY statement operand 470
description 33

punch files, WRITE statement 398

Q
quotation mark (") character 31

R
railroad track format, how to

read vii
random access mode

data organization and 108
DELETE statement 275
description 108
READ statement 347

RANDOM function 447
RANGE function 448
READ statement

AT END phrases 344
dynamic access mode 348
format and description 342
INTO identifier phrase 248,

342
INVALID KEY phrases 247,

344
KEY phrase 344
multiple record processing 344
multivolume files 346
NEXT RECORD phrase 342
overlapping operands,

unpredictable results 242
programming notes 348
random access mode 347

READY TRACE statement 476

receiving field
COMPUTE statement 272
MOVE statement 320
multiple results rules 243
SET statement 362
STRING statement 380
UNSTRING statement 387

record
area description 136
elementary items 125
fixed-length 135
logical, definition of 124
physical, definition of 124

RECORD clause
description and format 136
omission of 136

RECORD CONTAINS 0
CHARACTERS 137

record description entry
levels of data 125
logical record 124

RECORD KEY clause
description 109
format 94

record key in indexed file 275
RECORDING MODE clause 142
RECORDS phrase

BLOCK CONTAINS
clause 136

RERUN clause 116
RECURSIVE clause 71
recursive methods 307
recursive programs 71

requirement for indexed
items 157

REDEFINES clause
description 174
examples of 177
format 174
general considerations 176
OCCURS clause restriction 175
SYNCHRONIZED clause

and 181
undefined results 177
VALUE clause and 176

redefinition, implicit 134
REEL phrase 268, 269
reference-modification 46, 48
reference-modifier

ALL subscripting 405
Reference, methods of

Simple data 41
relation character

COPY statement 470
INITIALIZE statement 296
INSPECT statement 299

relation condition
abbreviated combined 232

relation condition (continued)
comparison of numeric and

nonnumeric operands 223
comparison with nonnumeric

second operand 225
comparison with numeric

second operand 223
description 218
operands of equal size 225
operands of unequal size 225

relational operator
in abbreviated combined

relation condition 233
meaning of each 219
relation condition use 218

relative files
access modes allowed 109
CLOSE statement 269
DELETE statement 275
FILE-CONTROL paragraph

format 94
I-O-CONTROL paragraph

format 114
organization 105
permissible statements for 331
READ statement 345
RELATIVE KEY clause 109,

111
REWRITE statement 354, 355
START statement 377

RELATIVE KEY clause
description 111
format 94

relative organization
access modes allowed 109
description 105
FILE-CONTROL paragraph

format 94
I-O-CONTROL paragraph

format 114
RELEASE statement 242, 349
REM function 449
REMAINDER phrase of DIVIDE

statement 282
RENAMES clause

description and format 178
INITIALIZE statement 296
level 66 item 127, 178
PICTURE clause 160

REPLACE statement
comparison operation 479
continuation rules for

pseudo-text 479
description and format 477
special notes 479

replacement editing 173
replacement rules for COPY

statement 471

Index 555

REPLACING phrase
COPY statement 470
INITIALIZE statement 297

REPOSITORY paragraph 91
required words vii
RERUN clause

checkpoint processing 115
description 115
format 114
RECORDS phrase 115
sort/merge 116
under AIX and Windows 115

RESERVE clause
description 103
format 94
under AIX and Windows 103

reserved word list 506
RESET TRACE statement 476
result field

GIVING phrase 239
NOT ON SIZE ERROR

phrase 240
ON SIZE ERROR phrase 240
ROUNDED phrase 240

RETURN statement
AT END phrase 352
description and format 351
overlapping operands,

unpredictable results 242
RETURN-CODE special

register 13
RETURNING phrase

CALL statement 264
on INVOKE statement 311

reusing logical records 354
REVERSE function 450
REWRITE statement

description and format 353
FROM identifier phrase 248
INVALID KEY phrase 353

ROUNDED phrase
ADD statement 256
COMPUTE statement 272
description 240
DIVIDE statement 281
MULTIPLY statement 326
size error checking and 241
SUBTRACT statement 384

rules for syntax notation vii
Rules for Usage 403
run unit

description 58
termination with CANCEL

statement 267

S
S 162
S01-S05 environment names under

AIX and Windows 394
SAME AREA clause under AIX

and Windows 116
SAME clause 116
SAME RECORD AREA clause

description 117
format 114

SAME SORT AREA clause
description 117
format 114

SAME SORT AREA clause under
AIX and Windows 117

SAME SORT-MERGE AREA clause
description 118
format 114

scope terminator
explicit 237
implicit 238

SD (Sort File Description) entry
Data Division 134
DATA RECORDS clause 140
description 131, 133
level indicator 125

SEARCH statement
AT END phrase 356
binary search 359
description and format 356
serial search 357
SET statement 356
USAGE IS INDEX clause 191
VARYING phrase 357
WHEN phrase 356

section 26, 208
section header

description 208
specification of 29

section name
description 208
in EXCEPTION/ERROR

declarative 483
SECURITY paragraph

description 76
format 68

segmentation considerations 259
SELECT clause

ASSIGN clause and 97
format 94
specifying a file name 97

SELECT OPTIONAL clause
CLOSE statement 269
description 97
format 94
specification for sequential I-O

files 97

selection objects in EVALUATE
statement 284

selection subjects in EVALUATE
statement 284

SELF special character word 7,
307

sending field
MOVE statement 320
SET statement 362
STRING statement 379
UNSTRING statement 386

sentence
COBOL, definition 27
description 209

SEPARATE CHARACTER phrase
of SIGN clause 180

separate sign, class condition 215
separately-compiled program 58
separator 198
sequence number area (cols.

1-6) 28
sequential access mode

data organization and 108
DELETE statement 275
description 108
READ statement 345
REWRITE statement 354

sequential files
access mode allowed 108
CLOSE statement 268, 269
description 104
file description entry 131
FILE-CONTROL paragraph

format 94
LINAGE clause 140
OPEN statement 327
PASSWORD clause valid

with 111
permissible statements for 330
READ statement 345
REWRITE statement 354
SELECT OPTIONAL clause 97

serial search
PERFORM statement 335
SEARCH statement 357

SERVICE LABEL statement 480
SERVICE RELOAD statement 481
SET statement

description and format 362
DOWN BY phrase 363
index data item values

assigned 190
OFF phrase 364
ON phrase 364
overlapping operands,

unpredictable results 242
pointer data item 364
procedure-pointer data

item 365

556 COBOL Language Reference

SET statement (continued)
requirement for indexed

items 157
SEARCH statement 363
TO phrase 362
TO TRUE phrase 364
UP BY phrase 363
USAGE IS INDEX clause 191
USAGE OBJECT

REFERENCE 367
sharing data 153
sharing files 134
SHIFT-OUT, SHIFT-IN special

registers 13
Sibling program 58
SIGN clause 179
sign condition 228
SIGN IS SEPARATE clause 180
signed

numeric item, definition 167
operational signs 130

simple condition
combined 231
description and types 214
negated 230

Simple data reference 41
simple insertion editing 171
SIN function 451
size-error condition 240
skip to next page 33
SKIP1/2/3 statement 481
slack bytes

between 185
within 183

slash (/)
comment line 32
insertion character 171
symbol in PICTURE

clause 163
SOMClass, root for

metaclasses 73
SOMObject, root for classes 73
Sort File Description entry

See SD (Sort File Description)
entry

SORT statement
ASCENDING KEY phrase 368
COLLATING SEQUENCE

phrase 370
DESCENDING KEY

phrase 368
description and format 368
DUPLICATES phrase 370
GIVING phrase 372
INPUT PROCEDURE

phrase 372
OUTPUT PROCEDURE

phrase 373

SORT statement (continued)
USING phrase 371

SORT-CONTROL special
register 14

SORT-CORE-SIZE special
register 15

SORT-FILE-SIZE special
register 15

SORT-MESSAGE special
register 15

SORT-MODE-SIZE special
register 16

SORT-RETURN special
register 16

Sort/Merge feature
I-O-CONTROL paragraph

format 114
MERGE statement 314
RELEASE statement 349
RERUN clause 116
RETURN statement 351
SAME SORT AREA clause 117
SAME SORT-MERGE AREA

clause 118
SORT statement 368

Sort/Merge file statement phrases
ASCENDING/DESCENDING

KEY phrase 314
COLLATING SEQUENCE

phrase 316
GIVING phrase 318
OUTPUT PROCEDURE

phrase 318
USING phrase 317

source code listing 467
source language debugging 504
source program

library, programming
notes 472

standard COBOL reference
format 28

SOURCE-COMPUTER
paragraph 80

special insertion editing 171
special registers

ADDRESS OF 9
DEBUG-ITEM 10
LENGTH OF 11
LINAGE-COUNTER 12
RETURN-CODE 13
SHIFT-OUT, SHIFT-IN 13
SORT-CONTROL 14
SORT-CORE-SIZE 15
SORT-FILE-SIZE 15
SORT-MESSAGE 15
SORT-MODE-SIZE 16
SORT-RETURN 16
TALLY 17

special registers (continued)
WHEN-COMPILED 17

SPECIAL-NAMES paragraph
ACCEPT statement 250
ALPHABET clause 86
ASCII-encoded file

specification 143
CLASS clause 89
CODE-SET clause and 143
CURRENCY SIGN clause 90
DECIMAL-POINT IS COMMA

clause 91
description 83
format 83
mnemonic names 85

specifications 518
SQRT function 452
standard alignment

JUSTIFIED clause 154
rules 128

standard COBOL format 28
standard data format 129
STANDARD-1 phrase 86
STANDARD-2 phrase 86
STANDARD-DEVIATION

function 453
standards 518
START statement

description and format 375
indexed file 376
INVALID KEY phrase 247, 376
relative file 377
status key considerations 376

statement
categories of 234
conditional 236
data manipulation 243
delimited scope 237
description 27, 209
imperative 235
input-output 243
procedure branching 249

statement operations
common phrases 238
file position indicator 249
INTO/FROM identifier

phrase 248
status key

common processing
facility 244

file processing 483
value and meaning 244

STOP RUN statement 378
STOP statement 378
storage

map listing 467
MEMORY SIZE clause 82
REDEFINES clause 174

Index 557

STRING statement
description and format 379
execution of 381
overlapping operands,

unpredictable results 242
structure of the COBOL

language 2
structured programming

DO-WHILE and
DO-UNTIL 335

subclasses and methods 73
subjects in EVALUATE

statement 284
subprogram linkage

CALL statement 260
CANCEL statement 266
ENTRY statement 283

subprogram termination
CANCEL statement 266
EXIT PROGRAM

statement 290
GOBACK statement 291

subscripting
definition and format 43
INDEXED BY phrase of

OCCURS clause 157
MOVE statement

evaluation 320
OCCURS clause

specification 154
table references 43
using data-names 45
using index-names

(indexing) 45
using integers 45

substitution field of INSPECT
REPLACING 299

SUBTRACT statement
common phrases 238
description and format 383

SUM function 454
SUPER special character word 7,

307
SUPPRESS option, COPY 470
suppress output 466
suppression editing 173
switch-status condition 229
SYMBOLIC CHARACTERS

clause 89
symbols in PICTURE clause 161
SYNCHRONIZED clause 181

VALUE clause and 195
syntax notation, rules for vii
system considerations, subprogram

linkage
CALL statement 260
CANCEL statement 266

system information transfer,
ACCEPT statement 252

system input device, ACCEPT
statement 251

system-name 82
computer-name 80
SOURCE-COMPUTER

paragraph 80

T
tab character, restriction in IBM

COBOL 24
table references

indexing 45
subscripting 43

TALLY special register 17
TALLYING phrase

INSPECT statement 299
UNSTRING statement 389

TAN function 455
termination of execution

EXIT METHOD statement 289
EXIT PROGRAM

statement 290
GOBACK statement 291
STOP RUN statement 378

terminators, scope 237
text words 469
text-name

literal-1 468
under AIX and Windows 36

THREAD compiler option 157
requirement for indexed

items 157
THROUGH (THRU) phrase

ALPHABET clause 87
CLASS clause 90
EVALUATE statement 284
PERFORM statement 332
RENAMES clause 178
VALUE clause 197

TIME 254
TIMES phrase of PERFORM

statement 334
TITLE statement 482
TO phrase, SET statement 362
TO TRUE phrase, SET

statement 364
transfer of control

ALTER statement 259
explicit 50
GO TO statement 292
IF statement 294
implicit 50
PERFORM statement 332

transfer of data
ACCEPT statement 250

transfer of data (continued)
MOVE statement 320
STRING statement 379
UNSTRING statement 386

trigger values, date field 149
truncation of data

arithmetic item 129
JUSTIFIED clause 154
ROUNDED phrase 240
TRUNC compiler option 129

truth value
complex conditions 229
EVALUATE statement 285
IF statement 294
of complex condition 230
sign condition 228
with conditional statement 236

type conformance
general rules 75
INVOKE...USING 310
multiple inheritance 73
SET...USAGE OBJECT

REFERENCE 367

U
unary operator 210
unconditional GO TO

statement 292
UNDATE function 456
unit file, definition 269
UNIT phrase 268
universal object reference 191
unsigned numeric item,

definition 167
UNSTRING statement

description and format 386
execution 390
overlapping operands,

unpredictable results 242
receiving field 387
sending field 386

UP BY phrase, SET statement 363
UPON phrase, DISPLAY 278
UPPER-CASE function 457
UPSI-0 through UPSI-7, program

switches
and switch-status

condition 229
condition-name 85
processing special

conditions 85
SPECIAL-NAMES

paragraph 85
USAGE clause

BINARY phrase 188
CODE-SET clause and 143
COMPUTATIONAL

phrases 189

558 COBOL Language Reference

USAGE clause (continued)
description 187
DISPLAY phrase 190
DISPLAY-1 phrase 190
elementary item size 129
format 187
INDEX phrase 190
operational signs and 130
PACKED-DECIMAL

phrase 188
USAGE IS

PROCEDURE-POINTER 193
VALUE clause and 195

USAGE DISPLAY
class condition identifier 215
STRING statement and 379

USAGE IS COMPUTATIONAL
phrases 189

USAGE IS OBJECT REFERENCE
syntax 187

USAGE IS POINTER 192
USAGE IS

PROCEDURE-POINTER 193
USAGE OBJECT REFERENCE

phrase 307
USE...AFTER...LABEL

PROCEDURE under AIX and
Windows 485

user labels
DEBUGGING declarative 487
LABEL declarative 485

USING phrase
CALL statement 261
in Procedure Division

header 204
MERGE statement 317
on INVOKE statement 308
SORT statement 371
subprogram linkage 206

V
V, symbol in PICTURE clause 162
VALUE clause

condition-name 196
effect on object-oriented

programs 121
format 195, 196
level 88 item 127
NULL 199
rules for condition-name

values 197
rules for literal values 196

VALUE OF clause
description 139
format 131

variable-length tables 158

VARIANCE function 458
VARYING phrase

PERFORM statement 335
SEARCH statement 357

W
WHEN phrase

EVALUATE statement 284
SEARCH statement 356

WHEN-COMPILED function 459
WHEN-COMPILED special

register 17
windowed date field

See also date field
definition 53
expansion before use 149

Windows COBOL language
differences

ACCEPT statement 250
APPLY WRITE-ONLY 118
ASSIGN clause 100
basis-names, library-names,

text-names 36
BLOCK CONTAINS 135
CLOSE statement 268
CODE-SET 143
COMP-5 data item 189
compiler limits 494
control characters 129
environment-name 252
file handling 118
file status data-name-8 112
LABEL RECORDS 139
LINE SEQUENTIAL file

I-O 105
locale definition 515
MORE-LABELS, GO TO 293
pointer data item size 192
RECORD CONTAINS

clause 137
RECORDING MODE

clause 142
RERUN clause 115
RESERVE clause 103
SAME AREA clause 116
SAME SORT AREA clause 117
SAME SORT-MERGE AREA

clause 118
SET statement 365
SORT-CONTROL special

register 14
SORT-FILE-SIZE 15
SORT-MESSAGE 15
SORT-MODE-SIZE 16
status key value and

meaning 244
USE...AFTER...LABEL

PROCEDURE 485

Windows COBOL language
differences (continued)

WRITE ADVANCING 85, 394
WITH DEBUGGING MODE

clause 81, 504
WITH DUPLICATES phrase, SORT

statement 370
WITH FOOTING phrase 140
WITH NO ADVANCING

phrase 278
WITH NO REWIND phrase,

CLOSE statement 269
WITH POINTER phrase

STRING statement 380
UNSTRING statement 388

working storage, levels under
AIX 365

Working-Storage Section 121
workstation COBOL language

differences
ACCEPT statement 250
APPLY WRITE-ONLY 118
ASSIGN clause 100
basis-names, library-names,

text-names 36
BLOCK CONTAINS 135
CLOSE statement 268
CODE-SET 143
COMP-5 data item 189
compiler limits 494
control characters 129
DBCS 2
environment-name 252
file handling 118
file status data-name-8 112
LABEL RECORDS 139
LINE SEQUENTIAL file

I-O 105
MORE-LABELS, GO TO 293
pointer data item size 192
RECORD CONTAINS

clause 137
RECORDING MODE

clause 142
RERUN clause 115
RESERVE clause 103
SAME AREA clause 116
SAME SORT AREA clause 117
SAME SORT-MERGE AREA

clause 118
SET statement 365
SORT-CONTROL special

register 14
SORT-FILE-SIZE 15
SORT-MESSAGE 15
SORT-MODE-SIZE 16
status key value and

meaning 244

Index 559

workstation COBOL language
differences (continued)

USE...AFTER...LABEL
PROCEDURE 485

WRITE ADVANCING 85, 394
WRITE

ADVANCING under AIX 394
ADVANCING under AIX and

Windows 85
WRITE statement

AFTER ADVANCING 394, 398
ALTERNATE RECORD

KEY 399
BEFORE ADVANCING 394,

398
description and format 393
END-OF-PAGE phrases 396
FROM identifier phrase 248
sequential files 394

X
X 162
X'00' - X'1F' control

characters 129

Y
year 2000 challenge

See date field
year-last date field

See also date field
definition 54

YEAR-TO-YYYY function 460
YEARWINDOW compiler option

century window 55
YEARWINDOW function 461

Z
Z

insertion character 173
symbol in PICTURE

clause 163
zero

filling, elementary moves 321
suppression and replacement

editing 173
ZERO in sign condition 228

560 COBOL Language Reference

We'd Like to Hear from You
COBOL for OS/390 & VM
COBOL Set for AIX
VisualAge COBOL
Language Reference

Publication No. SC26-9046-04

Please use one of the following ways to send us your comments about this book:
� Mail—Use the Readers' Comments form on the next page. If you are sending the form

from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Internet—Use the form on the Web at:
— http://www.ibm.com/software/ad/rcf/

Be sure to include the following with your comments:
— Title and publication number of this book
— Your name, and address, telephone number, or e-mail address if you would like a

reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

Readers' Comments
COBOL for OS/390 & VM
COBOL Set for AIX
VisualAge COBOL
Language Reference

Publication No. SC26-9046-04

How satisfied are you with the information in this book?

May we contact you to discuss your comments? Yes No

Would you like to receive our response by E-Mail?

Your E-mail address

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

Grammatically correct and consistent

Graphically well designed

Overall satisfaction

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-9046-04 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department HHX/H3
PO Box 49023
San Jose, CA 95161-9023

Fold and Tape Please do not staple Fold and Tape

SC26-9046-04

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

COBOL for OS/390 & VM

SC26-9046 Language Reference
SC26-9049 Programming Guide
GC26-4764 Compiler and Run-Time Migration Guide
GC26-9045 Customization under OS/390
SC26-9047 Diagnosis Guide
GC26-9044 Licensed Program Specification
SC09-2137 Debug Tool User's Guide and Reference
GC26-9048 Fact Sheet

COBOL Set for AIX

SC26-9046 Language Reference
SC26-8423 Programming Guide
GC26-8425 Getting Started
GC26-8484 Fact Sheet

VisualAge COBOL

SC26-9046 Language Reference
SC26-9050 Programming Guide
GC26-8944 Getting Started
SC26-9053 Visual Builder User's Guide
GC26-9052 Fact Sheet

SC26-9?46-?4

S
pine inform

ation:

IB
M

IB
M

 C
O

B
O

L
L

anguage R
eference

	Contents
	About this book
	Compatibility with previous IBM COBOL products (OS/390 and VM only)
	IBM extensions
	Obsolete language elements
	How to read the syntax diagrams
	DBCS notation
	Acknowledgment

	Summary of changes
	Fifth edition (September 2000)
	Fourth edition (November 1998)
	Third edition (August 1998, softcopy only)
	Second edition (April 1998)

	Part 1. COBOL language structure
	Characters
	Character-strings
	COBOL words with single-byte characters
	COBOL words with multi-byte characters
	User-defined words
	System-names
	Function-names
	Reserved words

	Figurative constants
	Special registers
	ADDRESS OF
	DEBUG-ITEM
	LENGTH OF
	LINAGE-COUNTER
	RETURN-CODE
	SHIFT-OUT and SHIFT-IN
	SORT-CONTROL
	SORT-CORE-SIZE
	SORT-FILE-SIZE
	SORT-MESSAGE
	SORT-MODE-SIZE
	SORT-RETURN
	TALLY
	WHEN-COMPILED

	Literals
	Nonnumeric literals
	Numeric literals
	Rules for floating-point literal values:

	DBCS literals
	When DBCS literals are allowed
	When DBCS literals are not allowed

	PICTURE character-strings
	Comments

	Separators
	Rules for separators

	Sections and paragraphs
	Statements and clauses
	Entries
	Clauses
	Sentences
	Statements
	Phrases

	Reference format
	Sequence number area
	Indicator area
	Area A
	Division header
	Section header
	Paragraph header or paragraph name
	Level indicator (FD and SD) or level-number (01 and 77)
	DECLARATIVES and END DECLARATIVES
	End Program, End Class, and End Method headers

	Area B
	Entries, sentences, statements, clauses
	Continuation lines
	Example

	Area A or Area B
	Level-numbers
	Comment lines
	Compiler-directing statements
	Compiler directives (workstation only)
	Debugging lines
	Pseudo-text
	Blank lines

	Scope of names
	Types of names
	External and internal resources
	Resolution of names

	Referencing data names, copy libraries, and Procedure Division names
	Uniqueness of reference
	Qualification
	Qualification rules

	Data attribute specification
	Identical names
	References to COPY libraries
	References to Procedure Division names
	References to Data Division names
	Simple data reference
	Identifier

	Condition-name
	Subscripting
	Subscripting using data-names
	Subscripting using index-names (indexing)
	Relative subscripting

	Reference modification
	Evaluation of operands
	Reference modification examples

	Function-identifier

	Transfer of control
	Millennium Language Extensions and date fields
	Millennium Language Extensions syntax
	Terms and concepts
	Date field
	Windowed date field
	Expanded date field
	Year-last date field
	Date format
	Compatible date field

	Non-date
	Century window

	Part 2. COBOL source unit structure
	COBOL program structure
	Nested programs
	Conventions for program-names
	Rules for program-names

	COBOL class definition structure
	COBOL method definition structure

	Part 3. Identification Division
	Identification Division
	PROGRAM-ID paragraph
	CLASS-ID paragraph
	General rules
	Inheritance
	Multiple inheritance

	METHOD-ID paragraph
	General rules

	Optional paragraphs

	Part 4. Environment Division
	Configuration Section
	SOURCE-COMPUTER paragraph
	OBJECT-COMPUTER paragraph
	SPECIAL-NAMES paragraph
	ALPHABET clause
	SYMBOLIC CHARACTERS clause
	CLASS clause
	CURRENCY SIGN clause
	REPOSITORY paragraph
	General rules
	Identifying and referencing the class

	Input-Output Section
	FILE-CONTROL paragraph
	SELECT clause
	ASSIGN clause
	OS/390 and VM syntax
	Assignment name for environment variable (OS/390)

	AIX and Windows syntax
	Assignment name for non-environment variables and literals (AIX and Windows)
	Assignment name for data-names and environment variables (AIX and Windows)

	RESERVE clause
	ORGANIZATION clause
	File organization
	Sequential organization
	Indexed organization
	Relative organization
	Line-sequential organization
	Language elements treated as comments (workstation only)

	PADDING CHARACTER clause
	RECORD DELIMITER clause
	ACCESS MODE clause
	File organization and access modes
	Access modes
	Relationship between data organizations and access modes

	RECORD KEY clause
	ALTERNATE RECORD KEY clause
	RELATIVE KEY clause
	PASSWORD clause
	FILE STATUS clause
	I-O-CONTROL paragraph
	RERUN clause
	SAME AREA clause
	SAME RECORD AREA clause
	SAME SORT AREA clause
	SAME SORT-MERGE AREA clause
	MULTIPLE FILE TAPE clause
	APPLY WRITE-ONLY clause

	Part 5. Data Division
	Data Division overview
	File Section
	Working-Storage Section
	Local-Storage Section
	Linkage Section
	Data types
	File data
	Program data

	Data relationships
	Levels of data
	Levels of data in a record description entry
	Special level-numbers
	Indentation
	Classes and categories of data
	Alignment rules
	Standard data format
	Character-string and item size
	Signed data
	Operational signs
	Editing signs

	Data Division—file description entries
	File Section
	EXTERNAL clause
	GLOBAL clause
	BLOCK CONTAINS clause
	RECORD clause
	Format 1
	Format 2
	Format 3

	LABEL RECORDS clause
	VALUE OF clause
	DATA RECORDS clause
	LINAGE clause
	LINAGE-COUNTER special register

	RECORDING MODE clause
	Under OS/390 and VM
	Under AIX and Windows

	CODE-SET clause

	Data Division—data description entry
	Format 1
	Format 2
	Format 3
	Level-numbers
	BLANK WHEN ZERO clause
	DATE FORMAT clause
	Semantics of windowed date fields
	Date trigger values (host only)

	Restrictions on using date fields
	Combining the DATE FORMAT clause with other clauses
	Group items that are date fields
	Language elements that treat date fields as non-dates
	Language elements that do not accept windowed date fields as arguments
	Language elements that do not accept date fields as arguments

	EXTERNAL clause
	GLOBAL clause
	JUSTIFIED clause
	OCCURS clause
	Fixed-length tables
	ASCENDING/DESCENDING KEY phrase
	INDEXED BY phrase
	Variable-length tables
	OCCURS DEPENDING ON clause

	PICTURE clause
	Symbols used in the PICTURE clause
	P symbol
	Currency symbol

	Character-string representation
	Data categories and PICTURE rules
	Alphabetic items
	Numeric items
	Numeric-edited items
	Alphanumeric items
	Alphanumeric-edited items
	DBCS items
	External floating-point items

	PICTURE clause editing
	Simple insertion editing
	Special insertion editing
	Fixed insertion editing
	Floating insertion editing
	Representing floating insertion editing

	Zero suppression and replacement editing
	Representing zero suppression

	REDEFINES clause
	REDEFINES clause considerations
	REDEFINES clause examples
	Undefined results

	RENAMES clause
	SIGN clause
	SYNCHRONIZED clause
	Slack bytes
	Slack bytes within records
	Slack bytes between records

	USAGE clause
	Computational items
	DISPLAY phrase
	DISPLAY-1 phrase
	INDEX phrase
	OBJECT REFERENCE phrase
	POINTER phrase
	PROCEDURE-POINTER phrase
	NATIVE phrase

	VALUE clause
	Format 1
	Rules for literal values:

	Format 2
	Rules for condition-name values:

	Format 3

	Part 6. Procedure Division
	Procedure Division structure
	Requirements for a method Procedure Division
	The Procedure Division header
	Declaratives
	Procedures
	Arithmetic expressions
	Arithmetic operators
	Arithmetic with date fields
	Addition involving date fields
	Subtraction involving date fields
	Storing arithmetic results that involve date fields

	Conditional expressions
	Simple conditions
	Class condition
	Condition-name condition
	Condition-name conditions and windowed date field comparisons

	Relation condition
	Date fields
	DBCS items
	Pointer data items
	Procedure-pointer data items
	Object reference data items

	Comparison of numeric and nonnumeric operands
	Comparing numeric operands
	Comparing nonnumeric operands
	Comparing numeric and nonnumeric operands
	Comparing index-names and index data items
	Comparison of DBCS operands

	Sign condition
	Date fields in sign conditions

	Switch-status condition
	Complex conditions
	Negated simple conditions
	Combined conditions
	Order of evaluation of conditions
	Order of evaluation:

	Abbreviated combined relation conditions
	Using parentheses

	Statement categories
	Imperative statements
	Conditional statements
	Delimited scope statements
	Explicit scope terminators
	Implicit scope terminators
	Compiler-directing statements

	Statement operations
	CORRESPONDING phrase
	GIVING phrase
	ROUNDED phrase
	SIZE ERROR phrases
	Arithmetic statements
	Arithmetic statement operands
	Size of operands
	Overlapping operands
	Multiple results

	Data manipulation statements
	Overlapping operands

	Input-output statements
	Common processing facilities
	Status key
	Invalid key condition
	INTO/FROM identifier phrase
	File position indicator

	Procedure Division statements
	ACCEPT statement
	Data transfer
	System information transfer
	DATE, DATE YYYYMMDD, DAY, DAY YYYYDDD, DAY-OF-WEEK, and TIME

	ADD statement
	ROUNDED phrase
	SIZE ERROR phrases
	CORRESPONDING phrase (format 3)
	END-ADD phrase

	ALTER statement
	Segmentation considerations

	CALL statement
	USING phrase
	BY REFERENCE phrase
	BY CONTENT phrase
	BY VALUE phrase
	RETURNING phrase
	ON EXCEPTION phrase
	NOT ON EXCEPTION phrase
	ON OVERFLOW phrase
	END-CALL phrase

	CANCEL statement
	CLOSE statement
	Effect of CLOSE statement on file types

	COMPUTE statement
	ROUNDED phrase
	SIZE ERROR phrases
	END-COMPUTE phrase

	CONTINUE statement
	DELETE statement
	Sequential access mode
	Random or dynamic access mode
	END-DELETE phrase

	DISPLAY statement
	DIVIDE statement
	ROUNDED phrase
	REMAINDER phrase
	SIZE ERROR phrases
	END-DIVIDE phrase

	ENTRY statement
	USING phrase

	EVALUATE statement
	END-EVALUATE phrase
	Determining values
	Comparing selection subjects and objects
	Executing the EVALUATE statement

	EXIT statement
	EXIT METHOD statement
	EXIT PROGRAM statement
	GOBACK statement
	GO TO statement
	Unconditional GO TO
	Conditional GO TO
	Altered GO TO
	MORE-LABELS GO TO

	IF statement
	END-IF phrase
	Transferring control
	Nested IF statements

	INITIALIZE statement
	REPLACING phrase
	INITIALIZE statement rules

	INSPECT statement
	Effect of DBCS
	TALLYING phrase (formats 1 and 3)
	REPLACING phrase (formats 2 and 3)
	Replacement rules

	BEFORE and AFTER phrases (all formats)
	CONVERTING phrase (format 4)
	Data types for identifiers and literals
	Data flow
	Comparison cycle

	Example of the INSPECT statement

	INVOKE statement
	USING phrase
	BY REFERENCE phrase
	BY CONTENT phrase
	BY VALUE phrase
	Conformance requirements for USING phrase
	RETURNING phrase
	ON EXCEPTION phrase
	NOT ON EXCEPTION phrase
	END-INVOKE phrase
	INVOKE parameter type conformance—example

	MERGE statement
	ASCENDING/DESCENDING KEY phrase
	COLLATING SEQUENCE phrase
	USING phrase
	GIVING phrase
	OUTPUT PROCEDURE phrase
	MERGE special registers
	Segmentation considerations

	MOVE statement
	Elementary moves
	Moves involving date fields

	Group moves

	MULTIPLY statement
	ROUNDED phrase
	SIZE ERROR phrases
	END-MULTIPLY phrase

	OPEN statement
	General rules
	Label records
	OPEN statement notes

	PERFORM statement
	Basic PERFORM statement
	END-PERFORM
	PERFORM with TIMES phrase
	PERFORM with UNTIL phrase
	PERFORM with VARYING phrase
	Varying identifiers
	Varying two identifiers
	Varying three identifiers
	Varying more than three identifiers
	Varying phrase rules

	READ statement
	KEY IS phrase
	AT END phrases
	INVALID KEY phrases
	END-READ phrase
	Multiple record processing
	Sequential access mode
	Sequential files
	Indexed or relative files

	Random access mode
	Indexed files
	Relative files

	Dynamic access mode
	READ statement notes

	RELEASE statement
	RETURN statement
	AT END phrases
	END-RETURN phrase

	REWRITE statement
	INVALID KEY phrases
	END-REWRITE phrase
	Reusing a logical record
	Sequential files
	Indexed files
	Relative files

	SEARCH statement
	AT END/WHEN phrases
	NEXT SENTENCE
	END-SEARCH phrase
	Serial search
	VARYING phrase
	WHEN phrase (serial search)
	Binary search
	WHEN phrase (binary search)
	Search statement considerations

	SET statement
	Format 1: SET for basic table handling
	Format 2: SET for adjusting indexes
	Format 3: SET for external switches
	Format 4: SET for condition-names
	Format 5: SET for USAGE IS POINTER data items
	Format 6: SET for USAGE IS PROCEDURE-POINTER data items
	Example of COBOL/C interoperability (OS/390)

	Format 7: SET for USAGE OBJECT REFERENCE data items

	SORT statement
	ASCENDING/DESCENDING KEY phrase
	DUPLICATES phrase
	COLLATING SEQUENCE phrase
	USING phrase
	INPUT PROCEDURE phrase
	GIVING phrase
	OUTPUT PROCEDURE phrase
	SORT special registers
	Segmentation considerations

	START statement
	KEY phrase
	INVALID KEY phrases
	END-START phrase
	Indexed files
	Relative files

	STOP statement
	STRING statement
	DELIMITED BY phrase
	INTO phrase
	POINTER phrase
	ON OVERFLOW phrases
	END-STRING phrase
	Data flow

	SUBTRACT statement
	ROUNDED phrase
	SIZE ERROR phrases
	CORRESPONDING phrase (format 3)
	END-SUBTRACT phrase

	UNSTRING statement
	DELIMITED BY phrase
	Delimiter with two or more characters
	Two or more delimiters

	INTO phrase
	POINTER phrase
	TALLYING IN phrase
	ON OVERFLOW phrases
	When an overflow condition occurs
	When an overflow condition does not occur

	END-UNSTRING phrase
	Data flow
	Values at the end of execution of the UNSTRING statement

	Example of the UNSTRING statement

	WRITE statement
	ADVANCING phrase
	ADVANCING phrase rules
	LINAGE-COUNTER rules

	END-OF-PAGE phrases
	INVALID KEY phrases
	END-WRITE phrase
	WRITE for sequential files
	Multivolume files
	Punch function files with the IBM 3525
	Print function files
	Advanced Function Printing

	WRITE for indexed files
	WRITE for relative files

	Part 7. Intrinsic functions
	Intrinsic functions
	Specifying a function
	Function definition and evaluation
	Types of functions
	Rules for usage
	Arguments
	ALL subscripting

	Function definitions
	ACOS
	ANNUITY
	ASIN
	ATAN
	CHAR
	COS
	CURRENT-DATE
	DATE-OF-INTEGER
	DATE-TO-YYYYMMDD
	Example

	DATEVAL
	DAY-OF-INTEGER
	DAY-TO-YYYYDDD
	Example

	FACTORIAL
	INTEGER
	INTEGER-OF-DATE
	INTEGER-OF-DAY
	INTEGER-PART
	LENGTH
	LOG
	LOG10
	LOWER-CASE
	MAX
	MEAN
	MEDIAN
	MIDRANGE
	MIN
	MOD
	NUMVAL
	NUMVAL-C
	ORD
	ORD-MAX
	ORD-MIN
	PRESENT-VALUE
	RANDOM
	RANGE
	REM
	REVERSE
	SIN
	SQRT
	STANDARD-DEVIATION
	SUM
	TAN
	UNDATE
	UPPER-CASE
	VARIANCE
	WHEN-COMPILED
	YEAR-TO-YYYY
	Example

	YEARWINDOW

	Part 8. Compiler-directing statements
	Compiler-directing statements
	BASIS statement
	CBL (PROCESS) statement
	*CONTROL (*CBL) statement
	Source code listing
	Object code listing
	Storage map listing

	COPY statement
	SUPPRESS phrase
	REPLACING phrase
	Replacement and comparison rules

	DELETE statement
	EJECT statement
	ENTER statement
	INSERT statement
	READY or RESET TRACE statement
	REPLACE statement
	Continuation rules for pseudo-text
	Comparison operation
	REPLACE statement notes

	SERVICE LABEL statement
	SERVICE RELOAD statement
	SKIP1/2/3 statements
	TITLE statement
	USE statement
	EXCEPTION/ERROR declarative
	Precedence rules for nested programs
	LABEL declarative
	DEBUGGING declarative

	Compiler directives
	CALLINTERFACE
	Syntax and general rules
	Difference between the directive and compiler option
	Precedence of sub-options

	Part 9. Appendixes
	Appendix A. Compiler limits
	Appendix B. EBCDIC and ASCII collating sequences
	EBCDIC collating sequence
	US English ASCII code page (ISO 646)

	Appendix C. Source language debugging
	Coding debugging lines
	Coding debugging sections
	DEBUG-ITEM special register
	Activate compile-time switch
	Activate object-time switch

	Appendix D. Reserved words
	Appendix E. ASCII considerations for OS/390 and VM
	Environment Division
	OBJECT-COMPUTER and SPECIAL-NAMES paragraphs
	FILE-CONTROL paragraph
	I-O-CONTROL paragraph

	Data Division
	FD Entry—CODE-SET clause
	Data description entries

	Procedure Division

	Appendix F. Locale considerations (workstation only)
	Appendix G. Summary of language difference: host COBOL and workstation COBOL
	Appendix H. Industry specifications
	Notices
	Programming interface information
	Trademarks

	Bibliography
	IBM COBOL for OS/390 & VM
	IBM COBOL Set for AIX
	IBM VisualAge COBOL
	Softcopy publications for IBM COBOL

	Glossary
	Index

