
DB2 Universal Database for z/OS

Release Planning Guide

Version 8

SC18-7425-05

���

DB2 Universal Database for z/OS

Release Planning Guide

Version 8

SC18-7425-05

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

149.

Sixth Edition, Softcopy Only (February 2008)

This edition applies to Version 8 of IBM DB2 Universal Database for z/OS (DB2 UDB for z/OS), product number

5625-DB2, and to any subsequent releases until otherwise indicated in new editions. Make sure you are using the

correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed

version by vertical bars. Additional changes made to this softcopy version of the book since the hardcopy book was

published are indicated by the hash (#) symbol in the left-hand margin. Editorial changes that have no technical

significance are not noted.

This and other books in the DB2 UDB for z/OS library are periodically updated with technical changes. These

updates are made available to licensees of the product on CD-ROM and on the Web (currently at

www.ibm.com/software/data/db2/zos/library.html). Check these resources to ensure that you are using the most

current information.

© Copyright International Business Machines Corporation 2004, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book . ix

Who should read this book . ix

Terminology and citations . ix

Accessibility . x

How to send your comments . x

Chapter 1. Availability, scalability, and performance enhancements 1

Changes to limits for better availability, scalability, and performance 1

Schema evolution . 2

Ability to use table-controlled partitioning . 3

Ability to add partitions . 6

Ability to rotate partitions . 6

Ability to add columns to indexes . 7

Materialized query tables . 7

Indexable predicates with mismatched data types . 9

Predicates with one encoding scheme . 10

Predicates with more than one encoding scheme . 11

Index enhancements . 12

Data-partitioned secondary indexes . 12

Backward index scan . 15

Varying-length index keys . 16

Longer index keys . 16

Distribution statistics . 16

Improved application availability for nonunique indexes 17

Reoptimizing the access path at run time . 17

Performance enhancements for star join . 17

Cost-based parallel sorting . 19

Visual Explain enhancements . 19

64-bit virtual storage . 20

Data sharing enhancements . 21

Improved LPL recovery . 21

Reduction of locking overhead for data sharing workloads 21

Reduction of buffer management overhead costs for data sharing workloads 22

Improved index split performance for data sharing . 22

Resolution of indoubt units of recovery in restart light . 22

Improved space allocation . 22

New default primary space allocation value . 23

New sliding scale for secondary space allocation . 23

More options for data security in TCP/IP networks . 25

More secure mechanism for verifying a remote client's port of entry 25

Improved encrypted security mechanisms . 26

System-level point-in-time recovery . 28

Additional parameters . 28

New subsystem parameters . 29

Subsystem parameters changed to dynamically updatable 29

Other availability, scalability, and performance enhancements 30

Chapter 2. Easier development and integration of e-business applications 31

Changes to SQL limits . 31

SQL enhancements . 32

SELECT from INSERT statement . 32

Sequence objects . 34

Identity column enhancements . 36

DISTINCT predicate . 36

Support for scalar fullselect . 37

© Copyright IBM Corp. 2004, 2008 iii

##
##

Multiple-row INSERT and FETCH statements . 39

Common table expressions . 43

GET DIAGNOSTICS statement . 44

Dynamic scrollable cursors . 46

SQL procedural language enhancements . 46

More frequent use of indexes . 48

Longer and more complex SQL statements . 49

Multiple DISTINCT keywords . 49

Expressions in the GROUP BY clause . 49

Fewer restrictions for column functions (aggregate functions) 49

Qualified column names in the INSERT statement . 50

ORDER BY clause for the SELECT INTO statement . 50

Additional input format for timestamp strings . 50

Explicitly defined ROWID columns no longer required for LOBs 51

Comments for plans and packages . 51

Implicit dropping of declared global temporary tables at commit 51

SQL changes for multilevel security with row-level granularity 52

Comments in SQL statements . 52

Encrypting and decrypting data . 53

Greater control over locking for queries . 53

Unicode enhancements . 54

Support for Unicode parsing . 54

Support for multiple CCSID sets in a single SQL statement 55

DB2 ODBC support for native Unicode . 57

Multilevel security with row-level granularity . 58

Advantages of multilevel security . 58

Mandatory access control and dominance . 58

Implementing and using multilevel security . 59

SQL support for XML functions in DB2 . 60

Improvements in connectivity . 61

Enhanced support for JDBC and CLI clients . 61

Easier access to remote workstation database through database alias support 62

More granular control of routing requests to specific members of a data sharing group 62

Improved JDBC and CLI connectivity for cursors and result sets 63

More flexibility in managing distributed applications with CURRENT PACKAGE PATH special register . . . 63

Other e-business enhancements . 63

SQL processing options . 64

RRSAF implicit connections . 64

Changes to stored procedures processing . 64

Enhancements for DB2 PL/I applications . 65

Chapter 3. Planning for migration, conversion, and fallback 67

Hardware and software requirements . 67

Migration considerations . 67

DB2 Version 8 publications assume new-function mode 68

DB2 Utilities Suite for z/OS Version 8 uses the DFSORT program 68

Use triggers instead of field, edit, and validation procedures 68

DB2 treats certain large fixed-length strings as varying-length strings 68

MEMLIMIT cannot be customized through the installation process 68

DBDs cannot be accessed if DB2 starts in deferred mode 68

DB2 LOCATION NAME value . 68

Type 1 indexes are not supported . 69

Declared global temporary tables need an 8-KB buffer pool 69

Declared global temporary tables need an 8-KB table space in the temporary database 69

System-level point-in-time recovery . 69

Enhanced support for scrollable cursors . 69

Changes to space allocations for DB2-managed data sets 69

Changed default value for DESCRIBE FOR STATIC . 70

Changed data types and lengths for some catalog columns 70

Changed data types and lengths for some special registers 70

SQL reserved words may be used in delimited identifiers for procedure names 70

iv Release Planning Guide

##
##
##

##
##

##
##
##
##

##

##
##

Encoding schemes of string parameters for routines . 70

Modify RUNSTATS jobs . 70

More history statistics are collected . 71

Creating tables with DBCS and mixed columns . 71

Consider increasing IDBACK and CTHREAD . 71

Support for DB2-established data space for cached dynamic statements is deprecated 71

Consider changing EDM pool size . 71

Customized DB2I defaults can be migrated . 71

Rebinding DSNACOLN and the DatabaseMetadata stored procedures (for ODBC and JDBC support) 72

LANGUAGE COMPJAVA no longer supported for stored procedures 72

DSNWZP runs in WLM-established stored procedure address space 73

Support for DB2-established stored procedure address spaces is deprecated 73

Pre-compilation for unsupported compilers . 73

New precompiler option for string host variables . 73

You must specify the APOST precompiler option when the given CCSID for the source is 1026 or 1155 74

New SYSIBM.SYSROUTINES column for encoding scheme 74

LANGUAGE REXX sets PROGRAM_TYPE column in SYSIBM.SYSROUTINES 74

DB2 start-up and precompilation require a user-supplied DSNHDECP module 74

CCSIDs in DSNHDECP must be valid . 74

Character conversions between Unicode CCSIDs and EBCDIC CCSIDs 74

New data-only load module DSNHMCID . 75

Plans and packages bound prior to DB2 Version 2 Release 3 75

Multiple calls to the same stored procedure . 75

External stored procedures and user-defined functions can return any valid SQLSTATE value 75

Programs called by a stored procedure require packages 75

Port of entry name changed . 75

New name for type 1 inactive threads and type 2 inactive threads 76

Column names and labels in SQLDA SQLNAME field for statements involving UNION 76

MAXROWS must have a value of 1 on ALTER TABLESPACE DSNDB06.SYSSEQ 76

IFCID 197 is no longer supported . 76

Change to IFCID 0059 trace records . 76

Change data capture cannot be enabled on catalog tables during enabling-new-function mode 76

DB2 Version 8 requires IRLM 2.2 . 76

Detailed tracking of DB2 measured usage is disabled . 76

Programming language support has changed . 76

New return code for -START DATABASE, -STOP DATABASE, and -DISPLAY DATABASE commands 77

Views might be marked with view regeneration errors . 77

Changed default values for subsystem parameters . 77

Subsystem parameter CLAIMDTA has been removed . 78

DSN8EXP is deprecated . 78

Using ALTER TABLE ALTER COLUMN SET DATA TYPE in compatibility mode places indexes in

rebuild-pending state . 78

Redundant DISTINCT keyword removed from SELECT DISTINCT statements 78

DB2 issues an error for column names greater than 30 bytes 78

Maintenance required for IBM z/OS Migration Utility . 78

Ensure that you allocate enough space for complete dumps 79

Migrating a data sharing group . 79

Work file database size calculations . 80

LOCAL DATE/TIME exits . 80

Preparing for fallback . 80

Frozen objects . 81

Other fallback considerations . 82

Release incompatibilities . 82

Ensure that Version 7 sample objects are available . 82

Ensure that no utility jobs are running . 82

EBCDIC and ASCII CCSID must be non-zero . 83

Perform premigration queries (DSNTIJPM) . 83

Identify unsupported objects . 84

Adjust application programs . 84

Release coexistence . 87

IRLM service level . 87

Contents v

##

##

##

##

##
##

##

##

##
##
##
#
##
##
##
##
##

##

##

DISPLAY GROUPBUFFERPOOL output . 88

Distributed environment . 88

Data sharing . 88

Installation changes . 88

Version 8 panels . 89

Version 8 sample jobs . 90

Appendix A. Changes to commands . 91

New commands . 91

Changed commands . 91

Other command changes . 93

Appendix B. Changes to utilities . 95

New utilities . 95

Changed utilities . 95

Other utility changes . 102

Appendix C. Changes to SQL . 103

New SQL statements . 103

Changed SQL statements . 103

New functions . 117

Other SQL language changes . 118

Appendix D. Catalog changes . 123

New catalog tables . 123

Changed catalog tables . 123

New indexes . 133

When catalog migration changes occur . 133

Appendix E. EXPLAIN table changes . 135

Format of the Version 8 PLAN_TABLE . 135

Descriptions of new and changed columns in PLAN_TABLE 137

Changed columns in DSN_STATEMNT_TABLE . 139

New statement cache table . 140

Appendix F. New and changed IFCIDs . 141

New IFCIDs . 141

Changed IFCIDs . 142

Appendix G. How to use the DB2 library . 145

Appendix H. How to obtain DB2 information 147

DB2 on the Web . 147

DB2 publications . 147

DB2 Information Center for z/OS solutions . 147

CD-ROMs and DVD . 147

PDF format . 148

BookManager format . 148

DB2 education . 148

How to order the DB2 library . 148

Notices . 149

Programming interface information . 150

Trademarks . 151

Glossary . 153

Bibliography . 157

vi Release Planning Guide

##

Index . 165

Contents vii

viii Release Planning Guide

About this book

DB2 Release Planning Guide is intended to help you plan for Version 8 of the

licensed program DB2 Universal Database™ for z/OS®.

Unless it is stated otherwise, this information assumes that DB2® is running in

new-function mode (as opposed to compatibility mode or enabling-new-function

mode).

Important

In this version of DB2 UDB for z/OS, the DB2 Utilities Suite is available as an

optional product. You must separately order and purchase a license to such

utilities, and discussion of those utility functions in this publication is not

intended to otherwise imply that you have a license to them. See Part 1 of

DB2 Utility Guide and Reference for packaging details.

The DB2 Utilities Suite is designed to work with the DFSORT program, which

you are licensed to use in support of the DB2 utilities even if you do not

otherwise license DFSORT for general use. If your primary sort product is not

DFSORT, consider the following informational APARs mandatory reading:

v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES

v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.

Who should read this book

This book is intended for all users of DB2, including application programmers,

database administrators, and system programmers. It assumes that the user is

familiar with Version 7 of DB2 UDB for z/OS and OS/390®. For more information

about how to obtain DB2 information, see Appendix H, “How to obtain DB2

information,” on page 147.

Terminology and citations

In this information, DB2 Universal Database for z/OS is referred to as "DB2 UDB

for z/OS." In cases where the context makes the meaning clear, DB2 UDB for z/OS

is referred to as "DB2." When this information refers to titles of books in this

library, a short title is used. (For example, "See DB2 SQL Reference" is a citation to

IBM® DB2 Universal Database for z/OS SQL Reference.)

When referring to a DB2 product other than DB2 UDB for z/OS, this information

uses the product’s full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON

Refers to any of the following products:

v IBM Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

© Copyright IBM Corp. 2004, 2008 ix

#
#
#

v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS

v IBM DB2 Performance Expert for Multiplatforms and Workgroups

v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language

Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS or CICS Transaction Server

for OS/390.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is

equivalent to the Base Control Program (BCP) component of the z/OS

operating system.

RACF®

Represents the functions that are provided by the RACF component of the

z/OS Security Server.

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products. The major accessibility

features in z/OS products, including DB2 UDB for z/OS, enable users to:

v Use assistive technologies such as screen reader and screen magnifier software

v Operate specific or equivalent features by using only a keyboard

v Customize display attributes such as color, contrast, and font size

Assistive technology products, such as screen readers, function with the DB2 UDB

for z/OS user interfaces. Consult the documentation for the assistive technology

products for specific information when you use assistive technology to access these

interfaces.

Online documentation for Version 8 of DB2 UDB for z/OS is available in the

Information management software for z/OS solutions information center, which is

an accessible format when used with assistive technologies such as screen reader

or screen magnifier software. The Information management software for z/OS

solutions information center is available at the following Web site:

http://publib.boulder.ibm.com/infocenter/dzichelp

How to send your comments

Your feedback helps IBM to provide quality information. Please send any

comments that you have about this book or other DB2 UDB for z/OS

documentation. You can use the following methods to provide comments:

v Send your comments by e-mail to db2zinfo@us.ibm.com and include the name

of the product, the version number of the product, and the number of the book.

If you are commenting on specific text, please list the location of the text (for

example, a chapter and section title or a help topic title).

v You can send comments from the Web. Visit the library Web site at:

www.ibm.com/software/db2zos/library.html

This Web site has a an online reader comment form that you can use to send

comments.

x Release Planning Guide

#
#
#

v You can also send comments by using the feedback link at the footer of each

page in the Information Management Software for z/OS Solutions Information

Center at http://publib.boulder.ibm.com/infocenter/db2zhelp.

About this book xi

xii Release Planning Guide

Chapter 1. Availability, scalability, and performance

enhancements

Version 8 of DB2 UDB for z/OS provides functional enhancements to availability,

scalability, and performance. The following topics provide additional information:

v “Changes to limits for better availability, scalability, and performance”

v “Schema evolution” on page 2

v “Materialized query tables” on page 7

v “Indexable predicates with mismatched data types” on page 9

v “Index enhancements” on page 12

v “Reoptimizing the access path at run time” on page 17

v “Performance enhancements for star join” on page 17

v “Cost-based parallel sorting” on page 19

v “Visual Explain enhancements” on page 19

v “64-bit virtual storage” on page 20

v “Data sharing enhancements” on page 21

v “Improved space allocation” on page 22

v “More options for data security in TCP/IP networks” on page 25

v “System-level point-in-time recovery” on page 28

v “Additional parameters” on page 28

v “Other availability, scalability, and performance enhancements” on page 30

Changes to limits for better availability, scalability, and performance

Version 8 of DB2 UDB for z/OS provides increased limits for better availability,

scalability, and performance as highlighted in Table 1.

 Table 1. Changes to limits in DB2 UDB for z/OS, Version 8. This table lists the entities that

have changed in Version 8 and their associated limits, both previous and new.

Entity Previous limit New limit

Virtual storage 31-bit 64-bit

Length of an index key 255 bytes 2000 bytes

Number of partitions in a

partitioned table space or a

partitioned index space

254 4096

Number of active logs 31 93

Number of archive logs 1000 per copy of the log

2000 for dual logging

10 000 per copy of the log

20 000 for dual logging

Maximum size of a

partitioned table with page

size of 8 KB1

16 TB 32 TB

Maximum size of a

partitioned table with page

size of 16 KB

16 TB 64 TB

Maximum size of a

partitioned table with page

size of 32 KB

16 TB 128 TB

Note:

© Copyright IBM Corp. 2004, 2008 1

1. The maximum size of a partitioned table with page size of 4 KB has not

changed; the maximum size is 16 TB.

Schema evolution

DB2 UDB for z/OS now provides the ability to change the definitions of tables and

indexes without dropping and re-creating the object. This capability significantly

enhances both the availability of your database and the performance of data access.

Using the ALTER TABLE statement: With the ALTER TABLE statement, you can

change the definition of a table or the partitioning of a table space in the following

ways:

v Add a new partition to a table space.

v Rotate the partition with the lowest limit value for reuse as the partition with

the highest limit value.

v Change the boundary between partitions or extend the boundary of the last

partition.

v Change the data type of a column with the exception of a distinct type column,

a LOB column, a column referenced in a field procedure, or a column in a

materialized query table.

v Change all of the attributes of an identity column except the data type.

v Add or drop a parent key or a foreign key.

v Add or drop a table check constraint.

v Add a new column to a table.

v Add or drop a clustering index to a table.

When you do not use the ALTER statement to change a table definition, you must:

1. Use the DROP statement to remove the table.

2. Use the COMMIT statement to commit the removal of the table.

3. Use the CREATE statement to re-create the table.

The DROP statement has a cascading effect; views that are dependent on the

dropped table are also dropped. All authorities for the dropped objects disappear,

and DB2 marks plans or packages that reference dropped objects as invalid.

You can make certain changes only by dropping the table and then re-creating it

with the new definition. For example, to change an identity column to a column

with a different data type, you must drop and re-create the table with the new

definition instead of using the ALTER statement.

Using the ALTER INDEX statement: With the ALTER INDEX statement, you can

change the definition of an index in the following ways:

v Add a new column to an index.

v Change how varying-length columns are stored in the index (as padded or not

padded), which might increase the possibility of DB2 choosing index-only

access.

v Change the clustering attribute of an index to change the location of rows in the

table on which the index is defined.

For more information about index enhancements, see “Index enhancements” on

page 12.

2 Release Planning Guide

Ability to use table-controlled partitioning

Before Version 8 of DB2, when you defined a partitioning index on a table in a

partitioned table space, you specified the partitioning key and the limit key values

in the PART VALUES clause of the CREATE INDEX statement. This type of

partitioning is referred to as index-controlled partitioning.

With Version 8, you can specify the partitioning key and the limit key values for a

table in a partitioned table space by using the PARTITION BY clause and the

PARTITION ENDING AT clause of the CREATE TABLE statement. This type of

partitioning is referred to as table-controlled partitioning.

If you drop an index that is defined with the PARTITION ENDING AT (previously

PART VALUES) clause, DB2 automatically converts the associated index-controlled

partitioned table space to a table-controlled partitioned table space. However, if

you use the ALTER statement to do any of the following tasks, DB2 automatically

converts the table space to table-controlled partitioning, but it does not drop any

indexes:

v Add a partition

v Change a partition boundary

v Rotate a partition from first to last

v Create a data-partitioned secondary index

v Specify CLUSTER NO for the partitioning or clustering index

For information about using the ALTER statement to manage partitions, see

“Ability to add partitions” on page 6 and “Ability to rotate partitions” on page 6.

Creating new tables with table-controlled partitioning

You can specify the partitioning key and the limit key values for a table in a

partitioned table space by using the PARTITION BY clause and the PARTITION

ENDING AT clause of the CREATE TABLE statement. If you use this type of

partitioning, you cannot use the PARTITION ENDING AT clause of the CREATE

INDEX statement when you create indexes on the table.

Example: Assume that you need to create a large transaction table that includes the

date of the transaction in a column named POSTED. You want to keep the

transactions for each month in a separate partition. To create the table, issue the

following statement:

CREATE TABLE TRANS

 (ACCTID ...,

 STATE ...,

 POSTED ...,

 ... , ...)

 PARTITION BY (POSTED)

 (PARTITION 1 ENDING AT (’01/31/2003’),

 PARTITION 2 ENDING AT (’02/28/2003’),

 ...

 PARTITION 13 ENDING AT (’01/31/2004’));

Separation of partitioning and clustering

In previous releases of DB2, a partitioned table space could have only one

partitioned index, and the partitioned index was the partitioning index as well as

the clustering index. As explained in “Schema evolution” on page 2, Version 8 of

DB2 introduces table-controlled partitioning, in which a table, instead of an index on

the table, determines the partitioning scheme. With table-controlled partitioning,

the partitioning index is optional. You can assign the clustering attribute to a

secondary index, or you can let DB2 assign the clustering attribute. To let DB2

Chapter 1. Availability, scalability, and performance enhancements 3

assign the clustering attribute, do not assign the clustering attribute to any index.

In addition, you can remove the clustering attribute from one index and assign it

to another index. Use the CLUSTER and NOT CLUSTER parameters of CREATE

INDEX and ALTER INDEX to accomplish these tasks.

When a data-partitioned secondary index is the clustering index, after a REORG,

the data rows are ordered within each partition to match the ordering of the

data-partitioned secondary index keys.

Example: Running REORG to reorder data rows: Suppose that you alter index

SALES_IX, which is shown in Figure 2 on page 13, like this:

ALTER INDEX SALES_IX CLUSTER;

After you run the REORG utility, the data looks as shown in Figure 1.

 If no explicit clustering index is specified for a table, the first index that is created

on a table is the implicit clustering index. If an index is altered from CLUSTER to

NOT CLUSTER, that index is still used as the implicit clustering index until a new

explicit clustering index is specified. When the clustering index is changed,

INSERT statements place new rows in the new clustering order. However, existing

data rows are not affected until a REORG utility job runs and places those rows in

clustering order.

Clustering within partitions

You can specify any index as the clustering index, regardless of whether it is a

partitioning index.

Example: suppose that the TRANS table is partitioned by the DATE column, as

described in “Creating new tables with table-controlled partitioning” on page 3.

You want to cluster the rows of each partition by the values in the ACCTID

column. Issue the statement:

Figure 1. Example of a data-partitioned secondary index as a clustering index

4 Release Planning Guide

CREATE INDEX IX3

 ON TRANS (ACCTID)

 CLUSTER;

The rows of the TRANS table are clustered by account number. Each partition

contains the account numbers for the transactions during that month, and those

account numbers are clustered within each partition.

For more information about clustering that is separated from partitioning, see

“Separation of partitioning and clustering” on page 3.

Improving index usage for partitioned table spaces

By changing the way indexes are defined for a table, you can:

v Change an existing index-controlled partitioned table space to a table-controlled

partitioned table space.

v Implement a partitioned clustering index so that the index clusters the data

within each partition. The new index that is created in the following example is

a data-partitioned secondary index. For more information about data-partitioned

secondary indexes, see “Data-partitioned secondary indexes” on page 12.

Example: Assume that you have a large transaction table named TRANS that

contains one row for each transaction. The table includes the following columns:

v ACCTID, which is the customer account ID

v POSTED, which holds the date of the transaction

The table space that contains TRANS is divided into 13 partitions, each of which

contains one month of data. Two existing indexes are defined as follows:

v A partitioning index is defined on the transaction date by the following CREATE

INDEX statement with a PARTITION ENDING AT clause:

CREATE INDEX IX1 ON TRANS(POSTED)

 CLUSTER

 (PARTITION 1 ENDING AT (’01/31/2003’),

 PARTITION 2 ENDING AT (’02/28/2003’),

 ...

 PARTITION 13 ENDING AT (’01/31/2004’));

The partitioning index is the clustering index by definition, and the data rows in

the table are in order by the transaction date. The partitioning index controls the

partitioning of the data in the table space.

v A nonpartitioning index is defined on the customer account ID:

CREATE INDEX IX2 ON TRANS(ACCTID);

DB2 usually accesses the transaction table through the customer account ID by

using the nonpartitioning index IX2.

The partitioning index IX1 is not used for data access and is wasting space. In

addition, you have a critical requirement for availability on the table, and you

want to be able to run an online REORG job at the partition level with minimal

disruption to data availability.

To save space and to facilitate reorganization of the table space, you can drop the

partitioning index IX1, and you can replace the access index IX2 with a partitioned

clustering index that matches the 13 data partitions in the table. Issue the following

statements:

Chapter 1. Availability, scalability, and performance enhancements 5

DROP INDEX IX1;

CREATE INDEX IX3

 ON TRANS(ACCTID)

 PARTITIONED CLUSTER;

COMMIT;

DROP INDEX IX2;

COMMIT;

When you drop the partitioning index IX1, DB2 converts the table space from

index-controlled partitioning to table-controlled partitioning. DB2 uses the

PARTITION limit key values of the index-controlled partitioning to determine the

PARTITION limit key values for the table-controlled partitioning.

Ability to add partitions

You can use the ALTER TABLE statement to add a new partition to an existing

partitioned table space and to each partitioned index in the table space. When you

add a partition, DB2 uses the next physical partition that is not already in use until

you reach the maximum number of partitions for the table space.

Example: Assume that a table space that contains a transaction table is divided

into 5 partitions, and each partition contains one year of data. Partitioning is

defined on the transaction date, and the limit key value is the end of the year.

Table 2 shows a representation of the table space.

 Table 2. Initial table space with 5 partitions

Partition Limit value Data set name for the partition

P001 12/31/2003 catname.DSNDBx.dbname.psname.I0001.A001

P002 12/31/2004 catname.DSNDBx.dbname.psname.I0001.A002

P003 12/31/2005 catname.DSNDBx.dbname.psname.I0001.A003

P004 12/31/2006 catname.DSNDBx.dbname.psname.I0001.A004

P005 12/31/2007 catname.DSNDBx.dbname.psname.I0001.A005

Assume that you want to add a new partition to handle the transactions for the

next year. To add a partition, issue the following statement:

ALTER TABLE TRANS ADD PARTITION ENDING AT (’12/31/2008’);

DB2 adds a new partition to the table space and to each partitioned index on the

TRANS table. When the ALTER completes, you can use the new partition

immediately. DB2 does not place the new partition in REORG-pending (REORP)

status because it extends the high-range values that were not previously used.

Ability to rotate partitions

Assume that the partition structure of the table space, as described in Table 2, is

sufficient through the year 2008. When another partition is needed for the year

2009, you determine that the data for 2003 is no longer needed. You want to reuse

the partition for the year 2003 to hold the transactions for the year 2009.

To rotate the first partition to be the last partition, issue the following statement:

ALTER TABLE TRANS ROTATE PARTITION FIRST TO LAST

 ENDING AT (’12/31/2009’) RESET;

For a table with limit values in ascending order, the data in the ENDING AT clause

must be higher than the limit value for previous partitions. DB2 chooses the FIRST

6 Release Planning Guide

partition to be the partition with the lowest limit value. DB2 assigns the new limit

value to P001 because it is the oldest partition (or the one with the lowest limit

value). This partition holds all rows in the range between the new limit value of

12/31/2009 and the previous limit value of 12/31/2008.

The RESET keyword specifies that the existing data in the oldest partition is

deleted. You can use the partition immediately after the ALTER completes. DB2

does not place the new partition in REORG-pending (REORP) status because it

extends the high-range values that were not previously used.

Table 3 shows a representation of the table space after the first partition is rotated

to become the last partition.

 Table 3. Rotating the low partition to the end

Partition Limit value Data set name for the partition

P002 12/31/2004 catname.DSNDBx.dbname.psname.I0001.A002

P003 12/31/2005 catname.DSNDBx.dbname.psname.I0001.A003

P004 12/31/2006 catname.DSNDBx.dbname.psname.I0001.A004

P005 12/31/2007 catname.DSNDBx.dbname.psname.I0001.A005

P006 12/31/2008 catname.DSNDBx.dbname.psname.I0001.A006

P001 12/31/2009 catname.DSNDBx.dbname.psname.I0001.A001

When you create your partitioned table space, you do not need to allocate extra

partitions for expected growth. Instead, use either ALTER TABLE ADD

PARTITION to add partitions as needed, or, if rotating partitions is appropriate for

your application, use ALTER TABLE ROTATE PARTITION to avoid adding another

partition.

Ability to add columns to indexes

In Version 8 of DB2, you can append columns to the end of an existing index key

with the ALTER INDEX statement.

If a column is added to a table and an index on that table in the same unit of

work, the index is immediately available for access. However, if the column is

added to the table and to the index in different units of work, DB2 puts the index

in a REBUILD-pending (RBDP) state, and you need to run the REBUILD INDEX

utility to make the index available.

If the index was created with DEFINE NO, and the underlying data sets have not

yet been created, a restricted state is not set after columns are added to an index

key.

Materialized query tables

DB2 UDB for z/OS now supports materialized query tables, which can simplify

query processing and greatly improve the performance of dynamic SQL queries.

Materialized query tables are particularly effective in data warehousing

applications. A materialized query table contains information that is derived and

summarized from other tables. Materialized query tables pre-calculate and store

the results of queries that require expensive join and aggregation operations. DB2

uses automatic query rewrite to access data in a materialized query table.

Chapter 1. Availability, scalability, and performance enhancements 7

If automatic query rewrite for materialized query tables is enabled, DB2 determines

if a dynamic query or a portion of the query can be resolved by using a

materialized query table. If so, DB2 rewrites the query to use the materialized

query table instead of the underlying base tables to minimize query processing. Be

aware that a materialized query table can yield query results that are not current if

the base tables change after the materialized query table is updated.

To take advantage of using automatic query rewrite with materialized query tables,

follow these steps:

1. Define materialized query tables. You can define materialized query tables

using the CREATE TABLE or ALTER TABLE statements. The clauses DATA

INITIALLY DEFERRED and REFRESH DEFERRED define a table as a

materialized query table. You can define materialized query tables as

MAINTAINED BY USER or MAINTAINED BY SYSTEM, which is the default.

2. Populate materialized query tables. Refresh materialized query tables

periodically to maintain data currency with base tables. However, realize that

refreshing materialized query tables can be an expensive process.

3. Enable automatic query rewrite for materialized query tables, and exploit its

functions by submitting read-only dynamic queries. You can enable automatic

query rewrite for materialized query tables by using the ENABLE QUERY

OPTIMIZATION clause, which is the default in the CREATE TABLE statement.

You can enable query rewrite for the dynamic queries by setting special

registers CURRENT REFRESH AGE to ANY and CURRENT MAINTAINED

TABLE TYPES FOR OPTIMIZATION to ALL, SYSTEM, or USER.

4. Evaluate the effectiveness of the materialized query tables. Drop under-utilized

tables, and create new tables as necessary. You can use EXPLAIN to determine

whether a materialized query table is used in a query.

The following example shows how DB2 can use a materialized query table to

improve the performance of a simple query. Although most uses of materialized

query tables will be much more complex, this example does illustrate some basic

concepts.

Example: Suppose that you have a very large table named TRANS that contains

one row for each transaction that a certain company processes. You want to tally

the total amount of transactions by some time period. Although the table contains

many columns, you are most interested in these four columns:

v YEAR, MONTH, DAY, which together identify the date of a transaction

v AMOUNT, which contains the amount of the transaction

To total the amount of all transactions between 1995 and 2000, by year, you would

use the following query:

SELECT YEAR, SUM(AMOUNT)

 FROM TRANS

 WHERE YEAR >= ’1995’ AND YEAR <= ’2000’

 GROUP BY YEAR

 ORDER BY YEAR;

This query might be very expensive to run, particularly if the TRANS table is a

very large table with millions of rows and many columns.

Now suppose that you define a materialized query table named STRANS by using

the following CREATE TABLE statement:

CREATE TABLE STRANS AS

 (SELECT YEAR AS SYEAR,

 MONTH AS SMONTH,

8 Release Planning Guide

DAY AS SDAY,

 SUM(AMOUNT) AS SSUM

 FROM TRANS

 GROUP BY YEAR, MONTH, DAY)

 DATA INITIALLY DEFERRED REFRESH DEFERRED;

After you populate STRANS with a REFRESH TABLE statement, the table contains

one row for each day of each month and year in the TRANS table.

Using the automatic query rewrite process, DB2 can rewrite the original query into

a new query. The new query uses the materialized query table STRANS instead of

the original base table TRANS:

SELECT SYEAR, SUM(SSUM)

 FROM STRANS

 WHERE SYEAR >= ’1995’ AND SYEAR <= ’2000’

 GROUP BY SYEAR

 ORDER BY SYEAR

If you maintain data currency in the materialized query table STRANS, the

rewritten query provides the same results as the original query. The rewritten

query offers better response time and requires less CPU time.

Indexable predicates with mismatched data types

In previous releases of DB2, a predicate that compared a column to an expression

was stage 1 and indexable only if the column and the expression had the same

data type, and in many cases, the same length. These data type and length

mismatches could cause performance problems that could not always be solved by

changing application programs. For example, the application programmer cannot

control whether the data types and lengths match in these situations:

v In most implementations of C and C++, there is no decimal data type, so host

variables that are compared to columns with the DECIMAL data type must be

defined with some other data types, such as float.

v Java™ does not have fixed-length data types. REXX does not have fixed-length

string data types, except for the case when fixed-length strings are passed in an

input SQLDA. For these languages, any comparisons between host variables and

CHAR or GRAPHIC columns have a type mismatch.

v The programmer does not have access to the source code.

DB2 Version 8 makes changes that lessen the data type and length mismatch

problem. Many predicates with mismatched data types and lengths are now stage

1 or indexable. Those predicates have the following general forms:

v column op expression

v expression op column

v column BETWEEN expression1 AND expression2

v column IN (list)

In the preceding predicate types:

v column is a column of a table.

v op is one of the following comparison operators:

– =

– <

– <=

– >

– >=

– <>

Chapter 1. Availability, scalability, and performance enhancements 9

v expression is an expression that contains any of the following elements:

– Constants

– Host variables

– Special registers

– Session variables

– Parameter markers

– Columns

If the expression contains columns, and the other operands of the predicate also

contain columns, no two columns can be in the same table.

v list meets all of the following conditions:

– list contains only elements from the following list:

- Constants

- Host variables

- Special registers

- Session variables

- Parameter markers
– The predicate that contains list is not in the WHEN clause of a trigger.

– For every element in list, column=element must be stage 1 and indexable.

If the predicate is of the form T1.column op T2.column, the join sequence determines

which element is the column and which element is the expression. The inner table

in the join sequence is considered to be the column, and the outer table of the join

sequence is considered to be the expression.

For plans or packages that were created in a previous release of DB2, you need to

rebind the plans or packages for static SQL statements to take advantage of this

enhancement.

Predicates with one encoding scheme

Any of the previously-listed predicates are stage 1 and indexable, with the

following restrictions:

v A numeric predicate is stage 1 but not indexable under the following conditions:

– op is <>.

– The expression is REAL or FLOAT, and column is DECIMAL with precision

greater than 15.
v A string predicate is stage 1 but not indexable under the following conditions:

– op is <>.

– The expression is GRAPHIC or VARGRAPHIC, and column is CHAR or

VARCHAR.

An exception to this case is when expression is CHAR or VARCHAR and

Unicode MIXED, and op is the equal (=) operator. In this case, the predicate is

stage 1 and indexable.

– expression and column are CHAR or VARCHAR, the length of expression is

greater than the length of column, and op is not the equal (=) operator.

– expression and column are GRAPHIC or VARGRAPHIC, the length of

expression is greater than the length of column, and op is not the equal (=)

operator.

– expression is CHAR or VARCHAR, column is GRAPHIC or VARGRAPHIC,

and op is not the equal (=) operator.
v A predicate in which expression is DATE, TIME, or TIMESTAMP, and column is

CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC is stage 2.

10 Release Planning Guide

Predicates with more than one encoding scheme

Table 4 lists predicates that compare data in different encoding schemes and tells

whether those predicates are indexable or stage 1. The following terms are used:

v U is a table in the Unicode encoding scheme, A is a table in the ASCII encoding

scheme, and E is a table in the EBCDIC encoding scheme.

v expression is any expression that contains arithmetic operators, scalar functions,

aggregate functions, concatenation operators, columns, constants, host variables,

special registers, or date or time expressions.

v C2 col expr is an expression that includes any string column C2, as well as any of

the any of the following elements:

– Constants

– Host variables

– Special registers

– Session variables

– Parameter markers
v op is any of the operators =, <, <=, >, >=, or <>.

v op-not-equal is any of the operators <, <=, >, >=, or <>.

 Table 4. Properties for string comparison predicates with more than one encoding scheme

Predicate type Indexable? Stage 1?

 U.C1 op A.C2

 U.C1 op E.C2

 U.C1 op E.C2 col expr

 U.C1 op A.C2 col expr

Conditions on these predicates:

 U is the inner table.

 The length of U.C1 is greater than or equal to the

length of the other operand.

Y Y

 U.C1 = A.C2

 U.C1 = E.C2

 U.C1 = E.C2 col expr

 U.C1 = A.C2 col expr

Conditions on these predicates:

 U is the inner table.

 The length of U.C1 is less than the length of the other

operand.

Y Y

 U.C1 op-not-equal A.C2

 U.C2 op-not-equal E.C2

 U.C1 op-not-equal A.C2col expr

 U.C1 op-not-equal E.C2col expr

Conditions on these predicates:

 U is the inner table.

 The length of U.C1 is less than the length of the other

operand.

N Y

 A.C1 op E.C2

 A.C1 op U.C2

 A.C1 op E.C2 col expr

 A.C1 op U.C2 col expr

Condition on these predicates:

 A is the inner table.

N Y

Chapter 1. Availability, scalability, and performance enhancements 11

Table 4. Properties for string comparison predicates with more than one encoding

scheme (continued)

Predicate type Indexable? Stage 1?

 E.C1 op A.C2

 E.C1 op U.C2

 E.C1 op A.C2 col expr

 E.C1 op U.C2 col expr

Condition on these predicates:

 E is the inner table.

N Y

 E.C1 op A.C2col expr

 U.C1 op A.C2col expr

Condition on these predicates:

 A is the inner table.

N N

 A.C1 op E.C2 col expr

 U.C1 op E.C2 col expr

Condition on these predicates:

 E is the inner table.

N N

 A.C1 op U.C2 col expr

 E.C1 op U.C2 col expr

Condition on these predicates:

 U is the inner table.

N N

Index enhancements

In Version 8, DB2 makes a number of improvements to indexes:

v “Data-partitioned secondary indexes”

v “Backward index scan” on page 15

v “Varying-length index keys” on page 16

v “Longer index keys” on page 16

v “Distribution statistics” on page 16

v “Improved application availability for nonunique indexes” on page 17

Data-partitioned secondary indexes

A data-partitioned secondary index is a new type of partitioned index for Version 8

of DB2. For a data-partitioned secondary index, the number of index partitions

equals the number of table space partitions. Index keys in partition n of the index

reference only data in partition n of the table space. However, the data-partitioned

secondary index is defined with different columns from the columns that define

the table-controlled partitioning. Figure 2 on page 13 illustrates this concept.

12 Release Planning Guide

In Figure 2, table TRANSACTIONS and index SALES_IX are defined like this:

CREATE TABLE TRANSACTIONS

 (TDATE CHAR(4),

 CUSTNO VARCHAR(4),

 SALES DECIMAL(9,0))

 IN TS1

 PARTITION BY (TDATE)

 (PART 1 ENDING AT (’0131’),

 PART 2 ENDING AT (’0228’),

 ...

 PART 12 ENDING AT (’1231’));

CREATE INDEX SALES_IX ON TRANSACTIONS (SALES) PARTITIONED;

Data-partitioned secondary index SALES_IX is defined on column SALES of the

TRANSACTIONS table. However, the table and the index are physically

partitioned by column TDATE. The result is that each partition of table

TRANSACTIONS has data for only one month, and each partition of

data-partitioned secondary index SALES_IX has keys for the SALES column values

for the corresponding data partition of TRANSACTIONS.

Advantages of data-partitioned secondary indexes for utilities

This section describes the advantages that data-partitioned secondary indexes can

provide over nonpartitioned secondary indexes for utility processing.

Partition-level utility operations can run on physical partitions: Because the

keys for a given data partition reside in a single data-partitioned secondary index

partition, utilities such as CHECK DATA, CHECK INDEX, COPY, REBUILD

INDEX, RECOVER INDEX, REPAIR, and REPORT can operate on physical

partitions, rather than logical partitions. The result can be greater availability.

TDATE CUSTNO SALES

0101 0100 10000
0101 0155 5000

0130 0455 2000
0131 0455 25000

0201 0400 25000
0203 0455 5000

0226 0090 4000
0228 0100 10000

1201 0525 4000
1202 0100 2000

1230 0254 5000
1231 0250 25000

..
.

..
.

..
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

..
.

..
.

2000
4000
5000

10000
25000

2000
4000
5000

10000
25000

2000
4000
5000

10000
25000

0
.
.
.
.

50000

0
.
.
.
.

50000

0
.
.
.
.

50000

Transactions

Jan

Feb

Dec

Data-partitioned
secondary index

Figure 2. Example of a data-partitioned secondary index

Chapter 1. Availability, scalability, and performance enhancements 13

Data-partitioned secondary indexes can make LOAD PART jobs run better:

 Data-partitioned secondary indexes can provide these advantages for running

LOAD PART:

v When you run several LOAD PART jobs on different partitions of a partitioned

table space, and the associated table has a nonpartitioned secondary index

defined on it, contention can occur between the jobs because partitions can share

pages of the index. However, if a data-partitioned secondary index is defined on

the table space instead of a nonpartitioned secondary index, the partitions do

not share pages of the index, so contention is reduced.

v During parallel LOAD PART execution with a data-partitioned secondary index,

LOAD inserts the data-partitioned secondary index keys into a separate index

structure for each partition, in key order. This is more efficient than key insertion

for a nonpartitioned secondary index.

Data-partitioned secondary indexes can reduce data sharing overhead: Data

sharing users sometimes do batch processing of partitions in a partitioned table

space in parallel, with each batch job processing one or more partitions. This is

done to isolate work for data sharing members to specific partitions of a table

space to alleviate contention. This technique can reduce intersystem read-write

interest in physical partitions, which reduces data sharing overhead. However, if

nonpartitioned secondary indexes are defined on the table space, running batch

jobs in parallel is less effective because contention occurs on the indexes. Using

data-partitioned secondary indexes instead can alleviate this problem because

different data sharing members can operate on different index partitions, as well as

different table space partitions.

Data-partitioned secondary indexes can eliminate the BUILD2 phase of REORG

TABLESPACE: The BUILD2 phase corrects nonpartitioning indexes for REORG

TABLESPACE PART SHRLEVEL REFERENCE or CHANGE. If you define only

partitioned indexes on a table, you do not need the BUILD2 phase. Therefore, if

you define a data-partitioned secondary index on a table that serves the same

purpose as a nonpartitioned index served in previous releases of DB2, you can

avoid the BUILD2 phase.

Data-partitioned secondary indexes provide more efficient index backup and

recovery: You can copy and recover data-partitioned secondary indexes by

partition. In addition, you can rebuild individual partitions of a data-partitioned

secondary index in parallel for a faster rebuild of the entire index.

Advantages of data-partitioned secondary indexes for queries

A data-partitioned secondary index can provide a performance advantage for a

query that meets the following criteria:

v The query has predicates that contain columns that are in the data-partitioned

secondary index.

v The query contains additional predicates on the partitioning columns of the table

that limit the result table to a subset of the partitions in the table.

Example: Suppose that, in addition to the SALES_IX data-partitioned secondary

index, the TRANSACTIONS table also has the partitioned index TDATE_IX, which

is defined like this:

CREATE INDEX TDATE_IX ON TRANSACTIONS (TDATE) PARTITIONED CLUSTER;

The following query on the TRANSACTIONS table can use data-partitioned

secondary index SALES_IX for better performance:

14 Release Planning Guide

SELECT CUSTNO, SALES

 FROM TRANSACTIONS

 WHERE TDATE BETWEEN '0101' AND '0228' AND

 SALES >= 10000;

This query meets the criteria for making efficient use of a data-partitioned

secondary index:

v The predicate includes the SALES column, which is in the data-partitioned

secondary index.

v The predicate includes the partitioning key TDATE, which limits the selected

data to only the first two partitions of the table.

Disadvantages of data-partitioned secondary indexes for queries

A data-partitioned secondary index is not always appropriate for queries. Among

the reasons are:

v For queries that do not include the partitioning columns, using a

data-partitioned secondary index means that DB2 must do an index scan for

each partition.

v A data-partitioned secondary index cannot be a unique index, so it cannot be

used to enforce uniqueness across partitions.

Backward index scan

Version 8 of DB2 includes the capability for backward index scan. Backward index

scan can improve performance of a SELECT statement with an ORDER BY column

DESC clause because it reduces the need for DB2 to do sorts. In addition, the

backward index scan capability can reduce the need for descending indexes

because DB2 can use ascending indexes to scan backward.

DB2 can use an index for a backward scan if the following conditions are true:

v The index is defined on the same columns as the columns in the ORDER BY

clause, or the index is defined on the same columns as the columns in the

ORDER BY clause, followed by other columns.

v For each column that is in the ORDER BY clause, the ordering that is specified

in the index is the opposite of the ordering that is specified in the ORDER BY

clause.

Example: Suppose that index ACCT_STAT_IX is defined like this:

CREATE INDEX ACCT_STAT_IX

 ON ACCT_STAT

 (ACCT_NUM ASC,

 STATUS_DATE ASC,

 STATUS_TIME DESC);

Now suppose that you want to fetch rows using a cursor that is declared like this:

DECLARE CURSOR C1 SENSITIVE STATIC SCROLL FOR

 SELECT STATUS_DATE, STATUS

 FROM ACCT_STAT

 WHERE ACCT_NUM = :HV

 ORDER BY ACCT_NUM DESC, STATUS_DATE DESC, STATUS_TIME ASC;

Because ACCT_NUM and STATUS_DATE are in ascending order in

ACCT_STAT_IX and descending order in the ORDER BY clause, and

STATUS_TIME is in descending order in ACCT_STAT_IX and ascending order in

the ORDER BY clause, DB2 can use ACCT_STAT_IX to do a backward scan

without doing a sort.

Chapter 1. Availability, scalability, and performance enhancements 15

For plans or packages that were created in a previous release of DB2, you need to

rebind the plans or packages for static SQL statements to take advantage of this

enhancement.

Varying-length index keys

In previous releases of DB2, VARCHAR and VARGRAPHIC columns in indexes

were padded to the maximum lengths of the columns. In Version 8 of DB2, index

keys for varying-length columns can be varying-length. Varying-length keys have

the following advantages:

v Varying-length key columns usually result in smaller indexes because the index

keys use less than the maximum number of bytes that are defined for the

columns.

v Varying-length keys can use index-only access to the data. Fixed-length keys for

varying-length columns cannot do this.

v Other DB2 UDB family members have varying-length index keys, so providing

this capability increases compatibility with the DB2 UDB family.

Indexes in which VARCHAR or VARGRAPHIC columns are padded to their

maximum length are PADDED indexes. Indexes that are not padded to their

maximum length are NOT PADDED indexes. You can specify whether an index is

PADDED or NOT PADDED by specifying the PADDED or NOT PADDED

keyword in CREATE INDEX or ALTER index. You can also set the default index

padding mode through the new DEFIXPD subsystem parameter.

Indexes that were created in previous releases of DB2 are PADDED.

If you alter an index that contains VARCHAR or VARGRAPHIC columns from

PADDED to NOT PADDED (or from PADDED to NOT PADDED), DB2 places that

index in a restricted REBUILD-pending (RBDP) state. You need to run the

REBUILD INDEX, REORG TABLESPACE, or LOAD REPLACE utility to reset the

RBDP state.

Longer index keys

Version 8 of DB2 increases the maximum length of an index key from 255 bytes to

2000 bytes. The increased key length has the following advantages:

v More compatibility with the DB2 UDB family

v Simplified conversion of vendor applications from EBCDIC or ASCII to Unicode

For example, a table column that is CHAR(10) might be represented as

GRAPHIC(20) in Unicode. An index on that column also requires twice as many

bytes. In cases like this, the previous maximum key length might be inadequate.

Distribution statistics

To run efficiently, data warehousing, data mining, and ad hoc query applications

need statistics on columns that are in predicates, regardless of whether they are

leading columns of an index. In addition, distribution statistics on non-leading

index columns or non-indexed columns let DB2 make better access path decisions

when data is asymmetrically distributed.

In Version 8 of DB2, you can use RUNSTATS to collect the following additional

statistics:

v Frequency distributions for non-indexed columns or groups of columns

v Cardinality values for groups of non-indexed columns

16 Release Planning Guide

v Least-frequently occurring values, most-frequently occurring values, or both, for

any group of columns

Example: Collecting cardinality statistics for a column group: Run RUNSTATS with the

COLGROUP parameter to collect cardinality statistics on a column group that

consists of columns EDLEVEL, JOB, and SALARY of the employee table.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

 TABLE(DSN8810.EMP)

 COLGROUP(EDLEVEL, JOB, SALARY)

Example: Collecting most-frequent and least-frequent value statistics for a column group:

Run RUNSTATS with the COLGROUP and FREQVAL BOTH parameters to collect

cardinality statistics and statistics on the 15 most-frequent and least-frequent values

for a column group that consists of columns EDLEVEL, JOB, and SALARY of the

employee table.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E

 TABLE(DSN8810.EMP)

 COLGROUP(EDLEVEL, JOB, SALARY) FREQVAL COUNT 15 BOTH

Improved application availability for nonunique indexes

For improved application availability, INSERT, UPDATE, and DELETE operations

can occur on a table with a nonunique index that is in REBUILD-pending status.

Reoptimizing the access path at run time

Version 8 of DB2 UDB for z/OS introduces the following bind options for

reoptimizing the access path at run time:

REOPT(ALWAYS) DB2 determines and caches the access path for any

SQL statement with variable values each time the

statement is run. REOPT(ALWAYS) replaces the

REOPT(VARS) option from previous versions of

DB2.

REOPT(ONCE) DB2 determines and caches the access path for any

SQL statement with variable values only once at

run time, using the first set of input variable

values. If the statement is run multiple times, DB2

does not reoptimize each time. The REOPT(ONCE)

bind option works only with dynamic SQL

statements, and it allows DB2 to store the access

path for dynamic SQL statements in the dynamic

statement cache.

REOPT(NONE) DB2 determines the access path at bind time, and

does not change the access path at run time.

Performance enhancements for star join

The information under this heading, up to “Cost-based parallel sorting” on page 19, is

Product-sensitive Programming Interface and Associated Guidance Information, as

defined in “Notices” on page 149.

Chapter 1. Availability, scalability, and performance enhancements 17

In Version 8, DB2 UDB for z/OS introduces three performance enhancements for

star joins: sparse indexing1, a dedicated virtual memory pool, and avoidance of

snowflake materialization. This section discusses sparse indexing and the dedicated

virtual memory pool.

Sparse indexing: Sparse indexing for star joins can significantly improve the

performance of data warehousing applications. Because many data warehousing

applications rely on the highly normalized structure of star schema design, these

applications can have a large number of snowflake work files. Before Version 8,

DB2 could not use indexes for snowflake work files. Instead of using indexes, DB2

tended to join snowflake work files by using a costly sort-merge join or

nested-loop join with table space scan on snowflake workfiles. In Version 8, sparse

indexes for star joins provide DB2 with more efficient access paths.

DB2 Version 8 can choose a sparse-index access path if an equal join predicate

exists between the fact table and each dimension table (snowflake composite).

Sparse indexing for star joins improves performance in data warehousing

applications by enabling the following efficient actions:

v Avoiding the sort-merge join or nested-loop join with table space scan on

snowflake workfiles. The sparse-index access path can be a particularly

important performance enhancement when it eliminates single or multiple large

composite sorts. The sparse index join method can also reduce parallelism

overhead.

v Expediting the skipping of unqualified keys. The increased efficiency results in a

significant I/O reduction. The CPU cost reduction only becomes significant for a

large sort or for multiple sorts.

v Increasing the exploitation of parallelism.

When DB2 chooses the sparse-index access path, the ACCESS_TYPE column in the

PLAN_TABLE contains the character T for the work file.

Dedicated virtual memory pool: In DB2 Version 8, you can create a dedicated

virtual memory pool for star join operations. When the virtual memory pool is

enabled for star joins, DB2 caches data from workfiles that are used by star join

queries. A virtual memory pool dedicated to star join operations has the following

advantages:

v Immediate data availability. During a star join operation, workfiles might be

scanned many times. If the workfile data is cached in the dedicated virtual

memory pool, that data is immediately available for join operations.

v Reduced buffer pool contention. Because the dedicated virtual memory pool

caches data separately from the workfile buffer pool, contention with the buffer

pool is reduced. Reduced contention improves performance particularly when

sort operations are performed concurrently.

For information about determining the size of your dedicated virtual memory pool

and implementing your dedicated virtual memory pool, see DB2 Administration

Guide.

1. APAR PQ614588 adds support for sparse indexing for star joins in Version 7 of DB2 UDB for z/OS and OS/390.

18 Release Planning Guide

Cost-based parallel sorting

Before Version 8 of DB2, the number of tables in a sort determined whether DB2

used a parallel sort. Single-table sorts used parallel sorting; multiple-table sorts did

not. In Version 8, DB2 UDB for z/OS introduces cost-based parallel sorting. In

Version 8, DB2 determines whether to use a parallel or non-parallel sort based on

cost considerations, including sort data size and parallel degrees. You can

determine whether a sort is executed in parallel by using EXPLAIN.

Visual Explain enhancements

Visual Explain for DB2 UDB for z/OS is a workstation tool that provides graphical

depictions of the access plans that DB2 chooses for your SQL queries and

statements. Such graphs eliminate the need to manually interpret plan table

output. The relationships between database objects, such as tables and indexes, and

operations, such as table space scans and sorts, are clearly illustrated in the graphs.

You can choose to have the attributes for these objects and operations displayed

next to the graph. Figure 3 shows an example of such a graph. In this graph, all of

the attributes for the sort operation are displayed on the left, because the SORT

node is highlighted on the right. Notice the navigation tree above the attribute list.

You can use this tree to link to related objects.

You can also use Visual Explain to generate customized reports on explainable

statements, to view subsystem parameters, and to view data from the plan table,

the statement table, and the function table.

This release of Visual Explain also includes the following enhancements:

v More context-sensitive tuning suggestions are provided. You can link to these

suggestions directly from the graph.

Figure 3. Example of an access plan graph in Visual Explain

Chapter 1. Availability, scalability, and performance enhancements 19

v You can link from the graph to attributes and descriptions for each object or

operation that is used in the access plan.

v Each graph can display either one or multiple query blocks, so that you can

view the entire access plan in one graph. In previous versions of Visual Explain,

each graph displayed only one query block.

v You can use Visual Explain to catalog and uncatalog databases on your local

machine.

v You can use Visual Explain to run a query and view the formatted results.

64-bit virtual storage

Version 8 of DB2 UDB for z/OS, through deep integration with the IBM zSeries®

800, 900, 990, or equivalent, now supports 64-bit virtual storage in the DBM1

address space. DB2 previously supported 31-bit virtual storage, which afforded

DB2 a 2-GB address space. By supporting 64-bit virtual storage, DB2 UDB for

z/OS now supports a 16-exabyte address space. Because the 16-exabyte address

space is 8 billion times larger than the 2-GB address space, it can provide

significant virtual storage constraint relief.

The introduction of 64-bit virtual storage in Version 8 of DB2 UDB for z/OS brings

a reorganization of the address space. Many entities are now stored in the new

virtual storage area above the former 2-GB limit. Entities that are stored above that

limit are said to be ″above the bar.″ The entities that move above the bar in Version

8, and the advantages related to each move, are shown in Table 5.

 Table 5. Entities above the 2-GB bar and related advantages

Entity above the bar Advantage

Buffer pools Larger buffer pools reduce I/O for random access and

enable larger page sizes, which benefit sequential

access. Buffer pool management becomes easier, and

hiperpools and data spaces are eliminated.

DBDs in the EDM pool More database objects can be defined, which can

reduce I/O to and from the DB2 directory.

Compression dictionaries Open and close operations can be avoided when a

large number of compressed table spaces must be

accessed.

Global dynamic statement cache A larger cache avoids dynamic rebinds.

IRLM locks More storage for IRLM locks enables smaller lock

granularity, which results in reduced lock contention.

Sort pools Frees up space below the bar for other uses.

RIDLISTs for the RID pool Frees up space below the bar for other uses.

Although 64-bit virtual storage changes buffer pool management, you can run your

existing applications and use your existing buffer pools when you migrate to

Version 8 of DB2 UDB for z/OS. The buffer pool names (BP0, BP1, and so forth)

do not change. The page size options remain 4 KB, 8 KB, 16 KB, and 32 KB. When

you migrate, DB2 determines the buffer pool size based on the following equation:

VPSIZE + HPIZE = BPSIZE

VPSIZE is the old virtual pool size, HPSIZE is the old virtual pool size, and

BPSIZE is the new buffer pool size. When you install DB2 UDB for z/OS as a new

Version 8 subsystem, you can specify the buffer pool sizes during installation.

20 Release Planning Guide

#
#
#
#
#
#
#

#
#
#
#
#

##

##

##
#
#
#

##
#

##
#
#

##

##
#

##

##
#

#
#
#

Data sharing enhancements

The following data sharing enhancements can improve your performance and

availability:

v “Improved LPL recovery”

v “Reduction of locking overhead for data sharing workloads”

v “Reduction of buffer management overhead costs for data sharing workloads”

on page 22

v “Improved index split performance for data sharing” on page 22

v “Resolution of indoubt units of recovery in restart light” on page 22

Improved LPL recovery

With Version 8 of DB2, only pages in the logical page list (LPL) are locked as part

of the recovery process, leaving the remaining pages in the page set or partition

accessible to DB2 applications while LPL recovery is in progress. This improves

system performance and enhances data availability.

Prior to Version 8, you needed to manually recover pages that DB2 put into the

LPL. In Version 8, DB2 provides support for automatic recovery of LPL pages.

When pages are added to the LPL, DB2 issues message DSNB250E, which is

enhanced to indicate the reason the pages are added to the LPL. DB2 then attempts

automatic recovery, except in the following situations:

v Disk I/O errors

v During DB2 restart or end_restart times

v Group buffer pool structure failures

v 100% loss of connection to the group buffer pool

If automatic-LPL recovery completes successfully, DB2 deletes the pages from the

LPL and issues message DSNI021I, which indicates completion.

Reduction of locking overhead for data sharing workloads

Version 8 contains several locking enhancements to improve locking performance

in a data sharing environment:

v The IX and IS mode parent L-locks of different members no longer encounter

global lock contention because both locks are now treated as S-type locks in XES

and in the coupling facility.

The reduction of global lock contention improves performance, especially for

plans and packages that are bound with RELEASE(COMMIT), and greatly

reduces the need to use the RELEASE(DEALLOCATE) bind option in

conjunction with thread reuse to obtain good performance.

v DB2 now uses the parent P-lock (at the page set or partition level) instead of the

parent L-lock to determine whether it is necessary to propagate child locks to

the coupling facility.

Use of the parent P-lock increases availability because retained parent L-locks no

longer block access to an entire table space or partition when a member fails.

Use of the parent P-lock also improves performance because child lock

propagation is not an issue as inter-DB2 interest changes on parent L-locks.

As a result of these changes it may be necessary to increase the size of the lock

structure in the coupling facility. These enhancements are available only in

new-function mode, and only after all members of the data sharing group have

been stopped without error and restarted.

Chapter 1. Availability, scalability, and performance enhancements 21

#

#
#

#
#
#

#
#
#
#

#
#
#

#
#
#
#

#
#
#
#

Reduction of buffer management overhead costs for data

sharing workloads

Version 8 makes use of two new batch processes to reduce the amount of traffic to

and from the coupling facility when you are running z/OS Version 1 Release 4 and

coupling facility level 12. DB2 can now write and register multiple pages to a

group buffer pool when you use the new z/OS Write And Register Multiple

(WARM) command. And when you use a single Read For CastOut Multiple

(RFCOM) command, DB2 can read multiple pages from a group buffer pool for

castout processing.

You can expect the greatest performance benefits for data sharing workloads that

update a large number of pages belonging to group buffer pool dependent objects.

Improved index split performance for data sharing

Version 8 greatly reduces the number of log and coupling facility operations that

are associated with an index page split. In previous versions of DB2, index page

splits require up to five separate writes to the group buffer pool and emptying of

the DB2 log buffers. With Version 8, index page splits are optimized, improving

performance for high-volume INSERT OLTP workloads and other operations.

Resolution of indoubt units of recovery in restart light

In versions of DB2 before Version 8, starting a DB2 member in LIGHT(YES) mode

(restart light) removes retained locks with minimal disruption in the event of a

system failure. Restart light is improved in Version 8. If indoubt units of recovery

(URs) exist at the end of restart recovery, DB2 remains running so that the indoubt

URs can be resolved. After all the indoubt URs are resolved, the DB2 member that

is running in LIGHT(YES) mode shuts down and can be restarted normally.

Improved space allocation

Version 8 of DB2 introduces improved default primary and secondary space

allocations for DB2-managed data sets. Beginning in Version 8, the DB2-supplied

default values for table space and index space allocation size are increased. Default

allocations are in cylinders now, which can result in better performance of mass

inserts, prefetch operations, and the LOAD, REORG, and RECOVER utilities.

Additionally, by improving the method for allocating secondary extents, the

likelihood of out-of-extents errors is decreased.

The objectives of the Version 8 space allocation enhancements are:

v To improve performance, increase data availability, and limit the occurrence of

outages caused by lack of space

v To prevent a DB2-managed data set from reaching the VSAM maximum extent

limit of 255 before it reaches the maximum page set size

v To eliminate the need to specify primary and secondary quantity values for

DB2-managed data sets when creating or modifying table spaces and indexes

The new space allocation methods affect both new DB2-managed data sets and

existing data sets that require additional extents. See “Migration considerations” on

page 67 for an understanding of how space allocation changes for DB2-managed

data sets affect your site

22 Release Planning Guide

#

#

New default primary space allocation value

By default, DB2 now uses the following values for primary space allocation of

DB2-managed data sets:

v 1 cylinder (720 KB) for non-LOB table spaces

v 10 cylinders for LOB table spaces

v 1 cylinder for indexes

To indicate that you want DB2 to use the default values for primary space

allocation of table spaces and indexes, specify a value of 0 for the following

parameters on installation panel DSNTIP7, as shown in Table 6.

 Table 6. DSNTIP7 parameter values for managing space allocations

Installation panel DSNTIP7 parameter Recommended value

TABLE SPACE ALLOCATION 0

INDEX SPACE ALLOCATION 0

Thereafter:

v On CREATE TABLESPACE and CREATE INDEX statements, do not specify a

value for the PRIQTY option.

v On ALTER TABLESPACE and ALTER INDEX statements, specify a value of -1

for the PRIQTY option.

DB2 stores a value of -1 in the PQTY column of either the SYSIBM.SYSTABLEPART

or SYSIBM.SYSINDEXPART table when it uses the default value for primary space

allocation.

Primary space allocation quantities do not exceed DSSIZE or PIECESIZE clause

values.

For those situations in which the default primary quantity value is not large

enough, you can specify a larger value for the PRIQTY option when creating or

altering table spaces and indexes. DB2 always uses a PRIQTY value if one is

explicitly specified.

If you want to prevent DB2 from using the default value for primary space

allocation of table spaces and indexes, specify a non-zero value for the TABLE

SPACE ALLOCATION and INDEX SPACE ALLOCATION parameters on

installation panel DSNTIP7.

New sliding scale for secondary space allocation

DB2 can now calculate the amount of space to allocate to secondary extents by

using a sliding scale algorithm. The first 127 extents are allocated in increasing

size, and the remaining extents are allocated based on the initial size of the data

set:

v For 32 GB and 64 GB data sets, each extent is allocated with a size of 559

cylinders.

v For data sets that range in size from less than 1 GB to 16 GB, each extent is

allocated with a size of 127 cylinders.

This approach has several advantages:

v It minimizes the potential for wasted space by increasing the size of secondary

extents slowly at first.

Chapter 1. Availability, scalability, and performance enhancements 23

v It prevents very large allocations for the remaining extents, which would likely

cause fragmentation.

v It does not require users to specify SECQTY values when creating and altering

table spaces and index spaces.

v It is theoretically possible to always reach maximum data set size without

running out of secondary extents.

DB2 stores a value of -1 in the SQTY column of the SYSIBM.SYSTABLEPART or

SYSIBM.SYSINDEXPART table when it uses the default value for secondary space

allocation.

Maximum allocation is shown in Table 7. This table assumes that the initial extent

that is allocated is one cylinder in size.

 Table 7. Maximum allocation of secondary extents

Maximum data set size, in

GB

Maximum allocation, in

cylinders

Extents required to reach full

size

1 127 54

2 127 75

4 127 107

8 127 154

16 127 246

32 559 172

64 559 255

DB2 uses a sliding scale for secondary extent allocations of table spaces and

indexes when:

v You do not specify a value for the SECQTY option of a CREATE TABLESPACE

or CREATE INDEX statement.

v You specify a value of -1 for the SECQTY option of an ALTER TABLESPACE or

ALTER INDEX statement

Otherwise, DB2 always uses a SECQTY value for secondary extent allocations, if

one is explicitly specified.

Exception: For those situations in which the calculated secondary quantity value is

not large enough, you can specify a larger value for the SECQTY option when

creating or altering table spaces and indexes. However, in the case where the

OPTIMIZE EXTENT SIZING parameter is set to YES and you specify a value for

the SECQTY option, DB2 uses the value of the SECQTY option to allocate a

secondary extent only if the value of the option is larger than the value that is

derived from the sliding scale algorithm. The calculation that DB2 uses to make

this determination is:

Actual secondary extent size = max (min (ss_extent, MaxAlloc), SECQTY)

In this calculation, ss_extent represents the value that is derived from the sliding

scale algorithm, and MaxAlloc is either 127 or 559 cylinders, depending on the

maximum potential data set size. This approach allows you to reach the maximum

page set size faster. Otherwise, DB2 uses the value that is derived from the sliding

scale algorithm.

24 Release Planning Guide

If you do not provide a value for the secondary space allocation quantity, DB2

calculates a secondary space allocation value equal to 10% of the primary space

allocation value and subject to the following conditions:

v The value cannot be less than 127 cylinders for data sets that range in initial size

from less than 1 GB to 16 GB, and cannot be less than 559 cylinders for 32 GB

and 64 GB data sets.

v The value cannot be more than the value that is derived from the sliding scale

algorithm.

The calculation that DB2 uses for the secondary space allocation value is:

Actual secondary extent size = max (0.1 × PRIQTY, min (ss_extent, MaxAlloc))

In this calculation, ss_extent represents the value that is derived from the sliding

scale algorithm, and MaxAlloc is either 127 or 559 cylinders, depending on the

maximum potential data set size.

Secondary space allocation quantities do not exceed DSSIZE or PIECESIZE clause

values.

If you do not want DB2 to extend a data set, you can specify a value of 0 for the

SECQTY option. Specifying 0 is a useful way to prevent DSNDB07 work files from

growing out of proportion.

If you want to prevent DB2 from using the sliding scale for secondary extent

allocations of table spaces and indexes, specify a value of NO for the OPTIMIZE

EXTENT SIZING parameter on installation panel DSNTIP7.

Secondary space allocation quantities do not exceed DSSIZE or PIECESIZE clause

values.

More options for data security in TCP/IP networks

Version 8 of DB2 introduces two new TCP/IP security mechanisms:

v A more secure mechanism for verifying a remote client's port of entry

v Improved encrypted security mechanisms

More secure mechanism for verifying a remote client's port of

entry

When a remote TCP/IP client attempts to establish a connection to a DB2 UDB for

z/OS server, the user ID that is associated with the incoming request is subjected

to RACF verification. Currently, if the RACF APPCPORT class is active, RACF also

verifies that the user ID is authorized to access z/OS from the client’s port of entry.

Beginning in this release, DB2 can provide a SERVAUTH profile name to RACF

when verifying the port of entry of a user ID.

This improved security mechanism is dependent on the use of the following

features in Version 1 Release 5 of z/OS:

v The NETACCESS statement

Use the NETACCESS statement to configure network access control use of z/OS

Communications Server. This allows DB2 to restrict the access of particular users

from specific IP networks. See z/OS Communications Server: IP Configuration Guide

for complete information about using the NETACCESS statement.

v The SERVAUTH class resource

Chapter 1. Availability, scalability, and performance enhancements 25

Use the SERVAUTH class resource in RACF to protect the network security

zones, as defined by the NETACCESS statement. See z/OS Security Server RACF

Security Administrator's Guide for complete information about using the

SERVAUTH class resource.

In prior z/OS releases, the port of entry that was used in the RACROUTE VERIFY

call was the literal string 'TCPIP'. Beginning in Version 1 Release 5 of z/OS, if

TCP/IP network access control is configured and the RACF SERVAUTH class is

active, the port of entry that is used in the RACROUTE VERIFY call is the security

zone name of the port of entry for the remote client.

See DB2 Administration Guide for detailed instructions on using the RACF

SERVAUTH class and TCP/IP network access control.

Improved encrypted security mechanisms

New Distributed Relational Database Architecture™ (DRDA®) security options

provide the following data security improvements in distributed computing

environments:

v DB2 UDB for z/OS servers can provide secure, high-speed data encryption and

decryption.

v DB2 UDB for z/OS requesters now have the option of encrypting user IDs and,

optionally, passwords when they connect to remote servers. Requesters can also

encrypt security-sensitive data when communicating with servers, so that the

data is secure when traveling over the network.

By default, encrypted security mechanisms use the z/OS integrated cryptographic

service facility (ICSF). ICSF is a software element of z/OS that works with a

required hardware cryptographic feature and RACF (or equivalent) to provide

secure, high-speed cryptographic services. ICSF supports cryptography by the IBM

Common Cryptographic Architecture (CCA), which is based on the DES algorithm.

See Integrated Cryptographic Service Facility Administrator's Guide for more detailed

information about ICSF. If ICSF is not available, is not installed or configured

properly, or is not active, DB2 uses the existing BSAFE services for only those

security mechanisms that are supported by DB2 UDB for z/OS servers in previous

releases.

Authentication mechanisms used by DB2 UDB for z/OS as a

server

As a server, DB2 UDB for z/OS can accept either SNA or DRDA authentication

mechanisms. Therefore, DB2 can authenticate remote users from either the security

tokens that are obtained from the SNA ATTACH (FMH-5) or from the DRDA

security commands that are described by each of the protocols. If TCP/IP protocols

are used, the following additional authentication methods are now supported:

v Encrypted user ID and encrypted security-sensitive data

v Encrypted user ID, encrypted password, and encrypted security-sensitive data

v Encrypted user ID, encrypted password, encrypted new password, and

encrypted security-sensitive data

Prerequisite: ICSF must be installed, configured, and active before servers can offer

encryption and decryption services.

26 Release Planning Guide

Authentication mechanisms used by DB2 UDB for z/OS as a

requester

As a requester, DB2 UDB for z/OS chooses SNA or DRDA security mechanisms

based on the network protocol and the authentication mechanisms you use. If you

use TCP/IP protocols, the following additional DRDA authentication mechanisms

are now supported:

v Encrypted user ID and encrypted password

v Encrypted user ID and encrypted security-sensitive data

v Encrypted user ID, encrypted password, and encrypted security-sensitive data

Prerequisite: ICSF must be installed, configured, and active before requesters can

use the new encryption options.

For performance reasons, the entire network stream is not encrypted. Only the

following security-sensitive types of data are encrypted:

v SQL statements that are being prepared, executed, or bound to an RDB package.

v SQL statement variable descriptions that appear in an SQL statement.

v SQL statement attributes that are being prepared.

v SQL program variable data that consists of input data to an SQL statement

during an open or execute operation. This also includes a description of the

data.

v SQL reply data that consists of output data from the processing of a SQL

statement. This also includes a description of the data.

v Query answer set data that consists of the answer set that results from a query.

v SQL result set reply data and SQL result set column information reply data.

v Input or output LOB data.

v A description of the data that is returned from the server as the result of a

describe operation.

Changes to the communications database

The SECURITY_OUT column of the SYSIBM.IPNAMES table now supports two

new DRDA security options:

D The option is ″userid and security-sensitive data encryption″. Outbound

connection requests contain an authorization ID and no password. The

authorization ID used for an outbound request is either the DB2 user’s

authorization ID or a translated ID, depending on the value of the

USERNAMES column.

E The option is ″userid, password, and security-sensitive data encryption″.

Outbound connection requests contain an authorization ID and a

password. The password is obtained from the SYSIBM.USERNAMES table.

The USERNAMES column must specify 'O'.

In addition, the security option 'P' now supports encryption:

P The option is ″password″. Outbound connection requests contain an

authorization ID and a password. The password is obtained from the

SYSIBM.USERNAMES table. The USERNAMES column must specify 'O'.

This option indicates that the user ID and the password are to be

encrypted, if the server supports encryption. Otherwise, the user ID and

the password are sent to the partner in clear text.

Chapter 1. Availability, scalability, and performance enhancements 27

System-level point-in-time recovery

Version 8 provides an enhanced system-level point-in-time recovery capability. You

can make fast volume-level backups of a DB2 subsystem or data-sharing group

with minimal disruption and recover a subsystem or data-sharing group to any

point in time, regardless of whether you have uncommitted units of work.

The new BACKUP SYSTEM utility takes fast volume-level copies of DB2 databases

and logs with minimal disruption. You can copy both the data and logs or only the

data. Previously, to make a system-level backup, you needed to issue the SET LOG

SUSPEND command, which stops logging and thus prevents any new database

updates. A BACKUP SYSTEM job does not stop logging; it needs only to wait for

the following events to complete:

v 32-KB page writes

v Read-only switching

v Data set extensions

The BACKUP SYSTEM utility can operate on an entire data-sharing group,

whereas the SET LOG SUSPEND command must be issued for each data-sharing

member.

The new RESTORE SYSTEM utility recovers a DB2 subsystem to an arbitrary point

in time. This utility automatically handles any creates, drops, and LOG NO events

that might have occurred between the time the backup was taken and the recovery

point in time.

The BACKUP SYSTEM and RESTORE SYSTEM utilities rely on new DFSMShsm™

services in z/OS V1R5 that automatically monitor which volumes need to be

copied. The BACKUP SYSTEM and RESTORE SYSTEM utilities use copy pools,

which are new constructs in z/OS DFSMShsm V1R5. A copy pool is a construct that

contains the names of SMS-managed storage groups that can be backed up and

restored with a single command. These storage groups are also referred to as the

source storage groups. Each of these source storage groups contains the name of an

associated copy-pool backup storage group, which contains eligible volumes for

the backups. Each DB2 subsystem can have up to two copy pools, one for

databases and one for logs. BACKUP SYSTEM copies the volumes that are

associated with these copy pools at the time of the copy.

To use the BACKUP SYSTEM and RESTORE SYSTEM utilities, you must ensure

that the following conditions are true:

v The data sets that you want to copy are SMS-managed data sets.

v You are running z/OS V1R5 or above.

v You have disk control units that support ESS FlashCopy®.

v You have defined a copy pool for your database data. If you plan to also copy

the logs, define another copy pool for your logs. Use the DB2 naming

convention for both of these copy pools.

v You have defined an SMS backup storage group for each storage group in the

copy pools.

Additional parameters

This section contains information about new subsystem parameters and about

subsystem parameters that have been changed to be dynamically updatable in

Version 8. See DB2 Installation Guide for complete details about these parameters.

28 Release Planning Guide

New subsystem parameters

Several subsystem parameters have been added to installation panels (see Table 8).

As a result, the values you choose for these parameters are used during migration

to a new release of DB2. All new parameters are dynamically updateable.

 Table 8. Parameters that have been added to installation panels

Subsystem parameter Panel Field name

ACCUMACC DSNTIPN DDF/RRSAF ACCUM

ACCUMUID DSNTIPN AGGREGATION FIELDS

AEXITLIM DSNTIPP AUTH EXIT LIMIT

DSVCI DSNTIP7 VARY DS CONTROL INTERVAL

EDMDBDC DSNTIPC EDM DBD CACHE

EDMSTMTC DSNTIPC EDM STATEMENT CACHE

IXQTY DSNTIP7 INDEX SPACE DEFAULT SIZE

LRDRTHLD DSNTIPE LONG-RUNNING READER

MAINTYPE DSNTIP4 CURRENT MAINT TYPES

MAX_NUM_CUR DSNTIPX MAX OPEN CURSORS

MAX_ST_PROC DSNTIPX MAX STORED PROCS

MGEXTSZ DSNTIP7 OPTIMIZE EXTENT SIZING

NEWFUN DSNTIPA1 INSTALL TYPE

PADIX DSNTIPE PAD INDEXES BY DEFAULT

PADNTSTR DSNTIP4 PAD NUL-TERMINATED

REFSHAGE DSNTIP4 CURRENT REFRESH AGE

SJMXPOOL DSNTIP8 STAR JOIN MAX POOL

SKIPUNCI DSNTIP8 SKIP UNCOMM INSERTS

SMF89 DSNTIPN USAGE PRICING

STARJOIN DSNTIP8 STAR JOIN QUERIES

SVOLARC DSNTIPA SINGLE VOLUME

TSQTY DSNTIP7 TABLE SPACE DEFAULT SIZE

UIFCIDS DSNTIPN UNICODE IFCIDS

VOLTDEVT DSNTIPA2 TEMPORARY UNIT NAME

Subsystem parameters changed to dynamically updatable

Several subsystem parameters have been changed to be dynamically updatable as

shown in Table 9. You can change these values by using the SET SYSPARM

command to load the new module.

 Table 9. Subsystem parameters that can now be dynamically updated

Subsystem

parameter Panel Field name

CACHEDYN DSNTIP4 CACHE DYNAMIC SQL

CHGDC DSNTIPO DPROP SUPPORT

EDPROP DSNTIPO DPROP SUPPORT

EXTRAREQ DSNTIP5 EXTRA BLOCKS REQ

Chapter 1. Availability, scalability, and performance enhancements 29

Table 9. Subsystem parameters that can now be dynamically updated (continued)

Subsystem

parameter Panel Field name

EXTRASRV DSNTIP5 EXTRA BLOCKS SRV

IDTHTOIN DSNTIPR IDLE THREAD TIMEOUT

IMMEDWRI DSNTIP4 IMMEDIATE WRITE

MAXKEEPD DSNTIPE MAX KEPT DYN STMTS

MAXTYPE1 DSNTIPR MAX TYPE 1 INACTIVE

PARTKEYU DSNTIP4 UPDATE PART KEY COLS

POOLINAC DSNTIP5 POOL THREAD TIMEOUT

RESYNC DSNTIPR RESYNC INTERVAL

SRTPOOL DSNTIPC SORT POOL SIZE

SYSADM DSNTIPP SYSTEM ADMIN 1

SYSADM1 DSNTIPP SYSTEM ADMIN 2

SYSOPR1 DSNTIPP SYSTEM OPERATOR 1

SYSOPR2 DSNTIPP SYSTEM OPERATOR 2

TCPALVER DSNTIP5 TCP/IP ALREADY VERIFIED

TCPKPALV DSNTIP5 TCP/IP KEEPALIVE

XLKUPDLT DSNTIPI X LOCK FOR SEARCHED U/D

For most parameters, the change takes effect immediately. For the following

parameters, the change is not immediate:

v PARTKEYU

v SYSADM and SYSADM1

v CACHEDYN

v MAXKEEPD

v XLKUPDLT

For more information about these system parameters, see DB2 Installation Guide.

Other availability, scalability, and performance enhancements

Version 8 of DB2 introduces the following additional enhancements:

v When trigger processing occurs for conditional triggers, performance is

improved because the processing requires fewer work files than in previous

versions.

v New messages help you monitor long-running units of recovery during backout

processing.

v The ability to lock partitioned table spaces at the partition level improves data

availability.

v The RECOVER utility can restore concurrent copies much faster when you

specify the new CURRENTCOPYONLY option.

v Several data availability enhancements have been added to the CHECK INDEX

utility in the form of SHRLEVEL CHANGE, DRAIN_WAIT, RETRY, and

RETRY_DELAY options.

30 Release Planning Guide

Chapter 2. Easier development and integration of e-business

applications

Version 8 of DB2 UDB for z/OS facilitates easier development and integration of

your e-business applications through various functional enhancements. The

following topics provide additional information:

v “Changes to SQL limits”

v “SQL enhancements” on page 32

v “Unicode enhancements” on page 54

v “Multilevel security with row-level granularity” on page 58

v “SQL support for XML functions in DB2” on page 60

v “Improvements in connectivity” on page 61

v “Other e-business enhancements” on page 63

Changes to SQL limits

Many SQL limits are greatly increased in Version 8. Increases in some of these

limits improve availability, scalability, and performance. Increases in other limits

improve flexibility, productivity, portability, and DB2 UDB family consistency, as

highlighted in Table 10.

 Table 10. Changes to SQL limits

Entity Previous limit New limit

Maximum length of an SQL identifier 18 bytes 128 bytes

Maximum length of a character string

constant

255 bytes 32 704 UTF-8 bytes

Maximum length of a hexadecimal character

constant

254 hexadecimal

digits

32 704 hexadecimal

digits

Maximum length of a graphic string

constant

124 bytes 32 704 UTF-8 bytes

Maximum length of a table name 18 bytes 128 bytes

Maximum length of a column name 18 bytes 30 bytes

Maximum length of an alias or view name 18 bytes 128 bytes

Maximum length of an index key 255 bytes 2000 bytes

Maximum length of an SQL statement 32 KB 2 MB

Maximum length of a predicate 255 bytes 32 704 bytes

Maximum number of tables in join 15 225

Maximum length of a condition name 18 bytes 128 bytes

Maximum length of a host identifier 64 bytes 128 bytes

Maximum length of an SQL label 18 bytes 128 bytes

Maximum length of an SQL parameter name 18 bytes 128 bytes

Maximum length of an SQL variable name 18 bytes 128 bytes

Maximum length of CURRENT

PACKAGESET special register

18 bytes 128 bytes

Maximum length of CURRENT PATH

special register

254 bytes 2048 bytes

© Copyright IBM Corp. 2004, 2008 31

When SQL statements that are larger than 32 KB are passed to DB2 on PREPARE

and EXECUTE IMMEDIATE statements, they are passed in CLOBs and DBCLOBs.

For more information about handling large SQL statements, see the EXECUTE

IMMEDIATE and PREPARE statements in DB2 SQL Reference.

SQL enhancements

DB2 Version 8 introduces the following enhancements to SQL:

v “SELECT from INSERT statement”

v “Sequence objects” on page 34

v “Identity column enhancements” on page 36

v “DISTINCT predicate” on page 36

v “Support for scalar fullselect” on page 37

v “Multiple-row INSERT and FETCH statements” on page 39

v “Common table expressions” on page 43

v “GET DIAGNOSTICS statement” on page 44

v “Dynamic scrollable cursors” on page 46

v “SQL procedural language enhancements” on page 46

v “More frequent use of indexes” on page 48

v “Longer and more complex SQL statements” on page 49

v “Multiple DISTINCT keywords” on page 49

v “Expressions in the GROUP BY clause” on page 49

v “Fewer restrictions for column functions (aggregate functions)” on page 49

v “Qualified column names in the INSERT statement” on page 50

v “ORDER BY clause for the SELECT INTO statement” on page 50

v “Additional input format for timestamp strings” on page 50

v “Explicitly defined ROWID columns no longer required for LOBs” on page 51

v “Comments for plans and packages” on page 51

v “Implicit dropping of declared global temporary tables at commit” on page 51

v “SQL changes for multilevel security with row-level granularity” on page 52

v “Comments in SQL statements” on page 52

v “Encrypting and decrypting data” on page 53

v “Greater control over locking for queries” on page 53

For a complete summary of the changes to SQL in Version 8, see Appendix C,

“Changes to SQL,” on page 103.

The new enhancements to DB2 not only provide significant new function but also

increase SQL consistency across the DB2 UDB family of relational database

products. If you are writing portable applications, see IBM DB2 Universal Database

SQL Reference for Cross-Platform Development. This book describes the SQL that is

common to the DB2 UDB family of products, including rules and limits for

preparing portable applications.

SELECT from INSERT statement

You can select values from rows that are being inserted by specifying the INSERT

statement in the FROM clause of the SELECT statement. The rows that are inserted

into the target table produce a result table whose columns can be referenced in the

SELECT list of the query. When you insert one or more new rows into a table, you

can retrieve the following values from the result table:

v Any column values that are the result of an expression

v Any default values for columns

v All values for an inserted row, without specifying individual column names

v All values that are inserted by a multiple-row INSERT operation

v Values that are changed by a BEFORE INSERT trigger

32 Release Planning Guide

#
#
#
#

#
#
#

v The value of an automatically generated column, such as a ROWID or identity

column

Example: Assume that an EMPLOYEE table is defined with the following

statement:

CREATE TABLE EMPLOYEE

 (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,

 NAME CHAR(30),

 SALARY DECIMAL(10,2),

 DEPTNO SMALLINT,

 LEVEL CHAR(30),

 HIRETYPE VARCHAR(30) NOT NULL WITH DEFAULT ’New Hire’,

 HIREDATE DATE NOT NULL WITH DEFAULT);

Assume that you need to insert a row for a new employee into the EMPLOYEE

table. To determine the values for the generated EMPNO, HIRETYPE, and

HIREDATE columns, use the following statement, which demonstrates use of the

INSERT statement within the SELECT statement:

SELECT EMPNO, HIRETYPE, HIREDATE

 FROM FINAL TABLE (INSERT INTO EMPLOYEE (NAME, SALARY, DEPTNO, LEVEL)

 VALUES(’Mary Smith’, 35000.00, 11, ’Associate’));

The SELECT statement returns the DB2-generated identity value for the EMPNO

column, the default value ’New Hire’ for the HIRETYPE column, and the value of

the CURRENT DATE special register for the HIREDATE column.

Selecting values when you insert a single row

When you insert a new row into a table, you can retrieve any column in the result

table of the INSERT statement that is within the SELECT statement. When you

embed this statement in an application, you retrieve the row into host variables by

using the SELECT ... INTO form of the statement.

Example: You can retrieve all the values for a row that is inserted into a structure

by using the following statement:

EXEC SQL SELECT * INTO :empstruct

 FROM FINAL TABLE (INSERT INTO EMPLOYEE (NAME, SALARY, DEPTNO, LEVEL)

 VALUES(’Mary Smith’, 35000.00, 11, ’Associate’));

For this example, :empstruct is a host variable structure that is declared with

variables for each of the columns in the EMPLOYEE table.

Selecting values when you insert multiple rows

If you are writing an application program and want to retrieve values from the

insertion of multiple rows, you need to declare a cursor so that the INSERT

statement is in the FROM clause of the SELECT statement of the cursor.

Example: To see the values of the ROWID columns that are inserted into the

employee photo and resume table, you can declare a cursor by using the following

statement:

EXEC SQL DECLARE CS1 CURSOR FOR

 SELECT EMP_ROWID

 FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)

 SELECT EMPNO FROM DSN8810.EMP);

Primary keys and foreign keys

By using the INSERT statement within the SELECT statement, you can insert a row

into a parent table with its primary key defined as a DB2-generated identity

Chapter 2. Easier development and integration of e-business applications 33

column, and you can retrieve the value of the primary or parent key. You can then

use this generated value as a foreign key in a dependent table.

Example: Suppose that an EMPLOYEE table and a DEPARTMENT table are

defined in the following way:

CREATE TABLE EMPLOYEE

 (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY

 PRIMARY KEY NOT NULL,

 NAME CHAR(30) NOT NULL,

 SALARY DECIMAL(7,2) NOT NULL,

 WORKDEPT SMALLINT);

CREATE TABLE DEPARTMENT

 (DEPTNO SMALLINT NOT NULL PRIMARY KEY,

 DEPTNAME VARCHAR(30),

 MGRNO INTEGER NOT NULL,

 CONSTRAINT REF_EMPNO FOREIGN KEY (MGRNO)

 REFERENCES EMPLOYEE (EMPNO) ON DELETE RESTRICT);

ALTER TABLE EMPLOYEE ADD

 CONSTRAINT REF_DEPTNO FOREIGN KEY (WORKDEPT)

 REFERENCES DEPARTMENT (DEPTNO) ON DELETE SET NULL;

When you insert a new employee into the EMPLOYEE table, to retrieve the value

for the EMPNO column, you can use an INSERT statement within the following

SELECT statement:

EXEC SQL

 SELECT EMPNO INTO :hv_empno

 FROM FINAL TABLE (INSERT INTO EMPLOYEE (NAME, SALARY, WORKDEPT)

 VALUES (’New Employee’, 75000.00, 11));

The SELECT statement returns the DB2-generated identity value for the EMPNO

column in the host variable :hv_empno.

You can then use the value in :hv_empno to update the MGRNO column in the

DEPARTMENT table with the new employee as the department manager:

EXEC SQL

 UPDATE DEPARTMENT

 SET MGRNO = :hv_empno

 WHERE DEPTNO = 11;

Sequence objects

A sequence is a user-defined object that generates a sequence of numeric values

according to the specification with which the sequence was created. The sequence

of numeric values is generated in a monotonically ascending or descending order.

Sequences, unlike identity columns, are not associated with tables. Applications

refer to a sequence object to get its current value or the next value. The

relationship between sequences and tables is controlled by the application, not by

DB2.

Creating a sequence object

You create a sequence object with the CREATE SEQUENCE statement, alter it with

the ALTER SEQUENCE statement, and drop it with the DROP SEQUENCE

statement. You grant access to a sequence with the GRANT (privilege) ON

SEQUENCE statement, and you revoke access to the sequence with the REVOKE

(privilege) ON SEQUENCE statement.

34 Release Planning Guide

The values that DB2 generates for a sequence depend on how the sequence is

created. The START WITH parameter determines the first value that DB2

generates. The values advance by the INCREMENT BY parameter in ascending or

descending order.

The MINVALUE and MAXVALUE parameters define the minimum and maximum

values that DB2 generates. The CYCLE or NO CYCLE parameters define whether

DB2 wraps values when it generates the incremented values between the START

WITH value and MAXVALUE if the values are ascending, or between the START

WITH value and MINVALUE if the values are descending.

Referencing a sequence object

You reference a sequence by using the NEXT VALUE expression or the PREVIOUS

VALUE expression, specifying the name of the sequence:

v A NEXT VALUE expression in an SQL statement generates and returns the next

value for the specified sequence. If an SQL statement contains multiple instances

of a NEXT VALUE expression with the same sequence name, the sequence value

increments only once for that statement.

v A PREVIOUS VALUE expression in an SQL statement returns the most recently

generated value for the specified sequence from a prior NEXT VALUE

expression (for that sequence) in a previous SQL statement within the current

application process.

You can specify a NEXT VALUE or PREVIOUS VALUE expression in a SELECT

clause, within a VALUES clause of an INSERT statement, within the SET clause of

an UPDATE statement (with certain restrictions), or within a SET host-variable

statement.

Keys across multiple tables

You can use the same sequence number as a key value in two separate tables by

first generating the sequence value with a NEXT VALUE expression to insert the

first row in the first table. You can then reference this same sequence value with a

PREVIOUS VALUE expression to insert the other rows in the second table.

Example: Suppose that an ORDERS table and an ORDER_ITEMS table are defined

in the following way:

CREATE TABLE ORDERS

 (ORDERNO INTEGER NOT NULL,

 ORDER_DATE DATE DEFAULT,

 CUSTNO SMALLINT

 PRIMARY KEY (ORDERNO));

CREATE TABLE ORDER_ITEMS

 (ORDERNO INTEGER NOT NULL,

 PARTNO INTEGER NOT NULL,

 QUANTITY SMALLINT NOT NULL,

 PRIMARY KEY (ORDERNO,PARTNO),

 CONSTRAINT REF_ORDERNO FOREIGN KEY (ORDERNO)

 REFERENCES ORDERS (ORDERNO) ON DELETE CASCADE);

You create a sequence named ORDER_SEQ to generate key values for both the

ORDERS and ORDER_ITEMS tables:

CREATE SEQUENCE ORDER_SEQ AS INTEGER

 START WITH 1

 INCREMENT BY 1

 NO MAXVALUE

 NO CYCLE

 CACHE 20;

Chapter 2. Easier development and integration of e-business applications 35

You can then use the same sequence number as a primary key value for the

ORDERS table and as part of the primary key value for the ORDER_ITEMS table:

INSERT INTO ORDERS (ORDERNO, CUSTNO)

 VALUES (NEXT VALUE FOR ORDER_SEQ, 12345);

INSERT INTO ORDER_ITEMS (ORDERNO, PARTNO, QUANTITY)

 VALUES (PREVIOUS VALUE FOR ORDER_SEQ, 987654, 2);

The NEXT VALUE expression in the first INSERT statement generates a sequence

number value. The PREVIOUS VALUE expression in the second INSERT statement

retrieves that same value because it was the sequence number that was most

recently generated.

Identity column enhancements

With Version 8, the identity column has some new attributes which can be set with

the CREATE TABLE statement. See Table 23 on page 104 for details about the new

attributes that you can set with the CREATE TABLE statement. At some point, you

might need to change the attributes of an identity column. With Version 8, you can

use the ALTER TABLE statement with the ALTER COLUMN clause to change all

of the attributes of an identity column except the data type, as follows:

v Restart the column values from the new value

v Change whether values for the column are always generated by DB2 or are

generated only by default

v Change the number by which the column value increments

v Change the minimum value, or change to no minimum value

v Change the maximum value, or change to no maximum value

v Change to allow the minimum value to be less than or equal to the maximum

value

v Set the column value to cycle, or change to no cycling

v Change the CACHE value (the number of column values for DB2 to preallocate

in memory), or change to NO CACHE (no preallocation)

v Specify that the column values are generated in order of request, or specify that

the column values do not need to be generated in order of request

Changing the data type of an identity column requires that you drop and then

re-create the table. For more information see “Schema evolution” on page 2.

DISTINCT predicate

You can use the DISTINCT predicate to compare null values. Two forms of the

DISTINCT predicate are:

IS DISTINCT FROM

Creates an expression where both values are not equal or one value is null.

IS NOT DISTINCT FROM

Creates an expression where one value is equal to another value or both

values are null. This predicate can also be written as NOT(value IS

DISTINCT FROM value)

The DISTINCT predicate simplifies the SQL that you need to write when you need

to find values that might be null. Because one null value is not considered equal to

another null value, you cannot directly compare two null values using the =

predicate. You also cannot test for a null value by using a host variable with an

indicator variable that is set to -1.

36 Release Planning Guide

Example: The following code selects the phone numbers of all employees except

those who do not have a phone number:

MOVE -1 TO PHONE-IND.

EXEC SQL

 SELECT LASTNAME

 INTO :PGM-LASTNAME

 FROM DSN8810.EMP

 WHERE PHONENO = :PHONE-HV:PHONE-IND

END-EXEC.

You can use the IS NULL predicate to select employees who have no phone

number, as in the following statement:

EXEC SQL

 SELECT LASTNAME

 INTO :PGM-LASTNAME

 FROM DSN8810.EMP

 WHERE PHONENO IS NULL

END-EXEC.

This works well if you are only trying to find values that are null. However, if you

need to find values that are equal to a specific value and values that are null, the

SQL statement that you must write becomes much more complex.

Example: To select employees whose phone numbers are equal to the value of

:PHONE-HV and employees who have no phone number (as in the preceding

example), you would need to code two predicates, one to handle the non-null

values and another to handle the null values, as in the following statement:

EXEC SQL

 SELECT LASTNAME

 INTO :PGM-LASTNAME

 FROM DSN8810.EMP

 WHERE (PHONENO = :PHONE-HV AND PHONENO IS NOT NULL AND :PHONE-HV IS NOT NULL)

 OR

 (PHONENO IS NULL AND :PHONE-HV:PHONE-IND IS NULL)

END-EXEC.

You can use the DISTINCT predicate to get the same results. The following

statement uses the NOT form of the IS DISTINCT FROM predicate to simplify the

preceding example:

EXEC SQL

 SELECT LASTNAME

 INTO :PGM-LASTNAME

 FROM DSN8810.EMP

 WHERE PHONENO IS NOT DISTINCT FROM :PHONE-HV:PHONE-IND

END-EXEC.

Support for scalar fullselect

A scalar fullselect is a fullselect, enclosed in parentheses, that returns a single row

consisting of a single column. You can now use a scalar fullselect wherever

expressions are allowed, with some limitations. If the scalar fullselect does not

return a row, the result is the null value. At run time, if the scalar fullselect returns

more than one row, DB2 issues an error.

The following four tables, PARTS, PRODUCTS, PARTPRICE, and INVENTORY, are

used in the examples in this section:

v PARTS

PART PROD# SUPPLIER

======== ====== =================

WIRE 10 ACWF

Chapter 2. Easier development and integration of e-business applications 37

OIL 160 WESTERN_CHEM

MAGNETS 10 BATEMAN

PLASTIC 30 PLASTIC_CORP

BLADES 205 ACE_STEEL

v PRODUCTS

PROD# PRODUCT PRICE

====== ================== =====

505 SCREWDRIVER 3.70

30 RELAY 7.55

205 SAW 18.90

10 GENERATOR 45.75

v PARTPRICE

PART PROD# SUPPLIER PRICE

========= ====== ================== =====

WIRE 10 ACWF 3.50

OIL 160 WESTERN_CHEM 1.50

MAGNETS 10 BATEMAN 59.50

PLASTIC 30 PLASTIC_CORP 2.00

BLADES 205 ACE_STEEL 8.90

v INVENTORY

PART PROD# SUPPLIER ONHAND#

========= ====== ================= =======

WIRE 10 ACWF 8

OIL 160 WESTERN_CHEM 25

MAGNETS 10 BATEMAN 3

PLASTIC 30 PLASTIC_CORP 5

BLADES 205 ACE_STEEL 10

Example: Scalar fullselects in a WHERE clause: Find which products have prices

in the range of at least twice the lowest price of all the products and at most half

the price of all the products.

SELECT PRODUCT, PRICE

 FROM PRODUCTS A

 WHERE

 PRICE BETWEEN 2 * (SELECT MIN(PRICE) FROM PRODUCTS)

 AND 0.5 * (SELECT MAX(PRICE) FROM PRODUCTS);

The result is:

PRODUCT PRICE

================== =====

RELAY 7.55

SAW 18.90

Example: Scalar fullselect in a SELECT list: For each part, find its price and its

inventory.

SELECT PART,

 (SELECT PRICE FROM PARTPRICE WHERE PART = A.PART),

 (SELECT ONHAND# FROM INVENTORY WHERE PART = A.PART)

 FROM PARTS A;

The result is:

PART PRICE ONHAND#

============== ===== =======

WIRE 3.50 8

OIL 1.50 25

MAGNETS 59.50 3

PLASTIC 2.00 5

BLADES 8.90 10

38 Release Planning Guide

Example: Scalar fullselect in the SET clause of an UPDATE statement: Give a 20%

discount to the parts that have a large inventory (greater than 20), and raise the

price by 10% on the parts that have a small inventory (less than 7).

CREATE TABLE NEW_PARTPRICE LIKE PARTPRICE;

INSERT INTO NEW_PARTPRICE SELECT * FROM PARTPRICE;

UPDATE NEW_PARTPRICE N

 SET PRICE =

 CASE

 WHEN((SELECT ONHAND# FROM INVENTORY WHERE PART=N.PART) < 7)

 THEN 1.1 * PRICE

 WHEN((SELECT ONHAND# FROM INVENTORY WHERE PART=N.PART) > 20)

 THEN .8 * PRICE

 ELSE PRICE

 END;

SELECT * FROM NEW_PARTPRICE;

The result is:

PART PROD# SUPPLIER PRICE

========= ====== ================== =====

WIRE 10 ACWF 3.50

OIL 160 WESTERN_CHEM 1.20

MAGNETS 10 BATEMAN 65.45

PLASTIC 30 PLASTIC_CORP 2.20

BLADES 205 ACE_STEEL 8.90

Restrictions: You cannot use scalar fullselects in the following cases:

v In an expression that is an argument of an aggregate function

v In the join-condition expression of an ON clause

v In the grouping expression in a GROUP BY clause

v In the sort-key expression of an ORDER BY clause

v In the RETURN statement of a CREATE FUNCTION statement

v In a CHECK condition in CREATE TABLE and ALTER TABLE statements

v In a CREATE VIEW statement that includes the WITH CHECK OPTION

Multiple-row INSERT and FETCH statements

You can enhance the performance of your application programs by using

multiple-row INSERT and FETCH statements to request that DB2 send multiple

rows of data at one time to and from the database. For local applications, using

these multiple-row statements results in fewer accesses of the database. For

distributed applications, using these multiple-row statements results in fewer

network operations and a significant improvement in performance. This section

provides an overview of how you can:

v Insert multiple rows of data from host variable arrays that have been declared

and populated in your application program into the database; see “Inserting

multiple rows” on page 40.

v Fetch multiple rows of data from the database into host variable arrays that have

been declared or dynamically allocated in your program; see “Fetching multiple

rows” on page 40.

To use a host variable array in an SQL statement, specify a host variable array that

is declared according to host language rules. You can specify host variable arrays

in C, C++, COBOL, and PL/I application programs. You must declare the array in

the host program before you use it in an SQL statement.

Chapter 2. Easier development and integration of e-business applications 39

You can also use a storage area that you allocate dynamically when you use a

descriptor to describe the data areas that you want DB2 to use to insert or place

the data. You can specify a descriptor in assembler, C, C++, COBOL, and PL/I

application programs. You must include an SQL descriptor area (SQLDA) in the

host program.

Inserting multiple rows

You can use a form of the INSERT statement to insert multiple rows from values

that are provided in host variable arrays. Each array contains values for a column

of the target table. The first value in an array corresponds to the value for that

column for the first inserted row, the second value in the array corresponds to the

value for the column in the second inserted row, and so on. DB2 determines the

attributes of the values based on the declaration of the array.

Example: You can insert the number of rows that are specified in the host variable

NUM-ROWS by using the following INSERT statement:

EXEC SQL

 INSERT INTO DSN8810.ACT

 (ACTNO, ACTKWD, ACTDESC)

 VALUES (:HVA1, :HVA2, :HVA3 :IVA3)

 FOR :NUM-ROWS ROWS

END-EXEC.

Assume that the host variable arrays HVA1, HVA2, and HVA3 have been declared

and populated with the values that are to be inserted into the ACTNO, ACTKWD,

and ACTDESC columns. The NUM-ROWS host variable specifies the number of

rows that are to be inserted, which must be less than or equal to the dimension of

each host variable array.

Assume also that the indicator variable array IVA3 has been declared and

populated to indicate whether null values are inserted into the ACTDESC column.

Use indicator variable arrays with host variable arrays in the same way that you

use indicator variables with host variables. An indicator variable array must have

at least as many entries as its host variable array.

You can use the multiple-row INSERT statement both statically and dynamically. If

you prepare and execute the INSERT statement, you can code the EXECUTE

statement to use either host variable arrays or an SQL descriptor (SQLDA). If you

use host variable arrays, each host variable array in the USING clause of the

EXECUTE statement represents a parameter marker in the INSERT statement. If

you use an SQLDA, the host variable in the USING clause of the EXECUTE

statement names the SQLDA that describes the parameter markers in the INSERT

statement.

Fetching multiple rows

You can retrieve multiple rows of data by using a row-set positioned cursor. A

row-set positioned cursor retrieves zero, one, or more rows at a time, as a row set,

from the result table of the cursor into host variable arrays. You can reference all of

the rows in the row set, or only one row in the row set, when you use a positioned

DELETE or positioned UPDATE statement after a FETCH statement that retrieves

row sets.

A multiple-row FETCH statement can be used to copy a row set of column values

into either of the following data areas:

v Host variable arrays that are declared in your program

40 Release Planning Guide

v Dynamically allocated arrays whose storage addresses are put into an SQL

descriptor area (SQLDA), along with the attributes of the columns to be

retrieved

Declaring a row-set positioned cursor: You must first declare a row-set

positioned cursor before you can retrieve row sets of data. To enable a cursor to

fetch row sets, use the WITH ROWSET POSITIONING clause in the DECLARE

CURSOR statement.

Example: The following statement declares a row set cursor:

EXEC SQL

 DECLARE C1 CURSOR

 WITH ROWSET POSITIONING FOR

 SELECT EMPNO, LASTNAME, SALARY

 FROM DSN8810.EMP

END-EXEC.

To tell DB2 that you are ready to process the first row set of the result table,

execute the OPEN statement in your program. DB2 then uses the SELECT

statement within the DECLARE CURSOR statement to identify the rows in the

result table.

Using a multiple-row FETCH statement with host variable arrays: When your

program executes a FETCH statement with the ROWSET keyword, the cursor is

positioned on a row set in the result table. That row set is called the current row set.

Declare the dimension of each of the host variable arrays to be greater than or

equal to the number of rows that are to be retrieved.

Example: The following FETCH statement retrieves 20 rows into host variable

arrays that are declared in your program:

EXEC SQL

 FETCH NEXT ROWSET FROM C1

 FOR 20 ROWS

 INTO :HVA-EMPNO, :HVA-LASTNAME, :HVA-SALARY :INDA-SALARY

END-EXEC.

Using a multiple-row FETCH statement with a descriptor: Suppose that you

want to dynamically allocate the necessary storage for the arrays of column values

that are to be retrieved from the employee table. You must do the following steps:

1. Declare an SQLDA structure.

2. Dynamically allocate the SQLDA and the necessary arrays for the column

values.

3. Set the fields in the SQLDA for the column values that are to be retrieved.

4. Open the cursor.

5. Fetch the rows.

After allocating the SQLDA and the necessary arrays for the column values, you

must set the fields in the SQLDA.

Example: After the OPEN statement, the program fetches the next row set by using

the following statement:

EXEC SQL

 FETCH NEXT ROWSET FROM C1

 FOR 20 ROWS

 USING DESCRIPTOR :outsqlda;

Chapter 2. Easier development and integration of e-business applications 41

The USING clause of the FETCH statement names the SQLDA that describes the

columns that are to be retrieved.

Using row-set positioned UPDATE statements: After your program executes a

FETCH statement to establish the current row set, you can use a positioned

UPDATE statement with either of the following clauses:

v WHERE CURRENT OF cursor-name to update:

– a single row if the cursor is on a single row

– all the rows of a row set if the cursor is on a row set
v WHERE CURRENT OF cursor-name FOR ROW n OF ROWSET to update only

row n of the current row set

Updating all rows of the current row set: The following positioned UPDATE

statement uses the WHERE CURRENT OF clause:

EXEC SQL

 UPDATE DSN8810.EMP

 SET SALARY = 50000

 WHERE CURRENT OF C1

END-EXEC.

When the UPDATE statement is executed, the cursor must be positioned on a row

or row set of the result table. If the cursor is positioned on a row, that row is

updated. If the cursor is positioned on a row set, all of the rows in the row set are

updated.

Updating a specific row of the current row set: The following positioned UPDATE

statement uses the WHERE CURRENT OF cursor FOR ROW n OF ROWSET clause:

EXEC SQL

 UPDATE DSN8810.EMP

 SET SALARY = 50000

 WHERE CURRENT OF C1 FOR ROW 5 OF ROWSET

END-EXEC.

When the UPDATE statement is executed, the cursor must be positioned on a row

set of the result table. The specified row (in the example, row 5) of the current row

set is updated.

Using row-set positioned DELETE statements: After your program executes a

FETCH statement to establish the current row set, you can use a positioned

DELETE statement with either of the following clauses:

v WHERE CURRENT OF cursor-name to delete:

– a single row if the cursor is on a single row

– all the rows of a row set if the cursor is on a row set
v WHERE CURRENT OF cursor-name FOR ROW n OF ROWSET to delete only

row n of the current row set

Deleting all rows of the current row set: The following positioned DELETE

statement uses the WHERE CURRENT OF clause:

EXEC SQL

 DELETE FROM DSN8810.EMP

 WHERE CURRENT OF C1

END-EXEC.

When the DELETE statement is executed, the cursor must be positioned on a row

or row set of the result table. If the cursor is positioned on a row, that row is

deleted, and the cursor is positioned before the next row of its result table. If the

42 Release Planning Guide

cursor is positioned on a row set, all of the rows in the row set are deleted, and

the cursor is positioned before the next row set of its result table.

Deleting a single row of the current row set: The following positioned DELETE

statement uses the WHERE CURRENT OF cursor FOR ROW n OF ROWSET clause:

EXEC SQL

 DELETE FROM DSN8810.EMP

 WHERE CURRENT OF C1 FOR ROW 5 OF ROWSET

END-EXEC.

When the DELETE statement is executed, the cursor must be positioned on a row

set of the result table. The specified row of the current row set is deleted, and the

cursor remains positioned on that row set. The deleted row (in the example, row 5

of the row set) cannot be retrieved or updated.

Common table expressions

A common table expression is like a temporary view that is defined and used for the

duration of an SQL statement. You can define a common table expression for the

SELECT, INSERT, and CREATE VIEW statements.

Each common table expression must have a unique name and be defined only

once. However, you can reference a common table expression many times in the

same SQL statement. Unlike regular views or nested table expressions, which

derive their result tables for each reference, all references to a common table

expression in a given statement share the same result table.

You can use a common table expression in the following situations:

v When you want to avoid creating a view (when general use of the view is not

required and positioned updates or deletes are not used)

v When the desired result table is based on host variables

v When the same result table needs to be shared in a fullselect

v When the results need to be derived using recursion

Using WITH instead of CREATE VIEW

Using the WITH clause to create a common table expression saves you the

overhead of needing to create and drop a regular view that you need to use only

once. Also, during statement preparation, DB2 does not need to access the catalog

for the view, which saves you additional overhead.

Using a common table expression for a result table that is based

on host variables or is shared in a fullselect

You can use a common table expression when you need to find information that is

based on an intermediate result table that is derived from the values of host

variables. This results in a decrease in the overhead that is associated with creating

a temporary table to hold the intermediate results, and writing additional queries

to derive your final result. This overhead is also saved when you need to share the

same result table in a fullselect.

Using recursive SQL

You can use common table expressions to create recursive SQL. If a fullselect of a

common table expression contains a reference to itself in a FROM clause, the

common table expression is a recursive common table expression. Queries that use

recursion are useful in applications like bill-of-materials applications, network

planning applications, and reservation systems.

Chapter 2. Easier development and integration of e-business applications 43

Recursive common table expressions must follow these rules:

v The first fullselect of the first union (the initialization fullselect) must not include

a reference to the common table expression.

v Each fullselect that is part of the recursion cycle must:

– Start with SELECT or SELECT ALL. SELECT DISTINCT is not allowed.

– Include only one reference to the common table expression that is part of the

recursion cycle in its FROM clause.

– Not include aggregate functions, a GROUP BY clause, or a HAVING clause.
v The column names must be specified after the table name of the common table

expression.

v The data types, lengths, and CCSIDs of the column names from the common

table expression that are referenced in the iterative fullselect must match.

v The UNION statements must be UNION ALL.

v Outer joins must not be part of any recursion cycle.

v Subqueries must not be part of any recursion cycle.

Introducing an infinite loop might occur when you develop a recursive common

table expression. A recursive common table expression is expected to include a

predicate that will prevent an infinite loop. A warning is issued if one of the

following objects is not found in the iterative fullselect of a recursive common

table expression:

v An integer column that increments by a constant

v A predicate in the WHERE clause in the form of counter_column < constant or

counter_column < :host variable

GET DIAGNOSTICS statement

You can use the GET DIAGNOSTICS statement to return diagnostic information

about the last SQL statement that was executed. You can request individual items

of diagnostic information from the following groups of items:

v Statement items, which contain information about the SQL statement as a whole

v Condition items, which contain information about each error or warning that

occurred during the execution of the SQL statement

v Connection items, which contain connection information about the SQL

statement

The GET DIAGNOSTICS statement is also useful for getting information about

long names, which do not fit in the SQLCA. In addition to information about long

names, you can use the GET DIAGNOSTICS statement to obtain the following new

information:

v An indication of the last row in a multi-row FETCH statement

v The number of parameter markers in a prepared statement

v The actual number of result sets that are returned by a stored procedure

v The number of rows in the result table

v The attributes of a cursor

v The number of errors and error information that is generated by the previous

statement

v The message IDs and text that is generated by the previous statement

In addition to requesting individual items, you can request that GET

DIAGNOSTICS return all diagnostic items that are set during the execution of the

last SQL statement as a single string.

44 Release Planning Guide

Use the GET DIAGNOSTICS statement to handle multiple SQL errors that might

result from the execution of a single SQL statement. This method is especially

useful for diagnosing problems that result from a multiple-row INSERT that is

specified as NOT ATOMIC CONTINUE ON SQLEXCEPTION.

Example: Using GET DIAGNOSTICS with multiple-row INSERT: You want to

display diagnostic information for each condition that might occur during the

execution of a multiple-row INSERT statement in your application program. First,

you must declare target host variables with data types that are compatible with the

data types of the requested items of diagnostic information. You specify the

INSERT statement as NOT ATOMIC CONTINUE ON SQLEXCEPTION, which

means that execution continues regardless of the failure of any single-row

insertion. (DB2 does not insert the row that was processed at the time of the error.)

In Figure 4, the first GET DIAGNOSTICS statement returns the number of rows

that are inserted and the number of conditions that are returned. The second GET

DIAGNOSTICS statement returns the following items for each condition:

SQLCODE, SQLSTATE, and the number of the row (in the rowset that was being

inserted) for which the condition occurred.

 In the activity table, the ACTNO column is defined as SMALLINT. Suppose that

you declare the host variable array hva1 as an array with data type long, and you

populate the array so that the value for the fourth element is 32768.

If you check the SQLCA values after the INSERT statement, the value of

SQLCODE is -253, and the value of SQLERRD(3) is 9 for the number of rows that

were inserted. However, the INSERT statement specified that 10 rows were to be

inserted.

The GET DIAGNOSTICS statement provides you with the information that you

need to correct the data for the row that was not inserted. The printed output from

your program looks like this:

EXEC SQL BEGIN DECLARE SECTION;

 long row_count, num_condns, i;

 long ret_sqlcode, row_num;

 char ret_sqlstate[6];

 ...

EXEC SQL END DECLARE SECTION;

...

EXEC SQL

 INSERT INTO DSN8810.ACT

 (ACTNO, ACTKWD, ACTDESC)

 VALUES (:hva1, :hva2, :hva3)

 FOR 10 ROWS

 NOT ATOMIC CONTINUE ON SQLEXCEPTION;

EXEC SQL GET DIAGNOSTICS

 :row_count = ROW_COUNT, :num_condns = NUMBER;

printf("Number of rows inserted = %d\n", row_count);

for (i=1; i<=num_condns; i++) {

 EXEC SQL GET DIAGNOSTICS CONDITION :i

 :ret_sqlcode = DB2_RETURNED_SQLCODE,

 :ret_sqlstate = RETURNED_SQLSTATE,

 :row_num = DB2_ROW_NUMBER;

 printf("SQLCODE = %d, SQLSTATE = %s, ROW NUMBER = %d\n",

 ret_sqlcode, ret_sqlstate, row_num);

 }

Figure 4. GET DIAGNOSTICS statement for a multi-row INSERT statement

Chapter 2. Easier development and integration of e-business applications 45

Number of rows inserted = 9

SQLCODE = -253, SQLSTATE = 22003, ROW NUMBER = 4

You can also retrieve the MESSAGE_TEXT item for this example, indicating that

the value 32768 for the input variable is too large for the target column ACTNO.

Dynamic scrollable cursors

When you declare a cursor as SENSITIVE, you can declare it as either STATIC or

DYNAMIC. The SENSITIVE DYNAMIC cursor follows the dynamic scrollable

cursor model:

v The size and contents of the result table can change with every fetch.

The base table can change while the cursor is scrolling on it. If another

application process changes the data, the cursor sees the newly changed data

when it is committed. If the application process of the cursor changes the data,

the cursor sees the newly changed data immediately.

v The order of the rows can change after the application opens the cursor.

If the cursor declaration contains an ORDER BY clause, and columns that are in

the ORDER BY clause are updated after the cursor is opened, the order of the

rows in the result table changes.

Using a dynamic scrollable cursor, you can fetch newly inserted rows but you

cannot fetch deleted rows. In contrast, with a static scrollable cursor, you cannot

fetch newly inserted rows, and rows that have been deleted are indicated as holes

in the result table of the cursor.

Example: The following statement shows a declaration for a sensitive dynamic

scrollable cursor:

EXEC SQL DECLARE C2 SENSITIVE DYNAMIC SCROLL CURSOR FOR

 SELECT DEPTNO, DEPTNAME, MGRNO

 FROM DSN8810.DEPT

 ORDER BY DEPTNO

END-EXEC.

Declaring a cursor as SENSITIVE DYNAMIC has the following effects:

v Because the associated FETCH statement executes on the base table, the cursor

needs no temporary result table. When you define a cursor as SENSITIVE

DYNAMIC, you cannot specify the INSENSITIVE keyword in a FETCH

statement for that cursor.

v If you specify an ORDER BY clause for a SENSITIVE DYNAMIC cursor, DB2

might choose an index access path if the ORDER BY is fully satisfied by an

existing index.

SQL procedural language enhancements

Version 8 of DB2 UDB for z/OS provides the following improvements to the SQL

procedural language:

v “Extending the length of an SQL procedure statement”

v “Handling SQL conditions in an SQL procedure” on page 47

v “Debugging an SQL procedure” on page 48

Extending the length of an SQL procedure statement

With earlier releases of DB2 UDB for z/OS, an SQL procedure needed to be

completely specified in a CREATE PROCEDURE statement that was limited to 32

KB. In addition, because the procedure body of a CREATE PROCEDURE statement

contains the source statements for the procedure, each of those statements was

limited to 32 KB.

46 Release Planning Guide

Version 8 of DB2 UDB for z/OS extends the length of any SQL statement to 2 MB,

including a CREATE PROCEDURE statement. In addition, the length of individual

SQL procedural statements, consisting of SQL control statements and SQL

statements in the procedure body, is extended to 2 MB. If you specify an SQL

control statement as the procedure body, you can include multiple SQL procedural

statements within that control statement, each of which is now extended to 2 MB.

This enhancement significantly increases the power and flexibility of SQL

procedures.

Handling SQL conditions in an SQL procedure

You can handle SQL errors and warnings in an SQL procedure by using the

following techniques:

v You can include a RETURN statement in an SQL procedure to return an integer

status value to the caller; see “Using the RETURN statement for the procedure

status.”

v You can include a SIGNAL or RESIGNAL statement to raise a specific

SQLSTATE and to define the message text for that SQLSTATE; see “Using

SIGNAL or RESIGNAL to raise a condition.”

v You can include handlers to tell the procedure to perform some other action

when an error occurs. This section describes how you can use the GET

DIAGNOSTICS statement in a handler; see “Using GET DIAGNOSTICS in a

handler” on page 48. You can use the GET DIAGNOSTICS statement in the body

of an SQL procedure and generally anywhere in an application program. For

more information about using the GET DIAGNOSTICS statement, see “GET

DIAGNOSTICS statement” on page 44.

Using the RETURN statement for the procedure status: You can use the

RETURN statement in an SQL procedure to return an integer status value. If you

include a RETURN statement, DB2 sets the SQLCODE in the SQLCA to 0, and the

caller must retrieve the return status of the procedure in either of the following

ways:

v By using the RETURN_STATUS item of GET DIAGNOSTICS to retrieve the

return value of the RETURN statement

v By retrieving the first SQLERRD field in the SQLCA, which contains the return

value of the RETURN statement

If you do not include a RETURN statement in an SQL procedure, by default, DB2

sets the return status to 0 for an SQLCODE that is greater than or equal to 0, and

to -1 for an SQLCODE that is less than 0.

Using SIGNAL or RESIGNAL to raise a condition: You can use either a SIGNAL

or RESIGNAL statement to raise a condition with a specific SQLSTATE and

message text within an SQL procedure. The SIGNAL and RESIGNAL statements

differ in the following ways:

v You can use the SIGNAL statement anywhere within an SQL procedure. You

must specify the SQLSTATE value.

v You can use the RESIGNAL statement only within a handler of an SQL

procedure. If you do not specify the SQLSTATE value, DB2 uses the same

SQLSTATE value that activated the handler.

Recommendation: You can use any valid SQLSTATE value in a SIGNAL or

RESIGNAL statement; however, using the range of SQLSTATE values that are

reserved for application programs is recommended.

Chapter 2. Easier development and integration of e-business applications 47

Example: Suppose that you create an SQL procedure named divide2 that computes

the result of the division of two integers. You include SIGNAL to invoke the

handler with an overflow condition that is caused by a zero divisor, and you

include RESIGNAL to set a different SQLSTATE value for that overflow condition,

as in the following example:

CREATE PROCEDURE divide2

 (IN numerator INTEGER, IN denominator INTEGER,

 OUT divide_result INTEGER)

 LANGUAGE SQL

 BEGIN

 DECLARE overflow CONDITION FOR SQLSTATE ’22003’;

 DECLARE CONTINUE HANDLER FOR overflow

 RESIGNAL SQLSTATE ’22375’;

 IF denominator = 0 THEN

 SIGNAL overflow;

 ELSE

 SET divide_result = numerator / denominator;

 END IF;

 END

In this example, the overflow condition is declared for SQLSTATE 22003, and the

handler is declared for the overflow condition. The RESIGNAL statement in the

handler sets the new SQLSTATE value for overflow to 22375.

Using GET DIAGNOSTICS in a handler: You can include a GET DIAGNOSTICS

statement in a handler to retrieve error or warning information. If you include GET

DIAGNOSTICS, it must be the first statement that is specified in the handler. For

information about using the GET DIAGNOSTICS statement anywhere in a DB2

application program, see “GET DIAGNOSTICS statement” on page 44.

Example: Suppose that you create an SQL procedure named divide1 that computes

the result of the division of two integers. You include the following GET

DIAGNOSTICS statement to return the text of the division error message as an

output parameter:

CREATE PROCEDURE divide1

 (IN numerator INTEGER, IN denominator INTEGER,

 OUT divide_result INTEGER, OUT divide_error VARCHAR(70))

 LANGUAGE SQL

 BEGIN

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION

 GET DIAGNOSTICS CONDITION 1 :divide_error = MESSAGE_TEXT;

 SET divide_result = numerator / denominator;

 END

Debugging an SQL procedure

You can remotely debug SQL stored procedures that execute on DB2 UDB for

z/OS servers using the SQL Debugger. The SQL Debugger is integrated into

various client development platforms including DB2 Development Center. With the

SQL Debugger, you can observe the execution of SQL procedure code, set break

points for lines and view or modify variable values.

For up-to-date information on the SQL Debugger refer to ″DB2 Development

Center″ topics at the following Web page: http://publib.boulder.ibm.com/
infocenter/db2help/index.jsp

More frequent use of indexes

Version 8 of DB2 introduces the concept of volatile tables. Volatile tables are defined

with the keyword VOLATILE and contain clusters of rows that logically belong

48 Release Planning Guide

#
#
#

together. Within these clusters, the rows are intended to be accessed in the same

order every time. For these tables, DB2 uses index access whenever possible,

regardless of the impact on performance.

Longer and more complex SQL statements

In addition to other limit-breaking support in Version 8, you can now have SQL

statements that are up to 2 MB in length. A number of the Version 8 capabilities

required increasing the previous limit on the size of an SQL statement, which was

32 KB. For example, support for long names and 4096 partitions requires much

more space. Other changes in DB2 allow much larger structures and thus much

larger statements. SQL statements that are too large or too complex should now be

very unusual.

Multiple DISTINCT keywords

In previous releases of DB2, you could specify only one DISTINCT keyword on the

SELECT clause or the HAVING clause of a query. In Version 8, you can specify

more than one DISTINCT keyword for a given query. This enhancement improves

performance. The ability to specify multiple DISTINCT keywords eliminates the

need to code multiple queries, especially when you need to retrieve distinct values

for multiple columns to which you want to apply aggregate functions such as

AVG, COUNT, and SUM.

Example: Using the sample employee table, suppose that you want to determine

the average number of employees per department and the number of different jobs

that these employees hold. Instead of using two queries, you could use the

following subselect to find that information:

SELECT COUNT(EMPNO)/COUNT(DISTINCT(WORKDEPT)), COUNT(DISTINCT(JOB))

 FROM DSN8810.EMP;

Expressions in the GROUP BY clause

In previous releases of DB2, you could specify only columns in the GROUP BY

clause of a query. In Version 8, you can use an expression in the GROUP BY clause

to specify how the rows are to be grouped. The ability to use an expression makes

coding your applications easier because you no longer need to use a nested table

expression or view to provide a result table with the expression as a column of the

result and then specify the column in the GROUP BY clause. In addition, the

expressions in the GROUP BY can be referenced in the SELECT, HAVING, and

ORDER BY clauses if the reference specifies only one value for each group.

Example: Using the sample employee table, suppose that you want to find the

average salary for all employees that were hired in the same year. You could use

the following subselect to group the rows by the year of hire:

SELECT AVG(SALARY), YEAR(HIREDATE)

 FROM DSN8810.EMP

 GROUP BY SUBSTR(VARCHAR(HIREDATE),1,4);

Fewer restrictions for column functions (aggregate functions)

The argument of a column function is a set of like values that is derived from an

expression. Previous to Version 8 of DB2, the expression for the argument was

required to include a reference to a column (hence, the term column function). In

Version 8, you no longer need to specify a column name in the expression. Because

a column reference is no longer required, column functions are now being called

aggregate functions.

Chapter 2. Easier development and integration of e-business applications 49

Example: Assume that a table exists that contains one column (C1) that is defined

as an integer and that all the values in C1 are 5. Invoking an aggregate function

with C1 as the argument is similar to invoking the same function with a constant

value of 5. For example, assuming that the table has 10 rows, the result for both of

the following functions should be 50:

SUM(C1)

SUM(5)

Qualified column names in the INSERT statement

In previous releases of DB2, you could not qualify the name of columns when

inserting data into a column. In Version 8, you can use qualified column names in

an INSERT statement just like you can in an UPDATE statement.

Example: Assume that MYTABLE.YEMP is a copy of the sample employee table.

You want to insert a new row into the table. You might use the following INSERT

statement to add information for a new employee:

INSERT INTO MYTABLE.EMP (YEMP.EMPNO, YEMP.FIRSTNME, MIDINIT, MYTABLE.YEMP.LASTNAME)

 VALUES (’200540’, ’SUSAN’, ’S’, ’WALKER’);

ORDER BY clause for the SELECT INTO statement

The SELECT INTO statement must produce a result that contains a single row.

Previous to Version 8 of DB2 UDB, you could specify the FETCH FIRST 1 ROW

clause to ensure that only a single row was returned if the result set of the query

could result in more than one row. However, you could not specify the ORDER BY

clause to affect which row was returned. With Version 8, you can now specify

ORDER BY. When you use both the FETCH FIRST 1 ROW and ORDER BY clauses,

the result set is ordered first and then the first row is returned.

Example: Using the sample employee table, for all employees with a salary of

more than $40000, put the salary of the employee who has been employed the

longest in host variable HV1:

SELECT SALARY

 FROM DSN8810.EMP

 INTO :HV1

 WHERE SALARY > 40000

 ORDER BY HIREDATE

 FETCH FIRST ROW ONLY;

Additional input format for timestamp strings

In addition to using a dash to separate the date portion and the time portion of a

timestamp string, you can also use a blank as the separator in Version 8 of DB2. In

this alternate format, a colon is used to separate the hours from the minutes and

the minutes from the seconds Therefore, DB2 accepts either of the following strings

as a valid input representation of a timestamp value:

 ’2003-03-02-08.30.00.000000’ or ’20031-03-02 08:30:00.000000’

The ODBC and JDBC string representation of a timestamp uses the format in

which the blank is the separator.

Example: Assume that you have a table named SALES that has a TRANSDATE

column with a TIMESTAMP data type. You want to find all the transactions that

were made before the timestamp value ’2003-01-01 00:00:00.000000’.

SELECT TRANSID

FROM SALES

WHERE TRANSDATE < ’2003-01-01 00:00:00.000000’;

50 Release Planning Guide

Explicitly defined ROWID columns no longer required for

LOBs

In Version 8 of DB2, you no longer need to explicitly define a ROWID column

when you define a LOB column. If a ROWID column does not exist when you

define a LOB column with either the ALTER TABLE or CREATE TABLE statement,

DB2 implicitly generates a ROWID column. When DB2 generates the ROWID

column, it is called a hidden ROWID column, and DB2:

v Creates the column with a name of DB2_GENERATED_ROWID_FOR_LOBSnn.

DB2 appends nn only if the column name already exists in the table, replacing

nn with 00 and incrementing by 1 until the name is unique within the row.

v Defines the column as GENERATED ALWAYS.

v Appends the column to the end of the row after all the other explicitly defined

columns.

If you add a ROWID column to a table that already has a hidden ROWID column,

DB2 ensures that the values in the two ROWID columns are identical. If the table

has a hidden ROWID column and the ROWID column that you add is defined as

GENERATED BY DEFAULT, DB2 changes the hidden ROWID column to have the

GENERATED BY DEFAULT attribute.

A hidden ROWID column is not visible in SQL statements unless you refer to the

column directly by name. For example, assume that DB2 generated a hidden

ROWID column named DB2_GENERATED_ROWID_FOR_LOBS for table

MYTABLE. The result table for a SELECT * statement for table MYTABLE would

not contain that ROWID column. However, the result table for SELECT COL1,

DB2_GENERATED_ROWID_FOR_LOBS would include the hidden ROWID

column.

Comments for plans and packages

In Version 8 of DB2, you can provide comments for plans and packages in the DB2

catalog. Support for comments for plans and packages simplifies documenting and

tracking your objects. It also increases compatibility within the DB2 UDB family.

Example: Provide a comment for package MY_PACKAGE, which is in collection

COLLIDA.

COMMENT ON PACKAGE COLLIDA.MY_PACKAGE IS ’This is my package’;

When adding comments for packages, you must qualify the package name with

the collection ID.

Implicit dropping of declared global temporary tables at

commit

In Version 8 of DB2, you can specify that DB2 is to implicitly drop declared global

temporary tables at a commit operation. When you specify the new ON COMMIT

DROP TABLE clause of the DECLARE GLOBAL TEMPORARY TABLE statement,

DB2 drops the declared global temporary table at commit if no open cursors on the

table are defined as WITH HOLD.

This enhancement is particularly important for distributed applications and stored

procedures because clean up can occur when cursors are closed. For example,

consider a self-contained stored procedure that declares several temporary tables

and cursors for the result sets that are defined on those temporary tables. An

invoker of the stored procedure can access the returned result sets and then issue a

Chapter 2. Easier development and integration of e-business applications 51

COMMIT statement that would result in DB2 automatically dropping the declared

global temporary tables, assuming that they are declared with ON COMMIT

DROP TABLE. Thus, the invoker of the stored procedure, who did not define the

declared global temporary tables, does not need to know the names of the declared

global temporary tables to explicitly drop them.

Example: Define a declared temporary table with column definitions for an

employee number, salary, commission, and bonus. Indicate that the temporary

table is to be implicitly dropped at a commit operation if no open cursors on the

table are defined as WITH HOLD.

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP

 (EMPNO CHAR(6) NOT NULL,

 SALARY DECIMAL(9, 2),

 COMM DECIMAL(9, 2),

 BONUS DECIMAL(9, 2))

 CCSID EBCDIC

 ON COMMIT DROP TABLE;

SQL changes for multilevel security with row-level granularity

DB2 Version 8 introduces multilevel security with row-level granularity, which is

described in “Multilevel security with row-level granularity” on page 58. When a

table has multilevel security with row-level granularity, one column in the table

contains the security label for each row. When you execute a CREATE TABLE or

ALTER TABLE statement, you define the column that contains the security label

with the CHAR(8) data type and with the AS SECURITY LABEL and NOT NULL

WITH DEFAULT attributes.

Example: To add a security label column to the sample employee table, you might

execute this ALTER TABLE statement:

ALTER TABLE DSN8810.EMP

 ADD EMP_SECLABEL CHAR(8) AS SECURITY LABEL NOT NULL WITH DEFAULT;

Comments in SQL statements

DB2 Version 8 allows any SQL statement to include SQL comments. Two

consecutive hyphens (--) indicate that the characters after the hyphens are part of a

comment. SQL comments must conform to the following rules:

v The two hyphens must be on the same line.

v The two hyphens must not be separated by a space.

v Comments can be started wherever a space is valid (except within a delimiter

token or between EXEC and SQL).

v Comments must begin and end on the same line.

v Within a statement that is embedded in a COBOL program, the two hyphens

must be preceded by a blank unless they begin a line.

Example: The following SELECT statement illustrates the use of a comment:

SELECT SALARY

 FROM DSN8810.EMP

 INTO :HV1

 WHERE SALARY > 40000

 ORDER BY HIREDATE -- this finds the employee who has been employed the longest

 FETCH FIRST ROW ONLY;

52 Release Planning Guide

#

#
#
#

#

#

#
#

#

#
#

#

#
#
#
#
#
#

Encrypting and decrypting data

In Version 8, you can use the new ENCRYPT_TDES function to encrypt data as

you update tables, and the DECRYPT_BIT, DECRYPT_CHAR, and DECRYPT_DB

functions to decrypt encrypted data as you retrieve it from a table.

Using the ENCRYPT_TDES function you can set a password string and a hint

string (to help you remember the password).

Example 1: Use the ENCRYPT_TDES function to encrypt an employe’s social

security number with an encryption password of ’Pacific’ and a password hint of

’Ocean’:

INSERT INTO EMP(SSN)

 VALUES ENCRYPT_TDES (’289-46-8832’, ’Pacific’, ’Ocean’);

You can retrieve the password hint by using the new GETHINT function as

follows:

SELECT GETHINT (SSN)

 FROM EMP;

This returns the value ’Ocean’.

To retrieve encrypted data from a table, you need to use the DECRYPT_BIT,

DECRYPT_CHAR, or DECRYPT_DB function using the password that you

specified in the ENCRYPT_TDES function.

Example 2: Use the DECRYPT_CHAR function to return the decrypted employe’s

social security number where the encryption password is ’Pacific’:

SELECT DECRYPT_CHAR(SSN, ’Pacific’)

 FROM EMP;

This returns the value ’289–46–8832’, which was encrypted in Example 1.

Greater control over locking for queries

In Version 8, you can use the USE AND KEEP EXCLUSIVE LOCKS, USE AND

KEEP UPDATE LOCKS, or USE AND KEEP SHARE LOCKS clauses in a SELECT

or SELECT INTO statement. These options are only valid when you use WITH RR

or WITH RS. By using one of these clauses, you tell DB2 to acquire and hold an X,

U, or S lock, respectively, on all of the qualified pages or rows.

With read stability (RS) isolation, a row or page that is rejected during stage 2

processing might still have a lock held on it, even though it has not returned to the

application.

With repeatable read (RR) isolation, DB2 acquires locks on all pages or rows that

are within the range of the selection expression.

All locks are help until the application commits. Although these options can reduce

concurrency, these option can prevent some types of deadlocks and can better

serialize access to data.

Chapter 2. Easier development and integration of e-business applications 53

#

#
#
#

#
#

#
#
#

#
#

#
#

#
#

#

#
#
#

#
#

#
#

#

#

#
#
#
#
#

#
#
#

#
#

#
#
#

Unicode enhancements

In Version 8, DB2 UDB for z/OS offers uniform data management across

geographic regions, greater compatibility between encoding schemes, and an

ODBC driver with full Unicode support. The Unicode enhancements that provide

these additional functions include support for Unicode parsing, support for

multiple encoding schemes in a single SQL statement, and ODBC support for

native Unicode.

Support for Unicode parsing

In DB2 Version 8, a Unicode parser replaces the EBCDIC parser that was used in

Version 7. The new Unicode parsing scheme alleviates problems with the variant

code set. The variant code set is the set of code points that are not represented by

the same hexadecimal value on each EBCDIC code page. This code set includes

special characters such as $, @, #, ¬, |, [,], {, and }.

Because a Unicode parser replaces the EBCDIC parser, Version 8 converts all SQL

statements that are not currently encoded as Unicode UTF-8 to that format before

parsing. The DB2 precompiler and coprocessor convert the coded character set

identifier (CCSID) of source programs to CCSID 1208 (the CCSID for UTF-8 data).

For this conversion, you specify the CCSID of the source program (a number from

1 to 65533 or 65535) in the new precompiler and coprocessor option CCSID. The

default value for this CCSID option is the system EBCDIC CCSID that was

specified in the DSNTIPF installation panel. If you connect to a server that does

not support Unicode, before DB2 sends data it converts character strings to the

EBCDIC system CCSID set of the non-Unicode server.

When you migrate DB2 from Version 7 to Version 8, you make the transition in

three DB2 migration modes: compatibility mode, enabling-new-function mode, and

new-function mode. These modes change the encoding scheme, compatibility, and

functionality of your subsystem in the following ways:

Compatibility mode

All catalog and directory table spaces are encoded in EBCDIC, allowing the

Version 8 subsystem to coexist with Version 7 subsystems. This mode does

not enable new Version 8 functions.

Enabling-new-function mode

Catalog and directory table spaces are in either EBCDIC or Unicode UTF-8.

Some table spaces remain in EBCDIC because they have not yet been

converted to Unicode. This mode is the transitional period between

encoding schemes. A DB2 subsystem that is in this mode cannot coexist

with nor fall back to Version 7. This mode supports only a limited set of

Version 8 functions to support the enabling process.

New-function mode

The following directory table spaces remain in EBCDIC in new-function

mode:

v SYSIBM.SYSCOPY

v SYSIBM.SYSEBCDIC

All other catalog and directory table spaces are encoded in Unicode. A DB2

subsystem that is in this mode cannot coexist with nor fall back to Version

7. Additionally, a DB2 subsystem that is in this mode cannot coexist with

nor return to Version 8 compatibility mode. New-function mode enables all

new Version 8 functions. To disable Version 8 functionality, you can toggle

54 Release Planning Guide

between new-function mode and enabling-new-function mode, but you

cannot backout the processing that originally occurred in

enabling-new-function mode.

The precompiler runs outside of DB2, so it cannot directly determine the current

DB2 migration mode. To specify whether you want the precompiler to enable

Version 8 syntax, you set an additional precompiler option NEWFUN to NO or

YES. If you are migrating to Version 8, NO is the default value for this option. The

last action of enabling-new-function mode is to rebuild the DSNHDECP module to

specify YES for the NEWFUN default.

NO Setting NEWFUN to NO tells the precompiler to disable Version 8

functions. The resulting DBRM uses EBCDIC for SQL statements and is not

marked Version 8 dependent under this option. DB2 Version 7 can bind

this DBRM. NO is the default value for NEWFUN in compatibility mode

and in enabling-new-function mode.

YES Setting NEWFUN to YES tells the precompiler to enable Version 8

functions. The resulting DBRM uses Unicode for SQL statements and is

marked Version 8 dependent under this option. This DBRM is Version 8

dependent even if you are using no new Version 8 SQL. The resulting

DBRM can only be bound on a DB2 Version 8 server. YES is the default

value for NEWFUN in new-function mode.

Support for multiple CCSID sets in a single SQL statement

With Version 8, you can reference table objects from different encoding schemes in

a single SQL statement. Table objects include tables, views, global temporary tables,

declared temporary tables, materialized query tables, and user-defined table

functions. DB2 supports EBCDIC, ASCII, and Unicode encoding schemes. A set of

coded character set identifiers (CCSIDs) defines each encoding scheme. You can

begin to reference table objects from different CCSID sets when DB2 is in

enabling-new-function mode. Referencing these table objects requires no additional

SQL syntax, but the rules for using multiple CCSIDs might change the semantics of

certain SQL statements. Multiple CCSID sets can semantically affect the following

SQL statements:

v ALTER TABLE ADD materialized-query-definition

v ALTER TABLE materialized-query-alteration

v CREATE GLOBAL TEMPORARY TABLE LIKE view-table

v CREATE TABLE materialized-query definition

v CREATE TABLE LIKE view-table

v CREATE VIEW

v DECLARE GLOBAL TEMPORARY TABLE AS (fullselect) DEFINITION ONLY

v DECLARE GLOBAL TEMPORARY TABLE LIKE view-table

v DELETE

v INSERT

v SELECT

v SELECT INTO

v UPDATE

v Scalar fullselect expressions

A CCSID set identifies an encoding scheme. When an SQL statement references

multiple CCSID sets for comparison or to generate a result set, DB2 must choose a

single CCSID set to represent the data. Because you do not explicitly define this

CCSID set with additional SQL syntax, semantic rules define the CCSID set that

DB2 is to use to represent or compare data.

Chapter 2. Easier development and integration of e-business applications 55

A CCSID set consists of three different parts:

SBCS A single-byte character set in which each character is represented

by a single byte.

Mixed A mixed-byte character set in which characters are represented by

a combination of single and multiple bytes.

Graphic This part of the CCSID can represent one of the following data

types:

v A double-byte character set (DBCS) in which each character is

represented by a pair of bytes.

v A Unicode character set in which each character is represented

by two or more bytes. Unicode graphic strings always use

UTF-16 data which uses a CCSID of 1200.

String constants, special registers, and host variables for which no CCSID is

specified in the SQLDA are associated with the application encoding scheme.

Expressions that are not explicitly associated with a CCSID, such as SUBSTR and

VARCHAR, produce results that use the same CCSID as the input string.

If you compare or combine data from multiple CCSIDs in an SQL statement, DB2

chooses the CCSID to which to convert data in the following process:

1. DB2 determines an appropriate CCSID set (SBCS, mixed, or graphic).

2. DB2 chooses a specific CCSID from that CCSID set.

DB2 first determines a CCSID set. Generally, DB2 chooses the graphic Unicode

CCSID set when you compare or combine data from different CCSID sets. This

rule does not apply, however, when an SQL statement references both

column-based data and application data (such as string constants and special

registers) in the same operation. In this case, DB2 converts the application data to

the CCSID set of column-based data (which might or might not be Unicode).

DB2 then chooses the specific CCSID to which to convert data. If the SQL

operation references column-based data and application data, DB2 always converts

application data to the CCSID of the column-based data. If the SQL operation

references only column-based data or only application data, DB2 performs one of

the following conversions:

v For operations that reference graphic data, DB2 converts all string data to the

graphic CCSID of the CCSID set that DB2 selected.

v For operations that reference only SBCS and mixed data, DB2 converts all data

to the mixed data CCSID of the CCSID set that DB2 selected. However, if the

MIXED DATA field in the DSNTIPF installation panel specifies NO (which is the

default value), DB2 uses the following conversions for each CCSID set:

– ASCII and EBCDIC mixed data operands are converted to SBCS. CCSID

65534 is used for both ASCII and EBCDIC mixed data subtypes in a MIXED

DATA = NO environment as a placeholder. No conversion occurs to or from

this CCSID.

– Unicode SBCS CCSIDs are still converted to mixed data. The value that is

specified for the MIXED DATA field in the DSNTIPF installation panel does

not affect Unicode CCSIDs.
v For operations that reference SBCS data only, DB2 uses one of the following

conversions:

– If the CCSID set is Unicode, the SBCS operands are converted to UTF-8 mixed

data.

56 Release Planning Guide

– If the CCSID set is not Unicode, DB2 uses the SBCS CCSID.

Important: Any time DB2 converts a character set to another character set that

contains fewer or different characters, you might lose data. If DB2 uses substitution

characters, DB2 issues a warning. If DB2 cannot convert a character to the target

CCSID, DB2 issues an error message (although in some special cases, only a

warning is issued).

The CAST specification is extended in Version 8 to include the CCSID integer and

CCSID encoding-scheme clauses. With these new clauses, you can specify the CCSID

or CCSID set of the target data type in a CAST statement. The CCSID clauses in

the CAST specification become available when DB2 enters enabling-new-function

mode.

A new Unicode hexadecimal string constant supports graphic Unicode UTF-16

characters. You can specify UTF-16 hexadecimal constants in SQL statements using

the form UX'xxxx', where xxxx represents a group of four hexadecimal digits. You

can use these digits in any multiple of four up 32704 digits. Each group of four

digits is a UTF-16 character.

When you reference a UX string constant, a GX string constant, or use the CAST

expression with the CCSID clause, DB2 treats your SQL statement as if it contains

more than one CCSID. Data in this statement is converted using the two-step

conversion process that is explained above.

To use Unicode hexadecimal string constants, you must run DB2 in new-function

mode.

For more details about using multiple CCSID sets, see DB2 SQL Reference and DB2

Installation Guide.

DB2 ODBC support for native Unicode

The ODBC driver for Version 8 fully supports UTF-8 and UCS-2 Unicode encoding

schemes. DB2 ODBC applications pass and store Unicode data directly without

conversion. This support enables the following application programming features

in DB2 ODBC:

v Update, insert, delete, and fetch operations on Unicode data through ODBC

application variables

v Unicode strings within the ODBC application programming interface (which

allow you to use Unicode SQL statements in your ODBC application)

The following DB2 ODBC elements support this new functionality:

v Suffix-W APIs to support UCS-2 data.

v New SQL_C_WCHAR data type to support UCS-2 data.

v A new initialization keyword, CURRENTAPPENSCH, which specifies the

current encoding scheme (EBCDIC, ASCII, or Unicode). When you set this

keyword to UNICODE, generic ODBC APIs support UTF-8 data.

v Additional SQLGetInfo() attributes to query the CCSID settings of the DB2

subsystem in each encoding scheme.

For additional information about DB2 ODBC Unicode support, see DB2 ODBC

Guide and Reference.

Chapter 2. Easier development and integration of e-business applications 57

Multilevel security with row-level granularity

In Version 8, DB2 UDB for z/OS introduces multilevel security with row-level

granularity. Multilevel security allows you to classify objects and users with

security labels that are based on hierarchical security levels and non-hierarchical

security categories. Multilevel security prevents unauthorized users from accessing

information at a higher classification than their authorization, and prevents users

from declassifying information. Using multilevel security with row-level

granularity, you can define security for DB2 objects and perform security checks,

including row-level security checks. Row-level security checks allow you to control

which users have authorization to view, modify, or perform other actions on

specific rows of data.

Requirement: You must have z/OS Version 1 Release 5 or later to use DB2

authorization with multilevel security with row-level granularity.

Advantages of multilevel security

Multilevel security with row-level granularity offers the following advantages:

v Multilevel security enforcement is mandatory and automatic.

v Multilevel security can use methods that are difficult to express through

traditional SQL views or queries.

v Multilevel security can provide performance benefits with row-level checking.

v Multilevel security does not rely on special views or database variables to

provide row-level security control.

v Multilevel security controls are consistent and integrated across the system, so

that you can avoid defining users and authorizations more than once. Access to

files, databases, printers, terminals, and other resources can have a single

security control point.

Mandatory access control and dominance

In multilevel security, mandatory access control restricts access to an object based

on the dominance relationships between user security labels and object security

labels. One security label dominates another security label when both of the

following conditions are true:

v The security level that defines the first security label is greater than or equal to

the security level that defines the second security label.

v The set of security categories that defines one security label includes the set of

security categories that defines the other security label.

Mandatory access control evaluates dominance and determines whether to allow

certain actions, based on the following rules:

v If the security label of a user dominates the security label of an object, the user

can read from the object.

v If the security label of a user and the security label of the object are equivalent,

the user can read from and write to the object.

v If the security label of the object dominates the security label of the user or if the

security labels are incompatible, the user cannot read from or write to the object.

Mandatory access control prevents users from declassifying information by not

allowing a user to write to that object unless the security label of the user and the

security label of the object are equivalent. You can override this security feature,

58 Release Planning Guide

known as write-down control, for specific users by granting write-down authority

to those users. The examples in the following section assume that the user does not

have write-down authority.

Implementing and using multilevel security

This section briefly sketches how to implement multilevel security with row-level

granularity on a table. For a complete discussion of how to implement multilevel

level security with row-level granularity, see z/OS Planning for Multilevel Security

and the Common Criteria. This section also demonstrates how multilevel security

affects the results of SQL statements and utilities that LOAD, UNLOAD, and

REORG DISCARD, and LOAD REPLACE rows.

Example: Suppose that you have a table EMP. Also, suppose that you need to

implement mandatory and granular security to protect the sensitive data that is

stored in EMP. To implement multilevel security with row-level granularity to

protect the data in EMP, define a security label column. Define the security label

column as CHAR(8) NOT NULL WITH DEFAULT and with the AS SECURITY

LABEL clause, as shown in the following statement:

ALTER TABLE EMP

 ADD SECURITY CHAR(8) NOT NULL WITH DEFAULT AS SECURITY LABEL;

After the security label column is populated with security labels, DB2 enforces

security checks for each row. These security checks affect the results of SELECT,

INSERT, UPDATE, and DELETE statements, and utilities that load, unload, or

delete rows.

Example: Suppose that Beth has the security label MEDIUM. Suppose that the

table EMP contains the data that is shown in Table 11 and that the SECURITY

column is the security label column.

 Table 11. Sample data from EMP

EMPNO LASTNAME WORKDEPT SECURITY

A00147 JONES 19 LOW

A00148 NGUYEN 19 HIGH

A00149 SANCHEZ 19 MEDIUM

Now, suppose that Beth issues the following statement:

SELECT LASTNAME

 FROM EMP

 ORDER BY LASTNAME;

Because Beth’s security label MEDIUM dominates the security labels LOW and

MEDIUM, she receives the following result:

JONES

SANCHEZ

Beth does not see NGUYEN in her result set because the row with that information

has a security label of HIGH. Although Beth does not receive the full result set for

her query, DB2 does not return an error code to Beth.

Example: Now, suppose that Beth issues the following statement on the EMP table:

UPDATE EMP

 SET WORKDEPT=’17N’

 WHERE WORKDEPT=’19’ AND SECURITY=GETVARIABLE(SYSIBM.SECLABEL);

Chapter 2. Easier development and integration of e-business applications 59

Because Beth has a security label that is equivalent to the security label of the row

with MEDIUM security, that row is examined and the update succeeds for that

row. Table 12 shows the results of the UPDATE statement.

 Table 12. Sample data from EMP after the UPDATE statement

EMPNO LASTNAME WORKDEPT SECURITY

A00147 JONES 19 LOW

A00148 NGUYEN 19 HIGH

A00149 SANCHEZ 17N MEDIUM

SQL support for XML functions in DB2

Version 8 of DB2 UDB for z/OS provides a set of SQL built-in functions that allow

applications to generate XML data from relational data. These functions reduce

application development efforts for generating XML data for data integration,

information exchange, and Web services. Version 8 includes the following XML

functions:

v The XMLELEMENT function generates an XML element from a variable number

of arguments.

v The XMLNAMESPACES function generates XML namespace declarations.

v The XMLATTRIBUTES function constructs XML attributes from the arguments.

v The XMLFOREST function produces a forest of XML elements that all share a

specific pattern from a list of columns and expressions. A forest is an ordered set

of subtrees of XML nodes; XML nodes can represent an element, a text string,

and so on.

v The XMLCONCAT function concatenates a variable number of arguments to

generate a forest of XML elements.

v The XMLAGG function, an aggregate function, produces a forest of XML

elements from a collection of XML elements.

v The XML2CLOB function converts the transient XML data type into a CLOB so

that applications can access the XML data. The transient XML data type exists

during query processing only.

If you plan to generate large XML documents by using the XML built-in functions

(on the order of gigabytes, for example), your DB2 subsystem can consume a large

amount of virtual storage space. In that case, you must configure the system to

avoid performance degradation.

Example: Generate an ″Emp″ element for each employee. Use employee name as

its attribute and two subelements generated from columns HIRE and DEPT by

using XMLFOREST as its content. The element names for the two subelements are

″HIRE″ and ″department″.

SELECT e.id, XML2CLOB (XMLELEMENT

 (NAME "Emp",

 XMLATTRIBUTES (e.fname || ’ ’ || e.lname AS "name"),

 XMLFOREST (e.hire, e.dept AS "department"))) AS "result"

 FROM employees e;

The result of the query would be similar to the following result:

ID result

1001 <Emp name="John Smith">

 <HIRE>2000-05-24</HIRE>

 <department>Accounting</department>

60 Release Planning Guide

#

</Emp>

1001 <Emp name="Mary Martin">

 <HIRE>1996-02-01</HIRE>

 <department>Shipping</department>

 </Emp>

Example: Concatenate first name and last name elements by using “first” and

“last” element names for each employee.

SELECT XML2CLOB(XMLCONCAT

 (XMLELEMENT (NAME "first", e.fname),

 XMLELEMENT (NAME "last", e.lname))) AS "result"

 FROM employees e;

The result of the query would look similar to the following result, where the

″result column″ is a CLOB:

result

 <first>John</first><last>Smith</last>

 <first>Mary</first><last>Smith</last>

For more information about XML publishing functions, see DB2 SQL Reference.

Improvements in connectivity

Version 8 of DB2 includes the following connectivity enhancements:

v “Enhanced support for JDBC and CLI clients”

v “Easier access to remote workstation database through database alias support”

on page 62

v “More granular control of routing requests to specific members of a data sharing

group” on page 62

v “Improved JDBC and CLI connectivity for cursors and result sets” on page 63

v “More flexibility in managing distributed applications with CURRENT

PACKAGE PATH special register” on page 63

Enhanced support for JDBC and CLI clients

In versions of DB2 before Version 8, different connection protocols exist for access

to a DB2 UDB for Linux, UNIX®, and Windows® server and for access to a DB2

UDB for z/OS server. Each server protocol uses a different set of methods to

implement the same functions. To reduce complexity and duplication, Version 8 of

DB2 provides access across the DB2 UDB family by implementing the DRDA

standard that is published by The Open Group. This standard defines an open,

published architecture for communication among applications, application servers,

and database servers on platforms with the same or different hardware and

software architectures.

The Open Group DRDA Standard supports functions that you can implement on

the Linux, UNIX, and Windows platforms and the z/OS server. These standards

are described in the Open Group Technical Standard DRDA Version 3.

For Version 8, DB2 support includes new server functions for specific C-based

common client requirements, Java-based common client requirements, and iSeries™

requirements that are not supported for z/OS applications. It provides an open

and consistent set of protocols for the different platforms on which the data

resides.

The new features include:

Chapter 2. Easier development and integration of e-business applications 61

v Cursor and stored procedure result set instances: A DB2 UDB for z/OS server

now allows multiple instances of a cursor, or multiple stored procedure result

sets, to be open concurrently under the same thread.

v Extended describe: A DB2 UDB for z/OS server can provide extended

descriptive information to support the JDBC 2.0 updateRow and deleteRow

methods.

v SQL cancel: A JDBC or CLI application can cancel long-running requests on a

DB2 UDB for z/OS server.

v Cursor extensions: DB2 UDB for z/OS allows a requester to identify:

– Whether the server should release read locks when a query is closed.

– Whether the server should close a query implicitly when no more rows exist

for a non-scrollable cursor, regardless of whether the cursor has the HOLD

attribute.
v Better utilization of network capacity: DB2 UDB for z/OS provides more

flexibility for requesters such as DB2 Connect™ to specify larger query block

sizes. This helps requesters optimize their use of network resources.

v Requester database aliases: A database administrator can specify multiple

locations for DB2 UDB for Linux, UNIX, and Windows databases.

v Distributed transactions: DB2 UDB for z/OS, Version 8 adds DRDA XA protocol

support, which is needed to support Java Transaction API (JTA)/Java

Transaction Service (JTS) distributed transactions. This support is available only

for TCP/IP connections.

v Server location aliases: DB2 UDB for z/OS supports location aliases that reflect

the location names used by applications to route requests to all or a subset of

members in a data sharing group.

v Subsets: DB2 UDB for z/OS allows you to define subsets of data sharing group

members in TCP/IP networks. A non-DB2 UDB for z/OS requester can connect

to a subset of data sharing group members by appending a port number to a

location alias.

v Member routing in a TCP/IP network: In data sharing environments,

applications can route requests directly to one or more members of a data

sharing group. They do so by using location names on the client side in

conjunction with location aliases on the server side. The location names can

represent a specific member, multiple members, or all members of a data sharing

group.

v Timeout for allocate conversation requests: If a VTAM® request to allocate a

conversation for a remote SQL statement does not complete in three minutes,

DDF forces VTAM to abnormally terminate the remote request .

Easier access to remote workstation database through

database alias support

The communications database allows a DB2 requester to access multiple DB2 UDB

for Linux, UNIX, and Windows databases that are set up with the same database

name. DB2 provides the use of a database alias (DBALIAS) in

SYSIBM.LOCATIONS to override the location name that a z/OS application uses

to access a server.

More granular control of routing requests to specific members

of a data sharing group

Implementing member routing in TCP/IP networks requires that a site define both

client-side location names and server-side location aliases. Requesters use the

62 Release Planning Guide

SYSIBM.IPLIST table to define location names that represent the members to which

requests are to be routed. A requester can define multiple location names, each of

which represents a different subset of the members of the data sharing group. The

SYSIBM.IPLIST table maps location names to member-specific domain names. On

the server side, the DB2 administrator uses the ALIAS option of the DSNJU003

(change log inventory) utility to update the bootstrap data set (BSDS) with location

aliases. Location aliases identify location names that are used by requesters to

access members of the data sharing group.

Improved JDBC and CLI connectivity for cursors and result

sets

Before Version 8 of DB2, the second open of a cursor always failed if the cursor

was already open. The second call to the same stored procedure always closed any

open result sets. A requester can now open the same cursor multiple times, or it

can process result sets from different calls to the same stored procedure. A DB2

UDB for z/OS server provides a unique identifier to the requester for each open

cursor or result set. The requester can then manage the multiple instances using

the unique cursor identifier.

For example, before Version 8 of DB2, customizing SQLJ applications to call the

same method twice was difficult. In Version 8, the requester can determine if

multiple instances of the cursor need to be generated. This allows the requester to

manage the different cursor instances.

More flexibility in managing distributed applications with

CURRENT PACKAGE PATH special register

Package collections let you logically group packages for general administration or

housekeeping, and provide a way to maintain different versions of an application.

You can bind a package into multiple collections, and you need a convenient way

to search the collections for a specific package. The new CURRENT PACKAGE

PATH special register lets you specify a list of collections in which to search for a

package. The SET CURRENT PACKAGE PATH SQL statement is similar to the

PKLIST bind option, but the SET CURRENT PACKAGE PATH statement is

processed at the server.

In releases of DB2 before Version 8, the only way to switch between packages was

to execute the SET CURRENT PACKAGESET statement every time you needed to

use a different package. With SET CURRENT PACKAGE PATH, you can execute

the statement only once, to give the server a list of package collections to search.

CURRENT PACKAGE PATH is especially important for Java applications that use

SQLJ. SQLJ applications are written in Java, so you can run them on a variety of

platforms. However, different database servers support different sets of bind

options. You therefore need to bind the same program into several packages, each

with a different collection ID, and each with a different set of bind options. In the

program, you can execute one SET CURRENT PACKAGE PATH statement to list

the collections that are to be searched at all database servers. When the program

connects to a server, the server locates the package with the associated collection

ID to run.

Other e-business enhancements

Version 8 of DB2 UDB for z/OS introduces the following additional e-business

enhancements:

Chapter 2. Easier development and integration of e-business applications 63

v SQL processing options CCSID and NEWFUN; see “SQL processing options.”

v Resource Recovery Services attachment facility (RRSAF) implicit connections to

DB2; see “RRSAF implicit connections.”

v Multiple instances of the same stored procedure can be run concurrently. See

“Changes to stored procedures processing.”

v Support for 31-digit DB2 PL/I applications; see “Enhancements for DB2 PL/I

applications” on page 65.

SQL processing options

The SQL processing option CCSID(n) specifies the numeric value n of the CCSID in

which the source program is written. The default setting is the EBCDIC system

CCSID as specified on the panel DSNTIPF during installation.

The SQL processing option NEWFUN indicates whether to accept the syntax for

DB2 Version 8 functions. NEWFUN(YES) causes the precompiler to accept Version

8 syntax. A successful precompilation produces a DBRM that can be bound only

with Version 8 and later releases, even if the DBRM does not use any Version 8

syntax. NEWFUN(NO) causes the precompiler to reject any syntax that DB2

Version 8 introduces. A successful precompilation produces a DBRM that can be

bound with any release of DB2, including Version 8.

During migration to Version 8 from Version 7, the NEWFUN default value is NO.

At the end of enabling-new-function mode, the default changes from NO to YES.

If Version 8 is a new installation of DB2, the default is YES.

RRSAF implicit connections

If you do not explicitly specify the IDENTIFY function in a CALL DSNRLI

statement, RRSAF initiates an implicit connection to DB2 if the application includes

SQL statements or IFI calls. An implicit connection causes RRSAF to initiate

implicit IDENTIFY and CREATE THREAD requests to DB2. Although RRSAF

performs the implicit connection request by using default values, the request is

subject to the same DB2 return and reason codes as are explicit connection

requests.

For an implicit connection request, your application should not specify either

IDENTIFY or CREATE THREAD. However, an implicit connection does not

perform any SIGNON processing. Your application can execute SIGNON at any

point of consistency and any other RRSAF calls after the implicit connection. To

terminate an implicit connection, you must use the proper calls.

Your application program must successfully connect, either implicitly or explicitly,

to DB2 before it can execute any SQL calls to the RRSAF DSNHLI entry point.

Changes to stored procedures processing

Your application program can issue multiple CALL statements to the same local or

remote stored procedure. If that stored procedure returns result sets and the calling

application leaves those result sets open before the next call to that same stored

procedure, each CALL statement invokes a unique instance of the stored

procedure. Each instance of the stored procedure runs serially within the same DB2

thread and opens its own result sets. These multiple calls invoke multiple instances

64 Release Planning Guide

#
#

#

#
#
#
#
#
#

of any packages that are invoked while running the stored procedure. These

instances are invoked at either the same or different level of nesting under one

DB2 connection or thread.

In compatibility mode and enabling-new-function mode, multiple calls to the same

stored procedure do not produce multiple instances of the applications.

To invoke multiple instances of remote stored procedures or local stored

procedures that have SQL to access a remote site, both the client and server must

be in DB2 Version 8 new-function mode or later. For local stored procedures that

issue remote SQL, instances of the applications are created at the remote server site

regardless of whether result sets exist or are left open between calls.

DB2 storage shortages and EDM POOL FULL conditions can occur if you call too

many instances of a stored procedure or if you open too many cursors. If the

stored procedure issues remote SQL statements to another DB2 server, these

conditions can occur at both the DB2 client and at the DB2 server.

To optimize storage usage, two subsystem parameters control the maximum

number of stored procedures instances and the maximum number of open cursors

for a thread. MAX_ST_PROC controls the maximum number of stored procedure

instances that you can call within the same thread. MAX_NUM_CUR controls the

maximum number of cursors that can be open by the same thread. When either of

the values from these subsystem parameters is exceeded while an application is

running, the CALL statement or the OPEN statement receives SQLCODE -904.

The calling application for the stored procedure should close the result sets and

issue commits often. Even read-only applications should perform these actions.

Applications that fail to do so terminate abnormally with DB2 storage shortage

and EDM POOL FULL conditions.

You can set the maximum number of stored procedure instances and the maximum

number of open cursors on installation panel DSNTIPX. For more information

about setting the maximum number of stored procedure instances and the

maximum number of open cursors per DB2 thread or connection, see the topic

“Routine parameters panel: DSNTIPX”in DB2 Installation Guide.

Enhancements for DB2 PL/I applications

DB2 provides support for 31-digit precision in DB2 PL/I applications. To use 31-bit

precision in your applications, you must have VisualAge PL/I for OS/390, Version

2 Release 2 or later.

Chapter 2. Easier development and integration of e-business applications 65

#
#
#

#
#

#
#
#
#
#

#
#
#
#

#
#
#
#
#
#
#

#
#
#
#

#
#
#
#
#

#

#
#
#

66 Release Planning Guide

Chapter 3. Planning for migration, conversion, and fallback

This chapter contains considerations for migration, for conversion to new-function

mode, and for fallback from compatibility mode to Version 7. A directory of new

and revised installation panels is also provided in this chapter. You can migrate to

Version 8 compatibility mode only from Version 7. See DB2 Installation Guide for

complete, step-by-step instructions for installing, migrating, converting to

new-function mode, or falling back.

Migration to Version 8 is comprised of three progressive catalog levels:

compatibility mode, enabling-new-function mode, and new-function mode.

Compatibility mode

The state of the catalog after the Version 8 migration process is complete.

Enabling-new-function mode

Marked by the beginning and ending of catalog conversion job DSNTIJNE,

which converts catalog data to Unicode.

New-function mode

Begins after a the successful completion of job DSNTIJNF.

The following topics provide additional information:

v “Hardware and software requirements”

v “Migration considerations”

v “Preparing for fallback” on page 80

v “Release incompatibilities” on page 82

v “Release coexistence” on page 87

v “Installation changes” on page 88

Hardware and software requirements

Detailed information about hardware and software requirements for Version 8 of

DB2 UDB for z/OS can be found in the Version 8 DB2 Program Directory. This book

is shipped with the product and is available on the Web at www.ibm.com/
software/db2zos/library.html.

Migration considerations

This section includes items to consider before migrating DB2 to Version 8

compatibility mode from Version 7.

Make sure that your current subsystem is at the proper service level. Before you

migrate to Version 8 compatibility mode, you must have a maintenance level on

Version 7 that contains the fallback SPE. If you do not have the fallback SPE

applied, your Version 8 compatibility mode migration process terminates. See the

Version 8 IBM DB2 Program Directory, which is shipped with the product, for

keyword specifications for preventive service planning (PSP). Check

Information/Access or the ServiceLink facility of IBMLink™ for PSP information

before you migrate. Also check those facilities monthly to obtain the most current

information about DB2.

© Copyright IBM Corp. 2004, 2008 67

You must migrate to a z/OS Version 1 Release 3 environment (or later) before

migrating to Version 8 compatibility mode. Other facilities, such as CICS, IMS, and

COBOL also must be migrated to later releases. See DB2 Installation Guide for more

details.

DB2 Version 8 publications assume new-function mode

All publications in the DB2 Version 8 library assume that your DB2 subsystem is

running in Version 8 new-function mode. Changes to functions, statements, and

limits are available in new-function mode unless stated otherwise.

DB2 Utilities Suite for z/OS Version 8 uses the DFSORT

program

The DB2 Utilities Suite for z/OS Version 8 is designed to work with the DFSORT

program, which you are licensed to use in support of the DB2 utilities even if you

do not otherwise license DFSORT for general use. If your primary sort product is

not DFSORT, consider the following informational APARs mandatory reading:

v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES

v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.

Use triggers instead of field, edit, and validation procedures

It is recommended that you use triggers instead of field, edit, and validation

procedures. Triggers can have long names, but field, edit, and validation

procedures are limited to names of 18 bytes or smaller.

DB2 treats certain large fixed-length strings as varying-length

strings

Fixed-length character host variables cannot be over 255 bytes long. Fixed length

graphic host variables cannot be over 127 characters long. When DB2 manipulates

a fixed-length character string that is declared as more than 255 bytes long, or a

fixed-length graphic string that is declared as more than 127 characters long, DB2

treats that string as a varying-length string.

MEMLIMIT cannot be customized through the installation

process

In previous releases of DB2, you could modify the MEMLIMIT setting for the

DBM1 address space by setting a value for STG AVAILABLE ABOVE 2GB in panel

DSNTIPC. This field has been removed and DB2 now determines the appropriate

setting.

DBDs cannot be accessed if DB2 starts in deferred mode

If you start DB2 in a deferred mode, database descriptors (DBDs) cannot be

accessed until the restart has completed. If you attempt to load a DBD during DB2

start-up in deferred mode, the DBD is not loaded and DB2 start-up continues.

DB2 LOCATION NAME value

In previous releases of DB2, DB2 could start if a value was not specified in the

DB2 LOCATION NAME field in panel DSNTIPR. However, in DB2 Version 8, DB2

will not start if no value has been specified in that field.

68 Release Planning Guide

#

#

#
#
#
#

#

#
#

#

#

#
#
#

#

#

#
#
#
#
#

#

#

#
#
#
#

#

#
#
#

Type 1 indexes are not supported

Before you migrate to Version 8, you must convert all type 1 indexes to type 2

indexes. DB2 migration fails if your subsystem contains type 1 indexes.

Declared global temporary tables need an 8-KB buffer pool

Global temporary tables require an 8-KB buffer pool, which are required to install

DB2. Existing jobs that create a table space in the temporary database might also

need to be modified.

Declared global temporary tables need an 8-KB table space in

the temporary database

If you use declared temporary tables, you must define at least one of the table

spaces in the temporary database to have a page size of 8 KB or greater. Member

DSNTESQ of the prefix.SDSNSAMP library contains a sample query to check your

temporary databases.

System-level point-in-time recovery

If you plan to use the BACKUP SYSTEM online utility to take volume copies of the

data and logs of your non-data-sharing DB2 subsystem or of your DB2 data

sharing group, all of your DB2 data sets must reside on volumes that are managed

by DFSMS. The BACKUP SYSTEM utility and its counterpart, the RESTORE

SYSTEM utility, require:

v z/OS Version 1 Release 5 or above.

v Disk control units that support ESS FlashCopy®.

v HSM copy pools whose definitions follow the DB2 naming convention.

v SMS copy target storage pools that are defined. (The BACKUP SYSTEM utility

enables volume-level backups of a DB2 subsystem that uses these target storage

groups.)

Exception: If you use RESTORE SYSTEM with the LOGONLY option, you do not

need the preceding requirements. You can perform the restoration manually by

using your preferred method, and then run RESTORE to complete the recovery.

Enhanced support for scrollable cursors

Support for scrollable cursors enables dynamic access to data in tables. In Version

7, scrollable cursors required storage space in the temporary database and in

segmented table spaces. In Version 8, with dynamic scrollable cursors, this

restriction no longer exists, which might result in a decrease in the needed storage.

Changes to space allocations for DB2-managed data sets

The default values for primary space allocations have increased. For non-LOB table

spaces and indexes, the default primary space allocation is one cylinder. For LOB

table spaces, the default primary space allocation is ten cylinders.

The default values for secondary space allocations can now use a sliding scale. If

you specify a value of YES for the field OPTIMIZE EXTENT SIZING on panel

DSNTIP7, DB2 uses a sliding scale to determine the secondary allocations for

DB2-managed data sets if you explicitly specify SECQTY (with a valid value that is

not -1) in the CREATE TABLESPACE or CREATE INDEX statement or in any of

the subsequent ALTER TABLESPACE or ALTER INDEX statements.

Chapter 3. Planning for migration, conversion, and fallback 69

#

#
#
#

#

#

#
#
#
#

Using a sliding scale for secondary space allocations might result in increased disk

space usage. However, overall, this method generally results in better space

utilization and fewer situations in which the maximum number of extents are

reached.

Changed default value for DESCRIBE FOR STATIC

During installation of DB2 Version 8, the default for subsystem parameter

DESCSTAT on installation panel DSNTIP4 is now YES. If your DB2 UDB for z/OS

subsystem or DB2 UDB for Linux, UNIX, and Windows systems uses the new

JDBC driver, or if your DB2 UDB Linux, UNIX, and Windows systems uses the

new CLI driver, you must set DESCSTAT to YES.

Changed data types and lengths for some catalog columns

Some catalog columns have new data types and lengths. In Version 8, they are

now VARCHAR(n), where n is 8 or greater.

If your application program uses the values of these columns in comparison

statements such as a statement that uses a LIKE predicate, you might need to

adjust your application program to get the desired results.

Queries that contain an IN or NOT IN subquery can no longer use a sparse index

because sparse index does not support VARCHAR.

Changed data types and lengths for some special registers

Some special registers have new data types and lengths. The changed registers and

their new data types and lengths are:

v CURRENT OPTIMIZATION HINT is now VARCHAR(128).

v CURRENT PACKAGESET is now VARCHAR(128).

v CURRENT SQLID is now VARCHAR(8).

v USER is now VARCHAR(8).

v CURRENT PATH is now VARCHAR(2048).

If your application program uses the values of these registers in comparison

statements such as a LIKE predicate, you might need to adjust your application

program to get the desired results.

SQL reserved words may be used in delimited identifiers for

procedure names

In Version 8, you may use SQL reserved words in delimited identifiers for

procedure names. See DB2 SQL Reference for more information.

Encoding schemes of string parameters for routines

The new PARAMETER CCSID clause allows you to define the encoding scheme of

all string parameters for user-defined functions and stored procedures at the same

time. In previous versions, you needed to define a CCSID for each string

parameter if you wanted an encoding scheme other than the default. Also, EBCDIC

is no longer the default encoding scheme for system-defined parameters. DB2 now

uses the same encoding scheme for both user-specified and system-generated

string parameters.

Modify RUNSTATS jobs

After you migrate to Version 8, some existing RUNSTATS jobs might fail if

data-partitioned secondary indexes are defined on the tables on which they run.

70 Release Planning Guide

#
#

#
#

RUNSTATS jobs on data-partitioned secondary indexes require sort operations;

therefore, you need to modify these RUNSTATS jobs to allocate the sort work data

sets. You can modify the RUNSTATS jobs with the SORTDEVT and SORTNUM

keywords, or you can add STATWKnn DD statements to the JCL.

More history statistics are collected

If you specify SPACE or ACCESSPATH for the STATISTICS HISTORY parameter

on panel DSNTIPO, DB2 might insert more statistics into the catalog statistics

history tables. For example, DB2 inserts statistics when you run a utility with the

UPDATE(ACCESSPATH) or UPDATE(SPACE) parameter but without the HISTORY

parameter.

Creating tables with DBCS and mixed columns

You can no longer create extended binary-coded decimal interchange code

(EBCDIC) tables with GRAPHIC, VARGRAPHIC, or DBCLOB columns when the

setting for installation option MIXED DATA is NO. You also cannot alter EBCDIC

tables to add GRAPHIC, VARGRAPHIC, or DBCLOB columns when MIXED

DATA is NO.

Consider increasing IDBACK and CTHREAD

Because utilities might use additional threads, you should consider increasing the

values of the IDBACK and CTHREAD subsystem parameters. Increasing these

parameter values can help you avoid failure of some utilities due to increased

thread usage. An increase also supports the additional parallelism that is associated

with the utilities.

Support for DB2-established data space for cached dynamic

statements is deprecated

In Version 8, support for a DB2-established data space for cached dynamic

statements is deprecated. You can no longer specify the parameters EDMDSPAC or

EDMDSMAX during installation or migration. A new EDM statement cache is

provided for cached dynamic statements. See DB2 Installation Guide for a

description of the parameters for the new EDM statement cache.

Consider changing EDM pool size

Cached dynamic statements and database descriptors are in a separate pool in

Version 8, which could result in decreased storage requirements. You can change

the EDM pool size by modifying the EDMPOOL STORAGE SIZE field on

installation panel DSNTIPC, and then stopping and restarting DB2. You can also

modify the EDM pool size without stopping and restarting DB2 by using the SET

SYSPARM command. However, using the SET SYSPARM command might result in

a pool that is not contiguous, which is less efficient.

Customized DB2I defaults can be migrated

You can migrate a DB2I TSO IPSF profile member from a prior release to the

current release. The DSNEMC01 CLIST uses the values that are specified on

installation panel DSNTIPF and stores the results in the ISPF profile member

DSNEPROF. You can migrate any customized DSNEPROF members from Version 7

to Version 8. However, you need to examine any new or changed default panel

values to ensure that your customized values are still valid.

Chapter 3. Planning for migration, conversion, and fallback 71

#
#
#
#

Rebinding DSNACOLN and the DatabaseMetadata stored

procedures (for ODBC and JDBC support)

If you rebind all packages after migrating from DB2 Version 7 to DB2 Version 8

compatibility mode, the DSNACOLN metadata package from Version 7 is

included, even though it is no longer valid for Version 8. The DSNACOLN

metadata package from Version 7 is only intended to run in DB2 Version 7

environments and these provided DBRMs are no longer needed following a

successful migration, unless you fall back to Version 7. Rebinding the DSNACOLN

metadata package from Version 7 while running Version 8 compatibility mode can

result in the following abend:

DUMP TITLE=DSN ,ABND=04E-00E70005,U=xxxxxx ,M=(C),C=810.SCC

 -REBNDPKG,M=DSNTFRCV,LOC=DSNXGRDS.DSNHPARS:P502

After you migrate from DB2 Version 7 to DB2 Version 8, use the provided Version

8 DBRMs instead of the previous ones that were provided for Version 7. The

Version 8 DBRMs are provided for both Version 8 compatibility mode and Version

8 new function mode. These packages are precompiled and contain the necessary

CCSID changes for Version 8.

Furthermore, after you migrate to Version 8, if you use a multi-byte EBCDIC

character set, you might encounter the above ABEND when you attempt to rebind

packages in collection ID DSNASPCC that were created in DB2 Version 7 or an

earlier release. DSNASPCC is the collection id for stored procedures that support

the JDBC and ODBC DatabaseMetadata stored procedures (SYSIBM.SQL*). Use the

BIND PACKAGE statements for DSNASPCC in your customized copy of

installation job DSNTIJSG to create fresh packages for the JDBC and ODBC

DatabaseMetadata stored procedures while DB2 is running in Version 8

compatibility mode. When DB2 enters Version 8 new function mode, use the BIND

PACKAGE statements for DSNASPCC in job DSNTIJMC.

LANGUAGE COMPJAVA no longer supported for stored

procedures

After migrating to Version 8, you can no longer define or run COMPJAVA stored

procedures. Convert LANGUAGE COMPJAVA stored procedures to LANGUAGE

JAVA by following these steps:

1. Use ALTER PROCEDURE to change the LANGUAGE and the WLM

ENVIRONMENT. The EXTERNAL NAME clause must also be specified. Use

the following example as a model:

ALTER PROCEDURE SYSPROC.JAVADVR

LANGUAGE JAVA EXTERNAL

NAME ’display.display.main’

WLM ENVIRONMENT WLMENVJ;

You must specify a valid language option when issuing any ALTER

PROCEDURE statement for a procedure that was defined with LANGUAGE

COMPJAVA. If you do not, DB2 issues an error.

2. Ensure that the WLM environment is configured and that the required JVM is

installed.

3. Ensure that the .class file that is identified in the EXTERNAL NAME clause of

the ALTER PROCEDURE is present in one of the following places:

v In a JAR that was installed to DB2 by an invocation of the INSTALL_JAR

stored procedure

72 Release Planning Guide

#

#

#
#
#
#
#
#
#
#

#
#

#
#
#
#
#

#
#
#
#
#
#
#
#
#
#

v In a directory in the CLASSPATH ENVAR of the data set that is named on

the JAVAENV DD statement of the WLM stored procedures address space

JCL

DSNWZP runs in WLM-established stored procedure address

space

In DB2 Version 8, the DB2-supplied stored procedure DSNWZP is defined to run in

a WLM-established stored procedure address space that uses external module

DSNWZP. If you ran DSNWZP in a WLM-established stored procedure address

space in DB2 Version 7, you redefined DSNWZP to use external module

DSNWZPR. If you do not use job DSNTIJSG to define DB2-supplied stored

procedures in DB2 Version 8, you must alter stored procedure DSNWZP to use

external module DSNWZP.

Support for DB2-established stored procedure address spaces

is deprecated

In Version 8, support for DB2-established address spaces is deprecated. You can no

longer specify the NO WLM ENVIRONMENT option when you create or alter

stored procedure definitions. Although existing stored procedures can still run in a

DB2-established stored procedure address space, you should move your stored

procedures to WLM environments as soon as possible. For more information about

moving stored procedures, see Part 5 (Volume 2) of DB2 Administration Guide.

Pre-compilation for unsupported compilers

For some COBOL and PL/I compilers that are no longer supported by Version 8,

you can use a version of the precompiler that allows you to precompile

applications that have dependencies on these unsupported compilers. You can use

this version of the precompiler with the following unsupported compilers:

v OS/VS COBOL V1.2.4

v OS PL/I 1.5 (PL/I Opt. V1.5.1)

v VS/COBOL II V1R4

v OS PL/I 2.3

The load module for this precompiler is DSNHPC7. This precompiler is meant

only to ease the transition from unsupported compilers to supported compilers.

This precompiler has the following restrictions:

v It is available only for Version 8.

v There is no corresponding DB2 coprocessor function to match this precompiler.

v The precompiler does not support SQL procedures.

v Only COBOL and PL/I are supported.

v The SQL flagger is not supported.

v The precompiler produces Version 7 DBRMs, and therefore does not support any

capability that is new to Version 8.

Use this version of the precompiler only until you migrate your applications to

work with supported compilers.

New precompiler option for string host variables

In previous releases of DB2, if you selected a value from a character column into a

C or C++ host variable of the nul-terminated character form, and the length of the

host variable was longer than the length of the value, DB2 padded the string with

Chapter 3. Planning for migration, conversion, and fallback 73

#

#
#
#
#

#

#

#

#

#
#
#

#

#

#

#

#

#
#

#
#

blanks and inserted the nul-terminator after the blanks. In Version 8, the DB2

default behavior is to not pad the string with blanks. If you want to produce

blank-padded strings, as in previous releases, specify YES in field PAD

NUL-TERMINATED in installation panel DSNTIP4, or precompile your program

with the PADNTSTR option.

You must specify the APOST precompiler option when the

given CCSID for the source is 1026 or 1155

You cannot specify the following precompiler options together:

v CCSID(1026) or CCSID(1155)

v HOST(IBMCOB)

v QUOTE

When you precompile an IBM COBOL program, and the source CCSID is 1026 or

1155, you need to specify APOST instead of QUOTE.

New SYSIBM.SYSROUTINES column for encoding scheme

After you successfully migrate to Version 8, the encoding scheme that is used for

system-generated parameters for procedures and functions is stored in a new

column in SYSIBM.SYSROUTINES. This information was previously stored in a

special row in the SYSIBM.SYSPARMS table.

LANGUAGE REXX sets PROGRAM_TYPE column in

SYSIBM.SYSROUTINES

If you specify LANGUAGE REXX, DB2 sets the PROGRAM_TYPE column in

SYSIBM.SYSROUTINES to ’M’. You cannot override this value by specifying

PROGRAM TYPE MAIN or PROGRAM TYPE SUB. The procedure will continue to

run as in Version 7, where all REXX procedures were treated as a main procedure.

DB2 start-up and precompilation require a user-supplied

DSNHDECP module

Installation job DSNTIJUZ generates the data-only load module DSNHDECP. It

contains the application programming defaults. DB2 is shipped with a default

DSNHDECP for compatibility with older applications. You cannot start DB2 or

precompile applications with the default DSNHDECP. During DB2 start-up

processing or for jobs that precompile a DB2 application, a DSNHDECP module

that is customized by the installation CLIST must exist in a library that is before

the library that contains the default DSNHDECP module in the STEPLIB

concatenation, the JOBLIB concatenation, or the system link list.

CCSIDs in DSNHDECP must be valid

All CCSIDs in the DSNHDECP module must be valid. During start-up processing,

if DB2 detects invalid CCSID values, DB2 issues a message and terminates.

Character conversions between Unicode CCSIDs and EBCDIC

CCSIDs

The character conversions between Unicode CCSIDs 367, 1208, and 1200, and

EBCDIC CCSIDs 37, 500, and 1047 must be defined.

74 Release Planning Guide

#

#

#

#

#

#

#
#

#

#

#
#

New data-only load module DSNHMCID

The new data-only load module DSNHMCID contains EBCDIC CCSIDs for offline

message conversion. Version 8 utilities and applications must have access to this

module. You can provide access to DSNHMCID in one of the following ways:

v Permit the DSNHMCID module to reside in DSNSLOAD.

v Include the library SDSNEXIT before SDSNLOAD in the system link list.

v Verify that all jobs and tasks that use DB2 utilities or call DB2 application

programs are updated to STEPLIB or JOBLIB to SDSNEXIT.

Plans and packages bound prior to DB2 Version 2 Release 3

If you have plans and packages that were bound prior to DB2 Version 2 Release 3,

DB2 will autobind these packages. Thus, you may experience an execution delay

the first time that such a plan is loaded. Also, DB2 may change the access path due

to the autobind, potentially resulting in a more efficient access path.

Multiple calls to the same stored procedure

In previous versions of DB2, if a stored procedure was called twice from the same

program and at the same nesting level, DB2 closed the result set cursors and

released storage for the first instance of the stored procedure before making the

second call. In DB2 Version 8, if the requester and the server are both DB2 Version

8 subsystems in new-function mode, when the second call is made, both instances

of the stored procedure can run at the same time. DB2 does not close the result

sets from the first call or release storage for the first instance of the stored

procedure.

External stored procedures and user-defined functions can

return any valid SQLSTATE value

In previous versions of DB2, an external stored procedure or user-defined function

could return only SQLSTATE values of the form ’01Hxx’, ’38xxx’, ’00000’, or

’02000’. In DB2 Version 8, an external stored procedure or user-defined function

can return any valid SQLSTATE value.

Programs called by a stored procedure require packages

In previous versions of DB2, if a stored procedure called a subprogram using a

host language call, and that subprogram contained SQL statements, DB2 did not

require a package for that subprogram at the location where the stored procedure

was defined. In DB2 Version 8, if a stored procedure calls a subprogram that

contains SQL statements, and a package does not exist for that subprogram at the

server where the stored procedure is defined, DB2 issues an error message.

Port of entry name changed

If you are using z/OS Version 1 Release 5, TCP/IP Network Access Control, and

the RACF SERVAUTH class is active, the port of entry name that is passed to

RACF for verification is the point of entry security zone name. The port of entry

security zone name is defined in the TCP/IP Network Access Control profile. In

previous releases of DB2, the port of entry name that was passed to RACF was the

string ’TCPIP’.

Chapter 3. Planning for migration, conversion, and fallback 75

#
#
#

#

#

#
#

New name for type 1 inactive threads and type 2 inactive

threads

Type 1 inactive threads are now referred to as inactive DBATs. Type 2 inactive

threads are now referred to as inactive connections.

Column names and labels in SQLDA SQLNAME field for

statements involving UNION

Prior to Version 8, the result column name in a SQLNAME field of the SQLDA for

a statement involving a UNION reflected the column name or label of the first

sub-query in the statement. In Version 8, DB2 returns the name or the label of the

column only if the name or label is the same for that column across all sub-queries

in the statement. Otherwise, the result column name will be blank.You can

temporarily override this behavior by setting subsystem parameter

UNION_COLNAME_7 to YES.

MAXROWS must have a value of 1 on ALTER TABLESPACE

DSNDB06.SYSSEQ

You can no longer specify any MAXROWS value except MAXROWS 1 on ALTER

TABLESPACE DSNDB06.SYSSEQ.

IFCID 197 is no longer supported

In Version 8, IFCID 197 is no longer supported. If you make a READS call for

IFCID 197, DB2 issues return code 8 and reason code 00E60821.

Change to IFCID 0059 trace records

IFCID 0059 records the start of execution of an SQL FETCH statement. In Version

7, one IFCID 0059 trace record is generated for each row that is fetched. However,

in Version 8, if limited block fetch is used, one IFCID 0059 record is generated for

each block that is fetched.

Change data capture cannot be enabled on catalog tables

during enabling-new-function mode

During enabling-new-function mode processing, change data capture is disabled on

most catalog tables. You cannot re-enable change data capture until your DB2

subsystem is in Version 8 new-function mode.

DB2 Version 8 requires IRLM 2.2

IRLM 2.2 is delivered with DB2 Version 8. You must use the DB2–supplied IRLM

procedure.

Detailed tracking of DB2 measured usage is disabled

In previous releases of DB2, DB2 automatically used detailed tracking of measured

usage. In Version 8, subsystem parameter SMF89 controls whether DB2 uses

detailed tracking of measured usage. The default value is NO, which means that

DB2 does not do detailed measured usage tracking. If the SMF type 89 record is

activated, only high-level tracking is recorded in the SMF type 89 record.

Programming language support has changed

Programming language support in DB2 Version 8 has changed. For a list of all

supported languages, see DB2 Program Directory. If your DB2 Version 7 subsystem

76 Release Planning Guide

#

#

#
#
#
#
#
#
#

#

#

#
#

#

#
#
#
#

uses languages other than those specified in DB2 Program Directory, you must

migrate to a supported release of that language before migrating your DB2

subsystem to Version 8.

New return code for -START DATABASE, -STOP DATABASE,

and -DISPLAY DATABASE commands

In previous releases of DB2, if the object of a -START DATABASE, -STOP

DATABASE, or -DISPLAY DATABASE command was not found, the command

completed with a return code of 12. In Version 8, if the object of a -START

DATABASE, -STOP DATABASE, or -DISPLAY DATABASE command is not found,

the command completes with a return code of 0. The behavior of these three

commands is now similar to the behavior of other commands.

Views might be marked with view regeneration errors

DB2 automatically regenerates views that reference the DB2 catalog. However, as a

result of changes to the catalog, some views may be marked with view

regeneration errors. Views that are marked with view regeneration errors may be

usable, but will not be automatically regenerated. You must manually regenerate

these views.

Changed default values for subsystem parameters

The default values for several parameters have changed. The new values are listed

in Table 13.

 Table 13. Subsystem parameters with new default values

Panel Field Parameter

Version 7 default

value

Version 8 default

value

DSNTIP7 USER LOB VALUE STORAGE LOBVALA 2048 10240

DSNTIPE MAX USERS CTHREAD 70 200

MAX REMOTE ACTIVE MAXDBAT 64 200

MAX REMOTE CONNECTED CONDBAT 64 10000

MAX TSO CONNECT IDFORE 40 50

MAX BATCH CONNECT IDBACK 20 50

DSNTIPN DDF/RRSAF ACCUM ACCUMACC NO 10

DSNTIP8 CACHE DYNAMIC SQL CACHEDYN NO YES

DSNTIPP PLAN AUTH CACHE AUTHCACH 1024 3072

DSNTIPL LOG APPLY STORAGE LOGAPSTG 0 100

CHECKPOINT FREQ CHKFREQ 50000 500000

DSNTIPA BLOCK SIZE BLKSIZE 28672 24576

DSNTIPR DDF THREADS CMTSTAT ACTIVE INACTIVE

IDLE THREAD TIMEOUT IDTHTOIN 0 120

EXTENDED SECURITY EXTSEC NO YES

DSNTIP5 TCP/IP KEEPALIVE TCPKPALV ENABLE 120

DSNTIPC MAXIMUM OPEN DATA SETS DSMAX 3000 10000

EDMPOOL STORAGE SIZE EDMPOOL 7312 327681

Note:

1 The installation CLIST calculates the default value for the EDMPOOL parameter.

If you specify SMFSTAT=YES, DB2 starts traces for SMF classes 1, 3, 4, 5, and 6. In

DB2 Version 7, specifying SMFSTAT=YES only started traces for SMF classes 1, 3, 4,

and 5.

Chapter 3. Planning for migration, conversion, and fallback 77

#

#

#
#
#
#
#
#

#

#
#

##

###
#
#
#
#

#####
#####
#####
#####
#####
#####
#####
#####
#####
#####
#####
#####
#####
#####
#####
#####
#####
#####
#

#
#

#
#
#

If the values that you specified for these parameters are lower than the new

default values, you might want to increase your values.

Subsystem parameter CLAIMDTA has been removed

Subsystem parameter CLAIMDTA has been removed. In Version 8, DB2 always

operates as if CLAIMDTA=YES.

DSN8EXP is deprecated

DSN8EXP is deprecated and will be removed in a future release. Use DSNAEXP as

your EXPLAIN stored procedure.

Using ALTER TABLE ALTER COLUMN SET DATA TYPE in

compatibility mode places indexes in rebuild-pending state

In Version 8 compatibility mode, if ALTER TABLE ALTER COLUMN SET DATA

TYPE is used to change the length of a VARCHAR column and that column is part

of an index, the index is placed in rebuild-pending state.

Redundant DISTINCT keyword removed from SELECT

DISTINCT statements

Starting in Version 8 compatibility mode, DB2 is enhanced to remove the

DISTINCT keyword from SELECT DISTINCT statements to avoid unnecessary sort

if the DISTINCT keyword is redundant. For example, the following SELECT

statement contains a redundant DISTINCT keyword:

SELECT DISTINCT C1 FROM T1 GROUP BY C1

In Version 8 compatibility mode, the statement is rewritten by removing the

redundant DISTINCT keyword as follows:

SELECT C1 FROM T1 GROUP BY C1

This enhancement can cause an incompatible difference in behavior between

Version 7 and Version 8 compatibility mode for those SQL statements that are

invalid in Version 7 only because of a redundant DISTINCT keyword in the

SELECT DISTINCT statement. For example, the following SELECT DISTINCT

statement receives SQLCODE -127 in Version 7:

SELECT DISTINCT C1, COUNT(DISTINCT C2) FROM T1 GROUP BY C1

Beginning in Version 8 compatibility mode, the statement is rewritten by removing

the redundant DISTINCT keyword as follows:

SELECT C1, COUNT(DISTINCT C2) FROM T1 GROUP BY C1

The revised statement receives SQLCODE 0.

DB2 issues an error for column names greater than 30 bytes

In Version 8, DB2 issues SQLCODE -107 when a column name exceeds 30 bytes of

UTF-8 in a CREATE TABLE, CREATE VIEW, CREATE GLOBAL TEMPORARY

TABLE, ALTER TABLE ADD COLUMN, or DECLARE GLOBAL TEMPORARY

TABLE statement.

Maintenance required for IBM z/OS Migration Utility

If you use the IBM z/OS Migration Utility, apply the following maintenance for

IBM z/OS Migration Utility before you migrate to Version 8.

78 Release Planning Guide

#
#

#

#
#

#

#
#

#

#

#
#
#

#

#

#
#
#
#

#

#
#

#

#
#
#
#
#

#

#
#

#

#

#

#
#
#
#

#

#
#

v PK26895/UK16007

v PK23287/UK14716

Ensure that you allocate enough space for complete dumps

Ensure that you allocate enough space so that you have complete dumps for

problem diagnosis. Use the following MVS commands to set the MAXSPACE value

to a minimum of 8000 MB:

 DISPLAY : D D,OPTIONS

 CHNGDUMP : CD SET,SDUMP,TYPE=XMEME,MAXSPACE=4000M

Migrating a data sharing group

Before you migrate to compatibility mode, ensure that maintenance through the

Version 8 fallback SPE is applied to all started DB2 members. If the fallback SPE is

not on all active group members, Version 8 does not start but issues a message. If

you have quiesced members in your data sharing group, you do not need to apply

the fallback SPE to the quiesced member.

Start only one DB2 member for migration processing. During the migration, other

group members can be active. However, other active group members may

experience delays or timeouts if they attempt to access catalog objects that are

locked by migration or enabling-new-function mode processing. After migration

completes on the first member, you can migrate the other data sharing group

members.

Migration of a data sharing group requires careful planning:

1. Read the information about migration considerations in this book and also in

Chapter 3 of DB2 Data Sharing: Planning and Administration.

2. Make a plan to minimize the amount of time that some members operate at the

Version 7 level and others operate at the Version 8 compatibility mode level.

3. Apply the fallback SPE to the Version 7 load library for each non-quiesced

member in the data sharing group. For best availability, you can apply the SPE

to one member at a time. While your data sharing group is in Version 7, you

can have Version 7 subsystems with the SPE running at the same time as

subsystems that are without the SPE. Stop and restart each member to activate

the change.

4. Follow the procedure about migrating the data sharing group in Chapter 3 of

DB2 Data Sharing: Planning and Administration. You must completely migrate the

first member of the data sharing group to Version 8 compatibility mode before

starting any other members at the Version 8 level.

5. To prepare for fallback from Version 8 compatibility mode, keep the subsystem

parameter load module that is used by Version 7.

6. After all members have migrated to Version 8 compatibility mode, remain in

compatibility mode until your data sharing group has processed a full range of

typical work. The period of time that a data sharing group needs to remain in

Version 8 compatibility mode varies depending on the size of the data sharing

group and the complexity of its typical work.

The CLIST edits different jobs for enabling data sharing and migrating a data

sharing member. See Chapter 3 of DB2 Data Sharing: Planning and Administration

for the list of jobs that are edited for data sharing and migration.

Chapter 3. Planning for migration, conversion, and fallback 79

#

#

#

#
#
#

#
#

#

Work file database size calculations

The migration job DSNTIJTC creates and updates indexes on catalog tables. These

indexes are created and updated sequentially during migration. The work file

database is used for the sort of each index; DB2 needs enough work file storage to

sort the largest of the indexes in Table 14. Migration fails if you do not have

enough storage. Therefore, ensure that you have enough space before you begin.

Table 14 shows the indexes that are new and changed for existing catalog tables.

 Table 14. Indexes that are added or updated sequentially using the work file database

Catalog table name Index name Column names

SYSIBM.SYSCOLAUTH SYSIBM.DSNACX01 CREATOR, TNAME, COLNAME

SYSIBM.SYSFOREIGNKEYS SYSIBM.DSNDRH01 CREATOR, TBNAME, RELNAME

SYSIBM.SYSINDEXES SYSIBM.DSNDXX04 INDEXTYPE

SYSIBM.SYSRELS SYSIBM.DSNDLX02 CREATOR, TBNAME

SYSIBM.SYSSEQUENCESDEP SYSIBM.DSNSRX02 BSCHEMA, BNAME, DTYPE

SYSIBM.SYSTABAUTH SYSIBM.DSNATX04 TCREATOR, TNAME

SYSIBM.SYSTABLEPART SYSIBM.DSNDPX03 DBNAME, TSNAME, LOGICAL_PART

SYSIBM.SYSTABLES SYSIBM.DSNDTX03 TBCREATOR, TBNAME

SYSIBM.SYSVIEWDEP SYSIBM.DSNGGX04 BCREATOR, BNAME, BTYPE, DTYPE

LOCAL DATE/TIME exits

In Version 8, if you specify a value of LOCAL for the DATE FORMAT or TIME

FORMAT fields of installation panel DSNTIP4 and you do not have a replacement

for each of the DB2-supplied DATE and TIME exits, DB2 might issue an error.

If you choose to use a local DATE or TIME exit, ensure that each of the three

DB2-supplied exits has been replaced with your local copy of the exit.

The DB2-supplied DATE exit routine exits DSNXVDTX, DSNXVDTA, and

DSNXVDTU. The DB2-supplied TIME exit routine exits DSNXVTMX,

DSNXVTMA, and DSNXVTMU.

Preparing for fallback

Falling back is the process of returning DB2 to a Version 7 level after migrating

your catalog and directory to Version 8 compatibility mode.

You can fall back to Version 7 only after successfully migrating the catalog to

Version 8 compatibility mode by using job DSNTIJTC. However, you cannot fall

back to Version 7 or return to Version 8 compatibility mode after you enter

enabling-new-function or new-function mode.

Fall back if you have a severe error while operating Version 8 compatibility mode

and you want to return to operation on Version 7. After fallback, the catalog

remains a Version 8 catalog. If you experience a severe application or performance

errors in Version 8 compatibility mode and want to return to Version 7, follow the

detailed step-by-step instructions in DB2 Installation Guide.

To fall back to Version 7 from Version 8 compatibility mode:

1. Stop DB2 Version 8 activity.

80 Release Planning Guide

#

#
#
#

#
#

#
#
#

Note: You must terminate all utilities started on Version 8.

2. Reactivate Version 7.

3. Reconnect TSO, IMS, and CICS to Version 7.

4. Start Version 7.

5. Verify fallback by running the DB2 sample applications or your own

applications.

If you fall back and then try to use frozen plans or packages, the automatic rebind

from the previous version fails. To make the plans and packages that were not

automatically rebound on the previous version available, change the SQL

statements or remove the reference to a frozen object, precompile the application

programs, and explicitly BIND the plans and packages on the previous version.

Frozen objects

Falling back does not undo changes that are made to the catalog during migration

to Version 8. The migrated catalog is used after fallback. Some objects in this

catalog that have been affected by Version 8 function might become frozen objects

after fallback. Frozen objects are unavailable, and they are marked with the release

dependency marker L. If an object is marked with a release dependency, it is never

unmarked. The release dependency marker is listed in the IBMREQD column of

catalog tables.

In general, objects that depend on the new facilities of DB2 UDB for z/OS Version

8 are frozen after you fall back to Version 7 and remain frozen until you remigrate

to Version 8. Table 15 lists the objects that are frozen when falling back to Version

7. Frozen objects are marked with the release dependency markers L.

 Table 15. Objects that are frozen when falling back to DB2 UDB for z/OS Version 7

RELEASE DEPENDENT MARK = L

v Plans, packages, or views that use any new syntax or objects

v DBRMs produced by a precompilation in Version 8 with a value of YES for the NEWFUN

option

v User-defined functions created in Version 8 with the PARAMETER CCSID option

v User-defined SQL procedures and functions created in Version 8 with the PARAMETER

CCSID option

Plans and packages become frozen objects when they use new SQL syntax, use

new BIND options and attributes, or reference frozen objects. When plans and

packages become frozen objects, the automatic rebind process is adversely affected.

See DB2 Installation Guide for details.

While operating in Version 7, you can determine if any of your objects are frozen

by issuing the following SELECT statements:

SELECT NAME FROM SYSIBM.SYSPLAN

 WHERE IBMREQD = 'L';

SELECT LOCATION, COLLID, NAME, VERSION FROM SYSIBM.SYSPACKAGE

 WHERE IBMREQD = 'L';

SELECT CREATOR, NAME FROM SYSIBM.SYSVIEWS

 WHERE IBMREQD = 'L';

SELECT CREATOR, NAME FROM SYSIBM.SYSINDEXES

 WHERE IBMREQD = 'L';

SELECT CREATOR, NAME, TYPE FROM SYSIBM.SYSTABLES

 WHERE IBMREQD = 'L';

SELECT DBNAME, NAME FROM SYSIBM.SYSTABLESPACE

 WHERE IBMREQD = 'L';

SELECT SCHEMA, NAME, SPECIFICNAME, ROUTINETYPE FROM SYSIBM.SYSROUTINES

 WHERE IBMREQD = 'L';

Chapter 3. Planning for migration, conversion, and fallback 81

Other fallback considerations

Before you fall back to Version 7, you must be aware of the following

considerations:

Buffer pools: DB2 Version 8 maintains the Version 7 virtual buffer pool and

hiperpool definitions at migration so that they can be used if you fall back.

NEWFUN precompiler option: You cannot execute a plan or package that uses a

DBRM that was produced by precompiling in DB2 Version 8 with a value of YES

for the NEWFUN precompiler option. You cannot BIND a DBRM that was

precompiled with a value of YES for the NEWFUN precompiler option on Version

7 or earlier.

DISPLAY GROUPBUFFERPOOL output: After fallback, the DISPLAY

GROUPBUFFERPOOL command's output reverts to the Version 7 format and only

displays the operational coupling facility level.

Utilities COPY, REPORT, and RECOVER: You must use the Version 7 COPY and

RECOVER utility jobs for backup and recovery after fallback.

Running DB2-supplied stored procedure DSNWZP in a WLM-established stored

procedure address space: In DB2 Version 8, DB2-supplied stored procedure

DSNWZP is defined to run in a WLM-established stored procedure address space

and to use external module DSNWZP. In DB2 Version 7, DSNWZP must use

external module DSNWZPR to run in a WLM-established stored procedure address

space. You must alter DSNWZP to use DSNWZPR after fallback.

For more information on fallback considerations, refer to DB2 Installation Guide.

Page-fixes for buffer pools: If you defined a buffer pool using PGFIX YES in

Version 8, it is defined with PGFIX NO after fallback. When you remigrate to

Version 8, the buffer pool is defined with PGFIX YES.

Release incompatibilities

This section describes changes that might affect your DB2 operations after

migrating to Version 8 of DB2.

Ensure that Version 7 sample objects are available

If you no longer have the Version 7 sample jobs, you need to run the Version 7

installation CLIST to regenerate them. If you dropped the Version 7 sample

database (by running job DSNTEJ0), you need to run the Version 7 sample jobs

before you start the migration to Version 8 compatibility mode. If you do not have

the Version 7 jobs available during migration, you will not have a DB2-supported

sample to verify a successful migration to Version 8 compatibility mode.

Ensure that no utility jobs are running

In Version 8, you can only restart or terminate a utility on the same release on

which it was started. Any outstanding utilities prior to Version 8 cannot be

restarted or terminated after you have migrated from Version 7 to Version 8

compatibility mode. To ensure that you do not have outstanding utility jobs, issue

the DISPLAY UTILITY(*) command.

82 Release Planning Guide

#
#
#

EBCDIC and ASCII CCSID must be non-zero

You must specify a non-zero value for EBCDIC and ASCII CCSIDs. Altering of

CCSIDs can be very disruptive to a system. Converting to a CCSID that supports

the euro symbol is potentially less disruptive because specific pre-euro CCSIDs

map to specific CCSIDs for the euro. See DB2 Installation Guide for the detailed

steps. Converting to a different CCSID for other reasons, particularly when a DB2

subsystem has been operating with the wrong CCSID, could render data unusable

and unrecoverable.

Recommendation: Never change CCSIDs on an existing DB2 subsystem without

specific guidance from IBM Software Support.

Perform premigration queries (DSNTIJPM)

Job DSNTIJPM performs premigration queries to the Version 7 catalog. DSNTIJPM

also generates SQL statements or utility statements to remove or correct

incompatibilities. Job DSNTIJPM checks for the following incompatibilities:

v Use of data capture on DB2 catalog tables. The CATMAINT and CATENFM jobs

disable data capture, which you must reactivate at a later time.

v Use of LOCKPART NO for partitioned table spaces. The LOCKPART option is

deprecated in Version 8, although it is still supported for compatibility.

Regardless of what you specify with the LOCKPART option, DB2 acts as though

you specified LOCKPART YES, or selective partition locking (SPL).

v Partitioned table spaces that have a truncated limit key. A truncated limit key

can result in an abend if the same limit key value is used for different partitions.

v Stored procedures that use LANGUAGE COMPJAVA. Stored procedures that use

LANGUAGE COMPJAVA cannot be defined or run after migrating to DB2

Version 8.

v Stored procedures that use the DB2-established stored procedures address space.

The DB2-established stored procedures address space is deprecated in Version 8.

Existing stored procedures that use the DB2-established stored procedures

address space will run in Version 8, but you cannot create or alter stored

procedures using the NO WLM ENVIRONMENT clause.

v Use of the DSNWZPR module by the DB2-supplied stored procedure DSNWZP.

In Version 8, DSNWZP requires a WLM stored procedure address space. Users

of DSNWZPR must revert to the external module DSNWZP.

v The Version 7 sample database. To verify migration to Version 8 compatibility

mode, run portions of the Version 7 sample jobs. The sample jobs require the

Version 7 sample database. If the Version 7 sample database is missing, run the

phase 1 and phase 2 sample jobs in Version 7 before migrating to Version 8

compatibility mode.

v Evidence of more than one code page within the same encoding scheme.

v Plans and packages for routines that need to be rebound because of a change in

the DBINFO control block.

v Type 1 indexes. If you do not remove type 1 indexes from your Version 7

catalog, you will not be able to migrate to Version 8 compatibility mode.

Important: Because type 2 indexes often take more space than type 1 indexes, you

should first determine if you need to allocate more space for the indexes. Refer to

Section 1 of DB2 Administration Guide for more information. Based on these

calculations, if your index space is not large enough, delete and redefine your data

sets with a larger allocation. For more information about increasing your data set

allocations, see z/OS DFSMSdfp Storage Administration Reference.

Chapter 3. Planning for migration, conversion, and fallback 83

#

#
#
#

#
#

#
#
#
#

#
#

#
#
#

#
#
#
#
#

#
#
#

#
#
#
#
#

#

#
#

#
#

#
#
#
#
#
#

You can convert to type 2 indexes in either of the following ways:

v Use the CONVERT TO TYPE 2 option of the ALTER INDEX SQL statement. This

method only works with catalog indexes, not directory indexes.

1. Enter the SQL statement ALTER INDEX with the CONVERT TO TYPE 2

option.

2. Run the utility REBUILD INDEX. See DB2 Utility Guide and Reference for

more information on REBUILD INDEX.

Recommendation: Run REBUILD INDEX on an index immediately after

running ALTER INDEX because the index is unusable until it is rebuilt.

Identify unsupported objects

Version 8 does not support type 1 indexes. If you do not remove type 1 indexes

from your Version 7 catalog, you will not be able to migrate to Version 8

compatibility mode.

Adjust application programs

You might need to adjust your application programs because of the release

incompatibilities that this section describes.

Adjust trace applications: If you have trace applications that use statement-length

fields, you might need to change them to use 4-byte statement length fields.

Adjust user-defined function calls for new built-in functions: Several new built-in

functions are available. If you have user-defined functions, invoke them with a

fully qualified name to avoid calling built-in functions that might have the same

name. If the user-defined functions are not invoked with a fully qualified name

and SYSIBM is first in the SQL path, the built-in function is selected instead of the

user-defined function.

Changed defaults for utilities: The default values for several utilities options have

changed in Version 8. SORTKEYS is the default for the REORG, LOAD, and

REBUILD utilities. SORTDATA is the default for the REORG utility.

Changed behavior for DISPLAY LOCATION command: If you specify an empty

parameter for the DISPLAY LOCATION command, such as DISPLAY

LOCATION(), the command fails and DB2 issues message DSN9010I. In Version 8,

you must specify a parameter for this command.

Changed output for DISPLAY GROUP command: In Version 8, the DISPLAY

GROUP command displays the status of your group in compatibility mode,

enabling-new-function mode, and new-function mode.

Changed behavior for TRANSLATE function: If your query references the catalog,

uses the TRANSLATE built-in function, and specifies a translate table, you might

need to change the translate table. In some cases, the TRANSLATE functions might

not have the same behavior as in Version 7. For example, some accented characters

which had a single-byte EBCDIC value in Version 7 have a double-byte Unicode

value. If you perform a TRANSLATE function on a string that contains such a

character, the function will not return the expected results.

Changed output for DISPLAY GROUPBUFFERPOOL command: In Version 8, the

DISPLAY GROUPBUFFERPOOL command displays both the operational coupling

facility level and the actual coupling facility level. In Version 7, only the

operational coupling facility level is displayed.

84 Release Planning Guide

#

#
#

#
#

#
#
#
#

Changed parameter length for BLOB, CLOB, and DBCLOB functions: The lower

limit for these functions is now 1 for consistency with the VARCHAR and

VARGRAPHIC functions. You cannot invoke these built-in functions with an

explicit parameter length of 0. If you specify 0, DB2 returns an error. If the input

string is empty and an explicit length is not specified, the length attribute of the

result is 1.

Changed input for GRAPHIC, VARGRAPHIC, and DBCLOB: The input string for

the GRAPHIC, VARGRAPHIC, and DBCLOB functions cannot be BIT data,

regardless of the encoding scheme of the data. If the input string is EBCDIC BIT

data, DB2 returns an error.

Changed rules for procedure and function names: In Version 8, DB2 enforces the

following rules for procedure and function names:

v If your routine is written in a language other than Java, the external name is a

load module which must be less than or equal to 8 bytes. The external name

must contain characters that are valid for a z/OS load module.

v A procedure name cannot consist of a single asterisk.

You must change any CREATE PROCEDURE or ALTER PROCEDURE statements

that specify an EXTERNAL NAME clause that does not follow the above rules if

you want to execute the statements again. See DB2 SQL Reference for more

information about these changes.

Truncation of CHAR data: Prior to Version 8, DB2 issued an error when

applications invoked the CHAR function with string input data greater than 255

bytes. In Version 8, DB2 truncates the data to 255 bytes and issues a warning if

non-blank characters are truncated.

SQLDA may contain truncated data: In Version 8, the length of many names has

been extended. However, for compatibility with prior releases, the length of name

fields in the SQLDA is not changing. Truncation of names that are stored in the

SQLDA might occur with distinct name types. To avoid truncation of distinct type

names in the SQLDA, you should not use distinct name types that are longer than

30 bytes. For more information, refer to DB2 SQL Reference.

LOCKPART has been deprecated: The LOCKPART clause on ALTER or CREATE

TABLESPACE has been deprecated in Version 8, although it is still supported for

compatibility purposes. In previous releases, LOCKPART determined whether

individual partitions would be locked. The previous default value for LOCKPART

locked the entire table space with a lock on the last partition. In Version 8

new-function mode, individual portions of partitioned tablespaces, including those

created in Version 7 or earlier, will be locked as they are accessed. In a data

sharing environment, all members must be in enabling-new-function or

new-function mode before this change will take effect.

UTLRSTRT no longer supported: The subsystem parameter UTLRSTRT is no longer

supported. When possible, DB2 attempts to restart online-restartable utilities,

regardless of whether the RESTART keyword is specified.

PKGLDTOL is no longer supported: The subsystem parameter PKGLDTOL is no

longer supported. DB2 Version 8 requires the package or plan for applications with

the following SQL statements:

v COMMIT

v CONNECT

Chapter 3. Planning for migration, conversion, and fallback 85

#
#

#
#
#

#

#
#
#
#

v DESCRIBE TABLE

v RELEASE

v ROLLBACK

v SET CONNECTION

v SET host-variable = CURRENT SERVER

v VALUES CURRENT SERVER INTO host-variable

You must bind the DBRM into a plan or package.

Restriction on DB2 private protocol applications: DB2 limits the SQL statements

that a private protocol application can include to statements that were added to

DB2 before Version 8.

SQL reserved words: Version 8 has several new SQL reserved words. Refer to DB2

SQL Reference for the list, and adjust your applications accordingly.

Changed SQL code for DATE, TIME, DATETIME, and TIMESTAMP values: In

previous releases, DB2 returned SQL code -181. In DB2 Version 8, DB2 returns SQL

code -180 in some cases. SQL codes -180 and -181 have the same SQLSTATE, 22007,

and serve a similar purpose. Adjust your applications to check for SQL codes -180

and -181 together.

Changed return code for message DSNU185: The return code for DSNU185 has

changed from return code 8 to return code 0, allowing processing to continue. If

you have applications that scan the return code of this message, you might need to

modify them.

Input parameter markers of a prepared statement are always nullable: In previous

versions of DB2, the SQLTYPE field could be set to nullable or non-nullable. In

Version 8, the SQLTYPE field is always nullable.

Savepoint names cannot begin with 'SYS': A savepoint name cannot begin with

SYS. If your application has a savepoint with a name beginning with SYS, DB2 will

return an error.

Changed behavior for ALTER TABLESPACE: When issuing the ALTER

TABLESPACE statement, partition options that are specified after an ALTER

PARTITION clause will affect only the specified partition. If you do not specify an

option following the specification of a partition, an error is issued.

Changed behavior for ALTER INDEX: If you do not specify an option following

the ALTER PARTITION clause, a warning is issued.

EXTERNAL clause for ALTER PROCEDURE and ALTER FUNCTION requires

NAME: In Version 7, the EXTERNAL clause did not require the NAME keyword

followed by a value on the ALTER statement. In Version 8, you must specify

NAME and a value if you specify EXTERNAL. Update your application programs

to include the NAME keyword and a value when you specify the EXTERNAL

clause on an ALTER statement. If you do not, DB2 issues an error message. See

DB2 SQL Reference for more information.

Invalidation of statements that reference the catalog: In Version 8, DB2 may

invalidate plans and packages that contain statements that reference the catalog.

See job DSNTESQ for more information about these plans and packages.

86 Release Planning Guide

#
#
#
#
#

SYSIBM.SYSDUMMY1 is recreated: During execution of job DSNTIJNE in Version

8 enabling-new-function mode processing, DB2 drops and re-creates the

SYSIBM.SYSDUMMY1 table. If your plans and packages reference this table, they

will be invalidated. DB2 automatically rebinds the invalidated plans and packages

when the plans and packages are next references. An automatic rebind may change

the access path.

Invalid uses of host variables are not supported: Validation of the attributes of

host variables used in PREPARE statements is improved. You may need to update

your application programs.

Example: If the defined length of the host variable is less than the length of the

actual data, DB2 issues an error message. Update your application program to

specify the correct length of the host variable.

Using the PARAMETER STYLE clause in CREATE PROCEDURE statement: In

Version 7, you did not need to specify PARAMETER STYLE before an explicit

parameter style such as SQL, DB2SQL, JAVA, GENERAL, or GENERAL WITH

NULLS. In Version 8, you must specify PARAMETER STYLE ahead of any explicit

parameter style, or DB2 issues an error message. If you omit the PARAMETER

STYLE clause entirely, the default is PARAMETER STYLE SQL.

User IDs must have SYSOPR authority: In Version 7, DB2 commands that were

issued from the z/OS console or TSO SDSF were previously associated with the

SYSOPR user ID. In Version 8, these commands are associated with the primary

user ID that issued them. You must grant SYSOPR authorization to these user IDs

or public.

Update CCSIDs in DBINFO: If you have defined an external function or procedure

with DBINFO, you might need to update the CCSIDs in DBINFO. In Version 7,

CCSID fields in DBINFO were set to the CCSIDs of the invoking statement. In

Version 8, a single set of three CCSIDs might not reflect the CCSIDs of a statement

that invokes an external function or procedure defined by DBINFO. Adjust the

CCSIDs in DBINFO, then recompile and rebind the routine that references them.

START DB2 ACCESS(MAINT) restricts access to installation SYSADM or

installation SYSOPR: DB2 Version 8 enforces the restriction of START DB2

ACCESS(MAINT) that limits DB2 access to those user IDs that have installation

SYSADM or installation SYSOPR authorization. Prior versions of DB2 did not

enforce this restriction. For more information about the ACCESS(MAINT) option of

START DB2, see DB2 Command Reference.

Release coexistence

This section highlights considerations for coexistence between Version 7 and

Version 8 in a data sharing environment and in a distributed environment. In a

data sharing environment, coexistence is limited to Version 8 compatibility mode

with Version 7.

IRLM service level

As you apply IRLM service to members of a data sharing group, some members

run with the newer service level, and some run with the older service level. A mix

of service levels can raise issues that you must consider. For more information

about IRLM coexistence, see DB2 Data Sharing: Planning and Administration.

Chapter 3. Planning for migration, conversion, and fallback 87

#
#
#
#
#
#

#
#
#
#
#
#

#
#
#
#

DISPLAY GROUPBUFFERPOOL output

Because the DISPLAY GROUPBUFFERPOOL command output in Version 8 returns

both operational and actual coupling facility levels, the command output in a

coexistence environment depends on the member on which the command was

issued. If the command is issued from Version 7, only the operational coupling

facility level is displayed.

The coupling facility batching commands RFCOM and WARM are not used in a

coexistence environment.

Distributed environment

DB2 UDB for z/OS communicates in a distributed data environment with Version

6 and Version 7 of DB2, using either DB2 private protocol access or DRDA access.

However, the distributed functions that are introduced in Version 8 of DB2 UDB

for z/OS can be used only when using DRDA access.

Other DRDA partners at DRDA level 4 can also take advantage of the functions

that are introduced in Version 8 of DB2 UDB for z/OS.

Data sharing

DB2 can support both Version 7 and Version 8 members in compatibility mode in a

data sharing group. To support both releases, you must first apply the fallback SPE

to all Version 7 members of the group. Release coexistence begins when you

migrate the first data sharing member to Version 8. You must successfully migrate

the first data sharing member to Version 8 before attempting to migrate the other

data sharing members.

For the best availability, you can migrate the members to Version 8 one member at

a time. When developing your migration plan, remember that most new functions

that are introduced in Version 8 are not available to any members of the group

until all members are migrated to Version 8 and until all members are in

new-function mode.

For detailed information about data sharing release coexistence considerations, see

DB2 Data Sharing: Planning and Administration.

TSO and CAF logon procedures: You can attach to either release of DB2 with your

existing TSO or CAF logon procedures, without changing the load libraries for

your applications. After you migrate completely to the latest level of DB2, you

must update those procedures and jobs to point to the latest level of DB2 load

libraries. If you forget to update those procedures and jobs before migrating to any

release subsequent to Version 8, those procedures and jobs can no longer work in

that subsequent release.

For a detailed list of considerations for a data sharing group with multiple DB2

releases, see Chapter 3 of DB2 Data Sharing: Planning and Administration.

Installation changes

This section shows the panels that are used by the installation CLIST to customize

the jobs that you use to install or migrate to Version 8. This section also lists the

changes to SMP/E jobs and sample jobs.

88 Release Planning Guide

You can also install DB2 UDB for z/OS from a Windows workstation using mSys

for Setup DB2 Customization Center.

Version 8 panels

Table 16 lists the panels for DB2 UDB for z/OS installation and migration. With the

addition of the new functions in Version 8, several panels have been modified, and

new fields have been added. The new and modified panels have a Yes listed under

the Panel modified column in Table 16.

 Table 16. Version 8 installation and migration panels

Panel ID Panel title

Panel

modified

DSNTIPA0 Online Book Data Set Names

DSNTIPA1 Main Panel Yes

DSNTIPA2 Data Parameters

DSNTIPK(1) Define Group or Member

DSNTIPH System Resource Data Set Names

DSNTIPT Data Set Names Panel 1

DSNTIPU Data Set Names Panel 2 Yes

DSNTIPW Data Set Names Panel 3 Yes

DSNTIPD Sizes Panel 1

DSNTIP7 Sizes Panel 2 Yes

DSNTIPE Thread Management Yes

DSNTIP1 Buffer Pool Sizes Panel 1 Yes

DSNTIP2 Buffer Pool Sizes Panel 2 Yes

DSNTIPN Tracing and Checkpoint Parameters Yes

DSNTIPO Operator Functions

DSNTIPF Application Programming Defaults Panel 1 Yes

DSNTIP4 Application Programming Defaults Panel 2 Yes

DSNTIP8 Application Programming Defaults Panel 3 Yes

DSNTIPI IRLM Panel 1 Yes

DSNTIPJ IRLM Panel 2 Yes

DSNTIPP Protection Yes

DSNTIPM MVS PARMLIB Updates

DSNTIPL Active Log Data Set Parameters Yes

DSNTIPA Archive Log Data Set Parameters Yes

DSNTIPS Databases and Spaces to Start Automatically

DSNTIPR Distributed Data Facility Panel 1

DSNTIP5 Distributed Data Facility Panel 2

DSNTIPX Routine Parameters Yes

DSNTIPZ Data Definition Control Support

DSNTIPY Job Editing Yes

DSNTIPC DB2 CLIST Calculations Panel 1 Yes

DSNTIPC1 DB2 CLIST Calculations Panel 2

Chapter 3. Planning for migration, conversion, and fallback 89

Table 16. Version 8 installation and migration panels (continued)

Panel ID Panel title

Panel

modified

DSNTIPB Update Selection Menu Yes

Notes:

1. DSNTIPK is for installing and migrating in data sharing mode.

Version 8 sample jobs

With the addition of the new functions in Version 8, several existing sample jobs

have been modified, and several new jobs have been added. The new and changed

sample jobs are listed in Table 17.

 Table 17. New and modified sample jobs

Sample job New or modified

DSNTEJ3M New

DSNTEJ6R New

DSNTEJ76 New

DSNTEJ77 New

DSNTEJ78 New

DSNTEJ65 Modified

DSNTEJ1 Modified

DSNTEJ1P Modified

DSNTEJ2A Modified

90 Release Planning Guide

Appendix A. Changes to commands

This appendix provides an overview of the new and changed commands in

Version 8 of DB2 UDB for z/OS. The purpose of the appendix is to highlight the

major changes. The following topics provide additional information:

v “New commands”

v “Changed commands”

v “Other command changes” on page 93

For complete information about all the changes, such as the syntax for new or

changed commands, see DB2 Command Reference.

New commands

Table 18 shows the new commands in Version 8.

 Table 18. New commands

Command name Description

MODIFY

admtproc,APPL=SHUTDOWN

Stops the administrative scheduler from accepting requests and executing new

tasks, and shuts down the administrative scheduler.

MODIFY admtproc,APPL=TRACE Starts or stops traces in the administrative scheduler.

START admtproc Starts the administrative scheduler that is specified in the admtproc parameter.

STOP admtproc Stops the administrative scheduler that is specified in the admproc parameter.

Changed commands

Table 19 shows that several existing commands have new and changed options.

 Table 19. Changes to existing commands

Command Description of enhancements and notes

-ALTER BUFFERPOOL (DB2)

New option:

 PGFIX(NO|YES)

The PGFIX option specifies whether the buffer pool should be fixed in real

storage when it is used.

© Copyright IBM Corp. 2004, 2008 91

#

##

##

#
#
#
#

##

##

##
#

Table 19. Changes to existing commands (continued)

Command Description of enhancements and notes

BIND PLAN (DSN)

BIND PACKAGE (DSN)

REBIND PLAN (DSN)

REBIND PACKAGE (DSN)

New and changed options:

 REOPT(NONE)

 REOPT(ALWAYS)

 REOPT(ONCE)

The REOPT option specifies whether to have DB2 determine an access path at

run time by using the values of host variables, parameter markers, and special

registers.

REOPT(NONE) does not determine an access path at run time. You can use

NOREOPT(VARS) as a synonym for REOPT(NONE).

REOPT(ALWAYS) determines the access path at run time each time the

statement is run. You can use REOPT(VARS) as a synonym for

REOPT(ALWAYS).

REOPT(ONCE) determines the access path for any dynamic statement only once,

at the first run time or at the first time the statement is opened. This access path

is saved in the dynamic statement cache and used until the statement is

invalidated or removed from the cache and needs to be prepared again.

-DISPLAY DATABASE (DB2)

New options:

 OVERVIEW

 ADVISORY(ARBDP)

 ADVISORY(AREO*)

OVERVIEW displays each object in the database on its own line, providing an

easy way to see all objects in the database.

ADVISORY(ARBDP) displays objects that are in the advisory REBUILD-pending

status.

ADVISORY(AREO*) displays objects that are in the advisory REORG-pending

status.

In Version 8, you can use the DISPLAY DATABASE command on the following

objects:

v Databases

v Table spaces

v Index spaces

v Physical partitions of partitioned table spaces or index spaces (including index

spaces that contain data-partitioned secondary indexes)

v Logical partitions of nonpartitioned secondary indexes

-DISPLAY GROUP (DB2) The DISPLAY GROUP command with DETAIL option now displays the catalog

mode in the output as MODE(C|E|N) (compatibility mode,

enabling-new-function mode, or Version 8 new-function mode) of the DB2

subsystem or data sharing group.

92 Release Planning Guide

Table 19. Changes to existing commands (continued)

Command Description of enhancements and notes

MODIFY irlmproc,SET

(z/OS IRLM)

New and changed options:

 DEADLOCK=nnnn

 PVT=nnnn

DEADLOCK specifies the number, in milliseconds, of how often the local

deadlock processing is scheduled.

PVT specifies the upper limit of private storage that is used for locks. You can

specify this value in megabytes or gigabytes by specifying M (for megabytes) or

G (for gigabytes) after the value, as follows, nnnnM or nnnnG.

-START DATABASE (DB2) In Version 8, you can use the START DATABASE command on the following

objects:

v Databases

v Table spaces

v Index spaces

v Physical partitions of partitioned table spaces or index spaces (including index

spaces that contain data-partitioned secondary indexes)

v Logical partitions of nonpartitioned secondary indexes

START irlmproc (z/OS IRLM)

New and changed options:

 LTE=nnnn

 MAXCSA=

 PC=

LTE specifies the number of lock table entries that are required in the coupling

facility lock structure.

MAXCSA is a required positional parameter but is currently unused.

PC is a required positional parameter but is currently unused.

MAXCSA and PC are currently unused because IRLM Version 2 Release 2 places

locks only in private storage.

-STOP DATABASE (DB2) In Version 8, you can use the STOP DATABASE command on the following

objects:

v Databases

v Table spaces

v Index spaces

v Physical partitions of partitioned table spaces or index spaces (including index

spaces that contain data–partitioned secondary indexes)

v Logical partitions of nonpartitioned secondary indexes

Other command changes

If secondary authorization IDs are defined, DB2 commands that are issued from a

z/OS console or TSO SDSF are associated with those IDs.

Appendix A. Changes to commands 93

94 Release Planning Guide

Appendix B. Changes to utilities

This appendix summarizes the changes to utilities in Version 8 of DB2 UDB for

z/OS. The following topics provide additional information:

v “New utilities”

v “Changed utilities”

v “Other utility changes” on page 102

New utilities

Table 20 lists and describes the new utilities.

 Table 20. Overview of new utilities

Utility name Description

BACKUP SYSTEM BACKUP SYSTEM takes fast volume-level copies of DB2 databases and logs.

It relies on new DFSMShsm services in z/OS Version 1 Release 5 that

automatically monitors which volumes need to be copied. Using BACKUP

SYSTEM to take copies is less disruptive than using the SET LOG SUSPEND

command, because a BACKUP SYSTEM job does not take a log write latch.

An advantage for data sharing is that BACKUP SYSTEM operates on an

entire data-sharing group, whereas the SET LOG SUSPEND command must

be issued for each data-sharing member.

CATENFM CATENFM enables a DB2 subsystem to enter DB2 Version 8

enabling-new-function mode and Version 8 new-function mode.

RESTORE SYSTEM RESTORE SYSTEM provides a way to recover a DB2 subsystem to an

arbitrary point in time. RESTORE SYSTEM automatically handles any

creates, drops, and LOG NO events that might have occurred between the

backup and the recovery point in time. RESTORE SYSTEM uses data that is

copied by the BACKUP SYSTEM utility.

DSNJCNVB The DSNJCNVB stand-alone conversion utility converts the bootstrap data

set (BSDS) so that it can support up to 10 000 archive log volumes and 93

active log data sets per log copy. If you do not convert the BSDS, it can

manage only 1000 archive log volumes and 31 active log data sets per log

copy.

Changed utilities

Table 21 on page 96 lists and describes the new and changed options for many

existing DB2 UDB for z/OS utilities.

© Copyright IBM Corp. 2004, 2008 95

Table 21. New and changed utility options

Utility name Description of enhancements and notes

CHECK INDEX

New options:

SHRLEVEL CHANGE, SHRLEVEL REFERENCE, DRAIN_WAIT, RETRY,

RETRY_DELAY

SHRLEVEL CHANGE enables CHECK INDEX to operate online. When you specify

this option, applications can read from and write to data that is to be checked. To

prevent applications from writing to the data that is to be checked, specify

SHRLEVEL REFERENCE.

The DRAIN_WAIT, RETRY, and RETRY_DELAY options govern the behavior of the

utility when draining the table space or index. The DRAIN_WAIT option specifies

the number of seconds that CHECK INDEX is to wait. The RETRY option specifies

the number of retries that CHECK INDEX is to attempt. The RETRY_DELAY option

specifies the minimum duration, in seconds, between retries.

CHECK LOB

Changed option:

WORKDDN

The WORKDDN keyword, which provided the DD names of the SYSUT1 and

SORTOUT data sets in earlier versions of DB2, is no longer needed and is ignored.

You do not need to modify existing control statements to remove WORKDDN.

COPY

New option:

SYSTEMPAGES

The SYSTEMPAGES option specifies whether the COPY utility is to put the system

pages at the beginning of the image copy data set. SYSTEMPAGES YES, which is the

default, guarantees that the system pages are located at the beginning of the image

copy. This placement ensures that the image copy contains the necessary system

pages for subsequent UNLOAD utility jobs to correctly format and unload all data

rows.

You can now specify COPY CONCURRENT SHRLEVEL CHANGE for table spaces

with a page size that is greater than 4 KB if the page size matches the control

interval for the associated data set. (DB2 now supports data sets with control

interval sizes of 8 KB, 16 KB, and 32 KB.)

96 Release Planning Guide

Table 21. New and changed utility options (continued)

Utility name Description of enhancements and notes

LOAD

New options:

BIT, BLOBF, DELIMITED, COLDEL, CHARDEL, CLOBF, DBCLOBF, DECPT,

STRIP, TRUNCATE

Changed options:

HISTORY, UPDATE, SORTKEYS

The BIT option specifies that the input CHAR or VARCHAR field contains BIT data.

You can load delimited files by specifying the DELIMITED option. (This support for

delimited files improves compatibility with the DB2 family.) You can use the

COLDEL, CHARDEL, and DECPT options to specify the delimiter characters that are

used in the input data file. These options have the following meanings:

COLDEL

Specifies the column delimiter character.

CHARDEL

Specifies the character string delimiter character.

DECPT

Specifies the decimal point delimiter character.

The STRIP option specifies that LOAD is to remove blanks (the default) or the

specified character from the beginning, end, or both ends of the input data. The

TRUNCATE option specifies that LOAD is to truncate the input character string

from the right if the string does not fit in the target column. These options are valid

only with the CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC data type options.

If you specify both the TRUNCATE and STRIP options, LOAD performs the strip

operation first.

The UPDATE and HISTORY options are now independent of each other. The value

that you specify for UPDATE does not determine the value that you can specify for

HISTORY.

The SORTKEYS option is now forced on for LOAD.

DB2 provides a method for loading LOB data that is over 32 KB in length. The field

for a LOB in the input data set can contain a file name. This file name is for the file

that contains the LOB data. The data type for a LOB that is input in this way is

CHAR BLOBF, VARCHAR BLOBF, CHAR CLOBF, VARCHAR CLOBF, CHAR

DBCLOBF, or VARCHAR DBCLOBF.

Appendix B. Changes to utilities 97

#
#

#
#
#
#
#

Table 21. New and changed utility options (continued)

Utility name Description of enhancements and notes

REBUILD INDEX

New options:

INDEXSPACE, SCOPE

Changed options:

HISTORY, UPDATE, SORTKEYS

The INDEXSPACE option allows you to identify the index by specifying the

qualified name of the index space, which you can obtain from the

SYSIBM.SYSINDEXES table.

The SCOPE option indicates whether to rebuild all specified indexes (SCOPE ALL)

or to rebuild only those indexes that are in REBUILD-pending, RECOVER-pending,

advisory REBUILD-pending, or advisory REORG-pending status (SCOPE

PENDING).

The UPDATE and HISTORY options are now independent of each other. The value

that you specify for UPDATE does not determine the value that you can specify for

HISTORY.

The SORTKEYS option is now forced on for REBUILD INDEX.

RECOVER

New option:

CURRENTCOPYONLY

CURRENTCOPYONLY specifies that the restore process is to use only the most

recent primary copy for each object in the list. If restore fails, RECOVER does not

automatically use the next most recent copy or the backup copy, and the object fails.

Specify CURRENTCOPYONLY to improve the performance of restoring concurrent

copies (copies that were made by COPY with the CONCURRENT option).

Certain catalog and directory objects can be grouped together for recovery. You can

specify them as a list of objects in a single RECOVER utility statement. When you

specify all of these objects in one statement, these objects are recovered faster.

REORG INDEX

New options:

INDEXSPACE, SORTDEVT, SORTNUM

Changed options:

HISTORY, UPDATE

The INDEXSPACE option allows you to identify the index by specifying the

qualified name of the index space, which you can obtain from the

SYSIBM.SYSINDEXES table.

Use the SORTDEVT option to specify the device type for temporary data sets that

are to be allocated by DFSORT™. Use the SORTNUM option to specify the number of

these data sets.

The UPDATE and HISTORY options are now independent of each other. The value

that you specify for UPDATE does not determine the value that you can specify for

HISTORY.

98 Release Planning Guide

Table 21. New and changed utility options (continued)

Utility name Description of enhancements and notes

REORG TABLESPACE

New options:

SCOPE, REBALANCE

Changed options:

HISTORY, UPDATE, SORTDATA, SORTKEYS, DISCARD

The SCOPE option indicates whether to reorganize the specified table space or

partitions (SCOPE ALL) or to reorganize the specified table space or partitions only

if they are in REORG-pending or advisory REORG-pending status (SCOPE

PENDING).

REBALANCE specifies that REORG TABLESPACE is to set new partition boundaries

so that all rows that participate in the reorganization are evenly distributed across

the reorganized partitions.

The UPDATE and HISTORY options are now independent of each other. The value

that you specify for UPDATE does not determine the value that you can specify for

HISTORY.

The SORTDATA and SORTKEYS options are forced on for REORG TABLESPACE.

You can now specify the DISCARD option with SHRLEVEL CHANGE. However, if

you specify these two options together, data rows that match the discard criteria

cannot be modified during reorganization.

You can reorganize catalog table spaces with links if you specify SHRELEVEL

REFERENCE.

REPAIR

New options:

VERSIONS, INDEXSPACE, NOAREOPENDSTAR

Changed options:

DBD REBUILD

The VERSIONS option updates the version information for the named table space or

index in the catalog and directory. Use this option when you are moving objects

from one system to another or as a part of version number management.

The INDEXSPACE option allows you to identify the index by specifying the

qualified name of the index space, which you can obtain from the

SYSIBM.SYSINDEXES table.

You can use the NOAREOPENDSTAR option to reset the advisory REORG-pending

(AREO*) status of the specified table space or index.

You no longer need to start a database for access by utilities only before REPAIR

DBD REBUILD could be performed. DB2 now performs this step for you.

Appendix B. Changes to utilities 99

#
#

#
#

Table 21. New and changed utility options (continued)

Utility name Description of enhancements and notes

RUNSTATS

New options:

COLGROUP, MOST, LEAST, BOTH, SORTDEVT, SORTNUM

Changed options:

FREQVAL, COUNT, HISTORY, UPDATE, INDEX LIST

The COLGROUP option indicates that RUNSTATS should treat the specified columns

as a group. This option allows RUNSTATS to collect a cardinality value on the

group.

The FREQVAL and COUNT options can be specified with COLGROUP to indicate

that RUNSTATS is to collect frequency statistics for the specified group of columns.

If you specify FREQVAL, you must specify COUNT and COLGROUP.

The COUNT option indicates the number of frequently occurring values that are to

be collected. You must specify a value; no default exists.

The MOST, LEAST, and BOTH options indicate whether RUNSTATS is to collect the

most frequently occurring values for the set of columns (MOST), the least frequently

occurring values for the set of columns (LEAST), or both (BOTH). These options

must be specified with the FREQVAL and COUNT options.

The SORTDEVT option specifies the device type for temporary data sets that are to

be allocated by DFSORT. The SORTNUM option specifies the number of these data

sets.

The UPDATE and HISTORY options are now independent of each other. The value

that you specify for UPDATE does not determine the value that you can specify for

HISTORY.

Support for the correlation stats-spec keywords is added, when specified along with

the RUNSTATS INDEX LIST keywords.

TEMPLATE

New options:

DIR, DSNTYPE

The following items are added to support the unloading of LOB data that is greater

than 32KB:

v DIR specifies the number of directory blocks for a partitioned data set that will

hold the LOB data.

v DSNTYPE specifies the type of data set that is to be allocated for the LOB data.

v The &UNIQ. variable specifies a unique suffix that is appended to dynamically

allocated output data set names for UNLOAD.

100 Release Planning Guide

#
#

#
#

#
#

#
#

#
#

#

#
#

Table 21. New and changed utility options (continued)

Utility name Description of enhancements and notes

UNLOAD

New options:

BLOBF, COLDEL, CHARDEL, CLOBF, DBCLOBF, DECPT, DELIMITED,

FROMSEQNO

You can unload files in delimited format by specifying the DELIMITED option. (This

support for delimited files improves compatibility with the DB2 family.) You can use

the COLDEL, CHARDEL, and DECPT options to specify the delimiter characters that

are to be used. These options have the following meanings:

COLDEL

Specifies the column delimiter character.

CHARDEL

Specifies the character string delimiter character.

DECPT

Specifies the decimal point delimiter character.

The FROMSEQNO option specifies the file sequence number of the image copy data

set from which data is to be unloaded. This option enables you to unload data from

tape data sets that are not cataloged.

DB2 provides a method for unloading LOB data that is over 32KB in length. If the

data type for an output field is CHAR BLOBF, VARCHAR BLOBF, CHAR CLOBF,

VARCHAR CLOBF, CHAR DBCLOBF, or VARCHAR DBCLOBF, that field in the

output data set contains a file name. This file name is for the file that contains the

LOB data.

DSNJU003 (change log

inventory)

New options:

ALIAS=alias-name:alias-port, NOALIAS, SYSPITR=log-truncation-point,

CCSIDS

Changed option:

ENDLRSN

The ALIAS option (on the DDF statement) specifies one to eight alias names for the

location. :alias-port specifies a TCP/IP port number for the alias that can be used by

DDF to accept distributed requests. NOALIAS indicates that no alias names exist for

the specified location. Any alias names that were specified in a previous DSNJU003

utility job are removed.

Before you run RESTORE SYSTEM to recover system data, you must use the

SYSPITR option of DSNJU003. The SYSPITR option specifies the log RBA (non-data

sharing system) or the log LRSN (data sharing system) that represents the log

truncation point for the point in time that you want to use for system recovery.

The CCSIDS option can be specified on the DELETE statement to delete the CCSID

information in the BSDS. CCSID information is stored in the BSDS to ensure that you

do not accidentally change the CCSID values. Use this option under the direction of

IBM Software Support when the CCSID information in the BSDS is incorrect. After

you run a DSNJU003 job with the DELETE CCSIDS option, the CCISD values from

DSNHDECP are recorded in the BSDS the next time DB2 is started.

The ENDLRSN option can now be used with CRESTART in a non-data sharing

environment. In this environment, ENDLRSN specifies the RBA value that matches

the start of the last log record that is to be used during restart. Any log information

in the bootstrap data set, the active logs, and the archive logs with an RBA that is

greater than the ENDLRSN value is discarded. If the ENDLRSN RBA value does not

match the start of a log record, DB2 restart fails.

Appendix B. Changes to utilities 101

#
#

#
#
#
#
#

Table 21. New and changed utility options (continued)

Utility name Description of enhancements and notes

DSN1COPY

New options:

EBCDIC, ASCII, UNICODE

You can indicate the format of the row data in the PRINT output by specifying

EBCDIC, ASCII, or UNICODE with the PRINT option.

DSN1PRNT

New options:

EBCDIC, ASCII, UNICODE

You can indicate the format of the row data in the PRINT output by specifying

EBCDIC, ASCII, or UNICODE with the PRINT option.

Other utility changes

Other changes to utilities in Version 8 are:

v You can reset the advisory REORG-pending (AREO*) status by running the

REBUILD INDEX utility, the REORG INDEX utility, the REORG TABLESPACE

utility, the REPAIR utility, or the LOAD utility with the REPLACE option.

v You can reset the advisory REBUILD-pending (ARBDP) status by running the

REBUILD INDEX utility, the REORG TABLESPACE utility, the REPAIR utility, or

the LOAD utility with the REPLACE option.

v You can code your utility control statements either entirely in EBCDIC or

entirely in Unicode UTF-8; do not mix character sets. DB2 automatically detects

and processes Unicode UTF-8 control statements if the first character of the data

set is one of the following characters:

– A Unicode UTF-8 blank (X'20')

– A Unicode UTF-8 dash (X'2D')

– A Unicode UTF-8 uppercase characters A through Z (X'41' through X'5A')
v The new stored procedure DSNUTILU lets you invoke utilities from a local or

remote client program that generates Unicode utility control statements.

v You can restart utility jobs without specifying the RESTART keyword. If you

resubmit a job that finished abnormally, DB2 recognizes the job and restarts it if

possible.

102 Release Planning Guide

Appendix C. Changes to SQL

This appendix provides an overview of the new and changed SQL statements in

Version 8 of DB2 UDB for z/OS. The following topics provide additional

information:

v “New SQL statements”

v “Changed SQL statements”

v “New functions” on page 117

v “Other SQL language changes” on page 118

For complete information about all changes, such as the syntax for new or changed

SQL statements, comprehensive descriptions of keywords, and examples of usage,

see DB2 SQL Reference.

New SQL statements

Table 22 shows the new SQL statements in Version 8.

 Table 22. New SQL statements

SQL statement Description

ALTER SEQUENCE Changes the description of a sequence object

ALTER VIEW Regenerates a view using an existing view definition at the current server

CREATE SEQUENCE Defines a sequence object

GRANT (sequence privileges) Grants privileges on a user-defined sequence object

ITERATE Causes the flow of control within an SQL procedure to return to the

beginning of a labelled loop

REFRESH TABLE Refreshes the data in a materialized query table

RESIGNAL Enables a condition handler within an SQL procedure to raise a condition

with a specific SQLSTATE and message text, or to return the same condition

that activated the handler

RETURN Returns status information from an SQL procedure

REVOKE (sequence privileges) Revokes privileges on a user-defined sequence object

SET CURRENT MAINTAINED TABLE

TYPES FOR OPTIMIZATION

Assigns a value to the CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION special register

SET CURRENT PACKAGE PATH Assigns a value to the CURRENT PACKAGE PATH special register

SET CURRENT REFRESH AGE Assigns a value to the CURRENT REFRESH AGE special register

SET ENCRYPTION PASSWORD Assigns a value for the ENCRYPTION PASSWORD and, optionally, a hint

for the password

SET SCHEMA Assigns a value to the CURRENT SCHEMA special register.

Changed SQL statements

As shown in Table 23 on page 104, many existing SQL statements have new and

changed clauses.

© Copyright IBM Corp. 2004, 2008 103

Table 23. Changes to existing SQL statements

SQL statement Description of enhancements and notes

ALTER FUNCTION (external)

New clauses:

STOP AFTER nn FAILURES

STOP AFTER SYSTEM DEFAULT FAILURES

CONTINUE AFTER FAILURE

Deprecated clauses:

LANGUAGE COMPJAVA

The new clauses let you specify whether the function is to be placed in a stopped

state after some number of failures. You can specify a specific number, specify that

DB2 is to use the value of field MAX ABEND COUNT (on installation panel

DSNTIPX), or specify that the routine is not to be placed in a stopped state after any

failure.

You can no longer specify LANGUAGE COMPJAVA because support for

LANGUAGE COMPJAVA stored procedures is removed.

ALTER INDEX

New clauses:

PADDED

NOT PADDED

CLUSTER

NOT CLUSTER

ADD COLUMN

ALTER PARTITION

ENDING AT

MAXVALUE

When an index contains at least one varying-length column, PADDED and NOT

PADDED specify how the varying-length columns in the index are to be stored.

PADDED indicates that the varying-length string columns in the index are padded

with the default pad character to their maximum length. NOT PADDED indicates

that the varying-length string columns are not padded to their maximum length.

The partitioning index for a table is no longer required to be the clustering index.

You can use the new CLUSTER and NOT CLUSTER clauses to change which index

is the clustering index for a table.

The new ADD COLUMN clause lets you add a column to an existing index.

In previous releases of DB2, to change the attributes of a partition of a partitioning

index, you used the PART and VALUES keywords. Although these keywords are still

supported in Version 8, the ALTER PARTITION and ENDING AT keywords are the

preferred syntax to use when changing a partition’s attributes. The MAXVALUE

keyword can be specified in conjunction with the ENDING AT keyword to specify

that the partition identified by the ALTER PARTITION keyword is changed to end at

the maximum value.

104 Release Planning Guide

#

#
#
#
#

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

ALTER PROCEDURE

(external)

New clauses:

STOP AFTER nn FAILURES

STOP AFTER SYSTEM DEFAULT FAILURES

CONTINUE AFTER FAILURE

Deprecated clauses:

LANGUAGE COMPJAVA

NO WLM ENVIRONMENT

The new clauses let you specify whether the procedure is to be placed in a stopped

state after some number of failures. You can specify a specific number, specify that

DB2 is to use the value of field MAX ABEND COUNT (on installation panel

DSNTIPX), or specify that the routine is not to be placed in a stopped state after any

failure.

You can no longer specify LANGUAGE COMPJAVA because support for

LANGUAGE COMPJAVA stored procedures is removed.

You can no longer specify NO WLM ENVIRONMENT. Stored procedures that are

created or altered in Version 8 must run in a WLM-established address space.

ALTER PROCEDURE (SQL)

New clauses:

STOP AFTER nn FAILURES

STOP AFTER SYSTEM DEFAULT FAILURES

CONTINUE AFTER FAILURE

Deprecated clauses:

NO WLM ENVIRONMENT

The new clauses let you specify whether the procedure is to be placed in a stopped

state after some number of failures. You can specify a specific number, specify that

DB2 is to use the value of field MAX ABEND COUNT (on installation panel

DSNTIPX), or specify that the routine is not to be placed in a stopped state after any

failure.

You can no longer specify NO WLM ENVIRONMENT. Stored procedures that are

created or altered in Version 8 must run in a WLM-established address space.

Appendix C. Changes to SQL 105

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

ALTER TABLE

New clauses:

ADD PARTITION BY

ADD PARTITION ENDING AT

ALTER PARTITION ENDING AT

ROTATE PARTITION FIRST TO LAST

ADD MATERIALIZED QUERY

ALTER MATERIALIZED QUERY

DROP MATERIALIZED QUERY

VOLATILE

NOT VOLATILE

AS SECURITY LABEL

MAXVALUE

Changed clauses:

ALTER column-alteration

referential-constraint

AS IDENTITY

GENERATED ALWAYS

GENERATED BY DEFAULT

In Version 8 of DB2, the data partitions for a partitioned index can be determined

either by the definition of a partitioning index (index-controlled partitioning) or by

the definition of table itself (table-controlled partitioning). In support of

table-controlled partitioning, the ALTER TABLE statement has several new clauses:

v When the partitioning for a table is yet to be established (it has neither index- nor

table-controlled partitioning), you can use the ADD PARTITION BY clause to

make the table partitioning be table-controlled. The clause specifies the columns

that are used to partition the data, the number of partitions, and the limit keys for

the partition boundaries.

v For an existing partitioned table (whether it has index- or table-controlled

partitioning), you can use the ADD PARTITION ENDING AT clause to define a

new partition for the table, the ALTER PARTITION ENDING AT clause to change

the limit keys for the partitions of the table, and use the ROTATE PARTITION

FIRST TO LAST clause to rotate the partitions such that the first logical partition

becomes the last logical partition. You can also specify the MAXVALUE keyword

with each of these clauses to change the limit key for the specified partition to the

maximum value.

The ALTER TABLE statement has several new clauses to provide support for

materialized query tables:

v Use ADD MATERIALIZED QUERY to change an existing base table into a

materialized query table. This clause defines the fullselect on which the

materialized query table is based.

v Use ALTER MATERIALIZED QUERY to modify the attributes of an existing

materialized query table. This clause supports changing the attributes that are

defined by MAINTAINED BY SYSTEM or MAINTAINED BY USER and ENABLE

QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION.

v Use ALTER MATERIALIZED QUERY to change a materialized query table into a

base table. The clause causes DB2 to stop treating the table as a materialized query

table.

The new VOLATILE and NOT VOLATILE clauses control how DB2 tries to access

the table for SQL operations. VOLATILE specifies that DB2 should use index access

for the table whenever possible.

When you add a column to a table, you can specify the AS SECURITY LABEL

clause. A security label column indicates that the table is defined with multilevel

security with row level granularity. The security label column contains the security

label values.

106 Release Planning Guide

#
#
#

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

ALTER TABLE (cont) In previous versions of DB2, the changes that you could make to an existing column

definition were limited. You could increase only the length of VARCHAR columns.

In Version 8, you can change the data type of many columns, such as from

SMALLINT to INTEGER or VARCHAR to CHAR. You can also now change the

attributes of an existing identity column.

When you add an identity column to a table, you can specify new keywords on the

AS IDENTITY clause. ORDER and NO ORDER indicate whether the identity values

must be generated in order of request. The default is NO ORDER. You can also use

the new keywords NO MAXVALUE and NO MINVALUE to explicitly specify the

default behavior that an identity column has no maximum or minimum value unless

you specify one. In addition, you can now specify 0 as the interval between sequence

values and set the minimum and maximum values to the same value, which

effectively lets you define a constant sequence such that the same value is always

returned. Many new clauses are also added to the ALTER TABLE statement that let

you change any of the attributes of an existing identity column.

When you define a referential constraint, the new keywords ENFORCED or NOT

ENFORCED indicate whether DB2 enforces the constraint or treats the constraint as

an informational referential constraint. DB2 assumes that the user enforces the

constraint when it is defined as NOT ENFORCED, or informational.

When you add a ROWID column to a table, you are no longer required have to

explicitly specify GENERATED ALWAYS or GENERATED BY DEFAULT. The default

is GENERATED ALWAYS.

A ROWID column does not need to exist when you add a LOB column to a table. If

a ROWID column does not exist, DB2 implicitly generates one and appends it as the

last column of the table. An implicitly generated ROWID column is called a hidden

ROWID column.

ALTER TABLESPACE

New clauses:

ALTER PARTITION

Deprecated clauses:

LOCKPART

When modifying the attributes of a partition, you can specify ALTER PARTITION

instead of PART to identify the partition to alter. Although the PART keyword is still

supported as a synonym, ALTER PARTITION is the new preferred syntax. In

addition, any options specified after the ALTER PARTITION clause affect only the

specified partition; if no options are specified for the specified partition, an error

occurs.

In Version 8, DB2 treats all partitioned table spaces as if they were defined with

LOCKPART YES. You can still specify the LOCKPART clause, but it has no effect.

When all the conditions for selective partition locking are met, DB2 locks only the

partitions that are accessed. When the conditions for selective partition locking are

not met, DB2 locks every partition of the table space.

COMMENT

New clauses:

PACKAGE

PLAN

SEQUENCE

If you have the appropriate authorization, you can use the new PACKAGE, PLAN,

and SEQUENCE clauses to provide comments for packages, plans, and sequences in

the DB2 catalog. When creating a comment for a package, you can specify which

version of the package to which the comment applies.

Appendix C. Changes to SQL 107

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

CREATE FUNCTION (external

scalar)

New clauses:

STOP AFTER nn FAILURES

STOP AFTER SYSTEM DEFAULT FAILURES

CONTINUE AFTER FAILURE

The new clauses let you specify whether the function is to be placed in a stopped

state after some number of failures. You can specify a specific number, specify that

DB2 is to use the value of field MAX ABEND COUNT (on installation panel

DSNTIPX), or specify that the routine is not to be placed in a stopped state after any

failure. The default is STOP AFTER SYSTEM DEFAULT FAILURES.

CREATE FUNCTION (external

table)

New clauses:

STOP AFTER nn FAILURES

STOP AFTER SYSTEM DEFAULT FAILURES

CONTINUE AFTER FAILURE

The new clauses let you specify whether the function is to be placed in a stopped

state after some number of failures. You can specify a specific number, specify that

DB2 is to use the value of field MAX ABEND COUNT field (on installation panel

DSNTIPX), or specify that the routine is not to be placed in a stopped state after any

failure. The default is STOP AFTER SYSTEM DEFAULT FAILURES.

108 Release Planning Guide

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

CREATE INDEX

New clauses:

PADDED

NOT PADDED

PARTITIONED

NOT CLUSTER

PARTITION BY RANGE

MAXVALUE

Changed clauses:

CLUSTER

When an index contains at least one varying-length column, PADDED and NOT

PADDED specify how the varying-length columns in the index are to be stored.

PADDED indicates that the varying-length string columns in the index are padded

with the default pad character to their maximum length. NOT PADDED indicates

that the varying-length string columns are not padded to their maximum length. The

default for the option is determined by the value of field PAD INDEXES BY

DEFAULT (on installation panel DSNTIPE). For new installations of DB2, the default

is for PADDED mode. For migrations to Version 8, the default is NOT PADDED

mode.

When you create an index for a partitioned table, you can define the index as

PARTITIONED. PARTITIONED indicates that the index is data partitioned (that is,

the index is partitioned according to the partitioning scheme of the underlying data).

Both partitioning indexes, when the partitioning of tables is index-controlled, and

secondary indexes can be data partitioned.

The partitioning index for a table is no longer required to be the clustering index.

You can use CLUSTER and NOT CLUSTER to specify which index is the clustering

index. The default is NOT CLUSTER.

In previous releases of DB2, you had to use the PART keyword to define a

partitioning index. In Version 8, if you are using index-controlled partitioning and

are defining a partitioning index, you can use the new PARTITION BY RANGE and

PARTITION keywords to specify the partitions. The PART keyword is supported for

compatibility, but the new syntax is preferred for clarity. You can specify the

ENDING AT MAXVALUE clause with the PARTITION keyword to set the limit key

for the specified partition to the maximum value.

CREATE PROCEDURE

(external)

New clauses:

STOP AFTER nn FAILURES

STOP AFTER SYSTEM DEFAULT FAILURES

CONTINUE AFTER FAILURE

Deprecated clauses:

LANGUAGE COMPJAVA

NO WLM ENVIRONMENT

The new clauses let you specify whether the procedure is to be placed in a stopped

state after some number of failures. You can specify a specific number, specify that

DB2 is to use the value of field MAX ABEND COUNT (on installation panel

DSNTIPX), or specify that the routine is not to placed in a stopped state after any

failure. The default is STOP AFTER SYSTEM DEFAULT FAILURES.

You can no longer specify LANGUAGE COMPJAVA because support for

LANGUAGE COMPJAVA stored procedures is removed.

You can no longer specify NO WLM ENVIRONMENT. Stored procedures that are

created or altered in Version 8 must run in a WLM-established address space.

Appendix C. Changes to SQL 109

#

#
#
#

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

CREATE PROCEDURE (SQL)

New clauses:

STOP AFTER nn FAILURES

STOP AFTER SYSTEM DEFAULT FAILURES

CONTINUE AFTER FAILURE

Changed clauses:

NO WLM ENVIRONMENT

The new clauses let you specify whether the procedure is to be placed in a stopped

state after some number of failures. You can specify a specific number, specify that

DB2 is to use the value of field MAX ABEND COUNT (on installation panel

DSNTIPX), or specify that the routine is not to be placed in a stopped state after any

failure. The default is STOP AFTER SYSTEM DEFAULT FAILURES.

You can no longer specify NO WLM ENVIRONMENT. Stored procedures that are

created or altered in Version 8 must run in a WLM-established address space.

In addition to changes to the CREATE PROCEDURE (SQL) statement itself, you can

specify several new or enhanced statements in an SQL procedure. These statements

let the procedure return more information to the caller of the procedure. The new

RETURN statement supports returning status information. GET DIAGNOSTICS is

extended to support returning the status information from a RETURN statement.

You can also use SIGNAL and RESIGNAL to return a condition with a specific

SQLSTATE and message text.

110 Release Planning Guide

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

CREATE TABLE

New clauses:

partitioning-clause

materialized-query-definition

EXCLUDING IDENTITY COLUMN DEFAULTS

VOLATILE

NOT VOLATILE

AS SECURITY LABEL

MAXVALUE

Changed clauses:

referential-constraint

AS IDENTITY

GENERATED ALWAYS

GENERATED BY DEFAULT

The partitioning-clause lets you define a partitioned table with table-controlled

partitioning. The PARTITION BY keyword specifies the columns that are used to

partition the data. The PARTITION and ENDING AT keywords specify the number

of partitions and the limit keys for the partition boundaries. The MAXVALUE

keyword, when specified with the ENDING AT keyword, specifies that the limit key

value for a partition is set to the maximum value.

The materialized-query-definition lets you specify a fullselect to define the columns of

the table and to indicate whether the table is to be a materialized query table. If the

table is not to be used as a materialized query table, you must specify WITH NO

DATA, and you can use keywords to specify how the identity column and column

default attributes are to be inherited. The following clauses are used to define the

attributes of a table that is to be used as a materialized query table:

v DATA INITIALLY DEFERRED

v REFRESH DEFERRED

v MAINTAINED BY SYSTEM or MAINTAINED BY USER

v ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION

In previous releases of DB2, INCLUDING IDENTITY COLUMN DEFAULTS was

introduced as an optional clause to be used with the LIKE clause. A clause did not

exist for the default behavior. You can now explicitly specify EXCLUDING

IDENTITY COLUMN DEFAULT to indicate the default behavior.

The new VOLATILE and NOT VOLATILE keywords control how DB2 tries to access

the table for SQL operations. VOLATILE specifies that DB2 should use index access

for the table whenever possible. The default is NOT VOLATILE.

You can specify the AS SECURITY LABEL clause to a column as a security label

column. A security label column indicates that the table is defined with multilevel

security with row level granularity. The security label column contains the security

label values.

When you define a referential constraint, the new keywords ENFORCED or NOT

ENFORCED indicate whether DB2 enforces the constraint or treats the constraint as

an informational referential constraint. The default is ENFORCED. DB2 assumes that

the user enforces the constraint when it is defined as NOT ENFORCED, or

informational.

Appendix C. Changes to SQL 111

#
#
#

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

CREATE TABLE (cont) The AS IDENTITY clause has new keywords, ORDER and NO ORDER, to indicate

whether the identity values must be generated in order of request. The default is NO

ORDER. You can also use the new keywords NO MAXVALUE and NO MINVALUE

to explicitly specify the default behavior that an identity column has no maximum or

minimum value unless you specify one. In addition, you can now specify 0 as the

interval between sequence values and set the minimum and maximum values to the

same value, which effectively lets you define a constant sequence such that the same

value is always returned. Many new clauses are also added to the ALTER TABLE

statement that let you change any of the attributes of an existing identity column.

When you create a table with a LOB column, you are no longer required to explicitly

define a ROWID column. You can let DB2 implicitly generate one for you. An

implicitly generated ROWID column is called a hidden ROWID column.

When you create a table with a ROWID column, you are no longer required to

explicitly specify GENERATED ALWAYS or GENERATED BY DEFAULT. The default

is GENERATED ALWAYS.

CREATE TABLESPACE

New clauses:

PARTITION

Deprecated clauses:

LOCKPART

When defining a partitioned table space, you can specify PARTITION instead of

PART to identify the partitions to create. Although the PART keyword is still

supported as a synonym, PARTITION is the new preferred syntax.

In Version 8, DB2 treats all partitioned table spaces as if they were defined with

LOCKPART YES. You can still specify the LOCKPART clause, but it has no effect.

When all the conditions for selective partition locking are met, DB2 locks only the

partitions that are accessed. When the conditions for selective partition locking are

not met, DB2 locks every partition of the table space.

CREATE VIEW

New clauses:

WITH common-table-expression

You can use the WITH clause to define a common table expression, which is like a

temporary view that can be used for the duration of the CREATE VIEW statement

112 Release Planning Guide

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

DECLARE CURSOR

New clauses:

ASENSITIVE SCROLL

SENSITIVE DYNAMIC SCROLL

WITHOUT ROWSET POSITIONING

WITH ROWSET POSITIONING

NO SCROLL

WITHOUT HOLD

WITHOUT RETURN

In previous releases of DB2, the sensitivity of a scrollable cursor could be SENSITIVE

STATIC or INSENSITIVE. In Version 8, you can also define a scrollable cursor as

ASENSITIVE or SENSITIVE DYNAMIC. For scrollable cursors, the default is

ASENSITIVE. ASENSITIVE specifies the default cursor sensitivity: INSENSITIVE if

the cursor is read-only and SENSITIVE DYNAMIC if it is not. SENSITIVE

DYNAMIC indicates that the result table is dynamic. That is, the result table is not

fixed in size when the cursor is opened and can change in size.

The new WITHOUT ROWSET POSITIONING and WITH ROWSET POSITIONING

clauses control whether the cursor can be used only with row-positioned or both

row-positioned and rowset-positioned FETCH statements.

Before Version 8, you could specify the SCROLL, WITH HOLD, and WITH RETURN

clauses; however, no syntax matched the default behavior that would occur in the

absence of specifying any of these clauses. In Version 8, the new clauses NO

SCROLL, WITHOUT HOLD, and WITHOUT RETURN are added to denote the

default behavior.

DECLARE GLOBAL

TEMPORARY TABLE

New clauses:

EXCLUDING IDENTITY COLUMN DEFAULTS

EXCLUDING COLUMN DEFAULTS

ON COMMIT DROP TABLE

WITH NO DATA

In previous releases of DB2, INCLUDING IDENTITY COLUMN DEFAULTS and

INCLUDING COLUMN DEFAULTS were introduced as optional clauses. No clauses

existed for the default behavior. You can now explicitly use EXCLUDING IDENTITY

COLUMN DEFAULTS and EXCLUDING COLUMN DEFAULTS to specify the

default behavior.

The ON COMMIT DROP TABLE clause indicates that the declared global temporary

table is to be dropped on a commit if no open cursors on the table are defined as

WITH HOLD.

The new clause WITH NO DATA is introduced to be a synonym of the existing

clause DEFINITION ONLY. WITH NO DATA is the preferred syntax.

DELETE

New clauses:

FOR ROW n OF ROWSET

For a positioned delete in which the cursor is positioned on a rowset, you can use

the new FOR ROW n of ROWSET clause to specify which row of the rowset is to be

deleted. If the cursor is positioned on a rowset and you omit the FOR ROW n of

ROWSET clause, all the rows of the current rowset are deleted. Thus, you can delete

multiple rows with a single statement.

Appendix C. Changes to SQL 113

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

DROP

New clauses:

SEQUENCE

Changed clauses:

RESTRICT

You can use the new SEQUENCE clause to drop a sequence.

RESTRICT is now an optional keyword. You are no longer required to explicitly

specify RESTRICT when you drop a distinct type, stored procedure, or function.

EXECUTE

New clauses:

USING host-variable-array or host-variable

USING DESCRIPTOR descriptor-name

FOR n ROWS

The new clauses provide support for dynamic INSERT statements that are prepared

to insert multiple rows.

FOR n ROWS specifies the number of rows that are to be inserted. The USING

clause can explicitly define the host variables or host variable array that contain the

values to be inserted or reference an SQLDA, which describes them.

EXECUTE IMMEDIATE In Version 8, when you specify host-variable, host-variable must have a CLOB or a

DBCLOB data type if the SQL statement that is being prepared is greater than 32-KB

in length.

EXPLAIN

New clauses:

STMTCACHE STMTID id-host-variable or integer-constant

STMTCACHE STMTOKEN token-host-variable or string-constant

STMTCACHE All

With the new STMCACHE STMTID and STATEMENTCACHE STMTOKEN clauses,

you can now explain a statement in the dynamic statement cache. You identify the

cached statement to be explained by specifying its associated statement ID or

statement token.

With the new STMTCACHE ALL clause, you can get information about all of the

SQL statements in the dynamic statement cache. The STMTCACHE ALL clause

allows one row of information per SQL statement to be written to the

DSN_STATEMENT_CACHE_TABLE.

You can also now populate an explain table that you do not own. If DB2 finds an

alias on PLAN_TABLE, DSN_STATEMMT_TABLE, DSN_FUNCTION_TABLE and

the current authorization ID has sufficient SELECT and INSERT privileges, DB2

populates the table that is referenced by the alias.

114 Release Planning Guide

#
#
#

#

#
#
#
#

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

FETCH

New clauses:

NEXT ROWSET

PRIOR ROWSET

FIRST ROWSET

LAST ROWSET

CURRENT ROWSET

ROWSET STARTING AT ABSOLUTE n

ROWSET STARTING AT ABSOLUTE n

FOR n ROWS

INTO host-variable-array, ... (or descriptor-name)

To support rowset-positioned cursors and the retrieval of multiple rows of data from

a result table with a single statement, the FETCH statement is enhanced with many

new clauses. For example, you can specify FIRST ROWSET to position the cursor on

the first rowset of the result table. Specifying NEXT ROWSET positions the cursor on

the next rowset of the result table, relative to the current cursor position.

The clause FOR n ROWS determines the maximum number of rows that are

retrieved. The INTO clause identifies the host variable arrays that are to receive the

data that is fetched. You can define the host variable arrays in your program or

describe them in an SQLDA.

GET DIAGNOSTICS

New clauses:

statement-information

condition-information

combined information

The GET DIAGNOSTICS statement is enhanced to return more diagnostic

information about the last SQL statement than just the number of rows that were

associated with that statement. You can specify many more clauses and get

information about statement items, condition items, and connection items. You no

longer need to use GET DIAGNOSTICS from within an SQL procedure.

INSERT

New clauses:

WITH common-table-expression

VALUES(expression, host-variable-array, ...,)

FOR n ROWS

ATOMIC or NOT ATOMIC CONTINUE ON SQLEXCEPTION

You can use the WITH clause to define a common table expression, which is like a

temporary view that can be used for the duration of the INSERT statement

The new FOR n ROWS clause lets you insert multiple rows into a table or view. In

previous versions of DB2, you could insert only one row with a single INSERT

statement. The VALUES clause specifies the data that is to be inserted. The values

can be specified in expressions, in a host variable array, as null, or as the default

value for the column.

When you insert multiple rows, the ATOMIC and NOT ATOMIC CONTINUE ON

SQLEXCEPTION keywords control whether all the rows are inserted as an atomic

operation. ATOMIC specifies that if the insert for any row fails, all changes made by

any of the inserts, even successful ones, are undone. NOT ATOMIC CONTINUE ON

SQLEXCEPTION specifies that if the insert of one row fails, the changes made for

the successful inserts of other rows are not undone. The default is ATOMIC.

Appendix C. Changes to SQL 115

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

LOCK TABLE

New clauses:

PARTITION

When identifying the partition of a partitioned table space to lock, you can specify

PARTITION instead of PART to identify the partitions to create. Although the PART

keyword is still supported as a synonym, PARTITION is the new preferred syntax.

PREPARE

New clauses:

ASENSITIVE

NO SCROLL

WITHOUT ROWSET POSITIONING

WITH ROWSET POSITIONING

FOR SINGLE ROW

FOR MULTIPLE ROWS

ATOMIC

NOT ATOMIC CONTINUE ON SQLEXCEPTION

WITHOUT HOLD

WITHOUT RETURN

Changed clauses:

SENSITIVE

In previous releases of DB2, the sensitivity of a scrollable cursor could be SENSITIVE

STATIC or INSENSITIVE. In Version 8, in support of dynamic scrollable cursors, you

can also define a cursor as ASENSITIVE or SENSITIVE DYNAMIC. The default is

ASENSITIVE. ASENSITIVE specifies the default cursor sensitivity: INSENSITIVE if

the cursor is read-only and SENSITIVE DYNAMIC if it is not. SENSITIVE

DYNAMIC indicates that the size of the result table is not fixed when the cursor is

opened and the cursor has complete visibility to changes.

The new WITHOUT ROWSET POSITIONING and WITH ROWSET POSITIONING

clauses control whether the cursor can be used with only row-positioned or both

row-positioned and rowset-positioned FETCH statements.

If the statement that is being prepared is a dynamic INSERT statement, you can

specify FOR SINGLE ROW or FOR MULTIPLE ROWS clauses to indicate whether a

variable number of rows is to be provided for the INSERT statement. The default is

FOR SINGLE ROW.

The ATOMIC and NOT ATOMIC CONTINUE ON SQLEXCEPTION keywords

control whether all the rows are inserted as an atomic operation. ATOMIC specifies

that if the insert for any row fails, all changes made by any of the inserts, even

successful ones, are undone. NOT ATOMIC CONTINUE ON SQLEXCEPTION

specifies that if the insert of one row fails, the changes made for the successful

inserts of other rows are not undone. The default is ATOMIC.

Before Version 8, you could specify the SCROLL, WITH HOLD, and WITH RETURN

clauses; however, no syntax matched the default behavior that would occur in the

absence of specifying any of these clauses. In Version 8, the new clauses NO

SCROLL, WITHOUT HOLD, and WITHOUT RETURN are added to denote the

default behavior. Support for the explicit specification of the WITHOUT clauses

enables you to override the specification of any WITH clauses on a DECLARE

CURSOR statement.

In Version 8, when you specify FROM host-variable, host-variable must have a CLOB

or a DBCLOB data type if the SQL statement that is being prepared is greater than

32-KB in length.

116 Release Planning Guide

#
#
#

Table 23. Changes to existing SQL statements (continued)

SQL statement Description of enhancements and notes

SELECT INTO

New clauses:

ORDER BY

The ability to specify the new ORDER BY clause lets you affect which row is

returned when you use the FETCH FIRST ROW clause. The FETCH FIRST ROW

clause ensures that only one row is returned when the query can result in more than

a single row. When both clauses are specified, the ordering is done first on the result

set and then the first row is retrieved.

SIGNAL

New clauses:

condition-name

Before Version 8 of DB2, the name of the SIGNAL statement was SIGNAL

SQLSTATE, and you could use the statement only in a trigger body. You can now

also specify SIGNAL condition-name to have an SQL procedure return a condition

with a specific SQLSTATE and message text.

UPDATE

New clauses:

FOR ROW n OF ROWSET

For a positioned update in which the cursor is positioned on a row set, you can use

the new FOR ROW n OF ROWSET clause to specify which row of the row set is to

be updated. If the cursor is positioned on a row set and you omit the FOR ROW n of

ROWSET clause, all the rows of the current row set are updated. Therefore, you can

update multiple rows with a single statement.

New functions

Table 24 shows the new built-in functions in Version 8, which improve the power

of the SQL language.

 Table 24. New functions

Function name Description

ASCII Returns the leftmost character of a string expression as an integer.

CHARACTER_LENGTH Returns the length of a string expression as a 32-bit UTF-32, 16-bit UTF-16, or

byte value

DECRYPT_BIT, DECRYPT_CHAR,

or DECRYPT_DB

Returns the decrypted value of an encrypted argument

ENCRYPT_TDES Returns the argument as an encrypted value

GETHINT Returns the embedded password hint from encrypted data, if one exists

GETVARIABLE Returns the value of a session variable

POSITION Returns the starting position of the first occurrence of one string within another

string

SUBSTRING Returns a string (a substring) from within another string

TIMESTAMPDIFF Returns an estimated number of intervals of a specified type, based on the

difference between two timestamps.

XML2CLOB Converts a transient XML data type into a CLOB so that applications can access

the XML data

XMLAGG Produces a forest of XML elements from a collection of XML elements

Appendix C. Changes to SQL 117

#

#
#

#
#

#

#
#

Table 24. New functions (continued)

Function name Description

XMLCONCAT Concatenates a variable number of arguments to generate a forest of XML

elements

XMLELEMENT Generates an XML element from a variable number of arguments. Uses

XMLATTRIBUTES to specify attributes for the XML element to be generated.

XMLFOREST Produces a forest of XML elements that all share a specific pattern from a list of

columns and expressions

XMLNAMESPACES Declares one or more XML namespaces

Other SQL language changes

In addition to the many new SQL statements and functions, Version 8 provides

other enhancements to the SQL language, as shown in Table 25.

 Table 25. Other changes to SQL language

Item Description

Expressions for sequence values NEXT VALUE FOR sequence-name and PREVIOUS VALUE FOR sequence-name

are introduced as new expressions. For the specified sequence, NEXT VALUE

FOR generates and returns the next value of the sequence. PREVIOUS VALUE

FOR returns the most recently generated value for the sequence.

CAST specification When casting an operand from one data type to another, you can use the

CCSID clause to explicitly specify the encoding scheme or CCSID for the result.

The new CCSID clause can be specified when casting an operand into one of

the following data types: CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, CLOB,

or DBCLOB.

The length of the result can now be specified in a specific number of units,

CODEUNITS32, CODEUNITS16, or OCTETS, if the expression is not a string

that is defined as FOR BIT DATA.

118 Release Planning Guide

#
#
#

Table 25. Other changes to SQL language (continued)

Item Description

Special registers Version 8 of DB2 introduces several new special registers.

The CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION and

CURRENT REFRESH AGE special registers are added to support materialized

query tables. These registers control which materialized query tables are

evaluated for use when automatic query rewrite using materialized query tables

is considered.

The new CURRENT PACKAGE PATH special register lets you specify a list of

collections to search for a package. The SET CURRENT PACKAGE PATH SQL

statement, which can be used to change the value of the register, is similar to

the PKLIST bind option, but the SET CURRENT PACKAGE PATH statement is

processed at the server. In previous releases of DB2, the only way to switch

between packages was to execute the SET CURRENT PACKAGESET statement

every time you needed to use a different package. With SET CURRENT

PACKAGE PATH, you can execute the statement only once, to give the server a

list of package collections to search.

The CURRENT SCHEMA special register enables you to specify an implicit

qualifier for unqualified object names in dynamic SQL statements. Unlike the

CURRENT SQLID special register, CURRENT SCHEMA affects only the implicit

qualifier that is used. The register has no affect on authorization checking for

dynamic SQL statements, and it is not used to determine the owner of objects

that are created dynamically.

Four new special registers are added to facilitate the exchange of client

information that is specified for a connection:

v The CURRENT CLIENT_ACCTNG special register contains the value of the

accounting string.

v The CURRENT CLIENT_APPLNAME special register contains the value of

the application name.

v The CURRENT CLIENT_USERID special register contains the value of the

client user ID.

v The CURRENT CLIENT_WRKSTNNAME special register contains the value

of the workstation name.

The values of these registers can be provided through a number of application

programming interfaces.

Predicates The IS DISTINCT FROM predicate (and its alternate form IS NOT DISTINCT

FROM) is new in Version 8 to provide enhanced processing for null data values.

The predicate simplifies what needs to be coded to account for null values in

search conditions, especially for checking whether two expressions are

equivalent or are both null.

Appendix C. Changes to SQL 119

Table 25. Other changes to SQL language (continued)

Item Description

Session variables Similar to special registers, session variables are another way to provide

information to applications. Version 8 now supports many DB2-defined session

variables that store information that can be referenced by SQL statements. In

addition, you can establish up to 10 more session variables in the connection

and sign-on exit routines. You can use the GETVARIABLE built-in function to

retrieve the values of session variables.

The DB2-defined session variables are:

v SYSIBM.DATA_SHARING_GROUP_NAME

v SYSIBM.PACKAGE_NAME

v SYSIBM.PACKAGE_SCHEMA

v SYSIBM.PACKAGE_VERSION

v SYSIBM.PLAN_NAME

v SYSIBM.SECLABEL

v SYSIBM.SYSTEM_NAME

v SYSIBM.SYSTEM_ASCII_CCSID

v SYSIBM.SYSTEM_EBCDIC_CCSID

v SYSIBM.SYSTEM_UNICODE_CCSID

v SYSIBM.VERSION

The session variables that you establish in the connection and signon exit

routines are defined the SESSION schema.

Built-in functions Many of the built-in functions now support longer input arguments.

The expression for the input argument of a column function no longer is

required to reference a column. Hence, column functions are renamed to

aggregate functions.

Many of the built-in functions now support using CODUUNIT32,

CODEUNIT16, or OCTETS to specify the unit that is used to express an integer.

GROUP BY clause DB2 is enhanced to support expressions in the GROUP BY clause. Previously,

you could only specify column names.

SYSTOOLS as a schema name In previous versions of DB2, SYSTOOLS was restricted as a schema name for

distinct types, user-defined functions, stored procedures, and triggers. The only

schema name that began with character string SYS that you could specify for

these objects was SYSADM. Now, you can also specify SYSTOOLS if you have

the SYSADM or SYSCTRL privilege.

select-statement or SELECT INTO You can now specify an INSERT statement in the FROM clause of a

select-statement or a SELECT INTO statement. Specifying an INSERT statement

in the FROM clause lets you retrieve the values of the rows that are inserted

into a table (such as for default values of columns, values of automatically

generated columns, values of columns that are changed by a BEFORE trigger,

and values that are inserted through a multiple-row insert). The keyword

FINAL TABLE followed by the INSERT statement in parentheses denotes the

result table that is returned to the select-statement or SELECT INTO. The result

table includes all the rows that were inserted.

When you specify an INSERT statement in a select-statement, you can also

specify INPUT SEQUENCE in the ORDER BY clause. INPUT SEQUENCE

specifies that the rows in the result table are to be in the order in which they

were inserted.

You can use the new WITH clause at the beginning of a select-statement to

create a common table expression that can be used for the duration of the

statement. Common table expressions are especially useful in bill of material

applications.

120 Release Planning Guide

#
#

Table 25. Other changes to SQL language (continued)

Item Description

SQL procedures Version 8 extends support for statement labels to all statements within an SQL

procedure. In previous versions of DB2, only a limited number of statements,

such as the assignment-statement, compound-statement, LOOP statement, and

WHILE statement, could have a label.

Also, two restrictions that were enforced for SQL procedures in previous

releases of DB2 are removed. Starting with Version 8 of DB2:

v An SQL variable can have a LOB data type.

v An SQL variable and an SQL parameter for a procedure can have the same

name.

Appendix C. Changes to SQL 121

122 Release Planning Guide

Appendix D. Catalog changes

This appendix provides an overview of the changes to the catalog, as it exists in

new-function mode, for Version 8 of DB2 UDB for z/OS. The following topics

provide additional information:

v “New catalog tables”

v “Changed catalog tables,” including dropped and moved objects

v “New indexes” on page 133

v “When catalog migration changes occur” on page 133

For a complete description of the columns of the new and changed catalog tables,

see DB2 SQL Reference. If you are migrating to Version 8 from Version 7, see “When

catalog migration changes occur” on page 133 for a summary of when the catalog

changes are made.

New catalog tables

Table 26 shows new catalog tables.

 Table 26. New catalog tables

Catalog table name Description

SYSIBM.IPLIST Allows multiple IP addresses to be specified for a given

location to enable the definition of a remote DB2 data

sharing group. The table is created in existing table

space DSNDB06.SYSDDF.

SYSIBM.SYSSEQUENCEAUTH Records the privileges that users hold on sequences.

The table is created in existing table space

DSNDB06.SYSSEQ2.

In addition, SYSIBM.SYSOBDS is a new catalog table in Version 8. The table is in

table space SYSALTER. The table is not described here because it is for IBM

internal use only.

Changed catalog tables

Many existing catalog tables are changed in Version 8. Table 27 shows a list of the

new columns and the existing columns that are revised. Revisions to columns

include new column descriptions, new values for a column, changed data types,

changed column lengths, or both changed data types and lengths.

 Table 27. Summary of new and revised catalog table columns

Catalog table name New column Revised column

IPNAMES SECURITY_OUT

LINKNAME

LOCATIONS DBALIAS LOCATION

LINKNAME

PORT

TPN

LULIST LINKNAME

LUNAME

© Copyright IBM Corp. 2004, 2008 123

Table 27. Summary of new and revised catalog table columns (continued)

Catalog table name New column Revised column

LUMODES LUNAME

MODENAME

LUNAMES LUNAME

SYSMODENAME

MODESELECT AUTHID

PLANNAME

LUNAME

MODENAME

SYSAUXRELS TBOWNER

TBNAME

COLNAME

AUXTBOWNER

AUXTBNAME

SYSCHECKDEP TBOWNER

TBNAME

COLNAME

SYSCHECKS TBOWNER

CREATOR

TBNAME

CHECKCONDITION

SYSCHECKS2 TBOWNER

TBNAME

PATHSCHEMAS

SYSCOLAUTH GRANTOR

GRANTEE

CREATOR

TNAME

COLNAME

LOCATION

COLLID

CONTOKEN

SYSCOLDIST TBOWNER

TBNAME

NAME

COLVALUE

TYPE

COLGROUPCOLNO

SYSCOLDIST_HIST TBOWNER

TBNAME

NAME

COLVALUE

TYPE

COLGROUPCOLNO

SYSCOLDISTSTATS TBOWNER

TBNAME

NAME

COLVALUE

TYPE

COLGROUPCOLNO

124 Release Planning Guide

Table 27. Summary of new and revised catalog table columns (continued)

Catalog table name New column Revised column

SYSCOLSTATS STATS_FORMAT HIGHKEY

HIGH2KEY

LOWKEY

LOW2KEY

TBOWNER

TBNAME

NAME

SYSCOLUMNS STATS_FORMAT

PARTKEY_COLSEQ

PARTKEY_ORDERING

ALTEREDTS

CCSID

HIDDEN

NAME

TBNAME

TBCREATOR

HIGH2KEY

LOW2KEY

REMARKS

FOREIGNKEY

LABEL

DEFAULTVALUE

TYPESCHEMA

TYPENAME

SYSCOLUMNS_HIST STATS_FORMAT NAME

TBNAME

TBCREATOR

HIGH2KEY

LOW2KEY

SYSCONSTDEP BNAME

BSCHEMA

DTBNAME

DTBCREATOR

SYSCOPY OLDEST_VERSION

LOGICAL_PART

ICTYPE

STYPE

SYSDATABASE NAME

CREATOR

STGROUP

CREATEDBY

GROUP_MEMBER

SYSDATATYPES SCHEMA

OWNER

NAME

CREATEDBY

SOURCESCHEMA

SOURCETYPE

REMARKS

SYSDBAUTH GRANTOR

GRANTEE

NAME

SYSDBRM NAME

PDSNAME

PLNAME

PLCREATOR

VERSION

Appendix D. Catalog changes 125

Table 27. Summary of new and revised catalog table columns (continued)

Catalog table name New column Revised column

SYSFIELDS TBCREATOR

TBNAME

NAME

FLDTYPE

FLDPROC

PARMLIST

SYSFOREIGNKEYS CREATOR

TBNAME

RELNAME

COLNAME

SYSINDEXES PADDED

VERSION

OLDEST_VERSION

CURRENT_VERSION

RELCREATED

AVGKEYLEN

NAME

CREATOR

TBNAME

TBCREATOR

DBNAME

INDEXSPACE

CREATEDBY

INDEXTYPE

REMARKS

SYSINDEXES_HIST AVGKEYLEN NAME

CREATOR

TBNAME

TBCREATOR

SYSINDEXPART OLDEST_VERSION

CREATEDTS

AVGKEYLEN

IXNAME

IXCREATOR

PQTY

SQTY

STORNAME

VCATNAME

LIMITKEY

SYSINDEXPART_HIST AVGKEYLEN IXNAME

IXCREATOR

PQTY

SECQTYI

SYSINDEXSTATS OWNER

NAME

SYSINDEXSTATS_HIST OWNER

NAME

SYSJARCONTENTS JARSCHEMA

JAR_ID

CLASS

SYSJAROBJECTS JARSCHEMA

JAR_ID

OWNER

PATH

126 Release Planning Guide

Table 27. Summary of new and revised catalog table columns (continued)

Catalog table name New column Revised column

SYSJAVAOPTS JARSCHEMA

JAR_ID

BUILDSCHEMA

BUILDNAME

BUILDOWNER

DBRMLIB

HPJCOMPILE_OPTS

BIND_OPTS

PROJECT_LIB

SYSKEYCOLUSE TBCREATOR

TBNAME

COLNAME

SYSKEYS IXNAME

IXCREATOR

COLNAME

SYSLOBSTATS DBNAME

NAME

SYSLOBSTATS_HIST DBNAME

NAME

SYSPACKAGE REMARKS LOCATION

COLLID

NAME

CONTOKEN

OWNER

CREATOR

QUALIFIER

VERSION

PDSNAME

GROUP_MEMBER

REOPTVAR

PATHSCHEMAS

OPTHINT

SYSPACKAUTH GRANTOR

GRANTEE

LOCATION

COLLID

NAME

SYSPACKDEP BNAME

BQUALIFIER

BTYPE

DLOCATION

DCOLLID

DNAME

DCONTOKEN

DOWNER

SYSPACKLIST PLANNAME

LOCATION

COLLID

NAME

Appendix D. Catalog changes 127

Table 27. Summary of new and revised catalog table columns (continued)

Catalog table name New column Revised column

SYSPACKSTMT LOCATION

COLLID

NAME

CONTOKEN

VERSION

STMT

ISOLATION

SYSPARMS SCHEMA

OWNER

NAME

SPECIFICNAME

PARMNAME

ROWTYPE

ORDINAL

TYPESCHEMA

TYPENAME

CCSID

SYSPKSYSTEM LOCATION

COLLID

NAME

CONTOKEN

SYSTEM

CNAME

SYSPLAN REMARKS NAME

CREATOR

BOUNDBY

QUALIFIER

CURRENTSERVER

GROUP_MEMBER

REOPTVAR

PATHSCHEMAS

OPTHINT

SYSPLANAUTH GRANTOR

GRANTEE

NAME

SYSPLANDEP BNAME

BCREATOR

BTYPE

DNAME

SYSPLSYSTEM NAME

SYSTEM

CNAME

SYSRELS ENFORCED

CHECKEXISTINGDATA

CREATOR

TBNAME

RELNAME

REFTBNAME

REFTBCREATOR

IXOWNER

IXNAME

SYSRESAUTH GRANTOR

GRANTEE

QUALIFIER

NAME

128 Release Planning Guide

Table 27. Summary of new and revised catalog table columns (continued)

Catalog table name New column Revised column

SYSROUTINEAUTH GRANTOR

GRANTEE

SCHEMA

SPECIFICNAME

COLLID

CONTOKEN

SYSROUTINES NUM_DEP_MQTS

MAX_FAILURE

PARAMETER_CCSID

SCHEMA

OWNER

NAME

CREATEDBY

SPECIFICNAME

LANGUAGE

COLLID

SOURCESCHEMA

SOURCESPECIFIC

EXTERNAL_NAME

WLM_ENVIRONMENT

RUNOPTS

REMARKS

JAVA_SIGNATURE

CLASS

JARSCHEMA

JAR_ID

SYSROUTINES_OPTS DEBUG_MODE SCHEMA

ROUTINENAME

BUILDSCHEMA

BUILDNAME

BUILDOWNER

PRECOMPILE_OPTS

COMPILE_OPTS

PRELINK_OPTS

BIND_OPTS

SOURCEDSN

SYSROUTINES_SRC SCHEMA

ROUTINENAME

CREATESTMT

SYSSCHEMAAUTH GRANTOR

GRANTEE

SCHEMANAME

SYSSEQUENCES PRECISION

RESTARTWITH

SCHEMA

OWNER

NAME

SEQTYPE

SEQUENCEID

CREATEDBY

CYCLE

CACHE

ORDER

CREATEDTS

ALTEREDTS

REMARKS

SYSSEQUENCESDEP DTYPE

BSCHEMA

BNAME

DSCHEMA

BSEQUENCEID

DCREATOR

DNAME

DCOLNAME

Appendix D. Catalog changes 129

Table 27. Summary of new and revised catalog table columns (continued)

Catalog table name New column Revised column

SYSSTMT NAME

PLNAME

PLCREATOR

TEXT

ISOLATION

SYSSTOGROUP SPACEF NAME

CREATOR

VCATNAME

CREATEDBY

SYSSTRINGS TRANSPROC

SYSSYNONYMS NAME

CREATOR

VCATNAME

TBNAME

TBCREATOR

CREATEDBY

SYSTABAUTH GRANTOR

GRANTEE

DBNAME

SCREATOR

STNAME

TCREATOR

TTNAME

GRANTEELOCATION

LOCATION

COLLID

CONTOKEN

SYSTABCONST TBCREATOR

TBNAME

CREATOR

IXOWNER

IXNAME

SYSTABLEPART LOGICAL_PART

LIMITKEY_INTERNAL

OLDEST_VERSION

CREATEDTS

AVGROWLEN

TSNAME

DBNAME

IXNAME

IXCREATOR

PQTY

SQTY

STORNAME

VCATNAME

LIMITKEY

CHECKRID5B

SYSTABLEPART_HIST AVGROWLEN TSNAME

DBNAME

PQTY

SECQTYI

130 Release Planning Guide

Table 27. Summary of new and revised catalog table columns (continued)

Catalog table name New column Revised column

SYSTABLES NUM_DEP_MQTS

VERSION

PARTKEYCOLNUM

SPLIT_ROWS

SECURITY_LABEL

NAME

CREATOR

TYPE

DBNAME

TSNAME

EDPROC

VALPROC

REMARKS

PARENTS

CHILDREN

KEYCOLUMNS

STATUS

LABEL

CHECKFLAG

CREATEDBY

LOCATION

TBCREATOR

TBNAME

CHECKS

CHECKRID5B

ENCODING_SCHEME

TABLESTATUS

SYSTABLES_HIST NAME

CREATOR

DBNAME

TSNAME

SYSTABLESPACE OLDEST_VERSION

CURRENT_VERSION

AVGROWLEN

SPACEF

NAME

CREATOR

DBNAME

CREATEDBY

SYSTABSTATS DBNAME

TSNAME

OWNER

NAME

SYSTABSTATS_HIST DBNAME

TSNAME

OWNER

NAME

SYSTRIGGERS NAME

SCHEMA

OWNER

CREATEDBY

TBNAME

TBOWNER

TEXT

REMARKS

TRIGNAME

SYSUSERAUTH GRANTOR

GRANTEE

Appendix D. Catalog changes 131

Table 27. Summary of new and revised catalog table columns (continued)

Catalog table name New column Revised column

SYSVIEWDEP BNAME

BCREATOR

BTYPE

DNAME

DCREATOR

BSCHEMA

DTYPE

SYSVIEWS REFRESH

ENABLE

MAINTENANCE

REFRESH_TIME

ISOLATION

SIGNATURE

APP_ENCODING_CCSID

NAME

CREATOR

TEXT

PATHSCHEMAS

TYPE

SYSVOLUMES SGNAME

SGCREATOR

VOLID

USERNAMES AUTHID

LINKNAME

NEWAUTHID

PASSWORD

Some catalog table columns that were used in previous versions of DB2 are no

longer used in Version 8. Table 28 shows a list of columns that are no longer used.

 Table 28. Summary of catalog table columns that are no longer used

Catalog table name Columns no longer used

SYSCOLAUTH DATEGRANTED

TIMEGRANTED

SYSCOPY ICDATE

ICTIME

SYSDATABASE TIMESTAMP

SYSDBAUTH DATEGRANTED

TIMEGRANTED

SYSDBRM PRECOMPTIME

PRECOMPDATE

SYSPLAN BINDDATE

BINDTIME

SYSPLANAUTH DATEGRANTED

TIMEGRANTED

SYSRESAUTH DATEGRANTED

TIMEGRANTED

SYSSTOGROUP SPCDATE

SYSTABAUTH DATEGRANTED

TIMEGRANTED

SYSTABLESPACE LOCKPART

SYSUSERAUTH DATEGRANTED

TIMEGRANTED

132 Release Planning Guide

In addition to the changes described in Table 27 on page 123 and Table 28 on page

132, DB2 also makes these catalog table changes:

v Stores information about field procedures on columns of views in

SYSIBM.SYSFIELDS.

v Drops catalog tables SYSIBM.SYSLINKS and SYSIBM.SYSPROCEDURES.

Dropping these catalog tables also causes index DSNKCX01 on SYSIBM.

SYSPROCEDURES to be dropped

v Moves catalog table SYSIBM.SYSDUMMY1 from table space SYSSTR to

SYSEBCDC, which is a new EBCDIC catalog table space in Version 8.

v Uses the new PARAMETER_CCSID column in SYSIBM.SYSROUTINES to record

the encoding scheme for string parameters for user-defined functions and stored

procedures (PARAMETER CCSID clause). Prior to Version 8 of DB2, this

information was recorded in a special row in SYSIBM.SYSPARMS (row in which

ROWTYPE=X and ORDINAL=0).

New indexes

Table 29 shows the new indexes in Version 8.

 Table 29. New indexes

Table space

DSNDB06. ...

Catalog table

SYSIBM. ... Index Key column

SYSALTER SYSOBDS DSNDOB01 CREATOR.NAME

DSNDOB02 DBID.PSID

SYSDBASE SYSCOLAUTH DSNACX01 CREATOR.TNAME.COLNAME

SYSFOREIGNKEYS DSNDRH01 CREATOR.TBNAME.RELNAME

SYSINDEXES DSNDXX04 INDEXTYPE

SYSRELS DSNDLX02 CREATOR.TBNAME

SYSTABAUTH DSNATX04 TCREATOR.TTNAME

SYSTABLEPART DSNDPX03 DBNAME.TSNAME.LOGICAL_PART

SYSTABLES DSNDTX03 TBCREATOR.TBNAME

SYSDDF IPLIST DSNDUX01 LINKNAME.IPADDR

SYSSEQ2 SYSSEQUENCEAUTH DSNWCX01 SCHEMA.NAME

DSNWCX02 GRANTOR.SCHEMA.NAME

DSNWCX03 GRANTEE.SCHEMA.NAME

SYSSEQUENCEDEP DSNSRX02 BSCHEMA.BNAME.DTYPE

SYSVIEWS SYSVIEWDEP DSNGGX04 BCREATOR.BNAME.BTYPE.DTYPE

In addition, two new indexes are created on SYSIBM.SYSOBDS, an IBM internal

use only catalog table, which resides in table space SYSALTER.

When catalog migration changes occur

This section briefly describes when the various catalog changes occur when you

migrate an existing Version 7 DB2 subsystem. Migrating a subsystem to Version 8

requires the completion of several installation jobs that move the subsystem to

compatibility mode, enabling-new-function mode, and finally to new-function

mode.

Appendix D. Catalog changes 133

When the subsystem is migrated to compatibility mode, DB2 makes the following

updates:

v Creates the new table spaces and most of the new catalog tables and indexes.

v Adds new columns to existing catalog tables.

v Changes the description of existing catalog table columns.

v Revises the definition of some existing indexes.

For a complete description of the DB2 catalog as it exists in Version 8 compatibility

mode at the completion of phase 1, see DB2 Diagnosis Guide and Reference.

When the subsystem is converted from compatibility mode to new-function mode,

DB2 makes the following updates:

v Creates the remaining new catalog tables and indexes.

v Changes the data type, length, or both of some existing catalog table columns.

v Adds additional values to existing catalog table columns.

v Converts the encoding scheme of the table spaces that are converted to Unicode.

v Drops catalog tables SYSIBM.SYSLINKS and SYSIBM.SYSPROCEDURES, which

includes dropping index DSNKCX01 on the SYSIBM.SYSPROCEDURES table

v Moves catalog table SYSIBM.SYSDUMMY1 to catalog table space

DSNDB06.SYSEBCDC.

v Revises the definition of indexes that have VARCHAR columns from PADDED

to NOT PADDED.

For detailed information about when the catalog changes occur during migration,

see DB2 Installation Guide.

134 Release Planning Guide

Appendix E. EXPLAIN table changes

The information in this appendix is Product-sensitive Programming Interface and

Associated Guidance Information, as defined in “Notices” on page 149.

This appendix includes the complete definitions for a DB2 PLAN_TABLE. It also

provides a description of the PLAN_TABLE columns that are new and changed for

Version 8 of DB2 UDB for z/OS.

Before you can use EXPLAIN, you must create a table called PLAN_TABLE to hold

the results of EXPLAIN. If you have an existing PLAN_TABLE from a subsystem

that ran on a previous version of DB2, you can alter it to add the new Version 8

columns. Figure 5 on page 136 shows the format of the PLAN_TABLE. The

following topics provide additional information:

v “Format of the Version 8 PLAN_TABLE”

v “Descriptions of new and changed columns in PLAN_TABLE” on page 137

v “Changed columns in DSN_STATEMNT_TABLE” on page 139

v “New statement cache table” on page 140

Format of the Version 8 PLAN_TABLE

The Version 8 PLAN_TABLE has seven new columns, giving it a total of 58

columns. The new columns are TABLE_ENCODE, TABLE_SCCSID,

TABLE_MCCSID, TABLE_DCCSID, ROUTINE_ID, CTEREF, and STMTTOKEN.

Additionally, many columns in the PLAN_TABLE have new data types, as shown

in Figure 5 on page 136.

© Copyright IBM Corp. 2004, 2008 135

#

CREATE TABLE userid.PLAN_TABLE

 (QUERYNO INTEGER NOT NULL,

 QBLOCKNO SMALLINT NOT NULL,

 APPLNAME CHAR(8) NOT NULL,

 PROGNAME VARCHAR(128) NOT NULL,

 PLANNO SMALLINT NOT NULL,

 METHOD SMALLINT NOT NULL,

 CREATOR VARCHAR(128) NOT NULL,

 TNAME VARCHAR(128) NOT NULL,

 TABNO SMALLINT NOT NULL,

 ACCESSTYPE CHAR(2) NOT NULL,

 MATCHCOLS SMALLINT NOT NULL,

 ACCESSCREATOR VARCHAR(128) NOT NULL,

 ACCESSNAME VARCHAR(128) NOT NULL,

 INDEXONLY CHAR(1) NOT NULL,

 SORTN_UNIQ CHAR(1) NOT NULL,

 SORTN_JOIN CHAR(1) NOT NULL,

 SORTN_ORDERBY CHAR(1) NOT NULL,

 SORTN_GROUPBY CHAR(1) NOT NULL,

 SORTC_UNIQ CHAR(1) NOT NULL,

 SORTC_JOIN CHAR(1) NOT NULL,

 SORTC_ORDERBY CHAR(1) NOT NULL,

 SORTC_GROUPBY CHAR(1) NOT NULL,

 TSLOCKMODE CHAR(3) NOT NULL,

 TIMESTAMP CHAR(16) NOT NULL,

 REMARKS VARCHAR(762) NOT NULL,

 PREFETCH CHAR(1) NOT NULL WITH DEFAULT,

 COLUMN_FN_EVAL CHAR(1) NOT NULL WITH DEFAULT,

 MIXOPSEQ SMALLINT NOT NULL WITH DEFAULT,

 VERSION VARCHAR(64) NOT NULL WITH DEFAULT,

 COLLID VARCHAR(128) NOT NULL WITH DEFAULT,

 ACCESS_DEGREE SMALLINT ,

 ACCESS_PGROUP_ID SMALLINT ,

 JOIN_DEGREE SMALLINT ,

 JOIN_PGROUP_ID SMALLINT ,

 SORTC_PGROUP_ID SMALLINT ,

 SORTN_PGROUP_ID SMALLINT ,

 PARALLELISM_MODE CHAR(1) ,

 MERGE_JOIN_COLS SMALLINT ,

 CORRELATION_NAME VARCHAR(128) ,

 PAGE_RANGE CHAR(1) NOT NULL WITH DEFAULT,

 JOIN_TYPE CHAR(1) NOT NULL WITH DEFAULT,

 GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,

 IBM_SERVICE_DATA VARCHAR(254) FOR BIT DATA NOT NULL WITH DEFAULT,

 WHEN_OPTIMIZE CHAR(1) NOT NULL WITH DEFAULT,

 QBLOCK_TYPE CHAR(6) NOT NULL WITH DEFAULT,

 BIND_TIME TIMESTAMP NOT NULL WITH DEFAULT,

 OPTHINT VARCHAR(128) NOT NULL WITH DEFAULT,

 HINT_USED VARCHAR(128) NOT NULL WITH DEFAULT,

 PRIMARY_ACCESSTYPE CHAR(1) NOT NULL WITH DEFAULT,

 PARENT_QBLOCKNO SMALLINT NOT NULL WITH DEFAULT,

 TABLE_TYPE CHAR(1) ,

 TABLE_ENCODE CHAR(1) NOT NULL WITH DEFAULT,

 TABLE_SCCSID SMALLINT NOT NULL WITH DEFAULT,

 TABLE_MCCSID SMALLINT NOT NULL WITH DEFAULT,

 TABLE_DCCSID SMALLINT NOT NULL WITH DEFAULT,

 ROUTINE_ID INTEGER NOT NULL WITH DEFAULT,

 CTEREF SMALLINT NOT NULL WITH DEFAULT,

 STMTTOKEN VARCHAR(240))

 IN database-name.table-space-name

 CCSID EBCDIC;

Figure 5. 58-column format of PLAN_TABLE

136 Release Planning Guide

#
#
#
#

Descriptions of new and changed columns in PLAN_TABLE

Table 30 shows the content of each of the new or changed columns for Version 8.

 Table 30. Descriptions of new and changed columns in PLAN_TABLE

Column Name Description New or changed

QBLOCKNO A number that identifies each query block within a query. The value of

the numbers are not in any particular order, nor are they necessarily

consecutive.

Changed

TNAME The names of the table, materialized query table, created or declared

temporary table, materialized view, or materialized table expression.

The value is blank if METHOD is 3. The column can also contain the

name of a table in the form DSNWFQB(qblockno).

DSNWFQB(qblockno) is used to repesent the intermediate result of a

UNION ALL or an outer join that is materialized. If a view is merged,

the name of the view does not appear.

Changed

ACCESSTYPE Indicates the method of accessing the new table. The possible values

are:

I Access by an index (identified in ACCESSCREATOR and

ACCESSNAME)

I1 Access by a one-fetch index scan

M Access by a multiple index scan (followed by MX, MI, or MU)

MI Access by an intersection of multiple indexes

MU Access by a union of multiple indexes

MX Access by an index scan on the index that is named in

ACCESSNAME

N Access by an index scan when the matching predicate

contains the IN keyword

R Access by a table space scan

RW Access by a work file scan of the result of a materialized

user-defined table function

T Access by a sparse index (star join work files)

V Access by buffers for an INSERT statement within a SELECT

blank Not applicable to the current row

Changed

REMARKS A field into which you can insert any character string of 762 or fewer

characters.

Changed

WHEN_OPTIMIZE When the access path was determined:

blank At bind time, using a default filter factor for any host

variables, parameter markers, or special registers.

B At bind time, using a default filter factor for any host

variables, parameter markers, or special registers; however,

the statement is reoptimized at run time using input variable

values for input host variables, parameter markers, or special

registers. The bind option REOPT(ALWAYS) or

REOPT(ONCE) must be specified for reoptimization to occur.

R At run time, using input variables for any host variables,

parameter markers, or special registers. The bind option

REOPT(ALWAYS) or REOPT(ONCE) must be specified for this

to occur.

Changed

Appendix E. EXPLAIN table changes 137

Table 30. Descriptions of new and changed columns in PLAN_TABLE (continued)

Column Name Description New or changed

QBLOCK_TYPE Indicates the type of SQL operation performed for each query block.

For the outermost query, this column identifies the statement type. The

possible values are:

SELECT SELECT statement

INSERT INSERT statement

UPDATE UPDATE statement

DELETE DELETE statement

SELUPD SELECT statement with FOR UPDATE OF clause

DELCUR DELETE statement WHERE CURRENT OF CURSOR

UPDCUR UPDATE statement WHERE CURRENT OF CURSOR

CORSUB Correlated subselect or fullselect

NCOSUB Noncorrelated subselect or fullselect

TABLEX Table expression

TRIGGR WHEN clause on CREATE TRIGGER

UNION UNION

UNIONA UNIONALL

Changed

TABLE_TYPE Indicates the type of new table. The possible values are:

B Buffers for an INSERT statement within a SELECT.

C Common table expression.

F Table function.

M Materialized query table.

Q Temporary intermediate result table (not materialized). For the

name of a view or nested table expression, a value of Q

indicates that the materialization was virtual and not actual.

Materialization can be virtual when the definition of the view

or nested table expression contains a UNION ALL that is not

distributed.

R Recursive common table expression.

T Table.

W Work file.

The value of the column is null if the query uses GROUP BY, ORDER

BY, or DISTINCT, which requires an implicit sort.

Changed

TABLE_ENCODE Indicates the encoding scheme of the table. If the table has a single

CCSID, the possible values are:

A ASCII

E EBCDIC

U Unicode

M is the value of the column when the table contains multiple CCSID

sets.

New

TABLE_SCCSID The SBCS value of the table. If column TABLE_ENCODE is M, the

value is 0.

New

138 Release Planning Guide

Table 30. Descriptions of new and changed columns in PLAN_TABLE (continued)

Column Name Description New or changed

TABLE_MCCSID The mixed value of the table. If column TABLE_ENCODE is M, the

value is 0.

New

TABLE_DCCSID The DBCS value of the table. If column TABLE_ENCODE is M, the

value is 0.

New

ROUTINE_ID The values for this column are for IBM use only. New

CTEREF If the referenced table is a common table expression, the value is the

top-level query block number.

New

STMTTOKEN User-specified statement token. New

Your PLAN_TABLE can use many other formats with fewer columns. However,

you should use the 58-column format because it gives you the most information.

To alter an existing plan table with fewer than 58 columns to the 58-column

format, follow these steps:

1. Determine whether your PLAN_TABLE has the following columns:

v PROGNAME

v CREATOR

v TNAME

v ACCESSTYPE

v ACCESSNAME

v REMARKS

v COLLID

v CORRELATION_NAME

v IBM_SERVICE_DATA

v OPTHINT

v HINT_USED
2. For any columns that exist, use the values in Figure 5 on page 136 to change

the data types of these columns to the appropriate Version 8 data types.

3. For any columns that are not in PLAN_TABLE, add these columns to the table,

using the column definitions in Figure 5 on page 136.

Changed columns in DSN_STATEMNT_TABLE

In Version 8, DB2 UDB for z/OS introduces three changes to the statement table.

The column PROGNAME has data type VARCHAR(128) instead of data type

CHAR(8). The column COLLID has data type VARCHAR(128) instead of

CHAR(18). The column STMT_ENCODE is a new column with data type

CHAR(1). STMT_ENCODE is described in Table 31.

 Table 31. Descriptions of new and changed columns in DSN_STATEMNT_TABLE

Column Name Description

STMT_ENCODE Indicates the encoding scheme of the statement. If the statement represents a single CCSID,

the possible values are:

A ASCII

E EBCDIC

U Unicode

M is the value when the statement has multiple CCSID sets.

Your statement table can use the older format in which the STMT_ENCODE

column does not exist, PROGNAME has a data type of CHAR(8), and COLLID has

Appendix E. EXPLAIN table changes 139

a data type of CHAR(18). However, use the most current format because it gives

you the most information. You can alter a statement table in the older format to a

statement table in the current format.

New statement cache table

In Version 8, DB2 UDB for z/OS introduces a new statement cache table,

DSN_STATEMENT_CACHE_TABLE, which is populated when the EXPLAIN

STMTCACHE ALL statement is issued. DSN_STATEMENT_CACHE_TABLE stores

information about statements in the cache.

For information about creating and using DSN_STATEMENT_CACHE_TABLE, see

DB2 SQL Reference and DB2 Application Programming and SQL Guide.

140 Release Planning Guide

#

#
#
#
#

#
#

Appendix F. New and changed IFCIDs

The information in this appendix is Product-sensitive Programming Interface and

Associated Guidance Information, as defined in “Notices” on page 149.

Version 8 of DB2 contains a number of trace enhancements, including:

v Additional package accounting information

v Information about sorts

v Statistics fields for high-water marks for thread allocations

v Accumulated accounting data for DDF and RRSAF threads, aggregated by any

combination of end user user ID, end user transaction name, or end user

workstation name. The combination is selected through the subsystem parameter

ACCUMUID.

This appendix briefly describes the new IFCIDs and the changes to the existing

IFCIDs for each new function. The following topics provide additional information:

v New IFCIDs are described in Table 32.

v Changes to existing IFCIDs are described in Table 33 on page 142.

For a detailed description of the fields in each IFCID record, refer to the mapping

macros data set library prefix.SDSNMACS.

New IFCIDs

Table 32 lists the new IFCIDs.

 Table 32. New IFCIDs

IFCID Trace Class Mapping macro Description

DRDA data stream encryption

0184 GLOBAL 9 DSNDQW02 Records information about encrypted data in data

communication buffers. The trace data is in decrypted

form.

Monitoring of system checkpoints and log offloads

0335 STATISTICS 3 DSNDQW04 Records information about system checkpoints or

stalled log offloads.

Improved monitoring of locking

0337 PERFORMANCE 6 DSNDQW04 Records information about lock escalation occurrences.

A record is written whenever lock escalation occurs.

 STATISTICS 3

Work file database and TEMP database space usage

0342 None None DSNDQW04 Records work file database or TEMP database space

usage by agent.

Full SQL statement tracing

0350 PERFORMANCE 3 DSNDQW04 Records the complete text of an SQL statement.

© Copyright IBM Corp. 2004, 2008 141

Changed IFCIDs

Version 8 of DB2 introduces Unicode support and long name support, which affect

many of the trace records. In addition, Version 8 of DB2 introduces a number of

changes to selected trace records.

Unicode support: You can direct DB2 to generate selected trace fields in Unicode

(UTF-8). You do this by specifying YES in the UNICODE IFCIDS field of

installation panel DSNTIPN. The fields that can appear in Unicode are marked

with %U in the trace mapping macros and in the IFCID flat file.

Long name support: In Version 8, DB2 supports longer names for many of the DB2

objects. Because those names also appear in trace records, longer names appear in

the trace macros and IFCID flat file. Fields with increased lengths are a subset of

the fields that are marked with %U. Each field that can be longer has three

corresponding new fields:

v A small integer field with the offset to the longer name

v A varying-length character value that consists of:

– A small integer field with the length of the longer name

– A character field that contains the longer name

If an original trace field is n bytes long, and a name is m bytes long, where m>n,

the original field contains the first n bytes of the name, the offset field contains the

offset to the full name, and the varying-length character field contains m, followed

by the full name.

If a name fits in the original trace field, the original field contains the name, and

the offset field contains 0.

Changes for READS requests: Monitor trace class 1 no longer needs to be active

before you can make IFI READS requests, except for IFCID 0185.

Changes to mappings for repeating groups that contain varying-length fields: A

repeating group that contains varying-length fields has a length of zero and a

non-zero offset in the self-defining section. The length of each item in a repeating

group is in the first two bytes of that item. See "Reading the self-defining section

for variable-length data items" in Appendix D (Volume 2) of DB2 Administration

Guide for information about mapping repeating groups of variable-length items.

Changes to selected trace records: Table 33 gives an overview of changes to specific

IFCIDs. Changes to IFCID 0106, the system parameters record, are not included.

 Table 33. Changed IFCIDs

IFCID Description of changes

CARDINALITY option for a user-defined table function

0022 For the access type field, new values for table function access and table function

prefetch into a work file.

Coupling facility batching

0002, 0003 New fields for the number of batched coupling facility write and castout requests.

Distribution statistics on non-indexed columns

0023, 0024, 0025 New field values for RUNSTATS subtasks for distribution statistics collection.

Dynamic scrollable cursors

142 Release Planning Guide

#
#

#
#
#
#
#
#

Table 33. Changed IFCIDs (continued)

IFCID Description of changes

0059, 0065 New fields for fetch sensitivity, fetch orientation, cursor scrollability, cursor sensitivity,

and cursor result table type.

Greater than 32-KB SQL statements

0063, 0140, 0141, 0142, 0145,

0168, 0316, 0317

New 4-byte length field to trace records that contain SQL statements, to support SQL

statements that are greater than 32 KB.

Improved LPL recovery

0021, 0044, 0150, 0172, 0196 New field values for the LPL recovery lock type.

SELECT from INSERT statement

0022 For the access type field, a new value for buffers for SELECT from INSERT.

For the table type field, a new value for buffers.

Materialized query tables

0022 For the table type field, a new value for a materialized query table.

0140 For the type of privilege being checked, a new value for REFRESH TABLE.

Sequences

0002, 0003, 0148 New fields for the number of CREATE SEQUENCE, ALTER SEQUENCE, and DROP

SEQUENCE statements.

0062 For the statement type field, new values for CREATE SEQUENCE, ALTER

SEQUENCE, and DROP SEQUENCE.

For the object type field, a new value for a sequence.

0140 For the object type field, a new value for a sequence.

Multilevel security

0142 New field that contains the SECLABEL.

Server support for common clients

0169 Added field to trace translation from a location name to a DBALIAS name for

outbound requests, and to trace translation from a location alias name to a location

name for inbound requests.

64-bit virtual support

0002, 0003, 0148, 0198, 0199,

0201, 0202

Counters that are related to hiperpools are removed.

0217, 0225 New fields to describe storage use above the 2-GB bar.

System-level point-in-time recovery

0023, 0024, 0025 New field values for BACKUP SYSTEM and RESTORE SYSTEM.

Miscellaneous changes

0001

New high-water mark statistics for the number of TSO foreground threads, batch

threads, and concurrent allied threads.

0001, 0003, 0172, 0239

Additional fields for package-level accounting. Plan-level accounting and package-level

accounting are separated. Package-level accounting is removed from IFCID 0003.

0002 Add information about false lock contention.

Appendix F. New and changed IFCIDs 143

##

Table 33. Changed IFCIDs (continued)

IFCID Description of changes

0003

For a database access thread that runs on a DB2 subsystem that is configured with

DDF inactive thread support, an IFCID 0003 record is written and a new enclave is

created, even if the thread must remain active, if the following conditions are true:

v The associated package is bound with KEEPDYNAMIC(YES).

v There are no held cursors.

v There are no active declared temporary tables.

v Only KEEPDYNAMIC(YES) keeps the thread from becoming inactive.

0003, 0147, 0148, 0239

Support is added for accumulated accounting data for DDF and RRSAF threads. The

data is accumulated by any combination of end user user ID, end user transaction

name, or end user workstation name.

0007 Add fields to record pages that were read through an I/O operation.

0024 New field values for sort tasks for CHECK LOB.

0028 New field values and field values to record sorts for multiple DISTINCT keywords in

SQL statements.

0053, 0058, 0059, 0060, 0061,

0064, 0065, 0066, 0273, 0311

Add fields for the DRDA query command ID (CMDSRCID) and query instance ID

(QRYINSID). These fields are used for enhanced internal processing of distributed SQL

statements.

0065, 0066 Add fields to trace the implicit close of a cursor when SQLCODE +100 occurs.

0124, 0317 Add fields to trace prepare attributes.

0185 Add a field that indicates whether a changed data capture operation is the result of a

triggered SQL statement.

144 Release Planning Guide

##

##

##

##
#

Appendix G. How to use the DB2 library

Titles of books in the library begin with DB2 Universal Database for z/OS Version

8. However, references from one book in the library to another are shortened and

do not include the product name, version, and release. Instead, they point directly

to the section that holds the information. For a complete list of books in the library,

and the sections in each book, see the bibliography at the back of this book.

The most rewarding task associated with a database management system is asking

questions of it and getting answers, the task called end use. Other tasks are also

necessary—defining the parameters of the system, putting the data in place, and so

on. The tasks that are associated with DB2 are grouped into the following major

categories (but supplemental information relating to all of the following tasks for

new releases of DB2 can be found in DB2 Release Planning Guide.

Installation: If you are involved with DB2 only to install the system, DB2

Installation Guide might be all you need.

If you will be using data sharing capabilities you also need DB2 Data Sharing:

Planning and Administration, which describes installation considerations for data

sharing.

If you want to set up a DB2 subsystem to meet the requirements of the Common

Criteria, you need DB2 Common Criteria Guide, which contains information that

supersedes other information in the DB2 UDB for z/OS library regarding Common

Criteria.

End use: End users issue SQL statements to retrieve data. They can also insert,

update, or delete data, with SQL statements. They might need an introduction to

SQL, detailed instructions for using SPUFI, and an alphabetized reference to the

types of SQL statements. This information is found in DB2 Application Programming

and SQL Guide, and DB2 SQL Reference.

End users can also issue SQL statements through the DB2 Query Management

Facility (QMF) or some other program, and the library for that licensed program

might provide all the instruction or reference material they need. For a list of the

titles in the DB2 QMF library, see the bibliography at the end of this book.

Application programming: Some users access DB2 without knowing it, using

programs that contain SQL statements. DB2 application programmers write those

programs. Because they write SQL statements, they need the same resources that

end users do.

Application programmers also need instructions on many other topics:

v How to transfer data between DB2 and a host program—written in Java, C, or

COBOL, for example

v How to prepare to compile a program that embeds SQL statements

v How to process data from two systems simultaneously, say DB2 and IMS or DB2

and CICS

v How to write distributed applications across operating systemss

v How to write applications that use Open Database Connectivity (ODBC) to

access DB2 servers

© Copyright IBM Corp. 2004, 2008 145

v How to write applications in the Java programming language to access DB2

servers

The material needed for writing a host program containing SQL is in DB2

Application Programming and SQL Guide and in DB2 Application Programming Guide

and Reference for Java. The material needed for writing applications that use DB2

ODBC or ODBC to access DB2 servers is in DB2 ODBC Guide and Reference. For

handling errors, see DB2 Codes.

If you will be working in a distributed environment, you will need DB2 Reference

for Remote DRDA Requesters and Servers.

Information about writing applications across operating systems can be found in

IBM DB2 Universal Database SQL Reference for Cross-Platform Development.

System and database administration: Administration covers almost everything else.

DB2 Administration Guide divides those tasks among the following sections:

v Part 2 (Volume 1) of DB2 Administration Guide discusses the decisions that must

be made when designing a database and tells how to implement the design by

creating and altering DB2 objects, loading data, and adjusting to changes.

v Part 3 (Volume 1) of DB2 Administration Guide describes ways of controlling

access to the DB2 system and to data within DB2, to audit aspects of DB2 usage,

and to answer other security and auditing concerns.

v Part 4 (Volume 1) of DB2 Administration Guide describes the steps in normal

day-to-day operation and discusses the steps one should take to prepare for

recovery in the event of some failure.

v Part 5 (Volume 2) of DB2 Administration Guide explains how to monitor the

performance of the DB2 system and its parts. It also lists things that can be done

to make some parts run faster.

If you will be using the RACF access control module for DB2 authorization

checking, you will need DB2 RACF Access Control Module Guide.

If you are involved with DB2 only to design the database, or plan operational

procedures, you need DB2 Administration Guide. If you also want to carry out your

own plans by creating DB2 objects, granting privileges, running utility jobs, and so

on, you also need:

v DB2 SQL Reference, which describes the SQL statements you use to create, alter,

and drop objects and grant and revoke privileges

v DB2 Utility Guide and Reference, which explains how to run utilities

v DB2 Command Reference, which explains how to run commands

If you will be using data sharing, you need DB2 Data Sharing: Planning and

Administration, which describes how to plan for and implement data sharing.

Additional information about system and database administration can be found in

DB2 Messages and DB2 Codes, which list messages and codes issued by DB2, with

explanations and suggested responses.

Diagnosis: Diagnosticians detect and describe errors in the DB2 program. They

might also recommend or apply a remedy. The documentation for this task is in

DB2 Diagnosis Guide and Reference, DB2 Messages, and DB2 Codes.

146 Release Planning Guide

Appendix H. How to obtain DB2 information

This section provides information that you can use to find valuable information

about the DB2 product:

v “DB2 on the Web”

v “DB2 publications”

v “DB2 education” on page 148

v “How to order the DB2 library” on page 148

DB2 on the Web

Stay current with the latest information about DB2. View the DB2 home page on

the Web. News items keep you informed about the latest enhancements to the

product. Product announcements, press releases, fact sheets, and technical articles

help you plan your database management strategy.

You can view and search DB2 publications on the Web, or you can download and

print many of the most current DB2 books. Follow links to other Web sites with

more information about DB2 family and z/OS solutions. Access DB2 on the Web at

the following Web site: www.ibm.com/software/db2zos.

DB2 publications

The publications for DB2 UDB for z/OS are available in various formats and

delivery methods. IBM provides mid-version updates in softcopy on the Web and

on CD-ROM.

DB2 Information Center for z/OS solutions

DB2 UDB for z/OS product information is viewable in the DB2 Information Center

for z/OS solutions. The information center, introduced in Version 8 of DB2 UDB

for z/OS, is a delivery vehicle for information about DB2 UDB for z/OS, IMS,

QMF, and related tools. This information center enables users to search across

related product information in multiple languages for data management solutions

for the z/OS environment. Product technical information is provided in a format

that offers more options and tools for accessing, integrating, and customizing

information resources. The information center is based on Eclipse open source

technology.

The DB2 Information Center for z/OS solutions is viewable at the following Web

site: http://publib.boulder.ibm.com/infocenter/db2zhelp.

CD-ROMs and DVD

Books for Version 8 of DB2 UDB for z/OS are available on a CD-ROM that is

included with your product shipment:

v DB2 UDB for z/OS Version 8 Licensed Library Collection, LK3T-7128, in English

The CD-ROM contains the collection of books for DB2 UDB for z/OS in PDF and

BookManager formats. Periodically, IBM refreshes the books on subsequent

editions of this CD-ROM.

© Copyright IBM Corp. 2004, 2008 147

The books for Version 8 of DB2 UDB for z/OS are also available on the following

CD-ROM and DVD collection kits, which contain online books for many IBM

products:

v IBM eServer zSeries Online Library: z/OS Software Products Collection,

SK3T-4270, in English

v IBM eServer zSeries Online Library: z/OS Software Products DVD Collection,

SK3T–4271, in English

PDF format

Many of the DB2 books are available in PDF (Portable Document Format) for

viewing or printing from CD-ROM or the Web. Download the PDF books to your

intranet for distribution throughout your enterprise.

BookManager format

You can use online books on CD-ROM to read, search across books, print portions

of the text, and make notes in these BookManager books. Using the IBM Softcopy

Reader, appropriate IBM Library Readers, or the BookManager Read product, you

can view these books in the z/OS, Windows, and VM environments. You can also

view and search many of the DB2 BookManager books on the Web.

DB2 education

IBM Education and Training offers a wide variety of classroom courses to help you

quickly and efficiently gain DB2 expertise. IBM schedules classes are in cities all

over the world. You can find class information, by country, at the IBM Learning

Services Web site: www.ibm.com/services/learning.

IBM also offers classes at your location, at a time that suits your needs. IBM can

customize courses to meet your exact requirements. For more information,

including the current local schedule, please contact your IBM representative.

How to order the DB2 library

You can order DB2 publications and CD-ROMs through your IBM representative or

the IBM branch office that serves your locality. If your location is within the United

States or Canada, you can place your order by calling one of the toll-free numbers:

v In the U.S., call 1-800-879-2755.

v In Canada, call 1-800-565-1234.

To order additional copies of licensed publications, specify the SOFTWARE option.

To order additional publications or CD-ROMs, specify the PUBLICATIONS option.

Be prepared to give your customer number, the product number, and either the

feature codes or order numbers that you want.

You can also order books from the IBM Publication Center on the Web:

www.elink.ibmlink.ibm.com.

From the IBM Publication Center, you can go to the Publication Notification

System (PNS). PNS users receive electronic notifications of updated publications in

their profiles. You have the option of ordering the updates by using the

publications direct ordering application or any other IBM publication ordering

channel. The PNS application does not send automatic shipments of publications.

You will receive updated publications and a bill for them if you respond to the

electronic notification.

148 Release Planning Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004, 2008 149

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Programming interface information

This book is intended to help you plan for Version 8 of DB2 UDB for z/OS. This

book primarily documents General-use Programming Interface and Associated

Guidance Information provided by DB2 Universal Database for z/OS (DB2 UDB

for z/OS).

150 Release Planning Guide

General-use programming interfaces allow the customer to write programs that

obtain the services of DB2 UDB for z/OS.

However, this book also documents Product-sensitive Programming Interface and

Associated Guidance Information.

Product-sensitive programming interfaces allow the customer installation to

perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or

tuning of this IBM software product. Use of such interfaces creates dependencies

on the detailed design or implementation of the IBM software product.

Product-sensitive programming interfaces should be used only for these specialized

purposes. Because of their dependencies on detailed design and implementation, it

is to be expected that programs written to such interfaces might need to be

changed in order to run with new product releases or versions, or as a result of

service.

Product-sensitive Programming Interface and Associated Guidance Information is

identified where it occurs.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 AD/Cycle

 C/370

 CICS

 DB2

 DB2 Connect

 DB2 Universal Database

 DFSMSdss

 DFSMShsm

 DFSORT

 Distributed Relational Database

Architecture

 DRDA

 Enterprise Storage Server

 ES/3090

 eServer

 FlashCopy

 IBM

 IBMLink

 IMS

 iSeries

 Language Environment

 MVS

 MVS/ESA

 OS/390

 Parallel Sysplex

 PR/SM

 RACF

 System/390

 VTAM

 z/OS

 zSeries

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Notices 151

152 Release Planning Guide

Glossary

The following terms and abbreviations are

defined as they are used in the DB2 library.

A

automatic query rewrite. A process that examines an

SQL statement that refers to one or more base tables,

and, if appropriate, rewrites the query so that it

performs better. This process can also determine

whether to rewrite a query so that it refers to one or

more materialized query tables that are derived from

the source tables.

C

clustering index. An index that determines how rows

are physically ordered (clustered) in a table space. If a

clustering index on a partitioned table is not a

partitioning index, the rows are ordered in cluster

sequence within each data partition instead of spanning

partitions. Prior to Version 8 of DB2 UDB for z/OS, the

partitioning index was required to be the clustering

index.

copy pool. A named set of SMS storage groups that

contains data that is to be copied collectively. A copy

pool is an SMS construct that lets you define which

storage groups are to be copied by using FlashCopy

functions. HSM determines which volumes belong to a

copy pool.

copy target. A named set of SMS storage groups that

are to be used as containers for copy pool volume

copies. A copy target is an SMS construct that lets you

define which storage groups are to be used as

containers for volumes that are copied by using

FlashCopy functions.

copy version. A point-in-time FlashCopy copy that is

managed by HSM. Each copy pool has a version

parameter that specifies how many copy versions are

maintained on disk.

D

DAD. See Document access definition.

data-partitioned secondary index (DPSI). A secondary

index that is partitioned. The index is partitioned

according to the underlying data.

data space. In releases prior to DB2 UDB for z/OS,

Version 8, a range of up to 2 GB of contiguous virtual

storage addresses that a program can directly

manipulate. Unlike an address space, a data space can

hold only data; it does not contain common areas,

system data, or programs.

document access definition (DAD). Used to define

the indexing scheme for an XML column or the

mapping scheme of an XML collection. It can be used

to enable an XML Extender column of an XML

collection, which is XML formatted.

DPSI. Data-partitioned secondary index.

dynamic cursor. A named control structure that an

application program uses to change the size of the

result table and the order of its rows after the cursor is

opened. Contrast with static cursor.

dynamic statement cache pool. A cache, located above

the 2-GB storage line, that holds dynamic statements.

E

EB. See exabyte.

exabyte. For processor, real and virtual storage

capacities and channel volume:

1 152 921 504 606 846 976 bytes or 260.

Extensible Markup Language (XML). A standard

metalanguage for defining markup languages that is a

subset of Standardized General Markup Language

(SGML). The less complex nature of XML makes it

easier to write applications that handle document

types, to author and manage structured information,

and to transmit and share structured information across

diverse computing environments.

F

FlashCopy. A function on the IBM Enterprise Storage

Server® that can create a point-in-time copy of data

while an application is running.

forest. An ordered set of subtrees of XML nodes.

fully escaped mapping. A mapping from an SQL

identifier to an XML name when the SQL identifier is a

column name.

H

hiperspace. In releases prior to DB2 UDB for z/OS,

Version 8, a range of up to 2 GB of contiguous virtual

storage addresses that a program can use as a buffer.

Like a data space, a hiperspace can hold user data; it

does not contain common areas or system data. Unlike

© Copyright IBM Corp. 2004, 2008 153

an address space or a data space, data in a hiperspace

is not directly addressable. To manipulate data in a

hiperspace, users must bring the data into the address

space in 4-KB blocks.

host variable array. An array of elements, each of

which corresponds to a value for a column. The

dimension of the array determines the maximum

number of rows for which the array can be used.

I

index-controlled partitioning. A type of partitioning

in which partition boundaries for a partitioned table are

controlled by values that are specified on the CREATE

INDEX statement. Partition limits are saved in the

LIMITKEY column of the SYSIBM.SYSINDEXPART

catalog table.

insensitive cursor. A cursor that is not sensitive to

inserts, updates, or deletes that are made to the

underlying rows of a result table after the result table

has been materialized.

L

location alias. Another name by which a database

server identifies itself in the network. Applications can

use this name to access a DB2 database server.

M

materialized query table. A table that is used to

contain information that is derived and can be

summarized from one or more source tables.

N

nonpartitioned index. An index that is not physically

partitioned. Both partitioning indexes and secondary

indexes can be nonpartitioned.

nonpartitioned secondary index (NPSI). An index on

a partitioned table space that is not the partitioning

index and is not partitioned.

nonpartitioning index. See secondary index.

NPSI. See nonpartitioned secondary index.

P

partitioned index. An index that is physically

partitioned. Both partitioning indexes and secondary

indexes can be partitioned.

partitioning index. An index in which the leftmost

columns are the partitioning columns of the table. The

index can be partitioned or nonpartitioned.

R

rowset. A set of rows for which a cursor position is

established.

rowset cursor. A cursor that is defined so that one or

more rows can be returned as a rowset for a single

FETCH statement, and the cursor is positioned on the

set of rows that is fetched.

rowset-positioned access. The ability to retrieve

multiple rows from a single FETCH statement.

row-positioned access. The ability to retrieve a single

row from a single FETCH statement.

S

schema. (1) The organization or structure of a

database. (2) A logical grouping for user-defined

functions, distinct types, triggers, and stored

procedures. When an object of one of these types is

created, it is assigned to one schema, which is

determined by the name of the object. For example, the

following statement creates a distinct type T in schema

C:

CREATE DISTINCT TYPE C.T ...

secondary index. A nonpartitioning index on a

partitioned table.

sensitive cursor. A cursor that is sensitive to changes

that are made to the database after the result table has

been materialized.

sequence. A user-defined object that generates a

sequence of numeric values according to user

specifications.

source table. A table that can be a base table, a view, a

table expression, or a user-defined table function.

static cursor. A named control structure that does not

change the size of the result table or the order of its

rows after an application opens the cursor. Contrast

with dynamic cursor.

T

table-controlled partitioning. A type of partitioning in

which partition boundaries for a partitioned table are

controlled by values that are defined in the CREATE

TABLE statement. Partition limits are saved in the

LIMITKEY_INTERNAL column of the

SYSIBM.SYSTABLEPART catalog table.

transient XML data type. A data type for XML values

that exists only during query processing.

154 Release Planning Guide

tree structure. A data structure that represents entities

in nodes, with a most one parent node for each node,

and with only one root node.

V

volatile table. A table for which SQL operations

choose index access whenever possible.

X

XML. See Extensible Markup Language.

XML attribute. A name-value pair within a tagged

XML element that modifies certain features of the

element.

XML element. A logical structure in an XML

document that is delimited by a start and an end tag.

Anything between the start tag and the end tag is the

content of the element.

XML node. The smallest unit of valid, complete

structure in a document. For example, a node can

represent an element, an attribute, or a text string.

XML publishing functions. Functions that return

XML values from SQL values.

Glossary 155

#
#
#
#

156 Release Planning Guide

Bibliography

DB2 Universal Database for z/OS Version 8

product information:

v DB2 Administration Guide, SC18-7413

v DB2 Application Programming and SQL Guide,

SC18-7415

v DB2 Application Programming Guide and Reference

for Java, SC18-7414

v DB2 Codes, GC18-9603

v DB2 Command Reference, SC18-7416

v DB2 Common Criteria Guide, SC18-9672

v DB2 Data Sharing: Planning and Administration,

SC18-7417

v DB2 Diagnosis Guide and Reference, LY37-3201

v DB2 Diagnostic Quick Reference Card, LY37-3202

v DB2 Image, Audio, and Video Extenders

Administration and Programming, SC26-9947

v DB2 Installation Guide, GC18-7418

v DB2 Licensed Program Specifications, GC18-7420

v DB2 Management Clients Package Program

Directory, GI10-8567

v DB2 Messages, GC18-9602

v DB2 ODBC Guide and Reference, SC18-7423

v The Official Introduction to DB2 UDB for z/OS

v DB2 Program Directory, GI10-8566

v DB2 RACF Access Control Module Guide,

SC18-7433

v DB2 Reference for Remote DRDA Requesters and

Servers, SC18-7424

v DB2 Reference Summary, SX26-3853

v DB2 Release Planning Guide, SC18-7425

v DB2 SQL Reference, SC18-7426

v DB2 Text Extender Administration and

Programming, SC26-9948

v DB2 Utility Guide and Reference, SC18-7427

v DB2 What's New?, GC18-7428

v DB2 XML Extender for z/OS Administration and

Programming, SC18-7431

Books and resources about related products:

APL2®

v APL2 Programming Guide, SH21-1072

v APL2 Programming: Language Reference,

SH21-1061

v APL2 Programming: Using Structured Query

Language (SQL), SH21-1057

BookManager® READ/MVS

v BookManager READ/MVS V1R3: Installation

Planning & Customization, SC38-2035

C language: IBM C/C++ for z/OS

v z/OS C/C++ Programming Guide, SC09-4765

v z/OS C/C++ Run-Time Library Reference,

SA22-7821

Character Data Representation Architecture

v Character Data Representation Architecture

Overview, GC09-2207

v Character Data Representation Architecture

Reference and Registry, SC09-2190

CICS Transaction Server for z/OS

The publication order numbers below are for

Version 2 Release 2 and Version 2 Release 3 (with

the release 2 number listed first).

v CICS Transaction Server for z/OS Information

Center, SK3T-6903 or SK3T-6957.

v CICS Transaction Server for z/OS Application

Programming Guide, SC34-5993 or SC34-6231

v CICS Transaction Server for z/OS Application

Programming Reference, SC34-5994 or SC34-6232

v CICS Transaction Server for z/OS CICS-RACF

Security Guide, SC34-6011 or SC34-6249

v CICS Transaction Server for z/OS CICS Supplied

Transactions, SC34-5992 or SC34-6230

v CICS Transaction Server for z/OS Customization

Guide, SC34-5989 or SC34-6227

v CICS Transaction Server for z/OS Data Areas,

LY33-6100 or LY33-6103

v CICS Transaction Server for z/OS DB2 Guide,

SC34-6014 or SC34-6252

v CICS Transaction Server for z/OS External

Interfaces Guide, SC34-6006 or SC34-6244

v CICS Transaction Server for z/OS Installation

Guide, GC34-5985 or GC34-6224

v CICS Transaction Server for z/OS

Intercommunication Guide, SC34-6005 or

SC34-6243

v CICS Transaction Server for z/OS Messages and

Codes, GC34-6003 or GC34-6241

v CICS Transaction Server for z/OS Operations and

Utilities Guide, SC34-5991 or SC34-6229

© Copyright IBM Corp. 2004, 2008 157

#

#

v CICS Transaction Server for z/OS Performance

Guide, SC34-6009 or SC34-6247

v CICS Transaction Server for z/OS Problem

Determination Guide, SC34-6002 or SC34-6239

v CICS Transaction Server for z/OS Release Guide,

GC34-5983 or GC34-6218

v CICS Transaction Server for z/OS Resource

Definition Guide, SC34-5990 or SC34-6228

v CICS Transaction Server for z/OS System

Definition Guide, SC34-5988 or SC34–6226

v CICS Transaction Server for z/OS System

Programming Reference, SC34-5595 or SC34–6233

CICS Transaction Server for OS/390

v CICS Transaction Server for OS/390 Application

Programming Guide, SC33-1687

v CICS Transaction Server for OS/390 DB2 Guide,

SC33-1939

v CICS Transaction Server for OS/390 External

Interfaces Guide, SC33-1944

v CICS Transaction Server for OS/390 Resource

Definition Guide, SC33-1684

COBOL:

v IBM COBOL Language Reference, SC27-1408

v Enterprise COBOL for z/OS Programming Guide,

SC27-1412

Database Design

v DB2 for z/OS and OS/390 Development for

Performance Volume I by Gabrielle Wiorkowski,

Gabrielle & Associates, ISBN 0-96684-605-2

v DB2 for z/OS and OS/390 Development for

Performance Volume II by Gabrielle Wiorkowski,

Gabrielle & Associates, ISBN 0-96684-606-0

v Handbook of Relational Database Design by C.

Fleming and B. Von Halle, Addison Wesley,

ISBN 0-20111-434-8

DB2 Administration Tool

v DB2 Administration Tool for z/OS User's Guide

and Reference, available on the Web at

www.ibm.com/software/data/db2imstools/

library.html

DB2 Buffer Pool Analyzer for z/OS

v DB2 Buffer Pool Tool for z/OS User's Guide and

Reference, available on the Web at

www.ibm.com/software/data/db2imstools/

library.html

DB2 Connect

v IBM DB2 Connect Quick Beginnings for DB2

Connect Enterprise Edition, GC09-4833

v IBM DB2 Connect Quick Beginnings for DB2

Connect Personal Edition, GC09-4834

v IBM DB2 Connect User's Guide, SC09-4835

DB2 DataPropagator™

v DB2 Universal Database Replication Guide and

Reference, SC27-1121

DB2 Performance Expert for z/OS, Version 1

The following books are part of the DB2

Performance Expert library. Some of these books

include information about the following tools:

IBM DB2 Performance Expert for z/OS; IBM DB2

Performance Monitor for z/OS; and DB2 Buffer

Pool Analyzer for z/OS.

v OMEGAMON Buffer Pool Analyzer User's Guide,

SC18-7972

v OMEGAMON Configuration and Customization,

SC18-7973

v OMEGAMON Messages, SC18-7974

v OMEGAMON Monitoring Performance from ISPF,

SC18-7975

v OMEGAMON Monitoring Performance from

Performance Expert Client, SC18-7976

v OMEGAMON Program Directory, GI10-8549

v OMEGAMON Report Command Reference,

SC18-7977

v OMEGAMON Report Reference, SC18-7978

v Using IBM Tivoli OMEGAMON XE on z/OS,

SC18-7979

DB2 Query Management Facility (QMF™)

Version 8.1

v DB2 Query Management Facility: DB2 QMF High

Performance Option User’s Guide for TSO/CICS,

SC18-7450

v DB2 Query Management Facility: DB2 QMF

Messages and Codes, GC18-7447

v DB2 Query Management Facility: DB2 QMF

Reference, SC18-7446

v DB2 Query Management Facility: Developing DB2

QMF Applications, SC18-7651

v DB2 Query Management Facility: Getting Started

with DB2 QMF for Windows and DB2 QMF for

WebSphere, SC18-7449

v DB2 Query Management Facility: Getting Started

with DB2 QMF Query Miner, GC18-7451

v DB2 Query Management Facility: Installing and

Managing DB2 QMF for TSO/CICS, GC18-7444

v DB2 Query Management Facility: Installing and

Managing DB2 QMF for Windows and DB2 QMF

for WebSphere, GC18-7448

158 Release Planning Guide

v DB2 Query Management Facility: Introducing DB2

QMF, GC18-7443

v DB2 Query Management Facility: Using DB2

QMF, SC18-7445

v DB2 Query Management Facility: DB2 QMF

Visionary Developer's Guide, SC18-9093

v DB2 Query Management Facility: DB2 QMF

Visionary Getting Started Guide, GC18-9092

DB2 Redbooks™

For access to all IBM Redbooks about DB2, see

the IBM Redbooks Web page at

www.ibm.com/redbooks

DB2 Server for VSE & VM

v DB2 Server for VM: DBS Utility, SC09-2983

DB2 Universal Database Cross-Platform

information

v IBM DB2 Universal Database SQL Reference for

Cross-Platform Development, available at

www.ibm.com/software/data/

developer/cpsqlref/

DB2 Universal Database for iSeries

The following books are available at

www.ibm.com/iseries/infocenter

v DB2 Universal Database for iSeries Performance

and Query Optimization

v DB2 Universal Database for iSeries Database

Programming

v DB2 Universal Database for iSeries SQL

Programming Concepts

v DB2 Universal Database for iSeries SQL

Programming with Host Languages

v DB2 Universal Database for iSeries SQL Reference

v DB2 Universal Database for iSeries Distributed

Data Management

v DB2 Universal Database for iSeries Distributed

Database Programming

DB2 Universal Database for Linux, UNIX, and

Windows:

v DB2 Universal Database Administration Guide:

Planning, SC09-4822

v DB2 Universal Database Administration Guide:

Implementation, SC09-4820

v DB2 Universal Database Administration Guide:

Performance, SC09-4821

v DB2 Universal Database Administrative API

Reference, SC09-4824

v DB2 Universal Database Application Development

Guide: Building and Running Applications,

SC09-4825

v DB2 Universal Database Call Level Interface Guide

and Reference, Volumes 1 and 2, SC09-4849 and

SC09-4850

v DB2 Universal Database Command Reference,

SC09-4828

v DB2 Universal Database SQL Reference Volume 1,

SC09-4844

v DB2 Universal Database SQL Reference Volume 2,

SC09-4845

Device Support Facilities

v Device Support Facilities User's Guide and

Reference, GC35-0033

DFSMS

These books provide information about a variety

of components of DFSMS, including z/OS

DFSMS, z/OS DFSMSdfp™, z/OS DFSMSdss™,

z/OS DFSMShsm, and z/OS DFP.

v z/OS DFSMS Access Method Services for Catalogs,

SC26-7394

v z/OS DFSMSdss Storage Administration Guide,

SC35-0423

v z/OS DFSMSdss Storage Administration Reference,

SC35-0424

v z/OS DFSMShsm Managing Your Own Data,

SC35-0420

v z/OS DFSMSdfp: Using DFSMSdfp in the z/OS

Environment, SC26-7473

v z/OS DFSMSdfp Diagnosis Reference, GY27-7618

v z/OS DFSMS: Implementing System-Managed

Storage, SC27-7407

v z/OS DFSMS: Macro Instructions for Data Sets,

SC26-7408

v z/OS DFSMS: Managing Catalogs, SC26-7409

v z/OS MVS: Program Management User's Guide

and Reference, SA22-7643

v z/OS MVS Program Management: Advanced

Facilities, SA22-7644

v z/OS DFSMSdfp Storage Administration Reference,

SC26-7402

v z/OS DFSMS: Using Data Sets, SC26-7410

v DFSMSdfp Advanced Services , SC26-7400

v DFSMS/MVS: Utilities, SC26-7414

DFSORT

v DFSORT Application Programming: Guide,

SC33-4035

v DFSORT Installation and Customization,

SC33-4034

Distributed Relational Database Architecture

Bibliography 159

v Open Group Technical Standard; the Open Group

presently makes the following DRDA books

available through its Web site at

www.opengroup.org

– Open Group Technical Standard, DRDA Version

3 Vol. 1: Distributed Relational Database

Architecture

– Open Group Technical Standard, DRDA Version

3 Vol. 2: Formatted Data Object Content

Architecture

– Open Group Technical Standard, DRDA Version

3 Vol. 3: Distributed Data Management

Architecture

Domain Name System

v DNS and BIND, Third Edition, Paul Albitz and

Cricket Liu, O’Reilly, ISBN 0-59600-158-4

Education

v Information about IBM educational offerings is

available on the Web at http://www.ibm.com/
software/sw-training/

v A collection of glossaries of IBM terms is

available on the IBM Terminology Web site at

www.ibm.com/ibm/terminology/index.html

eServer™ zSeries

v IBM eServer zSeries Processor Resource/System

Manager Planning Guide, SB10-7033

Fortran: VS Fortran

v VS Fortran Version 2: Language and Library

Reference, SC26-4221

v VS Fortran Version 2: Programming Guide for

CMS and MVS, SC26-4222

High Level Assembler

v High Level Assembler for MVS and VM and VSE

Language Reference, SC26-4940

v High Level Assembler for MVS and VM and VSE

Programmer's Guide, SC26-4941

ICSF

v z/OS ICSF Overview, SA22-7519

v Integrated Cryptographic Service Facility

Administrator's Guide, SA22-7521

IMS Version 8

IMS product information is available on the IMS

Library Web page, which you can find at

www.ibm.com/ims

v IMS Administration Guide: System, SC27-1284

v IMS Administration Guide: Transaction Manager,

SC27-1285

v IMS Application Programming: Database Manager,

SC27-1286

v IMS Application Programming: Design Guide,

SC27-1287

v IMS Application Programming: Transaction

Manager, SC27-1289

v IMS Command Reference, SC27-1291

v IMS Customization Guide, SC27-1294

v IMS Install Volume 1: Installation Verification,

GC27-1297

v IMS Install Volume 2: System Definition and

Tailoring, GC27-1298

v IMS Messages and Codes Volumes 1 and 2,

GC27-1301 and GC27-1302

v IMS Open Transaction Manager Access Guide and

Reference, SC18-7829

v IMS Utilities Reference: System, SC27-1309

General information about IMS Batch Terminal

Simulator for z/OS is available on the Web at

www.ibm.com/software/data/db2imstools/

library.html

IMS DataPropagator

v IMS DataPropagator for z/OS Administrator's

Guide for Log, SC27-1216

v IMS DataPropagator: An Introduction, GC27-1211

v IMS DataPropagator for z/OS Reference,

SC27-1210

ISPF

v z/OS ISPF Dialog Developer’s Guide, SC23-4821

v z/OS ISPF Messages and Codes, SC34-4815

v z/OS ISPF Planning and Customizing, GC34-4814

v z/OS ISPF User’s Guide Volumes 1 and 2,

SC34-4822 and SC34-4823

Language Environment®

v Debug Tool User's Guide and Reference, SC18-7171

v Debug Tool for z/OS and OS/390 Reference and

Messages, SC18-7172

v z/OS Language Environment Concepts Guide,

SA22-7567

v z/OS Language Environment Customization,

SA22-7564

v z/OS Language Environment Debugging Guide,

GA22-7560

v z/OS Language Environment Programming Guide,

SA22-7561

v z/OS Language Environment Programming

Reference, SA22-7562

MQSeries®

v MQSeries Application Messaging Interface,

SC34-5604

160 Release Planning Guide

v MQSeries for OS/390 Concepts and Planning

Guide, GC34-5650

v MQSeries for OS/390 System Setup Guide,

SC34-5651

National Language Support

v National Language Design Guide Volume 1,

SE09-8001

v IBM National Language Support Reference Manual

Volume 2, SE09-8002

NetView®

v Tivoli NetView for z/OS Installation: Getting

Started, SC31-8872

v Tivoli NetView for z/OS User's Guide, GC31-8849

Microsoft® ODBC

Information about Microsoft ODBC is available at

http://msdn.microsoft.com/library/

Parallel Sysplex® Library

v System/390 9672 Parallel Transaction Server, 9672

Parallel Enterprise Server, 9674 Coupling Facility

System Overview For R1/R2/R3 Based Models,

SB10-7033

v z/OS Parallel Sysplex Application Migration,

SA22-7662

v z/OS Parallel Sysplex Overview: An Introduction to

Data Sharing and Parallelism, SA22-7661

v z/OS Parallel Sysplex Test Report, SA22-7663

The Parallel Sysplex Configuration Assistant is

available at www.ibm.com/s390/pso/psotool

PL/I: Enterprise PL/I for z/OS

v IBM Enterprise PL/I for z/OS Language Reference,

SC27-1460

v IBM Enterprise PL/I for z/OS Programming Guide,

SC27-1457

PL/I: PL/I for MVS & VM

v PL/I for MVS & VM Programming Guide,

SC26-3113

SMP/E

v SMP/E for z/OS and OS/390 Reference, SA22-7772

v SMP/E for z/OS and OS/390 User's Guide,

SA22-7773

Storage Management

v z/OS DFSMS: Implementing System-Managed

Storage, SC26-7407

v MVS/ESA Storage Management Library: Managing

Data, SC26-7397

v MVS/ESA Storage Management Library: Managing

Storage Groups, SC35-0421

v MVS Storage Management Library: Storage

Management Subsystem Migration Planning Guide,

GC26-7398

System Network Architecture (SNA)

v SNA Formats, GA27-3136

v SNA LU 6.2 Peer Protocols Reference, SC31-6808

v SNA Transaction Programmer's Reference Manual

for LU Type 6.2, GC30-3084

v SNA/Management Services Alert Implementation

Guide, GC31-6809

TCP/IP

v IBM TCP/IP for MVS: Customization &

Administration Guide, SC31-7134

v IBM TCP/IP for MVS: Diagnosis Guide,

LY43-0105

v IBM TCP/IP for MVS: Messages and Codes,

SC31-7132

v IBM TCP/IP for MVS: Planning and Migration

Guide, SC31-7189

TotalStorage™ Enterprise Storage Server

v RAMAC Virtual Array: Implementing Peer-to-Peer

Remote Copy, SG24-5680

v Enterprise Storage Server Introduction and

Planning, GC26-7444

v IBM RAMAC Virtual Array, SG24-6424

Unicode

v z/OS Support for Unicode: Using Conversion

Services, SA22-7649

Information about Unicode, the Unicode

consortium, the Unicode standard, and standards

conformance requirements is available at

www.unicode.org

VTAM

v Planning for NetView, NCP, and VTAM,

SC31-8063

v VTAM for MVS/ESA Diagnosis, LY43-0078

v VTAM for MVS/ESA Messages and Codes,

GC31-8369

v VTAM for MVS/ESA Network Implementation

Guide, SC31-8370

v VTAM for MVS/ESA Operation, SC31-8372

v z/OS Communications Server SNA Programming,

SC31-8829

v z/OS Communicatons Server SNA Programmer's

LU 6.2 Reference, SC31-8810

v VTAM for MVS/ESA Resource Definition

Reference, SC31-8377

Bibliography 161

WebSphere® family

v WebSphere MQ Integrator Broker: Administration

Guide, SC34-6171

v WebSphere MQ Integrator Broker for z/OS:

Customization and Administration Guide,

SC34-6175

v WebSphere MQ Integrator Broker: Introduction and

Planning, GC34-5599

v WebSphere MQ Integrator Broker: Using the

Control Center, SC34-6168

z/Architecture™

v z/Architecture Principles of Operation, SA22-7832

z/OS

v z/OS C/C++ Programming Guide, SC09-4765

v z/OS C/C++ Run-Time Library Reference,

SA22-7821

v z/OS C/C++ User's Guide, SC09-4767

v z/OS Communications Server: IP Configuration

Guide, SC31-8875

v z/OS DCE Administration Guide, SC24-5904

v z/OS DCE Introduction, GC24-5911

v z/OS DCE Messages and Codes, SC24-5912

v z/OS Information Roadmap, SA22-7500

v z/OS Introduction and Release Guide, GA22-7502

v z/OS JES2 Initialization and Tuning Guide,

SA22-7532

v z/OS JES3 Initialization and Tuning Guide,

SA22-7549

v z/OS Language Environment Concepts Guide,

SA22-7567

v z/OS Language Environment Customization,

SA22-7564

v z/OS Language Environment Debugging Guide,

GA22-7560

v z/OS Language Environment Programming Guide,

SA22-7561

v z/OS Language Environment Programming

Reference, SA22-7562

v z/OS Managed System Infrastructure for Setup

User's Guide, SC33-7985

v z/OS MVS Diagnosis: Procedures, GA22-7587

v z/OS MVS Diagnosis: Reference, GA22-7588

v z/OS MVS Diagnosis: Tools and Service Aids,

GA22-7589

v z/OS MVS Initialization and Tuning Guide,

SA22-7591

v z/OS MVS Initialization and Tuning Reference,

SA22-7592

v z/OS MVS Installation Exits, SA22-7593

v z/OS MVS JCL Reference, SA22-7597

v z/OS MVS JCL User's Guide, SA22-7598

v z/OS MVS Planning: Global Resource Serialization,

SA22-7600

v z/OS MVS Planning: Operations, SA22-7601

v z/OS MVS Planning: Workload Management,

SA22-7602

v z/OS MVS Programming: Assembler Services

Guide, SA22-7605

v z/OS MVS Programming: Assembler Services

Reference, Volumes 1 and 2, SA22-7606 and

SA22-7607

v z/OS MVS Programming: Authorized Assembler

Services Guide, SA22-7608

v z/OS MVS Programming: Authorized Assembler

Services Reference Volumes 1-4, SA22-7609,

SA22-7610, SA22-7611, and SA22-7612

v z/OS MVS Programming: Callable Services for

High-Level Languages, SA22-7613

v z/OS MVS Programming: Extended Addressability

Guide, SA22-7614

v z/OS MVS Programming: Sysplex Services Guide,

SA22-7617

v z/OS MVS Programming: Sysplex Services

Reference, SA22-7618

v z/OS MVS Programming: Workload Management

Services, SA22-7619

v z/OS MVS Recovery and Reconfiguration Guide,

SA22-7623

v z/OS MVS Routing and Descriptor Codes,

SA22-7624

v z/OS MVS Setting Up a Sysplex, SA22-7625

v z/OS MVS System Codes SA22-7626

v z/OS MVS System Commands, SA22-7627

v z/OS MVS System Messages Volumes 1-10,

SA22-7631, SA22-7632, SA22-7633, SA22-7634,

SA22-7635, SA22-7636, SA22-7637, SA22-7638,

SA22-7639, and SA22-7640

v z/OS MVS Using the Subsystem Interface,

SA22-7642

v z/OS Planning for Multilevel Security and the

Common Criteria, SA22-7509

v z/OS RMF User's Guide, SC33-7990

v z/OS Security Server Network Authentication

Server Administration, SC24-5926

v z/OS Security Server RACF Auditor's Guide,

SA22-7684

v z/OS Security Server RACF Command Language

Reference, SA22-7687

v z/OS Security Server RACF Macros and Interfaces,

SA22-7682

v z/OS Security Server RACF Security

Administrator's Guide, SA22-7683

v z/OS Security Server RACF System Programmer's

Guide, SA22-7681

v z/OS Security Server RACROUTE Macro

Reference, SA22-7692

v z/OS Support for Unicode: Using Conversion

Services, SA22-7649

v z/OS TSO/E CLISTs, SA22-7781

v z/OS TSO/E Command Reference, SA22-7782

162 Release Planning Guide

v z/OS TSO/E Customization, SA22-7783

v z/OS TSO/E Messages, SA22-7786

v z/OS TSO/E Programming Guide, SA22-7788

v z/OS TSO/E Programming Services, SA22-7789

v z/OS TSO/E REXX Reference, SA22-7790

v z/OS TSO/E User's Guide, SA22-7794

v z/OS UNIX System Services Command Reference,

SA22-7802

v z/OS UNIX System Services Messages and Codes,

SA22-7807

v z/OS UNIX System Services Planning, GA22-7800

v z/OS UNIX System Services Programming:

Assembler Callable Services Reference, SA22-7803

v z/OS UNIX System Services User's Guide,

SA22-7801

Bibliography 163

164 Release Planning Guide

Index

Numerics
64-bit virtual storage

advantages 20

buffer pools 20

general information 20

A
access path, reoptimizing at run time 17

access to remote database 62

active logs 1

adding partitions 6

aggregate functions 49

alias support for databases 62

ALTER FUNCTION statement 104

ALTER INDEX statement 2, 104

ALTER PROCEDURE statement 105

ALTER SEQUENCE statement 103

ALTER TABLE statement
adding partitions 6

changing identity column attributes 36

description of changes 106

rotating partitions 6

using 2

ALTER TABLESPACE statement 107

ALTER VIEW statement 103

applications, adjusting for migration 84

archive logs 1

authentication
requester, for DB2 as 27

server, for DB2 as 26

authorization IDs 93

availability
backout processing, additional messages 30

locking, partition-level 30

LPL recovery, automatic 21

RECOVER utility CURRENTCOPYONLY option 30

B
backout processing, additional messages 30

BACKUP SYSTEM utility
description of changes 95

requirements 69

requirements for 28

using 28

backward index scan 15

BIND PACKAGE command 92

BIND PLAN command 92

buffer pools 20

built-in functions 120

C
cached dynamic statements, deprecation of 71

CALL statement, multiple 64

CAST specification 118

castout processing 22

catalog and directory
encoding schemes 54

migration changes 133

catalog tables
columns, new and changed 123

indexes, new 133

tables, new 123

CATENFM utility 95

CCSID precompiler options 54

CCSID sets, multiple in an SQL statement 55

CD-ROM, books on 147

change data capture
enabling 76

CHECK INDEX utility 96

DRAIN_WAIT option 30

RETRY option 30

RETRY_DELAY option 30

SHRLEVEL CHANGE option 30

CHECK LOB utility 96

child locks 21

CLI
clients, support for 61

cursors, improved connectivity for 63

clustering index 4

coexistence of DB2 releases 87

column functions 49

columns
adding to indexes 7

DBCS 71

encoding scheme, new 74

mixed 71

qualifying in an INSERT statement 50

ROWID not required for LOBs 51

SQLDA SQLNAME 76

commands
authorization IDs 93

changes in Version 8 91

WARM (Write And Register Multiple) 22

COMMENT statement 107

common table expressions 43

comparing null values 36

COMPJAVA, LANGUAGE 72

conditions, raising in SQL procedural language 47

connections, inactive 76

connectivity
alias support for databases 62

CLI 61, 63

enhancements 61

JDBC 61, 63

routing requests, granular control of 62

copy pools 28

COPY utility 96

cost-based parallel sorting 19

coupling facility
locks in 21

reduction of operations 22

traffic reduction 22

CREATE FUNCTION statement 108

CREATE INDEX statement 109

CREATE PROCEDURE statement 109

CREATE SEQUENCE statement 103

© Copyright IBM Corp. 2004, 2008 165

CREATE TABLE statement 111

CREATE TABLESPACE statement 112

CREATE VIEW statement 112

CTHREAD parameter 71

CURRENT PACKAGE PATH special register 63

CURRENTCOPYONLY option 30

cursors
decease in storage requirements 69

duplicate 64

dynamic scrollable 46

row-set positioned 40

D
data sharing

enhancements 21

indoubt units of recovery, resolution 22

migration to Version 8 79, 88

operations, reduction in the coupling facility 22

routing requests, granular control of 62

workload overhead reduction 22

data types
changes for catalog columns 70

changes for special registers 70

mismatched in predicate 9

data-partitioned secondary indexes
definition 12

queries, advantages for 14

utilities, advantages for 13

database
altering

definitions of tables 2

partitioning of table spaces 2

availability 2

DatabaseMetadata stored procedures 72

DB2 books online 147

DB2 Information Center for z/OS solutions 147

DBATs (database access threads) 76

DECLARE CURSOR statement
description of changes 113

WITH ROWSET POSITIONING clause 41

DECLARE GLOBAL TEMPORARY TABLE statement 113

declared temporary tables 69

default values
DESCRIBE FOR STATIC parameter 70

migration of customized 71

space allocation changes 69

DELETE statement
description of changes 113

row-set positioned 42

DESCRIBE FOR STATIC parameter 70

DISPLAY DATABASE command 92

DISPLAY GROUP command 92

DISPLAY GROUPBUFFERPOOL command 88

DISTINCT keyword, multiple 49

DISTINCT predicate 36

distributed applications, managing 63

distributed environment 88

DRAIN_WAIT option 30

DRDA
distributed environment 88

security options 27

DRDA XA protocol support 62

DROP statement 114

dropping global temporary tables implicitly 51

DSN_STATEMNT_CACHE_TABLE 140

DSN_STATEMNT_TABLE, changed columns 139

DSN1COPY utility 102

DSN1PRNT utility 102

DSNACOLN 72

DSNJCNVB utility 95

DSNJU003 utility 101

DSNWZP, changes to 73

duplicate CALL statements 64

dynamic scrollable cursors 46

E
EDM pool 71

encoding schemes
catalog and directory 54

migration considerations 83

new column for 74

parameters for 70

Unicode 54

encryption 26

EXECUTE IMMEDIATE statement 114

EXECUTE statement 114

exits
LOCAL DATE/TIME 80

EXPLAIN statement 114

EXPLAIN table changes
DSN_STATEMNT_TABLE 135

PLAN_TABLE 135

F
fallback

frozen objects 81

preparation 80

release incompatibilities 82

FETCH statement
description of changes 115

multiple-row
general information 39

using with descriptor 41

using with host variable arrays 41

frozen objects 81

functions
aggregate 49

column 49, 117

new in Version 8 117

scalar 117

XML 60

G
GET DIAGNOSTICS statement

description of changes 115

handler, using in 48

using 44

global temporary tables
buffer pool size requirement 69

dropping implicitly 51

glossary 153

GRANT statement 103

GROUP BY clause
description of changes 120

using 49

166 Release Planning Guide

H
hexadecimal string constant, Unicode 57

history statistics 71

host variable array
declaring 39

fetching multiple rows 41

indicator variable array 40

inserting multiple rows 40

host variables, string 73

I
IDBACK parameter 71

identity columns, changing attributes 36

IFCID (instrumentation facility component identifier)
changed IFCIDs 142

new and changed 141

new IFCIDs 141

IFCID 197 76

inactive connections 76

index keys, varying-length 16

index scan, backward 15

index-controlled partitioning
separation from clustering 3

using 3

indexes
adding columns to 7

backward scan 15

clustering 4

data-partitioned secondary
creating 5

definition 12

queries, advantages for 14

utilities, advantages for 13

enhancements 12

frequent use of 48

keys, maximum length 1, 16

new on catalog tables 133

page splits 22

predicates
mismatched data types 9

more than one encoding scheme 11

one encoding scheme 10

separation of partitioning and clustering 3

space allocation 22

sparse 18

type 1 69, 83, 84

varying-length keys 16

INSERT OLTP workloads 22

INSERT statement
column names, qualifying 50

description of changes 115

multiple-row
general information 39

using 40

installation panel changes 89

integer status value, returning 47

IRLM migration considerations 87

ITERATE statement 103

IVP (installation verification procedure)
preparing for 82

J
JDBC

clients, support for 61

JDBC (continued)
cursors, improved connectivity for 63

L
L-locks, parent 21

LANGUAGE COMPJAVA 72

library
online 147

LIGHT(YES) mode 22

limit changes 1

LOAD utility 97

LOBs, ROWID columns not required 51

location aliases 62

LOCK TABLE statement 116

locks
child 21

coupling facility, in 21

L-locks parent 21

P-locks 21

partition-level locking 30

propagation 21

log writes, reducing 22

logical page list (LPL), automatic recovery 21

M
materialized query tables 7

memory pool, dedicated virtual 18

migration
application programs, adjusting 84

cached dynamic statements, deprecation of 71

calculating work file size 80

catalog and directory 133

coexistence of DB2 releases 87

customized default values 71

data sharing groups 79, 88

declared temporary tables 69

default values, changes in 69

encoding schemes of parameters 70

general considerations 67

global temporary tables 69

installation panel changes 88

IRLM 87

modifying RUNSTATS jobs for migration 70

requirements 67

sample objects, required availability 82

system level point-in-time recovery 69

type 1 indexes 69, 83, 84

mismatched data types, predicates with 9

MIXED DATA option 71

MODIFY admtproc,APPL=SHUTDOWN command 91

MODIFY admtproc,APPL=TRACE command 91

MODIFY irlmproc command 93

multilevel security
advantages 58

general information 58

implementing 59

introduction 52

label dominance 58

multiple CALL statements 64

multiple CCSID sets 55

multiple-row statements
FETCH 39

INSERT 39

Index 167

N
NEWFUN, precompiler options 55

notices, legal 149

null values, DISTINCT predicate comparisons 36

O
ODBC and JDBC support 72

ODBC driver native Unicode support 57

online books 147

ORDER BY clause 50

P
P-locks 21

packages bound prior to Version 2 Release 3 75

packages, comments for 51

page splits 22

parallel sorting, cost-based 19

parser, Unicode 54

partitioned tables, size change 1

partitioning
index-controlled 3

separation from clustering 3

table-controlled 3

partitions
adding 6

index-controlled, moving from 5

locking 30

number of, limit change 1

rotating 6

table-controlled, moving to 5

performance
64-bit virtual storage for 20

access path, reoptimizing at run time 17

materialized query tables 7

star join 17

triggers 30

PL/I application enhancements 65

PLAN_TABLE
columns, new and changed 137

format 135

planning for migration 67

plans bound prior to Version 2 Release 3 75

plans, comments for 51

port of entry, name 75

port-of-entry, verifying 25

precompiler
new for string host variables 73

options
CCSID 54

NEWFUN 55

predicates 119

DISTINCT 36

indexes
more than one encoding scheme 11

one encoding scheme 10

mismatched data types 9

PREPARE statement 116

private protocol access 88

procedural language
enhancements 46

handling SQL conditions 47

RETURN statement 47

statements, length of 46

procedures, SQL 121

programming language support 76

propagation of locks 21

Q
qualifying column names in an INSERT statement 50

queries
data-partitioned secondary indexes, advantages 14

query tables, materialized 7

R
REBIND PACKAGE command 92

REBIND PLAN command 92

REBUILD INDEX utility 98

REBUILD-pending
ignored for nonunique indexes 17

RECOVER utility
CURRENTCOPYONLY option 30

description of changes 98

Recoverable Resource Manager Services attachment facility

(RRSAF)
DB2 return codes 64

implicit connections 64

recovery
LPL, automatic 21

system-level point-in-time 28

recursive SQL 43

REFRESH TABLE statement 103

release coexistence, DB2 87

release dependency markers 81

release incompatibilities 82

remote database, access to 62

reoptimizing the access path at run time 17

REORG INDEX utility 98

REORG TABLESPACE utility 99

REPAIR utility 99

RESIGNAL statement 47, 103

restart light 22

RESTORE SYSTEM utility
description 95

requirements 69

requirements for 28

using 28

RETRY option 30

RETRY_DELAY option 30

RETURN statement 47, 103

REVOKE statement 103

rotating partitions 6

routing requests, granular control of 62

row GROUP BY 49

row sets
DELETE, row-set positioned 42

fetching 40

UPDATE, row-set positioned 42

ROWID columns not required for LOBs 51

RUNSTATS utility
description of changes 100

distribution statistics 16

modifying jobs for migration 70

S
sample jobs, changes 90

scalar fullselect
description 37

168 Release Planning Guide

scalar fullselect (continued)
examples

CASE expression 39

SELECT list 38

WHERE clause 38

restrictions on use 39

schemas
changes to 2

SYSTOOLS name 120

scrollable cursors, dynamic 46

secondary authorization IDs 93

secondary indexes, data-partitioned 5

security
authentication

requester, for DB2 as 27

server, for DB2 as 26

DRDA security options 27

encryption 26

multilevel
advantages 58

general information 58

implementing 59

label dominance 58

SQL changes 52

options for TCP/IP networks 25

port-of-entry verification 25

SECURITY_OUT column of SYSIBM.IPNAMES 27

SELECT from INSERT statement
description 32

primary and foreign keys 33

retrieving
all values for single row 32

BEFORE trigger values 32

default values 32

generated values 32

multiple rows 32

using cursors 33

using SELECT INTO 33

SELECT INTO statement
description of changes 117

ORDER BY clause 50

using 33

SELECT statement, description of changes 120

SENSITIVE DYNAMIC clause 46

sequence objects
creating 34

referencing 35

using value across multiple tables 35

sequence values, expressions for 118

session variables 120

SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION statement 103

SET CURRENT PACKAGE PATH statement 103

SET CURRENT REFRESH AGE statement 103

SET ENCRYPTION PASSWORD statement 103

SET SCHEMA statement 103

SHRLEVEL CHANGE option 30

SIGNAL statement 47, 117

softcopy publications 147

sorting, cost-based parallel 19

space allocation
general information 22

primary default value 23

sliding scale for 23

sparse indexing 18

special registers
changed data types and lengths 70

special registers (continued)
CURRENT PACKAGE PATH, using 63

description of changes 119

SQL
ALTER FUNCTION statement 104

ALTER INDEX statement 104

ALTER PROCEDURE statement 105

ALTER SEQUENCE statement 103

ALTER TABLE statement 106

ALTER TABLESPACE statement 107

ALTER VIEW statement 103

CALL statement 64

COMMENT statement 107

common table expressions 43

CREATE FUNCTION statement 108

CREATE INDEX statement 109

CREATE PROCEDURE statement 109

CREATE SEQUENCE statement 103

CREATE TABLE statement 111

CREATE TABLESPACE statement 112

CREATE VIEW statement 112

DECLARE CURSOR statement 113

DECLARE GLOBAL TEMPORARY TABLE statement 113

DELETE statement
description of changes 113

row-set positioned 42

DISTINCT keyword, multiple 49

DROP statement 114

enhancements 32

EXECUTE IMMEDIATE statement 114

EXECUTE statement 114

EXPLAIN statement 114

FETCH statement
description of changes 115

multiple-row 39

GET DIAGNOSTICS statement
description of changes 115

handler, using in 48

using 44

GRANT statement 103

GROUP BY clause
description of changes 120

using 49

INSERT statement
description of changes 115

multiple-row 39

qualified column names 50

ITERATE statement 103

limits, changes to 31

LOCK TABLE statement 116

longer statements 49

multilevel security, changes for 52

ORDER BY clause 50

overview of changes in Version 8 103

PREPARE statement 116

procedural language
debugging 48

enhancements 46

GET DIAGNOSTICS, using in a handler 48

handling SQL conditions 47

invoking handler 47

raising conditions 47

RESIGNAL statement 47

RETURN statement 47

SIGNAL statement 47

statements, length of 46

procedures 121

Index 169

SQL (continued)
recursive 43

REFRESH TABLE statement 103

RESIGNAL statement 103

RETURN statement 103

REVOKE statement 103

SELECT INTO statement
description of changes 117

ORDER BY clause 50

using 33

SELECT statement, description of changes 120

SENSITIVE DYNAMIC clause 46

SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION statement 103

SET CURRENT PACKAGE PATH statement 103

SET CURRENT REFRESH AGE statement 103

SET ENCRYPTION PASSWORD statement 103

SET SCHEMA statement 103

SIGNAL statement 117

UPDATE statement
description of changes 117

row-set positioned 42

SQL processing options
CCSID 64

NEWFUN 64

SQLDA SQLNAME column 76

star join 17

START admtproc command 91

START DATABASE command 93

START irlmproc command 93

STATISTICS HISTORY parameter 71

statistics, history 71

STOP admtproc command 91

STOP DATABASE command 93

stored procedures
running multiple instances 64, 75

WLM-established address spaces 73

strings
comparison 11, 55

host variables 73

timestamps 50

Unicode hexadecimal constant 57

subsets 62

subsystem parameters
dynamically updatable, changed to 29

new 29

system-level point-in-time recovery 28

SYSTOOLS schema name 120

T
table spaces

adding partitions 6

creating table-controlled partitioning 3

data-partitioned secondary index 5

index usage, improving 5

index-controlled partitioning, moving from 5

rotating partitions 6

space allocation 22

table-controlled partitioning
creating 3

using 3

tables
global temporary, dropping implicitly 51

materialized query 7

volatile 48

TCP/IP networks, security options 25

TEMPLATE utility 100

threads, increased usage 71

timestamp strings 50

trace enhancements 141

triggers 30

type 1 inactive threads 76

type 1 indexes 69, 83, 84

type 2 inactive threads 76

U
Unicode

enhancements 54

hexadecimal string constant 57

ODBC driver native support 57

parser 54

UNION statement 76

UNLOAD utility 101

UPDATE statement
description of changes 117

row-set positioned 42

utilities
automatic restart 102

BACKUP SYSTEM
description of changes 95

using 28

CATENFM 95

changes in Version 8 95

CHECK INDEX 96

CHECK LOB 96

COPY 96

data-partitioned secondary indexes, advantages 13

DSN1COPY 102

DSN1PRNT 102

DSNJCNVB 95

DSNJU003 101

encoding scheme of control statement 102

LOAD 97

migration considerations 82

REBUILD INDEX 98

RECOVER
CURRENTCOPYONLY option 30

description of changes 98

REORG INDEX 98

REORG TABLESPACE 99

REPAIR 99

resetting the status of 102

RESTORE SYSTEM
description 95

using 28

RUNSTATS
description of changes 100

distribution statistics 16

modifying jobs for migration 70

TEMPLATE 100

UNLOAD 101

V
varying-length index keys 16

virtual memory pool, dedicated 18

virtual storage
64-bit

advantages 20

general information 20

limit change 1

170 Release Planning Guide

Visual Explain 19

volatile tables 48

W
WARM (Write And Register Multiple) command 22

WHERE CURRENT OF clause 42

WLM-established stored procedure address spaces 73

work file, calculating size of 80

X
XML functions, support for 60

Index 171

172 Release Planning Guide

����

Program Number: 5625-DB2

Printed in USA

SC18-7425-05

	Contents
	About this book
	Who should read this book
	Terminology and citations
	Accessibility
	How to send your comments

	Chapter 1. Availability, scalability, and performance enhancements
	Changes to limits for better availability, scalability, and performance
	Schema evolution
	Ability to use table-controlled partitioning
	Creating new tables with table-controlled partitioning
	Separation of partitioning and clustering
	Clustering within partitions
	Improving index usage for partitioned table spaces

	Ability to add partitions
	Ability to rotate partitions
	Ability to add columns to indexes

	Materialized query tables
	Indexable predicates with mismatched data types
	Predicates with one encoding scheme
	Predicates with more than one encoding scheme

	Index enhancements
	Data-partitioned secondary indexes
	Advantages of data-partitioned secondary indexes for utilities
	Advantages of data-partitioned secondary indexes for queries
	Disadvantages of data-partitioned secondary indexes for queries

	Backward index scan
	Varying-length index keys
	Longer index keys
	Distribution statistics
	Improved application availability for nonunique indexes

	Reoptimizing the access path at run time
	Performance enhancements for star join
	Cost-based parallel sorting
	Visual Explain enhancements
	64-bit virtual storage
	Data sharing enhancements
	Improved LPL recovery
	Reduction of locking overhead for data sharing workloads
	Reduction of buffer management overhead costs for data sharing workloads
	Improved index split performance for data sharing
	Resolution of indoubt units of recovery in restart light

	Improved space allocation
	New default primary space allocation value
	New sliding scale for secondary space allocation

	More options for data security in TCP/IP networks
	More secure mechanism for verifying a remote clients port of entry
	Improved encrypted security mechanisms
	Authentication mechanisms used by DB2 UDB for z/OS as a server
	Authentication mechanisms used by DB2 UDB for z/OS as a requester
	Changes to the communications database

	System-level point-in-time recovery
	Additional parameters
	New subsystem parameters
	Subsystem parameters changed to dynamically updatable

	Other availability, scalability, and performance enhancements

	Chapter 2. Easier development and integration of e-business applications
	Changes to SQL limits
	SQL enhancements
	SELECT from INSERT statement
	Selecting values when you insert a single row
	Selecting values when you insert multiple rows
	Primary keys and foreign keys

	Sequence objects
	Creating a sequence object
	Referencing a sequence object
	Keys across multiple tables

	Identity column enhancements
	DISTINCT predicate
	Support for scalar fullselect
	Multiple-row INSERT and FETCH statements
	Inserting multiple rows
	Fetching multiple rows

	Common table expressions
	Using WITH instead of CREATE VIEW
	Using a common table expression for a result table that is based on host variables or is shared in a fullselect
	Using recursive SQL

	GET DIAGNOSTICS statement
	Dynamic scrollable cursors
	SQL procedural language enhancements
	Extending the length of an SQL procedure statement
	Handling SQL conditions in an SQL procedure
	Debugging an SQL procedure

	More frequent use of indexes
	Longer and more complex SQL statements
	Multiple DISTINCT keywords
	Expressions in the GROUP BY clause
	Fewer restrictions for column functions (aggregate functions)
	Qualified column names in the INSERT statement
	ORDER BY clause for the SELECT INTO statement
	Additional input format for timestamp strings
	Explicitly defined ROWID columns no longer required for LOBs
	Comments for plans and packages
	Implicit dropping of declared global temporary tables at commit
	SQL changes for multilevel security with row-level granularity
	Comments in SQL statements
	Encrypting and decrypting data
	Greater control over locking for queries

	Unicode enhancements
	Support for Unicode parsing
	Support for multiple CCSID sets in a single SQL statement
	DB2 ODBC support for native Unicode

	Multilevel security with row-level granularity
	Advantages of multilevel security
	Mandatory access control and dominance
	Implementing and using multilevel security

	SQL support for XML functions in DB2
	Improvements in connectivity
	Enhanced support for JDBC and CLI clients
	Easier access to remote workstation database through database alias support
	More granular control of routing requests to specific members of a data sharing group
	Improved JDBC and CLI connectivity for cursors and result sets
	More flexibility in managing distributed applications with CURRENT PACKAGE PATH special register

	Other e-business enhancements
	SQL processing options
	RRSAF implicit connections
	Changes to stored procedures processing
	Enhancements for DB2 PL/I applications

	Chapter 3. Planning for migration, conversion, and fallback
	Hardware and software requirements
	Migration considerations
	DB2 Version 8 publications assume new-function mode
	DB2 Utilities Suite for z/OS Version 8 uses the DFSORT program
	Use triggers instead of field, edit, and validation procedures
	DB2 treats certain large fixed-length strings as varying-length strings
	MEMLIMIT cannot be customized through the installation process
	DBDs cannot be accessed if DB2 starts in deferred mode
	DB2 LOCATION NAME value
	Type 1 indexes are not supported
	Declared global temporary tables need an 8-KB buffer pool
	Declared global temporary tables need an 8-KB table space in the temporary database
	System-level point-in-time recovery
	Enhanced support for scrollable cursors
	Changes to space allocations for DB2-managed data sets
	Changed default value for DESCRIBE FOR STATIC
	Changed data types and lengths for some catalog columns
	Changed data types and lengths for some special registers
	SQL reserved words may be used in delimited identifiers for procedure names
	Encoding schemes of string parameters for routines
	Modify RUNSTATS jobs
	More history statistics are collected
	Creating tables with DBCS and mixed columns
	Consider increasing IDBACK and CTHREAD
	Support for DB2-established data space for cached dynamic statements is deprecated
	Consider changing EDM pool size
	Customized DB2I defaults can be migrated
	Rebinding DSNACOLN and the DatabaseMetadata stored procedures (for ODBC and JDBC support)
	LANGUAGE COMPJAVA no longer supported for stored procedures
	DSNWZP runs in WLM-established stored procedure address space
	Support for DB2-established stored procedure address spaces is deprecated
	Pre-compilation for unsupported compilers
	New precompiler option for string host variables
	You must specify the APOST precompiler option when the given CCSID for the source is 1026 or 1155
	New SYSIBM.SYSROUTINES column for encoding scheme
	LANGUAGE REXX sets PROGRAM_TYPE column in SYSIBM.SYSROUTINES
	DB2 start-up and precompilation require a user-supplied DSNHDECP module
	CCSIDs in DSNHDECP must be valid
	Character conversions between Unicode CCSIDs and EBCDIC CCSIDs
	New data-only load module DSNHMCID
	Plans and packages bound prior to DB2 Version 2 Release 3
	Multiple calls to the same stored procedure
	External stored procedures and user-defined functions can return any valid SQLSTATE value
	Programs called by a stored procedure require packages
	Port of entry name changed
	New name for type 1 inactive threads and type 2 inactive threads
	Column names and labels in SQLDA SQLNAME field for statements involving UNION
	MAXROWS must have a value of 1 on ALTER TABLESPACE DSNDB06.SYSSEQ
	IFCID 197 is no longer supported
	Change to IFCID 0059 trace records
	Change data capture cannot be enabled on catalog tables during enabling-new-function mode
	DB2 Version 8 requires IRLM 2.2
	Detailed tracking of DB2 measured usage is disabled
	Programming language support has changed
	New return code for -START DATABASE, -STOP DATABASE, and -DISPLAY DATABASE commands
	Views might be marked with view regeneration errors
	Changed default values for subsystem parameters
	Subsystem parameter CLAIMDTA has been removed
	DSN8EXP is deprecated
	Using ALTER TABLE ALTER COLUMN SET DATA TYPE in compatibility mode places indexes in rebuild-pending state
	Redundant DISTINCT keyword removed from SELECT DISTINCT statements
	DB2 issues an error for column names greater than 30 bytes
	Maintenance required for IBM z/OS Migration Utility
	Ensure that you allocate enough space for complete dumps
	Migrating a data sharing group
	Work file database size calculations
	LOCAL DATE/TIME exits

	Preparing for fallback
	Frozen objects
	Other fallback considerations

	Release incompatibilities
	Ensure that Version 7 sample objects are available
	Ensure that no utility jobs are running
	EBCDIC and ASCII CCSID must be non-zero
	Perform premigration queries (DSNTIJPM)
	Identify unsupported objects
	Adjust application programs

	Release coexistence
	IRLM service level
	DISPLAY GROUPBUFFERPOOL output
	Distributed environment
	Data sharing

	Installation changes
	Version 8 panels
	Version 8 sample jobs

	Appendix A. Changes to commands
	New commands
	Changed commands
	Other command changes

	Appendix B. Changes to utilities
	New utilities
	Changed utilities
	Other utility changes

	Appendix C. Changes to SQL
	New SQL statements
	Changed SQL statements
	New functions
	Other SQL language changes

	Appendix D. Catalog changes
	New catalog tables
	Changed catalog tables
	New indexes
	When catalog migration changes occur

	Appendix E. EXPLAIN table changes
	Format of the Version 8 PLAN_TABLE
	Descriptions of new and changed columns in PLAN_TABLE
	Changed columns in DSN_STATEMNT_TABLE
	New statement cache table

	Appendix F. New and changed IFCIDs
	New IFCIDs
	Changed IFCIDs

	Appendix G. How to use the DB2 library
	Appendix H. How to obtain DB2 information
	DB2 on the Web
	DB2 publications
	DB2 Information Center for z/OS solutions
	CD-ROMs and DVD
	PDF format
	BookManager format

	DB2 education
	How to order the DB2 library

	Notices
	Programming interface information
	Trademarks

	Glossary
	Bibliography
	Index

