
IMS

Utilities Reference: System

Version 9

SC18-7834-00

���

IMS

Utilities Reference: System

Version 9

SC18-7834-00

���

Note:

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

607.

First Edition (October 2004)

This edition applies to Version 9 of IMS (product number 5655–J38) and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . ix

Tables . xv

About This Book . xvii

Organization of This Book . xvii

Prerequisite Knowledge . xviii

Organization of Utility Descriptions xviii

CICS, DBCTL, and DCCTL . xviii

IBM Product Names Used in This Information xviii

How to Read Syntax Diagrams xix

How to Send Your Comments xxi

Summary of Changes . xxiii

Changes to This Book for IMS Version 9 xxiii

Library Changes for IMS Version 9 xxiii

Part 1. Generation Utilities . 1

Chapter 1. Database Description (DBD) Generation 3

Information Specified in DBD Generation 4

DBD Generation for Database Types 4

DBDGEN Procedure . 11

DBDGEN Statements . 13

DBD Generation Output . 86

DBD Generation Examples . 90

Chapter 2. Program Specification Block (PSB) Generation 113

Input and Output for PSB Generation 113

PSBGEN Procedure . 115

Utility Control Statements for PSB Generation 117

Output Messages and Statistics for PSB Generation 138

PSB Examples . 139

Chapter 3. Application Control Blocks Maintenance Utility 157

Restrictions for ACB Generation 158

Input and Output for ACB Generation 158

Utility Control Statements for ACB Generation 161

Error Processing for ACB Generation 165

Examples of ACB Generation 165

Chapter 4. DLIModel Utility 167

PSB and DBD Requirements 169

COBOL Copybook XMI Requirements 169

DLIModel Utility Restrictions 170

Output Types of the DLIModel Utility 170

Running the DLIModel Utility 174

Control Statements for the DLIModel Utility 178

Examples of Using the DLIModel Utility 189

Part 2. Service Utilities . 199

© Copyright IBM Corp. 1974, 2004 iii

||
||

Chapter 5. Dynamic Allocation Macro (DFSMDA) 201

Restrictions for DFSMDA . 203

Input and Output for DFSMDA 203

IMSDALOC Procedure . 204

Macro Statements for DFSMDA 206

Examples of DFSMDA . 211

Chapter 6. Security Maintenance Utility (DFSISMP0) 215

Input and Output Flow for DFSISMP0 216

Restrictions for DFSISMP0 . 217

Security Options for DFSISMP0 217

IMS Application Resource Access Security 219

SECURITY Procedure . 219

Utility Control Statements for DFSISMP0 224

Output for DFSISMP0 . 226

Examples of DFSISMP0 . 226

Chapter 7. Online Change Utilities and Procedures 231

Online Change Copy Utility (DFSUOCU0) 231

Global Online Change Utility (DFSUOLC0) 238

Examples of Global Online Change 242

Part 3. Log Utilities . 243

Chapter 8. Dynamic SVC Utility (DFSUSVC0) 245

Restrictions for DFSUSVC0 . 245

Input and Output for DFSUSVC0 245

Return Codes for DFSUSVC0 245

DFSUSVC0 JCL Requirements 246

Examples of DFSUSVC0 . 246

Chapter 9. Log Archive Utility (DFSUARC0) 249

OLDS Archive . 249

Batch DASD Log Data Set Archive 250

Optional Functions for DFSUARC0 250

Input for DFSUARC0 . 251

Output for DFSUARC0 . 252

JCL Requirements for DFSUARC0 254

Utility Control Statements for DFSUARC0 256

Error Processing for DFSUARC0 259

Examples of DFSUARC0 . 260

Chapter 10. Log Merge Utility (DFSLTMG0) 263

Restrictions for DFSLTMG0 . 263

Input and Output for DFSLTMG0 263

JCL Requirements for DFSLTMG0 265

Chapter 11. Log Recovery Utility (DFSULTR0) 267

OLDS Recovery . 268

SLDS Recovery . 268

Input for DFSULTR0 . 268

Output for DFSULTR0 . 270

JCL Requirements for DFSULTR0 275

Utility Control Statements for DFSULTR0 277

Error Processing for DFSULTR0 280

Examples of DFSULTR0 . 281

iv Utilities Reference: System

||

||

Part 4. Analysis Utilities and Reports . 287

Chapter 12. IMS Monitor Report Print Utility (DFSUTR20) 291

Restrictions for DFSUTR20 . 291

Input and Output for DFSUTR20 291

JCL Requirements for DFSUTR20 291

Example of DFSUTR20 . 293

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 295

Input and Output for DFSERA10 295

JCL Requirements for DFSERA10 296

Utility Control Statements for DFSERA10 297

Examples for DFSERA10 . 303

Record Format and Print Module (DFSERA30) 309

Program Isolation Trace Record Format and Print Module (DFSERA40) . . . 316

DL/I Call Image Capture Module (DFSERA50) 320

IMS Trace Table Record Format and Print Module (DFSERA60) 320

Enhanced Select Exit Routine (DFSERA70) 321

Examples of Using the Enhanced Select Exit Routine (DFSERA70) 323

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 325

Restrictions for DFBUTLA0 . 326

Input and Output for DFBUTLA0 327

Detail-Listing-of-Exception-Transactions Report 328

Summary-of-Exception-Detail-by-Transaction-Code (for IFP Regions) Report 333

Overall-Summary-of-Transit-Times-by-Transaction-Code (for IFP-Regions)

Report . 334

Overall Summary of Resource Usage and Contentions for All Transaction

Codes and PSBs Report . 334

Summary-of-Region-Occupancy Report 336

Summary-of-VSO-Activity Report 337

Recapitulation-of-the-Analysis Report 338

JCL Requirements for DFBUTLA0 339

Utility Control Statements for DFBUTLA0 340

Error Processing for DFBUTLA0 345

Chapter 15. Offline Dump Formatter Utility (DFSOFMD0) 347

Interactive Dump Formatter . 347

Migration Considerations . 348

Restrictions for DFSOFMD0 348

Environments for DFSOFMD0 348

Input and Output for DFSOFMD0 349

IPCS Execution . 349

Chapter 16. Log Transaction Analysis Utility (DFSILTA0) 353

Restrictions for DFSILTA0 . 354

Input and Output for DFSILTA0 354

JCL Requirements for DFSILTA0 354

Chapter 17. Statistical Analysis Utility (DFSISTS0) 359

Restrictions for DFSISTS0 . 359

Input and Output for DFSISTS0 359

Examples of DFSISTS0 . 365

JCL Requirements for DFSISTS0 369

Utility Control Statements for DFSISTS0 374

Contents v

Part 5. Interpreting IMS Reports . 377

Chapter 18. Interpreting IMS Monitor Reports 381

Transaction Flow and IMS Monitor Events 381

IMS Monitor Trace Event Intervals 384

Overview of IMS Monitor Reports 385

Documenting the Monitoring Run 386

Monitoring Activity in Dependent Regions 388

Monitoring Application Program Elapsed Time 393

Monitoring I/O for Application Program DL/I Calls 396

Monitoring MFS Activity . 400

Monitoring Message Queue Handling 401

Monitoring Database Buffers 403

Monitoring Line Activity . 405

Monitoring Message Handling Efficiency 406

IMS Internal Resource Usage 406

Using Frequency Distributions from IMS Monitor Output 409

Interpreting IMS Monitor MSC Reports 414

Extracting Multiple System Transaction Statistics 417

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 419

IMS Monitor Trace Event Intervals 420

Overview of IMS Monitor Reports 421

Documenting the Monitoring Run 422

Monitoring Activity in Dependent Regions 424

Monitoring Application Program Elapsed Time 429

Monitoring Database Buffers 433

IMS Internal Resource Usage 435

Using Frequency Distributions from IMS Monitor Output 436

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 441

IMS Monitor Trace Event Intervals 441

Overview of IMS Monitor Reports 442

Documenting the Monitoring Run 443

Monitoring Activity in Dependent Regions 446

Monitoring Application Program Elapsed Time 451

Monitoring I/O for Application Program DL/I Calls 453

Monitoring MFS Activity . 457

Monitoring Message Queue Handling 458

Monitoring Line Activity . 460

Monitoring Message Handling Efficiency 461

IMS Internal Resource Usage 462

Using Frequency Distributions from IMS Monitor Output 463

Interpreting IMS Monitor MSC Reports 468

Extracting Multiple System Transaction Statistics 472

Chapter 21. Interpreting //DFSSTAT Reports 475

JCL Description for //DFSSTAT 475

Report Descriptions for //DFSSTAT 475

Chapter 22. Interpreting Statistical-Analysis and Log-Transaction Reports 491

Statistical Analysis Utility Reports 491

Calculating Transaction Loads 492

Auditing Critical Transactions 495

Log Transaction Analysis Utility Reports 496

Examining Scheduling Activity 497

vi Utilities Reference: System

IMS Accounting Information . 499

Part 6. Knowledge-Based Log Analysis 501

Chapter 23. Knowledge-Based Log Analysis Overview 505

Invoking KBLA from the IMS Application Menu 505

Maintaining the KBLA Environment with Option 0 507

Defining the Selection of IMS Logs using Option 5 507

Using KBLA to Run a Job Against IMS Log Records 508

External Log Processing using Option 6 510

Chapter 24. KBLA Log Formatting Modules 511

KBLA Basic Record Formatting and Print Module (DFSKBLA3) 511

KBLA Basic Record Formatting Module (DFSKBLA7) 513

KBLA Summary Record Formatting Module (DFSKBLA8) 516

KBLA Knowledge-Based Record Formatting Module (DFSKBLA9) 518

KBLA Summary Record Formatting and Print Module (DFSKBLAS) 520

KBLA Knowledge-Based Record Formatting and Print Module (DFSKBLAK) 521

Chapter 25. DBCTL Transaction Analysis Utility (DFSKDBC0) 525

Restrictions for DFSKDBC0 . 526

Input and Output for DFSKDBC0 526

JCL Requirements for DFSKDBC0 527

Using DFSKDBC0 to Sort a Report 527

Chapter 26. IMS Records User Data Scrub Utility (DFSKSCR0) 531

Restrictions for DFSKSCR0 . 531

Input and Output for DFSKSCR0 531

JCL Requirements for DFSKSCR0 532

Chapter 27. MSC Link Performance Formatting Utility (DFSKMSC0) . . . 535

Restrictions for DFSKMSC0 . 535

Input and Output for DFSKMSC0 536

JCL Requirements for DFSKMSC0 536

Chapter 28. Statistic Log Record Analysis Utility (DFSKDVS0) 539

Restrictions for DFSKDVS0 . 539

Input and Output for DFSKDVS0 540

JCL Requirements for DFSKDVS0 540

Chapter 29. IRLM Lock Trace Analysis Utilities (DFSKLTA0, DFSKLTB0,

DFSKLTC0) . 543

Restrictions for IRLM Lock Trace Analysis 543

Input and Output for IRLM Lock Trace Analysis 544

DFSKLTA0 . 544

DFSKLTB0 . 545

DFSKLTC0 . 546

IRLM Lock Trace Analysis Summary Report 548

IRLM Lock Trace Analysis Detail Report 548

Chapter 30. RECON Query of Log Data Set Names Utility (DFSKARC0) 551

Input and Output for DFSKARC0 552

JCL Requirements for DFSKARC0 552

Control Statements for DFSKARC0 554

Output Examples of DFSKARC0 556

Return Codes for DFSKARC0 557

Contents vii

||

||
||
||
||
||
||
||

||
||
||
||
||

||
||
||
||

||
||
||
||

||
||
||
||

|
||
||
||
||
||
||
||
||

||
||
||
||
||
||

RECON Query Summary Report 557

Chapter 31. Log Summary Utility (DFSKSUM0) 559

Dynamic Search . 560

Input and Output for DFSKSUM0 560

JCL Requirements for DFSKSUM0 561

Control Statements for DFSKSUM0 562

Return Codes for DFSKSUM0 567

Output Examples of DFSKSUM0 567

Chapter 32. Deadlock Trace Record Analysis Utility (DFSKTDL0) 575

Input and Output for DFSKTDL0 576

JCL Requirements for DFSKTDL0 576

Control Statements for DFSKTDL0 578

Control Keywords for DFSKTDL0 579

Return Codes for DFSKTDL0 580

Deadlock Trace Analysis Summary Report Example 580

Deadlock Trace Analysis Victim Report Example 583

Deadlock Trace Analysis Detail Report Example 584

Chapter 33. Trace Record Extract Utility (DFSKXTR0) 585

Input and Output for DFSKXTR0 586

JCL Requirements for DFSKXTR0 586

Control Statements for DFSKXTR0 588

Control Keywords for DFSKXTR0 588

Return Codes for DFSKXTR0 591

Trace Entry Extract Summary Report Example 592

Chapter 34. Log Record Processing Rate Analysis Utility (DFSKRSR0) 595

Input and Output for DFSKRSR0 596

JCL Requirements for DFSKRSR0 596

Control Statements for DFSKRSR0 598

Control Keywords for DFSKRSR0 598

Return Codes for DFSKRSR0 599

DETAIL File Layout . 600

Log Record Processing Rate Analysis Summary Report Examples 600

Part 7. Appendixes . 605

Notices . 607

Programming Interface Information 609

Trademarks . 609

Bibliography . 611

IMS Version 9 Library . 611

Supplementary Publications . 611

Publication Collections . 612

Accessibility Titles Cited in This Library 612

Index . 613

viii Utilities Reference: System

||

||
||
||
||
||
||
||

||
||
||
||
||
||
||
||
||

||
||
||
||
||
||
||

||
||
||
||
||
||
||
||

Figures

 1. DBDGEN Input Record Structure (Except DEDB) 10

 2. DEDB DBDGEN Input Record Structure . 11

 3. JCL for DBDGEN Utility . 12

 4. Procedure to Invoke DBDGEN . 12

 5. Connections through Physical Child and Physical Twin Pointers 31

 6. Example of Access Method Services Parameters from DBD Generation 87

 7. Example of DBDGEN Input . 88

 8. Segment Flag Codes . 89

 9. Payroll and Skills Inventory Data Structures . 91

 10. HSAM DBD Generation . 91

 11. HISAM DBD Generations . 92

 12. HDAM DBD Generation . 93

 13. Summary of Statements for the Primary HIDAM Index Relationship 95

 14. HIDAM and Primary HIDAM Index DBD Generations 95

 15. PHDAM DBD Generations . 97

 16. PHIDAM DBD Generations . 97

 17. GSAM DBD Generations . 97

 18. Main Storage Database DBD Generations . 98

 19. Data Entry Database DBD Generations . 100

 20. DBD Generation of DEDB Subset Pointers Sample 101

 21. Comparison of Unidirectional, Physically Paired Bidirectional, and Virtually Paired Bidirectional

Logical Relationships . 102

 22. Logical Relationship Between Physical Databases and The Resulting Logical Databases That

Can Be Defined . 104

 23. DBD Generation Statements Examples . 105

 24. Database Indexed by Two Secondary Indexes 109

 25. DBD for Indexed Database . 109

 26. DBD for Primary Index Database . 109

 27. DBD for Secondary Index X2 . 110

 28. Database Indexed by Three Secondary Indexes in a Shared Secondary Index Database 110

 29. Indexed Database, Primary Index Database, and Shared Secondary Index Database DBD

Generations . 111

 30. PSBGEN Procedure Statement . 115

 31. Procedure for Invoking PSBGEN . 117

 32. KEYLEN Definition . 128

 33. Data Structure of Segment Definition . 133

 34. Sample Hierarchic Data Structure . 139

 35. Sample Field Level Sensitivity PSB Generation 142

 36. A PSBGEN Statement Used to Define a DL/I Database Statement (Example 1) 144

 37. A PSBGEN PCB Statement Used to Define a DL/I Database PCB Statement (Example 2) 145

 38. A PSBGEN PCB Statement Used to Define a DL/I Database PCB Statement (Example 3) 146

 39. A PSBGEN PCB Statement Used to Define a Logical Relationship and Produce Output 146

 40. The Data Structure and JCL For a Message Switching or Conversational Message Program 147

 41. The Data Structure and JCL For a Logical Relationship in Database DI21PART 148

 42. The Data Structure and JCL For a Logical Database Defined From DL/I Database DI21PART 149

 43. The Data Structure and JCL For a Logical Relationship in Database DI21PART That Produces

Output (Part 1) . 150

 44. The Data Structure and JCL for a Logical Relationship in Database DI21PART That Produces

Output (Part 2) . 151

 45. The Data Structure and JCL for a Logical Database Defined From DL/I Database DI21PART 152

 46. Database Indexed by Three Secondary Indexes in a Shared Secondary Index Database 153

 47. The Data Structure and JCL For Index Through Segment DA 153

 48. The Data Structure and JCL For Index Through Segment DC 154

© Copyright IBM Corp. 1974, 2004 ix

||

||

49. The Data Structure and JCL For Index Through Segment DE 155

 50. Application Control Blocks Maintenance Utility 159

 51. ACBLIB Maintenance Procedure . 159

 52. Example of Logically Related Physical Databases 164

 53. DLIModel Utility Inputs and Outputs . 168

 54. Sample DLIModel Utility Procedure . 175

 55. JCL Job to Run the DLIMODEL Procedure . 177

 56. DBD for the IVP Database . 190

 57. PSB for the JMP IVP . 190

 58. Control Data Set for JMP IVP . 190

 59. DLIModel IMS Java Report for JMP IVP . 191

 60. DBD for the IVP Database . 191

 61. PSB for the JBP IVP . 191

 62. Control Data Set for JBP IVP . 192

 63. DLIModel IMS Java Report for JBP IVP . 192

 64. Physical DBD for COBOL Copybook XMI Example 193

 65. PSB for COBOL Copybook XMI Example . 193

 66. UNIX System Services Command for COBOL Copybook XMI Example 193

 67. Top-Level Control Data Set for COBOL Copybook XMI Example 194

 68. Second-Level Control Data Set for COBOL Copybook XMI Example 195

 69. Copybook for COBOL Copybook XMI Example 196

 70. Equivalent Control Statements for COBOL Copybook XMI Example 196

 71. DLIModel IMS Java Report for COBOL Copybook XMI Example 197

 72. JCL for the IMSDALOC Procedure . 204

 73. Security Maintenance Utility Data Set Requirements 217

 74. JCL for the SECURITY Procedure . 221

 75. OLCUTL Procedure . 233

 76. JCL Used to Copy Staging Library to Inactive Libraries Indicated by MODSTAT Data Set 236

 77. JCL for the INITMOD Procedure . 237

 78. IEBGENER Job . 238

 79. DFSUOLC Procedure . 239

 80. Example for Replacing IMS Type 2 SVC . 247

 81. Example for Replacing DBRC Type 4 SVC . 247

 82. Example for Replacing Both SVC Modules . 247

 83. Overview of the Log Archive Utility . 250

 84. SYSPRINT Listing of Control Statements . 253

 85. SYSPRINT Listing of Checkpoint Log Records 253

 86. SYSPRINT Listing of Descriptive Messages . 253

 87. Listing of the Result of the Archive . 254

 88. DUP Mode and REP Mode When Dual Logging Is Used 270

 89. Error ID Records On An Interim Log . 271

 90. Dump of Log Recovery Data Record . 274

 91. Active Region Report . 274

 92. Deadlock Report for BMP Region and MPP Region 310

 93. Sample DFSERA10 Control Statements for Deadlock Element 315

 94. Deadlock Report for External Subsystem-Detected Lock 315

 95. Control Statements Required for DFSERA30 . 316

 96. Sample Formatted Log Print from DFSERA30 . 316

 97. Control Statements Required for DFSERA40 . 317

 98. Sample Output from DFSERA40 . 318

 99. Control Statements Required for DFSERA60 . 321

100. Example 1 . 323

101. Example 2 . 323

102. Example 3 . 323

103. Example 4 . 323

104. Example 5 . 324

x Utilities Reference: System

||

||
||
||
||
||
||
||
||

||

||

||
||

||
||
||

105. Example 6 . 324

106. Example 7 . 324

107. Example 8 . 324

108. Intervals for a Fast Path Transaction . 325

109. Sample Detail Listing of Exception Transactions 329

110. Sample Overall Summary of Resource Usage and Contentions for All Transaction Codes and

PSBs . 334

111. Sample Overall Summary of Transit Times by Transaction Code for IFP Regions 334

112. Overall Summary of Resource Usage and Contentions for All Transaction Codes and PSBs 335

113. Sample Summary of Region Occupancy (Percent) for IFP Regions by PST 337

114. Sample Summary of VSO Activity . 337

115. Sample Recapitulation of the Analysis . 338

116. Specified Input Parameters . 344

117. Parameter Display . 345

118. Statistical Analysis Utility Flow of Information . 360

119. Messages—Queued but Not Sent (by Destination) 366

120. Messages - Program to Program (by Destination) 366

121. Line-and-Terminal Report . 366

122. Messages—Queued but Not Sent (by Transaction Code) 367

123. Messages - Program to Program (by Transaction Code) 367

124. Transaction Report . 367

125. Transaction-Response Report . 367

126. Application-Accounting Report . 368

127. Messages Report . 369

128. JCL for the Statistical Analysis Utility . 370

129. IMS Monitor Trace Event Intervals . 384

130. IMS Monitor-System-Configuration Report and Trace Interval 386

131. Run-Profile Report . 387

132. Region-Summary Report . 390

133. Region-Wait Report . 391

134. Programs-by-Region Report . 392

135. Intent-Failure-Summary Report . 393

136. Event Intervals for Time in Application Code and DL/I Processing 394

137. Program-Summary Report . 395

138. Call-Summary Report . 396

139. Program-I/O Report . 398

140. Message Format Buffer Pool Report . 401

141. Message-Queue-Pool Report . 401

142. General Reports for SNAPQ Effects . 402

143. Transaction-Queuing Report . 403

144. Database-Buffer-Pool Report . 404

145. VSAM-Buffer-Pool Report . 404

146. Communication-Summary Report . 405

147. Line-Functions Report . 405

148. Communication-Wait Report . 406

149. Pool-Space-Failure Report . 406

150. Deadlock-Event-Summary Report . 407

151. Latch-Conflict-Statistics Report . 409

152. Distribution-Appendix Report . 412

153. Number of Transactions Processed For Each Scheduling Of An Application Program 413

154. MSC-Traffic Report . 415

155. MSC-Summaries Report . 416

156. MSC-Queuing-Summary Report . 417

157. IMS Monitor Trace Event Intervals . 421

158. IMS Monitor System Configuration Report and Trace Interval 423

159. Run Profile Report . 423

Figures xi

160. Region Summary Report . 426

161. Region Wait Report . 427

162. Programs-by-Region Report . 428

163. Event Intervals . 429

164. Program Summary Report . 430

165. Call Summary Report . 431

166. Transaction Queuing Report . 433

167. Database Buffer Pool Report . 434

168. VSAM Buffer Pool Report . 434

169. Pool Space Failure Report . 435

170. Deadlock Event Summary Report . 435

171. Latch Conflict Statistics Report . 436

172. Distribution Appendix Report . 439

173. IMS Monitor Trace Event Intervals . 442

174. IMS Monitor System Configuration Report and Trace Interval 444

175. Run Profile Report . 445

176. Region Summary Report . 448

177. Region Wait Report . 449

178. Programs-by-Region Report . 450

179. Elapsed Time Event Intervals . 451

180. Program Summary Report . 452

181. Call Summary Report . 453

182. Program I/O Report . 455

183. Message Format Buffer Pool Report . 458

184. Message Queue Pool Report . 458

185. General Reports for SNAPQ Effects . 459

186. Transaction Queuing Report . 460

187. Communication Summary Report . 461

188. Line-Functions Report . 461

189. Communication Wait Report . 462

190. Pool Space Failure Report . 462

191. Latch Conflict Statistics Report . 463

192. Distribution Appendix Report . 466

193. Number of Transactions Processed For Each Scheduling Of An Application Program 467

194. MSC Traffic Report . 470

195. MSC Summaries Report . 471

196. MSC Queuing Summary Report . 472

197. PST-Accounting Report . 476

198. VSAM-Buffer-Pool Report . 477

199. OSAM-Buffer-Pool Report . 479

200. Sequential-Buffering-Summary Report . 481

201. Sequential-Buffering-Detail Report Page A . 482

202. Sequential-Buffering-Detail Report Page B . 484

203. Sequential-Buffering-Detail Report Page C . 487

204. Line-and-Terminal Report . 493

205. Transaction Report . 493

206. Transaction Response-Report . 494

207. Messages—Program-to-Program Reports . 494

208. Messages—Queued-But-Not-Sent Reports . 495

209. Messages Report . 496

210. Log-Analysis Report . 497

211. Application-Accounting Report . 500

212. IMS Applications Menu . 505

213. Main Panel for KBLA . 506

214. KBLA Panel Structure . 506

215. KBLA Log Record Formatting Panel to Invoke DFSKBLA3 512

xii Utilities Reference: System

||

216. Control Statements Required for DFSKBLA3 . 512

217. Sample Formatted Log from DFSKBLA3 . 513

218. KBLA Log Record Formatting Panel to Invoke DFSKBLAS 520

219. Control Statements Required for DFSKBLAS . 521

220. Sample Formatted Log Print from DFSKBLAS 521

221. KBLA Log Record Formatting Panel to Invoke DFSKBLAK 522

222. Control Statements Required for DFSKBLAK . 522

223. Sample Formatted Log from DFSKBLAK . 523

224. KBLA DBCTL Transaction Analysis Panel . 525

225. Sample SORT Control Statement . 528

226. Report Produced Using DFSKDBC0 . 529

227. KBLA IMS Records User Data Scrub Panel . 531

228. Report Produced Using DFSKSCR0 . 533

229. KBLA MSC Link Performance Formatting Panel 535

230. Report Produced Using DFSKMSC0 . 537

231. KBLA Statistic Log Record Analysis Panel . 539

232. KBLA Log Record Formatting Panel to Invoke DFSKLT 543

233. Example IRLM Lock Trace Analysis Summary Report 548

234. Example IRLM Lock Trace Analysis Detail Report 549

235. KBLA Select Logs From RECON Panel to Invoke DFSKARC0 552

236. DFSKARC0 DD Statement Report Example . 558

237. DFSKARC0 DD Statement Report Example 2 . 558

238. DFSKSUM0 Logical Record Selection Flow Report 572

239. DFSKSUM0 Short Log Summary Report . 573

240. KBLA Snap/Pseudo-Abend Record Formatting Panel to Invoke DFSKTDL0 576

241. KBLA Trace Entry Filtering Panel for to Invoke DFSKXTR0 586

242. Example Output from Trace Table Entry Selection 591

243. Example of a DFSERA60 Report Before DFSKXTR0 Reformatting 591

244. Example of a DFSERA60 Report After DFSKXTR0 Reformatting 591

245. KBLA Log Processing Rate Analysis Panel to Invoke DFSKRSR0 595

Figures xiii

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

xiv Utilities Reference: System

Tables

 1. Licensed Program Full Names and Short Names xviii

 2. DBD Generation Statement Instruction Summary 13

 3. Using the Label Field to Group Segment Types 32

 4. BLOCK= and RECORD= Operands . 37

 5. POINTER= Keywords and Abbreviations . 59

 6. Use of POINTER= Parameters (No Logical Relationship) 61

 7. Sample Concatenated Key for an Index Source Segment Type 80

 8. Same Index Source and Target Segment Types 106

 9. Different Index Source and Target Segment Types 107

10. Shared Secondary Index Database DBD Generation 108

11. How A KEYLEN Is Determined . 127

12. Using LANG= Option in an LE/370 Environment for PL/I Compatibility 135

13. Control Statements and Parameters to Generate Java Metadata Source Files 170

14. Control Statements and Parameters to Generate a DLIModel IMS Java Report 171

15. Control Statements and Parameters to Generate an XMI Description 173

16. Control Statements and Parameters to Generate an XML Schema 174

17. Control Statements and Parameters to Generate a Trace File 174

18. Allocation Information Priorities . 201

19. Matrix Secured Resources for Variable I . 220

20. Matrix Secured Resources for Variable R . 220

21. Security Maintenance Utility Input Statements . 224

22. Security Maintenance Utility Output Descriptions 226

23. Lock Name In A FP Database . 310

24. PI Lock Compatibility Matrix . 313

25. IRLM Resultant State Matrix . 313

26. IRLM Compatibility Matrix . 314

27. Transaction Flow and IMS Monitor Events Description 381

28. IMS Monitor Reports Output Sequence and Information 385

29. Distribution Reports by Region Summary . 409

30. Report Distributions by Program Region . 410

31. Report Distributions by Program Summary . 410

32. Report Distributions by Communication Summary 410

33. Report Distributions by Line Functions . 410

34. Report Distributions by MSC Queuing Summary 410

35. Report Distributions by Transaction Queuing . 411

36. Report Distributions by Call Summary . 411

37. Wait Time Distributions . 411

38. IMS Monitor Reports Output Sequence and Information 421

39. Report Distributions by Region Summary . 437

40. Report Distributions by Programs Region . 437

41. Report Distributions by Program Summary . 437

42. Report Distributions by Call Summary . 437

43. Wait Time Distributions . 438

44. Output Sequence and Information from IMS Monitor Reports 442

45. Report Distributions by Region Summary . 464

46. Report Distributions by Program Region . 464

47. Report Distributions by Program Summary . 464

48. Report Distributions by Communication Summary 464

49. Report Distributions by Line Functions . 464

50. Report Distributions by MSC Queuing Summary 465

51. Report Distributions by Transaction Queuing . 465

52. Report Distributions by Call Summary Queuing 465

53. Wait Time Distributions . 465

© Copyright IBM Corp. 1974, 2004 xv

||

||
||
||
||
||

54. Log-Analysis Report Line Format . 497

55. KBLA Fields and Default Values . 507

56. Layout of the DETAIL File . 600

xvi Utilities Reference: System

||
||

About This Book

This information is available as part of the DB2® Information Management Software

Information Center for z/OS® Solutions to view the information within the DB2

Information Management Software Information Center for z/OS Solutions, go to

http://publib.boulder.ibm.com/infocenter/dzichelp. This information is also available in

PDF and BookManager® formats. To get the most current versions of the PDF and

BookManager formats, go to the IMS™ Library page at

www.ibm.com/software/data/ims/library.html.

This book is a reference manual for database administrators and system

programmers who use the IMS utilities common to the IMS Database Manager (IMS

DB) and IMS Transaction Manager (IMS TM) to administer the IMS system.

This book is one of two utilities references in the IMS library. The scope of the

publications is as follows:

v IMS Version 9: Utilities Reference: System describes utilities that apply to IMS at

a system level or that affect both database and data communications operations.

v IMS Version 9: Utilities Reference: Database and Transaction Manager

describes utilities that affect database operations and data communications.

With IMS Version 9, you can reorganize HALDB partitions online, either by using

the integrated HALDB Online Reorganization function or by using an external

product. In this information, the term HALDB Online Reorganization refers to the

integrated HALDB Online Reorganization function that is part of IMS Version 9,

unless otherwise indicated.

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655–K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

Organization of This Book

This book has seven parts:

v Part 1, “Generation Utilities” contains information on the generation utilities for

DBDs, PSBs, and ACBs.

v Part 2, “Service Utilities” describes the service utilities for dynamic allocation,

security maintenance, and online change.

v Part 3, “Log Utilities” has information on the utilities used for archiving, merging,

and recovering logs.

v Part 4, “Analysis Utilities and Reports” discusses the utilities used to generate

and print IMS reports.

v Part 5, “Interpreting IMS Reports” explains how to interpret IMS reports.

v Part 6, “Knowledge-Based Log Analysis” discusses Knowledge-Based Log

Analysis.

v Part 7. Appendixes contains the Bibliography and the Index.

For a complete list of all books cited in this manual see the “Bibliography” on page

611.

© Copyright IBM Corp. 1974, 2004 xvii

Prerequisite Knowledge

IBM® offers a wide variety of classroom and self-study courses to help you learn

IMS. For a complete list of courses, see the IMS Web site at www.ibm.com/ims.

The reader should be familiar with z/OS, and with IMS concepts, facilities, and

access methods. The prerequisite publications are:

v IMS Version 9: Release Planning Guide

v IMS Version 9: Administration Guide: System

v IMS Version 9: Administration Guide: Database Manager

v IMS Version 9: Administration Guide: Transaction Manager

Organization of Utility Descriptions

Utility descriptions are generally organized the same way, to help you find

information easily. Most utilities are described this way:

v Overview of the utility’s functions

v Restrictions that apply to the utility, such as processing that cannot be done

concurrently with the utility

v Input and output

v Job control statements needed to run the job

v Utility control statements used to specify various processing options.

When applicable, the descriptions also include:

v Output messages and statistics reports produced by the utility

v Error processing, with return codes and their meanings

v Examples of how to use the utility.

CICS, DBCTL, and DCCTL

When running CICS® with DBCTL, CICS 3.1 or later releases must be used.

For DBCTL users, all utilities, commands, and parameters that are valid for IMS/DB

are valid for DBCTL, unless otherwise noted.

For DCCTL users, all utilities, commands, and parameters that are valid for IMS/TM

are valid for DCCTL, unless otherwise noted.

IBM Product Names Used in This Information

In this information, the licensed programs shown in Table 1 are referred to by their

short names.

 Table 1. Licensed Program Full Names and Short Names

Licensed program full name Licensed program short name

IBM Application Recovery Tool for IMS and

DB2

Application Recovery Tool

IBM CICS Transaction Server for OS/390® CICS

IBM CICS Transaction Server for z/OS CICS

IBM DB2 Universal Database™ DB2 Universal Database

IBM DB2 Universal Database for z/OS DB2 UDB for z/OS

xviii Utilities Reference: System

Table 1. Licensed Program Full Names and Short Names (continued)

Licensed program full name Licensed program short name

IBM Enterprise COBOL for z/OS and OS/390 Enterprise COBOL

IBM Enterprise PL/I for z/OS and OS/390 Enterprise PL/I

IBM High Level Assembler for MVS™ & VM &

VSE

High Level Assembler

IBM IMS Advanced ACB Generator IMS Advanced ACB Generator

IBM IMS Batch Backout Manager IMS Batch Backout Manager

IBM IMS Batch Terminal Simulator IMS Batch Terminal Simulator

IBM IMS Buffer Pool Analyzer IMS Buffer Pool Analyzer

IBM IMS Command Control Facility for z/OS IMS Command Control Facility

IBM IMS Connect for z/OS IMS Connect

IBM IMS Connector for Java™ IMS Connector for Java

IBM IMS Database Control Suite IMS Database Control Suite

IBM IMS Database Recovery Facility for z/OS IMS Database Recovery Facility

IBM IMS Database Repair Facility IMS Database Repair Facility

IBM IMS DataPropagator™ for z/OS IMS DataPropagator

IBM IMS DEDB Fast Recovery IMS DEDB Fast Recovery

IBM IMS Extended Terminal Option Support IMS ETO Support

IBM IMS Fast Path Basic Tools IMS Fast Path Basic Tools

IBM IMS Fast Path Online Tools IMS Fast Path Online Tools

IBM IMS Hardware Data

Compression-Extended

IMS Hardware Data Compression-Extended

IBM IMS High Availability Large Database

(HALDB) Conversion Aid for z/OS

IBM IMS HALDB Conversion Aid

IBM IMS High Performance Change

Accumulation Utility for z/OS

IMS High Performance Change Accumulation

Utility

IBM IMS High Performance Load for z/OS IMS HP Load

IBM IMS High Performance Pointer Checker

for OS/390

IMS HP Pointer Checker

IBM IMS High Performance Prefix Resolution

for z/OS

IMS HP Prefix Resolution

IBM Tivoli® NetView® for z/OS Tivoli NetView for z/OS

IBM WebSphere® Application Server for z/OS

and OS/390

WebSphere Application Server for z/OS

IBM WebSphere MQ for z/OS WebSphere MQ

IBM WebSphere Studio Application Developer

Integration Edition

WebSphere Studio

IBM z/OS z/OS

How to Read Syntax Diagrams

The following rules apply to the syntax diagrams that are used in this information:

About This Book xix

v Read the syntax diagrams from left to right, from top to bottom, following the path

of the line. The following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.

– The ---> symbol indicates that the syntax diagram is continued on the next

line.

– The >--- symbol indicates that a syntax diagram is continued from the

previous line.

– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the

execution of the syntax element and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path, and the

remaining choices are shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be

repeated.

��

required_item

�

repeatable_item

��

xx Utilities Reference: System

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can repeat the items in the

stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is

shown separately from the main syntax diagram, but the contents of the fragment

should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

 required_item

optional_item

v In IMS, a b symbol indicates one blank position.

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic

letters (for example, column-name). They represent user-supplied names or

values.

v Separate keywords and parameters by at least one space if no intervening

punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,

exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest

quality information. If you have any comments about this or any other IMS

information, you can take one of the following actions:

v Go to the IMS Library page at www.ibm.com/software/data/ims/library.html and

click the Library Feedback link, where you can enter and submit comments.

v Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the

title, the part number of the title, the version of IMS, and, if applicable, the

specific location of the text on which you are commenting (for example, a page

number in the PDF or a heading in the Information Center).

About This Book xxi

xxii Utilities Reference: System

Summary of Changes

Changes to This Book for IMS Version 9

This book contains new technical information for IMS Version 9, changed technical

information, and editorial changes.

New information about the following technical enhancements is included:

v HALDB Online Reorganization Support:

“HDAM and PHDAM DBD Generation” on page 6

“HIDAM and PHIDAM DBD Generation” on page 7

v RACF Enhancement to Replace SMU: Chapter 6, “Security Maintenance Utility

(DFSISMP0),” on page 215

v IMS Availability Enhancements: Chapter 8, “Dynamic SVC Utility (DFSUSVC0),”

on page 245

v DBRC Enhancements: “OLDS Recovery” on page 268.

v Knowledge-Based Log Analysis: Part 6, “Knowledge-Based Log Analysis,” on

page 501

The following information has changed significantly:

v Support for IEBCOPY parameters: “Online Change Copy Utility (DFSUOCU0)” on

page 231

The following organizational changes have been made to this information:

v Chapter 4, “DLIModel Utility,” on page 167, including information on XML support,

has been added to Part 1, “Generation Utilities.” This information was formerly

described in IMS Version 9: IMS Java Guide and Reference.

For detailed information about technical enhancements for IMS Version 9, see the

IMS Version 9: Release Planning Guide.

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of one title, a

change of one title, organizational changes, and a major terminology change.

Changes are indicated by a vertical bar (|) to the left of the changed text.

The IMS Version 9 information is now available in the DB2 Information Management

Software Information Center for z/OS Solutions, which is available at

http://publib.boulder.ibm.com/infocenter/dzichelp. The DB2 Information Management

Software Information Center for z/OS Solutions provides a graphical user interface

for centralized access to the product information for IMS, IMS Tools, DB2 Universal

Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management Facility

(QMF™).

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:

v IMS Version 9: IMS Connect Guide and Reference

The library includes new information: IMS Version 9: IMS Connect Guide and

Reference. This information is available in softcopy format only, as part of the

DB2 Information Management Software Information Center for z/OS Solutions,

and in PDF and BookManager formats.

© Copyright IBM Corp. 1974, 2004 xxiii

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655-K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

v The information formerly titled IMS Version 8: IMS Java User’s Guide is now

titled IMS Version 9: IMS Java Guide and Reference. This information is

available in softcopy format only, as part of the DB2 Information Management

Software Information Center for z/OS Solutions, and in PDF and BookManager

formats.

v To complement the IMS Version 9 library, a new book, An Introduction to IMS by

Dean H. Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls

(ISBN # 0-13-185671-5), is available starting February 2005 from IBM Press. Go

to the IMS Web site at www.ibm.com/ims for details.

Organizational Changes

Organization changes to the IMS Version 9 library include changes to:

v IMS Version 9: IMS Java Guide and Reference

v IMS Version 9: Messages and Codes, Volume 1

v IMS Version 9: Utilities Reference: System

The chapter titled ″DLIModel Utility″ has moved from IMS Version 9: IMS Java

Guide and Reference to IMS Version 9: Utilities Reference: System.

The DLIModel utility messages that were in IMS Version 9: IMS Java Guide and

Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

Terminology Changes

IMS Version 9 introduces new terminology for IMS commands:

type-1 command

A command, generally preceded by a leading slash character, that can be

entered from any valid IMS command source. In IMS Version 8, these

commands were called classic commands.

type-2 command

A command that is entered only through the OM API. Type-2 commands

are more flexible than type-2 commands and can have a broader scope. In

IMS Version 8, these commands were called IMSplex commands or

enhanced commands.

Accessibility Enhancements

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products. The major accessibility features

in z/OS products, including IMS, enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

User Assistive Technologies

Assistive technology products, such as screen readers, function with the IMS user

interfaces. Consult the documentation of the assistive technology products for

specific information when you use assistive technology to access these interfaces.

xxiv Utilities Reference: System

Accessible Information

Online information for IMS Version 9 is available in BookManager format, which is

an accessible format. All BookManager functions can be accessed by using a

keyboard or keyboard shortcut keys. BookManager also allows you to use screen

readers and other assistive technologies. The BookManager READ/MVS product is

included with the z/OS base product, and the BookManager Softcopy Reader (for

workstations) is available on the IMS Licensed Product Kit (CD), which you can

download from the Web at www.ibm.com.

Keyboard Navigation of the User Interface

Users can access IMS user interfaces using TSO/E or ISPF. Refer to the z/OS

V1R1.0 TSO/E Primer, the z/OS V1R5.0 TSO/E User’s Guide, and the z/OS

V1R5.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate each

interface, including the use of keyboard shortcuts or function keys (PF keys). Each

guide includes the default settings for the PF keys and explains how to modify their

functions.

Summary of Changes xxv

xxvi Utilities Reference: System

Part 1. Generation Utilities

Chapter 1. Database Description (DBD) Generation 3

Information Specified in DBD Generation 4

DBD Generation for Database Types 4

HSAM DBD Generation . 4

GSAM DBD Generation . 5

HISAM DBD Generation . 5

HDAM and PHDAM DBD Generation 6

HIDAM and PHIDAM DBD Generation 7

MSDB DBD Generation . 7

DEDB DBD Generation . 8

Index and PSINDEX DBD Generation 8

Logical DBD Generation . 9

DBD Generation Input Record Structure (Except for DEDB DBDs) 9

DEDB DBD Generation Input Record Structure 10

DBD Generation Coding Conventions 11

DBDGEN Procedure . 11

Procedure Statement . 11

JCL Parameters . 12

DBDGEN Statements . 13

DBD Statement . 14

DBD Statement Parameter Descriptions 22

DATASET Statements . 30

DATASET Statement Parameter Description 35

Data Sets in IMS Data Set Groups 43

AREA Statement . 44

AREA Statement Parameter Description 45

SEGM Statement . 46

SEGM Statement Parameter Description 56

LCHILD Statement . 69

LCHILD Statement Parameter Description 73

FIELD Statement . 76

FIELD Statement Parameter Description 78

XDFLD Statement . 82

XDFLD Statement Parameter Description 84

DBDGEN, FINISH, and END Statements 86

DBD Generation Output . 86

Control Statement Listing . 86

DBD Generation Error Conditions 90

DBD Generation Examples . 90

Examples without Secondary Index or Logical Relationships 90

Summary of Physical Database Description Examples 101

Examples with Logical Relationships 101

Examples with Secondary Indexes 106

Chapter 2. Program Specification Block (PSB) Generation 113

Input and Output for PSB Generation 113

PSBGEN Procedure . 115

Procedure Statement . 115

Step C . 116

Step L . 116

Invoking the Procedure . 116

Utility Control Statements for PSB Generation 117

Alternate PCB Statement . 117

© Copyright IBM Corp. 1974, 2004 1

DL/I or Fast Path Database PCB Statement 119

GSAM PCB Statement . 130

SENSEG Statement . 131

SENFLD Statement . 133

PSBGEN Statement . 134

END Statement . 138

Output Messages and Statistics for PSB Generation 138

PSB Examples . 139

Examples of PSB Generation 139

Field Level Sensitivity PSB Generation Example 141

Fast Path PSB Generation Examples 142

Additional PSB Generation Examples 143

Examples of a Sample Problem with an Application Database 146

Example of a Shared Secondary Index 152

Chapter 3. Application Control Blocks Maintenance Utility 157

Restrictions for ACB Generation 158

Input and Output for ACB Generation 158

ACB Generation Procedure 159

EXEC Statement . 160

DD Statements . 160

DFSACBCP Control Statement 161

Utility Control Statements for ACB Generation 161

Managing Dynamic Option (DOPT) PSBs 164

Error Processing for ACB Generation 165

Examples of ACB Generation 165

Example of Creating Blocks for All PSBs 165

Example of Creating Blocks for Specific PSBs 165

Example of Deleting a PSB and Rebuilding Blocks 165

Chapter 4. DLIModel Utility 167

PSB and DBD Requirements 169

COBOL Copybook XMI Requirements 169

DLIModel Utility Restrictions 170

Output Types of the DLIModel Utility 170

Java Metadata Class . 170

DLIModel IMS Java Report 170

XMI Description of the Databases 172

XML Schema . 173

DLIModel Utility Trace . 174

Running the DLIModel Utility 174

Running the DLIModel Utility as a z/OS Job 175

Running the DLIModel Utility from UNIX System Services 177

Control Statements for the DLIModel Utility 178

Control Data Set Rules . 178

Control Statement Rules . 180

Control Statement Syntax 180

Examples of Using the DLIModel Utility 189

JMP IVP Metadata Sample 189

JBP IVP Metadata Sample 191

Sample Metadata with COBOL Copybook XMI 192

2 Utilities Reference: System

||
||

||

||
||

Chapter 1. Database Description (DBD) Generation

Use the Database Description Generation (DBDGEN) utility to define a database so

it can be used by an application program. You create a Database Description (DBD)

by coding special macro instructions. These macros become the input to the

DBDGEN utility. Use DBDGEN for the following types of databases:

v HSAM (including SHSAM)

v GSAM

v HISAM (including SHISAM)

v HDAM

v PHDAM

v HIDAM

v PHIDAM

v MSDB

v DEDB

v Index

v PSINDEX

v Logical

There are strict rules for structuring DBDGEN input. A separate input set is required

for each database.

The DBDGEN program accepts several types of control statements. Each control

statement type is briefly described as follows:

v The DBD statement names the database being described and provides DL/I with

information concerning database organization.

v The DATASET statement is used only in non-DEDB DBDGEN input record

structures. The DATASET statement defines a data set group within a database.

One or more DATASET statements follow the DBD statement.

v The AREA statement is used only in DEDB DBDGEN input record structures.

The AREA statement defines an area within a database. One or more AREA

statements follow the DBD statement.

v The SEGM statement defines the specified database’s segments. The SEGM

statement is used with the following statements:

– FIELD

– XDFLD

– LCHILD

Each statement defines different aspects of a segment.

v The DBDGEN statement indicates the end of DBDGEN control statements.

v FINISH is an optional statement retained in the input stream for compatibility.

v The END statement indicates to the z/OS assembler that the end of the input

statements has been reached.

Related Reading: For more information on High Availability Large Databases, see

IMS Version 9: Administration Guide: Database Manager.

The following topics provide additional information:

v “Information Specified in DBD Generation” on page 4

v “DBD Generation for Database Types” on page 4

© Copyright IBM Corp. 1974, 2004 3

v “DBDGEN Procedure” on page 11

v “DBDGEN Statements” on page 13

v “DBD Generation Output” on page 86

v “DBD Generation Examples” on page 90

Information Specified in DBD Generation

A database description (DBD) is a DL/I control block containing all of the database

information needed by an application program. You can use only one physical DBD

to describe each physical database; otherwise, user abend U850 or U853 occurs.

At execution time, DL/I uses the DBD to create a set of internal control blocks. The

DBDGEN utility defines each DBD with the following database information:

v Segment types

v Physical and logical relationships between segment types

v Database organization and access method

v Physical characteristics of the database

You can also use the DBDGEN utility to define the name and data options of

selected exit routines.

DBD Generation for Database Types

The following databases use DBDGEN:

v HSAM (including SHSAM)

v GSAM

v HISAM (including SHISAM)

v HDAM

v PHDAM

v HIDAM

v PHIDAM

SHSAM and SHISAM are simple databases. Each contains only one fixed-length

segment type. Discussions on SHSAM and SHISAM can be found in paragraphs

dealing with HSAM and HISAM, respectively.

The following also use DBDGEN:

v MSDB

v DEDB

v Index

– Primary HIDAM

– Secondary

v PSINDEX

v Logical

HSAM DBD Generation

During DBD generation for an HSAM database, you specify:

v One data set group.

v The ddname of an input data set that is used when an application retrieves data

from the database.

DBDGEN

4 Utilities Reference: System

v The ddname of an output data set that is used when loading the database.

v From 1 to 255 segment types for the database.

v From 0 to 255 fields within each segment type, with a maximum of 1000 fields

within the database.

v Optionally, you can define a simple HSAM (SHSAM) database that can contain

only one fixed-length segment type. When defined, no prefixes are built in

occurrences of the segment type.

For a HSAM database you cannot specify:

v The use of hierarchic or physical child/physical twin pointers between segments

in the database

v The use of logical or index relationships between segments

GSAM DBD Generation

During DBD generation for a GSAM database, you specify:

v One data set group

v The ddname of an input data set that is used when an application retrieves data

from the database

v The ddname of an output data set that is used when loading the database

You cannot specify:

v SEGM and FIELD statements

v The use of logical or index relationships between segments

IMS adds 2 bytes to the record length value specified in the DBD in order to

accommodate the ZZ field that is needed to make up the BSAM RDW. Whenever

the database is GSAM/BSAM and the records are variable (V or VB), IMS adds 2

bytes. The record size of the GSAM database is 2 bytes greater than the longest

segment that is passed to IMS by the application program.

HISAM DBD Generation

During DBD generation for a HISAM database, you specify:

v One data set group.

v The ddname of one VSAM key sequenced data set (KSDS) and one VSAM entry

sequenced data set (ESDS). HISAM supports only one data set group; you

cannot have a secondary data set group with HISAM databases.

v Optionally, you can define a simple HISAM (SHISAM) database that can contain

only one fixed-length segment type. When defined, no prefixes are built in

occurrences of the segment type. The logical record length specified for a

SHISAM database must be equal to or greater than the segment length

specified.

v At least one segment type and a maximum of 255 segment types for the

database.

v From 0 to 255 fields for each segment type, and a maximum of 1000 for the

database, one of which must be a unique sequence field in the root segment

type for indexing root segment occurrences.

v A maximum of 32 secondary index relationships (optional) per segment type, and

a maximum of 1000 for the database.

DBD Generation for Database Types

Chapter 1. Database Description (DBD) Generation 5

v Logical relationships (optional) using symbolic pointer options when a segment in

a HISAM database points to another segment in a HISAM database, and direct

or symbolic pointer options when a segment in a HISAM database points to a

segment in an HDAM or HIDAM database.

v Segment Edit/Compression exit routine routines, which are optional, to enable

user-supplied routines to manipulate each occurrence of a segment type to or

from auxiliary storage.

v Data Capture exit routine, which is optional, to enable DB2™ end users access to

updated IMS data. This exit routine can be used in SHISAM also.

Restriction: You cannot specify the use of hierarchic or physical child/physical twin

pointers between segments in a HISAM database.

HDAM and PHDAM DBD Generation

During DBD generation for HDAM and PHDAM databases, you specify:

v The name of the user-supplied randomizing module used for placement of root

segment occurrences

v One to 10 data set groups

v How free space is to be distributed in each data set group

v The ddname of an OSAM or ESDS data set for each data set group defined

(HDAM databases only)

v At least one segment type for each data set group, and a maximum of 255

segment types for the database

v Segment Edit/Compression exit routine routines, which are optional, to enable

user-supplied routines to manipulate each occurrence of a segment type on their

way to or from auxiliary storage

v The use of hierarchic or physical child/physical twin pointers between segments

in the database

v Logical relationships (optional) between segments using direct address or

symbolic pointer options

v From 0 to 255 fields for each segment type, and a maximum of 1000 for the

database

v A maximum of 32 secondary index relationships (optional) per segment type and

a maximum of 1000 for the database

v Data Capture exit routine, which is optional, to enable DB2 end users access to

updated IMS data

Restrictions of DBDGEN for PHDAM

v The ddnames and data sets are not part of DBDGEN for PHDAM databases.

The remaining database definition is purely for defining the hierarchical structure

and relationships of the data.

v DBDGEN does not define each individual partition. For more information on

defining partitions, see the IMS Version 9: Administration Guide: Database

Manager.

Related Reading: See the information on tuning databases in IMS Version 9:

Administration Guide: Database Manager for more information on online

reorganization for PHDAM and PHIDAM databases.

DBD Generation for Database Types

6 Utilities Reference: System

|
|
|

HIDAM and PHIDAM DBD Generation

During DBD generation for HIDAM and PHIDAM databases, you specify:

v One to 10 data set groups

v How free space is to be distributed in each data set group

v The ddname of an OSAM or ESDS data set for each data set group defined

(HDAM databases only)

v At least one segment type for each data set group, and a maximum of 255

segment types for the database

v Segment Edit/Compression exit routine routines, which are optional, to enable

user-supplied routines to manipulate each occurrence of a segment type on their

way to or from auxiliary storage

v A maximum of 32 secondary index relationships (optional) per segment type and

a maximum of 1000 for the database

v The use of hierarchic or physical child/physical twin pointers between segments

in the database

v Logical relationships (optional) between segments using direct address or

symbolic pointer options

v From 0 to 255 fields for each segment type, and a maximum of 1000 for the

database, one of which must be a unique sequence field in the root segment

type for indexing root segment occurrences

v Data Capture exit routine, which is optional, to enable DB2 end users access to

updated IMS data

DBDGEN for PHIDAM:

v The ddnames and data sets are not part of DBDGEN for PHIDAM databases.

The remaining database definition is purely for defining the hierarchical structure

and relationships of the data.

v DBDGEN does not define each individual partition. For more information on

defining partitions, see the IMS Version 9: Administration Guide: Database

Manager.

Related Reading: See the information on tuning databases in IMS Version 9:

Administration Guide: Database Manager for more information on online

reorganization for PHDAM and PHIDAM databases.

MSDB DBD Generation

During DBD generation for a MSDB, you must specify:

v One database name

v One data set group

v One segment type for the database

v From 0 to 255 fields within the database

You cannot specify:

v A logical or index relationship between segments

v Fields used with secondary indexes

If the DBD for an existing MSDB is changed, the header information (BHDR) might

change, even though the database segments are unchanged. This might result in

message DFS2593I because of the attempted load from the MSDBCPx data set. In

DBD Generation for Database Types

Chapter 1. Database Description (DBD) Generation 7

|
|
|

this case, the headers in the MSDBCPn data sets are either invalid or the wrong

length. If ABND=y is specified in the MSDB PROCLIB member, it also causes a

U1012 abend. After modifying the DBD, load the MSDBs from a MSDBINIT data set

by using the MSDBLOAD option for either a warm start or a cold start to eliminate

these problems.

DEDB DBD Generation

During DBD generation for a DEDB, you must specify:

v One database name

v From 1 to 2048 areas within a database

v From 1 to 127 segment types for the database

v From 0 to 255 fields for each segment type, with a maximum of 1000 fields

within the database, one of which must be a unique sequence field for the root

segment type

v The ddname or area name used to describe an area

v Data Capture exit routine, which is optional, to enable DB2 end users access to

updated IMS data

You can optionally specify up to eight subset pointers for each child type of the

parent.

You cannot specify:

v A logical or index relationship between segment types

v Fields used with secondary indexes

Index and PSINDEX DBD Generation

Primary HIDAM index DBD generation creates an index database composed of one

index segment type that indexes occurrences of the HIDAM root segment type.

PHIDAM does not have a DBD for the prime index. An index segment contains:

v The sequence field key of the root segment occurrence it indexes

v In its prefix, a direct address pointer to the root segment occurrence

During DBD generation for a primary HIDAM index, you must specify:

v One database name.

v One data set group. You must specify the ddname of one KSDS.

v One segment type.

v The index relationship required between the primary HIDAM index database and

the root segment type of a HIDAM database.

v One field within the segment type as a sequence field.

Restrictions:

v You cannot specify any additional FIELD statements as you might for a

secondary index.

v You cannot use DBDGEN to define individual partitions. For more information on

defining partitions, see IMS Version 9: Administration Guide: Database Manager.

v Nonunique secondary index (PSINDEX) databases are not supported for HALDB.

DBD Generation for Database Types

8 Utilities Reference: System

Secondary index DBD generation creates a secondary index database made up of

1 to 16 index pointer segment types. These are used to index target segment types

in HISAM, HDAM, PHDAM, HIDAM, or PHIDAM databases.

During DBD generation for a secondary index, you must specify:

v One database name.

v One data set group. If all index pointer segment keys are unique, you must

specify the ddname of one KSDS. If index pointer segment keys are non-unique

you must specify the ddnames of one KSDS and one ESDS. A secondary index

must use VSAM.

v From 1 to 16 segment types.

v From 1 to 16 secondary index relationships.

v From 1 to 1000 fields for each segment type.

Logical DBD Generation

A logical DBD generation creates a logical database made up of logical segment

types. A logical segment type is a segment type defined in a logical database that

represents a segment type or the concatenation of two segment types defined in a

physical database or databases.

During DBD generation for a logical database, you must specify:

v One database name.

v One logical data set group.

v From 1 to 255 segment types. Each defines the name of a logical segment type,

and the name of the segment type or types in physical databases that are to be

processed when a call is issued to process the logical segment type.

The logical relationships used to create a logical database must be defined in a

physical database or databases.

All fields required for segments in a logical database must have been defined in

physical databases.

DBD Generation Input Record Structure (Except for DEDB DBDs)

The DBDGEN program accepts ten types of control statements. Each control

statement must be added to the SYSIN input stream in a specific order. Figure 1 on

page 10 shows the rules for structuring DBD generation input.

Exception: This input record structure applies to all DBDs except DEDB DBDs.

The PRINT statement is optional. If included, it is the first statement in the input

deck. When PRINT is not included, the DBD control statement is first in the input

deck. One or more DATASET statements follow the DBD statement. Each

DATASET statement is followed by the SEGM, LCHILD, FIELD, and XDFLD

statements in that data set group. At least one SEGM statement must follow each

DATASET statement. SEGM statements in the DBDGEN input set of records must

be placed in the same hierarchic order as the segments in the database being

defined.

FIELD and LCHILD statements follow the SEGM statement to which they apply.

When a FIELD statement defines a sequence field within a segment, it must

precede any XDFLD statements or any other FIELD statements that follow a SEGM

DBD Generation for Database Types

Chapter 1. Database Description (DBD) Generation 9

statement. LCHILD statements follow the SEGM that defines a logical parent,

HIDAM and PHIDAM root, and index target and index pointer segment types. When

you are defining a secondary index relationship, the LCHILD statement that

establishes the relationship must be followed by its corresponding XDFLD

statements. No unrelated LCHILD statements can intervene between the two.

XDFLD statements follow a SEGM that defines an index target segment type for a

secondary index. A separate input set of records is required for each database.

Requirement: The DBDGEN statement is required.

If FINISH is used, it precedes the END statement. END is the last statement in the

input record structure.

DEDB DBD Generation Input Record Structure

The input record set structure for a DEDB DBD generation is essentially the same

as for the other types of DBD generation except that AREA statements are used

instead of DATASET statements. All AREA statements must immediately follow the

DBD statement. The SEGM statements and their associated FIELD statements

follow the last AREA statement in hierarchic order. SEGM statements must also be

placed in the same hierarchic order as the segments in the database being defined.

Figure 1. DBDGEN Input Record Structure (Except DEDB)

DBD Generation Input Record Structure

10 Utilities Reference: System

For DEDB DBD generation:

v The data set group concept does not apply.

v A secondary index is not permitted.

v Logical relationships between databases are not permitted.

v LCHILD and XDFLD statements are not permitted.

v Sequential dependent segments cannot have dependents.

v A separate input set of records is required for each database.

Figure 2 shows the rules for structuring a DEDB DBD generation input set of

records.

DBD Generation Coding Conventions

DBD generation statements are assembler language macro instructions and

therefore are subject to the rules contained in the HLASM MVS & VM

Programmer’s Guide.

Each control statement must be identified by an operation code, for example:

record-type code.

DBDGEN Procedure

Stage 2 of system definition causes the DBDGEN procedure to be placed in the

IMS.PROCLIB library.

This is a two step assemble and link-edit procedure to produce database definition

blocks (DBDs).

Procedure Statement

An example of the JCL for the DBDGEN utility is shown in Figure 3 on page 12.

END

FINISH

DBDGEN

PRINT
.

DBD

AREA

AREA

*

*

*

*

SEGM statements
followed by their
field statements

SEGM statements in
DBDGEN input set of
records must be placed
in the same hierarchic
order as the segments
are to be in the data-
base being defined

A separate input set of
records is required for
each database.

Figure 2. DEDB DBDGEN Input Record Structure

DBD Generation Input Record Structure

Chapter 1. Database Description (DBD) Generation 11

Invoking the Procedure

To process a request for a DBDGEN, the DBD generation control statements must

be created and appended to the JCL (shown in Figure 4) which invokes the

DBDGEN procedure.

JCL Parameters

MBR=

Is the name of the DBD to be generated. This name should be the same as the

first name specified for the NAME= keyword on the DBD statement. The first

database name becomes the DBD member name and, in the case of a shared

secondary index, the additional names are added as aliases. When a database

PCB relates to this DBD generation, one of the names specified in the NAME=

keyword on the DBD statement must be the name used in the DBDNAME=

keyword on the database PCB statement. Except for a shared secondary index,

the name used in the DBDNAME= keyword on the database PCB statement

must be the same as the name used in the MBR= keyword value.

// PROC MBR=TEMPNAME,SOUT=A,RGN=0M,SYS2=

//C EXEC PGM=ASMA90,REGION=&RGN,

// PARM=(OBJECT,NODECK,NODBCS,

// ’SIZE(MAX,ABOVE)’)

//SYSLIB DD DSN=IMS.&SYS2.SDFSMAC,DISP=SHR

//SYSLIN DD UNIT=SYSDA,DISP=(,PASS),

// SPACE=(80,(100,100),RLSE),

// DCB=(BLKSIZE=80,RECFM=F,LRECL=80)

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,

// SPACE=(121,(300,300),RLSE,,ROUND)

//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),

// SPACE=(CYL,(10,5))

//L EXEC PGM=IEWL,PARM=’XREF,LIST’,

// COND=(0,LT,C),REGION=4M

//SYSLIN DD DSN=*.C.SYSLIN,DISP=(OLD,DELETE)

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,

// SPACE=(121,(90,90),RLSE)

//SYSLMOD DD DISP=SHR,

// DSN=IMS.&SYS2.DBDLIB(&MBR)

//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),

// SPACE=(1024,(100,10),RLSE),DISP=(,DELETE)

Figure 3. JCL for DBDGEN Utility

//DBDGEN JOB MSGLEVEL=1

// EXEC DBDGEN,MBR=

//C.SYSIN DD *

 DBD

 DATASET

 SEGM

 FIELD DBD generation control statements

 LCHILD

 XDFLD

 DBDGEN

 FINISH

 END

/*

Figure 4. Procedure to Invoke DBDGEN

DBDGEN Procedure

12 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

RGN=

Specifies the region size for this execution. The default is 256KB.

SOUT=

Specifies the class assigned to SYSOUT DD statements.

SYS2=

Specifies an optional second level dsname qualifier for those data sets which

are designated as “Optional Replicate” in an XRF complex. When specified, the

parameter must be enclosed in quotes and must include a trailing period; for

example, SYS2='IMSA.'.

Step C

Step C is the assembly step.

DD Statements:

SYSIN DD

Defines the input data sets to step C. These DD statements must be provided

when invoking the procedure.

Related Reading: Refer to HLASM MVS & VM Programmer’s Guide for information

on assembling steps.

Step L

Step L is the link-edit step.

Example: This step can be run using AMODE=31, RMODE=24 instead of the

default AMODE=24, RMODE=24 by adding AMODE=31 to the link-edit EXEC

statement PARM list as shown as follows:

//L EXEC PGM=IEWL,PARM=’XREF,LIST,AMODE=31’,

// COND=(0,LT,C),REGION=120K

If you do not specify different values for AMODE or RMODE, the default values are

in effect. You must always run the link-edit step with RMODE=24.

Related Reading: Refer to z/OS MVS Program Management: User’s Guide and

Reference for more information about linkage editors.

DD Statements:

IMS.DBDLIB DD

Defines an output partitioned data set, IMS.DBDLIB, for the linkage editor.

DBDGEN Statements

Table 2 shows the statement instruction types used as input to the DBD generation

utility to define a database. Also included is the general use of each statement and

the number of each type used per DBD generation.

 Table 2. DBD Generation Statement Instruction Summary

PCB

Macro

General Use

Number used per DBD generation

HSAM GSAM

HISAM/

HDAM

PHDAM HIDAM PHIDAM MSDB DEDB Index PSINDEX Logical

[PRINT]
1

Controls

printing of

assembly

listing if

present

0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1

DBDGEN Procedure

Chapter 1. Database Description (DBD) Generation 13

Table 2. DBD Generation Statement Instruction Summary (continued)

PCB

Macro

General Use

Number used per DBD generation

HSAM GSAM

HISAM/

HDAM

PHDAM HIDAM PHIDAM MSDB DEDB Index PSINDEX Logical

DBD5 Defines

database

name

1 1 1 1 1 1 1 1 1 1 1

DATASET Defines a

data set

group within a

database

1 1 1/1-10 N/A 1-10 N/A 1 0 1 N/A 1

AREA5 Defines an

area within a

Fast Path

database

0 0 0 0 0 0 0 1-240 0 0

SEGM Defines a

segment type

within a data

set group or

area

1-255 0 1-255 1-255 1-255 1-255 1 1-127 12 12 1-255

[LCHILD] Defines a

logical or

index relation

—ship

between

segment

types

0 0 0-255 0-255 1-255 1-255 0 0 12 12 0

[FIELD]
3

Defines a field

within a

segment type

0-1000 0 1-1000 0-1000 1-1000 1-1000 0-255 1-1000 14 14 0

[XDFLD]
3

Defines fields

used with

secondary

indexes

0 0 0-1000 0-1000 0-1000 0-1000 0 0 0 0 0

DBDGEN Indicates the

end of DBD

generation

statements

1 1 1 1 1 1 1 1 1 1 1

FINISH Checks for

successful

DBD

generation

1 1 1 1 1 1 1 1 1 1 1

END Indicates end

of DBD

generation

input to the

z/OS

assembler

1 1 1 1 1 1 1 1 1 1 1

Notes:

1. For parameter information, see OS/VS-DOS/VSE-VM/370 Assembler Language

2. Maximum of 16 for a secondary index database.

3. The maximum combined total of FIELD and XDFLD statements per DBD generation is 1000.

4. Maximum of 1000 for a secondary index database.

5. All Full Function Database names and DEDB area names must be unique.

DBD Statement

The DBD statement names the database being described and provides DL/I with

information concerning its organization. There can be only one DBD control

statement in the control statement input deck.

The format of the DBD macro instruction for each database type is shown in the

following examples. A description of the statement parameters is in “DBD Statement

Parameter Descriptions” on page 22.

DBDGEN Statements

14 Utilities Reference: System

For details on the coding format for assembler macro instructions, refer to the

″Assembler Coding Conventions″ topic in the IBM Assembler Manual, publication

number SC26-4940-03.

HSAM Database DBD Statement

�� DBD NAME=dbname1 ,ACCESS= HSAM

SHSAM

NO

,DATXEXIT=

YES

 ��

GSAM Database DBD Statement

��

DBD

NAME=(dbname1)

,ACCESS=
 ,VSAM

(

GSAM

,BSAM

)

NO

,PASSWD=

YES

�

�
NO

,DATXEXIT=

YES

 ��

HISAM Database DBD Statement

��

DBD

NAME=(dbname1)
 ,VSAM

,ACCESS=

(

HISAM

)

SHISAM

�

�
NO

,PASSWD=

YES

�

�

(1)

NONE

EXIT=

(

A

C

)

,

,

(

A

)

C

 �

�
(2)

,VERSION='n'

NO

,DATXEXIT=

YES

 ��

A:

 (3) NOLOG

exitname

LOG

LOG

*

NOLOG

 ,NOLOG

B

,LOG

DBDGEN Statements

Chapter 1. Database Description (DBD) Generation 15

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (4)

,CASCADE

,NOCASCADE

,(CASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 Used for the Data Capture exit routine. You can specify more than one exit

routine on a DBD statement.

2 The default is an automatic DBDGEN time stamp.

3 If an exit routine is not required because only logging is being requested,

specify the exit name as * and the default logging parameter is LOG. If you do

specify an exit routine name, the default logging parameter is NOLOG.

4 Used to control the CASCADE options.

HDAM Database DBD Statement

��

DBD

NAME=(dbname1)
 ,VSAM

,ACCESS=

(

HDAM

,OSAM

)

�

�
 (1)

,RMNANE=(mod

)

,anch

,rbn

,bytes

NO

,PASSWD=

YES

�

�

�

�

(2)

NONE

EXIT=

(

A

C

)

,

,

(

A

)

C

(3)

,VERSION='n'

 �

�
NO

,DATXEXIT=

YES

 ��

A:

DBDGEN Statements

16 Utilities Reference: System

NOLOG

exitname

LOG

(4)

LOG

*

NOLOG

 ,NOLOG

B

,LOG

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (5)

,CASCADE

,NOCASCADE

,(CASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 Optional operands, such as anch and rbn, might be required by certain

randomizing modules. See the documentation for the randomizing module you

are using.

2 Used for the Data Capture exit routine. You can specify more than one exit

routine on a DBD statement.

3 The default is an automatic DBDGEN time stamp.

4 If an exit routine is not required because only logging is being requested,

specify the exit name as * and the default logging parameter is LOG. If you do

specify an exit routine name, the default logging parameter is NOLOG.

5 Used to control the CASCADE options.

PHDAM Database DBD Statement

��

DBD

NAME=(dbname1)
 ,VSAM

,ACCESS=

(

PHDAM

,OSAM

)

�

�
 (1)

,RMNANE=(mod

)

,anch

,rbn

,bytes

NO

,PASSWD=

YES

�

�

�

�

(2)

NONE

EXIT=

(

A

C

)

,

,

(

A

)

C

(3)

,VERSION='n'

 �

DBDGEN Statements

Chapter 1. Database Description (DBD) Generation 17

�
,PSNAME=(psname)

NO

,DATXEXIT=

YES

 ��

A:

 NOLOG

exitname

LOG

(4)

NOLOG

*

LOG

 ,NOLOG

B

,LOG

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (5)

,CASCADE

,NOCASCADE

,(CASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 Optional operands, such as anch and rbn, might be required by certain

randomizing modules. See the documentation for the randomizing module you

are using.

2 Used for the Data Capture exit routine. You can specify more than one exit

routine on a DBD statement.

3 The default is an automatic DBDGEN time stamp.

4 If an exit routine is not required because only logging is being requested,

specify the exit name as * and the default logging parameter is LOG. If you

specify an exit routine name, the default logging parameter is NOLOG.

5 Used to control the CASCADE options.

HIDAM Database DBD Statement

��

DBD

NAME=dbname1
 ,VSAM

,ACCESS=

(

HIDAM

,OSAM

)

NO

,PASSWD=

YES

�

DBDGEN Statements

18 Utilities Reference: System

�

�

�

(1)

NONE

EXIT=

(

A

C

)

,

,

(

A

)

C

(2)

,VERSION='n'

 �

�
NO

,DATXEXIT=

YES

 ��

A:

 NOLOG

exitname

LOG

(3)

LOG

*

NOLOG

 ,NOLOG

B

,LOG

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (4)

,CASCADE

,NOCASCADE

,(CASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 Used for the Data Capture exit routine. You can specify more than one exit

routine on a DBD statement.

2 The default is an automatic DBDGEN time stamp.

3 If an exit routine is not required because only logging is being requested,

specify the exit name as * and the default logging parameter is LOG. If you do

specify an exit routine name, the default logging parameter is NOLOG.

4 Used to control the CASCADE options.

PHIDAM Database DBD Statement

��

DBD

NAME=dbname1
 ,VSAM

,ACCESS=

(

PHIDAM

,OSAM

)

NO

,PASSWD=

YES

�

DBDGEN Statements

Chapter 1. Database Description (DBD) Generation 19

�

�

�

(1)

NONE

EXIT=

(

A

C

)

,

,

(

A

)

C

(2)

,VERSION='n'

 �

�
,PSNAME=(psname)

NO

,DATXEXIT=

YES

 ��

A:

 NOLOG

exitname

LOG

(3)

LOG

*

NOLOG

 ,NOLOG

B

,LOG

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (4)

,CASCADE

,NOCASCADE

,(CASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 Used for the Data Capture exit routine. You can specify more than one exit

routine on a DBD statement.

2 The default is an automatic DBDGEN time stamp.

3 If an exit routine is not required because only logging is being requested,

specify the exit name as * and the default logging parameter is LOG. If you

specify an exit routine name, the default logging parameter is NOLOG.

4 Used to control the CASCADE options.

MSDB Database DBD Statement

�� DBD NAME=dbname1 ,ACCESS=MSDB ��

DBDGEN Statements

20 Utilities Reference: System

DEDB Database DBD Statement

�� DBD NAME=dbname1 ,ACCESS=DEDB ,RMNAME= (mod,...XCI) �

�

�

�

(1)

NONE

EXIT=

(

A

C

)

,

,

(

A

)

C

(2)

,VERSION='n'

 ��

A:

 NOLOG

exitname

LOG

(3)

LOG

*

NOLOG

 ,NOLOG

B

,LOG

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (4)

,CASCADE

,NOCASCADE

,(CASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 Used for the Data Capture exit routine. You can specify more than one exit

routine on a DBD statement.

2 The default is an automatic DBDGEN time stamp.

3 If an exit routine is not required because only logging is being requested,

specify the exit name as * and the default logging parameter is LOG. If you do

specify an exit routine name, the default logging parameter is NOLOG.

4 Used to control the CASCADE options.

INDEX Database DBD Statement

��

DBD

�

 ,

NAME=(dbname1

)

,dbname2

�

DBDGEN Statements

Chapter 1. Database Description (DBD) Generation 21

�
 (1) ,PROT

,ACCESS=(INDEX,VSAM

)

,NOPROT

,DOSCOMP

NO

,PASSWD=

YES

�

�
NO

,DATXEXIT=

YES

 ��

Notes:

1 A secondary index must use VSAM.

PSINDEX Database DBD Statement

��

DBD

NAME=dbname1
 (1) ,PROT

,ACCESS=(PSINDEX,VSAM

)

,NOPROT

�

�
NO

,PASSWD=

YES

NO

,DATXEXIT=

YES

 ��

Notes:

1 A secondary index must use VSAM.

LOGICAL Database DBD Statement

�� DBD NAME=dbname1 ,ACCESS=LOGICAL ��

DBD Statement Parameter Descriptions

DBD

Identifies this statement as the DBD control statement.

NAME=

Specifies the name of the DBD for the database being described. The name

can be from 1 to 8 alphanumeric characters and can be the same as that

specified in the DD1= parameter of the first DATASET control statement. For a

shared secondary index database, the names of up to 16 secondary index

DBDs can be specified.

 Do not give a DBD the same name as an existing PSB. Using an existing name

can cause unpredictable results. An error occurs at ACB generation time.

ACCESS=

Specifies the DL/I access method and the operating system access method to

be used for this database. This keyword also defines the secondary index

database as a HALDB. The value of the parameter has the following meaning:

HSAM

Means the hierarchical sequential access method (HSAM) is to be used for

DBDGEN Statements

22 Utilities Reference: System

||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|

the database described by this DBD. When HSAM is specified, and only

one segment type is defined in the HSAM database, this parameter defaults

to SHSAM.

SHSAM

Specifies a simple HSAM database that contains only one fixed length

segment type. When a simple HSAM database is defined, no prefix is

required in occurrences of the segment type to enable IMS to process the

database.

GSAM

Means the generalized sequential access method (GSAM) is to be used for

the database described by the DBD. BSAM or VSAM can be specified as

the operating system access method. VSAM is the default. When GSAM is

specified, no SEGM control statement is allowed in the DBD generation.

HISAM

Means the hierarchical index sequential access method (HISAM) is to be

used for the database described by this DBD. VSAM can be specified as

the operating system access method. It is the default.

SHISAM

Specifies a simple HISAM database that contains only one fixed length

segment type. A simple HISAM database can only be specified when VSAM

is specified as the operating system access method. When a simple HISAM

database is defined, no prefix is required in occurrences of the segment

type to enable IMS to process the database.

HDAM

Means the hierarchical direct access method (HDAM) is to be used for the

database described by this DBD. OSAM or VSAM can be specified as the

operating system access method. VSAM is the default.

PHDAM

Means the partitioned hierarchical direct access method (PHDAM) database

is to be used for the database described by the DBD. OSAM or VSAM can

be specified as the operating system access method. VSAM is the default.

HIDAM

Means the hierarchical indexed direct access method (HIDAM) is to be

used for the database described by the DBD. OSAM or VSAM can be

specified as the operating system access method. VSAM is the default.

PHIDAM

Means the partitioned hierarchical indexed direct access method (PHIDAM)

database is to be used for the database described by the DBD. OSAM or

VSAM can be specified as the operating system access method. VSAM is

the default.

MSDB

Means a main storage database (MSDB) is described by the DBD.

DEDB

Means a data entry database (DEDB) is described by the DBD.

INDEX

Creates the primary index to occurrences of the root segment type in a

HIDAM database, or creates a secondary index to a segment type in a

HISAM, HDAM or HIDAM database. For the primary or secondary index to

a HIDAM database, VSAM must be specified as the operating system

access method.

DBD PCB Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 23

The INDEX parameter is not used to define the primary index of a PHIDAM

database.

PROT or NOPROT

Applies only to secondary index databases. The PROT parameter on

the DBD statement is an optional parameter that is used to ensure the

integrity of all fields in index pointer segments that are used by IMS.

Use of this parameter prevents an application program from doing a

replace operation on any field within an index pointer segment except

for fields within the user data portion of index pointer segments. When

PROT is specified, delete operations are still enabled for index pointer

segments. If PROT is specified and a delete is issued for an index

pointer segment, the index target segment pointer in the index pointer

segment is deleted. However, the index source segment that caused

the index pointer segment to be created originally is not deleted. If

NOPROT is specified, an application program can replace all fields

within an index pointer segment except the constant, search, and

subsequence fields. Inserts to an index database are invalid under all

conditions. PROT is the default for this parameter.

DOSCOMP

Must be specified if the database is an index, and it was created using

DLI/DOS. DLI/DOS index databases contain a segment code as part of

the prefix. Selection of the DOSCOMP parameter causes IMS to expect

this code to be present in the defined database, and to process in a

way that preserves this code. This includes providing a segment code

for new segments being inserted. The DOSCOMP parameter can only

be specified for databases that use VSAM. The DOSCOMP parameter

is not supported for PHDAM, PHIDAM, or PSINDEX databases.

PSINDEX

Creates the partitioned secondary index to a segment type in PHDAM and

PHIDAM databases. VSAM must be specified as the operating system

access method. VSAM is the default.

PROT or NOPROT

Applies only to secondary index databases. The PROT parameter on

the DBD statement is an optional parameter that is used to ensure the

integrity of all fields in index pointer segments that are used by IMS.

Use of this parameter prevents an application program from doing a

replace operation on any field within an index pointer segment except

for fields within the user data portion of index pointer segments. When

PROT is specified, delete operations are still enabled for index pointer

segments. If PROT is specified and a delete is issued for an index

pointer segment, the index target segment pointer in the index pointer

segment is deleted. However, the index source segment that caused

the index pointer segment to be created originally is not deleted. If

NOPROT is specified, an application program can replace all fields

within an index pointer segment except the constant, search, and

subsequence fields. Inserts to an index database are invalid under all

conditions. PROT is the default for this parameter.

LOGICAL

Means that the database described by this DBD is a LOGICAL database. A

LOGICAL database is composed of one or more physical databases. A

LOGICAL DBD generation is meaningful only when physical DBD

generations exist that define the segment types that are referenced by

SEGM statements in a LOGICAL DBD generation.

DBD PCB Parameter Descriptions

24 Utilities Reference: System

PSNAME=

Specifies the module that selects the HALDB partition for PSINDEX, PHDAM,

or PHIDAM databases. The parameter parameter is a HALDB partition selection

exit routine module name. This parameter is only valid when

ACCESS=PSINDEX, PHDAM, or PHIDAM is specified.

 Exception: A user-provided HALDB partition selection routine is not needed if

root key ranges define HALDB partition membership.

RMNAME=

Specifies information used to manage data stored in a DEDB or in the primary

data set group of an HDAM or PHDAM database. This parameter is only valid

when ACCESS=HDAM, PHDAM, or DEDB is specified. The parameters of this

parameter are defined in the list that follows. A randomizing module controls

root segment placement in or retrieval from the DEDB, HDAM, or PHDAM

database. One or more modules, called randomizing modules, can be utilized

within the IMS system. A particular database has only one randomizing module

associated with it. A generalized module, which uses DBD generation-supplied

parameters to perform randomizing for a particular database, can be written to

service several databases. The purpose of a randomizing module is to convert

a value supplied by an application program for root segment placement in, or

retrieval from, a DEDB, HDAM, or PHDAM database into a relative block

number and anchor point number. You can randomize within an area by

selecting a two-stage randomizer. When you select a two-stage randomizer, the

number of root anchor points in an area can be changed without having to stop

all areas in the DEDB with the /DBRECOVERY command.

 For PHDAM databases, the randomizer module names and values become the

default for each partition. You can set a different randomizer name and values

for each partition during HALDB partition definition. HALDB partition selection is

done prior to invoking the randomizing module. The randomizing module selects

locations only within a partition.

mod

Specifies the 1- to 8-character alphanumeric name of a user-supplied

randomizing module that is used to store and access segments in this

DEDB, PHDAM, or HDAM database. Select a two-stage randomizer by

specifying the randomizer name in the mod parameter and 2 in the anchor

point parameter.

 Related Reading: Refer to IMS Version 9: Customization Guide for further

examples of HDAM, PHDAM, and Fast Path DEDB randomizing modules.

anch

Specifies the number of root anchor points desired in each control interval

or block in the root addressable area of an HDAM or PHDAM database.

The default value of this parameter is one. The anch parameter must be an

unsigned decimal integer and must not exceed 255. Typical values are from

1 to 5. Select a two-stage randomizer by specifying the randomizer name in

the mod parameter and 2 in the anchor point parameter.

 When a user randomizing routine produces an anchor point number greater

than the number specified for this parameter, the anchor point used is the

highest numbered one in the control interval or block. When a randomizing

routine produces an IMS anchor point number of zero, IMS uses anchor

point one in the control interval or block.

 The number of root anchor point for the DEDB is always 1.

DBD PCB Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 25

rbn

Specifies the maximum relative block number value that the user wants to

allow a randomizing module to produce for this database. This parameter is

for HDAM or PHDAM databases only. This value determines the number of

control intervals or blocks in the root addressable area of an HDAM or

PHDAM database. The rbn parameter must be an unsigned decimal integer

whose value does not exceed 2²⁴-1. If this parameter is omitted, no upper

limit check is performed on the rbn created by the randomizing module. If

this parameter is specified, but the users randomizing module produces an

rbn greater than this parameter, the highest control interval or block in the

root addressable area is used by IMS. If a user randomizing module

produces a block number of zero, control interval or block one is used by

IMS.

 In an HDAM, PHDAM, HIDAM, or PHIDAM OSAM data set, the first bit map

is in the first block of the first extent of the data set. In an HDAM, PHDAM,

HIDAM, or PHIDAM database, the first control interval or block of the first

extent of the data set specified for each data set group is used for a bit

map. In a VSAM data set, the second control interval is used for the bit

map and the first control interval is reserved. IMS adds one to the block

calculated by the randomizer.

bytes

Specifies the maximum number of bytes of database record that can be

stored into the root addressable area in a series of inserts unbroken by a

call to another database record. This parameter is for HDAM and PHDAM

databases only. If this parameter is omitted, no limit is placed on the

maximum number of bytes of a database record that can be inserted into

this database’s root segment addressable area. The bytes parameter must

be an unsigned decimal integer whose value does not exceed 2²⁴-1. When

the “rbn” parameter is omitted, the “bytes” parameter is ignored, which in

turn, leaves no limit on the number of bytes of a database record that can

be inserted into the root addressable area.

 If the “bytes” parameter is specified for an HDAM or PHDAM database and

the length of the database record is larger, the remainder of the record is

inserted into the overflow area following the current end-of-file (EOF). This

requires that enough space be available after the current EOF to contain

the remainder of all database records that exceed the “bytes” specification.

If sufficient space is not available in the overflow area following the current

EOF, the database records are inserted randomly in the database.

XCI

Specifies that this DEDB uses the Extended Call Interface when making

calls to the randomizer. This option allows the randomizer to be called in

three different ways. On initialization of IMS or during a /START DB

command, IMS will first load the randomizer and then make an INIT call to

the randomizer to invoke its initialization routines. During a /DBR DB

command, IMS will make a TERM call to the randomizer to invoke the

termination routines before unloading the randomizer. The normal

randomizing call to the randomizer is made when the application issues a

GU or ISRT call on a root segment. The XCI option is only valid for DEDBs.

PASSWD=

Prevents accidental access of IMS databases by non-IMS programs.

YES

Causes DL/I open to use the DBDNAME for this DBD as the VSAM

password when opening any data set for this database. This parameter is

DBD PCB Parameter Descriptions

26 Utilities Reference: System

only valid for DBDs that use VSAM as the access method. PASSWD=YES

is invalid for ACCESS=LOGICAL, MSDB, or DEDB. When the user defines

the VSAM data sets for this database using the DEFINE statement of z/OS

Access Method Services, the control level (CONTROLPW) or master level

(MASTERPW) password must be the same as the DBDNAME for this DBD.

All data sets associated with this DBD must use the same password.

 Related Reading: For a description of the use and format of passwords for

VSAM, see z/OS DFSMS Access Method Services for Catalogs.

 For the IMS DB/DC system, all VSAM OPENs bypass password checking

and thus avoid operator password prompting. For the IMS DB system,

VSAM password checking is performed. In the batch environment, operator

password prompting occurs if PASSWD=NO is specified and the data set is

password protected at the control level (CONTROLPW) with passwords not

equal to DBDNAME.

NO

Specifies that the DBDNAME for this DBD should not be used as the VSAM

password. NO is the default.

EXIT=

Specifies that the Data Capture exit routine is used. You can specify multiple

exit routine names on a single DBD statement. You can select different data

options for each exit routine. The order you list the exit routines within the

parameter determines the order the exit routines are called for the segment.

 When specified on the DBD statement, the EXIT= parameter applies to all

segments within the physical database. The following physical databases are

supported by this exit routine:

v HISAM

v HDAM

v PHDAM

v HIDAM

v PHIDAM

v SHISAM

v DEDB

 If the exit routine is not specified for a supported database organization or a

supported segment type, DBDGEN fails.

 Related Reading: For more information about this exit routine, see IMS Version

9: Administration Guide: Database Manager.

 The EXIT= parameter can also be specified on the SEGM statement.

exit_name

Specifies the name of the exit routine that processes the data. This

parameter is required. The name must follow standard naming conventions.

A maximum of 8 alphanumeric characters is allowed. You can specify an

asterisk (*) instead of an exit routine name to indicate that you want logging

only. If this is done, the logging parameter default is LOG. If you do specify

an exit routine, the logging parameter default is NOLOG. All of the following

operands are optional.

KEY

Specifies the exit routine is passed the physical concatenated key. This key

identifies the physical segment updated by the application.

DBD PCB Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 27

KEY is the default.

NOKEY

Can be specified when the physical concatenated key is not required for the

exit routine.

 NOKEY is optional.

DATA

Specifies that the physical segment data is passed to the exit routine for

updating. When DATA is specified and a Segment Edit/Compression exit

routine is also used, the data passed is expanded data.

 DATA is the default.

NODATA

Can be specified when the exit routine does not require segment data. Use

NODATA to avoid the overhead created from saving physical segment data.

 NODATA is optional.

NOPATH

Indicates the exit routine does not require data from segments in the

physical root’s hierarchical path. NOPATH is an efficient way to avoid the

processing time needed to retrieve path data.

 NOPATH is the default.

PATH

Can be specified when the data from each segment in the physical root’s

hierarchical path must be passed to the exit routine for an updated

segment. Use PATH to allow an application to separately access several

segments for insertion, replacement, or deletion.

 You can use the PATH option when information from segments in the path

is needed to compose the DB2 primary key. The DB2 primary key would

then be used in a propagation request for a dependent segment update.

Typically, you need this kind of segment information when the parent

contains the key information and the dependent contains additional data

that would not fit in the parent segment.

 You can also use PATH when additional processing is necessary. It could

be that you are not accessing several segments with one call; for example,

you did not invoke the D command code. In this case, additional processing

is necessary if the application is to access each segment with a separate

call.

 PATH is optional.

CASCADE

Indicates the exit routine is called when DL/I deletes this segment because

the application deleted a parent segment. Using CASCADE ensures that

data is captured for the defined segment.

 Related Reading: For a detailed discussion of delete rules for the Data

Capture exit routine, see IMS Version 9: Administration Guide: Database

Manager.

 CASCADE is the default.

 The CASCADE parameter has three suboptions. These suboptions control

the way data is passed to the exit routine. If you specify suboptions, you

must enclose the CASCADE parameter and the suboptions within

parentheses.

DBD PCB Parameter Descriptions

28 Utilities Reference: System

KEY

Passes the physical concatenated key to the exit. This key identifies the

segment being deleted by a cascade delete.

 KEY is the default.

NOKEY

Can be used when the exit routine does not require the physical

concatenated key of the segment being deleted.

 NOKEY is optional.

DATA

Passes segment data to the exit routine for a cascade delete. DATA

also identifies the segment being deleted when the physical

concatenated key is unable to do so.

 DATA is the default.

NODATA

Can be specified when the exit routine does not require segment data.

NODATA reduces the significant storage and performance requirements

that result from saving physical segment data.

 NODATA is optional.

NOPATH

Indicates the exit routine does not require segment data in the physical

root’s hierarchical path. Use NOPATH to eliminate the substantial

amount of path data needed for a cascade delete.

 NOPATH is the default.

PATH

Can be specified to allow an application to separately access several

segments for a cascade delete.

 PATH is optional.

NOCASCADE

Indicates the exit routine is not called when DL/I deletes this segment.

Cascade delete is not necessary when a segment without dependents is

deleted.

 NOCASCADE is optional.

LOG

Requests that the data capture control blocks and data be written to the

IMS system log.

NOLOG

Indicates that no data capture control blocks or data is written to the IMS

system log.

VERSION(character string)

Specifies a character string used to identify the DBD. The exit routine is

passed this character string so it can determine the DBD version used to

update the database.

character string

The character-string length can be up to 255 bytes. There are no

checks to ensure that the proper values have been inserted. Therefore,

it is important that the variable-length character string be updated

whenever the DBD changes.

DBD PCB Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 29

If you do not specify a character string, a 13-character time stamp is

generated by DBDGEN. It represents the date and time the DBDGEN

was completed. Its format is:

MM/DD/YYHH.MM

Where:

MM The month

DD The day of the month

YY The last two digits of the year

HH The hour on a 24-hour clock

MM The minutes

DATXEXIT=

Allows a user exit, DFSDBUX1, to be used by an application while processing

this database. If no parameter is specified, NO is implied.

YES

Specifies that the user exit, DFSDBUX1, is called at the beginning and at

the end of each database call. If DFSDBUX1 is not loaded, IMODULE is

called to load it.

NO

Allows the user exit, DFSDBUX1, to be called, provided DFSDBUX1 is

located in the SDFSRESL. If DGSDBUX1 does not need to be called again

for the DBD, X’FF’ is returned in the SRCHFLAG field in the JCB, and

DFSDLA00 dynamically marks the DBD as not requiring the exit. In this

case, the user exit is not called again for that DBD for the duration of the

IMS session, unless the DMB is purged from the DMB pool.

DATASET Statements

A DATASET statement defines a data set group within a database.

Requirement: At least one DATASET statement is required for each DBD

generation.

Restriction: Data set statements are not allowed for HALDBs. Partitions are

defined outside DBDGEN.

DEDB databases use AREA statements, not DATASET statements (see “AREA

Statement” on page 44).

The maximum number of DATASET statements used depends on the type of

databases. Some databases can have only one data set group. Data Entry

databases can have 1 to 2048 areas defined. HDAM and HIDAM databases can be

divided into 1 to 10 data set groups subject to the rules in “Rules for Dividing a

Database into Multiple Data Set Groups” on page 31.

In the DBDGEN input deck, a DATASET statement precedes the SEGM statements

for all segments that are to be placed in that data set group. The first DATASET

statement of a DBD generation defines the primary data set group. Subsequent

DATASET statements define secondary data set groups.

DBD PCB Parameter Descriptions

30 Utilities Reference: System

Exception: The only exception to the order of precedence is when the LABEL field

of a DATASET statement is used. Refer to “Use of the LABEL Field” on page 32 for

this exception.

Comments must not be added to a subsequent labeled DATASET macro that has

no operands.

Rules for Dividing a Database into Multiple Data Set Groups

HDAM and HIDAM databases can be divided into a maximum of 10 data set groups

according to the following restrictions. Each DATASET statement creates a separate

data set group, except for the case explained in “Use of the LABEL Field” on page

32. The first DATASET statement defines the primary data set group. Subsequent

DATASET statements define secondary data set groups.

For HDAM or HIDAM databases, you can use DATASET statements to divide the

database into multiple data set groups at any level of the database hierarchy;

however, the following restriction must be met. A physical parent and its physical

children must be connected by physical child/physical twin pointers, as opposed to

hierarchic pointers, when they are in different data set groups, as shown in

Figure 5.

The connection between segment A (the root segment in the primary data set

group), and segment B (a first level dependent in the secondary data set group)

must be made using a physical child. The connection between segment C (a first

level dependent in the primary data set group) and segment D (a second level

dependent in the secondary data set group) must also be made using a physical

child. The connection between multiple occurrences of segments B and D under

one parent must be made using physical twin pointers.

Figure 5. Connections through Physical Child and Physical Twin Pointers

DATASET Statements

Chapter 1. Database Description (DBD) Generation 31

Use of the LABEL Field

In HDAM or HIDAM databases, it is sometimes desirable to place segments in data

set groups according to segment size or frequency of access rather than according

to their hierarchic position in the data structure. To achieve this while still observing

the DBD generation rule that the SEGM statements defining segments must be

arranged in hierarchic sequence, the LABEL field of the DATASET statement is

used.

An identifying label coded on a DATASET statement is referenced by coding the

same label on additional DATASET statements. Only the first DATASET statement

with the common label can contain operands that define the physical characteristics

of the data set group. All segments defined by SEGM statements that follow

DATASET statements with the same label are placed in the data set group defined

by the first DATASET statement with that label.

You can use this capability in much the same manner as the CSECT statement of

assembler language, with the following restrictions:

v A label used in the label field of a DATASET statement containing operands

cannot be used on another DATASET statement containing operands.

v Labels must be alphanumeric and must be valid labels for an assembler

language statement.

v Unlabeled DATASET statements must have operands.

Referring to Figure 5 on page 31, Table 3 illustrates use of the label field of the

DATASET statement to group segment types of the same size in the same data set

groups.

 Table 3. Using the Label Field to Group Segment Types

Label Operation Parameter

 N/A DBD NAME=HDBASE,ACCESS=HDAM,

RMNAME=(RANDMODL,1,500,824)

DSG1 DATASET

SEGM

DD1=PRIMARY,BLOCK=1648

NAME=SEGMENTA,BYTES=100

DSG2 DATASET

SEGM

DD1=SECOND,BLOCK=3625

NAME=SEGMENTB,BYTES=50,PARENT=SEGMENTA

DSG1 DATASET

SEGM

NAME=SEGMENTC,BYTES=100,PARENT=SEGMENTA

DSG2 DATASET

SEGM

NAME=SEGMENTD,BYTES=50,PARENT=SEGMENTC

 N/A DBDGEN N/A

 N/A FINISH N/A

 N/A END N/A

The segments named SEGMENTA and SEGMENTC exist in the first data set

group. The segments named SEGMENTB and SEGMENTD exist in the second

data set group.

The format of the DATASET statement for each database type is shown in the

following examples. The parameters are described in “DATASET Statement

Parameter Description” on page 35.

DATASET Statements

32 Utilities Reference: System

HSAM Database DATASET Statement

�� DATASET DD1=ddname1 ,DD2=ddname2

(1)

,BLOCK=(blkfact1,blkfact2)

 �

�
(1)

,RECORD=(reclen1,reclen2)

 ��

Notes:

1 If you do not specify a value, DBDGEN generates the value used.

GSAM Database DATASET Statement

�� DATASET DD1=ddname1

,DD2=ddname2

(1)

,BLOCK=(blkfact1)

 �

�

(1)

,SIZE=size1

(1)

,RECORD=(reclen1,reclen2)

 (2)

,RECFM=recfm1

��

Notes:

1 If you do not specify a value, DBDGEN generates the value used.

2 RECFM is only valid for a GSAM database.

HISAM Database DATASET Statement

��

DATASET

DD1=ddname1
 (1)

,OVFLW=ddname3

�

�
(2)

,BLOCK=(blkfact1,blkfact2)

(2)

(3)

,SIZE=(size1,size2)

 �

�
(2)

,RECORD=(reclen1,reclen2)

 ��

Notes:

1 If a HISAM database has only one segment type defined, you do not need to

specify OVFLW. OVFLW is invalid in a simple HISAM database.

2 If you do not specify a value, DBDGEN generates the value used.

3 The valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2

KB, 4 KB, 8 KB, and multiples of 2 KB up to 28 KB.

DATASET Statements

Chapter 1. Database Description (DBD) Generation 33

HDAM Database DATASET Statement

�� DATASET DD1=ddname1

(1)

,BLOCK=size0

(2)

,SIZE=(,size1)

 �

�
,SCAN=cyls

,FRSPC=(fbff,fspf)

,SEARCHA=

0

1

2

 ��

Notes:

1 If you do not specify a value, DBDGEN generates the value used.

2 The valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2

KB, 4 KB, 8 KB, and multiples of 2 KB up to 28 KB. To ensure future

compatibility, use only CI sizes that are multiples of 4KB.

HIDAM Database DATASET Statement

�� DATASET DD1=ddname1

(1)

,BLOCK=size0

(2)

,SIZE=(,size1)

 �

�
,SCAN=cyls

,FRSPC=(fbff,fspf)

,SEARCHA=

0

1

2

 ��

Notes:

1 If you do not specify a value, DBDGEN generates the value used.

2 The valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2

KB, 4 KB, 8 KB, and multiples of 2 KB up to 28 KB. To ensure future

compatibility, use only CI sizes that are multiples of 4 KB.

MSDB Database DATASET Statement

�� DATASET ,REL=(NO)

TERM

,fldnm

FIXED

,fldnm

DYNAMIC

,fldnm

 ��

INDEX Database DATASET Statement

��

DATASET

DD1=ddname1
 (1)

,OVFLW=ddname3

�

DATASET Statements

34 Utilities Reference: System

�
(2)

,BLOCK=(blkfact1,blkfact2)

(2)

(3)

,SIZE=(size1,size2)

 �

�
(2)

,RECORD=(reclen1,reclen2)

 ��

Notes:

1 If the keys of all the index segments are unique, you do not need to specify

OVFLW.

2 If you do not specify a value, DBDGEN generates the value used.

3 The valid parameter specifications for a SIZE keyword are 512 bytes, 1 KB, 2

KB, 4 KB, 8 KB, and multiples of 2 KB up to 28 KB. To ensure future

compatibility, use only CI sizes that are multiples of 4 KB.

LOGICAL Database DATASET Statement

�� DATASET LOGICAL ��

DATASET Statement Parameter Description

DATASET

Identifies this as a DATASET control statement for a DL/I database.

LOGICAL

Indicates a logical database is being defined in this DBD generation. This

parameter must be specified if the ACCESS=LOGICAL parameter is specified

on this DBD generation’s DBD statement. If LOGICAL is specified, all other

operands are invalid; this must be the only DATASET statement for the DBD

generation. The SEGM statements that follow this statement can only specify

NAME=, PARENT=, and SOURCE= operands. No FIELD, XDFLD, or LCHILD

statements can be used in a LOGICAL DBD generation.

DD1=

Specifies the ddname of the primary data set in this data set group. ddname1

must be a 1- to 8-character alphanumeric name. IMS use of the data set

indicated by this parameter depends on the type of database being defined as

shown in the following list:

Database Type Use of the DD1= parameter

HSAM ddname of input data set

GSAM ddname of input data set

HISAM ddname of primary data set in data set group

HIDAM ddname of data set in data set group

HDAM ddname of data set in data set group

MSDB Parameter is invalid

DEDB Name of defined area

INDEX ddname of primary data set

DATASET Statements

Chapter 1. Database Description (DBD) Generation 35

LOGICAL Parameter is invalid

For an HSAM or GSAM database, this input data set is used when an

application program retrieves data from the database.

DEVICE=

Specifies the physical storage device type on which the data set in this data set

group is stored.

 The default is 3380. If you code any other device, it will be ignored.

DD2=

Specifies the 1- to 8-character alphanumeric ddname of the output data set

required for an HSAM or simple HSAM database and optional for a GSAM

database. If it is omitted, ddname1 is assumed. This output data set is used by

HSAM or GSAM when loading the database.

OVFLW=

Specifies the 1- to 8-character alphanumeric ddname of the overflow data set in

this data set group. This parameter must be specified for:

v An INDEX database that contains index pointer segments with nonunique

keys

v All data set groups of a HISAM database except when only one segment

type is defined in the HISAM database

The ddnames used in DD1, DD2, or OVFLW subparameters must be unique

within an IMS system or account. Nonunique ddnames in two or more DBDs

might result in destruction of the database. One situation that can result in

destruction of a database is if both ddnames were inadvertently used

concurrently (both used in two different message regions of a data

communications system or in two PCBs of one PSB used in a batch DL/I region

of a database only system).

 The following restrictions apply:

v The OVFLW parameter is not allowed when a simple HISAM database is

defined.

v When a HISAM database that contains only one segment type is defined, the

OVFLW parameter does not have to be specified.

v No OVFLW parameter on the DATASET statement is required for the index

DBD because all index segments are inserted in the key sequenced data set

of the index.

BLOCK=

Is used to specify the blocking factors (blkfact1, blkfact2) to be used for data

sets in a data set group for HSAM, SHSAM, GSAM, HISAM, SHISAM, and

INDEX databases, or is used to specify the block size or control interval size

without overhead (size0) for the data set in a data set group for HDAM and

HIDAM databases. Table 4 on page 37 explains the use of the BLOCK= and

RECORD= operands.

 For HISAM, SHISAM, and INDEX databases that use VSAM as the access

method, use the SIZE= parameter to specify control interval size in place of the

BLOCK= parameter. If the SIZE= keyword is used for a HISAM, SHISAM, or

INDEX database, the BLOCK= keyword is invalid.

 In cases where the RECORD= and BLOCK= operands are used, the resulting

control interval size must be a multiple of 512 when the resulting size is less

than 8192 bytes. If the product of the record length specified times the blocking

factor specified plus VSAM overhead is not a multiple of 512 and is less than

DATASET Statement Parameter Descriptions

36 Utilities Reference: System

8192 bytes, the resulting control interval size is obtained by rounding the value

up to the next higher multiple of 512. Control interval sizes from 8192 to 30720

bytes (maximum allowed size) must be in multiples of 2048 bytes. When the

product of the RECORD= and BLOCK= operands plus VSAM overhead is from

8192 to 30720 bytes but is not a multiple of 2048, the resulting control interval

size is obtained by rounding the value up to the next higher multiple of 2048.

 The VSAM overhead is 7 bytes if the blocking factor is 1; otherwise, it is 10

bytes. The maximum block size for OSAM data sets is 32 KB.

 For HDAM and HIDAM databases, the BLOCK= parameter is used to enable

you to override DBDGEN’s computation of control interval or block size.

However, in addition to the value specified in the BLOCK= parameter, DBDGEN

adds space for root anchor points, a free space anchor point, and access

method overhead. The block or control interval size that results can be

determined by referring to the equations in the description of the SIZE=

parameter or by examining the output of DBDGEN. If SIZE= is not specified

and the access method is VSAM, DBDGEN calculates the best VSAM LRECL

value by equally distributing any unused space in the CI to each logical record

in the CI. If SIZE= is specified or the database is SHISAM, this is not done.

 Table 4. BLOCK= and RECORD= Operands

Database Type Use of BLOCK= and RECORD= Operands

HSAM

BLOCK=

blkfact1 applies to input data set and should always be 1.

 blkfact2 applies to output data set and should always be 1.

RECORD=

reclen1 is the input record length.

 reclen2 is the output record length.

HSAM is always unblocked; LRECL and BLKSIZE are equal.

GSAM

BLOCK=

blkfact1 applies to input/output data set.

 blkfact2 is an invalid subparameter.

RECORD=

reclen1 is the size of an LRECL length or maximum size for a

variable length record.

 reclen2 is the minimum size for a variable length record.

SIZE=

size1 is the BLKSIZE for input/output data set.

 size2 is an invalid subparameter.

HISAM

BLOCK=

blkfact1 is the primary data set blocking factor.

 blkfact2 is the overflow data set blocking factor.

RECORD=

reclen 1 is the data set logical record length.

 reclen2 is the overflow data set logical record length.

DATASET Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 37

Table 4. BLOCK= and RECORD= Operands (continued)

Database Type Use of BLOCK= and RECORD= Operands

HIDAM HDAM

BLOCK=

size0 is size without overhead of OSAM or VSAM data set

group

RECORD=

Is ignored.

MSDB BLOCK= and RECORD= operands are invalid

DEDB BLOCK= and RECORD= operands are invalid.

INDEX

BLOCK=

blkfact1 is the primary data set blocking factor.

 blkfact2 is the overflow data set blocking factor.

RECORD=

reclen1 is the primary data set logical record length.

 reclen2 is the overflow data set logical record length.

LOGICAL BLOCK= and RECORD= operands are invalid.

Note: When both reclen1 and reclen2 are specified in a DATASET statement, reclen2 must

be equal to or greater than reclen1, except for GSAM.

SIZE=

Is used to override DBDGEN’s computation of control interval or block size. If

the value specified for SIZE= is different from the control interval size defined to

VSAM using the Access Method Services, DL/I uses the value defined to

VSAM.

 For DL/I DBDs, you can effectively modify the DBD without a DBDGEN by

redefining the control interval size to VSAM using the Access Method Services.

This allows you to migrate databases to new devices without a DBDGEN. When

used, no overhead is added to the values specified and the value specified is

not validated by IMS.

 For VSAM data sets, when the values specified are less than 8192, they must

be a multiple of 512. If not a multiple of 512, DBDGEN rounds the value

specified to the next higher multiple of 512 and issue a warning message.

Values specified in the range of 8192 to 30720 bytes (maximum allowed size)

must be a multiple of 2048. If not a multiple of 2048, DBDGEN rounds the value

specified to the next higher multiple of 2048 and issue a warning message.

 For HISAM, SHISAM, primary HIDAM index, and secondary index databases,

size1 specifies the control interval or block size of the primary data set in a data

set group, and size2 specifies the control interval or block size of the overflow

data set.

 For HDAM and HIDAM databases, only the size1 parameter is used. The size1

parameter specifies the control interval or block size of the data set in the data

set group.

 When SIZE is specified for a HISAM or INDEX database, the RECORD

parameter must also be specified; the size value specified must be a multiple of

the record parameter in order to allow VSAM to open the data sets involved.

Following are equations that show the minimum block or control interval size

that you can specify for databases.

DATASET Statement Parameter Descriptions

38 Utilities Reference: System

The maximum block size of OSAM data sets is 32767 bytes. An OSAM data set

with an even length block size has an 8-gigabyte size limit. If the database is

saved with image copy, 32752 bytes is the maximum amount that can be

specified for the block size. Image copy processing module DFSUDMP0 adds

15 bytes to the block size for double-word alignment of its prefix, and the block

size cannot exceed 32767. If the DBDGEN utility specifies the block size, 32752

bytes is the maximum amount specified.

 Calculating SIZE= for HISAM Primary Data Set Groups, Primary HIDAM

Index, and Secondary Index Data Set Groups

 For the primary data set group of a HISAM or INDEX database, the minimum

control interval size that can be specified for the primary data set is given by

primary size and for the overflow data set by overflow size. The overflow data

set is not always required in the data set group.

v primary size ≥ ROOTSEG + OVERHEAD + VSAM CONTROL

v overflow size ≥ MAXSEG + OVERHEAD + VSAM CONTROL

ROOTSEG=

Maximum root segment size including the segment prefix. An INDEX VSAM

root segment prefix does not include a segment code, unless it was created

using DL/I DOS.

OVERHEAD=

Number of bytes required is:

7 Used for OSAM, if the database has more then one physical

segment type

3 Used for OSAM, if the database has only one physical segment

type

4 Used for INDEX VSAM databases with nonunique root segment

keys

0 Used for INDEX VSAM databases unique root segment keys, not

created using DL/I DOS.

5 bytes for all other VSAM databases.

VSAM CONTROL=

Number of bytes required is:

0 Used for OSAM, if the blocking factor is 1

7 Used for VSAM if the blocking factor is 1

10 Used for all other cases

MAXSEG=

Length in bytes of the longest segment in this data set group including the

segment prefix.

 Calculating SIZE= for HDAM Primary Data Set Group

 The minimum block or control interval size that you can specify for the primary

data set group of an HDAM database is dependent on whether or not the DBD

statement rbn parameter of the RMNAME parameter is specified.

v If rbn is specified, then the following two conditions must be met:

– size ≥ (RAPs*4) + FSEAP + 2 + VSAM CONTROL

– size ≥ MAXSEG + FSEAP + VSAM CONTROL

DATASET Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 39

v If rbn is not specified, then the following condition must be met:

– size ≥ MAXSEG + (RAPs*4) + FSEAP + VSAM CONTROL

RAPs=

Number of root anchor points specified for the root addressable area of the

database.

FSEAP=

4 bytes for a free space element anchor point.

VSAM CONTROL=

0 bytes for OSAM; 7 bytes for VSAM.

MAXSEG=

Length in bytes of the longest segment in this data set group including the

segment prefix.

 Calculating SIZE= for HDAM Secondary Data Set Groups

 size ≥ MAXSEG + FSEAP + VSAM CONTROL

MAXSEG=

Length in bytes of the longest segment in this data set group including the

segment.

FSEAP=

4 bytes for a free space element anchor point.

VSAM CONTROL=

0 bytes for OSAM; 7 bytes for VSAM.

 Calculating SIZE= for HIDAM Data Set Groups

 The minimum block or control interval size that you can specify for data set

groups in a HIDAM database is dependent on the access method specified.

The block or control interval size of the primary data set group is also

dependent on the type of pointers specified for the root segment type.

 If you specify forward-only hierarchic or physical twin pointers for the root

segment type of a HIDAM database, the block or control interval size specified

for the primary data set group must be:

 size ≥ MAXSEG + FSEAP + RAP + VSAM CONTROL

 Under any other conditions for primary or secondary data set groups, the block

or control interval size specified must be:

 size ≥ MAXSEG + FSEAP + VSAM CONTROL

MAXSEG=

Length in bytes of the longest segment in this data set group including the

segment prefix.

FSEAP=

4 bytes for a free space element anchor point.

VSAM CONTROL=

0 bytes for OSAM; 7 bytes for VSAM.

RAP=

4 bytes for one root anchor point.

DATASET Statement Parameter Descriptions

40 Utilities Reference: System

RECORD=(reclen1,reclen2)

Specifies the data management logical record lengths to be used for this data

set group. This parameter is optional and cannot be specified if

ACCESS=LOGICAL is used on the DBD statement. reclen1 and reclen2 must

be numeric values. The value of reclen2 must always be equal to or greater

than the value of reclen1 except for GSAM databases. The meaning of each of

the parameter’s parameters depends on the type of database being defined as

shown in Table 4 on page 37. For a simple HISAM database, the logical record

length specified must be the same as the segment length specified. The

minimum allowable logical record lengths for HISAM and INDEX DBDs are the

same as the minimum block or control interval sizes described for the

DATASET SIZE= parameter, except that VSAM CONTROL should be ignored.

In addition, for both the VSAM KSDS and ESDS for HISAM, and INDEX DBDs,

the logical record length specified must also be an even value. For VSAM

primary index (INDEX, VSAM) databases, the overflow logical record length

(reclen2) parameter should not be defined, because all index segments are

inserted into the key sequence data set. For a GSAM database, reclen1

specifies the size of a logical record for a fixed-length record or the maximum

size for a variable-length or undefined record. The value of reclen2 specifies the

minimum size for a variable-length or undefined record.

RECFM=

Specifies the format of the records in the data set. The record format is

specified using the characters defined as follows:

F The records are fixed-length.

FB The records are fixed-length and blocked.

V The records are variable-length.

VB The records are variable-length and blocked.

U The records are of undefined length.

This parameter is only valid for a GSAM database.

SCAN=cyls

Specifies the number of direct-access device cylinders to be scanned when

searching for available storage space during segment insertion operations. This

parameter is optional. It is only used when this DBD generation defines a

HIDAM or HDAM database. If specified, cyls must be a decimal integer whose

value does not exceed 255. Typical values are from 0 to 5. The default value is

3. If SCAN=0 is specified, only the current cylinder is scanned for space.

 Scanning is performed in both directions from the current cylinder position. If a

scan limit value causes scanning to include an area outside of the current

extent, IMS adjusts the scan limits so that scanning does not exceed current

extent boundaries. If space cannot be found for segment insertion within the

cylinder bounds defined by this parameter, space is used at the current end of

the data set group for the database.

FRSPC=

Specifies how free space is to be distributed in an HDAM or HIDAM database.

The free block frequency factor (fbff) specifies that every nth control interval or

block in this data set group is left as free space during database load or

reorganization (where fbff=n). The range of fbff includes all integer values from

0 to 100 except fbff=1. The fspf is the free space percentage factor. It specifies

the minimum percentage of each control interval or block that is to be left as

free space in this data set group. The range of fspf is from 0 to 99. The default

value for fbff and fspf is 0. If the total of the percentage of free space specified

DATASET Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 41

and any segment size exceeds the control interval or block size, a warning

message that flags oversized segments is issued by DBDGEN. When loading

oversized segments, the “fspf” specification is ignored and one control interval

or block is used to load each oversized segment.

 When you specify the first parameter, FBFF, realize that a smaller value

increases the frequency of free space in the database. A value of 2, for

example, would mean that after every piece of data there would be a free

space block. This causes system performance degradation when running

reorganization or load utilities because of the extra processing required for the

free space blocks.

SEARCHA=

Specifies the type of HD space search algorithm that IMS uses to insert a

segment into an HD database.

0 Specifies that IMS chooses which HD space search algorithm to use. This

is the default. For this release, IMS uses the same algorithm it would use if

you had specified SEARCHA=2.

1 Specifies that IMS uses the HD space search algorithm that does not

search for space in the second-most desirable block or CI.

2 Specifies that IMS uses the HD space search algorithm that includes a

search for space in the second-most desirable block or CI.

 Related Reading: Refer to IMS Version 9: Administration Guide: Database

Manager for more information about the HD space search algorithm.

REL=

Defines whether an MSDB is a non-terminal-related (NO or TERM) or a

terminal-related (FIXED and DYNAMIC) MSDB. There is no ownership of

segments in non-terminal-related MSDBs.

 MSDBs with terminal-related keys are not supported for ETO in IMS™ V5 or

above. Other types of MSDBs are still supported.

 With terminal-related MSDBs, each segment is assigned to a different LTERM.

The LTERM name is the segment key but is not contained in the segment.

Each LTERM owns no more than one segment per MSDB, and only the owner

can alter a segment.

NO

Specifies a non-terminal-related MSDB without terminal-related keys. The

key and the sequence field are part of the segment.

TERM

Specifies a non-terminal-related MSDB with terminal-related keys. The key

is the LTERM name (not part of the segment) and there is no sequence

field.

FIXED

Specifies a terminal-related fixed MSDB. The LTERM name is the segment

key. Segment updates are allowed. Segment insertions and deletions are

not allowed.

DYNAMIC

Specifies a terminal-related dynamic MSDB. The LTERM name is the

segment key. Segments can be inserted and deleted. No more than one

insertion or deletion can be made to the same MSDB from a single LTERM

within one sync processing interval.

DATASET Statement Parameter Descriptions

42 Utilities Reference: System

search field name

Specifies a 1- to 8-character alphanumeric name. The name must not be

the same as any other field name defined in a FIELD statement.

 Because a sequence field cannot be defined for an MSDB using an LTERM

name as a segment key (REL=TERM, FIXED, or DYNAMIC), a search field

name is provided to allow qualified calls. The only valid value in an SSA is

an LTERM name. Therefore, the search field is treated as an 8-byte

character field and no further definition is provided.

Data Sets in IMS Data Set Groups

The DD statements for non-HALDB data sets in each IMS database must be

provided with each job that accesses the database. For databases used by

message or batch message processing programs, you must include DD statements

in the JCL for the IMS control region. For databases used exclusively in the batch

processing environment, you must include DD statements in the JCL for the batch

processing region. In a z/OS online environment, databases can be dynamically

allocated.

DD statements are not required for HALDB data sets, because they are dynamically

allocated.

DD Statements Required for VSAM

When the operating system access method for a database is VSAM, one DD

statement is required for each KSDS and one for each ESDS. The parameters

required on the DD statements have the following format:

//DDname DD DISP=SHR,DSNAME=

UNIT=, VOLSER=, and SPACE= parameters are not required because all VSAM

data sets are cataloged.

For a HISAM database, two DD statements are required: one for the KSDS and

one for the ESDS. If the HISAM database has only one segment type defined, only

the KSDS DD statement is required.

For an HDAM or HIDAM database, one DD statement is required for each data set

group. For the prime index of a HIDAM database one DD statement is required for

the KSDS.

For secondary index databases with unique keys one DD statement is required for

the KSDS.

For secondary index databases with nonunique keys, two DD statements are

required; one for the KSDS and one for the ESDS. Note that secondary index

databases with nonunique keys are not supported for HALDB. In addition to the DD

statements defining VSAM data sets, a DD statement specifying a data set

containing parameters defining the IMS VSAM buffer pool must be provided for

batch regions. The DDNAME for this DD statement is DFSVSAMP. For online IMS

execution, this information is provided in a member of the IMS.PROCLIB data set

with member name DFSVSMxx.

Related Reading: Refer to IMS Version 9: Installation Volume 2: System Definition

and Tailoring for more information on the IMS.PROCLIB data set.

DATASET Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 43

DD Statements Required for OSAM

Related Reading: Refer to the IMS Version 9: Customization Guide for Operating

system procedures for execution of all IMS region types. The appropriate DD

statements must be appended to these procedures.

For HSAM, you must provide a DD statement for either input or output in the

following format:

//DDname DD DSNAME= ,UNIT= ,VOL=SER= ,

// DISP= ,DCB=

Where the DD statement is for an HSAM output data set, the data set must be

preallocated, or the SPACE= parameter must be present when a direct-access

storage device is used.

RECFM=FB is optional, but if used, must be specified at load time. RECFM=F must

not be specified.

For an OSAM data set, the LRECL, BLKSIZE, and BUFL subparameters of the

DCB parameter should be omitted. This information is obtained from the DBD and

cannot be overridden.

For HDAM or HIDAM, a DD statement is required for the OSAM data set of each

data set group. The format is as follows:

//dd1 DD DSNAME= ,UNIT= ,VOL=SER= ,

// DISP= ,DCB=(DSORG=PS[,OPTCD=W])

When the HDAM or HIDAM database is being created, the OSAM data set must be

preallocated, or the SPACE= parameter must be present.

If a model DSCB is to be used to describe a generation data set, the LRECL,

RECFM, and BLKSIZE parameters must be omitted from the model DSCB. This

information is obtained from the DBD and cannot be overridden.

AREA Statement

Restriction: AREA statements are not allowed for HALDBs. Partitions are defined

outside DBDGEN.

DEDB databases use an AREA statement to define an area within a database. In

the DBDGEN input deck for a DEDB, all AREA statements must be placed between

the DBD statement and the first SEGM statement. At least one AREA statement is

required, but as many as 2048 AREA statements can be used to define multiple

areas.

An example of the AREA statement follows. The parameters are explained in

“AREA Statement Parameter Description” on page 45.

DEDB Database AREA Statement

��

AREA

DD1=ddname1
 (1)

,SIZE=size1

,UOW=(number1,overflow1)

�

� ,ROOT=(number2,overflow2) ��

DD Statements

44 Utilities Reference: System

Notes:

1 The valid parameter specifications for a DEDB SIZE keyword are 512 bytes,

1KB, 2KB, 4KB, 8KB and multiples of 4KB up to 28KB. To ensure future

compatibility, use only C1 sizes that are multiples of 4KB.

AREA Statement Parameter Description

AREA

Identifies this statement as a DEDB AREA control statement.

DD1=

Specifies the ddname of the defined area. ddname1 must be a 1- to 8-character

alphanumeric name. This parameter can be an area name or a ddname for

single area data sets but can only be an area name for multiple area data sets.

If the database is registered in DBRC, this parameter should specify the area

name.

DEVICE=

Specifies the physical storage device type on which the data set in this area is

stored. The default is 3380. If you code any other device, it will be ignored.

SIZE=

Specifies the control interval. Size can be 512 bytes, 1 KB, 2 KB, 4 KB, and 8

KB and multiples of 4 KB up to 28 KB. For future compatibility, only CI sizes

that are multiples of 4 KB should be used. No default value is allowed.

 Restriction: 4 KB cannot be specified with a 2319 device.

 For DEDBs, the DBDGEN SIZE= must match the control interval size defined to

VSAM, because IMS uses this value in accessing the data set. If the control

interval size is changed in the VSAM data set, the DBD for that area must be

changed to the new SIZE= value.

UOW=

Specifies the number of control intervals in a unit of work (UOW). The UOW=

parameter has two operands, number1 and overflow1.

number1

Specifies the number of control intervals in a unit of work (UOW). Its value

must be from 2 to 32767.

overflow1

Specifies the number of control intervals in the overflow section of a UOW.

Overflow1 can be any value greater than or equal to one but at least one

less than the specified value for number1.

 The total number of root anchor points (RAPs) within one UOW is given by

number1 minus overflow1. Multiply the number of RAPs in one UOW by the

number of UOWs in the root addressable part to find the total number of RAPs

within an area.

ROOT=

Specifies characteristics of a DEDB area. The ROOT= parameter has two

operands, number2 and overflow2.

number2

Specifies the total space allocated to the root addressable part of the area

and to the area reserved for independent overflow. It is expressed in

UOWs. The rest of the VSAM data set is reserved for sequential dependent

data. The value must be greater than 2 and less than 32767; it cannot be

larger than the amount of space actually in the VSAM data set.

AREA Statement

Chapter 1. Database Description (DBD) Generation 45

overflow2

Specifies the space reserved for independent overflow in terms of UOWs. It

must be at least one and must be less than the value specified for

number2. Although independent overflow does not contain UOWs, the UOW

size is used as the unit for space allocation.

 The reorganization UOW is automatically allocated by the DEDB

Initialization utility. VSAM space definition should include this additional

UOW. That is, the total space required is the root addressable area, the

independent overflow, and one additional UOW for reorganization.

 Example: This example allocates 2048*64*936 bytes and leaves the rest of

the area for sequential dependent segments.

AREA DD1=XX,SIZE=2048,

 UOW=(64,14),

 ROOT=(936,36)

Because there is only one root anchor point (RAP) per control interval, the

total number of RAPs within the area is given by: (64-14)*(936-36) = 45000

RAPs.

 The amount of space allocated for independent overflow by DBDGEN can be

increased while IMS is online.

 Related Reading: Refer to IMS Version 9: Administration Guide: Database

Manager for more information about this procedure.

SEGM Statement

The SEGM statement defines a segment type, the segment’s position in a database

hierarchy, the physical characteristics of the segment, and how the segment is to be

related to other segments. Except for GSAM databases, at least one SEGM

statement must immediately follow each DATASET statement; the segment defined

by the SEGM statement is placed in the data set group defined by the DATASET

statement. Except for MSDBs and DEDBs, a maximum of 255 SEGM statements

are allowed in a DBD generation. For a MSDB, only one SEGM statement can be

specified. For a DEDB, at least one and up to 127 SEGM statements must

immediately follow the last AREA statement; no other SEGM statements can be

provided in the DBD generation. SEGM statements must be placed in the input file

in hierarchic sequence, and a maximum of 15 hierarchic levels can be defined.

The SEGM statement is used with FIELD, XDFLD and LCHILD statements to totally

define a segment to IMS. The FIELD statement defines fields within segments, the

XDFLD statement defines fields used for secondary indexing, and the LCHILD

statement defines index or logical relationships between segments.

The format of the SEGM statement for each database type is shown in the following

examples. The parameters are explained in “SEGM Statement Parameter

Description” on page 56.

HSAM Database SEGM Statement

��

SEGM

NAME=segname1
 (1)

,PARENT=

segname2

0

,BYTES=max bytes

�

AREA Statement Parameter Descriptions

46 Utilities Reference: System

�
,FREQ=frequency

 ��

Notes:

1 The PARENT= keyword can be omitted, or PARENT=0 can be specified for

the root segment type of a database.

HISAM Database SEGM Statement

�� SEGM NAME=segname1 ,PARENT= �

�
 (2)

(segname2

)

,VIRTUAL

(1)

(lpsegname.

,dbname1)

,PHYSICAL

0

�

� ,BYTES= max bytes

(max bytes,min bytes)

,FREQ=frequency
 �

�
(1)

,POINTER=

(

,LPARNT

)

,PTR=

,CTR

,PAIRED

 �

�
(3)

(1)

,LAST

,RULES=

(

)

L

L

L

,FIRST

P

P

P

,HERE

V

V

V

B

 �

�

�

�

(4)

NONE

EXIT=

(

A

C

)

.

,

(

A

)

C

 �

�
(5)

,DATA

(6)

,COMPRTN=

(routinename

,KEY

)

,INIT

,max

,PAD

 ��

A:

 (7) NOLOG

exitname

B

LOG

,LOG

LOG

,NOLOG

*

NOLOG

SEGM Statement

Chapter 1. Database Description (DBD) Generation 47

|||

||

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (8)

,CASCADE

,NOCASCADE

,(CASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 Required for HISAM logical relationships; otherwise, it is optional.

2 The PARENT=keyword can be omitted, or PARENT=0 can be specified for the

root segment type of a database.

3 Required when a segment type does not have a unique sequence field. LAST

is the default. When using Fast Path sequential dependent segment

processing, the insert rule of FIRST is always used and cannot be overridden.

4 Used for the Data Capture exit routine. You can specify more than one exit

routine on a SEGM statement.

5 Used for Segment Edit/Compression exit routine with full-function and DEDB

databases.

6 Variable-length segments and segment edit/compression cannot be specified

for a simple HISAM database.

7 If an exit routine is not required because only logging is being requested, then

if you specify the exit name as , the logging parameter defaults to LOG.

8 Used to control the CASCADE options.

HDAM Database SEGM Statement

�� SEGM NAME=segname1 ,PARENT= �

�
 ,SNGL (2)

((segname2

)

)

,DBLE

,VIRTUAL

(1)

(lpsegname.

,

dbname1

)

,PHYSICAL

0

�

� ,BYTES= max bytes

(max bytes,min bytes)
 �

�
(1)

HIER

,

LTWIN

,LPARNT

,POINTER=

(

,

)

,PTR=

HIERBWD

(3)

,CTR

,PAIRED

TWIN

,LTWINBWD

TWINBWD

NOTWIN

 �

SEGM Statement

48 Utilities Reference: System

|||

�
(4)

(1)

,LAST

,RULES=

(

)

L

L

L

,FIRST

P

P

P

,HERE

V

V

V

B

 �

�

�

�

(5)

NONE

EXIT=

(

A

C

)

.

,

(

A

)

C

(6)

,COMPRTN=

(routinename

,DATA

)

,KEY

,INIT

,max

,PAD

 ��

A:

 (7) NOLOG

exitname

B

LOG

,LOG

LOG

,NOLOG

*

NOLOG

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (8)

,CASCADE

,NOCASCADE

,(CASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 Optional for HDAM logical relationships.

2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for

the root segment type of a database.

3 Required for HDAM logical relationships; otherwise, it is optional.

4 Required when a segment type does not have a unique sequence field. LAST

is the default. When using Fast Path sequential dependent segment

processing, the insert rule of FIRST is always used and cannot be overridden.

5 Used for the Data Capture exit routine. You can specify more than one exit

routine on a SEGM statement.

6 Used for Segment Edit/Compression exit routine with full-function and DEDB

databases.

7 If an exit routine is not required because only logging is being requested, then

if you specify the exit name as , the logging parameter defaults to LOG.

SEGM Statement

Chapter 1. Database Description (DBD) Generation 49

|

8 Used to control the CASCADE options.

PHDAM Database SEGM Statement

�� SEGM NAME=segname1 ,PARENT= �

�
 ,SNGL (2)

((segname2

)

)

,DBLE

(1)

(lpsegname.

,dbname1

)

,PHYSICAL

0

�

� ,BYTES= max bytes

(max bytes,min bytes)
 �

�
(1)

(3)

,LPARNT

,POINTER=

TWIN

,PTR=

TWINBWD

,PAIRED

NOTWIN

 �

�
(1)

,LAST

(4)

,RULES=

(

)

L

L

L

,FIRST

P

P

P

,HERE

V

V

V

B

 �

�
,DSGROUP=

(

)

A

B

C

D

E

F

G

H

I

J

�

�

(5)

NONE

EXIT=

(

A

C

)

.

,

(

A

)

C

 �

�
(6)

,DATA

,COMPRTN=

(routinename

,KEY

)

,INIT

,max

 ��

A:

 (7) NOLOG

exitname

B

LOG

,LOG

LOG

,NOLOG

*

NOLOG

SEGM Statement

50 Utilities Reference: System

|||

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (8)

,CASCADE

,NOCASCADE

,(CASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 Optional for PHDAM logical relationships.

2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for

the root segment type of a database.

3 Required for PHDAM logical relationships; otherwise, it is optional.

4 Required when a segment type does not have a unique sequence field. LAST

is the default. When using Fast Path sequential dependent segment

processing, the insert rule of FIRST is always used and cannot be overridden.

5 Used for the Data Capture exit routine. You can specify more than one exit

routine on a SEGM statement.

6 Used for Segment Edit/Compression exit routine with full-function and DEDB

databases.

7 If an exit routine is not required because only logging is being requested, then

if you specify the exit name as , the logging parameter defaults to LOG.

8 Used to control the CASCADE options.

HIDAM Database SEGM Statement

�� SEGM NAME=segname1 ,PARENT= �

�
 (2)

((segname2

)

)

,SNGL

,VIRTUAL

(1)

,DBLE

(lpsegname.

,dbname1

)

,PHYSICAL

0

�

� ,BYTES= max bytes

(max bytes,min bytes)
 �

�
(3)

(1)

HIER

,LTWIN

,LPARNT

,POINTER=

(

,

)

,PTR=

HIERBWD

,LTWINBWD

,CTR

,PAIRED

TWIN

TWINBWD

NOTWIN

 �

SEGM Statement

Chapter 1. Database Description (DBD) Generation 51

|||

�
(1)

,LAST

(4)

,RULES=

(

)

L

L

L

,FIRST

P

P

P

,HERE

V

V

V

B

 �

�

�

�

(5)

NONE

EXIT=

(

A

C

)

.

,

(

A

)

C

 �

�
(6)

,DATA

,COMPRTN=

(routinename

,KEY

,PAD

)

,INIT

,max

 ��

A:

 NOLOG

exitname

B

(7)

,LOG

LOG

,NOLOG

LOG

*

NOLOG

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (8)

,CASCADE

,NOCASCADE

,(CASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 Optional for HIDAM logical relationships.

2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for

the root segment type of a database.

3 Required for HIDAM logical relationships; otherwise, it is optional.

4 Required when a segment type does not have a unique sequence field. LAST

is the default. When using Fast Path sequential dependent segment

processing, the insert rule of FIRST is always used and cannot be overridden.

5 Used for the Data Capture exit routine. You can specify more than one exit

routine on a SEGM statement.

SEGM Statement

52 Utilities Reference: System

||

6 Used for Segment Edit/Compression exit routine with full-function and DEDB

databases.

7 If an exit routine is not required because only logging is being requested, then

if you specify the exit name as , the logging parameter defaults to LOG.

8 Used to control the CASCADE options.

PHIDAM Database SEGM Statement

�� SEGM NAME=segname1 ,PARENT= �

�
 ,SNGL (2)

((segname2

)

)

,DBLE

(1)

(lpsegname.

,dbname1

)

,PHYSICAL

0

�

� ,BYTES= max bytes

(max bytes,min bytes)
 �

�
(1)

(4)

,LPARNT

,POINTER=

TWINBWD

,PTR=

NOTWIN

,PAIRED

(3)

TWIN

 �

�
(1)

,LAST

(5)

,RULES=

(

)

L

L

L

,FIRST

P

P

P

,HERE

V

V

V

B

 �

�
,DSGROUP

=(

)

A

B

C

D

E

F

G

H

I

J

�

�

(6)

NONE

EXIT=

(

A

C

)

.

,

(

A

)

C

 �

�
(7)

,DATA

,COMPRTN=

(routinename

,KEY

)

,INIT

,max

 ��

SEGM Statement

Chapter 1. Database Description (DBD) Generation 53

|||

||

A:

 (8) NOLOG

exitname

B

LOG

,LOG

LOG

,NOLOG

*

NOLOG

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (9)

,CASCADE

,KEY

,(NOCASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 Optional for PHIDAM logical relationships.

2 The PARENT= keyword can be omitted, or PARENT=0 can be specified for

the root segment type of a database.

3 TWIN is not allowed for the root segment.

4 Required for PHIDAM logical relationships; otherwise, it is optional.

5 Required when a segment type does not have a unique sequence field. LAST

is the default. When using Fast Path sequential dependent segment

processing, the insert rule of FIRST is always used and cannot be overridden.

6 Used for the Data Capture exit routine. You can specify more than one exit

routine on a SEGM statement.

7 Used for Segment Edit/Compression exit routine with full-function and DEDB

databases.

8 If an exit routine is not required because only logging is being requested, then

if you specify the exit name as , the logging parameter defaults to LOG.

9 Used to control the CASCADE options.

MSDB Database SEGM Statement

�� SEGM NAME=segname1 ,BYTES=max bytes ��

DEDB Database SEGM Statement

��

SEGM

NAME=segname1
 ,SNGL (1)

,PARENT=

(segname2

)

,DBLE

0

�

SEGM Statement

54 Utilities Reference: System

� ,BYTES= max bytes

(max bytes,min bytes)

DIR

(2)

,TYPE=

SEQ

 �

�
HERE

(3)

,RULES=

LAST

FIRST

 n

,SSPTR=
 �

�

�

�

 (4) NONE

EXIT=

(

A

C

)

.

,

(

A

)

C

�

�
(5)

,COMPRTN=

(routinename

)

,

,INIT

DATA

,INIT

 ��

A:

 (6) NOLOG

exitname

B

LOG

,LOG

LOG

,NOLOG

*

NOLOG

B:

,KEY

,PATH

,DATA

,NOKEY

,NOPATH

,NODATA

C:

 (7)

,CASCADE

,NOCASCADE

,(CASCADE

B

)

,(NOCASCADE

B

)

Notes:

1 The PARENT= keyword can be omitted, or PARENT=0 can be specified for

the root segment type of a database.

SEGM Statement

Chapter 1. Database Description (DBD) Generation 55

|||

||||||

2 TYPE=SEQ is required on SEGM statements for the sequential dependent

type.

3 Required when a segment type does not have a unique sequence field. HERE

is the default. When using Fast Path sequential dependent segment

processing, the insert rule of FIRST is always used and cannot be overridden.

For DEDB direct dependent segment processing, HERE is the default.

4 Used for the Data Capture exit routine. You can specify more than one exit

routine on a SEGM statement.

5 Used for Segment Edit/Compression exit routine with full-function and DEDB

databases.

6 If an exit routine is not required because only logging is being requested,

specify the exit name as * and the default logging parameter is LOG. If you do

specify an exit routine name, the default logging parameter is NOLOG.

7 Used to control the CASCADE options.

INDEX Database SEGM Statement

�� SEGM NAME=segname1

,PARENT=0
 ,BYTES=max bytes �

�
(1)

,FREQ=frequency

 ��

Notes:

1 FREQ= parameter will be ignored for PSINDEX

PSINDEX Database SEGM Statement

�� SEGM NAME=segname1

,PARENT=0
 ,BYTES=max bytes ��

SEGM Statement Parameter Description

For the SEGM statement, you can use the following abbreviations in place of

keywords specified in the macro definitions:

Keyword Abbreviation

POINTER PTR

FIRST F

LAST L

HERE H

KEY K

DATA D

VIRTUAL V

PHYSICAL P

SEGM

Identifies this statement as a segment definition statement.

SEGM Statement

56 Utilities Reference: System

NAME=

Specifies the name of the segment type being defined. The specified name is

used by DL/I and application programs in all references to this segment.

Duplicate segment names are not allowed within a DBD generation. The

segname1 parameter must be a 1- to 8-character alphanumeric value. Each

character must be in the range of A through Z, or 0 through 9, or be the

character $, #, or @.

 Restriction: The first character of the name cannot be numeric.

PARENT=

Specifies the names of the physical and logical parents of the segment type

being defined, if any. Optional but must have a value of 0 if used.

BYTES=

Specifies the length of the data portion of a segment type in bytes using

unsigned decimal integers. This parameter is required.

maxbytes and minbytes in fixed-length segments

For fixed-length segments, “maxbytes” specifies the amount of storage used

for the data portion of the segment. The minbytes parameter cannot be

specified for a fixed-length segment, including a fixed-length compressed

segment. The maximum length specified for a segment type must not

exceed the maximum record length of the storage device used minus any

prefix or record overhead. For VSAM, the maximum record length is 30713

bytes; for tape, the maximum is 32760 bytes. The minimum length that can

be specified for maxbytes must be large enough to contain all fields defined

for the segment type. If the segment is a logical child segment type, the

length must be sufficient to contain the concatenated key of the logical

parent.

 For a MSDB, the maxbytes value specifies the length of the data portion of

a fixed-length segment not to exceed 32000 bytes. The value specified

must be a multiple of 4.

maxbytes and minbytes in variable-length segments

Defines a segment type as variable-length if the minbytes parameter is

included. The maxbytes field specifies the maximum length of any

occurrence of this segment type. The maximum and minimum allowable

values for the maxbytes parameter are the same values as described for a

fixed-length segment.

 The minbytes parameter specifies the minimum amount of storage used by

a variable-length segment. The maximum value for minbytes is the value

specified for maxbytes. The minimum value for minbytes must be:

v For a segment type that is not processed by an edit/compression routine

or is processed by an edit/compression routine but the key compression

option has not been specified, minbytes must be large enough to contain

the complete sequence field if a sequence field has been specified for

the segment type.

v For a segment type that is processed by an edit/compression routine that

includes the key compression option or a segment that is not sequenced,

the minimum value is 4.

 Because segments in a HSAM or simple HISAM database cannot be

variable-length, the minbytes parameter is invalid for these databases.

 In a Fast Path DEDB, a segment starts with a 2-byte field, which defines

the length of the segment including the 2-byte length field, followed by user

SEGM Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 57

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

data specified by a FIELD statement. The value of minbytes can be

specified from a minimum of 4 bytes to a maximum of maxbytes; however,

the minbytes value must be large enough to contain this segment’s

sequence field (that is, minbytes ≥ START − 1 + BYTES of the sequence

field following the SEGM statement). For example, the smallest minbyte

value for a segment with a 20-byte sequence field length and START = 7 is

26. On any given DL/I call, the actual segment length can fall anywhere

between a length that includes the sequence field and the value of

maxbytes. The value of maxbytes must not exceed the control interval size

minus 120.

TYPE=

Describes the type of DEDB dependent segment. Must not be specified for root

segments.

SEQ

Specifies that the segment is a sequential dependent segment type. Only

one sequential dependent segment is permitted per DEDB, and, if specified,

it must be the first dependent segment type.

DIR

Specifies that the segment is direct dependent segment type. DIR is the

default.

FREQ=

Is only used for HSAM, HISAM, or INDEX databases. It specifies the estimated

number of times that this segment is likely to occur for each occurrence of its

physical parent. The frequency parameter must be an unsigned decimal number

in the range 0.01 to 2²⁴-1. If this is a root segment, “frequency” is the estimate

of the maximum number of database records that appear in the database being

defined. The value of the FREQ= parameter when applied to dependent

segments is used to determine the logical record length and physical storage

block sizes for each data set group of the database.

 The IF0110 ARITHMETIC OVERFLOW or IEV103 MULTIPLICATION

OVERFLOW assembler error message can occur when the DBDGEN utility is

attempting to calculate a recommended logical record length. If this occurs

during a HSAM or HISAM DBD generation, you may wish to determine the

logical record length and physical block size.

POINTER=

Specifies the pointer fields to be reserved in the prefix area of occurrences of

the segment type being defined. These fields are used to relate this segment to

its immediate parent segments and twin segments.

 The use of the POINTER= parameter is primarily for HDAM, HIDAM, PHDAM,

and PHIDAM databases. In addition, it can be used for segment types defined

in HISAM databases that participate in logical relationships with segment types

in HDAM or HIDAM databases.

 Important: If a segment type is being defined in an HSAM database, the

POINTER= parameter must be omitted. If the segment type being defined is in

a HISAM database and does not participate in a logical relationship, the

POINTER= parameter should be omitted.

 The following list describes some general attributes of the keyword options:

v Selected keyword options can be specified in any order, and must be

separated by commas.

v A keyword option can be specified only once.

v All keywords are optional.

SEGM Statement Parameter Descriptions

58 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|

v One keyword option can be selected from each line.

v A keyword option or its abbreviation can be selected:

 Table 5. POINTER= Keywords and Abbreviations

Keyword Option Abbreviation

HIER H

HIERBWD HB

TWIN T

TWINBWD TB

NOTWIN NT

LTWIN LT

LTWINBWD LTB

PAIRED

LPARNT LP

CTR C

 The keyword options of the POINTER= parameter have the following meanings:

HIER [H]

Reserves a 4-byte hierarchic forward pointer field in the prefix of

occurrences of the segment type being defined. HALDB does not support

HIER.

HIERBWD [HB]

Reserves a 4-byte hierarchic forward pointer field and a 4-byte hierarchic

backward pointer field in the prefix of occurrences of the segment type

being defined. Hierarchic backward pointers provide increased delete

performance. HALDB does not support HIERBWD.

TWIN [T]

Reserves a 4-byte physical twin forward pointer field in the segment prefix

being defined.

 Related Reading: Refer to IMS Version 9: Administration Guide: Database

Manager for a more detailed explanation of the use of PTR=TWIN in

HIDAM database root segments.

TWINBWD [TB]

Reserves a 4-byte physical twin forward pointer field and a 4-byte physical

twin backward pointer field in the segment prefix being defined. The twin

backward pointers provide increased delete performance.

 Recommendation: This option is recommended for HIDAM and PHIDAM

database root segments.

 Related Reading: For more information on pointer fields, see IMS Version

9: Administration Guide: Database Manager.

NOTWIN [NT]

Prevents space from being reserved for a physical twin forward pointer in

the prefix of occurrences of the segment type being defined.

 NOTWIN can be specified for a dependent segment type if:

v The physical parent does not have hierarchic pointers specified.

SEGM Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 59

|

||

||

||

||

||

||

||

||

||

||

||

||
|

|

|
|

|

|

v No more than one occurrence of the dependent segment type is stored

as a physical child of any occurrence of the physical parent segment

type.

In addition, NOTWIN can be specified for the root segment type of HIDAM

and PHIDAM databases, but only when the randomizing module does not

produce synonyms (keys with different values having the same block and

anchor point).

 When NOTWIN is specified for a dependent segment type and an attempt

is made to load or insert a second occurrence of the dependent segment as

a physical child of a given physical parent segment:

v An LB status code is returned when trying to insert the second

occurrence during initial load.

v An II status code is returned when trying to insert the second occurrence

after initial load.

 Any attempt to load or insert a synonym is rejected with an LB or II status

code.

LTWIN [LT]

Is used for virtually paired logical relationships only when defining a real

logical child. Reserves a 4-byte logical twin forward pointer field in the prefix

of occurrences of the logical child segment type being defined. This

parameter can only be specified if the segment type being defined is a

logical child and is being defined in an HDAM or HIDAM database. It should

be noted that if PAIRED is specified, the LTWIN parameter is invalid.

HALDB does not support LTWIN.

LTWINBWD [LTB]

Is used for virtually paired logical relationships only when defining a real

logical child. Reserves a 4-byte logical twin forward pointer field and a

4-byte logical twin backward field in the prefix of occurrences of the logical

child segment type being defined. This parameter can only be specified if

the segment being defined is a logical child and is being defined in an

HDAM or HIDAM database. It should be noted that if PAIRED is specified,

the LTWIN parameter is invalid. HALDB does not support LTWINBWD.

 The use of LTWINBWD rather than LTWIN provides increased performance

when deleting logical child segments.

LPARNT [LP]

Reserves a 4-byte logical parent pointer field in the prefix of occurrences of

the segment type being defined. This parameter can only be specified when

the segment type being defined is a logical child and the logical parent is in

an HDAM or HIDAM database. If the logical parent is in a HISAM database,

this parameter must be omitted, and the PARENT= parameter for the

segment being defined must specify PHYSICAL.

CTR [C]

Reserves a 4-byte counter field in the prefix of occurrences of the segment

type being defined. A counter is required if a logical parent segment in a

HISAM, HDAM, or HIDAM database has logical child segments which are

not connected to it by logical child pointers. Counters are placed in all

segments requiring them automatically during DBD generation without the

user specifying this parameter. To avoid a later DBD generation, however,

the user can anticipate future requirements for counters and reserve a

SEGM Statement Parameter Descriptions

60 Utilities Reference: System

|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

counter field in the prefix of occurrences of a segment type by using this

parameter. HALDB does not support CTR.

PAIRED

Indicates that this segment participates in a bidirectional logical relationship.

This parameter is specified for the following types:

v A virtual logical child segment type

v Both physically paired logical child segment types in a bidirectional logical

relationship

If PAIRED is specified, the LTWIN and LTWINBWD parameters are invalid.

POINTER= Parameter Default Values

The default option for the POINTER= parameter in any HIDAM or HDAM DBD

is:

PTR=(TWIN,LTWIN,LPARNT)

LTWIN

Is a default if the name of a logical parent (lpsegname) is specified, in the

PARENT= parameter of a SEGM statement.

LPARNT

Is a default if VIRTUAL is selected in the PARENT= parameter of a SEGM

statement.

 The default option for the POINTER= parameter in an INDEX, HISAM, or

HSAM DBD is no pointer fields.

 If the POINTER= parameter is explicitly stated on a SEGM statement, the

segment contains the pointers specified and any pointers that are required by

IMS for correct operation. For example, LTWIN and LPARNT pointers are

created as required. The default values are only used when the parameter is

omitted entirely. Table 6 illustrates use of the POINTER= parameter parameters

for various types of DBD generations.

 Table 6. Use of POINTER= Parameters (No Logical Relationship)

Segment Definition

Physical Segments Contained in Database Type

Purpose Keyword

Parameter

Logical

Segments GSAM

MSDB DEDB

HSAM SHSAM

SHISAM

HISAM HDAM HIDAM PHDAM

PHIDAM

INDEX

PSINDEX

Pointer to next segment

in hierarchy

HIER INVALID VALID IGN VALID IGN IGN

Pointer to next and

previous segments in

hierarchy

HIERBWD INVALID INVALID IGN VALID IGN IGN

Pointer to next

occurrence of physical

twins

TWIN INVALID INVALID IGN VALID VALID IGN

Pointer to next and

previous occurrence of

physical twins

TWINBWD INVALID INVALID IGN VALID VALID IGN

Counter field in prefix CTR INVALID INVALID VALID VALID IGN IGN

Pointer to next

occurrence of logical twin

LTWIN INVALID INVALID IGN VALID1 IGN IGN

Pointer to next and

previous occurrence of

logical twins

LTWINBWD INVALID INVALID IGN VALID1 IGN IGN

Pointer to logical parent

segment

LPARNT INVALID INVALID VALID2 VALID3 VALID3 IGN

SEGM Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 61

Table 6. Use of POINTER= Parameters (No Logical Relationship) (continued)

Segment Definition

Physical Segments Contained in Database Type

Purpose Keyword

Parameter

Logical

Segments GSAM

MSDB DEDB

HSAM SHSAM

SHISAM

HISAM HDAM HIDAM PHDAM

PHIDAM

INDEX

PSINDEX

Logical relationship

between HS-HS or

HS-HD or HD-HD

PAIRED INVALID INVALID VALID4 VALID5 VALID5 IGN

Key:

v INVALID—This parameter cannot be specified.

v IGN—This parameter can be specified but it is ignored.

v VALID—This parameter is valid and used as indicated in the following notes.

Notes:

1. Used when a logical child segment being defined participates in a logical relationship. VALID should be specified if the segment exists within HDAM,

PHDAM, HIDAM, or PHIDAM and the logical parent relates to the logical child with direct addresses (logical child pointers).

2. Can be used when a logical child segment is being defined in a HISAM database and the logical parent is defined in an HDAM, PHDAM, HIDAM, or

PHIDAM database.

3. Can be used when a logical child segment is being defined in an HDAM, PHDAM, HIDAM or PHIDAM database and the logical parent is in an

HDAM, PHDAM, HIDAM, or PHIDAM database.

4. Can be used when a logical child segment is being defined in a HISAM database and the logical parent is defined in a HISAM, HDAM, HIDAM,

PHDAM, or PHIDAM database, and the logical relationship is bidirectional.

5. Used when a bidirectional logical relationship is being defined with two logical child segments, both physically present or on the SEGM statement for

a virtual logical child.

RULES=

Specifies the rules used for insertion, deletion, and replacement of occurrences

of the segment type being defined.

 Related Reading: Refer to the “Replace, Insert, and Delete Rules for Logical

Relationships” topic in the IMS Version 9: Administration Guide: Database

Manager for a description of the various uses of this keyword.

path type values

Specifies the path type that must be used to insert, delete, or replace a

segment.

 The first column applies to segment insertion, the second column applies to

segment deletion, and the third column applies to segment replacement.

Each of the three columns can contain the same or different characters, but

you must select a value from each column for a total of three values. These

parameters are specified for logical child segments and for their physical

and logical parent segments. They should be omitted for all segment types

that do not participate in logical relationships. The values are: P specifies

physical, L specifies logical, V specifies virtual, and B specifies bidirectional

virtual.

FIRST or LAST or HERE

Specifies where new occurrences of the segment type defined by this

SEGM statement are inserted into their physical database (establishes the

physical twin sequence). This value is used only when processing segments

with no sequence field or with a nonunique sequence field. The value is

ignored when specified for a segment type with a unique sequence field

defined.

 Except for HDAM and PHDAM roots, the rules of FIRST, LAST, or HERE do

not apply to the initial loading of a database and segments are loaded in

the sequence presented in load mode. If a unique sequence field is not

defined for the HDAM root on initial load or HD reload, the insert rules of

FIRST, LAST, or HERE determine the sequence in which roots are chained.

SEGM Statement Parameter Descriptions

62 Utilities Reference: System

Thus the reload of an HDAM or PHDAM database reverses the order of the

unsequenced roots when HERE or FIRST is used.

 In update mode, while processing HDAM and PHDAM roots without unique

sequence fields, IMS sample randomizing modules (DFSHDC10 through

DFSHDC40) use the segment I/O area data to calculate a block/rap for an

insert call.

 Related Reading: For more information about HDAM Randomizing

Routines, see IMS Version 9: Customization Guide.

 The rules of FIRST, LAST, or HERE are only valid for update mode after a

database has been loaded, except for the HDAM and PHDAM exceptions

noted in Table 6 on page 61. LAST is the default except for DEDB

segments.

 For Fast Path sequential dependent segment processing, the insert rule of

FIRST is always used and cannot be overridden. For direct dependent

segment processing, you can specify FIRST, LAST, or HERE. HERE is the

default.

FIRST

For segments without a sequence field defined, a new occurrence is

inserted before all existing physical twins. For segments with a

nonunique sequence field defined, a new occurrence is inserted before

all existing physical twins with the same sequence field value.

LAST

For segments without a sequence field defined, a new occurrence is

inserted after all existing physical twins. For segments with a nonunique

sequence field defined, a new occurrence is inserted after all existing

physical twins with the same sequence field value.

HERE

For segments without a sequence field, a new occurrence is inserted

immediately before the physical twin on which position was established.

If a position was not established on a physical twin of the segment

being inserted, the new occurrence is inserted before all existing

physical twins. For segments with a nonunique sequence field defined,

a new occurrence is inserted immediately before the physical twin with

the same sequence field value on which position was established. If a

position was not established on a physical twin with the same sequence

field value, the new occurrence is inserted before all physical twins with

the same sequence field value. The insert position is dependent on the

position established by the previous DL/I call.

 A command code of L (last) takes precedence over the insert rule

specified causing a new occurrence to be inserted according to the

insert rule of LAST, for insert calls issued against a physical path.

DSGROUP=

Specifies multiple data set groups for PHDAM and PHIDAM databases. The

format is DSGROUP=c, where c is equivalent to the letters A through J. This

enables you to divide PHDAM and PHIDAM databases into a maximum of ten

data set groups. The default for every segment is A (single set for data per

partition). If specified on the root segment, it must be DSGROUP=A.

 Restriction: Gaps in the A-J sequence are not allowed. For example, if

DSGROUP=C is specified on a SEGM statement, there must also be at least

one SEGM statement with DSGROUP=B, and each HALDB partition will have

A, B, and C data sets.

SEGM Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 63

SOURCE=

Is used for two purposes:

v To identify the real logical child segment type that is to be represented by the

virtual logical child segment type that is being defined

v To identify the segment type or types in physical databases that are

represented by the segment type being defined in a logical database

Restriction: The SOURCE keyword is not allowed for PHDAM and PHIDAM

databases because they support only physical pairing.

 When defining a virtual logical child the statement is:

��
 DATA

SOURCE=((segname,

,dbname))

��

segname

Specifies the name of the real, logical child

DATA

Indicates that both the key and the data portions of segname are to be

used in constructing the segment. This parameter is required.

dbname

Specifies the name of the physical database that contains the real logical

child.

 When defining a segment type in a logical database the statement is:

��

SOURCE=
 DATA DATA

(

(segname,

KEY

,dbname),

(

segname,

KEY

,dbname)

)

��

(segname, KEY|DATA,dbname)

The first occurrence refers to the segment in a physical database that is

being defined as a logical segment, or it refers to the logical child segment

type in a physical database that is used for the first portion of a

concatenated segment type in this logical database.

segname

Is the name of the segment type in the physical database.

KEY

Specifies that the key portion of the segment specified in segname is to be

placed in the key feedback area. The segment must not be placed in the

user I/O area when a call is issued to process the logical segment type that

represents segname.

DATA

Specifies that the key portion of the segment specified in segname must be

placed in the key feedback area, and the segment must be placed in the

user I/O area when a call is issued to process the logical segment type that

represents segname.

dbname

Specifies the name of the physical database that contains segname. The

second occurrence of (segname, KEY|DATA, dbname) refers to the logical

or physical parent segment type in a physical database that is used for the

SEGM Statement Parameter Descriptions

64 Utilities Reference: System

destination parent part of a concatenated segment in this logical database.

The description of each parameter for the second occurrence is the same

as described for the first occurrence.

 When the first occurrence of (segname, KEY/DATA, dbname) refers to a

virtual logical child, the second occurrence, if specified, must refer to the

real logical child’s physical parent.

 When the source segments is used to represent a concatenated segment,

the KEY and DATA parameters are used to control which of the two

segments (or both) are placed in the user’s I/O area on retrieval calls. If

DATA is specified, the segment is placed in the user’s I/O area. If KEY is

specified, the segment is not placed in the user’s I/O area, but the

sequence field key, if one exists, is placed in the key feedback area of the

PCB. The key of a concatenated segment is the key of the logical child,

either the physical twin sequence field or the logical twin sequence field,

depending on which path the logical child is accessed from. The KEY and

DATA parameters apply to retrieval type calls only.

 On insert calls, the user’s I/O area must always contain the logical child

segment and, unless the insert rule is physical, the logical parent segment.

Even if KEY is specified for a segment, the database containing that

segment must be available to IMS when calls are issued against the logical

database containing the referenced segment. When the first occurrence of

the SOURCE= segment specification references a logical child, the second

occurrence referencing the destination parent for the concatenated segment

should also be specified. If not explicitly specified it is included with the

KEY parameter by default when the blocks are built.

 The segments defined with a logical DBD generation must gain their

physical definition from segments previously defined in one or more

physical DBD generations.

 If the SEGM statement defines a segment in an INDEX data set, the

SOURCE= parameter is invalid.

SSPTR=

Specifies the number of subset pointers. You can specify from 0 to 8. When you

specify 0 or if SSPTR is not specified, you are not using a subset pointer.

EXIT=

Specifies that the Data Capture exit routine is used. You can specify multiple

exit routine names on a single SEGM statement. You can select different data

options for each exit routine. The order you list the exit routines within the

parameter determines the order the exit routines are called.

 When specified on the SEGM statement, the EXIT= parameter can either

override the specification on the DBD or limit the parameter to specific

segments. The EXIT= parameter applies only to the particular segments within

the physical database specified. However, when applied to logical children

segments, the exit routine must be specified on the real logical child, not the

virtual logical child. The following physical databases are supported by this exit

routine:

v HDAM

v HIDAM

v PHDAM

v PHIDAM

v HISAM

SEGM Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 65

v SHISAM

v DEDB

 If the exit routine is not specified for a supported database organization or a

supported segment type, DBDGEN fails.

 Related Reading: For more information about this exit routine, see IMS Version

9: Administration Guide: Database Manager.

 The EXIT= parameter can also be specified on the DBD statement.

exit_name

Specifies the name of the exit routine that processes the data. This

parameter is required. The name must follow standard naming conventions.

A maximum of 8 alphanumeric characters is allowed. You can specify an

asterisk (*) instead of an exit routine name to indicate that you want logging

only. If this is done, the logging parameter default is LOG. If you do specify

an exit routine, the logging parameter is NOLOG.

 The following operands are optional.

NONE

Nullifies an exit routine specified on the DBD statement. It must be

specified on the SEGM statement to indicate the DBD exit name does not

apply to that specific segment.

 EXIT=NONE explicitly nullifies the exit specified on the DBD for virtual

logical children.

KEY

Specifies the exit routine is passed the physical concatenated key. This key

identifies the physical segment updated by the application.

 KEY is the default.

NOKEY

Specifies the physical concatenated key is not required for the exit routine.

 NOKEY is optional.

DATA

Passes physical segment data to the Data Capture exit routine for updating.

When DATA is specified and a Segment Edit/Compression exit routine is

also being used, the data passed is expanded data.

 DATA is the default.

NODATA

Can be specified when the exit routine does not require segment data. Use

NODATA to avoid the overhead created from saving physical segment data.

 NODATA is optional.

NOPATH

Indicates the exit routine does not require data from segments in the

physical root’s hierarchical path. NOPATH is an efficient way to avoid the

processing time needed to retrieve path data.

 NOPATH is the default.

PATH

Can be specified when the data from each segment in the physical root’s

SEGM Statement Parameter Descriptions

66 Utilities Reference: System

hierarchic path must be passed to the exit routine for an updated segment.

Use PATH to allow an application to separately access several segments

for insertion, replacement, or deletion.

 You can use the PATH option when information from segments in the path

is needed to compose the DB2 primary key. The DB2 primary key would

then be used in a propagation request for a dependent segment update.

Typically, you need this kind of segment information when the parent

contains the key information and the dependent contains additional data

that would not fit in the parent segment.

 You can also use PATH when additional processing is necessary. It could

be that you are not accessing several segments with one call; for example,

you did not invoke the D command code. In this case, additional processing

is necessary if the application is to access each segment with a separate

call.

 PATH is optional.

CASCADE

Indicates the exit routine is called when DL/I deletes this segment because

the application deleted a parent segment. Using CASCADE ensures that

data is captured for the defined segment.

 Related Reading: For a detailed discussion of delete rules for the Data

Capture exit routine, see IMS Version 9: Administration Guide: Database

Manager.

 CASCADE is the default.

 The CASCADE parameter has three suboptions. These suboptions control

the way data is passed to the exit routine. If you specify suboptions, you

must enclose the CASCADE parameter and the suboptions within

parentheses.

KEY

Passes the physical concatenated key to the exit routine. This key

identifies the segment being deleted by a cascade delete.

 KEY is the default.

NOKEY

Can be used when the exit routine does not require the physical

concatenated key of the segment being deleted.

 NOKEY is optional.

DATA

Passes segment data to the exit routine for a cascade delete. DATA

also identifies the segment being deleted when the physical

concatenated key is unable to do so.

 DATA is the default.

NODATA

Can be specified when the exit routine does not require segment data.

NODATA reduces the significant storage and performance requirements

that result from saving physical segment data.

 NODATA is optional.

NOPATH

Indicates the exit routine does not require segment data in the physical

SEGM Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 67

root’s hierarchical path. Use NOPATH to eliminate the substantial

amount of path data needed for a cascade delete.

 NOPATH is the default.

PATH

Can be specified to allow an application to separately access several

segments for a cascade delete.

 PATH is optional.

NOCASCADE

Indicates the exit routine is not called when DL/I deletes this segment.

Cascade delete is not necessary when a segment without dependents is

deleted.

 NOCASCADE is optional.

LOG

Requests that the data capture control blocks and data be written to the IMS

system log.

NOLOG

Indicates that no data capture control blocks or data is written to the IMS

system log.

COMPRTN=

Selects a Segment Edit/Compression exit routine for either DEDB or

full-function database.

 For segment edit/compression of full-function database

 Do not specify this keyword if the SOURCE keyword is used. The DL/I

COMPRTN keyword is invalid during DBDGEN for MSDB, HSAM, simple

HSAM, simple HISAM, INDEX, and logical databases. It is also invalid for

logical child segments in any database. When used for a HISAM database, it

must not change the sequence field offset for HISAM root segments. In

addition, the minimum segment length that can be specified for a segment type

where the segment edit/compression option is specified is 4 bytes.

Note: If you are using a segment edit/compression exit routine and defined

your segments as variable-length, be aware that when a variable-length

segment is compressed, it is padded with null bytes up to the minimum

segment length that was defined in the DBD. Minimum segment length

essentially overrides the compression; this enables you to provide

additional space during load time for segments that are heavily

compressed.

routinename

Specifies the name of the user-supplied edit/compression exit routine. This

name must be a 1- to 8-character alphanumeric value and must not be the

same as any other name in IMS.SDFSRESL.

DATA

Specifies that the indicated exit routine condenses or modifies data fields

only. Sequence fields must not be modified, nor data fields that change the

position of the sequence field in respect to the start of the segment. DATA

is the default value if a compression routine is named but no parameter is

selected.

SEGM Statement Parameter Descriptions

68 Utilities Reference: System

KEY

Specifies that the exit routine can condense or modify any and all fields

within the named segment. This parameter is invalid for the root segment of

a HISAM database.

INIT

Indicates that initialization and termination processing control is required by

the segment exit routine. When this parameter is specified, the

edit/compression routine gains control after database open and after

database close.

max

Specifies the maximum number of bytes by which fixed length segments

can increase during compression exits. You can specify from 1 to 32,767

bytes. The default for max is 10.

PAD

Indicates that the numeric value supplied by MAX should be used for

padding and not for MAX. The numeric range of 1 to 32767 indicates a size

to which an inserted segment will be padded when the compression of that

segment results in a length somewhat less than the PAD value.

 For segment edit/compression of DEDB

routinename

Specifies the z/OS load module name of the user-supplied segment

edit/compression exit routine.

 Requirement: The routine name is required.

DATA

Specifies that only the user data part of the segment is compressed. DATA

is the default.

 Restriction: The KEY parameter is not supported for DEDB. If you specify

the KEY parameter, an error message is issued and DBDGEN is

terminated.

INIT

Allows the segment compression exit routine to gain control immediately

after the first area in the database is opened and returns control

immediately before the last area in the database is closed. As long as the

segment length is within the values specified by DBDGEN, no errors occur

while checking the field qualification for segment compression or expansion.

Note: The COMPRTN= keyword is prohibited on DEDB segments containing a

unique key field located at the end of the segment. If you use

COMPRTN= to process these types of segments, DBDGEN fails and

message DGEN440 is issued.

Related Reading: See IMS Version 9: Messages and Codes, Volume 1

for a description of the DFEN440 message.

LCHILD Statement

The LCHILD statement defines the following:

v A logical relationship between two segment types in a HISAM, HIDAM, HDAM,

PHDAM or PHIDAM database or a logical relationship between a segment type

in any two of these databases

SEGM Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 69

|
|
|

|
|
|
|

|
|

v A primary HIDAM index or secondary index relationship between two segment

types

v No LCHILD statement should be entered for the primary index of a PHIDAM

database

Logical Relationships

Following any SEGM statement that defines a logical parent segment type in a

DBDGEN input deck, there must be one LCHILD statement for each segment type

that is a logical child of that logical parent, except for virtual logical child segment

types. These LCHILD statements establish the relationships between the logical

parent and its logical child segment types. The SOURCE= parameter of a SEGM

statement that defines a virtual logical child segment type establishes the same

relationship between a logical parent and a virtual logical child segment type.

HIDAM Primary Index Relationship

Two LCHILD statements are used to establish the index relationship required

between the HIDAM primary index database and the root segment type of a HIDAM

database.

Following the SEGM statement that defines the root segment type in a HIDAM

database DBD generation, there must be an LCHILD statement that names the

index pointer segment type in an index database. Following the SEGM statement

that defines the index pointer segment type in a HIDAM Primary index database

DBD generation, there must be an LCHILD statement that names the root segment

type in a HIDAM database.

Secondary Index Relationships

Two LCHILD statements are used to establish each secondary index relationship.

Following a SEGM statement that defines an index target segment type, there must

be one LCHILD statement for each index pointer segment type that points to that

index target segment type. Each LCHILD statement following the SEGM for an

index target segment type identifies the index pointer segment type that points to

the index target.

Following a SEGM statement that defines an index pointer segment type in a

secondary index database, there must be an LCHILD statement that identifies its

index target segment type.

A maximum of 255 LCHILD statements can occur in a single DBD generation. An

LCHILD statement can follow only a SEGM statement, FIELD statement, XDFLD

statement, or another LCHILD statement. Because logical relationships and index

relationships must not be defined in an HSAM database, LCHILD statements are

invalid when ACCESS=HSAM.

The format of the LCHILD statement for each database type is shown in the

following examples. The parameters are explained in “LCHILD Statement

Parameter Description” on page 73.

HISAM Database LCHILD Statement

LCHILD Statement

70 Utilities Reference: System

��

LCHILD
 (1)

NAME=(segname1,dbname)

(2)

,POINTER=

DBLE

,PTR=

(2)

NONE

(3)

SYMB

�

�
(2)

,

PAIR

=

segname2

LAST

(2)

,RULES=

FIRST

HERE

 ��

Notes:

1 Logical relationships or secondary indexing.

2 Used for HDAM, HISAM, and HIDAM logical relationships.

3 If symbolic pointing is specified for the index target segment type when

defining its physical database, specify symbolic pointing in the secondary

index for that segment type. If SYMB is specified for the target segment of a

secondary index, the PTR=SYMB is specified on the LCHILD statement of the

INDEX DBD also.

HDAM and PHDAM Database LCHILD Statements

��

LCHILD
 (1)

NAME=(segname1,dbname)

(2)

,POINTER=

DBLE

,PTR=

(2)

NONE

(3)

INDX

(4)

SYMB

�

�
(2)

,PAI=

segname2

LAST

(2)

,RULES=

FIRST

HERE

 ��

Notes:

1 Logical relationships or secondary indexing.

2 Used for HDAM, HISAM, and HIDAM logical relationships.

3 Required during a HIDAM DBD generation on the LCHILD statement that

establishes the HIDAM Primary index relationship. If PTR=INDX is specified

for the target segment of a secondary index, PTR must be omitted or specified

as PTR=SNGL on the LCHILD statement of the INDEX DBD.

4 If symbolic pointing is specified for the index target segment type when

defining its physical database, specify symbolic pointing in the secondary

LCHILD Statement

Chapter 1. Database Description (DBD) Generation 71

index for that segment type. If SYMB is specified for the target segment of a

secondary index, the PTR=SYMB is specified on the LCHILD statement of the

INDEX DBD also.

HIDAM and PHIDAM Database LCHILD Statements

Restriction: Do not enter an LCHILD statement for the primary index of a PHIDAM

database.

��

LCHILD
 (1)

NAME=(segname1,dbname)

(2)

,POINTER=

INDX

,PTR=

(3)

DBLE

(3)

NONE

(4)

SYMB

�

�
(3)

,PAIR=

segname2

LAST

(3)

,RULES=

FIRST

HERE

 ��

Notes:

1 Logical relationships or secondary indexing.

2 Required during a HIDAM DBD generation on the LCHILD statement that

establishes the HIDAM Primary index relationship. If PTR=INDX is specified

for the target segment of a secondary index, PTR must be omitted or specified

as PTR=SNGL on the LCHILD statement of the INDEX DBD.

3 Used for HDAM, HISAM, and HIDAM logical relationships.

4 If symbolic pointing is specified for the index target segment type when

defining its physical database, specify symbolic pointing in the secondary

index for that segment type. If SYMB is specified for the target segment of a

secondary index, the PTR=SYMB is specified on the LCHILD statement of the

INDEX DBD also.

INDEX Database LCHILD Statement

��

LCHILD
 (1)

NAME=(segname1,dbname)

(2)

,POINTER=

SNGL

,PTR=

(3)

SYMB

�

� ,INDEX= fldname ��

Notes:

1 Logical relationships or secondary indexing.

2 Required for primary index of HIDAM database.

3 If symbolic pointing is specified for the index target segment type when

LCHILD Statement

72 Utilities Reference: System

defining its physical database, specify symbolic pointing in the secondary

index for that segment type. If SYMB is specified for the target segment of a

secondary index, the PTR=SYMB is specified on the LCHILD statement of the

INDEX DBD also.

PSINDEX Database LCHILD Statement

��

LCHILD
 (1)

NAME=(segname1,dbname)

(2)

,POINTER=

SNGL

,PTR=

�

� ,INDEX= fldname ,RKSIZE= # ��

Notes:

1 Logical relationships or secondary indexing.

2 Required for primary index of HIDAM database.

LCHILD Statement Parameter Description

The following abbreviations can be used in place of keywords specified in the

macro definition:

Keyword Abbreviation

POINTER PTR

FIRST F

LAST L

HERE H

NAME=

The segname1 parameter specifies the name of the logical child, index pointer,

index target, HIDAM or PHIDAM root segment type that is to be associated with

the segment type defined by the preceding SEGM statement in the DBD

generation input deck. The dbname parameter is the name of the database that

contains the segment type specified in segname1. dbname can be omitted

when segname1 is defined in this DBD generation. Both segname1 and

dbname must be 1- to 8-character alphanumeric values.

POINTER=

Specifies the pointers used in logical or index relationships. When the

POINTER= keyword is omitted from any index DBD generation,

POINTER=SNGL is the default. You must specify POINTER=INDX or SYMB for

any LCHILD statement following an index target segment type; no default is

provided for this part of the index relationship. When the POINTER= keyword is

omitted from an LCHILD statement which establishes a unidirectional or

physically paired bidirectional logical relationship, POINTER=NONE is the

default. When the POINTER= keyword is omitted or specified as NONE for an

LCHILD statement which establishes a virtually paired bidirectional logical

relationship, POINTER=SNGL is the default.

 Restriction: For PHDAM and PHIDAM databases, only the operands INDX

and NONE are supported. All other operands are treated as if errors are

present.

LCHILD Statement

Chapter 1. Database Description (DBD) Generation 73

SNGL Is used for logical relationships, or index relationships implemented with

direct address pointers. SNGL specifies that a logical child first pointer

field is to be reserved in each occurrence of the segment type defined

by the preceding SEGM statement in the DBDGEN input deck. When

the preceding SEGM defines a logical parent, the pointer field contains

a direct address pointer to the first occurrence of a logical child

segment type. When the preceding SEGM defines the HIDAM Primary

index database segment type, the pointer field contains a direct address

pointer to a HIDAM database root segment. When the preceding SEGM

defines an index pointer segment type in a secondary index database,

the pointer field contains a direct address pointer to an index target

segment.

DBLE Is used to specify two 4-byte pointer fields, logical child first and logical

child last, reserved in the logical parent segment. The two pointers point

to the first and last occurrences of logical child segment type under a

logical parent. The logical child last pointer is of value when the logical

child is not sequenced and the RULES= parameter is LAST.

NONE Should be used when the logical relationship from the logical parent to

the logical child segment is not implemented or not implemented with

direct address logical child pointers. In this case, the relationship from

logical parent to logical child does not exist or is maintained by using

physically paired segments. No pointer fields are reserved in the logical

parent segment.

INDX Is specified on the LCHILD statement in a HIDAM database used to

establish the index relationship between the HIDAM root segment type

and the HIDAM Primary index during a HIDAM database DBD

generation. INDX can also be specified on the LCHILD statement in the

DBD for the target database that establishes the index relationship

between an index target segment type and a secondary index. In these

cases, omit the PTR= parameter or specify PTR=SNGL on the LCHILD

statement of the primary or secondary index DBD. An LCHILD

statement for a HIDAM primary index must precede the LCHILD

statements for secondary indexes.

 Note: If the target database is a HALDB, the index database must be

defined as a HALDB index by use of the PSINDEX parameter in the

DBD statement ACCESS parameter.

SYMB Can be used in the DBD generation for the target database of a

secondary index to specify that the concatenated keys of the index

target segments are to be placed in the index pointer segments in lieu

of a direct pointer. You must specify SYMB when the index target

segment type is in a HISAM database. SYMB is optional when the

index target segment type is in an HDAM or HIDAM database.

 An additional use of the SYMB parameter in the INDEX DBDGEN is to

prevent reserving space in the prefix of index pointer segments for the

4-byte direct address index target segment pointer that is not used

when the index pointer is symbolic.

PAIR=

Is specified segname2 for bidirectional logical relationships only. The segname2

parameter is the name of the logical child segment that is, physically or virtually,

paired with the logical child segment specified in segname1. The segname2

parameter must be a 1- to 8-character alphanumeric value.

LCHILD Statement Parameter Descriptions

74 Utilities Reference: System

Restriction: This parameter is not allowed for virtual pairing when using

PHDAM and PHIDAM databases, because they only support physical pairing.

INDEX=

Is specified on LCHILD statements for an Index DBD generation only. The

fldname parameter specifies the name of the sequence field of a HIDAM root

segment type during DBD generation of the primary index for a HIDAM

database, or the name of an indexed field, defined through an XDFLD

statement in an index target segment type during DBD generation of a

secondary index database.

 Note: This parameter is not needed for a primary index of a PHIDAM

database.

RKSIZE=

Specifies the root key size of the target segment.

 Important: This parameter is required for partitioned secondary index

(PSINDEX) databases only, and is invalid for any other database type.

RULES=

Is used for logical relationships when no sequence field or a nonunique

sequence field has been defined for a virtual logical child. Under these

conditions, the rule of FIRST, LAST, or HERE controls the sequence in which

occurrences of the real logical child in the logical relationship are sequenced

from the logical parent through logical child and logical twin pointers (this

establishes the logical twin sequence).

 Restriction: This parameter is not allowed for virtual pairing when using

PHDAM and PHIDAM databases, because they only support physical pairing.

FIRST Indicates that, if no sequence field is specified for the logical child, a

new occurrence is inserted before the first existing occurrence of the

logical child. If a nonunique sequence field is specified for the logical

child, a new occurrence is inserted before all existing occurrences with

the same key.

LAST Indicates that, if no sequence field is specified for the logical child, a

new occurrence is inserted after the last existing occurrence of the

logical child. If a nonunique sequence field is specified for the logical

child, a new occurrence is inserted after all existing occurrences with

the same keys. LAST is the default option.

HERE Indicates that the insert is dependent on the position established by the

previous DL/I call. If no sequence field is defined, the segment is

inserted before the logical twin that position was established on through

the previous call. If no position was established by a previous call, the

new twin is inserted before all existing logical twins. If a nonunique

sequence field is defined, the segment is inserted before the logical

twin with the same sequence field value on which position was

established by a previous call. If no position was established on a

logical twin with the same sequence field value, the segment is inserted

before all twins with the same sequence field value.

 When a new occurrence of a logical child is inserted from its physical

parent, no previous position exists for the logical child on its logical twin

chain. Therefore, the new occurrence is placed before all existing

occurrences on the logical twin chain when no sequence field has been

defined, or before all existing occurrences with the same sequence field

value when a nonunique sequence field has been defined.

LCHILD Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 75

A command code of L (last) takes precedence over the insert rule specified,

causing a new occurrence to be inserted according to the insert rule of LAST,

for insert calls issued against a logical path.

FIELD Statement

The FIELD statement defines a field within a segment type. Fields are referred to

by PSBs when defining sensitivity to the fields or by an application program in a

DL/I call segment search argument. A maximum of 1000 fields can be defined for all

segments in a DBD generation, and a maximum of 255 fields can be defined for

any segment type. A unique sequence field must be defined for the root segment

types of HISAM, HIDAM, PHIDAM, HIDAM Primary INDEX, SHISAM, DEDB, and

non-terminal-related MSDB databases. Root segment types in an HDAM database

do not need a key field defined; if a key field is defined, it does not have to be

unique.

The use of /SX to define unique secondary indexes in HDAM, HIDAM, PHDAM, and

PHIDAM databases causes a 4-byte RBA of the index source segment to be

included as part of the key of the index record. The use of /CK to define unique

secondary indexes in HISAM, HDAM, HIDAM, PHDAM, and PHIDAM databases

does the same. In a PSINDEX, the /SX specification causes an 8-byte ILK to be

used instead of a 4-byte RBA.

PSINDEX entries will also contain the root key of the target segment.

FIELD statements are used in DBD generation:

v To define fields of a segment type as that segment type is seen when it is

accessed from its physical parent segment.

v To define the fields of a real logical child segment type in a virtually paired logical

relationship as seen when that segment type is accessed from its logical parent.

The FIELD statements must immediately follow the SEGM statement defining the

virtual logical child.

v To define system-related fields that are used for secondary indexing.

The format of the FIELD statement is for each database type is shown in the

following examples. The parameters are explained in “FIELD Statement Parameter

Description” on page 78.

HSAM Database FIELD Statement

�� FIELD NAME=(fldname1)

,U

,

SEQ

,M

 ,BYTES=bytes ,START=startpos �

�
C

,TYPE=

X

P

 ��

HISAM Database FIELD Statement

��
 (1)

FIELD

NAME

=

(fldname1

)

,U

,SEQ

,M

(2)

systrelfldname

,BYTES=bytes

�

LCHILD Statement Parameter Descriptions

76 Utilities Reference: System

� ,START=startpos

C

(3)

,TYPES=

X

P

 ��

Notes:

1 Only CK can be coded for the systrelfldname field.

2 A system related field used for secondary indexing.

3 The TYPE=parameter is ignored for fields with a systrelfldname.

HDAM and PHDAM Database FIELD Statement

�� FIELD NAME = (fldname1)

,U

,SEQ

,M

(1)

systrelfldname

 ,BYTES=bytes �

� ,START=startpos

C

(2)

,TYPE=

X

P

 ��

Notes:

1 A system related field used for secondary indexing.

2 The TYPE=parameter is ignored for fields with a systrelfldname.

HIDAM and PHIDAM Database FIELD Statements

�� FIELD NAME = (fldname1)

,U

,SEQ

,M

(1)

systrelfldname

 ,BYTES=bytes �

� ,START=startpos

C

(2)

,TYPE=

X

P

 ��

Notes:

1 A system related field used for secondary indexing.

2 The TYPE=parameter is ignored for fields with a systrelfldname.

MSDB Database FIELD Statement

�� FIELD NAME = (fldname1)

,SEQ

,U
 ,BYTES=bytes �

FIELD Statement

Chapter 1. Database Description (DBD) Generation 77

� ,START=startpos

C

,TYPE=

X

P

H

F

 ��

DEDB Database FIELD Statement

�� FIELD NAME=(fldname1)

,SEQ

,U
 ,BYTES=bytes ,START=startpos �

�
C

,TYPE=

X

P

 ��

Index Database FIELD Statement

�� FIELD NAME=(fldname1

,U

,SEQ

,M

)

 ,BYTES=bytes ,START=startpos �

�
C

,TYPE=

X

P

 ��

FIELD Statement Parameter Description

NAME=fldname1

Specifies the name of the field being defined within a segment type. The name

specified can be referred to by an application program in a DL/I call SSA.

Duplicate field names must not be defined for the same segment type.

fldname1 must be a 1- to 8-character alphanumeric value.

SEQ

Identifies this field as a sequence field in the segment type. FIELD statements

containing the keyword SEQ must be the first FIELD statements following a

SEGM statement in a DBD generation input deck. If the sequence field of a real

logical child segment consists of any part of the logical parent’s concatenated

key, you must specify the PHYSICAL parameter in the SEGM statement in

order for the logical child to include the concatenated key of the logical parent

with the logical child in storage.

 As a general rule, a segment can have only one sequence field. However, in

the case of virtually paired bidirectional logical relationships, multiple FIELD

statements can be used to define a logical sequence field for the virtual logical

child segment type, as described as follows.

 A sequence field must be specified for a virtual logical child segment type if,

when accessing a logical child segment from its logical parent, one requires real

logical child segments to be retrieved in an order determined by data in a field

or fields of the real logical child segments. This sequence field can include any

part of the segment as it appears when viewed from the logical parent (that is,

the concatenated key of the real logical child’s physical parent followed by any

FIELD Statement

78 Utilities Reference: System

intersection data). Since it might be necessary to describe the sequence field of

a logical child segment as accessed from its logical parent segment in

noncontiguous pieces, multiple FIELD statements with the SEQ parameter

present are permitted. Each statement must contain a unique fldname1

parameter.

 You can define any sequence field as a qualification in an SSA, but all

succeeding sequence fields are considered as a part of the named field.

Therefore, the length of the field named in the SSA is the concatenated length

of the specified field plus all succeeding sequence fields. This “scattered”

sequence field is permitted only when specifying the sequence field for a virtual

logical child segment. If the first sequence field is not included in a “scattered”

sequence field in an SSA, DL/I treats the argument as a data field specification

rather than a sequence field specification. DL/I must examine all segment

instances on a twin chain when a data field specification is evaluated. When a

sequence field specification is evaluated the search continues along the twin

chain until a sequence field value that is higher than the SSA value is reached.

The search stops at that point.

 In a MSDB, the keyword SEQ must be specified if the DATASET statement

specifies REL=NO (a non-terminal-related MSDB without terminal-related keys);

otherwise this keyword is invalid.

 In a DEDB, SEQ must be used in the root segment and can be specified in any

direct dependent segment.

 Restriction: SEQ cannot be specified for the sequential dependent segment.

U or M

Qualifies the type of sequence (SEQ) field being specified. The parameter U

indicates that only unique values are allowed in the sequence field of

occurrences of the segment type. For a dependent segment type, the sequence

field of each occurrence under a given physical parent segment must contain a

unique value. The parameter M indicates that duplicate values are allowed in

the sequence field of occurrences of the segment type. For a root segment

type, the sequence field of each occurrence must contain a unique value,

except in HDAM. The root segment type in an HDAM database does not need

a key field; if a key field is defined, it does not have to be unique.

 When no sequence field or a nonunique sequence field is defined for a

segment, occurrences of the segment are inserted according to the rule of

FIRST, LAST, or HERE as specified on the SEGM or LCHILD statement for that

segment.

 Recommendation: It is highly recommended that all segments which

participate in a logical relationship have unique sequence fields. This includes

physical and logical parents as well as physical and logical child segments.

Multiple sequence fields for a virtual logical child segment type must be

uniformly defined as either unique or nonunique.

 In a non-terminal-related MSDB without terminal-related keys, unique (U) values

must be specified for the root sequence field. In a DEDB, unique (U) values

must be specified for the sequence field of the root segment. A dependent

segment in a DEDB does not require a key. However, if a key is defined, it must

be unique.

systrelfldname

Defines a system related field which can only be used for secondary indexing.

There are two types of system-related fields:

FIELD Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 79

v All of or a portion of the concatenated key of an index source segment type

defined by the preceding SEGM statement. The name for this type of

system-related field can be up to 8 characters long, and must begin with the

three characters /CK. The fourth through eighth characters permit unique

identification of the field being defined, whose name must be unique among

all other fields defined in the segment type. This type of system-related field

is defined to enable the use of the concatenated key of an index source

segment, or portions of the concatenated key in the subsequence or

duplicate data fields of index pointer segments.

Example: Assume the concatenated key shown in Table 7:

 Table 7. Sample Concatenated Key for an Index Source Segment Type

Root key

(10 bytes)

Dependent key

(3 bytes)

Dependent key

(3 bytes)

Dependent key

(3 bytes)

If three system-related fields were to consist of bytes 2 through 8 of the root

key, byte 1 of the second key and bytes 5 and 6 of the fourth key, the FIELD

statements specifying these fields could be as follows:

NAME=/CK1

BYTES=7

START=2

NAME=/CK2

BYTES=1

START=11

NAME=/CK3

BYTES=2

START=25

You can then specify the three system-related fields defined for use in the

subsequence or duplicate data fields of index pointer segments by including

the names of the system related fields in lists for the subsequence or

duplicate data fields on an XDFLD statement.

v The second type of system-related field is defined within an index source

segment type to ensure uniqueness of sequence field keys in a secondary

index. The name specified for this type of system-related field must begin

with the characters /SX, and the name specified can be up to 8 characters in

length. When this type of system-related field is defined in an index source

segment type, IMS generates a unique 4-byte value, and places it in the

subsequence field of the index pointer segment generated from an index

source segment.

On an XDFLD statement, a /CK field can be included in the list of fields

specified for either the subsequence or DDATA fields or both of an index pointer

segment. A /SX field can only be included in the list of fields specified for the

subsequence field of index pointer segments.

BYTES=

Specifies the length of the field being defined in bytes. For fields other than

system-related fields, BYTES must be a valid self-defining term whose value

does not exceed 255. If a concatenated key or a portion of a concatenated key

of an index source segment type is defined as a system-related field, the value

specified can be greater than 255, but must not exceed the length of the

concatenated key of the index source segment. The length of a /SX

system-related field is always 4 bytes; therefore, when specified, the BYTES

parameter is disregarded. For the sequence field of a MSDB segment, BYTES

must not exceed 240. For the sequence field of a DEDB segment, BYTES must

not exceed the value of minbytes specified for the segment.

FIELD Statement Parameter Descriptions

80 Utilities Reference: System

START=

Specifies the starting position (startpos) of the field being defined in terms of

bytes relative to the beginning of the segment. Startpos must be a numeric term

whose value does not exceed 32767. Startpos for the first byte of a segment is

one. For variable-length segments, the first 2 bytes contain the length of the

segment. Therefore the first actual user data field starts in byte 3. Overlapping

fields are permitted. When a SEGM statement defines a logical child segment,

the first n bytes of the segment type is the logical or physical parent’s

concatenated key. A field starting in position one would define all or a portion of

this field. A field starting in position n+1 would start with intersection data.

 START= can be used for a system-related field, to describe a portion of the

concatenated key as a field in an index source segment type. If used in this

way, START= specifies the starting position of the relevant portion of the

concatenated key relative to the beginning of the concatenated key. The first

byte of the concatenated key is considered to have a position of one. It must be

a numeric term whose value does not exceed the length of the concatenated

key plus one. Subtract the value specified in the BYTES parameter. The

startpos parameter for the /SX system-related field is disregarded.

TYPE=

Specifies the type of data that is to be contained in this field. The value of the

parameter specified for this parameter indicates that one of the following types

of data is contained in this field:

X Hexadecimal data

P Packed decimal data

C Alphanumeric data or a combination of types of data

F Binary fullword data

H Binary halfword data

Parameters F and H are valid only for MSDB databases.

 All DL/I calls perform field comparisons on a byte-by-byte binary basis. No

check is made by IMS to ensure that the data contained within a field is of the

type specified by this parameter, except when the defined field is used with field

sensitivity or is in an MSDB.

 Types X, C, P, H, and F are valid in an MSDB, with the following rules applying:

v Only a C or X field can contain another field.

v A single field can have multiple definitions as long as no more than one

definition is arithmetic (types P, H, and F).

v If a field contains any part of an arithmetic field, it must contain the entire

field.

v The sequence field must be TYPE=C or X.

v The sequence field cannot be part of any other field.

v SSA and FSA comparisons of arithmetic fields use arithmetic rather than

logical compare operations.

v Initial loading and call processing routines test for valid digits and X and P

type fields.

v The following rules apply to the MSDB field length:

– TYPE=X: BYTES=1 to 256

– TYPE=P: BYTES=1 to 16

– TYPE=C: BYTES=1 to 256

FIELD Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 81

– TYPE=F: BYTES=4

– TYPE=H: BYTES=2

– Field types F and H must have explicit length specifications.

– Fields should be aligned on appropriate boundaries for performance

optimization if they are involved in compare or arithmetic operations and

are a fullword or halfword long. The beginning of the segment is aligned

on a fullword boundary.

v If the systrelfldname in the field statement is defined as either /SX or /CK, the

TYPE= parameter is ignored and no type is set.

 When sensitivity to a field has been defined, the field is filled with a value under

these conditions:

v When the application program is not sensitive to this field on an insert call

v When:

– The application program replaces a variable-length segment with a segment

that is longer than the existing segment

– This field is in the added portion of the segment

– The application program is not sensitive to this field

v When the application program retrieves a variable-length segment that does not

contain this field

The TYPE parameter determines the value to be used, as follows:

TYPE Value Used

X Binary zeros

P Packed decimal zero

C Blanks

If an alphanumeric field (TYPE=C) is partially present in the physical segment, the

data is moved to the field in the user’s I/O area and padded on the right with

blanks. Partially present hexadecimal or packed decimal fields are replaced with the

fill value when presented to the user.

XDFLD Statement

Use the XDFLD statement only for secondary index relationships. Its purpose is to

define the name of an indexed field that is associated to an index target segment

type, identify the index source segment type, and identify the index source segment

fields that are used in creating a secondary index. In addition, information regarding

suppressing the creation of index pointer segments is provided through this

statement.

Restriction: This statement cannot be used to reference a segment in a DBD

where ACCESS=INDEX, SHSAM, SHISAM, HSAM, MSDB, or DEDB has been

specified.

A maximum of 32 XDFLD statements are allowed per SEGM statement. The

number of XDFLD and FIELD statements combined must not exceed 255 per

SEGM statement, and must not exceed 1000 per DBD generation.

One XDFLD statement is required for each secondary index relationship. It must

appear in the DBD generation input deck for the indexed database after the

LCHILD statement that references the index pointer segment. Only FIELD

FIELD Statement Parameter Descriptions

82 Utilities Reference: System

statements for the index target segment can appear between the LCHILD statement

and the associated XDFLD statement in the input deck. The index target segment,

which is the segment defined by the preceding SEGM statement in the DBD

generation input deck must not be either a logical child segment type or a

dependent of a logical child segment type.

The format of the XDFLD statement is for each database type is shown in the

following examples. The parameters are explained in “XDFLD Statement Parameter

Description” on page 84.

HISAM Database XDFLD Statement

��
 (1)

XDFLD

NAME=fldname

,SEGMENT= segname

 (2)

,CONST=char

�

� ,SRCH=list1

,SUBSEQ=list2

,DDATA=list3

,NULLVAL=value1
 �

�
,EXTRTN=name1

 ��

Notes:

1 An XDFLD statement is not allowed during DBD generation of a simple

HISAM database.

2 The combined length of the CONSTANT, SEARCH, and SUBSEQUENCE

fields must not exceed 240 bytes.

HDAM Database XDFLD Statement

��

XDFLD

NAME=fldname

,SEGMENT= segname

 (1)

,CONST=char

�

� ,SRCH=list1

,SUBSEQ=list2

,DDATA=list3

,NULLVAL=value1
 �

�
,EXTRTN=name1

 ��

Notes:

1 The combined length of the CONSTANT, SEARCH, and SUBSEQUENCE

fields must not exceed 240 bytes.

PHDAM Database XDFLD Statement

��

XDFLD

NAME=fldname

,SEGMENT= segname

 (1)

,SRCH=list1

�

XDFLD Statement

Chapter 1. Database Description (DBD) Generation 83

�
,SUBSEQ=list2

,DDATA=list3

,NULLVAL=value1

,EXTRTN=name1
 ��

Notes:

1 The combined length of the SEARCH and SUBSEQUENCE fields must not

exceed 240 bytes.

XDFLD Statement Parameter Description

NAME=

Specifies the name of the indexed data field of an index target segment. The

name specified actually represents the search field of an index pointer segment

type as being a field in the index target segment type. You can use the name

specified to qualify SSAs of calls for an index target segment type through the

search field keys of index pointer segments. This enables accessing

occurrences of an index target segment type through a primary or secondary

processing sequence based on data contained in a secondary index. fldname

must be a 1- to 8-character alphanumeric value.

 Since the name specified is used to access occurrences of the index target

segment type based on the content of a secondary index, the name specified

must be unique among all field names specified for the index target segment

type.

SEGMENT=

Specifies the index source segment type for this secondary index relationship.

segname must be the name of a subsequently defined segment type, which is

hierarchically below the index target segment type or it can be the name of the

index target segment type itself. The segment name specified must not be a

logical child segment. If this parameter is omitted, the index target segment type

is assumed to be the index source segment.

CONST=

Specifies a character with which every index pointer segment in a particular

secondary index is identified. This parameter is optional. The purpose of this

parameter is to identify all index pointer segments associated with each

secondary index when multiple secondary indexes reside in the same

secondary index database. Char must be a 1-byte self-defining term.

 Restriction: CONST is not supported for HALDBs. An error will occur if it is

present for a HALDB.

SRCH=

Specifies which field or fields of the index source segment you must use as the

search field of a secondary index. list1 must be a list of one to five field names

defined in the index source segment type by FIELD statements. If two or more

names are included, they must be separated by commas and enclosed in

parentheses. The sequence of names in the list is the sequence in which the

field values are concatenated in the index pointer segment search field. The

sum of the lengths of the participating fields constitutes the index target

segment indexed field length which must be reflected in segment search

arguments.

SUBSEQ=

Specifies which, if any, fields of the index source segment you must use as the

subsequence field of a secondary index. list2 must be a list of one to five field

names defined in the index source segment by FIELD statements. If two or

XDFLD Statement

84 Utilities Reference: System

more names are included, they must be separated by commas and enclosed in

parentheses. The sequence of names in the list is the sequence in which field

values are concatenated in the index pointer segment subsequence field. This

parameter is optional.

DDATA=

Specifies which, if any, fields of the index source segment you must use as the

duplicate data field of a secondary index. list3 must be a list of one to five field

names defined in the index source segment by FIELD statements. If two or

more names are included, they must be separated by commas and enclosed in

parentheses. The sequence of names in the list is the sequence in which field

values are concatenated in the index pointer segment duplicate data field. This

parameter is optional.

NULLVAL=

Lets you suppress the creation of index pointer segments when the index

source segment data used in the search field of an index pointer segment

contains the specified value.

 The value1 parameter must be a 1-byte self-defining term (X'10',C'Z', 5, or

B'00101101') or the words BLANK or ZERO. BLANK is equivalent to C' ' or

X'40'. ZERO is equivalent to X'00' or 0, but not C'0'. If a packed decimal value

is required, it must be specified as a hexadecimal term with a valid number digit

and zone or sign digit (X'3F' for a packed positive 3 or X'9D' for negative 9).

 No indexing is performed when each field of the index source segment

specified in the SRCH= parameter has the value of this parameter in every

byte. For example, if the NULLVAL=C'9' were specified, the associated index

would have no entries indexed on the value C'9999...9'.

 There is a slight difference in the case of packed fields. For packed fields, each

field that composes the search field is considered to be a separate packed

value.

 Example: If the NULLVAL=X'9F' were specified in a case where the search

field was composed of three 2-byte packed source fields, there would be no

index entries with the search field value of X'999F999F999F' because all index

entries containing a X'9F'would be suppressed.

 Also, with the same NULLVAL=X'9F', if the search field were one 6-byte field,

no indexing would be performed whenever the value of the search field was

X'99999999999F'.

 The only form of the sign that is checked is the form specified.

 Example: If X'9C' is specified, X'9F' does not cause suppression.

EXTRTN=

Specifies the name of a user-supplied index maintenance exit routine that is

used to suppress the creation of selected index pointer segments. The

parameter (name1) must be the name of a user-supplied routine which receives

control whenever DL/I attempts to insert, delete or replace an index entry

because of changes occurring in the indexed database. This exit routine can

inspect the affected index source segment and decide whether or not an index

pointer segment should be generated.

 If both the NULLVAL= and the EXTRTN= operands are specified, indexing of a

segment is performed only if neither causes suppression.

XDFLD Statement Parameter Descriptions

Chapter 1. Database Description (DBD) Generation 85

DBDGEN, FINISH, and END Statements

There are three additional utility statements. Two are required (DBDGEN and END)

and one is optional (FINISH).

The DBDGEN statement indicates the end of DBD generation statements used to

define the DBD. This statement is required. The following example shows the

format of the DBDGEN statement for all database types.

�� DBDGEN ��

The FINISH statement is optional and is retained for compatibility. The following

example shows the format of the FINISH statement for all database types.

��

FINISH
 ��

The END statement indicates the end of input statements to the assembler. This

statement is required. The following example shows the format of the END

statement for all database types.

�� END ��

DBD Generation Output

Three types of printed output and a load module, which becomes a member of the

partitioned data set named IMS.DBDLIB, are produced by a DBD generation. Each

of these outputs is described in the following sections.

Control Statement Listing

This is a listing of the input statement images to this job step.

Diagnostics

Errors discovered during the processing of each statement result in diagnostic

messages. These messages are printed immediately following the image of the last

statement that is read. The message can reference either the statement

immediately preceding it or the preceding group of statements. It is also possible

that more than one message could be printed for each statement.

In this case, these messages follow each other on the output listing. After all the

statements have been read, a further check is made of the reasonableness of the

entire deck. This might result in one or more additional diagnostic messages.

Any discovered error results in the diagnostic messages being printed, the

statements being listed, and the other outputs being suppressed. However, all the

statements are read and checked before the DBD generation execution is

terminated. The link-edit step of DBD generation is not processed if a statement

error has been found.

Assembler Listing

An assembler language listing of the DBD macro expansion created by DBD

generation execution is provided. You can eliminate a printout of this listing by

including an assembler language PRINT NOGEN statement.

DBDGEN, FINISH, and END Statements

86 Utilities Reference: System

If the DBD generation is for a database that uses VSAM as the operating system

access method, a page in the assembler listing will provide recommended values

for some of the parameters necessary to define the data sets of the database to

VSAM. CONTROLINTERVALSIZE and RECORDSIZE values other than those

recommended might be desired for special reasons, such as performance

improvement.

Note: RECORDSIZE needs to be changed appropriately for all ESDS definitions.

If the control interval size is not specified (see 37), it defaults to the size

recommended in this assembler listing. The following example shows the output

produced for a HISAM database. The parameters provided are in the format

required forAccess Method Services statements. The first DEFINE provides

parameters for the key sequenced data set (KSDS) and the second DEFINE

provides parameters for the entry sequenced data set (ESDS).

To provide a complete definition for a VSAM data set, you must add parameters for

data set name (NAME), space allocation (CYL), and volume assignment

(VOLUMES) to those provided by DBD generation. Optional parameters such as

FREESPACE and WRITECHECK can be included if desired.

If you use the /DBD command to allow an offline dump of a VSAM database, you

must use SHARE OPTIONS(3) in the VSAM DEFINE operation for the data sets of

the database. See Figure 6 for an example of Access Method Services parameters

from DBD generation.

 Figure 7 on page 88 shows the DBDGEN input used to create the output in

Figure 6.

+*,*

+*,*

+*, RECOMMENDED VSAM DEFINE CLUSTER PARAMETERS

+*,*

+*,*

+*,*

+*,* *NOTE 1

+*, DEFINE CLUSTER (NAME(DDI3I1) -

+*,* INDEXED KEYS (10,6) -

+*,* RECORDSIZE (680,680) -

+*,* DATA (CONTROLINTERVALSIZE (4096))

+*,* *NOTE 1: SHOULD SPECIFY DSNAME FOR DDI3I1

+*,*

+*,*

+*,* *NOTE 2

+*,* DEFINE CLUSTER (NAME(DDI3O1) NONINDEXED -

+*,* RECORDSIZE (680,680) -

+*,* CONTROLINTERVALSIZE (4096))

+*,* *NOTE 2: SHOULD SPECIFY DSNAME FOR DDI301

+*,*

Figure 6. Example of Access Method Services Parameters from DBD Generation

Listing

Chapter 1. Database Description (DBD) Generation 87

Segment flags are printed in DBD generation output to confirm what has been

generated by that particular DBD generation. The flags, when interpreted, tell you

which pointer options were generated; the segment insert, delete, and replace rules

specified; whether physical child pointers have been reserved in this segment's

prefix; and how many physical children are related to the segment. Segment flags

appear in the output as an assembler language defined constant (DC) statement.

The constant is defined as 8 hexadecimal digits followed by the comment,

SEGMENT FLAGS. Each pair of digits in the constant is a hexadecimal byte. To

interpret the constant, convert the first 6 digits to binary values, and the last 2 digits

to decimal values as shown in Figure 8 on page 89.

SEGM NAME=SEGB2,PARENT=((SEGA1)),BYTES=15,FREQ=3

FIELD NAME=(FLDB2,SEQ,U),BYTES=9,START=3,TYPE=C

SEGM NAME=SEGC1,PARENT=((SEGB2)),BYTES=20,FREQ=7

FIELD NAME=(FLDC1,SEQ,U),BYTES=10,START=4,TYPE=C

DBDGEN

FINISH

END

Figure 7. Example of DBDGEN Input

Listing

88 Utilities Reference: System

Segment Prefix Format Description

Output from DBD generation contains the statement:

DC X’FEFD080A’ SEGMENT FLAGS

Convert the values to binary and decimal representations:

 Byte 0 Byte 1 Byte 2 Byte 3

 FE FD 08 0A

11111110 11111101 00001000 10

Byte 0 Segment has counter, physical twin forward and backward, logical

twin forward and backward, physical parent, and logical parent

pointers.

Byte 1 The insert and replace rules specified are logical, and the delete

rule specified is virtual. Nonsequenced inserts at current position.

Byte 2 Two 4-byte fields are reserved for physical child pointers in the

parent of this segment.

Byte 3 This segment is the parent of 10 physical children.

 CONVERTED

BYTE VALUE DESCRIPTION

 0 POINTER POSITIONS GENERATED:

 1....... CTR (Counter)

 .1...... Physical twin forward

 .11..... Physical twin forward and backward

 ...1.... Physical parent

 1... Logical twin forward

 11.. Logical twin forward and backward

 1. Logical parent

 .1.....1 Hierarchic forward

 .11....1 Hierarchic forward and backward

 1 SEGMENT PROCESSING RULES:

 10...... Insert physical

 01...... Insert virtual

 11...... Insert logical

 ..10.... Insert nonsequential last

 ..01.... Insert nonsequential first

 ..11.... Insert nonsequential here at current position

 10.. Replace physical

 01.. Replace virtual

 11.. Replace logical

 10 Delete physical

 01 Delete virtual

 11 Delete logical

 00 Bivirtual delete

2 ..XX.XXX Reserved

 1....... Segment is paired

 .1...... Segment is a direct dependent in a FP DEDB

 1... Segment's parent has two physical child

 pointers; hierarchic pointers were not specified

3 0-254 Number of physical children of this segment

 pointed to by physical child pointers

Figure 8. Segment Flag Codes

Segment Prefix Format Description

Chapter 1. Database Description (DBD) Generation 89

Load Module

DBD generation is a two-step operating system job. Step 1 is a macro assembly

execution which produces an object module that becomes input to Step 2. Step 2 is

a link-edit of the object module, which produces a load module that becomes a

member of the IMS.DBDLIB library.

DBD Generation Error Conditions

Related Reading: Refer to IMS Version 9: Messages and Codes, Volume 1 for the

DBD generation error messages.

If operands or parameters other than those shown for each type of database are

coded, or if operands or parameters that are necessary are omitted, one or more of

the following conditions can occur:

v DBD generation issues diagnostic messages that:

– Flag operands or parameters that are not shown for the type of database

being defined

– Indicate that operands or parameters that are required for the type of

database being defined were omitted

v DBD generation completes, but DL/I ignores the control information that was

generated by the specification of operands or parameters that are not shown for

the type of database that was defined.

v DBD generation completes, but DL/I is unable to create and access the defined

database because (a) conflicting control information was specified when

attempting to interrelate databases, or (b) segment relationships describing the

application program's view of the database were not properly defined in the DBD

generation.

v DBD generation completes, and DL/I creates and accesses a database.

However, the results provided to you are not those you desired. This condition

can occur because the default actions taken by DL/I in response to finding

missing or conflicting control information are actions that you had not considered

during DBD generation.

DBD Generation Examples

This section contains examples of DBD generation for different database types.

Examples without Secondary Index or Logical Relationships

The DBD generation examples provided in the following section show the

statements that are required to define HSAM, HISAM, HDAM, HIDAM, primary

HIDAM Index, GSAM, and MSDB and DEDB databases without secondary indexes

or logical relationships. Two data structures are shown in Figure 9 on page 91. One

represents the hierarchic order of data used in a payroll inventory data structure,

which includes NAME, ADDRESS, and PAYROLL. The other structure represents

the hierarchic order of data used in a skills inventory data structure, which includes

SKILL, NAME, EXPERIENCE, and EDUCATION. One or both structures are the

basis for the examples in Figure 9 on page 91 through Figure 20 on page 101.

Segment Prefix Format Description

90 Utilities Reference: System

HSAM DBD Generation Example

The examples in Figure 10 show the DBD generation statements that define the

skills inventory and payroll data structures as HSAM databases.

Figure 9. Payroll and Skills Inventory Data Structures

HSAM DBD Generation of Skills Inventory Database

DBD NAME=SKILLINV,ACCESS=HSAM

DATASET DD1=SKILHSAM,DD2=HSAMOUT,BLOCK=1,

 RECORD=3000

SEGM NAME=SKILL,BYTES=31,FREQ=100

FIELD NAME=TYPE,BYTES=21,START=1,TYPE=C

FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,FREQ=500,PARENT=SKILL

FIELD NAME=STDCLEVL,BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,FREQ=10,PARENT=NAME

FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,FREQ=5,PARENT=NAME

FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH

END

Figure 10. HSAM DBD Generation (Part 1 of 2)

Examples

Chapter 1. Database Description (DBD) Generation 91

HISAM DBD Generation Example

The examples in Figure 11 show the DBD generation statements that define the

skills inventory and payroll data structures as HISAM databases.

HSAM DBD Generation of Payroll Database

DBD NAME=PAYROLDB,ACCESS=HSAM

DATASET DD1=PAYROLL,DD2=PAYOUT,BLOCK=1,RECORD=1000,

SEGM NAME=NAME,BYTES=150,FREQ=1000,PARENT=0

FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C

FIELD NAME=MANNBR,BYTES=15,START=61,TYPE=C

FIELD NAME=ADDR,BYTES=75,START=76,TYPE=C

SEGM NAME=ADDRESS,BYTES=200,FREQ=2,PARENT=NAME

FIELD NAME=HOMEADDR,BYTES=100,START=1,TYPE=C

FIELD NAME=COMAILOC,BYTES=100,START=101,TYPE=C

SEGM NAME=PAYROLL,BYTES=100,FREQ=1,PARENT=NAME

FIELD NAME=HOURS,BYTES=15,START=51,TYPE=P

FIELD NAME=BASICPAY,BYTES=15,START=1,TYPE=P

DBDGEN

FINISH

END

Figure 10. HSAM DBD Generation (Part 2 of 2)

HISAM DBD Generation of Skills Inventory SKILLINV Database

DBD NAME=SKILLINV,ACCESS=HISAM

DATASET DD1=SKLHISAM,OVFLW=HISAMOVF,

SEGM NAME=SKILL,BYTES=31,FREQ=100

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,FREQ=500,PARENT=SKILL

FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,FREQ=10,PARENT=NAME

FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,FREQ=5,PARENT=NAME

FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH

END

Figure 11. HISAM DBD Generations (Part 1 of 2)

Examples

92 Utilities Reference: System

HDAM DBD Generation Example

The examples in Figure 12 show the statements required to define the skills

inventory data structure as HDAM databases. The first example defines a database

that uses hierarchic pointers, and the second example defines a database that uses

physical child and physical twin pointers. The third example defines a database that

uses the VERSION= and EXIT= parameters.

HISAM DBD Generation of Payroll Database

DBD NAME=PAYROLDB,ACCESS=HISAM

DATASET DD1=PAYROLL,OVFLW=PAYROLOV,

SEGM NAME=NAME,BYTES=150,FREQ=1000,PARENT=0

FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C

FIELD NAME=MANNBR,BYTES=15,START=61,TYPE=C

FIELD NAME=ADDR,BYTES=75,START=76,TYPE=C

SEGM NAME=ADDRESS,BYTES=200,FREQ=2,PARENT=NAME

FIELD NAME=HOMEADDR,BYTES=100,START=1,TYPE=C

FIELD NAME=COMAILOC,BYTES=100,START=101,TYPE=C

SEGM NAME=PAYROLL,BYTES=100,FREQ=1,PARENT=NAME

FIELD NAME=HOURS,BYTES=15,START=51,TYPE=P

FIELD NAME=BASICPAY,BYTES=15,START=1,TYPE=P

DBDGEN

FINISH

END

Figure 11. HISAM DBD Generations (Part 2 of 2)

HDAM DBD Generation of Skills Inventory SKILLINV Database with Hierarchic

Pointers

DBD NAME=SKILLINV,ACCESS=HDAM,RMNAME=(RAMDMODL,1,500,824)

DATASET DD1=SKILHDAM,BLOCK=1648,SCAN=5

SEGM NAME=SKILL,BYTES=31,PTR=H,PARENT=0

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,PTR=H,PARENT=SKILL

FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=H,PARENT=NAME

FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=H,PARENT=NAME

FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH

END

Figure 12. HDAM DBD Generation (Part 1 of 3)

Examples

Chapter 1. Database Description (DBD) Generation 93

HIDAM DBD Generation Example

A HIDAM database is indexed through the sequence field of its root segment type.

In defining the HIDAM and primary HIDAM index databases, an index relationship is

established between the HIDAM root segment type and the segment type defined in

the primary HIDAM index database. Figure 13 summarizes the statements required

to establish the index relationship between the HIDAM root segment type and the

HDAM DBD Generation of Skills Inventory Database with Physical Child and

Physical Twin Pointers

DBD NAME=SKILLINV,ACCESS=HDAM,RMNAME=(RAMDMODL,1,500,824)

DATASET DD1=SKILHDAM,BLOCK=1648,SCAN=5

SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,PTR=T,PARENT=((SKILL,SNGL))

FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=T,PARENT=((NAME,SNGL))

FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=T,PARENT=((NAME,SNGL))

FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH

END

Figure 12. HDAM DBD Generation (Part 2 of 3)

HDAM DBD Generation of Skills Inventory SKILLINV Database with EXIT= and

VERSION= Parameters

DBD NAME=SKILLINV,ACCESS=HDAM,RMNAME=(RAMDMODL,1,500,824),VERSION=CCCCCC

DATASET DD1=SKILHDAM,BLOCK=1648,SCAN=5

SEGM NAME=A,BYTES=8,PTR=H,PARENT=0,EXIT=(EXITA)

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=B,BYTES=20,PTR=H,PARENT=SKILL,(EXIT=(EXITB,(CASCADE,KEY))

FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=C,BYTES=8,PTR=H,PARENT=A,EXIT=((EXITA,PATH),(EXITC))

FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=H,PARENT=NAME

FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH

END

Figure 12. HDAM DBD Generation (Part 3 of 3)

Examples

94 Utilities Reference: System

index segment type in the primary HIDAM index database. Only those operands

pertinent to the index relationship are shown.

 The next two examples show the statements that define the skills inventory data

structure as two HIDAM databases. The first is defined with hierarchic pointers, and

the second is defined with physical child and physical twin pointers. Since a HIDAM

database is indexed on the sequence field of its root segment type, an INDEX DBD

generation is required. Figure 14 shows the statements for the two HIDAM DBD

generations and the index DBD generation.

Primary HIDAM Index Relationship

HIDAM: INDEX:

DBD NAME=dbd1,ACCESS=HIDAM DBD NAME=dbd2,ACCESS=INDEX

SEGM NAME=seg1,BYTES=, SEGM NAME=seg2,BYTES=

 POINTER=

LCHILD NAME=(seg2,dbd2), LCHILD NAME=(seg1,dbd1),

 PTR=INDX INDEX=fld1

FIELD NAME=(fld1,SEQ,U), FIELD NAME=(fld2,SEQ,U),

 BYTES=,START= BYTES=,START=

Figure 13. Summary of Statements for the Primary HIDAM Index Relationship

INDEX DBD Generation for HIDAM Database SKILLINV

DBD NAME=INDEXDB,ACCESS=INDEX

DATASET DD1=INDXDB1,

SEGM NAME=INDEX,BYTES=21,FREQ=10000

LCHILD NAME=(SKILL,SKILLINV),INDEX=TYPE

FIELD NAME=(INDXSEQ,SEQ,U),BYTES=21,START=1

DBDGEN

FINISH

END

Figure 14. HIDAM and Primary HIDAM Index DBD Generations (Part 1 of 3)

Examples

Chapter 1. Database Description (DBD) Generation 95

PHDAM DBD Generation Example

Figure 15 shows the DBD generation of skills inventory database with physical child

and physical twin pointers for a PHDAM database.

HIDAM DBD Generation of Skills Inventory Database with Hierarchic Pointers

DBD NAME=SKILLINV,ACCESS=HIDAM

DATASET DD1=SKLHIDAM,BLOCK=1648,SCAN=5

SEGM NAME=SKILL,BYTES=31,PTR=H,PARENT=0

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

LCHILD NAME=(INDEX,INDEXDB),PTR=INDX

SEGM NAME=NAME,BYTES=20,PTR=H,PARENT=SKILL

FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=H,PARENT=NAME

FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=H,PARENT=NAME

FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH

END

Figure 14. HIDAM and Primary HIDAM Index DBD Generations (Part 2 of 3)

HIDAM DBD Generation of Skills Inventory SKILLINV Database with Physical

Child and Physical Twin Pointers

DBD NAME=SKILLINV,ACCESS=HIDAM

DATASET DD1=SKLHIDAM,BLOCK=1648,SCAN=5

SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0

LCHILD NAME=(INDEX,INDEXDB),PTR=INDX

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,PTR=T,PARENT=((SKILL,SNGL))

FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=T,PARENT=((NAME,SNGL))

FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=T,PARENT=((NAME,SNGL))

FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH

END

Figure 14. HIDAM and Primary HIDAM Index DBD Generations (Part 3 of 3)

Examples

96 Utilities Reference: System

PHIDAM DBD Generation Example

Figure 16 shows the DBD generation of skills inventory database with physical child

and physical twin pointers for a PHIDAM database. No index base definitions are

required.

GSAM DBD Generation Example

Figure 17 shows the DBD generation statements that define input and output data

sets for a GSAM database.

MSDB DBD Generation Example

Figure 18 on page 98 shows the DBD generation statements necessary to define

the three types of main storage database DBDs.

 DBD NAME=SKILLINV,ACCESS=(PHDAM,OSAM),RMNAME=(RAMDMODL,1,500,824)

 SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0

 FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

 FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

 SEGM NAME=NAME,BYTES=20,PTR=T,PARENT=((SKILL,SNGL))

 FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

 SEGM NAME=EXPR,BYTES=20,PTR=T,PARENT=((NAME,SNGL))

 FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

 FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

 SEGM NAME=EDUC,BYTES=75,PTR=T,PARENT=((NAME,SNGL))

 FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

 FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

 DBDGEN

 END

Figure 15. PHDAM DBD Generations

 DBD NAME=SKILLINV,ACCESS=PHIDAM

 SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0

 FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

 FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

 SEGM NAME=NAME,BYTES=20,PTR=T,PARENT=((SKILL,SNGL))

 FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

 SEGM NAME=EXPR,BYTES=20,PTR=T,PARENT=((NAME,SNGL))

 FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

 FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

 SEGM NAME=EDUC,BYTES=75,PTR=T,PARENT=((NAME,SNGL))

 FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

 FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

 DBDGEN

 FINISH

 END

Figure 16. PHIDAM DBD Generations

DBD NAME=CARDS,ACCESS=(GSAM,BSAM)

DATASET DD1=ICARDS,DD2=OCARDS,RECFM=F,RECORD=80

DBDGEN

FINISH

END

Figure 17. GSAM DBD Generations

Examples

Chapter 1. Database Description (DBD) Generation 97

DBD Generation for a Nonterminal-Related MSDB without LTERM Keys

DBD NAME=MSDBLM02,ACCESS=MSDB

DATASET REL=NO

SEGM NAME=LDM,BYTES=4

FIELD NAME=(FIELDSEQ,SEQ,U),BYTES=1,START=1,TYPE=X

DBDGEN

FINISH

END

Figure 18. Main Storage Database DBD Generations (Part 1 of 4)

DBD Generation for a Nonterminal-Related MSDB with LTERM Keys

DBD NAME=MSDBLM04,ACCESS=MSDB

DATASET REL=(TERM,FIELDLDM)

SEGM NAME=LDM,BYTES=52

FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C

FIELD NAME=FIELDX01,BYTES=2,START=5,TYPE=X

FIELD NAME=FIELDC01,BYTES=2,START=5,TYPE=C

FIELD NAME=FIELDH01,BYTES=2,START=7,TYPE=H

FIELD NAME=FIELDF01,BYTES=4,START=9,TYPE=F

FIELD NAME=FIELDC03,BYTES=2,START=13,TYPE=C

FIELD NAME=FIELDP01,BYTES=2,START=13,TYPE=P

FIELD NAME=FIELDP02,BYTES=1,START=15,TYPE=P

FIELD NAME=FIELDP03,BYTES=16,START=16,TYPE=P

FIELD NAME=FIELDH02,BYTES=2,START=32,TYPE=H

FIELD NAME=FIELDF02,BYTES=4,START=34,TYPE=F

FIELD NAME=FIELDX03,BYTES=12,START=38,TYPE=X

FIELD NAME=FIELDH03,BYTES=2,START=50,TYPE=H

DBDGEN

FINISH

END

Figure 18. Main Storage Database DBD Generations (Part 2 of 4)

DBD Generation for a Fixed Terminal-Related MSDB

DBD NAME=MSDBLM05,ACCESS=MSDB

DATASET REL=(FIXED,FIELDLDM)

SEGM NAME=LDM,BYTES=52

FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C

FIELD NAME=FIELDX01,BYTES=2,START=5,TYPE=X

FIELD NAME=FIELDC01,BYTES=2,START=5,TYPE=C

FIELD NAME=FIELDH01,BYTES=2,START=7,TYPE=H

FIELD NAME=FIELDF01,BYTES=4,START=9,TYPE=F

FIELD NAME=FIELDC03,BYTES=2,START=13,TYPE=C

FIELD NAME=FIELDP01,BYTES=2,START=13,TYPE=P

FIELD NAME=FIELDP02,BYTES=1,START=15,TYPE=P

FIELD NAME=FIELDP03,BYTES=16,START=16,TYPE=P

FIELD NAME=FIELDH02,BYTES=2,START=32,TYPE=H

FIELD NAME=FIELDF02,BYTES=4,START=34,TYPE=F

FIELD NAME=FIELDX03,BYTES=12,START=38,TYPE=X

FIELD NAME=FIELDH03,BYTES=2,START=50,TYPE=H

DBDGEN

FINISH

END

Figure 18. Main Storage Database DBD Generations (Part 3 of 4)

Examples

98 Utilities Reference: System

DEDB DBD Generation Example

Figure 19 on page 100 shows the DBD generation statements necessary to define

a data entry database DBD.

DBD Generation for a Dynamic Terminal-Related MSDB

DBD NAME=MSDBLM06,ACCESS=MSDB

DATASET REL=(DYNAMIC,FIELDLDM)

SEGM NAME=LDM,BYTES=52

FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C

FIELD NAME=FIELDX01,BYTES=2,START=5,TYPE=X

FIELD NAME=FIELDC01,BYTES=2,START=5,TYPE=C

FIELD NAME=FIELDH01,BYTES=2,START=7,TYPE=H

FIELD NAME=FIELDF01,BYTES=4,START=9,TYPE=F

FIELD NAME=FIELDC03,BYTES=2,START=13,TYPE=C

FIELD NAME=FIELDP01,BYTES=2,START=13,TYPE=P

FIELD NAME=FIELDP02,BYTES=1,START=15,TYPE=P

FIELD NAME=FIELDP03,BYTES=16,START=16,TYPE=P

FIELD NAME=FIELDH02,BYTES=2,START=32,TYPE=H

FIELD NAME=FIELDF02,BYTES=4,START=34,TYPE=F

FIELD NAME=FIELDX03,BYTES=12,START=38,TYPE=X

FIELD NAME=FIELDH03,BYTES=2,START=50,TYPE=H

DBDGEN

FINISH

END

Figure 18. Main Storage Database DBD Generations (Part 4 of 4)

Examples

Chapter 1. Database Description (DBD) Generation 99

Figure 20 shows the DBD generation statements necessary to define a DEDB with

subset pointers.

DBD Generation for a DEDB

DEDB1 DBD NAME=DEDB0001,ACCESS=DEDB,RMNAME=RMOD1

AREA0 AREA DD1=DB1AREA0, AREA 0

 MODEL=1,SIZE=1024,

 ROOT=(10,5), 5 UOW’S/AREA

 UOW=(15,10) 5 A.P.’S + 10 DEP. OFLOW.

AREA1 AREA DD1=DB1AREA1, AREA 1

 MODEL=11,SIZE=1024,

 ROOT=(10,5), 5 UOW’S/AREA

 UOW=(15,10) 5 A.P.’S + 10 DEP. OFLOW.

AREA2 AREA DD1=DB1AREA2, AREA 2

 SIZE=1024,

 ROOT=(10,5), 5 UOW’S/AREA

 UOW=(15,10) 5 A.P.’S + 10 DEP. OFLOW.

AREA3 AREA DD1=DB1AREA3, AREA 3

 SIZE=4096,

 ROOT=(10,5), 5 UOW’S/AREA

 UOW=(15,10) 5 A.P.’S + 10 DEP. OFLOW.

AREA4 AREA DD1=DB1AREA4, AREA 4

 MODEL=1,SIZE=2048,

 ROOT=(10,5), 5 UOW’S/AREA

 UOW=(15,10) 5 A.P.’S + 10 DEP. OFLOW.

AREA5 AREA DD1=DB1AREA5, AREA 5

 MODEL=2,SIZE=4096,

 ROOT=(10,5), 5 UOW’S/AREA

 UOW=(15,10) 5 A.P.’S + 10 DEP. OFLOW.

AREA6 AREA DD1=DB1AREA6, AREA 6

 SIZE=1024,

 ROOT=(10,5), 5 UOW’S/AREA

 UOW=(15,10) 5 A.P.’S + 10 DEP. OFLOW.

AREA7 AREA DD1=DB1AREA7, AREA 7

 SIZE=2048,

 ROOT=(10,5), 5 UOW’S/AREA

 UOW=(15,10) 5 A.P.’S + 10 DEP. OFLOW.

ROOTSEG SEGM NAME=ROOTSEG1,PARENT=0,BYTES=(300,50)

ROOTLFLD FIELD NAME=(ROOTKEY1,SEQ,U),BYTES=8,START=3,TYPE=C

SDSEG SEGM NAME=SDSEGNM1,PARENT=ROOTSEG1,BYTES=(300,50),

 TYPE=SEQ

SDFLD FIELD NAME=SDSCFLD1,BYTES=10,START=3,TYPE=C

DDSEG SEGM NAME=DDSEGNM1,PARENT=ROOTSEG1,

 BYTES=(40,15),TYPE=DIR

DDFLD1 FIELD NAME=(DD1FLD1,SEQ,U),BYTES=4,START=6

DDFLD2 FIELD NAME=DD1FLD2,BYTES=5,START=10,TYPE=P

 DBDGEN

 FINISH

 END

Figure 19. Data Entry Database DBD Generations

Examples

100 Utilities Reference: System

Note: SSPTR=n, where n indicates the number of subset pointers

Summary of Physical Database Description Examples

An application program through a database PCB can operate on any of the

databases previously described. The value of the DBDNAME= parameter on the

database statement should equal the value of the NAME= parameter on a DBD

statement of DBD generation. The SENSEG statements following the database

statements in PSB generation should reference segments defined by SEGM

statements in the named DBD generation.

When a HIDAM database is used by an application program, the value of the

DBDNAME= parameter on the statement should equal the value of the NAME=

parameter on the DBD statement for the HIDAM DBD generation. The LCHILD

statement in the HIDAM DBD provides IMS with the relationship to the necessary

INDEX DBD and index database. The INDEX DBD name should not be specified in

the DBDNAME= parameter of a database PCB.

Examples with Logical Relationships

Figure 21 on page 102 shows the three types of logical relationships (unidirectional,

bidirectional physically paired, and bidirectional virtually paired) that can be defined

in IMS databases. Also in the figure are the statements required to define each type

of relationship. Only the operands pertinent to the relationship are shown, and it is

assumed that each type of relationship is defined between segments in two

databases named DBD1 and DBD2.

DBD Generation for DEDB Subset Pointers

DBD NAME=DEDBDB,ACCESS=DEDB,RMNAME=DBFHD040

AREA DD1=DEDBDD,MODEL=1,SIZE=1024,

 ROOT=(10,5),UOW=(15,10)

SEGM NAME=A,BYTES=(48,27),PARENT=0

FIELD NAME=(A1,SEQ,U),BYTES=10,START=3,TYPE=C

SEGM NAME=B,BYTES=(24,11),PARENT=((A,SNGL)),TYPE=DIR,SSPTR=5

FIELD NAME=(B1,SEQ,U),BYTES=5,START=3,TYPE=C

FIELD NAME=B2,BYTES=5,START=10,TYPE=C

SEGM NAME=C,BYTES=(34,32),PARENT=((B,DBLE)),RULES=(,HERE),TYPE=DIR

FIELD NAME=(C1,SEQ,U),BYTES=20,START=3,TYPE=C

SEGM NAME=D,BYTES=(52,33),PARENT=((A,DBLE)),TYPE=DIR,SSPTR=3

FIELD NAME=(D1,SEQ,U),BYTES=2,START=3,TYPE=C

SEGM NAME=B,BYTES=(52,33),PARENT=((A,DBLE)),RULES=(,FIRST),TYPE=DIR

FIELD NAME=(B1,SEQ,U),BYTES=2,START=3,TYPE=C

DBDGEN

FINISH

END

Figure 20. DBD Generation of DEDB Subset Pointers Sample

Examples

Chapter 1. Database Description (DBD) Generation 101

Figure 21. Comparison of Unidirectional, Physically Paired Bidirectional, and Virtually Paired

Bidirectional Logical Relationships (Part 1 of 2)

Examples

102 Utilities Reference: System

In the Virtually Paired Bidirectional Logical Relationship area of Figure 21 on page

102, a HISAM database can participate in a virtually paired logical relationship only

 Unidirectional Logical Relationships

Statements for DBD1 Statements for DBD2

SEGM NAME=SEG1,PARENT=

 ,BYTES=,FREQ=

 ,POINTER=,RULES=

SEGM NAME=SEG3,PARENT=

 ,BYTES=,FREQ=,POINTER=

 ,RULES=

SEGM NAME=SEG2

 ,PARENT=((SEG1,)

 ,SEG3,PHYSICAL,DBD2))1

 ,BYTES=,FREQ=

 ,POINTER=(LPARNT)1

 ,RULES=

LCHILD NAME=(SEG2,DBD1)

Note:

1. Specify symbolic or direct logical parent pointer. The direct access pointer can be specified only when the logical

parent is in an HDAM, HIDAM, PHDAM or HIDAM database.

 Physically Paired Bidirectional Logical Relationships

Statements for DBD1 Statements for DBD2

SEGM NAME=SEG1,PARENT=

 ,BYTES=,FREQ,=

 ,POINTER=,RULES=

SEGM NAME=SEG3,PARENT=

 ,BYTES=,FREQ=

 ,POINTER=,RULES=

LCHILD NAME=(SEG4,DBD2)

 ,PAIR=SEG2

LCHILD NAME=(SEG2,DBD1)

 ,PAIR=SEG4

SEGM NAME=SEG2

 ,PARENT=((SEG1,)

 ,(SEG3,PHYSICAL,DBD2))1

 ,BYTES=,FREQ=

 ,POINTER=(LPARNT,PAIRED)1

 ,RULES=

SEGM NAME=SEG4

 ,PARENT=((SEG3,)

 ,(SEG1,PHYSICAL,DBD1))1

 ,BYTES=,FREQ=

 ,POINTER=(LPARNT,PAIRED)1

 ,RULES=

Note:

1. Specify symbolic or direct logical parent pointer. The direct access pointer can be specified only when the logical

parent is in an HDAM, HIDAM, PHDAM, or PHIDAM database.

 Virtually Paired Bidirectional Logical Relationship

Statements for DBD1 Statements for DBD2

SEGM NAME=SEG1,PARENT=

 ,BYTES=,FREQ=

 ,POINTER=,RULES=

SEGM NAME=SEG3,PARENT=

 ,BYTES=,FREQ=

 ,POINTER=,RULES=

SEGM NAME=SEG2

 ,PARENT=((SEG1,)

 ,(SEG3,PHYSICAL,DBD2))1

 ,BYTES=,FREQ=

 ,POINTER=(LTWIN,LPARNT)2

 ,RULES=

LCHILD NAME=(SEG2,DBD1)

 ,POINTER=SNGL3

 ,PAIR=SEG4

 ,RULES=3

Notes:

1. Specify symbolic or direct logical parent pointer. The direct access pointer can be specified only when the logical

parent is in an HDAM, HIDAM, PHDAM or PHIDAM database.

2. Specify LTWIN or LTWINBWD for logical twin pointers.

3. Specify DNGL or DBLE for logical child pointers. The LCHILD RULES= parameter is used when either no sequence

field or a nonunique sequence field has been defined for the virtual logical child or when the virtual logical child

segment does not exist.

Figure 21. Comparison of Unidirectional, Physically Paired Bidirectional, and Virtually Paired

Bidirectional Logical Relationships (Part 2 of 2)

Examples

Chapter 1. Database Description (DBD) Generation 103

when the real logical child is in an HDAM, HIDAM, PHDAM, or PHIDAM database

and its logical parent is in the HISAM database.

Figure 22 illustrates how logical relationships and logical databases are defined.

Part 1 depicts the physical data structures of a payroll database and a skills

inventory database. Part 2 depicts the logical relationship between the physical data

structures, NAMEMAST (in the Payroll database) and SKILNAME (in the Skills

inventory database). Part 3 depicts the logical databases (SKILL and NAME) that

can be defined as a result of the logical relationships. The new databases contain

segments from both the NAMEMAST structure and the SKILNAME structure.

Examples of DBD generation statements follow Figure 22.

Figure 23 on page 105 shows the DBD generation statements necessary to define:

Figure 22. Logical Relationship Between Physical Databases and The Resulting Logical

Databases That Can Be Defined

Examples

104 Utilities Reference: System

v The payroll and skills inventory data structures depicted in Part 2 of Figure 22 as

a HIDAM and HDAM data base with a virtually paired bidirectional logical

relationship between the two databases

v The logical data structures depicted in Part 3 of Figure 22 as logical databases

DBD NAME=PAYROLDB,ACCESS=HIDAM

DATASET DD1=PAYHIDAM,BLOCK=1648,SCAN=3

SEGM NAME=NAMEMAST,PTR=TWINBWD,RULES=(VVV), X

 BYTES=150

LCHILD NAME=(INDEX,INDEXDB),PTR=INDX

LCHILD NAME=(SKILNAME,SKILLINV),PAIR=NAMESKIL,PTR=DBLE

FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C

FIELD NAME=MANNBR,BYTES=15,START=61,TYPE=C

FIELD NAME=ADDR,BYTES=75,START=76,TYPE=C

SEGM NAME=NAMESKIL,PARENT=NAMEMAST,PTR=PAIRED, X

 SOURCE=((SKILNAME,DATA,SKILLINV))

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDLEVL,BYTES=20,START=22,TYPE=C

SEGM NAME=ADDRESS,BYTES=200,PARENT=NAMEMAST

FIELD NAME=(HOMEADDR,SEQ,U),BYTES=100,START=1,TYPE=C

FIELD NAME=COMAILOC,BYTES=100,START=101,TYPE=C

SEGM NAME=PAYROLL,BYTES=100,PARENT=NAMEMAST

FIELD NAME=(BASICPAY,SEQ,U),BYTES=15,START=1,TYPE=P

FIELD NAME=HOURS,BYTES=15,START=51,TYPE=P

DBDGEN

FINISH

END

DBD NAME=SKILLINV,ACCESS=HDAM,RMNAME=(RAMDMODL,1,500,824)

DATASET DD1=SKILHDAM,BLOCK=1648,SCAN=5

SEGM NAME=SKILMAST,BYTES=31,PTR=TWINBWD

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=SKILNAME, X

 PARENT=((SKILMAST,DBLE),(NAMEMAST,P,PAYROLDB)), X

 BYTES=80,PTR=(LPARNT,LTWINBWD,TWINBWD), X

 RULES=(VVV)

FIELD NAME=(EMPLOYEE,SEQ,U),START=1,BYTES=60,TYPE=C

FIELD NAME=(STDLEVL),BYTES=20,START=61,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=T, X

 PARENT=((SKILNAME,SNGL))

FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=T, X

 PARENT=((SKILNAME,SNGL))

FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH

END

Figure 23. DBD Generation Statements Examples (Part 1 of 2)

Examples

Chapter 1. Database Description (DBD) Generation 105

Examples with Secondary Indexes

The statements required to establish a secondary index relationship between a

segment type in an indexed database and a segment type in a secondary index

database are summarized in Table 8, Table 9 on page 107, and Table 10 on page

108. The statements required when the index target and index source segment

types are the same are shown in Table 8. In Table 9 on page 107, the index target

and index source segment types are different. Table 10 on page 108 shows the

statements required for a shared secondary index DBD generation. In all three

tables, only those operands pertinent to the secondary index relationships are

shown.

 Table 8. Same Index Source and Target Segment Types

Indexed DBD Index DBD

DBDNAME=DBD1,ACCESS=

 .

 .

 .

SEGMNAME1=SEG1,PARENT=

 ,BYTES

FIELDNAME=(FLD2,SEQ,...),BYTES=

FIELDNAME=FLD1,BYTES=

 ,START

LCHILDNAME=(SEG3,DBD2),

 POINTER2=INDX

XDFLDNAME=XFLD,SRCH=FL

DBDNAME=DBD2,ACCESS=INDEX

 .

 .

 .

SEGNAME=SEG3,PARENT=0,BYTES=

FIELDNAME=(FLD2,SEQ,...),BYTES=

 ,START=1

LCHILDNAME=(SEG1,DBD1),

 INDEX=XFLD,POINTER2=SNGL

Notes to Table 8:

DBD NAME=LOGICDB,ACCESS=LOGICAL

DATASET LOGICAL

SEGM NAME=SKILL,SOURCE=((SKILMAST,,SKILLINV))

SEGM NAME=NAME,PARENT=SKILL, X

 SOURCE=((SKILNAME,,SKILLINV),(NAMEMAST,,PAYROLDB))

SEGM NAME=ADDRESS,PARENT=NAME,SOURCE=((ADDRESS,,PAYROLDB))

SEGM NAME=PAYROLL,PARENT=NAME,SOURCE=((PAYROLL,,PAYROLDB))

SEGM NAME=EXPR,PARENT=NAME,SOURCE=((EXPR,,SKILLINV))

SEGM NAME=EDUC,PARENT=NAME,SOURCE=((EDUC,,SKILLINV))

DBDGEN

FINISH

END

BD NAME=LOGIC1,ACCESS=LOGICAL

DATASET LOGICAL

SEGM NAME=NAME,SOURCE=((NAMEMAST,,PAYROLDB))

SEGM NAME=ADDRESS,PARENT=NAME,SOURCE=((ADDRESS,,PAYROLDB))

SEGM NAME=PAYROLL,PARENT=NAME,SOURCE=((PAYROLL,,PAYROLDB))

SEGM NAME=SKILL,PARENT=NAME, X

 SOURCE=((NAMESKIL,,PAYROLDB),(SKILMAST,,SKILLINV))

SEGM NAME=EXPR,SOURCE=((EXPR,,SKILLINV)),PARENT=SKILL

SEGM NAME=EDUC,SOURCE=((EDUC,,SKILLINV)),PARENT=SKILL

DBDGEN

FINISH

END

Figure 23. DBD Generation Statements Examples (Part 2 of 2)

Examples

106 Utilities Reference: System

1. The index target segment type can be a root or a dependent segment type; it

must not be either a logical child segment type or a dependent of a logical child

segment type. The index source segment type must not be a logical child

segment type.

2. The example is shown with direct pointers for the index pointer segment types

in the index DBD. If symbolic pointing is desired, POINTER=SYMB should be

specified on both LCHILD statements; symbolic pointing is required when the

index target segment type is in a HISAM database.

 Table 9. Different Index Source and Target Segment Types

Indexed DBD Index DBD

DBDNAME=DBD1,ACCESS=

 .

 .

 .

SEGNAME1=SEG1,BYTES=,PARENT=

LCHILDNAME=(SEG4,DBD2),

 POINTER2=INDX

XLFLDNAME=XFLD,SEGMENT=SEG3,

 SRCH=FLD3,...

SEGMNAME=SEG2,BYTES=

 ,PARENT=SEG1

SEGMNAME1=SEG3

 ,PARENT=SEG2

FIELDNAME=FLD3,BYTES=

 ,START=

DBDNAME=DBD2,ACCESS=INDEX

 .

 .

 .

SEGMNAME=SEG4,PARENT=0,BYTES=

FIELDNAME=(FLD4,SEQ,...)

 ,START=1,BYTES=

LCHILDNAME=(SEG1,DBD1),

 INDEX=XFLD,POINTER2=SNGL

Notes to Table 9:

1. The index target segment type can be a root or a dependent segment type. It

must not be either a logical child segment type or a dependent of a logical child

segment type. The index source segment type must not be a logical child

segment type.

2. The example is shown with direct pointers for the index pointer segment types

in the index DBD. If symbolic pointing is desired, POINTER=SYMB should be

specified on both LCHILD statements; symbolic pointing is required when the

index target segment type is in a HISAM database.

Examples

Chapter 1. Database Description (DBD) Generation 107

Table 10. Shared Secondary Index Database DBD Generation

Indexed DBD Index DBD

DBDNAME=DBD1,ACCESS=

 .

 .

 .

SEGMNAME=SEG1,BYTES=PARENT=

FIELDNAME=FLD1,BYTES=

,START=

FIELDNAME=FLD2,BYTES=

,START=

LCHILDNAME=(SEG3,DBD2),

POINTER=INDX

XDFLDNAME=XFLD1,SRCH=FLD2,

CONST=C'2'...

 .

 .

 .

SEGMNAME=SEG2,BYTES=,PARENT=

FIELDNAME=FLD4,BYTES=

,START=

LCHILDNAME=(SEG5,DBD3),

POINTER=INDX

XDFLDNAME=XFLD2,SRCH=FLD4,

CONST=C'1'...

DBDNAME=(DBD2,DBD3),ACCESS=INDEX

 .

 .

 .

SEGMNAME=SEG3,PARENT=0,BYTES=1

FIELDNAME=FLD3,SEQ,...),

START=1,BYTES=

LCHILDNAME=SEG1,DBD1),

INDEX=XFLD1

SEGMNAME=SEG5,PARENT=0,BYTES=

FIELDNAME=FLD10,SEQ,...),

START=1,BYTES=

LCHILDNAME=(SEG2,DBD1),

INDEX=XFLD2

This example is shown with direct pointers for the index pointer segment types, and

with the index source segment type, and the index target segment type the same.

Symbolic pointing or differing index source and target segments types can be used;

however, all secondary index databases in the shared index must uniformly specify

either symbolic pointers or direct pointers; a mixture of symbolic and direct pointing

is not allowed in a shared secondary index database.

Example DBDs for Secondary Index Databases

Figure 24 on page 109 shows a database, DTA1, that is indexed by two secondary

index databases. The first secondary index, X1, uses the same segment for its

index target segment and index source segment; the second secondary index, X2,

has an index target segment that is different from its index source segment.

Examples

108 Utilities Reference: System

Figure 25, Figure 26, and Figure 27 on page 110 show the DBD generation

statements that define the indexed database and the secondary index databases.

Figure 24. Database Indexed by Two Secondary Indexes

DBD NAME=DTA1,ACCESS=HDAM,RMNAME=(RANDMODL,1,500,824)

DATASET DD1=D1,MODEL=1

SEGM NAME=DA,PARENT=0,BYTES=15

FIELD NAME=(DAF1,SEQ),BYTES=5,START=1

LCHILD NAME=(X1SEG,X1),PTR=INDX

XDFLD NAME=DAF1X,SRCH=DAF1

SEGM NAME=DB,PARENT=DA,BYTES=20

FIELD NAME=(DBF1,SEQ),BYTES=5,START=1

SEGM NAME=DC,PARENT=DA,BYTES=20

FIELD NAME=(DCF1,SEQ),BYTES=5,START=1

LCHILD NAME=(X2SEG,X2),PTR=SYMB

XDFLD NAME=DCF1X,SRCH=DEF1,SEGMENT=DE

SEGM NAME=DD,PARENT=DC,BYTES=25

FIELD NAME=(DDF1,SEQ),BYTES=5,START=1

SEGM NAME=DE,PARENT=DC,BYTES=25

FIELD NAME=(DEF1,SEQ),BYTES=5,START=1

DBDGEN

FINISH

END

Figure 25. DBD for Indexed Database

DBD NAME=X1,ACCESS=INDEX

DATASET DD1=X1P,MODEL=1

SEGM NAME=X1SEG,BYTES=5,PARENT=0

FIELD NAME=(X1F1,SEQ,U),START=1,BYTES=5

LCHILD NAME=(DA,DTA1),INDEX=DAF1X,POINTER=SNGL

DBDGEN

FINISH

END

Figure 26. DBD for Primary Index Database

Examples

Chapter 1. Database Description (DBD) Generation 109

Example DBDs for a Shared Secondary Index Database

Figure 28 shows a database, DTA3, that is indexed by three secondary indexes

(X4, X5, and X6) in a shared secondary index database. Each secondary index

uses a different segment as both its index target segment and index source

segment. Secondary index X4 uses DTA3 segment DA as its target/source

segment. Secondary index X5 uses DTA3 segment DC as its target/source

segment. Secondary index X6 uses DTA3 segment DE as its target/source

segment.

 Figure 29 on page 111 shows the DBD generation statements that define the

indexed database, the primary index data base, and the shared secondary index

database.

DBD NAME=X2,ACCESS=INDEX

DATASET DD1=X2P,MODEL=1

SEGM NAME=X2SEG,BYTES=5,PARENT=0

FIELD NAME=(X2F1,SEQ,U),START=1,BYTES=5

LCHILD NAME=(DC,DTA1),INDEX=DCF1X,POINTER=SYMB

DBDGEN

FINISH

END

Figure 27. DBD for Secondary Index X2

Figure 28. Database Indexed by Three Secondary Indexes in a Shared Secondary Index

Database

Examples

110 Utilities Reference: System

DBDGEN for Indexed Database

DBD NAME=DTA3,ACCESS=HIDAM

DATASET DD1=D1

SEGM NAME=DA,PARENT=0,BYTES=15

LCHILD NAME=(INDEX,X2),PTR=INDX

FIELD NAME=(DAF1,SEQ),BYTES=5,START=1

LCHILD NAME=(X4A,X4),PTR=INDX

XDFLD NAME=DAF1X,SRCH=DAF1,CONST=C’1’

SEGM NAME=DB,PARENT=DA,BYTES=20

FIELD NAME=(DBF1,SEQ),BYTES=5,START=1

SEGM NAME=DC,PARENT=DA,BYTES=20

FIELD NAME=(DCF1,SEQ),BYTES=5,START=1

LCHILD NAME=(X5A,X5),PTR=INDX

XDFLD NAME=DCF1X,SRCH=DCF1,CONST=C’2’

SEGM NAME=DD,PARENT=DC,BYTES=25

FIELD NAME=(DDF1,SEQ),BYTES=5,START=1

SEGM NAME=DE,PARENT=DC,BYTES=25

FIELD NAME=(DEF1,SEQ),BYTES=5,START=1

LCHILD NAME=(X6A,X6),PTR=INDX

XDFLD NAME=DEF1X,SRCH=DEF1,CONST=C’3’

DBDGEN

FINISH

END

DBDGEN for Primary Index Database

DBD NAME=X2,ACCESS=INDEX

DATASET DD1=X2P

SEGM NAME=INDEX,BYTES=5

LCHILD NAME=(DA,DTA3),INDEX=DAF1

FIELD NAME=(INDXSEQ,SEQ,U),BYTES=5,START=1

DBDGEN

FINISH

END

DBDGEN for Shared Secondary Index Database

DBD NAME=(X4,X5,X6),ACCESS=INDEX

DATASET DD1=X4P,OVFLW=X40

SEGM NAME=X4A,BYTES=6,PARENT=0

FIELD NAME=(X4F1,SEQ,U),START=1,BYTES=6

LCHILD NAME=(DA,DTA3),INDEX=DAF1X

SEGM NAME=X5A,BYTES=6,PARENT=0

FIELD NAME=(X5F1,SEQ,M),START=1,BYTES=6

LCHILD NAME=(DC,DTA3),INDEX=DCF1X

SEGM NAME=X6A,BYTES=6,PARENT=0

FIELD NAME=(X6F1,SEQ,M),START=1,BYTES=6

LCHILD NAME=(DE,DTA3),INDEX=DEF1X

DBDGEN

FINISH

END

Figure 29. Indexed Database, Primary Index Database, and Shared Secondary Index

Database DBD Generations

Chapter 1. Database Description (DBD) Generation 111

112 Utilities Reference: System

Chapter 2. Program Specification Block (PSB) Generation

Before executing an application program under IMS, you must describe that

program and its use of logical terminals and logical data structures through a

program specification block (PSB) generation. The PSB generation statements

supply the identification and characteristics of the IMS resources to be used. These

program communication blocks (PCBs) represent message destinations and

databases used by the application program. In addition, there must be a statement

supplying characteristics of the application program itself. There must be one PSB

for each message, batch, or Fast Path program. The name of the PSB and its

associated application program must be the same in a telecommunications system.

If you require only an I/O PCB and a single, modifiable alternate PCB, you can use

a generated PSB (GPSB) to describe the resources required for your application

program. GPSBs can be used in any online environment, and are typically used in

DCCTL application programs. You do not need to perform PSBGEN for GPSBs.

Related Reading: For more information about GPSBs, see IMS Version 9:

Installation Volume 2: System Definition and Tailoring and IMS Version 9:

Administration Guide: Transaction Manager.

The following topics provide additional information:

v “Input and Output for PSB Generation”

v “PSBGEN Procedure” on page 115

v “Utility Control Statements for PSB Generation” on page 117

v “Output Messages and Statistics for PSB Generation” on page 138

v “PSB Examples” on page 139

Input and Output for PSB Generation

PSB generation places the created PSB in the PSB library. Each PSB is a member

of the operating system partitioned data set IMS.PSBLIB. For IMS batch execution

(DL/I region type), the necessary database PCB PSB is loaded from PSBLIB and

the expanded PSB needed for DL/I database PCB statement processing is built

from it. ACB generation must be performed to prebuild the expanded PSBs into the

ACBLIB. PSBLIB is used as input to the ACB generation process. Batch executions

can also use prebuilt blocks from the ACBLIB by specifying region type 'DBB' on

the JCL execute statement. When an application that is running in an online region

(BMP) references a PSB with one or more GSAM PCBs defined, IMS uses ACBLIB

with PSBLIB to build its internal control blocks. In this case, the PSB must be

defined the same in both ACBLIB and PSBLIB.

The six types of statements used for a PSB generation are:

v PCB statements for output message destinations other than the source of the

input message. These statements are called alternate PCBs, and they are used

in message processing, batch message processing, and Fast Path programs that

interface with the IMS message queues.

v PCB statements for DL/I and Fast Path databases. These statements are used

by message, batch, and Fast Path processing programs to define interfaces to a

database.

v SENSEG statements for segments within a database to which the application

program is sensitive. These statements are used with message, batch, and Fast

Path processing programs to define logical data structures.

© Copyright IBM Corp. 1974, 2004 113

|
|
|
|
|
|
|
|
|
|
|

v SENFLD statements for fields within a segment to which the application program

is sensitive.

v PSBGEN statement for each PSB. This statement is used to indicate the

characteristics of the associated application program.

v An assembler language END statement is required for each PSBGEN statement.

The list of statements used for a PSB generation does not include a PCB for the

input message source. I/O PCBs exist within the IMS online control program

nucleus for this purpose. Upon entry to the application program used for message

processing, a PCB pointer to the source of the input message is provided as the

first entry in a list of PCB address pointers. The remainder of the PCB list has a

direct relationship to the PCBs as defined within the associated PSB and must be

defined in the application program in the same order as defined during PSB

generation. All PCBs can be used by the application program when making DL/I

message and database calls. Only one PCB is used in a particular DL/I call.

You can exclude alternate, DL/I, Fast Path, and GSAM PCBs from the PCB list that

is passed to the application program by defining a name for the PCB

(PCBNAME=name) and specifying LIST=NO. You must name the PCB when you

want to issue calls using the application interface block (AIB). The AIB can be used

for all types of PCBs.

Related Reading: For more information about PCBs, see IMS Version 9:

Application Programming: Database Manager.

To test message processing or batch message processing programs in a batch

processing region, use the CMPAT option of the PSBGEN statement. When

CMPAT=YES is specified, IMS provides PCBs to the application as if it were

executing in a message processing region. Using CMPAT eliminates the need to

recompile the program between batch and online executions.

In the case of a batch program, no I/O PCB exists in the list unless you request it

with the CMPAT option on the PSBGEN statement. Therefore, if CMPAT=YES is not

specified, the PCB list provided to the program has a direct relationship to the

PCBs within the PSB. No TP PCBs should be contained in a PSB for batch

processing in a batch processing region.

In a TM batch environment, CMPAT=YES is implied and cannot be overridden by

PSBGEN. The PCB list for application programs running in a DCCTL batch region

always contains an I/O PCB.

You can specify alternate PCBs in a PSB associated with a batch program

operative in an IMS batch message processing region. These PCBs are available

for output message queuing. A batch program operative in batch message

processing regions can access messages from the input message queue. An I/O

PCB is always provided as in the case of a message processing program.

You can specify alternate and modifiable alternate PCBs in a PSB associated with a

Fast Path program executing in a Fast Path region. A response alternate PCB with

the same PTERM can be used to send a Fast Path output message back to the

original PTERM with a different component attached to the terminal. You can use

an alternate PCB (non-response mode) to send an output message to any terminal

or IMS message queue.

PSBGEN

114 Utilities Reference: System

You can reference the PCB list passed to the application program upon entry to the

application program by the names defined within the application program for making

DL/I calls and interrogating PCB information (status codes and feedback

information). The address of a PCB can be the second parameter in a DL/I call

from an application program to IMS. The PCB address can represent the source of

the input message, the destination for an output message, or a database. Upon

completion of a DL/I call, the PCB contains status and feedback information

pertinent to the call.

Related Reading: For more information about PCBs, IMS Version 9: Application

Programming: Database Manager.

PSBGEN Procedure

IMS system definition places the procedure named PSBGEN in the IMS.PROCLIB

procedure library.

This two-step assemble and link-edit procedure produces PSBs. The first step, Step

C, an operating system assembly, is performed after the procedure is invoked. The

second step, Step L, is a link-edit which takes the assembly output from Step C and

places the PSBs in IMS.PSBLIB.

Procedure Statement

The procedure statement is shown in Figure 30. The list following the figure defines

the parameters used in the statement.

MBR=

Is the name of the PSB generated. This name should be the same as the name

specified on the PSBNAME= parameter of the PSBGEN statement. If this

precaution is not followed, a user ABEND 929 can occur during execution, or

message DFS929I (“BLDL FAILED FOR MEMBER”) can be received during an

ACB generation “BUILD PSB” operation.

// PROC MBR=TEMPNAME,SOUT=A,RGN=0M,SYS2=

//C EXEC PGM=ASMA90,REGION=&RGN,

// PARM=(OBJECT,NODECK,NODBCS,

// ’SIZE(MAX,ABOVE)’)

//SYSLIB DD DSN=IMS.&SYS2.SDFSMAC,DISP=SHR

//SYSLIN DD UNIT=SYSDA,DISP=(,PASS),

// SPACE=(80,(100,100),RLSE),

// DCB=(BLKSIZE=80,RECFM=F,LRECL=80)

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,

// SPACE=(121,(300,300),RLSE,,ROUND)

//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),

// SPACE=(CYL,(10,5))

//L EXEC PGM=IEWL,PARM=’XREF,LIST’,

// COND=(0,LT,C),REGION=4M

//SYSLIN DD DSN=*.C.SYSLIN,DISP=(OLD,DELETE)

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089,

// SPACE=(121,(90,90),RLSE)

//SYSLMOD DD DISP=SHR,

// DSN=IMS.&SYS2.PSBLIB(&MBR)

//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),

// SPACE=(1024,(100,10),RLSE),DISP=(,DELETE)

Figure 30. PSBGEN Procedure Statement

PSBGEN

Chapter 2. Program Specification Block (PSB) Generation 115

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

SOUT=

Specifies the SYSOUT class. The default is A.

RGN=

Specifies the region size for execution of the PSBGEN utility. The default is

512KB.

SYS2=

Specifies an optional second level dsname qualifier for those data sets which

are designated as “Optional Replicate” in an XRF complex. When specified, the

parameter must be enclosed in quotes and must include a trailing period, for

example, SYS2='IMSA.'.

Step C

Step C is the assembly step.

Related Reading: For more information about assembly steps, see HLASM MVS &

VM Programmer’s Guide.

DD Statements

SYSIN DD

Defines the input data sets to step C. These DD statements must be provided

when invoking the procedure.

Step L

Step L is the link-edit step.

Example: This step can be run using AMODE=31, RMODE=24 instead of the

default AMODE=24, RMODE=24 by adding AMODE=31 to the link-edit EXEC

statement PARM list as shown as follows.

//L EXEC PGM=IEWL,PARM=’XREF,LIST,AMODE=31’,

// COND=(0,LT,C),REGION=120K

If you do not specify different values for AMODE or RMODE, the default values are

in effect. You must always run the link-edit step with RMODE=24.

Related Reading: For more information about linkage editors, see z/OS MVS

Program Management: User’s Guide and Reference.

DD Statements

SYSLMOD DD

Defines an output partitioned data set, IMS.PSBLIB, for the linkage editor.

Invoking the Procedure

The JCL statements in Figure 31 on page 117 are used to invoke the PSBGEN

procedure.

PSBGEN Procedure

116 Utilities Reference: System

Utility Control Statements for PSB Generation

No PCB statement is needed in PSB generation for the I/O PCB. IMS builds it

automatically. This is true for message processing application programs, batch

processing application programs that operate in IMS batch message processing

regions and need to obtain input messages from the IMS message queues, and

Fast Path application programs that operate in an IMS Fast Path dependent region.

Batch processing application programs that operate in IMS DB batch processing

regions never have an I/O PCB, unless specifically requested in the PSBGEN

macro statement.

Alternate PCB Statement

The alternate PCB describes a destination other than the source of the current input

message. This statement instruction allows the application program to send output

messages to a destination other than the source of an input message.

Requirement: A PCB statement is required for each destination to which output is

to be sent.

These messages can be sent to either an output terminal or an input transaction

queue to be processed by another program. Each output message destination

requires a separate alternate PCB destination. If the input source terminal is all that

is required to respond with output, do not include any PCB statements of this type.

Message processing programs, batch message processing programs, and Fast

Path programs can have alternate PCB statements in their associated PSBs. An

alternate PCB cannot be used to send a message to a Fast Path transaction;

however, Fast Path application programs can use an alternate PCB to route

messages to any terminal or IMS transaction.

Alternate PCB statements must be first in the PSB generation control card deck,

followed by the statements identifying PCBs associated with IMS databases. The

following diagram shows the alternate PCB statement format.

��
 (1)

label

PCB

TYPE=TP

,LTERM=name

,NAME=name

NO

,ALTRESP=

YES

�

�
NO

,SAMETRM=

YES

NO

,MODIFY=

YES

NO

,EXPRESS=

YES

 �

//PSBGEN JOB MSGLEVEL=1

// EXEC PROC=PSBGEN,MBR=nnnnnnnn

//C.SYSIN DD *

 PCB

 SENSEG (The control statements for PSB generation)

 PSBGEN PSBNAME=TEMPNAME

 END

/*

Figure 31. Procedure for Invoking PSBGEN

Utility Control Statements

Chapter 2. Program Specification Block (PSB) Generation 117

�
(1)

,PCBNAME=pcbname

YES

,LIST=

NO

 ��

Notes:

1 label and PCBNAME are mutually exclusive. Use only the label or the

PCBNAME= parameter.

For details on the coding format for assembler macro instructions, refer to the

″Assembler Coding Conventions″ topic in the IBM Assembler Manual, publication

number SC26-4940-03.

label

Specifies an alphanumeric label from 1 to 8 characters long, that is valid for an

assembler language statement. The labels for the PCB statement within a PSB

must be unique.

 Exception: Do not specify this parameter if the PCBNAME= parameter is used.

PCB

Indicates that this is a PCB statement.

TYPE=TP

Is a required keyword parameter for all alternate PCBs.

LTERM=|NAME=

Is the parameter for the output message destination. The “name” is the actual

destination of the message and is either a logical terminal name (LTERM=) or a

transaction-code name (NAME=). When the name is a transaction-code name,

output messages to this PCB are enqueued for input to the program used to

process the transaction code named by the NAME parameter. The name must

be from 1- to 8-alphanumeric characters in length, and must be specified in the

user’s IMS system definition as a logical terminal name or transaction code.

The LTERM= or NAME= parameter is required except when MODIFY=YES is

specified.

ALTRESP=

Specifies whether (YES) or not (NO) this alternate PCB can be used instead of

the I/O PCB for responding to terminals in response mode, conversational

mode, or exclusive mode. The default value is NO. ALTRESP=YES is only valid

for alternate PCBs.

SAMETRM=

Specifies whether (YES) or not (NO) IMS verifies that the logical terminal

named in the response alternate PCB is assigned to the same physical terminal

as the logical terminal that originated the input message. The default value is

NO. You must specify SAMETRM=YES for response alternate PCBs used by

conversational programs and programs operating with terminals in response

mode. SAMETRM=NO should be specified if alternate response PCBs are used

to send messages to output-only devices that are in exclusive mode.

MODIFY=

Specifies whether the alternate PCB is modifiable (YES). This feature allows for

the dynamic modification of the destination name associated with this PCB.

Default value is NO. If MODIFY=YES is specified, omit the NAME= or LTERM=

parameter.

Utility Control Statements

118 Utilities Reference: System

EXPRESS=

Specifies whether messages from this alternate PCB are to be sent (YES) or

are to be backed out (NO) if the application program should abend.

YES When specified, indicates EXPRESS messages can be sent to the

destination terminal even though the program abends or issues a ROLL

or ROLB call. For all PCBs (express or non-express) under these

conditions, messages inserted but not made available for transmission

are canceled, while messages made available for transmission are

never cancelled.

 For a non-express PCB, the message is not available for transmission

to its destination until the program reaches a sync (commit) point. The

sync point occurs when the program terminates, issues a CHKP call, or

requests the next input message (if the transaction is defined with

MODE=SNGL).

 For an express PCB, the message is available for transmission to the

destination when IMS knows it has the complete message. The

message is available when a PURG call is made using that PCB, or

when the program requests the next input message.

 When the PSB is defined as a Fast Path application in the IMS system

definition, EXPRESS=YES, if specified, will be ignored at execution

time for a response alternate PCB.

NO When specified, indicates messages are backed out if the application

program abends. NO is the default.

PCBNAME=

Specifies the name of the PCB. The PCB name must be an alphanumeric,

8-byte character string that follows standard naming conventions. The PCB

name must be unique within the PSB.

 Exception: Do not specify this parameter if a label is used.

LIST=

Specifies whether the named PCB is included in the PCB list passed to the

application program at entry. Specify YES to include a named PCB in the PCB

list. Specify NO to exclude a named PCB from the PCB list. YES is the default.

 To exclude a PCB from the PCB list, you must assign the PCB a name with the

PCBNAME= parameter. You can specify LIST=NO if an application program

does not need a PCB’s address.

DL/I or Fast Path Database PCB Statement

The second type of statement in a PSB generation input record specifies a

description of a PCB for a DL/I or a Fast Path database. Although one or more

database PCBs are usually included in a PSB, the second type of statement is not

always required. For example, a message switching program or conversational

message program might not require access to a DL/I database. Therefore, a

database PCB is not required.

In a DCCTL environment, database PCBs (except for GSAM PCBs) are not

supported, but might be included in the PSBGEN. Application programs that

execute in a DCCTL environment and that attempt to use a database PCB will

receive an AD status code.

The maximum number of database PCBs that can be defined in a PSBGEN is

2500, including alternate terminal PCBs. 2500 database PCB definitions are

Utility Control Statements

Chapter 2. Program Specification Block (PSB) Generation 119

impractical because this many definitions can require more storage than is usually

available. This is the maximum value for application programs executing in all IMS

region types (MSG, DL/I, and so on).

The following diagram shows the format for the DL/I database PCB statement.

�� PCB

(1)

label

 TYPE=DB ,DBDNAME=

,NAME=
 name �

�

(1)

,PCBNAME=pcbname

 ,PROCOPT=A

,PROCOPT=

A

NO

,SB=

COND

�

� ,KEYLEN=value

B

,PROCSEQ=index dbname
 ,VIEW=MSDB �

�
YES

,LIST=

NO

 ��

A:

 A

A

E

P

H

(2)

G

E

S

P

O

N

T

H

I

E

P

H

R

E

H

D

E

P

H

L

S

P

B:

 SINGLE

,POS=

MULTIPLE

Notes:

1 label and PCBNAME are mutually exclusive. Use only the label or the

PCBNAME= parameter.

2 These operands can be selected in any combination; if G, I, R, and D are

selected, use A instead (A = G, I, R, and D combined).

label

An optional label used to allow the SBPARM control statement in the DFSCTL

Utility Control Statements

120 Utilities Reference: System

file to reference specific PCBs. If specified, this must be an alphanumeric 1- to

8-byte character string that is valid for an assembler language statement. The

labels for the PCB statements within a PSB must be unique.

 Exception: Do not specify this parameter if PCBNAME= is used.

TYPE=DB

Is a required keyword parameter for all DL/I database PCBs.

DBDNAME= or NAME=

Is the parameter for the name that specifies the physical or logical DBD to be

used as the primary source of database segments for this logical data structure.

The logical structure, which is defined under this PCB with one or more

SENSEG statements, is the hierarchical set of data segments to which the

associated application program is sensitive. This logical hierarchy of data

segments might or might not exist as a physical hierarchy. This depends on the

relationship of segments defined by SENSEG statements and the existence of

these segments in one or more databases as defined by their database

descriptions (DBDs). All SENSEG statements that follow this statement and

precede the next PCB or PSBGEN statement must refer to segments defined in

the DBD named in the DBDNAME= or NAME= parameter of this PCB. (Refer to

“SENSEG Statement” on page 131 for more information.)

 The keywords DBDNAME and NAME are synonymous. DBDNAME is more

descriptive, and NAME is kept for compatibility with earlier releases.

PCBNAME=

Specifies the name of the PCB. The PCB name must be an alphanumeric,

8-byte character string that follows standard naming conventions.

 Exception: Do not specify this parameter if the PCB statement includes label.

PROCOPT= (with full function)

Is the parameter for the processing options on sensitive segments declared in

this PCB that you can use in an associated application program. You can use a

maximum of four options with this parameter. The letters in the parameter have

the following meaning:

A All, includes the G, I, R, and D functions. PROCOPT=A is the default

setting.

G Get function.

I Insert function.

R Replace function. Includes G.

D Delete function. Includes G.

P Position function. Required if command code D is to be used, except for

ISRT calls in a batch program that is not sensitive to fields.

PROCOPT=P is not required if command code D is used when

processing DEDBs. Refer to “Use of PROCOPT=(with Fast Path)” on

page 123 for information on how to use PROCOPT=P with DEDBs. P is

used in conjunction with A, G, I, D, and L.

O If the O option is used for a PCB, IMS does not check the ownership of

the segments returned. Therefore, the read without integrity program

might get a segment that has been updated by another program. If the

updating program abends and backs out, the read without integrity

program will have a segment that does not exist in the database and

never did. If a segment has been deleted and another segment of the

same type has been inserted in the same location, the segment data,

Utility Control Statements

Chapter 2. Program Specification Block (PSB) Generation 121

and all subsequent data returned to the application, can be from a

different database record. Therefore, if you use the O option, do not

update based on data read with that option. O must be specified as GO,

GON, GONP, GOT, GOTP, or GOP only.

 Related Reading: For more information about the O option, see IMS

Version 9: Application Programming: Design Guide.

N Reduces the number of abends that read-only application programs are

subject to. Read-only application programs can reference data being

updated by another application program. When this happens, an invalid

pointer to the data might exist. If an invalid pointer is detected, the

read-only application program abends. By specifying N, you avoid this.

A GG status code is returned to the program instead. The program must

determine whether to terminate processing, continue processing by

reading a different segment, or access the data using a different path.

N must be specified as GON, GONH, or GONP.

T Is the same as the N parameter, except that T causes DL/I to

automatically retry the operation. If the retry fails, a GG status code is

returned to the application program. T must be specified as GOT, GOTH,

or GOTP.

E Enables exclusive use of the database or segment by online programs.

Used in conjunction with G, I, D, R, and A.

L Load function for database loading (except HIDAM and PHIDAM).

GS Get segments in ascending sequence only (HSAM only). If you specify

GS for HSAM databases, they will be read using the Queued

Sequential Access Method (QSAM) instead of the basic Sequential

Access Method (BSAM) in a DL/I IMS region.

LS Segments loaded in ascending sequence only (HIDAM, HDAM,

PHIDAM, PHDAM). This load option is required for HIDAM and

PHIDAM. Because you must specify LS for HIDAM and PHIDAM

databases, the index for the root segment sequence field will be

created at the time the database is loaded.

H Specifies high-speed sequential processing for the application program

using a particular PSB. The restrictions for using PROCOPT=H are:

v It can be used for DEDBs only.

v It is allowed on the PCB level and not on the segment level.

v It must be used with other Fast Path processing options.

v A maximum of four PROCOPT options can be specified, including H.

v It can only be specified for BMPs.

v Only one PROCOPT=H PCB per database per PSB is allowed. If a

BMP using HSSP uses multiple PCBs with PROCOPT=H for the

same database within the same PSB, all database calls using a PCB

other than the first one used receive an FH status code. You can use

the NOPROCH keyword on the SETO statement to alleviate this

restriction.

H is used in conjunction with A, G, I, R, and D.

 If you do not specify the PROCOPT parameter, it defaults to PROCOPT=A. The

replace and delete functions also imply the Get function.

Utility Control Statements

122 Utilities Reference: System

A user abend (U8XX) from the retrieve module (DFSDCR00) can occur with

PROCOPT=GO if another program updates pointers when this program is following

the pointers. A U0800 or U0852 abend can also occur in the VLEXP routine, or in

the retrieve module, if an invalid compressed segment is detected. Pointers are

updated during the insert and delete functions and during replacement of a

variable-length segment. To reduce the number of abends of this type, code the

PROCOPT= parameter with an N or a T.

Notes:

1. If any PCBs in the PSB have a PROCOPT of L or LS and either explicitly

reference HISAM or HIDAM databases, or implicitly reference INDEX

databases, no other PCB in the same PSB can reference any of the databases

listed, either explicitly or implicitly, with a PROCOPT other than L or LS. If any

PCB in the PSB has a PROCOPT of L or LS and explicitly references a

PHIDAM database, no other PCB in the same PSB can reference the PHIDAM

database with a PROCOPT of L or LS. The SENSEG statements within that

PCB should not contain INDICES= operands.

2. If L is specified for a PCB that references a database with multiple data set

groups, the PCB should include at least one SENSEG statement for each data

set group in the database.

3. When the first ISRT call is issued using a PCB with PROCOPT=L, and the

database is using VSAM, the VSAM data set must be empty. If it is not empty,

an open error will result.

Recommendation: If the database is using OSAM, it is recommended that the

data set be a newly allocated empty data set.

If the data set is not empty, the load will start at the front of the data set, writing

over the existing data.

4. If the 'O' option is used for a PCB, the SENSEG statement must not specify a

PROCOPT of I, R, D, or A.

5. An online application program always has exclusive use of the SHSAM or

HSAM databases, which are referenced by PCBs in its PSB. No other

application programs can be concurrently scheduled to access those same

SHSAM or HSAM databases in an online environment.

6. If the Online Database Image Copy utility refers to this PCB, the value of

PROCOPT= L or LS is invalid. If the database to be copied is the index portion

of a HIDAM or PHIDAM database, only PROCOPT=G and PROCOPT=GO are

valid. If PROCOPT=E is specified, the Online Image Copy utility will execute

with exclusive control of the database, even though the utility does not require

the control.

7. If the Database Surveyor utility feature refers to this PCB, you must specify

PROCOPT=G.

8. In the case of concatenated segments, the PROCOPT= parameter governs the

logical child segment of the concatenated segment. The logical parent of the

concatenated segment is governed by the RULES= parameter of the SEGM

statement.

9. PROCOPT=E only applies to the database specified in the PCB. To enable

exclusive use of a secondary index not explicitly used by the application, add

another PCB with PROCOPT=E for the secondary index database.

Use of PROCOPT=(with Fast Path)

In a non-terminal-related or fixed terminal-related MSDB, only the processing

options G and R are valid.

Utility Control Statements

Chapter 2. Program Specification Block (PSB) Generation 123

G Get function.

R Replace function. Includes G.

In a dynamic terminal-related MSDB, the processing options G, I, R, D, A or any

combination of G, I, R, and D are valid.

G Get function.

I Insert function.

R Replace function. Includes G.

D Delete function. Includes G.

A All. Includes functions G, I, R and D.

In a DEDB, the processing options G, I, R, D, A, P, N, T, O, and H are valid.

G Get function.

I Insert function.

R Replace function. Includes G.

D Delete function. Includes G.

A All. Includes functions G, I, R, and D.

P Position function. Is not required if command code D is used when

processing DEDBs. It is only valid for a batch message program (BMP). If

this option is specified for another type of region, such as an IFP region, it

will be ignored. With this option, a GC status code is returned when a UOW

boundary is crossed during a G(H)U, G(H)N, or ISRT on a root segment. Also,

database positioning is maintained across a valid SYNC call and a blank

status code is returned when the sync is issued immediately after receiving

a GC status code. In the case of a sync process failure or ROLB call,

position is set to the last valid sync point or, if no valid sync point exists, to

the start of the database. A SYNC or ROLB call without a preceding GC

status will also cause position to be set to the start of the database.

 Related Reading: For more information about the P processing option or

the UOW for DEDBs, see IMS Version 9: Administration Guide: Database

Manager.

 If you use the D command code in a call to a DEDB, the P processing

option need not be specified in the PCB for the program.

N Reduces the number of abends that read-only application programs are

subject to. Read-only application programs can reference data being

updated by another application program. When this happens, invalid pointer

to the data might exist. If an invalid pointer is detected, the read-only

application program abends. By specifying N, you avoid this. A GG status

code is returned to the program, instead. The program can then terminate

processing, continue processing by reading a different segment, or access

the data using a different path. N must be specified as GON, GONH, or GONP.

O Read only; do not enqueue to check availability. Selecting PROCOPT=GO, GON,

or GOT for DEDBs indicates that read without integrity is in effect. No locking

mechanism is used to maintain the integrity of the retrieved data. O must

be specified as GO, GON, or GOT, and may not be used in conjunction with H.

 A user abend (U1026) can occur with PROCOPT=GO if another program

updates pointers when this program is following the pointers. Another

Utility Control Statements

124 Utilities Reference: System

example of the abend U1026 is if this program rereads a segment that has

moved when another program changes its length. The following examples

will help illustrate instances where abend U1026 could occur or old data is

retrieved.

 Example 1: If one region uses both update and PROCOPT=GO PCBs to

update and read the same segment, the following scenario will not produce

a pointer error to the control blocks of the PROCOPT=GO PCB (MLTE).

Call the update PCB (PCBA), and the read PCB (PCBGO).

1. Region 1 PCBGO reads the CI and sets the position of the segment in

MLTE. The data in the buffer is linked to EPSTGOBF.

2. Region 1 issues a call to update the segment. Region 1 PCBA steals

the buffer off its EPSTGOBF. Region 1 PCBA saves the old position and

updates the segment. Even if the segment is moved, Region 1 will

update the PCBGO MLTE because the position in the GO MLTE

matches the saved old position.

3. Region 1 PCBGO references the segment again and retrieves the

updated segment.

 Example 2: When two regions update the same segment and use both

update and PROCOPT=GO PCBs, the following scenario will not produce a

pointer error to the control blocks of the PROCOPT=GO PCB (MLTE), but

the PROCOPT=GO PCB will not have access to the updated segment from

the other region.

1. Region 1 PCBGO reads the CI and sets the position of the segment in

MLTE. The buffer is linked to EPSTGOBF.

2. Region 2 PCBA reads the CI with lock and replaces the segment with a

length change. The position of the segment changes, resulting in an

FSE in the updated CI at the position set in Region 1 PCBGO MLTE.

Region 1 still has the old data in the buffer which is linked to

EPSTGOBF.

3. Region 1 PCBGO references the segment again and retrieves the old

segment because its buffer has not been updated by Region 2’s

change.

 Example 3: When two regions update the same segment and use both

update and PROCOPT=GO PCBs, the following scenario will not produce a

pointer error to the control blocks of the PROCOPT=GO PCB (MLTE), but

the PROCOPT=GO PCB will not have access to the updated segment from

its own region.

1. Region 1 PCBGO reads the CI and sets the position of the segment in

MLTE. The buffer is linked to EPSTGOBF.

2. Region 2 PCBA reads the CI with lock and replaces the segment with a

length change. The position of the segment changes, resulting in an

FSE in the updated CI at the position set in Region 1 PCBGO MLTE.

Region 1 still has the old data in the buffer which is linked to

EPSTGOBF.

3. Region 1 issues a call to update the segment. Region 1 waits for the

release of Region 2’s lock. Because the updated segment is now on a

different block, Region 1 does not find the duplicate buffer on

EPSTGOBF and the old buffer is still linked to EPSTGOBF. Region 1

reads the update CI, which is now in its buffer. Region 1 PCBA updates

the segment in its place. Even if the segment is moved, Region 1 will

not update the PCBGO MLTE because the position in the MLTE no

Utility Control Statements

Chapter 2. Program Specification Block (PSB) Generation 125

longer matches the position of the segment. There are now two

duplicate buffers, one containing the old data that is linked to

EPSTGOBF, and another containing updated information that is linked

to EPSTXCOC.

4. Region 1 PCBGO references the segment and retrieves the old data.

 Example 4: When two regions update the same segment and use both

update and PROCOPT=GO PCBs, the following scenario will produce a

pointer error to the control blocks of the PROCOPT=GO PCB (MLTE).

1. Region 1 PCBGO reads the CI and sets the position of the segment in

MLTE. The buffer is linked to EPSTGOBF.

2. Region 2 PCBA reads the CI with lock and replaces the segment with a

length change. The position of the segment changes within the same

block and creates an FSE in the updated CI at the position set in

Region 1 PCBGO MLTE. Region 1 still has the old data in the buffer

linked to EPSTGOBF.

3. Region 1 issues a call to update the segment. Region 1 waits for the

release of Region 2’s lock. Region 1 PCBA steals the buffer off

EPSTGOBF and reads the updated CI, moving it to Region 1’s buffer.

Region 1 PCBA updates the segment in its place. Even if the segment

is moved, Region 1 will not update the PCBGO MLTE because the

position in the MLTE no longer matches the position of the segment.

4. Region 1 PCBGO references the segment again and receives abend

U1026 since there is now an FSE where the segment had been

(MLTE’s position).

 To reduce the number of abends of this type, code the PROCOPT=

parameter with an N or a T.

T Works exactly like the N option. T must be specified as GOT, GOTH, or

GOTP.

H HSSP. Includes G and P.

A DLET or ISRT call to a terminal-related dynamic MSDB from a program with no

input LTERM present, for example, a batch-oriented BMP, will result in a status

code of AM, regardless of the processing options specified.

The Replace function also implies the Get function. If the referenced segment is a

root or direct dependent segment, A implies G, I, R, and D. Only processing options

of G, I, and GI are valid for sequential dependent segments.

The processing option of P is valid only when specified for a root segment to be

used by an IMS batch message program. If the processing option P is specified for

another type of region, such as an IFP region, it will be ignored. With this option, a

GC status code is returned when a UOW boundary is crossed during a G(H)U,

G(H)N, or ISRT on a root segment. Also, database positioning is maintained across a

valid SYNC call and a blank status code is returned when the sync is issued

immediately after receiving a GC status code. In the case of a sync process failure

or ROLB call, position is set to the last valid sync point or, if no valid sync point

exists, to the start of the database. A SYNC or ROLB call without a preceding GC

status will also cause position to be set to the start of the database.

Related Reading: For more information on the P processing option or the UOW for

DEDBs, see IMS Version 9: Administration Guide: Database Manager.

Utility Control Statements

126 Utilities Reference: System

If you use the D command code in a call to a DEDB, the P processing option need

not be specified in the PCB for the program.

Procopt H may not be used in conjunction with O.

If you specify invalid processing options, the PSBGEN accepts them but the

Application Control Blocks Maintenance utility fails. The error does not appear in the

PSBGEN but appears in the ACBGEN.

SB=

Specifies which PCBs will be buffered using sequential buffering (SB). This is

an optional parameter. The default is SB=NO, unless the default option has

been modified for Batch and BMPs by the DFSSBUX0 to SB=COND.

 Related Reading: For more information about DFSSBUX0, see IMS Version 9:

Customization Guide.

COND Specifies that SB should be activated conditionally. IMS will monitor

statistics about the I/O reference pattern of this PCB to the DB data set.

If IMS detects a sequential I/O reference pattern and a reasonable

activity rate, it will activate SB and acquire the required buffers.

NO Specifies that SB should not be used for this DB PCB.

 Recommendation: For short-running MPPs, Fast Path programs, and CICS™

programs, either omit the SB= keyword or specify SB=NO.

KEYLEN=

The value specified in bytes of the longest concatenated key for a hierarchic

path of sensitive segments that the application program uses in the logical data

structure. Figure 32 on page 128 shows an IMS database that contains

segments A- H plus segment J. Segments A, B, C, D, F, and J each have a key

field length of 10 bytes. Segment E has a key field length of 250 bytes.

Segment G has a key field length of 40 bytes. And Segment H has a key field

length of 50 bytes. Table 11 shows how the KEYLEN= will be specified.

 Table 11. How A KEYLEN Is Determined

Database Hierarchical Paths Concatenated Key Length Paths

A+B+C= 30 bytes

A+B+D= 30 bytes

A+E= 260 bytes

A+F+G+H+J= 120 bytes

A KEYLEN=260 bytes would be specified

Utility Control Statements

Chapter 2. Program Specification Block (PSB) Generation 127

For a non-terminal-related MSDB without terminal-related keys, the value must be

greater than or equal to the value of the BYTES parameter of the sequence field in

the DBD generation and be from 1 to 240 bytes.

For a terminal-related MSDB (using the LTERM name as a key), this value must be

8.

POS=

Specifies single or multiple positioning for the logical data structure. Single or

multiple positioning provides a functional variation in the call.

Figure 32. KEYLEN Definition

Utility Control Statements

128 Utilities Reference: System

Related Reading: Refer to IMS Version 9: Application Programming: EXEC DLI

Commands for CICS and IMS and IMS Version 9: Application Programming:

Database Manager for the functional difference.

 The performance variation between single and multiple positioning is

insignificant. HSAM does not support multiple positioning.

 POS=SINGLE or S is the default.

 Exception: For DEDBs having more than two dependent segments, the default

is POS=MULTPLE or M.

 Coding a POS value on the PCB statement for a DEDB will not override the

default that is selected based on the number of dependent segments.

PROCSEQ=

Specifies the name of a secondary index that is used to process the database

named in the DBDNAME parameter through a secondary processing sequence.

The parameter is optional. It is valid only if a secondary index exists for this

database. If this parameter is used, subsequent SENSEG statements must

reflect the secondary processing sequence hierarchy of segment types in the

indexed data base. For example, the first SENSEG statement must name the

indexed segment with a PARENT=0 parameter.

 index dbname must be the name of a secondary index DBD.

 For a secondary processing sequence, processing options L and LS are invalid.

Inserting and deleting the index target segment and any of its inverted parents

are not allowed. When the blocks are built, if the processing option for these

segments includes I or D, a warning message indicates that the processing

option has been changed to reflect this restriction.

VIEW=MSDB

Is used to specify the MSDB commit view. Your existing applications can use

either MSDB commit view or the default DEDB commit view. To use the MSDB

commit view for DEDBs, specify VIEW=MSDB on the statement. If you do not

specify VIEW=MSDB, the DEDB will use the DEDB commit view. No changes to

any existing application programs are required to migrate your MSDBs to

DEDBs.

 If you issue a REPL call with a PCB that specifies VIEW=MSDB, the segment must

have a key. This includes any segment in a path if command code ’D’ is

specified. Otherwise, status AM is returned.

 For more information on the VIEW=MSDB parameter see IMS Version 9:

Administration Guide: Database Manager.

LIST=

Specifies whether the named PCB is included in the PCB list passed to the

application program at entry. Specify YES to include a named PCB in the PCB

list. Specify NO to exclude a named PCB from the PCB list. YES is the default.

 To exclude a PCB from the PCB list, you must assign the PCB a name with

either the label or PCBNAME= parameter. You can specify LIST=NO if an

application program does not need a PCB’s address.

 See page119 for information about naming PCBs on the DL/I database PCB

statement.

Utility Control Statements

Chapter 2. Program Specification Block (PSB) Generation 129

GSAM PCB Statement

The following diagram shows the format for the GSAM database PCB statement.

�� PCB TYPE=GSAM, DBDNAME=name

NAME=name
 ,PROCOPT= G

S

L

S

 �

�
,PCBNAME=pcbname

label

YES

,LIST=

NO

 ��

TYPE=GSAM

Is a required keyword parameter for all GSAM database PCBs that will be

allocated and processed in the dependent region.

DBDNAME= or NAME=

Is a required keyword parameter for the name that specifies the GSAM DBD to

be used as the primary source of data set description. SENSEG statements

must not follow this PCB statement.

PROCOPT=

Is a required parameter for the processing options on the data set declared in

this PCB that can be used in an associated application program. Use the

following characters to specify the parameter.

G Get function.

L Load function.

S Large-scale sequential activity. Use GSAM multiple-buffering option

(BUFFIO).

 The GSAM PCB statement must follow the PCB statements with TYPE=TP or DB if

any exist in the PSB generation. The rule is:

TP PCBs First

DB PCBs Second

GSAM PCBs Last

PCBNAME=

Specifies the name of the PCB. The PCB name must be an alphanumeric,

8-byte character string that follows standard naming conventions. The PCB

name must be unique within the PSB.

 Exception: Do not specify this parameter if the PCB statement includes label.

label

Specifies an 1- to 8-character alphanumeric label that is valid for an assembler

language statement. The labels for the PCB statements within a PSB must be

unique.

 Exception: Do not specify this parameter if PCBNAME= is used.

LIST=

Specifies whether the named PCB is included in the PCB list passed to the

application program at entry. Specify YES to include a named PCB in the PCB

list. Specify NO to exclude a named PCB from the PCB list. YES is the default.

Utility Control Statements

130 Utilities Reference: System

To exclude a PCB from the PCB list, you must assign the PCB a name with the

PCBNAME= parameter. You can specify LIST=NO if an application program

does not need a PCB’s address.

SENSEG Statement

You use the SENSEG statement with the database PCB statement to define a

hierarchically related set of data segments. This set represents segments to which

a program through this PCB is sensitive. This segment set can physically exist in

one database or can be derived from several physical databases. One or more

SENSEG PCB statements can be included; each PCB statement must immediately

follow the PCB statement to which it is related. There must be one SENSEG

statement for each segment to which the application program is sensitive. All

segments in the hierarchic path to any required segment must be specified. A

maximum of 30,000 SENSEG statements can be defined in a single PSB

generation. 30,000 SENSEG statements are impractical because this many

SENSEG statements will require more storage than is usually available.

The order in which SENSEG statements are sequenced after a PCB statement

determines the logical access order for the segments. When using HSAM or HISAM

databases, the SENSEG statement sequence must follow the physical sequence of

the segments as defined in DBDGEN, unless the PROCSEQ parameter is used in

the PCB statement.

If the PROCSEQ parameter is used in the PCB statement, the SENSEG statement

sequence reflects the secondary processing sequence specified by the PROCSEQ

parameter. For HDAM, HIDAM, PHDAM, and PHIDAM databases, the SENSEG

statements for segments on the same level do not have to be in the same order as

the DBD. The order of dependent segments whose parent segment does not use

hierarchic pointing can differ from the physical sequence.

The format of the SENSEG statement is as follows:

��

SENSEG

NAME=name,PARENT=
 0

name

,PROCOPT=
 (1)

G

I

E

P

R

D

A

E

P

K

�

�

,SSPTR=

�

 .

r

(

(n,

u

)

)

,INDICES=list1

��

Notes:

1 These can be selected in any combination; if G, I, R, and D are all chosen,

use A instead (A = G, I, R, and D combined).

NAME=

Is the name of the segment type as defined through a SEGM statement during

DBD generation. The field is from 1- to 8-alphanumeric characters.

Utility Control Statements

Chapter 2. Program Specification Block (PSB) Generation 131

PARENT=

Is the segment type name of this segment’s parent.

 Requirement: This parameter is required for all dependent segments.

 The field is either from 1- to 8-alphanumeric characters or 0. If this SENSEG

statement defines a root segment type as being sensitive, this parameter must

equal zero. PARENT=0 is the default.

PROCOPT=

Indicates the processing options valid for use of this sensitive segment by an

associated application program. This parameter has the same meaning as the

PROCOPT= parameter on the PCB statement. In addition to the valid options

for this parameter listed in “DL/I or Fast Path Database PCB Statement” on

page 119, an option can be used on the SENSEG statement which does not

apply to the PCB statement. A PROCOPT of K indicates key sensitivity only. A

GN call with no SSAs can access only data-sensitive segments. If a

key-sensitive segment is designated for retrieval in an SSA, the segment is not

moved to the user’s I/O area. The key is placed at the appropriate offset in the

key feedback area of the PCB. If this PROCOPT= parameter is not specified,

the PCB PROCOPT parameter is used as default. If there is a difference in the

processing options specified on the PCB and SENSEG statements and the

options are compatible, SENSEG PROCOPT overrides the PCB PROCOPT. If

PROCOPT= L or LS is specified on the preceding PCB statement, this

parameter must be omitted.

 Do not specify a SENSEG statement for a virtual logical child segment type if

PROCOPT= L or LS is specified. The Replace and Delete functions also imply

the Get function.

 If a segment has PROCOPT=K specified, an unqualified Get Next call (GN)

skips to the next sensitive segment with a PROCOPT other than K.

 The SENSEG PROCOPT overrides the PCB PROCOPT. If PROCOPT=E is

specified in the PCB, the SENSEG PROCOPT must also specify E if it is

intended to schedule exclusively for that SENSEG.

 It is not valid to code the N or T processing option in the SENSEG statement.

You can code them only in the PCB statement.

 The processing option for a DEDB sequential dependent segment must be

either G or I. If one of these values is not specified on the PCB statement,

PROCOPT=G or I must be specified on the SENSEG PCB statement.

 In the case of concatenated segments, the PROCOPT= parameter governs the

logical child segment of the concatenated segment. The logical parent of the

concatenated segment is governed by the RULES= parameter of the SEGM

PCB statement.

SSPTR=

Specifies the subset pointer number and the sensitivity for the pointer. Up to 8

subset pointers can be defined. The subset pointer number (the first parameter)

must be 1 through 8. The sensitivity for the pointer (the second parameter)

must be R (read sensitive) or U (update). If the first parameter and the second

parameter are not specified, the pointer has no sensitivity. If only n is specified,

the pointer is read sensitive. SSPTR=R is the default.

 You cannot use U (update sensitivity) if the processing option is not A, R, I, or

D.

INDICES=

Specifies which secondary indexes contain search fields that are used to qualify

Utility Control Statements

132 Utilities Reference: System

SSAs for an indexed segment type. The INDICES= parameter can be specified

for indexed segment types only. It enables SSAs of calls for the indexed

segment type to be qualified on the search field of the index segment type

contained in each secondary index specified.

 Restriction: An SSA of a call for an indexed segment type cannot be qualified

on the search field of a secondary index unless that secondary index was

specified in the INDICES= parameter of the SENSEG statement for the indexed

segment type or in the PROCSEQ= parameter of the PCB statement.

 For list1, you can specify up to 32 DBD names of secondary indexes. If two or

more names are specified, these names must be separated by commas and the

list enclosed in parentheses.

 Figure 33 shows the data structure of segment definition and includes segments A-

F.

 All of these segments are defined within one DBD. Do not specify INDICES= on a

SENSEG PCB statement if you specified PROCOPT=L, LS, I, or D on the

preceding PCB statement.

The complete PCB and SENSEG statements for the data structure might be written

as follows:

Col. 10 Col. 16 Col. 72.

PCB TYPE=DB,DBDNAME=DATABASE, X

 PROCOPT=A,KEYLEN=22

SENSEG NAME=A,PARENT=0,PROCOPT=G

SENSEG NAME=B,PARENT=A,PROCOPT=G

SENSEG NAME=C,PARENT=B,PROCOPT=I

SENSEG NAME=D,PARENT=A,PROCOPT=A

SENSEG NAME=E,PARENT=D,PROCOPT=G

SENSEG NAME=F,PARENT=D,PROCOPT=A

SENFLD Statement

The SENFLD statement is used with the SENSEG statement to indicate those fields

within a segment to which an application program is sensitive. One or more

SENFLD statements can be included. Each statement must follow the SENSEG

statement to which it is related. You can define a maximum of 255 SENFLD

statements for a given SENSEG statement. You can define a maximum of 10,000

SENFLD statements in a single PSB generation.

The same field can be referenced in more than one SENFLD statement within a

SENSEG. If the duplicate field names participate in a concatenated segment and

the same field name appears in both portions of the concatenation, the first

Figure 33. Data Structure of Segment Definition

Utility Control Statements

Chapter 2. Program Specification Block (PSB) Generation 133

reference will be to the logical child, and all subsequent references will be to the

logical parent. This referencing sequence determines the order in which fields will

be moved to the user’s I/O area.

For retrieve-only processing you can request, using the SENFLD statement, that the

same data be moved to multiple locations in your I/O area, provided that no

overlapping occurs, and that SENFLDs of variable-length segments are of the same

type.

The following restrictions apply to the SENFLD statement:

v The length field of a variable-length segment cannot be referenced through a

SENFLD statement.

v A SENFLD statement cannot appear within a SENSEG with PROCOPT=K.

v A SENFLD statement cannot not appear within a SENSEG with PROCOPT=I or

L, if the SENSEG refers to a logical child segment.

v If SENFLD statements are used within a SENSEG with PROCOPT=I or L, a

SENFLD statement must be included for the segment sequence field, if it exists.

v This statement is not supported for MSDB and DEDB.

The format of the SENFLD statement is as follows:

�� SENFLD NAME=name,START=startpos

A
 ��

A:

,REPLACE=

,REPL=

 YES

NO

NAME=

Is the name of this field as defined through a FIELD statement during DBD

generation. The field is from 1- to 8-alphanumeric characters.

START=

Specifies the starting position of this field relative to the beginning of the

segment within the user’s I/O area. startpos for the first byte of a segment is 1.

startpos must be a decimal number whose value does not exceed 32767.

REPLACE= or REPL=

Specifies whether or not this field can be altered on a replace call. You can

specify NO or N. If omitted, REPLACE=YES (or Y) is the default.

PSBGEN Statement

The PSBGEN statement specifies characteristics of the application program. The

following syntax diagram shows the format for the PSBGEN statement.

�� PSBGEN PSBNAME=name

,LANG=

COBOL

PL/I

ASSEM

PASCAL

JAVA

blank

0

,MAXQ=

nr

 �

Utility Control Statements

134 Utilities Reference: System

�
NO

,CMPAT=

YES

,IOASIZE=value

,SSASIZE=value
 �

�
,IOEROPN=

n

(n,WTOR)

NO

,OLIC=

YES

NO

GSROLBOK=

YES

 �

�
0

,LOCKMAX=

n

 ��

PSBNAME=

Specifies the parameter for the alphanumeric name of this PSB. The PSBNAME

name must be an alphanumeric, 8-byte character string that follows standard

naming conventions. This name becomes the load module name for the PSB in

the library IMS.PSBLIB. If the program is to run in a message processing

region, this name must be the same as the program load module name in the

program library called IMS.PGMLIB No special characters can be used in the

name.

 Do not give a DBD the same name as an existing PSB. Using an existing name

can cause unpredictable results: an error will occur at ACB generation time.

LANG=

An optional keyword that indicates the compiler language in which the message

processing or batch processing program is written. The value for this parameter

must be COBOL, PL/I, ASSEM, PASCAL, JAVA, or blank. Leave the value

blank if the application has been enabled for the IBM Language Environment®

for z/OS & VM. If you specify OLIC=YES, LANG=PL/I is invalid. If your

application program is written in C language, specify LANG=ASSEM.

 CICS and the IBM Language Environment for z/OS & VM do not support

PASCAL.

 You must specify LANG=JAVA for any PSBs associated with a JMP type IMS

Java application.

 If you are using IMS PL/I applications that run in a compatibility mode using the

PLICALLA entry point, you must specify LANG=PLI on the PSBGEN. If you

change the entry point and add SYSTEM(IMS) to the EXEC PARM of the

compile step, you can specify LANG=blank or LANG=PLI on the PSBGEN.

Table 12 shows when to use LANG=blank and LANG=PLI.

 Table 12. Using LANG= Option in an LE/370 Environment for PL/I Compatibility

Compile exec statement is

PARM=(...,SYSTEM(IMS)...

and entry point

name is PLICALLA

Then LANG= is as

follows:

Yes Yes LANG=PLI

Yes No LANG=blank or

LANG=PLI

No No Note: Not valid for

IMS PL/I applications

No Yes LANG=PLI

 PLICALLA is only valid for PL/I compatibility support in an LE/370 environment.

If a PL/I application using PLICALLA entry at link-edit time is link-edited using

LE/370 with the PLICALLA entry, the link-edit will work; however, you must use

Utility Control Statements

Chapter 2. Program Specification Block (PSB) Generation 135

LANG=PLI. If the application is re-compiled using PL/I MVS & VM Version 1

Release 1, and link-edited using LE/370 Version 1 Release 2, the link-edit will

fail. You must remove the PLICALLA entry statement from the link-edit.

MAXQ=

Is the maximum number of database calls with Qx command codes that can be

issued between synchronization points. If this number is exceeded, the

application program will abend. The default value is zero.

CMPAT=

Provides compatibility between BMP or MSG and Batch-DL/I parameter lists. If

CMPAT=YES, the PSB is always treated as if there were an I/O PCB, no matter

how it is used. If CMPAT=NO, the PSB has an I/O PCB added only for BMP or

MSG regions. The default is NO.

IOASIZE=

Specifies the size of the largest I/O area used by the application program. The

size specification is used to determine the amount of main storage reserved in

the PSB pool to hold the control region’s copy of the user’s I/O area data during

scheduling of this application program. If you do not specify this value, the ACB

utility program calculates a maximum I/O area size and uses it as a default. The

size calculated is the total length of all sensitive segments in the longest

possible path call. (The total length of the segment must be used, even if the

application program is not sensitive to all fields in a segment.) The value

specified is in bytes, with a maximum of 256000. However, the combined length

of all concatenated segments to be returned to the application on a single path

call must not exceed 65535 bytes.

 If the PSB contains any field sensitive segments, and IOASIZE is specified, the

specified value is used only if it is larger than the OASIZE calculated by the

ACBGEN utility. The value of the IOASIZE that will be used is indicated in

message DFS0593I issued by ACB generation. The major components of this

pool requirement are IOASIZE and SSASIZE. When the PSB is built into

ACBLIB, ACB generation message DFS0589I indicates the PSB’s total work

pool space requirement.

 If STAT calls or the test program (DFSDDLT0) is used with this PSB, IOASIZE

must be greater than 600 bytes.

 If CMD or GCMD calls (from automated operator interface application

programs) are used with this PSB, IOASIZE must be at least 132 bytes.

 If extended checkpoint/restart is used, IOASIZE must be set to a value equal to

or greater than the larger of the following:

v I/O area needed to receive data from a GU call issued during restart, while

repositioning DL/I databases that were checkpointed (if this PSB contains

any).

v Largest LRECL used in a GSAM data set that is checkpointed.

 Either the value pointed to by the third parameter (I/O AREA LEN) of the XRST

CALL or the value of this parameter will be used, depending on which value is

larger.

SSASIZE=

Specifies the maximum total length of all SSAs used by the application

program. IMS uses the size specification to determine the amount of main

storage reserved in the PSB work pool to hold a copy of the user’s SSA strings

during execution of this application program. If you do not specify this value, the

ACB utility program calculates a maximum SSA size to be used as a default.

Utility Control Statements

136 Utilities Reference: System

The size calculated is the maximum number of levels in any PCB within this

PSB multiplied by 280. The value specified is in bytes, with a maximum of

256000.

 Restriction: When you run IMS under CICS without DBCTL, the PSB work

pool requirement cannot exceed 64KB.

 The major components of this pool requirement are IOASIZE and SSASIZE.

When the PSB is built into ACBLIB, ACB generation message DFS0589I

indicates the PSB’s total work pool space requirement.

IOEROPN=

Is applicable only in batch-type regions (DLI or DBB). This parameter is not

valid for CICS. The n subparameter is the condition code returned to the

operating system when IMS terminates normally and one or more input or

output errors occurred on any database during the application program

execution. The n subparameter is a number from 0 to 4095.

 If n=451, IMS terminates with a U451 abend instead of passing a condition

code to the operating system. If n=451 and the IMS or the application program

abends with an abend other than U451, and an I/O error has also occurred, a

write-to-programmer of message DFS0426I is issued. This message indicates

that an I/O error has occurred during execution and that a U451 abend has

occurred if the actual abend has not.

 If you specify the WTOR subparameter, a WTOR for the DFS0451A I/O error

message is issued, and DL/I waits for the operator to respond before

continuing. If you respond ABEND, IMS terminates with a U0451 abend. If you

respond CONT IMS continues. Any other response causes the DFS0451A

message to be reissued.

 If n=451, IMS terminates with abend U0451, even if the operator responds

“CONT” to the DFS0451A message.

 By using the IOEROPN parameter, you can set a unique JCL condition code

when an I/O error occurs and test the condition code in subsequent job steps. If

you do not specify this parameter, the return code passed from the application

program is passed to the operating system and status codes and console

messages are the only indications of database I/O errors.

 If you code the WTOR subparameter, you must code the n subparameter and

parentheses are required. If you code only IOEROPN=n, parentheses are not

required.

OLIC=

Indicates whether the user of this PSB is authorized to execute the Online

Database Image Copy utility or the Surveyor utility feature that runs as a BMP

against a database named in this PSB. YES allows the Online Image Copy and

the Surveyor utility feature; NO prohibits the Online Image Copy and the

Surveyor utility feature. NO is the default. This parameter is invalid if any

DBPCB (TYPE=DB) specifies PROCOPT=L or LS.

 Exception: This parameter is not applicable to CICS, GSAM, HSAM, MSDB, or

DEDB databases.

GSROLBOK=

Controls whether an internal ROLB call should be done to roll back non-GSAM

database updates when:

v The application is a non-message-driven BMP.

v The PSB contains a GSAM PCB.

v DB2 reports a deadlock either on a thread create or on an SQL call.

Utility Control Statements

Chapter 2. Program Specification Block (PSB) Generation 137

YES means that the internal ROLB call should be done and that the SQL code

regarding the deadlock should be returned to the application program. NO

means that the internal ROLB call should not be not done and that a user

abend 777 should occur. If the GSROLBOK parameter is omitted, the default is

NO.

LOCKMAX=

Indicates the maximum number of locks an application program can get at one

time. n is a numeric value between 0 and 255. n is specified in units of 1000.

For example, a specification of LOCKMAX=5 indicates a maximum of 5000

locks at one time.

 The default value is 0. This indicates that there is no maximum number of locks

that are allowed at one time.

 If an application program runs for an extended time without committing, the

locking done by IMS of database records and changes can accumulate. You

can use the LOCKMAX parameter to prevent a single application program from

consuming all locking storage and thereby causing other programs to abend.

 You can override the LOCKMAX value specified on the PSBGEN statement at

program execution by specifying LOCKMAX=0 (to turn off limit completely) or

by specifying LOCKMAX=1 to 32767 on the dependent region (BMP, MPP, or

IFP) or Batch (DBB or DLI). The value is in units of 1000. You can use this

method to exceed the maximum value of 255 that can be specified on the

PSBGEN statement LOCKMAX parameter.

 There can be several PCB statements for message output and several PCB

statements for databases, but only one PSBGEN in a PSB generation PCB

statement deck. The PSBGEN statement must be the last statement in the deck

preceding the END statement.

END Statement

All PSB generation utility control statements must be followed by an END

statement.

Requirement: The END statement is required by the macro assembler to indicate

the end of the assembly data.

Output Messages and Statistics for PSB Generation

PSB generation produces three types of printed output and one load module, which

becomes a member of the partitioned data set, IMS.PSBLIB. The types of output

are:

Control Statement Listing

This is a listing of the input statement images to this job step.

Diagnostics

Errors discovered during the processing of control statement result in diagnostic

messages being printed immediately following the image of the last control

statement read before the error was discovered. The message can either refer

to the control statement immediately preceding it or the preceding group of

control statements. It is also possible for more than one message to be printed

for each control statement. In this case, they follow each other on the output

listing. After all the control statements have been read, a further check is made

of the logic of the entire deck. This can result in one or more additional

diagnostic messages.

Utility Control Statements

138 Utilities Reference: System

If an error is discovered, a diagnostic message is printed, the control

statements are listed, and the other outputs are suppressed. However, all the

control statements are read and checked before the PSB generation execution

is terminated. The link-edit step of PSB generation is not executed if a control

statement error has been found.

Assembler Listing

Except when PRINT NOGEN is specified, an operating system assembler

language listing of the PSB created by PSB generation execution is provided.

Load Module

PSB generation is a two-step operating system job. Step 1 is a macro assembly

execution that produces an object module. Step 2 is a link-edit of the object

module, which produces a load module that becomes a member of

IMS.PSBLIB.

PSB Generation Error Conditions

See IMS Version 9: Messages and Codes, Volume 1 for a complete description

of the IMS messages that indicate PSB errors.

PSB Examples

This section includes examples of the use of the PSBGEN utility.

Examples of PSB Generation

This example shows a PSB generation for a message processing program to

process the hierarchic data structure shown in Figure 34. The data structure

contains segments: PARTMAST, CPWS, POLN, OPERTON, INVSTAT, and

OPERSGMT.

Example 1

This example shows output messages that are to be transmitted to logical terminals

OUTPUT1 and OUTPUT2 as well as the terminal representing the source of input.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

 PCB TYPE=TP,NAME=OUTPUT1,PCBNAME=OUTPCB1

 PCB TYPE=TP,NAME=OUTPUT2,PCBNAME=OUTPCB2

 PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100

 SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A

 SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A

 SENSEG NAME=POLN,PARENT=PARTMAST,PROCOPT=A

 SENSEG NAME=OPERTON,PARENT=PARTMAST,PROCOPT=A

 SENSEG NAME=INVSTAT,PARENT=OPERTON,PROCOPT=A

Figure 34. Sample Hierarchic Data Structure

Output Messages and Statistics

Chapter 2. Program Specification Block (PSB) Generation 139

SENSEG NAME=OPERSGMT,PARENT=OPERTON

 PSBGEN LANG=COBOL,PSBNAME=APPLPGM1

 END

 /*

Example 2

This example shows these statements being used for a batch program, where

programs using this PSB do not reference the telecommunications PCBs in the

batch environment.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM2

 //C.SYSIN DD *

 PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100

 SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A

 SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A

 SENSEG NAME=POLN,PARENT=PARTMAST,PROCOPT=A

 SENSEG NAME=OPERTON,PARENT=PARTMAST,PROCOPT=A

 SENSEG NAME=INVSTAT,PARENT=OPERTON,PROCOPT=A

 SENSEG NAME=OPERSGMT,PARENT=OPERTON

 PSBGEN LANG=COBOL,PSBNAME=APPLPGM2

 END

 /*

Example 3

This example shows that a PSB generation is being performed for a batch message

processing program. The GSAM PCB is used by the application program to

generate a report file.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM3

 //C.SYSIN DD *

 PCB TYPE=TP,NAME=OUTPUT1

 PCB TYPE=TP,NAME=OUTPUT2

 PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100

 SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A

 SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A

 PCB TYPE=GSAM,DBDNAME=REPORT,PROCOPT=LS

 PSBGEN LANG=COBOL,PSBNAME=APPLPGM3

 END

 /*

Example 4

This example shows that a PSB generation is being performed for a batch program.

The PCB has been named (PRTMASTR). The PCB name is used on DLI calls that

use the AIBTDLI interface.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM4

 //C.SYSIN DD *

 PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100,PCBNAME=PARTMSTR

 SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A

 SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A

 SENSEG NAME=POLN,PARENT=PARTMAST,PROCOPT=A

 SENSEG NAME=OPERTON,PARENT=PARTMAST,PROCOPT=A

 SENSEG NAME=INVSTAT,PARENT=OPERTON,PROCOPT=A

 SENSEG NAME=OPERSGMT,PARENT=OPERTON

 PSBGEN LANG=COBOL,PSBNAME=APPLPGM4

 END

 /*

Examples

140 Utilities Reference: System

Example 5

This example shows that a PSB generation is being performed for a batch program.

A label (PARTROOT) is being used to indicate the only root segment in the PCB.

The PCB’s address will be excluded from the PCB list that is passed to the

application at entry.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM5

 //C.SYSIN DD *

 PARTROOT PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,LIST=NO

 SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A

 PSBGEN LANG=COBOL,PSBNAME=APPLPGM5

 END

 /*

Field Level Sensitivity PSB Generation Example

Figure 35 on page 142 shows a PCB for a batch program using field level

sensitivity. The illustration shows the hierarchic order of the segments. The

employee segment is at the first level. The office and employee project segments

are at the second level. Outside of the hierarchic structure, but on the second level,

the segment project is connected to the employee project segment.

Examples

Chapter 2. Program Specification Block (PSB) Generation 141

Fast Path PSB Generation Examples

The following two examples show sample Fast Path PSB Generations.

Example 1

This example shows the statements for an MSDB PSB containing eight PCBs.

SEGMENT NAME FIELD NAME START LOCATION LENGTH

 EMPLOYEE EMPSSN 1 9

 EMPLNAME 10 10

 EMPFNAME 20 9

 EMPMI 29 1

 EMPADDR 30 30

OFFICE OFNUMBER 1 5

 OFPHONE 6 7

EMPLPROJ EPFUNCTN 1 20

 EPTIMEST 21 5

 EPTIMCUR 26 5

PROJECT PROJNUM 1 8

 PROJTTLE 9 20

 PROJSTRT 29 8

 PROJEND 37 8

 PROJSTAT 45 1

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

 PCB TYPE=DB,NAME=FISDBD1,PROCOPT=GRP,KEYLEN=20

 SENSEG NAME=EMPLOYEE,PARENT=0

 SENFLD NAME=EMPLNAME,START=13,REPL=NO

 SENFLD NAME=EMPFNAME,START=1,REPL=NO

 SENFLD NAME=EMPMI,START=11

 SENSEG NAME=OFFICE,PARENT=EMPLOYEE

 SENSEG NAME=EMPLPROJ,PARENT=EMPLOYEE

 SENFLD NAME=PROJNUM,START=1

 SENFLD NAME=PROJTITLE,START=10

 SENFLD NAME=EPFUNCTN,START=35

 SENFLD NAME=EPTIMEST,START=60

 SENFLD NAME=EPTIMCUR,START =70

 PSBGEN LANG=ASSEM,PSBNAME=FISPCB1

 END

 /*

Figure 35. Sample Field Level Sensitivity PSB Generation

Examples

142 Utilities Reference: System

//PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=MSDBLM01,PROCOPT=R, NONTERMINAL-RELATED X

 KEYLEN=4 END OF PCB STATEMENT

SENSEG NAME=LDM,PARENT=0 (DEFAULT)

PCB TYPE=DB,DBDNAME=MSDBLM02,PROCOPT=R, NONTERMINAL-RELATED X

 KEYLEN=1

SENSEG NAME=LDM,PARENT=0

PCB TYPE=DB,DBDNAME=MSDBLM03,PROCOPT=R, NONTERMINAL-RELATED X

 KEYLEN=2

SENSEG NAME=LDM,PARENT=0

PCB TYPE=DB,DBDNAME=MSDBLM04,PROCOPT=R, NONTERMINAL-RELATED X

 KEYLEN=8 TERM KEYS

SENSEG NAME=LDM,PARENT=0

PCB TYPE=DB,DBDNAME=MSDBLM05,PROCOPT=R, FIXED RELATED X

 KEYLEN=8

SENSEG NAME=LDM,PARENT=0

PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=A, DYNAMIC RELATED X

 KEYLEN=8

SENSEG NAME=LDM,PARENT=0

PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=R, DYNAMIC RELATED X

 KEYLEN=8

SENSEG NAME=LDM,PARENT=0

PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=G, DYNAMIC RELATED X

 KEYLEN=8

SENSEG NAME=LDM,PARENT=0

PSBGEN LANG=ASSEM,PSBNAME=DDLTM01 END OF PSBGEN MACRO

END END OF PSB GEN

 /*

Example 2

This example shows the statements for DEDB subset pointers.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=MSDBLM01,PROCOPT=R, NONTERMINAL-RELATED X

PCB TYPE=DB,DBDNAME=X,PROCOPT=A,KEYLEN=100

SENSEG NAME=A,PARENT=C

SENSEG NAME=B,PARENT=A,SSPTR=((1,R),(2,U),(5))

SENSEG NAME=C,PARENT=B

SENSEG NAME=D,PARENT=A,SSPTR=((2,R))

PSBGEN LANG=COBOL,PSBNAME=APPI01

END

 /*

Notes:

1. SSPTR=((n,r))

n Subset pointer number in this SENSEG

r Sensitivity for the pointer (R: read, U: update)

2. If n and r are not specified, the pointer has no sensitivity.

3. If n is specified but r is not specified, the default is R (read sensitive).

Additional PSB Generation Examples

Example 1: The example in Figure 36 on page 144 shows a PSB generation that is

being performed for a batch program. The illustration shows the hierarchic order of

the segments. The Skill segment is at the first level. The Name segment (which is

Examples

Chapter 2. Program Specification Block (PSB) Generation 143

divided into payroll and skill) is at the second level. Address, Payroll, Expr, and

Educ are on the third level.

Example 2: The example in Figure 37 on page 145 shows a PSB generation that is

being performed for a batch program. The illustration shows the hierarchic order of

the segments. The NAME segment is at the first level. The NAMESK, ADDRESS,

and PAYROLL segments are at the second level. The Expr and Educ segments are

on the third level, connected to the NAMESK segment. Although the illustration

separates the NAMESK segment into NAMESKIL and SKILL, the SENSEG

statements do not define these as separate segments.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=LOGIC1;PROCOPT=G,KEYLEN=151,POS=M

SENSEG NAME=SKILL,PARENT=0,PROCOPT=A

SENSEG NAME=NAME,PARENT=SKILL,PROCOPT=A

SENSEG NAME=ADDRESS,PARENT=NAME,PROCOPT=A

SENSEG NAME=PAYROLL,PARENT=NAME,PROCOPT=A

SENSEG NAME=EXPR,PARENT=NAME,PROCOPT=A

SENSEG NAME=EDUC,PARENT=NAME,PROCOPT=A

PSBGEN LANG=COBOL,PSBNAME=PGMX

END

 /*

Figure 36. A PSBGEN Statement Used to Define a DL/I Database Statement (Example 1)

Examples

144 Utilities Reference: System

Example 3: The example in Figure 38 on page 146 shows a PSB that defines a

logical relationship between segments in a DL/I database. The illustration shows the

hierarchic order of the segments PARTMAST (the parent segment), CPWS, POLN,

INVSTAT, and OPERSGMT (which are all first-level child segments of PARTMAST).

The alternate statement sends output to logical terminal ″OUTPUT″. The PSBGEN

statement saves this JCL as APPLPGM1 in the IMS.PSBLIB library.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=LOGICDB,PROCOPT=A,KEYLEN=241,POS=M

SENSEG NAME=NAME,PARENT=0,PROCOPT=G

SENSEG NAME=NAMESK,PARENT=NAME,PROCOPT=G

SENSEG NAME=EXPR,PARENT=NAMESK,PROCOPT=G

SENSEG NAME=EDUC,PARENT=NAMESK,PROCOPT=G

SENSEG NAME=ADDRESS,PARENT=NAME,PROCOPT=G

SENSEG NAME=PAYROLL,PARENT=NAME,PROCOPT=G

PSBGEN LANG=PL/I,PSBNAME=PGMY

END

 /*

Figure 37. A PSBGEN PCB Statement Used to Define a DL/I Database PCB Statement

(Example 2)

Examples

Chapter 2. Program Specification Block (PSB) Generation 145

Example 4: The example in Figure 39 shows the JCL used to define the

relationship between the POMSTR and POLNITEM segments from the DL/I

database PODB. The alternate statements send output to applications with the

transaction-code name ″out1″ and ″out2″.

Examples of a Sample Problem with an Application Database

Examples five through ten use DBDNAME=DI21PART as a basis for the logical

databases created with each example’s JCL. The database contains segments

PARTROOT, STANINFO, STOKSTAT, CYCCOUNT, and BACKORDR. PARTROOT

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=TP,LTERM=OUTPUT

PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=GIDR,KEYLEN=100

SENSEG NAME=PARTMAST,PARENT=O,PROCOPT=A

SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A

SENSEG NAME=POLN,PARENT=PARTMAST,PROCOPT=A

SENSEG NAME=INVSTAT,PARENT=PARTMAST,PROCOPT=A

SENSEG NAME=OPERSGMT,PARENT=PARTMAST

PSBGEN LANG=COBOL,PSBNAME=APPLPGM1

END

 /*

Figure 38. A PSBGEN PCB Statement Used to Define a DL/I Database PCB Statement

(Example 3)

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=TP,NAME=OUT1

PCB TYPE=TP,NAME=OUT2

PCB TYPE=DB,DBDNAME=PODB,PROCOPT=GID,KEYLEN=200

SENSEG NAME=POMSTR

SENSEG NAME=POLNITEM,PARENT=POMSTR

PSBGEN LANG=COBOL,PSBNAME=APPLPGM3

END

 /*

Figure 39. A PSBGEN PCB Statement Used to Define a Logical Relationship and Produce

Output

Examples

146 Utilities Reference: System

is the parent segment. STANINFO and STOKSTAT are child segments of

PARTROOT. CYCCOUNT and BACKORDR are child segments of STOKSTAT.

Example 5: The example in Figure 40 shows either a message switching or

conversational message program. The JCL is saved as load module DFSSAM01 in

the IMS.PSBLIB library.

Example 6: The JCL shown in Figure 41 on page 148 defines a logical relationship

between the PARTROOT and STANINFO segments (shown in the illustration with

shading). The JCL is saved as load module DFSSAM02 in the IMS.PSBLIB library.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

SENSEG NAME=BACKORDR,PARENT=STOKSTAT

PSBGEN LANG=COBOL,PSBNAME=DFSSAM01

END

 /*

Figure 40. The Data Structure and JCL For a Message Switching or Conversational Message

Program

Examples

Chapter 2. Program Specification Block (PSB) Generation 147

Example 7: The example in Figure 42 on page 149 defines the entire logical

structure from the DL/I database DI21PART. The JCL is saved as load module

DFSSAM03 in the IMS.PSBLIB library.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=G,KEYLEN=19

SENSEG NAME=PARTROOT

SENSEG NAME=STANINFO,PARENT=PARTROOT

PSBGEN LANG=COBOL,PSBNAME=DFSSAM02

END

 /*

Figure 41. The Data Structure and JCL For a Logical Relationship in Database DI21PART

Examples

148 Utilities Reference: System

Example 8: The example in Figure 43 on page 150 defines the logical relationship

between the PARTROOT and STOKSTAT segments (shown in the illustration with

shading). The JCL also outputs to the logical terminal HOWARD and saves the JCL

as load module DFSSAM03 in the IMS.PSBLIB library.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=G,KEYLEN=43

SENSEG NAME=PARTROOT

SENSEG NAME=STANINFO,PARENT=PARTROOT

SENSEG NAME=STOKSTAT,PARENT=PARTROOT

SENSEG NAME=CYCCOUNT,PARENT=STOKSTAT

SENSEG NAME=BACKORDR,PARENT=STOKSTAT

PSBGEN LANG=COBOL,PSBNAME=DFSSAM03

END

 /*

Figure 42. The Data Structure and JCL For a Logical Database Defined From DL/I Database

DI21PART

Examples

Chapter 2. Program Specification Block (PSB) Generation 149

Example 9: The example in Figure 44 on page 151 is identical to example 8,

except this JCL is saved as load module DFSSAM06 in the IMS>PSBLIB library.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=TP,LTERM=HOWARD

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=A,KEYLEN=33

SENSEG NAME=PARTROOT

SENSEG NAME=STOKSTAT,PARENT=PARTROOT

PSBGEN LANG=COBOL,PSBNAME=DFSSAM05

END

 /*

Figure 43. The Data Structure and JCL For a Logical Relationship in Database DI21PART

That Produces Output (Part 1)

Examples

150 Utilities Reference: System

Example 10: The example in Figure 45 on page 152 defines the entire logical

structure from the DL/I database DI21PART. The JCL is saved as load module

DFSSAM07 in the IMS.PSBLIB library.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=TP,LTERM=HOWARD

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=A,KEYLEN=33

SENSEG NAME=PARTROOT

SENSEG NAME=STOKSTAT,PARENT=PARTROOT

PSBGEN LANG=COBOL,PSBNAME=DFSSAM06

END

 /*

Figure 44. The Data Structure and JCL for a Logical Relationship in Database DI21PART

That Produces Output (Part 2)

Examples

Chapter 2. Program Specification Block (PSB) Generation 151

Example of a Shared Secondary Index

Example 11: The database structure for this example is shown in Figure 46 on

page 153. It shows a database, DTA3, that is indexed by three secondary indexes

(X4, X5, and X6) in a shared secondary index database, X4. Each secondary index

uses a different segment as both its index target segment and index source

segment. Secondary index X4 uses DTA3 segment DA as its target/source

segment. Secondary index X5 uses DTA3 segment DC as its target/source

segment. Secondary index X6 uses DTA3 segment DE as its target/source

segment.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=G,KEYLEN=43

SENSEG NAME=PARTROOT

SENSEG NAME=STANINFO,PARENT=PARTROOT

SENSEG NAME=STOKSTAT,PARENT=PARTROOT

SENSEG NAME=CYCCOUNT,PARENT=STOKSTAT

SENSEG NAME=BACKORDR,PARENT=STOKSTAT

PSBGEN LANG=COBOL,PSBNAME=DFSSAM07

END

 /*

Figure 45. The Data Structure and JCL for a Logical Database Defined From DL/I Database

DI21PART

Examples

152 Utilities Reference: System

The database structure for index through DA is shown in Figure 47. It contains

segments DA, DB, DC, DD, and DE.

 The database structure for index through DC is shown in Figure 48 on page 154. It

shows segment DC, DA, DD, and DE.

Figure 46. Database Indexed by Three Secondary Indexes in a Shared Secondary Index

Database

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DTA3,PROCOPT=A,KEYLEN=15,PROCSEQ=X4

SENSEG NAME=DA,PARENT=0

SENSEG NAME=DB,PARENT=DA

SENSEG NAME=DC,PARENT=DA,INDICES=X5

SENSEG NAME=DD,PARENT=DC

SENSEG NAME=DE,PARENT=DC,INDICES=X6

PSBGEN LANG=COBOL,PSBNAME=PDTA3A

END

 /*

Figure 47. The Data Structure and JCL For Index Through Segment DA

Examples

Chapter 2. Program Specification Block (PSB) Generation 153

This database structure can also include, as a substructure, the database structure

for index through DA.

The database structure for index through DE is shown in Figure 49 on page 155. It

shows segments DE, DC, and DA.

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DTA3,PROCOPT=A,KEYLEN=15,PROCSEQ=X5

SENSEG NAME=DC,PARENT=0

SENSEG NAME=DA,PARENT=DC,INDICES=X4

SENSEG NAME=DD,PARENT=DC

SENSEG NAME=DE,PARENT=DC,INDICES=X6

PSBGEN LANG=COBOL,PSBNAME=PDTA3B

END

 /*

Figure 48. The Data Structure and JCL For Index Through Segment DC

Examples

154 Utilities Reference: System

This database structure can also include, as substructures, the database structures

for indexes through DA and DC.

The PCB for INDEX database is shown as follows:

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=X4,PROCOPT=A,KEYLEN=5

SENSEG NAME=X4A,PARENT=0

PCB TYPE=DB,DBDNAME=X5,PROCOPT=A,KEYLEN=5

SENSEG NAME=X5A,PARENT=0

PCB TYPE=DB,DBDNAME=X6,PROCOPT=A,KEYLEN=5

SENSEG NAME=X6A,PARENT=0

PSBGEN LANG=COBOL,PSBNAME=PX4

END

 /*

 //PSBGEN JOB MSGLEVEL=1

 // EXEC PSBGEN,MBR=APPLPGM1

 //C.SYSIN DD *

PCB TYPE=DB,DBDNAME=DTA3,PROCOPT=A,KEYLEN=15,PROCSEQ=X6

SENSEG NAME=DE,PARENT=0

SENSEG NAME=DC,PARENT=DE,INDICES=X5

SENSEG NAME=DA,PARENT=DC,INDICES=X4

PSBGEN LANG=COBOL,PSBNAME=PDTA3C

END

 /*

Figure 49. The Data Structure and JCL For Index Through Segment DE

Examples

Chapter 2. Program Specification Block (PSB) Generation 155

Examples

156 Utilities Reference: System

Chapter 3. Application Control Blocks Maintenance Utility

When an application program is scheduled for execution, IMS must first have

available database descriptor (DBD) and PSB control blocks previously created by

the DBDGEN and PSBGEN procedures.

Related Reading: For a description of the DBGEN procedure, see IMS Version 9:

Utilities Reference: Database and Transaction Manager.

These control blocks must then be merged and expanded into an IMS internal

format called application control blocks (ACBs). The merge and expansion process

is called block building.

The Application Control Blocks Maintenance utility saves instruction execution and

direct-access wait time and improves performance in application scheduling. It

provides a facility for pre-building the required application control blocks off-line;

hence, when the application is scheduled, its application control blocks can be read

in directly, and control can be passed promptly to the application program.

Application control blocks required for the DB/DC environment must be prebuilt,

except for application programs that use a GPSB. It is optional for the batch

environment. Using IMS.ACBLIB in a batch environment requires less virtual

storage than building the ACBs dynamically from PSBLIB and DBDLIB.

The Application Control Blocks Maintenance utility maintains the prebuilt blocks

(ACB) library (IMS.ACBLIB). The ACB library is a consolidated library of program

(PSB) and database (DBD) descriptions. Through control statements, you can direct

the maintenance utility to build all control blocks for all PSBs, for a specific PSB, or

for all PSBs that reference a specific DBD. This utility does not change the PSB in

IMS.PSBLIB or the DBD in IMS.DBDLIB. If changes are made in either PSBs or

DBDs that require changes in the associated PSB or DBD, you must make these

changes before running the utility. You can make additions, changes, and deletions

to IMS.ACBLIB without stopping IMS, by using the Online Change utility and

commands.

Related Reading: See Chapter 7, “Online Change Utilities and Procedures,” on

page 231 for more information on using the Online Change utility.

Changes in PSBs might also require modifications to the affected application

programs. For example, if a DBD has a segment name changed, all PSBs which

are sensitive to that segment must have their SENSEG statements changed.

Application programs which use this database might also need to be modified.

The following topics provide additional information:

v “Restrictions for ACB Generation” on page 158

v “Input and Output for ACB Generation” on page 158

v “Utility Control Statements for ACB Generation” on page 161

v “Error Processing for ACB Generation” on page 165

v “Examples of ACB Generation” on page 165

© Copyright IBM Corp. 1974, 2004 157

Restrictions for ACB Generation

You do not need to run ACB generation if your application program requires only an

I/O PCB and one modifiable alternate PCB. Such applications, typically used in a

DCCTL environment, can use GPSBs to define the resources necessary for

execution.

You cannot predefine GSAM PSBs and DBDs using ACB generation because the

control blocks for GSAM are different from the standard IMS data set control blocks.

PSBs that reference GSAM, as well as non-GSAM databases, can be predefined

using ACB generation to build the control block for the non-GSAM databases.

IMS conforms to z/OS rules for data set authorization. If an IMS job step is

authorized, all libraries used in that job step must be authorized. To run an IMS

batch region as unauthorized, a non-authorized library must be concatenated to

IMS.SDFSRESL.

The Application Control Blocks Maintenance utility uses some IMS system

resources but not the total system. IMS.PSBLIB and IMS.DBDLIB are shared data

sets. IMS.ACBLIB must be used exclusively. The utility can only be executed using

an ACB library which is not concurrently allocated to an active IMS system.

IMS.ACBLIB is modified and cannot be used for any other purpose during execution

of this program. IMS.ACBLIB is a partitioned data set and carries required linkage

information in the directory. You can use the operating system (IEHMOVE) and data

set (IEBCOPY) utilities for maintenance purposes.

Do not add FP DBDs to the active ACBLIB between an abnormal termination and

/ERE. FP DBDs added to the active ACBLIB after abnormal termination of IMS are

inaccessible after /ERE.

When specifying BUILD PSB=ALL on a SYSIN control statement, all PSBs must

reside in a single PSBLIB. No concatenated PSBLIBs will be acknowledged on the

IMS DD statement.

Input and Output for ACB Generation

Figure 50 on page 159 shows the functional relationship of the I/O data sets and

their naming requirements. The Application Control Block Maintenance utility

receives input from IMSVS.DBDLIB data set, IMS.PSBLIB data set, SYSIN control

statements, COMPCTL IEBCOPY control statements, and SYSPRINT messages.

The ACB Maintenance utility outputs to the SYSUT3 and SYSUT4 IEBCOPY utility

data sets, and the IMSVS.ACBLIB data set.

ACB generation

158 Utilities Reference: System

ACB Generation Procedure

The procedure shown in Figure 51 is created as a part of system definition. It is

placed into the IMS.PROCLIB procedure library by stage two of IMS system

definition.

Figure 51 shows the procedure for ACBLIB maintenance.

 In Figure 51, the high level qualifier of the IMS data sets is IMS. This is the default

provided by IMS generation. However, if the default value was not used in IMS

generation at your installation, the high level qualifier for the IMS data set names

might not be IMS.

Figure 50. Application Control Blocks Maintenance Utility

// PROC SOUT=A,COMP=,RGN=4M,SYS2=

//G EXEC PGM=DFSRRC00,PARM=’UPB,&COMP’,

// REGION=&RGN

//SYSPRINT DD SYSOUT=&SOUT

//STEPLIB DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR

//DFSRESLB DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR

//IMS DD DSN=IMS.&SYS2.PSBLIB,DISP=SHR

// DD DSN=IMS.&SYS2.DBDLIB,DISP=SHR

//IMSACB DD DSN=IMS.&SYS2.ACBLIB,DISP=OLD

//SYSUT3 DD UNIT=SYSDA,SPACE=(80,(100,100))

//SYSUT4 DD UNIT=SYSDA,SPACE=(256,(100,100)),

// DCB=KEYLEN=8

//COMPCTL DD DISP=SHR,

// DSN=IMS.&SYS2.PROCLIB(DFSACBCP)

Figure 51. ACBLIB Maintenance Procedure

Input and Output

Chapter 3. Application Control Blocks Maintenance Utility 159

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Invoking the Procedure

The following is a sample of the JCL statements that can be used to invoke the

ACB generation procedure.

//ACBGEN JOB MSGLEVEL=1

// EXEC ACBGEN

//SYSIN DD *

 BUILD PSB=(MYPSB)

The ACB generation procedure uses the following symbolic variables:

SOUT=

Specifies the SYSOUT class. The default is A.

COMP=

PRECOMP,POSTCOMP, in any combination, cause the required in-place

compression. The default is none.

RGN=

Specifies the region size for execution of the ACB utility. This depends on the

size of the blocks to be generated and typically varies from 100 to 150KB. The

default is 256KB.

SYS2=

Specifies an optional second-level dsname qualifier for those data sets which

are designated as “Optional Replicate” in an XRF complex. When specified, the

parameter must include a trailing period and be enclosed in quotes, for

example:

SYS2='IMSA.'

EXEC Statement

The first part of the EXEC statement must be in the form:

PGM=DFSRRC00

A parameter field must be in the form:

PARM=’UPB,PRECOMP,POSTCOMP’

where PRECOMP requests the IMS.ACBLIB data set be compressed before blocks

are built, and POSTCOMP requests compression after the blocks are built. 'UPB'

indicates that the block maintenance utility is to receive control. This parameter is

required. PRECOMP and POSTCOMP are optional and can be used in any

combination.

DD Statements

STEPLIB DD

Points to IMS.SDFSRESL, which contains the IMS nucleus and required action

modules. If STEPLIB is unauthorized by having unauthorized libraries

concatenated to IMS.SDFSRESL, you must include a DFSRESLB DD

statement.

DFSRESLB DD

Points to an authorized library which contains the IMS SVC modules. For IMS

batch, SDFSRESL and any data set that is concatenated to it on the

DFSRESLB DD statement must be authorized through the Authorized Program

Facility (APF). This DD statement provides an authorized library for the IMS

SVC modules, which must reside in an authorized library. The JOBLIB or

STEPLIB statement need not be authorized for IMS batch.

Input and Output

160 Utilities Reference: System

SYSPRINT DD

Defines the output message data set.

IMS DD

Defines the IMS.PSBLIB and IMS.DBDLIB data sets.

IMSACB DD

Defines the IMS.ACBLIB data set.

 Restriction: This data set is modified and cannot be shared with other jobs.

SYSUT3 DD

Defines a work data set that is required if either PRECOMP or POSTCOMP is

specified on the EXEC statement.

 Related Reading: Refer to the z/OS DFSMSdfp™ Utilities manual for more

information about space allocation requirements.

SYSUT4 DD

Same function as SYSUT3.

COMPCTL DD

Defines the control input data set to be used by IEBCOPY if PRECOMP or

POSTCOMP is specified.

 If both PRECOMP and POSTCOMP are requested on the EXEC statement

parameters, this data set must be capable of being closed with a reread option.

 Recommendation: It is suggested that this data set reference a member of

IMS.PROCLIB containing the following required control statement:

//COMPCTL DD DISP=SHR,

// DSN=IMS.&SYS2.PROCLIB(DFSACBCP)

SYSIN DD

Defines the input control statement data sets. They can reside on a tape

volume, direct-access device, card reader, or be routed through the input

stream. The input can be blocked as multiples of 80. During execution, this

utility can process as many control statements as required.

DFSACBCP Control Statement

The following control statement is created as a part of system definition and is

placed in the IMS.PROCLIB procedure library by stage two of IMS system

definition.

The ACB generation procedure uses DFSACBCP to compress ACBLIB.

COPY INDD=IMSACB,OUTDD=IMSACB

Utility Control Statements for ACB Generation

The following guidelines apply to the utility control statements for ACBGEN:

v The utility control statements for this program are coded with one restriction: To

continue a statement, enter a non-blank character in column 72 and begin the

statement on the next line starting in column 16.

v A statement is coded as a card image and is contained in columns 1 to 71.

v The control statement can optionally contain a name, starting in column 1.

v The operation field must be preceded and followed by one or more blanks.

v The parameter is composed of one or more PSB/DBD names and must also be

preceded and followed by one or more blanks.

Input and Output

Chapter 3. Application Control Blocks Maintenance Utility 161

|
|

|

v Commas, parentheses, and blanks can be used only as delimiting characters.

v Comments can be written following the last parameter of a control statement,

separated from the parameter by one or more blanks.

ACB Maintenance Utility Syntax: Build format

��

name

BUILD

PSB=

�

 ,

(

psbname

)

ALL

�

,

DBD=(

dbdname

)

��

ACB Maintenance Utility Syntax: Delete Format

��

name
 DELETE

�

,

PSB=(

psbname

)

�

,

DBD=(

dbdname

)

 ��

BUILD

Indicates that blocks are to be built for the named PSBs which refer to the

named DBDs.

DELETE

Indicates that blocks are to be deleted from ACBLIB. The named PSBs and all

PSBs that refer to the named DBDs are deleted.

PSB=ALL

Means blocks are to be built for all PSBs that currently reside in

IMS.PSBLIB. When this function is specified, all PSBs and DBDs (and

any other modules) are deleted from the ACBLIB data set and their

space is made available for reuse. Then an ACB generation is executed

for every PSB in PSBLIB. Do not use this parameter with a DELETE

statement. You use this parameter to create an initial IMS.ACBLIB.

 Requirement: When you specify BUILD PSB=ALL on a SYSIN control

statement, all PSBs must reside in a single PSBLIB. No concatenated

PSBLIBs will be acknowledged on the IMS DD statement.

PSB=(psbname)

Means blocks are to be built or deleted for all PSBs named on this

control statement. As many of this type of control statement as required

can be submitted. This parameter is normally used to add a new PSB

to IMS.ACBLIB or delete a PSB no longer in use. You can omit the

parentheses if you supply a single parameter.

DBD=(dbdname)

Means blocks are to be built or deleted for this DBD and for all PSBs

which reference this DBD either directly or indirectly through logical

relationships. The DBD to be built must already exist in IMS.ACBLIB.

The referencing PSBs must already exist in IMS.ACBLIB. PSBs newly

added to IMS.PSBLIB must be referenced by PSB= operands. Because

deleting a PSB does not delete any DBDs referenced by the PSB, this

parameter can be used to delete specific DBDs. However, deleting or

building a DBD causes every PSB in IMS.ACBLIB that references the

named DBD to be rebuilt or deleted based on the request type. You can

omit the parentheses if you supply a single parameter.

Utility Control Statements

162 Utilities Reference: System

Example: PSB-a references DBD-a and DBD-b. A DBDGEN was done

for DBD-a and DBD-b and the updated DBDs are in DBDLIB (but not

ACBLIB yet). By specifying DBD-a in an ACB generation, DBD-a is

rebuilt in ACBLIB and any referencing PSBs (in this case PSB-a) are

also rebuilt. Even though PSB-a has been rebuilt, the ACBLIB is not

usable because DBD-b was not specifically rebuilt in ACBLIB. For

DBD-b to be rebuilt in ACBLIB, it must be explicitly specified in the ACB

generation. In summary, even though the referencing PSB is completely

updated, but the updated DBDs must be explicitly specified in the ACB

generation.

 Every PSB processed by this program generates a member in the

IMS.ACBLIB data set. DBDs referenced by PSBs generate a member

the first time the specific DBD is processed or any time a DBD name

appears on a control statement. All PSBs that reference the same DBD

carry information in their directory entries to connect the PSB to the

referenced DBDs.

 Logical DBDs do not generate a member in IMS.ACBLIB and cannot be

referenced on BUILD or DELETE control statements.

 When a DBD is replaced in IMS.DBDLIB, it must also be included in a BUILD DBD

control statement. This is the only valid way the DBD can be replaced in

IMS.ACBLIB without doing a BUILD PSB=ALL.

If a BUILD PSB is performed that references a modified DBD on DBDLIB, the PSB

replaced on ACBLIB will contain the updated version of the DBD. If this BUILD PSB

occurs before a BUILD DBD for the changed DBD, ACBLIB will contain PSBs with

different versions of the DBD. The PSBs specified in the BUILD PSB will contain

the updated DBD, while those not built will reference the old DBD. When a DBD for

a PSB on ACBLIB does not match the accessed database, the results will be

unpredictable. (For example, U852 abend occurs because segment codes have

been added or deleted in the changed DBD). Therefore, when DBDGEN is run for

later use, do not build a PSB that refers to the changed DBD unless the database

reflects the change.

When a physical DBD is changed and is referenced in a BUILD DBD statement, all

physical DBDs that are logically related to the one that was changed (including

primary indexes and secondary indexes) must also be referenced in a BUILD DBD

statement. However, DBDs that are logically related to these DBDs do not need to

be rebuilt.

Figure 52 on page 164 illustrates the relationships between some physical

databases, where A is the changed DBD. The following relationships exist:

v B and C are logically related to A.

v D is logically related to B.

v E is logically related to C.

v D and E are not referenced in the BUILD DBD statement because they are not

logically related to A.

Utility Control Statements

Chapter 3. Application Control Blocks Maintenance Utility 163

Managing Dynamic Option (DOPT) PSBs

Using dynamic option (DOPT) PSBs requires concatenation of the following ACBLIB

data sets:

v A primary ACBLIB data set to contain blocks for all non-dynamic PSBs

v A DOPT ACBLIB data set to contain blocks for all dynamic option PSBs

The primary ACBLIB data sets is the first DD statement of the concatenation. To

BUILD a PSB or DBD into the concatenated data sets, supply only one DD

statement to the ACB Maintenance utility.

At system initialization time, all non-dynamic PSBs and all DBDs must have been

built into either the primary or DOPT ACBLIB data sets.

By transaction schedule time, the DOPT PSBs being scheduled must be built into

the DOPT ACBLIB data sets. Never build DOPT PSBs into the primary ACBLIB

data sets.

If all PSBs in the system are DOPT PSBs, the primary ACBLIB should be a dummy

PDS data set. The DOPT ACBLIB should contain blocks for all DBDs and PSBs.

Set the DIRCA size parameter in the BMP, MPP, or IFP JCL.

If some, but not all, PSBs in the system are DOPT PSBs, both ACBLIB data sets

will contain blocks for DBDs and PSBs. Remember, when you BUILD a PSB into

one ACBLIB data set, the blocks for the DBDs referenced by the PSB are also built

into that data set. If the DBD was already built into another ACBLIB data set, you

will have two sets of blocks for the DBD. When DL/I does a BLDL to use the blocks

for the DBD, it uses the set of blocks in the primary ACBLIB.

During the termination process of a program using DOPT PSBs, the PSBs are

deleted from the PSB pool.

Figure 52. Example of Logically Related Physical Databases

Utility Control Statements

164 Utilities Reference: System

Related Reading: Refer to the section on the APPLCTN Macro in IMS Version 9:

Installation Volume 2: System Definition and Tailoring for further information about

using DOPT.

Error Processing for ACB Generation

The ACB generation procedure returns the following codes:

Code Meaning

0 Successful completion of all operations

4 One or more warning messages issued

8 One or more blocks could not be built

16 Program terminated due to severe errors

Examples of ACB Generation

This section includes examples of the use of the Application Control Blocks

Maintenance utility.

Example of Creating Blocks for All PSBs

In this example, all blocks currently existing in IMS.ACBLIB are deleted and their

space is reused to create new blocks for all PSBs that currently reside in

IMS.PSBLIB. This option will normally be used for initial creation of the IMS.ACBLIB

data set. If space is not yet allocated for ACBLIB, there should be a space

parameter and a DISP=NEW on the IMSACB DD statement.

//BLDBLKS JOB 1,1,MSGLEVEL=(1,1)

//*

//STEP EXEC ACBGEN,SOUT=A

//SYSIN DD *

 BUILD PSB=ALL

/*

Example of Creating Blocks for Specific PSBs

This example creates blocks for PSB1, PSB2, and PSB3. All other PSBs in

IMS.ACBLIB remain unchanged. If any DBDs referenced by these PSBs do not

exist in IMS.ACBLIB, they are added. In addition, DBD5 and DBD6 are deleted from

ACBLIB. IMS.ACBLIB is compressed after the blocks are built, and deletions are

performed.

Example of Deleting a PSB and Rebuilding Blocks

This example deletes PSB1 from the IMS.ACBLIB data set and causes all PSBs in

the IMS.ACBLIB data set that reference DBD4 to have their blocks rebuilt. If PSB1

referenced DBD4, it will not be rebuilt, since PSB1 had just been deleted from

IMS.ACBLIB. PSB1 is not deleted from IMS.PSBLIB. The IMS.ACBLIB is

compressed before and after the blocks have been built.

//BLDBLKS JOB 1,1,MSGLEVEL=(1,1)

//*

//STEP EXEC ACBGEN,SOUT=A,COMP=POSTCOMP

//SYSIN DD *

 BUILD PSB=(PSB1,PSB2,PSB3)

 DELETE DBD=(DBD5,DBD6)

/*

Utility Control Statements

Chapter 3. Application Control Blocks Maintenance Utility 165

//BLDBLKS JOB 1,1,MSGLEVEL=(1,1)

//*

//STEP EXEC ACBGEN,SOUT=A,COMP='PRECOMP,POSTCOMP'

//SYSIN DD *

 DELETE PSB=PSB1

 BUILD DBD=DBD4

 /*

166 Utilities Reference: System

Chapter 4. DLIModel Utility

In order for a Java application to access an IMS database, it needs information

about the database. This information is contained in the PSB (program specification

block) and DBDs (database descriptions), but you must first convert this information

into a form that you can use in the Java application: a subclass of the

com.ibm.ims.db.DLIDatabaseView class called the IMS Java metadata class. The

DLIModel utility generates this metadata from the IMS PSBs, DBDs, COBOL

copybooks, and other input specified by utility control statements.

In addition to creating metadata, the DLIModel utility also:

v Generates XML schemas of IMS databases. These schemas are used when

retrieving XML data from or storing XML data in IMS databases.

v Incorporates additional field information from XMI input files that describe COBOL

copybooks.

v Incorporates additional PCB, segment, and field information, or overrides existing

information.

v Generates a DLIModel IMS Java Report, which is designed to assist Java

application programmers. The DLIModel IMS Java Report is a text file that

describes the IMS Java view of the PSB and its databases.

v Generates an XMI description of the PSB and its databases.

The DLIModel utility can process most types of PSBs and databases. For example,

the utility supports:

v All database organizations except MSDB, HSAM, SHSAM, and GSAM

v All types and implementations of logical relationships

v Secondary indexes, except for shared secondary indexes

v Secondary indexes that are processed as stand-alone databases

v PSBs that specify field-level sensitivity

The DLIModel utility is a Java application, so you can run it from the UNIX® System

Services prompt, or you can run it using the z/OS-provided BPXBATCH utility.

Figure 53 on page 168 shows the inputs to and outputs from the DLIModel utility.

© Copyright IBM Corp. 1974, 2004 167

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

The actions of the DLIModel utility are directed by control statements that you

supply. The control statements can specify:

v Which PSB to process during a run

v Aliases for the PSB, PCBs, segments, and fields

v Data types and format masks for fields

v XMI files that contain XMI descriptions of COBOL copybook members for

segments

v Additional field definitions for fields that are not defined in the DBD or the

COBOL copybook XMI file

v Information that overrides PSB, DBD, and COBOL copybook XMI information

v Default values for newly inserted segments

The DLIModel utility reads the PSB and DBD source members from the partition

data set (PDS) or partition data set extended (PDSE) and parses them to build an

in-memory model of the database structure and the PSB’s view of that structure.

The utility then generates the outputs that were requested through control

statements.

Figure 53. DLIModel Utility Inputs and Outputs

168 Utilities Reference: System

|

|

|
|
|
|
|

You can specify an XMI description of the entire in-memory model in which one

description covers the PSB and all DBDs processed in the run. For details about

this XMI output, see “XMI Description of the Databases” on page 172.

You can also request a detailed trace file of the DLIModel utility execution if such a

trace is necessary for problem resolution.

The following topics provide additional information:

v “PSB and DBD Requirements”

v “DLIModel Utility Restrictions” on page 170

v “Output Types of the DLIModel Utility” on page 170

v “Control Statements for the DLIModel Utility” on page 178

v “Running the DLIModel Utility” on page 174

v “Examples of Using the DLIModel Utility” on page 189

Related Reading: For more information on Java application programming with IMS,

see IMS Version 9: IMS Java Guide and Reference.

PSB and DBD Requirements

This section describes the PSB and DBD requirements to run the DLIModel utility.

v The DLIModel utility does not validate the PSB and DBD source. IBM strongly

recommends that you generate DBDs, PSBs, and ACBs, correct all errors, and

then run the DLIModel utility.

v PCBs in the PSB must be named, either through statement labels or the

PCBNAME parameter.

v If your application uses JDBC and the JDBC call includes fields from more than

one segment in a hierarchical path, IMS Java uses path calls. In order for the

application to be able to retrieve fields from multiple segments, you must include

P as a processing option (PROCOPT) in the PCB or SENSEG statements, as

appropriate.

v If your application uses the IMS Java hierarchical database interfaces (SSA

database access), path calls are under your control, and you must choose the

appropriate PSB processing options.

v The DLIModel utility follows all references in DBDs to other DBDs when building

its model, and might require access to DBDs that are not directly referenced by

PCBs in the PSB. For example, when processing a PSB that references a main

database with a number of secondary indexes, the DLIModel utility needs access

to the secondary index DBDs even if the PSB does not explicitly name any of

these indexes. Similarly, all DBDs that are related by logical relationships must

be accessible.

v You must maintain the length field in variable length segments for INSERT or

UPDATE statements.

COBOL Copybook XMI Requirements

This section describes the requirements for the optional COBOL copybook XMI

files.

v XMI input files must conform to the COBOL metamodel, which is part of the CAM

metamodel of the OMG-accepted version of the UML specification for the

Enterprise Application Integration (EAI) standard.

Chapter 4. DLIModel Utility 169

|
|
|

|
|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|

|
|

|
|
|

v COBOL copybook XMI files, which supply additional information about field

layouts, must describe the physical segments. The files cannot describe the

logical database segment layouts.

DLIModel Utility Restrictions

The DLIModel utility has the following restrictions.

v The DLIModel utility cannot process:

– MSDB, HSAM, SHSAM, and GSAM databases

– Shared secondary indexes

– PROCOPT=K option in a PSB SENSEG statement

v The DLIModel utility does not use DLITypeInfoList classes in its generated

classes. If you want to define repeating groups of fields in segments other than

by explicitly defining each group of fields separately, you must create the classes

manually or modify the classes generated by the DLIModel utility.

v The default data type for all fields is CHAR, even if the DBD specifies a different

data type. To change the data type of a field, use the FIELD control statement.

Output Types of the DLIModel Utility

The DLIModel utility can generate the following types of output:

v Java Metadata Class

v DLIModel IMS Java Report

v XMI Description of the Databases

v XML Schema

v DLIModel Utility Trace

Java Metadata Class

The DLIModel utility generates the necessary Java metadata source files that are

needed by the Java application. However, the generated DLIModel IMS Java

Report provides enough information about the IMS databases for application

development.

Do not edit the generated metadata classes. Use only the DLIModel utility control

statements to make changes to the classes.

For application development, use the DLIModel IMS Java Report instead of the

metadata class itself for information about the metadata and the database.

Table 13 lists the control statements and parameters that are required and optional

for generating Java metadata source files.

 Table 13. Control Statements and Parameters to Generate Java Metadata Source Files

Control statement Required parameters Optional parameters

OPTIONS GenJavaSource JavaSourcePath

PSB PSBName none

DLIModel IMS Java Report

The DLIModel IMS Java Report summarizes the structure of the IMS databases in

a way that helps you create Java applications and code SQL queries against the

COBOL Copybook XMI Requirements

170 Utilities Reference: System

|
|
|

|
|
|
|

|
|

|

|

|

|

|

|

|
|
|
|

|
|

|
|

|
|

||

|||

|||

|||
|

|
|

databases. With the DLIModel IMS Java Report, you do not have to interpret Java

metadata class source or refer to the DBD or PSB source.

Related Reading: Sample DLIModel IMS Java Reports are shown in each of the

examples in “Examples of Using the DLIModel Utility” on page 189.

Table 14 lists the control statements and parameters that are required and optional

for generating a DLIModel IMS Java Report.

 Table 14. Control Statements and Parameters to Generate a DLIModel IMS Java Report

Control statement Required parameters Optional parameters

OPTIONS GenJavaSource JavaSourcePath

PSB PSBName none

PSB Description

In the DLIModel IMS Java Report, the name of the generated class for the PSB is

provided first and is either the name defined by the JavaName parameter or, if no

JavaName is specified, the 8-character PSB name. The report also shows the

package for the class, if the package was specified in the OPTIONS control

statement, and the PSB name.

Use the name of the metadata class to establish the connection to the database

within your application code. For example:

connection = DriverManager.getConnection

("jdbc:dli:dealership.application.DealerDatabaseView");

Because the supplied string begins with jdbc:dli:, the JDBC DriverManager facility

locates the DLIDriver instance and requests that it create a connection.

PCB Description

Within each PSB section of the report, a section is listed for each PCB. Each PCB

is identified by its IMS Java name, which is either the name defined by the

JavaName parameter or the 8-character PCB name from the PSB if no JavaName

parameter is specified.

Use the PCB name in SQL queries to the database. In the SQL queries, the PCB

name is equivalent to a table designator. For example:

SELECT * FROM PCBName.SegmentName

Segment Description

Within each PCB section of the report, all segments are listed in hierarchical

sequence. Segment descriptions are indented to illustrate the hierarchical

dependencies. Each segment is identified by its IMS Java name, which is either the

name defined by the JavaName parameter or the 8-character segment name from

the PSB if no JavaName parameter is specified.

Use the IMS Java name for the segment in SQL queries to the database. In the

SQL queries, the segment name is equivalent to a table name.

Field Description

Within each segment, fields are listed in the order in which they appear in the DBD

and are appended with any additional fields that were added by control statements

or COBOL copybooks. Each field is identified by its IMS Java name, which is either

the name defined by the JavaName parameter or the 8-character field name from

the DBD if no JavaName parameter is specified.

DLIModel Utility Outputs

Chapter 4. DLIModel Utility 171

|
|

|
|

||

|||

|||

|||
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|
|

Use the IMS Java name for the field in SQL queries to the database. In the SQL

queries, the field name is equivalent to a column name.

Fields are of the following three types:

Field that is physically in a DBD

In the report, a DBD field is annotated as either a ++ Primary Key Field ++

if it is the sequence field of its segment or as a (Search field) if it is a

non-sequence field. SQL queries with WHERE clauses qualified on primary

key fields generally produce much faster response times than calls that are

qualified on search fields, but both are allowed.

 These fields have their IMS Java type listed, and if necessary, their type

qualifier. The report also lists their length in bytes.

DBD secondary index search field

A secondary index search field is annotated as ++ Secondary Key Field ++

and, like a primary key field, produces fast responses to queries. However,

secondary index search fields are not physically present in their segment

and can not be retrieved from the result set. In the report, secondary index

search fields are followed by a list of their component search fields to assist

you in creating a suitable string to use as a search argument in an SQL

query.

 A secondary index field has no length value. It is essentially a virtual field

and is used only for searching.

Field that is not in the DBD

A field that is not in a DBD has been added by a FIELD control statement

or by a COBOL copybook XMI description. The report lists its length, data

type, and, if required, type qualifier. Such a field has no key field or search

field annotation in the report, which indicates that it cannot be used in an

SQL WHERE clause. However, the fields can be retrieved from the result

set.

XMI Description of the Databases

An XMI file written in UTF-8 encoding is produced by the DLIModel utility if you

specify genXMI=YES in the OPTIONS control statement. The XMI file describes all

of the PCBs and the referenced DBDs that are processed when the utility runs.

The samples directory contains samples of the XMI that is produced for each of the

samples in this chapter. The XMI is converted from UTF-8 to EBCDIC encoding for

viewing in a z/OS environment.

The XMI file that is produced by the utility is based on a model of the IMS database

defined in UML. This model is a package with a number of inheritance relationships

to the OMG Common Warehouse Metamodel (CWM). However, only the IMS

package itself is included and used in the DLIModel utility.

Directory pathprefix/usr/lpp/ims/imsjava91/dlimodel/samples/model of the IMS Java

HFS directory contains:

v An EBCDIC-encoded XMI definition of the metamodel to view in a z/OS

environment.

v An IBM Rational Rose® model file of the metamodel. This model file is at the

4.5/6.0 Model level, which corresponds to Rose 98 or 98i. To view this file, you

need a licensed and installed copy of a suitable level of the Rational Rose

product.

DLIModel Utility Outputs

172 Utilities Reference: System

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

Table 15 lists the control statements and parameters that are required and optional

for generating an XMI description.

 Table 15. Control Statements and Parameters to Generate an XMI Description

Control statement Required parameters Optional parameters

OPTIONS GenXMI XMIPath

PSB PSBName none

XML Schema

The generated XML schema, written in UTF-8 encoding, is an XML document that

describes the XML view of an IMS database based on a PCB. An XML schema is

required to retrieve XML documents from or store XML documents into IMS. IMS

uses an XML schema to validate an XML document that is either being stored into

or retrieved from IMS. The XML schema, not the application program, determines

the structural layout of the parsed XML document in the database during storage

and the generated XML document during retrieval.

Do not edit the XML schema. Make changes to the schema only by editing the

control statements and running the DLIModel utility.

The schemas generated are used either for retrieval only or for both storage and

retrieval. Because XML storage has restrictions that XML retrieval does not have,

the schemas have an annotation that specifies whether the schema can be used for

storage and retrieval or only for retrieval. The following example is an annotation

from a schema that can be used for both storage and retrieval:

<xsd:annotation>

 <xsd:appinfo>

 <ims:DLI mode="store"/>

 </xsd:appinfo>

</xsd:annotation>

If you are using the generated schema for storage, the schema also specifies

whether the XML is stored intact or decomposed. An element can have an

annotation that specifies that the element and all of its nested elements are to be

stored intact. The following example is an annotation from an element that is stored

intact:

<xsd:annotation>

 <xsd:appinfo>

 <ims:intact />

 </xsd:appinfo>

<xsd:annotation>

The DLIModel utility generates an XML schema from the following input:

v DBDs

v One PSB

v COBOL copybook XMI (optional)

v Control statements

In a single run of the DLIModel utility, you can generate schemas for all PCBs in

the PSB that is to be processed by the utility or for only the PCBs that you specify.

The generated XML schemas are stored in the path that you specify in the control

statements. The file names have the following format:

PsbName-pcbJavaName.xsd

DLIModel Utility Outputs

Chapter 4. DLIModel Utility 173

|
|

||

|||

|||

|||
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|
|

|
|

|

An XML schema of the sample dealership database is provided in the HFS directory

pathprefix/usr/lpp/ims/imsjava91/samples/dealership/AUTPSB11-Dealer.xsd.

Table 16 lists the control statements and parameters that are required and optional

for generating an XML schema.

 Table 16. Control Statements and Parameters to Generate an XML Schema

Control statement Required parameters Optional parameters

OPTIONS GenJavaSource

GenXMLSchemas

XMLSchemaPath

PSB PSBName none

PCB (optional) PCBName GenXMLSchema

XMLRootElement

FIELD (optional) none XMLType

XMLStorageType

Overflow

SIDESEG (optional) Xpath

Source

Field

none

DLIModel Utility Trace

The DLIModel utility can generate a trace file named dlimodeltrace if you need to

resolve a problem with the utility. For the utility to generate the trace file, specify

GenTrace=YES in the OPTIONS control statement. You can also specify the path

where the file is written by using the TracePath parameter.

Table 17 lists the control statements and parameters that are required and optional

for generating a trace file.

 Table 17. Control Statements and Parameters to Generate a Trace File

Control statement Required parameters Optional parameters

OPTIONS GenTrace TracePath

Running the DLIModel Utility

You can run the DLIModel utility in two ways:

v As a standard z/OS job, as described in “Running the DLIModel Utility as a z/OS

Job” on page 175

v From the command prompt of UNIX System Services, as described in “Running

the DLIModel Utility from UNIX System Services” on page 177

Prerequisites:

v Install IMS Java and download the required Apache open source

XML libraries. For information about installing IMS Java and

downloading the required XML files, see the IMS Version 9: IMS

Java Guide and Reference.

v Write control statements for the DLIModel utility. These control

statements are stored in an HFS file or PDS member. When you

run the utility, you will provide the location and name of the HFS

DLIModel Utility Outputs

174 Utilities Reference: System

|
|

|
|

||

|||

||
|
|

|||

|||
|

|||
|
|

||
|
|

|

|

|

|
|

||

|||

|||
|

|

|
|

|
|

|
|
|
|

|
|
|

file or PDS member. For information about writing the control

statements, see “Control Statements for the DLIModel Utility” on

page 178.

Running the DLIModel Utility as a z/OS Job

The DLIMODEL procedure is delivered as member DFSMODEL in the IMS

distribution library SDFSISRC. To prepare this procedure, perform the following

steps:

1. Copy the member DFSMODEL from its distribution library, SDFSISRC, to the

data set from where you submit IMS procedures for batch execution.

2. Optionally, rename the procedure. These instructions assume that you have

renamed the procedure DLIMODEL.

Because the DLIModel utility is a Java application, the DLIMODEL procedure runs

the utility on z/OS using BPXBATCH, a z/OS-provided utility that runs any z/OS

UNIX shell command or executable.

The DLIMODEL procedure has two steps:

v Step 1 executes the DLIModel utility (a Java application) by invoking the z/OS

utility named BPXBATCH. The data-set name of a PDS control data set is

provided to the utility through the EXEC statement PARM field. This step contains

DD statements for the utility’s standard output streams, STDOUT and STDERR,

which are directed to temporary HFS files. Other utility inputs and outputs are

read from or sent to data sets and files with names specified by the control data

set and do not have DD statements.

v Step 2 redirects STDOUT and STDERR to SYSOUT streams where they can be

viewed using your usual procedures (for example, by using SDSF).

The procedure shown in Figure 54, DLIMODEL, runs the DLIModel utility using

BPXBATCH:

//DLIMODEL PROC ABSPATH=,DSNAME=,SOUT=’*’

//**

//* THIS PROC RUNS THE IMS JAVA UTILITY IN BATCH MODE

//**

//STEP1 EXEC PGM=BPXBATCH, PARM=’SH cd &ABSPATH;go "&DSNAME" PDS’

//STDENV DD DUMMY

//STDOUT DD PATH=’/tmp/&SYSUID..out’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU

//STDERR DD PATH=’/tmp/&SYSUID..err’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU

//*--

//* Redirect stdout and stderr output to SYSOUT:

//STEP2 EXEC PGM=IKJEFT01,DYNAMNBR=300,COND=EVEN

//SYSTSPRT DD SYSOUT=&SOUT

//HFSOUT DD PATH=’/tmp/&SYSUID..out’

//HFSERR DD PATH=’/tmp/&SYSUID..err’

//STDOUTL DD SYSOUT=&SOUT,DCB=(RECFM=VB,LRECL=133,BLKSIZE=137)

//STDERRL DD SYSOUT=&SOUT,DCB=(RECFM=VB,LRECL=133,BLKSIZE=137)

//SYSPRINT DD SYSOUT=&SOUT

// PEND

Figure 54. Sample DLIModel Utility Procedure

Running the DLIModel Utility

Chapter 4. DLIModel Utility 175

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

DLIMODEL PROC Statement Parameters

The following parameters are required for the DLIMODEL PROC statement.

ABSPATH

The fully qualified path of the go file. This script file contains the java

command that executes the DLIModel utility class file.

Note: The go file is a script file that contains the java command and

specifies the required JAR files needed by the application. The

command uses the $ symbol. Edit the go file only if the $ symbol is

not valid in your location, in which case, replace the $ symbol with

an appropriate symbol.

DSNAME

The fully qualified data-set name of the top-level control data set, which

contains the DLIModel utility control statements. These control statements

are described in “Control Statements for the DLIModel Utility” on page 178.

 DSNAME must refer to a PDS or PDSE member and not to an HFS file.

The format is:

qual1.qual2.dsname(member)

The named data set must be type F or FB with the LRECL= parameter set

to 80.

SOUT The class for all SYSOUT output in the procedure.

STEP1 EXEC Statement Parameters

PGM=BPXBATCH

Runs the BPXBATCH utility.

PARM Runs the utility as a Java application under UNIX System Services.

Step 1 DD Statements

STDENV DD

Contains the statements that set the Java environment variables. You

should not need to use this DD statement.

STDOUT DD

The destination to which the BPXBATCH utility in step 1 directs standard

output. This output includes messages that record the normal execution of

the utility. This output is redirected by step 2 to the standard SYSOUT

destination.

STDERR DD

The destination to which the BPXBATCH utility in step 1 directs standard

error output. This output includes error and warning messages that are

related to the execution of the utility. This output is redirected by step 2 to

the standard SYSOUT destination.

SYSTSIN DD

Control statements for the z/OS utility IKJEFT01 to copy the temporary HFS

output files to the SYSOUT destination.

Step 2 EXEC Statement Parameters

PGM=IKJEFT01

Runs the z/OS utility IKJEFT01, which redirects STDOUT data and STDERR

data to the SYSOUT destination.

Running the DLIModel Utility

176 Utilities Reference: System

|
|

|
|

|
|
|
|
|

|
|

|

|
|

|

|
|
|
|

|
|
|
|

|
|

|
|

DYNAMNBR

See the z/OS: UNIX System Services User’s Guide and z/OS: UNIX System

Services Command Reference.

COND

See the z/OS: UNIX System Services User’s Guide and z/OS: UNIX System

Services Command Reference.

Step 2 DD Statements

SYSTEPRT DD

IKJEFT01 utility output.

HFSOUT DD

Input from the temporary STDOUT file from step 1.

HFSERR DD

Input from the temporary STDERR file from step 1.

STDOUTL DD

Output destination for the STDOUT stream.

STDERRL DD

Output destination for the STDERR stream.

SYSPRINT DD

IKJEFT01 utility output.

SYSTSIN DD

Must be added to the execution JCL. See Figure 55 for an example. The

SYSTSIN DD statement provides control statement input for the IKJEFT01

utility that redirect HFSOUT and HFSERR streams to the STDOUTL and

STDERRL destinations. For example:

OCOPY INDD(HFSOUT) OUTDD(STDOUTL)

OCOPY INDD(HFSERR) OUTDD(STDERRL)

 Related Reading: For more information about the z/OS BPXBATCH utility, see the

z/OS: UNIX System Services User’s Guide and the z/OS: UNIX System Services

Command Reference.

Figure 55 is an example of a job that runs the DLIMODEL procedure:

In this example, the IKJEFT01 SYSTSIN DD statement is provided with control

statements to copy the temporary HFS outputs to SYSOUT destinations.

Running the DLIModel Utility from UNIX System Services

In addition to using the JCL procedure, you can run the DLIModel utility from a

prompt under UNIX System Services. You can use this method if you are more

familiar with a UNIX environment than with JCL.

//BPXAUTP6 JOB CLASS=Z,MSGCLASS=E,MSGLEVEL=(1,1),

// TIME=(9),USER=OMVSADM,PASSWORD=xxxxxxx,

// REGION=32M

//TEST EXEC DLIMODEL,DSNAME='qual1.qual2.dsname(CNTRSTMT)’,

// ABSPATH=’pathprefix/usr/lpp/ims/imsjava91/dlimodel’

//STEP2.SYSTSIN DD *

OCOPY INDD(HFSOUT) OUTDD(STDOUTL)

OCOPY INDD(HFSERR) OUTDD(STDERRL)

/*

Figure 55. JCL Job to Run the DLIMODEL Procedure

Running the DLIModel Utility

Chapter 4. DLIModel Utility 177

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|
|

Before running the DLIModel utility from the UNIX System Services prompt, ensure

that your PATH environment variable is set so that the SDK 1.3.1 java command is

accessible.

To run the DLIModel utility, enter the go command from the /imsjava91/dlimodel

directory. Use the following syntax:

�� go HFSpath/controldataset

qual.qual.dsname(member)

PDS
 ��

go The script file that contains the java command to execute the DLIModel

application class.

Note: The go file is a script file that contains the java command and specifies

the required JAR files needed by the application. The JAR files are found

in the /imsjava91/dlimodel and /imsjava91/lib directories. The command

uses the $ symbol. Edit the go file only if the $ symbol is not valid in

your location, in which case, replace the $ symbol with an appropriate

symbol.

HFSpath/controldataset

HFS file of the control data set.

qual.qual.dsname(member)

PDS file for the control data set.

PDS

Specifies that the control data set is a PDS file and not an HFS file.

Control Statements for the DLIModel Utility

You must write control statements to specify certain options such as input and

output data set names, and which PSB and PCBs to use. You can also use the

control statements to supply information to the utility about the databases that are

not in the PSB, DBDs, or COBOL copybook XMI file.

The control statements are supplied to the utility in a PDS member named in the

EXEC statement PARM field of the JCL, or in an HFS file named in a command line

parameter in the UNIX System Services environment.

Control Data Set Rules

You must include the following statements in your control data set:

v OPTIONS Statement

v PSB Statement

Optionally, you can include the following statements in the control data set:

v PCB Statement

v SEGM Statement

v FIELD Statement

v SIDESEG Statement

v XDFLD Statement

v INCLUDE Statement

Running the DLIModel Utility

178 Utilities Reference: System

|
|
|

|
|

||||||||||||||||||

|

||
|

|
|
|
|
|
|

|
|
|
|

|

The following syntax diagram shows how to organize the control statements in the

control data set.

�� OPTIONS Statement

�

 PSB Statement

PCB Statement

 �

�

�

�

�

SEGM Statement

FIELD Statement

XDFLD Statement

SIDESEG Statement

 �

�

�

INCLUDE Statement

 ��

A typical reason to include PCB, SEGM, and FIELD statements is to assign a

customized name (alias) to these entities that can be used in your Java program or

XML schema. You can choose a name that is more meaningful than the 8-character

name given to these entities in the DBD and PSB source. You might also need to

assign data types to fields and define additional fields that are important to your

application but were not defined in the segment in the DBD.

You do not need to include PCB, SEGM, or FIELD statements in your control

statement set if all of the following statements are true of your application:

v It can process PCBs, segments, and fields by their 8-character IMS names.

v It needs only fields that are defined in the DBD.

v All fields can be processed as data type CHAR.

v All PCBs in the PSB have the same GenXMLSchema option.

v If generating an XML schema, the XML root element is the database root.

v If generating an XML schema, all fields are to be elements in the schema.

v If generating an XML schema, the storage type is decomposed.

Related Reading: For examples of control data sets, see the examples in

“Examples of Using the DLIModel Utility” on page 189.

The rules for ordering the control statements are as follows:

v The OPTIONS statement must be first, and must be present only in a top-level

control data set.

v PCB statements must follow immediately after the PSB statement. They may be

in any order (for example, PCB statements do not need to be in the same order

as they appear in the original PSB source).

v FIELD statements must follow immediately after the SEGM for the physical

segment to which they belong. However, FIELD statements may be in any order

within their segment group. For example, FIELD statements need not be in the

same sequence as they appear in the original DBD source. FIELD statements for

existing fields and for new fields may be intermixed or grouped in any sequence.

v SIDESEG statements must immediately follow a FIELD statement.

v INCLUDE statements can be positioned anywhere in a control data set, but not

between:

– A PSB statement and any PCB statements that belong to it

DLIModel Utility Control Statements

Chapter 4. DLIModel Utility 179

||||||||||||||||||||||||||
|

|
|||
|

|
||||||||||||||||||

|

|
|
|
|
|
|

|

|

|

|
|
|

|

– A SEGM statement and any FIELD statements that belong to it

You can nest multiple control data sets by using the INCLUDE statement. Nesting

gives you the flexibility to store your control statements across multiple HFS files or

PDS members for increased convenience and control.

For example, a top-level file could contain the OPTIONS, PSB, and PCB

statements that specify a certain Java-class generation. Included files might each

contain a group of SEGM and FIELD statements that relate to an individual logical

or physical DBD. You can reuse these included files without change for other PSBs

that reference the same databases and segments.

For an example of control statements that use the INCLUDE statements, see

Figure 67 on page 194.

Control Statement Rules

The syntax for the control statements is very flexible. Each statement consists of an

identifier followed by keyword parameters. The identifier may start in any column.

Each identifier, keyword, and variable must be separated by at least one blank

character, unless the identifiers, keywords, and variables are already separated by

an operator. You can specify keyword parameters in any order.

If your control statements are in a data set, map the statements to multiple

80-character records, between columns 1 and 72, inclusive. Columns 73 through 80

are ignored. You can use these columns for sequence numbers. No continuation

characters are required.

If your control statements are in an HFS file, any line length is acceptable, but you

can also optionally continue statements across multiple lines as in a data set. If you

restrict your line length to less than 73 characters, your control statements can be

moved between data sets and HFS files without change.

Identifiers, keywords, and predefined parameter values (such as YES and NO) can

appear in uppercase or lowercase characters. Other parameter values (for example,

user-specified path or Java names) are case sensitive.

Control Statement Syntax

This topic describes the syntax of the DLIModel utility control statements.

OPTIONS Statement

To run the DLIModel utility, you need one OPTIONS control statement. The

OPTIONS control statement customizes the DLIModel utility by specifying where to

find input, what output to generate, and where to write the output.

The following diagram shows the syntax of the OPTIONS statement.

��

OPTIONS

PSBds=IMS.qual.dsname

�

DBDds=IMS.qual.dsname

�

DLIModel Utility Control Statements

180 Utilities Reference: System

|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|||||||||||||||
|

||

�
Package=packagename

GenJavaSource

GenXMI
 �

�
 GenXMLSchemas=NO

GenXMLSchemas=

STORE

RETRIEVE

NO

GenTrace

OutPath=path

�

�
JavaSourcePath=path

ReportPath=path

XMIPath=path
 �

�

XMLSchemaPath=path

TracePath=path

 FieldOrder=DEFAULT

FieldOrder=OFFSET

��

PSBds=IMS.qual.dsname

Required parameter specifies the data set name of the PSB source. This

parameter specifies the data set name only. Specify the PSB name with the

PSBName= parameter of the PSB statement. See “PSB Statement” on page

183.

DBDds=IMS.qual.dsname

Required parameter specifies the data set name of the DBD source. If you

specify multiple parameters, the DLIModel utility opens and searches the data

sets in the order that the DBDs are specified in the control statement by the

DBDds parameters. This searching order is similar to data set concatenation in

a JCL DD statement.

Package=packagename

Optional parameter specifies the package for which the IMS Java classes are

generated. A Java package statement is added to each Java source file that is

generated.

GenJavaSource

Optional parameter to generate the IMS Java class source files and a DLIModel

IMS Java Report. This keyword is required if you specify the GenXMLSchemas

parameter. If you do not specify the GenJavaSource parameter, no Java class

files are generated.

Note: GenJavaSource=NO is equivalent to not including the GenJavaSource

parameter.

GenXMI

Optional parameter to generate an XMI file named dlimodelxmi.xmi, which

describes the database model based on the PSB and corresponding databases

processed by the utility. If you do not specify GenXMI, no XMI file is generated.

Note: GenXMI=NO is equivalent to not including the GenXMI parameter.

GenXMLSchemas=NO| STORE | RETRIEVE

Optional parameter specifies the default value for generating XML schemas for

PCBs in the PSB source. If you specify GenXMLSchemas=STORE or

GenXMLSchemas=RETRIEVE, you must also specify GenJavaSource. If you

DLIModel Utility Control Statements

Chapter 4. DLIModel Utility 181

||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|

specify the GenXMLSchema parameter in a PCB statement, the specified

parameter overrides the default parameter for that PCB. For more information

on the PCB statement, see “PCB Description” on page 171.

NO Specifies that no XML schemas are generated by the utility. NO is the

default.

STORE

Specifies that XML documents that conform to the generated XML

schema can be stored in or retrieved from the database. To store XML,

the PCB that the XML schema is based on must meet the following

requirements:

v The PCB is based on a physical DBD.

v No segments in the hierarchy are logical children.

v The hierarchy is based on a primary database root key and not on a

secondary index.

v No segments have the parameter PROCOPT=K.

RETRIEVE

Specifies that applications can use only the retrieveXML field and not

storeXML field with this XML schema and its corresponding PCB. If you

specify GenXMLSchemas=RETRIEVE, you cannot store XML

documents in the IMS database. However, if you specify

GenXMLSchemas=RETRIEVE, the PCB and database restrictions that

specify GenXMLSchemas=STORE do not apply.

GenTrace

Optional parameter to generate a trace file, named dlimodeltrace, of the utility

run. If you do not specify GenTrace, no trace file is generated.

Note: GenTrace=NO is equivalent to not including the GenTrace parameter.

OutPath=path

Optional parameter specifies the HFS directory where the DLIModel utility writes

the output files, unless you specify path names for specific output files. The

default output path is the current directory.

JavaSourcePath=path

Optional parameter specifies the HFS directory where the DLIModel utility writes

the IMS Java class files. This parameter overrides the OutPath parameter.

ReportPath=path

Optional parameter specifies the HFS directory where the DLIModel utility writes

the DLIModel IMS Java Report. This parameter overrides the OutPath

parameter.

XMIPath=path

Optional parameter specifies the HFS directory where the DLIModel utility writes

the generated XMI. This parameter overrides the OutPath parameter.

XMLSchemaPath=path

Optional parameter specifies the HFS directory where the DLIModel utility writes

the generated XML schema. This parameter overrides the OutPath parameter.

TracePath=path

Optional parameter specifies the HFS directory where the DLIModel utility writes

the trace file. This parameter overrides the OutPath parameter.

DLIModel Utility Control Statements

182 Utilities Reference: System

|
|
|

||
|

|
|
|
|
|

|

|

|
|

|

|
|
|
|
|
|
|

|

|
|
|

FieldOrder=DEFAULT | OFFSET

Optional parameter specifies the order of the fields of segments in the

generated IMS Java class.

DEFAULT

Fields are in the same order as in the DBD and are followed by any new

fields that are defined by the control statements.

OFFSET

Fields are in the order of their start positions.

PSB Statement

The PSB statement is required in order to run the DLIModel utility because it

defines which PSB the utility uses.

The following diagram shows the syntax of the PSB statement.

�� PSB PSBName=name

JavaName=name
 ��

PSBName=name

Required parameter specifies the name of the PSB that is used by the

DLIModel utility.

JavaName=name

Optional parameter specifies the name of the generated Java metadata class. If

you do not specify this parameter, the name of the Java metadata class is the

same as the PSB name.

PCB Statement

The PCB statement is optional unless the PCB name is an SQL keyword. With the

PCB statement, you can specify an alias for a PCB and whether to generate an

XML schema for a PCB. All PCB statements for a PSB must follow the PSB

statement.

The following diagram shows the syntax of the PCB statement.

�� PCB PCBName=name

JavaName=name

GenXMLSchema=

RETREIVE

STORE

NO

 �

�
XMLRootElement=name

 ��

PCBName=name

Optional parameter specifies the 8-character PCB name that you want to assign

an alias to.

JavaName=name

Optional parameter specifies the Java alias for the PCB, which is used in the

Java application or the XML schema. The name must be unique for each PSB

and cannot be an SQL keyword.

GenXMLSchema=NO | STORE | RETRIEVE

Optional parameter specifies whether to generate an XML schema for this PCB.

When specifying GenXMLSchema=STORE or GenXMLSchema=RETRIEVE,

DLIModel Utility Control Statements

Chapter 4. DLIModel Utility 183

|
|

||||||||||||||||

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

you must also specify GenJavaSource=YES. This parameter overrides the

GenXMLSchema parameter in the OPTIONS statement, which determines the

default for this parameter.

NO Specifies that no XML schema will be generated for this PCB.

STORE

Specifies that XML documents that conform to the generated XML

schema can be stored in or retrieved from the database. To store XML,

the PCB that the XML schema is based on must have the following

requirements:

v The PCB is based on a physical DBD.

v No segments in the hierarchy are logical children.

v The hierarchy is based on a primary database root key and not on a

secondary index.

v No segments have the parameter PROCOPT=K.

RETRIEVE

Specifies that the XML documents that conform to the generated XML

can be retrieved only from a database. You cannot store XML

documents, but the restrictions on GenXMLSchemas=STORE do not

apply.

XMLRootElement=name

Specifies which segment is the root element in the XML schema. The

retrieveXML UDF can use the specified segment, or any dependent segment of

the specified segment, as an argument. The default root element is the root

segment of the database. This parameter is ignored if you specify

GenXMLSchema=NO.

SEGM Statement

The SEGM statement is optional unless the segment name is an SQL keyword. The

SEGM statement is used for physical and logical segments.

For physical segments, the SEGM statement:

v Identifies a physical segment in a DBD.

v Supplies a Java alias for the segment.

v Specifies a COBOL copybook XMI file that contains additional information about

the segment.

v Specifies whether a segment is the primary segment for an intact XML document.

v Groups the FIELD statements that follow the SEGM statement.

or logical segments, the SEGM statement:

v Identifies a logical segment in a logical DBD.

v Specifies a Java alias for the segment.

v Cannot be followed by any FIELD statements.

If the DLIModel utility cannot find the segment, it issues a warning instead of an

error and ignores any subsequent FIELD statements. Because the utility issues only

an error, you can create control statement files that provide information about many

segments and their fields, even if they are not all used by the particular PSB being

processed.

If a COBOL copybook XMI file is named for a segment, the fields that it defines are

merged by name with the fields that are defined in the DBD.

DLIModel Utility Control Statements

184 Utilities Reference: System

|
|
|

||

|
|
|
|
|

|

|

|
|

|

|
|
|
|
|

|
|
|
|
|
|

|

The following diagram shows the syntax of the SEGM statement.

�� SEGM DBDName=name SegmentName=name JavaName=name

CobolXMI=name
 ��

DBDName=name

Required parameter specifies the 8-character DBD name where the segment is

defined.

SegmentName=name

Required parameter specifies the segment name in the DBD.

JavaName=name

Required parameter specifies the alias for the segment, which will be used in

the Java application and XML schema. Must be unique for each DBD.

Overrides any value that might have been set from a COBOL XMI file.

CobolXMI=name

Optional parameter specifies name of a COBOL copybook XMI file that may

provide additional information about the segment and its existing fields, and

definitions of new fields. XMI input is only allowed for physical segments.

FIELD Statement

The FIELD statement is optional unless the field name is an SQL keyword. It

specifies information about a field or defines a new field for a segment in a physical

DBD. All FIELD statements for a segment must immediately follow the SEGM

statement. However, FIELD statements can be in any order and mixed with XDFLD

statements.

When adding information for an existing DBD field, you must specify the 8-character

DBD name of the field using the Name parameter. You can optionally specify the

starting position (Start parameter) and length (Bytes parameter) of the field. If you

do, DLIModel utility checks these values against the DBD and produces an error

message if they do not match.

To add information to a non-DBD field that has been added by a COBOL copybook

XMI file, specify a Java name that matches the name of the copybook field using

the JavaName parameter. Do not specify a DBD 8-character field name using the

Name parameter.

To define a new field in the segment, do not specify a DBD 8-character field name.

Instead, specify a unique Java name that does not match any Java field name in

the segment using the JavaName parameter. For the new field, you must also

specify a starting position, using the Start parameter), and a length, using the Bytes

parameter. You can include other attributes, such as data type or default value, for

the new field.

The following diagram shows the syntax of the FIELD statement.

�� FIELD

Name=name

Start=int

Bytes=int

JavaName=name
 �

DLIModel Utility Control Statements

Chapter 4. DLIModel Utility 185

|
|
|

|
|
|
|

�
 JavaType=CHAR

JavaType=string

TypeQualifier=string

ELEMENT

XMLType=

ATTRIBUTE

NONE

�

�
DECOMPOSED

XMLStorageType=

INTACT

 Overflow=segment

Default=string
 ��

Name=name

Specifies the 8-character field name as defined in the DBD. This name must be

unique within the segment. This parameter identifies this control statement as

applying to an existing field within the DBD. Do not use this parameter to define

a new field.

Start=int

Specifies the starting position of the field in the segment. The first byte in the

segment is 1. The Start parameter is required for new fields and optional for

existing fields.

Bytes=int

Specifies the length of the field in the segment. The Bytes parameter is required

for new fields and optional for existing fields.

JavaName=name

Specifies the alias for the field. This name cannot be an SQL keyword. Aliases

of Field statements and XDFLD statements must be unique within a segment.

The JavaName parameter is required to define a new field and is optional for

existing fields. If this name matches the name of a field in a COBOL copybook

XMI file, this FIELD statement applies to that COBOL copybook field.

JavaType=string

Optional parameter specifies the JDBC type of the field. The default JDBC type

is CHAR, even if a different type is specified in the DBD. If you specify

XMLStorageType=INTACT, you must specify JavaType=CLOB. If you specify

JavaType=CLOB, you must also specify an overflow segment with the

Overflow= parameter. The JDBC type can be any of the following:

 CHAR

 CLOB

 FLOAT

 DOUBLE

 SMALLINT

 INTEGER

 BIGINT

 ZONEDDECIMAL

 TIME

 VARCHAR

 TINYINT

 BIT

 TYPELIST

 BINARY

 PACKEDDECIMAL

 DATE

 TIMESTAMP

DLIModel Utility Control Statements

186 Utilities Reference: System

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The value that you specify overrides any value set by the COBOL copybook

XMI file.

TypeQualifier=string

Required parameter specifies the type qualifier for the following JDBC types:

 PACKEDDECIMAL

 ZONEDDECIMAL

 DATE

 TIME

 TIMESTAMP

The value that you specify is ignored if you specify any other JDBC type for the

JavaType parameter.

 Related Reading: For more information about determining the syntax of type

qualifiers, see IMS Version 9: IMS Java Guide and Reference.

XMLType= ELEMENT | ATTRIBUTE | NONE

If the DLIModel utility is generating an XML schema, XMLTYPE= specifies

whether the field is represented as a simple element or as an attribute in the

resulting XML documents, or whether the field is excluded completely from the

XML documents.

ELEMENT Field is an element that is contained within the segment

element. XMLType=ELEMENT is the default.

ATTRIBUTE Field is an attribute of the segment element.

NONE Field is excluded from the generated XML schema. You cannot

specify NONE for primary key fields when you specify

GenXMLSchema=STORE. If the XML schema type is store, the

IMS Java default value is used during a storeXML operation for

the field labeled XMLType=NONE.

XMLStorageType= DECOMPOSED | INTACT

Optional parameters specifies whether the field represents the primary field of

an intact XML structure in the database.

DECOMPOSED

When you specify DECOMPOSED, XML tags are added to the

information when you compose XML from the field data, and XML tags

are removed from an XML element or attribute before the data is stored

into the field. DECOMPOSED is the default.

INTACT

When you specify INTACT for this parameter, the field represents the

primary field of an intact XML document in the database. The XML

element or attribute that corresponds to this field has an intact

annotation in the generated XML schema. If you specify INTACT for this

parameter, you must also specify an overflow segment with the

Overflow= parameter.

Overflow=segment

Optional parameter specifies the name of the overflow segment for intact XML

storage. You must specify an overflow segment with this parameter if you

specify JavaType=CLOB.

Default=string

Optional parameter specifies the default value for the field. The default value is

used for new instances of the segment when an application does not define a

value for the field. The string must be formatted to match the data type qualifier

properties of the field.

DLIModel Utility Control Statements

Chapter 4. DLIModel Utility 187

|
|

|
|

|
|
|
|
|

||
|

||

||
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

SIDESEG Statement

The SIDESEG statement is optional. It specifies a child segment that contains the

secondary index of intact XML documents. If you specify a SIDESEG statement, it

must follow a FIELD statement that has the XMLStorageType=INTACT parameter.

The following diagram shows the syntax of the SIDESEG statement.

�� SIDESEG XPath=expression Source=segment Field=field ��

XPath=expression

Specifies the XPath expression for the secondary index segment.

Source=segment

Specifies the name (Java name or 8–character IMS name) of the secondary

index segment, which must be an immediate child of the segment that contains

the primary field of an intact XML document.

KeyField=field

Specifies the name (Java name or 8–character IMS name) of the key field in

the secondary index segment.

XDFLD Statement

The XDFLD statement is optional. It specifies a Java alias for an existing secondary

index field in a segment. The XDFLD statements must follow the SEGM statement

that corresponds to the segment with the secondary indexes in the DBD.

You must identify a secondary index field, which must be an existing field that was

defined in the DBD, by the 8-character name because secondary index fields do not

have a starting position in the segment. Secondary index fields do not have a data

type. Therefore, you must create a single string that contains the concatenated

search fields, each correctly encoded for its data type, when using the index field in

a SELECT statement. An index field cannot be fetched from the JDBC result set.

The following diagram shows the syntax of the XDFLD statement.

�� XDFLD Name=name JavaName=name ��

Name=name

Required parameter specifies the 8-character name of the secondary index

field, as defined in the DBD.

JavaName=name

Required parameter specifies the Java alias for the secondary index field.

INCLUDE Statement

The INCLUDE statement is optional and is allowed only in the top-level control

statement data set. The INCLUDE statement specifies a PDS member or HFS file

of additional control statements to be included in the top-level data set. The

included data set must be the same type (PDS or HFS) as the top-level data set.

You are allowed any number of INCLUDE statements in the top-level data set.

Important: Do not put an INCLUDE statement between PSB statements and PCB

statements or between SEGM statements and FIELD statements. INCLUDE

statements between these statements break the required relationship between

them.

DLIModel Utility Control Statements

188 Utilities Reference: System

|
|
|
|

|

|||||||||||||
|

|
|

|
|
|
|

|
|
|

The following diagram shows the syntax for the INCLUDE statement.

�� INCLUDE Dataset= IMS.qual.dsname(member)

path/filename
 ��

Dataset=IMS.qual.dsname(member) | path/filename

Required parameter specifies the PDS member or HFS file that has the control

statements that are to be included in the top-level data set.

Comment Statement

The Comment Statement is optional. Just as in Java code, it indicates that a line in

the PDS member is a comment. For example:

// The two slashes indicate that this line is a comment.

Examples of Using the DLIModel Utility

This section shows examples of how the DLIModel utility uses DBDs, PSBs, and

control statements to create IMS Java classes and DLIModel IMS Java Reports.

The examples in this section are in the following default directories:

pathprefix/usr/lpp/ims/imsjava91/dlimodel/samples/ivpJMP/

pathprefix/usr/lpp/ims/imsjava91/dlimodel/samples/ivpJBP/

pathprefix/usr/lpp/ims/imsjava91/dlimodel/samples/dealership/

pathprefix/usr/lpp/ims/imsjava91/dlimodel/samples/cobolXMI/

The samples are in the compressed

pathprefix/usr/lpp/ims/imsjava91/dlimodel/samples.tar file. To uncompress the

samples.tar file, issue the following command from the UNIX Systems Services

prompt while in the /dlimodel directory:

tar -xvf samples.tar

You can also use the BPXBATCH utility to uncompress the samples.tar file:

//JOB parameters

//UNTAR EXEC PGM=BPXBATCH,

// PARM=’sh cd pathPrefix/usr/lpp/ims/imsjava91/dlimodel/tar -xvf samples.tar’

//SYSPRINT DD SYSOUT=*

//STDOUT DD PATH=’path/untar.out’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//STDERR DD PATH=’path/untar.err’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//*

JMP IVP Metadata Sample

You can generate the IMS Java metadata class that is needed to run the JMP IVP

by using the input files in pathprefix/usr/lpp/ims/imsjava91/dlimodel/samples/ivpJMP.

After you run the utility, you can compare the generated file with the IMS

Java-provided file in pathprefix/usr/lpp/ims/imsjava91/samples/ivp.

After you compile it, you can use the IMS Java metadata source file

DFSIVP37DatabaseView.java for the IMS Java IVP on WebSphere Application

Server, DB2 UDB for z/OS, and CICS.

Figure 56 on page 190 shows the DBD for the IVP database. The DBD is

referenced by the PSB that is shown in Figure 57 on page 190, which has a single

PCB and one sensitive segment.

DLIModel Utility Control Statements

Chapter 4. DLIModel Utility 189

|

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

Note that the PCB is given a name, as required by IMS Java. In this case, a label is

used, but a PCBNAME= parameter is also acceptable.

The JMP IVP control data set named contrstmt is shown in Figure 58.

The DLIModel utility processes a single PSB named DFSIVP37 and its DBD,

IVPDB2. The utility reads the PSB and DBD from data sets IMS.TEST1.PSBSRC

and IMS.TEST1.DBDSRC. The name of the generated class is

DFSIVP37DatabaseView and the class is written to the HFS file,

DFSIVP37DatabaseView.java, under the current directory. STDOUT is redirected to

SYSOUT, but in the absence of errors consists of only startup and normal

completion messages. The DLIModel IMS Java Report, which is produced

whenever IMS Java classes are generated, is written to the HFS file

DFSIVP37JavaReport.txt.

The DLIModel IMS Java Report that is shown in Figure 59 on page 191 describes

the generated IMS Java metadata class DFSIVP37DatabaseView.

DBD NAME=IVPDB2,ACCESS=HDAM,RMNAME=(DFSHDC40,40,100)

DATASET DD1=DFSIVD2,DEVICE=3380,SIZE=2048

SEGM NAME=A1111111,PARENT=0,BYTES=40,RULES=(LLL,LAST)

FIELD NAME=(A1111111,SEQ,U),BYTES=010,START=00001,TYPE=C

DBDGEN

END

Figure 56. DBD for the IVP Database

PHONEAP PCB TYPE=DB,DBDNAME=IVPDB2,PROCOPT=A,KEYLEN=10

 SENSEG NAME=A1111111,PARENT=0,PROCOPT=AP

 PSBGEN LANG=JAVA,PSBNAME=DFSIVP37

 END

Figure 57. PSB for the JMP IVP

OPTIONS PSBds=IMS.TEST1.PSBSRC

 DBDds=IMS.TEST1.DBDSRC

 GenJavaSource

 OutPath=samples/ivpJMP

 Package=samples.ivp

 GenTrace

PSB PSBName=DFSIVP37 JavaName=DFSIVP37DatabaseView

PCB PCBName=PHONEAP JavaName=PhoneBook

SEGM DBDName=IVPDB2 SegmentName=A1111111 JavaName=Person

FIELD Name=A1111111 Start=1 Bytes=10 JavaName=LastName JavaType=CHAR

FIELD Start=11 Bytes=10 JavaName=FirstName JavaType=CHAR

FIELD Start=21 Bytes=10 JavaName=Extension JavaType=CHAR

FIELD Start=31 Bytes=7 JavaName=ZipCode JavaType=CHAR

Figure 58. Control Data Set for JMP IVP

DLIModel Utility Examples

190 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

In this DLIModel IMS Java Report, the class name, DFSIVP37DatabaseView, is

based on the IMS PSB name. Also, the PCB name, DFSIVP37, is the same as the

label in the PSB PCB statement.

Each field line displays the length and type of the field. Because there are no

control statements or COBOL copybook XMI files that specify otherwise, the type of

all fields defaults to CHAR.

JBP IVP Metadata Sample

You can generate the IMS Java metadata class that is needed to run the JBP IVP

by using the input files in pathprefix/usr/lpp/ims/imsjava91/dlimodel/samples/ivpJBP.

After you run the utility, you can compare the generated file with the IMS

Java-provided file in pathprefix/usr/lpp/ims/imsjava91/samples/ivp.

After you compile the IMS Java metadata source file DFSIVP67DatabaseView.java,

you can use it for the IMS Java IVP in only a JBP region.

Figure 60 shows the DBD for the IVP database.

 The DFSIVP67 PSB references the IVP DBD. The PSB has a single PCB and one

sensitive segment, shown in Figure 61.

 The PCB in the PSB has a name, which is required by IMS Java. You can use a

label, as is shown in Figure 61, or the PCBNAME= parameter to name the PCB.

DLIModel IMS Java Report

========================

Class: DFSIVP37DatabaseView in package: samples.ivp generated for PSB: DFSIVP37

==

PCB: PhoneBook

==

Segment: Person

Field: LastName Type=CHAR Length=10 ++ Primary Key Field ++

Field: FirstName Type=CHAR Length=10

Field: Extension Type=CHAR Length=10

Field: ZipCode Type=CHAR Length=7

Figure 59. DLIModel IMS Java Report for JMP IVP

 DBD NAME=IVPDB2,ACCESS=HDAM,RMNAME=(DFSHDC40,40,100)

 DATASET DD1=DFSIVD2,DEVICE=3380,SIZE=2048

 SEGM NAME=A1111111,PARENT=0,BYTES=40,RULES=(LLL,LAST)

 FIELD NAME=(A1111111,SEQ,U),BYTES=010,START=00001,TYPE=C

 DBDGEN

 END

Figure 60. DBD for the IVP Database

PHONEAP PCB TYPE=DB,DBDNAME=IVPDB2,PROCOPT=A,KEYLEN=10

 SENSEG NAME=A1111111,PARENT=0,PROCOPT=AP

 PSBGEN LANG=JAVA,PSBNAME=DFSIVP67

 END

Figure 61. PSB for the JBP IVP

DLIModel Utility Examples

Chapter 4. DLIModel Utility 191

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|

|
|
|

|
|

The DLIModel utility control data set, named contrstmt, is shown in Figure 62.

The DLIModel utility processes the PSB named DFSIVP67 and its DBD named

IVPDB2. The utility reads the PSB and DBD from data sets IMS.TEST1.PSBSRC

and IMS.TEST1.DBDSRC. The name of the generated class is

DFSIVP67DatabaseView and the class is written to the HFS file,

DFSIVP37DatabaseView.java, in the current directory. STDOUT is redirected to

SYSOUT, but in the absence of errors, consists of only startup and normal

completion messages. The DLIModel IMS Java Report, which is produced

whenever IMS Java classes are generated, is written to the HFS file

DFSIVP67JavaReport.txt.

The DLIModel IMS Java Report, shown in Figure 63, describes the generated IMS

Java metadata class DFSIVP67DatabaseView.

Sample Metadata with COBOL Copybook XMI

This example uses the physical database DBD in Figure 64 on page 193 and PSB

in Figure 65 on page 193 to show control statements and a COBOL XMI file that

adds additional fields and additional name and data type information to the

metadata. This example also shows how control statements can be split across

more than one file.

OPTIONS PSBds=IMS.TEST1.PSBSRC

 DBDds=IMS.TEST1.DBDSRC

 GenJavaSource

 Outpath=samples/ivpJBP

 Package=samples.ivp

 GenTrace

PSB PSBName=DFSIVP67 JavaName=DFSIVP67DatabaseView

PCB PCBName=PHONEAP JavaName=PhoneBook

SEGM DBDName=IVPDB2 SegmentName=A1111111 JavaName=Person

FIELD Name=A1111111 Start=1 Bytes=10 JavaName=LastName JavaType=CHAR

FIELD Start=11 Bytes=10 JavaName=FirstName JavaType=CHAR

FIELD Start=21 Bytes=10 JavaName=Extension JavaType=CHAR

FIELD Start=31 Bytes=7 JavaName=ZipCode JavaType=CHAR

Figure 62. Control Data Set for JBP IVP

DLIModel IMS Java Report

========================

Class: DFSIVP67DatabaseView in package: samples.ivp generated for PSB: DFSIVP67

==

PCB: PhoneBook

==

Segment: Person

Field: LastName Type=CHAR Length=10 ++ Primary Key Field ++

Field: FirstName Type=CHAR Length=10

Field: Extension Type=CHAR Length=10

Field: ZipCode Type=CHAR Length=7

Figure 63. DLIModel IMS Java Report for JBP IVP

DLIModel Utility Examples

192 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

The example is run from the UNIX System Services command prompt, as shown in

Figure 66. This example assumes that you are running it from the directory

pathprefix/usr/lpp/ims/imsjava91/dlimodel.

 The top-level control statement file, cntrstmt, is shown in Figure 67 on page 194.

 DBD NAME=DEALERDB,ACCESS=(HDAM,OSAM),RMNAME=(DFSHDC40.1.10)

 SEGM NAME=DEALER,PARENT=0,BYTES=94

 FIELD NAME=(DLRNO,SEQ,U),BYTES=4,START=1,TYPE=C

 FIELD NAME=DLRNAME,BYTES=30,START=5,TYPE=C

 SEGM NAME=MODEL,PARENT=DEALER,BYTES=43

 FIELD NAME=(MODTYPE,SEQ,U),BYTES=2,START=1,TYPE=C

 FIELD NAME=MAKE,BYTES=10,START=3,TYPE=C

 FIELD NAME=MODEL,BYTES=10,START=13,TYPE=C

 FIELD NAME=YEAR,BYTES=4,START=23,TYPE=C

 FIELD NAME=MSRP,BYTES=5,START=27,TYPE=P

 SEGM NAME=ORDER,PARENT=MODEL,BYTES=127

 FIELD NAME=(ORDNBR,SEQ,U),BYTES=6,START=1,TYPE=C

 FIELD NAME=LASTNME,BYTES=25,START=50,TYPE=C

 FIELD NAME=FIRSTNME,BYTES=25,START=75,TYPE=C

 SEGM NAME=SALES,PARENT=MODEL,BYTES=113

 FIELD NAME=(SALDATE,SEQ,U),BYTES=8,START=1,TYPE=C

 FIELD NAME=LASTNME,BYTES=25,START=9,TYPE=C

 FIELD NAME=FIRSTNME,BYTES=25,START=34,TYPE=C

 FIELD NAME=STKVIN,BYTES=20,START=94,TYPE=C

 SEGM NAME=STOCK,PARENT=MODEL,BYTES=62

 FIELD NAME=(STKVIN,SEQ,U),BYTES=20,START=1,TYPE=C

 FIELD NAME=COLOR,BYTES=10,START=37,TYPE=C

 FIELD NAME=PRICE,BYTES=5,START=47,TYPE=C

 FIELD NAME=LOT,BYTES=10,START=53,TYPE=C

 DBDGEN

 FINISH

 END

Figure 64. Physical DBD for COBOL Copybook XMI Example

DLRPCB1 PCB TYPE=DB,DBDNAME=DEALERDB,PROCOPT=GO,KEYLEN=42

 SENSEG NAME=DEALER,PARENT=0

 SENSEG NAME=MODEL,PARENT=DEALER

 SENSEG NAME=ORDER,PARENT=MODEL

 SENSEG NAME=SALES,PARENT=MODEL

 SENSEG NAME=STOCK,PARENT=MODEL

 PSBGEN PSBNAME=AUTPSB4,MAXQ=200

 END

Figure 65. PSB for COBOL Copybook XMI Example

> java com.ibm.ims.metagen.DLIModel samples/cobolXMI/cntrstmt

Figure 66. UNIX System Services Command for COBOL Copybook XMI Example

DLIModel Utility Examples

Chapter 4. DLIModel Utility 193

|
|
|
|
|
|
|
|

|

|
|
|

This control statement file establishes the options for the execution. It names the

PSB that is to be processed, assigns a Java name for the generated class for this

PSB, and provides a Java name for a PCB in that PSB.

This example includes a second-level control statement file called cntrstm2, which

is shown in Figure 68 on page 195, and a COBOL copybook XMI file. This control

statement file and the COBOL copybook XMI file provide details about additional

fields in the segments of the database that is referenced from DLRPCB1 and

additional information about existing fields in that database. Note these facts about

this second-level control statement file:

v The information it contains is necessary only because there are additional facts

about the segments in this database that are needed by this hypothetical Java

application. If your DBD names all the fields that are used by your application,

and if all of the fields can be treated as CHAR data type, and if your application

can use the standard 8-character names, you do not need to supply SEGM or

FIELD control statements.

v The SEGM and FIELD control statements need to be split off into a second file

only if it is convenient to do so, perhaps because this additional segment

information needs to be shared by other applications. In such cases, you might

group all field information for a whole database (as is shown in Figure 68 on

page 195) or for each segment into its own file. If a second-level control

statement file is not advantageous for your data, it is equally acceptable to place

all control statements in a single, top-level file.

OPTIONS

 PSBds=IMS.TEST1.PSBSRC

 DBDds=IMS.TEST1.DBDSRC

 GenJavaSource

 GenTrace

 Package=com.ibm.ims.tooling

PSB PSBName=autpsb4 JavaName=DealerDatabaseView

PCB PCBName=DLRPCB1 JavaName=DealershipDB

INCLUDE Dataset=samples/example4/cntrstm2

Figure 67. Top-Level Control Data Set for COBOL Copybook XMI Example

DLIModel Utility Examples

194 Utilities Reference: System

In Figure 68, under the SEGM statement for DEALER, the first FIELD statement

identifies an existing field, DLRNO, by both its DBD name and its start position and

length. These facts are checked for consistency against the DBD. If the field is

identified correctly, then it is assigned the Java name DealerNumber, and a data

type of CHAR, which is the default.

The second FIELD statement under the DEALER SEGM statement identifies an

existing field by only its start position and length. If this field exists, it is assigned

the Java name DealerName. This abbreviated method identifies the field, but is not

quite as safe because the DLIModel utility does not check the 8-character name of

the field. The default data type for DealerName is CHAR.

The third FIELD statement under the DEALER SEGM statement defines a new

field—a field that is physically present in the segment, but is not described by a

FIELD macro in the DBD. The FIELD statement specifies the start position and

length of this field, assigns it a Java name of DealerAddress, and a data type of

CHAR.

The fourth Field statement defines another new field, YTDSales, of type

PACKEDDECIMAL. This data type requires a type qualifier that defines the field

format. In this example, a type qualifier of S9(18) is supplied.

SEGM DBDName=DEALERDB SegmentName=DEALER JavaName=DEALERXX

 FIELD Name=DLRNO Start=1 Bytes=4 JavaType=CHAR JavaName=DealerNumber

 FIELD Start=5 Bytes=30 JavaType=CHAR JavaName=DealerName

 FIELD Start=35 Bytes=50 JavaType=CHAR JavaName=DealerAddress

 FIELD Start=85 Bytes=10 JavaType=PACKEDDECIMAL TypeQualifier=S9(18) JavaName=YTDSales

SEGM DBDName=DEALERDB SegmentName=MODEL JavaName=MODELXX

 FIELD Name=MODTYPE Start=1 Bytes=2 JavaType=CHAR JavaName=ModelTypeCode

 FIELD Name=MAKE Start=3 Bytes=10 JavaType=CHAR JavaName=CarMake

 FIELD Name=MODEL Start=13 Bytes=10 JavaType=CHAR JavaName=CarModel

 FIELD Name=YEAR Start=23 Bytes=4 JavaType=CHAR JavaName=CarYear

 FIELD Name=MSRP Start=27 Bytes=5 JavaType=CHAR JavaName=Price

 FIELD Start=32 Bytes=4 JavaType=CHAR JavaName=EPACityMilage

 FIELD Start=36 Bytes=4 JavaType=CHAR JavaName=EPAHighwayMilage

 FIELD Start=40 Bytes=4 JavaType=CHAR JavaName=Horsepower

SEGM DBDName=DEALERDB SegmentName=ORDER JavaName=ORDERXX

 FIELD Name=ORDNBR Start=1 Bytes=6 JavaType=CHAR JavaName=OrderNumber

 FIELD Start=7 Bytes=30 JavaType=CHAR JavaName=Options

 FIELD Start=37 Bytes=5 JavaType=ZONEDDECIMAL TypeQualifier=99999 JavaName=Price

 FIELD Start=42 Bytes=8 JavaType=CHAR JavaName=OrderDate

 FIELD Name=LASTNME Start=50 Bytes=25 JavaType=CHAR JavaName=PurchaserLastName

 FIELD Name=FIRSTNME Start=75 Bytes=25 JavaType=CHAR JavaName=PurchaserFirstNme

 FIELD Start=100 Bytes=8 JavaType=CHAR JavaName=SerialNo

 FIELD Start=120 Bytes=8 JavaType=CHAR JavaName=DeliverDate

SEGM DBDName=DEALERDB SegmentName=SALES JavaName=SALESXX

 FIELD Name=SALDATE Start=1 Bytes=8 JavaType=CHAR JavaName=DateSold

 FIELD Name=LASTNME Start=9 Bytes=25 JavaType=CHAR JavaName=PurchaserLastName

 FIELD Name=FIRSTNME Start=34 Bytes=25 JavaType=CHAR JavaName=PurchasetFirstName

 FIELD Start=59 Bytes=25 JavaType=CHAR JavaName=PurchaserAddress

 FIELD Start=84 Bytes=10 JavaType=CHAR JavaName=SoldBy

 FIELD Name=STKVIN Start=94 Bytes=20 JavaType=CHAR JavaName=StockVINumber

SEGM DBDName=DEALERDB SegmentName=STOCK JavaName=STOCKXX

 CobolXMI=imsjava/mdlex4/AutoStock.xmi

Figure 68. Second-Level Control Data Set for COBOL Copybook XMI Example

DLIModel Utility Examples

Chapter 4. DLIModel Utility 195

|
|
|
|
|

The remainder of the control statements describe information for the other

segments and fields in the DBD in a similar manner, except for the STOCK

segment.

The fields in the STOCK segment are described in the COBOL copybook XMI file,

which is generated from a COBOL copybook file. Figure 69 shows the COBOL

copybook that describes the STOCK segment fields. Before this copybook can be

used as input into the DLIModel utility, it must be converted into XMI.

 When the DLIModel utility executes, it generates the DLIModel IMS Java Report

that is shown in Figure 71 on page 197, together with a matching metadata class

(not shown).

When its XMI is used as input to the utility, the copybook shown in Figure 69 is

equivalent to the control statements that are shown in Figure 70.

01 AutoStock.

 05 StockVINumber pic x(20).

 05 DateInfo.

 10 DateIn pic x(8).

 10 DateOut pic x(8).

 05 Color pic x(10).

 05 Price pic 9(6).

 05 Lot pic x(10).

Figure 69. Copybook for COBOL Copybook XMI Example

SEGM DBDName=DEALERDB SegmentName=STOCK JavaName=STOCKXX

FIELD Start=1 Bytes=20 JavaType=CHAR JavaName=StockVINumber

FIELD Start=21 Bytes=8 JavaType=CHAR JavaName=DateIn

FIELD Start=29 Bytes=8 JavaType=CHAR JavaName=DateOut

FIELD Start=37 Bytes=10 JavaType=CHAR JavaName=Color

FIELD Start=47 Bytes=6 JavaType=ZONEDDECIMAL TypeQualifier=9(6) JavaName=Price

FIELD Start=53 Bytes=10 JavaType=CHAR JavaName=Lot

Figure 70. Equivalent Control Statements for COBOL Copybook XMI Example

DLIModel Utility Examples

196 Utilities Reference: System

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

In the DLIModel IMS Java Report that is shown in Figure 71, the names of

segments and fields are the Java names that are supplied in the control statements

and in the COBOL copybook XMI. The 8-character IMS names do not appear

because the Java developer does not need to know these names.

DLIModel IMS Java Report

========================

Class: DealerDatabaseView in package com.ibm.ims.tooling generated for PSB: autpsb4

==

PCB: DealershipDB

==

Segment: DEALERxx

Field: DealerNumber Type=CHAR Length=4 ++ Primary Key Field ++

Field: DealerName Type=CHAR Length=30 (Search Field)

Field: DealerAddress Type=CHAR Length=50

Field: YTDSales Type=PACKEDDECIMAL Type Qualifier=S9(18) Length=10

==

 Segment: MODELXX

 Field: ModelTypeCode Type=CHAR Length=2 ++ Primary Key Field ++

 Field: CarMake Type=CHAR Length=10 (Search Field)

 Field: CarModel Type=CHAR Length=10 (Search Field)

 Field: CarYear Type=CHAR Length=4 (Search Field)

 Field: Price Type=CHAR Length=5 (Search Field)

 Field: EPACityMilage Type=CHAR Length=4

 Field: EPAHighwayMilage Type=CHAR Length=4

 Field: Horsepower Type=CHAR Length=4

 ==

 Segment: ORDERXX

 Field: OrderNumber Type=CHAR Length=6 ++ Primary Key Field ++

 Field: PurchaserLastName Type=CHAR Length=25 (Search Field)

 Field: PurchaserFirstName Type=CHAR Length=25 (Search Field)

 Field: Options Type=CHAR Length=30

 Field: Price Type=ZONEDDECIMAL Type Qualifier=99999

 Field: OrderDate Type=CHAR Length=8

 Field: SerialNo Type=CHAR Length=8

 Field: DeliverDate Type=CHAR Length=8

 ==

 Segment: SALESXX

 Field: DateSold Type=CHAR Length=8 ++ Primary Key Field ++

 Field: PurchaserLastName Type=CHAR Length=25 (Search Field)

 Field: PurchasetFirstName Type=CHAR Length=25 (Search Field)

 Field: StockVINumber Type=CHAR Length=20 (Search Field)

 Field: PurchaserAddress Type=CHAR Length=25

 Field: SoldBy Type=CHAR Length=10

 ==

 Segment: STOCKXX

 Field: StockVINumber Type=CHAR Length=20 ++ Primary Key Field ++

 Field: Color Type=CHAR Length=10 (Search Field)

 Field: Price Type=ZONEDDECIMAL Type Qualifier=999999 Length=5 (Search Field)

 Field: Lot Type=CHAR Length=10 (Search Field)

 Field: DateIn Type=CHAR Length=8

 Field: DateOut Type=CHAR Length=8

Figure 71. DLIModel IMS Java Report for COBOL Copybook XMI Example

DLIModel Utility Examples

Chapter 4. DLIModel Utility 197

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DLIModel Utility Examples

198 Utilities Reference: System

Part 2. Service Utilities

Chapter 5. Dynamic Allocation Macro (DFSMDA) 201

Restrictions for DFSMDA . 203

Input and Output for DFSMDA 203

IMSDALOC Procedure . 204

Procedure Statement . 204

JCL Parameter Description 205

Step ASSEM . 205

Step BLDMBR . 205

Step LNKEDT . 205

Invoking the Procedure . 205

Macro Statements for DFSMDA 206

Examples of DFSMDA . 211

Example 1 . 211

Example 2 . 212

Example 3 . 212

Example 4 . 212

Example 5 . 212

Chapter 6. Security Maintenance Utility (DFSISMP0) 215

Input and Output Flow for DFSISMP0 216

Restrictions for DFSISMP0 . 217

Security Options for DFSISMP0 217

LTERM Security . 218

Password Security . 218

Transaction Command Security 218

IMS Application Group Name Security 218

Sign-on Verification Security 219

IMS Application Resource Access Security 219

SECURITY Procedure . 219

Procedure Statement . 221

JCL Parameter Description 221

Step S EXEC Statement . 222

DD Statements . 222

Step C . 223

Step L . 223

Invoking the Procedure . 223

Utility Control Statements for DFSISMP0 224

Output for DFSISMP0 . 226

Security-Status Reports . 226

Examples of DFSISMP0 . 226

Example 1 . 226

Example 2 . 227

Example 3 . 227

Example 4 . 227

Example 5 . 229

Example 6 . 229

Example 7 . 229

Example 8 . 230

Chapter 7. Online Change Utilities and Procedures 231

Online Change Copy Utility (DFSUOCU0) 231

Requirements for Online Change Copy 231

Restrictions for Online Change Copy 232

© Copyright IBM Corp. 1974, 2004 199

||

||

Procedure for Online Change Copy 232

INITMOD Procedure . 236

Global Online Change Utility (DFSUOLC0) 238

JCL Requirements for DFSUOLC0 239

Examples of Global Online Change 242

200 Utilities Reference: System

Chapter 5. Dynamic Allocation Macro (DFSMDA)

Use the Dynamic Allocation macro (DFSMDA) to build a member (that is, one or

more parameter lists) for naming data sets that can participate in dynamic allocation

and deallocation.

Related Reading: Refer to IMS Version 9: Installation Volume 1: Installation

Verification for more information about IMS.SDFSRESL.

IMS users and CICS users can dynamically allocate IMS databases. To use

DFSMDA you must catalog all specified database data sets. However, you do not

need to initially allocate them through control region JCL.

For Fast Path databases, if the database data sets to be allocated are registered in

DBRC, the information required to dynamically allocate the data sets is obtained

from DBRC. You do not need to supply DFSMDA members for them. When the

dynamic allocation information is obtained from DBRC, the DISP= used to allocate

the data sets is either DISP=OLD or DISP=SHARE depending on the following:

v If SHARELVL=0 or RECONS, use DISP=OLD.

v If SHARELVL=1, 2, or 3 or RECONS, use DISP=SHARE.

Related Reading: For more information about data sharing levels, see the

CHANGE.DB command in IMS Version 9: Database Recovery Control (DBRC) Guide

and Reference.

The priority of allocation information is shown in Table 18.

 Table 18. Allocation Information Priorities

DBRC DD Statement DFSMDA Member

DEDBs and MSDBs 1 2 3

All others N/A 1 2

Database data sets specified in DFSMDA are allocated at different times depending

on whether you are running in an IMS DB/DC, IMS Batch, CICS 2.1, or CICS 3.1

environment. The environment requirements are:

v IMS DB/DC database data sets are allocated either when a /START command is

issued for the database or when an IMS application program is scheduled. You

deallocate the data set by the /DBR command. If a database data set is specified

in the JCL, it is allocated by z/OS during control region startup. You can

deallocate it with the /DBR command and reallocate it with the /START command.

v IMS Batch database data sets are allocated near the beginning of the job step,

before the batch application starts execution.

Dynamic allocation is always attempted for all non-JCL allocated databases

defined in the PSB being executed. This is performed by searching the

JOBLIB/STEPLIB concatenation for DFSMDA members, unless dynamic

allocation is disabled (for batch only) by the presence of the NODYNALLOC

statement in your DFSVSMxx member.

If a batch job uses a PSB with more database PCBs than are necessary for a

particular job, you can avoid dynamic allocation of the unnecessary databases

while still maintaining a library of DFSMDA members for all databases belonging

to the PSB. You have two methods of doing this:

© Copyright IBM Corp. 1974, 2004 201

– You can include the NODYNALLOC statement in your DFSVSMxx member

and include DD statements for only the necessary databases in your job JCL.

The library of DFSMDA members does not need to be removed from the

JOBLIB/STEPLIB concatenation because the NODYNALLOC statement

disables batch dynamic allocation.

– You can maintain separate libraries of DFSMDA members, which can be

included or excluded from the JOBLIB/STEPLIB concatenation as needed.

DFSMDA members need not be kept in your IMSVS.SDFSRESL.

For example, you can maintain one main library of DFSMDA members for all

the databases for a PSB and maintain several subset libraries. You

concatenate only the library that is appropriate for the job being run. Dynamic

allocation searches the entire JOBLIB/STEPLIB concatenation for DFSMDA

members, so you must remove or alter all libraries that contain undesired

members.

If the databases for which your program has update intent have logical

relationships or secondary indexes, those additional databases containing the

logical relationships or secondary indexes can also be allocated, whether by JCL

or DFSMDA members. To cause dynamic allocation of a logically related

database, change the PROCOPT to indicate update intent. To dynamically

allocate a secondary index, change the PROCOPT to indicate update intent or

include a PCB with PROCSEQ= for the secondary index.

If the PCB specifies a PROCOPT that does not indicate update intent, no intent

will be propagated to a logically related database or to a secondary index, and

dynamic allocation will not be attempted for either of these related databases.

v CICS database data sets are allocated when an application program issues a

schedule call for the PSB. Deallocation occurs, for example, during the

processing of STOP and RECOVERDB commands issued against the database.

You can dynamically allocate online log data sets (OLDS), write ahead data sets

(WADS), and system log data sets (SLDS) if they are named in the DFSMDA

macro. The DFSMDA macro must be defined to permit SLDS input to IMS to restart

in z/OS.

When you start an OLDS using the /START command, the OLDS must be defined in

the DFSMDA macro, even if it is allocated in JCL.

Related Reading: Refer to IMS Version 9: Command Reference for descriptions of

how the data sets specified in the DFSMDA macro are treated by the /START, /STOP,

and /DBR commands.

The IMS Monitor data set can also participate in dynamic allocation and

deallocation. The IMS Monitor data set is allocated when it is started with the

/TRACE ON command and deallocated when it is stopped with the /TRACE OFF

command. It need not be initially allocated through JCL. It must not be cataloged if

residing on tape; it must be cataloged if on DASD.

Recommendation: If you use the multiple DEDB area data set facility, it is

recommended that you register all data sets belonging to that area in either DBRC

or DFSMDA.

The specified areas are allocated either when a /START command is issued for the

area or when an application program attempts to use the area. The area is

deallocated by /STOP AREA. Multiple areas can be deallocated by /STOP ADS.

Dynamic Allocation

202 Utilities Reference: System

In an XRF environment, all database and area data sets must be dynamically

allocated.

The following topics provide additional information:

v “Restrictions for DFSMDA”

v “Input and Output for DFSMDA”

v “IMSDALOC Procedure” on page 204

v “Macro Statements for DFSMDA” on page 206

v “Examples of DFSMDA” on page 211

Restrictions for DFSMDA

The following restrictions apply when using the Dynamic Allocation macro:

v HALDBs are dynamically allocated and do not need the Dynamic Allocation

Macro.

v If you are going to dynamically allocate a database, all DD statements referenced

in the DMB for the database must be defined in the TYPE=DATASET, DDNAME=

parameter. A database cannot be partially allocated by JCL and partially allocated

by a dynamic allocate member.

v Because dynamic allocation cannot resolve logical relationships between DBDs,

you must define a dynamic allocation member for each DBD in a logically related

database. For example, a HIDAM database is composed of two logically related

DBDs, the index DBD and the data area DBD. Each DBD in this example must

have a dynamic allocation member with the same name as the DBD.

v The Batch Backout utility (DFSBBO00) is the only IMS utility that is supported for

dynamic allocation.

v A database that is generated as a DFSMDA member cannot be given a name

that is a duplicate of any label name that is generated during the assembly step

of the DFSMDA job. IMS generates a label using the database name during this

step, and an error occurs if that label name already exists in code invoked by

DFSMDA. This restriction does not apply to data set names.

v A database that is generated as a DFSMDA member cannot be defined with a

DDNAME that is identical to the DDNAME defined for another database during

the same assembly step of the DFSMDA job. If more than one database must be

defined with the same DDNAME (as in the case of secondary indexes), the

DFSMDA job must be run separately for each required occurrence of the

DDNAME.

Input and Output for DFSMDA

The input to the DFSMDA macro consists of statements as explained in “Macro

Statements for DFSMDA” on page 206.

The output from the DFSMDA macro consists of text decks and linkage editor

statements that are used to create load modules in IMS.SDFSRESL. Batch load

modules must be created within IMS.SDFSRESL. Online load modules can be

created either in IMS.SDFSRESL or in an unauthorized library.

The members for dynamic allocation can be changed simply by regenerating

parameter lists with new input.

Dynamic Allocation

Chapter 5. Dynamic Allocation Macro (DFSMDA) 203

Unless it is a dynamic allocation member, no member that has the same name as a

database should be link-edited into IMS.SDFSRESL.

IMSDALOC Procedure

The IMSDALOC procedure is created as a part of system definition and is placed

into the IMS.PROCLIB library by stage two of IMS system definition.

This is a three step procedure for generating the list of databases and DEDB data

areas that are to be dynamically allocated.

IMSDALOC assumes:

v Input is read from SYSIN.

v Each database or DEDB data set described in the input has a corresponding

module placed in the dynamic allocation member data set.

v The name given to each module is the name of the database or DEDB data area

described in the input.

Procedure Statement

Figure 72 shows the JCL for the IMSDALOC procedure. The parameters are

described in “JCL Parameter Description” on page 205.

 Recommendation: The SPACE parameter should be increased to accommodate

large volumes of TYPE=DATABASE statements.

// PROC SOUT=A,SYS2=

//ASSEM EXEC PGM=ASMA90,

// PARM=’ALIGN,DECK,NOOBJECT,NODBCS’

//SYSLIB DD DSN=IMS.&SYS2.SDFSMAC,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,5))

//SYSPUNCH DD DSN=&OBJMOD,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),

// SPACE=(400,(100,100)),UNIT=SYSDA,

// DISP=(NEW,PASS)

//SYSPRINT DD SYSOUT=&SOUT

//BLDMBR EXEC PGM=IEBUPDTE,PARM=’NEW’,

// COND=(7,LT,ASSEM)

//SYSPRINT DD DUMMY

//SYSUT2 DD DSN=&TEMPPDS,UNIT=SYSDA,

// DISP=(NEW,PASS,DELETE),

// SPACE=(80,(1000,500,10)),

// DCB=(RECFM=F,BLKSIZE=80)

//SYSIN DD DSN=*.ASSEM.SYSPUNCH,

// DISP=(OLD,DELETE,DELETE)

//LNKEDT EXEC PGM=IEWL,PARM=’LIST,XREF,LET’,

// COND=((7,LT,ASSEM),(3,LT,BLDMBR))

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(100,50))

//SYSLIB DD DUMMY

//SYSPRINT DD SYSOUT=&SOUT

//SYSLMOD DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR

//OBJMOD DD DSN=&TEMPPDS,DISP=(OLD,DELETE,DELETE)

//SYSLIN DD DSN=&TEMPPDS(LNKCTL),

// DISP=(OLD,DELETE,DELETE),

// VOL=REF=*.OBJMOD

Figure 72. JCL for the IMSDALOC Procedure

Dynamic Allocation

204 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

JCL Parameter Description

SOUT=

Specifies the class assigned to SYSOUT DD statements.

SYS2=

Specifies an optional second level dsname qualifier for those data sets which

are designated as “Optional Replicate” in an XRF complex. When specified, the

parameter must be enclosed in quotes and must include a trailing period; for

example, SYS2='IMSA.'.

Step ASSEM

Step ASSEM is the assembly step.

Related Reading: Refer to HLASM MVS & VM Programmer’s Guide for information

on assembly steps.

DD Statements

SYSIN DD

Defines the input data sets to step C. These DD statements must be provided

when invoking the procedure.

Step BLDMBR

Related Reading: Refer to the IEBUPDTE utility in z/OS DFSMSdfp Utilities for

information on this step.

Step LNKEDT

Step LNKEDT is the link-edit step.

Related Reading: Refer to z/OS MVS Program Management: User’s Guide and

Reference for information on linkage-editors.

DD Statements

SYSLMOD DD

Defines an output partitioned data set for the linkage editor.

 For batch execution, the data set must be concatenated with IMS.SDFSRESL,

and can be either an authorized library, or an unauthorized data set. To use an

authorized library, you must include the DFSRESLB DD statement in the batch

execution procedure.

 For online execution, or in a DBCTL environment, the data set can be an

authorized data set included in the IMS.SDFSRESL concatenation, or an

unauthorized data set. To use an unauthorized data set, you must define it to

the control region by adding an IMSDALIB DD statement to the online or

DBCTL execution procedure. This unauthorized data set will then take

precedence over the IMS.SDFSRESL concatenation when seeking a dynamic

allocation parameter list or member.

Invoking the Procedure

The dynamic allocation macro statements are supplied as input to the IMSDALOC

procedure and executed as a z/OS job.

IMSDALOC Procedure

Chapter 5. Dynamic Allocation Macro (DFSMDA) 205

Requirement: A JOB statement (defined by the using installation), an EXEC

statement, and DD statements that define the input and output data sets are

required.

The following JCL statement invokes the IMSDALOC procedure.

//DALOC JOB

//*

//STEP EXEC IMSDALOC

//*

//SYSIN DD *

 DFSMDA TYPE=

 END

/*

EXEC

Should be in this form:

//STEP EXEC IMSDALOC

SYSIN DD

Defines the input data set containing the DFSMDA macro statements.

Macro Statements for DFSMDA

The DFSMDA macro is coded as a z/OS macro. The statement label is optional, the

macro “DFSMDA” is coded after one or more blanks, and additional parameters are

separated by blanks. z/OS continuation rules apply.

The DFSMDA macro has several statement types (as indicated by the TYPE=

parameter), each of which uses different additional parameters. Code the

statements types as follows:

1. One TYPE=INITIAL statement to start the parameter list build

2. As many TYPE=DATABASE, TYPE=DATASET, and TYPE=FPDEDB statements

as necessary

3. One TYPE=DFSDCMON if the IMS Monitor data set is to be included

4. One TYPE=FINAL to end the list

The maximum number of TYPE=DATABASE statements allowed is 250.

Explanations of all the DFSMDA statement types follow:

TYPE=INITIAL Statement

This statement indicates the start of a parameter list build and is required. No

other parameters are valid on a TYPE=INITIAL statement. The format of this

statement is:

�� DFSMDA TYPE=INITIAL ��

TYPE=DATABASE Statement

This statement specifies the start of the definition for a database to participate

in dynamic allocation and deallocation: one or more TYPE=DATASET

statements should follow. (Do not use this statement for a DEDB area.) The

format of the statement is:

�� DFSMDA TYPE=DATABASE,DBNAME=dbname ��

DBNAME=

Specifies the DBD name of a database whose data sets are to be

dynamically allocated. This name is used as a member name in

IMSDALOC Procedure

206 Utilities Reference: System

IMS.SDFSRESL to identify this database parameter list. Care should be

taken to ensure that this name does not conflict with already existing

members in IMS.SDFSRESL. This includes, but is not limited to, IMS

modules and user-supplied exit routines.

TYPE=FPDEDB Statement

This statement defines an area within a data entry database (DEDB). One

TYPE=FPDEDB statement is required for each area to be specified. The format

of this statement is:

�� DFSMDA TYPE=FPDEDB

,DBNAME=areaname
 ��

DBNAME=

Specifies the DBD name of the DEDB in which the specified area resides.

This parameter is optional, and is used for documentation purposes only.

For DEDB areas, the IMS.SDFSRESL parameter list is not named with the

database name, but rather with the area’s ddname.

TYPE=DATASET Statement

This statement defines either a data set within the database specified in the

previous TYPE=DATABASE statement or a DEDB area. One complete

TYPE=DATASET is used for each data set or area data set defined. Every data

set within a database to be dynamically allocated and deallocated must be

named in a TYPE=DATASET statement. When defining DEDB areas, a

TYPE=FPDEDB statement must precede each TYPE=DATASET statement.

 If the data set within a database identifies a secondary index data set shared

with another database, the DFSMDA members for the two databases must be

generated in separate assemblies.

 The format of this statement is:

��

DFSMDA

TYPE=DATASET,DSNAME=dsname,DDNAME=ddname
 OLD

,DISP=

SHR

��

DSNAME=

Specifies the name of the data set. The name can be any combination of

simple and compound names valid in JCL, except the name cannot contain

special characters.

DDNAME=

Specifies the name of the DD statement defining this data set. This name is

the same as that used in the DATASET or AREA statement of the

DBDGEN.

 For multiple ADSs, this name is the same as the ADDN name registered in

the ADS RECON data set.

DISP=

Specifies the disposition of this data set when allocated. The default is

OLD.

TYPE=DFSDCMON Statement

This statement defines the dynamic allocation parameter list for the IMS Monitor

data set. The format of this statement is:

�� DFSMDA TYPE=DFSDCMON,DSNAME=dsname,DDNAME=IMSMON �

Macro Statements

Chapter 5. Dynamic Allocation Macro (DFSMDA) 207

|||||||
|

||

�
 TAPE 5 A

,UNIT=

unit

,BUFNO=

n

,BLKSIZE=

nnnn
 OLD

,

DISP

=

SHR

��

A:

 27992

32768

DSNAME=

Specifies the name of the data set, which must not be cataloged if the unit

defines a TAPE device. However, if UNIT=DASD is specified, then the data

set must be cataloged and available. The name can be any combination of

simple and compound names valid in JCL, but must not contain special

characters.

DDNAME=IMSMON

Is the required value for DDNAME.

UNIT=

Specifies the unit for the DC Monitor data set. If the data set resides on a

direct access device, UNIT=DASD must be specified and the data set must

be cataloged. Otherwise, the value of UNIT= can be the name of any tape

device valid to the installation. The default is UNIT=TAPE.

BUFNO=

Specifies the number of buffers for the IMS Monitor data set. Valid numbers

range from 2 to a

v a maximum of 99 for DFP

v 255 for DFSMS

The default is 4.

BLKSIZE=

Specifies the block size for the IMS Monitor data set. For a tape device

(UNIT≠DASD), the default is 32K. If UNIT=DASD, the default is 28,332.

DISP=

Specifies the disposition for the IMS Monitor data set for a UNIT=DASD

data set definition. Valid values are OLD and SHR. OLD is the default if this

parameter is not supplied. A warning message is issued if any other value

is supplied, and a DISP=OLD value overrides the value specified.

TYPE=RECON Statement

This statement defines the dynamic allocation parameter list for database

recovery control (DBRC).

 The format of this statement is:

��

DFSMDA

TYPE=RECON,DSNAME=dsname,DDNAME=RECONn,WAIT=
 NO

YES

��

DSNAME=

Specifies the name of the data set. The name can be any combination of

simple and compound names valid in JCL, except that it cannot contain

special characters.

Macro Statements

208 Utilities Reference: System

|
|
|||

|

|

||||||||||||||||

|

|
|
|
|
|

DDNAME=

Specifies the name of the DD statement defining this data set. This name

must be RECON1, RECON2, or RECON3.

WAIT=

If YES is specified on any of the TYPE=RECON statements (RECON1,

RECON2, RECON3), a wait is issued for any of the RECONs found to be

offline during DBRC initialization. WAIT=NO is the default. Omitting the

WAIT= parameter or specifying WAIT=NO causes dynamic allocation to fail

in the event that a RECON data set is offline during DBRC initialization.

TYPE=OLDS Statement

This statement defines the dynamic allocation parameter list for the online log

data set (OLDS).

 There must be as many DFSMDA macros as there are OLDS.

 Requirement: If you use dual logging, DFSMDA member names are required

for both the primary and secondary OLDS.

 The format of this statement is:

�� DFSMDA TYPE=OLDS,DSNAME=dsname,DDNAME=DFSOLxnn ��

DSNAME=

Specifies the name of the data set. The name can be any combination of

simple and compound names valid in JCL, except that it cannot contain

special characters.

DDNAME=

Specifies the OLDSs to be allocated. If the OLDSs are dual, there must be

a pair of macros, one with the ddname of the primary OLDS and the other

with the ddname of the secondary OLDS (for example, DFSOLP01 and

DFSOLS01). The data set must be cataloged. Substitute P for x when

declaring a primary data set. Substitute S for x when declaring a secondary

data set. Values from 00 through 99 can be specified for nn.

TYPE=SLDS Statement

This statement defines the dynamic allocation parameter list for the SLDS.

SLDSs are dynamically allocated when required as input for restart. A single

DFSMDA member with name IMSLOGR must be created to specify the UNIT

information required for allocation. All SLDSs to be used as input to restart must

reside on the same device type.

 The format of this statement is:

�� DFSMDA TYPE=SLDS,UNIT=device type,DDNAME=IMSLOGR ��

UNIT=

Specifies the device required for allocation. All SLDSs used as input for

restart must reside on the same device type. This applies to both the

primary and secondary data sets when dual logging is used. The device

type can be tape or DASD.

DDNAME=IMSLOGR

Is the required value for DDNAME.

TYPE=TRACE Statement

This statement defines the dynamic allocation parameter for external trace data

Macro Statements

Chapter 5. Dynamic Allocation Macro (DFSMDA) 209

sets. External trace data can be written to disk storage or to a tape unit. The

statement differs with the type of storage chosen.

 The format of the statement for disk allocation is:

�� DFSMDA TYPE=TRACE,DDNAME=DFSTRA0n,DSNAME=dsname ��

DDNAME

Specifies the ddname of the data set located on the disk. n specifies the

number of the data set, and must be either 1 or 2. Each data set must be

cataloged. Use two data sets to ensure that trace data is available at EOV.

DSNAME

Specifies the data set name. The name can be any combination of

alphanumeric characters that is valid for IMS, except for special characters

such as @, $, or #. DSNAME can be up to 44 bytes long.

 The format for data set allocation to tape is:

��

DFSMDA

TYPE=TRACE

,DDNAME=DFSTRA0T

,DSNAME=dsname
 TAPE

,UNIT=

nnnn

�

�
 20024

,BLKSIZE

nnnnn

��

DDNAME

Specifies the ddname of the data set located on the tape. DFSTRA0T is the

required ddname if you allocate the external trace data set to a tape.

DSNAME

Specifies the data set name. DSNAME must not be cataloged. The name

and can be any combination of alphanumeric characters that is valid for

IMS, except for special characters such as @, $, or #. The name you

specify can be up to 44 bytes long.

UNIT

Specifies the unit for the external trace data set. The unit must be a tape

device, but can be any name valid to the installation. The default value is

TAPE.

BLKSIZE

Is the block size of the external trace data set. The minimum value is 4008.

Any other value chosen must be a multiple of 4004 (the LRECL) plus 4.

The default is 16384.

 Recommendation: IBM now recommends 20024. The recommended

BLKSIZE for current DASD is 20024 because it is 1/2 track.

 Future DASD might change the track size, and older DASD might have

different track sizes.

TYPE=WADS Statement

This statement defines the dynamic allocation parameter list for the write ahead

data set (WADS).

 There must be as many DFSMDA macros as there are WADS data sets.

 Requirement: If dual logging is used, DFSMDA member names are required

for both the primary and secondary WADS.

Macro Statements

210 Utilities Reference: System

The DFSMDA member name must be the same as the ddname of the WADS

that it defines.

 The format of this statement is:

�� DFSMDA TYPE=WADS,DSNAME=dsname,DDNAME=DFSWADSn ��

DSNAME=

Specifies the name of the data set. The name can be any combination of

simple and compound names valid in JCL, except that it cannot contain

special characters. The data set must be catalogued.

DDNAME=

Specifies the WADS to be allocated. Values 0 through 9 can be specified

for n. When dual logging for the WADS is requested using the WADS=D

execution time parameter, there must be at least two WADS provided.

TYPE=FINAL Statement

This statement indicates the end of a parameter list build and is required. No

other parameters are valid on a TYPE=FINAL statement. The format of this

statement is:

�� DFSMDA TYPE=FINAL ��

Examples of DFSMDA

The examples in this section contain the following comment line above the SYSIN

statement, for reference only, to aid in column alignment.

//* +----1----+----2----+----3----+----4----+----5----+----6----+----7---

Example 1

Example 1 shows the JCL and macro statements to specify three databases and

the IMS Monitor data set to participate in dynamic allocation and deallocation.

//DALOC JOB

//*

//STEP EXEC IMSDALOC

//* +----1----+----2----+----3----+----4----+----5----+----6----+----7---

//SYSIN DD *

 DFSMDA TYPE=INITIAL

 DFSMDA TYPE=DATABASE,DBNAME=DI41M101

 DFSMDA TYPE=DATASET,DSNAME=IMSQA.M1I3I1,DDNAME=M1I3I1

 DFSMDA TYPE=DATASET,DSNAME=IMSQA.M1I3O1,DDNAME=M1I3O1

 DFSMDA TYPE=DATABASE,DBNAME=DX41SK03

 DFSMDA TYPE=DATASET,DSNAME=IMSQA.DB5H111,DDNAME=DXSK0301, X

 DISP=SHR

 DFSMDA TYPE=DATASET,DSNAME=IMSQA.DB5H222,DDNAME=DXSK0302, X

 DISP=SHR

 DFSMDA TYPE=DATASET,DSNAME=IMSQA.DB5H333,DDNAME=DHSK0301, X

 DISP=SHR

 DFSMDA TYPE=DATABASE,DBNAME=DH41SK03

 DFSMDA TYPE=DATASET,DSNAME=IMSQA.DB4D111,DDNAME=DDSK0101, X

 DISP=SHR

 DFSMDA TYPE=DATASET,DSNAME=IMSQA.DB4D222,DDNAME=DDSK0102, X

 DISP=SHR

 DFSMDA TYPE=DFSDCMON,DDNAME=IMSMON,DSNAME=I115T237.IMSMON

 DFSMDA TYPE=FINAL

 END

/*

Macro Statements

Chapter 5. Dynamic Allocation Macro (DFSMDA) 211

Example 2

Example 2 shows the JCL and macro statements to specify three DEDB areas to

participate in dynamic allocation and deallocation.

//DALOC JOB

//*

//STEP EXEC IMSDALOC

//* +----1----+----2----+----3----+----4----+----5----+----6----+----7---

//SYSIN DD *

 DFSMDA TYPE=INITIAL

 DFSMDA TYPE=FPDEDB,DD41SK02

 DFSMDA TYPE=DATASET,DSNAME=DB9AREA0,DDNAME=DB9AREA0

 DFSMDA TYPE=FPDEDB

 DFSMDA TYPE=DATASET,DSNAME=DB22AR0,DDNAME=DB22AR0, X

 DISP=SHR

 DFSMDA TYPE=FPDEDB,DEDBJN22

 DFSMDA TYPE=DATASET,DSNAME=DB22AR1,DDNAME=DB22AR1, X

 DISP=OLD

 DFSMDA TYPE=FINAL

 END

/*

Example 3

In z/OS, SLDSs are dynamically allocated when required as input for restart.

Example 3 shows the JCL and macro statements for SLDS to participate in dynamic

allocation and reallocation.

//ASSMBLY EXEC IMSDALOC

//*

//SYSLIB DD DSN=RNC.SDFSMAC,DISP=SHR

// DD DSN=I13OTS13.SDFSMAC,DISP=SHR

// DD DSN=IMS.&SYS2.SDFSMAC,DISP=SHR

//* +----1----+----2----+----3----+----4----+----5----+----6----+----7---

//SYSIN DD *

 DFSMDA TYPE=INITIAL

 DFSMDA TYPE=SLDS,UNIT=SYSDA,DDNAME=IMSLOGR

 DFSMDA TYPE=FINAL

 END

/*

//LNKEDT.SYSLMOD DD DSNAME=IMSQA.TNUC2,DISP=SHR,

// UNIT=SYSDA,VOL=SER=USER01

Example 4

Example 4 shows the statements required to build allocation members for RECON

data sets and to trace data sets on DASD.

//DYNALL JOB

//*

//STEP EXEC IMSDALOC

//SYSIN DD *

 DFSMDA TYPE=INITIAL

 DFSMDA TYPE=RECON,DSNAME=IMSV41.RECON01,DDNAME=RECON1,WAIT=YES

 DFSMDA TYPE=RECON,DSNAME=IMSV41.RECON02,DDNAME=RECON2,WAIT=YES

 DFSMDA TYPE=RECON,DSNAME=IMSV41.RECON03,DDNAME=RECON3,WAIT=YES

 DFSMDA TYPE=TRACE,DDNAME=DFSTRA01,DSN=IMS41.DFSTRA01

 DFSMDA TYPE=TRACE,DDNAME=DFSTRA02,DSN=IMS41.DFSTRA02

 DFSMDA TYPE=FINAL

 END

/*

Example 5

Example 5 shows the statements required to build allocation members for RECON

data sets and to trace data sets on tape.

Examples

212 Utilities Reference: System

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

//DYNALL JOB

//*

//STEP EXEC IMSDALOC

//SYSIN DD *

 DFSMDA TYPE=INITIAL

 DFSMDA TYPE=RECON,DSNAME=IMSV41.RECON01,DDNAME=RECON1,WAIT=YES

 DFSMDA TYPE=RECON,DSNAME=IMSV41.RECON02,DDNAME=RECON2,WAIT=YES

 DFSMDA TYPE=RECON,DSNAME=IMSV41.RECON03,DDNAME=RECON3,WAIT=YES

 DFSMDA TYPE=TRACE,DDNAME=DFSTRA0T,DSNAME=TAPEDS1,UNIT=TAPE,BLKSIZE=20024

 DFSMDA TYPE=FINAL

 END

/*

Examples

Chapter 5. Dynamic Allocation Macro (DFSMDA) 213

Examples

214 Utilities Reference: System

Chapter 6. Security Maintenance Utility (DFSISMP0)

IMS does not support Security Maintenance utility (SMU) or application group name

(AGN) security after Version 9. For this reason, security functions that formerly

required the use of SMU can now be performed using Resource Access Control

Facility (RACF®), resource access security (RAS), and exit routines. For more

information, see IMS Version 9: Administration Guide: System.

For security beyond that provided by default terminal security, you can use the

various security options specified with the SMU. The utility is executed offline after

completion of Stage 2 processing for system definition. Its output is a set of

secured-resource tables placed on the IMS.MATRIX data set. The tables are loaded

at system initialization time, and, for certain options, work with exit routines or the

RACF program product during online execution to provide resource protection.

The Security Maintenance utility provides five security options:

LTERM security

Defines the commands and transactions that can be used from a

given physical or logical terminal

Password security

Limits the use of a specified IMS resource to someone who

supplies the correct password

Resource access security

Limits the set of IMS resources which can be used by dependent

regions that are authorized to access a specific Application Group

Transaction command security

Lets an application program issue a subset of IMS operator

commands (using the DL/I CMD call)

Sign-on verification security

Identifies a particular user to IMS to determine if each transaction

entered by that user is authorized to the user id currently logged on

z/OS users can also use the RACF program product if desired. See “Sign-on

Verification Security” on page 219.

Although IMS system definition creates most resident control blocks for the IMS

control program, it supplies only basic terminal security which prohibits the entry of

certain commands from any terminal other than the master terminal. If no security

options are specified by system definition, the generated IMS system protects the

following commands from non-master terminal use:

 /ASSIGN /DEQUEUE /MSASSIGN /RMxxxxxx1

/CHANGE /DISPLAY /MSVERIFY /RSTART

/CHECKPOINT /ERESTART /NRESTART /SMCOPY

/CLSDST /IDLE /OPNDST /SSR

/COMPT /LOOPTEST /PSTOP /START

/DBDUMP /MODIFY /PURGE /STOP

/DBRECOVERY /MONITOR /QUIESCE /TRACE

/DELETE

Note:

1. RMLIST is not protected from non-master terminal use.

© Copyright IBM Corp. 1974, 2004 215

|
|
|
|
|

The basic level of security is called default terminal security. It exists whether or not

the Security Maintenance utility is used to implement the added security features of

IMS.

The following topics provide additional information:

v “Input and Output Flow for DFSISMP0”

v “Restrictions for DFSISMP0” on page 217

v “Security Options for DFSISMP0” on page 217

v “IMS Application Resource Access Security” on page 219

v “SECURITY Procedure” on page 219

v “Utility Control Statements for DFSISMP0” on page 224

v “Output for DFSISMP0” on page 226

v “Examples of DFSISMP0” on page 226

Input and Output Flow for DFSISMP0

Figure 73 on page 217 shows the flow of input to and output from the Security

Maintenance utility. When you run the Security Maintenance utility, it receives input

from the IMS.SDFSRESL data set, the IMS.MODBLKS data set, and from input

statements. The utility outputs a security listing and a set of secured resource

tables to the IMS.MATRIX data set. The output includes the following secured

resource tables:

v Communication password table (CPT)

v Communication password matrix (CPM)

v Password offset list

v Communication matrix (CTM)

v Terminal offset list (CTL)

v Transaction matrix

v Transaction offset list

v Sign-on offset list

v Application group names table

Refer to Figure 73 on page 217 as you read the remaining sections of this chapter.

Security Maintenance

216 Utilities Reference: System

Restrictions for DFSISMP0

The following restrictions apply to the Security Maintenance utility.

v If you do not use RACF, sign-on verification and IMS application group name

security require user exit routines. IMS does not supply exit code except for

sample user exit routines.

v The Security Maintenance utility does not provide LTERM, password, resource,

transaction command, or sign-on verification security for terminals defined with

the Extended Terminal Option (ETO) or for LU 6.2 devices. If your system uses

ETO or LU 6.2 terminals, use RACF or an equivalent security product to provide

terminal security functions.

v SMU cannot be used for transaction command security for DL/I ICMD or RCMD

calls.

Related Reading: For more information about security for ETO and LU 6.2

terminals, see IMS Version 9: Administration Guide: System.

Security Options for DFSISMP0

This section provides a brief explanation of each of the five security options for the

Security Maintenance utility.

Figure 73. Security Maintenance Utility Data Set Requirements

Security Maintenance

Chapter 6. Security Maintenance Utility (DFSISMP0) 217

|
|
|

LTERM Security

This security option allows you to define a set of commands and transactions that

are authorized for use by specified logical terminals. Using the Security

Maintenance utility, you can define a maximum of 65 535 different patterns for these

sets of commands and transactions. Aa pattern is a unique set of commands issued

by one or more terminals. For example, two terminals issuing the same set of

commands constitutes one pattern and two terminals issuing different sets of

commands constitutes two patterns.

For multiple IMS systems, you can also specify a set of authorized transactions that

can be passed to an IMS system using a logical data link. Terminal security

requires no external user exit routines.

Password Security

This option specifies the use of a password with terminal input. Resources cannot

be used unless a correct password is supplied. Password security can be used for:

v Transactions

v Commands

When an operator enters the /LOCK or /UNLOCK command to control the use of

online resources, the use of several keywords can be protected by requiring a

password. The resources that can be protected are:

v PTERM

v LTERM

v Application programs

v Databases

Transaction Command Security

You must use a security option to authorize an online application program to issue

IMS commands using the DL/I CMD and GCMD calls. You make the authorization

by associating the transaction that invokes the program with a list of commands that

the program is designed to use. In the case of an automated operator program, you

need to specify all the commands the program is designed to use.

Related Reading: For more information on the list of commands that programs can

issue, see IMS Version 9: Command Reference.

Transaction command security requires no user exit routines.

IMS Application Group Name Security

Application group name (AGN) security prevents an IMS resource from being used

by a dependent message region unless that resource has been authorized for use

by the dependent region. It also prevents an unauthorized dependent message

region from starting.

In the SECURITY macro during system definition, you specify whether resource

access security is included and whether RACF or a user exit routine is used for the

authorization validation.

Using DFSISMP0, you define a list of IMS resources and assign a unique AGN to

the list. Security Maintenance places this AGN in a table the IMS system

Security Options

218 Utilities Reference: System

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

recognizes. IMS prevents the use of resources by a dependent message region

unless that resource is listed in the AGN table.

You must either provide a user exit routine or use RACF to authorize the start of a

dependent message region.

Sign-on Verification Security

You can prevent an unauthorized user from accessing the IMS system from a local

or remote terminal by defining a list of statically defined terminals that require

sign-on verification. Sign-on verification security identifies a user to IMS as being

present from the /SIGN ON command entry until a /SIGN OFF command is entered.

Using the Security Maintenance utility, you can define a maximum of 65 535

terminals to require sign-on verification. Two alternative ways to specify the sign-on

verification requirement include:

v On the OPTIONS= parameter of the TYPE and TERMINAL IMS system definition

macros

v With the SIGNON= parameter in the DFSDCxxx PROCLIB member

These alternatives do not have the 65 535 maximum.

You can also restrict those authorized users (user IDs) to specific transactions. You

do this by specifying, along with sign-on verification security, transaction

authorization. As each transaction is entered from a terminal, either RACF or a user

exit routine, or both, validate it for the user ID signed on. If the terminal from which

the transaction is entered does not require sign-on verification, the transaction code

is still checked by RACF or by the user exit routine.

IMS Application Resource Access Security

Application resource access security permits online programs to determine the

access authority of the user requesting the transaction. This level of security is

available by issuing an Authorization (AUTH) call in conjunction with RACF.

You define the resources whose access will be restricted within the application

program to RACF. These resources include terminals, spool readers, and data sets.

You can use the normal IMS security exit routines (such as the /SIGN ON exit

routine and the Transaction Authorization exit routine) for additional control of the

authorization process.

Related Reading: For more information on the AUTH call, see IMS Version 9:

Application Programming: Database Manager.

SECURITY Procedure

The SECURITY procedure is created as a part of system definition and is placed

into the IMS.PROCLIB procedure library by stage two of IMS system definition.

To run the security maintenance program, you must have previously defined an IMS

control program using the value ALL, ON-LINE, NUCLEUS, CTLBLKS, or

MODBLKS as the second sub-list entry of the SYSTEM parameter of the IMSCTRL

macro instruction. Two of the modules created during Stage 2 of IMS system

Security Options

Chapter 6. Security Maintenance Utility (DFSISMP0) 219

|
|

|
|
|
|

|
|
|

|
|

|

|

|
|

definition are a directory of communication resources and a directory of database

resources of the defined system. They are placed in the IMS.SDFSRESL and

IMS.MODBLKS data sets, respectively.

Requirement: These directories and the security maintenance control statements

are the required input for the Security Maintenance utility.

The security maintenance program runs as a three-step job. The first step (Step S)

accepts the input control and data statements and checks them against the IMS

system being maintained to ensure correct format and validity. If there are no errors

in the first step, the second step (Step C), an operating system assembly, is

performed. The third step (Step L) is a link-edit which takes the assembly output

from Step C and creates the following:

v Password table

v Password matrix

v Password matrix relative pointer lists

v Terminal matrix

v Terminal matrix relative pointer lists

v Transaction command matrix

v Transaction command matrix relative pointer list

v Sign-on relative terminal list

v Application Group Name table

Depending on the input presented, there are a variable number of output load

modules created. The maximum size of any generated matrix is:

M=(IxR)/8

where:

I Is the number of secured resources as shown in Table 19 for each matrix:

 Table 19. Matrix Secured Resources for Variable I

Matrix Secured Resource

Password Passwords

Terminal Logical terminals and linknames

Transaction Command Transactions

Restriction: To produce a valid terminal matrix, the number of LTERMs,

transactions, databases, and programs specified at system definition cannot

exceed 65535, otherwise a DFS1913E will be received with a return code of 8.

R Is the number of secured resources as shown in Table 20 for each matrix. If

more than one secured resource is secured to the same set of securing

resources, only one secured resource is counted in order to calculate the size

of the matrix. For example, if one or more transactions or commands can be

entered by the identical sub-lists of LTERMs, these transactions or commands

are counted as a single secured resource.

 Table 20. Matrix Secured Resources for Variable R

Matrix Secured Resource

Password Commands, databases, LTERMs, programs,

PTERMs, transactions

SECURITY Procedure

220 Utilities Reference: System

Table 20. Matrix Secured Resources for Variable R (continued)

Matrix Secured Resource

Terminal Transactions, commands

Transaction Command Commands

M Is the total virtual storage requirement in bytes.

Procedure Statement

Figure 74 shows the JCL for the SECURITY procedure. The parameters are

described in “JCL Parameter Description.”

JCL Parameter Description

SOUT=

Specifies the class assigned to SYSOUT DD statements.

SYS2=

Specifies an optional second level dsname qualifier for those data sets which

are designated as “Optional Replicate” in an XRF complex. When specified, the

parameter must be enclosed in quotes and must include a trailing period; for

example, SYS2='IMSA.'.

// PROC OPTN=UPDATE,IMS=’,0’,SOUT=A,SYS2=,

// RGN=0M

//S EXEC PGM=DFSISMP0,PARM=’&OPTN.&IMS.’

//STEPLIB DD DSN=IMS.&SYS2.MODBLKS,DISP=SHR

// DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR

//SYSPRINT DD SYSOUT=&SOUT,

// DCB=(RECFM=VBA,BLKSIZE=129,LRECL=125)

//SYSPUNCH DD UNIT=SYSDA,SPACE=(CYL,(2,2)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),

// DISP=(NEW,PASS)

//SYSLIN DD UNIT=SYSDA,SPACE=(TRK,(1,1)),

// DCB=(RECFM=F,BLKSIZE=80),

// DISP=(NEW,PASS)

//SYSUT1 DD UNIT=SYSDA,DCB=(BLKSIZE=500,RECFM=FB),

// SPACE=(CYL,(2,2))

//SYSUT2 DD UNIT=(SYSDA,SEP=SYSUT1),DCB=*.S.SYSUT1,

// SPACE=(CYL,(2,2))

//SYSIN DD DSN=NO.SYSIN.DD.ASTERISK

//C EXEC PGM=ASMA90,

// PARM=’OBJECT,NODECK,NODBCS’,

// COND=(12,LT,S),REGION=&RGN

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089

//SYSLIN DD UNIT=(SYSDA,SEP=SYSPRINT),DISP=(,PASS),

// SPACE=(CYL,(2,2)),

// DCB=*.S.SYSPUNCH

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,5))

//SYSIN DD DSN=*.S.SYSPUNCH,DISP=(OLD,DELETE)

//L EXEC PGM=IEWL,PARM=(LIST,NE,OL),

// REGION=&RGN,COND=(4,LT,S)

//SYSPRINT DD SYSOUT=&SOUT,

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=605)

//SYSLMOD DD DSN=IMS.&SYS2.MATRIX,DISP=SHR

//INPUT DD DSN=*.C.SYSLIN,DISP=(OLD,DELETE)

//SYSUT1 DD UNIT=(SYSDA,SEP=INPUT),SPACE=(CYL,(5,1))

//SYSLIN DD DSN=*.S.SYSLIN,DISP=(OLD,DELETE)

Figure 74. JCL for the SECURITY Procedure

SECURITY Procedure

Chapter 6. Security Maintenance Utility (DFSISMP0) 221

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

RGN=

Specifies the region size for this procedure. In Figure 74 on page 221 the

region size is specified as 2048 KB.

Step S EXEC Statement

The EXEC statement specifies the program name (PGM=DFSISMP0), and must

contain a PARM keyword value in the form:

//STEP EXEC PGM=DFSISMP0,PARM=’option,number’

option

Is one of the following:

LIST Validity check and list new security tables.

UPDATE Validity check, list, and update security tables in MATRIX.

number

Is any valid alphanumeric that is the last character of the IMS nucleus member

name to be maintained.

 The default value for PARM= is ’UPDATE,0’.

DD Statements

STEPLIB

Defines the partitioned data sets named IMS.SDFSRESL and IMS.MODBLKS.

Contains the members DFSVNUCn, DFSISMP0, DFSISDBn, and DFSISDCn.

SYSPRINT DD

Defines a sequential message data set. The data set can be written to system

output devices, magnetic tape, or direct-access volumes. The following DCB

parameters must be specified:

RECFM=VBA

LRECL=125

BLKSIZE=129 or greater

SYSPUNCH DD

Defines a sequential output data set that contains assembler statements

produced by this step. The data set can be passed to Step C. The following

DCB parameters must be specified:

RECFM=F or FB

LRECL=80

BLKSIZE=80 or multiple of 80

SYSLIN DD

Defines a sequential output data set that contains linkage editor control

statements produced by Step S. The data set can be passed to Step L. The

following DCB parameters must be specified:

RECFM=F or FB

LRECL=80

BLKSIZE=80 or multiple of 80

SYSUT1 DD

Defines a sequential work data set used only during this step. The following

DCB parameters must be specified:

RECFM=F or FB

BLKSIZE=100 or multiple of 100

SYSUT2 DD

Defines a sequential work data set used only during this step. The following

DCB parameters must be specified:

SECURITY Procedure

222 Utilities Reference: System

RECFM=F or FB

BLKSIZE=100 or multiple of 100

SYSIN DD

Defines a sequential data set or a member of a partitioned data set that

contains security maintenance input statements. The following DCB parameters

must be specified:

RECFM=F or FB

BLKSIZE=80 or multiple of 80

Step C

Step C is the assembly step.

Related Reading: Refer to HLASM MVS & VM Programmer’s Guide for information

on assembly steps.

DD Statements

SYSIN DD

Defines the passed sequential input data set created in steps using ddname

SYSPUNCH.

Step L

Step L is the link-edit step.

Related Reading: Refer to z/OS MVS Program Management: User’s Guide and

Reference for information on linkage-editors.

DD Statements

SYSLMOD DD

Defines an output partitioned data set, IMS.MATRIX, for the linkage editor.

INPUT DD

Defines the passed sequential temporary data set created using ddname

SYSGO in Step C.

Invoking the Procedure

The following JCL is used to invoke the SECURITY procedure:

// JOB

//*

//STEP EXEC PROC=DFSISMP0

//*

//SYSIN DD * ...
 END

/*

EXEC

Should be in this form:

//STEP EXEC PROC=DFSISMP0

SYSIN DD

Defines a sequential data set or a member of a partitioned data set that

contains security maintenance input statements. The following DCB parameters

must be specified:

RECFM=F or FB

BLKSIZE=80 or multiple of 80

SECURITY Procedure

Chapter 6. Security Maintenance Utility (DFSISMP0) 223

Utility Control Statements for DFSISMP0

Input to the Security Maintenance utility consists of control and data statements. A

control statement indicates to the utility that security is being established for the

system resource named by that statement. Control statements are identified by

closed and open parentheses characters in combination,)(, in character positions 1

and 2 of the input statement, followed by a blank in character position 3. A control

statement remains in effect until another control statement or end of input data is

encountered.

Data statements describe the security to be established for the system resource

defined by the preceding control statement. All data statements following a control

statement are associated with that control statement. Data statements are identified

by a blank in character position 1 of the input statement. Each statement, control or

data, has only one parameter, separated from the operation by a blank. Any number

of valid data statements can be used in conjunction with a given control statement.

Input data must be entered in columns 1 through 71 of the input statements;

columns 72 through 80 are ignored.

Comments can be included following the parameter specifications on control and

data statements. Comment-only statements can be specified by an asterisk in

column 1.

Use Table 21 to determine which input statements can be used as control

statements, data statements, or both.

 Table 21. Security Maintenance Utility Input Statements

Input Statement Control Statement Data Statement

AGN X N/A

SIGN X N/A

AGLTERM N/A X

AGPSB N/A X

AGTRAN N/A X

STERM N/A X

COMMAND X X

CTRANS X X

DATABASE X X

PASSWORD X X

PROGRAM X X

PTERM X X

TCOMMAND X X

TERMINAL X X

TRANSACT X X

The operands which can be used with the statements listed in Table 21 are:

Password

A password is any combination of 1 to 8 alphanumeric characters. The

Utility Control Statements

224 Utilities Reference: System

longest password encountered on a PASSWORD statement in the input

stream governs the maximum length of input passwords that will be

accepted by your IMS system.

 To define additional passwords, a PASSWORD control statement is used

with no following data statements:

)(PASSWORD ABCD

)(PASSWORD EFGH

Logical terminal name or linkname

A valid logical terminal name or linkname is 1 to 8 characters in length. It

must be defined in the IMS system being maintained or it is invalid. Any

invalid terminal names or linknames are rejected by Security Maintenance.

Transaction code

A valid transaction code is 1 to 8 characters in length. It must be defined in

the IMS system being maintained. If it is not defined, it is treated as invalid

by the utility.

Command language verb

Valid command language verbs are obtained from the Stage 2 output of

IMS system definition.

 Related Reading: Refer to IMS Version 9: Installation Volume 2: System

Definition and Tailoring for more information on the command language

verbs used in Stage 2.

 The command verb, less leading slash, can be abbreviated to the first three

characters.

Name Name is a valid database name, program name, VTAM® node name,

Application Group name, or BTAM physical terminal number as obtained

from the output of IMS system definition.

Only the first three characters of the operation code are required to identify control

or data statements.

Physical terminal numbers are found in the Stage 1 listing and in the assembly of

DFSISDB0 in Stage 2 of the IMS system definition.

The following list shows the valid combinations of control statements and data

statements that Security Maintenance accepts:

Control Statements Valid Data Statements

AGN AGLTERM, AGPSB, AGTRAN

COMMAND PASSWORD, TERMINAL

CTRANS TCOMMAND

DATABASE PASSWORD

PASSWORD COMMAND, DATABASE, PROGRAM, PTERM,

TERMINAL, TRANSACT

PROGRAM PASSWORD

PTERM PASSWORD

SIGN STERM, LINE, TERMINAL

TCOMMAND CTRANS

TERMINAL COMMAND, PASSWORD, TRANSACT

Utility Control Statements

Chapter 6. Security Maintenance Utility (DFSISMP0) 225

TRANSACT PASSWORD, TERMINAL

Output for DFSISMP0

Output from the Security Maintenance utility consists of up to six sequential

members that are placed in IMS.MATRIX.

Restriction: These members cannot be reprocessed using the linkage editor.

The contents and names of the six members output from the Security Maintenance

Utility are shown in Table 22:

 Table 22. Security Maintenance Utility Output Descriptions

Contents Name

Communication Password Table/Matrix DFSISPBx

Terminal Offset List DFSISTLx

Transaction Command Matrix DFSISTCx

Transaction Offset List and Table DFSISTTx

Sign-on Table DFSISSOx

Application Group Name Table DFSAGTOx

The utility also provides a listing of the maintenance tables created. Each run of the

utility replaces previously created members. A set of security maintenance tables

can be maintained for each IMS online control program nucleus. It is identified by

the last character of the IMS nucleus name.

Security-Status Reports

Each execution of the utility produces a printed analysis of the IMS system for

which security is being maintained. If errors are encountered in processing the input

control statements, no security block update functions are performed. Instead,

diagnostic error messages are produced for the entire input stream.

You can also request a no-update execution of the Security Maintenance utility to

produce a printed analysis of your IMS system security specifications. This run,

using the LIST option on the EXEC statement in Step S (under “Invoking the

Procedure” on page 223) ends with a return code of 16.

Examples of DFSISMP0

The following examples show the input statements for the Security Maintenance

utility.

Example 1

This example illustrates passwords assigned to each program.

)(PROGRAM ACCT

 PASSWORD DOLLAR

)(PROGRAM ENG560

 PASSWORD PARTNO

)(PROGRAM LOGREC

Utility Control Statements

226 Utilities Reference: System

PASSWORD NONE

)(PROGRAM AGC0568

 PASSWORD MONEY

Example 2

This example illustrates passwords assigned to each database.

)(DATABASE ACCTLOG

 PASSWORD LOG

)(DATABASE ACCTREC

 PASSWORD REC

)(DATABASE ACTIVITY

 PASSWORD ACTIVE

)(DATABASE ENGREC

 PASSWORD PIERSQ

)(DATABASE PARTSREC

 PASSWORD PIERSQ

)(DATABASE PARTSREC

 PASSWORD ASSY

Example 3

This example illustrates passwords assigned to commands.

)(COMMAND CHANGE

 PASSWORD PSWD1

)(COMMAND PURGE

 PASSWORD PSWD2

Example 4

This example illustrates passwords assigned to transaction codes and a list of

terminals that can use each transaction code. With the list of terminals is the

required password restricting some IMS terminal commands to the master terminal

only.

)(TRANSACT ACCTCHG

 PASSWORD CHARGE

 TERMINAL A875111

 TERMINAL C8751112

 TERMINAL D8751113

 TERMINAL A8751114

 TERMINAL A8751115

)(TRANSACT ACTY

 PASSWORD GO

 TERMINAL A8751111

 TERMINAL C8751112

 TERMINAL D8751113

 TERMINAL A8751114

 TERMINAL A8751115

)(TRANSACT TNL

 PASSWORD QTY

 TERMINAL DEPT650

 TERMINAL DEPT610

 TERMINAL DEPT620

 TERMINAL DEPT631

 TERMINAL DEPT632

 TERMINAL DEPT630

Examples

Chapter 6. Security Maintenance Utility (DFSISMP0) 227

TERMINAL DEPT640

 TERMINAL DEPT641

 TERMINAL DEPT642

)(TRANSACT ING

 PASSWORD QUESTION

 TERMINAL DEPT310

 TERMINAL DEPT311

 TERMINAL DEPT312

 TERMINAL DEPT410

 TERMINAL DEPT411

 TERMINAL DEPT412

 TERMINAL DEPT510

 TERMINAL DEPT511

 TERMINAL DEPT512

 TERMINAL DEPT100

 TERMINAL DEPT200

 TERMINAL DEPT686

 TERMINAL MASTER

 TERMINAL ALTMAST

 TERMINAL MAINT

)(TRANSACT INVNTRY

 PASSWORD SUBASSY

 TERMINAL DEPT310

 TERMINAL DEPT311

 TERMINAL DEPT312

 TERMINAL DEPT410

 TERMINAL DEPT410

 TERMINAL DEPT411

 TERMINAL DEPT412

 TERMINAL DEPT510

 TERMINAL DEPT511

 TERMINAL DEPT512

 TERMINAL DEPT100

 TERMINAL DEPT200

 TERMINAL DEPT686

 TERMINAL MASTER

 TERMINAL ALTMAST

 TERMINAL MAINT

 TERMINAL DEPT710

 TERMINAL DEPT720

 TERMINAL DEPT848

 TERMINAL DEPT850

 TERMINAL DEPT900

 TERMINAL TEST1

 TERMINAL TEST2

)(TRANSACT ACCT

 PASSWORD LEDGER

 TERMINAL DEPT310

 TERMINAL DEPT311

 TERMINAL DEPT312

 TERMINAL DEPT410

 TERMINAL DEPT411

 TERMINAL DEPT412

 TERMINAL DEPT510

 TERMINAL DEPT511

 TERMINAL DEPT512

 TERMINAL DEPT100

 TERMINAL DEPT200

 TERMINAL DEPT686

 TERMINAL MASTER

 TERMINAL ALTMAST

 TERMINAL MAINT

Examples

228 Utilities Reference: System

Example 5

This example illustrates that the master terminal can enter a subset of IMS terminal

commands and transaction codes defined by the system definition example in this

manual.

)(TERMINAL MASTER

 TRANSACT ACCTCHG

 TRANSACT ACTY

 TRANSACT TNL

 TRANSACT INQUIRY

 TRANSACT INQ

 TRANSACT ENG

 TRANSACT ACCT

 COMMAND BROADCAST

 COMMAND START

 COMMAND STOP

 COMMAND PSTOP

 COMMAND PURGE

 COMMAND CHANGE

 COMMAND DELETE

 COMMAND ASSIGN

 COMMAND CHECKPOINT

 COMMAND DBDUMP

 COMMAND NRESTART

 COMMAND ERESTART

 COMMAND DBRECOVERY

 COMMAND IDLE

 COMMAND RSTART

 COMMAND DISPLAY

Example 6

This example illustrates a list of terminals that must enter a sign-on command to

gain access to IMS.

)(SIGN

 STERM ALL

)(SIGN

 STERM 4

 STERM 09

 STERM 105

 STERM VTAM

 STERM V3270

)(SIGN

 STERM LINE 3 TERMINAL 4

 STERM LINE 5 TERMINAL 2

Example 7

This example illustrates the relating of transactions to commands.

)(CTRANS ADDPART

 TCOMMAND *

)(TCOMMAND STOP

 CTRANS ADDINV

 CTRANS APOL11

 CTRANS APOL12

)(CTRANS APOL13

 TCOMMAND COMPT

Examples

Chapter 6. Security Maintenance Utility (DFSISMP0) 229

Example 8

This example illustrates a list of programs, transactions, and logical terminals whose

access is restricted to the region associated with the AGN name.

)(AGN TEST005

 AGPSB DDLTBP01

 AGTRAN TRAN13C0

 AGLTERM DD3270L4

)(AGN TEST003

 AGPSB ALL

 AGTRAN ALL

 AGLTERM ALL

)(AGN TEST004

 AGPSB APOL1

 AGPSB A3270

 AGPSB GISBMP09

 AGTRAN ADDINV

 AGTRAN APOL15

 AGLTERM TERM0001

 AGLTERM TERM0002

 AGLTERM TERM0003

 AGLTERM TERM0004

)(AGN TEST002

 AGPSB A3270

 AGTRAN ADDINV

)(AGN TEST002

 AGPSB INTCON

Examples

230 Utilities Reference: System

Chapter 7. Online Change Utilities and Procedures

You can use Online Change to make changes to some IMS system resources

without stopping the system. This chapter describes some of the utilities and

procedures used to prepare the system for online changes.

The following topics provide additional information:

v “Online Change Copy Utility (DFSUOCU0)”

v “INITMOD Procedure” on page 236

v “Global Online Change Utility (DFSUOLC0)” on page 238

Online Change Copy Utility (DFSUOCU0)

You must run the Online Change Copy utility as one step in the process of

preparing an IMS or an IMSplex for a local or global online change. The Online

Change Copy utility copies a source library with your new definitions to a target

library. In an IMSplex where IMS subsystems are not cloned and the libraries not

shared, the Online Change Copy utility might need to be executed on every IMS in

the IMSplex. In an IMSplex where IMS subsystems are cloned and the libraries are

shared, the Online Change Copy utility might need to be executed only once on

one IMS.SDFSRESL at the highest IMS level.

The Online Change Copy utility can copy the contents of the staging libraries to the

active libraries during the installation of IMS, prior to the first cold start. To do this,

the parameter for the output ddname must be specified when invoking the utility,

because the initial contents of IMS.MODSTAT (or OLCSTAT data set, if global

online change is enabled) will specify the active libraries. Issuing the Online Change

command sequence to prepare and commit an online change causes the inactive

library to become the active library. Using a z/OS serialization service, this utility

prevents other utilities from updating the staging (source) or inactive (target)

libraries while the copy is in progress.

Related Reading: For more information on IMS.MODSTAT, see IMS Version 9:

Installation Volume 1: Installation Verification.

Requirements for Online Change Copy

Three copies of the following libraries are required for online change:

ACBLIB Database and program descriptors such as DMBs and PSBs

FORMAT Control blocks produced by the MFS language utility and service

utility

MATRIX Control blocks for the system security tables

MODBLKS A subset of the control blocks for the resources to be modified

One copy of each library is used exclusively for offline functions. This library has no

suffix and is called the staging library.

The other two copies of each library have a suffix of A or B. Only one of these

libraries is used by the IMS online system at any one time. The one in use is

referred to as the active library. The other is called the inactive library.

© Copyright IBM Corp. 1974, 2004 231

The Online Change Copy utility can copy the contents of the staging library to the

inactive library based on the information in the status data set, MODSTAT.

The same method of serialization prevents this utility from updating the active

libraries while they are being used by an IMS online system.

Restrictions for Online Change Copy

The following restrictions apply to the Online Change Copy utility:

v If any of the ACBLIB, FORMAT, or MODBLKS libraries are shared among IMS

systems, all systems must use the same libraries during execution of this utility.

v In an XRF environment ACBLIBs, FORMATs, MATRIXs, and MODBLKs data sets

must be on shared non-duplex DASD for error protection. Make the same

additions or changes to separate but duplicate copies of IMS data sets.

v You cannot use the Online Change Copy utility to make additions or changes that

require new IMS modules to be added to the IMS.SDFSRESL data set.

v You cannot add, modify, or delete MSDBs using this utility. However, PSB related

changes for MSDBs can be made to the ACBLIBs, as long as no DBD changes

are included.

v You cannot add, modify, or delete partitions of a HALDB using this utility, only by

using the Partition Definition utility. However, PSB related changes for HALDB

can be made to the ACBLIBs, as long as no DBD changes are included.

v In an RSR environment, this utility has no effect on the copies of the ACBLIBx,

FORMATx, MATRIXx, MODBLKSx, and MODSTAT data sets used on the

tracking subsystem for tracking an active subsystem.

If the Online Change Copy utility is cancelled prior to completion, the status of the

ACBLIB, FMTLIB, or MODBLKS data set is unpredictable. The data set being

changed by the utility is cleared as soon as the utility has exclusive control of the

data set, and then new information is written to the data set. If the utility is

cancelled prior to its successful completion the data set is virtually useless.

Procedure for Online Change Copy

Figure 75 on page 233 shows the OLCUTL statements used to invoke the Online

Change Copy utility, OLCUTL procedure. This procedure is generated by system

definition and is placed in the IMS.PROCLIB by stage two of system definition.

OLCUTL clears the target library data set and then invokes IEBCOPY to move the

source library contents. If IEBCOPY abends because of insufficient space, the

contents of the target library are unpredictable. To avoid this, allocate equal

amounts of space for source and target libraries.

232 Utilities Reference: System

Procedure Statement

The procedure statement must be in the following form to include optional

IEBCOPY parameters:

PROC TYPE=,IN=,OUT=,SOUT=A,SYS=,SYS2=,OLCGLBL=’DUMMY,’,OLCLOCL=

OLCGLBL=

OLCLOCL=

These parameters produce the OLCSTAT DD card or the

MODSTAT/MODSTAT2 DD cards.

OLCGLBL=’DUMMY,’,OLCLOCL=

Produced by Stage 2 system definition. This parameter results in the OLCUTL

procedure being set up for local online change as the default with the following

DD statements:

//MODSTAT DD &OLCLOCL.DSN=IMS.&SYS.MODSTAT,DISP=SHR

//MODSTAT2 DD &OLCLOCL.DSN=IMS.&SYS.MODSTAT2,DISP=SHR

//OLCSTAT DD &OLCGLBL.DSN=IMSPLEX.OLCSTAT,DISP=OLD

For global online change is desired, set the OLCGLBL= and OLCLOCL=

parmeters as follows:

OLCGLBL=,OLCLOCL=’DUMMY,’

These parameters generate the following DD statements to be used for global

online change:

//MODSTAT DD DUMMY,DSN=IMS.&SYS..MODSTAT,DISP=SHR

//MODSTAT2 DD DUMMY,DSN=IMS.&SYS..MODSTAT2,DISP=SHR

//OLCSTAT DD DSN=IMSPLEX.OLCSTAT,DISP=OLD

SOUT=

Specifies the class assigned to SYSOUT DD statements.

// PROC TYPE=,IN=,OUT=,SOUT=A,SYS=,SYS2=,OLCGLBL=’DUMMY,’,OLCLOCL=

//S EXEC PGM=DFSUOCU0,PARM=(&TYPE,&IN,&OUT)

//STEPLIB DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR

//MODBLKS DD DSN=IMS.&SYS2.MODBLKS,DISP=SHR

//MODBLKSA DD DSN=IMS.&SYS2.MODBLKSA,DISP=SHR

//MODBLKSB DD DSN=IMS.&SYS2.MODBLKSB,DISP=SHR

//IMSACB DD DSN=IMS.&SYS2.ACBLIB,DISP=SHR

//IMSACBA DD DSN=IMS.&SYS2.ACBLIBA,DISP=SHR

//IMSACBB DD DSN=IMS.&SYS2.ACBLIBB,DISP=SHR

//FORMAT DD DSN=IMS.&SYS2.FORMAT,DISP=SHR

//FORMATA DD DSN=IMS.&SYS2.FORMATA,DISP=SHR

//FORMATB DD DSN=IMS.&SYS2.FORMATB,DISP=SHR

//MATRIX DD DSN=IMS.&SYS2.MATRIX,DISP=SHR

//MATRIXA DD DSN=IMS.&SYS2.MATRIXA,DISP=SHR

//MATRIXB DD DSN=IMS.&SYS2.MATRIXB,DISP=SHR

//MODSTAT DD &OLCLOCL.DSN=IMS.&SYS.MODSTAT,

// DISP=SHR

//MODSTAT2 DD &OLCLOCL.DSN=IMS.&SYS.MODSTAT2,

// DISP=SHR

//OLCSTAT DD &OLCGLBL.DSN=IMSPLEX.OLCSTAT,

// DISP=OLD

//SYSUDUMP DD SYSOUT=&SOUT

//SYSPRINT DD SYSOUT=&SOUT

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//COPYCTL DD DSN=&©CTL,DISP=(NEW,DELETE),

// UNIT=SYSDA,SPACE=(CYL,(1,1))

Figure 75. OLCUTL Procedure

Procedure Statement

Chapter 7. Online Change Utilities and Procedures 233

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|

|
|
|

SYS=

Specifies an optional second level dsname qualifier for those data sets which

are designated as “Mandatory Shared” in an XRF complex. When specified, the

parameter must be enclosed in quotes and must include a trailing period; for

example, SYS='IMSA.'

SYS2=

Specifies an optional second level dsname qualifier for those data sets which

are designated as “Optional Replicate” in an XRF complex. When specified, the

parameter must be enclosed in quotes and must include a trailing period; for

example, SYS2='IMSA.'

EXEC Statement

The EXEC statement determines which copy is made and which data sets are used

for input and output. The format of this statement can include optional IEBCOPY

parameters specified in the order of WORK, SIZE, LIST after the target_library. If

one or more of them is specified, the following combinations are valid:

v WORK=

v WORK=,SIZE=

v WORK=,SIZE=,LIST=

The IEBCOPY options list, containing the IEBCOPY keywords, equal signs,

parameter values, and commas, cannot exceed 64 bytes. The IEBCOPY

parameters are passed to the IEBCOPY utility when the utility is called. See

DFSMSdfp Utilities for details on the IEBCOPY parameters. The following is a

sample EXEC statement:

PGM=DFSUOCU0,PARM=(copy_type,input_library,target_library,work,size,list)

copy_type

Specifies the library to be copied. Copy-type can be the ACB, FORMAT,

MATRIX, or MODBLKS library.

input_library

Defines the library ddnames to be used as input.

Parameter Meaning

S IMS staging library (IMSACB, FORMAT MATRIX, or MODBLKS)

I User input library (IMSACBI, FORMATI, or MODBLKSI)

The I parameter allows you to use an input library other than the staging library.

target_library

Defines the library ddnames to be used for output.

Parameter Meaning

A IMS A library (IMSACBA, FORMATA, MATRIXA, or

MODBLKSA)

B IMS B library (IMSACBB, FORMATB, MATRIXB, or

MODBLKSB)

G Target library (inactive) determined by the utility, using the

OLCSTAT data set. The target is the library not currently in use

by the IMS online system.

O User output library (IMSACBO, FORMATO, MATRIXO, or

MODBLKSO)

Procedure Statement

234 Utilities Reference: System

|
|
|
|

|

|

|

|
|
|
|
|

|

|
|
|

|
|

||

||

||

|

|
|

||

||
|

||
|

||
|
|

||
|

U Target library (inactive) determined by the utility, using the

MODSTAT data set. The target is the library not currently in use

by the IMS online system.

Recommendation: During online operation, avoid using the A or B parameter

for the output library because an incorrect choice could cause IMS to overlay

the active library.

 The O parameter allows you to select a target data set other than the active or

inactive data set.

 Recommendation: Specify the U parameter or an IMS that supports local

online change. G is recommended for an IMSplex that supports global online

change.

work

Optional parameter that passes the work parameter to the IEBCOPY utility. The

work parameter passes the number of bytes of virtual storage to request for a

work area to hold for directory entries, internal tables, and I/O buffers.

size

Optional parameter that passes the size parameter to the IEBCOPY utility. The

size parameter specifies the maximum number of bytes of virtual storage that

the IEBCOPY utility can use as a buffer.

 This parameter can only be specified if the work parameter is also specified.

list

Optional parameter that passes the list parameter to the IEBCOPY utility.

LIST=NO suppresses IEBCOPY IEB1541 messages that are issued for each

member that is successfully copied.

 This parameter can only be specified if the work and size parameters are also

specified.

DD Statements

IMSACB DD

IMSACBA DD

IMSACBB DD

Defines the staging, active, or inactive ACBLIB.

FORMAT DD

FORMATA DD

FORMATB DD

Defines the staging, active, or inactive MFS format library.

OLCSTAT DD

Defines the global online change status data set name for an IMS enabled for

global online change. The OLCSTAT data set is similar to the MODSTAT data

set used for local online change. The OLCSTAT DD should not be defined if

local online change is enabled

MATRIX DD

MATRIXA DD

MATRIXB DD

Defines the staging, active, or inactive library containing the security tables.

MODBLKS DD

MODBLKSA DD

MODBLKSB DD

Defines the staging, active, or inactive system definition library.

EXEC Statement

Chapter 7. Online Change Utilities and Procedures 235

||
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

MODSTAT DD

MODSTAT2 DD

Defines the local online change modify status data set names. This is the active

data set (and inactive data set, if XRF is used) that online IMS should use at

initialization.

SYSUDUMP DD

Defines the dump data set for this program. The data set can reside on a

printer, tape, or direct-access device, or be routed through the output stream.

SYSPRINT DD

Defines the message output data set. The data set can reside on a printer,

tape, or direct-access device, or be routed through the output stream. This DD

statement must always be included.

SYSUT3 DD

Defines a work data set that is required.

SYSUT4 DD

Same function as SYSUT3.

COPYCTL DD

Defines a copy control data set to be built prior to calling IEBCOPY.

Invoking the Procedure

Figure 76 shows the JCL statements used to copy the staging libraries to the active

libraries.

INITMOD Procedure

The INITMOD procedure initializes the IMS.MODSTAT data set, for an IMS enabled

with local online change. The MODSTAT data set must be initialized before the first

IMS cold start or before any other cold start if IMS.MODSTAT does not contain the

current ddnames. If IMS is enabled for global online change, it will not use the

MODSTAT data set.

//* COPY MODBLKS TO MODBLKSA

//*

//STEP01 EXEC PROC=OLCUTL,SOUT=’*’,TYPE=MODBLKS,IN=S,OUT=U

//*

//* COPY MATRIX TO MATRIXA

//*

//STEP02 EXEC PROC=OLCUTL,SOUT=’*’,TYPE=MATRIX,IN=S,OUT=U

//*

//* COPY ACBLIB TO ACBLIBA

//*

//STEP03 EXEC PROC=OLCUTL,SOUT=’*’,TYPE=ACB,IN=S,OUT=U

//*

//* COPY FORMAT TO FORMATA

//*

//STEP04 EXEC PROC=OLCUTL,SOUT=’*’,TYPE=FORMAT,IN=S,OUT=U

//*

//* COPY FORMAT TO FORMAT WITH IEBCOPY PARAMETERS SPECIFIED

//*

//STEP05 EXEC PROC=OLCUTL,SOUT=’*’,TYPE=FORMAT,IN=S,OUT=U,WORK=2M,SIZE=2M,LIST=NO

//*

//*

Figure 76. JCL Used to Copy Staging Library to Inactive Libraries Indicated by MODSTAT

Data Set

DD Statements

236 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Recommendation: Do not define the MODSTAT DD cards if enabling global online

change, and the MODSTAT data sets will not have to be defined.

Stage two of system definition places the INITMOD procedure in the IMS.PROCLIB

procedure library. Figure 77 shows the JCL required for the INITMOD procedure.

Procedure Statement

The procedure statement must be in the form:

PROC SYS=,SYS2=,SF=,SOUT=A

SYS=

Specifies an optional second level dsname qualifier for those data sets which

are designated as “Mandatory Shared” in an XRF complex. When specified, the

parameter must be enclosed in quotes and must include a trailing period; for

example, SYS='IMSA.'

SYS2=

Specifies an optional second level dsname qualifier for those data sets which

are designated as “Optional Replicate” in an XRF complex. When specified, the

parameter must be enclosed in quotes and must include a trailing period; for

example, SYS2='IMSA.'

SF=

Specifies the suffix for the MODSTAT data set name, either SF= or SF=2.

SOUT=

Specifies the class assigned to SYSOUT DD statements.

DFSMREC Control Statement

The INITMOD procedure uses this control statement to initialize the MODSTAT data

sets. DFSMREC contains the data for the MODSTAT record. This control statement

is created at system definition and is placed in the IMS.PROCLIB procedure library.

The statement must be in the form:

0,MODBLKSA,IMSACBA,FORMATA

Values must be separated by commas, with no imbedded blanks.

0 Is the MODSTAT identifier, which is variable length with no limit. This positive

value, initialized to zero, is used by IMS internal processing for recovery of

security status during emergency restart processing. You can initialize it to zero

at any IMS cold start.

MODBLKSA

Is the ddname for the active IMS.MODBLKSA (B) data set that contains the IMS

system definition output. This also means that the ddname for the active

IMS.MATRIXA (B) has the same suffix (MATRIXA).

 If MODBLKSA is specified for example, IMS assumes that MATRIXA is the

active IMS.MATRIXA (B) library used for security maintenance utility output.

//INIT1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=&SOUT

//SYSUT2 DD DSN=IMS.&SYS.MODSTAT&SF,DISP=OLD

//SYSIN DD DUMMY

//SYSUT1 DD DISP=SHR,

// DSN=IMS.&SYS2.PROCLIB(DFSMREC)

Figure 77. JCL for the INITMOD Procedure

INITMOD Procedure

Chapter 7. Online Change Utilities and Procedures 237

|
|
|
|
|
|

|
|
|

|

IMSACBA

Is the ddname in the IMS procedure for the active IMS.ACBLIBA(B) library.

FORMATA

Is the ddname of the active IMS.FORMATA (B) data set which contains online

MFS definitions to be used as the format library by the online system.

MFS-supported terminals and the MFS language utility program require their

use. When one of these libraries is active (that is, in use by the online system),

the contents of IMS.FORMAT is copied to the other, or inactive, library for use

in the next online change run. Their ddnames must be FORMATA and

FORMATB, respectively. If MFS is not defined, IMS ignores this ddname.

If the IMS.MODSTAT record contents are lost and must be reconstructed, or if you

do not use default initialization by the INITMOD procedure, you must run an

IEBGENER job to construct its contents with the proper values for the online

change identifier and ddnames. The attributes for a new IMS.MODSTAT data set

should be RECFM=F and BLKSIZE=80.

Figure 78 shows initialization of the MODSTAT ID to 3, and the ddnames to

MODBLKSB, IMSACBA, and FORMATA.

 Alternatively, you can override SYSUT1 and SYSUT2 DD statements of the

INITMOD procedure to accomplish the same purpose as the preceding IEBGENER

sample job.

The DFS3499 message, which identifies the current values of the MODSTAT

record, follows the DFS994 checkpoint message. The DFS3410 message at

initialization also identifies the MODSTAT record data.

Global Online Change Utility (DFSUOLC0)

You can use the Global Online Change utility to initialize, recreate, or unlock the

OLCSTAT data set. For an IMSplex to be enabled for global online change, the

Global Online Change utility must be used to initialize the OLCSTAT before the first

IMS in the IMSplex cold starts the first time. The Global Online Change utility can

be used to recreate the OLCSTAT data set after an error that renders the OLCSTAT

data set unusable.

The Global Online Change commands, INITIATE OLC PHASE(PREPARE), followed by

INITIATE OLC PHASE(COMMIT), cause the inactive library to become the active library.

The OLCSTAT data set contains the global online change status, which includes the

modify id, the active online change libraries, a lock field, the last online change, and

a list of IMSs that are current with the online change libraries. When an IFP region

//INIT1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=&SOUT

//SYSUT2 DD DSN=IMS.&SYS.MODSTAT&SF,DISP=OLD

//SYSIN DD DUMMY

//SYSUT1 DD DISP=SHR,

// DSN=IMS.&SYS2.PROCLIB(DFSMREC)

./ ADD NAME=DFSMREC

./ NUMBER NEW1=10,INCR=10

0,MODBLKSA,IMSACBA,FORMATA

Figure 78. IEBGENER Job

INITMOD Procedure

238 Utilities Reference: System

|
|
|
|
|
|
|
|
|

|

is running, OLC commit stops because of existing active route code. Therefore, all

IFP regions must be terminated before commit.

The Online Change Copy utility supports an OLCSTAT DD statement, to identify the

global online change status data set name. The OLCSTAT data set is comparable

to the MODSTAT data set used by local Online Change. (See “Online Change Copy

Utility (DFSUOCU0)” on page 231.)

Attention: Use the recreate and unlock functions with extreme caution. Use the

unlock function only if a series of errors has left the OLCSTAT data set locked and

no online change is in progress. If you inadvertently destroy valid OLCSTAT data

set contents, global online change and initialization of additional IMSs fail until the

OLCSTAT data set is re-initialized.

Establish an OLCSTAT data set recovery procedure to deal with the loss of the

OLCSTAT data set. After every successful global online change, record the

following data:

v The modify id

v The active online change library suffixes

v The list of IMSs that are current with the online change libraries

If the OLCSTAT data set is destroyed, run the initialize function of the Global Online

Change utility with the recorded data to re-initialize the OLCSTAT data set.

The DFS3499 message, which identifies the current values of the online change

libraries in the OLCSTAT data set, follows the DFS994 checkpoint message. The

DFS3410 message at initialization also identifies the current online change libraries

from the OLCSTAT data set.

Related Reading: For more information about the OLCSTAT data set, see IMS

Version 9: Installation Volume 1: Installation Verification.

JCL Requirements for DFSUOLC0

The JCL shown in Figure 79 shows the statements used to invoke the DFSUOLC

procedure. This procedure is generated by stage 2 of system definition and placed

in the IMS.PROCLIB.

 The following JCL will run with the DFSUOLC procedure and invoke the utility.

//DFSUOLC0 JOB

//STEP1 EXEC DFSUOLC,FUNC=,ACBS=,MDBS=,FMTS=,MDID=,PLEX=,

//SYSIN DD *

/*

//

The format of the EXEC statement is:

//PROC FUNC=,ACBS=,MDBS=,FMTS=,MDID=,PLEX=,SOUT=A

//STEP1 EXEC PGM=DFSUOLC0,PARM=(&FUNC,&ACBS,&MDBS,&FMTS,&MDID,&PLEX)

//STEPLIB DD DSN=IMS.&SYS2..SDFSRESL,DISP=SHR

//SYSUDUMP DD SYSOUT=&SOUT

//OLCSTAT DD DSN-IMSPLEX.OLCSTAT,DISP=OLD

//SYSPRINT DD SYSOUT=&SOUT

//SYSIN DD DUMMY

Figure 79. DFSUOLC Procedure

INITMOD Procedure

Chapter 7. Online Change Utilities and Procedures 239

|
|
|
|
|
|
|

PGM=DFSUOLC0,PARM=(FUNC=&FUNC,ACBS=&ACBS,MDBS=&MDBS,FMTS=&FMTS,

MDID=&MDID,PLEX=&PLEX,SOUT=&SOUT)

The Global Online Change utility (DFSUOLC0) supports the following parameters.

ACBS Specifies the IMS JCL IMSACB DD statement suffix for the active

ACB library. The suffix can be A or B. A means IMSACBA is the DD

statement of the active library. B means IMSACBB is DD statement

of the active library.

FMTS Specifies the IMS JCL FORMAT DD statement suffix for the active

MFS FORMAT library. The suffix can be A or B. A means FORMATA

is the DD statement of the active library. B means FORMATB is the

DD statement of the active library. FORMAT contains online MFS

definitions to be used as the format library by the online system.

MFS-supported terminals and the MFS language utility program

require their use. This statement is required, even if no IMS in the

IMSplex uses the MFS format library.

FUNC Specifies the Global Online Change utility function to perform.

ADD

Add one or more IMS members to the list of IMSs that are

current with the online change libraries. Add an IMS when the

OLCSTAT data set suffered an error that made it unusable and

you are trying to recreate the OLCSTAT data set contents. The

IMSs to add must be specified with the SYSIN DD card.

 Add IMSs that are current with the online change libraries; for

example, IMSs that are currently up.

 Attention: If you add an IMS that is not current with the online

change libraries, and warm start that IMS, the warm start might

fail.

DEL

Delete one or more IMSs from the list of IMSs that are current

with the online change libraries.

 Delete an IMS when you never intend to bring the IMS up

again, so that the INITIATE OLC command does not need to be

specified with the FRCABND or FRCNRML keyword. The IMSs

to delete must be specified with the SYSIN DD card.

INI

Function to initialize the OLCSTAT data set. ACBS, MDBS,

FMTS, and MDID must also be specified. An optional list of one

or more IMSs can be specified with the SYSIN DD statement. If

no IMSs are specified with the SYSIN DD statement, the list of

IMSs is deleted from the OLCSTAT data set.

 The INI function is required before the first IMS in the IMSplex

cold starts the first time to initialize the OLCSTAT data set.

 If the OLCSTAT record contents are lost and must be

reconstructed, you must run the Global Online Change utility INI

function to construct its contents with the correct values for the

online change identifier and online change library ddnames. You

might also want to add IMSs that are current with the online

change libraries using the SYSIN DD statement. Keep track of

INITMOD Procedure

240 Utilities Reference: System

the current online change libraries and modify id so that you

can reconstruct the OLCSTAT data set contents in case of

failure.

UNL

Function to reset the OLCSTAT data set lock after all IMSs

failed during online change.

 The UNL function of the Global Online Change utility is required

to reset the OLCSTAT data set lock, in the case where all IMSs

in the IMSplex failed during an online change. Online change

sets a lock field in the OLCSTAT data set to prevent other IMSs

from initializing during the online change. IMS initialization fails

if a global online change is in progress (between the prepare

and commit phases), because the OLCSTAT data set lock is

set. When an IMS tries to initialize after all IMSs failed during

online change, IMS initialization is rejected because the

OLCSTAT data set lock is set. In this case, you must run the

Global Online Change utility with the UNL function to reset the

OLCSTAT data set lock. No IMS can initialize until the

OLCSTAT data set lock is reset. The UNL function should rarely

need to be used. It is needed only if all the IMSs fail during an

online change.

MDBS Specifies the IMS JCL MODBLKS DD statement suffix for the active

MODBLKS data set and the IMS JCL MATRIX DD statement suffix

for the active MATRIX data set. The suffix can be A or B. A means

MODBLKSA and MATRIXA are the DD statements of the active

libraries. B means MODBLKSB and MATRIXB are the DD

statements of the active libraries.

MDID Specifies the modifyid (online change status identifier) for the INI

function. This should be initialized to zero to indicate that the

number of global online changes performed is zero. The modifyid is

used to determine whether an IMS was down for one or more

online changes and to determine the kind of restart IMS can

perform. The modifyid is used by IMS internal processing:

v To determine whether IMS must cold start.

If an IMS participated in the last global online change, its

modifyid matches the modifyid in the OLCSTAT data set. This

IMS is allowed to warm start. If an IMS did not participate in the

last global online change, its modifyid does not match the

modifyid in the OLCSTAT data set. It is permitted to warm start if

its restart type does not conflict with the last online change that

was performed. If the IMS was down for two or more global

online changes, it must cold start.

v To recover security status during emergency restart processing.

PLEX Specifies a 1-5 character identifier that specifies the XCF CSL

IMSplex group name for the UNL function. PLEX is required for the

UNL function. All OM, RM, SCI, IMS, and so on, IMSplex members

that are in the same IMSplex sharing group sharing either data

bases or message queues must specify the same identifier. The

same identifier must also be used for the IMSPLEX= parameter in

the CSLSIxxx, CSLOIxxx, CSLRIxxx and DFSCGxxx PROCLIB

members.

SOUT Specifies the class assigned to SYSOUT DD statements.

INITMOD Procedure

Chapter 7. Online Change Utilities and Procedures 241

The STEPLIB DD statement identifies the IMS.SDFSRESL. The

IMS.SDFSRESL contains the IMS required modules. This

IMS.SDFSRESL must be the highest level available in the IMSplex.

 The SYSUDUMP DD statement defines the dump data set for this

program.

 The SYSPRINT DD statement defines the message output data set.

 The OLCSTAT DD statement identifies the OLCSTAT (global online

change status) data set name. The OLCSTAT DD statement is

required.

 The SYSIN DD statement contains the list of IMSs to define, add,

or delete. Specify one IMS ID per line.

 The SYSIN DD statement specified with the ADD function adds one

or more IMSs to the existing list of IMSs in the OLCSTAT data set.

 The SYSIN DD statement specified with the DEL function deletes

one or more IMSs from the existing list of IMSs in the OLCSTAT

data set.

 The SYSIN DD statement specified with the INI function defines a

new list of IMSs. If IMS records already existed, they are wiped out.

Examples of Global Online Change

Global Online Change utility Example 1

The following example shows the JCL for the Global Online Change utility to

initialize the OLCSTAT data set before the first IMS cold starts the first time.

//DFSUOLC0 JOB

//STEP1 EXEC DFSUOLC,FUNC=INI,ACBS=A,MDBS=A,FMYS=A,MDID=0

//SYSIN DD *

/*

//

Global Online Change Utility Example 2

The following example shows the JCL for the Global Online Change utility that

initializes the OLCSTAT data set header. You should rarely need to include a list of

IMSs when initializing the OLCSTAT data set header. For example, if the OLCSTAT

data set became unusable, you would have to initialize the OLCSTAT header. If you

know which IMSs are current with the online change libraries, you could include

those IMSs in the list. If IMSIDs are not specified, no IMSID will be listed on the

OLCSTAT data set record.

//DFSUOLC0 JOB

//STEP1 EXEC DFSUOLC,FUNC=INI,ACBS=A,MDBS=A,FMTS=A,MDID=0

//SYSIN DD

IMSA

IMSB

/*

//

INITMOD Procedure

242 Utilities Reference: System

Part 3. Log Utilities

Chapter 8. Dynamic SVC Utility (DFSUSVC0) 245

Restrictions for DFSUSVC0 . 245

Input and Output for DFSUSVC0 245

Return Codes for DFSUSVC0 245

DFSUSVC0 JCL Requirements 246

EXEC Statement . 246

DD Statements . 246

Examples of DFSUSVC0 . 246

Chapter 9. Log Archive Utility (DFSUARC0) 249

OLDS Archive . 249

Batch DASD Log Data Set Archive 250

Optional Functions for DFSUARC0 250

Creating an RLDS (Recovery Log Data Set) 250

Omitting Log Records on SLDS 251

Copying Log Records into User Data Sets 251

Specifying User Exit Routines 251

Specifying Forced End of Volume (EOV) 251

Input for DFSUARC0 . 251

OLDS Input . 251

SLDS Input . 252

Output for DFSUARC0 . 252

JCL Requirements for DFSUARC0 254

DD Statements . 254

Utility Control Statements for DFSUARC0 256

SLDS Statement . 256

COPY Statement . 257

EXIT Statement . 259

Error Processing for DFSUARC0 259

Examples of DFSUARC0 . 260

Example 1 . 260

Example 2 . 260

Chapter 10. Log Merge Utility (DFSLTMG0) 263

Restrictions for DFSLTMG0 . 263

Input and Output for DFSLTMG0 263

Controlling the Log Merge 263

Control Statement Format 264

JCL Requirements for DFSLTMG0 265

DD Statements . 265

Chapter 11. Log Recovery Utility (DFSULTR0) 267

OLDS Recovery . 268

SLDS Recovery . 268

Input for DFSULTR0 . 268

Single Log Input . 268

Dual Log Input . 269

Output for DFSULTR0 . 270

Interim Log Error ID Record 271

Error Block Listing (SYSPRINT) 271

REP Mode Verification Messages 273

Dump of Data Record . 273

Active Region Messages . 274

© Copyright IBM Corp. 1974, 2004 243

||

||

||

JCL Requirements for DFSULTR0 275

DD Statements . 275

Utility Control Statements for DFSULTR0 277

CLS Mode–Close an OLDS from the WADS or NEXT OLDS 277

DUP Mode–Recover an OLDS or SLDS (Create an Interim Log) 278

REP Mode–Recover an OLDS or SLDS (Create a New Log) 279

PSB Mode—Print “Active PSBs” Report 280

Error Processing for DFSULTR0 280

Examples of DFSULTR0 . 281

Example 1 . 281

Example 2 . 281

Example 3 . 281

Example 4 . 282

Example 5 . 283

Example 6 . 283

Example 7 . 284

Example 8 . 284

Example 9 . 285

244 Utilities Reference: System

Chapter 8. Dynamic SVC Utility (DFSUSVC0)

The Dynamic Supervisor Call (SVC) utility allows you to install an updated version

of the IMS Type 2 SVC or DBRC Type 4 SVC without requiring an IPL of the z/OS

operating system by changing the z/OS SVC table to point to a new copy of the

SVC module.

This utility runs as a z/OS job.

The following topics provide additional information:

v “Restrictions for DFSUSVC0”

v “Input and Output for DFSUSVC0”

v “Return Codes for DFSUSVC0”

v “DFSUSVC0 JCL Requirements” on page 246

v “Examples of DFSUSVC0” on page 246

Restrictions for DFSUSVC0

The following restrictions apply to the Dynamic SVC utility:

v The JCL must contain a DFSRESLB DD statement that references an IMS

RESLIB.

v The updated SVC module (either IMS Type 2 SVC, DBRC Type 4 SVC, or both)

must be in an IMS RESLIB specified on the DFSRESLB DD statement.

v The IMS RESLIB must reflect the correct SVC number to be replaced. This value

is created by IMS system definition and is stored in the IMS RESLIB. You can

introduce an error by pointing to the wrong library where a different SVC number

(or even non-IMS SVC number) can be associated with this library. Check with

your system administrator before using this utility.

v The IMS RESLIB that contains the SVC numbers and the new SVC modules

must be an APF-authorized library (standard IMS installation).

v The utility program must reside in an APF-authorized library (usually the IMS

RESLIB, but this is not a requirement).

v No IMS image (control region, batch, or utility) that uses the IMS Type 2 SVC

can be active while attempting to update the Type 2 SVC module. The same

restriction does not apply to the DBRC Type 4 SVC module.

Input and Output for DFSUSVC0

The input to this utility is either the updated IMS Type 2 SVC module, the updated

DBRC Type 4 SVC module, or both. The updated SVC modules must reside in the

library that is pointed to by the DFSRESLB DD statement.

The utility determines which SVCs to update and dynamically changes the z/OS

SVC table to point to the new SVC modules.

Return Codes for DFSUSVC0

The following return codes are produced:

Code Meaning

© Copyright IBM Corp. 1974, 2004 245

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|

|

||

0 Dynamic installation was successful. All specified SVC routines

were successfully updated.

8 The installation of at least one of the specified SVC routines failed.

DFSUSVC0 JCL Requirements

The Dynamic SVC utility is executed as a standard z/OS job. You must supply the

following:

v A JOB statement

v An EXEC statement

v DD statements that define inputs

EXEC Statement

The EXEC statement must be in one of the following forms:

 //STEP001 EXEC PGM=DFSUSVC0

or

 //STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(2)'

or

 //STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(4)'

or

 //STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(2,4)'

The EXEC statement allows you to specify whether the IMS Type 2 SVC module,

the DBRC Type 4 SVC module, or both are to be updated. When SVCTYPE=(2) is

specified, the IMS Type 2 SVC module is updated. When SVCTYPE=(4) is specified,

the DBRC Type 4 SVC is updated. When SVCTYPE=(2,4) is specified, both the IMS

Type 2 SVC and the DBRC Type 4 SVC module are updated. If a value is not

specified for the SVCTYPE= parameter, the IMS Type 2 SVC module is updated by

default.

DD Statements

STEPLIB DD

Points to an authorized library that contains the actual DFSUSVC0 utility. The

authorized library should be in your IMS RESLIB).

//STEPLIB DD DSN=SOME.APF.AUTHORIZED.DATASET,DISP=SHR

DFSRESLB DD

Points to an authorized library that contains the updated SVC modules and the

IMS Type 2 and DBRC Type 4 SVC numbers.

//DFSRESLB DD DSN=SOME.IMS.SDFSRESL,DISP=SHR

Examples of DFSUSVC0

Figure 80 on page 247, Figure 81 on page 247, and Figure 82 on page 247 show

the JCL needed to replace the IMS Type 2 SVC and the DBRC Type 4 SVC.

Error Processing

246 Utilities Reference: System

||
|

||

|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

|

|
|

|

|

|
|
|

//SVCINIT JOB MSGLEVEL=1,TIME=1440

//STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(2)'

//STEPLIB DD DSN=SOME.APF.AUTHORIZED.DATASET,

// DISP=SHR

//DFSRESLB DD DSN=SOME.IMS.SDFSRESL,

// DISP=SHR

Figure 80. Example for Replacing IMS Type 2 SVC

//SVCINIT JOB MSGLEVEL=1,TIME=1440

//STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(4)'

//STEPLIB DD DSN=SOME.APF.AUTHORIZED.DATASET,

// DISP=SHR

//DFSRESLB DD DSN=SOME.IMS.SDFSRESL,

// DISP=SHR

Figure 81. Example for Replacing DBRC Type 4 SVC

//SVCINIT JOB MSGLEVEL=1,TIME=1440

//STEP001 EXEC PGM=DFSUSVC0,PARM='SVCTYPE=(2,4)'

//STEPLIB DD DSN=SOME.APF.AUTHORIZED.DATASET,

// DISP=SHR

//DFSRESLB DD DSN=SOME.IMS.SDFSRESL,

// DISP=SHR

Figure 82. Example for Replacing Both SVC Modules

Example

Chapter 8. Dynamic SVC Utility (DFSUSVC0) 247

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

||

248 Utilities Reference: System

Chapter 9. Log Archive Utility (DFSUARC0)

You can use the Log Archive utility (DFSUARC0) to produce an SLDS from a filled

OLDS or a batch IMS SLDS. The utility runs as a z/OS batch job, and multiple log

archive utility jobs can execute concurrently. When dual output is requested, the

SLDS consists of primary and secondary data sets.

The following topics provide additional information:

v “OLDS Archive”

v “Batch DASD Log Data Set Archive” on page 250

v “Optional Functions for DFSUARC0” on page 250

v “Input for DFSUARC0” on page 251

v “Output for DFSUARC0” on page 252

v “JCL Requirements for DFSUARC0” on page 254

v “Utility Control Statements for DFSUARC0” on page 256

v “Error Processing for DFSUARC0” on page 259

v “Examples of DFSUARC0” on page 260

OLDS Archive

The online IMS system writes log records to an OLDS in a wraparound fashion.

When an OLDS is filled, it can be copied to an SLDS using the Log Archive utility.

The SLDS can be on DASD or tape.

IMS notifies DBRC whenever an OLDS is either filled or closed or both. DBRC

updates the RECON data set to indicate that the OLDS is available to be archived.

Using the Log Archive utility, you can archive multiple OLDSs to a single SLDS as

long as the OLDSs being archived were created consecutively by IMS. The JCL

supplied to the utility defines which and how many OLDSs are to be archived. The

GENJCL facility of DBRC allows you to specify:

v Which OLDSs should be included in the created JCL

v That all OLDSs not yet archived should be included

If all the specified OLDSs are archived successfully, DBRC updates the RECON

data set to indicate that the OLDSs are now available for reuse by the online

system. If the Log Archive utility job fails, re-run it.

If you do not specify automatic archiving, you must create the JCL to run the utility.

If you specified automatic archiving, IMS calls the DBRC GENJCL function to

generate JCL for the utility when the specified number of OLDSs has been filled or

closed.

If the DBRC JCLOUT DD statement for the GENJCL output is directed to the

internal reader, the archive jobs are automatically started. Figure 83 on page 250

shows an overview of the Log Archive utility.

© Copyright IBM Corp. 1974, 2004 249

Related Reading: For more information on the GENJCL.ARCHIVE command, see IMS

Version 9: Database Recovery Control (DBRC) Guide and Reference.

Batch DASD Log Data Set Archive

IMS DB writes log records on an SLDS that can be on tape or DASD. This allows

an IMS batch user to log to DASD, create an SLDS, and later copy that SLDS to

DASD or tape. The input data set can be either single or dual. When the input is

from a DASD SLDS created with DBRC present, the Log Archive utility will notify

DBRC to update the existing SLDS record with the new SLDS information. You

must create the JCL for the archive job of a batch SLDS.

Optional Functions for DFSUARC0

The Log Archive utility provides the following optional functions. You must specify

these functions with utility control statements.

Creating an RLDS (Recovery Log Data Set)

You can request creation of an output data set containing all the log records needed

for DB recovery. The output data set is referred to as a recovery log data set

(RLDS). If the input data set contains records for DB recovery, the RLDS is known

to DBRC and is used in place of the SLDS by GENJCL when creating JCL for DB

recovery and change accumulation. If the input data set contains no records

needed for DB recovery, the RLDS is a null data set. In this case DBRC records the

data set name and volume serial number of the SLDS, in place of the RLDS

DSNAME and volume serial number, and then uses the SLDS for GENJCL instead

of the null RLDS.

Figure 83. Overview of the Log Archive Utility

Log Archive

250 Utilities Reference: System

Omitting Log Records on SLDS

Generally, the SLDS should contain all the log records from the OLDS, but if you

need to omit some types of log records from the SLDS, these log records must be

specified in an SLDS control statement, using the NOLOG parameter. The SLDS

must contain those records that might be needed for database recovery and IMS

restart. The Log Archive utility will issue an error message and terminate if a

required record type is specified to be omitted.

Copying Log Records into User Data Sets

The Log Archive utility can copy selected log records into multiple user data sets

directly. In SYSIN control statements, you can specify the log records to be selected

and the ddname of the data set to which the records are to be written.

Specifying User Exit Routines

You can specify multiple user exit routines for the archive utility. The Log Archive

utility passes control to each user exit routine at initialization, input log read, and

termination time. User exit routines can process the log records or create a data

set.

Specifying Forced End of Volume (EOV)

To ensure that corresponding volumes in a dual SLDS on tape contain the same

records (and consequently are interchangeable), the number of blocks to be written

on a volume can be specified. EOV will be forced to both SLDSs when the

specified number of log blocks have been written.

Input for DFSUARC0

The Log Archive utility has two types of input: OLDS and SLDS. The utility only

accepts log data sets created by the same release of IMS as the utility release

level.

OLDS Input

The OLDS used for input must have been successfully closed. The status in

RECON for the input OLDS must be 'ARCHIVE NEEDED'.

An error in a single OLDS causes the archive job to terminate. Run the Log

Recovery utility to recover the OLDS, and rerun the Log Archive utility.

If dual OLDSs were used during IMS online execution, both are used as input to the

Log Archive utility. If an error is encountered in the primary OLDS, the archive utility

switches to the secondary OLDS. If the record is found in the secondary OLDS, the

archive job continues. If an error is encountered in the same block, the archive job

terminates. Run the Log Recovery utility to recover the OLDS, and rerun the Log

Archive utility. If one dual OLDS is not available, for example the status is not

'ARCHIVE NEEDED', only the available OLDS is used as input. The unavailable

OLDS is ignored.

If dual OLDSs are used as input and an error exists in the first block of the primary

OLDS, the Log Archive utility terminates unsuccessfully. Sequence errors are

indicated on the first block of both OLDSs, even though the secondary OLDS might

be correct. The Log Archive utility uses the first block of the primary OLDS as an

anchoring point. If this block is in error, data collected from it cannot be verified by

Optional Functions

Chapter 9. Log Archive Utility (DFSUARC0) 251

comparison to the secondary OLDS. If errors exist on the first block of either OLDS,

run the Log Recovery utility to recover the OLDS, then rerun the Log Archive utility.

If multiple OLDSs are specified as the input OLDS, they must have been created

consecutively. OLDSs created by different IMS system executions cannot be input

at one time.

If any OLDS in the input was terminated at a recovery point (a recovery point

results at every /DBRECOVERY and /DBDUMP command that forces an OLDS switch),

the archive utility performs as follows:

v If at least one of the SLDSs and RLDSs is placed on DASD, the output data sets

are closed and the archive job terminates after processing any OLDS that

terminates at a recovery point. Remaining OLDS that might not have been

processed are still in a state of ARCHIVE NEEDED.

v If all SLDSs and RLDSs are placed on tape, IMS forces end of volume for all

SLDSs and RLDSs and the archive job continues using the next volume for the

SLDS and RLDS.

DBRC verifies the input OLDS. If there is an error in the OLDS specifications, the

Log Archive utility terminates with an error message.

SLDS Input

The SLDS used for input is the SLDS on DASD created in an IMS batch

environment. Also, this SLDS must have closed successfully. When DBRC=NO is

specified in the EXEC parameter, tape SLDS input is permitted. You can use the

SLDS of a previous archive and archive it again; however, this is not an intended

use.

Dual SLDSs can be used as input. If an error is encountered in the primary SLDS,

the Log Archive utility switches to the secondary SLDS. If the record is found on the

secondary SLDS, the archive job continues. An error in a single SLDS or errors in

the same block in dual SLDSs terminates the archive job. Run the Log Recovery

utility to recover the SLDS and rerun the Log Archive utility.

Output for DFSUARC0

In addition to the SLDS, the optional RLDS, and the user data set produced as

output, the Log Archive utility also produces a listing in SYSPRINT. SYSPRINT

contains the following:

v A listing of control statements

v A listing of checkpoint time stamp IDs

v A listing of descriptive messages

v A listing of the result of the archive

Figure 84 on page 253 is an example of a SYSPRINT listing of control statements.

Input

252 Utilities Reference: System

Figure 85 is an example of a listing of checkpoint time stamp IDs.

 When checkpoint log records (X'18' and X'4001') are found, the SYSPRINT listing

prints one of the preceding output lines. Date, time, and checkpoint ID are shown

for both. Region-ID and program name are for X'18' records; checkpoint request

type is for X'4001' records, where XXX is the type of checkpoint requested in

English. Also shown is the volume serial of the output primary SLDS volume (v1)

and, if dual output, the secondary SLDS volume (v2) to which the checkpoint is

copied. Restart type is also given for the first X'4001' record where TTT is the type

of restart performed in English.

Figure 86 is an example of a SYSPRINT listing of descriptive messages.

 Figure 87 on page 254 shows an example of a SYSPRINT listing of the result of the

archive.

********LOG ARCHIVE UTILITY CONTROL STATEMENT********

SLDS -

 NOLOG(10,16,5F,67,69) FEOV(08000)

COPY DDNOUT1(DATASET1) -

 RECORD(OFFSET(5) FLDTYP(X) VALUE(16) FLDLEN(1) COND(E)) -

 RECORD(OFFSET(5) FLDTYP(X) VALUE(50) FLDLEN(1) COND(E)) -

 RECORD(OFFSET(5) FLDTYP(X) VALUE(51) FLDLEN(1) COND(E)) -

 RECORD(OFFSET(5) FLDTYP(X) VALUE(52) FLDLEN(1) COND(E))

EXIT NAME(UEXIT01)

Figure 84. SYSPRINT Listing of Control Statements

 USER CHECKPOINT RECORD - yyyy.ddd hh:mm:ss.t CHKPT-id region-id prg-name (v1)(v2)

SYSTEM CHECKPOINT RECORD - yyyy.ddd hh:mm:ss.t chkpt-id (v1)(v2) CHECKPOINT XXX (RESTART TTT)

Figure 85. SYSPRINT Listing of Checkpoint Log Records

*** END OF VOLUME FORCED ON SLDS. PRIMARY(volser) SECONDARY(volser) ***

*** WRITE ERROR ON SLDS|USER|RLDS ddname ***

*** OUT-OF-SPACE on SLDS|USER|RLDS ddname ***

*** NO RECORD FOUND FOR SLDS|USER|RLDS ddname ***

Figure 86. SYSPRINT Listing of Descriptive Messages

Output

Chapter 9. Log Archive Utility (DFSUARC0) 253

JCL Requirements for DFSUARC0

The Log Archive utility executes as a standard z/OS job.

Requirement: A job statement, an EXEC statement, and DD statements that define

input and output are required.

EXEC

Defines the utility to be run and optional execution parameters. Its format is:

//STEP EXEC PGM=DFSUARC0

 PARM= ’nnnn, DBRC=nnn, IMSPLEX=imsplex_name’

PARM=

Indicates the subsystem identifier and whether DBRC is specified.

nnnn

Indicates a 1- to 4-character IMS subsystem identifier and must be

specified if the input data set is an OLDS. This is the same value as the

IMSID for the online IMS system that created the data in the OLDS.

DBRC=YES|NO

DBRC=NO (or N) can be specified to explicitly declare that DBRC is

not to be used for this execution of this utility.

 DBRC=YES (or Y) can be specified to explicitly declare that DBRC is to

be used for the execution of this utility.

 If DBRC= is not specified, YES is the default.

IMSPLEX=imsplex_name

Indicates which IMSplex DBRC should join. IMSPLEX= is an optional

parameter. See IMS Version 9: Database Recovery Control (DBRC)

Guide and Reference for detailed information about the IMSPLEX

parameter.

DD Statements

STEPLIB DD

Points to the program libraries that contains the Log Archive program and to

any user exit routines.

*** LOG ARCHIVE UTILITY (DFSUARC0) **hh:mm yy.ddd **

 COPIED LOG RECORDS

FROM DDNAME=ddname VOLSER=volser DDNAME=ddname VOLSER=volser

 (for primary input) (for secondary input)

 .

 . .

TO PRIMARY SLDS DSNAME=dsname

 VOLSER = volser volser volser

TO SECONDARY SLDS DSNAME=dsname

 VOLSER = volser volser volser

SLDS DOES NOT CONTAIN THE FOLLOWING LOG RECORDS:

 ’xx’ ’xx’ ’xx’ ’xx’

TO PRIMARY RLDS DSNAME=dsname

 VOLSER = volser volser volser

TO SECONDARY RLDS DSNAME=dsname

 VOLSER = volser volser volser

Figure 87. Listing of the Result of the Archive

JCL Requirements

254 Utilities Reference: System

DFSOLPnn DD (for primary OLDS)

DFSOLSnn DD (for secondary OLDS)

Describes the OLDS used for input. You can specify dual OLDSs. In the case of

dual OLDSs, the suffixes of the primary and secondary OLDS must match. The

value of nn (the suffix) is 00 through 99 and must be the same ddname that

was used when the log data was created by online execution. All OLDSs used

as input must have been used consecutively during an online execution but

they can be specified in any sequence in the DD statements. You can specify

between 2 and 99 read buffers for the DCB BUFNO keyword.

DFSSLDSP DD (for primary input SLDS)

DFSSLDSS DD (for secondary input SLDS)

Specifies the batch SLDS. Optionally, you can specify a dual SLDS for a batch

SLDS. A SLDS and an OLDS used for input are mutually exclusive. You can

specify 2 through 99 read buffers.

DFSSLOGP DD (for primary output SLDS)

DFSSLOGS DD (for secondary output SLDS)

Defines the SLDS used for output. Its format will depend on the device type

used. If the SLDS is on DASD, you must allocate sufficient space to contain the

log being archived. The SLDS block size can be specified and can be different

from the input data set block size. If not specified, the block size of the input

data set is used. The secondary SLDS is optional and specifies dual archiving.

If the input is a batch SLDS and the Log Archive utility is run with DBRC

present, dual output can be created only if dual SLDS records are already

known to DBRC.

 If dual SLDSs are being created, they can have different block sizes. However,

if FEOV is specified, it is ignored unless the block size of both data sets are

equal and both are allocated to tape. If tape is specified, it must have a

standard label. You can specify 2 through 99 write buffers.

 Restriction: Do not use the JCL parameter FREE=CLOSE on these DD

statements. The data sets are dynamically deallocated, and using

FREE=CLOSE can produce unpredictable results.

ddname DD (for either RLDS or user output data set, or both)

Defines either a user data set or recovery log data set (RLDS) or both. If the

data set is on DASD, you must allocate sufficient space to contain the records

being copied to it. The data set is created with RECFM=VB. The block size can

be specified and can be different from the block size of the input data set, but it

must be large enough to contain your longest record. If not specified, the block

size of the input data set is used. If dual data sets are being created, they can

have different block sizes. You can specify 2 through 99 write buffers.

SYSPRINT

Defines the output message data set.

SYSUDUMP

Defines the dump data set.

SYSIN DD

Specifies the control statements.

RECON1 DD

Defines the first DBRC (Database Recovery Control) RECON data set. This

RECON1 data set must be the same RECON1 data set used by the IMS

control region.

JCL Requirements

Chapter 9. Log Archive Utility (DFSUARC0) 255

|
|
|

RECON2 DD

Defines the second DBRC RECON data set. This RECON2 data set must be

the same RECON2 data set used by the IMS control region.

RECON3 DD

Defines the optional DBRC RECON data set used when an error is

encountered in RECON1 or RECON2. This RECON3 data set must be the

same RECON3 data set used by the IMS control region.

 Do not use these RECON data set ddnames if you are using dynamic

allocation.

Utility Control Statements for DFSUARC0

All control statements are optional. Use the control statements when:

v Using user exit routines

v Creating an RLDS

v Placing certain records into a user data set

v Eliminating certain records from being copied to the SLDS

v Forcing duplicate tape output volumes

There are three types of control statements, and each statement consists of an

operation code and parameters. The rules for using the control statement are:

v Control statements can be placed in columns 1 to 72 in free format. Parameters

can be in any sequence.

v Each operation code and parameter must be separated with a blank, a comma,

or a comment.

v Multiple lines can be used for a control statement. Continuation characters (+ and

−) can be placed between columns 1 and 72. If (+) is used, the lines are

concatenated without a blank. If (−) is used, the lines are concatenated with a

blank.

v The value of any parameter must be specified between single parentheses.

SLDS Statement

An SLDS statement specifies log record types that are not written to the SLDS. It

also specifies that end-of-volume is forced for tape output volumes. If omitted, all

log records are copied to the SLDS. Only one SLDS control statement is allowed.

The format of the SLDS control statement is:

�� SLDS

�

,

NOLOG(

n

)

FEOV(nnnnn)

 ��

NOLOG

Defines the log record types that are not to be copied to the SLDS. The value

of a NOLOG sub-parameter should be specified in hexadecimal, for example,

SLDS NOLOG (19,1A,1B).

 The SLDS must contain those records that might be needed for database

recovery and for system restart. The Log Archive utility issues an error message

and terminates if a required record type is specified to be omitted.

JCL Requirements

256 Utilities Reference: System

FEOV

Specifies duplicate output tape volumes. This parameter is only applicable in a

dual tape SLDS environment. It ensures that corresponding volumes in a

multivolume data set contain the same records (and consequently are

interchangeable).

 nnnnn indicates the number of blocks to be written to a tape SLDS. Each time

the blocks are written, a FEOV is issued for both the primary and secondary

SLDSs. The block number is specified in 5 decimal digits. If the block sizes of

both SLDSs are not equal, the FEOV parameter is ignored.

COPY Statement

The COPY statement is used to create an RLDS or a user data set during archive.

The format for the COPY statement is:

�� COPY DDNOUT1(nnnnnnnn) DDNOUT2(nnnnnnnn) RECORD �

�
 X E

(OFFSET(aaa)

FLDTYP

(

)

VALUE(bbb)

FLDLEN(ddd)

COND

(

)

)

(C)

(M)

(TY)

(TN)

(MTY)

(MTN)

(ETY)

(ETN)

�

� DBRECOV ��

The following abbreviations can be used in place of the keywords in the COPY

statement:

Keyword Abbreviation

OFFSET O

FLDTYP T

VALUE V

FLDLEN L

COND C

DDNOUT1

DDNOUT2

Identifies the ddnames of the data sets. DDNOUT2 only applies if dual copies

are being created. The DD statements must be included in the JCL. nnnnnnnn

is a ddname value.

RECORD

Identifies the conditions for selecting a record to be written to the specified data

set.

OFFSET(aaa)

Defines the beginning of the field to be tested in the record. The default is

position one of the record.

 aaa is the value and can be in the range from 1 up to and including the

length of the record under test. Maximum value is 32767 bytes. No

Utility Control Statements

Chapter 9. Log Archive Utility (DFSUARC0) 257

checking is performed to determine if the logical record length is exceeded.

The value specified in the OFFSET keyword is always expressed as relative

to byte 1.

FLDTYP(X)|(C)

Defines the type of data in the VALUE field. A value of X or C must be

specified.

 X defines the data to be treated as hexadecimal character pairs. The test

data is packed, two bytes into one, to form hexadecimal equivalents. X is

the default.

 C defines the data to be treated as EBCDIC.

VALUE(bbb)

Can be specified in hexadecimal with X or in EBCDIC with C. The value is

specified between quotation marks in EBCDIC. The quotation mark notation

is required when the character string contains a separator of blank or

comma. Any characters can be specified within the quotation marks.

(Double quotation marks within quotation marks represent a single

quotation mark.) If a minus sign is the last nonblank character, it is

assumed that the value is continued on the next line.

 Restriction: The value of bbb cannot exceed 255 EBCDIC or 510

hexadecimal characters.

 The length of this field is determined by the FLDLEN value and not by the

number of “nonnull” characters in this field.

FLDLEN(ddd)

Defines the number of characters to be used from the test field.

 ddd represents the actual number of bytes to be used, not the number of

characters specified in VALUE. The acceptable range of values for this field

is 1 to and including 255. The default is 1.

COND(x)

Defines the type of test and its relationship to other tests in the group. The

default is COND(E).

E Marks the last (or only) element in a test series. Any record control

statements appearing after this form a new series of tests. This allows

various tests to be performed on each record and each test series can

be used on different fields within the record.

M Indicates this is a multifield test; more than one test is to be made on

each input record. All tests in this series must be satisfied before final

output selection and processing of this record can begin.

T Causes the VALUE byte to be used as a “test under mask” value,

instead of a compare field. Only the first byte (two hexadecimal

characters if FLDTYP(X)) of the VALUE field will be used. If FLDTYP(C)

is used, the hexadecimal equivalent of the EBCDIC character is the test

value. If this parameter is used, the FLDLEN keyword must not be

specified and a default length of one is assumed.

Y Indicates that there must be a bit in the record test field for each

corresponding bit of the test byte for the “test under mask.” This is

equivalent to a “branch if ones” test.

N Indicates that there must not be a bit in the record test field for any of

the corresponding bits of the test byte for the “test under mask.” This is

equivalent to a “branch if zeros” test.

Utility Control Statements

258 Utilities Reference: System

MT

Defines a “test under mask” option with the properties of a multifield

test. This parameter must be used for a multifield test that starts with a

“test under mask” value.

ET

Signifies that a multifield test series ends with a “test under mask”

condition.

DBRECOV

Copies all log records needed for database recovery to the specified output

data set. This output data set is known to DBRC and is used by the GENJCL

process in lieu of the created SLDS when creating JCL for DB Recovery or

Change Accumulation. This output data set is the recovery log data set (RLDS).

If there are no records needed for DB recovery, the RLDS is a null data set. In

this case DBRC records the DSNAME and volume serial number of the SLDS,

in place of the RLDS DSNAME and volume serial number, and uses the SLDS

for GENJCL, instead of the null RLDS.

 DDNOUT1 is a required parameter on a COPY control statement. You can specify

as many RECORD parameters as needed in a COPY control statement. If no

RECORD parameter is specified, all log records are copied to the specified data

set. On a given COPY statement, the RECORD parameter and the DBRECOV

parameter are mutually exclusive. You can specify multiple COPY control

statements, but only one COPY statement with the DBRECOV parameter is

allowed. Two COPY statements must not specify the same output data set.

EXIT Statement

An EXIT statement specifies that a user exit routine is to be used.

The format of the EXIT statement is:

�� EXIT NAME(nnnnnnnn) ��

NAME(nnnnnnnn)

Specifies the member name of the user exit. The user exit routine is accessed

with a LOAD from the archive utility program; preferably link-edited into either

JOBLIB or STEPLIB.

 You can specify multiple EXIT control statements or multiple NAME parameters.

Error Processing for DFSUARC0

The Log Archive utility provides the following return codes:

Code Meaning

0 Archive processing completed successfully.

4 This return code is issued if one or both of the following events occur:

v Archive processing completed successfully, but not all OLDS were

archived. A recovery point was encountered and end of job was forced.

Rerun the Log Archive utility for the remaining unarchived OLDS. See

SYSPRINT messages.

v An OLDS specified as input to the archive utility was already archived

when this job ran. The SYSPRINT messages identify the OLDS that were

already archived.

Utility Control Statements

Chapter 9. Log Archive Utility (DFSUARC0) 259

8 Archive processing completed unsuccessfully. Messages DFS3263I or

DFS3062I indicate the reason.

U3274 ABEND—DBRC internal failure. Message DFS3274I plus various DSPxxxxx

messages indicate the reason.

Related Reading: Refer to IMS Version 9: Messages and Codes, Volume 1 for

descriptions of all error messages issued by DFSUARC0.

Examples of DFSUARC0

Example 1

The following example shows the JCL for the Log Archive utility using the COPY

control statement to create an RLDS:

//ARCHIVE JOB MSGCLASS=A,CLASS=A,MSGLEVEL=(1,1)

//*

//ARC1 EXEC PGM=DFSUARC0,PARM=’SYSA’

//STEPLIB DD DSN=IMS.&SYS2..SDFSRESL,DISP=SHR

/* COPY FROM 3 OLDS TO A SLDS */

/* RLDS AND A USER DATA SET ARE ALSO CREATED */

//DFSOLP00 DD DSN=OLP900,DISP=SHR,DCB=(BUFNO=20)

//DFSOLP01 DD DSN=OLP901,DISP=SHR,DCB=(BUFNO=20)

//DFSOLP02 DD DSN=OLP902,DISP=SHR

//DFSSLOGP DD DSN=SLDSP.D82001.N001,DISP=(,KEEP),

// UNIT=TAPE,VOL=(,,,99),LABEL=(,SL)

//RLDSDD1 DD DSN=RLDSP.D82001.N001,DISP=(,KEEP),

// UNIT=TAPE,VOL=(,,,99),LABEL=(,SL)

//USERDD1 DD DSN=USER.D82001.N001,DISP=(,KEEP),

// UNIT=3350,VOL=USER01,SPACE=(CYL,5)

//RECON1 DD DSN=RECON1,DISP=SHR

//RECON2 DD DSN=RECON2,DISP=SHR

//RECON3 DD DSN=RECON3,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSIN DD *

 COPY DDNOUT1 (RLDSDD1) DBRECOV

 /* THIS USER DATA SET CONTAINS */

 /* X’A5’, X’A6’, AND X’A7’ LOG RECORDS */

 COPY DDNOUT1 (USERDD1) -

 RECORD (O(5) T(X) V(A5) L(1) C(E)) -

 RECORD (O(5) T(X) V(A6) L(1) C(E)) -

 RECORD (O(5) T(X) V(A7) L(1) C(E))

 EXIT NAME (UEXIT01)

Example 2

The following example shows the JCL for the Log Archive utility using FEOV to

ensure consistency in the SLDS.

//ARCHIVE2 JOB MSGCLASS=A,CLASS=A,MSGLEVEL=(1,1)

//*

//ARC2 EXEC PGM=DFSUARC0,PARM=’SYSA’

//STEPLIB DD DSN=IMS.&SYS2..SDFSRESL,DISP=SHR

//* COPY FROM 2 OLDS TO DUAL SLDS */

//DFSOLP02 DD DSN=OLP902,DISP=SHR

//DFSOLP00 DD DSN=OLP900,DISP=SHR

//DFSOLS00 DD DSN=OLS900,DISP=SHR

//DFSOLS02 DD DSN=OLS902,DISP=SHR

//DFSSLOGP DD DSN=SLDSP.D82001.N001,DISP=(,KEEP),

// UNIT=TAPE,VOL=(,,,99),LABEL=(,SL)

//DFSSLOGS DD DSN=SLDSS.D82001.N001,DISP=(,KEEP),

// UNIT=TAPE,VOL=(,,,99),LABEL=(,SL)

//RECON1 DD DSN=RECON1,DISP=SHR

Error Processing

260 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

//RECON2 DD DSN=RECON2,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSIN DD *

 SLDS FEOV (08000)

 /* THE SLDS ARE FORCED EOV AFTER 8000 LOG BLOCKS */

 /* ARE WRITTEN. */

/*

Examples

Chapter 9. Log Archive Utility (DFSUARC0) 261

|
|
|
|
|
|
|
|

Examples

262 Utilities Reference: System

Chapter 10. Log Merge Utility (DFSLTMG0)

The Log Merge utility (DFSLTMG0) produces a data set by merging the system log

data sets (SLDS) from two or more IMS systems. The Log Merge utility identifies

log records based on a system clock value in the record, then merges them in

ascending order. The resulting data set is used as input to the Log Transaction

Analysis utility.

The Log Merge utility can merge up to nine IMS system logs. Each log is the output

of a uniquely identified IMS system running during the same time span. The order

of input to the Log Merge utility is LOG01, LOG02, LOG03, ..., LOG09.

DFSLTMG0 is placed in IMS.SDFSRESL during IMS system definition.

The following topics provide additional information:

v “Restrictions for DFSLTMG0”

v “Input and Output for DFSLTMG0”

v “JCL Requirements for DFSLTMG0” on page 265

Related Reading: You can use Knowledge-Based Log Analysis (KBLA) to build

JCL and execute DFSLTMG0. See “Using KBLA to Run a Job Against IMS Log

Records” on page 508 for more information.

Restrictions for DFSLTMG0

The Log Merge utility cannot use Common Queue Server (CQS) logs as input

because CQS log records have a different format from IMS log records.

Input and Output for DFSLTMG0

The input to the Log Merge utility consists of logs from up to nine separate IMS

systems and control statements. A log from any single system can consist of a

series of logs concatenated in time sequence. The utility only accepts input log data

sets created by the same release of IMS as the utility release level. Log records

must be from IMSs that are running on processors with a synchronized external or

internal clock to ensure that compatible system clock values between log records

are produced. The system clock value, called the time of day (TOD) clock, is an

8–byte field stored at the end of each log record.

DFSLTMG0 produces as output a merged data set of log records made between

the times specified with START and STOP control statements. This time is the

Universal Time Coordinated (UTC).

Restriction: Do not use merged output as input to the Database Recovery utility.

Controlling the Log Merge

To control the log output:

v Choose logs from the required systems you want to examine when using the Log

Transaction Analysis utility.

v Coordinate the series of input logs for each system so they cover a similar time

span.

© Copyright IBM Corp. 1974, 2004 263

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

v Specify a start time and stop time for Log Merge utility control statements if you

need to sample the cross-system processing for a particular time interval. Other

log activity is collected if it falls between the initial and final events present on the

first log.

v Specify the control statement with the keyword listed under Log Record Selection

to merge only certain types of log records.

Control Statement Format

START

Used to specify a start time. This statement must be present.

 Position Length Value

 1 5 START

 6 1 blank

 7 Variable yyddd,hhmmsstt[{+|-}HHMM] where any trailing digits of

hhmmsstt can be omitted and the optional time-zone

information following hhmmsstt contains:

+ or - Specifies the sign of the time-zone offset from

UTC (Universal Coordinated Time).

HH Specifies the number of whole hours of offset

from UTC. HH can be a numeric value from 0

to 14.

MM Specifies minutes of offset. MM can be 00, 15,

30, 45, or blank.

You only need to specify the optional time-zone

information if the offset to UTC on the day entered is

different from the current offset, for example due to a

daylight saving time change.

STOP

You must specify a stop time, which must be relative to the time field in LOG01.

 Position Length Value

 1 4 STOP

 5 1 blank

 6 Variable yyddd,hhmmsstt[{+|-}HHMM] where any trailing digits of

hhmmsstt can be omitted and the optional time-zone

information following hhmmsstt contains:

+ or - Specifies the sign of the time-zone offset from

UTC.

HH Specifies the number of whole hours of offset

from UTC. HH can be a numeric value from 0

to 14.

MM Specifies minutes of offset. MM can be 00, 15,

30, 45, or blank.

You only need to specify the optional time-zone

information if the offset to UTC on the day entered is

different from the current offset, for example due to a

daylight saving time change.

Log Record Selection

Use this control statement to merge only certain types of log records. The

Input and Output

264 Utilities Reference: System

format is free-form, starting in column 1. Any of the keywords in the following

list can be used, in any combination desired, with the following syntax

restrictions:

v BLANK, following a keyword terminates processing of this control statement.

v COMMA, following a keyword continues processing of this control statement.

Keyword Meaning

ALL All log record types are selected (this is the default if no

control statements are present).

MSG Selects all log records necessary for the Fast Path Log

Analysis utility (DFSILTA0); X'01', X'03', X'06', X'07', X'08',

X'3x' series, X'40', X'42', X'47'.

3X Selects all log records within the range; X'30' to X'3F'.

XX Where XX is the log record type selected.

JCL Requirements for DFSLTMG0

EXEC

Executes the Log Merge utility DFSLTMG0.

//STEP0 EXEC PGM=DFSLTMG0

DD Statements

STEPLIB DD

Points to IMS.SDFSRESL, which contains the IMS nucleus and required action

modules.

//STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

PRINT DD

Indicates the SYSPRINT data set used for control statements and error

messages.

//PRINT DD SYSOUT=A

LOG01 DD

Describes the first input log data set.

//LOG01 DD DSNAME=IMS.LOGA,DISP=OLD,

// VOL=SER=XXXXXX,UNIT=TAPE

LOG02 DD

Describes the second input log data set.

//LOG02 DD DSN=IMS.LOGB,DISP=OLD,

// VOL=SER=XXXXXX,UNIT=TAPE

LOGOUT DD

Describes the output data set.

//LOGOUT DD DSN=IMS.LOGOUT,DISP=(,PASS),

// VOL=SER=YYYYYY,UNIT=TAPE,

// DCB=(RECFM=VBS,LRECL=6000,BLKSIZE=6008)

SYSIN DD

Describes the control statement data set.

//SYSIN DD *

 Example: Sample control cards. This example will introduce an error code of 8.

This occurs when the release level of the log input does not match the release

level of the utility. Message DFS3062I indicates the reason.

Input and Output

Chapter 10. Log Merge Utility (DFSLTMG0) 265

START 75332,0830

STOP 75332,1030

MSG

JCL Requirements

266 Utilities Reference: System

Chapter 11. Log Recovery Utility (DFSULTR0)

You can use the Log Recovery utility (DFSULTR0) to produce a usable log data set

from a log data set that contains read errors or that was not properly terminated.

The Log Recovery utility can recover both OLDSs and batch or online SLDSs. In a

Remote Site Recovery (RSR) environment, do not use this utility on the tracking

subsystem except in CLS mode to close the OLDS from the WADS.

This utility has four modes of operation:

CLS Closes an OLDS from the write-ahead data set (WADS) or from the next

OLDS.

 CLS mode processes only OLDSs. To close SLDSs, use DUP mode. In

CLS mode, a user-written logger exit routine (DFSFLGX0) is invoked during

the execution of the Log Recovery utility if the exit routine is present.

DFSFLGX0 is called once with an initialization call, once with a write call for

each log buffer of data that is written, and once with a termination call.

 Related Reading: Refer to IMS Version 9: Customization Guide for a

description of the Logger exit routine.

DUP Processes either SLDSs or OLDSs. DUP mode creates an interim log

containing error ID records, or a closed batch SLDS containing an

end-of-file mark.

 To safely close an SLDS, run DUP mode, then REP mode. Or, run DUP

mode with a non-zero ERRC and the log sequence number (LSN) returned

when the original error occurred. The system might issue message

DFS616I, which includes the LSN, at the point of failure. If DFS616I is not

issued, you must run DUP mode followed by REP mode to safely close an

SLDS.

 Attention: Do not run DUP mode without an LSN to close SLDSs in a

production environment, unless you also run REP mode. Using DUP mode

without also using an LSN or REP mode can result in loss of data.

REP Reads the interim log, replaces the error ID records with user-specified

data, and creates a new log.

PSB Permits the generation of an “active PSBs” report from a mix of OLDS and

SLDS.

In an RSR environment, if you use this utility in any mode other than CLS, you can

cause problems that might require you to reinstall the tracking subsystem.

If you lose a log volume on an active subsystem in an RSR environment, you might

be able to get a copy from the tracking subsystem. However, consider this only as a

last resort because the copy of the records might not be valid.

The valid data set attributes for the input log data set are:

v RECFM=VB

v BLKSIZE greater than 8

v LRECL greater than 4 and less than or equal to BLKSIZE minus 4

The following topics provide additional information:

v “OLDS Recovery” on page 268

© Copyright IBM Corp. 1974, 2004 267

v “SLDS Recovery”

v “Input for DFSULTR0”

v “Output for DFSULTR0” on page 270

v “JCL Requirements for DFSULTR0” on page 275

v “Utility Control Statements for DFSULTR0” on page 277

v “Error Processing for DFSULTR0” on page 280

v “Examples of DFSULTR0” on page 281

Related Reading: You can use KBLA to build JCL and execute DFSULTR0. See

“Using KBLA to Run a Job Against IMS Log Records” on page 508 for more

information.

OLDS Recovery

An OLDS must be closed before it can be archived or used as input to any utility.

The OLDS in use is closed automatically during normal shutdown or during an

emergency restart. It must be closed using the Log Recovery utility if an emergency

restart cannot close it, or when the OLDS is not closed because a write error is

detected.

The Log Recovery utility detects the following types of errors:

v I/O errors while reading the input log data set

v Errors in the log record or log block length

v Sequence errors in the log record, the log block, or the OLDS write time stamp

A stop time of zeros in the RECON indicates that the Log Recovery utility needs to

be run in CLS mode. It should be run before DUP if possible; however, it can be

run after REP.

SLDS Recovery

An SLDS must be closed before it can be used as input to any utilities or IMS

restart. The Log Recovery utility closes an SLDS created by a batch IMS system.

The utility detects the following types of errors:

v I/O errors while reading the input log data set

v Errors in the log record or log block length

v Log record sequence errors

Input for DFSULTR0

The Log Recovery utility uses both single and dual logs for input. The utility only

accepts input log data sets created by the same release of IMS as the utility

release level.

Single Log Input

In CLS mode, the utility:

1. Reads the input log

2. Produces a usable log if no errors are encountered

3. Produces a report of active PSBs when the WADS is used as input

In DUP mode, the utility:

Log Recovery

268 Utilities Reference: System

|

|

|
|
|
|
|

1. Reads the input log

2. Creates a usable log if no errors are encountered

3. Creates an interim log and an error listing if errors are encountered

Using the interim log produced by DUP mode, and in REP mode, the utility:

1. Reads the interim log

2. Copies good blocks to the output log

3. Replaces error blocks with good ones based on user-specified control

statements

4. Produces a usable log

In PSB mode, the utility:

1. Reads the input log

2. Produces a report of active PSBs

Dual Log Input

In the following discussion, the terms “primary” and “secondary” are used to identify

the two logs of a dual log data set.

In CLS mode, the utility:

1. Reads the input logs.

2. Produces a usable log if no errors are encountered at the same point on both

OLDS. If an error is encountered on one OLDS but not the other, an error listing

with an error block ID of NONE is produced and the utility continues processing.

In this case, the OLDS pair produced may be usable as input to an IMS restart

or archive (which also tolerate errors on only one of a pair of OLDS), but DUP

mode processing is needed to remove the errors.

3. Produces a report of active PSBs when the WADS is used as input.

In DUP mode, the utility:

1. Reads the primary log and copies the contents to a new system log. If it

encounters an error block, DUP mode positions a read operation on the

secondary log where the log error was encountered. DUP mode then reads the

secondary log and copies the contents to the same new system log. If an error

is now encountered on the secondary log (but not at the same position), DUP

mode positions a read operation on the primary log where the error was

encountered. This process continues until a complete new system log is

produced. Figure 88 on page 270 illustrates DUP mode and REP mode using

dual logging.

Input

Chapter 11. Log Recovery Utility (DFSULTR0) 269

2. Copies both error blocks onto the interim log and uniquely identifies the error

blocks when it encounters an error on both logs in the same position. The

interim log data set contains all valid log blocks, error blocks, and error ID

records.

3. Produces a character and hexadecimal listing of the error blocks to be used as

a guide for creating the user-specified control statements required by REP

mode.

Using dual logs for input, REP mode:

1. Reads the interim log created by DUP mode

2. Copies good blocks

3. Replaces error blocks with good ones based on control statements

4. Produces a usable log

If dual system log input is used and errors at the same position on both input logs

are not encountered, the log produced by DUP mode is correct and REP mode is

not required.

Output for DFSULTR0

In addition to the usable log, active PSB report, and the interim log, the Log

Recovery utility also produces the following:

v Interim Log Error ID Record

v Error Block Listing (SYSPRINT)

v REP mode verification messages

v Dump of data record

Figure 88. DUP Mode and REP Mode When Dual Logging Is Used

Input

270 Utilities Reference: System

Interim Log Error ID Record

Figure 89 illustrates the error ID record on the interim log produced from dual log

input. In this example, BLK2 of both the primary and secondary logs has errors. On

the interim log, the first error ID is for BLK2B and the second error ID is for BLK2A.

During REP mode, BLK2A or BLK2B is replaced with a good block based on control

statements. This example also shows the valid log after REP mode execution.

Error Block Listing (SYSPRINT)

The error block listing contains the errors found during execution of CLS mode and

DUP mode. It also contains verification messages resulting from REP mode

followed by a dump of the data record.

CLS Mode and DUP Mode Error Listing

pppppppppppppppppppp ON dddddddd BLOCK# bbbbbbb ** ERROR-ID=xnnnnn **

ssssssssssssssssssss--gghhiijj

The fields of the error block listing are:

pppppppppppppppppppp

Is a message prefix which identifies the type of error. The following types of

errors are identified:

PERMANENT I/O ERROR

The SYNAD exit for the input log was entered with an error other than a

data check or a length error or consecutive data checks occurred.

DATA CHECK

The SYNAD exit for the input log was entered with a data check error.

END-OF-DATA

The EODAD exit for the input log was entered. This is not an error but

rather an indication that processing for this input data set has ended. If the

swap to the alternate log is successful, processing will continue on the

alternate log.

BLOCK LENGTH ERROR

The length in the block descriptor word (BDW) is not valid.

Figure 89. Error ID Records On An Interim Log

Output

Chapter 11. Log Recovery Utility (DFSULTR0) 271

BLOCK TOD ERROR

The time-of-day (TOD) in the OLDS block suffix is not in ascending order.

BLOCK SEQ ERROR

The block sequence number in the OLDS block suffix is not in ascending

order.

RECORD LENGTH ERROR

The length in a record RDW is not valid.

RECORD SEQ ERROR

The record sequence number is not in ascending order.

dddddddd

Is the ddname of the data set where the error is encountered. The following list

shows possible ddnames:

IEFRDER

The primary input SLDS.

IEFRDER2

The secondary input SLDS.

DFSOLP

The primary input OLDS.

DFSOLS

The secondary input OLDS.

bbbbbbb

Is the relative block number (in hexadecimal) of the block in error. Blocks are

counted beginning with the first block of the first input volume, starting with

0000001.

x Is either an A or a B and identifies whether the error occurred on the current log

or the alternate log. When processing begins, the primary log is the current log

and the secondary log is the alternate log. If processing swaps to the alternate

because of an error, these roles reverse and processing continues. Errors on

the alternate log are always reported before errors on the current log.

nnnnn

Is a sequential number which identifies the error.

 xnnnnn is ’NONE ’ when CLS mode processing on dual OLDS encounters an

error on one OLDS but not on the other at some point. The reason for the error

listing under these conditions is to alert you to a situation where you might want

to use DUP mode to fix the errors even though the OLDS may be usable for

restart or archive without doing so.

ssssssssssssssssssss

Is a message suffix which further identifies the error. This suffix can be:

ORIGINAL BDW X'ssss'

The original block length in the BDW is not correct and has been changed.

The variable ssss is the original value expressed in hexadecimal notation.

RCD AT OFFST X'oooo'

A log record has an invalid length in the record descriptor word (RDW). The

variable oooo is the offset (relative to zero), in hexadecimal, from the

beginning of the block to the RDW in error.

ffffffff TO tttttttt

A block sequence, block TOD, or record sequence error has occurred. The

variable ffffffff is the last good value (or assumed good value). The variable

Output

272 Utilities Reference: System

tttttttt is the value in error. After a sequence error occurs, the block

sequence number, the block TOD, and the first record sequence number in

the next block are assumed to be good, and thus begin a new sequence on

which the remaining records will be checked. The Log Recovery utility

reports breaks in sequences of good data. You must analyze the reports

and determine what is valid data and what is invalid data.

gg Is either blank or NS. This is the first of several special suffix values. NS

applies only with dual SLDS input. The two input logs do not start with the

same block. It is not possible to swap to the 'alternate' log (or write to the

corresponding output data set) until the first block common to both input logs is

read.

hh Is either blank or CE. This is the second of the special suffix values. CE

indicates that this is a consecutive error. A second through nth error has

occurred without reading an intervening good block.

ii Is either blank or SA. This is the third of the special suffix values. SA indicates

that it is not possible to swap to the alternate log because the alternate log has

already either reached END-OF-DATA or encountered a PERMANENT I/O

ERROR.

jj Is either blank or SO. This is the last of the special suffix values. SO indicates

that during a swap to the alternate log the alternate log has either reached

END-OF-DATA or encountered a PERMANENT I/O ERROR. In this case

processing would normally return to the original current log. However, the

current log has already reached END-OF-DATA or encountered a PERMANENT

I/O ERROR. Therefore it is not possible to return to the current log.

REP Mode Verification Messages

During REP mode processing, a valid replacement of data on the interim log data

set causes the following message to be printed:

DATA REPLACED IN RECORD Axxxxx ... replacement data text...

where xxxxx is the error ID.

An error in the control statement format causes the following message to be

printed:

ERROR IN CONTROL STATEMENT FORMAT ... text of control statement...

Dump of Data Record

The dump of the data record following the verification messages is a hexadecimal

representation of the record. The hexadecimal representation is printed in four lines

per print line of the data record.

v The first line consists of the position within the block in error (starting with 1), and

the EBCDIC representation of the bytes.

v The second line indicates the first byte of each log record, using an asterisk.

v The third line consists of the zone half representation.

v The fourth line consists of the digit half representation.

The format of the printed output is shown in Figure 90 on page 274.

Output

Chapter 11. Log Recovery Utility (DFSULTR0) 273

Active Region Messages

When WADS is specified in CLS mode, the active PSBs at the time of the system

failure are printed. A line is printed for each PSB active at the time of failure. If

backout is required for the PSB, database names are listed under the PSB line in

the output. The format of this output is shown in Figure 91.

 The fields in the report have the following meanings:

PPPPPPPP The PSB name.

EEEEEEEE The EBCDIC portion of the recovery token.

HHHHHHHHHHHHHHHH The hexadecimal portion of the recovery token for

eight bytes (16 characters).

DDDDDDDD The database name.

SSSSSSSS The database name status. If no database names

are in the DDDDDDDD field, one of the following

messages appears:

 No database names found

 DBNAME list incomplete

NNN The Fast Path data set ID number that indicates the

area data set.

MMMMMMMM The message issued. One of the following

messages is issued:

 Backout is required

 Redo is required

 Databases are in doubt

The Active-Region report is also produced in PSB mode.

000001 q RRE b // EBCDIC representation

 * // first byte of a log record

 2000020049 00DDC40809 // high-order hexadecimal digit

 00000D0008 029954024F // low-order hexadecimal digit

Figure 90. Dump of Log Recovery Data Record

***************** RECOVERY REQUIREMENTS **********************

PSB NAME RECOVERY TOKEN DATABASE DSID ACTION Required

PPPPPPPPP

 EEEEEEEEHHHHHHHHHHHHHHHH

 DDDDDDDD NNN MMMMMMMM

 SSSSSSSS

END OF REPORT

Figure 91. Active Region Report

Output

274 Utilities Reference: System

JCL Requirements for DFSULTR0

The following JCL is required to run DFSULTR0. Examples of JCL using different

modes appear in “Examples of DFSULTR0” on page 281.

EXEC

Invokes the Log Recovery utility (DFSULTR0). The format must be:

//STEP EXEC PGM=DFSULTR0,PARM=’IMSID=iiiiiiii,

// DBRC=ddd, IMSPLEX=imsplex_name’

IMSID=iiiiiiii

Indicates the IMSID of the on-line system that created the input OLDS.

 Requirement: IMSID= is required for CLS mode. IMSID= is required for

DUP mode with OLDS input and DBRC=YES (specified or defaulted).

 IMSID= is ignored if it is specified but not needed.

DBRC=YES|NO

Indicates that the DBRC= default is not established by the IMSCTRL macro

during IMS system definition.

 DBRC=NO (or N) can be specified to explicitly declare that DBRC is not to

be used for this execution of this utility.

 DBRC=YES (or Y) can be specified to explicitly declare that DBRC is to be

used for this execution of this utility. DBRC=YES is required (and the

default) for CLS mode. DBRC=YES is optional for DUP and REP modes.

 Recommendation: If DUP mode is run with DBRC active, REP mode

should also be run with DBRC active

IMSPLEX=imsplex_name

Indicates which IMSplex DBRC should join. IMSPLEX= is an optional

parameter. See IMS Version 9: Database Recovery Control (DBRC) Guide

and Reference for detailed information about the IMSPLEX parameter.

To allow a parameter to default, the complete parameter (including the keyword)

must be omitted from the PARM field.

If no input parameters are specified, the default will be IMSID=(not specified) and

DBRC=YES.

DD Statements

The DD statements are only used if they are required for a given execution of the

Log Recovery utility.

Restriction: The following restrictions apply to the DD statements:

v If single logging is used and DBRC is active, only single logs can be presented

as input to the Log Recovery utility and only single logs can be created as output

from DUP and REP mode. Otherwise, DBRC abends result.

v If dual logging is used and DBRC is active, only dual logs can be presented as

input to the Log Recovery utility (except for PSB mode, which only accepts single

log input). Otherwise, incorrect DBRC RECON updates result. If dual logs are

presented as input, dual logs must be created as output from DUP and REP

mode. You must correctly specify primary and secondary DSNAMEs on the DD

statements.

v Specify OLDS input using the DFSOLP (and DFSOLS) DD statement.

v Specify SLDS input using the IEFRDER (and IEFRDER2) DD statement.

JCL Requirements

Chapter 11. Log Recovery Utility (DFSULTR0) 275

v Do not specify DFSOLP (and DFSOLS) DD statements in an execution that also

contains an IEFRDER (and IEFRDER2) DD statement.

v Do not specify DFSWADSn DD statements in an execution that also contains a

DFSNOLP (and DFSNOLS) DD statement.

v Do not specify DFSWADSn, DFSNOLP (and DFSNOLS), or any combination in

an execution that also contains an IEFRDER (and IEFRDER2) DD statement.

v Do not specify DFSPOLP (and DFSPOLS) DD statements in an execution that

also contains a DFSNOLP (and DFSNOLS) DD statement.

v Do not specify DFSWADSn DD statements in an execution that also contains the

keyword NOWADS.

Refer to the examples at the end of this chapter for valid DD statement

combinations.

STEPLIB DD

Points to IMS.SDFSRESL, which contains the Log Recovery utility's modules.

SYSPRINT DD

Defines the system messages data set.

SYSUDUMP DD

Defines the dump data set.

 SYSUDUMP statements are not included in the examples at the end of this

chapter.

DFSOLP DD

Defines the primary, or only, input OLDS.

DFSOLS DD

Defines the secondary input OLDS. Include this statement only when dual

OLDSs are used.

DFSWADSn DD

Defines the WADS data set, where n can be 0 through 9. All WADSs used

during online execution can be specified, but only those in use by the online

system at the time of failure are required. This DD statement is required when

closing an OLDS from a WADS. If no WADS were in use by the online system,

no DFSWADSn DD statements are used.

DFSNOLP DD

Defines the primary, or only, next-OLDS. The next-OLDS is the OLDS written by

the online IMS system immediately after the OLDS having a write error.

DFSNOLS DD

Defines the secondary next-OLDS. Include this statement only when dual

OLDSs are used.

DFSPOLP DD

Defines the primary OLDS that the IMS online subsystem used before the

specified OLDS which is being closed. If there is no prior OLDS, this DD

statement should not be used. This DD statement is used only when an OLDS

is being closed from the WADS.

DFSPOLS DD

Defines the secondary OLDS that the IMS online subsystem used before the

specified OLDS that is being closed. Include this statement only when dual prior

OLDS are used.

IEFRDER DD

Defines the primary, or only, input SLDS. All input SLDS logs for DUP mode

JCL Requirements

276 Utilities Reference: System

|
|

|
|

should have the same block size. (See “Example 9” on page 285 for

multivolume SLDS considerations when running DUP.) IEFRDER is used to

specify the concatenation of OLDS and SLDS logs for PSB mode. When

specifying a concatenation of logs, the names of the logs must be provided in

ascending order.

IEFRDER2 DD

Defines the secondary input SLDS. Include this statement only when dual logs

are used. Omit this statement if you do not need the data sets. Do not use DD

DUMMY or DSNAME=NULLFILE.

NEWRDER DD

Defines the primary, or only, output data set for the new or interim log.

NEWRDER2 DD

Defines the secondary output data set for the new or interim log. If DBRC is

active and dual logs are used as input, this statement is required. If DBRC is

not active, this statement is not required. Do not use DD DUMMY or

DSNAME=NULLFILE.

RECON1 DD

Defines the first DBRC RECON data set. This statement is not required if

dynamic allocation is used.

RECON2 DD

Defines the second DBRC RECON data set. This statement is not required if

dynamic allocation is used.

RECON3 DD

Defines the optional DBRC RECON data set used when an error is

encountered in RECON1 or RECON2. This RECON data set must be the same

RECON data set used by the control region. This statement is not required if

dynamic allocation is used.

SYSIN DD

Defines the control data set containing the log recovery input control

statements.

Utility Control Statements for DFSULTR0

Utility control statements for the Log Recovery utility differ depending on what mode

used. This section includes the utility control statements for the CLS mode, DUP

mode, REP mode, and PSB mode.

CLS Mode–Close an OLDS from the WADS or NEXT OLDS

The format of this control statement is:

�� CLS

NOWADS
 LSN=xxxxxxxxxxxxxxxx ��

CLS

Indicates CLS mode.

 Requirement: DBRC is required for CLS mode.

 When closing from the WADS, if a prior OLDS is available, the suffix from the

last block written to the prior OLDS (the block sequence number is passed to

DBRC at OLDS switch and stored in the RECON) is obtained. The block suffix

is used to establish a basis for sequence checking the OLDS being closed.

JCL Requirements

Chapter 11. Log Recovery Utility (DFSULTR0) 277

When closing from the WADS, either EOF or encountering the first error causes

an attempt to close the OLDS from the WADS. If a sequence error is found,

CLS mode fails. A listing containing the block at the first error is produced (see

“Example 1” on page 281).

 When closing from the next-OLDS, the sequence number of the first block of

the next-OLDS (BSN) is determined. The input OLDS is closed when block

BSN-1 is found on the input OLDS. If either EOF or an error is encountered

before block BSN-1 is found, CLS mode fails (see “Example 2” on page 281).

NOWADS

Suppresses the use of WADS when closing the OLDS. When this keyword is

used, the DFSWADSn DD card must be removed from the JCL. Otherwise,

user abend U3271 will result.

 Attention: Use NOWADS only when WADS is unavailable. Do not use this

keyword if possible; log records can be lost, data integrity can be compromised,

and recovery might not be complete.

LSN=xxxxxxxxxxxxxxxx

An optional parameter used in DUP or CLS mode processing to specify a log

sequence number that must be encountered on the input log. If the utility would

otherwise succeed (return code of 0 or 4) but the last log sequence number

encountered is less than xxxxxxxx, the utility ends with a return code of 8,

DBRC is not notified of a successful completion, and message DFS3271I is

issued. The value of xxxxxxxxxxxxxxxx must be 16 hexadecimal characters.

DUP Mode–Recover an OLDS or SLDS (Create an Interim Log)

The format of this control statement is:

�� DUP ERRC=nnnnn

LSN=xxxxxxxxxxxxxxxx
 ��

DUP

Indicates DUP mode.

ERRC=nnnnn

Is used to terminate DUP mode after a predefined number of I/O or sequence

errors are detected on the input log data set. nnnnn specifies the number of

errors (00000 through 99999). If no value is specified or the keyword is omitted,

the default is 99999. This field must contain 5 digits, with leading zeros.

 If an nnnnn of 00000 is specified, DUP mode is terminated and the interim log

is closed when the first error is encountered. The error ID record and error

blocks are not written on the interim log. REP mode is not required.

 ERRC=00000 is used to close an SLDS without having to run REP mode (see

“Example 9” on page 285). A listing can be produced that contains the block at

the first error. When the first error is encountered, additional checks are made

to ensure that no newer data exists beyond the first error.

 Attention: Use caution when running DUP ERRC=00000 in a production

environment. Because these checks are not foolproof, only specify

ERRC=00000 if you clearly understand the risks involved: closing the log in the

middle of good data, for example, can destroy good data. It is safer to run with

a value of nnnnn greater than 00000 and to also run REP mode.

 If an ERRC value greater than zero is specified, DUP mode is terminated when

either EOF is encountered or ERRC is reached (ERRC is tested before each

Utility Control Statements

278 Utilities Reference: System

|
|
|

|
|
|

block read). If errors are found, error ID records and error blocks are written on

the interim log and REP mode is required. A listing that contains the errors

found is produced.

 Specify an ERRC value greater than zero when recovering an OLDS or SLDS

(see “Example 3” on page 281 and “Example 5” on page 283).

LSN=xxxxxxxxxxxxxxxx

An optional parameter used in DUP or CLS mode processing to specify a log

sequence number that must be encountered on the input log. If the utility would

otherwise succeed (return code of 0 or 4) but the last log sequence number

encountered is less than xxxxxxxx, the utility ends with a return code of 8,

DBRC is not notified of a successful completion, and message DFS3271I is

issued. The value of xxxxxxxxxxxxxxxx must be 16 hexadecimal characters.

REP Mode–Recover an OLDS or SLDS (Create a New Log)

This mode reads the interim log created by DUP mode, copies good blocks, and

replaces error blocks with good ones based on the REP control statements. (Only

the primary input data set is read during REP mode). The output log data set is a

new OLDS or SLDS log. At least one control statement is required but any number

can be included (See “Example 4” on page 282 or “Example 6” on page 283).

The format of the control statement is:

�� REP SEQ=xnnnn POS=ppppp

SKIP

CLOSE

 DAT=dd ��

REP

Indicates REP mode.

SEQ=xnnnnn

Indicates the identification number of the block to be changed. The number is

provided in the DUP mode listing output. See “Error Block Listing (SYSPRINT)”

on page 271 for a description of the content of the error block listing.

POS=pppppp

Indicates the starting position, relative to 1, of the data being replaced.

SKIP

Indicates the output log will not contain this block of data.

CLOSE

Indicates the output log will be closed immediately before this error block.

 The REP mode CLOSE option should not be confused with the process of

closing an OLDS from the WADS or next-OLDS using CLS mode.

DAT=dd

dd is 2 to 50 hexadecimal characters (0 through 9, A through F) representing

the replacement data.

 The following rules apply to use of the REP statement:

v At least one control statement must be supplied.

v Unless the log is closed at a prior block, each error block identified in the DUP

mode output must have at least one control statement supplied for it.

v When multiple REP statements are provided, the identification numbers (SEQ=)

must be in ascending block number sequence.

Utility Control Statements

Chapter 11. Log Recovery Utility (DFSULTR0) 279

v If a block is identified as being in error even though the data is good, a control

statement must be supplied for the block. Replace the first 4 bytes of the good

block with the existing data. This is usually the case for the first block following

an I/O error.

v If dual logs are used in DUP mode, supply a statement for only one of the two

blocks in error, either Annnnn or Bnnnnn. The block not selected is ignored and

is not written to the output log.

v If the log being recovered is an OLDS which has not been properly closed from

either the WADS or next OLDS, the Log Recovery utility must be rerun in CLS

mode using the output of REP mode as input.

PSB Mode—Print “Active PSBs” Report

PSB mode is used when a previous execution of this utility issued the following

message:

DFS3272I X'47' LOG RECORD NOT FOUND.

ACTIVE PSB MESSAGES NOT GENERATED.

To get active region messages, the Log Recovery utility must be rerun in PSB mode

(see “Example 7” on page 284 and “Example 8” on page 284). PSB mode can be

used at any time to determine which PSBs are active.

PSB mode should not be run with an OLDS that is open. An incomplete listing

results.

The format of this control statement is:

�� PSB ��

PSB

Indicates PSB mode.

Error Processing for DFSULTR0

The Log Recovery utility provides the following return codes:

Code Meaning

0 Successful completion. If running CLS mode to terminate OLDS with

WADS, ignore any error messages.

4 Successful completion—this condition code is accompanied by the following

message:

DFS3272I X'47' LOG RECORD NOT FOUND.

ACTIVE PSB MESSAGES NOT GENERATED.

8 Unsuccessful completion. If the problem is due to a mismatch of the log

release level and the utility release level, message DFS3062I also

accompanies this error code.

These return codes can be tested by the COND= parameter on the EXEC

statement of a later job step.

Related Reading: Refer to the IMS Version 9: Messages and Codes, Volume 1 for

descriptions of all error messages issued by DFSULTR0.

Utility Control Statements

280 Utilities Reference: System

Examples of DFSULTR0

This section includes examples of the use of the Log Recovery utility.

Example 1

The following example shows how to close an OLDS from the WADS using CLS

mode. The input data set is closed in place. The DBRC RECON data set is updated

with the “close time.”

//EXAMPL01 JOB

//*

//DFSULTR0 EXEC PGM=DFSULTR0,PARM=’IMSID=iiiiiiii’

//*

//* NOTE - IMSID= is required

//* NOTE - Defaults are DBRC=YES

//* NOTE - DBRC=NO is not valid.

//*

//SYSPRINT DD SYSOUT=A

//DFSOLP DD Primary OLDS to be closed

//DFSOLS DD Secondary OLDS to be closed

//DFSPOLP DD Primary prior OLDS

//DFSPOLS DD Secondary prior OLDS

//DFSWADSn DD WADS used by on-line system

//RECONn DD DBRC RECON data set(s)

//* (can be dynamically allocated)

//SYSIN DD *

CLS

If no WADS were in use when the input OLDS or prior OLDS was created, remove

the DFSWADSn DD statement and add the NOWADS keyword to the control

statement.

If no prior OLDS are available, remove the DFSPOLP (and DFSPOLS) DD

statement.

Example 2

The following example shows how to close an OLDS from the next-OLDS using

CLS mode. The input data set is closed in place. The DBRC RECON data set is

updated and the flag is turned off.

//EXAMPL02 JOB

//*

//DFSULTR0 EXEC PGM=DFSULTR0,PARM=’IMSID=iiiiiiii’

//*

//* NOTE - IMSID= is required

//* NOTE - Defaults are DBRC=YES

//* NOTE - DBRC=NO is not valid

//*

//SYSPRINT DD SYSOUT=A

//DFSOLP DD OLDS to be closed from next-OLDS

//DFSNOLP DD next-OLDS

//RECONn DD DBRC RECON data set(s)

//* (can be dynamically allocated)

//SYSIN DD *

CLS

Example 3

The following example shows how to use DUP mode as the first of two steps in the

recovery of an OLDS. The input data set is copied to an interim data set. Interim

log records are created in the DBRC RECON.

Examples

Chapter 11. Log Recovery Utility (DFSULTR0) 281

//EXAMPL03 JOB

//*

//DFSULTR0 EXEC PGM=DFSULTR0,PARM=’IMSID=iiiiiiii’

//*

//* NOTE - IMSID= is required

//* NOTE - Defaults are DBRC=YES

//*

//SYSPRINT DD SYSOUT=A

//DFSOLP DD Primary OLDS to be recovered

//DFSOLS DD Secondary OLDS to be recovered

//NEWRDER DD Primary interim data set

//NEWRDER2 DD Secondary interim data set

//RECONn DD DBRC RECON data set(s)

//* (can be dynamically allocated)

//SYSIN DD *

DUP ERRC=nnnnn

If an ERRC value greater than zero is specified (the default is 99999), error blocks

are written to the output data set, and a listing is produced for the blocks in error.

REP mode is required to correct the errors and to remove error blocks. If no errors

are found and the execution is successful, REP mode is not required.

When ERRC=00000 is specified, NEWRDER (and NEWRDER2) is closed when

EOF or the first error is encountered on DFSOLP (and DFSOLS). If the execution is

successful, REP mode is not required. If the execution is unsuccessful, DUP mode

should be rerun with an ERRC value greater than zero and REP mode is required.

If the log being recovered is an OLDS which has not been properly closed from

either the WADS or next OLDS, the Log Recovery utility must be rerun in CLS

mode using the output of REP mode as input (or the output of DUP mode if no

errors were detected).

See “Example 4” for REP mode.

Example 4

The following example shows how to use REP mode as the second of two steps in

the recovery of an OLDS. The input data set is copied to a new OLDS. During the

copy process, error blocks are removed and the blocks in error are corrected as

directed by the REP control statements. The interim data set information in the

DBRC RECON is deleted. The original OLDS information in the DBRC RECON is

replaced by the output data set information.

//EXAMPL05 JOB

//*

//DFSULTR0 EXEC PGM=DFSULTR0,PARM=’IMSID=iiiiiiii’

//*

//* NOTE - IMSID= is required

//* NOTE - Defaults are DBRC=YES

//*

//SYSPRINT DD SYSOUT=A

//DFSOLP DD Primary interim data set

//DFSOLS DD Secondary interim data set

//NEWRDER DD Primary recovered OLDS

//NEWRDER2 DD Secondary recovered OLDS

//RECONn DD DBRC RECON data set(s)

//* (can be dynamically allocated)

//SYSIN DD *

REP SEQ=A00001 POS=000018 DAT=83 (EXAMPLE ONLY)

REP SEQ=A00002 SKIP

REP SEQ=A00003 CLOSE

Examples

282 Utilities Reference: System

See “Utility Control Statements for DFSULTR0” on page 277 for an example of the

formats of REP mode.

If the log being recovered is an OLDS which has not been properly closed from

either the WADS or next OLDS, the Log Recovery utility must be rerun in CLS

mode using the output of REP mode as input.

See “Example 3” on page 281 for DUP mode.

Example 5

The following example shows how to use DUP mode as the first of two steps in the

recovery of an SLDS. The input data set is copied to an interim data set. Interim log

records are created in the DBRC RECON.

//EXAMPL04 JOB

//*

//DFSULTR0 EXEC PGM=DFSULTR0

//* (PARM NOT REQUIRED - SEE NOTES BELOW)

//*

//* NOTE - IMSID= is ignored

//* NOTE - Defaults are DBRC=YES

//*

//SYSPRINT DD SYSOUT=A

//IEFRDER DD Primary SLDS to be recovered

//IEFRDER2 DD Secondary SLDS to be recovered

//NEWRDER DD Primary interim data set

//NEWRDER2 DD Secondary interim data set

//RECONn DD DBRC RECON data set(s)

//* (can be dynamically allocated)

//SYSIN DD *

DUP ERRC=nnnnn

If an ERRC value greater than zero is specified (the default is 99999), error blocks

are written to the output data set and a listing is produced for the blocks in error.

REP mode is required to correct the errors and to remove error blocks. If no errors

are found and the execution is successful, REP mode is not required.

See “Example 6” for REP mode. See “Example 9” on page 285 for DUP mode with

ERRC=00000.

Example 6

The following example shows how to use REP mode as the second of two steps in

the recovery of an SLDS. The input data set is copied to a new SLDS. During the

copy process, error blocks are removed and the blocks in error are corrected as

directed by the REP control statements. The interim data set information in the

DBRC RECON is deleted. The original SLDS information in the DBRC RECON is

replaced by the output data set information.

//EXAMPL06 JOB

//*

//DFSULTR0 EXEC PGM=DFSULTR0

//* (PARM NOT REQUIRED - SEE NOTES BELOW)

//*

//* NOTE - IMSID= is ignored

//* NOTE - Defaults are DBRC=YES

//*

//SYSPRINT DD SYSOUT=A

//IEFRDER DD Primary interim data set

//IEFRDER2 DD Secondary interim data set

//NEWRDER DD Primary recovered SLDS

//NEWRDER2 DD Secondary recovered SLDS

Examples

Chapter 11. Log Recovery Utility (DFSULTR0) 283

//RECONn DD DBRC RECON data set(s)

//* (can be dynamically allocated)

//SYSIN DD *

REP SEQ=A00001 POS=000018 DAT=83 (EXAMPLE ONLY)

REP SEQ=A00002 SKIP

REP SEQ=A00003 CLOSE

See “Utility Control Statements for DFSULTR0” on page 277 for an example of the

formats of REP mode.

See “Example 5” on page 283 for DUP mode.

Example 7

The following example shows how to generate a listing of “active PSBs” after

having received message DFS3272I X'47' LOG RECORD NOT FOUND. ACTIVE PSB

MESSAGES NOT GENERATED. PSB mode is used.

//EXAMPL07 JOB

//*

//DFSULTR0 EXEC PGM=DFSULTR0

//*

//* NOTE - IMSID= is ignored

//* NOTE - DBRC=YES is not valid

//* NOTE - Defaults are DBRC=NO

//*

//SYSPRINT DD SYSOUT=A

//*

//* NOTE - The first log data set in the IEFRDER DD statement should

be the latest log data set containing the X'47' record.

//*

//IEFRDER DD next or prior OLDS or SLDS

// DD next or prior OLDS or SLDS

// DD next or prior OLDS or SLDS ...
// DD latest OLDS or SLDS

//*

//*

//SYSIN DD *

PSB

The input logs must be concatenated in the sequence in which they were created,

and there must not be any overlap or gap in log record content.

Example 8

The following example shows how to generate a listing of “active PSBs” from a

concatenation of input logs (OLDS and SLDS). PSB mode is used.

//EXAMPL08 JOB

//*

//DFSULTR0 EXEC PGM=DFSULTR0

//*

//* NOTE - IMSID= is ignored

//* NOTE - DBRC=YES is invalid

//* NOTE - Defaults are DBRC=NO

//*

//SYSPRINT DD SYSOUT=A

//IEFRDR DD OLDS or SLDS ...
 DD OLDS or SLDS

Examples

284 Utilities Reference: System

...
// DD OLDS or SLDS

//* (see note below)

//SYSIN DD *

PSB

Requirement: The input logs must be concatenated in the sequence in which they

were created. If OLDS and SLDS are mixed, there must not be any overlap in log

record content.

Example 9

The following example shows how to close an SLDS created by IMS batch, using

DUP mode and ERRC=00000. The input data set is copied to, and closed in, the

output data set. The input SLDS information in the DBRC RECON is replaced by

the output data set information.

//EXAMPL09 JOB

//*

//DFSULTR0 EXEC PGM=DFSULTR0

//* (PARM NOT REQUIRED - SEE NOTES BELOW)

//*

//* NOTE - IMSID= is ignored

//* NOTE - Defaults are DBRC=YES

//*

//SYSPRINT DD SYSOUT=A

//IEFRDER DD Primary SLDS to be closed

//IEFRDER2 DD Secondary SLDS to be closed

//NEWRDER DD Primary output SLDS

//NEWRDER2 DD Secondary output SLDS

//RECONn DD DBRC RECON data set(s)

//* (can be dynamically allocated)

//SYSIN DD *

DUP ERRC=00000

When ERRC=00000 is specified, NEWRDER (and NEWRDER2) is closed when

EOF or the first error is encountered on IEFRDER (and IEFRDER2). If the

execution is successful, REP mode is not required. If the execution is unsuccessful,

DUP mode should be rerun with an ERRC value greater than zero and REP mode

is required.

See “Example 5” on page 283 for DUP mode with ERRC=nnnnn.

See “Example 6” on page 283 for REP mode.

If the input SLDS (IEFRDER, IEFRDER2) is a multiple volume tape data set, only

the last volume needs to be specified on the DD statement. In addition, the data set

name (DSN) on the output DD statement (NEWRDER, NEWRDER2) should be the

same as the input. If the execution is successful, only the volume information is

replaced in the DBRC RECON. ERRC=00000 is required.

Examples

Chapter 11. Log Recovery Utility (DFSULTR0) 285

286 Utilities Reference: System

Part 4. Analysis Utilities and Reports

Chapter 12. IMS Monitor Report Print Utility (DFSUTR20) 291

Restrictions for DFSUTR20 . 291

Input and Output for DFSUTR20 291

JCL Requirements for DFSUTR20 291

DD Statements . 292

Analysis Control Data Set 292

Specifying Distribution Redefinition 292

Example of DFSUTR20 . 293

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 295

Input and Output for DFSERA10 295

JCL Requirements for DFSERA10 296

DD Statements . 296

Utility Control Statements for DFSERA10 297

CONTROL Statement . 298

OPTION Statement . 299

Keywords . 300

END Statement . 303

COMMENTS Statement . 303

Examples for DFSERA10 . 303

Example 1 . 303

Example 2 . 304

Example 3 . 305

Example 4 . 305

Example 5 . 306

Example 6 . 307

Example 7 . 307

Example 8 . 308

Example 9 . 309

Record Format and Print Module (DFSERA30) 309

The Deadlock Report . 309

Utility Control Statements 315

Program Isolation Trace Record Format and Print Module (DFSERA40) . . . 316

DFSERA40 Utility Control Statements 317

Output . 317

DL/I Call Image Capture Module (DFSERA50) 320

Utility Control Statements 320

IMS Trace Table Record Format and Print Module (DFSERA60) 320

Utility Control Statements 320

Enhanced Select Exit Routine (DFSERA70) 321

Examples of Using the Enhanced Select Exit Routine (DFSERA70) 323

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 325

Restrictions for DFBUTLA0 . 326

Input and Output for DFBUTLA0 327

Format of Total Traffic and Exception Traffic Data Sets 327

Detail-Listing-of-Exception-Transactions Report 328

Summary-of-Exception-Detail-by-Transaction-Code (for IFP Regions) Report 333

Overall-Summary-of-Transit-Times-by-Transaction-Code (for IFP-Regions)

Report . 334

Overall Summary of Resource Usage and Contentions for All Transaction

Codes and PSBs Report . 334

Summary-of-Region-Occupancy Report 336

© Copyright IBM Corp. 1974, 2004 287

Summary-of-VSO-Activity Report 337

Recapitulation-of-the-Analysis Report 338

JCL Requirements for DFBUTLA0 339

DD Statements . 339

Utility Control Statements for DFBUTLA0 340

Transit Time Exception Specification 341

Analysis Parameter Statement Formats 341

Starting Date Specification (STARTDAY) 341

Ending Date Specification (ENDDAY) 341

Starting Time Specification (START) 342

Ending Time Specification (END) 342

Exceptional Transit Time Specification (TT) 342

Not Message-Driven Option (NON-MESSAGE or NOT-MESSAGE) 343

Detail-Listing-of-Exception-Transactions Report Size Limitation

(MAXDETAIL) . 343

DL/I Call Specification (CALLS) 343

Buffer Use Specification (BUFFER) 343

Data Space Use Specification (VSO) 344

Printed Page Line Count Specification (LINECNT) 344

Error Processing for DFBUTLA0 345

Chapter 15. Offline Dump Formatter Utility (DFSOFMD0) 347

Interactive Dump Formatter . 347

Migration Considerations . 348

Restrictions for DFSOFMD0 348

Environments for DFSOFMD0 348

IMS Online Environments 348

IMS Batch Environments . 349

Input and Output for DFSOFMD0 349

IPCS Execution . 349

DD Statements . 350

Chapter 16. Log Transaction Analysis Utility (DFSILTA0) 353

Restrictions for DFSILTA0 . 354

Input and Output for DFSILTA0 354

JCL Requirements for DFSILTA0 354

DD Statements . 356

Chapter 17. Statistical Analysis Utility (DFSISTS0) 359

Restrictions for DFSISTS0 . 359

Input and Output for DFSISTS0 359

Log Records . 360

SORT and EDIT PASS1 (DFSISTS0) 362

EDIT PASS2 (DFSIST20) 363

Report Writer (DFSIST30) 363

Message Select and Copy or List (DFSIST40) 365

Examples of DFSISTS0 . 365

Report Writer (DFSIST30) Output 365

Message Select and Copy or List (DFSIST40) Output 368

JCL Requirements for DFSISTS0 369

DD Statements . 371

Utility Control Statements for DFSISTS0 374

Transaction Code Control Statement 374

Symbolic Terminal Name Control Statement 374

Hardware Terminal Address Control Statement 375

VTAM Terminal Name Control Statement 375

288 Utilities Reference: System

Time Control Statement . 375

Nonprintable Character Control Statement 376

Part 4. Analysis Utilities and Reports 289

290 Utilities Reference: System

Chapter 12. IMS Monitor Report Print Utility (DFSUTR20)

Use the IMS Monitor Report Print utility (DFSUTR20) to take the data collected by

the IMS Monitor (DFSMNTR0) and print summary reports and distribution displays

of the data. The report formats and the nature of information in the reports are

identical or similar to those printed by the IMS DB Monitor Print utility (DFSUTR30).

The following topics provide additional information:

v “Restrictions for DFSUTR20”

v “Input and Output for DFSUTR20”

v “JCL Requirements for DFSUTR20”

v “Example of DFSUTR20” on page 293

Restrictions for DFSUTR20

The following restrictions apply to the IMS Monitor Report Print utility:

v If the Monitor does not collect the types of information usually found in a

particular report, that report, or the section of that report that would normally

contain the information, is not produced. For example, if no checkpoints occur,

only the headings for checkpoint are printed.

v In any report for which data is captured at the start and end of the Monitor trace

interval, the report displays the data captured at these intervals, and their

difference. Because data for these reports is needed at both intervals, these

reports are not generated if the IMS control region is terminated prior to the

termination of the Monitor trace.

v The Monitor must not be left on for more than 9999999 total DL/I calls if you plan

to use Region Summary, Region Wait, Run-Profile, or Call-Summary (DB)

reports. After 9999999 DL/I calls, truncation occurs in the various totals fields of

these reports.

Most of the terms used in reports printed by the IMS Monitor Report Print utility

(DFSUTR30) also appear in reports printed by the IMS Monitor Report Print utility

(DFSUTR20).

Input and Output for DFSUTR20

The Monitor Report Print utility runs as a batch program, with a sequential data set

on DASD or tape as input. The contents of this data set are created by the IMS

Monitor module (DFSMNTR0) in response to a /TRACE SET ON MONITOR command

during IMS online execution.

Related Reading: See Chapter 18, “Interpreting IMS Monitor Reports,” on page

381 for detailed information on output from the reports and an explanation of how to

read them.

JCL Requirements for DFSUTR20

// JOB

Initiates the job.

// EXEC

Specifies the program name. The statement must be in the form:

© Copyright IBM Corp. 1974, 2004 291

// EXEC PGM=DFSUTR20,REGION=4096K

DD Statements

STEPLIB DD

Points to IMS.SDFSRESL, which contains the IMS nucleus and required action

modules.

//SYSPRINT DD

Specifies the output data set that is to contain the reports and control

messages. It is usually coded as SYSOUT=A. The DCB parameters for this

data set are RECFM=FBA and LRECL=133. BLKSIZE can be provided on the

SYSPRINT DD statement and must be a multiple of 133. If the BLKSIZE is not

provided, a default value of 133 will be used.

//SYSUT1 DD

Specifies the input data set to be analyzed. It is a labeled sequential data set

written by the monitor module DFSMNTR0. (The ddname and dsname are

IMSMON in the IMS procedure.)

//ANALYSIS DD

Specifies the Analysis Control data set. This file must be in card image format.

Analysis Control Data Set

The Analysis Control data set determines which reports to print and allows for

distribution redefinition for the Distribution reports. See “Specifying Distribution

Redefinition” for information on how to redefine the distributions.

v If you are printing only the Call Summary report, include the ONLY DLI statement

in the Analysis Control data set for this run. The statement starts in card image

column 1.

v To generate the Call Summary report, include the DLI statement in the Analysis

Control data set for this run. If this statement is not included, the default option is

taken; that is, all reports except the Call Summary report are printed. The

statement starts in card image column 1.

v To generate the optional Distribution Appendix report, include the DIS statement

anywhere in the Analysis Control data set. If this statement is not included, only

the summary reports are printed. The statement starts in card image column 1.

If none of these options are selected, all reports except the Call Summary report

and the Distribution Appendix report will be printed.

Specifying Distribution Redefinition

The general format for specifying a user redefinition of a distribution is:

Dn n1,n2...

Dn

Starts in column 1 and is the distribution identifier (ID).

n1 through n9

Are each 8 digits or less, and each is a positive number between 0 and

99999999.

Each redefinition can occupy more than one statement, if necessary. The format for

continuation statements follows the z/OS rules:

v The last value on the first statement must be followed by a comma and at least

one blank.

JCL Requirements

292 Utilities Reference: System

v The first value on the continuation statement cannot start before column 2 nor

after column 10.

v Comments can be included if they are preceded by at least one blank.

Assume that the distribution for region elapsed execution time is identified as D1

and has a default definition of:

0 1 2 3 30 300 3000 30000 3000000 30000000 INF

It can be redefined to be:

0 1 2 5 30 40 50 60 3000000 30000000 INF

This redefinition is accomplished by the following record in the Analysis Control data

set:

D1 1,2,5,30,40,50,60,3000000,30000000

Because the numbers are positional parameters, the same redefinition could have

been obtained by specifying the following:

D1 ,,5,,40,50,60

Related Reading: Refer to IMS Version 9: Administration Guide: System for the

default values for each distribution identifier and explanation of the distributions

used by the various reports.

Example of DFSUTR20

The following JCL produces a complete set of reports, including the Call Summary

report, from a tape with a serial number of IMSDA1.

//TRACE JOB (969,6014),CHAPMAN,MSGLEVEL=(1,1),CLASS=A

//*

// EXEC PGM=DFSUTR20,REGION=512K

//STEPLIB DD DSN=IMS.&SYS2..SDFSRESL,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSUT1 DD DSNAME=IMSMON,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=IMSDA1

//ANALYSIS DD *

DLI CALL REPORT

DISTRIBUTION

/*

If the distribution for D30 and D2 are modified, the JCL is modified as follows:

 .

 .

 .

//ANALYSIS DD *

DLI CALL REPORT

DISTRIBUTION

D30 8000,24000,50000,75000

D2 1000,2000,3000,4000,5000,6000,7000,8000,9000

/*

JCL Requirements

Chapter 12. IMS Monitor Report Print Utility (DFSUTR20) 293

|
|
|
|
|
|
|
|
|
|
|
|

Example

294 Utilities Reference: System

Chapter 13. File Select and Formatting Print Utility

(DFSERA10)

Use the File Select and Formatting Print utility (DFSERA10) to assist in the

examination and display of data from the IMS log data set. The utility can:

v Print or copy an entire log data set

v Print or copy from multiple log data sets based upon control statement input

v Select and print log records on the basis of sequential position in the data set

v Select and print external trace data sets

v Select and print log records based upon data contained within the record itself,

such as the contents of a time, date, or identification field

v Allow exit routines to special process any selected log records

Use a series of control statements to define the input and output options, selection

ranges, and various field and record selection criteria.

The following topics provide additional information:

v “Input and Output for DFSERA10”

v “JCL Requirements for DFSERA10” on page 296

v “Utility Control Statements for DFSERA10” on page 297

v “Examples for DFSERA10” on page 303

v “Record Format and Print Module (DFSERA30)” on page 309

v “Program Isolation Trace Record Format and Print Module (DFSERA40)” on page

316

v “DL/I Call Image Capture Module (DFSERA50)” on page 320

v “IMS Trace Table Record Format and Print Module (DFSERA60)” on page 320

v “Enhanced Select Exit Routine (DFSERA70)” on page 321

v “Examples of Using the Enhanced Select Exit Routine (DFSERA70)” on page

323

Related Reading:

v To print CQS log records, use the CQSERA30 exit. See IMS Version 9: Common

Queue Server Guide and Reference for more information.

v Several Knowledge-Based Log Analysis (KBLA) utilities are run as exit routines

of DFSERA10, including DFSKBLA3, DFSKBLA6, DFSKBLA7, DFSKBLA8,

DFSKBLA9, DFSKBLAK, DFSKBLAS, DFSKDBC0, DFSKSCR0, DFSKMSC0,

and DFSKDVS0. You can use KBLA to build JCL and execute DFSERA10 with

these exit routines. For more information on these utilities, see Part 6,

“Knowledge-Based Log Analysis,” on page 501.

Input and Output for DFSERA10

All data input is processed using QSAM and can reside on either tape or

direct-access storage devices. Data set organization must be physical sequential.

The record format can be fixed or variable in length, blocked or unblocked, or of

undefined length. You can use multiple input and output data sets, and they can

reside on different device types.

The data set containing control information must have a record length of 80. These

statements are reproduced on the output print data set in the same format and

© Copyright IBM Corp. 1974, 2004 295

|

|
|

|
|
|
|
|
|

sequence as they are processed. If error conditions are encountered, error

messages are produced following the statement to which they apply.

Output data can be formatted and printed on the SYSPRINT data set, copied to a

specified data set unchanged, or both.

Data to be printed is formatted into 32-byte segments and displayed in both

hexadecimal and EBCDIC forms, with the hexadecimal relative offset value

preceding each segment.

The flow of control for the program passes through two major stages:

v Control statement processing, where construction of record test and selection

parameters takes place and control statement errors are diagnosed

v Record selection and output processing, where the input data is read, analyzed,

and compared with the selection parameters to determine the applicability of the

record for output

The first phase reads and examines the parameter statements and constructs the

required test or test series to create a test group. This test group is then used in

record selection when control passes to the next phase of the program. The second

phase reads the input data and determines the disposition by the results of each

test in the group. When the end of the input data is reached, either by encountering

an end-of-file condition or the satisfying the indicated record count, program control

shifts back to phase one, where the next group of tests is constructed.

JCL Requirements for DFSERA10

The File Select and Formatting Print utility executes as a standard operating system

job. You must define a JOB statement, an EXEC statement, and DD statements

defining input and output.

EXEC

Must be in the format

// EXEC PGM=DFSERA10

Alternatively, the EXEC statement can be included in a cataloged procedure.

DD Statements

STEPLIB DD

Defines a partitioned data set containing the EXIT routine modules. If EXIT

routines are not used or if the modules reside in LINKLIB, this statement is not

required.

SYSPRINT DD

Describes the output data set to contain the formatted print records and control

messages. It is usually defined as SYSOUT=A.

 DCB parameters specified for this data set are RECFM=FBA and LRECL=133.

Block size can be provided on the SYSPRINT DD statement and must be a

multiple of 133. The default is 133.

SYSIN DD

Describes the input control data set. This file must contain fixed-length

80-character records.

Input and Output

296 Utilities Reference: System

input or data DD

Defines the input data set to be examined to produce the formatted print

records.

 These data sets must be standard labeled files, either direct-access or tape.

They can be of any record format (F, FB, V, VB, VBS, or U), as long as they

are of DSORG=PS.

 If a file with RECFM=U is used, the DCB BLKSIZE parameter must be

specified. These files are processed using QSAM. Any file that QSAM supports

can be described as input.

 If a ddname is not specified in the CONTROL statement, the default ddname

used is SYSUT1.

output or data DD

Defines the optional output data set to contain the selected records.

 DFSERA10 sets the RECFM of this data set equal to the RECFM specified for

the input data set. This is also done for LRECL and BLKSIZE if not specified.

 The default ddname used is SYSUT4.

Utility Control Statements for DFSERA10

This utility uses three types of control statements. You can use an additional

statement type to provide titles or comments on the output listings. Keyword

operands on these statements can be extended to additional statements, to a

maximum of 9, by placing a nonblank character in position 72 and continuing the

parameter in position 16 of the next statement. Each full keyword has an

abbreviation that you can use.

The CONTROL statement defines the ddnames used for the input and output data

sets and the beginning and ending limits of the data set being scanned. This

statement is optional if the default parameter values are satisfactory.

The OPTION statement defines the test or series of tests performed on the data of

the candidate record to determine its qualification for selection. You can execute

one or more tests on each logical record by the appropriate number of OPTION

statements, creating the logical “OR” function. You can analyze records with the

logical “AND” function by creating a test series using the multifield test capability of

the COND parameter and the necessary number of OPTION statements. Use the

operands COND=M and COND=E to denote the beginning and ending, respectively,

of a series for multifield testing of a record.

Each OPTION function has its own output processing defaults. If you use multiple

OPTION functions to create a multifield test series, final output processing is

determined by the OPTION statement coded with the COND=E keyword.

Use the END statement as a delimiter to separate one group of tests (made up of

one or more OPTION statements) from subsequent groups of tests on the next data

set. When an END statement is encountered in the control input stream, the

construction of record selection parameters ceases and the processing of input data

records starts. Proper use of the END statement allows one execution of the utility

program to perform a varied number of tests on one or more IMS log data sets.

You can use the * or COMMENTS statement to include any information in

identifying tests or data. It has no effect on the utility program.

JCL Requirements

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 297

CONTROL Statement

The CONTROL statement is optional. If it is not specified, the SYSUT1 input file is

examined. The optional output data set defined on the SYSUT4 DD statement is

opened only if you specify the OPTION COPY function in the current group of tests.

This data set is used only if COND=E is also specified.

�� CONTROL CNTL

0

SKIP=

K=

aaa

16777215

,STOPAFT=

bbb

,H=

EOF

(bbb,E)

 �

�
SYSUT1

,DDNAME=

ddname

,D=

SYSUT4

,DDNOUT=

ddname

,O=

 ��

CONTROL or CNTL

Identifies the CONTROL statement.

SKIP= or K=

Defines the first record tested. All prior records are ignored.

 If this keyword is not specified, a default value of zero is used and the first

record on the input file is tested.

aaa

Must be specified in the range of zero to 99999999, and cannot have

embedded commas.

STOPAFT= or H=

Defines the last record to be tested. The current group of tests terminates when

this value has been reached by counting processed records.

 If this keyword is not specified, a default value of 16777215 is used.

 If the STOPAFT parameter uses the default value of 16777215 and message

DFS707I indicating EOF does not appear, the records after 16777215 have not

been processed.

bbb

Must be specified in the range of 1 to 99999999, with no embedded commas. If

the value zero is specified, one record is processed.

EOF

Denotes end-of-file condition. Use of the EOF parameter allows record

processing beyond the stated maximum of 99999999 records.

E Causes records to be counted for test sequence termination only if they satisfy

selection criteria. Otherwise, all records read (after the SKIP value) are counted.

DDNAME= or D=

Identifies the input data set for the current group of tests. A corresponding DD

statement must be supplied.

 If this keyword is not specified, a default of SYSUT1 is used and the

appropriate DD statement must be supplied.

DDNOUT= or O=

Identifies the optional output data set for the current group of tests.

Utility Control Statements

298 Utilities Reference: System

This keyword is used with the OPTION COPY function and is only required if a

ddname other than the default of SYSUT4 is required. (DDNOUT or the

presence of SYSUT4 will not cause this data set to be used; this data set will

be used only if OPTION COPY is specified with COND=E.)

OPTION Statement

The OPTION statement constructs one set of tests. One or more OPTION functions

can be specified in any combination desired to further define the selection criteria

and output processing performed against each input record. Except for EXITR and

DDNAME keyword operands, omitting the keyword operands causes all records

processed by phase 2 of this program to be displayed on the SYSPRINT data set

or transferred to the specified output data set.

�� OPTION PRINT

COPY

NEGOF

1

OFFSET=

aaa

O=

�

,

PARM=(

parm

)

 �

�
SYM=&xxxxxxxx

X

,FLDTYP=

C

,T=

,VALUE=

bbb

,V=

&xxxxxxxx

 �

�
1

,FLDLEN=

ddd

,L=

STOPAFT=

aaaaa

H=

STARTAF=

aaaaa

B=

 �

�
E

,COND=

A

,C=

M

T

Y

N

MT

Y

N

ET

Y

N

,EXITR=

name

,E=

 �

�
TRCPUNCH

,DDNAME=

DDNAME

,D=

N

,PRTSYS=

Y

,P=

 ��

A:

 I

IE

IM

ITY

ITN

IETY

IETN

IMTY

IMTN

Utility Control Statements

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 299

Options

Each option has two distinct functions:

1. Determines starting position for OFFSET keyword

2. Determines output processing to be performed

If individual options are combined to form a multifield test, the use of OFFSET

remains unchanged; however, output processing is determined by the OPTION

coded with the COND=E keyword.

PRINT

Causes all selected records to be displayed on the SYSPRINT data set.

COPY

Causes all selected records to be transferred to the specified output data set.

These records can also be displayed on the SYSPRINT data set by use of the

PRTSYS keyword.

NEGOF

Causes the OFFSET keyword value to be used as a negative offset from the

end of the log record. All records selected using this function are displayed on

the SYSPRINT data set.

Keywords

The following keywords are all optional:

OFFSET= or O=

Is used to define the location of the first byte of the field to be tested in the

record. The default is position one of the record.

aaa

Must be specified in the range from 1 up to and including the length of the

record under test. Maximum value is 32767 bytes. No checking is

performed to determine if the logical record length is exceeded.

 If you use DSECTs to locate values in control records or blocks, you must

adjust the starting value for the OFFSET parameters. Most DSECTs start

with a relative value of ZERO, while the value specified in the OFFSET

keyword is always expressed as relative to byte 1.

PARM=

Is used to pass parameters to the DFSERA70 exit routine. For a description of

the possible parameters, see “Enhanced Select Exit Routine (DFSERA70)” on

page 321.

SYM=

Is used to define a value as a symbol. This option replaces the VALUE keyword

and must not be used in the same element tests as the VALUE= keyword.

&xxxxxxxx

Is the unique name of a symbol. The '&' is the recognition character. The

'xxxxxxxx' is a 1- to 8-character symbol name. It must be unique for each

SYM= specified. This symbol can be used for a VALUE= option in one or

many of the following elements in a test series.

FLDTYP= or T=

Is used to define the type of data in the VALUE=field.

X Defines the data to be treated as hexadecimal pairs. The test data is

packed (2 bytes into one to form hexadecimal equivalents). This is the

default value.

Utility Control Statements

300 Utilities Reference: System

Example: If VALUE=D9D6D6E3E2C5C7 (14 bytes) is specified with the

FLDTYP=X parameter, the resultant VALUE= is: ROOTSET in EBCDIC or

D9D6D6E3E2C5C7 in hexadecimal; in either case, the length is only 7

bytes.

C Defines the data to be treated as EBCDIC. The test data is used as

punched in the card, with no alterations.

VALUE= or V=

Defines the characters of the test field. If FLDTYPE=X is specified, this data

must be entered as hexadecimal character pairs. For a “test under mask”

condition, a single pair must represent the hexadecimal value for the test. If

FLDTYP=C is specified, this data must be entered as EBCDIC characters. If the

character of blank or comma is to be included in this parameter, FLDTYP=X

must be used with the appropriate hexadecimal equivalent.

 Restriction: This option must not be used in the same element test as the

SYM= keyword.

bbb

Cannot exceed 255 EBCDIC or 510 hexadecimal characters. The length of

this field is determined by the FLDLEN= keyword value and not by the

number of “nonnull” characters in this field.

&xxxxxxxx

Is the symbol name of a preceding SYM= option. Each symbol has a value

associated with it that is determined by the SYM= option.

FLDLEN= or L=

Defines the number of characters to be used from the test field.

ddd

Represents the actual number of bytes to be used, not the number of

characters specified in the VALUE= keyword. The acceptable range of

values for this field is 1 to and including 255. The default is 1.

STOPAFT= or H=

Defines the number of records to be selected for a single test or a multifield

test. This statement can only be specified on the COND=E control statement for

each element test.

aaaaa

Can be from 0 to 32767 elements.

STARTAF= or B=

Defines the number of selected records to be skipped for a single or a multifield

test. This statement can only be specified on the COND=E control statement for

each element test.

aaaaa

Can be from 0 to 32767 elements.

COND= or C=

Defines the type of test and its relationship to other tests in the group. If this

keyword is not specified, the default is COND=E.

E Marks the last (or only) element in a test series. Any OPTION control

statements appearing after this form a new series of tests. This allows

various tests to be performed on each record and each test series can be

used on different fields within the record. Final output processing is

determined by the OPTION function defined with this keyword value.

Utility Control Statements

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 301

I Tests the VALUE= value. The record passes if the test fails. This option can

stand alone or precede the E, M, or T parameters.

M Indicates that this is a multifield test. All tests in this series must be satisfied

before final output selection and processing of this record begins.

T Causes the VALUE= byte to be used as a “test under mask” value, instead

of a compare field. Only the first byte (two hexadecimal characters if

FLDTYP=X) of the VALUE= field is used. If FLDTYP=C is used, the

hexadecimal equivalent of the EBCDIC character is the test value. If this

parameter is used, the FLDLEN= keyword must not be specified and a

default length of 1 is assumed.

Y Indicates that, for the “test under mask” to be considered satisfied, there

must be a bit in the record test field for each corresponding bit of the test

byte. This is equivalent to a “branch if ones” test.

N Indicates that, for the “test under mask” to be considered satisfied, there

must not be a bit in the record test field for any of the corresponding bits of

the test byte. This is equivalent to a “branch if zeros” test.

MT

Defines a “test under mask” OPTION as described in 302 but with the

properties of a multifield test as described in the M parameter. Because the

T parameter assumes a default value of 1,e, the MT parameter must be

used for a multifield test that starts with a “test under mask” value.

ET

Indicates that a multifield test series ends with “test under mask” condition.

EXITR= or E=

Specifies the entry point name of an exit routine to be given control when a

candidate record has satisfied all selection criteria for the current test.

 If multiple test groups have specified the same exit routine, an attempt is made

to load the routine into storage for each group; therefore, the routine should be

re-enterable. Upon reaching end of file on input, a final call is made to the exit

routine. You can determine if end of file was reached by checking for zeros in

the parameter field.

 Interface to the exit routine is as follows:

 ENTRY:

REGISTERS

R1 Contains a pointer to a parameter list.

R13 Points to an empty save area.

R14 Contains a return address.

R15 Contains the exit routine entry address.
PARMLIST

 The parameter list consists of two words, the first is a pointer to the

candidate record; the second (with the high order bit on) is a pointer to the

SYSPRINT data set DCB.

 EXIT:

 Upon return from the exit routine, register 15 is used to determine whether

or not processing is to continue on this record.

 A nonzero value indicates that no further processing is done on this record,

and selection tests start again against the next input record.

Utility Control Statements

302 Utilities Reference: System

A zero value indicates that this record is required, and output processing is

now determined based upon the last OPTION statement encountered

containing the COND=E keyword.

 If the EXITR keyword is omitted, processing continues as though a return

code value of zero had been received.

DDNAME= or D=

Defines the output data set used by the DL/I call trace log record retrieval

routine (DFSERA50) whenever it is specified as the user exit routine. A

corresponding DD statement must be supplied.

 If this keyword is not specified and DFSERA50 is the exit routine, a default of

TRCPUNCH is used and the appropriate DD statement must be supplied.

PRTSYS= or P=

Is used to display selected records on the SYSPRINT data set.

N Indicates that no printing of selected records is done.

Y Indicates that all records transferred to the output data set are also

formatted and printed.

This keyword can only be used with OPTION COPY function. N is the default.

END Statement

When you have defined all tests for the current input file, use the END statement to

execute those tests.

END is entered at position 1. Positions 10 and on can be used for comments.

COMMENTS Statement

The COMMENTS statement is optional. If used, the contents are displayed on the

SYSPRINT data set.

An asterisk (*) entered at position 1 indicates a comment.

Examples for DFSERA10

The following examples illustrate some of the ways you can use DFSERA10. Most

of the examples refer to the IMS log data set; however, you can use this utility with

any data set that can be processed using QSAM.

For clarity, all option keywords are specified in full form, and many are coded where

the default could be taken. Use of the short form and keyword defaults greatly

reduces the input required. Each example makes use of the COMMENTS statement

to describe the functions being performed.

Example 1

This example shows the JCL and control statements required to print or copy all log

records from an IMS log data set.

//EXAMPLE1 JOB

//*

// EXEC PGM=DFSERA10

//STEPLIB DD DSN=IMS.&SYS2..SDFSRESL,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=IMSLOG,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=123456.LABEL=(,SL)

//SYSUT4 DD DSN=EXAMPLE1.COPY1,DISP=(NEW,PASS),

Utility Control Statements

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 303

|
|
|
|
|
|
|
|

// UNIT=SYSDA,VOL=SER=IMSPAC,

// SPACE=(TRK,(3,1))

//SYSIN DD *

* CONTROL STATEMENT : DEFAULTS *

* INPUT = SYSUT1 *

* OUTPUT = SYSPRINT *

* SELECTION QUALIFIERS : *

* 1. DEFAULT = ALL INPUT RECORDS *

OPTION PRINT

END

* CONTROL STATEMENT : DEFAULTS *

* INPUT = SYSUT1 *

* OUTPUT = SYSUT4 *

* SELECTION QUALIFIERS : *

* 1. DEFAULT = ALL INPUT RECORDS *

OPTION COPY

END

/*

Example 2

This example shows two ways of selecting and printing all log records of a specific

type:

v Specifying one selection qualifier:TYPE X’16’ IN 5TH BYTE = (ALL /SIGN ON/OFF)

v Specifying two selection qualifiers: TYPE X’16’ IN 5TH BYTE = (LOG RECORD

TYPE) and FLAG X’01’ IN 6TH BYTE = 1 (/SIGN ON - ONLY)

//EXAMPLE2 JOB

//*

// EXEC PGM=DFSERA10

//STEPLIB DD DSN=IMS.&SYS2..SDFSRESL,DISP=SHR

//SYSPRINT DD SYSOUT=A

//LOGIN DD DSN=IMSLOG,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=123456,LABEL=(,SL),

//SYSIN DD *

--

* CONTROL STATEMENT : SPECIFIED *

* INPUT = LOGIN *

* OUTPUT = SYSPRINT *

* SELECTION QUALIFIERS : *

* 1. TYPE X’16’ IN 5TH BYTE = (ALL /SIGN ON/OFF) *

--

CONTROL CNTL DDN=LOGIN

OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E

END

--

* CONTROL STATEMENT : SPECIFIED *

* INPUT = LOGIN *

* OUTPUT = SYSPRINT *

* SELECTION QUALIFIERS : *

* 1. TYPE X’16’ IN 5TH BYTE = (LOG RECORD TYPE) *

* 2. FLAG X’01’ IN 6TH BYTE = 1 (/SIGN ON - ONLY) *

--

CONTROL CNTL DDN=LOGIN

OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=M

OPTION PRINT OFFSET=6,FLDTYP=X,VALUE=01,COND=ETY

END

--

/*

Examples

304 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example 3

This example shows how to print or copy two log record types, each containing a

field value (USERID) common to both, but residing at different offsets depending

upon the record type.

//EXAMPLE3 JOB

//*

// EXEC PGM=DFSERA10

//STEPLIB DD DSN=IMS.&SYS2..SDFSRESL,DISP=SHR

//SYSPRINT DD SYSOUT=A

//LOGIN DD DSN=IMSLOG,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=123456,LABEL=(,SL)

//LOGOUT DD DSN=EXAMPLE3.COPY1,DISP=(NEW,PASS),

// UNIT=SYSDA,VOL=SER=IMSPAC,

// SPACE(TRK,(3,1))

//SYSIN DD *

--

* CONTROL STATEMENT : SPECIFIED *

* INPUT = LOGIN *

* OUTPUT = SYSPRINT *

* SELECTION QUALIFIERS : *

* 1. LOG RECORD TYPE X’16’ *

* USERID IN 9TH BYTE (FROM BEGINNING OF RECORD) *

* 2. LOG RECORD TYPE X’50’ *

* USERID IN 12TH BYTE (FROM END OF RECORD) *

--

CONTROL CNTL DDNAME=LOGIN

OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=M

OPTION PRINT OFFSET=9,FLDTYP=C,VALUE=USERAAAA,FLDLEN=8,COND=E

OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=50,FLDLEN=1,COND=M

OPTION NEGOF OFFSET=12,FLDTYP=C,VALUE=USERAAAA,FLDLEN=8,COND=E

END

--

--

* CONTROL STATEMENT : SPECIFIED *

* INPUT = LOGIN *

* OUTPUT = LOGOUT *

* SELECTION QUALIFIERS : *

* * THE SAME AS FOR THE ’PRINT’ AND ’NEGOF’ OPTIONS *

* ABOVE, BUT SINCE THE ’COPY’ OPTION DEFINES AN OUTPUT*

* DATA SET OTHER THAN SYSPRINT, THIS OPTION MUST BE *

* CODED WITH THE ’COND=E’ KEYWORD. *

--

CONTROL CNTL DDN=LOGIN,DDNOUT=LOGOUT

OPTION PRINT OFFSET=9,FLDTYP=C,VALUE=USERAAAA,FLDLEN=8,COND=M

OPTION COPY OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E

OPTION NEGOF OFFSET=12,FLDTYP=C,VALUE=USERAAAA,FLDLEN=8,COND=M

OPTION COPY OFFSET=5,FLDTYP=X,VALUE=50,FLDLEN=1,COND=E

END

--

/*

Example 4

This example selects all specified log record types, each containing a common

userid value, and both print and transfer these records to the specified output data

set.

//EXAMPLE4 JOB

//*

// EXEC PGM=DFSERA10

//STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

//SYSPRINT DD SYSOUT=A

//LOGIN DD UNIT=TAPE,DISP=(OLD,KEEP),LABEL=(,SL),

//LOGIN DD DSNAME=IMSLOG,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=IMSPAC,LABEL=(,SL)

Examples

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 305

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//LOGOUT DD DSNAME=EXAMPLE4.COPY1,DISP=(NEW,PASS),

// UNIT=SYSDA,VOL=SER=IMSPAC,

// SPACE=(TRK,(3,1))

//SYSIN DD *

* CONTROL STATEMENT : SPECIFIED *

* INPUT = LOGIN *

* OUTPUT = (SYSPRINT AND LOGOUT) *

* * SINCE MULTIFIELD TESTS ARE BEING USED, *

* AND CONSIST OF MULTIPLE OPTION FUNCTIONS, *

* FINAL OUTPUT PROCESSING OF THE SELECTED RECORD *

* IS BASED UPON THE ’COPY’ OPTION AND ’PRTSYS=Y’ *

* KEYWORD BEING CODED WITH ’COND=E’. *

* SELECTION QUALIFIERS : *

* 1. USERID = USERBBBB *

* 2. LOG RECORD TYPES (X’16’,X’50’,X’51’,X’52’) *

CONTROL CNTL DDNAME=LOGIN,DDNOUT=LOGOUT

OPTION PRINT OFFSET=9,FLDTYP=C,VALUE=USERBBBB,FLDLEN=8,COND=M

OPTION COPY PRTSYS=Y,OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E

OPTION NEGOF OFFSET=12,FLDTYP=C,VALUE=USERBBBB,FLDLEN=8,COND=M

OPTION COPY PRTSYS=Y,OFFSET=5,FLDTYP=X,VALUE=50,FLDLEN=1,COND=E

OPTION NEGOF OFFSET=12,FLDTYP=C,VALUE=USERBBBB,GLDLEN=8,COND=M

OPTION COPY PRTSYS=Y,OFFSET=5,FLDTYP=X,VALUE=51,FLDLEN=1,COND=E

OPTION NEGOF OFFSET=12,FLDTYP=C,VALUE=USERBBBB,FLDLEN=8,COND=M

OPTION COPY PRTSYS=Y,OFFSET=5,FLDTYP=X,VALUE=52,FLDLEN=1,COND=E

END

/*

Example 5

This example copies selected log records to individual output data sets in one

execution of DFSERA10. All selected records are printed.

//EXAMPLE5 JOB

//*

// EXEC PGM=DFSERA10

//STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSNAME=IMSLOG,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=123456,LABEL=(,SL)

//LOGOUT1 DD DSNAME=EXAMPLE5.COPY1,DISP=(NEW,PASS),

// UNIT=SYSDA,VOL=SER=IMSPAC,

// SPACE=(TRK,(3,1))

//LOGOUT2 DD DSNAME=EXAMPLE5.COPY2,DISP=(NEW,PASS),

// UNIT=SYSDA,VOL=SER=IMSPAC,

// SPACE=(TRK,(3,1))

//LOGOUT3 DD DSNAME=EXAMPLE5.COPY3,DISP=(NEW,PASS),

// UNIT=SYSDA,VOL=SER=IMSPAC,

// SPACE=(TRK,(3,1))

//SYSIN DD *

* CONTROL STATEMENT : SPECIFIED *

* INPUT = DEFAULT (SYSUT1) *

* OUTPUT = SYSPRINT AND (LOGOUT1,LOGOUT2,LOGOUT3) *

* SELECTION QUALIFIERS : *

* 1. LOG RECORD TYPE X’16’ *

* 2. USERIDS = (USERAAAA,USERBBBB,USERCCCC) *

CONTROL CNTL DDNOUT=LOGOUT1

OPTION COPY OFFSET=9,FLDTYP=C,VALUE=USERAAAA,FLDLEN=8,COND=M

OPTION COPY PRTSYS=Y,OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E

END

CONTROL CNTL DDNOUT=LOGOUT2

OPTION COPY OFFSET=9,FLDTYP=C,VALUE=USERBBBB,FLDLEN=8,COND=M

Examples

306 Utilities Reference: System

OPTION COPY PRTSYS=Y,OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E

END

CONTROL CNTL DDNOUT=LOGOUT3

OPTION COPY OFFSET=9,FLDTYP=C,VALUE=USERCCCC,FLDLEN=8,COND=M

OPTION COPY PRTSYS=Y,OFFSET=5,FLDTYP=X,VALUE=16,FLDLEN=1,COND=E

END

/*

Example 6

This example shows the JCL and control statements required to print record 158 of

an OSAM image copy data set and all type X'50' records on a log data set that

refer to this block number (assuming unblocked OSAM).

//EXAMPLE6 JOB

//*

// EXEC PGM=DFSERA10

//STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSNAME=IMSLOG,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=123456,LABEL=(,SL)

//IMAGFILE DD DSNAME=OSAMIMAG,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=456789,LABEL=(,SL)

//SYSIN DD *

* CONTROL STATEMENT : SPECIFIED *

* INPUT = IMAGFILE *

* OUTPUT = SYSPRINT *

* SELECTION QUALIFIERS : *

* 1. OSAM RBN = 0000009E (RECORD NO. 158) *

CONTROL CNTL STOPAFT=(1,E),DDNAME=IMAGFILE

OPTION PRINT OFFSET=1,FLDTYP=X,VALUE=0000009E,FLDLEN=4,COND=4

END

* CONTROL STATEMENT : DEFAULTS *

* INPUT = SYSUT1 *

* OUTPUT = SYSPRINT *

* SELECTION QUALIFIERS : *

* 1. LOG RECORD TYPE X’50’ *

* 2. DATABASE NAME = DATABAS1 *

* 3. FLAG X’04’ IN 7TH BYTE = 0 (OSAM DATA SET) *

* 4. OSAM RBN = 0000009E *

OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=50,FLDLEN=1,COND=M

OPTION PRINT OFFSET=53,FLDTYP=C,VALUE=DATABAS1,FLDLEN=8,COND=M

OPTION PRINT OFFSET=7,FLDTYp=X,VALUE=04,COND=MTN

OPTION PRINT OFFSET=43,FLDTYP=X,VALUE=0000009E,FLDLEN=4,COND=E

END

/*

Example 7

This example shows the JCL and control statements required to print all type X'50'

records, where the database name (beginning with the 53rd byte) is not equal to

DB01DS01, and to print all type X'25' records.

The second set of control statements uses a symbolic keyword to select the

database name, beginning with the 9th byte of the first type X'25' record. Using the

same symbolic name for the value in the next control statement, all type X'50'

records (except the first) that have the same database name are to be printed

beginning with the 53rd byte.

Examples

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 307

//EXAMPLE7 JOB

// EXEC PGM=DFSERA10

//STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

//SYSPRINT DD SYSOUT=A

//LOGIN DD DSNAME=IMSLOG,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=123456.LABEL=(,SL)

//SYSIN DD *

**

* CONTROL STATEMENT : SPECIFIED *

* INPUT : LOGIN *

* OUTPUT : SYSPRINT *

* SELECTION QUALIFIERS: *

* 1. LOG RECORD TYPE X’50’ *

* ¬= DB01DS01 STARTING IN THE 53rd BYTE *

* (DATABASE NAME) PRINT 5 LOG RECORDS *

* 2. LOG RECORD TYPE X’25’ *

**

CONTROL CNTL DDNAME=LOGIN

OPTION PRINT OFFSET=5,FLDTYP=X,FLDLEN=1,VALUE=50,C=M

OPTION PRINT OFFSET=53,T=C,L=8,V=DB01DS01,H=5,C=IE

OPTION PRINT OFFSET=5,T=X,L=1,V=25,C=E

END

**

* CONTROL STATEMENT : SPECIFIED *

* INPUT : LOGIN *

* OUTPUT : SYSPRINT *

* SELECTION QUALIFIERS: *

* 1. LOG RECORD TYPE X’25’ *

* DEFINE SYMBOL &DBNAME STARTING IN THE 9th BYTE *

* (DATABASE NAME) & PRINT 1 RECORD *

* 2. LOG RECORD TYPE X’50’ *

* USE SYMBOL &DBNAME FOR DATABASE NAME STARTING *

* IN THE 53rd BYTE & SKIP THE FIRST SELECTED *

* RECORD *

**

CONTROL CNTL DDNAME=LOGIN

OPTION PRINT OFFSET=5,FLDTYP=X,FLDLEN=1,VALUE=25,C=M

OPTION PRINT OFFSET=9,T=C,L=8,SYM=&DBNAME,STOPAFT=1,C=E;

OPTION PRINT OFFSET=5,FLDTYP=X,FLDLEN=1,VALUE=50,C=M

OPTION PRINT OFFSET=53,T=C,L=8,V=&DBNAME,STARTAF=1,C=E;

END

Example 8

This example shows the JCL and control statements required to print an external

trace data set.

//EXAMPLE8 JOB MSGLEVEL=(1,1)

//*

//PRTTAB EXEC PGM=DFSERA10

//SYSUT1 DD DSN=IMS.EXTERNAL.TRACE,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

* CONTROL STATEMENT : SPECIFIED *

* INPUT = SYSUT1 *

* OUTPUT = SYSPRINT *

* SELECTION QUALIFIERS : *

* 1. Log record typeX'67FA' in fifth and sixth *

* byte = (all trace log records) *

CONTROL CNTL SKIP=0

OPTION PRINT OFFSET=5,FLDLEN=2,VALUE=67FA,COND=E,E=DFSERA60

END

/*

Examples

308 Utilities Reference: System

Example 9

This example shows the JCL and control statements required to print 67FF records

from the IMS log.

//EXAMPLE9 JOB

// EXEC PGM=DFSERA10

//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR

//SYSPRINT DD SYSOUT=A

//LOGIN DD DISP=SHR,DSN=IMSLOG

//SYSIN DD *

CONTROL CNTL DD=LOGIN

OPTION PRINT O=5,T=X,V=67FF,L=2,C=M

OPTION PRINT O=29,T=X,V=F0F8F3F2,L=4,C=E,E=DFSERA30

END

Record Format and Print Module (DFSERA30)

Use the Record Format and Print Module (DFSERA30) to format trace and general

purpose subrecord types (X'00' and X'01') and SNAP subrecord types (X'FD' and

X'FF'). Other log records are formatted in z/OS dump format. DFSERA30 is an exit

routine of the File Select and Formatting Print Utility (DFSERA10). Because this

routine formats log records, it passes a return code to DFSERA10. This return code

tells DFSERA10 that the log record has been processed and requires no additional

processing.

For trace and SNAP subrecord types, the module creates log record leader

information, followed by a formatted printout of each element within the log record.

DFSERA30 translates the STCK value in each record that is dumped into a

human-readable date and time stamp, and prints this value on the record header

line. Because this value is derived from the hardware clock, you should be aware of

the following:

v The time is in UTC (GMT), not local time.

v The hardware clock does not include any leap second adjustments that may be

present on your system (see CVT field CVTLSO). Thus, the time printed by

DFSERA30 might be different from the time reported by z/OS when the record

was written. The difference is equal to the leap second adjustment amount.

The Deadlock Report

The deadlock report contains information about the resources and resource owners

for the following:

v Deadlocks resulting from 777 and 123 pseudoabends.

v Deadlocks in non-message-driven BMPs. (These result in an 'FD' status code.)

When DFSERA30 encounters this deadlock block, it prints the block and produces

a report based on the data in the block. When excessive deadlocks occur, the

deadlock block and the report based on it allow an analysis of the resources that

are involved in the deadlock.

When IMS abends an application with a 777 or 123 pseudoabend due to an

external subsystem detected deadlock, the deadlock report contains information to

identify the subsystem, the job, and the unit of recovery that received the deadlock.

Figure 92 is an example of the DFSERA30 report for a simple deadlock involving a

BMP region and an MPP region. The MPP program, which is waiting for resource 1

of 2, is chosen as the victim. It is requesting a root lock for key 'KK360'. The BMP

Examples

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 309

|
|
|
|
|
|
|

program is the holder of this lock. The BMP program is requesting a root lock for

key 'KK130'. The MPP program is the holder of this lock.

How to Read the Report

The formatted report is summarized by lock name. It begins with lock 1 of n,

showing the database name being locked, the lock name length, and the lock name

itself. The lock name is composed of codes that provide information about the lock

such as its relative block address (RBA), whether the lock occurred in a Full

Function (FF) or Fast Path (DEDB) database, and—in the case of a

DEDB—whether the lock occurred at the control interval (CI) level or at the

segment level.

In a FF database, the RBA is displayed in bytes 1–4 of the lock name. For

example, in lock name 00000924800501D7, the RBA= 924.

Determining the RBA of a lock in a FP database is slightly more complex. The lock

name of a FP database is broken down as shown in Table 23:

 Table 23. Lock Name In A FP Database

Byte Position Lock Information

1 Lock ID

2-4 Relative Byte Address

5-6 DMCB Number

7 Area Number

8 Fast Path ID=C6

In a FP database, the first two digits (Byte 1) display the number ″80″ if the lock

occurred at the segment level. In this case, the next three bytes displayed indicate

the 30 bit RBA. You must multiply the displayed RBA by 4 to get the true RBA.

DEADLOCK ANALYSIS REPORT - LOCK MANAGER IS IRLM

RESOURCE DMB-NAME LOCK-LEN LOCK-NAME - WAITER FOR THIS RESOURCE IS VICTIM

01 OF 02 DHVNTZ02 08 00000BC4800501D7

KEY IS ROOT KEY OF DATA BASE RECORD ASSOCIATED WITH LOCK

KEY=(KK360)

 IMS-NAME TRAN/JOB PSB-NAME PCB--DBD PST# RGN CALL LOCK LOCKFUNC STATE

WAITER SYS3 NQF1 PMVAPZ12 DLVNTZ02 0002 MPP GET GRIDX 30400358 06-P

HOLDER SYS3 DDLKBMP1 PLVAPZ22 -------- 0003 BMP ---- ----- -------- 06-P

RESOURCE DMB-NAME LOCK-LEN LOCK-NAME

02 OF 02 DHVNTZ02 08 00000924800501D7

KEY IS ROOT KEY OF DATA BASE RECORD ASSOCIATED WITH LOCK

KEY=(KK130)

 IMS-NAME TRAN/JOB PSB-NAME PCB--DBD PST# RGN CALL LOCK LOCKFUNC STATE

WAITER SYS3 DDLKBMP1 PLVAPZ22 DLVNTZ02 0003 BMP GET GRIDX 30400358 06-P

HOLDER SYS3 NQF1 PMVAPZ12 -------- 0002 MPP ---- ----- -------- 06-P

DEADLOCK ANALYSIS REPORT - END OF REPORT

Figure 92. Deadlock Report for BMP Region and MPP Region

Record Format and Print

310 Utilities Reference: System

If the lock occurred at the CI level, the first two digits indicate the code X’00’. In this

case, the next three bytes displayed indicate the 24 bit RBA. You must multiply the

displayed RBA by 256 (X'100') to get the true RBA.

In addition, for any lock that occurred in a FP database, the last two digits (Byte 8)

of the lock name display the code ″C6.″

For example, the lock name 80000C02800101C6 occurred in a FP database at the

segment level with an RBA of ’00003008’

In many cases, the lock is for a database record for which the root key is known.

The next lines provide information about the root key for the database record being

locked. The following are the possible report statements for the root key.

v KEY IS ROOT KEY OF DATA BASE RECORD ASSOCIATED WITH LOCK

This statement is the most common. It indicates that the key that follows is the

root key for the database record involved in the lock. You see this report

statement, for example, when a HIDAM or PHIDAM root is retrieved using the

index. The key is known when the lock on the root is requested.

v KEY FOR RESOURCE IS NOT AVAILABLE

This statement indicates that the key for the database record being locked is not

available. You see this report statement, for example, when a GN call for an

HDAM or PHDAM database causes DL/I to lock the next root anchor. When this

lock request is one of the resources involved in the deadlock, it is not possible to

print the key associated with the lock.

v LOCKING PRIOR ROOT FOR HIDAM ROOT INSERT, KEY DISPLAYED IS FOR NEXT

HIGHER ROOT

This statement can occur when a root is inserted in HIDAM or PHIDAM and the

root has twin forward and backward pointers. You see this report statement, for

example, if the keys 10 and 12 are present and 11 is being inserted. The key

displayed is key 12 but the lock is on key 10.

v LOCKING ON NEXT HIDAM ROOT FOR GN CALL, KEY DISPLAYED IS FOR PRIOR HIDAM

ROOT

This statement can occur when using HIDAM or PHIDAM with twin forward and

backward pointing, and keys 10, 11, and 12 exist, and position is on key 10; a GN

call requires a lock on 11. When the lock is required, the key is not known, so

the key of the prior root is displayed.

v LOCKING ON HDAM ANCHOR, KEY DISPLAYED IS HDAM KEY REQUESTED

This statement can occur when using HDAM or PHDAM. The item locked is the

anchor. When the anchor is locked, the key that will be retrieved is not known but

the key that is requested is known, and it is displayed.

The lock waiter and holder/owner information is printed next. Each waiting and

holding work unit is identified by IMSID, tranname or jobname, PSB name, PST

number, and region type. The WAITER listed is the work unit that the database key

information pertains to.

There are some differences between the two lines of waiter and holder information.

The current PCB name, the DL/I call, and the lock request pertains only to the

waiter. This information is not available for the holder of the lock.

The current DL/I call being processed is reported as one of the following.

Record Format and Print

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 311

GET DL/I call was GU, GHU, GN, GHN, GNP, or GHNP. The captured

information does not allow a breakdown of the specific GET call

function.

REPL DL/I call was REPL.

ISRT DL/I call was ISRT or ASRT.

DLET DL/I call was DLET.

POS DL/I call was POS call on MSDB.

The lock request function is reported under the columns for LOCK and LOCKFUNC.

The first byte of the LOCKFUNC is translated for convenience. The LOCKFUNC is

the hexadecimal function, mode, state, and flags as mapped by the LRHPARM

DSECT.

In the Figure 92 on page 310, X'30' is reported under LOCK as GRIDX. Familiarity

and some understanding of DL/I locking terminology and data organizations is

needed for a full understanding of the formatted deadlock information provided.

Related Reading: See IMS Version 9: Administration Guide: Database Manager for

a description of locking.

The reason for translating the lock request function is to identify deadlocks caused

by block level data sharing, by application programs accessing data in a different

order, or mixtures of both. For deadlock purposes, the lock request functions can be

summarized by the following:

GBID Get a block lock. Block level sharing only.

GZID Get a data-set-busy lock. Used only to serialize data set opens,

closes, and extensions. Any involvement in a deadlock is probably

an indication of an error in IMS code.

GXID Get a data-set-extend lock. Used to serialize the extending of a

data set. Block level sharing only and probably a HISAM database.

GRID Get a lock on the root of a database record.

GQCM Get a Q command code lock. This is an application-originated lock

on specific data. The GQCM function applies to full function only

(Fast Path does not obtain a new lock when the Q command code

is issued).

GSEG Get a segment lock for a dependent segment. This is not used

when IRLM is the lock manager.

GFPLL Get a Fast Path lock.

The Lock States

The lock state is the type or level of lock and is usually designated by a number. To

manage the lock states, IMS uses either the internal resource lock manager (IRLM)

or the program isolation (PI) lock manager. These two lock managers do not use

the same states to reflect the level of the locks. The PI lock manager supports four

states and IRLM supports eleven, though IMS uses only eight of them.

Sometimes the lock states are referred to with names rather than numbers. The

names used for the four PI-supported states are:

State 1 Read only

State 2 Read

Record Format and Print

312 Utilities Reference: System

State 3 Update

State 4 Exclusive

Table 24 is a matrix that describes the compatibility of the level of an incoming lock

request and the level that the lock is held at when using the PI lock manager. A

compatible state is indicated by a “C” (meaning that the lock request will be

granted) and an incompatible state by an “X” (meaning that the lock request will not

be granted).

 Table 24. PI Lock Compatibility Matrix

Requested Level 1 2 3 4

Held at 1 C C C X

Held at 2 C C X X

Held at 3 C X X X

Held at 4 X X X X

The eight states provided by the IRLM and their characteristics are defined in two

matrices. One is used to determine resultant state and the other to determine

compatibility for a requesting and holding work unit.

The concept of a resultant state requires some explanation. In simple terms, the

resultant state is the lock state that results from granting the current request or the

″held at″ state that a subsequent requestor will see assuming the current request is

granted. Because the IRLM allows a resource to be locked more than once by a

given work unit, when a work unit locks a resource for the second time and

specifies a different state, the state in which the lock is finally held should be one

that carries the privileges of the second state without losing those conferred by the

first. Given a set of states with a strictly hierarchical privilege order, it would be

sufficient to grant the higher of the two states. However, to allow a locking protocol

in which each higher state does not necessarily include all the privileges of the

preceding one, the matrix can specify that the resultant state is a third state that

confers the sum of the privileges of the other two states. The request is then

processed as a request for the third state. Table 25 is the resultant state matrix.

 Table 25. IRLM Resultant State Matrix

Requested Level 1 2 3 4 5 6 7 8

Held at 1 1 2 3 4 5 6 7 8

Held at 2 2 2 3 4 5 6 7 8

Held at 3 3 3 3 6 5 6 7 8

Held at 4 4 4 6 4 5 6 7 8

Held at 5 5 5 3 5 5 6 7 8

Held at 6 6 6 6 6 6 6 7 8

Held at 7 7 7 7 7 7 7 7 8

Held at 8 8 8 8 8 8 8 8 8

The compatibility matrix is shown in Table 26 with compatibility indicated by a “C”

and incompatibility by an “X”.

Record Format and Print

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 313

Table 26. IRLM Compatibility Matrix

Requested Level 1 2 3 4 5 6 7 8

Held at 1 C C C C C C C X

Held at 2 C C C C C C X X

Held at 3 C C C X X X X X

Held at 4 C C X C C X X X

Held at 5 C C X C X X X X

Held at 6 C C X X X X X X

Held at 7 C X X X X X X X

Held at 8 X X X X X X X X

For the IRLM, the state can have an attribute of private. The private attribute is only

significant when using block level data sharing. The private attribute has no impact

on granting locks to different threads of a single IMS. The private attribute indicates

that the lock should be private (only granted) to this IMS.

Restriction: Any thread of another IMS sharing the data cannot be granted the

lock.

Private is indicated with a '-P' following the lock state. In Figure 92 on page 310, the

locks had the private attribute.

Special Situations

A fixed-size block is used to hold the data for each resource in the deadlock cycle.

This block is large enough to hold the data for a cycle which involves nine

resources. If the cycle involves more than nine resources a message indicates this

and only the first nine are reported.

There are a limited number of blocks to hold the data. If all of the blocks are in use

when a deadlock occurs, a message indicates this and no deadlock information is

provided for that deadlock.

Additional Information Gathered

The formatted deadlock report is a summarization of the complete data gathered

and snapped to the log. There are two macro DSECTs that map information in the

raw data. These are the DIPENTRY DSECT and the DLKDLD DSECT.

Related Reading: See IMS Version 9: Diagnosis Guide and Reference for more

information about these macros.

A Reporting Anomaly

There is one deadlock situation where the report is different.

LOCK 1 LOCK 2

PST 1 owns STATE SHR PST 2 owns STATE UPD

PST 3 waits STATE UPD PST 1 waits STATE UPD

PST 2 waits STATE SHR

If application 3 on PST 3 had not interfered by asking for LOCK 1 at an

incompatible state, there would have been no deadlock, because PST 2 is asking

for LOCK 1 in a compatible state with the owner PST 1.

Record Format and Print

314 Utilities Reference: System

The anomaly that occurs in the reporting of this deadlock is that LOCK 1 is listed

twice. It is listed once with PST 1 owning and PST 3 waiting, and it is listed again

with PST 2 waiting and no holder information. The report displays NOTAVAIL in the

IMS-NAME field for the HOLDER.

Selecting Only the Deadlock Block

Fewer elements are snapped on a 777 pseudo abend than for other pseudo

abends; however, the snap does include more elements than the deadlock block. It

is possible to select only a specific element from a snap. Figure 93 contains the

DFSERA10 control statements to select only the deadlock element from any

pseudoabend snap.

IMS-Issued Subsystem Detected Deadlocks

When IMS abends an application with U777 because of an external subsystem

detected deadlock, the Deadlock Report contains information to identify the

subsystem, job, and Unit Of Recovery that received the deadlock.

Figure 94 is an example of the DFSERA30 report for a deadlock detected by an

external subsystem.

Utility Control Statements

Figure 95 on page 316 shows the control statements required to format type X'67'

log records using the DFSERA30 exit routine.

//SYSIN DD *

* *

* CONTROL STATEMENT : DEFAULTS *

* INPUT = SYSUT1 *

* OUTPUT = SYSPRINT *

* *

* SELECTION QUALIFIERS : *

* 1. LOG RECORD TYPE OF X’67FF’ *

* 2. NAME OF BLOCK WITHIN SNAP IS C’DEADLOCK’ *

* *

* EXIT ROUTINE = DFSERA30 *

* *

OPTION PRINT OFFSET=5,FLDLEN=2,FLDTYP=X,VALUE=67FF,COND=M

OPTION PRINT OFFSET=33,FLDLEN=8,FLDTYP=C,VALUE=DEADLOCK,COND=E, X

 EXITR=DFSERA30

END

/*

Figure 93. Sample DFSERA10 Control Statements for Deadlock Element

PSEUDO ABEND RECORD ABEND NO = 0777 RECNO = 00000162 TIME 12:24:07.1 DATE 1998.292

DEADLOCK

EXTERNAL SUBSYSTEM SSOP DETECTED A DEADLOCK DURING NORMAL CALL

REGION TYPE : MPP

REGION NUMBER : 0001

JOB NAME : MPP1

PSB NAME : DCSQL7B

SMB NAME : TXSQL7B

RECOVERY TOKEN: E2E8E2F3404040400000000500000000

Figure 94. Deadlock Report for External Subsystem-Detected Lock

Record Format and Print

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 315

In this figure, aa is the log record subtype.

aa=01 Specifies TRACE log record subtype

aa=FD Specifies SNAP log record subtype

aa=FF Specifies ABEND log record subtype

Figure 96 shows a sample DFSERA30 output. AE9004 is the storage address of the

LXB at the time the log record was created. The second column of each line is the

relative offset from the LXB.

Program Isolation Trace Record Format and Print Module (DFSERA40)

The program isolation (PI) trace format and print module receives type X'67FA' log

records as an exit routine from the File Select and Formatting Print utility

(DFSERA10) and formats the records on the SYSPRINT data set.

Diagnosis, Modification, or Tuning Information

These log records are produced by the PI (program isolation) trace, trace PI

enqueue and dequeue calls to DFSLRH00, and also by DL/I calls to the DL/I

analyzer. The DL/I analyzer processes all DL/I calls. When tracing is active, the DL/I

analyzer calls are traced. The standard ENQ/DEQ call is invoked by the DFSLR

macro instruction.

End of Diagnosis, Modification, or Tuning Information

PI tracing is executed by the /TRACE command in an IMS online environment or by

the OPTIONS statement with LOCK=OUT specified.

In a data sharing environment, if the PI trace is active and being logged, the PI

trace logger is activated by the IMS lock manager (DFSLMGR0) and exits to the

IRLM.

Column 1 Column 10 Column 16 72

CONTROL CNTL

OPTION PRINT OFFSET=5,FLDLEN=2, X

 VALUE=67aa,COND=E, X

 EXITR=DFSERA30

END

Figure 95. Control Statements Required for DFSERA30

DFSERA30 -- FORMATTED LOG PRINT ...
INTERNAL TRACE RECORD ...
LXB

 AE9004 000000 807F0BC9 00093660 00AE9350 00AE92B0 00091E90 00AE991C 17000000 7F0C0000

 AE9024 000020 80000000 520821CE 0008229C 000820C6 80082194 012141CE 60000054 0A000000

 AE9044 000040 30000005 022140C6 600000CE 09000000 30000005 47000000 20000001 00000000

 AE9064 000060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

 AE9084 000080 TO AE90C4 0000C0 SAME AS ABOVE

 AE90E4 0000E0 00000000 0C419317 F1044193 17F10441 9337E218 D243F510 A314A8C3 419101A2

 AE9104 000100 02F30C41 93179101 A502F004 F30C4193 17F10441 93170000 00000000 00B66218

Figure 96. Sample Formatted Log Print from DFSERA30

Record Format and Print

316 Utilities Reference: System

|

||

||

||

The PI Trace Record Format and Print module is loaded during the execution of the

File Select and Formatting Print utility and must reside in the LINKLIB or in a

JOBLIB or STEPLIB data set.

DFSERA40 Utility Control Statements

Figure 97 shows the control statements required for DFSERA40.

Output

Figure 98 on page 318 is a sample output from DFSERA40. The spacing of fields is

altered.

Column 1 Column 10 Column 16 72

CONTROL CNTL

OPTION PRINT OFFSET=5,FLDLEN=2,VALUE=67FA, X

 COND=E,EXITR=DFSERA40

END

Figure 97. Control Statements Required for DFSERA40

Program Isolation Trace Record

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 317

Explanation of Column Headings

DATE Specifies the date PI trace started. The TIME field is relative to this date.

MODULE

Specifies the module that issued the DFSLR call to DFSLRH00 or the

module that called the IRLM or DFSFXC10. The four characters selected

come from the xxxx portion of the full module name DFSxxxx0.

PST Specifies the program specification table (PST) number (from PSTPSTNR).

TIME Specifies the time of the call as HHH:MM:SS.UUU, where UUU is

milliseconds, relative to the date on which tracing started. If the return code

DATE: 05/11/89

MODULE PST TIME (*=ET) CALLR ACT LEV WC WFC SEQN FDBK RC PC ID= (RBA DMB DCB SUF) CLS TOKEN COMMENTS

LRH0 01 GZIDB 0ABE

LRH0 01 RZIDP 0AC1

PIEX 01 23:36:22.472 DLI TNFQ UPD 00 00 0AC3 0000 481075C5 8007 01

LRH0 01 TTLKX 0AC4

PIEX 01 23:36:22.472 DLI ENQ UPD 00 00 0AC5 0000 00000658 8006 01 00722050

LRH0 01 GRICX 0AC6

PIEX 01 23:36:22.474 APP ENQ SHR 00 00 0ACA 0000 00000694 8006 01 0 007220DC

LRH0 01 GCCMX 0ACB

DLA0 01 23:36:22.493 GU 0ACE 8 DL/I CALL

PIEX 01 23:36:22.493 DLI IDEC UPD 00 00 0ACF 0000 00000658 8006 01

LRH0 01 RRIOX 0AD0

LRH0 01 GZIDB 0AC1

LRH0 01 RZICB 0AD4

PIEX 01 23:36:22.495 DLI ENC UPD 00 00 0AD6 0000 00001108 8006 01 00722050

LRH0 01 GRICX 0AD7

PIEX 01 23:36:22.496 DLI IDEQ UPD 00 00 0ADA 0000 00001108 8006 01

LRH0 01 RRICX 0ADB

DLA0 03 23:36:23.614 GU 0ADE 1 DL/I CALL

LRH0 03 GZIDB 0AE4

LRH0 03 RZICB 0AE7

PIEX 03 23:36:23.735 DLI TENQ UPD 00 00 0AE9 0000 48107105 8007 01

LRH0 03 TTLKX 0AEA

PIEX 03 23:36:23.736 DLI ENC UPD 00 00 0AEB 0000 00000408 8006 01 00722050

LRH0 03 GRIDX 0AEC

PIEX 03 23:36:23.737 APP ENQ SHR 00 00 0AF0 0000 00000428 8006 01 0 00722014

LRH0 03 GQCMX 0AF1

DLA0 03 23:36:23.834 GU 0AFS 2 DL/I CALL

PIEX 03 23:36:23.835 DLI IDEQ UPD 00 00 0AFA 0000 00000408 8006 01

LRH0 03 FRIDX 0AFP

LRH0 03 GZIDB 0AFC

LRH0 03 RZIDB 0AFF

PIEX 03 23:36:23.838 DLI ENQ UPD 00 00 0B01 0000 00001108 8006 01 00722050

LRH0 03 GRICX 0B02

PIEX 03 23:36:23.840 DLI TDEQ UPD 00 00 0B05 0000 00001108 8006 01

LRH0 03 RRICX 0B06

DLA0 02 23:36:27.257 GHU 0B0F 4 DL/I CALL

PIEX 02 23:36:27.257 DLI TDEQ UPD 00 00 0B10 0000 0000087C 8006 01

LRH0 02 RRICX 0B11

LRH0 02 GZIDB 0B12

LRH0 02 RZIDB 0B15

PIEX 02 23:36:27.263 DLI TENQ UPD 00 00 0B17 0000 481071C5 8007 01

LRH0 02 TTLKX 0B18

PIEX 02 23:36:27.263 DLI ENQ UPD 00 00 0B19 0000 00000408 8006 01 007220A0

LRH0 02 GRICX 0B1A

PIEX 02 23:36:27.265 DLI TENQ UPD 01 00 0B1E 1800 04 00000428 8006 01 00722014

PIEX 03 23:36:45.079 APP CEQ SHR 00 00 0B34 0000 0

LRH0 03 RQCML 0B35

PIEX 02 0:17.850* DLI UNK RD 0B37 6F SEQ2=0B1E

LRH0 02 TTLKL 0B38 04

DLA0 02 23:36:45.982 GHU 0B3A 5 DL/I CALL

PIEX 02 23:36:45.982 DLI TDEQ UPD 00 00 0B3B 0000 00000408 8006 01

LRH0 02 RRICX 0B3C

LRH0 02 GZIDB 0B3D

LRH0 02 BZIDB 0B40

PIEX 02 23:36:45.986 DLI TENQ UPD 00 00 0B42 0000 481075C5 8007 01

LRH0 02 TTLKX 0B43

PIEX 02 23:36:45.986 DLI ENQ UPD 00 00 0B44 0000 00000658 8006 01 007220A0

LRH0 02 GRIDX 0B45

Figure 98. Sample Output from DFSERA40

Program Isolation Trace Record

318 Utilities Reference: System

(RC) is 04 and PI trace timing is active at the time of the call, the next

record for this PST in this report shows the elapsed time of the enqueue

wait in this field. The time is indicated as MM:SS.UUU*, with the “*”

indicating it is an elapsed time.

CALLR

Specifies the type of caller (DLI, FP, APP).

ACT Specifies the action requested.

LEV Specifies the level of control for this call.

RD Read only

SH Share

UPD Update

EXC Exclusive

WC Number of PSTs that hold this resource in a state that caused this PST to

wait.

WFC Number of PSTs waiting for this PST to release this resource.

SEQN Specifies the sequence number of the corresponding internal trace.

FDBK Is 2 bytes of feedback information from either DFSFXC10 or the IRLM.

RC Specifies the return code from DFSFXC10 or the IRLM.

00 Successful completion

04 Caller must IMS wait for control of the requested resource

08 Deadlock; request is disallowed. This transaction causes an internal

pseudoabend, a backout, and automatic rescheduling.

0C Invalid call

PC Specifies the PST post code following the enqueue wait. This field is only

present when RC is 04 and the TIME field has an “*” at the end.

60 Deadlock occurred. This transaction causes an internal

pseudoabend, a backout, and automatic rescheduling.

6F Control of the resource has been obtained.

ID= Specifies an 8-byte identification of the resource being enqueued or

dequeued. It contains a 4-byte RBA, a 2-byte DMB number, a 1-byte DCB

number, and a 1-byte SUF (suffix) field.

CLS For APP types of callers, specifies the Q-command code class requested.

For LMGR traces, specifies the CLASS parameter.

 CLS applies to full function only (Fast Path does not support lock class).

TOKEN

Is the address of the control block enqueued or locked on this call or, if the

type of call is an unlock or DEQ call, the address of the control block being

passed to the lock manager.

COMMENTS

Specifies 'DL/I CALL' if a trace is requested from DFSDLA00. Other

comments are for LMGR traces.

Program Isolation Trace Record

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 319

DL/I Call Image Capture Module (DFSERA50)

If trace data is sent to the IMS log data set, you can retrieve it using utility

DFSERA10 and special DL/I call image capture routine DFSERA50. DFSERA50

deblocks, formats, and numbers the DL/I call image capture records to be retrieved.

To use DFSERA50, insert a DD statement defining a sequential output data set in

the DFSERA10 input stream. The default ddname for this DD statement is

TRCPUNCH. The statement must specify BLKSIZE=80. You can distinguish

between output from several BMP applications because the first three bytes of the

trace entry sequence number are the PST number.

Utility Control Statements

The following examples of DFSERA10 input control statements in the SYSIN data

set can be used to retrieve DL/I call image capture data from the log data set.

Print all DL/I call image capture records:

Column 1 Column 10

OPTION PRINT OFFSET=5,VALUE=5F,FLDTYP=X

Print selected DL/I call image capture records by PSB name call:

Column 1 Column 10

OPTION PRINT OFFSET=5,VALUE=5F,COND=M

OPTION PRINT OFFSET=25,FLDTYP=C,FLDLEN=8,VALUE=psbname,COND=E

Format DL/I call image capture records (in format acceptable as input for the DL/I

test program DFSDDLT0):

Column 1 Column 10

OPTION PRINT OFFSET=5,VALUE=5F,COND=M

OPTION PRINT EXITR=DFSERA50,OFFSET=25,FLDTYP=C, x

 VALUE=psbname,FLDLEN=8,DDNAME=OUTDDN,COND=E

Use the DDNAME= parameter to name the DD statement used by DFSERA50. The

data set defined on the OUTDDN DD statement is used instead of the default

TRCPUNCH DD statement. For this example, the DD appears as:

//OUTDDN DD ...,DCB=(BLKSIZE=80),...

IMS Trace Table Record Format and Print Module (DFSERA60)

The IMS trace table record format and print module (DFSERA60) is an exit routine.

It receives type X'67FA' log records from the File Select and Formatting Print utility

(DFSERA10) and formats the records on the SYSPRINT data set. These log

records are produced when you use the OPTION statement for the DFSVSAMP

data set or DFSVSMnn PROCLIB member to specify that trace table be written to

the log.

DFSERA60 is loaded during execution of DFSERA10 and must reside in the

LINKLIB or in a JOBLIB or STEPLIB data set.

Utility Control Statements

Figure 99 on page 321 shows the control statements required to invoke

DFSERA60.

DL/I Call Image Capture

320 Utilities Reference: System

Enhanced Select Exit Routine (DFSERA70)

Use the Enhanced Select exit routine (DFSERA70) to:

v Produce expanded log records from compressed IMS logs.

v Select and format '5X' (DL/I 5X and fast path 5950) log records based upon data

contained within the record itself, such as the contents of a time, date, or

identification field. These records are formatted along with all log record types

listed under the PARM TOKEN=description.

v Change the format of log output to identify and emphasize some optional log

fields

You specify the search criteria for the routine as subparameters of the PARM=

parameter of the OPTION statement for the File Select and Formatting Print utility

(DFSERA10). For information about the syntax of the OPTION statement, see

“OPTION Statement” on page 299. The possible subparameters of PARM= are:

XFMT=

Extends the X'50' log record format to enhance the retrievability of certain data

entries.

Y Highlights the log data for certain types of processing by placing the

data on a separate line and adding identifiers for data entries. It applies

to log data that describes the following types of processing: data

sharing, XRF buffer and lock tracking, space management, key, backout

(undo), and recovery (redo). If a type of processing is not relevant, the

data section is omitted.

 These data sections are added after the raw log data for the record.

Each section includes identifiers followed by hexadecimal log data,

character log data, or both. They contain the following entries, where X

represents hexadecimal log data and C represents character log data:

Data sharing

DSHRDSSN XXXXXXXX DSHRLSN XXXXXXXXXXXX DSHRUSID

XXXXXXXX RACF-UID CCCCCCCC XXXXXXXXXXXXXXXX

XRF buffer and lock tracking

TRAKPLSZ XXXX TRAKBUFN XXXX TRAKHASH XXXXXXXX

TRAKLOCK XXXXXXXX TRAKFLGS XX XX

Space management

SMGTFLGS XX XX SMGTROFF XXXX SMGTRLEN XXXX

Key

KSDS Character string describing database action

LENGTH XXXX

One or more lines of mixed hexadecimal and character data

Undo

Column 1 Column 10 Column 16

CONTROL CNTL

OPTION PRINT OFFSET=5,FLDLEN=2,VALUE=67FA, x

 COND=E,EXITR=DFSERA60

 END

Figure 99. Control Statements Required for DFSERA60

Enhanced Select Exit Routine

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 321

UNDO Character string describing database action

LENGTH XXXX OFFSET XXXX

One or more lines of mixed hexadecimal and character data

Redo

REDO Character string describing database action

LENGTH XXXX OFFSET XXXX

One or more lines of mixed hexadecimal and character data

N Does not highlight the log data for data sharing, buffer and lock

tracking, space management, key, backout or recovery. The data is

formatted as part of the raw data for the record.

N is the default.

PST=pst_number

Selects records for the PST number.

SYSID=system_id

Selects records for the system ID portion of recovery token.

TOKEN=token

Selects records for the hexadecimal token portion of recovery token. You can

select the following record types: X'07', X'08', X'0A', X'13', X'27', X'28', X'31',

X'32', X'35', X'37', X'38', X'39', X'3D', X'41', X'4C', X'50', X'56', X'59'X'5901',

X'5903', X'5937', and X'5938'.

PSB=psb_name

Selects records for the PSB name.

DBD=dbd_name

Selects records for the DBD name.

RBA=rba_value

Selects records for the RBA (lrecl).

BLOCK=block_rba

Selects records for the RBA (block).

USERID=userid

Selects records for the userid.

KEY=ksds_key

Selects records for the key.

OFFSET=offset

Selects records that update a given offset of data in the buffer.

UNDO=undo_data

Selects records for backout data that matches the character string you specify.

The maximum length of the character string is 255 characters.

REDO=redo_data

Selects records with recovery data that matches the character string you

specify. The maximum length of the character string is 255 characters.

DATA=log_data

Selects records with data, including compressed data, anywhere in the record

that matches (searches all log records). The maximum length of the character

string is 255 characters.

Each subparameter must be uppercase and not have any blanks. The

subparameter data must be character or decimal. Hexadecimal data must be

preceded by an X and the data enclosed in single quotes (for example, X'0123').

Enhanced Select Exit Routine

322 Utilities Reference: System

|

|

|

|

|

|

|

|

|

|

Once the record is selected, it can be written to tape or DASD.

When multiple subparameters are specified, all conditions must be met to select a

record. Use multiple routines to select records if some of the conditions have been

met.

The log print formatting is done by DFSERA30. The format appears as if

DFSERA30 was the routine specified. DFSERA30 must be available for DFSERA70

to load.

Unrecognized characters or invalid parameter specifications are ignored by this

routine.

Examples of Using the Enhanced Select Exit Routine (DFSERA70)

This section includes examples of the use of DFSERA70.

Figure 100 shows the option for printing all records that includeX'50'/X'5950'

database records and expanding the data in the X'5050' records.

 Figure 101 shows the option for printing only X'50' database records with expanded

data.

 Figure 102 shows the option for printing X'50' database records with expanded data

and 67 diagnostic records.

 Figure 103 shows the option for printing all records in regular format including

X'50'/X'5950' database records for a PST number of X'A' using a PSB named

APPLPSB.

 Figure 104 on page 324 shows the option for printing all records in regular format

including X'50'/X'5950' database records at an RBA of X'2000' and an offset of

X'200'.

OPTION PRINT EXITR=DFSERA70

Figure 100. Example 1

OPTION PRINT O=5,V=50,EXITR=DFSERA70

Figure 101. Example 2

OPTION PRINT O=5,V=67,EXITR=DFSERA30

OPTION PRINT O=5,V=50,EXITR=DFSERA70

Figure 102. Example 3

OPTION PRINT EXITR=DFSERA70,PARM=(XFMT=N,PST=X'A',PSB=APPLPSB)

Figure 103. Example 4

Enhanced Select Exit Routine

Chapter 13. File Select and Formatting Print Utility (DFSERA10) 323

Figure 105 shows the option for printing, in extended format, all records that contain

the character string 'aaaa'.

 Figure 106 shows the option for selecting all types of log records with the token

X'0001F8FF00000000' and printing the records in extended format.

 Figure 107 shows the option for seleting X'0A' log records with the token

X'0001F8E400000001' and printing the records in regular format.

OPTION PRINT EXITR=DFSERA70,PARM=(XFMT=N,RBA=X'2000',OFFSET=X'200')

Figure 104. Example 5

OPTION PRINT EXITR=DFSERA70,PARM=(XFMT=Y,DATA=aaaa)

Figure 105. Example 6

OPTION PRINT EXITR=DFSERA70,PARM=(XFMT=Y,TOKEN=X'0001F8FF00000000')

Figure 106. Example 7

OPTION PRINT O=5,V=0A,T=X,EXITR=DFSERA70,PARM=(XFMT=N,TOKEN=X'0001F8E400000001')

Figure 107. Example 8

Examples

324 Utilities Reference: System

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0)

Use the Fast Path (FP) Log Analysis utility to prepare statistical reports for Fast

Path, based on data recorded on the IMS system log. This utility is an offline utility

and produces three data sets, one of which contains six formatted reports:

v Detail Listing of Exception Transactions

v Summary of Exception Detail by Transaction Code for IFP Regions

v Overall Summary of Transit Times by Transaction Code for IFP Regions

v Overall Summary of Resource Usage and Contentions for All Transaction Codes

and PSBs

v Summary of Region Occupancy for IFP Regions by PST

v Summary of VSO Activity

v Recapitulation of the Analysis

These reports are useful for system installation, tuning, and trouble shooting. This

utility is not related to the IMS Monitor or the Log Transaction Analysis utility.

Figure 108 shows four intervals that are computed for a Fast Path transaction:

 The maximum interval that can be recorded on the logs is 65.535 seconds.

However, if in computing the time span to be reported, the fields overflow, then

9999 will be displayed on the report to indicate a computational overflow. The fields

of IN-Q, PROC, and OUTQ can represent 9.999 seconds at maximum.

The four intervals are computed and inserted into reserved fields in Fast Path log

records and are thus made part of the normal logging procedure. Intervals (A) and

(B) appear in the input message (X'5901') and the output message (X'5903') log

records respectively. Intervals (C) and (D) appear in the dequeue log record

(X'5936'). Synchronization point takes place at the boundary between intervals (B)

and (C).

The Fast-Path-Log-Analysis report includes additional performance-related data

items from the Fast Path log records. The kinds of data items contained in the log

records that may be reported are:

v Input message (X'5901') log record

(A) Input queue time—period from input exit to the get unique (GU) call of the

application program

(B) Processing time—period from the get unique (GU) call of the application

program to sync point

(C) Output queue time—period from sync point to entry to the output router

(D) Output time—period from output router entry to dequeue time

Figure 108. Intervals for a Fast Path Transaction

© Copyright IBM Corp. 1974, 2004 325

– The routing code for the transaction

– The input terminal’s LTERM name for the transaction

– The balancing group queue count

v Synchronization point (X'5937') log record

– The number of VSO reads

– The number of VSO updates (CIs)

– The number of ADS reads

– The number of ADS updates (CIs)

– The number of DEDB calls made

– The number of MSDB calls made

– The number of control interval (CI) contentions

– The number of unit of work (UOW) contentions

– The number of common buffers used

– The number of waits for common buffers

– The number of waits for private buffers

The intervals (A), (B), (C), (D), and the performance-related items are combined

with other logged information to produce all the reports.

The following topics provide additional information:

v “Restrictions for DFBUTLA0”

v “Input and Output for DFBUTLA0” on page 327

v “Detail-Listing-of-Exception-Transactions Report” on page 328

v “Summary-of-Exception-Detail-by-Transaction-Code (for IFP Regions) Report” on

page 333

v “Overall-Summary-of-Transit-Times-by-Transaction-Code (for IFP-Regions)

Report” on page 334

v “Overall Summary of Resource Usage and Contentions for All Transaction Codes

and PSBs Report” on page 334

v “Summary-of-Region-Occupancy Report” on page 336

v “Summary-of-VSO-Activity Report” on page 337

v “Recapitulation-of-the-Analysis Report” on page 338

v “JCL Requirements for DFBUTLA0” on page 339

v “Utility Control Statements for DFBUTLA0” on page 340

v “Error Processing for DFBUTLA0” on page 345

Related Reading: You can use KBLA to build JCL and execute DBFULTA0. See

“Using KBLA to Run a Job Against IMS Log Records” on page 508 for more

information.

Restrictions for DFBUTLA0

The Fast Path Log Analysis utility cannot use Common Queue Server (CQS) logs

as input because CQS log records have a different format from IMS log records.

Fast Path Log Analysis

326 Utilities Reference: System

|

|

Input and Output for DFBUTLA0

The Fast Path Log Analysis utility uses the following input:

v An IMS system log data set

v A control statement that contains the execution parameters

The Fast Path Log Analysis utility processing consists of the following two steps:

1. Constructing Fast Path transaction detail records (FPTDR)

2. Analyzing the FPTDRs and printing the reports

The basic unit of output from this utility is the FPTDR. One FPTDR is constructed

for each Fast Path transaction processed. An FPTDR is a 143-byte EBCDIC logical

record consisting of the data associated with a given transaction (compiled from

one or more log records) and a sequence number that indicates the order in which

this transaction entered sync-point processing. The last log record that can supply

data for each FPTDR is the dequeue record for the transaction.

The basic FPTDR record is extended to 252 bytes when written to the Exception

Traffic data set. The first 143 bytes are identical to the Total Traffic data set.

The Fast Path Log Analysis utility uses the FPTDRs to form the following three

output data sets:

v Total Traffic, normally a tape or direct-access data set that contains every

FPTDR. This data set can be passed to a subsequent job step for sorting and

printing, or for additional analysis.

This data set is optional.

v Exception Traffic, normally a direct-access or tape data set that contains only

those FPTDRs that you have set as exceptional and that therefore appear in the

Detail Listing of Exception Transactions report. This data set can be passed to a

subsequent job step for sorting and printing, or for additional analysis.

This data set is optional.

v Formatted Reports, normally a printer output data set that consists of several

reports formed by various combinations of transaction detail records.

The Total Traffic and Exception Traffic data sets are provided to make it convenient

for you to post process performance data, formatted by the utility, without using the

log data set. For example, inspection of reports can indicate that the Total Traffic

data set should be sorted and printed in physical line number and terminal

sequence, to analyze a problem possibly related to line activity. An internal DSECT

within the source code for DBFULTA0, FPDR, maps these records.

Records are written to the Total Traffic and Exception Traffic data sets in the order

in which they are completed—in the order of dequeue records for the normal

transaction sequence. However, the sequence number assigned for each

transaction is determined by the order in which the transaction enters sync point

processing.

Format of Total Traffic and Exception Traffic Data Sets

The Fast Path Log Analysis utility gathers the Fast Path transaction detail records

that are written to the Total Traffic and Exception Traffic data sets. A single logical

record is written for each FPTDR. The data set organization is fixed blocked, with

LRECL=143 for SYSUT1 (the Total Traffic data set) and LRECL=252 for SYSUT2

(the Exception Traffic data set). The BLKSIZE can be specified in the //SYSUT1 and

Input and Output

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 327

//SYSUT2 DD statements, however, the default blocking factor is 10. The logical

records are written in order of the dequeuing record associated with each

transaction. The data code is EBCDIC for all characters. The format of each logical

record is mapped by internal DSECT FPDR.

All leading zeroes of the edited fields are suppressed; however, there is always at

least a single nonblank digit to the left of a decimal point.

Fields that are unused (for example, the output time field of a record that has no

dequeue information) are set to blanks.

The synchronization point date and IMS release level fields are included in the

SYSUT1 and SYSUT2 data sets for informational purposes, but will not appear on

formatted reports.

Decimal integer fields that contain overflow values are indicated by the value of all

9s. This method of indicating overflow causes overflowed fields to sort high.

Detail-Listing-of-Exception-Transactions Report

You define, with input parameters, what is considered to be an exceptional transit

time value (TT input parameter) for each IFP transaction. Transit time is defined as

the sum of intervals A, B, and C (defined in Figure 108 on page 325). Output time D

is not included for this purpose. Any transaction with a transit time that exceeds the

specified exceptional value is included in the Detail Listing of Exception

Transactions and can be written on the SYSUT2 data set.

The following transactions are included in the report:

v Successfully processed IFP transactions with a transit time equal to or greater

than the Exceptional Transit Time Specification.

These include transactions for which a dequeue log record is not found. For

these transactions the output queue time, and therefore the total transit time, are

unknown and are not formatted. This condition is marked in the report by the

characters NO DEQ under the TOTAL column.

v All IFP transactions with a synchronization point failure. These include invalid

work prior to the first message GU and invalid work done after a message GU

has received a ‘QC’ status code, or if the transaction returns to IMS without

receiving a ‘QC’ status code.

v If you specify the “nonmessage” option, non-message-driven transactions are

included.

You can limit the actual number of transactions reported with the MAXDETAIL input

parameter. CALLS, BUFFER, and VSO lines are omitted for transactions that are

not processed at the IMS for which the Fast Path Log Tape Analysis utility is run.

Figure 109 on page 329 is an example of a Detail-Listing-of-Exception-Transactions

report.

Input and Output

328 Utilities Reference: System

The column headings of the Detail-Listing-of-Exception-Transactions report are:

SEQ NO.

Sequence in which this transaction entered sync point processing. Seven

print positions are provided for this column; therefore, if there are more than

9999999 transactions during the specified analysis period, the sequence

number wraps to 0.

TRANCODE OR PSB

The transaction code, or PSB name.

SYNC POINT TIME

The clock time at synchronization point processing.

S F Synchronization failure reason code character for transactions that fail

synchronization processing. A nonblank character in this column indicates

synchronization failure and, for this case, the following columns are blank.

The meaning of nonblank codes A through U is as follows:

DETAIL LISTING OF EXCEPTION TRANSACTIONS: PAGE 3

 LEGEND

 __

 | |

 | RT: REGION TYPE; I=IFP, M=MPP, B=BMP, D=DBCTL, U=UTILITY |

 | PT: PROCESS TYPE; H=HSSP, R=REORG |

 | CONTENTIONS: CI; NO. OF WAITS FOR CI(S) |

 | UW; NO. OF WAITS FOR UOW (S) |

 | OB; NO. OF WAITS FOR OVERFLOW BUFFER LOCK |

 | BW; NO. OF WAITS FOR COMMON BUFFERS |

 | SF: SYNC FAILURE CODES - SEE UTILITY REFERENCE MANUAL |

 | BUF USE: TOTAL BUFFERS USED FROM THE COMMON POOL - INCLUDES |

 | NBA, OBA AND NRDB (NON-RELATED BUFFERS FOR SDEP/MSDB USE)|

 | |

 --

 DETAIL LISTING OF EXCEPTION TRANSACTIONS: PAGE 4

 SEQ TRANCODE SYNC POINT S ROUTING LOGICAL PST QUEUE TRANSIT TIMES(MSEC)- -OUT- DEDB ..ADS.. ..VSO.. MSDB BUF CONTENTIONS R P

 NO. OR PSB TIME F CODE TERMINAL ID COUNT IN-Q PROC OUTQ TOTAL (SEC) CALL RD UPD RD UPD CALL USE CI UW OB BW T T

 _______ ________ ___________ _ ________ ________ ___ _____ ____ ____ ____ _____ _____ ____ ___ ___ ___ ___ ____ ___ __ __ __ __ _ _

 9 TPCA 3:55:38.00 TPCA FPT05505 52 105 68 20 45 133 0.1 5 3 1 4 2 0 5 0 0 0 0 I

 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0 TOTAL 5

 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0

 VSO - VGET 4 VPUT 0 DGET 2

 58 TPCA 3:55:38.03 TPCA FPT04203 8 113 73 38 41 152 0.1 5 3 1 4 2 0 5 0 0 0 0 I

 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0 TOTAL 5

 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0

 VSO - VGET 4 VPUT 0 DGET 2

 1 TPCA 3:55:38.00 TPCA FPT07383 64 107 66 38 48 152 0.1 5 3 1 4 2 0 5 0 0 0 0 I

 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0 TOTAL 5

 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0

 VSO - VGET 4 VPUT 0 DGET 2

 25 TPCA 3:55:38.01 TPCA FPT07447 46 104 70 23 36 129 0.1 5 3 1 4 2 0 5 0 0 0 0 I

 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0 TOTAL 5

 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0

 VSO - VGET 4 VPUT 0 DGET 2

 92 TPCA 3:55:38.06 TPCA FPT05963 47 127 72 29 43 144 0.1 5 3 1 4 2 0 5 0 0 0 0 I

 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0 TOTAL 5

 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0

 VSO - VGET 4 VPUT 0 DGET 2

 88 TPCA 3:55:38.06 TPCA FPT00939 15 124 67 50 45 162 0.1 5 3 1 4 2 0 5 0 0 0 0 I

 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0 TOTAL 5

 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0

 VSO - VGET 4 VPUT 0 DGET 2

 150 TPCA 3:55:38.09 TPCA FPT02509 24 111 77 30 35 142 0.1 5 3 1 4 2 0 5 0 0 0 0 I

 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0 TOTAL 5

 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0

 VSO - VGET 4 VPUT 0 DGET 2

 148 TPCA 3:55:38.09 TPCA FPT02570 13 110 79 40 37 156 0.1 5 3 1 4 2 0 5 0 0 0 0 I

 CALLS - GU 0 GN 0 GNP 0 GHU 1 GHN 0 GHNP 0 REPL 1 ISRT 1 DLET 0 FLD 2 POS 0 TOTAL 5

 BUFFER - NBA= 4 OVFN= 0 STEAL= 0 WAIT= 0 OTHR= 1 NRDB= 1 PBUF= 0 PBWT= 0 ASIO= 0 AIOW= 0

 VSO - VGET 4 VPUT 0 DGET 2

Figure 109. Sample Detail Listing of Exception Transactions

Exception Transactions Report

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 329

A MSDB verify failure

B MSDB arithmetic overflow

C DEDB sequential dependent area full

D DEDB sequential dependent insert caused buffer overflow

E DEDB sequential dependent buffer overflow three times

F DEDB area not available for use

G Dynamic MSDB area full

H MSDB required segment not found

I DEDB FLD calls; lock for a CI could not be obtained

J DEDB FLD calls; deadlock occurred

K DEDB FLD calls; overflow occurred

L ROLB call

M DEDB FLD calls; verify failed

N DEDB FLD calls; segment in CI was deleted

O Out of resources

P Inflight condition in /ERE

Q RESYNC abort requested

R Resource deadlock

S Out of space in data sets

U Application program abend

Information relating to sync failures is obtained from type X'5938' log

records.

ROUTING CODE

Identification of the balancing group.

LOGICAL TERMINAL

The input LTERM name for this transaction.

PST-ID

The PST number.

QUEUE COUNT

The number of transactions in the balancing group (BALG) queue when this

transaction entered synchronization point processing.

Transit Times in Milliseconds

IN-Q Time interval A, input queue time in milliseconds.

 The input queue time will be marked N/A for Shared EMH

input/output transit time when the transaction is:

1. Local only

2. Global only or local first transaction which is processed on other

CPC while DBFULTA0 is reading the log of the IMS backend.

PROC Time interval B, processing time in milliseconds.

OUTQ Time interval C, output queue time in milliseconds. Information

Exception Transactions Report

330 Utilities Reference: System

relating to output queue time is obtained from type X'5936' log

records, the terminal output dequeue records.

 The input queue time will be marked N/A for Shared EMH

input/output transit time when the transaction is:

1. Local only

2. Global only or local first transaction which is processed on other

CPC while DBFULTA0 is reading the log of the IMS backend.

TOTAL

The sum of time intervals A, B, C. This is the transit time as defined

for the utility. The magnitude of this sum exceeds the exception

value for the transaction code.

OUT TIME

Time interval D, output time (to dequeue) in seconds.

DEDB CALL

The total number of DEDB calls.

ADS READS & UPDATES

The number of CIs read and updated.

VSO READS & UPDATES

The number of CIs read and updated from the data space.

MSDB CALL

The number of MSDB calls during this processing.

BUF USE

The total number of buffers used from the common buffer pool. This

number includes non-related buffers used for MSDBs and SDEPs.

CONTENTIONS

CI The number of waits for CIs during this processing.

UW The number of waits for UOWs during this processing.

OB The number of waits for overflow buffer allocation. This number

should never be greater than 1.

BW The number of waits for common buffers.

RT The region type, one of the following:

B BMP

I IFP

M MPP

U Utility

PT The process type, one of the following:

G Shared EMH global message processing

H HSSP

R Reorganization

The following lines are only obtained if the optional utility control statements are

provided. However, the information is always available in the extension to the

FPTDR record in the SYSUT2 data set.

Exception Transactions Report

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 331

CALLS Line

The CALLS line contains the number of DL/I calls by type for DEDB calls.

Information relating to CALLS is obtained from type X'5937' log records.

 The different types of DL/I calls are:

GU CALL The number of GU calls

GN CALL The number of GN calls

GNP CALL The number of GNP calls

GHU CALL The number of GHU calls

GHN CALL The number of GHN calls

GHNP CALL The number of GHNP calls

REPL CALL The number of REPL calls

ISRT CALL The number of ISRT calls

DLET CALL The number of DLET calls

FLD CALL The number of FLD calls

POS CALL The number of POS calls

TOTAL The number of DL/I calls during this processing

BUFFER Line

The BUFFER line contains the amount of buffer use by type. Information

relating to BUFFER is obtained from type X'5937' log records:

 The different types of buffer use are:

NBA The number of times a wait for NBA latch occurred during

this processing.

OVFN The number of overflow buffers used during this processing.

STEAL The number of times buffer stealing is invoked by this

transaction.

WAIT The number of times the transaction waited for a buffer to

become available.

OTHR The number of buffers sent to OTHREAD.

NRDB The number of buffers used by MSDB and SDEP

processing.

PBUF The number of private buffers used by HSSP or the High

Speed DEDB Direct Reorganization utility in a transaction

(one unit of work).

PBWT The number of waits for private buffers by HSSP or the

High Speed DEDB Direct Reorganization utility in a

transaction (one unit of work).

ASIO The number of UOW asynchronous read-aheads by HSSP

or the High Speed DEDB Direct Reorganization utility in a

transaction (one unit of work).

AIOW The number of UOW asynchronous read-aheads to

complete by HSSP or the High Speed DEDB Direct

Reorganization utility in a transaction (one unit of work).

 This number should be either zero or one.

Exception Transactions Report

332 Utilities Reference: System

VSO Line

The VSO line contains information on data space use by transaction.

Information relating to VSO is obtained from type X'5937' log records.

 The type of information collected about data space use is as follows:

VGET The number of CI read requests satisfied from a data

space.

VPUT The number of CIs with updates to a data space.

 This number represents the number of CIs that would have

been sent to OTHREAD if the areas were non-VSO.

DGET The number of CIs read from DASD into a data space.

SEMHB Line

The SEMHB line contains the transit time for Fast Path input and output

messages on EMHQ. Information relating to SEMHB is obtained from type

X'5936' log records.

 The type of information collected about data space use is as follows:

SHARED EMHB

Shared EMH global message processing.

IMSG TRANSIT

The time that a Fast Path input message spent on the

EMHQ before an application GU. The time is in

milliseconds.

OMSG TRANSIT

The time that a Fast Path output message spent on the

EMHQ before an application GU. The time is in

milliseconds.

You can specify exceptional transit time values separately for each Fast Path

transaction code. A global value can be specified that applies to all other

unspecified transaction codes.

Summary-of-Exception-Detail-by-Transaction-Code (for IFP Regions)

Report

A summary is produced for the exceptional transactions selected for the Detail

Listing of Exception Transactions. However, only the exceptional IFP transactions

are taken into account. None of the other transaction types are included even if the

NON-MESSAGE option is specified.

Transactions for which a dequeue record was not found are not included in this

summary.

Figure 110 on page 334 is an example of the Summary-of-Exception-Detail-by-
Transaction-Code report.

Exception Transactions Report

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 333

The column headings for this report are:

TRANS CODE

The transaction code.

NO. OF TRANS

The number of occurrences of the transaction code for which a transit time

value was computed.

TRANSIT TIMES

The average and maximum values of transit time intervals in milliseconds.

LENG OF INPUT

The average and maximum values of input message length.

LENG OF OUTPUT

The average and maximum values of output message length.

The averages are computed using the number of occurrences of the transaction

code for which a transit time value was computed.

Overall-Summary-of-Transit-Times-by-Transaction-Code (for

IFP-Regions) Report

A summary report is produced, by transaction code, for all IFP transactions found

for the analysis period. Transactions for which a dequeue record was not found are

not included in the summary.

The format of this report is identical to that of the Summary of Exception Detail by

Transaction Code for IFP Regions. Figure 111 is an example of the Overall

Summary of Transit Times by Transaction Code for IFP Regions.

Overall Summary of Resource Usage and Contentions for All

Transaction Codes and PSBs Report

A summary report is produced for all transactions and PSBs that had their

synchronization point processing during the interval specified for the analysis.

These include successfully processed and failed transactions from MPP, BMP and

utility regions, and DBCTL threads. Data is summarized by PSB name or

transaction code.

 SUMMARY OF EXCEPTION DETAIL BY TRANSACTION CODE FOR IFP REGIONS PAGE 6

 -------------- TRANSIT TIMES IN MILLI-SECONDS -------------- INPUT MSG OUTPUT MSG

 TRANS -NO.OF- ----TOTAL--- --INPUT Q -- --PROCESS -- --OUTPUT Q-- LENG (CH) LENG (CH)-

 CODE -TRANS- -AVG- -MAX- -AVG- -MAX- -AVG- -MAX- -AVG- -MAX- -AVG -MAX -AVG -MAX

 ________ _______ _____ _____ _____ _____ _____ _____ _____ _____ ____ ____ ____ ____

 TPCA 157837 381 889 293 682 40 405 47 325 94 94 100 100

Figure 110. Sample Overall Summary of Resource Usage and Contentions for All Transaction Codes and PSBs

 OVERALL SUMMARY OF TRANSIT TIMES BY TRANSACTION CODE FOR IFP REGIONS: PAGE 7

 -------------- TRANSIT TIMES IN MILLI-SECONDS -------------- INPUT MSG OUTPUT MSG

 TRANS -NO.OF- ----TOTAL--- --INPUT Q -- --PROCESS -- --OUTPUT Q-- LENG (CH) LENG (CH)-

 CODE -TRANS- -AVG- -MAX- -AVG- -MAX- -AVG- -MAX- -AVG- -MAX- -AVG -MAX -AVG -MAX

 ________ _______ _____ _____ _____ _____ _____ _____ _____ _____ ____ ____ ____ ____

 TPCA 157837 381 889 293 682 40 405 47 325 94 94 100 100

Figure 111. Sample Overall Summary of Transit Times by Transaction Code for IFP Regions

Exception Detail by Transaction Code Report

334 Utilities Reference: System

Figure 112 is an example of the Overall Summary of Resource Usage and

Contentions for All Transaction Codes and PSBs.

 The column headings of this report are:

TRANCODE OR PSB

The transaction code or PSB.

NO. OF TRANS

The number of occurrences of the transaction code for which a transit time

value was computed.

DEDB CALLS

The number of DEDB calls

TOTAL

The total number of DL/I calls during this processing

GET The total number of “GET” DL/I calls during this processing (GU, GN,

GNP, GHU, GHN, GHNP)

UPD The total number of “UPDATE” DL/I calls during this processing

(REPL, ISRT, DLET, FLD)

AVG The average number of calls per processing interval

MAX The maximum number of calls per processing interval

MSDB CALLS (AVG MAX)

The average and maximum numbers of MSDB calls per processing interval.

ADS I/O

The area data set I/O

RDS The total number of “READ” DL/I calls (GU, GN, GNP, GHU, GHN, GHNP)

during this processing for an area data set

UPD The total number of “UPDATE” DL/I calls (REPL, ISRT, DLET, FLD)

during this processing for an area data set

AVG The average number of calls per processing interval

MAX The maximum number of calls per processing interval

VSO ACT

The amount of VSO activity

RDS The total number of CI read requests satisfied from a data space

UPD The total number of CIs with updates to a data space

AVG The average number of calls per processing interval

MAX The maximum number of calls per processing interval

COMMON BUFFER USAGE

The amount of buffer usage

AVG The average number of calls per processing interval

 OVERALL SUMMARY OF RESOURCE USAGE AND CONTENTIONS FOR ALL TRANSACTION CODES AND PSBS: PAGE 8

 TRANCODE --NO.-- ------DEDB CALLS------- -MSDB-- ----ADS I/O---- ----VSO ACT---- -COMMON BUFFER- TOTL CONTENTIONS TRAN LGNR STATS

 --OR---- ---OF-- -TOTAL- --GET-- --UPD-- -CALLS- --RDS-- --UPD-- --RDS - --UPD-- -----USAGE----- SYNC TOT TOT CI/ RATE -NO. OF CI

 --PSB--- -TRANS- AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX WTS STL FAIL UOW OBA SEC /SEC COMB LOG’D

 ________ _______ ____ ___ ___ ___ ____ ____ _____

 TPCA 157837 5 5 1 1 2 2 0 0 3 3 1 1 4 4 2 2 5 5 0 0 0 0 0 106 1315 0 0

Figure 112. Overall Summary of Resource Usage and Contentions for All Transaction Codes and PSBs

All Transaction Codes and PSBs Report

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 335

MAX The maximum number of calls per processing interval

WTS The total number of times a transaction waited for a buffer to

become available

STL The total number of times buffer stealing was invoked for the

transaction

TOTL SYNC FAIL

The total number of occurrences of this transaction code that failed

synchronization point processing.

CONTENTIONS

The number of control interval contentions

TOT UOW

The total number of times unit-of-work contentions occurred for this

transaction code

TOT OBA

The total number of times overflow buffer area contentions occurred

for this transaction code

CI/SEC

The total number of CI contentions per second for this transaction

code.If the time interval is less than one second, then it will default

to one second

TRAN RATE/SEC

The average transaction rate for this transaction code. If the time interval is

less than one second, then it will default to one second

LGNR STATS

The statistics related to the LGNR specification

 Related Reading: For more information on the LGNR specification, see

IMS Version 9: Installation Volume 2: System Definition and Tailoring.

NO. OF CI COMB

The total number of times the LGNR specification was

exceeded for this transaction code. This number is either 0

or 1.

NO. OF CI LOG’D

The total number of times an entire CI was logged for this

transaction code. This number is either 0 or 1 and will only

be 1 if NO. OF CI COMB is also 1.

Summary-of-Region-Occupancy Report

A summary report is produced of approximate region occupancy for IFP regions

during a specified period of time. If the time interval is less than one second, then it

will default to one second. This information can be used to determine if an

appropriate number of IFP regions are available for processing the workload.

This report is generated only if both the START and END parameters are specified

for the utility. Figure 113 on page 337 is an example of this report.

All Transaction Codes and PSBs Report

336 Utilities Reference: System

Summary-of-VSO-Activity Report

A summary report is produced of VSO performance statistics by area. This report is

generated only if there have been writes to the disk.Figure 114 is an example of this

report.

 The column headings of the Summary-of-VSO-Activity report are:

VSO GETS

The total number of CI read requests satisfied from a data space.

VSO PUTS

The total number of CIs with updates to a data space. This number is the

total number of CIs that would have been sent to OTHREAD if the areas

were non-VSO.

DASD GETS

The number of CIs read from DASD into a data space.

DASD PUTS

The number of CIs written from a data space to DASD.

I/O SCHED

The total number of I/Os scheduled.

CF GETS

The total number of CI read requests satisfied by a coupling facility.

CF PUTS

The total number of CIs with updates to a coupling facility.

SUMMARY OF REGION OCCUPANCY (PERCENT) FOR IFP REGIONS BY PST PAGE 9

 MEASUREMENT INTERVAL= 120 SECONDS.

REGION 1 HAD 70% OCCUPANCY WITH 84.4 SEC OF TOTAL PROCESS TIME DURING 978 TRANSACTIONS. RELATED PSB=TPC

REGION 2 HAD 67% OCCUPANCY WITH 81.1 SEC OF TOTAL PROCESS TIME DURING 922 TRANSACTIONS. RELATED PSB=TPC

REGION 3 HAD 68% OCCUPANCY WITH 82.2 SEC OF TOTAL PROCESS TIME DURING 956 TRANSACTIONS. RELATED PSB=TPC

REGION 4 HAD 67% OCCUPANCY WITH 81.3 SEC OF TOTAL PROCESS TIME DURING 926 TRANSACTIONS. RELATED PSB=TPC

REGION 5 HAD 69% OCCUPANCY WITH 83.4 SEC OF TOTAL PROCESS TIME DURING 972 TRANSACTIONS. RELATED PSB=TPC

REGION 6 HAD 67% OCCUPANCY WITH 80.7 SEC OF TOTAL PROCESS TIME DURING 919 TRANSACTIONS. RELATED PSB=TPC

REGION 7 HAD 70% OCCUPANCY WITH 84.1 SEC OF TOTAL PROCESS TIME DURING 978 TRANSACTIONS. RELATED PSB=TPC

REGION 8 HAD 68% OCCUPANCY WITH 82.5 SEC OF TOTAL PROCESS TIME DURING 942 TRANSACTIONS. RELATED PSB=TPC

REGION 9 HAD 66% OCCUPANCY WITH 80.4 SEC OF TOTAL PROCESS TIME DURING 944 TRANSACTIONS. RELATED PSB=TPC

REGION 10 HAD 70% OCCUPANCY WITH 84.8 SEC OF TOTAL PROCESS TIME DURING 958 TRANSACTIONS. RELATED PSB=TPC

Figure 113. Sample Summary of Region Occupancy (Percent) for IFP Regions by PST

 SUMMARY OF VSO ACTIVITY PAGE 12

 SHR(0/1) VSO VSO DASD DASD I/O

 AREA GETS PUTS GETS PUTS SCHED

 ________ ________ ________ ________ ________ ________

 BRANCH01 8092 8095 0 6012 2154

 TELLER01 8200 8198 0 8018 3752

 SHR(2/3) CF CF READ READ DASD DASD

 AREA GETS PUTS HIT XI GETS PUTS

 ________ _______ _______ ____ ____ _______ _______

 AREAFR01 1234567 1234567 99% 99% 1234567 1234567

 AREA2 1234567 1234567 N/A N/A 1234567 1234567

Figure 114. Sample Summary of VSO Activity

Summary of VSO Activity Report

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 337

READ-HIT

The percentage of searches of the pool and the number of times that

buffers were found. This is only valid for a lookaside pool.

READ-XI

The percentage of times a buffer was found in the pool and the number of

times the buffer was invalid. This is only valid for a lookaside pool.

DASD GETS

The number of CIs read from DASD into the coupling facility.

DASD PUTS

The number of CIs written from the coupling facility to DASD.

Recapitulation-of-the-Analysis Report

Figure 115 is an example of the Recapitulation of the Analysis.

 The meanings of the headings are as follows:

Line (1)

Number of transactions in the analysis period that were examined and

selected as a basis for the statistical data reported by the utility. These

include any transactions that were involved with Fast Path resources, that

is, from IFP, MPP, or BMP regions, or from DBCTL transactions. These are

also the transactions written to the total traffic output data set if the

SYSUT1 DD statement was provided.

Line (2)

Number of exceptional transactions found and written to the SYSUT2 data

set. These include:

v IFP transactions with a transit time equal or greater than the Exceptional

Transit Time Specification

v All IFP transactions with a sync point failure

v All IFP transactions for which no dequeue records were found

v All non-message-driven Fast Path transactions if the option

NON-MESSAGE was selected by the user. These include MPP, BMP,

utility, and DBCTL transactions.

 RECAPITULATION OF THE ANALYSIS: PAGE 13

 (1) TOTAL NUMBER OF FAST PATH TRANSACTIONS EXAMINED (SYSUT1).................157837

 (2) NO. OF TRANSACTIONS INCLUDED IN THE EXCEPTION DETAIL DATA SET (SYSUT2)...157837

 BREAKDOWN BY EXCEPTION TYPE:

 (2.1) TRANSIT TIME....................157837

 (2.2) IFP SYNC FAILURE.....................0

 (2.3) NO DEQUEUE RECORD....................0

 (2.4) MPP,BMP, DBCTL AND UTILITIES.......N/A

 (INC SYNC FAILURE)

 (3) NO. OF IFP TRANSACTIONS INCLUDED IN THE SUMMARY OF

 EXCEPTION DETAIL BY TRANSACTION (2.1)+(2.2)...................157837

 (4) NO. OF TRANSACTIONS OR PSBS INCLUDED IN THE PROFILE SUMMARY

 FOR ALL REGIONS (INC SYNC FAILURE) BY PSB OR TRANCODE.........157837

 (5) NO. OF IFP TRANSACTIONS INCLUDED IN THE OVERALL SUMMARY

 BY TRANSACTION (1)-(2.3)......................................157837

 (6) NO. OF TIMES COMBINING CONSTANT WAS DOUBLED...................................0

 (7) NO. OF TIMES ENTIRE CI LOGGED (LGNR EXCEEDED).................................0

Figure 115. Sample Recapitulation of the Analysis

Summary of VSO Activity Report

338 Utilities Reference: System

Line (2.1)

Number of IFP transactions with a transit time equal or greater than the

Exceptional Transit Time Specification. The number must match the number

of transactions reported in the column NO. OF TRANS of the

Summary-of-Exception-Detail-by-Transaction-Code-for-IFP report.

Line (2.2)

Number of IFP transactions with a synchronization point failure. The number

must match the number of transactions reported in the column SYNC FAIL

of the Summary of Exception Detail by Transaction Code for IFP Regions.

Line (2.3)

Number of IFP transactions in the analysis period for which dequeue

records were not found.

Line (2.4)

Number of non-message-driven Fast Path transactions. These include all

transactions from MPP, BMP and utility regions, and from DBCTL threads

found in the analysis period. This is reported only if the NON-MESSAGE

option was selected.

 If the NON-MESSAGE option is not selected, the N/A (not applicable)

characters are printed.

Line (3)

Number of IFP transactions as reported by the Summary of Exception

Detail by Transaction Code for IFP Regions. The number includes

successfully processed transactions and transactions with a synchronization

point failure. It is the sum of the numbers reported in lines (2.1) and (2.2). It

does not include transactions for which no dequeue records were received.

Line (4)

Number of transactions included in the Overall Summary of Resource

Usage and Contentions for All Transaction Codes and PSBs report. The

number must match the number in line (1).

Line (5)

Number of transactions included in the Overall Summary of Transit Times

by Transaction Code for IFP Regions. The number must match the number

of transactions reported in the NO. OF TRANS column.

Line (6)

Total number of times the LGNR specification was exceeded for all

transaction codes.

 Related Reading: Refer to IMS Version 9: Installation Volume 2: System

Definition and Tailoring for an explanation of the LGNR specification.

Line (7)

Total number of times the entire CI was logged for all transaction codes.

JCL Requirements for DFBUTLA0

EXEC

Executes the Fast Path Log Analysis utility.

//EXEC PGM=DBFULTA0

DD Statements

STEPLIB DD

Describes the program library that contains the DBFULTA0 load module.

Recapitulation of the Analysis Report

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 339

//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR

SYSPRINT DD

Describes the data set that receives the printed output of DBFULTA0—reports,

messages, and parameter statement images. This DD statement is required.

//SYSPRINT DD SYSOUT=A

SYSUT1 DD

Describes the data set that receives the total traffic output of DBFULTA0. This is

a sequential data set consisting of every Fast Path transaction detail record

formed by DBFULTA0. Each record is in EBCDIC characters. The logical record

length is 143 bytes. The block size specification is optional. The default value

for BLKSIZE is 1430.

//SYSUT1 DD DSN=&&TOTAL,DISP=(,PASS),UNIT=SYSDA,

// SPACE=(CYL,(1,1)),DCB=BLKSIZE=2860

SYSUT2 DD

Describes the data set that receives the exception traffic output of DBFULTA0.

This is a sequential data set consisting of the Fast Path transaction detail

records that are exceptions. It is a copy of the Detail Listing of Exception

Transactions with headings and carriage control characters suppressed. The

logical record length is 252 bytes. The block size specification is optional. The

default value of BLKSIZE is 2520.

//SYSUT2 DD DSN=&&EXCEP,DISP=(,PASS),UNIT=SYSDA,

// SPACE=(CYL,(1,1)),DCB=BLKSIZE=5040

LOGTAPE DD

Describes the input log data set. This must be the log file from IMS V5.

//LOGTAPE DD DSN=IMS33.LOG,DISP=OLD,VOL=SER=XXXXXX,UNIT=XXXX

SYSIN DD

Describes the input control data set. This data set is used to specify execution

parameters. This DD statement is optional. The following is a sample input

stream.

//SYSIN DD *

START=09:59:59 24-hour notation, note colons

END=12:00:00

LINECNT=45 lines per page for reports

NOT-MESSAGE include transactions that are not IFPs

MAXDETAIL=5000 exceptions detail listing limit

CALLS

BUFFER

VSO

TT(*)=15.0

TT(TCODE1)=3.0

TT(TCODE2)=2.5

TT(TCODE3)=1.0

Utility Control Statements for DFBUTLA0

Control statements in the SYSIN data set control the Fast Path Log Analysis utility.

You can specify the time period of Fast Path execution for which the analysis is to

be performed. This is expressed as the starting time (clock time) or an ending time.

Transactions whose synchronization point time stamps fall within this interval are

processed. If you do not specify an interval, the entire log data set is processed.

After the log is processed up to the end time specified, scanning continues to find

dequeue records related to transactions that were processed during the specified

analysis time interval.

JCL Requirements

340 Utilities Reference: System

Process multi-volume log data sets by specifying multiple volumes in the //LOGTAPE

DD statement or by concatenation of DD statements.

Transit Time Exception Specification

You can limit the volume of printed output produced by specifying an exceptional

transit time value for each transaction code. Occurrences of transaction transit

times that are less than the exceptional value do not appear in the Detail Listing of

Exception Transactions. You can specify a different exception transit time for each

unique transaction code. Also, you can specify a global value for all transaction

codes that are not individually specified. A separate summary report is produced for

those transactions that exceed the exception criteria.

A detail report of all the transactions processed from the log data set can be

produced either by not specifying an exceptional transit time (default=0) or by

printing the total FPTDR data set in a subsequent job step.

An upper limit can be placed on the number of transactions that are printed in the

Detail-Listing-of-Exception-Transactions report. This limit can be used to prevent the

production of unexpectedly large output listings.

Analysis Parameter Statement Formats

All statements begin in column 1. The statements can appear in any order and are

listed in the SYSPRINT data set for verification.

Starting Date Specification (STARTDAY)

You can specify the date of the earliest transaction to be processed in Julian format.

Transactions with an earlier date are ignored. If the starting time is also specified,

transactions with an earlier synchronization point time on that day are also ignored.

The format of this parameter is:

STARTDAY=YYDDD

YYDDD is the last two digits of the year and the sequential number of the day,

running from 1 to 366.

The default value is the date IMS was started, from the type X'42' log record.

Ending Date Specification (ENDDAY)

You can specify the date of the latest transaction to be processed in Julian format.

Transactions with a later date are ignored. If the ending time is also specified,

transactions with a later synchronization point time on that day are also ignored.

The format of this parameter is:

ENDDAY=YYDDD

(last two digits of the year and the sequential number of the day, running from 1 to

366)

The default value, if ending time is specified, is the date IMS was started from the

type X'42' log record. If ending time is less than starting time, the default is one day

later. If neither ending date nor ending time are specified, the entire data set is

processed.

Utility Control Statements

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 341

Starting Time Specification (START)

You can specify the time of the earliest transaction to be processed. Transactions

with an earlier sync-point time are ignored. The format of this parameter is:

START=HH:MM:SS[{+|-}HH:MM]

(in hours, minutes, and seconds for a 24-hour clock). You only need to specify the

optional time-zone information if the offset to the Universal Time Coordinated on the

day entered is different from the current offset, for example because of a daylight

savings time change.

The optional time-zone information following hh:mm:ss contains the following:

+ or - Specifies the sign of the time-zone offset from UTC.

HH Specifies the number of whole hours of offset from UTC.

MM Specifies minutes of offset. MM can be 00, 15, 30, 45, or blank.

The default value is 00:00:00, which causes the analysis to begin with the first

transaction on the log data set.

Ending Time Specification (END)

You can specify the sync-point time of the latest transaction to be processed.

Transactions with a later synchronization point time will be ignored. The format of

this parameter is:

END=HH:MM:SS[{+|-}HH:MM]

(in hours, minutes, and seconds for a 24-hour clock). You only need to specify the

optional time-zone information if the offset to UTC on the day entered is different

from the current offset, for example because of a daylight savings time change.

The optional time-zone information following hh:mm:ss contains the following:

+ or - Specifies the sign of the time-zone offset from UTC.

HH Specifies the number of whole hours of offset from UTC.

MM Specifies minutes of offset. MM can be 00, 15, 30, 45, or blank.

If the end date is not specified, the default value causes the analysis to end with

the last transaction on the log data set.

The date on the log data set is not explicitly specified by a parameter statement.

The data is implicit with the specification for the log data set that is in the JCL

Requirements section. The Julian date is read from the log header record when

execution begins, and this date is printed as part of the parameter summary for

verification.

Exceptional Transit Time Specification (TT)

You can specify a time interval for each Fast Path transaction that you decide to

consider exceptional for reporting purposes. The format of this parameter is:

TT (TRANCODE)=SS.T

(in seconds and tenths of seconds)

Utility Control Statements

342 Utilities Reference: System

The transaction code, up to eight characters, is enclosed in parentheses. You can

specify as many as 100 individual transaction codes. A global value of exceptional

transit time is specified as follows: TT(*)=SS.T (in seconds and tenths of seconds).

This value applies to all transaction codes that are not individually specified.

Individual specification overrides the global value. The default value for the global

exceptional transit time is 0. A practical upper limit of exceptional transit time is 65.5

seconds. This limitation results from the field size used to express the time intervals

(A), (B), and (C) in the Fast Path log records.

Not Message-Driven Option (NON-MESSAGE or NOT-MESSAGE)

You can specify that transactions that are not IFPs (that is, BMPs, MPPs, utilities

and DBCTL threads) should be considered exceptions and be included in the

Detail-Listing-of-Exception-Transactions report. The accepted formats are:

NON-MESSAGE

or

NOT-MESSAGE

NOT-MESSAGE means transactions are not IFPs.

Detail-Listing-of-Exception-Transactions Report Size Limitation

(MAXDETAIL)

You can limit the number of lines printed in the Detail Listing of Exception

Transactions. After this limit is reached, the analysis continues; however, no further

transactions are printed in the Detail Listing of Exception Transactions.

The format of this parameter is:

MAXDETAIL=n

where n is an integer of no more than seven digits. The default value is 1000. The

limitation of printed output lines does not affect the number of exception detail

records that are written to the exception detail traffic data set (SYSUT2).

DL/I Call Specification (CALLS)

You can specify that the number of DL/I calls be printed. They are printed by call

type (GU, REPL, and so on). The format of this parameter is:

CALLS

Information about calls is obtained from type X'5937' log records.

Buffer Use Specification (BUFFER)

You can specify that the amount of buffer use, by type, be printed. The format of

this parameter is:

BUFFER

The type of information collected about buffer use is as follows:

v The number of NBA buffers used (NBA)

v The number of overflow buffers used (OVFN)

v The number of times buffer stealing was invoked by this transaction (STEAL)

v The number of times the transaction waited for a buffer to become available

(WAIT)

Utility Control Statements

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 343

v The number of buffers sent to OTHREAD (OTHR)

v The number of buffers used by MSDB and SDEP processing (NRDB)

Information about buffer use is obtained from type X'5937' log records.

Data Space Use Specification (VSO)

You can specify that information on data space use, by transaction, be printed. The

format of this parameter is:

VSO

The type of information collected about data space use is as follows:

v The number of CI read requests satisfied from a data space (VGET)

v The number of CIs with updates to a data space (VPUT) This number represents

the number of CIs that would have been sent to OTHREAD if the areas were

non-VSO.

v The number of CIs read from DASD into a data space (DGET)

Information about data space use is obtained from type X'5937' log records.

Printed Page Line Count Specification (LINECNT)

You can specify the number of lines printed per page for the printed reports. The

format of this parameter is:

LINECNT=n

where n is an integer greater than 5. The value specified applies to titles and

headers so that 6 is the minimum allowable value. The default value is 55 lines per

page.

Each parameter statement is listed in the SYSPRINT data set exactly as it is read

for verification. Figure 116 is an example of parameter statements read from the

SYSIN data set and of how they are listed in the SYSPRINT data set. After all

parameter statements are read, the utility prints a summary display of either the

parameters supplied or the default values that are used for parameters not

specified. If you specify both the START and END parameters, then the line RATE

CALCULATION ACTIVE will be displayed, and the Summary of Region Occupancy

Report will be generated. Figure 117 on page 345 is an example of the parameter

display. Date information is obtained from the log buffer control record (X'42').

SPECIFIED INPUT PARAMETERS:

 ANALYSIS START TIME: 00:00:00 DATE: 89095

 END TIME: 23:59:59

 A MAXIMUM OF 1000 EXCEPTIONAL TRANSACTIONS WILL BE LISTED.

 RATE CALCULATION ACTIVE: INTERVAL=86399 SECONDS.

 TRANSIT TIME EXCEPTION VALUES:

 EXCEPTION VALUE IN SEC.

 TRANSACTION CODE (IN-Q THRU OUT-Q)

 ___________ ____ _________________

 GLOBAL 0.0

Figure 116. Specified Input Parameters

Utility Control Statements

344 Utilities Reference: System

Error Processing for DFBUTLA0

User abend codes are not generated.

The following return codes are produced:

Code Meaning

0 Successful completion of analysis

4 Analysis prematurely ended, partial results produced

8 Unable to perform analysis

12 Unable to open ddname SYSPRINT

Related Reading: See IMS Version 9: Messages and Codes, Volume 1 for an

explanation of the messages generated by this utility.

LOG DATA SET ANALYSIS FOR IMS FAST PATH

PAGE 1

THE FOLLOWING PARAMETER CARDS WERE READ FROM SYSIN:

LINECNT=45

Figure 117. Parameter Display

Error Processing

Chapter 14. Fast Path Log Analysis Utility (DBFULTA0) 345

346 Utilities Reference: System

Chapter 15. Offline Dump Formatter Utility (DFSOFMD0)

Use the Offline Dump Formatter utility (DFSOFMD0) to format internal IMS control

blocks in a dump that is both independent of a failure and independent of the

dumping process. This utility allows you to tailor the dump to print and format only

the data areas needed to analyze a particular problem. Use the Offline Dump

Formatter utility to:

v Establish the environment needed for offline dump formatting

v Read and check the dump format control statements

v Relocate or load the dump formatting modules

v Direct the offline dump formatting process

The Offline Dump Formatter utility is invoked as a verb exit from the Interactive

Problem Control System (IPCS).

Related Reading: See z/OS MVS Interactive Problem Control System (IPCS)

User’s Guide for information about IPCS.

The Offline Dump Formatter utility modules are included in the dumped storage to

ensure that the modules used for formatting the dump match the level of the

dumped IMS control blocks. These modules can be relocated from the dumped

storage, or a fresh copy can be loaded from the program library.

Related Reading: Refer to IMS Version 9: Diagnosis Guide and Reference for

information about using the Offline Dump Formatter utility to solve problems.

The following topics provide additional information:

v “Interactive Dump Formatter”

v “Migration Considerations” on page 348

v “Restrictions for DFSOFMD0” on page 348

v “Environments for DFSOFMD0” on page 348

v “Input and Output for DFSOFMD0” on page 349

v “IPCS Execution” on page 349

Interactive Dump Formatter

IPCS uses menus on the screen to run the Interactive Dump Formatter. These

menus allow you to specify the information to be contained in the dump. The

Interactive Dump Formatter calls the Offline Dump Formatter utility to perform the

required formatting tasks. The output is returned in a format that you can read on

the terminal.

Using the Interactive Dump Formatter gives you a menu-driven way to run the

Offline Dump Formatter utility without complicated editing of the DFSFRMAT file.

Related Reading:

v See the IMS Version 9: Diagnosis Guide and Reference for a full description of

the Interactive Dump Formatter and the IPCS menus.

v You can also use the Offline Dump Formatter utility to format various IMS

Connect internal control blocks. See the IMS Connect Dump Formatter

information in the IMS Version 9: Installation Volume 2: System Definition and

Tailoring.

© Copyright IBM Corp. 1974, 2004 347

|

|
|

|
|
|
|

Migration Considerations

The Offline Dump Formatter utility can be used even if you have more than one

release level of IMS, or if you are using any supported version of IMS. The load

modules for the Offline Dump Formatter utility are associated with aliases that allow

IMS.SDFSRESL from different releases to be concatenated in IPCS TASKLIB. The

aliases are:

Alias Load Module

DFSOF810 DFSOFMD0

DFSAB810 DFSABND0

The IPCS TASKLIB concatenation can contain multiple execution libraries from IMS

Version 4, and one execution library from earlier IMS releases.

Restrictions for DFSOFMD0

The following restrictions apply to the Offline Dump Formatter utility:

v The machine that executes this utility must be licensed to run IMS.

v The Offline Dump Formatter utility is conditionally assembled during IMS control

block generation because of dependencies on z/OS services for GETMAIN,

ESTAE, and LOAD. If the DFSOFMD0 module is loaded with LOAD SVC by

IPCS, the module must be in the STEPLIB data set or in linklist libraries.

v The DFSOFMD0 module must be at the same release level as the IMS system it

is formatting. It must be assembled on a z/OS that is the same level as the z/OS

it is formatting. This condition applies even if you concatenate an

IMS.SDFSRESL from a previous release.

v The version of IPCS you use to execute this utility must be compatible with the

z/OS system that was dumped.

v You cannot use the Offline Dump Formatter utility for batch regions that are not

currently producing IMS online formatted dumps, such as the Pre-reorganization

utility and the Image Copy utility, because they do not contain the required IMS

control blocks for IMS dump formatting.

v SYS1.DUMPxx data sets must be large enough to contain a complete dump of

the IMS control region, DL/I, DBRC, and IRLM address spaces for systems using

the IMS SDUMP option.

v To format Fast Path Dumps, you need to use formatting modules from an IMS

system generated with Fast Path.

v If you are using IMS Shared Message Queues or Shared EMH Queues, then

your SYS1.DUMPxx data sets must be large enough to contain a dump of the

CQS address space in addition to the address spaces. If you are using the

Common Service Layer (CSL), then your SYS1.DUMPxx data sets must be large

enough to contain a dump of the SCI address space in addition to the address

spaces.

Environments for DFSOFMD0

The following sections explain how to use the Offline Dump utility in an IMS online

or IMS batch.

IMS Online Environments

To use the Offline Dump Formatter utility in IMS DB/DC, DCCTL, or DBCTL

environments, specify the IMS start parameter option FMTO=D.

Migration Considerations

348 Utilities Reference: System

Related Reading: For more information on the FMTO= parameter see, IMS Version

9: Installation Volume 2: System Definition and Tailoring.

You can also use a SYSMDUMP DD statement.

IMS Batch Environments

To format IMS batch job dumps offline in DBCTL, DB/DC, or DCCTL batch

environments, you can request a z/OS SYSMDUMP. z/OS creates a dump can be

formatted offline using the IMS Offline Dump Formatter utility. Before using the

utility, you must remove the SYSUDUMP or SYSABEND DD statement in the IMS

batch JCL procedures and insert a SYSMDUMP DD statement.

Related Reading: Refer to the IMSBATCH procedure in IMS Version 9: Installation

Volume 2: System Definition and Tailoring for more information on IMS batch job

dumps.

If the SYSMDUMP data set is too small, unavailable, or unusable, the operating

system might be unable to make a usable dump of the batch job.

Input and Output for DFSOFMD0

This utility requires the following input:

v An acceptable machine-readable dump, such as:

– SDUMP

– SYSMDUMP

– Stand-alone dump

– Dump requested by the z/OS DUMP command

– Any other machine readable dump of the IMS system address spaces

The dump must include key 0 and key 7 CSA, the CVT, SQA, and at least one of

the CTL or DL/I SAS address spaces. CSA is not required in a batch

environment.

v An IMS dump format control data set or FMTIMS (options) specified on the IPCS

VERBX control statement.

v Execution of a proper VERBX control statement for IPCS.

The output for this utility is a formatted dump of specified sections of an IMS dump.

If you are using the dump formatter with an execution library that is from an earlier

IMS release, a formatter dialog initialization warning occurs if CSA is not included

with batch SYSMDUMPs. The dump formatter cannot determine the release levels

for the concatenated program libraries, but continues under the presumption that

they are correctly concatenated.

IPCS Execution

To use the Offline Dump Formatter utility under IPCS, you must provide an IMS

user control statement.

Example: Some examples of the IMS user control statement include:

VERBX DFSOFMD0 ’jjjjjjjj[,R][,D]’ options

VERBX DFSOFMD0 ’jjjjjjjj[,R][,H],FMTIMS(ALL)’ options

VERBX DFSOF320 ’jjjjjjjj,FMTIMS(SCD)’ options

Environments

Chapter 15. Offline Dump Formatter Utility (DFSOFMD0) 349

VERBX DFSOF320 ’jjjjjjjj[,R][,N],FMTIMS(AUTO,MIN)’ options

VERBX IMSDUMP ’jjjjjjjj[,R][,D],FMTIMS(SAVEAREA,DISP)’ options

VERBX IMSDUMP ’jjjjjjjj[,R][,D]’ options

The control statement parameters are:

jjjjjjjj

Indicates the job name or started task name of either the IMS CTL, DL/I, or the

IMS batch address space.

R Indicates REFRESH, an optional parameter for requesting that the IMS dump

formatter modules be loaded from current program libraries. If you do not

specify R, and invalid dumped formatter routines still exist, the invalid routines

might be loaded instead of the current libraries.

H Indicates HALFLINE, an optional parameter to request that the IMS dump

formatter be limited to the width of a screen (that is, 80 characters per line).

N Indicates NO HEADER, an optional parameter that reduces the header print

volume when formatting small data area dumps. The formatter skips the printed

header and footer and suppresses the dump content warning messages that

describe missing IMS address spaces or address spaces that did not finish

initializing.

D Indicates DEBUG, an optional parameter for requesting that the IMS offline

formatter not create its ESTAE and thereby allow a dump of any IMS dump

formatter abend.

FMTIMS(options)

Specifies the FMTIMS verb. The FMTIMS verb must be specified in either the

control statement or in the IMS dump format control data set description

(DFSFRMAT DD). FMTIMS permits a subset of formatting options that describe

the sections of the IMS dump to be formatted during the current pass of IPCS.

The DFSFRMAT DD description describes this subset.

options

Are valid IPCS VERBX command options.

If you do not specify FMTIMS in the user control statement, you must provide an

IMS dump format control statement with DFSFRMAT options specified.

Example: The following is an example of a TSO ALLOCATE command to provide

IMS dump format control data set information:

ALLOC FI(DFSFRMAT) SHR DA(’dump.control.dsname’)

Related Reading: See MVS/ESA™ Interactive Problem Control System User’s

Guide and Reference for more information about IPCS.

DD Statements

INDEX DD

Allows the dump index to print ahead of the formatted dump.

DFSFRMAT DD

Describes an IMS dump format control data set. The data set contains control

statements that specify the sections of the IMS dump to be formatted during the

current pass of IPCS. If this statement is not specified, the formatting option

defaults to SUMMARY.

IPCS Execution

350 Utilities Reference: System

The IMS dump format control data set is a sequential data set that must be

defined with a fixed or fixed-blocked record format (RECFM=F or FB). The

record length can be any valid size. The data set contains an FMTIMS verb,

followed by subset options describing the sections of IMS to be formatted. You

can request a short version of the formatted subset by adding the MIN

parameter to the option you select.

 You can allow IMS to select the dump formatter options for you by specifying

the AUTO option. When you specify AUTO, IMS determines the options to use

by looking at the ITASKs that are failing and by selecting the appropriate sets of

options for the required dump formatter output. You can specify AUTO with MIN

or SUM qualifiers. If you use MIN or SUM, the qualifier is added to each option

that AUTO selects.

 Subset options can be specified in any combination and in any order. The

following subset options can be specified independently or can be qualified as

shown, but require no additional arguments:

v ALL or ALL,MIN

v AUTO, or AUTO,MIN, or AUTO,SUM

v CBT

v DB or DB,MIN

v DBRC

v DC or DC,MIN

v DEDB or DEDB,MIN

v DISPATCH or DISPATCH,MIN

v EMH or EMH,MIN

v LOG or LOG,MIN

v LUM

v MSDB or MSDB,MIN

v QM or QM,MIN

v RESTART

v SAVEAREA, or SAVEAREA,MIN or SAVEAREA,SUM

v SB or SB,MIN

v SCD or SCD,MIN

v SPST

v SUBS

v SUMMARY or SUMMARY,MIN

v SYSTEM or SYSTEM,MIN

v UTIL

 The following subset options require additional arguments or qualifications as

shown:

v CBTE,cbteid

v CLB,address or CLB,nodename or CLB,lterm name or CLB, comm id

v DPST,address or DPST, number or DPST,name

v LLB,link number

v LUB,lu name

v POOL,poolid or POOL,poolid,MIN

v SAP,sapaddr or SAP,ecbaddr

IPCS Execution

Chapter 15. Offline Dump Formatter Utility (DFSOFMD0) 351

v SYSPST,system pst address or SYSPST,system pst name

v TRACE,name or TRACE,name,MIN

 Related Reading: Refer to IMS Version 9: Diagnosis Guide and Reference for

detailed information about the data areas formatted by these subset options.

IPCS Execution

352 Utilities Reference: System

Chapter 16. Log Transaction Analysis Utility (DFSILTA0)

Use the Log Transaction Analysis utility (DFSILTA0) to collect information about

individual occurrences of IMS transactions, based on records in the IMS log data

set. The information collected includes:

v Transaction identification

v Source

v Message processing program (MPP)

v Dependent region

v Priority

v Class of the transaction

Any nonrecoverable and canceled messages are not used.

DFSILTA0 also accumulates:

v The time that each transaction is received

v The time of the message get unique (GU) call

v The time the MPP is terminated

v The time the output message is placed on the output queue

v The time the output message starts to the terminal

From these times, DFSILTA0 calculates:

v Total response time

v Time on the input queue

v Processing time

v Time on the output queue

You can use this information to find bottlenecks in the system and to evaluate

whether transaction classes have been assigned correctly. If you are running the

Statistical Analysis utility on a smaller portion of the IMS log data, DFSILTA0 can

provide a new log tailored to your specifications. DFSILTA0 is put into

IMS.SDFSRESL during IMS system definition.

The following topics provide additional information:

v “Restrictions for DFSILTA0” on page 354

v “Input and Output for DFSILTA0” on page 354

v “JCL Requirements for DFSILTA0” on page 354

Related Reading:

v See Chapter 22, “Interpreting Statistical-Analysis and Log-Transaction Reports,”

on page 491 and “Log Transaction Analysis Utility Reports” on page 496 for

information about the Log Transaction Analysis Utility reports.

v You can use KBLA to build JCL and execute DFSILTA0. See “Using KBLA to Run

a Job Against IMS Log Records” on page 508 for more information.

© Copyright IBM Corp. 1974, 2004 353

|
|
|

|
|

Restrictions for DFSILTA0

The Log Transaction Analysis utility has the following restrictions:

v Log data sets from a batch region are not used.

v Any nonrecoverable and canceled messages are not used.

v You must run the Log Merge utility (DFSLTMG0) before you run the Log

Transaction Analysis utility against two or more IMS system logs. (The system ID

field reflects the order of input to DFSLTMG0.)

v DFSILTA0 creates a queue entry in a GETMAIN storage pool for each

transaction that falls within the specified times or checkpoints. These queue

entries are not freed nor are they reused until all the log records necessary to

complete an entry on the log transaction analysis report are found on the log.

v If a large number of transactions are enqueued but not processed for any

reason, an increase in storage usage and processor time can occur.

v Examine control statements for the sort program to determine whether they must

be changed, because provision for 256 dependent regions increases the length

of the dependent region ID field for the IMS Log-Analysis Report.

v Common Queue Server (CQS) logs cannot be used as input by the Log

Transaction Analysis utility because CQS log records have a different format from

IMS log records.

v The utility works only with input log data sets created by the same release of IMS

as the utility release level.

v Neither BMPs or messages processed by BMPs are processed.

Input and Output for DFSILTA0

There are three types of input to DFSILTA0:

v IMS log data set. This is required.

v Report title statement. This provides descriptive information for the optional title

data set.

v Parameters. There are two optional keyword parameters: ST= and OUT=. These

specify what portion of the log data set is to be examined for transactions, and

what outputs are to be produced. Parameters can be specified in any

combination and should be separated by commas.

DFSILTA0 produces the following output:

v A new IMS log data set, if requested

v A detailed report in input sequence (if NOREPORT is not specified)

v A report, on disk, that can be sorted to produce a sequenced report

v A heading report (if NOREPORT is specified)

The starting position and length of the field names on the Detailed Report Format

are used in the optional sort step to produce sequenced reports.

JCL Requirements for DFSILTA0

EXEC

Executes the Log Transaction Analysis utility, DFSILTA0.

 Example: This example produces a report but no log data set.

//STEP0 EXEC PGM=DFSILTA0,PARM=’ST=(hhmmss+HHMM,,mm),

// OUT=NOLOG’

Log Transaction Analysis

354 Utilities Reference: System

ST=

Specifies starting and ending times. If the ST parameter is omitted, the

default is the first checkpoint encountered. The format of the ST= parameter

is:

ST=ALL

 (hhmmss[{+|-}HHMM],

 c,mm,e)

 Note that the ST= parameter has four positional parameters in addition to

the ALL parameter. With the exception of the ALL parameter, these

parameters must be enclosed in parenthesis.

ALL

Specifies the complete log data set.

hhmmss

Specifies an hour, minute, and second. Only transactions that originate

after the first checkpoint occurring at or after this time are processed.

The default is to process 10 minutes from this time.

 Note: This parameter is always assumed to refer to a time later than

the first checkpoint on the input log. If you want to process transactions

starting with the first checkpoint on the log, do not specify a value for

this parameter.

{+|-}HHMM

Specifies the time-zone offset used to convert local time to Universal

Time Coordinated (UTC) time.

+ or -

Specifies the sign of the offset. Can be blank only if hh and mm are

also blank. The time zone is only needed if the offset to the UTC on

the day entered is different from the current offset. One example

would be if the offset was due to a daylight saving time change.

HH

Specifies hours of offset, a number from 0 to 14 or blank only if mm

is also blank

MM

Specifies minutes of offset; can be 00, 15, 30, 45, or blank

If an offset of +|-0000 is specified, the starting time is UTC. If no offset

is supplied, the offset is obtained from the z/OS offset.

C Specifies the number of checkpoints to be processed before selection

of transactions stops. C is a number from 1 to 9.

MM

Specifies the number of minutes to select transactions. MM is a number

between 0 and 99.

E Specifies to end of data set from the specified start time. E is the

default.

 The Log Transaction Analysis utility scans records between checkpoints.

Records before the first checkpoint on an intermediate log data set would

only be analyzed by reference to a checkpoint on a previous log.

JCL Requirements

Chapter 16. Log Transaction Analysis Utility (DFSILTA0) 355

OUT=

Specifies the desired output. If the OUT= keyword is not specified, the

DFSILTA0 defaults produce both a log data set and a report from the

log.

NOLOG

Specifies that a new IMS log data set is not to be produced.

NOREPORT

Specifies that no report is to be produced.

DD Statements

STEPLIB DD

Points to IMS.SDFSRESL, which contains the IMS nucleus and required utility

modules.

//STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

HEADING DD

Describes the heading output data set.

//HEADING DD SYSOUT=A

PRINTER DD

Describes the printed report output data set.

//PRINTER DD SYSOUT=A

REPORT DD

Describes the report output data set. This data set can pass to a sort step.

Report entry headings and any checkpoint records are not included in this data

set.

//REPORT DD DSN=&&REPORT,DISP=(,PASS),UNIT=SYSDA,

// SPACE=(CYL,(1,1))

LOGIN DD

Describes the input log data set.

//LOGIN DD DSN=IMS.LOG,DISP=OLD,VOL=SER=XXXXXX,

// UNIT=YYYY

LOGOUT DD

Describes the optional log data set. This log data set can be used as input to

the Statistical Analysis utility.

 The LOGOUT data set content is identical to that of LOGIN within the interval

specified, except that the type 6 record at the beginning of LOGIN is recopied.

//LOGOUT DD DSN=IMS.LOGOUT,DISP=(,PASS),

// VOL=SER=XXXXXX,UNIT=TAPE,DCB=(RECFM=VB,

// LRECL=6004,BLKSIZE=6008)

TITLE DD

Describes the optional title data set. This allows for the inclusion of descriptive

information on each page of the printer output data set.

//TITLE DD *

 * * * Descriptive information

 The SORT step is optional. It is used to produce sequenced reports.

EXEC

Executes the sort program.

//STEP1 EXEC PGM=SORT

JCL Requirements

356 Utilities Reference: System

SYSOUT DD

Describes the message output data set for the sort.

//SYSOUT DD SYSOUT=A

SORTIN DD

Describes the input data set to the sort. It is the data set described by the

REPORT DD statement.

//SORTIN DD DSN=&&REPORT,DISP=(OLD,DELETE)

SORTOUT DD

Describes the output data set to the sort. It is used for printing a sequenced

report.

//SORTOUT DD SYSOUT=A

SORTWK01-12|DD

Describe the sort program’s work data sets. At least three data sets must be

used. They can be tape or disk. For disk the format is:

//SORTWKnn DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

SYSIN DD

Describes the sort program’s control data set. For a control data set in the input

stream, the format is:

//SYSIN DD *

Example The following is a sample SORT control statement that provides a

report sequenced by message get unique (GU) schedule time within a region:

 SORT FIELDS=(67,7,CH,A,55,2,CH,A),SIZE=E500

JCL Requirements

Chapter 16. Log Transaction Analysis Utility (DFSILTA0) 357

JCL Requirements

358 Utilities Reference: System

Chapter 17. Statistical Analysis Utility (DFSISTS0)

Use the Statistical Analysis utility for analyzing the information on any of the IMS

system logs, except those from a batch region. The program modules of this utility

reside in IMS.SDFSRESL. The utility consists of modules DFSISTS0, DFSIST20,

DFSIST30, and DFSIST40. These modules must be run in sequence.

To run the Statistical Analysis utility on a selected portion of an IMS system log, a

new log that is tailored to your own specifications can be created by using the Log

Transaction Analysis utility.

Related Reading:

v See Chapter 16, “Log Transaction Analysis Utility (DFSILTA0),” on page 353 for

information about the Log Transaction Analysis Utility.

v See Chapter 22, “Interpreting Statistical-Analysis and Log-Transaction Reports,”

on page 491 and “Log Transaction Analysis Utility Reports” on page 496 for

information about the Log Transaction Analysis Utility reports.

v You can use KBLA to build JCL and execute DFSISTS0. See “Using KBLA to

Run a Job Against IMS Log Records” on page 508 for more information.

The following topics provide additional information:

v “Restrictions for DFSISTS0”

v “Input and Output for DFSISTS0”

v “Examples of DFSISTS0” on page 365

v “JCL Requirements for DFSISTS0” on page 369

v “Utility Control Statements for DFSISTS0” on page 374

Restrictions for DFSISTS0

The Statistical Analysis utility cannot use Common Queue Server (CQS) logs as

input because CQS log records have a different format from IMS log records.

Input and Output for DFSISTS0

The following process occurs when you run the Statistical Analysis utility:

1. The selected log data set is passed to module DFSISTS0 (SORT and EDIT

PASS1), which edits and sorts the log data set and outputs a modified log data

set.

2. The utility sorts the modified log data set (SORT2).

3. The modified log data set is passed to module DFSIST20 (EDIT PASS2), which

edits and outputs a new modified log data set.

4. Optional: Either before or after SORT3, the modified log data set can be sent

to module DFSIST40 (Message Select and Copy or List), which produces a

message list or message data set.

5. The utility sorts the modified log data set (SORT3).

6. The modified log data set is passed to module DFSIST30 (Report Writer), which

produces the final statistical reports.

This flow of information is illustrated in Figure 118 on page 360.

© Copyright IBM Corp. 1974, 2004 359

|
|

Log Records

The log records used by the IMS Statistical Analysis utility are as follows:

01 Input message ready to be put on the destination message queue

03 Output message segment ready to be put on the destination message

queue

06 IMS has been started, a date change has occurred, IMS has been stopped,

or a FEOV was issued

07 An application program has been terminated

31 The application program issues a ″get unique″ to retrieve its next message

Figure 118. Statistical Analysis Utility Flow of Information

Input and Output

360 Utilities Reference: System

33 Message queue manager released a record

34 Message canceled and a portion of that message has been previously

logged

35 Message has been put on the destination message queue

36 Message has been taken off the destination message queue

The following list provides a detailed explanation of each log record type.

Log Type 01

Log Type 01 record is written when a message is completely received by

communications and is ready to be put on the destination queue. The

destination queue is either a Scheduler Message Block (SMB) or

Communications Name Table (CNT). The SMB destination means a transaction

code has been entered by the terminal operator, and an application program will

be scheduled. A CNT means a message switch will be done. If the terminal

operator entered an LTERM and a message, no application program is

necessary. The message will be queued for output directly on the LTERM

named in the input message.

Log Type 02

This record is created after a command is successfully completed and before

the command completion message is sent. If the command is a /LOG or the

command must be reprocessed at restart time, a 02 record is written (for

example, /ASSIGN). Type 02 log records are not included in the statistics utilities

reports, but can be processed by a user-written routine link-edited with

DFSIST00. (The information that can be useful to you are the /LOG records.)

These /LOG records are entered by either the remote terminal operator or the

master terminal operator.

Log Type 03

When a segment of a message has been created by an application program

and is ready to be put on the destination message queue, the 03 record is

written. The destination message queue can be either on SMB or CNT. If SMB

is the destination, a “program-to-program” message switch is called for by the

application program. If the segment is destined for a CNT, the application

program is sending an output message to an LTERM.

 In a type 03 record, the date and time fields, PDATE and PTIME, are carried

forward from the 01 record. When the statistics utilities are run, the 03 records

and 36 records are correlated to determine response time. The time reflected is

from the time the message is put on the input queue (obtained from the 03

record) until the message is released from the output queue (obtained from the

associated 36 record).

Log Type 06

Type 06 records are written when IMS is started (during initialization), when IMS

is terminated (immediately prior to closing the log data set), and when a FEOV

is issued.

Log Type 07

This record is the application accounting record of the system. The type 07

record is written when an application program terminates in a message

processing or batch-message processing region.

Log Type 31

The 31 record is written when the application program issues a ″get unique″ to

retrieve its next message.

Input and Output

Chapter 17. Statistical Analysis Utility (DFSISTS0) 361

Log Type 33

The 33 record is written when a message is taken off the input message queue

or output message queue.

Log Type 34

A type 34 record is written when a message has been canceled and a portion

of that message has already been logged.

Log Type 35

The 35 record is written when a message (input or output) has been put on the

destination queue.

 If the message is very long and requires more than one input message buffer,

the record has the date and time in it. The date and time in the type 01 record

is invalid under this condition.

Log Type 36

A type 36 record is written when a message has been sent in its entirety and

the message is ready to be released from the queue. On all devices except

display devices, the message is ready to be released from the queue as soon

as the last segment is successfully sent to the terminal. Display devices are

different. If the display output is only a single page, the message is dequeued

after the last segment has been successfully sent.

 For multiple pages of display output, the PAGEDEL option selected on the

TERMINAL macro at system definition time determines when the message is

ready to be released from the queue. If you specify option=PAGEDEL (or

PAGEDEL=YES), the message is dequeued when you enter a question mark,

PA2 key, or a new input transaction. Option=NPGDEL (or PAGEDEL=NO)

requires you to enter a question mark or PA2 key to take the message off the

output queue and write the type 36 record.

 The effect of option=NPGDEL (or PAGEDEL=NO) on response time can be

dramatic. If you leave the current message displayed for a long period or power

off the video device, the message is not removed from the output queue and

the type 36 record is not written until terminal operations begin again.

Consequently, response time appears to require many hours or even days.

SORT and EDIT PASS1 (DFSISTS0)

The functions of SORT and EDIT PASS1 are to:

v Select from the system logs those records used by the statistics programs. (Logs

from batch regions do not contain the desired records, and cannot be used.)

v Sort message and queue manager log records so that all segments of a

multi-segment message appear together, and enqueue and dequeue records

associated with the messages to which they refer.

v Edit the records so that the input message, and all output sent as a result of that

input, are contiguous after sorting. Any nonrecoverable and canceled messages

are not used.

Concatenation of logs from multiple systems is permitted.

Restrictions:

v The JCL for SORT and EDIT PASS1 must contain a JOBLIB or STEPLIB

statement for the library containing the utility program (IMS.SDFSRESL).

v The ',NOTXT' parameter causes the program to ignore the text of the X'01' (input

message) and X'03' (output message) log records, thereby reducing the volume

Input and Output

362 Utilities Reference: System

of all sort passes. If you use this parameter, the Message Select and Copy or

List utility (DFSIST40) cannot be run. The DFSISDBX suffix is no longer used

and will be ignored if you specify it.

EDIT PASS2 (DFSIST20)

The function of EDIT PASS2 is to take the records to be used to produce the

statistical reports from system messages. If DFSIST40 (Message Select and Copy

or List utility) is not run as part of the statistics job stream, approximately 40% of

the output of DFSIST20 can be eliminated by coding NOTXT on DFSISTS0 or

NOLOG in the SLDS control statement of the Log Archive utility.

Report Writer (DFSIST30)

The function of DFSIST30 is to produce the final statistical reports.

The different types of statistical reports are described as follows:

v Messages Queued but Not Sent—by destination

The output message (X'03') appears on the log, but no record (X'36') appears to

indicate that the message was sent to the terminal. Output is sorted by symbolic

terminal name.

v Messages—Program to Program—by destination

An output message (X'03') is sent to an SMB. Output is sorted by destination.

v Line-and-Terminal Report

Line-and-terminal report shows the line and terminal loading by time of day (can

be used to determine the line and terminal utilization, peak traffic periods, and so

forth).

Counts input messages (R), X'01', to IMS from each LTERM, and output

messages (S), X'03', to each LTERM from IMS. The report is arranged in line

number (relative terminal sequence). A message switch counts as two messages;

one from the originating terminal, one to the destination terminal. A broadcast

message counts as one message from the originating terminal, and one

message each to the destination terminals.

The next four reports deal with transaction codes. If an output message is

generated by a command from a different terminal, the input prefix data is

replaced by the message “THIS OUTPUT NOT RESULT OF INPUT.” An X'03'

message generated by the system, independent of terminal input, has a

transaction code of IMSSYS. If an output message was generated by an input

message that was not on the log or by a command from the same terminal (for

example, DISPLAY), the transaction code is NOTAVA; otherwise, the transaction

code can be found in the generating X'01' log record.

v Messages Queued but Not Sent—by transaction code

The output message (X'03') appears on the log, but no record (X'36') appears to

indicate that the message was sent to the terminal. Output is sorted by

transaction code.

v Messages—Program to Program—by transaction code

An output message (X'03') was sent to an SMB. Output is sorted by transaction

code.

v Transaction Report

This report shows loading by transaction code and by time of day. The time for

input messages to IMS from each logical terminal is indicated by “R”; the time for

Input and Output

Chapter 17. Statistical Analysis Utility (DFSISTS0) 363

output messages to each logical terminal from IMS is indicated by “S”. The report

counts the same messages as the Line-and-Terminal Report. Input is sorted by

transaction code.

The transaction code column can contain the following entries:

(NOSORC) The output message was generated by a command.

(NOTAVA) The output message was generated by an input message that

was not on the input log.

(IMSSYS) The output message was generated by IMS.

v Transaction-Response Report

Measures two response times. The first line is response time from complete

receipt of the input message (enqueue time X'35') until the response message to

the terminal is successfully dequeued (X'36'). The second line is response time

from complete receipt of the input message (enqueue time X'35') until the

response message to the terminal is started (GU time X'31').

There can be multiple responses from a single transaction, and they can include

any output messages from program-to-program switch transactions that are a

result of the original input message.

The percentile report shows shortest response, longest response, and 25th, 50th,

75th, and 95th percentile response. A response time within the nth percentile is

greater than or equal to n% of the total number of response times processed for

that transaction code. For example, a 04.3S number under the '75%

RESPONSE' column means that 75% of the total responses for that transaction

were equal to or less than 04.3 seconds.

v Application-Accounting Report

Provides sufficient data to allow machine charges to be distributed among

application programs or transaction codes.

The following information is contained in this report:

– Counts of all requests to DL/I

– Amount of processor task time

All requests for services from DL/I, for access to messages or databases, are

counted. These counts are accumulated by program, by transaction code within

program, and by priority within transaction code.

Counts of messages processed, and of “get uniques,” are included. The count

will be different because of “get unique” issued on which end-of-file is returned.

Task time is set when a request for scheduling is made. The value is the

maximum time for each transaction, multiplied by the maximum number of

transactions. The remaining time is requested prior to the next request for

scheduling. This time is the actual time the program executed. It does not include

any wait time for accessing data. This time can be incorrect if the application

program is a BMP and issues a TTIMER or STIMER macro.

Average Processor Time is the total message processor time, divided by the

number of messages. It is not rounded. The final average processor time is a

recalculated average.

Number of Bad Completion Codes reflects the number of times an application

program terminates abnormally, or returns with other than zero in register 15.

v IMS-Accounting Report

Shows start and stop times for the IMS control region.

v Operating Information

– Reports produced, either with or without date control.

Input and Output

364 Utilities Reference: System

– Program determines if input was sorted on date.

– Control break occurs whenever date changes, totals printed, and new report

started.

– If not sorted on date, process all the log data sets at one time for a period

(such as one week) to produce one summary report.

– The LINECNT=XX parameter can be included on the EXEC statement for the

REPORT WRITER (DFSIST30). This is the only parameter expected, and it is

optional. If it is not included, the default line count is 36.

– Printing of the different statistical reports is not optional; they are all

generated.

Message Select and Copy or List (DFSIST40)

The execution of the Message Select and Copy or List program is optional. You can

execute it as a separate step in the same job with the statistical reports, or run it

independent of the statistical reports.

This program takes output from the second edit program, DFSIST20, before it is

sorted (in line-and-terminal sequence), or after sorting (in transaction-code

sequence). Input to this program is specified on the IMSLOGI DD statement,

described in “DD Statements” on page 371. To have messages printed in the

sequence they occurred (that is, each input message associated with its output

message), the input to this program must be &&ED34IN.

Examples of DFSISTS0

This section contains examples of the output produced by the Report Writer

(DFSIST30) and the Message Select and Copy or List (DFSIST40) programs.

Report Writer (DFSIST30) Output

Following is a list of statistics reports produced by the Report Writer (DFSIST30).

Examples of the reports follow. (The report date, which is in the upper right corner

of these examples, will not appear unless a sort by date is specified.) The reports

produced are:

v Messages—Queued but Not Sent by Destination (Figure 119 on page 366)

v Messages—Program to Program by Destination (Figure 120 on page 366)

v Line and Terminal (Figure 121 on page 366)

v Messages—Queued but Not Sent by Transaction Code (Figure 122 on page 367)

v Messages—Program to Program by Transaction Code (Figure 123 on page 367)

v Transaction (Figure 124 on page 367)

v Transaction Response (Figure 125 on page 367)

v Application Accounting (Figure 126 on page 368)

Input and Output

Chapter 17. Statistical Analysis Utility (DFSISTS0) 365

M E S S A G E S -- Q U E U E D B U T N O T S E N T D A T E 04/17/93 P A G E 1

 TOTAL

 DESTINATION MESSAGES

 CTRL 1

 PDSW0032 1

 PDSW0043 1

 PDSW0053 1

 PDSW0064 1

 PDSW0082 1

Figure 119. Messages—Queued but Not Sent (by Destination)

 M E S S A G E S -- P R O G R A M T O P R O G R A M D A T E 04/17/93 P A G E 1

 TOTAL

 DESTINATION MESSAGES

 DE2Q 645

 DE2R 735

 DE2S 784

 DE2T 757

Figure 120. Messages - Program to Program (by Destination)

 L I N E A N D T E R M I N A L R E P O R T D A T E 04/17/93 P A G E 1

LINE RTN TOTAL TOTAL AVG HOURLY DISTRIBUTION

 OR NODE R/S MESSAGES CHARACTERS SIZE 00-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-24

DSWP0011

PDSW0011 S 13 2,098 161 0 0 0 0 0 0 0 0 0 13 0 0 0 0

 R 7 1,067 152 0 0 0 0 0 0 0 0 0 7 0 0 0 0

DSWP0012

PDSW0012 S 11 352 32 0 0 0 0 0 0 0 0 0 11 0 0 0 0

 R 3 190 63 0 0 0 0 0 0 0 0 0 3 0 0 0 0

DSWP0013

PDSW0013 S 14 1,775 126 0 0 0 0 0 0 0 0 0 14 0 0 0 0

 R 7 1,012 144 0 0 0 0 0 0 0 0 0 7 0 0 0 0

DSWP0014

PDSW0014 S 15 1,151 76 0 0 0 0 0 0 0 0 0 15 0 0 0 0

 R 5 825 165 0 0 0 0 0 0 0 0 0 5 0 0 0 0

DSWP0015

PDSW0015 S 12 678 56 0 0 0 0 0 0 0 0 0 12 0 0 0 0

 R 5 491 98 0 0 0 0 0 0 0 0 0 5 0 0 0 0

DSWP0016

PDSW0016 S 11 355 32 0 0 0 0 0 0 0 0 0 11 0 0 0 0

 R 4 298 74 0 0 0 0 0 0 0 0 0 4 0 0 0 0

DSWP0017

PDSW0017 S 10 351 35 0 0 0 0 0 0 0 0 0 10 0 0 0 0

 R 3 190 63 0 0 0 0 0 0 0 0 0 3 0 0 0 0

 R 7 949 135 0 0 0 0 0 0 0 0 0 7 0 0 0 0

PMTO1AP

CTRL S 16 930 58 0 0 0 0 0 0 0 0 0 16 0 0 0 0

 SYSTEM S 53,695 5,428,432 101 0 0 0 0 0 0 0 0 0 53695 0 0 0 0

 TOTALS R 23,934 3,367,375 140 0 0 0 0 0 0 0 0 0 23934 0 0 0 0

Notes:

1. LINE RTN = Line Relative Terminal Number

2. R/S = Received/Sent

Figure 121. Line-and-Terminal Report

Examples

366 Utilities Reference: System

M E S S A G E S -- Q U E U E D B U T N O T S E N T D A T E 04/17/93 P A G E 1

TRANSACTION TOTAL

 CODE MESSAGES

 (IMSSYS) 31

 DE1Q 39

 DE1R 54

 DE1S 57

 DE1T 71

 HR2Q 1

 IT8T 1

 OE1Q 1

 OE2Q 21

 OE2R 15

 OE2S 26

 OE2T 14

 OE4S 1

 SC2R 1

Figure 122. Messages—Queued but Not Sent (by Transaction Code)

 M E S S A G E S -- P R O G R A M T O P R O G R A M D A T E 04/17/93 P A G E 1

TRANSACTION TOTAL

 CODE MESSAGES

 (NOTAVA) 1

 DE1Q 645

 DE1R 735

 DE1S 784

 DE1T 756

Figure 123. Messages - Program to Program (by Transaction Code)

 T R A N S A C T I O N R E P O R T D A T E 04/17/93 P A G E 4

TRANSACTION TOTAL TOTAL AVG HOURLY DISTRIBUTION

 CODE R/S MESSAGES CHARACTERS SIZE 00-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-24

SC6T S 947 208,340 220 0 0 0 0 0 0 0 0 0 947 0 0 0 0

 R 947 53,032 56 0 0 0 0 0 0 0 0 0 947 0 0 0 0

TS1Q S 330 13,200 40 0 0 0 0 0 0 0 0 0 330 0 0 0 0

 R 330 18,150 55 0 0 0 0 0 0 0 0 0 330 0 0 0 0

TS1R S 373 14,920 40 0 0 0 0 0 0 0 0 0 373 0 0 0 0

 R 373 20,515 55 0 0 0 0 0 0 0 0 0 373 0 0 0 0

TS1S S 388 15,520 40 0 0 0 0 0 0 0 0 0 388 0 0 0 0

 R 388 21,340 55 0 0 0 0 0 0 0 0 0 388 0 0 0 0

TS1T S 340 13,600 40 0 0 0 0 0 0 0 0 0 340 0 0 0 0

 R 340 18,700 55 0 0 0 0 0 0 0 0 0 340 0 0 0 0

 SYSTEM S 53,695 5,428,432 101 0 0 0 0 0 0 0 0 0 53695 0 0 0 0

 TOTALS R 23,934 3,367,375 140 0 0 0 0 0 0 0 0 0 23934 0 0 0 0

Figure 124. Transaction Report

 T R A N S A C T I O N R E S P O N S E R E P O R T D A T E 04/17/93 P A G E 4

TRANSACTION TOTAL LONGEST 95% 75% 50% 25% SHORTEST

 CODE RESPONSES RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE

 947 03.0S 01.9S 00.2S 00.1S 00.1S 00.0S

 TS1Q 330 03.3S 00.6S 00.2S 00.1S 00.1S 00.0S

 330 03.1S 00.5S 00.1S 00.0S 00.0S 00.0S

 TS1R 373 01.3S 00.5S 00.1S 00.1S 00.1S 00.0S

 373 01.3S 00.4S 00.1S 00.0S 00.0S 00.0S

 TS1S 388 03.3S 00.7S 00.2S 00.1S 00.1S 00.0S

 388 03.0S 00.5S 00.1S 00.0S 00.0S 00.0S

 TS1T 340 03.8S 00.6S 00.2S 00.1S 00.1S 00.0S

 340 03.0S 00.5S 00.1S 00.0S 00.0S 00.0S

TOTAL RESPONSES = 26525

Figure 125. Transaction-Response Report

Examples

Chapter 17. Statistical Analysis Utility (DFSISTS0) 367

Message Select and Copy or List (DFSIST40) Output

Figure 127 on page 369 shows an example of the report produced by the Message

Select and Copy or List program.

 A P P L I C A T I O N A C C O U N T I N G R E P O R T D A T E 04/17/93 P A G E 4

PROGRAM TRANSACTION MESSAGE- - - - COUNTS DATA - - - - - - - - - BASE - - - - - - - - COUNTS CC OR RC TOT PROG AVR

 NAME CODE PRI QTY GU GN ISRT* GU GN GNP GHU GHN GHNP ISRT DLET REPL NOT 0 CPU TIME TIME

PROGTS1R TS1R 01 373 717 0 373 0 0 0 0 0 0 0 0 0 0 01.1S 0.003S

PROGTS1S TS1S 01 388 748 0 388 0 0 0 0 0 0 0 0 0 0 01.1S 0.003S

PROGTS1T TS1T 01 340 657 0 340 0 0 0 0 0 0 0 0 0 0 01.0S 0.003S

SYSTEM TOTALS 349* 580* 107* 704* 1025* 328* 1520* 247* 0 249* 348* 3664 460* 0 06M 55.5S 0.011S

* INDICATES TOTAL SHOWN IN 100’S

@ INDICATES TOTAL SHOWN IN 10,000’S

 I M S ACCOUNTING REPORT D A T E 04/17/93 P A G E 1

 START TIME 15:50:50

 I M S DAY 04/17/93**

 STOP TIME 15:56:16

REPORT PERIOD IS FROM 04/17/93 TO 04/17/93.

END OF REPORTS

* Second insert is counted for single user issued insert if all the following conditions are met:

1. New HIDAM or PHIDAM Root

2. Not Duplicate Key (II status not returned)

** These dates will not appear unless the input to DFSIST30 is sorted with date control.

Figure 126. Application-Accounting Report

Examples

368 Utilities Reference: System

JCL Requirements for DFSISTS0

The JCL for execution of the IMS Statistical Analysis utility is given in Figure 128 on

page 370. Also see the appropriate operating system Sort/Merge program manual.

 MESSAGES

INPUT TRANSACTION LINE RELA SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC

PREFIX CODE NO TERM NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS DATE TIME

 THIS OUTPUT NOT RESULT OF INPUT DSWP5008 00017 PDSW5008 93.107 15.54.1

 3

OUTPUT SEG=001 LEN=0001*F*

INPUT TRANSACTION LINE RELA SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC

PREFIX CODE NO TERM NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS DATE TIME

 THIS OUTPUT NOT RESULT OF INPUT DSWP5008 00019 PDSW5008 93.107 15.54.4

OUTPUT SEG=001 LEN=0009*88-3-2000*

 3 3 3 3

OUTPUT SEG=002 LEN=0248*WITHDRAWAL $300.00 FDEPOSIT $6704.62 FSAVINGS 444.44 FCHECKING $9800.50 F*

 3 3 3 3

 OVERDRAFT $30.32FVISA $2020.20 FMASTER CHRGE $105.00 FCARLOAN $1040.00 F

 3

 TRANSFER C-5 $50.00 FCHRISTMAS CLUB $94.60

INPUT TRANSACTION NODE SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC

PREFIX CODE NAME NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS DATE TIME

 DE1Q DSWPOO56 00015 PDSW0056 93.107 15.53.51 DSWP0056 00016 PDSW0056 93.107 15.54.2

 03 0 18D

INPUT SEG=001 LEN=0016*1BDE1Q 3Y43A*

INPUT SEG=002 LEN=0230* 23(9) WITHDRAW OF $300DEPOSIT OF $6704.62SAVINGS DEPOSIT OF $444.44CHECKING TRANSFER OF $9800.50OV*

 *ERDRAFT OF $30.32VISA ENTRY OF $2020.20MASTER CHARGE OF $105.00CAR LOAN OF $140.00TRANSFER C-S OF $*1

 *50.00CHRISTMAS CLUB OF $94.60Y

INPUT TRANSACTION NODE SEQ SYMBOLIC

PREFIX CODE NAME NO ADDRESS DATE TIME

 DE1Q DSWP0084 00017 PDSW5008 93.107 15.54.25

 3

OUTPUT SEG=001 LEN=0031*+ DATA SUCCESSFULLY RECEIVED +F*

INPUT TRANSACTION LINE RELA SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC

PREFIX CODE NO TERM NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS DATE TIME

 DE1Q2 DSWP016 00018 PDSW0116 93.107 15.54.36 DSWP0116 00016 PDSW0116 93.107 15.54.36

Notes:

1. Indicates a 230-character report message

2. Indicates a 31-character message generated by the transaction code ″DE1Q″ and transmitted to a

relative terminal DSWP0116.

Figure 127. Messages Report

JCL Requirements

Chapter 17. Statistical Analysis Utility (DFSISTS0) 369

//STATS JOB 1,NAME,MSGCLASS=A,MSGLEVEL=1,PRTY=8

//JOBLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

//*

//ST1 EXEC PGM=DFSISTS0

//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSOUT DD SYSOUT=A

//LOGIN DD DSN=IMSLOG,DISP=OLD,

// UNIT=TAPE,VOL=SER=LOGTAP

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

//SORTOUT DD DUMMY,DCB=*.LOGIN

//LOGOUT DD DSN=&&EDIT1,DISP=(NEW,PASS),

// UNIT=SYSDA,

// DCB=(RECFM=VB,BLKSIZE=3996,LRECL=3992,BUFNO=3),

// SPACE=(CYL,(5,5))

/*

//ST2 EXEC PGM=SORT,REGION=256K

//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR

//SYSOUT DD SYSOUT=A

//SORTIN DD DSN=&&EDIT1,DISP=(OLD,DELETE)

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

//SORTOUT DD DSN=&&EDIT1S,DISP=(NEW,PASS),

// UNIT=SYSDA,

// DCB=*.SORTIN,

// SPACE=(CYL,(5,5))

//SYSIN DD *

 SORT FIELDS=(5,1,CH,A,9,4,PD,A,13,38,CH,A),SIZE=E200

/*

//*

//ST3 EXEC PGM=DFSIST20

//EDITDCB1 DD DSN=&&EDIT1S,DISP=(OLD,DELETE)

//EDITDCB2 DD DSN=&&EDIT2,DISP=(NEW,PASS),

// UNIT=SYSDA,

// DCB=(RECFM=VB,BLKSIZE=4016,LRECL=4012,BUFNO=3),

// SPACE=(CYL,(5,5))

//SYSPRINT DD SYSOUT=A

/*

//ST4 EXEC PGM=SORT,REGION=256K

//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR

//SYSOUT DD SYSOUT=A

//SORTIN DD DSN=&&EDIT2,DISP=(OLD,DELETE)

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

//SORTOUT DD DSN=&&ED34IN,DISP=(NEW,PASS),

// UNIT=SYSDA,

// DCB=*.SORTIN,

// SPACE=(CYL,(1,1))

//SYSIN DD *

 SORT FIELDS=(5,1,CH,A,9,4,PD,A,13,40,CH,A),SIZE=E200

/*

//ST5 EXEC PGM=DFSIST30

//EDITDCB2 DD DSN=&&ED34IN,DISP=(OLD,PASS)

//PRINTDCB DD SYSOUT=A,DCB=(BLKSIZE=133,LRECL=133,RECFM=FA)

//SYSPRINT DD SYSOUT=A

Figure 128. JCL for the Statistical Analysis Utility (Part 1 of 2)

JCL Requirements

370 Utilities Reference: System

The LRECL and BLKSIZE for the log can be calculated as follows:

LRECL

(Larger of 1032 or RECLNG parameter of the MSGQUEUE macro for

IMS.LGMSG) + 16

BLKSIZE

Larger of LRECL + 4 or BLKSIZE parameter on the IEFRDERDD statement

in the IMS cataloged procedure

// EXEC

Does one of the following:

v Invokes the initial selection and sort process in the statistics program

jobstream. If DFSIST40 is not run, 'NOTXT' improves performance. Its format

is:

//ST1 EXEC PGM=DFSISTS0[PARM=’,NOTXT’]

v Executes the sort program. You can improve efficiency by providing as much

main storage as possible. Sort computer storage size needed based on

number of work data sets allocated. Its format is:

//ST2 EXEC PGM=SORT,REGION=256K

v Invokes the second statistics edit module, DFSIST20. If DFSIST40 (Message

Select and Edit) is not being run, specify NOTXT on DFSISTS0. Its format is:

//ST3 EXEC PGM=DFSIST20

v Invokes DFSIST30 (Report Writer). Its format is:

//ST5 EXEC PGM=DFSIST30[,PARM=’LINECNT=XX’]

If LINECNT is not specified, the default is 36.

v Invokes Message Select and Edit (DFSIST40). This step is optional, and a

number of DFSIST0 options apply. This format of the statement is:

//ST6 EXEC PGM=DFSIST40[,PARM=’LINECNT=XX’]

If LINECNT is not specified, the default is 36.

DD Statements

//JOBLIB DD

Describes the program library containing the utility programs. Its format is:

//JOBLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

//LOGIN DD

Describes the input log data set. Multiple volumes and data sets can be

concatenated within one statistics program run. Its format is:

//LOGIN DD DSNAME=IMSLOG,DISP=OLD,VOL=SER=XXXXXX,UNIT=TAPE

/*

//ST6 EXEC PGM=DFSIST40

//IMSLOGP DD SYSOUT=A,DCB=(BLKSIZE=133,LRECL=133,RECFM=FA)

//IMSLOGI DD DSN=&&ED34IN,DISP=(OLD,DELETE)

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

TRANS CODE=(ALL,I,O)

NON PRINT=HEX

/*

//

Figure 128. JCL for the Statistical Analysis Utility (Part 2 of 2)

JCL Requirements

Chapter 17. Statistical Analysis Utility (DFSISTS0) 371

where XXXXXX is the volume serial number of the log data set being processed.

(For this example, LRECL=3964 and BLKSIZE=3968.)

//SORTWK01-32 DD

Describes the sort program’s work data sets. The space defined can vary. The

number of data sets must be at least three. They can be on either tape or disk.

For a disk sort, the format is:

//SORTWKnn DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

//SORTLIB DD

Describes the library containing the sort program’s modules. Its format is:

//SORTLIB DD DSNAME=SYS1.SORTLIB,DISP=SHR

//SORTOUT DD

Does one of the following:

v Does not use the output data set. However, the DCB information must

appear on the DD statement. Its format is:

//SORTOUT DD DUMMY,DCB=*.LOGIN

v Describes the output data set to the sort. Its format is:

//SORTOUT DD DSNAME=&&EDIT1S,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(CYL,(5,5)),DCB=*.SORTIN

BLKSIZE and LRECL are the same as for //EDITDCB1 DD.

v Describes the output of the sort that serves as input to DFSIST30 or

DFSIST40. Its format is:

//SORTOUT DD DSNAME=&&ED34IN,UNIT=SYSDA,;

 DISP=(NEW,PASS),SPACE=(CYL,(1,1)),

 DCB=*.SORTIN

The normal sort control statement is shown as follows.

SORT FIELDS=(5,1,CH,A,13,40,CH,A),SIZE=XXXX

To sort on date and produce reports under date control, the statement is as

follows:

SORT FIELDS=(5,1,CH,A,9,4,PD,A,13,38,CH,A),SIZE=XXXX

//LOGOUT DD

Describes the output of DFSISTS0. This data set is normally a temporary one.

It serves as input to the next step (a sort). To break the statistics program into

multiple jobs, you must modify this statement. Its normal format is:

//LOGOUT DD DSN=&&EDIT1,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(CYL,(5,5)),DCB=(RECFM=VB,

// BLKSIZE=3996,LRECL=3992,BUFNO=3)

 BLKSIZE and LRECL can be changed here and in subsequent steps. LRECL

must be at least as large as LRECL for //LOGIN DD, plus 28 bytes for

additional prefix information. Space is a function of the input volume.

//SYSPRINT DD

Describes the output data set for control messages. Its format is:

//SYSPRINT DD SYSOUT=A

The next step is a sort, and all DD statements, with the exception of SORTIN

and SORTOUT, are the same as the previous sort.

//SYSOUT DD

Describes the message output data set. Its format is:

//SYSOUT DD SYSOUT=A

JCL Requirements

372 Utilities Reference: System

//SORTIN DD

Does one of the following:

v Describes the input data set to the sort. It is the data set described by the

DD statement LOGOUT in the previous step. Its format is:

//SORTIN DD DSNAME=&&EDIT1,DISP=(OLD,DELETE)

v Refers to the output of DFSIST20. Its format is:

//SORTIN DD DSNAME=&&EDIT2,DISP=(OLD,DELETE)

//SYSIN DD

Does one of the following:

v Describes the sort’s control data set normally in the input stream. It is

normally a DD * statement (followed by the sort control statement.)

Sample sort control statement:

SORT FIELDS=(5,1,CH,A,9,4,PD,A,13,36,CH,A),SIZE=XXXX

v Describes the control data set for DFSIST40. It is normally a DD * statement.

See “Transaction Code Control Statement” on page 374 for the control

statement format.

//EDITDCB1 DD

Describes the input data set to DFSIST20 (output of sort in previous step). Its

format is:

//EDITDCB1 DD DSNAME=&&EDIT1S,DISP=(OLD,DELETE)

//EDITDCB2 DD

Does one of the following:

v Describes the output of DFSIST20. Its format is:

//EDITDCB2 DD DSNAME=&&EDIT2,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(CYL,(5,5)),

// DCB=(RECFM=VB,BLKSIZE=4016,LRECL=4012,

// BUFNO=3)

Requirement: LRECL must be 20 bytes larger than SORTOUT in the

previous step. BLKSIZE must be increased proportionately.

v Describes the input to the report writer (the output of the previous sort). Its

format is:

//EDITDCB2 DD DSNAME=&&ED34IN,DISP=(OLD,PASS)

//PRINTDCB DD

Describes the output of the report writer, normally the output stream. It can be

blocked or unblocked, because I/O is performed using QSAM, with QSAM

acquiring the buffers. Its format is:

//PRINTDCB DD SYSOUT=A,DCB=(BLKSIZE=133,

// LRECL=133,RECFM=FA)

//IMSLOGI DD

Describes the input to Message Select and Copy or List (DFSIST40). This

program uses the same data set for input as DFSIST30 (that is, output of the

second sort) or the output of Edit Pass 2 directly. The format of this statement

(assuming use of sorted input) is:

//IMSLOGI DD DSNAME=&&ED34IN,DISP=(OLD,DELETE)

//IMSLOGP DD

Describes the program’s output. The format of the statement is the same as the

PRINTDCB statement for DFSIST30.

//IMSLOGO DD

Is optional. It can be used to create a data set composed of your messages. Its

format is:

JCL Requirements

Chapter 17. Statistical Analysis Utility (DFSISTS0) 373

// IMSLOGO DD DSNAME=OUTPUT,UNIT=tttt,

// DISP=(NEW,KEEP),DCB=(RECFM=VB,

// LRECL=4012,BLKSIZE=4016)

 Figure 128 on page 370 is an example of the JCL for the Statistical Analysis utility.

This is a full statistics, job-stream example with sorting by date that produces

reports under date control. BLKSIZE and LRECL in all data sets are dependent on

the input log.

Utility Control Statements for DFSISTS0

Message Select and Copy or List selects messages based on control statements

read from SYSIN. Messages selected are printed or copied onto an output data set.

If the DD statement IMSLOGO is included, an output data set is created. If the DD

statement IMSLOGP is included, messages selected are printed. Both DD

statements can be included in a single run.

The following restrictions apply to the control statements:

v All control statements begin in position 1, with a keyword identifying that control

statement.

v Following the keyword is a series of parameters, enclosed within parentheses

and separated by commas.

v Control statements cannot be continued beyond position 71.

v Multiple control statements with the same keyword, starting in position 1, are

permitted.

v Within parentheses, all parameters are positional; missing parameters must be

indicated by commas.

v Messages are selected if they fulfill at least one of the criteria specified by the

control statement.

A group of names can be indicated by terminating the parameter with an *.

Example: INV* causes the names INV, INVENTORY, INVA, and INVB to be

selected.

The name parameter ALL can be used to select all names rather than a specified

name.

Transaction Code Control Statement

The format of the transaction code control statement is:

TRANS CODE=(TRANSCOD,I,O),(TRANSA,I),(INV*,,O),(ALL,I,O)

v The first parameter is a transaction code of from 1 to 8 characters.

v The second parameter, I, selects input messages with this code.

v The third parameter, O, selects output messages resulting from this code.

v A transaction code of ALL selects transaction codes.

v An asterisk within the transaction code causes only characters preceding the

asterisk to be compared with the corresponding number of characters from the

input transaction code to determine selection. You can use this to select groups

of transaction codes.

Symbolic Terminal Name Control Statement

Examples of the symbolic terminal name control statement are:

JCL Requirements

374 Utilities Reference: System

SYM NAME=(TERMA,I,O),(TERM*,I),(TERMINV,,O,ALL)

SYM NAME=(TERMPAY,I,O,TERMA)

SYM NAME=(ALL,,O,TERMA)

v The first parameter is a symbolic terminal name of from 1 to 8 characters.

v The second parameter, I, selects input from this terminal.

v The third parameter, O, selects output generated by input from this terminal.

v You can further qualify the output parameter, O, with another symbolic terminal

name. If you do this, only output to that symbolic name which resulted from

inputs from the preceding name will be selected. If you specify ALL, all output

from the terminal represented by the preceding name is selected.

Hardware Terminal Address Control Statement

The format of the hardware terminal address control statement is:

TERM ADDR=(3,1,I,O),(42,3,,O,21,A),(1,ALL,I,O)

v Selection by hardware terminal name is similar to selection by terminal symbolic

name, except that, instead of symbolic name, the line number and relative

terminal number are specified.

v The first parameter is the line number or ALL.

v The second parameter is the relative terminal number on the line or ALL.

v The third and fourth parameters are I and O for selection of input to and output

from this terminal.

v Output can be further qualified (similar to symbolic terminal output).

v If an output message is queued but not sent, it is not selected, even if ALL is

specified. The SYM NAME control statement must be used.

VTAM Terminal Name Control Statement

The format of the VTAM terminal name control statement is:

VTERM NAME=(L3270A,I,O),(L3270B,,O,L3270C)

v Selection by VTAM terminal name is similar to selection by terminal symbolic

name, except that, instead of symbolic name, the node names are specified.

v The first parameter is the node name or ALL.

v The second parameter, I, selects input from this terminal.

v The third parameter, O, selects output generated by input from this terminal.

v Output can be further qualified (similar to symbolic terminal output). If you specify

ALL, all output from the terminal represented by the preceding name is selected.

v If an output message is queued but not sent, it is not selected, even if ALL is

specified. The SYM NAME control statement must be used.

Time Control Statement

The format of the time control statement is:

TIME=(yyddd,hhmm[{+|-}HHMM],yyddd,hhmm[{+|-}HHMM])

v The first parameter is starting date—year (YY) and day of year (DDD).

v The second parameter is starting time—hours (HH) and minutes (MM) plus the

optional time-zone offset information—{+|-}HHMM.

v The third parameter is ending date—year (YY) and day of year (DDD).

v The fourth parameter is ending time—hours (HH) and minutes (MM) plus the

optional time-zone offset information—{+|-}HHMM.

The optional time-zone parameters used in the second and fourth parameters are

as follows:

JCL Requirements

Chapter 17. Statistical Analysis Utility (DFSISTS0) 375

– The {+|-} is the sign of the time-zone offset from Universal Time Coordinated

(UTC).

– The HH is the number of whole hours of offset from UTC.

– The MM is the minutes of offset; can be 00, 15, 30, 45, or blank.

v If you include the time control statement, only messages specified by a

transaction code statement or a terminal control statement and falling within the

specified times are selected.

Nonprintable Character Control Statement

The format of the nonprintable character control statement is:

NON PRINT=HEX

If you include this control statement, nonprintable characters are printed in

hexadecimal, on two lines, with one hexadecimal character above the other. If you

do not include this statement, nonprintable characters appear as blanks.

JCL Requirements

376 Utilities Reference: System

Part 5. Interpreting IMS Reports

Chapter 18. Interpreting IMS Monitor Reports 381

Transaction Flow and IMS Monitor Events 381

IMS Monitor Trace Event Intervals 384

Overview of IMS Monitor Reports 385

Sequence of Report Output 385

Units of Measure in IMS Monitor Reports 386

Documenting the Monitoring Run 386

Adding to the System-Configuration Report Data 386

Recording the Monitor Trace Interval 386

Completing the Monitor Run Profile 386

Verifying IMS Monitor Report Occurrences 388

Monitoring Activity in Dependent Regions 388

Detecting Database Processing Intent Conflicts 392

Examining the Effects of Checkpoints 393

Measuring Region Occupancy 393

Monitoring Application Program Elapsed Time 393

Monitoring I/O for Application Program DL/I Calls 396

Monitoring MFS Activity . 400

Monitoring Message Queue Handling 401

Detecting Checkpoint Effects 402

Transaction Queueing Report 402

Monitoring Database Buffers 403

Monitoring Line Activity . 405

Monitoring Message Handling Efficiency 406

IMS Internal Resource Usage 406

Pool Space Failure . 406

Programs Experiencing Deadlock 406

IMS Latch Conflict . 407

Using Frequency Distributions from IMS Monitor Output 409

How to Get a Frequency Distribution Output 409

How Frequency Distribution Ranges Are Defined 411

Interpreting Distribution Appendix 413

Interpreting IMS Monitor MSC Reports 414

Determining Cross-System Queuing 414

Assessing the Effect of Link Loading 415

Assessing Link Queuing Times 416

Extracting Multiple System Transaction Statistics 417

Controlling the Log Merge 417

Interpreting the Transaction Analysis Report 417

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 419

IMS Monitor Trace Event Intervals 420

Overview of IMS Monitor Reports 421

Sequence of Report Output 421

Units of Measure in IMS Monitor Reports 422

Documenting the Monitoring Run 422

Adding to the System Configuration Report Data 422

Recording the Monitor Trace Interval 422

Completing the Monitor Run Profile 423

Verifying IMS Monitor Report Occurrences 424

Monitoring Activity in Dependent Regions 424

Detecting Database Processing Intent Conflicts 428

Examining the Effects of Checkpoints 429

© Copyright IBM Corp. 1974, 2004 377

Measuring Region Occupancy 429

Monitoring Application Program Elapsed Time 429

Monitoring I/O for Application Program DL/I Calls 431

Transaction Queuing Report 432

Monitoring Database Buffers 433

IMS Internal Resource Usage 435

Pool Space Failure . 435

Programs Experiencing Deadlock 435

IMS Latch Conflict . 435

Using Frequency Distributions from IMS Monitor Output 436

How to Get a Frequency Distribution Output 436

How Frequency Distribution Ranges Are Defined 438

Interpreting Distribution Appendix Output 440

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 441

IMS Monitor Trace Event Intervals 441

Overview of IMS Monitor Reports 442

Sequence of Report Output 442

Summary of IMS Monitor Reports in Output Sequence 442

Units of Measure in IMS Monitor Reports 443

Documenting the Monitoring Run 443

Adding to the System Configuration Report Data 443

Recording the Monitor Trace Interval 444

Completing the Monitor Run Profile 444

Verifying IMS Monitor Report Occurrences 445

Monitoring Activity in Dependent Regions 446

Examining the Effects of Checkpoints 450

Measuring Region Occupancy 451

Monitoring Application Program Elapsed Time 451

Monitoring I/O for Application Program DL/I Calls 453

Monitoring MFS Activity . 457

Monitoring Message Queue Handling 458

Detecting Checkpoint Effects 459

Transaction Queuing Report 459

Monitoring Line Activity . 460

Monitoring Message Handling Efficiency 461

IMS Internal Resource Usage 462

Pool Space Contention . 462

IMS Latch Conflict . 462

Using Frequency Distributions from IMS Monitor Output 463

How to Get a Frequency Distribution Output 463

How Frequency Distribution Ranges Are Defined 465

Interpreting Distribution Appendix Output 467

Interpreting IMS Monitor MSC Reports 468

Determining Cross–System Queuing 469

Assessing the Effect of Link Loading 470

Assessing Link Queuing Times 471

Extracting Multiple System Transaction Statistics 472

Controlling the Log Merge 472

Interpreting the Transaction Analysis Report 472

Chapter 21. Interpreting //DFSSTAT Reports 475

JCL Description for //DFSSTAT 475

Report Descriptions for //DFSSTAT 475

PST-Accounting Report . 475

VSAM-Buffer-Pool Report 476

378 Utilities Reference: System

OSAM-Buffer-Pool Report 477

Sequential-Buffering-Summary Report 479

Sequential-Buffering-Detail Report 481

Chapter 22. Interpreting Statistical-Analysis and Log-Transaction Reports 491

Statistical Analysis Utility Reports 491

Calculating Transaction Loads 492

Assessing Program-to-Program Traffic 494

Obtaining Counts of Unsent Messages 494

Auditing Critical Transactions 495

Log Transaction Analysis Utility Reports 496

Examining Scheduling Activity 497

IMS Accounting Information . 499

Using the Application-Accounting Report 499

Using IMS Transaction Profiles 500

Part 5. Interpreting IMS Reports 379

380 Utilities Reference: System

Chapter 18. Interpreting IMS Monitor Reports

This chapter describes:

v The events that the IMS Monitor collects

v The content of the reports produced by the IMS Monitor Report Print Program

The IMS Monitor output reflects the IMS DB/DC environment as a whole. A subset

of the reports deals with database calls and buffering. Interpreting this data for

batch application performance and to verify database design are considered

separate tasks allied with database administration.

Related Reading: For more information on these reports, see IMS Version 9:

Utilities Reference: Database and Transaction Manager.

The following topics provide additional information:

v “Transaction Flow and IMS Monitor Events”

v “IMS Monitor Trace Event Intervals” on page 384

v “Overview of IMS Monitor Reports” on page 385

v “Documenting the Monitoring Run” on page 386

v “Monitoring Activity in Dependent Regions” on page 388

v “Monitoring Application Program Elapsed Time” on page 393

v “Monitoring I/O for Application Program DL/I Calls” on page 396

v “Monitoring MFS Activity” on page 400

v “Monitoring Message Queue Handling” on page 401

v “Monitoring Database Buffers” on page 403

v “Monitoring Line Activity” on page 405

v “Monitoring Message Handling Efficiency” on page 406

v “IMS Internal Resource Usage” on page 406

v “Using Frequency Distributions from IMS Monitor Output” on page 409

v “Interpreting IMS Monitor MSC Reports” on page 414

v “Extracting Multiple System Transaction Statistics” on page 417

Transaction Flow and IMS Monitor Events

For an overall picture of the events, system activities, and usage of storage areas

(buffer pool or data set) for which the IMS Monitor gathers timings, see Table 27.

The leftmost column shows, from top to bottom, a sequence of processing events;

each event is related to IMS Monitor reported items in the notes that follow the

table.

 Table 27. Transaction Flow and IMS Monitor Events Description

Flow Event Activity Pool Data Set

1 Wait for poll Waiting N/A N/A

2 Data Transfer N/A N/A N/A

3 Input message processing Device CIOP (For lines)

MFS MFP IMS.FORMATx

Enqueuing QBUF Message queue

4 Input queuing Waiting N/A N/A

© Copyright IBM Corp. 1974, 2004 381

Table 27. Transaction Flow and IMS Monitor Events Description (continued)

Flow Event Activity Pool Data Set

5 Scheduling Scheduling QBUF Message queue

PSB load PSB, PSBW,

DPSB

IMS.ACBLIBx

DMB load DMBP IMS.ACBLIBx

6 Program load Program load IMS.PGMLIB

7 Program initialization Initializing N/A N/A

8 Message queue GU Primed GU call N/A N/A

9 Program Execution DC calls QBUF Message queue

DL/I Elapsed DB calls OSAM/VSAM N/A

Wait Elapsed DB I/Os OSAM/VSAM Databases

SPA insert CWAP IMS.SPA

10 Output message insert DC ISRT call QBUF Message queue

DC GU call QBUF Message queue

Sync point

(MODE=SNGL)

OSAM/VSAM Databases

11 Wait for sync point (Only for

MODE=MULT)

N/A N/A

12 Program termination Program termination OSAM/VSAM Databases

13 Wait for selection Waiting QBUF Message Queue

14 Output message

processing

Message send QBUF Message queue

MFS MFP IMS.FORMATx

Device CIOP (For lines)

15 Data transfer N/A N/A N/A

16 Output queue processing Dequeuing QBUF Message queue

Notes to Table 27:

 1. The time waiting for poll is not recorded by the IMS Monitor.

 2. Line activity in terms of data transmitted and IMS communication sub-task

activity are recorded for all messages. Input message activity is not separated

from output message activity.

 3. During input message processing, the device dependent processing and the

use of the communication I/O pool (CIOP) are recorded. If message format

service (MFS) is required, the use of the message format buffer pool and any

I/O to the active IMS.FORMATA/B library are recorded. The input message is

then placed in a message queue buffer (QBUF) with possible I/O to the

message queue data sets. The IMS Monitor reporting does not distinguish this

activity from output message processing.

 4. Time spent waiting on the input queue is not recorded by the IMS Monitor.

 5. IMS schedules the processing program into a region and, as part of this action,

accesses the message queue or the QBUF pool so that it can present the

message to the program. At this time, the required PSB and physical database

blocks are made available in the PSB pool and the DMB pool. If they are not

already in the pool, they are retrieved from the active IMS.ACBLIBA/B data

set. These events are summarized under SCHEDULING AND TERMINATION in IMS

Monitor reports.

Transaction Flow and IMS Monitor Events

382 Utilities Reference: System

6. Next, the application program is loaded into the region from IMS.PGMLIB, or

initialized if already resident in the region. This processing is included as part

of SCHEDULE TO FIRST CALL in IMS Monitor reports.

 7. The initialization performed by the application program is included in this

period of time, up to the time of the first message queue or database call. This

processing is considered part of the scheduling process because it is not

repeated when multiple transactions are processed for one scheduling event.

This processing is recorded as part of the SCHEDULE TO FIRST CALL in IMS

Monitor reports.

 8. The event of performing the first DL/I GU call to obtain the first message

segment is not separately recorded. The processing to prime the application

with this message is included with the SCHEDULE TO FIRST CALL.

 9. The program elapsed event is measured from the first call to termination of the

processing program. The total elapsed time is recorded in IMS Monitor reports

as ELAPSED EXECUTION.

v Each DL/I call, whether DC or DB, is individually recorded along with its use

of message queues or database data sets and their respective pools. Each

external subsystem call is individually recorded. These events are recorded

under CALLS in IMS Monitor reports.

v When a DL/I call causes I/O activity, the time spent waiting for the data is

recorded as WAIT time and as the number of I/Os. When a program’s

database processing intent and other update activity are in contention, this

also contributes to WAIT time. For each external subsystem call, the time

spent in external subsystem processing is recorded separately as WAIT time.

When processing is suspended because of intent, the elapsed time is

recorded in IDLE FOR INTENT IMS Monitor report items. When processing is

suspended because the region is designated as wait-for-input and no input

message is available, the time spent waiting for the next input message is

excluded from elapsed time intervals and wait times. Wait-for-input time

appears only in **WFI items on the program I/O report.

v If the message processing is part of a conversational transaction, the activity

in the communications work area pool (CWAP) and the IMS.SPA data set is

recorded.

10. The DL/I ISRT call for the response to the message just processed is recorded

for the transaction.

As processing continues, there are synchronization points such as a GU to the

message queue for another input message or a checkpoint call. The database

and message queue I/O to commit the program processing is recorded.

Checkpointing by IMS or by the processing program is recorded separately.

11. If the processing is for multiple messages before synchronization

(MODE=MULT), there can be a wait for sync point. This time is not recorded

by the IMS Monitor.

12. The processing after exiting from the application program, the program

termination events, is included with the initial scheduling time. It is part of

SCHEDULING AND TERMINATION.

13. The output message waits for the selection to be transmitted to the terminal.

The duration of any wait time on the output queue is not recorded by the IMS

Monitor.

14. After the exit from the application program and termination, output message

processing events are recorded. These include message format and device

dependent processing as well as sending the output message. The IMS

Monitor reporting does not distinguish this activity from input message

processing.

Transaction Flow and IMS Monitor Events

Chapter 18. Interpreting IMS Monitor Reports 383

15. Line activity in terms of data transmitted and IMS communication sub-task

activity are recorded for all messages. Output message activity is not

separated from input message activity.

16. The processing to remove the output message from the queue is recorded.

IMS Monitor Trace Event Intervals

The IMS Monitor trace interval is bounded by the master terminal operator’s use of

the /TRACE command between the start and stop command entries. The IMS

Monitor can also be stopped by the expiration of any interval specified. The online

IMS events are recorded in IMS Monitor records placed in the IMSMON data set.

The event timings are related to dependent region activity. Figure 129 shows the

boundaries of the timed event intervals.

The Monitor trace interval includes the following intervals:

v Scheduling and Termination

– No Messages

– Block loader busy

– Intent failures (exclusive intent and data sharing) and Schedule failures (PSB

busy and space failure)

– Sched/Term elapsed

- NOT-WAIT

- ACBLIB waits

- DB Flush waits

- DB CLOSE waits

v Region occupancy (which overlaps with all of Sched/Term elapsed)

– Schedule to first call

– Elapsed execution

The NOT-WAIT time for a region is the elapsed time not accounted for by wait time.

Any delay coming from either paging or the processor being dispatched for a higher

priority task results in an increase in the NOT-WAIT times.

Figure 129. IMS Monitor Trace Event Intervals

Transaction Flow and IMS Monitor Events

384 Utilities Reference: System

Overview of IMS Monitor Reports

A list of reports available from data collected by the IMS Monitor, together with the

principal performance data they contain, is shown in Table 28.

Related Reading: For those reports marked by a “DB”, see IMS Version 9: Utilities

Reference: Database and Transaction Manager.

The reports marked “MSC” in the list are only produced when MSC is active. The

MSC reports and their interpretation are in “Interpreting IMS Monitor MSC Reports”

on page 414.

Sequence of Report Output

The order of the reports listed in Table 28 matches the sequence of the output from

the IMS Monitor Report Print Program. The duration or constraints of a monitoring

snapshot might not include certain events necessary for an individual report, in

which case only report headings or partial data are produced.

 Table 28. IMS Monitor Reports Output Sequence and Information

Report Name Principal Information

System Configuration Monitor run documentation

Message Queue Pool Buffering and message I/O per transaction

Database Buffer Pool (DB) Count of DB calls and I/O per transaction

VSAM Buffer Pool (DB) Count of inserts and I/Os

Message Format Buffer Pool Count of blocks fetched and I/Os

Latch Conflict Statistics IMS internal processing

General Wait Time Events Wait times for SNAPQ

Region and Jobname Monitor run documentation

Region Summary Elapsed times and count of DL/I calls

Region Wait Wait times

Programs by Region Elapsed times for region usage

Program Summary Overall program statistics

Program I/O (DB) Wait times/PCB

Communication Summary Elapsed times for lines

Communication Wait Wait times by line

Line Functions Count and size of blocks transmitted

MSC Traffic (MSC) Count and routing of transactions

MSC Summaries (MSC) Count of transactions by destination

MSC Queuing Summary (MSC) Count and queuing time by link

Transaction Queuing Queue loading statistics

Reports Count of space failures and deadlocks

Run Profile Monitor run documentation

Call Summary (DB) Call counts and timings/segment type

Distribution Appendix Event frequency distributions

Overview of IMS Monitor Reports

Chapter 18. Interpreting IMS Monitor Reports 385

Units of Measure in IMS Monitor Reports

The majority of the data items in IMS Monitor reports are elapsed times. These are

normally expressed in microseconds. An entry of 1876534 represents 1.876534

seconds or 1876 milliseconds. Any times that do not follow this convention show the

unit of measure on the report.

You can also find counts of events under the heading OCCURRENCES, and some

figures that represent the number of bytes.

Documenting the Monitoring Run

For each trace interval there are several general reports or overall summaries of the

processing that took place. You can use these reports as part of your IMS Monitor

run documentation.

It is important to record, as accurately as possible the conditions under which the

trace was taken. Your documentation can include system status information

obtained by the /DISPLAY command several times before and after the trace, an

expected profile of the application program activity, and any desired processing

events. The trace interval should represent typical processing loads and not be a

biased or inadequate historical record.

Adding to the System-Configuration Report Data

The first general report titled SYSTEM CONFIGURATION is found under the page

heading BUFFER POOL STATISTICS. It shows the modification level of the IMS and

z/OS systems. The system configuration output is illustrated in Figure 130.

Recording the Monitor Trace Interval

The heading of most IMS Monitor reports carries the trace start and stop times. It is

shown in the format YEAR DAY (Julian) HH:MM:SS. The overall length of the trace

interval is given in milliseconds under the title MONITOR OVERHEAD DATA. The following

line shows how many trace records were placed on the IMSMON data set. An

example of the monitor trace interval recording is shown in Figure 130.

Completing the Monitor Run Profile

A compact set of processing ratios is found at the end of the Run-Profile report. The

statistics summarize, for the monitor interval, the transaction throughput and the

degree of DL/I and I/O activity. An example of the report is shown in Figure 131 on

page 387.

The lower part of the Run-Profile report shows several ratios:

 Program elapsed time to DL/I elapsed time for each region

I M S M O N I T O R BUFFER POOL STATISTICS TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0001

 S Y S T E M C O N F I G U R A T I O N

 SYSTEM CONFIGURATION :

 IMS VERSION : 4

 RELEASE LEVEL :

 MODIFICATION NUMBER :

Figure 130. IMS Monitor-System-Configuration Report and Trace Interval

Overview of IMS Monitor Reports

386 Utilities Reference: System

DL/I elapsed time to wait time during DL/I processing

 Program elapsed time to other subsystem call elapsed time

 DL/I elapsed time to other subsystem call elapsed time

Each dependent region is identified by a sequence number, starting at region 1.

 You can match the regions to the name of the z/OS job using the

Region-and-Jobname report. The job names correspond to the step names on the

EXEC statements of all the dependent regions started by the operator before the

trace was started. The region job names are included on the monitor output page

with the heading GENERAL REPORTS, as illustrated in Figure 142 on page 402.

Some generalized processing ratios are given at the end of several buffer pool

statistics reports. You can include them in the documented profile of the trace

interval. These are not specific to one application or system resource but can be

used as indicators of variation across a series of monitor runs.

The ratios are:

v The total number of OSAM reads + OSAM writes + all waits divided by the total

number of transactions.

From the Message-Queue-Pool report (see Figure 141 on page 401), this ratio

indicates on a per transaction basis the physical I/O activity required to handle

the message queuing function.

v The total number of OSAM reads + OSAM writes + BISAM reads divided by the

total number of transactions.

From the Database-Buffer-Pool report (see Figure 144 on page 404), this ratio

indicates on a per transaction basis the physical I/O activity required to handle

the database buffering function.

v The total prefetch I/Os + immediate fetch I/Os + directory I/Os divided by the

total number of transactions.

 IMS MONITOR **RUN PROFILE** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0184

TRACE ELAPSED TIME IN SECONDS.............274.6

TOTAL NUMBER OF MESSAGES DEQUEUED........1403

TOTAL NUMBER OF SCHEDULES.................173

NUMBER OF TRANSACTIONS PER SECOND...........5.1

TOTAL NUMBER OF DL/I CALLS ISSUED.......18632

NUMBER OF DL/I CALLS PER TRANSACTION.......13.2

NUMBER OF OSAM BUFFER POOL I/O’S........11236, 8.0 PER TRANSACTION

NUMBER OF MESSAGE QUEUE POOL I/O’S..........0, 0.0 PER TRANSACTION

NUMBER OF FORMAT BUFFER POOL I/O’S..........0, 0.0 PER TRANSACTION

RATIO OF PROGRAM ELAPSED TO DL/I ELAPSED:

 REGION 1: 1.09

 REGION 2: 1.09

 REGION 3: 1.00

 REGION 4: 1.02

 REGION 5: 1.01

 REGION 6: 1.00

 REGION 7: 1.00

 REGION 8: 1.00

 REGION 9: 1.17

 REGION 10: 1.00

 REGION 11: 1.00

 REGION 49: 1.03

 REGION 50: 1.19

RATIO OF DL/I ELAPSED TO DL/I IWAIT:

 REGION 1: 325.65

 REGION 2: 73.49

 REGION 4: 100.35

 REGION 5: 85.76

 REGION 6: 82.99

 REGION 47: 95.64

 REGION 48: 45.93

 REGION 49: 9.22

Figure 131. Run-Profile Report

Documenting the Monitoring Run

Chapter 18. Interpreting IMS Monitor Reports 387

From the Message Format Buffer Pool report (see Figure 140 on page 401), this

ratio indicates on a per transaction basis the physical I/O activity required to

handle the MFS function.

Verifying IMS Monitor Report Occurrences

When you examine the output from the IMS Monitor Report Print program, the

presence of a report heading does not necessarily mean that appropriate data is

listed. System definition options and utility control statements affect the content of

the output as follows:

v The output does not include a Call-Summary report unless a control statement

specifies DLI.

v The output does not include a set of Distribution reports unless a control

statement specifies DIS or DISTRIBUTION. The column headed DISTRIBUTION

NUMBER that occurs on many of the reports contains cross-references to items

included in the Distribution reports.

v The output consists of just a Call Summary report if a control statement specifies

ONLY DLI.

Because many of the summary reports require system status to calculate the

difference between start and end values, and this status is obtained during the

/TRACE SET OFF processing, the IMS Monitor execution must end before termination

of the IMS control region. If the trace was not stopped properly, the following

message is issued:

NO QUEUE BUFFER POOL TRACES AT END TIME ON MONITOR LOG TAPE

****QUEUE BUFFER POOL REPORT CANCELLED****

Similarly, other summary reports are not produced.

The series of reports with the title BUFFER POOL STATISTICS do not include a VSAM

BUFFER POOL section unless one of the databases in IMS.ACBLIB uses the VSAM

access method. If VSAM is not used, the following message is issued:

NO VSAM BUFFER POOL TRACES ON MONITOR LOG TAPE

****VSAM BUFFER POOL REPORT CANCELLED****

The section MESSAGE FORMAT BUFFER POOL is included only if your system definition

specifies devices using Message Format Service.

If the source data used to formulate a particular IMS Monitor report, or a section of

that report, has not been recorded by the IMS Monitor during the trace interval, the

report contains only the headings.

Monitoring Activity in Dependent Regions

The IMS Monitor gathers timing information for every dependent region identified in

the /trace command active during the trace interval. It records the total of the

elapsed times for each event, the maximum individual time encountered, and the

average time.

There are three major reports that display timings. The reports and a list of their

content are:

v Region-Summary Report

– Scheduling and termination

– Schedule end to first call

– Elapsed execution with separate summaries shown for:

Documenting the Monitoring Run

388 Utilities Reference: System

- DL/I calls

- External subsystem service and command calls

- External subsystem database access calls

- Checkpoint processing

- Region occupancy

v Region Wait

– Waits during scheduling and termination

– Waits during DL/I calls

– Waits during external subsystem calls

– Waits during checkpoint

v Programs by Region

– Elapsed execution

– Schedule end to first call

These three reports are illustrated in Figure 132 on page 390, Figure 133 on page

391, and Figure 134 on page 392.

Activities for dependent regions are placed in five categories:

v Elapsed time for scheduling and termination

The scheduling process includes many preparatory events such as block loading

from an active IMS.ACBLIBA/B data set, and obtaining ownership of the PSB.

The time required to terminate the region activity after the application program

ends is also included.

v Elapsed time from end of schedule to first call

This time is reserved for application program initialization and housekeeping prior

to an initial call (to the message queue, a database, or an external subsystem)

that marks the beginning of control program services. It is a measure of

processing that is not repeated when multiple transactions are processed in a

single scheduling.

v Program elapsed time, including all calls

This time encompasses the major application program processing, measured

from the first call to the return or exit from the program.

v Elapsed time performing DL/I calls

This time includes all DL/I calls. Each DL/I call event is measured from the time

of the call to the return to the application program.

v Elapsed time performing external subsystem calls

This time includes all external subsystem calls. Each external subsystem event is

measured from the time of the call to the return to IMS.

Monitoring Activity in Dependent Regions

Chapter 18. Interpreting IMS Monitor Reports 389

IMS MONITOR ****REGION SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0011

 (A) (B)

 ELAPSED TIME......... NOT IWAIT TIME(ELAPSED-IWAIT) DISTRIBUTION

 OCCURRENCES TOTAL MEAN MAXIMUM TOTAL MEAN MAXIMUM NUMBER

 ___________ _____ ____ _______ _____ ____ _______ ______

SCHEDULING AND TERMINATION

__________ ___ ___________

**REGION 5 5 4146 829 948 4146 829 948 287A,B

**REGION 6 7 6028 861 1067 6028 861 1067 214A,B

**REGION 8 8 6847 855 1098 6847 855 1098 129A,B

**REGION 10 7 9664 1380 3668 9664 1380 3668 272A,B

**REGION 47 6 5482 913 1021 5482 913 1021 145A,B

**REGION 49 3 2612 870 917 2612 870 917 443A,B

**TOTALS 123 126042 1024 126042 1024

SCHEDULE TO FIRST CALL

________ __ _____ ____

**REGION 1 1 15479797 15479797 15479797 555

**REGION 2 1 22376350 22376350 22376350 564

**REGION 3 1 15169488 15169488 15169488 578

**REGION 4 1 48146258 48146258 48146258 584

**REGION 48 1 795351 795351 795351 592

**REGION 49 4 2960425 740106 2951746 442

**REGION 50 1 15713464 15713464 15713464 575

**TOTALS 168 514286738 3061230

ELAPSED EXECUTION

_______ _________

**REGION 1 1 290146255 290146255 290146255 1

**REGION 2 1 252290108 252290108 252290108 2

**REGION 3 1 259496970 259496970 259496970 3

**REGION 4 1 322812716 322812716 322812716 4

**REGION 48 1 273871107 273871107 273871107 48

**REGION 49 4 271703421 67925855 155176058 49

**REGION 50 1 290379922 290379922 290379922 50

**TOTALS 173 14238540145 82303700

DL/I CALLS IWT/CALL(C)

____ _____ ___________

**REGION 1 60 264626241 4410437 88981490 263813671 4396894 88970053 0.76 247A,B,C

**REGION 2 223 230505269 1033655 61048758 227368742 1019590 61011153 0.73 237A,B,C

**REGION 3 29 257704383 8886358 69000514 257704383 8886358 69000514 0.00 98A,B,C

**REGION 4 792 313735347 396130 52439653 310609035 392183 52439653 0.22 180A,B,C

**REGION 49 592 262886317 444064 30202068 234394017 395935 30159782 2.46 177A,B,C

**REGION 50 36 242591451 6738651 48651260 242591451 6738651 48651260 0.00 289A,B,C

**TOTALS 18632 12386905286 664818 12024562411 645371 0.97

IDLE FOR INTENT

____ ___ ______

 NONE

CHECKPOINT

__________ NONE

REGION OCCUPANCY

______ _________

**REGION 1 100.0%

**REGION 2 100.0%

**REGION 3 100.0%

**REGION 4 100.0%

**REGION 48 100.0%

**REGION 49 100.0%

**REGION 50 100.0%

Figure 132. Region-Summary Report

Monitoring Activity in Dependent Regions

390 Utilities Reference: System

IMS MONITOR ****REGION IWAIT**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0023

 IWAIT TIME.......... DISTRIBUTION

**REGION 5 OCCURRENCES TOTAL MEAN MAXIMUM FUNCTION MODULE NUMBER

 ______ ___________ _____ ____ _______ ________ ______ ______

SCHEDULING + TERMINATION

__________ ___________

 SUB-TOTAL

 TOTAL

DL/I CALLS

____ _____

 11 181816 16528 24375 DD=IMMSTR2A DBH 117

 8 112831 14103 17846 DD=IMMSTR1A DBH 118

 5 85460 17092 33717 DD=IMMSTR3A DBH 119

 5 58420 11684 14643 DD=IMINDEXA VBH 120

 12 173866 14488 22152 DD=PRODCNTA VBH 121

 3 100576 33525 68373 DD=IMMSTR2B DBH 428

 1 17921 17921 17921 DD=IMMSTR3B DBH 429

 1 17195 17195 17195 DD=IMMSTR1B DBH 430

 1 13577 13577 13577 DD=IMINDEXB VBH 431

 3 49928 16642 20396 DD=PRODCNTB VBH 432

 4 10973 2743 2787 DD=ITEMACTB DBH 453

 2 37680 18840 27664 DD=IAINDEXB VBH 454

 49 1500067 30613 138284 DD=INVENTRA DBH 472

 23 345595 15025 27613 DD=VENDORDA VBH 473

 1 342952 342952 342952 PI=VENDORDA...1 498

 1 14612 14612 14612 PI=VNSINDXA...1 499

 6 69203 11533 19492 DD=VNSINDXA VBH 500

 TOTAL

 _____ 136 3132672 23034

Figure 133. Region-Wait Report

Monitoring Activity in Dependent Regions

Chapter 18. Interpreting IMS Monitor Reports 391

Detecting Database Processing Intent Conflicts

The IMS Monitor records the intervals when a region is in an idle state waiting to

update a database owned exclusively by another already scheduled application

program.

You can see the total, maximum, and average idle times in IDLE FOR INTENT

following the DL/I calls. The elapsed time during the unsuccessful scheduling of a

program in that region is included in the summary line times for that region.

The region can fail to be scheduled even when ownership of that database is

released. The number of times processing is held up by intent failure is separately

tallied under the title INTENT FAILURE SUMMARY. The report is illustrated in Figure 135

on page 393. In this report you can see which PSBs are in conflict because of

exclusive intent for a segment type and the database name in question.

 IMS MONITOR ****PROGRAMS BY REGION**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0069

 (A) (B)

 ELAPSED EXECUTION TIME SCHEDULING END TO FIRST CALL DISTRIBUTION

 OCCURRENCES TOTAL MEAN MAXIMUM TOTAL MEAN MAXIMUM NUMBER

 ___________ _____ ____ _______ _____ ____ _______ ______

**REGION 1

________ _ 1

 PROGSC6D 1 290146255 290146255 290146255 15479797 15479797 15479797 885A,B

 REGION TOTALS 1 290146255 290146255 15479797 15479797

**REGION 2

________ _ 2

 PROGIT8C 1 252290108 252290108 252290108 22376350 22376350 22376350 889A,B

 REGION TOTALS 1 252290108 252290108 22376350 22376350

**REGION 3

________ _ 3

 PROGTS1C 1 259496970 259496970 259496970 15169488 15169488 15169488 893A,B

 REGION TOTALS 1 259496970 259496970 15169488 15169488

**REGION 4

________ _ 4

 PROGPS3D 1 322812716 322812716 322812716 48146258 48146258 48146258 897A,B

 REGION TOTALS 1 322812716 322812716 48146258 48146258

**REGION 5

________ _ 5

 PROGPS3A 2 62893103 31446551 40693590 5435 2717 2862 901A,B

 PROGTS1B 1 61794787 61794787 61794787 2790 2790 2790 1271A,B

 PROGPS3B 1 18294458 18294458 18294458 3104 3104 3104 1350A,B

 PROGIT2B 1 36095342 36095342 36095342 2731 2731 2731 1363A,B

 PROGSC2A 1 93902771 93902771 93902771 1667791 1667791 1667791 1401A,B

 REGION TOTALS 6 272980461 45496743 1681851 280308

**REGION 6

________ _ 6

 PROGIT1B 2 39000315 19500157 23703429 5286 2643 2801 905A,B

 PROGTS1B 1 34293636 34293636 34293636 3136 3136 3136 1207A,B

 PROGPS3A 1 51887767 51887767 51887767 2534 2534 2534 1278A,B

 PROGPS3B 2 67375031 33687515 40291430 17210570 8605285 17213287 1328A,B

 PROGIT8A 1 69132416 69132416 69132416 3291 3291 3291 1359A,B

 PROGSC4A 1 30165017 30165017 30165017 2571 2571 2571 1433A,B

 REGION TOTALS 8 291854182 36481772 17193752 2149219

**REGION 7

________ _ 7

 PROGSC2B 1 269618583 269618583 269618583 5047875 5047875 5047875 909A,B

 REGION TOTALS 1 269618583 269618583 5047875 5047875

**REGION 8

________ _ 8

 PROGIT8A 1 5181039 5181039 5181039 2928 2928 2928 913A,B

 PROGPS3A 1 27304257 27304257 27304257 3350 3350 3350 1132A,B

 PROGSC4B 1 37286872 37286872 37286872 3009 3009 3009 1255A,B

 PROGIT2A 1 36902995 36902995 36902995 2850 2850 2850 1298A,B

 PROGIT1B 1 30407479 30407479 30407479 2565 2565 2565 1336A,B

 PROGIT1A 3 109875360 36625120 45190114 4279008 1426336 4272096 1357A,B

 PROGIT8B 1 23405220 23405220 23405220 2679 2679 2679 1395A,B

 REGION TOTALS 9 270363222 30040358 4296389 477376

Figure 134. Programs-by-Region Report

Monitoring Activity in Dependent Regions

392 Utilities Reference: System

Examining the Effects of Checkpoints

The checkpoint line of the Region Summary report at the end of the

region—by—region summary, shows the following:

v The number of times that a system checkpoint was taken during the monitor

interval

v The elapsed times

v The not-wait times

Checkpoint processing can be initiated by the control program at a specified

frequency determined by the number of records placed on the system log. Other

checkpoints can be caused by operator commands.

The wait time experienced during checkpoints is reported at the end of the first

region summary on the Region Wait report. You can detect delays for each

combination of ddname and module code. Typical entries here are for the message

queue data sets and the restart data set. If a wait for storage is the cause, the entry

under the FUNCTION column is STG.= followed by the identification of the pool.

Measuring Region Occupancy

A measure of region activity is the percentage of region occupancy. This is broadly

the ratio of the elapsed time a region is performing processing to the trace interval.

The region occupancy time does not include those times when no messages are

available, when the block loading is delayed, or when the PSB cannot be used. The

last section in the Region Summary report lists all active regions for which timed

events were collected and shows the calculated percentages of region occupancy.

Monitoring Application Program Elapsed Time

The IMS Monitor can record measurements of elapsed times for each transaction

and scheduling of an application program. It does this during the monitored interval

while other programs are executing concurrently. Elapsed times are calculated from

the start of the first DL/I (or other) call to the end of that program. You can

distinguish between time spent in application code and in DL/I processing.

Figure 136 on page 394 illustrates the event intervals.

 INTENT FAILURE SUMMARY

 PSBNAME DMBNAME OCCURRENCES

 SSTPSBNM SSTDMBNM 1

 TOTAL 1

Figure 135. Intent-Failure-Summary Report

Monitoring Activity in Dependent Regions

Chapter 18. Interpreting IMS Monitor Reports 393

Within the elapsed time for a DL/I call, the wait time to obtain segment data is

recorded separately. Similarly, within the elapsed time for an external subsystem

call, the processing time in the external subsystem is recorded separately as the

wait time. For regions designated as wait-for-input, the time spent waiting for input

messages is excluded from values shown in the reports. The application processing

(A/P) time includes many kinds of subsidiary service beyond the machine cycles

expended by the program object code—such as subroutine loading, I/O to z/OS

data sets, and any overlay processing. If the program is waiting to be dispatched or

requires paging before it can use real storage, these delays are also accounted for

in application program processing time. Because a program can execute many

transactions for each schedule, the elapsed time from schedule to first call is

recorded separately. This time covers the initialization performed by the application

program and includes the time for loading the program.

The elapsed times are given in the Program Summary report. Figure 137 on page

395 is an example of the report. Programs are identified by their PSB name on

individual lines in the report. Each line gives a summary of the activity for that PSB

during the measured interval. The total number of schedules, DL/I calls,

transactions completed (dequeued), and waits for DL/I call I/O and external

subsystem processing are given. The report line gives calculated average times for:

v Elapsed time per schedule

v Processor time per schedule

v Schedule to first DL/I call per schedule

v Elapsed time per transaction

The report also includes:

v Frequencies for calls per transaction

v I/O waits per DL/I call

v Waits per external subsystem call

v Transactions dequeued per schedule

A TOTALS line summarizes all activity for the PSBs active during the monitored

interval. (The PSB DUMMY line reconciles any incomplete scheduling caused by a

Figure 136. Event Intervals for Time in Application Code and DL/I Processing

Monitoring Application Program Elapsed Time

394 Utilities Reference: System

region stopping during scheduling or for a program that experiences a pseudo

abend.)

 You can use the Call-Summary report to examine the detail of the call processing

for each program. The report is itemized by type of call and summarized for the

monitor interval. An extract from the multipage output is given in Figure 138 on

page 396. The calls using an I/O PCB are given first and subtotaled. Then, the total

calls of each type, against each database PCB and each external subsystem, are

listed. The PSB TOTAL line marks the end of data for each program.

 IMS MONITOR ****PROGRAM SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0075

 (A)........(B)........ (A)........(B)........

 I/O TRAN. CPU . ELAPSED SCHED.TO . ELAPSED

 NO. TRANS. CALLS I/O IWAITS DEQD. TIME DISTR. TIME 1ST CALL DISTR. TIME

PSBNAME SCHEDS. DEQ. CALLS /TRAN IWAITS /CALL /SCH. /SCHED. NO. /SCHED. /SCHED. NO. /TRANS.

_______ _______ ____ _____ _____ ______ _____ _____ _______ ___ _______ _______ ___ _______

PROGSC6D 1 13 60 4.6 46 0.7 13.0 10010 884A,B 290146255 15479797 886A,B 22318942

PROGIT8C 3 17 225 13.2 166 0.7 5.6 90592 888A,B 256617508 73283259 890A,B 45285442

PROGTS1C 2 25 47 1.8 0 0.0 12.5 10010 892A,B 239190808 7586234 894A,B 19135264

PROGPS3D 1 23 792 34.4 182 0.2 23.0 10010 896A,B 322812716 48146258 898A,B 14035335

PROGPS3A 13 36 1246 34.6 267 0.2 2.7 49782 900A,B 32801812 2228611 902A,B 11845098

PROGIT1B 11 21 99 4.7 0 0.0 1.9 6341 904A,B 23212388 2036217 906A,B 12158870

PROGSC2B 7 155 3068 19.7 1845 0.6 22.1 346112 908A,B 93655514 789390 910A,B 4229603

PROGIT8A 12 28 434 15.5 293 0.6 2.3 34350 912A,B 30196795 1745815 914A,B 12941483

PROGPS2C 1 10 179 17.9 205 1.1 10.0 10010 916A,B 221024429 53642029 918A,B 22102442

PROGTS1B 8 20 54 2.7 0 0.0 2.5 5447 920A,B 39943245 2895 922A,B 15977298

PROGPS3C 1 14 468 33.4 117 0.2 14.0 10010 924A,B 310644485 35978027 926A,B 22188891

PROGIT1C 1 9 32 3.5 0 0.0 9.0 10010 930A,B 304892631 30226173 932A,B 33876959

PROGSC2C 1 9 160 17.7 101 0.6 9.0 10010 934A,B 296909110 22242652 936A,B 32989901

PROGIT2B 8 21 393 18.7 63 0.1 2.6 21703 938A,B 35126671 1798496 940A,B 13381589

PROGIT2C 6 17 211 12.4 39 0.1 2.8 13312 942A,B 288883508 50698467 944A,B 101958885

PROGTS1D 2 26 50 1.9 0 0.0 13.0 10010 950A,B 284944505 10613350 952A,B 21918808

PROGPS3B 8 22 770 35.0 169 0.2 2.7 35737 954A,B 38016279 2149158 956A,B 13824101

PROGIT1A 11 24 106 4.4 0 0.0 2.1 7925 958A,B 30883486 1935855 960A,B 14154931

PROGSC4A 9 163 1775 10.8 5101 2.8 18.1 235921 963A,B 62172947 3011199 965A,B 3432862

PROGSC6C 1 10 44 4.4 38 0.8 10.0 10010 967A,B 228098334 46568124 969A,B 22809833

PROGPS2B 11 28 557 19.8 604 1.0 2.5 35069 971A,B 33309266 1181831 973A,B 13085783

PROGIT8D 1 12 175 14.5 133 0.7 12.0 10010 975A,B 253392289 21274169 977A,B 21116024

PROGSC4C 1 10 98 9.8 349 3.5 10.0 10010 979A,B 248736332 25930126 981A,B 24873633

PROGSC6A 7 157 789 5.0 457 0.5 22.4 11703 983A,B 73936039 115979 985A,B 3296511

PROGIT2A 7 22 430 19.5 71 0.1 3.1 28529 987A,B 37905001 2982 989A,B 12060682

PROGSC2D 1 15 280 18.6 180 0.6 15.0 10010 991A,B 316194222 41527764 993A,B 21079614

PROGPS2A 6 25 490 19.6 548 1.1 4.1 43177 995A,B 58277945 2467506 997A,B 13986707

PROGSC2A 5 121 2363 19.5 1420 0.6 24.2 276187 1001A,B 88906184 6022954 1003A,B 3673809

PROGIT2D 1 20 361 18.0 62 0.1 20.0 10010 1005A,B 386092737 111426279 1007A,B 19304636

PROGSC4B 10 131 1421 10.8 4115 2.8 13.1 617016 1011A,B 53826667 2632409 1013A,B 4108905

PROGSC4D 1 19 197 10.3 668 3.3 19.0 10010 1020A,B 227999124 46667334 1022A,B 11999953

PROGPS2D 1 13 240 18.4 291 1.2 13.0 10010 1025A,B 327602445 52935987 1027A,B 25200188

PROGSC6B 5 140 694 4.9 395 0.5 28.0 16884 1032A,B 78994223 3290769 1034A,B 2821222

PROGIT1D 1 10 36 3.6 0 0.0 10.0 10010 1041A,B 290379922 15713464 1043A,B 29037992

PROGIT8B 8 17 288 16.9 190 0.6 2.1 33436 1259A,B 35223857 2902 1261A,B 16575932

**TOTALS 173 1403 18632 13.2 18115 0.9 8.1 90328 82303700 2972755 10148638

Figure 137. Program-Summary Report

Monitoring Application Program Elapsed Time

Chapter 18. Interpreting IMS Monitor Reports 395

Monitoring I/O for Application Program DL/I Calls

The IMS Monitor report shows the total number of I/O occurrences and the total

time the occurrences took for each application program executed during a

monitored interval. The Program-I/O report gives these two totals for all PSBs active

during the monitored interval and includes the detailed breakdown of the I/O wait

time as it was incurred by each PCB used by the program. Figure 139 on page 398

shows an example of the report.

The report shows any contention experienced during application program

processing. Each type of conflict and the number of times it occurred are recorded

for each I/O PCB or database PCB. The report shows the total wait time, the

highest wait experienced, and the average time. Subtotals are given for each PCB

under a PSB, and for all PCBs under each PSB.

The DDN/FUNC column lists the data set ddname. The MODULE column uses a code to

indicate the source of the contention. The types of conflicts and codes are shown

as follows.

v Message handling

Code Conflict

DBH OSAM I/O for message queues

MFS MFS format library directory

PMM Message format buffer pool space or control block I/O

 IMS MONITOR ****CALL SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0186

 (C) (A) (B)

 CALL LEV STAT IWAITS/ ..ELAPSED TIME... .NOT IWAIT TIME.. DISTRIB.

PSB NAME PCB NAME FUNC NO.SEGMENT CODE CALLS IWAITS CALL MEAN MAXIMUM MEAN MAXIMUM NUMBER

___ ____ ___ ____ ____ __________ ____ _____ ______ ____ ____ _______ ____ _______ ______

PROGSC6B I/O PCB ISRT () 138 0 0.00 372 1240 372 1240 598A,B,C

 GU () 134 133 0.99 2600917 20974615 2587532 20962866 602A,B,C

 (GU) () 3 0 0.00 15 16 15 16 716A,B,C

 ASRT () 3 0 0.00 330 333 330 333 869A,B,C

 GU () QC 2 1 0.50 17639806 21219588 17634776 21209529 870A,B,C

 I/O PCB SUBTOTAL

 ___ ___ ________ 280 134 0.47 1370910 1364469

 INVENTRB DLET (03)IN060SUP 138 0 0.00 813 1289 813 1289 599A,B,C

 GNP (03)IN060SUP 138 7 0.05 2112 112589 1047 112589 600A,B,C

 GU (01)IN010PAR 138 254 1.84 29511 75356 1195 19229 601A,B,C

 DL/I PCB SUBTOTAL

 ____ ___ ________ 414 261 0.63 10812 1018

 PSB TOTAL

 ___ _____ 694 395 0.56 559555 551114

PROGSC2A I/O PCB ISRT () 118 0 0.00 381 1496 381 1496 603A,B,C

 GU () 114 284 2.49 3304809 21784513 3164423 21664181 632A,B,C

 (GU) () 2 0 0.00 17 18 17 18 781A,B,C

 ASRT () 3 0 0.00 367 444 367 444 871A,B,C

 GU () QC 2 5 2.50 19931897 20045206 19799530 19925277 872A,B,C

 I/O PCB SUBTOTAL

 ___ ___ ________ 239 289 1.20 1743339 1675270

 LOGVENDA REPL (03)IN040SLQ 118 0 0.00 268 804 268 804 604A,B,C

 GNP (03)IN040SLQ 118 5 0.04 899 16995 218 305 605A,B,C

 REPL (02)VN030PAR 826 0 0.00 805 1578 805 1578 606A,B,C

 GNP (02)VN030PAR 826 873 1.05 19321 94521 456 1363 607A,B,C

 REPL (01)VN020REO 118 58 0.49 8879 48076 832 1682 623A,B,C

 GU (01)VN020REO 118 195 1.65 31688 360775 1300 1746 625A,B,C

 DL/I PCB SUBTOTAL

 ____ ___ ________ 2124 1131 0.53 10145 636

 PSB TOTAL

 ___ _____ 2363 1420 0.60 185445 170013

PROGSC2D I/O PCB ISRT () 14 0 0.00 377 621 377 621 608A,B,C

 GU () 14 36 2.57 22360408 52048566 22221852 51901313 634A,B,C

 I/O PCB SUBTOTAL

 ___ ___ ________ 28 36 1.28 11180393 11111115

 LOGVENDD REPL (03)IN040SLQ 14 0 0.00 263 328 263 328 609A,B,C

 GNP (03)IN040SLQ 14 1 0.07 1407 16889 223 307 610A,B,C

 REPL (02)VN030PAR 98 0 0.00 820 1015 820 1015 611A,B,C

Figure 138. Call-Summary Report

Monitoring I/O for Application Program DL/I Calls

396 Utilities Reference: System

QMG Message queue management

v Scheduling

Code Conflict

BLR Load/read from ACBLIB

MSC MPP region initialization

SMN Virtual storage management

v Database access

Code Conflict

DBH OSAM I/O

DLE DL/I functions

VBH VSAM interface

(Physical segment code) Program isolation

For external subsystem calls, the elapsed time to complete the processing is

considered wait time. The DDN/FUNC column indicates the external subsystem call

function, as shown as follows:

v External subsystems

Code Subsystem call function

AB0 ABORT

CT0 Create thread

D50 Terminate identify or thread, signoff

D80 INIT

I30 Identify, command, echo, terminate

I30 Identify, terminate subsystem

I50 INIT

I60 Resolve-in-doubt

PR0 Subsystem-not-operational

P10 Commit prepare (Phase 1)

P20 Commit continue (Phase 2)

SO0 Signon

SI0 Identify

Monitoring I/O for Application Program DL/I Calls

Chapter 18. Interpreting IMS Monitor Reports 397

IMS MONITOR ****PROGRAM I/O**** TRACE START 1993 022 14:00:18 TRACE STOP 1993 022 14:02:20 PAGE 0088

 IWAIT TIME..........

PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC MODULE

_______ ___ ____ ______ _____ ____ _______ ________ ______

PROGHR1A I/O PCB 122 2341116 19189 70795 HOTELDBA DBH

 34 24177936 711115 3950160 **W F I

 40 23652665 591316 2668917 **W F I

 5 67613 13522 21214 SHMSG QMG

 4 110363 27590 60486 QBLKS QMG

 PCB TOTAL

 ___ _____ 131 2519092 19229

PSB TOTAL

___ _____ 305 6725063 20049

PROGDE1A TRMNALDA 20 624677 31233 68252 TRMNALDA VBH

 1 275811 275811 275811 PI TRMNALDA....

 PCB TOTAL

 ___ _____ 21 900488 42880

 I/O PCB 16 488812 30550 79980 TRMNALDA VBH

 1 16118 16118 16118 SHMSG QMG

 PCB TOTAL

 ___ _____ 17 504930 29701

 TABLEDBA 16 290471 18154 33254 TABLEDA DBH

 PCB TOTAL

 ___ _____ 16 290471 18154

PSB TOTAL

___ _____ 54 1695889 31405

PROGHR2B HOTELDBB 8 698384 87298 184475 HOTELDBB DBH

 4 5820650 1455162 1455278 PI HOSINDXB....

 4 4481024 1120256 1209075 PI HOTELDBB....

 2 260817 130408 232750 HOSINDOB VBH

 7 106623 15231 16410 HOSINDXB VBH

 1 15366 15366 15366 HOTELDBD DBH

 PCB TOTAL

 ___ _____ 26 11382864 437802

PSB TOTAL

___ _____ 26 11382864 437802

PROGHR2A HOTELDBA 17 655801 38576 366108 HOSINDXA VBH

 73 1836721 25160 82141 HOTELDBA DBH

 2 54663 27331 41975 HOTELDBD DBH

 1 9887 9887 9887 HOTELDBC DBH

 2 851042 845635 845635 HOSINDOA VBH

 PCB TOTAL

 ___ _____ 95 3408114 35874

 I/O PCB 2O 575847 28792 74227 HOTELDBA DBH

 21 370390 17637 43153 HOSINDXA VBH

Figure 139. Program-I/O Report (Part 1 of 2)

Monitoring I/O for Application Program DL/I Calls

398 Utilities Reference: System

The I/O waits for the calls to the I/O PCB, are grouped as the first entries for a

PSB. For DL/I calls, the data set for which the I/O took place is indicated under the

DDN/FUNC heading, and the module code tells you what type of conflict caused the

wait. For external subsystem calls, the function is indicated under the DDN/FUNC

heading and the module code indicates the source of the call entry.

 IMS MONITOR ****PROGRAM I/O**** TRACE START 1993 022 14:00:18 TRACE STOP 1993 022 14:02:20 PAGE 0089

 IWAIT TIME..........

PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC MODULE

_______ ___ ____ ______ _____ ____ _______ ________ ______

PROGHR2A I/O PCB 5 4654544 930908 2020043 **W F I

 8 32796604 4099575 9328891 **W F I

 PCB TOTAL

 ___ _____ 41 946237 23078

PSB TOTAL

___ _____ 136 4354351 32017

PROGPS2A LOGIMA 89 2046670 22996 73593 IMMSTR3A VBH

 612 53886417 88049 185674 IMMSTR1A VBH

 3 44906 14968 20788 IMINDEXA VBH

 PCB TOTAL

 ___ _____ 704 55977993 79514

 469 11742900 25038 170337 COMPOSDA DBH

 329 8198418 24919 91422 CPINDEXA VBH

 PCB TOTAL

 ___ _____ 798 19941318 24989

 I/O PCB 3 47511 15837 20806 SHMSG QMG

 PCB TOTAL

 ___ _____ 3 47511 15837

PSB TOTAL

___ _____ 1505 75966822 50476

PROGSC6C I/O PCB 52 2698602 51896 473763 INVENTRC VBH

 4 70921 17730 34241 SHMSG QMG

 3 50699 16899 24724 QBLKS QMG

 PCB TOTAL

 ___ _____ 59 2820222 47800

 55 2666884 48488 210752 INVENTRC VBH

 50 797587 15951 41706 ININDEXC VBH

 1 119253 119253 119253 PI INVENTRC...1

 1 8634 8634 8634 INVENTRB VBH

 2 83947 41973 53936 INVENTRA VBH

 PCB TOTAL

 ___ _____ 109 3676305 33727

PSB TOTAL

___ _____ 168 6496527 38669

PROGHR2D I/O PCB 21 2285296 108823 199223 HOTELDBD DBH

 28 762370 27227 111860 HOSINDXD VBH

 1 11685 11685 11685 SHMSG QMG

 PCB TOTAL

 ___ _____ 50 3059351 61187

 HOTELDBD 96 6279107 65407 139032 HOTELDBD DBH

 MONITOR ****PROGRAM I/O**** TRACE START 1993 022 14:00:18 TRACE STOP 1993 022 14:02:20 PAGE 0090

 IWAIT TIME..........

PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC MODULE

_______ ___ ____ ______ _____ ____ _______ ________ ______

PROGHR2D HOTELDBD 31 2130585 68728 769130 HOSINDXD VBH

 3 115999 38666 56394 HOTELDBA DBH

 2 69833 34916 43470 HOTELDBC DBH

 2 41430 20715 28020 HOSINDOD VBH

 4 5515374 1378843 1458884 PI HOSINDXD....

 4 3997017 999254 1026228 PI HOTELDBD....

PCB TOTAL

___ _____ 142 18149345 127812

PSB TOTAL

___ _____ 192 21208696 110461

Figure 139. Program-I/O Report (Part 2 of 2)

Monitoring I/O for Application Program DL/I Calls

Chapter 18. Interpreting IMS Monitor Reports 399

Names other than LGMSG and SHMSG can appear in the DDN/FUNC column for I/O

PCBs. An example is a checkpoint call issued by an application program (using an

I/O PCB) which causes a database buffer to be written.

If the program is designated as wait-for-input and has to wait for the input of the

next message, the wait entry is marked **WFI under the DDN/FUNC heading and no

entry appears in the MODULE column. The time spent waiting for the next input

message is shown under wait time. **WFI entries are shown for information only

and their values are not used to compute statistics.

Contention for the same physical segment in a database causes a wait on behalf of

program isolation. This is shown in the DDN/FUNC column, on the PCB line, by the

entry PIdmb, where dmb is the DMB of the physical data set. The MODULE column

identifies the segment type using the physical segment code assigned by DBD

generation.

When an application is accessing a database using VSAM as the access method,

DL/I calls do not generally result in an I/O wait. A MODULE column entry of VBH

indicates that interface to VSAM occurred and there was an I/O wait.

A seemingly unrelated entry can occur under the DDN/FUNC column for a database

PCB. An example is a retrieval call to a database (DB-A) that causes a buffer to be

purged in order to make room for that retrieved data. If the buffer contents included

data belonging to another database (DB-B), the I/O entry in the report shows the

ddname for DB-B as being in conflict for PCB access to DB-A.

Monitoring MFS Activity

You can obtain a summary of all activity that occurs for management of message

format buffer pool use from the Message Format Buffer Pool report. The report is

illustrated in Figure 140 on page 401. The data shows the counts at the start and

end of the trace interval and their difference.

When message formatting occurs, the appropriate message blocks must reside in

the message format buffer pool, a DIF/MID pair for input or a DOF/MOD pair for

output. If the blocks are not already in the buffer, I/O to the active IMS.FORMATA/B

library must occur. Block retrieval can involve a prior directory lookup, or be direct,

using an index kept in the pool.

Many of the counts reveal details of internal event management. When there is no

directory entry for a block this implies extra directory lookup I/O.

Monitoring I/O for Application Program DL/I Calls

400 Utilities Reference: System

Monitoring Message Queue Handling

A key resource that directly affects the efficiency of transaction processing is the

message queue pool and the management of the I/O to the message queues. You

can examine the activity by looking at the Message Queue Pool report. Figure 141

illustrates the report. Counts of activities are given at start and end of the trace

interval and as the differences between start and end numbers.

I M S M O N I T O R BUFFER POOL STATISTICS TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0007

 M E S S A G E F O R M A T B U F F E R P O O L

 5:55:15 5:59:49

 START TRACE END TRACE DIFFERENCE

 NUMBER OF P/F REQUESTS 0 0 0

 NUMBER OF I/F REQUESTS 18 20 2

 NUMBER OF I/F I/O’S 2 2 0

 NUMBER OF TIMES POOL COMPRESS WOULD BE SUCCESSFUL 0 0 0

 NUMBER OF DIRECTORY I/O OPERATIONS 2 2 0

 NUMBER OF TIMES BLOCK WASHED FOR FRE 0 0 0

 NUMBER OF TIMES P/F REQUEST IGNORED 0 0 0

 NUMBER OF F/B REQUESTS 18 20 2

 NUMBER OF TIMES F/B REQUEST IGNORED 0 0 0

 NUMBER OF TIMES I/F ON F/B QUEUE 16 18 2

 NUMBER OF TIMES I/F ON I/F QUEUE 0 0 0

 NUMBER OF TIMES F/B ON I/F QUEUE 18 20 2

 NUMBER OF TIMES P/F ON I/F QUEUE 0 0 0

 NUMBER OF TIMES P/F ON F/B QUEUE 0 0 0

 NUMBER OF TIMES THERE WAS NO DIR ENTR FOR A BLOCK 0 0 0

 NUMBER OF TIMES I/O ERRORS POINT OR READ MACRO 0 0 0

 NUMBER OF IMMEDIATE I/O REQUESTS WAITED DUE TO MAXIMUM I/O 0 0 0

 NUMBER OF REQUESTS SATISFIED BY INDEX/DYNAMIC DIRECTORY 0 0 0

 QUOTIENT : IMMEDIATE FETCH I/O’S + DIRECTORY I/O’S OPERATIONS = 0.00

 TOTAL NUMBER OF TRANSACTIONS

Figure 140. Message Format Buffer Pool Report

I M S M O N I T O R BUFFER POOL STATISTICS TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0002

 M E S S A G E Q U E U E P O O L

 5:55:15 5:59:49

 START TRACE END TRACE DIFFERENCE

 NUMBER OF LOCATE CALLS FROM QMGR 54204 68436 14232

 NUMBER OF RECORD RELEASE CALLS FROM QMGR 16431 20738 4307

 NUMBER OF LOCATE AND ALTER CALLS FROM QMGR 131593 164744 33151

 NUMBER OF REQUESTS TO PURGE THE Q POOL 2 2 0

 NUMBER OF ADDRESS TO DRRN TRANSLATION REQUESTS 21351 27076 5725

 NUMBER OF REQUESTS TO WAIT FROM QMGR 0 0 0

 NUMBER OF READ REQUESTS 962 962 0

 NUMBER OF WRITE REQUESTS(TOTAL) 499 499 0

 NUMBER OF WRITES DONE BY PURGE 499 499 0

 NUMBER OF WAITS FOR PURGE COMPLETION 1 1 0

 NUMBER OF WAITS BECAUSE NO BUFFER AVAILABLE 0 0 0

 NUMBER OF WAITS FOR OTHER DECB TO READ THIS BUFFER 823 823 0

 NUMBER OF WAITS FOR OTHER DECB TO WRITE THIS BUFFER 0 0 0

 NUMBER OF WAITS FOR CONFLICTING END DEQ BUFFER REQ 0 0 0

 NUMBER OF PSBS UNCHAINED FROM BUFFERS 0 0 0

 NUMBER OF CALLS TO QMGR.(TOTAL) 48164 62213 14049

 NUMBER OF CALLS TO REPOSITION A LOST BUFFER 0 0 0

 NUMBER OF CALLS TO ENQ A MESSAGE 10583 13441 2858

 NUMBER OF CALLS TO DEQ ONE OR MORE MESSAGE 6321 7767 1446

 NUMBER OF CALLS TO CANCEL INPUT OR OUTPUT 119 121 2

 QUOTIENT : TOTAL NUMBER OF OSAM READS + OSAM WRITES + ALL IWAITS = 0.00

 TOTAL NUMBER OF TRANSACTIONS

Figure 141. Message-Queue-Pool Report

Monitoring Message Queue Handling

Chapter 18. Interpreting IMS Monitor Reports 401

Detecting Checkpoint Effects

When a checkpoint command specifies SNAPQ, the current status of all message

queues is written to the system log. This prevents any message handling on behalf

of queue management. The General Iwait Time Events records the wait time

incurred by the SNAPQ. Figure 142 shows the activity on the summary line QMGR

SNAPQ CHECK. The number of occurrences is given with the total, average, and

maximum wait times.

Transaction Queueing Report

In addition to monitoring the efficiency of message handling, you can monitor the

service provided for each application, by looking at the size of the transaction

queues at each scheduling of their processing programs.

The Transaction-Queuing report shown in Figure 143 on page 403 records, for each

transaction, the minimum, average, and maximum counts at scheduling time. The

total number of dequeued transactions (or transactions that have been fully

processed) during the monitored interval is given for each transaction code. The

average number of transactions processed for each scheduling is given in the

DEQUEUED MEAN column.

 IMS MONITOR ** GENERAL REPORTS ** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0009

 GENERAL IWAIT TIME EVENTS

 EVENT IWAIT TIME........... DISTRIBUTION

 IWAITS OCCURRENCES TOTAL MEAN MAXIMUM NUMBER

 ______ ___________ _____ ____ _______ ______

QMGR SNAPQ CHECK 0 0 0 0 0

 REGION AND JOBNAME REPORT

REG. NO. JOB NAME

________ ________

 1 MPR1A100

 2 MPR1A209

 3 MPR1A210

 4 MPR1A211

 5 MPR1A103

 6 MPR1A101

 7 MPR1A115

 8 MPR1A116

 9 MPR1A216

 10 MPR1A200

 11 MPR1A217

 12 MPR1A119

 13 MPR1A218

 14 MPR1A219

 15 MPR1A104

 16 MPR1A220

 17 MPR1A203

 18 MPR1A123

 19 MPR1A222

 20 MPR1A105

 21 MPR1A124

 22 MPR1A223

 23 MPR1A107

 24 MPR1A224

 25 MPR1A106

 26 MPR1A206

 27 MPR1A205

 28 MPR1A108

 29 MPR1A109

 30 MPR1A208

 31 MPR1A111

 32 MPR1A112

 33 MPR1A113

 34 MPR1A204

 35 MPR1A114

 36 MPR1A102

 48 MPR1A121

 49 MPR1A122

 50 MPR1A221

Figure 142. General Reports for SNAPQ Effects

Monitoring Message Queue Handling

402 Utilities Reference: System

Monitoring Database Buffers

One of the key resources in an online system is the database buffer pool. The

efficiency of DL/I call service depends on the presence of the required database

logical record in the buffer, so that segment retrieval does not require additional I/O.

This is especially true for “hold” calls with intervening database calls prior to a

replace call. You can assess the general efficiency of the pool management using

the Database-Buffer-Pool report shown in Figure 144 on page 404. The event

counts on this report are not specific to a particular database or program but

represent the pressure for use of the database pool.

Related Reading: For more information about the Database Buffer Pool reports,

see IMS Version 9: Utilities Reference: Database and Transaction Manager.

If any of your databases use VSAM as the access method, the IMS Monitor

produces a series of reports headed VSAM BUFFER POOL, one for each subpool.

Figure 145 on page 404 shows one of these reports.

 IMS MONITOR ****TRANSACTION QUEUING**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0181

 (B) (A)

 NUMBER NUMBER ..ON QUEUE WHEN SCHEDULED..... DEQUED DISTRIBUTION

TRANSACTION DEQUED SCHEDS. MINIMUM MEAN MAXIMUM MEAN NUMBER

___________ ______ ______ _______ ____ _______ ____ ______

 SC6X 13 1 0 0.00 0 13.00 883A,B

 IT8W 17 3 0 0.00 0 5.66 887A,B

 TS1Z 16 1 0 0.00 0 16.00 891A,B

 PS3X 23 1 0 0.00 0 23.00 895A,B

 PS3Y 17 7 0 0.00 0 2.42 899A,B

 IT1V 11 6 0 0.00 0 1.83 903A,B

 SC2Z 143 2 0 0.00 0 71.50 907A,B

 IT8U 12 7 0 0.00 0 1.71 911A,B

 PS2W 10 1 0 0.00 0 10.00 915A,B

 TS1U 12 4 0 0.00 0 3.00 919A,B

 PS3W 14 1 0 0.00 0 14.00 923A,B

 IT8Y 16 5 0 0.00 0 3.20 927A,B

 IT1W 9 1 0 0.00 0 9.00 929A,B

 SC2W 9 1 0 0.00 0 9.00 933A,B

 IT2V 13 5 0 0.00 0 2.60 937A,B

 IT2W 17 6 0 0.00 0 2.83 941A,B

 TS1V 9 1 0 0.00 0 9.00 945A,B

 SC2V 12 5 0 0.00 0 2.40 947A,B

 TS1W 11 1 0 0.00 0 11.00 949A,B

 PS3V 13 3 0 0.00 0 4.33 953A,B

 IT1U 9 6 0 0.00 0 1.50 957A,B

 SC4U 11 5 0 0.00 0 2.20 962A,B

 SC6W 10 1 0 0.00 0 10.00 966A,B

 PS2V 8 6 0 0.00 0 1.33 970A,B

 IT8X 12 1 0 0.00 0 12.00 974A,B

 SC4W 10 1 0 0.00 0 10.00 978A,B

 SC6U 14 6 0 0.00 0 2.33 982A,B

 IT2Y 9 3 0 0.00 0 3.00 986A,B

 SC2X 15 1 0 0.00 0 15.00 990A,B

 PS2Y 17 2 0 0.00 0 8.50 994A,B

 SC4Y 152 4 0 0.50 1 38.00 998A,B

 SC2Y 106 2 0 0.00 0 53.00 1000A,B

 IT2X 20 1 0 0.00 0 20.00 1004A,B

 SC2U 15 3 0 0.00 0 5.00 1008A,B

 SC4Z 123 5 0 0.60 1 24.60 1010A,B

 TS1X 15 1 0 0.00 0 15.00 1015A,B

 SC4X 19 1 0 0.00 0 19.00 1019A,B

 PS2X 13 1 0 0.00 0 13.00 1024A,B

 PS2Z 20 5 0 0.00 0 4.00 1028A,B

 SC6Z 130 1 0 0.00 0 130.00 1031A,B

 SC6V 10 4 0 0.00 0 2.50 1035A,B

 SC6Y 143 1 0 0.00 0 143.00 1037A,B

 IT1X 10 1 0 0.00 0 10.00 1040A,B

 PS3U 19 6 0 0.00 0 3.16 1131A,B

 IT2U 13 4 0 0.00 0 3.25 1146A,B

Figure 143. Transaction-Queuing Report

Monitoring Database Buffers

Chapter 18. Interpreting IMS Monitor Reports 403

D A T A B A S E B U F F E R P O O L

 FIX PREFIX/BUFFERS Y/Y

 SUBPOOL ID 004K

 SUBPOOL BUFFER SIZE 4096

 TOTAL BUFFERS IN SUBPOOL 1000

 17:08:15 17:10:16

 NUMBER OF LOCATE-TYPE CALLS 1117674 1676213 558539

 NUMBER OF REQUESTS TO CREATE NEW BLOCKS 0 0 0

 NUMBER OF BUFFER ALTER CALLS 215874 322936 107062

 NUMBER OF PURGE CALLS 25077 37454 12377

 NUMBER OF LOCATE-TYPE CALLS, DATA ALREADY IN OSAM POOL 870306 1301187 430881

 NUMBER OF BUFFERS SEARCHED BY ALL LOCATE-TYPE CALLS 1258247 1886843 628596

 NUMBER OF READ I/O REQUESTS 238165 360260 122095

 NUMBER OF SINGLE BLOCK WRITES BY BUFFER STEAL ROUTINE 0 0 0

 NUMBER OF BLOCKS WRITTEN BY PURGE 95057 142413 47356

 NUMBER OF LOCATE CALLS WAITED DUE TO BUSY ID 780 1297 517

 NUMBER OF LOCATE CALLS WAITED DUE TO BUFFER BUSY WRT 0 0 0

 NUMBER OF LOCATE CALLS WAITED DUE TO BUFFER BUSY READ 0 0 0

 NUMBER OF BUFFER STEAL/PURGE WAITED FOR OWNERSHIP RLSE 178 261 83

 NUMBER OF BUFFER STEAL REQUESTS WAITED FOR BUFFERS 0 0 0

 TOTAL NUMBER OF I/O ERRORS FOR THIS SUBPOOL 0 0 0

 NUMBER OF BUFFERS LOCKED DUE TO WRITE ERRORS 0 0 0

 QUOTIENT : TOTAL NUMBER OF OSAM READS + OSAM WRITES = 6.98

 __

 TOTAL NUMBER OF TRANSACTIONS

Figure 144. Database-Buffer-Pool Report

I M S M O N I T O R BUFFER POOL STATISTICS

 V S A M B U F F E R P O O L

 FIX INDEX/BLOCK/DATA N/Y/N

 SHARED RESOURCE POOL ID VPL1

 SHARED RESOURCE POOL TYPE D

 SUBPOOL ID 2

 SUBPOOL BUFFER SIZE 4096

 NUMBER HIPERSPACE BUFFERS 50

 TOTAL BUFFERS IN SUBPOOL 1000

 17:08:15 17:10:16

 NUMBER OF RETRIEVE BY RBA CALLS RECEIVED BY BUF HNDLR 152 330 178

 NUMBER OF RETRIEVE BY KEY CALLS 117780 178424 60644

 NUMBER OF LOGICAL RECORDS INSERTED INTO ESDS 132 310 178

 NUMBER OF LOGICAL RECORDS INSERTED INTO KSDS 6460 9853 3393

 NUMBER OF LOGICAL RECORDS ALTERED IN THIS SUBPOOL 0 0 0

 NUMBER OF TIMES BACKGROUND WRITE FUNCTION INVOKED 0 0 0

 NUMBER OF SYNCHRONIZATION CALLS RECEIVED 18566 27923 9357

 NUMBER OF WRITE ERROR BUFFERS CURRENTLY IN THE SUBPOOL 0 0 0

 LARGEST NUMBER OF WRITE ERRORS IN THE SUBPOOL 0 0 0

 NUMBER OF VSAM GET CALLS ISSUED 124648 189220 64572

 NUMBER OF VSAM SCHBFR CALLS ISSUED 0 0 0

 NUMBER OF TIMES CTRL INTERVAL REQUESTED ALREADY IN POOL 33662 51088 17426

 NUMBER OF CRTL INTERVALS READ FROM EXTERNAL STORAGE 91169 138505 47336

 NUMBER OF VSAM WRITES INITIATED BY IMS 6022 9251 3229

 NUMBER OF VSAM WRITES TO MAKE SPACE IN THE POOL 0 0 0

 NUMBER OF VSAM READS FROM HIPERSPACE BUFFERS 0 0 0

 NUMBER OF VSAM WRITES FROM HIPERSPACE BUFFERS 50 50 0

 NUMBER OF FAILED VSAM READS FROM HIPERSPACE BUFFERS 0 0 0

 NUMBER OF FAILED VSAM WRITES FROM HIPERSPACE BUFFERS 0 0 0

 QUOTIENT : TOTAL NUMBER OF VSAM READS + VSAM WRITES = 2.08

 __

 TOTAL NUMBER OF TRANSACTIONS

Figure 145. VSAM-Buffer-Pool Report

Monitoring Database Buffers

404 Utilities Reference: System

Monitoring Line Activity

You can obtain a summary of all occurrences of activity for each BTAM line or

VTAM node that handles message traffic during the monitored interval. The elapsed

times and not-wait times are given in categories of total, mean, and maximum times

for each communication line in the Communication-Summary report. Figure 146

illustrates this report.

You must match which physical devices are using the line to the Stage 1 output

from system definition. The line numbers are assigned sequentially, according to

their physical occurrence in the Stage 1 input deck.

If your online system specifies the prefetch option for MFS blocks in the control

region JCL, the last line of the report contains the statistics for all prefetch events.

You can also investigate the amount of data transmitted across BTAM lines or for

VTAM nodes with the Line-Functions report. Figure 147 illustrates this report. The

report distinguishes between input data and output data. The number of blocks of

data and the average and maximum size of the blocks are recorded for data

received by IMS and for transmitted data.

This report also includes a measure of how inactive the lines are. An inactive

interval is assumed to be the difference between the time that marks the end of the

last input block received and the starting time for output transmission. These

occurrences of inactivity are termed turnaround intervals, and the report cumulates

the number of occurrences as well as the average and maximum times associated

with these intervals.

If the line is being used by an MFS-supported terminal, a count of the number of

requests for next page for a multipage message is recorded.

If link traffic for coupled multiple systems is recorded, a set of three reports follows

the Line Functions report. These are described in “Interpreting IMS Monitor MSC

Reports” on page 414.

 IMS MONITOR ****COMMUNICATION SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0089

 (A) (B)

 NODE OR ELAPSED TIME......... NOT IWAIT TIME(ELAPSED-IWAIT) DISTRIBUTION

 LINE NUMBER OCCURRENCES TOTAL MEAN MAXIMUM TOTAL MEAN MAXIMUM NUMBER

 ____ ______ ___________ _____ ____ _______ _____ ____ _______ ______

 PMTO1A 3 2396 798 1547 2396 798 1547 1467A,B

 19 182 92155 506 1106 92155 506 1106 1493A,B

 2 59 2280 38 41 2280 38 41 1515A,B

 TOTAL

 _____ 244 96831 396 96831 396

Figure 146. Communication-Summary Report

 IMS MONITOR ****LINE FUNCTIONS*** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0091

 (A)......................(B)...............

 MEAN MAX. MEAN MAX. . TURN . .

 NODE OR DEVICE RECEIVE RECEIVE RECEIVE TRANS. TRANS. TRANS. DIST. AROUND MEAN MAX. DIST. PAGING

LINE NUMBER TYPE BLOCKS BLKSIZE BLKSIZE BLOCKS BLKSIZE BLKSIZE NUMBER INTERVALS INTERVAL INTERVAL NUMB. REQUESTS

____ ______ ____ ______ _______ _______ ______ _______ _______ ______ _________ ________ ________ _____ ________

 PMTO1A 3270V 1 29 29 2 170 171 1468A,B 3 798 1547 1466 0

 19 XXXX 182 506 1106 1492 0

 2 LOC SYS 59 38 41 1514 0

ALL LINES

___ _____ 1 29 2 170 244 396 0

Figure 147. Line-Functions Report

Monitoring Line Activity

Chapter 18. Interpreting IMS Monitor Reports 405

Monitoring Message Handling Efficiency

The IMS Monitor produces both summary and detailed information on asynchronous

processing that takes place in the IMS control region. Asynchronous processing

occurs when data transmitted from BTAM terminals or from VTAM arrives.

Application program responses also result in asynchronous processing.

The space in four major buffer pools and access to format, SPA, and message

queue data sets are managed for the total communications traffic. Wait times are

recorded when contention for pool space or I/O interrupts the processing of any of

the communication tasks triggered by line activity. This information is contained in

the Communication Wait report, shown in Figure 148.

This report is similar to the Communication-Summary report because the line

number identifies the series of communication processing tasks.

IMS Internal Resource Usage

There are several summary reports that you can use to examine the level of

internal contention for resources. The following sections give a brief explanation of

these reports.

Pool Space Failure

The Pool Space Failure Summary report gives the number of times in each region a

given amount of storage was unavailable. It shows the number of bytes, the

identification of the pool, and the number of occurrences when storage was

unavailable. You can use this summary to determine if you need to increase the

buffer pool allocation, either by a system definition change or by overriding the

number of buffers in the EXEC statements in the JCL.

The format of the report is shown in Figure 149.

Programs Experiencing Deadlock

Each time a pair of programs reaches a deadlock over ownership of a segment in a

given database data set, the Deadlock-Event-Summary report records the

occurrence. Each line in the report shows the two PSBs involved and indicates

which is given processing right-of-way (REQ-ING PSB) and which has to reprocess

 IMS MONITOR ****COMMUNICATION IWAIT***** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0090

 NODE OR IWAIT TIME.......... DIST.

LINE NUMBER OCCURRENCES TOTAL MEAN MAXIMUM FUNCTION BLKSIZE MODULE NO.

____ ______ ___________ _____ ____ _______ ________ _______ ______ ____

ALL LINES...

PREFETCH I/O

________ ___ NONE

Figure 148. Communication-Wait Report

POOL SPACE FAILURE SUMMARY

 POOL ID BYTES REQ. OCCURRENCES

 DLMP 8888 1

 DLDP 7777 1

 TOTAL 2

Figure 149. Pool-Space-Failure Report

Monitoring Message Handling Efficiency

406 Utilities Reference: System

after dynamic backout occurs (LOSING PSB). The report is illustrated in Figure 150.

IMS Latch Conflict

The basic serialization of the task processing in IMS is controlled by ownership of

an IMS latch. When different programs are executing, they compete for the

ownership. If they wait for the resource, the one possessing the latch has to post

the other ITASK waiting for it. Use the Latch Conflict Statistics report to judge the

level of contention for a resource.

The different types of latches and the counters that exhibit the level of contention

are given in the Latch Conflict Statistics report. Figure 151 on page 409 is an

example of this report. The entries are organized according to the latch names.

The latch names, which are abbreviations for the different types of resources being

serialized, are as follows:

Abbreviation Latch Name

’DISP’ SYS/DISPATCHER

’DCSL’ DC/CHECKPOINT DC SYSTEM

’LUML’ DC/LU 6.2 LUM

’CONV’ DC/CONVERSATION CHECKPT

’TERM’ DC/TERMINAL

’LUBT’ DC/LU62 LUB-TIB CHAIN

’SCHD’ TM/SCHEDULING

’TCTB’ TM/TCT BLOCK

’APSB’ TM/ALLOCATE PSB (BLK MVR)

’PDRB’ TM/PDIR BLOCK (BLK MVR)

’PSBP’ TM/PSB POOL (BLK MVR)

’DMBP’ TM/DMB POOL (BLK MVR)

’PSBB’ TM/PSB BLOCK (BLK MVR)

’DMBB’ TM/DMB BLOCK (BLK MVR)

’PDRP’ TM/PDIR POOL (BLK MVR)

’DBAU’ TM/DBRC AUTH (BLK MVR)

’DDRB’ TM/DDIR BLOCK (BLK MVR)

’DDRP’ TM/DDIR POOL (BLK MVR)

’DBBP’ DB/OSAM BUFFER POOL

’DBLR’ DB/DFSDBLR0 MODULE

DEADLOCK EVENT SUMMARY

 REQ-ING PSB LOSING PSB DMBNAME OCCURRENCES

 PSBNAME1 TPPSBRE3 DBASEBAL 1

 TOTAL 1

Figure 150. Deadlock-Event-Summary Report

IMS Internal Resource Usage

Chapter 18. Interpreting IMS Monitor Reports 407

’SUBQ’ TM/TM SUBQUEUES

’DBSL’ DB/DB CHECKPOINT

’USER’ DC/USER

’DBLT’ RSR SHARING SERIALIZE

’CCTL’ SYS/DBCTL RESOURCE

’VTCB’ SYS/CBTS VTCB POOL

’VLQB’ SYS/CBTS LQB POOL

’CBTS’ SYS/CBTS POOLS (ALL)

’BLKM’ TM/SMB QUEUE HASH TABLE

’QMGR’ SYS/QUEUE MANAGER

’QBSL’ SYS/QUEUE BUFFER

’SMGT’ SYS/STORAGE MANAGEMENT

’DBLK’ SYS/DEPENDENT REGION

’XCNQ’ DB/EXCLUSIVE ENQ/DEQ

’ACTL’ SYS/STATISTICS

’LOGL’ SYS/LOGGER

When a system checkpoint is taken during the time the monitor is active, latch

conflict statistics are reset to zero, thus corrupting the values presented in this

report. If this situation exists, the following message will be inserted at the top of the

report:

**** A CHECKPOINT OCCURRED DURING MONITOR RUN ****

**** LATCH CONFLICT STATISTICS ARE INVALID ****

**** SEE UTILITIES REFERENCE MANUAL ****

However, if the master terminal operator issues the /CHECKPOINT command with the

STATISTICS keyword parameter, latch conflict statistics are reset to zero, but the

IMS monitor is not notified. Therefore, DFSUTR20 cannot detect that the statistics

have been corrupted and does not issue this message.

Recommendation: Do not issue statistics checkpoints while the monitor is running.

IMS Internal Resource Usage

408 Utilities Reference: System

Using Frequency Distributions from IMS Monitor Output

The reports derived from the IMS Monitor data records contain many summary lines

where the mean time is given. If you are interested in the distribution of those timed

events, rather than just average and maximum times, you can request the Report

Print utility to individually record the events in a frequency distribution across a

range of intervals. Some distributions are not time dependent, such as those for

transaction queue loads or transmitted block sizes.

How to Get a Frequency Distribution Output

To request the IMS Monitor Report Print utility to gather distribution data, you must

include a DIS input control statement. This causes all report items with an entry

under a column headed MEAN to have a corresponding frequency distribution as part

of the Distribution Appendix. Each report line includes an identifying reference

number under the column headed Distribution Number so that you can locate the

distribution data in the appendix, flagged by that same number.

The following tables show the major IMS Monitor reports and the type of frequency

distributions generated for each report. Each type results in several distributions,

depending on how many entries are in each section of the report. For each type of

frequency distribution, the data is cumulated in suitable intervals or ranges. The set

of ranges used for each type is given an identifier, shown in the ID column.

Table 29 shows the report distributions sorted by Region Summary.

 Table 29. Distribution Reports by Region Summary

Report Name ID Description

Schedule end to 1st DL/I call D1 Elapsed time

Elapsed execution time D2 Not wait time

DL/I calls D3 N/A

D4 N/A

External Subsystem calls D5 Elapsed time

Waits per DL/I call D6 Not wait time

Idle for intent D43 Elapsed time

 IMS MONITOR ** GENERAL REPORTS ** TRACE START 1993 209...

 LATCH CONFLICT STATISTICS

LATCH COUNT AT AT

NAMES FIELD START END DIFF.

LOGL CONTENTIONS 0 0 0

SMGT CONTENTIONS 0 0 0

XCNQ CONTENTIONS 0 0 0

ACTL CONTENTIONS 0 0 0

CBTS CONTENTIONS 0 0 0

DBLK CONTENTIONS 0 0 0

Figure 151. Latch-Conflict-Statistics Report

Frequency Distribution

Chapter 18. Interpreting IMS Monitor Reports 409

Table 29. Distribution Reports by Region Summary (continued)

Report Name ID Description

Checkpoint D7 N/A

D8 N/A

D20 Elapsed time

D21 Not wait time

Table 30 shows the report distributions sorted by Program Region.

 Table 30. Report Distributions by Program Region

Report Name ID Description

Elapsed execution time D30 N/A

Schedule end to 1st DL/I call D31 N/A

Table 31 shows the report distributions sorted by Program Summary.

 Table 31. Report Distributions by Program Summary

Report Name ID Description

Processor time per schedule D15 N/A

Transactions dequeued per schedule D14 N/A

Elapsed time per schedule D9 N/A

Schedule end to 1st DL/I call D10 N/A

Table 32 shows the report distributions sorted by Communication Summary.

 Table 32. Report Distributions by Communication Summary

Report Name ID Description

Line elapsed time D18 N/A

Line not wait time D19 N/A

Table 33 shows the report distributions sorted by Line Functions.

 Table 33. Report Distributions by Line Functions

Report Name ID Description

Received block length D36 N/A

Transmitted block length D37 N/A

Inactive intervals D38 N/A

Table 34 shows the report distributions sorted by MSC Queuing Summary.

 Table 34. Report Distributions by MSC Queuing Summary

Report Name ID Description

Time in queue D39 N/A

Frequency Distribution

410 Utilities Reference: System

Table 35 shows the report distributions sorted by Transaction Queuing.

 Table 35. Report Distributions by Transaction Queuing

Report Name ID Description

Transactions on queue at schedule D17 N/A

Transactions dequeued per schedule D16 N/A

Prefetch format blocks D28 Elapsed time

D29 Not wait time

Table 36 shows the report distributions sorted by Call Summary.

 Table 36. Report Distributions by Call Summary

Report Name ID Description

PSB waits per DL/I call D13 N/A

PSB waits per external subsystem call D44 N/A

PSB elapsed time per call D11 N/A

PSB not wait time per call D12 N/A

PSB external subsystem calls D45 Elapsed time

Table 37 shows some distributions derived from buffer pool statistics for wait times.

 Table 37. Wait Time Distributions

Function ID Module Key

Storage D22 SMN

OSAM I/O D23 DBH

VSAM I/O D24 VBH

Scheduler internal D25 MSC

Queue manager I/O D26 QMG

Block loader I/O D27 BLR

MFS block I/O D32 MFS

MFS directory I/O D33 MFS

HSAM I/O D34 DIE

Format Buffer Pool Space D35 PMM

PI enqueue D40 None

QMGR SNAPQ Check D42 None

How Frequency Distribution Ranges Are Defined

A set of ten intervals is defined for each summary line and the occurrences falling in

each interval are cumulated. The interval ranges are preset with default end points.

For example, the end points, for DL/I call elapsed time are: 0, 1000, 2000, 4000,

8000, 16000, 32000, 64000, 128000, 256000, INF (all times are in milliseconds).

The default end points are chosen so that they are suitable to the event. The lower

limit of the first interval always defaults to zero, and the upper limit of the tenth

interval is infinity (INF).

Frequency Distribution

Chapter 18. Interpreting IMS Monitor Reports 411

Although several types of distribution can use the same set of end points, each type

is assigned a distribution identifier. You can use this to redefine the end points. To

override the default end points, include an input control statement to the Report

Print utility. The statement specifies the type of distribution identifier and gives the

desired end point values. For example, the DL/I call elapsed time end points could

be respecified by:

D5 0,500,1000,1500,2000,4000,,,100000,500000

The values of the unspecified end points remain at their default values of 32000

and 64000 as does the last (INF).

Figure 152, which is a sample page taken from a Distribution Appendix, shows how

individual distributions are numbered, and how ranges vary with the type of

distribution. The lines are arranged in pairs, with the second one recording the

cumulated counts.

Default Values of Distribution Definitions

Using an identifier provided in the frequency distribution tables (Table 29 on page

409 through Table 36 on page 411) and the Wait Time Distributions table (Table 37

on page 411) you can determine the default end points for the distribution by

locating it in the following list:

D1, D2, D5, D6, D9, D10, D11, D12, D15 D18, D19, D20, D21, D22, D25, D27

D28, D29, D30, D31, D43, and D45

0, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000,

INF

D3 0, 50000, 100000, 150000, 200000, 250000, 300000, 350000,

400000, 450000, INF

D4 0, 200000, 400000, 600000, 800000, 1000000, 1200000, 1400000,

1600000, 1800000, INF

 IMS MONITOR ****DISTRIBUTION APPENDIX**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0200

1...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

2...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

3...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

4...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

5...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 6

6...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 8

7...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

8...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 9

9...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

10...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 1 0 0 0 0 0 0 0 0 7

11...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

12...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 8

13...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

14...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

15...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 1 0 0 0 0 0 0 0 0 8

16...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

Figure 152. Distribution-Appendix Report

Frequency Distribution

412 Utilities Reference: System

D7, D13, and D44

0, 0, 1, 2, 3, 4, 5, 6, 7, 8, INF

D8 0, 100000, 200000, 300000, 400000, 500000, 600000, 700000,

800000, 900000, INF

D14, D16, D17

0, 1, 2, 3, 4, 5, 10, 15, 30, 90, INF

D23, D24, D26, D32, D40, D42

0, 2000, 8000, 24000, 50000, 100000, 150000, 200000, 250000,

300000, INF

D33, D34, D35

0, 2000, 4000, 8000, 16000, 32000, 64000, 96000, 128000,

160000, INF

D36, D37 0, 10, 20, 40, 80, 100, 200, 400, 800, 1000, INF

D38 0, 1000, 10000, 100000, 200000, 500000, 800000, 1000000,

1500000, 2000000, INF

D39 0, 1000, 5000, 10000, 50000, 100000, 500000, 1000000, 5000000,

10000000, INF

Interpreting Distribution Appendix

You can use the detailed output in the Distribution Appendix when you suspect an

unusual combination of events was reported in a report summary line. Usually, the

average and maximum times or counts are sufficient to highlight a resource usage

problem. However, if you suspect the mean value to be masking an unusual

distribution you can draw on the detail contained in the IMS Monitor output records.

For example, suppose you are investigating a change in the scheduling algorithm

for a particular transaction and need to know how many transactions were able to

be processed for each scheduling of an application program. Figure 153 shows a

possible histogram for the processed transactions:

 The Average=2.5 transactions pre schedule. The distribution in Figure 153 suggests

that many schedules were able to process only one or two transactions, and few

schedules significantly exhausted the queue. The distribution data for the histogram

is as follows:

Figure 153. Number of Transactions Processed For Each Scheduling Of An Application

Program

Frequency Distribution

Chapter 18. Interpreting IMS Monitor Reports 413

Number of schedules 1 2 3 4 5 6-10 >10

Transactions dequeued 8 7 0 0 2 1 0

The Distribution Appendix presents the histogram data in the form of two lines:

v The first line shows the intervals, prefixed by a cross reference to an individual

line on the earlier output.

v The second line gives the number of events occurring in those intervals.

This data appears as follows:

950B...0...1...2...3...4...5...10...15...30...90...INF

 8 7 0 0 2 1 0 0 0 0

The cross reference 950B points to a unique report line. For example, the

Transaction-Queuing report on the appropriate line for the transaction of interest

show, 950A,B under the column headed DISTRIBUTION NUMBER. Use the reference

number 950B to locate the data in the Distribution Appendix. The 950A reference

points to the data for the number of transactions in the queue at schedule time.

Interpreting IMS Monitor MSC Reports

The IMS Monitor Report Print program includes three reports that highlight message

events caused by system coupling.

v MSC-Traffic report

This report shows the enqueue and dequeue counts of messages that use the

various link paths for the monitor interval.

v MSC-Summary report

This report shows summaries of:

– The traffic queues for each input transaction name

– The traffic queues for each destination name

– The traffic queues for each link number

– The traffic queues for each destination system

v MSC-Queuing-Summary report

This report is generated only when intersystem messages are queued on the

local system before being sent to the destination system. The local system must

be an intermediate system. This report shows:

– Maximum time messages spend in queues

– Average time messages spend in queues

– Maximum queue lengths

– Maximum queue counts

– Total number of messages queued for all links the local system participates in

All three of the reports can have entries in the Distribution Appendix. You can

examine the frequency distributions of the traffic if you suspect unusual

transmission patterns.

Determining Cross-System Queuing

The MSC-Traffic report reveals the individual queue loads for all traffic between

partner systems of which the monitored system is the local system. The report lists

all the unique system identification numbers (SIDs) that are defined for

communications for that local system. It then summarizes the total messages

queued and dequeued for each combination of the following variables:

Frequency Distribution

414 Utilities Reference: System

v Input name (terminal or program that was a message source)

v Destination name (terminal or program)

v Input system (SID)

v Destination system (SID)

v Link number

v Link type (BSYN, MTM, CTC, or VTAM)

Figure 154 illustrates this report. If a message originates in the local system, its

presence is accounted for in the dequeue counts only. Messages with local

destinations appear only in the enqueue count.

Assessing the Effect of Link Loading

The MSC-Summaries report shows you the enqueue and dequeue activity for

messages that are handled by the local system but are part of the multiple system

coupling traffic. The report format is illustrated in Figure 155 on page 416.

 IMS MONITOR ****MSC TRAFFIC REPORT**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0151

LOCAL SID VALUES = 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115

 INPUT DESTIN. INPUT DEST. LINK LINK ENQUEUE DEQUEUE

 NAME NAME SID SID NO. TYPE COUNT COUNT

 ____ ____ ___ ___ __ ____ _____ _____

DSWT3685 DSWT3685 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT6161 DSWT6161 3 3 3 C-C 0 1

 SC6Z 3 103 3 C-C 1 0

DSWT3838 DSWT3838 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT4618 DSWT4618 3 3 3 C-C 0 1

 SC6Z 3 103 3 C-C 1 0

DSWT3903 DSWT3903 3 3 3 C-C 0 1

 SC2Z 3 103 3 C-C 1 0

DSWT5418 DSWT5418 3 3 3 C-C 0 1

 SC4Z 3 103 3 C-C 1 0

DSWT4673 DSWT4673 3 3 3 C-C 0 1

 SC2Z 3 103 3 C-C 1 0

DSWT5141 DSWT5141 45 45 45 VTAM 0 1

 PS3X 45 145 45 VTAM 1 0

DSWT4391 DSWT4391 2 2 2 C-C 0 1

 SC4Y 2 102 2 C-C 1 0

DSWT3324 DSWT3324 17 17 17 VTAM 0 1

 IT1Y 17 117 17 VTAM 1 0

DSWT4781 DSWT4781 3 3 3 C-C 0 1

 SC4Z 3 103 3 C-C 1 0

DSWT3525 DSWT3525 3 3 3 C-C 0 1

 SC6Z 3 103 3 C-C 1 0

DSWT4542 DSWT4542 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT5796 DSWT5796 3 3 3 C-C 0 1

 SC2Z 3 103 3 C-C 1 0

DSWT4782 DSWT4782 3 3 3 C-C 0 1

 SC6Z 3 103 3 C-C 1 0

DSWT4633 DSWT4633 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT3655 DSWT3655 12 12 12 VTAM 0 1

 SC6U 12 112 12 VTAM 1 0

DSWT3892 DSWT3892 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT3338 DSWT3338 4 4 4 VTAM 0 1

 SC2U 4 104 4 VTAM 1 0

DSWT4681 DSWT4681 3 3 3 C-C 0 1

 SC4Z 3 103 3 C-C 1 0

DSWT4482 DSWT4482 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT4902 DSWT4902 3 3 3 C-C 0 1

 SC2Z 3 103 3 C-C 1 0

DSWT4558 DSWT4558 3 3 3 C-C 0 1

DSWT4558 SC6Z 3 103 3 C-C 1 0

DSWT3925 DSWT3925 2 2 2 C-C 0 1

TOTAL TRAFFIC

_____ _______ 1353 1359

Figure 154. MSC-Traffic Report

Interpreting IMS Monitor MSC Reports

Chapter 18. Interpreting IMS Monitor Reports 415

The first set of queuing counts shows how many transactions of each type were

entered in the monitor interval, and how many were subsequently dequeued.

The second set of counts summarizes the total traffic for each destination name.

You can distinguish the primary transactions and responses by the resource names

and examine the relative servicing of the link transmissions using the difference

between the enqueue and dequeue counts.

The third set of counts lists the active links by link number, and you can determine

if there is buildup on the link by the difference in the enqueue and dequeue counts.

The fourth set of counts records the traffic that is going to other systems by all link

paths. You can judge by the difference in enqueue and dequeue counts whether the

overall pattern of link priorities to one or more systems is causing buildup of

cross-system traffic.

Assessing Link Queuing Times

The MSC-Queuing-Summary report provides information about intersystem

message traffic only. You can use the sample of traffic recorded in the IMS Monitor

interval to examine the maximum and average time messages spend in queues

waiting to be sent on active links. You can detect whether the link priorities are

causing undue delay of primary messages through the intermediate system, or

 IMS MONITOR ****MSC SUMMARIES**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0178

<----SUMMARY BY INPUT NAME----->|<---SUMMARY BY DESTINATION NAME--->|<--SUMMARY BY LOGICAL LINK--->|<---SUMMARY BY DEST. SYS. ID-->

 | | |

 INPUT ENQUEUE DEQUEUE | DESTIN. ENQUEUE DEQUEUE | LINK ENQUEUE DEQUEUE | DEST. ENQUEUE DEQUEUE

 NAME COUNT COUNT | NAME COUNT COUNT | NO. COUNT COUNT | SID COUNT COUNT

 ____ _____ _____ ____ _____ _____ ___ _____ _____ ___ _____ _____

 | | |

DSWT3577 1 1 | DSWT4358 0 1 | |

DSWT4048 1 1 | DSWT5988 0 1 | |

DSWT5216 1 1 | DSWT5457 0 1 | |

DSWT4776 1 1 | DSWT5187 0 1 | |

DSWT5496 1 1 | DSWT3312 0 2 | |

DSWT5277 1 1 | DSWT5604 0 1 | |

DSWT5711 1 1 | DSWT3347 0 1 | |

DSWT5274 1 1 | DSWT5338 0 1 | |

DSWT5807 1 1 | DSWT3268 0 1 | |

DSWT3685 1 1 | DSWT3676 0 1 | |

DSWT6161 1 1 | DSWT5428 0 1 | |

DSWT3838 1 1 | DSWT5395 0 1 | |

DSWT4618 1 1 | DSWT4168 0 1 | |

DSWT3903 1 1 | DSWT5061 0 1 | |

DSWT5418 1 1 | DSWT3511 0 1 | |

DSWT4673 1 1 | DSWT3363 0 1 | |

DSWT5141 1 1 | DSWT3674 0 1 | |

DSWT4391 1 1 | DSWT4467 0 1 | |

DSWT3324 1 1 | DSWT4501 0 1 | |

DSWT4781 1 1 | DSWT5037 0 1 | |

DSWT3525 1 1 | DSWT4298 0 1 | |

DSWT4542 1 1 | DSWT5778 0 1 | |

DSWT5796 1 1 | DSWT4003 0 1 | |

DSWT4782 1 1 | DSWT3988 0 1 | |

DSWT4633 1 1 | DSWT4217 0 1 | |

DSWT3655 1 1 | DSWT6135 0 1 | |

DSWT3892 1 1 | DSWT5147 0 1 | |

DSWT3338 1 1 | DSWT5381 0 1 | |

DSWT4681 1 1 | DSWT5593 0 1 | |

DSWT4482 1 1 | DSWT3304 0 1 | |

DSWT4902 1 1 | DSWT5081 0 1 | |

DSWT4558 1 1 | DSWT4671 0 1 | |

 | DSWT3655 0 1 | |

 | DSWT3892 0 1 | |

 | DSWT3338 0 1 | |

 | DSWT4681 0 1 | |

 | DSWT4482 0 1 | |

 | DSWT4902 0 1 | |

 | DSWT4558 0 1 | |

 | DSWT3925 0 1 | |

Figure 155. MSC-Summaries Report

Interpreting IMS Monitor MSC Reports

416 Utilities Reference: System

whether there is a build up of responses. The report shows the logical link paths for

this system which is an intermediate system. Each incoming link number shows the

number of messages that are queued before transmission on their specified

outward bound link number. The maximum queue count is given as well as the

maximum and average time on the intermediate system queues.

The report is illustrated in Figure 156.

Extracting Multiple System Transaction Statistics

You can use the Log Transaction Analysis utility to obtain counts of the message

traffic both in local systems and between systems. The transmissions over the

different types of physical links can also be examined. The activity is summarized

for each step of the logical link paths. You must provide IMS system log input that

reflects all partner system activity, that is, sets of system logs for each MSC

system. To coordinate the sets of individual system logs use the Log Merge utility.

Up to nine separate system logs can be merged; each log must be the output of a

uniquely identified IMS system with MSC installed.

Controlling the Log Merge

To control the log output, you must:

v Choose the required systems that take part in the logical link paths you are

examining.

v Coordinate the series of input logs for each system so that they cover a similar

time span.

v Specify a start and stop time for the Log Merge utility control statements if you

are sampling the cross-system processing for a particular interval.

You can give both start date (Julian) and time of day, or just time of day. These

times apply to the first system log specified by the LOG01 DD statement. Other

log activity is collected if it falls between the initial and final events present on the

first log.

v Specify MSG to select log records that are suitable for the transaction analysis

step. (ALL records is the default, but this includes the DL/I activity for several

systems in the utility input and this can cause extended processing time.)

Interpreting the Transaction Analysis Report

You can use the Log Analysis report produced by the Log Transaction Analysis

utility to obtain the following statistics for individual transactions processed in any

system:

v The total response time

v The time on input and output queues

v The processing time

 IMS MONITOR ****MSC QUEUING SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0180

 ENQUE..... DEQUE..... MAX.Q MAX. MEAN DIST.

LINK NO.TYPE LINK NO.TYPE MESSAGES LENGTH Q TIME Q TIME NUMBER

_______ ____ _______ ____ ________ ______ ______ ______ ______

 46 VTAM 46 VTAM 12 1 31468 9521 1475

 49 VTAM 49 VTAM 15 1 30235 8040 1503

 50 VTAM 50 VTAM 10 1 13042 5521 1539

 48 VTAM 48 VTAM 9 1 7730 4429 1762

 47 VTAM 47 VTAM 8 1 10035 5791 1998

TOTALS... 54 6967

Figure 156. MSC-Queuing-Summary Report

Interpreting IMS Monitor MSC Reports

Chapter 18. Interpreting IMS Monitor Reports 417

Chapter 22, “Interpreting Statistical-Analysis and Log-Transaction Reports,” on page

491 defines the format of the detailed report records produced by this utility,

provides a list of processing type codes, and shows an illustration of the report. The

absence of times for a message GU call or MPP termination in the report lines

indicate an input source or intermediate system report line.

The processing type field is an important one for the interpretation of the detailed

report lines. The S code indicates that this line shows a send or receive event for

the transaction. You can trace the progress of a cross-system conversation using

the codes C, D, P, X, and Y.

The report headings include a column headed ID after the column for the GU to the

message queue time. The number shown in a report line under the ID heading

matches the sequence in which log input was fed to the Log Merge utility. The field

corresponds to starting position 102, the 3-digit field named SYSTEM ID, in the

detailed report records.

You can use the sort step to order the report records by system ID within

transaction code, or other convenient sequences, rather than by the default of the

overall input sequence.

Interpreting the Transaction Analysis Report

418 Utilities Reference: System

Chapter 19. Interpreting IMS Monitor Reports for DBCTL

This chapter describes:

v The events that the IMS Monitor collects

v The content of the reports produced by the IMS Monitor Report Print Program

Monitoring has different meanings for DBCTL and DB/DC. For DB/DC, the end user

enters the transaction on a terminal. The transaction is processed by IMS and then

returns a result to the user. Transaction characteristics that are monitored include

total response time and the occurrences of resource contentions (for example, PSB

schedule wait time, and database I/Os).

DBCTL, on the other hand, has neither transactions nor terminal end users. It does,

however, work on behalf of transactions entered by CCTL terminal users. DBCTL

monitoring provides data about the processing that occurs when a CCTL transaction

accesses DBCTL databases. The CCTL gains this access using DRA requests.

A typical sequence of these DRA requests would be:

1. A SCHED request to get a PSB scheduled in DBCTL

2. A DL/I request to make database calls

3. A sync-point request, COMMTERM, to commit the updates and release the PSB

The DBCTL process that encompasses these requests is called a unit of recovery

(UOR).

DBCTL provides monitoring data about UORs, such as: total time UOR existed, wait

time for PSB schedule, and I/Os during database calls. This information is very

similar to IMS transaction monitor data. In a DBCTL-CCTL system, however, the

UOR data represents only part of the total processing of a CCTL transaction.

Therefore, CCTL monitor data is necessary to get a total view of CCTL transaction

performance.

DBCTL does not change the format or usage of the IMS monitor reports. There are

reports and fields within reports that are not applicable to DBCTL. Generally, these

are in the transaction manager and communication areas. There are some fields

that are interpreted differently in a DBCTL environment.

For reports that do not apply to DBCTL, either a heading without data is shown or

no report is generated. These reports are:

v Message Queue Pool report

v Message Format Buffer Pool report

v Communication Summary report

v Communication IWAIT report

v Line Functions report

v MSC Traffic report

v MSC Summaries report

v MSC Queuing Summary report

The term region in IMS Monitor reports refers to a PST assigned to a specific

dependent region that processes specific IMS transactions. In DBCTL monitor

reports the term region still applies to a PST. A PST can service one CCTL thread

(transaction) at a time. However, CCTL threads change, resulting in one PST

© Copyright IBM Corp. 1974, 2004 419

servicing many different CCTL transactions. Since multiple CCTLs can connect to

DBCTL, the PST can actually service transactions from different CCTLs.

All of the threads built for a CCTL carry the job name of the CCTL. This appears as

the same job name for many regions in the General Reports.

Within a trace interval, a thread can be assigned to multiple CCTLs, but it can only

be assigned to one CCTL at any instant of time. So, depending on the number of

CCTLs attached to DBCTL, the Region Summary reports can show:

v One region with only one job name.

v One region with different job names.

v Multiple regions with different job names. Some regions can have the same job

name and some can have different job names.

v Multiple regions with only one job name.

Any monitor report for a region is a summary of all the CCTLs a thread served

during the trace interval (for example, the elapsed time for all CCTLs that a thread

has been assigned to during the trace interval).

The reports generated by the IMS Monitor are the same for BMPs and

non-message BMPs.

UOR elapsed times are spent in DBCTL, not in the DRA. The time spent in the

DRA is considered part of the CCTL, therefore the DRA time is not reported by any

DBCTL statistics.

The following topics provide additional information:

v “IMS Monitor Trace Event Intervals”

v “Overview of IMS Monitor Reports” on page 421

v “Documenting the Monitoring Run” on page 422

v “Monitoring Activity in Dependent Regions” on page 424

v “Monitoring Application Program Elapsed Time” on page 429

v “Monitoring Database Buffers” on page 433

v “IMS Internal Resource Usage” on page 435

v “Using Frequency Distributions from IMS Monitor Output” on page 436

IMS Monitor Trace Event Intervals

The IMS Monitor trace interval is defined by the master terminal operator’s use of

the /TRACE command between the start and stop command entries. The online IMS

events are recorded in IMS Monitor records placed in the IMSMON data set. The

event timings are related to dependent region activity. Figure 157 on page 421

shows the boundaries of the timed event intervals.

The Monitor trace interval includes the following intervals:

v Scheduling and Termination

– Block loader busy

– Intent failures (exclusive intent and data sharing) and Schedule failures (PSB

busy and space failure)

– Sched/Term elapsed

- NOT-WAIT

IMS Monitor Reports-DBCTL

420 Utilities Reference: System

- ACBLIB waits

- DB Flush waits

- DB CLOSE waits

v Region occupancy (which overlaps with all of Sched/Term elapsed)

– Schedule to first call

– Elapsed execution

The NOT-WAIT time for a region is the elapsed time not accounted for by wait time.

Any delay coming from either paging or the processor being dispatched for a higher

priority task results in an increase in the NOT-WAIT times.

Overview of IMS Monitor Reports

A list of reports available from data collected by the IMS Monitor, together with the

principal performance data they contain, is shown in Table 38.

Related Reading: For a description of those reports marked “DB”, see IMS Version

9: Utilities Reference: Database and Transaction Manager.

Sequence of Report Output

The order of the reports listed in Table 38 matches the sequence of the output from

the IMS Monitor Report Print program. The duration of a monitoring snapshot might

not include certain events necessary for an individual report, in which case only

report headings or partial data are produced.

 Table 38. IMS Monitor Reports Output Sequence and Information

Report Name Principal Information

System Configuration Monitor run documentation

Database Buffer Pool (DB) Count of DB calls and I/O per transaction

VSAM Buffer Pool (DB) Count of inserts and I/Os

Latch Conflict Statistics IMS internal processing

Region and Jobname Monitor run documentation

Region Summary Elapsed times and count of DL/I calls

Region Wait Wait times

Figure 157. IMS Monitor Trace Event Intervals

IMS Monitor Trace Event Intervals

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 421

Table 38. IMS Monitor Reports Output Sequence and Information (continued)

Report Name Principal Information

Programs by Region Elapsed times for region usage

Program Summary Overall program statistics

Program I/O (DB) Wait times/PCB

Reports Count of space failures and deadlocks

Run Profile Monitor run documentation

Call Summary (DB) Call counts and timings/segment type

Distribution Appendix Event frequency distributions

Units of Measure in IMS Monitor Reports

The majority of the data items in IMS Monitor reports are elapsed times. These are

normally expressed in microseconds. An entry of 1876534 is 1.876534 seconds or

1876 milliseconds. Any times that do not follow this convention show the unit of

measure on the report.

You can also find counts of events under the heading OCCURRENCES, and some

figures that represent the number of bytes.

Documenting the Monitoring Run

For each trace interval, several general reports or overall summaries are generated

for the processing that took place. You can use these reports as part of your IMS

Monitor run documentation.

It is important to record, as accurately as possible, the conditions under which the

trace was taken. Your documentation can include system status information

(obtained by the /DISPLAY command) several times before and after the trace, an

expected profile of the CCTL transaction activity, and any desired processing

events. The trace interval should represent typical processing loads and not be a

biased or inadequate historical record.

Adding to the System Configuration Report Data

The first general report (titled SYSTEM CONFIGURATION) is found under the page

heading BUFFER POOL STATISTICS. It shows the modification level of the IMS and

z/OS systems. You can choose to add a list of IMS APARs applied and include the

service levels of the application programs, especially if the latter are not permanent

programs or are part of a staged implementation. The system configuration output

is illustrated in Figure 158 on page 423.

Recording the Monitor Trace Interval

The heading of most IMS Monitor reports carries the trace start and stop times. It is

shown in the format YEAR DAY (Julian) HH:MM:SS. The overall length of the trace

interval is given in milliseconds under the title MONITOR OVERHEAD DATA. The following

line shows how many trace records were placed on the IMSMON data set. An

example of the monitor trace interval recording is shown in Figure 158 on page 423.

Overview of IMS Monitor Reports

422 Utilities Reference: System

Completing the Monitor Run Profile

A compact set of processing ratios will be found at the end of the Run Profile

report. The statistics summarize, for the monitor interval, the UOR throughput and

the degree of DL/I and I/O activity. An example of the report is shown in Figure 159.

 The lower half of the Run Profile report shows several ratios:

v Program elapsed time to DL/I elapsed time for each region

v DL/I elapsed time to wait time during DL/I processing

v Program elapsed time to other subsystem call elapsed time

v DL/I elapsed time to other subsystem call elapsed time

Each region is identified by a sequence number, starting at region 1.

There are some generalized processing ratios that are given at the end of several

buffer pool statistics reports. You can include them in the documented profile of the

trace interval. These are not specific to one UOR or system resource but can be

used as indicators of variation across a series of monitor runs. The ratios are:

I M S M O N I T O R BUFFER POOL STATISTICS TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0001

 S Y S T E M C O N F I G U R A T I O N

 SYSTEM CONFIGURATION :

 IMS VERSION : 4

 RELEASE LEVEL :

 MODIFICATION NUMBER :

Figure 158. IMS Monitor System Configuration Report and Trace Interval

 IMS MONITOR **RUN PROFILE** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0184

TRACE ELAPSED TIME IN SECONDS.............274.6

TOTAL NUMBER OF MESSAGES DEQUEUED........1403

TOTAL NUMBER OF SCHEDULES.................173

NUMBER OF TRANSACTIONS PER SECOND...........5.1

TOTAL NUMBER OF DL/I CALLS ISSUED.......18632

NUMBER OF DL/I CALLS PER TRANSACTION.......13.2

NUMBER OF OSAM BUFFER POOL I/O’S........11236, 8.0 PER TRANSACTION

NUMBER OF MESSAGE QUEUE POOL I/O’S..........0, 0.0 PER TRANSACTION

NUMBER OF FORMAT BUFFER POOL I/O’S..........0, 0.0 PER TRANSACTION

RATIO OF PROGRAM ELAPSED TO DL/I ELAPSED:

 REGION 1: 1.09

 REGION 2: 1.09

 REGION 3: 1.00

 REGION 4: 1.02

 REGION 5: 1.01

 REGION 6: 1.00

 REGION 7: 1.00

 REGION 8: 1.00

 REGION 9: 1.17

 REGION 10: 1.00

 REGION 11: 1.00

 REGION 49: 1.03

 REGION 50: 1.19

RATIO OF DL/I ELAPSED TO DL/I IWAIT:

 REGION 1: 325.65

 REGION 2: 73.49

 REGION 4: 100.35

 REGION 5: 85.76

 REGION 6: 82.99

 REGION 47: 95.64

 REGION 48: 45.93

 REGION 49: 9.22

Figure 159. Run Profile Report

Documenting the Monitor Run

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 423

v The total number of OSAM reads + OSAM writes + all waits divided by the total

number of transactions.

From the Message Queue Pool report, this ratio indicates on a per transaction

basis the physical I/O activity required to handle the scheduling function.

v The total number of OSAM reads + OSAM writes + BISAM reads divided by the

total number of transactions.

From the Database Buffer Pool report, this ratio indicates on a per transaction

basis the physical I/O activity required to handle the database buffering function.

Verifying IMS Monitor Report Occurrences

When you examine the output from the IMS Monitor Report Print Program, the

presence of a report heading does not necessarily mean that appropriate data will

be listed. System definition options and utility control statements also affect the

content of the output as follows:

v The output does not include a Call Summary report unless a control statement

specifies DLI.

v The output does not include a set of Distribution reports unless a control

statement specifies DIS or DISTRIBUTION. The column headed DISTRIBUTION

NUMBER that occurs on many of the reports contains cross-references to items

included in the Distribution reports.

v The output consists of just a Call Summary report if a control statement specified

ONLY DLI.

Because many of the summary reports require system status to calculate the

difference between start and end values, and this status is obtained during the

/TRACE SET OFF processing, the IMS Monitor execution must end before termination

of the IMS control region. If the trace was not stopped properly, the following

message is issued:

NO DATABASE BUFFER POOL TRACES AT END TIME ON MONITOR LOG TAPE

****DATABASE BUFFER POOL REPORT CANCELLED****

Similarly, other summary reports are not produced.

The series of reports titled Buffer Pool Statistics do not include a VSAM Buffer

Pool section unless the database in IMS.ACBLIB uses the VSAM access method. If

VSAM is not used, the following message is issued:

NO VSAM BUFFER POOL TRACES ON MONITOR LOG TAPE

****VSAM BUFFER POOL REPORT CANCELLED****

If the source data used to formulate a particular IMS Monitor report, or a section of

that report, has not been recorded by the IMS Monitor during the trace interval, the

report contains only the headings.

Monitoring Activity in Dependent Regions

The IMS Monitor gathers timing information for every dependent region identified in

the /trace command (a CCTL thread) active during the trace interval. It records the

total of the elapsed times for each event, the maximum individual time encountered,

and the average time.

There are three major reports that display timings. The reports and a list of their

content are:

v Region Summary Report

Documenting the Monitor Run

424 Utilities Reference: System

– Scheduling and termination

– Schedule end to first call

– Elapsed execution with separate summaries shown for:

- DL/I calls

- External subsystem service and command calls

- External subsystem database access calls

- Checkpoint processing

- Region occupancy

v Region Wait

– Waits during scheduling and termination

– Waits during DL/I calls

– Waits during external subsystem calls

– Waits during checkpoint

v Programs by Region

– Elapsed execution

– Schedule end to first call

In this report, “program name” is the PSB name for the UOR.

These three reports are illustrated in Figure 160 on page 426, Figure 161 on page

427, and Figure 162 on page 428.

Activities in dependent regions are placed in five timing categories:

v Elapsed time for scheduling and termination

The scheduling process includes many preparatory events such as block loading

from an active IMS.ACBLIBA/B data set, and obtaining ownership of the PSB.

The time required to terminate is the time it takes DBCTL to complete this

process after receiving a request to terminate the UOR.

v Elapsed time from end of schedule to first call

This is the time from when DBCTL completes scheduling until the time DBCTL

reviews the first DL/I call. Events that occur during this time are all outside of

DBCTL, either in the DRA or the CCTL.

v Program elapsed time, including all calls

This time encompasses the major UOR processing, measured from the first DL/I

call to the call that terminates a UOR.

v Elapsed time performing DL/I calls

This time includes all DL/I calls. The time in DBCTL is recorded and summed.

Monitoring Activity in Dependent Regions

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 425

IMS MONITOR ****REGION SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0011

 (A) (B)

 ELAPSED TIME......... NOT IWAIT TIME(ELAPSED-IWAIT) DISTRIBUTION

 OCCURRENCES TOTAL MEAN MAXIMUM TOTAL MEAN MAXIMUM NUMBER

 ___________ _____ ____ _______ _____ ____ _______ ______

SCHEDULING AND TERMINATION

__________ ___ ___________

**REGION 5 5 4146 829 948 4146 829 948 287A,B

**REGION 6 7 6028 861 1067 6028 861 1067 214A,B

**REGION 8 8 6847 855 1098 6847 855 1098 129A,B

**REGION 10 7 9664 1380 3668 9664 1380 3668 272A,B

**REGION 47 6 5482 913 1021 5482 913 1021 145A,B

**REGION 49 3 2612 870 917 2612 870 917 443A,B

**TOTALS 123 126042 1024 126042 1024

SCHEDULE TO FIRST CALL

________ __ _____ ____

**REGION 1 1 15479797 15479797 15479797 555

**REGION 2 1 22376350 22376350 22376350 564

**REGION 3 1 15169488 15169488 15169488 578

**REGION 4 1 48146258 48146258 48146258 584

**REGION 48 1 795351 795351 795351 592

**REGION 49 4 2960425 740106 2951746 442

**REGION 50 1 15713464 15713464 15713464 575

**TOTALS 168 514286738 3061230

ELAPSED EXECUTION

_______ _________

**REGION 1 1 290146255 290146255 290146255 1

**REGION 2 1 252290108 252290108 252290108 2

**REGION 3 1 259496970 259496970 259496970 3

**REGION 4 1 322812716 322812716 322812716 4

**REGION 48 1 273871107 273871107 273871107 48

**REGION 49 4 271703421 67925855 155176058 49

**REGION 50 1 290379922 290379922 290379922 50

**TOTALS 173 14238540145 82303700

DL/I CALLS IWT/CALL(C)

____ _____ ___________

**REGION 1 60 264626241 4410437 88981490 263813671 4396894 88970053 0.76 247A,B,C

**REGION 2 223 230505269 1033655 61048758 227368742 1019590 61011153 0.73 237A,B,C

**REGION 3 29 257704383 8886358 69000514 257704383 8886358 69000514 0.00 98A,B,C

**REGION 4 792 313735347 396130 52439653 310609035 392183 52439653 0.22 180A,B,C

**REGION 49 592 262886317 444064 30202068 234394017 395935 30159782 2.46 177A,B,C

**REGION 50 36 242591451 6738651 48651260 242591451 6738651 48651260 0.00 289A,B,C

**TOTALS 18632 12386905286 664818 12024562411 645371 0.97

IDLE FOR INTENT

____ ___ ______

 NONE

CHECKPOINT

__________ NONE

REGION OCCUPANCY

______ _________

**REGION 1 100.0%

**REGION 2 100.0%

**REGION 3 100.0%

**REGION 4 100.0%

**REGION 48 100.0%

**REGION 49 100.0%

**REGION 50 100.0%

Figure 160. Region Summary Report

Monitoring Activity in Dependent Regions

426 Utilities Reference: System

IMS MONITOR ****REGION IWAIT**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0023

 IWAIT TIME.......... DISTRIBUTION

**REGION 5 OCCURRENCES TOTAL MEAN MAXIMUM FUNCTION MODULE NUMBER

 ______ ___________ _____ ____ _______ ________ ______ ______

SCHEDULING + TERMINATION

__________ ___________

 SUB-TOTAL

 TOTAL

DL/I CALLS

____ _____

 11 181816 16528 24375 DD=IMMSTR2A DBH 117

 8 112831 14103 17846 DD=IMMSTR1A DBH 118

 5 85460 17092 33717 DD=IMMSTR3A DBH 119

 5 58420 11684 14643 DD=IMINDEXA VBH 120

 12 173866 14488 22152 DD=PRODCNTA VBH 121

 3 100576 33525 68373 DD=IMMSTR2B DBH 428

 1 17921 17921 17921 DD=IMMSTR3B DBH 429

 1 17195 17195 17195 DD=IMMSTR1B DBH 430

 1 13577 13577 13577 DD=IMINDEXB VBH 431

 3 49928 16642 20396 DD=PRODCNTB VBH 432

 4 10973 2743 2787 DD=ITEMACTB DBH 453

 2 37680 18840 27664 DD=IAINDEXB VBH 454

 49 1500067 30613 138284 DD=INVENTRA DBH 472

 23 345595 15025 27613 DD=VENDORDA VBH 473

 1 342952 342952 342952 PI=VENDORDA...1 498

 1 14612 14612 14612 PI=VNSINDXA...1 499

 6 69203 11533 19492 DD=VNSINDXA VBH 500

 TOTAL

 _____ 136 3132672 23034

Figure 161. Region Wait Report

Monitoring Activity in Dependent Regions

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 427

Detecting Database Processing Intent Conflicts

The IMS Monitor records the intervals when a region is in an idle state waiting to

update a database owned exclusively by another already scheduled application

program.

You can see the total, maximum, and average idle times in IDLE FOR INTENT

following the DL/I calls. The elapsed time during the unsuccessful scheduling of a

program in that region is included in the summary line times for that region.

The region can fail to be scheduled even when ownership of that database is

released. The number of times processing is held up by intent failure is separately

tallied under the title INTENT FAILURE SUMMARY. The report is illustrated in Figure 135

on page 393. This report shows which PSBs are in conflict because of exclusive

intent for a segment type and the database name in question.

 IMS MONITOR ****PROGRAMS BY REGION**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0069

 (A) (B)

 ELAPSED EXECUTION TIME SCHEDULING END TO FIRST CALL DISTRIBUTION

 OCCURRENCES TOTAL MEAN MAXIMUM TOTAL MEAN MAXIMUM NUMBER

 ___________ _____ ____ _______ _____ ____ _______ ______

**REGION 1

________ _ 1

 PROGSC6D 1 290146255 290146255 290146255 15479797 15479797 15479797 885A,B

 REGION TOTALS 1 290146255 290146255 15479797 15479797

**REGION 2

________ _ 2

 PROGIT8C 1 252290108 252290108 252290108 22376350 22376350 22376350 889A,B

 REGION TOTALS 1 252290108 252290108 22376350 22376350

**REGION 3

________ _ 3

 PROGTS1C 1 259496970 259496970 259496970 15169488 15169488 15169488 893A,B

 REGION TOTALS 1 259496970 259496970 15169488 15169488

**REGION 4

________ _ 4

 PROGPS3D 1 322812716 322812716 322812716 48146258 48146258 48146258 897A,B

 REGION TOTALS 1 322812716 322812716 48146258 48146258

**REGION 5

________ _ 5

 PROGPS3A 2 62893103 31446551 40693590 5435 2717 2862 901A,B

 PROGTS1B 1 61794787 61794787 61794787 2790 2790 2790 1271A,B

 PROGPS3B 1 18294458 18294458 18294458 3104 3104 3104 1350A,B

 PROGIT2B 1 36095342 36095342 36095342 2731 2731 2731 1363A,B

 PROGSC2A 1 93902771 93902771 93902771 1667791 1667791 1667791 1401A,B

 REGION TOTALS 6 272980461 45496743 1681851 280308

**REGION 6

________ _ 6

 PROGIT1B 2 39000315 19500157 23703429 5286 2643 2801 905A,B

 PROGTS1B 1 34293636 34293636 34293636 3136 3136 3136 1207A,B

 PROGPS3A 1 51887767 51887767 51887767 2534 2534 2534 1278A,B

 PROGPS3B 2 67375031 33687515 40291430 17210570 8605285 17213287 1328A,B

 PROGIT8A 1 69132416 69132416 69132416 3291 3291 3291 1359A,B

 PROGSC4A 1 30165017 30165017 30165017 2571 2571 2571 1433A,B

 REGION TOTALS 8 291854182 36481772 17193752 2149219

**REGION 7

________ _ 7

 PROGSC2B 1 269618583 269618583 269618583 5047875 5047875 5047875 909A,B

 REGION TOTALS 1 269618583 269618583 5047875 5047875

**REGION 8

________ _ 8

 PROGIT8A 1 5181039 5181039 5181039 2928 2928 2928 913A,B

 PROGPS3A 1 27304257 27304257 27304257 3350 3350 3350 1132A,B

 PROGSC4B 1 37286872 37286872 37286872 3009 3009 3009 1255A,B

 PROGIT2A 1 36902995 36902995 36902995 2850 2850 2850 1298A,B

 PROGIT1B 1 30407479 30407479 30407479 2565 2565 2565 1336A,B

 PROGIT1A 3 109875360 36625120 45190114 4279008 1426336 4272096 1357A,B

 PROGIT8B 1 23405220 23405220 23405220 2679 2679 2679 1395A,B

 REGION TOTALS 9 270363222 30040358 4296389 477376

Figure 162. Programs-by-Region Report

Monitoring Activity in Dependent Regions

428 Utilities Reference: System

Examining the Effects of Checkpoints

The checkpoint line of the Region Summary report at the end of the region 0

summary, shows the following:

v The number of times that a system checkpoint is taken during the monitor

interval

v The elapsed times

v The not-wait times

Checkpoint processing can be initiated by the control program at a specified

frequency determined by the number of records placed on the system log. Other

checkpoints can be caused by operator commands.

The wait time experienced during checkpoints is reported at the end of the first

region summary on the Region Wait report. You can detect delays for each

combination of ddname and module code. Typical entries here are for the message

queue data sets and the restart data set. If a wait for storage is the cause, the entry

under the FUNCTION column is STG.= followed by the identification of the pool.

Measuring Region Occupancy

Region occupancy shows the ratio of elapsed time a PST spent processing UORs

to the total time of the monitor interval.

Monitoring Application Program Elapsed Time

The IMS Monitor can record measurements of elapsed times for each UOR. It does

this during the monitored interval while other UORs are executing concurrently.

Elapsed times are calculated from the start of the first DL/I (or other) call to the end

of that program. You can distinguish between time spent in application code and in

DL/I processing. The event intervals are illustrated in Figure 163.

 Within the elapsed time for a DL/I call, the wait time to obtain segment data is

recorded separately. Also, the elapsed time from schedule to first call is separately

recorded. This time covers the processing in the CCTL and the DRA.

Figure 163. Event Intervals

Monitoring Activity in Dependent Regions

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 429

The elapsed times are given in the Program Summary report. Figure 164 is an

example of the report. Programs are identified by their PSB name on individual

lines in the report. Each line gives a summary of the activity for that PSB during the

measured interval. The total number of schedules, DL/I calls, transactions

dequeued, and waits for a DL/I call for I/O are given. The report line gives

calculated average times for elapsed time per schedule, processor time per

schedule, schedule to first DL/I call per schedule, and elapsed time per transaction.

Frequencies for calls per transaction, I/O waits per DL/I call, and transactions

dequeued per schedule are also given. A TOTALS line summarizes all activity for the

PSBs active during the monitored interval. (The PSB DUMMY line is a reconciliation for

any incomplete scheduling caused by a region being stopped during scheduling or

for a program that experiences a pseudoabend.)

In this report, transaction and schedule can be interpreted as UOR.

 To examine the detail of the call processing for each program (itemized by type of

call and summarized for the monitor interval), you can use the Call Summary report.

An extract from the multipage output is given in Figure 165 on page 431. The calls

using an I/O PCB are given first and subtotaled. Then, the total calls, of each type,

against each database PCB and each external subsystem are listed. The PSB TOTAL

line marks the end of data for each program.

 IMS MONITOR ****PROGRAM SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0075

 (A)........(B)........ (A)........(B)........

 I/O TRAN. CPU . ELAPSED SCHED.TO . ELAPSED

 NO. TRANS. CALLS I/O IWAITS DEQD. TIME DISTR. TIME 1ST CALL DISTR. TIME

PSBNAME SCHEDS. DEQ. CALLS /TRAN IWAITS /CALL /SCH. /SCHED. NO. /SCHED. /SCHED. NO. /TRANS.

_______ _______ ____ _____ _____ ______ _____ _____ _______ ___ _______ _______ ___ _______

PROGSC6D 1 13 60 4.6 46 0.7 13.0 10010 884A,B 290146255 15479797 886A,B 22318942

PROGIT8C 3 17 225 13.2 166 0.7 5.6 90592 888A,B 256617508 73283259 890A,B 45285442

PROGTS1C 2 25 47 1.8 0 0.0 12.5 10010 892A,B 239190808 7586234 894A,B 19135264

PROGPS3D 1 23 792 34.4 182 0.2 23.0 10010 896A,B 322812716 48146258 898A,B 14035335

PROGPS3A 13 36 1246 34.6 267 0.2 2.7 49782 900A,B 32801812 2228611 902A,B 11845098

PROGIT1B 11 21 99 4.7 0 0.0 1.9 6341 904A,B 23212388 2036217 906A,B 12158870

PROGSC2B 7 155 3068 19.7 1845 0.6 22.1 346112 908A,B 93655514 789390 910A,B 4229603

PROGIT8A 12 28 434 15.5 293 0.6 2.3 34350 912A,B 30196795 1745815 914A,B 12941483

PROGPS2C 1 10 179 17.9 205 1.1 10.0 10010 916A,B 221024429 53642029 918A,B 22102442

PROGTS1B 8 20 54 2.7 0 0.0 2.5 5447 920A,B 39943245 2895 922A,B 15977298

PROGPS3C 1 14 468 33.4 117 0.2 14.0 10010 924A,B 310644485 35978027 926A,B 22188891

PROGIT1C 1 9 32 3.5 0 0.0 9.0 10010 930A,B 304892631 30226173 932A,B 33876959

PROGSC2C 1 9 160 17.7 101 0.6 9.0 10010 934A,B 296909110 22242652 936A,B 32989901

PROGIT2B 8 21 393 18.7 63 0.1 2.6 21703 938A,B 35126671 1798496 940A,B 13381589

PROGIT2C 6 17 211 12.4 39 0.1 2.8 13312 942A,B 288883508 50698467 944A,B 101958885

PROGTS1D 2 26 50 1.9 0 0.0 13.0 10010 950A,B 284944505 10613350 952A,B 21918808

PROGPS3B 8 22 770 35.0 169 0.2 2.7 35737 954A,B 38016279 2149158 956A,B 13824101

PROGIT1A 11 24 106 4.4 0 0.0 2.1 7925 958A,B 30883486 1935855 960A,B 14154931

PROGSC4A 9 163 1775 10.8 5101 2.8 18.1 235921 963A,B 62172947 3011199 965A,B 3432862

PROGSC6C 1 10 44 4.4 38 0.8 10.0 10010 967A,B 228098334 46568124 969A,B 22809833

PROGPS2B 11 28 557 19.8 604 1.0 2.5 35069 971A,B 33309266 1181831 973A,B 13085783

PROGIT8D 1 12 175 14.5 133 0.7 12.0 10010 975A,B 253392289 21274169 977A,B 21116024

PROGSC4C 1 10 98 9.8 349 3.5 10.0 10010 979A,B 248736332 25930126 981A,B 24873633

PROGSC6A 7 157 789 5.0 457 0.5 22.4 11703 983A,B 73936039 115979 985A,B 3296511

PROGIT2A 7 22 430 19.5 71 0.1 3.1 28529 987A,B 37905001 2982 989A,B 12060682

PROGSC2D 1 15 280 18.6 180 0.6 15.0 10010 991A,B 316194222 41527764 993A,B 21079614

PROGPS2A 6 25 490 19.6 548 1.1 4.1 43177 995A,B 58277945 2467506 997A,B 13986707

PROGSC2A 5 121 2363 19.5 1420 0.6 24.2 276187 1001A,B 88906184 6022954 1003A,B 3673809

PROGIT2D 1 20 361 18.0 62 0.1 20.0 10010 1005A,B 386092737 111426279 1007A,B 19304636

PROGSC4B 10 131 1421 10.8 4115 2.8 13.1 617016 1011A,B 53826667 2632409 1013A,B 4108905

PROGSC4D 1 19 197 10.3 668 3.3 19.0 10010 1020A,B 227999124 46667334 1022A,B 11999953

PROGPS2D 1 13 240 18.4 291 1.2 13.0 10010 1025A,B 327602445 52935987 1027A,B 25200188

PROGSC6B 5 140 694 4.9 395 0.5 28.0 16884 1032A,B 78994223 3290769 1034A,B 2821222

PROGIT1D 1 10 36 3.6 0 0.0 10.0 10010 1041A,B 290379922 15713464 1043A,B 29037992

PROGIT8B 8 17 288 16.9 190 0.6 2.1 33436 1259A,B 35223857 2902 1261A,B 16575932

**TOTALS 173 1403 18632 13.2 18115 0.9 8.1 90328 82303700 2972755 10148638

Figure 164. Program Summary Report

Monitoring Application Program Elapsed Time

430 Utilities Reference: System

Monitoring I/O for Application Program DL/I Calls

The IMS Monitor report shows the total number of I/O occurrences and the total

time the occurrences took for each UOR during a monitored interval. The Program

I/O report gives these two totals for all PSBs active during the monitored interval

and includes the detailed breakdown of the I/O wait time as it was incurred by each

PCB used by the program. Figure 139 on page 398 shows an example of the

report.

The report shows any contention experienced during application program

processing. Each type of conflict and the number of times it occurred are recorded

for each I/O PCB or database PCB. The report shows the total wait time, the

highest wait experienced, and the average time. Subtotals are given for each PCB

under a PSB, and for all PCBs under each PSB.

The DDN/FUNC column list the data set by ddname. The MODULE column uses a code

to indicate the source of the contention. The types of conflicts and codes are shown

as follows. Any codes that appear apply to IMS only.

v Scheduling

Code Conflict

BLR Load/read from ACBLIB

SMN Virtual storage management

 IMS MONITOR ****CALL SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0186

 (C) (A) (B)

 CALL LEV STAT IWAITS/ ..ELAPSED TIME... .NOT IWAIT TIME.. DISTRIB.

PSB NAME PCB NAME FUNC NO.SEGMENT CODE CALLS IWAITS CALL MEAN MAXIMUM MEAN MAXIMUM NUMBER

___ ____ ___ ____ ____ __________ ____ _____ ______ ____ ____ _______ ____ _______ ______

PROGSC6B I/O PCB ISRT () 138 0 0.00 372 1240 372 1240 598A,B,C

 GU () 134 133 0.99 2600917 20974615 2587532 20962866 602A,B,C

 (GU) () 3 0 0.00 15 16 15 16 716A,B,C

 ASRT () 3 0 0.00 330 333 330 333 869A,B,C

 GU () QC 2 1 0.50 17639806 21219588 17634776 21209529 870A,B,C

 I/O PCB SUBTOTAL

 ___ ___ ________ 280 134 0.47 1370910 1364469

 INVENTRB DLET (03)IN060SUP 138 0 0.00 813 1289 813 1289 599A,B,C

 GNP (03)IN060SUP 138 7 0.05 2112 112589 1047 112589 600A,B,C

 GU (01)IN010PAR 138 254 1.84 29511 75356 1195 19229 601A,B,C

 DL/I PCB SUBTOTAL

 ____ ___ ________ 414 261 0.63 10812 1018

 PSB TOTAL

 ___ _____ 694 395 0.56 559555 551114

PROGSC2A I/O PCB ISRT () 118 0 0.00 381 1496 381 1496 603A,B,C

 GU () 114 284 2.49 3304809 21784513 3164423 21664181 632A,B,C

 (GU) () 2 0 0.00 17 18 17 18 781A,B,C

 ASRT () 3 0 0.00 367 444 367 444 871A,B,C

 GU () QC 2 5 2.50 19931897 20045206 19799530 19925277 872A,B,C

 I/O PCB SUBTOTAL

 ___ ___ ________ 239 289 1.20 1743339 1675270

 LOGVENDA REPL (03)IN040SLQ 118 0 0.00 268 804 268 804 604A,B,C

 GNP (03)IN040SLQ 118 5 0.04 899 16995 218 305 605A,B,C

 REPL (02)VN030PAR 826 0 0.00 805 1578 805 1578 606A,B,C

 GNP (02)VN030PAR 826 873 1.05 19321 94521 456 1363 607A,B,C

 REPL (01)VN020REO 118 58 0.49 8879 48076 832 1682 623A,B,C

 GU (01)VN020REO 118 195 1.65 31688 360775 1300 1746 625A,B,C

 DL/I PCB SUBTOTAL

 ____ ___ ________ 2124 1131 0.53 10145 636

 PSB TOTAL

 ___ _____ 2363 1420 0.60 185445 170013

PROGSC2D I/O PCB ISRT () 14 0 0.00 377 621 377 621 608A,B,C

 GU () 14 36 2.57 22360408 52048566 22221852 51901313 634A,B,C

 I/O PCB SUBTOTAL

 ___ ___ ________ 28 36 1.28 11180393 11111115

 LOGVENDD REPL (03)IN040SLQ 14 0 0.00 263 328 263 328 609A,B,C

 GNP (03)IN040SLQ 14 1 0.07 1407 16889 223 307 610A,B,C

 REPL (02)VN030PAR 98 0 0.00 820 1015 820 1015 611A,B,C

Figure 165. Call Summary Report

Monitoring Application Program Elapsed Time

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 431

v Database access

Code Conflict

DBH OSAM I/O

DLE DL/I functions

VBH VSAM interface

(Physical segment code) Program isolation

The I/O waits for the calls to the I/O PCB are grouped as the first entries for a PSB.

For DL/I calls, the data set for which the I/O took place is indicated under the

DDN/FUNC heading, and the module code tells you what type of conflict caused the

wait.

Contention for the same physical segment in a database causes a wait on behalf of

program isolation. This is shown in the DDN/FUNC column, on the PCB line, by the

entry PIdmb, where dmb is the DMB of the physical data set. The MODULE column

identifies the segment type using the physical segment code assigned by DBD

generation.

When an application is accessing a database using VSAM as the access method,

DL/I calls do not generally result in an I/O wait. A MODULE column entry of VBH

indicates that interface to VSAM occurred and there was an I/O wait.

A seemingly unrelated entry can occur under the DDN/FUNC column for a database

PCB. An example is a retrieval call to a database (DB-A) that causes a buffer to be

purged in order to make room for that retrieved data. If the buffer contents included

data belonging to another database (DB-B), the I/O entry in the report shows the

ddname for DB-B as being in conflict for PCB access to DB-A.

Transaction Queuing Report

In the Transaction Queuing Report in Figure 166 on page 433, a list of transactions

is shown for DBCTL. Each transaction name is an 8-byte transaction ID specified

by the CCTL on the schedule request or the CCTL ID. A transaction ID from CICS,

when used as the transaction manager, is composed of a 4-byte CICS transaction

name plus a 4-byte CICS identifier. If the CCTL does not specify the transaction ID,

DBCTL takes the CCTL region ID obtained at connection time as the default. In this

report for DBCTL, the transaction NUMBER DEQUEUED is the number of schedules, and

the ON QUEUE WHEN SCHEDULED is always zero, because the IMS message queues

are not involved.

Monitoring Application Program Elapsed Time

432 Utilities Reference: System

Monitoring Database Buffers

One of the key resources in an online system is the database buffer pool. The

efficiency of DL/I call service depends on the presence of the required database

logical record in the buffer, so that segment retrieval does not require additional I/O.

This is especially true for HOLD calls with intervening database calls prior to a

replace call. You can assess the general efficiency of the pool management using

the Database Buffer Pool report shown in Figure 167 on page 434. The event

counts on this report are not specific to a particular database or program but

represent the pressure for use of the database pool.

Related Reading: Refer to IMS Version 9: Utilities Reference: Database and

Transaction Manager for more information on the Database Buffer Pool reports.

 IMS MONITOR ****TRANSACTION QUEUING**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0181

 (B) (A)

 NUMBER NUMBER ..ON QUEUE WHEN SCHEDULED..... DEQUED DISTRIBUTION

TRANSACTION DEQUED SCHEDS. MINIMUM MEAN MAXIMUM MEAN NUMBER

___________ ______ ______ _______ ____ _______ ____ ______

 SC6X 13 1 0 0.00 0 13.00 883A,B

 IT8W 17 3 0 0.00 0 5.66 887A,B

 TS1Z 16 1 0 0.00 0 16.00 891A,B

 PS3X 23 1 0 0.00 0 23.00 895A,B

 PS3Y 17 7 0 0.00 0 2.42 899A,B

 IT1V 11 6 0 0.00 0 1.83 903A,B

 SC2Z 143 2 0 0.00 0 71.50 907A,B

 IT8U 12 7 0 0.00 0 1.71 911A,B

 PS2W 10 1 0 0.00 0 10.00 915A,B

 TS1U 12 4 0 0.00 0 3.00 919A,B

 PS3W 14 1 0 0.00 0 14.00 923A,B

 IT8Y 16 5 0 0.00 0 3.20 927A,B

 IT1W 9 1 0 0.00 0 9.00 929A,B

 SC2W 9 1 0 0.00 0 9.00 933A,B

 IT2V 13 5 0 0.00 0 2.60 937A,B

 IT2W 17 6 0 0.00 0 2.83 941A,B

 TS1V 9 1 0 0.00 0 9.00 945A,B

 SC2V 12 5 0 0.00 0 2.40 947A,B

 TS1W 11 1 0 0.00 0 11.00 949A,B

 PS3V 13 3 0 0.00 0 4.33 953A,B

 IT1U 9 6 0 0.00 0 1.50 957A,B

 SC4U 11 5 0 0.00 0 2.20 962A,B

 SC6W 10 1 0 0.00 0 10.00 966A,B

 PS2V 8 6 0 0.00 0 1.33 970A,B

 IT8X 12 1 0 0.00 0 12.00 974A,B

 SC4W 10 1 0 0.00 0 10.00 978A,B

 SC6U 14 6 0 0.00 0 2.33 982A,B

 IT2Y 9 3 0 0.00 0 3.00 986A,B

 SC2X 15 1 0 0.00 0 15.00 990A,B

 PS2Y 17 2 0 0.00 0 8.50 994A,B

 SC4Y 152 4 0 0.50 1 38.00 998A,B

 SC2Y 106 2 0 0.00 0 53.00 1000A,B

 IT2X 20 1 0 0.00 0 20.00 1004A,B

 SC2U 15 3 0 0.00 0 5.00 1008A,B

 SC4Z 123 5 0 0.60 1 24.60 1010A,B

 TS1X 15 1 0 0.00 0 15.00 1015A,B

 SC4X 19 1 0 0.00 0 19.00 1019A,B

 PS2X 13 1 0 0.00 0 13.00 1024A,B

 PS2Z 20 5 0 0.00 0 4.00 1028A,B

 SC6Z 130 1 0 0.00 0 130.00 1031A,B

 SC6V 10 4 0 0.00 0 2.50 1035A,B

 SC6Y 143 1 0 0.00 0 143.00 1037A,B

 IT1X 10 1 0 0.00 0 10.00 1040A,B

 PS3U 19 6 0 0.00 0 3.16 1131A,B

 IT2U 13 4 0 0.00 0 3.25 1146A,B

Figure 166. Transaction Queuing Report

Monitoring Database Buffers

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 433

If any of your databases use VSAM as access method, the IMS Monitor produces a

series of reports headed VSAM BUFFER POOL, one for each subpool. Figure 168

shows one of these reports.

 D A T A B A S E B U F F E R P O O L

 FIX PREFIX/BUFFERS Y/Y

 SUBPOOL ID 004K

 SUBPOOL BUFFER SIZE 4096

 TOTAL BUFFERS IN SUBPOOL 1000

 16:09:59 16:25:10

 START TRACE END TRACE DIFFERENCE

 NUMBER OF LOCATE-TYPE CALLS 407636 4296793 3889157

 NUMBER OF REQUESTS TO CREATE NEW BLOCKS 1 7 6

 NUMBER OF BUFFER ALTER CALLS 75006 819359 744353

 NUMBER OF PURGE CALLS 9137 93881 84744

 NUMBER OF LOCATE-TYPE CALLS, DATA ALREADY IN OSAM POOL 313896 3317264 3003368

 NUMBER OF BUFFERS SEARCHED BY ALL LOCATE-TYPE CALLS 453364 4779327 4325963

 NUMBER OF READ I/O REQUESTS 86881 904487 817606

 NUMBER OF SINGLE BLOCK WRITES BY BUFFER STEAL ROUTINE 0 0 0

 NUMBER OF BLOCKS WRITTEN BY PURGE 32629 360434 327805

 NUMBER OF LOCATE CALLS WAITED DUE TO BUSY ID 281 3173 2892

 NUMBER OF LOCATE CALLS WAITED DUE TO BUFFER BUSY WRT 6 180 174

 NUMBER OF LOCATE CALLS WAITED DUE TO BUFFER BUSY READ 0 0 0

 NUMBER OF BUFFER STEAL/PURGE WAITED FOR OWNERSHIP RLSE 43 483 440

 NUMBER OF BUFFER STEAL REQUESTS WAITED FOR BUFFERS 0 0 0

 TOTAL NUMBER OF I/O ERRORS FOR THIS SUBPOOL 0 0 0

 NUMBER OF BUFFERS LOCKED DUE TO WRITE ERRORS 0 0 0

 QUOTIENT : TOTAL NUMBER OF OSAM READS + OSAM WRITES = 7.02

 __

 TOTAL NUMBER OF TRANSACTIONS

Figure 167. Database Buffer Pool Report

I M S M O N I T O R BUFFER POOL STATISTICS

 V S A M B U F F E R P O O L

 FIX INDEX/BLOCK/DATA N/Y/N

 SHARED RESOURCE POOL ID VPL1

 SHARED RESOURCE POOL TYPE D

 SUBPOOL ID 2

 SUBPOOL BUFFER SIZE 4096

 NUMBER HIPERSPACE BUFFERS 0

 TOTAL BUFFERS IN SUBPOOL 4

 16:09:59 16:25:10

 START TRACE END TRACE DIFFERENCE

 NUMBER OF RETRIEVE BY RBA CALLS RECEIVED BY BUF HNDLR 432 6029 5597

 NUMBER OF RETRIEVE BY KEY CALLS 40857 443840 402983

 NUMBER OF LOGICAL RECORDS INSERTED INTO ESDS 414 6011 5597

 NUMBER OF LOGICAL RECORDS INSERTED INTO KSDS 2132 25266 23134

 NUMBER OF LOGICAL RECORDS ALTERED IN THIS SUBPOOL 0 0 0

 NUMBER OF TIMES BACKGROUND WRITE FUNCTION INVOKED 0 0 0

 NUMBER OF SYNCHRONIZATION CALLS RECEIVED 6494 70963 64469

 NUMBER OF WRITE ERROR BUFFERS CURRENTLY IN THE SUBPOOL 0 0 0

 LARGEST NUMBER OF WRITE ERRORS IN THE SUBPOOL 0 0 0

 NUMBER OF VSAM GET CALLS ISSUED 44249 487181 442932

 NUMBER OF VSAM SCHBFR CALLS ISSUED 0 0 0

 NUMBER OF TIMES CTRL INTERVAL REQUESTED ALREADY IN POOL 11886 129668 117782

 NUMBER OF CRTL INTERVALS READ FROM EXTERNAL STORAGE 32842 363635 330793

 NUMBER OF VSAM WRITES INITIATED BY IMS 2370 29208 26838

 NUMBER OF VSAM WRITES TO MAKE SPACE IN THE POOL 0 0 0

 NUMBER OF VSAM READS FROM HIPERSPACE BUFFERS 0 0 0

 NUMBER OF VSAM WRITES FROM HIPERSPACE BUFFERS 0 0 0

 NUMBER OF FAILED VSAM READS FROM HIPERSPACE BUFFERS 0 0 0

 NUMBER OF FAILED VSAM WRITES FROM HIPERSPACE BUFFERS 0 0 0

 QUOTIENT : TOTAL NUMBER OF VSAM READS + VSAM WRITES = 2.19

 __

 TOTAL NUMBER OF TRANSACTIONS

Figure 168. VSAM Buffer Pool Report

Monitoring Database Buffers

434 Utilities Reference: System

IMS Internal Resource Usage

There are several summary reports that you can use to examine the level of

internal contention for resources. The following sections give a brief description of

these reports.

Pool Space Failure

The Pool Space Failure Summary report gives the number of times (in each region)

a given amount of storage was unavailable. It shows the number of bytes, the

identification of the pool, and the number of occurrences when storage was

unavailable. You can use this summary to determine if you need to increase the

buffer pool allocation, either by a system definition change or by overriding the

number of buffers in the EXEC statements in the JCL.

The format of the report is shown in Figure 169.

Programs Experiencing Deadlock

The Deadlock Event Summary report records each time a pair of programs reaches

a deadlock over ownership of a segment in a given database data set. Each line in

the report shows the two PSBs involved and indicates which is given processing

right-of-way (REQ-ING PSB) and which has to reprocess after dynamic backout has

occurred (LOSING PSB). The report is illustrated in Figure 170.

IMS Latch Conflict

The basic serialization of the task processing in IMS is controlled by ownership of

an IMS latch. When different programs are executing, they compete for the

ownership. If they wait for the resource, the one possessing the latch has to post

the other ITASK waiting for it. Use the Latch Conflict Statistics report to judge the

level of contention for a resource.

The different types of latches and the counters that exhibit the level of contention

are given in the Latch Conflict Statistics report. Figure 171 on page 436 is an

example of this report. The entries are organized according to the latch names.

For the latch names and abbreviations of the different types of resources being

serialized see “IMS Latch Conflict” on page 407.

POOL SPACE FAILURE SUMMARY

 POOL ID BYTES REQ. OCCURRENCES

 DLMP 8888 1

 DLDP 7777 1

 TOTAL 2

Figure 169. Pool Space Failure Report

DEADLOCK EVENT SUMMARY

 REQ-ING PSB LOSING PSB DMBNAME OCCURRENCES

 PSBNAME1 TPPSBRE3 DBASEBAL 1

 TOTAL 1

Figure 170. Deadlock Event Summary Report

IMS Internal Resource Usage

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 435

When a system checkpoint is taken during the time the monitor is active, latch

conflict statistics are reset to zero, thus corrupting the values presented in this

report. If this situation exists, the following message will be inserted at the top of the

report:

**** A CHECKPOINT OCCURRED DURING MONITOR RUN ****

**** LATCH CONFLICT STATISTICS ARE INVALID ****

**** SEE UTILITIES REFERENCE MANUAL ****

However, if the master terminal operator issues the /CHECKPOINT command with the

STATISTICS keyword parameter, latch conflict statistics are reset to zero, but the

IMS monitor is not notified. Therefore, DFSUTR20 cannot detect that the statistics

have been corrupted and will not issue this message.

Recommendation: Do not issue statistics checkpoints while the monitor is running.

Using Frequency Distributions from IMS Monitor Output

The reports derived from the IMS Monitor data records contain many summary lines

where the mean time is given. If you are interested in the distribution of those timed

events, rather than just average and maximum times, you can request the Report

Print utility to individually record the events in a frequency distribution across a

range of intervals. Some distributions are not time dependent, such as those for

transaction queue loads or transmitted block sizes.

How to Get a Frequency Distribution Output

To request the IMS Monitor Report Print utility to gather distribution data, you must

include a DIS input control statement. This causes all report items with an entry

under a column headed MEAN to have a corresponding frequency distribution as part

of the Distribution Appendix. Also, each report line includes an identifying reference

number under the column headed DISTRIBUTION NUMBER so that you can locate the

distribution data in the appendix, flagged by that same number.

The following tables show the major IMS Monitor reports and the type of frequency

distributions generated for each report. Each type results in several distributions,

depending on how many entries are in each section of the report. For each type of

frequency distribution, the data is cumulated in suitable intervals or ranges. The set

 IMS MONITOR ** GENERAL REPORTS ** TRACE START 1993 209...

 LATCH CONFLICT STATISTICS

LATCH COUNT AT AT

NAMES FIELD START END DIFF.

LOGL CONTENTIONS 0 0 0

SMGT CONTENTIONS 0 0 0

XCNQ CONTENTIONS 0 0 0

ACTL CONTENTIONS 0 0 0

CBTS CONTENTIONS 0 0 0

DBLK CONTENTIONS 0 0 0

Figure 171. Latch Conflict Statistics Report

IMS Internal Resource Usage

436 Utilities Reference: System

of ranges used for each type is given an identifier, shown in the ID column.

Table 39 shows the report distributions sorted by Region Summary.

 Table 39. Report Distributions by Region Summary

Report Name ID Description

Scheduling and Termination D1 Elapsed time

D2 Not wait time

Schedule end to 1st DL/I call D3 N/A

Elapsed execution time D4 N/A

DL/I calls D5 Elapsed time

D6 Not wait time

External Subsystem calls D43 Elapsed time

Waits per DL/I call D7 N/A

Idle for intent D8 N/A

Checkpoint D20 Elapsed time

D21 Not wait time

Table 40 shows the report distributions sorted by Programs Region.

 Table 40. Report Distributions by Programs Region

Report Name ID Description

Elapsed execution time D30 N/A

Schedule and to 1st DL/I call D31 N/A

Table 41 shows the report distributions by Program Summary.

 Table 41. Report Distributions by Program Summary

Report Name ID Description

Processor time per schedule D15 N/A

Transactions dequeued per schedule D14 N/A

Elapsed time per schedule D9 N/A

Schedule end to 1st DL/I call D10 N/A

Table 42 shows the report distributions sorted by Call Summary.

 Table 42. Report Distributions by Call Summary

Report Name ID Description

PSB waits per DL/I call D13 N/A

PSB waits per external subsystem call D44 N/A

PSB elapsed time per call D11 N/A

PSB not wait time per call D12 N/A

PSB external subsystem calls D45 N/A

N/A Elapsed time

Using Frequency Distributions

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 437

Table 43 lists some distributions derived from buffer pool statistics for wait times.

 Table 43. Wait Time Distributions

Function ID Module Key

Storage D22 SMN

OSAM I/O D23 DBH

VSAM I/O D24 VBH

Block loader I/O D27 BLR

HSAM I/O D34 DIE

PI enqueue D40 None

How Frequency Distribution Ranges Are Defined

A set of ten intervals is defined for each summary line and the occurrences falling in

each interval are cumulated. The interval ranges are preset with default end points.

For example, the end points, for DL/I call elapsed time are: 0, 1000, 2000, 4000,

8000, 16000, 32000, 64000, 128000, 256000, INF (all times are in milliseconds).

The default end points are chosen so that they are suitable to the event. The lower

limit of the first interval always defaults to zero, and the upper limit of the tenth

interval is infinity (INF).

Although several types of distribution can use the same set of end points, each type

is assigned a distribution identifier. You can use this to redefine the end points. To

override the default end points include an input control statement to the Report Print

utility. The statement specifies the type of distribution identifier and gives the

desired end point values. For example, the DL/I call elapsed time end points could

be respecified by:

D5 0,500,1000,1500,2000,4000,,,100000,500000

The values of the unspecified end points remain at their default values of 32000

and 64000 as does the last (INF).

Figure 172 on page 439, which is a sample page taken from a Distribution

Appendix, shows how individual distributions are numbered and how ranges vary

with the type of distribution. The lines are arranged in pairs, with the second one

recording the cumulated counts.

Using Frequency Distributions

438 Utilities Reference: System

Default Values of Distribution Definitions

Using an identifier provided in the frequency distribution tables (Table 39 on page

437 through Table 42 on page 437) and the Wait Time Distributions table (Table 43

on page 438) you can determine the default end points for the distribution by

locating it in the following list:

D1, D2, D5, D6, D9, D10, D11, D12, D15 D18, D19, D20, D21, D22, D25, D27

D28, D29, D30, D31, D43, and D45

0, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000,

INF

D3 0, 50000, 100000, 150000, 200000, 250000, 300000, 350000,

400000, 450000, INF

D4 0, 200000, 400000, 600000, 800000, 1000000, 1200000, 1400000,

1600000, 1800000, INF

D7, D13, and D44

0, 0, 1, 2, 3, 4, 5, 6, 7, 8, INF

D8 0, 100000, 200000, 300000, 400000, 500000, 600000, 700000,

800000, 900000, INF

D14, D16, D17

0, 1, 2, 3, 4, 5, 10, 15, 30, 90, INF

D23, D24, D26, D32, D40, D42

0, 2000, 8000, 24000, 50000, 100000, 150000, 200000, 250000,

300000, INF

D33, D34, D35

0, 2000, 4000, 8000, 16000, 32000, 64000, 96000, 128000,

160000, INF

 IMS MONITOR ****DISTRIBUTION APPENDIX**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0200

1...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

2...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

3...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

4...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

5...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 6

6...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 8

7...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

8...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 9

9...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

10...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 1 0 0 0 0 0 0 0 0 7

11...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

12...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 8

13...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

14...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

15...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 1 0 0 0 0 0 0 0 0 8

16...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

Figure 172. Distribution Appendix Report

Using Frequency Distributions

Chapter 19. Interpreting IMS Monitor Reports for DBCTL 439

D36, D37 0, 10, 20, 40, 80, 100, 200, 400, 800, 1000, INF

D38 0, 1000, 10000, 100000, 200000, 500000, 800000, 1000000,

1500000, 2000000, INF

D39 0, 1000, 5000, 10000, 50000, 100000, 500000, 1000000, 5000000,

10000000, INF

Interpreting Distribution Appendix Output

You can use the detailed output in the Distribution Appendix when you suspect an

unusual combination of events was reported in a report summary line. Usually, the

average and maximum times or counts are sufficient to highlight a resource usage

problem. However, if you suspect the mean value to be masking an unusual

distribution you can draw on the detail contained in the IMS Monitor output records.

Using Frequency Distributions

440 Utilities Reference: System

Chapter 20. Interpreting IMS Monitor Reports for DCCTL

DCCTL is a transaction management subsystem that has no database components.

With the external subsystem (ESS) attach facility, it provides the transaction

management capability for non-IMS database subsystems.

This chapter describes:

v The events that the IMS Monitor collects

v The content of the reports produced by the IMS Monitor Report Print Program in

a DCCTL environment

DCCTL does not change the format or usage of the IMS Monitor reports. There are

reports, and fields within reports, that contain information specific to databases, and

these are not applicable to the DCCTL environment. Reports that do not apply to

DCCTL appear as a heading without data, or are not produced. The reports that do

not apply to DCCTL include:

v Database Buffer Pool report

v VSAM Buffer Pool (DB) report

v Call Summary (DB) report

v Program I/O (DB) report

For a detailed look at the events, system activities, and use of storage areas (buffer

pool or data set) for which timings are gathered by the IMS Monitor, see Table 27

on page 381.

The following topics provide additional information:

v “IMS Monitor Trace Event Intervals”

v “Overview of IMS Monitor Reports” on page 442

v “Documenting the Monitoring Run” on page 443

v “Monitoring Activity in Dependent Regions” on page 446

v “Monitoring Application Program Elapsed Time” on page 451

v “Monitoring I/O for Application Program DL/I Calls” on page 453

v “Monitoring MFS Activity” on page 457

v “Monitoring Message Queue Handling” on page 458

v “Monitoring Line Activity” on page 460

v “Monitoring Message Handling Efficiency” on page 461

v “IMS Internal Resource Usage” on page 462

v “Using Frequency Distributions from IMS Monitor Output” on page 463

v “Interpreting IMS Monitor MSC Reports” on page 468

v “Extracting Multiple System Transaction Statistics” on page 472

IMS Monitor Trace Event Intervals

The IMS Monitor trace interval is defined by the master terminal operator’s use of

the /TRACE command between the start and stop command entries. The online IMS

events are recorded in IMS Monitor records placed in the IMSMON data set. The

event timings are related to dependent region activity. Figure 173 on page 442

shows the boundaries of the timed event intervals.

The Monitor trace interval includes the following intervals:

© Copyright IBM Corp. 1974, 2004 441

v Scheduling and Termination

– Block loader busy

– Schedule failures (PSB busy and space failure)

– Sched/Term elapsed

- NOT-WAIT

- ACBLIB waits

v Region occupancy (which overlaps with all of Sched/Term elapsed)

– Schedule to first call

– Elapsed execution

The NOT-WAIT time for a region is the elapsed time not accounted for by wait time.

Any delay coming from either paging or the processor being dispatched for a higher

priority task results in an increase in the NOT-WAIT times.

Overview of IMS Monitor Reports

A list of reports available from data collected by the IMS Monitor, together with the

principal performance data they contain, is shown in Table 44. The reports marked

“MSC” in the list are only produced when MSC is active. The MSC reports are

discussed in “Interpreting IMS Monitor MSC Reports” on page 468.

Sequence of Report Output

The order of the reports listed in Table 44 matches the sequence of the output from

the IMS Monitor Report Print Program. The duration of a monitoring snapshot might

not include certain events necessary for an individual report, in which case only

report headings or partial data are produced.

Summary of IMS Monitor Reports in Output Sequence

 Table 44. Output Sequence and Information from IMS Monitor Reports

Report Name Principal Information

System Configuration Monitor run documentation

Message Queue Pool Buffering and message I/O per transaction

Message Format Buffer Pool Count of I/Os

Figure 173. IMS Monitor Trace Event Intervals

IMS Monitor Trace Event Intervals

442 Utilities Reference: System

Table 44. Output Sequence and Information from IMS Monitor Reports (continued)

Report Name Principal Information

Latch Conflict Statistics IMS internal processing

General Wait Time Events Wait times for SNAPQ

Region and Jobname Monitor run documentation

Region Summary Elapsed times and count of DL/I calls (DC)

Region Wait Wait times

Programs by Region Elapsed times for region usage

Program Summary Overall program statistics

Communication Summary Elapsed times for lines

Communication Wait Wait times by line

Line Functions Count and size of blocks transmitted

MSC Traffic (MSC) Count and routing of transactions

MSC Summaries (MSC) Count of transactions by destination

MSC Queuing Summary (MSC) Count and queuing time by link

Transaction Queuing Queue loading statistics

Reports Count of space failures and deadlocks

Run Profile Monitor run documentation

Distribution Appendix Event frequency distributions

Units of Measure in IMS Monitor Reports

The majority of the data items in IMS Monitor reports are elapsed times. These are

normally expressed in microseconds. An entry of 1876534 is 1.876534 seconds or

1876 milliseconds. Any times that do not follow this convention show the unit of

measure on the report.

You can also find counts of events under the heading OCCURRENCES, and figures that

represent the number of bytes.

Documenting the Monitoring Run

For each trace interval there are several general reports or overall summaries of the

processing that took place. You can use these reports as part of your IMS Monitor

run documentation.

It is important to record as accurately as possible the conditions under which the

trace was taken. Your documentation can include system status information

obtained by the /DISPLAY command several times before and after the trace, an

expected profile of the application program activity, and any desired processing

events. The trace interval should represent typical processing loads and not be a

biased or inadequate historical record.

Adding to the System Configuration Report Data

The first general report titled SYSTEM CONFIGURATION is found under the page

heading BUFFER POOL STATISTICS. It shows the modification level of the IMS and

z/OS systems. You can add a list of IMS APARs applied and include the service

Overview of IMS Monitor Reports

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 443

levels of the application programs, especially if the latter are not permanent

programs or are part of a staged implementation. The system configuration output

is illustrated in Figure 174.

Recording the Monitor Trace Interval

The heading of most IMS Monitor reports carries the trace start and stop times. It is

shown in the format YEAR DAY (Julian) HH:MM:SS. The overall length of the trace

interval is given in seconds under the heading TRACE ELAPSED TIME IN SECONDS.

The following line shows how many trace records were placed on the IMS.MON

data set. An example of the monitor trace interval recording is shown in Figure 174.

Completing the Monitor Run Profile

A compact set of processing ratios is found at the end of the Run Profile report. The

statistics summarize, for the monitor interval, the transaction throughput and the

degree of DL/I and I/O activity. An example of the report is shown in Figure 175 on

page 445. In a DCCTL environment, DL/I activity is restricted to data

communications calls and calls to GSAM databases. Database calls to other types

of DL/I databases are not supported in DCCTL.

The lower part of the Run Profile report shows several ratios:

v Program elapsed time to DL/I elapsed time for each region

v DL/I elapsed time to wait time during DL/I processing

v Program elapsed time to other subsystem call elapsed time

v DL/I elapsed time to other subsystem call elapsed time

Each dependent region is identified by a sequence number, starting at region 1.

I M S M O N I T O R BUFFER POOL STATISTICS TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0001

 S Y S T E M C O N F I G U R A T I O N

 SYSTEM CONFIGURATION :

 IMS VERSION : 4

 RELEASE LEVEL :

 MODIFICATION NUMBER :

Figure 174. IMS Monitor System Configuration Report and Trace Interval

Documenting the Monitoring Run

444 Utilities Reference: System

You can match the regions to the z/OS job name using the Region and Jobname

report. The job names correspond to the step names on the EXEC statements of all

the dependent regions started by the operator before the trace was started. The

region job names are included on the monitor output page with the heading GENERAL

REPORTS, as illustrated in Figure 185 on page 459.

There are some generalized processing ratios that are given at the end of several

buffer pool statistics reports. You can include them in the documented profile of the

trace interval. These are not specific to one application or system resource but can

be used as indicators of variation across a series of monitor runs. In DCCTL, the

ratios are:

v All waits divided by the total number of transactions

This value can be found on the Message Queue Pool Report in Figure 184 on

page 458. This ratio indicates on a per transaction basis the physical I/O activity

required to handle the message queuing function.

v The total prefetch I/Os + immediate fetch I/Os + directory I/Os divided by the

total number of transactions

This value also appears on Figure 183 on page 458. This ratio indicates on a per

transaction basis the physical I/O activity required to handle the MFS function

during the trace period.

Verifying IMS Monitor Report Occurrences

When you examine the output from the IMS Monitor Report Print program, do not

assume that the presence of a report heading implies that appropriate data is listed.

System definition options and utility control statements affect the content of the

output as follows:

v The output does not include a Call Summary report unless a control statement

specifies DLI.

 IMS MONITOR **RUN PROFILE** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0184

TRACE ELAPSED TIME IN SECONDS.......274.6

TOTAL NUMBER OF MESSAGES DEQUEUED....1403

TOTAL NUMBER OF SCHEDULES 173

NUMBER OF TRANSACTIONS PER SECOND 5.1

TOTAL NUMBER OF DL/I CALLS ISSUED....18632

NUMBER OF DL/I CALLS PER TRANSACTION 13.2

NUMBER OF OSAM BUFFER POOL I/O’S. 0, 0.0 PER TRANSACTION

NUMBER OF MESSAGE QUEUE POOL I/O’S..........0, 0.0 PER TRANSACTION

NUMBER OF FORMAT BUFFER POOL I/O’S..........0, 0.0 PER TRANSACTION

RATIO OF PROGRAM ELAPSED TO DL/I ELAPSED:

 REGION 1: 1.09

 REGION 2: 1.09

 REGION 3: 1.00

 REGION 4: 1.02

 REGION 5: 1.01

 REGION 6: 1.00

 REGION 7: 1.00

 REGION 8: 1.00

 REGION 9: 1.17

 REGION 10: 1.00

 REGION 11: 1.00

 REGION 49: 1.03

 REGION 50: 1.19

RATIO OF DL/I ELAPSED TO DL/I IWAIT:

 REGION 1: 325.65

 REGION 2: 73.49

 REGION 4: 100.35

 REGION 5: 85.76

 REGION 6: 82.99

 REGION 47: 95.64

 REGION 48: 45.93

 REGION 49: 9.22

Figure 175. Run Profile Report

Documenting the Monitoring Run

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 445

v The output does not include a set of Distribution reports unless a control

statement specifies DIS or DISTRIBUTION. The column headed DISTRIBUTION

NUMBER that occurs on many of the reports contains cross-references to items

included in the Distribution reports.

v The output consists of just a Call Summary report if a control statement specifies

ONLY DLI.

Because many of the summary reports require system status to calculate the

difference between start and end values, and this status is obtained during /TRACE

SET OFF processing, the IMS Monitor execution must end before termination of the

IMS control region. If the trace was not stopped properly, the following message is

issued:

NO QUEUE BUFFER POOL TRACES AT END TIME ON MONITOR LOG TAPE

****QUEUE BUFFER POOL REPORT CANCELLED****

Similarly, other summary reports are not produced.

The section MESSAGE FORMAT BUFFER POOL is included only if your system definition

specifies devices using Message Format Service.

If the source data used to formulate a particular IMS Monitor report, or a section of

that report, has not been recorded by the IMS Monitor during the trace interval, the

report contains only the headings.

Monitoring Activity in Dependent Regions

The IMS Monitor gathers timing information for every dependent region identified in

the /trace command active during the trace interval. It records the total of the

elapsed times for each event, the time for the longest event encountered, and the

average time for all recorded events.

There are three major reports that display timings. The reports and a list of their

content are:

v Region Summary Report

– Scheduling and termination

– Schedule end to first call

– Elapsed execution with separate summaries shown for:

- DL/I calls

- External subsystem service and command calls

- External subsystem database access calls

- Checkpoint processing

- Region occupancy

v Region Wait

– Waits during scheduling and termination

– Waits during DL/I calls

– Waits during external subsystem calls

– Waits during checkpoint

v Programs by Region

– Elapsed execution

– Schedule end to first call

Documenting the Monitoring Run

446 Utilities Reference: System

These three reports are illustrated in Figure 176 on page 448, Figure 177 on page

449, and Figure 178 on page 450.

Activities in dependent regions are placed in five timing categories:

v Elapsed time for scheduling and termination

The scheduling process includes many preparatory events such as block loading

from an active IMS.ACBLIBA/B data set and obtaining ownership of the PSB.

The time required to terminate the region activity after the application program

ends is also included.

v Elapsed time from end of schedule to first call

This time is reserved for application program initialization and housekeeping prior

to an initial call (to the message queue, or an external subsystem) that marks the

beginning of control program services. It is a measure of processing that is not

repeated when multiple transactions are processed in a single scheduling.

v Program elapsed time, including all calls

This time encompasses the major application program processing and is

measured from the first call to the return to or exit from the program.

v Elapsed time performing DL/I calls

This time includes all DL/I calls. Each DL/I call event is measured from the time

of the call to the return to the application program.

v Elapsed time performing external subsystem calls

This time includes all external subsystem calls. Each external subsystem event is

measured from the time of the call to the return to IMS.

Monitoring Activity in Dependent Regions

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 447

IMS MONITOR ****REGION SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0011

 (A) (B)

 ELAPSED TIME......... NOT IWAIT TIME(ELAPSED-IWAIT) DISTRIBUTION

 OCCURRENCES TOTAL MEAN MAXIMUM TOTAL MEAN MAXIMUM NUMBER

 ___________ _____ ____ _______ _____ ____ _______ ______

SCHEDULING AND TERMINATION

__________ ___ ___________

**REGION 5 5 4146 829 948 4146 829 948 287A,B

**REGION 6 7 6028 861 1067 6028 861 1067 214A,B

**REGION 8 8 6847 855 1098 6847 855 1098 129A,B

**REGION 10 7 9664 1380 3668 9664 1380 3668 272A,B

**REGION 47 6 5482 913 1021 5482 913 1021 145A,B

**REGION 49 3 2612 870 917 2612 870 917 443A,B

**TOTALS 123 126042 1024 126042 1024

SCHEDULE TO FIRST CALL

________ __ _____ ____

**REGION 1 1 15479797 15479797 15479797 555

**REGION 2 1 22376350 22376350 22376350 564

**REGION 3 1 15169488 15169488 15169488 578

**REGION 4 1 48146258 48146258 48146258 584

**REGION 48 1 795351 795351 795351 592

**REGION 49 4 2960425 740106 2951746 442

**REGION 50 1 15713464 15713464 15713464 575

**TOTALS 168 514286738 3061230

ELAPSED EXECUTION

_______ _________

**REGION 1 1 290146255 290146255 290146255 1

**REGION 2 1 252290108 252290108 252290108 2

**REGION 3 1 259496970 259496970 259496970 3

**REGION 4 1 322812716 322812716 322812716 4

**REGION 48 1 273871107 273871107 273871107 48

**REGION 49 4 271703421 67925855 155176058 49

**REGION 50 1 290379922 290379922 290379922 50

**TOTALS 173 14238540145 82303700

DL/I CALLS IWT/CALL(C)

____ _____ ___________

**REGION 1 60 264626241 4410437 88981490 263813671 4396894 88970053 0.76 247A,B,C

**REGION 2 223 230505269 1033655 61048758 227368742 1019590 61011153 0.73 237A,B,C

**REGION 3 29 257704383 8886358 69000514 257704383 8886358 69000514 0.00 98A,B,C

**REGION 4 792 313735347 396130 52439653 310609035 392183 52439653 0.22 180A,B,C

**REGION 49 592 262886317 444064 30202068 234394017 395935 30159782 2.46 177A,B,C

**REGION 50 36 242591451 6738651 48651260 242591451 6738651 48651260 0.00 289A,B,C

**TOTALS 18632 12386905286 664818 12024562411 645371 0.97

IDLE FOR INTENT

____ ___ ______

 NONE

CHECKPOINT

__________ NONE

REGION OCCUPANCY

______ _________

**REGION 1 100.0%

**REGION 2 100.0%

**REGION 3 100.0%

**REGION 4 100.0%

**REGION 48 100.0%

**REGION 49 100.0%

**REGION 50 100.0%

Figure 176. Region Summary Report

Monitoring Activity in Dependent Regions

448 Utilities Reference: System

IMS MONITOR ****REGION IWAIT**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0023

 IWAIT TIME.......... DISTRIBUTION

**REGION 5 OCCURRENCES TOTAL MEAN MAXIMUM FUNCTION MODULE NUMBER

 ______ ___________ _____ ____ _______ ________ ______ ______

SCHEDULING + TERMINATION

__________ ___________

 SUB-TOTAL

 TOTAL

DL/I CALLS

____ _____

 11 181816 16528 24375 DD=IMMSTR2A DBH 117

 8 112831 14103 17846 DD=IMMSTR1A DBH 118

 5 85460 17092 33717 DD=IMMSTR3A DBH 119

 5 58420 11684 14643 DD=IMINDEXA VBH 120

 12 173866 14488 22152 DD=PRODCNTA VBH 121

 3 100576 33525 68373 DD=IMMSTR2B DBH 428

 1 17921 17921 17921 DD=IMMSTR3B DBH 429

 1 17195 17195 17195 DD=IMMSTR1B DBH 430

 1 13577 13577 13577 DD=IMINDEXB VBH 431

 3 49928 16642 20396 DD=PRODCNTB VBH 432

 4 10973 2743 2787 DD=ITEMACTB DBH 453

 2 37680 18840 27664 DD=IAINDEXB VBH 454

 49 1500067 30613 138284 DD=INVENTRA DBH 472

 23 345595 15025 27613 DD=VENDORDA VBH 473

 1 342952 342952 342952 PI=VENDORDA...1 498

 1 14612 14612 14612 PI=VNSINDXA...1 499

 6 69203 11533 19492 DD=VNSINDXA VBH 500

 TOTAL

 _____ 136 3132672 23034

Figure 177. Region Wait Report

Monitoring Activity in Dependent Regions

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 449

Examining the Effects of Checkpoints

The checkpoint line of the Region Summary report at the end of the region 0

summary shows the following:

v The number of system checkpoint taken during the monitor interval

v The elapsed times

v The not-wait times

Checkpoint processing can be initiated by the control program at a specified

frequency determined by the number of records placed on the system log. Other

checkpoints can be caused by operator commands.

The wait time experienced during checkpoints is reported at the end of the first

region summary on the Region Wait report. You can detect delays for each

combination of DD name and module code. Typical entries here are for the

 IMS MONITOR ****PROGRAMS BY REGION**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0069

 (A) (B)

 ELAPSED EXECUTION TIME SCHEDULING END TO FIRST CALL DISTRIBUTION

 OCCURRENCES TOTAL MEAN MAXIMUM TOTAL MEAN MAXIMUM NUMBER

 ___________ _____ ____ _______ _____ ____ _______ ______

**REGION 1

________ _ 1

 PROGSC6D 1 290146255 290146255 290146255 15479797 15479797 15479797 885A,B

 REGION TOTALS 1 290146255 290146255 15479797 15479797

**REGION 2

________ _ 2

 PROGIT8C 1 252290108 252290108 252290108 22376350 22376350 22376350 889A,B

 REGION TOTALS 1 252290108 252290108 22376350 22376350

**REGION 3

________ _ 3

 PROGTS1C 1 259496970 259496970 259496970 15169488 15169488 15169488 893A,B

 REGION TOTALS 1 259496970 259496970 15169488 15169488

**REGION 4

________ _ 4

 PROGPS3D 1 322812716 322812716 322812716 48146258 48146258 48146258 897A,B

 REGION TOTALS 1 322812716 322812716 48146258 48146258

**REGION 5

________ _ 5

 PROGPS3A 2 62893103 31446551 40693590 5435 2717 2862 901A,B

 PROGTS1B 1 61794787 61794787 61794787 2790 2790 2790 1271A,B

 PROGPS3B 1 18294458 18294458 18294458 3104 3104 3104 1350A,B

 PROGIT2B 1 36095342 36095342 36095342 2731 2731 2731 1363A,B

 PROGSC2A 1 93902771 93902771 93902771 1667791 1667791 1667791 1401A,B

 REGION TOTALS 6 272980461 45496743 1681851 280308

**REGION 6

________ _ 6

 PROGIT1B 2 39000315 19500157 23703429 5286 2643 2801 905A,B

 PROGTS1B 1 34293636 34293636 34293636 3136 3136 3136 1207A,B

 PROGPS3A 1 51887767 51887767 51887767 2534 2534 2534 1278A,B

 PROGPS3B 2 67375031 33687515 40291430 17210570 8605285 17213287 1328A,B

 PROGIT8A 1 69132416 69132416 69132416 3291 3291 3291 1359A,B

 PROGSC4A 1 30165017 30165017 30165017 2571 2571 2571 1433A,B

 REGION TOTALS 8 291854182 36481772 17193752 2149219

**REGION 7

________ _ 7

 PROGSC2B 1 269618583 269618583 269618583 5047875 5047875 5047875 909A,B

 REGION TOTALS 1 269618583 269618583 5047875 5047875

**REGION 8

________ _ 8

 PROGIT8A 1 5181039 5181039 5181039 2928 2928 2928 913A,B

 PROGPS3A 1 27304257 27304257 27304257 3350 3350 3350 1132A,B

 PROGSC4B 1 37286872 37286872 37286872 3009 3009 3009 1255A,B

 PROGIT2A 1 36902995 36902995 36902995 2850 2850 2850 1298A,B

 PROGIT1B 1 30407479 30407479 30407479 2565 2565 2565 1336A,B

 PROGIT1A 3 109875360 36625120 45190114 4279008 1426336 4272096 1357A,B

 PROGIT8B 1 23405220 23405220 23405220 2679 2679 2679 1395A,B

 REGION TOTALS 9 270363222 30040358 4296389 477376

Figure 178. Programs-by-Region Report

Monitoring Activity in Dependent Regions

450 Utilities Reference: System

message queue data sets and the restart data set. If an wait for storage is the

cause, the entry under the FUNCTION column is STG.=, followed by the identification

of the pool.

Measuring Region Occupancy

A measure of region activity is the percentage of region occupancy. This is broadly

the ratio of the elapsed time a region is performing processing to the trace interval.

The region occupancy time does not include those times when no messages are

available, when the block loading is delayed, or when the PSB cannot be used. The

last section in the Region Summary report lists all active regions for which timed

events were collected and shows the calculated percentage region occupancies.

Monitoring Application Program Elapsed Time

The IMS Monitor can record measurements of elapsed times for each transaction

and scheduling of an application program. It does this during the monitored interval

while other programs are executing concurrently. Elapsed times are calculated from

the start of the first DL/I (or other) call to the end of that program. You can

distinguish between time spent in application code and in DL/I processing. The

event intervals are illustrated in Figure 179:

 Within the elapsed time for a DL/I call, the wait time to obtain segment data is

recorded separately. Similarly, within the elapsed time for an external subsystem

call, the processing time in the external subsystem is recorded separately as the

wait time. The application processing (A/P) time includes many kinds of subsidiary

service beyond the machine cycles expended by the program object code—such as

subroutine loading, I/O to z/OS data sets, and any overlay processing. If the

program is waiting to be dispatched or requires paging before it can use the real

storage, these delays are also accounted for in application program processing.

Because a program can execute many transactions for each schedule, the elapsed

time from schedule to first call is recorded separately. This time covers the

initialization performed by the application program and also includes the time for

loading the program.

The elapsed times are given in the Program Summary report. Figure 180 on page

452 is an example of the report. Programs are identified by their PSB name on

individual lines in the report. Each line gives a summary of the activity for that PSB

Figure 179. Elapsed Time Event Intervals

Monitoring Activity in Dependent Regions

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 451

during the measured interval. The total number of schedules, DL/I calls,

transactions completed (dequeued), and waits for DL/I call I/O calls, the and

external subsystem processing are given. The report line gives calculated average

times for:

v Elapsed time per schedule

v Processor time per schedule

v Schedule to first DL/I call per schedule

v Elapsed time per transaction

Frequencies for calls per transaction, I/O waits per DL/I call, waits per external

subsystem call, and transactions dequeued per schedule are also given. A TOTALS

line summarizes all activity for the PSBs active during the monitored interval. (The

PSB DUMMY line reconciles any incomplete scheduling caused by a region stopping

during scheduling or for a program that experiences a pseudo abend.)

 You can use the Call Summary report to examine the detail of the call processing

for each program, itemized by type or call and summarized for the monitor interval.

An extract from the multipage output is given in Figure 181 on page 453. The calls

using an I/O PCB are given first and subtotaled. Then, the total calls, of each type,

against each database PCB and each external subsystem are listed. The PSB TOTAL

line marks the end of data for each program.

 IMS MONITOR ****PROGRAM SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0075

 (A)........(B)........ (A)........(B)........

 I/O TRAN. CPU . ELAPSED SCHED.TO . ELAPSED

 NO. TRANS. CALLS I/O IWAITS DEQD. TIME DISTR. TIME 1ST CALL DISTR. TIME

PSBNAME SCHEDS. DEQ. CALLS /TRAN IWAITS /CALL /SCH. /SCHED. NO. /SCHED. /SCHED. NO. /TRANS.

_______ _______ ____ _____ _____ ______ _____ _____ _______ ___ _______ _______ ___ _______

PROGSC6D 1 13 60 4.6 46 0.7 13.0 10010 884A,B 290146255 15479797 886A,B 22318942

PROGIT8C 3 17 225 13.2 166 0.7 5.6 90592 888A,B 256617508 73283259 890A,B 45285442

PROGTS1C 2 25 47 1.8 0 0.0 12.5 10010 892A,B 239190808 7586234 894A,B 19135264

PROGPS3D 1 23 792 34.4 182 0.2 23.0 10010 896A,B 322812716 48146258 898A,B 14035335

PROGPS3A 13 36 1246 34.6 267 0.2 2.7 49782 900A,B 32801812 2228611 902A,B 11845098

PROGIT1B 11 21 99 4.7 0 0.0 1.9 6341 904A,B 23212388 2036217 906A,B 12158870

PROGSC2B 7 155 3068 19.7 1845 0.6 22.1 346112 908A,B 93655514 789390 910A,B 4229603

PROGIT8A 12 28 434 15.5 293 0.6 2.3 34350 912A,B 30196795 1745815 914A,B 12941483

PROGPS2C 1 10 179 17.9 205 1.1 10.0 10010 916A,B 221024429 53642029 918A,B 22102442

PROGTS1B 8 20 54 2.7 0 0.0 2.5 5447 920A,B 39943245 2895 922A,B 15977298

PROGPS3C 1 14 468 33.4 117 0.2 14.0 10010 924A,B 310644485 35978027 926A,B 22188891

PROGIT1C 1 9 32 3.5 0 0.0 9.0 10010 930A,B 304892631 30226173 932A,B 33876959

PROGSC2C 1 9 160 17.7 101 0.6 9.0 10010 934A,B 296909110 22242652 936A,B 32989901

PROGIT2B 8 21 393 18.7 63 0.1 2.6 21703 938A,B 35126671 1798496 940A,B 13381589

PROGIT2C 6 17 211 12.4 39 0.1 2.8 13312 942A,B 288883508 50698467 944A,B 101958885

PROGTS1D 2 26 50 1.9 0 0.0 13.0 10010 950A,B 284944505 10613350 952A,B 21918808

PROGPS3B 8 22 770 35.0 169 0.2 2.7 35737 954A,B 38016279 2149158 956A,B 13824101

PROGIT1A 11 24 106 4.4 0 0.0 2.1 7925 958A,B 30883486 1935855 960A,B 14154931

PROGSC4A 9 163 1775 10.8 5101 2.8 18.1 235921 963A,B 62172947 3011199 965A,B 3432862

PROGSC6C 1 10 44 4.4 38 0.8 10.0 10010 967A,B 228098334 46568124 969A,B 22809833

PROGPS2B 11 28 557 19.8 604 1.0 2.5 35069 971A,B 33309266 1181831 973A,B 13085783

PROGIT8D 1 12 175 14.5 133 0.7 12.0 10010 975A,B 253392289 21274169 977A,B 21116024

PROGSC4C 1 10 98 9.8 349 3.5 10.0 10010 979A,B 248736332 25930126 981A,B 24873633

PROGSC6A 7 157 789 5.0 457 0.5 22.4 11703 983A,B 73936039 115979 985A,B 3296511

PROGIT2A 7 22 430 19.5 71 0.1 3.1 28529 987A,B 37905001 2982 989A,B 12060682

PROGSC2D 1 15 280 18.6 180 0.6 15.0 10010 991A,B 316194222 41527764 993A,B 21079614

PROGPS2A 6 25 490 19.6 548 1.1 4.1 43177 995A,B 58277945 2467506 997A,B 13986707

PROGSC2A 5 121 2363 19.5 1420 0.6 24.2 276187 1001A,B 88906184 6022954 1003A,B 3673809

PROGIT2D 1 20 361 18.0 62 0.1 20.0 10010 1005A,B 386092737 111426279 1007A,B 19304636

PROGSC4B 10 131 1421 10.8 4115 2.8 13.1 617016 1011A,B 53826667 2632409 1013A,B 4108905

PROGSC4D 1 19 197 10.3 668 3.3 19.0 10010 1020A,B 227999124 46667334 1022A,B 11999953

PROGPS2D 1 13 240 18.4 291 1.2 13.0 10010 1025A,B 327602445 52935987 1027A,B 25200188

PROGSC6B 5 140 694 4.9 395 0.5 28.0 16884 1032A,B 78994223 3290769 1034A,B 2821222

PROGIT1D 1 10 36 3.6 0 0.0 10.0 10010 1041A,B 290379922 15713464 1043A,B 29037992

PROGIT8B 8 17 288 16.9 190 0.6 2.1 33436 1259A,B 35223857 2902 1261A,B 16575932

**TOTALS 173 1403 18632 13.2 18115 0.9 8.1 90328 82303700 2972755 10148638

Figure 180. Program Summary Report

Monitoring Application Program Elapsed Time

452 Utilities Reference: System

Monitoring I/O for Application Program DL/I Calls

The IMS Monitor report shows the total number of I/O occurrences and the total

time the occurrences took for each application program executed during a

monitored interval. The Program I/O report gives these two totals for all PSBs active

during the monitored interval and includes the detailed breakdown of the I/O wait

time as it was incurred by each PCB used by the program. Figure 182 on page 455

shows an example of the report.

The detail of the report reveals much of the contention experienced during

application program processing. Each type of conflict and the number of times it

occurred are recorded for each I/O PCB. The report shows the total wait time, the

highest wait experienced, and the average time. Subtotals are given for each PCB

under a PSB, and for all PCBs under each PSB.

The DDN/FUNC column lists the data set by ddname. The MODULE column uses a code

to indicate the source of the contention. The types of conflicts and codes are shown

as follows:

v Message handling

Code Conflict

MFS MFS format library directory

PMM Message format buffer pool space or control block I/O

QMG Message queue management

v Scheduling

Code Conflict

BLR Load/read from ACBLIB

MSC MPP region initialization

SMN Virtual storage management

 IMS MONITOR ****CALL SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0186

 (C) (A) (B)

 CALL LEV STAT IWAITS/ ..ELAPSED TIME... .NOT IWAIT TIME.. DISTRIB.

PSB NAME PCB NAME FUNC NO.SEGMENT CODE CALLS IWAITS CALL MEAN MAXIMUM MEAN MAXIMUM NUMBER

___ ____ ___ ____ ____ __________ ____ _____ ______ ____ ____ _______ ____ _______ ______

PROGSC6B I/O PCB ISRT () 138 0 0.00 372 1240 372 1240 598A,B,C

 GU () 134 133 0.99 2600917 20974615 2587532 20962866 602A,B,C

 (GU) () 3 0 0.00 15 16 15 16 716A,B,C

 ASRT () 3 0 0.00 330 333 330 333 869A,B,C

 GU () QC 2 1 0.50 17639806 21219588 17634776 21209529 870A,B,C

 I/O PCB SUBTOTAL

 ___ ___ ________ 280 134 0.47 1370910 1364469

 PSB TOTAL

 ___ _____ 280 134 0.47 1370910 1364469

PROGSC2A I/O PCB ISRT () 118 0 0.00 381 1496 381 1496 603A,B,C

 GU () 114 284 2.49 3304809 21784513 3164423 21664181 632A,B,C

 (GU) () 2 0 0.00 17 18 17 18 781A,B,C

 ASRT () 3 0 0.00 367 444 367 444 871A,B,C

 GU () QC 2 5 2.50 19931897 20045206 19799530 19925277 872A,B,C

 I/O PCB SUBTOTAL

 ___ ___ ________ 239 289 1.20 1743339 1675270

 PSB TOTAL

 ___ _____ 239 289 1.20 1743339 1675270

PROGSC2D I/O PCB ISRT () 14 0 0.00 377 621 377 621 608A,B,C

 GU () 14 36 2.57 22360408 52048566 22221852 51901313 634A,B,C

 I/O PCB SUBTOTAL

 ___ ___ ________ 28 36 1.28 11180393 11111115

Figure 181. Call Summary Report

Monitoring I/O for Application Program DL/I Calls

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 453

For external subsystem calls, the elapsed time to complete the processing is

considered wait time. The DDN/FUNC column indicates the external subsystem call

function, as follows:

v External subsystems

Code Subsystem call function

AB0 ABORT

CT0 Create thread

D50 Terminate identify or thread, signoff

D80 INIT

I30 Identify, command, echo, terminate

I30 Identify, terminate subsystem

I50 INIT

I60 Resolve-in-doubt

PR0 Subsystem-not-operational

P10 Commit prepare (Phase 1)

P20 Commit continue (Phase 2)

SO0 Signon

SI0 Identify

Monitoring I/O for Application Program DL/I Calls

454 Utilities Reference: System

IMS MONITOR ****PROGRAM I/O**** TRACE START 1993 022 14:00:18 TRACE STOP 1993 022 14:02:20 PAGE 0088

 IWAIT TIME..........

PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC MODULE

_______ ___ ____ ______ _____ ____ _______ ________ ______

PROGHR1A I/O PCB 122 2341116 19189 70795 HOTELDBA DBH

 34 24177936 711115 3950160 **W F I

 40 23652665 591316 2668917 **W F I

 5 67613 13522 21214 SHMSG QMG

 4 110363 27590 60486 QBLKS QMG

 PCB TOTAL

 ___ _____ 131 2519092 19229

PSB TOTAL

___ _____ 305 6725063 20049

PROGDE1A TRMNALDA 20 624677 31233 68252 TRMNALDA VBH

 1 275811 275811 275811 PI TRMNALDA....

 PCB TOTAL

 ___ _____ 21 900488 42880

 I/O PCB 16 488812 30550 79980 TRMNALDA VBH

 1 16118 16118 16118 SHMSG QMG

 PCB TOTAL

 ___ _____ 17 504930 29701

 TABLEDBA 16 290471 18154 33254 TABLEDA DBH

 PCB TOTAL

 ___ _____ 16 290471 18154

PSB TOTAL

___ _____ 54 1695889 31405

PROGHR2B HOTELDBB 8 698384 87298 184475 HOTELDBB DBH

 4 5820650 1455162 1455278 PI HOSINDXB....

 4 4481024 1120256 1209075 PI HOTELDBB....

 2 260817 130408 232750 HOSINDOB VBH

 7 106623 15231 16410 HOSINDXB VBH

 1 15366 15366 15366 HOTELDBD DBH

 PCB TOTAL

 ___ _____ 26 11382864 437802

PSB TOTAL

___ _____ 26 11382864 437802

PROGHR2A HOTELDBA 17 655801 38576 366108 HOSINDXA VBH

 73 1836721 25160 82141 HOTELDBA DBH

 2 54663 27331 41975 HOTELDBD DBH

 1 9887 9887 9887 HOTELDBC DBH

 2 851042 845635 845635 HOSINDOA VBH

 PCB TOTAL

 ___ _____ 95 3408114 35874

 I/O PCB 2O 575847 28792 74227 HOTELDBA DBH

 21 370390 17637 43153 HOSINDXA VBH

Figure 182. Program I/O Report (Part 1 of 3)

Monitoring I/O for Application Program DL/I Calls

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 455

IMS MONITOR ****PROGRAM I/O**** TRACE START 1993 022 14:00:18 TRACE STOP 1993 022 14:02:20 PAGE 0089

 IWAIT TIME..........

PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC MODULE

_______ ___ ____ ______ _____ ____ _______ ________ ______

PROGHR2A I/O PCB 5 4654544 930908 2020043 **W F I

 8 32796604 4099575 9328891 **W F I

 PCB TOTAL

 ___ _____ 41 946237 23078

PSB TOTAL

___ _____ 136 4354351 32017

PROGPS2A LOGIMA 89 2046670 22996 73593 IMMSTR3A VBH

 612 53886417 88049 185674 IMMSTR1A VBH

 3 44906 14968 20788 IMINDEXA VBH

 PCB TOTAL

 ___ _____ 704 55977993 79514

 469 11742900 25038 170337 COMPOSDA DBH

 329 8198418 24919 91422 CPINDEXA VBH

 PCB TOTAL

 ___ _____ 798 19941318 24989

 I/O PCB 3 47511 15837 20806 SHMSG QMG

 PCB TOTAL

 ___ _____ 3 47511 15837

PSB TOTAL

___ _____ 1505 75966822 50476

PROGSC6C I/O PCB 52 2698602 51896 473763 INVENTRC VBH

 4 70921 17730 34241 SHMSG QMG

 3 50699 16899 24724 QBLKS QMG

 PCB TOTAL

 ___ _____ 59 2820222 47800

 55 2666884 48488 210752 INVENTRC VBH

 50 797587 15951 41706 ININDEXC VBH

 1 119253 119253 119253 PI INVENTRC...1

 1 8634 8634 8634 INVENTRB VBH

 2 83947 41973 53936 INVENTRA VBH

 PCB TOTAL

 ___ _____ 109 3676305 33727

PSB TOTAL

___ _____ 168 6496527 38669

PROGHR2D I/O PCB 21 2285296 108823 199223 HOTELDBD DBH

 28 762370 27227 111860 HOSINDXD VBH

 1 11685 11685 11685 SHMSG QMG

 PCB TOTAL

 ___ _____ 50 3059351 61187

 HOTELDBD 96 6279107 65407 139032 HOTELDBD DBH

Figure 182. Program I/O Report (Part 2 of 3)

Monitoring I/O for Application Program DL/I Calls

456 Utilities Reference: System

The I/O waits for the calls to the I/O PCB are grouped as the first entries for a PSB.

For DC DL/I calls, the data set for which the I/O took place is indicated under the

DDN/FUNC heading, and the module code tells you what type of conflict caused the

wait. For external subsystem calls, the function is indicated under the DDN/FUNC

heading, and the module code indicates the source of the call entry.

Names other than LGMSG and SHMSG can appear under the DDN/FUNC column for

I/O PCBs.

If the program is designated as wait for input and has to wait for the input of the

next message, the wait entry is marked **WFI under the DDN/FUNC heading and no

entry appears in the MODULE column. The time spent waiting for the next input

message is shown under wait time. **WFI entries are shown for information only

and their values are not used to compute statistics.

Monitoring MFS Activity

You can obtain a summary of all activity that occurs for management of message

format buffer pool use from the Message Format Buffer Pool report. The report is

illustrated in Figure 183 on page 458. The data shows the counts at the start and

end of the trace interval and their difference.

When message formatting occurs, the appropriate message blocks must reside in

the message format buffer pool, a DIF/MID pair for input or a DOF/MOD pair for

output. If the blocks are not already in the buffer, I/O to the active IMSFORMATA/B

library must occur. Block retrieval can involve a prior directory lookup, or be direct,

using an index kept in the pool.

Many of the counts reveal details of internal event management. The number of

times there is no directory entry for a block implies extra directory lookup I/O.

Delays caused by unavailable FRE entries are recorded as request-ignored counts.

 MONITOR ****PROGRAM I/O**** TRACE START 1993 022 14:00:18 TRACE STOP 1993 022 14:02:20 PAGE 0090

 IWAIT TIME..........

PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC MODULE

_______ ___ ____ ______ _____ ____ _______ ________ ______

PROGHR2D HOTELDBD 31 2130585 68728 769130 HOSINDXD VBH

 3 115999 38666 56394 HOTELDBA DBH

 2 69833 34916 43470 HOTELDBC DBH

 2 41430 20715 28020 HOSINDOD VBH

 4 5515374 1378843 1458884 PI HOSINDXD....

 4 3997017 999254 1026228 PI HOTELDBD....

PCB TOTAL

___ _____ 142 18149345 127812

PSB TOTAL

___ _____ 192 21208696 110461

Figure 182. Program I/O Report (Part 3 of 3)

Monitoring I/O for Application Program DL/I Calls

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 457

Monitoring Message Queue Handling

A key resource that directly affects the efficiency of transaction processing is the

message queue pool and the management of the I/O to the message queues. You

can examine the activity by looking at the Message Queue Pool report. Figure 184

illustrates the report contents. Counts of activities are given at start and end of the

trace interval and as the differences between start and end numbers.

I M S M O N I T O R BUFFER POOL STATISTICS TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0007

 M E S S A G E F O R M A T B U F F E R P O O L

 5:55:15 5:59:49

 START TRACE END TRACE DIFFERENCE

 NUMBER OF P/F REQUESTS 0 0 0

 NUMBER OF I/F REQUESTS 18 20 2

 NUMBER OF I/F I/O’S 2 2 0

 NUMBER OF TIMES POOL COMPRESS WOULD BE SUCCESSFUL 0 0 0

 NUMBER OF DIRECTORY I/O OPERATIONS 2 2 0

 NUMBER OF TIMES BLOCK WASHED FOR FRE 0 0 0

 NUMBER OF TIMES P/F REQUEST IGNORED 0 0 0

 NUMBER OF F/B REQUESTS 18 20 2

 NUMBER OF TIMES F/B REQUEST IGNORED 0 0 0

 NUMBER OF TIMES I/F ON F/B QUEUE 16 18 2

 NUMBER OF TIMES I/F ON I/F QUEUE 0 0 0

 NUMBER OF TIMES F/B ON I/F QUEUE 18 20 2

 NUMBER OF TIMES P/F ON I/F QUEUE 0 0 0

 NUMBER OF TIMES P/F ON F/B QUEUE 0 0 0

 NUMBER OF TIMES THERE WAS NO DIR ENTR FOR A BLOCK 0 0 0

 NUMBER OF TIMES I/O ERRORS POINT OR READ MACRO 0 0 0

 NUMBER OF IMMEDIATE I/O REQUESTS WAITED DUE TO MAXIMUM I/O 0 0 0

 NUMBER OF REQUESTS SATISFIED BY INDEX/DYNAMIC DIRECTORY 0 0 0

 QUOTIENT : IMMEDIATE FETCH I/O’S + DIRECTORY I/O’S OPERATIONS = 0.00

 TOTAL NUMBER OF TRANSACTIONS

Figure 183. Message Format Buffer Pool Report

I M S M O N I T O R BUFFER POOL STATISTICS TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0002

 M E S S A G E Q U E U E P O O L

 5:55:15 5:59:49

 START TRACE END TRACE DIFFERENCE

 NUMBER OF LOCATE CALLS FROM QMGR 54204 68436 14232

 NUMBER OF RECORD RELEASE CALLS FROM QMGR 16431 20738 4307

 NUMBER OF LOCATE AND ALTER CALLS FROM QMGR 131593 164744 33151

 NUMBER OF REQUESTS TO PURGE THE Q POOL 2 2 0

 NUMBER OF ADDRESS TO DRRN TRANSLATION REQUESTS 21351 27076 5725

 NUMBER OF REQUESTS TO WAIT FROM QMGR 0 0 0

 NUMBER OF READ REQUESTS 962 962 0

 NUMBER OF WRITE REQUESTS(TOTAL) 499 499 0

 NUMBER OF WRITES DONE BY PURGE 499 499 0

 NUMBER OF WAITS FOR PURGE COMPLETION 1 1 0

 NUMBER OF WAITS BECAUSE NO BUFFER AVAILABLE 0 0 0

 NUMBER OF WAITS FOR OTHER DECB TO READ THIS BUFFER 823 823 0

 NUMBER OF WAITS FOR OTHER DECB TO WRITE THIS BUFFER 0 0 0

 NUMBER OF WAITS FOR CONFLICTING END DEQ BUFFER REQ 0 0 0

 NUMBER OF PSBS UNCHAINED FROM BUFFERS 0 0 0

 NUMBER OF CALLS TO QMGR.(TOTAL) 48164 62213 14049

 NUMBER OF CALLS TO REPOSITION A LOST BUFFER 0 0 0

 NUMBER OF CALLS TO ENQ A MESSAGE 10583 13441 2858

 NUMBER OF CALLS TO DEQ ONE OR MORE MESSAGE 6321 7767 1446

 NUMBER OF CALLS TO CANCEL INPUT OR OUTPUT 119 121 2

 QUOTIENT : TOTAL NUMBER OF OSAM READS + OSAM WRITES + ALL IWAITS = 0.00

 TOTAL NUMBER OF TRANSACTIONS

Figure 184. Message Queue Pool Report

Monitoring Message Queue Handling

458 Utilities Reference: System

Detecting Checkpoint Effects

When a checkpoint command specifies SNAPQ, the current status of all message

queues is written to the system log. This prevents any message handling on behalf

of queue management. General Iwait Time Events report records the wait time

incurred by the SNAPQ. Figure 185 shows the activity on the summary line QMGR

SNAPQ CHECK. The number of occurrences is given with the total, average, and

maximum wait times.

Transaction Queuing Report

In addition to monitoring the efficiency of message handling, you can monitor the

service provided for each application, by looking at the size of the transaction

queues at each scheduling of their processing programs.

The Transaction Queuing report shown in Figure 186 on page 460 records, for each

transaction, the minimum, average, and maximum counts at scheduling time. The

total number of dequeued transactions (or transactions that have been fully

processed) during the monitored interval is given for each transaction code. The

average number of transactions processed for each scheduling is given in the

DEQUEUED MEAN column.

 IMS MONITOR ** GENERAL REPORTS ** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0009

 GENERAL IWAIT TIME EVENTS

 EVENT IWAIT TIME........... DISTRIBUTION

 IWAITS OCCURRENCES TOTAL MEAN MAXIMUM NUMBER

 ______ ___________ _____ ____ _______ ______

QMGR SNAPQ CHECK 0 0 0 0 0

 REGION AND JOBNAME REPORT

REG. NO. JOB NAME

________ ________

 1 MPR1A100

 2 MPR1A209

 3 MPR1A210

 4 MPR1A211

 5 MPR1A103

 6 MPR1A101

 7 MPR1A115

 8 MPR1A116

 9 MPR1A216

 10 MPR1A200

 11 MPR1A217

 12 MPR1A119

 13 MPR1A218

 14 MPR1A219

 15 MPR1A104

 16 MPR1A220

 17 MPR1A203

 18 MPR1A123

 19 MPR1A222

 20 MPR1A105

 21 MPR1A124

 22 MPR1A223

 23 MPR1A107

 24 MPR1A224

 25 MPR1A106

 26 MPR1A206

 27 MPR1A205

 28 MPR1A108

 29 MPR1A109

 30 MPR1A208

 31 MPR1A111

 32 MPR1A112

 33 MPR1A113

 34 MPR1A204

 35 MPR1A114

 36 MPR1A102

 48 MPR1A121

 49 MPR1A122

 50 MPR1A221

Figure 185. General Reports for SNAPQ Effects

Monitoring Message Queue Handling

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 459

Monitoring Line Activity

You can obtain a summary of all occurrences of activity for each BTAM line or

VTAM node that handles message traffic during the monitored interval. The elapsed

times and NOT-WAIT times are given in categories of total, mean, and maximum

times for each communication line in the Communication Summary report.

Figure 187 on page 461 illustrates this report.

Requirement: You must match which physical devices are using the line to the

Stage 1 output from system definition. The line numbers are assigned sequentially,

according to their physical occurrence in the Stage 1 input deck.

If your online system specifies the prefetch option for MFS blocks in the control

region JCL, the last line of the report contains the statistics for all prefetch events.

You can also investigate the amount of data transmitted across BTAM lines or for

VTAM nodes with the Line Functions report. Figure 188 on page 461 illustrates this

report. The report distinguishes between input data and output data. The number of

blocks of data and the average and maximum size of the blocks are recorded for

data received by IMS and for transmitted data.

 IMS MONITOR ****TRANSACTION QUEUING**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0181

 (B) (A)

 NUMBER NUMBER ..ON QUEUE WHEN SCHEDULED..... DEQUED DISTRIBUTION

TRANSACTION DEQUED SCHEDS. MINIMUM MEAN MAXIMUM MEAN NUMBER

___________ ______ ______ _______ ____ _______ ____ ______

 SC6X 13 1 0 0.00 0 13.00 883A,B

 IT8W 17 3 0 0.00 0 5.66 887A,B

 TS1Z 16 1 0 0.00 0 16.00 891A,B

 PS3X 23 1 0 0.00 0 23.00 895A,B

 PS3Y 17 7 0 0.00 0 2.42 899A,B

 IT1V 11 6 0 0.00 0 1.83 903A,B

 SC2Z 143 2 0 0.00 0 71.50 907A,B

 IT8U 12 7 0 0.00 0 1.71 911A,B

 PS2W 10 1 0 0.00 0 10.00 915A,B

 TS1U 12 4 0 0.00 0 3.00 919A,B

 PS3W 14 1 0 0.00 0 14.00 923A,B

 IT8Y 16 5 0 0.00 0 3.20 927A,B

 IT1W 9 1 0 0.00 0 9.00 929A,B

 SC2W 9 1 0 0.00 0 9.00 933A,B

 IT2V 13 5 0 0.00 0 2.60 937A,B

 IT2W 17 6 0 0.00 0 2.83 941A,B

 TS1V 9 1 0 0.00 0 9.00 945A,B

 SC2V 12 5 0 0.00 0 2.40 947A,B

 TS1W 11 1 0 0.00 0 11.00 949A,B

 PS3V 13 3 0 0.00 0 4.33 953A,B

 IT1U 9 6 0 0.00 0 1.50 957A,B

 SC4U 11 5 0 0.00 0 2.20 962A,B

 SC6W 10 1 0 0.00 0 10.00 966A,B

 PS2V 8 6 0 0.00 0 1.33 970A,B

 IT8X 12 1 0 0.00 0 12.00 974A,B

 SC4W 10 1 0 0.00 0 10.00 978A,B

 SC6U 14 6 0 0.00 0 2.33 982A,B

 IT2Y 9 3 0 0.00 0 3.00 986A,B

 SC2X 15 1 0 0.00 0 15.00 990A,B

 PS2Y 17 2 0 0.00 0 8.50 994A,B

 SC4Y 152 4 0 0.50 1 38.00 998A,B

 SC2Y 106 2 0 0.00 0 53.00 1000A,B

 IT2X 20 1 0 0.00 0 20.00 1004A,B

 SC2U 15 3 0 0.00 0 5.00 1008A,B

 SC4Z 123 5 0 0.60 1 24.60 1010A,B

 TS1X 15 1 0 0.00 0 15.00 1015A,B

 SC4X 19 1 0 0.00 0 19.00 1019A,B

 PS2X 13 1 0 0.00 0 13.00 1024A,B

 PS2Z 20 5 0 0.00 0 4.00 1028A,B

 SC6Z 130 1 0 0.00 0 130.00 1031A,B

 SC6V 10 4 0 0.00 0 2.50 1035A,B

 SC6Y 143 1 0 0.00 0 143.00 1037A,B

 IT1X 10 1 0 0.00 0 10.00 1040A,B

 PS3U 19 6 0 0.00 0 3.16 1131A,B

 IT2U 13 4 0 0.00 0 3.25 1146A,B

Figure 186. Transaction Queuing Report

Monitoring Line Activity

460 Utilities Reference: System

This report also includes a measure of how inactive the lines are. An inactive

interval is assumed to be the difference between the time that marks the end of the

last input block received and the starting time for output transmission. These

occurrences of inactivity are termed turnaround intervals, and the report cumulates

the number of occurrences as well as the average and maximum times associated

with these intervals.

If the line is being used by an MFS supported terminal, a count of the number of

requests for next page for a multipage message is recorded.

If link traffic for coupled multiple systems is recorded, a set of three reports follows

the Line Functions report. These are described in “Interpreting IMS Monitor MSC

Reports” on page 468.

Monitoring Message Handling Efficiency

The IMS Monitor produces both summary and detailed information on asynchronous

processing in the IMS control region. The arrival of data transmitted from BTAM

terminals or from VTAM triggers the processing. Application program responses

also result in processing. The space in four major buffer pools and access to

format, SPA, and message queue data sets are managed for the total

communications traffic. Wait times are recorded when contention for pool space or

I/O interrupts the processing of any of the communication tasks triggered by line

activity. This information is contained in the Communication Wait report. Figure 189

on page 462 illustrates this report.

This report is complementary to the Communication Summary report in that the line

number is used as an identification for the series of communication processing

tasks.

 IMS MONITOR ****COMMUNICATION SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0089

 (A) (B)

 NODE OR ELAPSED TIME......... NOT IWAIT TIME(ELAPSED-IWAIT) DISTRIBUTION

 LINE NUMBER OCCURRENCES TOTAL MEAN MAXIMUM TOTAL MEAN MAXIMUM NUMBER

 ____ ______ ___________ _____ ____ _______ _____ ____ _______ ______

 PMTO1A 3 2396 798 1547 2396 798 1547 1467A,B

 19 182 92155 506 1106 92155 506 1106 1493A,B

 2 59 2280 38 41 2280 38 41 1515A,B

 TOTAL

 _____ 244 96831 396 96831 396

Figure 187. Communication Summary Report

 IMS MONITOR ****LINE FUNCTIONS*** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0091

 (A)......................(B)...............

 MEAN MAX. MEAN MAX. . TURN . .

 NODE OR DEVICE RECEIVE RECEIVE RECEIVE TRANS. TRANS. TRANS. DIST. AROUND MEAN MAX. DIST. PAGING

LINE NUMBER TYPE BLOCKS BLKSIZE BLKSIZE BLOCKS BLKSIZE BLKSIZE NUMBER INTERVALS INTERVAL INTERVAL NUMB. REQUESTS

____ ______ ____ ______ _______ _______ ______ _______ _______ ______ _________ ________ ________ _____ ________

 PMTO1A 3270V 1 29 29 2 170 171 1468A,B 3 798 1547 1466 0

 19 XXXX 182 506 1106 1492 0

 2 LOC SYS 59 38 41 1514 0

ALL LINES

___ _____ 1 29 2 170 244 396 0

Figure 188. Line-Functions Report

Monitoring Line Activity

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 461

IMS Internal Resource Usage

There are several summary reports that you can use to examine the level of

internal contention for resources. The following sections give a brief explanation of

these reports.

Pool Space Contention

The Pool Space Failure Summary report gives the number of times in each region a

given amount of storage was unavailable. It shows the number of bytes and the

identification of the pool as well as the number of occurrences of this failure to

obtain storage. You can use this summary to determine whether you need to

increase the buffer pool allocation by a system definition change or by overriding

the number of buffers in the EXEC statements in the JCL.

The format of the report is shown in Figure 190.

IMS Latch Conflict

The basic serialization of the task processing in IMS is controlled by ownership of

an IMS latch. When different programs are executing, they compete for the

ownership. If they wait for the resource, the one possessing the latch has to post

the other ITASK waiting for it. You can judge the level of contention for a resource

and then investigate a set of changes to relieve the pressure.

The different types of latches and the counters that exhibit the level of contention

are given in the Latch Conflict Statistics report. Figure 191 on page 463 is an

example of this report. The entries are organized according to the latch names.

For the latch names and abbreviations for the different types of resources being

serialized, see “IMS Latch Conflict” on page 407.

When a system checkpoint is taken during the time the monitor is active, latch

conflict statistics are reset to zero, thus corrupting the values presented in this

report. If this situation exists, the following message will be inserted at the top of the

report:

**** A CHECKPOINT OCCURRED DURING MONITOR RUN ****

**** LATCH CONFLICT STATISTICS ARE INVALID ****

**** SEE UTILITIES REFERENCE MANUAL ****

 IMS MONITOR ****COMMUNICATION IWAIT***** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0090

 NODE OR IWAIT TIME.......... DIST.

LINE NUMBER OCCURRENCES TOTAL MEAN MAXIMUM FUNCTION BLKSIZE MODULE NO.

____ ______ ___________ _____ ____ _______ ________ _______ ______ ____

ALL LINES...

PREFETCH I/O

________ ___ NONE

Figure 189. Communication Wait Report

POOL SPACE FAILURE SUMMARY

 POOL ID BYTES REQ. OCCURRENCES

 DLMP 8888 1

 TOTAL 1

Figure 190. Pool Space Failure Report

IMS Internal Resource Usage

462 Utilities Reference: System

However, if the master terminal operator issues the /CHECKPOINT command with the

STATISTICS keyword parameter, latch conflict statistics are reset to zero, but the

IMS monitor is not notified. Therefore, DFSUTR20 cannot detect that the statistics

have been corrupted and does not issue this message.

Recommendation: Do not issue statistics checkpoints while the Monitor is running.

The counters are primarily concerned with storage management and logging

services. The statistics recorded are the number of times contentions occur, that is,

the resource waits for a latch.

Using Frequency Distributions from IMS Monitor Output

The reports that are derived from the IMS Monitor data records contain many

summary lines where the mean time is given. If you are interested in the distribution

of those timed events, rather than just average and maximum times, you can

request the Report Print utility to individually record the events in a frequency

distribution across a range of intervals. Some distributions are not time dependent,

such as those for transaction queue loads or transmitted block sizes.

How to Get a Frequency Distribution Output

To request the IMS Monitor Report Print utility to gather distribution data, include a

DIS input control statement. This causes all report items with an entry under a

column headed MEAN to have a corresponding frequency distribution as part of the

Distribution Appendix report. Each report line includes an identifying reference

number under the column headed Distribution Number. You can use the reference

number to locate the distribution data flagged by that number in the appendix.

The following tables show the major IMS Monitor reports and the type of frequency

distributions generated for each report. Each type results in several distributions,

depending on how many entries are in each section of the report. For each type of

frequency distribution the data is cumulated in suitable intervals or ranges. The set

of ranges used for each type is given an identifier, shown in the ID column.

Table 45 on page 464 shows the report distributions sorted by Region Summary.

 IMS MONITOR ** GENERAL REPORTS ** TRACE START 1993 209...

 LATCH CONFLICT STATISTICS

LATCH COUNT AT AT

NAMES FIELD START END DIFF.

LOGL CONTENTIONS 0 0 0

SMGT CONTENTIONS 0 0 0

XCNQ CONTENTIONS 0 0 0

ACTL CONTENTIONS 0 0 0

CBTS CONTENTIONS 0 0 0

DBLK CONTENTIONS 0 0 0

Figure 191. Latch Conflict Statistics Report

IMS Internal Resource Usage

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 463

Table 45. Report Distributions by Region Summary

Report Name ID Description

Scheduling and Termination D1 Elapsed time

D2 Not wait time

Schedule end to 1st DL/I call D3 N/A

Elapsed execution time DL/I calls D4 N/A

D5 Elapsed time

External Subsystem calls D6 Not wait time

Waits per DL/I call D43 Elapsed time

Idle for intent Checkpoint D7 N/A

D8 N/A

D20 Elapsed time

D21 Not wait time

Table 46 shows the report distributions Programs Region.

 Table 46. Report Distributions by Program Region

Report Name ID Description

Elapsed execution time D30 N/A

Schedule and to 1st DL/I call D31 N/A

Table 47 shows the report distributions sorted by Program Summary.

 Table 47. Report Distributions by Program Summary

Report Name ID Description

Processor time per schedule D15 N/A

Transactions dequeued per schedule D14 N/A

Elapsed time per schedule D9 N/A

Schedule end to 1st DL/I call D10 N/A

Table 48 shows the report distributions sorted by Communication Summary.

 Table 48. Report Distributions by Communication Summary

Report Name ID Description

Line elapsed time D18 N/A

Line not wait time D19 N/A

Table 49 shows the report distributions sorted by Line Functions.

 Table 49. Report Distributions by Line Functions

Report Name ID Description

Received block length D36 N/A

Transmitted block length D37 N/A

Inactive intervals D38 N/A

Using Frequency Distributions

464 Utilities Reference: System

Table 50 shows the report distributions sorted by MSC Queuing Summary.

 Table 50. Report Distributions by MSC Queuing Summary

Report Name ID Description

Time in queue D39 N/A

Table 51 shows the report distributions sorted by Transaction Queuing.

 Table 51. Report Distributions by Transaction Queuing

Report Name ID Description

Transactions on queue at schedule D17 N/A

Transactions dequeued per schedule D16 N/A

Prefetch format blocks D28 Elapsed time

D29 Not wait time

Table 52 shows the report distributions sorted by Call Summary.

 Table 52. Report Distributions by Call Summary Queuing

Report Name ID Description

PSB waits per DL/I call D13 N/A

PSB waits per external subsystem call D44 N/A

PSB elapsed time per call D11 N/A

PSB not wait time per call D12 N/A

PSB external subsystem calls D45 Elapsed time

Table 53 lists some distributions derived from buffer pool statistics for wait times.

 Table 53. Wait Time Distributions

Function ID Module Key

Storage D22 SMN

Scheduler internal D25 MSC

Queue manager I/O D26 QMG

Block loader I/O D27 BLR

MFS block I/O D32 MFS

MFS directory I/O D33 MFS

Format buffer pool space D35 PMM

QMGR SNAPQ check D42 None

How Frequency Distribution Ranges Are Defined

A set of ten intervals is defined for each summary line and the occurrences falling in

each interval are cumulated. The interval ranges are preset with default end points.

For example, the end points, for DL/I call elapsed time are: 0, 1000, 2000, 4000,

Using Frequency Distributions

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 465

8000, 16000, 32000, 64000, 128000, 256000, INF (all times are in milliseconds).

The default end points are chosen so that they are suitable to the event. The lower

limit of the first interval always defaults to zero, and the upper limit of the tenth

interval is infinity (INF).

Although several types of distribution can use the same set of end points, each type

is assigned a distribution identifier. You can use this to redefine the end points. To

override the default end points you include an input control statement to the Report

Print utility. The statement specifies the type of distribution identifier and gives the

desired end point values.

Example: The DL/I call elapsed time end points could be respecified by:

D5 0,500,1000,1500,2000,4000,,,100000,500000

The values of the unspecified end points remains at their default values of 32000

and 64000 as does the last (INF).

Figure 192 shows a sample page from the Distribution Appendix report, which gives

an example of how ranges vary with the type of distribution. The lines are arranged

in pairs, with the second one recording the cumulated counts.

Default Values of Distribution Definitions

Using an identifier provided in the frequency distribution tables (Table 45 on page

464 through Table 52 on page 465) and the Wait Time Distributions table (Table 53

on page 465) you can determine the default end points for the distribution by

locating it in the following list:

D1, D2, D5, D6, D9, D10, D11, D12, D15 D18, D19, D20, D21, D22, D25, D27,

D28, D29, D30, D31, D43, and D45

0, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000,

INF

 IMS MONITOR ****DISTRIBUTION APPENDIX**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0200

1...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

2...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

3...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

4...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

5...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 6

6...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 8

7...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

8...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 9

9...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

10...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 1 0 0 0 0 0 0 0 0 7

11...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

12...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 8

13...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

14...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

15...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 1 0 0 0 0 0 0 0 0 8

16...........0.....200000.....400000.....600000.....800000....1000000....1200000....1400000....1600000....1800000....INF

 0 0 0 0 0 0 0 0 0 1

Figure 192. Distribution Appendix Report

Using Frequency Distributions

466 Utilities Reference: System

D3 0, 50000, 100000, 150000, 200000, 250000, 300000, 350000,

400000, 450000, INF

D4 0, 200000, 400000, 600000, 800000, 1000000, 1200000, 1400000,

1600000, 1800000, INF

D7, D13, D44 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, INF

D8 0, 100000, 200000, 300000, 400000, 500000, 600000, 700000,

800000, 900000, INF

D14, D16, D17

0, 1, 2, 3, 4, 5, 10, 15, 30, 90, INF

D23, D24, D26, D32, D40, D42

0, 2000, 8000, 24000, 50000, 100000, 150000, 200000, 250000,

300000, INF

D33, D34, D35

0, 2000, 4000, 8000, 16000, 32000, 64000, 96000, 128000,

160000, INF

D36, D37 0, 10, 20, 40, 80, 100, 200, 400, 800, 1000, INF

D38 0, 1000, 10000, 100000, 200000, 500000, 800000, 1000000,

1500000, 2000000, INF

D39 0, 1000, 5000, 10000, 50000, 100000, 500000, 1000000, 5000000,

10000000, INF

Interpreting Distribution Appendix Output

You can use the detailed output in the Distribution Appendix when you suspect an

unusual combination of events was reported in a report summary line. Usually, the

average and maximum times or counts are sufficient to highlight a resource usage

problem. However, if you suspect the mean value to be masking an unusual

distribution you can draw on the detail contained in the IMS Monitor output records.

For example, suppose you are investigating a change in the scheduling algorithm

for a particular transaction and need to know how many transactions were able to

be processed for each scheduling of an application program. Figure 193 shows the

processed transactions in a histogram:

Figure 193. Number of Transactions Processed For Each Scheduling Of An Application

Program

Using Frequency Distributions

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 467

The average is 2.5 transactions per schedule. The distribution in Figure 193 on

page 467 suggests that many schedules were able to process only one or two

transactions, and few schedules significantly exhausted the queue. The distribution

data for the histogram is as follows:

Number of schedules 1 2 3 4 5 6-10 >10

Transactions dequeued 8 7 0 0 2 1 0

The Distribution Appendix presents the histogram data in the form of two lines:

v The first line shows the intervals, prefixed by a cross reference to an individual

line on the earlier output.

v The second line gives the number of events occurring in those intervals.

This data appears as follows:

950B...0...1...2...3...4...5...10...15...30...90...INF

 8 7 0 0 2 1 0 0 0 0

The cross reference 950B points to a unique report line. For example, the

Transaction Queuing report on the appropriate line for the transaction of interest

shows 950A,B under the column headed DISTRIBUTION NUMBER. Use the reference

number 950B to locate the data in the Distribution Appendix. The 950A reference

points to the data for the number of transactions in the queue at schedule time.

Interpreting IMS Monitor MSC Reports

The IMS Monitor Report Print program includes three reports that highlight message

events caused by system coupling. They are:

v MSC Traffic report

For the monitor interval, this report shows the enqueue and dequeue counts of

messages that use the various link paths.

v MSC Summaries

This report shows summaries of:

– The traffic queues for each input transaction name

– The traffic queues for each destination name

– The traffic queues for each link number

– The traffic queues for each destination system

v MSC Queuing Summary report

This report is generated only when intersystem messages are queued on the

local system before being sent to the destination system. The local system must

be an intermediate system. This report shows:

– Maximum time messages spend in queues

– Average time messages spend in queues

– Maximum queue lengths

– Maximum queue counts

– Total number of messages queued for all links in which the local system

participates

All three of the reports can have entries in the Distribution Appendix. You can

examine the frequency distributions of the traffic if you suspect unusual

transmission patterns.

Using Frequency Distributions

468 Utilities Reference: System

Determining Cross–System Queuing

The MSC Traffic report reveals the individual queue loads for all traffic between

partner systems of which the monitored system is the local system. The report lists

all the unique system identification numbers (SIDs) that are defined for

communications for that local system. It then summarizes the total messages

queued and dequeued for each combination of the following variables:

v Input name (terminal or program that was a message source)

v Destination name (terminal or program)

v Input system (SID)

v Destination system (SID)

v Link number

v Link type (BSYN, MTM, CTC, or VTAM)

Figure 194 on page 470 illustrates this report. If a message originates in the local

system, its presence is accounted for in the dequeue counts only. Messages with

local destinations appear only in the enqueue count.

Interpreting IMS Monitor MSC Reports

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 469

Assessing the Effect of Link Loading

The MSC Summaries report shows you the enqueue and dequeue activity for

messages that are handled by the local system but are part of the multiple system

coupling traffic. The report format is illustrated in Figure 195 on page 471.

The first set of queuing counts shows how many transactions of each type were

entered in the monitor interval, and how many were subsequently dequeued.

The second set of counts summarizes the total traffic for each destination name.

You can distinguish the primary transactions and responses by the resource names

and examine the relative servicing of the link transmissions using the difference

between the enqueue and dequeue counts.

The third set of counts lists the active links by link number, and you can determine

if there is a buildup on the link by the difference in the enqueue and dequeue

counts.

 IMS MONITOR ****MSC TRAFFIC REPORT**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0151

LOCAL SID VALUES = 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115

 INPUT DESTIN. INPUT DEST. LINK LINK ENQUEUE DEQUEUE

 NAME NAME SID SID NO. TYPE COUNT COUNT

 ____ ____ ___ ___ __ ____ _____ _____

DSWT3685 DSWT3685 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT6161 DSWT6161 3 3 3 C-C 0 1

 SC6Z 3 103 3 C-C 1 0

DSWT3838 DSWT3838 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT4618 DSWT4618 3 3 3 C-C 0 1

 SC6Z 3 103 3 C-C 1 0

DSWT3903 DSWT3903 3 3 3 C-C 0 1

 SC2Z 3 103 3 C-C 1 0

DSWT5418 DSWT5418 3 3 3 C-C 0 1

 SC4Z 3 103 3 C-C 1 0

DSWT4673 DSWT4673 3 3 3 C-C 0 1

 SC2Z 3 103 3 C-C 1 0

DSWT5141 DSWT5141 45 45 45 VTAM 0 1

 PS3X 45 145 45 VTAM 1 0

DSWT4391 DSWT4391 2 2 2 C-C 0 1

 SC4Y 2 102 2 C-C 1 0

DSWT3324 DSWT3324 17 17 17 VTAM 0 1

 IT1Y 17 117 17 VTAM 1 0

DSWT4781 DSWT4781 3 3 3 C-C 0 1

 SC4Z 3 103 3 C-C 1 0

DSWT3525 DSWT3525 3 3 3 C-C 0 1

 SC6Z 3 103 3 C-C 1 0

DSWT4542 DSWT4542 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT5796 DSWT5796 3 3 3 C-C 0 1

 SC2Z 3 103 3 C-C 1 0

DSWT4782 DSWT4782 3 3 3 C-C 0 1

 SC6Z 3 103 3 C-C 1 0

DSWT4633 DSWT4633 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT3655 DSWT3655 12 12 12 VTAM 0 1

 SC6U 12 112 12 VTAM 1 0

DSWT3892 DSWT3892 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT3338 DSWT3338 4 4 4 VTAM 0 1

 SC2U 4 104 4 VTAM 1 0

DSWT4681 DSWT4681 3 3 3 C-C 0 1

 SC4Z 3 103 3 C-C 1 0

DSWT4482 DSWT4482 2 2 2 C-C 0 1

 SC6Y 2 102 2 C-C 1 0

DSWT4902 DSWT4902 3 3 3 C-C 0 1

 SC2Z 3 103 3 C-C 1 0

DSWT4558 DSWT4558 3 3 3 C-C 0 1

DSWT4558 SC6Z 3 103 3 C-C 1 0

DSWT3925 DSWT3925 2 2 2 C-C 0 1

TOTAL TRAFFIC

_____ _______ 1353 1359

Figure 194. MSC Traffic Report

Interpreting IMS Monitor MSC Reports

470 Utilities Reference: System

The fourth set of counts records the traffic that is going to other systems by

whatever link path. You can judge by the difference in enqueue and dequeue

counts whether the overall pattern of link priorities to one or more systems is

causing buildup of cross system traffic.

Assessing Link Queuing Times

The MSC Queuing Summary report provides information about intersystem

message traffic only. You can use the sample of traffic recorded in the IMS Monitor

interval to examine the maximum and average time messages spend in queues

waiting to be sent on active links. You can detect whether the link priorities are

causing undue delay of primary messages through the intermediate system or

whether there is a buildup of responses. The report shows the logical link paths for

this system which is an intermediate system. Each incoming link number shows the

number of messages that are queued before transmission on their specified

outward bound link number. The maximum queue count is given as well as the

maximum and average time on the intermediate system queues.

The report is illustrated in Figure 196 on page 472.

 IMS MONITOR ****MSC SUMMARIES**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0178

<----SUMMARY BY INPUT NAME----->|<---SUMMARY BY DESTINATION NAME--->|<--SUMMARY BY LOGICAL LINK--->|<---SUMMARY BY DEST. SYS. ID-->

 | | |

 INPUT ENQUEUE DEQUEUE | DESTIN. ENQUEUE DEQUEUE | LINK ENQUEUE DEQUEUE | DEST. ENQUEUE DEQUEUE

 NAME COUNT COUNT | NAME COUNT COUNT | NO. COUNT COUNT | SID COUNT COUNT

 ____ _____ _____ ____ _____ _____ ___ _____ _____ ___ _____ _____

 | | |

DSWT3577 1 1 | DSWT4358 0 1 | |

DSWT4048 1 1 | DSWT5988 0 1 | |

DSWT5216 1 1 | DSWT5457 0 1 | |

DSWT4776 1 1 | DSWT5187 0 1 | |

DSWT5496 1 1 | DSWT3312 0 2 | |

DSWT5277 1 1 | DSWT5604 0 1 | |

DSWT5711 1 1 | DSWT3347 0 1 | |

DSWT5274 1 1 | DSWT5338 0 1 | |

DSWT5807 1 1 | DSWT3268 0 1 | |

DSWT3685 1 1 | DSWT3676 0 1 | |

DSWT6161 1 1 | DSWT5428 0 1 | |

DSWT3838 1 1 | DSWT5395 0 1 | |

DSWT4618 1 1 | DSWT4168 0 1 | |

DSWT3903 1 1 | DSWT5061 0 1 | |

DSWT5418 1 1 | DSWT3511 0 1 | |

DSWT4673 1 1 | DSWT3363 0 1 | |

DSWT5141 1 1 | DSWT3674 0 1 | |

DSWT4391 1 1 | DSWT4467 0 1 | |

DSWT3324 1 1 | DSWT4501 0 1 | |

DSWT4781 1 1 | DSWT5037 0 1 | |

DSWT3525 1 1 | DSWT4298 0 1 | |

DSWT4542 1 1 | DSWT5778 0 1 | |

DSWT5796 1 1 | DSWT4003 0 1 | |

DSWT4782 1 1 | DSWT3988 0 1 | |

DSWT4633 1 1 | DSWT4217 0 1 | |

DSWT3655 1 1 | DSWT6135 0 1 | |

DSWT3892 1 1 | DSWT5147 0 1 | |

DSWT3338 1 1 | DSWT5381 0 1 | |

DSWT4681 1 1 | DSWT5593 0 1 | |

DSWT4482 1 1 | DSWT3304 0 1 | |

DSWT4902 1 1 | DSWT5081 0 1 | |

DSWT4558 1 1 | DSWT4671 0 1 | |

 | DSWT3655 0 1 | |

 | DSWT3892 0 1 | |

 | DSWT3338 0 1 | |

 | DSWT4681 0 1 | |

 | DSWT4482 0 1 | |

 | DSWT4902 0 1 | |

 | DSWT4558 0 1 | |

 | DSWT3925 0 1 | |

Figure 195. MSC Summaries Report

Interpreting IMS Monitor MSC Reports

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 471

Extracting Multiple System Transaction Statistics

You can use the Log Transaction Analysis utility to obtain counts of the message

traffic both in local systems and between systems. The transmissions over the

different types of physical links can also be examined. The activity is summarized

for each step of the logical link paths. You must provide IMS system log input that

reflects all partner system activity, that is, sets of system logs for each MSC

system. To coordinate the sets of individual system logs you use the Log Merge

utility. Up to nine separate system logs can be merged; each log must be the output

of a uniquely identified IMS system with MSC installed.

Controlling the Log Merge

To control the log output, you must:

v Choose the required systems that take part in the logical link paths you are

examining.

v Coordinate the series of input logs for each system so that they cover a similar

time span.

v Specify a start and stop time for the Log Merge utility control statements if you

are to sampling the cross system processing for a particular interval.

You can give both start date (Julian) and time of day, or just time of day. These

times apply to the first system log specified by the LOG01 DD statement. Other

log activity is collected if it occurs between the initial and final events present on

the first log.

v Specify MSG to select log records that are suitable for the transaction analysis

step. (ALL records is the default, but this means the DL/I activity for several

systems is included in the utility input and this could cause extended processing

time.)

Interpreting the Transaction Analysis Report

You can use the Log Analysis report produced by the Log Transaction Analysis

utility to obtain the following statistics for individual transactions processed in any

system:

v The total response time

v The time on input and output queues

v The processing time

Chapter 22, “Interpreting Statistical-Analysis and Log-Transaction Reports,” on page

491 defines the format of the detailed report records for this report, provides a list of

processing type codes, and shows an illustration of the report. The absence of

times for a message GU call or MPP termination in the report lines indicate an input

source or intermediate system report line.

 IMS MONITOR ****MSC QUEUING SUMMARY**** TRACE START 1993 130 5:55:15 TRACE STOP 1993 130 5:59:49 PAGE 0180

 ENQUE..... DEQUE..... MAX.Q MAX. MEAN DIST.

LINK NO.TYPE LINK NO.TYPE MESSAGES LENGTH Q TIME Q TIME NUMBER

_______ ____ _______ ____ ________ ______ ______ ______ ______

 46 VTAM 46 VTAM 12 1 31468 9521 1475

 49 VTAM 49 VTAM 15 1 30235 8040 1503

 50 VTAM 50 VTAM 10 1 13042 5521 1539

 48 VTAM 48 VTAM 9 1 7730 4429 1762

 47 VTAM 47 VTAM 8 1 10035 5791 1998

TOTALS... 54 6967

Figure 196. MSC Queuing Summary Report

Extracting Multiple System Transaction Statistics

472 Utilities Reference: System

The processing type field is used to interpret the detailed report lines. The S code

indicates that the line shows a send or receive event for the transaction. You can

trace the progress of a cross system conversation using the codes C, D, P, X, and

Y.

The report includes a column headed SYS ID (located after the GU column that

indicates the message queue time). The number shown in a report line under the ID

heading matches the sequence in which log input was fed to the Log Merge utility.

The field corresponds to starting position 102, the 3-digit field named SYSTEM ID, in

the detailed report records.

You can use the sort step to order the report records by system ID within

transaction code, or some other convenient sequence, rather than by the default

which is the overall input sequence.

Extracting Multiple System Transaction Statistics

Chapter 20. Interpreting IMS Monitor Reports for DCCTL 473

474 Utilities Reference: System

Chapter 21. Interpreting //DFSSTAT Reports

The //DFSSTAT reports show you how many DB and DC calls are issued by an

application program and describe buffering activity during the application’s

execution. The reports are written when the application program terminates.

The following topics provide additional information:

v “JCL Description for //DFSSTAT”

v “Report Descriptions for //DFSSTAT”

JCL Description for //DFSSTAT

To get the reports, you must put a //DFSSTAT DD statement in the JCL of your

batch region or online dependent region. The following is an example of a

//DFSSTAT DD statement.

//DFSSTAT DD SYSOUT=A

Recommendation: Although it is supported, do not include the //DFSSTAT DD

statement in the JCL for an MPP region. If you do not include the //DFSSTAT DD

statement, you avoid the overhead and large amount of output that results from

creating one set of reports each time a short-running MPP terminates.

Report Descriptions for //DFSSTAT

The //DFSSTAT reports are as follows:

v PST-Accounting report

v VSAM-Buffer-Pool report (for batch regions only)

v OSAM-Buffer-Pool report (for batch regions only)

v Sequential-Buffering-Summary report

v Sequential-Buffering-Detail report

PST-Accounting Report

This report shows how many DB and DC calls are issued by an application

program.

Fields in the Report

Figure 197 on page 476 is an example of a PST-Accounting report and shows the

names of each field. Each field in this report represents one type of DB or DC call.

For example, the DB GU CALLS field shows how many database Get Unique calls

were issued by the application.

© Copyright IBM Corp. 1974, 2004 475

VSAM-Buffer-Pool Report

The VSAM-Buffer-Pool report describes VSAM buffer pool activity during the

execution of an application program. A separate report is written for each VSAM

sub-pool. The last VSAM-Buffer-Pool report summarizes the buffering activity in all

the VSAM sub-pools used by the application.

This report is written only for applications that you run in batch regions.

Fields in the Report

Figure 198 on page 477 is an example of a VSAM-Buffer-Pool report. This report is

identical to the VSAM-Buffer-Pool report written by the DB monitor, with the

following exceptions:

v Although the field names in the DB Monitor’s VSAM Buffer Pool report are

preceded by “NUMBER OF”, the fields in both reports have the same meaning.

v The //DFSSTAT VSAM-Buffer-Pool report does not keep track of the start trace

and end trace times. This is unnecessary because information is always gathered

for the //DFSSTAT reports from the beginning to the ending of the application’s

execution.

v The //DFSSTAT VSAM-Buffer-Pool report contains a “TOTAL I/O OPERATIONS”

field, which is the sum of the following:

 *** PST ACCOUNTING STATISTICS ***

DB GU CALLS 2

DB GN CALLS 2

DB GNP CALLS 1

DB GHU CALLS 1

DB GHN CALLS 1

DB GHNP CALLS 1

DB ISRT CALLS 2

DB DLET CALLS 1

DB REPL CALLS 1

DB CALLS (TOTAL) 12

DB DEQ CALLS 1

MSG GU CALLS 2

MSG GN CALLS 2

MSG CHNG CALLS 4

MSG ISRT CALLS 8

MSG PURGE CALLS 4

MSG CMD CALLS 1

MSG GCMD CALLS 1

MSG AUTH CALLS 1

MSG SETO CALLS 4

SYS APSB CALLS 0

SYS DPSB CALLS 0

SYS GMSG CALLS 2

SYS ICMD CALLS 1

SYS RCMD CALLS 2

SYS CHKP CALLS 0

SYS XRST CALLS 0

SYS ROLB CALLS 1

SYS ROLS CALLS 2

SYS SETS CALLS 1

SYS SETU CALLS 1

SYS INIT CALLS 1

SYS INQY CALLS 3

SYS LOG CALLS 1

Figure 197. PST-Accounting Report

PST-Accounting Report

476 Utilities Reference: System

– The number of times a CI was read into the buffer from the database

(CONTROL INTERVAL READ FROM EXTERNAL STORAGE field in the

report)

– The number of times a buffer was written to the database (VSAM WRITES

INITIATED BY IMS field in the report)

– The number of times a buffer was written to the database so a new CI could

be read into the buffer (VSAM WRITES TO MAKE SPACE IN THE POOL field

in the report).

– The //DFSSTAT VSAM-Buffer-Pool report includes a summary report. The

summary report is preceded by SUBPOOL BUFFER SIZE=ALL. It contains a

summary of read and write information for all VSAM Buffer Pool reports.

The fields that represent I/O operations are highlighted on the left by an asterisk (*).

Related Reading: See IMS Version 9: Utilities Reference: Database and

Transaction Manager for a description of the various fields in the report.

Using the Report

The primary use of the VSAM-Buffer-Pool report, an example is shown in

Figure 198, is to see how many I/O operations were issued in each VSAM sub-pool.

OSAM-Buffer-Pool Report

The OSAM-Buffer-Pool report describes the OSAM buffer pool activity during an

application’s execution. This report is only written for programs running in batch

regions.

 *** VSAM BUFFER POOL STATISTICS ***

 FIX INDEX/BLOCK/DATA N/Y/N

 SHARED RESOURCE POOL ID VPL1

 SHARED RESOURCE POOL TYPE D

 SUBPOOL BUFFER SIZE 4,096

 TOTAL BUFFERS IN SUBPOOL 1,000

 TOTAL HIPERSPACE BUFFERS IN SUBPOOL 50

 RETRIEVE BY RBA CALLS 370

 RETRIEVE BY KEY CALLS 187583

 LOGICAL RECORDS INSERTED INTO ESDS 310

 LOGICAL RECORDS INSERTED INTO KSDS 9823

 LOGICAL RECORDS ALTERED IN THIS SUBPOOL 0

 TIMES BACKGROUND WRITE FUNCTION INVOKED 0

 SYNCHRONIZATION CALLS RECEIVED 29923

 PERM WRT ERROR BUFFS NOW IN THE SUBPOOL 0

 LARGEST NBR OF PERM ERR BUFFS EVEN IN THE SUBPL 0

 VSAM GET CALLS ISSUED 0

 VSAM SCHBFR CALLS ISSUED 189290

 CONTROL INTERVAL REQUESTED ALREADY IN POOL 0

*CONTROL INTERVAL READ FROM EXTERNAL STORAGE 51238

*VSAM WRITES INITIATED BY IMS 138637

*VSAM WRITES TO MAKE SPACE IN THE POOL 9288

 VSAM READS FROM HIPERSPACE BUFFERS 0

 VSAM WRITES FROM HIPERSPACE BUFFERS 0

 FAILED VSAM READS FROM HIPERSPACE BUFFERS 0

 FAILED VSAM WRITES TO HIPERSPACE BUFFERS 0

*TOTAL I/O OPERATIONS 199163

Figure 198. VSAM-Buffer-Pool Report

PST-Accounting Report

Chapter 21. Interpreting //DFSSTAT Reports 477

Fields in the Report

Figure 199 on page 479 is an example of an OSAM-Buffer-Pool report.

The OSAM-Buffer-Pool report is identical to the Database-Buffer-Pool report written

by the DB monitor, with the following exceptions:

v The field names in the IMS Monitor’s Database-Buffer-Pool report are preceded

by “NUMBER OF”, although the fields have the same meaning in both reports.

v The //DFSSTAT OSAM-Buffer-Pool report does not keep track of the start trace

and end trace times. This is unnecessary because information is always gathered

for the //DFSSTAT reports from the beginning to the ending of the application’s

execution.

v In addition, the //DFSSTAT OSAM-Buffer-Pool report contains a “TOTAL I/O

OPERATIONS” field, which equals the sum of the following fields:

– READ REQUESTS ISSUED

– OSAM WRITES ISSUED

– QUEUED WRITES ISSUED

– FORMAT LOGICAL CYLINDER REQUESTS

– BISAM READS OR QISAM SETLS.

These fields represent I/O operations and are highlighted on the left by an

asterisk (*).

Related Reading: Refer to IMS Version 9: Utilities Reference: Database and

Transaction Manager for a description of the various fields in the OSAM-Buffer-Pool

Report.

Using the Report

The primary use of the OSAM-Buffer-Pool report, an example is shown in

Figure 199 on page 479, is to see how many OSAM I/O operations were issued.

This report does not, however, show Sequential Buffering (SB) related information.

PST-Accounting Report

478 Utilities Reference: System

Sequential-Buffering-Summary Report

The Sequential-Buffering-Summary report provides an overview of SB-related

information for the application. (VSAM-related information is not included.)

Sequential-Buffering Summary Report Fields

Figure 200 on page 481 is an example of a Sequential-Buffering-Summary report.

The first part of this report shows why Sequential Buffering was or was not used.

This part of the report tells you whether:

v A SBONLINE control card was provided in DFSVSMxx (this applies only to IMS

DC environments).

v A /STOP SB command was in effect when the application program started (this

applies only to IMS DC environments).

v The SB Initialization Exit Routine (DFSSBUX0) disallowed use of SB.

v The SB Initialization Exit Routine (DFSSBUX0) requested conditional activation of

SB by default.

v At least one SB= keyword was provided during PSBGEN.

v The //DFSCTL file contained at least one SBPARM control statement that applied

to the application program.

v SBPARM control cards have been read. If the answer is Yes, the following

statistics indicate what SBPARM keywords were used. This can be helpful in

determining why sequential buffering was or was not used for the application

program.

v At least one PSB= keyword was specified on an SBPARM control card and it

matched the PSB used by the application.

 *** OSAM DATA BASE BUFFER POOL STATISTICS ***

 FIX BLOCK DATA Y/Y

 SUBPOOL ID O04K

 SUBPOOL BUFFER SIZE 4096

 TOTAL BUFFERS IN SUBPOOL 1000

 LOCATE-TYPE CALLS 1765296

 REQUESTS TO CREATE NEW BLOCKS 0

 BUFFER ALTER CALLS 340800

 PURGE CALLS 39371

 LOCATE-TYPE CALLS, DATA ALREADY IN SUBPOOL 1370897

 BUFFERS SEARCHED BY ALL LOCATE-TYPE CALLS 1987604

*READ I/O REQUESTS 375355

*SINGLE BLOCK WRITES BY BUFFER STEAL RTN 0

*BLOCKS WRITTEN BY PURGE 150284

 TOTAL NBR OF I/O ERRORS FOR THIS SUBPOOL 0

 BUFFERS LOCKED DUE TO WRITE ERRORS 0

 LOCATE CALLS WAITED DUE TO BUSY ID 1431

 LOCATE CALLS WAITED DUE TO BUFR BUSY WRITE 0

 LOCATE CALLS WAITED DUE TO BUFR BUSY READ 0

 BUFR STEAL/PURGE WAITED FOR OWNERSHIP RLSE 296

 BUFFER STEAL REQUEST WAITED FOR BUFFERS 0

*TOTAL I/O OPERATIONS 525639

Figure 199. OSAM-Buffer-Pool Report

PST-Accounting Report

Chapter 21. Interpreting //DFSSTAT Reports 479

v At least one DB= keyword was specified on an SBPARM control card where the

PSB matched or was not specified, and the database matched one used by the

application.

v At least one PCB= keyword was specified on an SBPARM control card where the

PSB and DB matched or were not specified, and the PCB name matched one

used by the application.

v At least one DD= keyword was specified on an SBPARM control card where the

PSB, DB, and PSB matched or were not specified, and the DDNAME matched

one used by the application.

v Whether SBPARM control cards have been read. If the answer is “yes,” the

following statistics indicate what SBPARM keywords were used. This is helpful in

determining why sequential buffering was or was not used for the application

program.

v At least one PSB= keyword was specified on a SBPARM control card and it

matched the PSB used by the application.

The other fields in the report are as follows:

NUMBER OF SEARCH REQUESTS ISSUED BY THE OSAM BH

This field shows you how many times the OSAM buffer handler asked the SB

buffer handler to search the SB buffer pools for a specific OSAM block.

 The value in this field is equal to the number of OSAM random read I/O

operations that would have been issued without SB.

NUMBER OF READ I/O

These fields show you the number of OSAM random and sequential read I/O

operations it took to satisfy requests made by the application program. The sum

of these two numbers is the total number of OSAM read I/O operations issued

on behalf of the application. You can subtract this sum from the NUMBER OF

SEARCH REQUESTS ISSUED BY THE OSAM BH field to calculate how many

read I/O operations you saved by using SB.

NUMBER OF BLOCKS READ

These fields tell you how many OSAM data set blocks were read to satisfy

requests from the application program. These fields show you:

v The total number of blocks read

v The number and percentage of blocks read with a random read

v The number and percentage of blocks read with a sequential read

If the percentage of blocks read with a sequential read is high, SB probably

helped reduce the elapsed time of the application program.

PERCENT READ PER SEARCH REQUEST

This field shows you the number of read I/O operations issued by the SB buffer

handler expressed as a percentage of the number of times the OSAM buffer

handler asked the SB buffer handler to search for a block.

 A low percentage indicates that many of the search requests were satisfied

without issuing an I/O operation. Therefore, a low number in this field shows

that SB probably helped reduce the elapsed time of the application program.

NUMBER OF SEQUENTIAL I/O ERRORS

This field tells you the number of sequential reads that resulted in I/O errors.

When an I/O error is detected during a sequential read, IMS increments this

field and marks the 10 SB buffers involved in the read as invalid. Then IMS

issues a random read for the block that was requested by the OSAM buffer

handler.

PST-Accounting Report

480 Utilities Reference: System

Using the Report

From an SB Summary report, an example is shown in Figure 200, you can

determine if the application benefited from the use of SB. When using this report,

pay particular attention to these fields:

v NBR BLOCKS READ SEQUENTIALLY and PCT OF TOTAL

v PERCENT READ PER SEARCH REQUEST

Sequential-Buffering-Detail Report

This report gives you detailed information about how SB was used for a particular

SB buffer pool. A separate report is created for each SB buffer pool used by the

application program.

Each report consists of three pages, A, B, and C. Summary information is contained

on page A. More detailed information is found on pages B and C.

Each of the following sections contains an example of the relevant page (A, B or C)

of the Sequential-Buffering-Detail report.

Fields on Page A

Figure 201 on page 482 shows an example of page A of the report.

*** SEQUENTIAL BUFFERING SUMMARY FOR THE APPLICATION ***

DFSSBUX0 DISALLOWED USAGE OF SB: NO

DFSSBUX0 REQUESTED CONDITIONAL SB ACTIVATION: NO

AT LEAST ONE SB= KEYWORD IN PSB: YES

AT LEAST ONE SBPARM CONTROL STMT FOR APPLICATION: NO

SBPARM CONTROL CARD(S) READ FROM //DFSCTL: YES

AT LEAST ONE SBPARM PSB= SPECIFIED THAT MATCHED PSB: YES

AT LEAST ONE SBPARM DB= SPECIFIED THAT MATCHED DB: YES

AT LEAST ONE SBPARM PCB= SPECIFIED THAT MATCHED PCB: NO

AT LEAST ONE SBPARM DD= SPECIFIED THAT MATCHED DD: NO

NUMBER OF SEARCH REQUESTS ISSUED BY OSAM BH:

 SEARCH 2,213

NUMBER OF READ I/O:

 RANDOM READ 686

 SEQUENTIAL READ 652

NUMBER OF BLOCKS READ:

 TOTAL NUMBER BLOCKS READ 7,206

 NBR BLOCKS READ AT RANDOM 686 PCT OF TOTAL:

 NBR BLOCKS READ SEQUENTIALLY 6,520 PCT OF TOTAL: 9

PERCENT READ PER SEARCH REQUEST 60.46

NUMBER OF SEQUENTIAL I/O ERRORS 0

Figure 200. Sequential-Buffering-Summary Report

PST-Accounting Report

Chapter 21. Interpreting //DFSSTAT Reports 481

You can use the first section of this page to identify the SB buffer pool, database

PCB, and DD name this report applies to. There can be more than one SB buffer

pool (and, thus, more than one report) created for a particular database PCB and

DD name. This can happen if the PCB is involved in a logical relationship.

This section contains the following information:

v The PSB name.

v The DBD name (as coded in the PCB macro during PSBGEN).

v The PCB label (as coded in the PCB macro during PSBGEN).

v The relative number of the database PCB within the PSB.

v A unique identifier of the data set group control block within the database PCB.

(You can use this number to uniquely identify the SB buffer pool when more than

one SB buffer pool has been created for the same PCB and DD name.)

v The DD name.

v The type of database organization (HDAM, HIDAM, PHDAM, PHIDAM, or

HISAM).

v The type of database data set. This can be one of three values:

– *INDX indicates this report applies to a data set used as an index.

– *PSDATA indicates this report applies to a data set containing data accessed

according to its primary sequence.

– *SSDATA indicates this report applies to a data set containing data accessed

according to a secondary index sequence or by crossing a logical relationship.

v The number of buffer sets in the SB buffer pool. The default number of buffer

sets is four. You might have changed this default, however, with a SBPARM

control statement or in the SB Initialization Exit routine.

NUMBER OF SEARCH REQUESTS ISSUED BY OSAM BH

This field shows you the number of OSAM random read I/O operations that

would have been issued without using SB.

//DFSSTAT STATISTICS FOR: JOB=OSBTC01 STEP=STEP1 . PGM=DFSDDLT0 PSB=PBVDSALR DATE=93.058 TIME=09.39

--

 *** SB DETAIL STATISTICS (PAGE A) ***

PSB PBVDSALR

DB DBOVLFPC

PCB

DB-PCB NBR 1

DSG-CB NBR 1

DD VLOSAM01

DB-ORG HDAM

DD-TYPE *PSDATA

NBR OF BUFSETS 4

COMPARE-OPTION IS ACTIVE

** NUMBER OF SEARCH REQUESTS ISSUED BY OSAM BH:

 SEARCH 2,213

** NUMBER OF READ I/O:

 TOTAL 1,338

 RANDOM READ 686

 SYNCHRONOUS SEQUENTIAL READ 555

 OVERLAPPED SEQUENTIAL READ 97

** NUMBER OF BLOCKS READ:

 TOTAL 7,206

 RANDOM READ 686 PCT OF TOTAL: 9.51

 SYNCHRONOUS SEQUENTIAL READ 5,550 PCT OF TOTAL: 77.01

 OVERLAPPED SEQUENTIAL READ 970 PCT OF TOTAL: 13.46

** AVERAGE I/O WAIT TIMES (MILLIS):

 RANDOM READ 15.70

 SYNCHRONOUS SEQUENTIAL READ 18.03

 OVERLAPPED SEQUENTIAL READ .26

Figure 201. Sequential-Buffering-Detail Report Page A

PST-Accounting Report

482 Utilities Reference: System

NUMBER OF READ I/O

These fields show you the number of read I/O operations that were actually

issued in this SB buffer pool. The fields tell you:

v The total number of OSAM read I/O operations

v The number of random reads

v The number of synchronous sequential reads

v The number of overlapped (asynchronous) sequential reads

You can use these fields to calculate the percentage of each of the three types

of read I/O operations that were used for this database PCB and DD name. You

can also subtract the total number of OSAM read I/O operations from the

NUMBER OF SEARCH REQUESTS ISSUED BY OSAM BH field to determine

the number of read I/O operations you saved by using SB.

NUMBER OF BLOCKS READ

These fields show you how many blocks were read by each type of read I/O

operation. The fields tell you:

v The total number of blocks read

v The number and percentage of blocks read by random reads

v The number and percentage of blocks read by synchronous sequential reads

v The number and percentage of blocks read by overlapped (asynchronous)

sequential reads

A high percentage of blocks read with sequential reads tells you that SB

probably helped the application program run faster, at least while processing

this database PCB and data set.

 A high percentage of blocks read with random reads, however, might indicate:

v A large amount of random processing by the application program

v The OSAM data set associated with this database PCB needs reorganizing

If many blocks were read with random reads, and if the program was

processing the database sequentially, you can sometimes get better buffering

performance by increasing the number of buffer sets (for example, increase the

value of the BUFSETS parameter on the SBPARM control statement in

//DFSCTL). After increasing the number of buffer sets, observe how the number

reported in the NUMBER OF READ I/O field changes the next time the

application is executed.

 A small percentage of blocks read at random sometimes indicates that you can

reduce the number of buffer sets to save virtual storage space.

AVERAGE I/O WAIT TIMES (MILLIS)

These fields tell you the average I/O wait times for each of the three types of

read I/O operations. These times show the average time the application

program waited for a read I/O operation to complete before it could process the

data being read.

 The times in these fields are in milliseconds. A millisecond is one thousandth of

a second (in other words, 50 milliseconds equals 0.050 seconds).

 These fields show you:

v The average I/O wait time for random reads

v The average I/O wait time for synchronous sequential reads

v The average I/O wait time for overlapped (asynchronous) sequential reads

PST-Accounting Report

Chapter 21. Interpreting //DFSSTAT Reports 483

These times are only measured when SB is active or IMS is monitoring the I/O

reference pattern.

Fields on Page B

Figure 202 shows an example of page B of the report.

 This page can be used to evaluate the efficiency of the SB algorithm that monitored

the I/O reference pattern for this SB buffer pool. By analyzing this page, you can

answer these questions:

v How efficient were the decisions to issue sequential reads? This question can be

answered by the REFERENCES IN BUFFER SETS field.

v How efficient were the decisions to issue random reads? This question can be

answered by the REFERENCES IN RANDOM SRAN CBS field and the

RANDOM SRAN CBS WHICH HAVE BEEN CONVERTED field.

The fields on Page B reflect buffering activity when SB was active. Buffering activity

when IMS was only monitoring the I/O reference pattern is not included.

REFERENCES IN BUFFER SETS

This field shows you how many times blocks read with a sequential read were

referenced by the OSAM buffer handler. This ratio is calculated as follows:

 The number of references in buffer sets divided by the number of blocks

read by sequential read.

For example, a ratio of 1.00 means that, on the average, each block read by a

sequential read was referenced once. A ratio of 0.50 means that, on the

average, only half the blocks read by a sequential read were referenced once.

 In general, a high ratio (for example, 0.85) shows you that the decisions to

issue sequential reads were efficient and probably helped reduce the execution

--

 *** SB DETAIL STATISTICS: REFERENCE STATISTICS (PAGE B) ***

** REFERENCES IN BUFFER-SETS:

 RATIO .23

** REFERENCES IN RANDOM SRAN CBS:

 RATIO .20

** RANDOM SRAN CBS WHICH HAVE BEEN CONVERTED:

 NUMBER 0

 PCT OF STOLEN RANDOM SRAN .00

***** DISTRIBUTION OF REFERENCES IN BUFFER-SETS *****

REFERENCE COUNT NBR OF OCCURRENCES PCT OF OCCURRENCES ACCUMUL. PCT

 0 3 .46 .46

 1 551 84.50 84.96

 2 0 .00 84.96

 3 0 .00 84.96

 4 0 .00 84.96

 5 0 .00 84.96

 6 0 .00 84.96

 7 0 .00 84.96

 8 0 .00 84.96

 9 4 .61 85.58

 => 10 94 14.41 100.00

***** DISTRIBUTION OF REFERENCES IN RANDOM SRAN CBS *****

REFERENCE COUNT NBR OF OCCURRENCES PCT OF OCCURRENCES ACCUMUL. PCT

 0 0 .00 .00

 1 0 .00 .00

 2 1 100.00 100.00

Figure 202. Sequential-Buffering-Detail Report Page B

PST-Accounting Report

484 Utilities Reference: System

time of the application. A low ratio (for example, 0.30) shows you that the

benefit of issuing sequential reads was smaller because many of the blocks

read were never referenced.

REFERENCES IN RANDOM SRAN CBS

This field shows you the effectiveness of the decisions to issue random reads.

To understand what this ratio means, you must first understand how the SB

buffer handler uses control blocks to track the I/O reference pattern.

 The SB buffer handler uses a control block called SB range (SRAN) to track the

I/O reference pattern within a range of 10 consecutive blocks. Each SRAN has

a reference counter that shows how many times the OSAM buffer handler

requested a block contained in the set of 10 blocks tracked by the SRAN.

 There are two types of SRAN control blocks. One type, called a sequential

SRAN, maintains counts for 10 consecutive blocks that have been read with a

sequential read. A second type, called a random SRAN, maintains counts for 10

consecutive blocks that have been referenced in a random pattern. There is

one sequential SRAN for each buffer set in an SB buffer pool; the number of

random SRANs is twice the number of sequential SRANs.

 The SRANs are chained together on a “use chain,” that is, they are chained

together in the order in which they have been most or least recently used. Each

type of SRAN has its own use chain. Most recently used SRANs are at the top

of the use chain; least recently used SRANs are at the bottom. Whenever a

SRAN is needed to track a set of blocks that are not currently being tracked,

the SB buffer handler selects a SRAN from the bottom of the use chain. This is

because ranges of consecutive blocks that have not been referenced recently

are less likely to be referenced again in the near future.

 Each time a random SRAN is reused, the reference count maintained in the

SRAN is recorded for later use. When the application program terminates, these

reference counts are used to calculate the number in this field. The number is

calculated as follows:

 Ratio = X / (Y * 10)

where,

X Total number of random references in random SRANs (this number is

usually equal or close to the number of random reads in the sets of

blocks tracked by random SRANs)

Y Total number of reused random SRANs

 A low ratio (for example, 0.15) in this field means that on the average, the SB

buffer handler correctly recognized random I/O reference patterns. A ratio of

0.15 means that the SB buffer handler issued an average of 1.5 random reads

for blocks tracked by a random SRAN. Issuing 1.5 random reads for a set of 10

consecutive blocks is normally more efficient then issuing one sequential read

for the 10 consecutive blocks.

 A high ratio (for example, 0.50) in this field probably indicates that the SB buffer

handler often mistook sequential reference patterns as random reference

patterns. A ratio of 0.50 means that the SB buffer handler issued an average of

5 random reads for blocks tracked by a random SRAN. Issuing 5 random reads

for a set of 10 consecutive blocks is normally less efficient than issuing one

sequential read for the 10 consecutive blocks.

PST-Accounting Report

Chapter 21. Interpreting //DFSSTAT Reports 485

RANDOM SRAN CBS WHICH HAVE BEEN CONVERTED

These fields are another measurement of the SB buffer handler’s effectiveness

in analyzing the I/O reference patterns.

 Sometimes the SB buffer handler interprets a reference to a set of consecutive

blocks as a random pattern, then, after some additional references, detects that

the set of blocks is actually being referenced sequentially. In this case, the SB

buffer handler first issues several random reads in a set of consecutive blocks

and later issues a sequential read for the same set of blocks. When this occurs,

the random SRAN that tracks the set of blocks is converted to a sequential

SRAN. If the SB buffer handler had originally read the set of blocks with a

sequential read, the cost of issuing several random reads would have been

avoided.

 The fields in this section are:

NUMBER

This tells you how many times random SRANs were converted to

sequential SRANs during the application program’s execution.

PCT OF STOLEN RANDOM SRAN

The value in this field expresses the number of converted SRANs as a

percentage of the number of times the SB buffer handler had to acquire a

random SRAN from the use chain. A high percentage (for example, 40

percent) probably indicates that the SB buffer handler often mistook a

sequential reference pattern as random reference pattern.

DISTRIBUTION OF REFERENCES IN BUFFER SETS

This table shows you more detailed information about the ratio reported in the

REFERENCES IN BUFFER SETS field.

 For example, the REFERENCES IN BUFFER SETS field might indicate that 80

percent (0.80) of the blocks in the SB buffer sets were referenced. What does

this mean? It could mean that 20 percent of the time none of the blocks in a

buffer set were referenced. Or instead, it could mean that 100 percent of the

time only 8 out of 10 blocks in the buffer sets were referenced. You can answer

this question by analyzing this table.

 The fields in this table are:

REFERENCE COUNT

This column lists the number of references to blocks in a buffer set. A zero

in this column means that no references were made to blocks in a buffer

set, a one means that one reference was made, and so on. The “=> 10” in

the last row of this column means that 10 or more references were made.

NBR OF OCCURRENCES

This column shows you how many buffer sets were referenced the number

of times shown in the REFERENCE COUNT column. For example, in

Figure 202 on page 484, the first number in this column is 3, which says

that 3 buffer sets were never referenced. The second number says that 551

buffer sets were referenced once.

PCT OF OCCURRENCES

This column shows you the value in the NBR OF OCCURRENCES column

expressed as a percentage of the number of times buffer sets were reused.

For example, in Figure 202 on page 484, the first number in this column is

0.46, which says that 0.46 percent of the reused buffer sets were never

referenced. The second number says that 84.50 percent of the reused

buffer sets were referenced once.

PST-Accounting Report

486 Utilities Reference: System

ACCUMUL. PCT

This column shows you the accumulated PCT OF OCCURRENCES from

zero through the current reference count. For example, in Figure 202 on

page 484, the third number in this column is 84.96, which says that 84.96

percent of the reused buffer sets were referenced two or less times.

DISTRIBUTION OF REFERENCES IN RANDOM SRAN CBS

This table shows you more detailed information about the ratio reported in the

REFERENCES IN RANDOM SRAN CBS field. The table is similar to the

DISTRIBUTION OF REFERENCES IN BUFFER SETS table, except that it

shows information about references tracked by random SRAN control blocks.

REFERENCE COUNT

This column lists the number of references to blocks tracked by random

SRANs. A zero in this column means that no references were made and,

therefore, no random reads were issued for blocks tracked by a random

SRAN. A “one” means that one reference was made to blocks tracked by a

random SRAN (on the average, one reference for every tenth block tracked

by the random SRAN).

NBR OF OCCURRENCES

This column shows you how many random SRANs were referenced the

number of times shown in the REFERENCE COUNT column.

PCT OF OCCURRENCES

This column shows you the NBR OF OCCURRENCES expressed as a

percentage of the number of times that random SRANs were reused.

ACCUMUL. PCT

This column shows you the accumulated PCT OF OCCURRENCES from

zero through the current reference count.

Fields on Page C

Figure 203 shows an example of page C of the report.

 Page C consists of the following sections:

//DFSSTAT STATISTICS FOR: JOB=OSBTC01 STEP=STEP1 . PGM=DFSDDLT0 PSB=PBVDSALR DATE=93.058 TIME=09.39

--

 *** SB DETAIL STATISTICS: INTERNAL COUNTERS AND VALUES (PAGE C) ***

** DEACTIVATIONS:

 NBR OF SB-DEACTIVATION 1

 NBR OF MONITORING-DEACTIVATION 0

** RESULTS OF EVALUATION OF SEQUENTIALITY:

 NBR POSITIVE RESULTS 3

 NBR NEGATIVE RESULTS 1

** RESULTS OF EVALUATION OF ACTIVITY RATE:

 NBR POSITIVE RESULTS 4

 NBR NEGATIVE RESULTS 0

** NBR RANDOM READ:

 DURING SEQUENTIAL BUFFERING PHASES 27

 DURING "MONITORING-ONLY" PHASES 659

 WHILE NOT MONITORING REFERENCE PATTERN 0

** NBR RANDOM READS WITH SEQUENTIAL REFERENCE PATTERN:

 ACCESS TO INVALID BUFFERS 25

 ACCESS AT DATA SET END 2

** NBR OF BUFFERING POSITIONS: 2,213

** INTERNAL SB-ALGORITHM VALUES:

 SDSGBPTR: BLOCKS PER TRACK 31

 SDSGNBRB: BLOCKS PER BUFSET 10

 SDSGSCST: RELATIVE SEQ I/O COSTS 1.36

 SDSGSINB: SIZE OF NEIGHBORHOOD 2

 SDSGTHR1: THRESHOLD CURRENT+1 2

 SDSGTHR2: THRESHOLD OVERLAP 3

 SDSGTHR3: THRESHOLD NEIGBH 11

Figure 203. Sequential-Buffering-Detail Report Page C

PST-Accounting Report

Chapter 21. Interpreting //DFSSTAT Reports 487

DEACTIVATIONS

The fields in this section are:

NBR OF SB DEACTIVATION

This field shows how many times SB was deactivated.

NBR OF MONITORING DEACTIVATION

This field shows how many times I/O reference monitoring was deactivated.

 Deactivation of I/O reference monitoring can occur for one of two reasons:

v If several consecutive periodical evaluations of the buffering process

show that it is not worthwhile to use SB

v If you set a limit on the SB buffer space by specifying the MAXSB

keyword in the SBONLINE control statement. The use of SB is restricted

when this limit is reached.

RESULTS OF EVALUATION OF SEQUENTIALITY

This section and the next section, RESULTS OF EVALUATION OF ACTIVITY

RATE, help explain why SB was deactivated (or was not activated) during the

application program’s execution.

 The decision to activate and deactivate SB is made by a periodical evaluation

of the buffering process for a particular DB-PCB/DSG control block pair. The

evaluation is based on the following criteria:

v Sequentiality

v Activity rate

 If the results for both tests are positive (in other words, if the results of both

tests recommend use of SB), IMS will activate SB (if not active) or will continue

to use SB. If at least one of the test results is negative, then IMS will deactivate

SB (if active) or will continue not to use SB. After several decisions not to use

SB, IMS can also deactivate monitoring of the I/O reference pattern.

 The fields in this section are:

NBR POSITIVE RESULTS

This field shows you how many times periodical evaluation of the I/O

reference pattern detected enough of a sequential reference pattern to

warrant use of SB.

NBR NEGATIVE RESULTS

This field shows you how many times periodical evaluation of the I/O

reference pattern did not detect enough of a sequential reference pattern to

warrant use of SB.

RESULTS OF EVALUATION OF ACTIVITY RATE

The fields in this section are:

NBR POSITIVE RESULTS

This shows you how many times periodical evaluation detected an I/O

activity rate high enough to warrant use of SB.

NBR NEGATIVE RESULTS

This shows how many times periodical evaluation determined that the I/O

activity rate was not high enough to warrant use of SB.

NBR RANDOM READ

This section shows you how many random reads were issued during each of

the following types of buffering phases:

PST-Accounting Report

488 Utilities Reference: System

DURING SEQUENTIAL BUFFERING PHASES

This field shows you how many random reads were issued while SB was

active.

DURING “MONITORING ONLY” PHASES

This field shows you how many random reads were issued while SB was

not active and IMS was still monitoring the I/O reference pattern.

WHILE NOT MONITORING REFERENCE PATTERN

This field shows you how many random reads were issued while SB was

not active and IMS was not monitoring the I/O reference pattern.

NBR RANDOM READS WITH SEQUENTIAL REFERENCE PATTERN

This section shows you how many times random reads were issued even

though the I/O reference pattern was sequential. These counters are updated

only when SB is active.

 The fields in this section are:

ACCESS TO INVALID BUFFERS

This field shows how many times a random read was issued because the

contents of an SB buffer was invalid and could not be used. Some possible

reasons for marking an SB buffer invalid are:

v Your IMS system is running in a block-level sharing environment. In a

block-level sharing environment, more than one IMS system can read

from and write to the same database. For example, if IMS system “A”

reads a block into a buffer and IMS system “B” updates that block while

the block is still in system “A’s” buffer, system “A’s” buffer will be marked

as invalid. For more information on block-level sharing, see IMS Version

9: Administration Guide: System.

v The activation and deactivation of SB during periodical evaluations marks

SB buffers as invalid.

v A block was being written by another online application in the same IMS

subsystem at the same time the SB buffer handler was reading it.

v The SB buffer was marked invalid because of I/O errors.

ACCESS AT DATA SET END

This field shows how many times the SB buffer handler issued a random

read because the set of 10 blocks containing the referenced block was not

completely formatted. SB never issues a sequential read at the end of a

data set if the last set of consecutive blocks is not completely formatted.

NBR OF BUFFERING POSITIONS

This field shows how many times the SB buffer handler assumed the

application program issued a DL/I call requesting a new position in the

database. For example, most GU calls qualified on the key field of a root

segment other than the current root segment will cause this counter to be

incremented. This counter is maintained only while SB is active and IMS is

monitoring the I/O reference pattern.

 A high value in this field can indicate a large amount of logical random

processing by the application. If other fields seem to indicate that the

application did not benefit from SB, this field can explain why.

INTERNAL SB ALGORITHM VALUES

This section shows the values of internal counters. They are included to help

IMS development during SB problem determination.

PST-Accounting Report

Chapter 21. Interpreting //DFSSTAT Reports 489

PST-Accounting Report

490 Utilities Reference: System

Chapter 22. Interpreting Statistical-Analysis and

Log-Transaction Reports

IMS provides two utilities that extract data from IMS system logs:

v The Statistical Analysis utility produces summary reports of message activity and

reports for lines and terminals. For more information see Chapter 17, “Statistical

Analysis Utility (DFSISTS0),” on page 359.

v The Log Transaction Analysis utility gives detailed information of individual

transaction and processing activities. For more information see Chapter 16, “Log

Transaction Analysis Utility (DFSILTA0),” on page 353.

The following topics provide additional information:

v “Statistical Analysis Utility Reports”

v “Calculating Transaction Loads” on page 492

v “Auditing Critical Transactions” on page 495

v “Log Transaction Analysis Utility Reports” on page 496

v “Examining Scheduling Activity” on page 497

v “IMS Accounting Information” on page 499

Statistical Analysis Utility Reports

The input data for the Statistics Analysis utility is a set of IMS log data sets, or user

data sets created by the Log Archive utility. Each input data set can consist of

multiple volumes. Several data sets can be concatenated. The utility uses two

passes, each with an edit and a z/OS sort operation. Multiple intermediate tape

volumes are usually produced.

Restriction: You cannot use system log output from a batch system.

You can use the Transaction Analysis utility to obtain new system logs with reduced

content to save processing time through the sort steps. Another savings in

execution is achieved by specifying the NOTXT option on the DFSISTS0 EXEC

statement. This option excludes the message text from the records that are

subsequently sorted and cumulated.

Another parameter in this EXEC statement specifies the suffix value for the nucleus.

If your system logs were from an execution of the online IMS system that used a

different nucleus from the default 0, you must give this suffix value. Do not

concatenate system log data sets from different nucleus executions.

The Statistical Analysis utility has five control statements you can use to select a

subset of transaction activity.

Transaction code control statement

You can use this control statement to select a specific transaction code or

groups of transaction codes. For more information see “Transaction Code

Control Statement” on page 374.

Symbolic terminal name control statement

You can use this control statement to specify the LTERM name or a generic

name. For example, L3270M selects all messages originating from or

© Copyright IBM Corp. 1974, 2004 491

directed to that LTERM. A generic name of L3270* could select L3270M

and L3270B messages, the comparison being based on the characters

preceding the *.

 You can further qualify the output LTERM so that only messages to a given

symbolic name resulting from the input LTERM specified are selected. For

more information see “Symbolic Terminal Name Control Statement” on page

374.

Hardware terminal address control statement

This control is similar to the symbolic terminal name control statement,

except that you specify the line number and relative terminal number

assigned to the physical terminal by system definition. Again, you can

specify the output address as a further qualifier. If an output message was

queued but not sent, it is not selected.

 Related Reading: See “Hardware Terminal Address Control Statement” on

page 375 for more information.

VTAM terminal name control statement

This control is similar to the symbolic terminal name control statement,

except that you specify the node name for the physical terminal. Again, you

can specify the output address as a further qualifier. If an output message

was queued but not sent, it is not selected.

 Related Reading: See “VTAM Terminal Name Control Statement” on page

375 for more information.

Time control statement

You can specify an interval as a criterion for selection. You give the start

and stop times in the form YYDDD and HHMM (Julian day and clock time in

minutes). This range criterion is applied to all messages selected by

transaction code and terminal specifications.

 Related Reading: See “Time Control Statement” on page 375 for more

information.

If you anticipate non-printable characters in the message text, you can specify they

be printed in hexadecimal format (first character above the second). Otherwise, the

characters appear as blanks.

Calculating Transaction Loads

There are two reports produced by the Statistical Analysis utility that summarize the

distribution of transaction activity across a 24-hour day. Input and output message

distributions are separately tabulated for each transaction code and for each device.

A further report shows the response times for each transaction type expressed as

percentiles. The reported data is dependent on the selection of system log data that

makes up the utility input. The scope of the report can be further limited by

selecting a subset of transactions and line traffic as well as the reporting interval.

Figure 204 on page 493 shows the format of the Line and Terminal report. For each

device on a line the LTERM name is given and a pair of rows of results for send

and receive activity is given. The “Total Messages” column is followed by the total

and average size of the messages in bytes. A series of hourly intervals divides the

24-hour day and counts of the transaction active in those intervals are recorded.

Entries for devices restricted to input only or output only traffic show only one

reporting line. Figure 205 on page 493 shows the format of the Transaction report.

Statistical Analysis Utility Reports

492 Utilities Reference: System

This organizes the data like the Line-and-Terminal report, except that it is ordered

by transaction code.

Figure 206 on page 494 shows the format of the Transaction-Response report. This

report gives the longest and shortest response times for each transaction code for

the data selected as input from a set of system logs. Four columns record the

percentile response times in seconds. The 25th, 50th, 75th, and 95th percentiles

are given. For example, a response time within the 50th percentile is greater than

or equal to 50% of the total number of response times processed for that

transaction. The first line of response times given is from the completion of the

receipt of the input message until the response message is successfully dequeued.

In the event that an output message takes a significantly long time to be completely

received at the terminal, a second line shows the receipt to the time the response

message is started.

 L I N E A N D T E R M I N A L R E P O R T D A T E 04/17/93 P A G E 1

LINE RTN TOTAL TOTAL AVG HOURLY DISTRIBUTION

 OR NODE R/S MESSAGES CHARACTERS SIZE 00-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-24

DSWP0011

PDSW0011 S 13 2,098 161 0 0 0 0 0 0 0 0 0 13 0 0 0 0

 R 7 1,067 152 0 0 0 0 0 0 0 0 0 7 0 0 0 0

DSWP0012

PDSW0012 S 11 352 32 0 0 0 0 0 0 0 0 0 11 0 0 0 0

 R 3 190 63 0 0 0 0 0 0 0 0 0 3 0 0 0 0

DSWP0013

PDSW0013 S 14 1,775 126 0 0 0 0 0 0 0 0 0 14 0 0 0 0

 R 7 1,012 144 0 0 0 0 0 0 0 0 0 7 0 0 0 0

DSWP0014

PDSW0014 S 15 1,151 76 0 0 0 0 0 0 0 0 0 15 0 0 0 0

 R 5 825 165 0 0 0 0 0 0 0 0 0 5 0 0 0 0

DSWP0015

PDSW0015 S 12 678 56 0 0 0 0 0 0 0 0 0 12 0 0 0 0

 R 5 491 98 0 0 0 0 0 0 0 0 0 5 0 0 0 0

DSWP0016

PDSW0016 S 11 355 32 0 0 0 0 0 0 0 0 0 11 0 0 0 0

 R 4 298 74 0 0 0 0 0 0 0 0 0 4 0 0 0 0

DSWP0017

PDSW0017 S 10 351 35 0 0 0 0 0 0 0 0 0 10 0 0 0 0

 R 3 190 63 0 0 0 0 0 0 0 0 0 3 0 0 0 0

DSWP0018

PDSW0018 S 14 1,736 124 0 0 0 0 0 0 0 0 0 14 0 0 0 0

PMTO1AP

CTRL S 16 930 58 0 0 0 0 0 0 0 0 0 16 0 0 0 0

 SYSTEM S 53,695 5,428,432 101 0 0 0 0 0 0 0 0 0 53695 0 0 0 0

 TOTALS R 23,934 3,367,375 140 0 0 0 0 0 0 0 0 0 23934 0 0 0 0

key:

 LINE RTN—Line Relative Terminal Number

 R/S—Received/Sent

Figure 204. Line-and-Terminal Report

 T R A N S A C T I O N R E P O R T D A T E 04/17/93 P A G E 4

TRANSACTION TOTAL TOTAL AVG HOURLY DISTRIBUTION

 CODE R/S MESSAGES CHARACTERS SIZE 00-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-24

SC6T S 947 208,340 220 0 0 0 0 0 0 0 0 0 947 0 0 0 0

 R 947 53,032 56 0 0 0 0 0 0 0 0 0 947 0 0 0 0

TS1Q S 330 13,200 40 0 0 0 0 0 0 0 0 0 330 0 0 0 0

 R 330 18,150 55 0 0 0 0 0 0 0 0 0 330 0 0 0 0

TS1R S 373 14,920 40 0 0 0 0 0 0 0 0 0 373 0 0 0 0

 R 373 20,515 55 0 0 0 0 0 0 0 0 0 373 0 0 0 0

TS1S S 388 15,520 40 0 0 0 0 0 0 0 0 0 388 0 0 0 0

 R 388 21,340 55 0 0 0 0 0 0 0 0 0 388 0 0 0 0

TS1T S 340 13,600 40 0 0 0 0 0 0 0 0 0 340 0 0 0 0

 R 340 18,700 55 0 0 0 0 0 0 0 0 0 340 0 0 0 0

 SYSTEM S 53,695 5,428,432 101 0 0 0 0 0 0 0 0 0 53695 0 0 0 0

 TOTALS R 23,934 3,367,375 140 0 0 0 0 0 0 0 0 0 23934 0 0 0 0

Figure 205. Transaction Report

Calculating Transaction Loads

Chapter 22. Interpreting Statistical-Analysis and Log-Transaction Reports 493

Assessing Program-to-Program Traffic

When a message processing program directs an output message to another

program, that secondary transaction is queued. The transaction code is sometimes

unique for convenience of the processing program’s logic. Otherwise, the secondary

transaction is queued along with any messages from terminal origin.

You can use the two Messages—Program-to-Program reports to separately count

transaction traffic. Figure 207 illustrates the two tabulations. The column headed

“Destination” appears above a list of transaction codes that were queued to another

program. The originating program is not identified. The column headed “Transaction

Code” appears above a list of the initial transaction codes that invoked the

programs that issued the secondary transactions.

If you had program-to-program switches during conversational transaction

processing, these will be included in the lists.

Obtaining Counts of Unsent Messages

The two reports titled Messages—Queued-But-Not-Sent summarize how many

output messages were still in the message queues for interval covered by the input

tapes. The reports are illustrated in Figure 208 on page 495. Command responses

that were not sent to the terminal are indicated by (IMSSYS). The entry of NOTAVA

indicates “no transaction available”. This would be the case if an output message

 T R A N S A C T I O N R E S P O N S E R E P O R T D A T E 04/17/93 P A G E 4

TRANSACTION TOTAL LONGEST 95% 75% 50% 25% SHORTEST

 CODE RESPONSES RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE

 947 03.0S 01.9S 00.2S 00.1S 00.1S 00.0S

 TS1Q 330 03.3S 00.6S 00.2S 00.1S 00.1S 00.0S

 330 03.1S 00.5S 00.1S 00.0S 00.0S 00.0S

 TS1R 373 01.3S 00.5S 00.1S 00.1S 00.1S 00.0S

 373 01.3S 00.4S 00.1S 00.0S 00.0S 00.0S

 TS1S 388 03.3S 00.7S 00.2S 00.1S 00.1S 00.0S

 388 03.0S 00.5S 00.1S 00.0S 00.0S 00.0S

 TS1T 340 03.8S 00.6S 00.2S 00.1S 00.1S 00.0S

 340 03.0S 00.5S 00.1S 00.0S 00.0S 00.0S

TOTAL RESPONSES = 26525

Figure 206. Transaction Response-Report

 MESSAGES--PROGRAM TO PROGRAM DATE 10/06/88

 TOTAL

 DESTINATION MESSAGES

 ELEANOR 1

 SW1050 1

 T2741N1 1

 T2742N3 1

 MESSAGES--PROGRAM TO PROGRAM DATE 10/06/88

 TRANSACTION TOTAL

 CODE MESSAGES

 TA10 107

Figure 207. Messages—Program-to-Program Reports

Calculating Transaction Loads

494 Utilities Reference: System

were generated for an input not recorded in the system log input data or by a

command input from the same terminal not recorded.

Auditing Critical Transactions

You can use the optional Messages report produced by the Statistical Analysis utility

with the DFSIST40 program to examine the input and output data for specific

transaction codes in detail. This allows you to audit exactly what was in an input

message and possibly examine the output content for errors. The report is

illustrated in Figure 209 on page 496.

Notice the entries flagged as THIS OUTPUT NOT RESULT OF INPUT. In the figure

they show several responses to IMS commands sent to line 2 terminal 1, the

master terminal. The entries are flagged because the outputs do not originate from

a program invoked by an input transaction. If an automated operator program is

active, you can use the output to trace its activity.

 MESSAGES--QUEUED BUT NOT SENT DATE 10/06/88

 TOTAL

 DESTINATION MESSAGES

 ELEANOR 1

 SW1050 1

 T2741N| 1

 T2742N3 1

 MESSAGES--QUEUED BUT NOT SENT DATE 10/06/88

 TRANSACTION TOTAL

 CODE MESSAGES

 (IMSSYS) 5

Figure 208. Messages—Queued-But-Not-Sent Reports

Calculating Transaction Loads

Chapter 22. Interpreting Statistical-Analysis and Log-Transaction Reports 495

Log Transaction Analysis Utility Reports

You can obtain detailed data at the individual transaction level by using the Log

Transaction Analysis utility. Although the data is not summarized by this utility, the

detail report lines bring together many information items that help you assess the

service given to a transaction type and the effect of the scheduling algorithm. The

report shows actual response data because input data is the IMS log.

If you do not process the entire IMS log, data is presented from a starting

checkpoint to a cutoff point. You limit the sample of transaction processing to be

analyzed by specifying start time and duration in minutes, or you can give the

number of checkpoints to be included after the starting checkpoint. Nonrecoverable

or canceled messages are omitted.

The format of the Log-Analysis report is illustrated in Figure 210 on page 497.

Times are given to the nearest tenth of a second and are elapsed times. The full list

of data items for each report detail line is shown in Table 54 on page 497. You can

see that the Processing Types field is a key description item.

Using the starting position and lengths of the fields in the report detail records you

can specify a sort order for the second step in the utility execution.

Example: The sort control statement to cause a report to be sequenced by

message class and transaction priority is:

 MESSAGES

INPUT TRANSACTION LINE RELA SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC

PREFIX CODE NO TERM NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS DATE TIME

 THIS OUTPUT NOT RESULT OF INPUT DSWP5008 00017 PDSW5008 93.107 15.54.1

 3

OUTPUT SEG=001 LEN=0001*F*

INPUT TRANSACTION LINE RELA SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC

PREFIX CODE NO TERM NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS DATE TIME

 THIS OUTPUT NOT RESULT OF INPUT DSWP5008 00019 PDSW5008 93.107 15.54.4

OUTPUT SEG=001 LEN=0009*88-3-2000*

 3 3 3 3

OUTPUT SEG=002 LEN=0248*WITHDRAWAL $300.00 FDEPOSIT $6704.62 FSAVINGS 444.44 FCHECKING $9800.50 F*

 3 3 3 3

 OVERDRAFT $30.32FVISA $2020.20 FMASTER CHRGE $105.00 FCARLOAN $1040.00 F

 3

 TRANSFER C-5 $50.00 FCHRISTMAS CLUB $94.60

INPUT TRANSACTION NODE SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC

PREFIX CODE NAME NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS DATE TIME

 DE1Q DSWPOO56 00015 PDSW0056 93.107 15.53.51 DSWP0056 00016 PDSW0056 93.107 15.54.2

 03 0 18D

INPUT SEG=001 LEN=0016*1BDE1Q 3Y43A*

INPUT SEG=002 LEN=0230* 23(9) WITHDRAW OF $300DEPOSIT OF $6704.62SAVINGS DEPOSIT OF $444.44CHECKING TRANSFER OF $9800.50OV*

 *ERDRAFT OF $30.32VISA ENTRY OF $2020.20MASTER CHARGE OF $105.00CAR LOAN OF $140.00TRANSFER C-S OF $*1

 *50.00CHRISTMAS CLUB OF $94.60Y

INPUT TRANSACTION NODE SEQ SYMBOLIC

PREFIX CODE NAME NO ADDRESS DATE TIME

 DE1Q DSWP0084 00017 PDSW5008 93.107 15.54.25

 3

OUTPUT SEG=001 LEN=0031*+ DATA SUCCESSFULLY RECEIVED +F*

INPUT TRANSACTION LINE RELA SEQ SYMBOLIC OUTPUT NODE SEQ SYMBOLIC

PREFIX CODE NO TERM NO ADDRESS DATE TIME PREFIX NAME NO ADDRESS DATE TIME

 DE1Q2 DSWP016 00018 PDSW0116 93.107 15.54.36 DSWP0116 00016 PDSW0116 93.107 15.54.36

Notes:

1. Indicates a 230-character report message

2. Indicates a 31-character message generated by the transaction code ″DE1Q″ and transmitted to a

relative terminal DSWP0116.

Figure 209. Messages Report

Log Transaction Analysis Utility Reports

496 Utilities Reference: System

SORT FIELDS = (18,3,CH,A,16,1,CH,A)

You can also use the option of creating a DASD data set of the detail report

records. Your installation could then develop an analysis program to extract and

summarize the data.

Examining Scheduling Activity

Using the data extracted by the Log Transaction Analysis utility (see Figure 210)

you can examine the effect of your scheduling algorithm. Each occurrence of a

transaction primarily indicates:

v Message priority and message class

v Time in input queue

v Time to process

v Time in output queue

v Total time-in-system (measured between completion of message queue input to

retrieval for output)

You can look at the processing type 'S' entries to see the send and receive times.

You can sort the detail report lines by transaction code and look at any critical

transactions requiring rapid response time. Refer to Table 54 for details on each

table line item.

 Table 54. Log-Analysis Report Line Format

Identification

Starting

Position Length Note

Sequence Number 1 5 1

Transaction Code 7 8

Priority of Transaction (PR) 16 1

Class of Transaction (CL) 18 3

09.01.17 JOB 163 $HASP373 DFSILTA0 STARTED - INIT 1 - CLASS G - SYS 3090

09.01.19 JOB 163 +DFS0412 - MISSING 08 RECORD

09.01.19 JOB 163 +DFS0412 - MISSING 08 RECORD

09.01.19 JOB 163 +DFS0412 - MISSING 08 RECORD

09.01.19 JOB 163 +DFS0412 - MISSING 08 RECORD

09.01.20 JOB 163 +DFS0410 - END OF FILE ON LOG DATA SET

09.01.20 JOB 163 SMF000I DFSILTA0 DFSILTA0 DFSILTA0 0000

09.01.20 JOB 163 $HASP395 DFSILTA0 ENDED

------ JES2 JOB STATISTICS ------

 25 MAY 88 JOB EXECUTION DATE

 19 CARDS READ

 106 SYSOUT PRINT RECORDS

 0 SYSOUT PUNCH RECORDS

 6 SYSOUT SPOOL KBYTES

 0.05 MINUTES EXECUTION TIME

 JOB /DFSILTA0/ START 88146.0901

 JOB /DFSILTA0/ STOP 88146.0901 CPU 0MIN 00.13SEC SRB 0MIN 00.02SEC

 PAGE 00001

 SEQ TRANS P C ***IN*** ***OUT** P PGM DR SMB*ENQ MSG*SCHD CNT*ENQ MSG*END CNT*GU SYS IN Q PROC OUT Q TOTAL

 NBR CODE R L RLINE/RT RLINE/RT T NAME ID HHMMSST HHMMSST HHMMSST HHMMSST HHMMSST ID SSSST SSSST SSSST SSSST

--

00001 CHKPT 0001************************ 853515 853515 853515 853515 853515

00002 TXCDRN24 0 000002 001 B *RESTART 1 930231 930231

00003 TXCDRN24 0 000002 001 B *RESTART 1 930140 930140

00004 TXCDRN24 0 000002 001 B *RESTART 1 930069 930069

00005 CONV1 0 00001A 001 B *RESTART 1 1451305 1451305

00006 CONV1 0 00001A 001 00001A 001 B *RESTART 1 1451107 1451144

00007 CHKPT 0002************************ 856091 856091 856091 856091 856091

Figure 210. Log-Analysis Report

Log Transaction Analysis Utility Reports

Chapter 22. Interpreting Statistical-Analysis and Log-Transaction Reports 497

Table 54. Log-Analysis Report Line Format (continued)

Identification

Starting

Position Length Note

Input Node Name (for VTAM) 22 8

Input Relative Line (or VTAM node name) 22 6 (8) 9

Input Relative Terminal (for non-VTAM) 29 3

Output Node Name (for VTAM) 33 8

Output Relative Line (or VTAM node name) 33 6 (8) 9

Output Relative Terminal (for non-VTAM) 40 3

Processing Type (PT) 44 1 2

Program Name 46 8

Dependent Region ID 55 3

Time of SMB Enqueue (Transaction received) 59 7 3

Time of Message Schedule or GU 68 7 3

Time of CNT Enqueue (Message put on output

queue)

77 7 3

Time of Program End or Next Message GU 86 7 3

Time of CNT GU (Output message starts to

terminal)

95 7 3

System IDs 103 3

Time in Input Queue 106 6 4, 5

Time Processing 113 6 6, 5

Time in Output Queue 120 6 7, 5

Total Time 127 6 8, 5

Notes to Table 54 on page 497:

1. Starting position 1 is a carriage control character which alters the starting

positions of the fields when producing a report on disk.

2. Processing types:

A Program Abend or Unconnected Transaction

B Processing restarted

C Conversational Send/Receive Processing

D Transmit Only Conversational Processing

F /FORMAT entered (Transaction Code Field has MODNAME)

M Message Switch

O Region Occupancy (A region is occupied by a program that is

processing transactions that existed in the input queue before the start

checkpoint has encountered or a program scheduled by an

unrecoverable message.)

P Program Switch Send/Receive Processing

Q Transmit Only Program Switch Processing

R Program was running at time of IMS abend

S Send/Receive Processing

Examining Scheduling Activity

498 Utilities Reference: System

T Transmit Only Processing

X Conversational Program Switch, Send/Receive Processing

Y Transmit Only Conversational Program Switch Processing

3. Time HHMMSST

4. Input queue time is from SMB enqueue to message schedule.

5. Time SSSST or OVRFLW (If the total seconds exceeds the field size, OVRFLW

is printed).

6. If the wait-for-input (WFI) system option is used, the time processing field also

includes the wait time between transactions.

7. Output queue time is from CNT enqueue to CNT GU.

8. Total Time is from SMB enqueue to CNT dequeue. The total time spans the

complete transaction.

9. For VTAM terminals, the input relative line and input relative terminal fields are

replaced with an input VTAM terminal node name. The output relative line and

output relative terminal fields are replaced with an output VTAM terminal node

name. The node name fields are 8 characters long.

IMS Accounting Information

The nature of accounting methods varies a great deal among data processing

installations. The IMS Transaction Manager presents special difficulties, because

many and varied transactions are processed by a partnership of the control region

and dependent regions. Further, operationally discrete applications can be served

concurrently.

For installations with IMS-dedicated processors, the overall cost of hardware and

support functions is often charged back based on predicted and actual use by

contributing groups. For shared systems, the processor usage can be the base for

proportional cost.

Although IMS does not have an explicit accounting function, the individual events

that make up the processing activity are recorded on the IMS log in considerable

detail. Analysis of IMS log records can be used as a basis for charge-back

algorithms. You can, for example, obtain a report from the Statistical Analysis utility

of the number of transactions and the average number of DL/I calls for each

transaction.

Another source of resource usage figures is the reports produced as a result of IMS

Monitor data collection. Samples of processing activity can be taken on a regular

basis. Accounting algorithms can use, for example, processor utilization by program.

Both of these approaches require further manipulation and calibration of the

resource indicators.

If the DL/I address space option is used (LSO=S), accounting procedures based on

SMF data will be affected. SMF statistics for IMS system data sets and Fast Path

databases are accounted to the control region procedure. Full function databases

are accounted to the DL/I address space procedure.

Using the Application-Accounting Report

The Statistical Analysis utility produces an Application-Accounting report that you

can use to assess machine charges. The following breakdown is provided for each

transaction and for each program:

Examining Scheduling Activity

Chapter 22. Interpreting Statistical-Analysis and Log-Transaction Reports 499

v The number of messages with related total and average processor time in

seconds

v The number and type of DL/I message calls

v The number and type of DL/I database calls

Figure 211 illustrates the output format.

 The disadvantage is that the output is only for the interval covered by the IMS log

input. You must coordinate the input data sets and accumulate the statistics. A large

number of data sets would not be insignificant to process, because the utility uses

two edit and sort passes, producing intermediate tape output.

Recommendation: If you use the utility, specify the NOTXT option on the step 1

EXEC statement, because this saves considerable sort data manipulation.

Using IMS Transaction Profiles

You can use a composite picture of each transaction as a basis for estimating

usage. The IMS Transaction profile can contain DL/I call requirements by type of

call and possibly items derived from path length for other processing blocks. You

can weight the message count to allow for heavy DL/I use by the transaction.

Transaction statistics can be obtained on a regular basis from /DISPLAY output, for

example at end-of-day or before shutdown.

The profiles should characterize the IMS workload in such a way that growth trends

and major deviations from the predicted load can be traced to the transaction codes

responsible.

 A P P L I C A T I O N A C C O U N T I N G R E P O R T D A T E 04/17/93 P A G E 4

PROGRAM TRANSACTION MESSAGE- - - - COUNTS DATA - - - - - - - - - BASE - - - - - - - - COUNTS CC OR RC TOT PROG AVR

 NAME CODE PRI QTY GU GN ISRT* GU GN GNP GHU GHN GHNP ISRT DLET REPL NOT 0 CPU TIME TIME

PROGTS1R TS1R 01 373 717 0 373 0 0 0 0 0 0 0 0 0 0 01.1S 0.003S

PROGTS1S TS1S 01 388 748 0 388 0 0 0 0 0 0 0 0 0 0 01.1S 0.003S

PROGTS1T TS1T 01 340 657 0 340 0 0 0 0 0 0 0 0 0 0 01.0S 0.003S

SYSTEM TOTALS 349* 580* 107* 704* 1025* 328* 1520* 247* 0 249* 348* 3664 460* 0 06M 55.5S 0.011S

* INDICATES TOTAL SHOWN IN 100’S

@ INDICATES TOTAL SHOWN IN 10,000’S

 I M S ACCOUNTING REPORT D A T E 04/17/93 P A G E 1

 START TIME 15:50:50

 I M S DAY 04/17/93**

 STOP TIME 15:56:16

REPORT PERIOD IS FROM 04/17/93 TO 04/17/93.

END OF REPORTS

* Second insert is counted for single user issued insert if all the following conditions are met:

1. New HIDAM or PHIDAM Root

2. Not Duplicate Key (II status not returned)

** These dates will not appear unless the input to DFSIST30 is sorted with date control.

Figure 211. Application-Accounting Report

IMS Accounting Information

500 Utilities Reference: System

Part 6. Knowledge-Based Log Analysis

Chapter 23. Knowledge-Based Log Analysis Overview 505

Invoking KBLA from the IMS Application Menu 505

Maintaining the KBLA Environment with Option 0 507

Defining the Selection of IMS Logs using Option 5 507

Using KBLA to Run a Job Against IMS Log Records 508

Option 1: IMS Log Utilities 508

Option 2: IMS Log Formatting 508

Option 3: IMS Log Data Set Summary 508

Option 4: IMS Knowledge-Based Analysis 509

External Log Processing using Option 6 510

Chapter 24. KBLA Log Formatting Modules 511

KBLA Basic Record Formatting and Print Module (DFSKBLA3) 511

Utility Control Statements for DFSKBLA3 512

Output for DFSKBLA3 . 512

KBLA Basic Record Formatting Module (DFSKBLA7) 513

KBLA Summary Record Formatting Module (DFSKBLA8) 516

KBLA Knowledge-Based Record Formatting Module (DFSKBLA9) 518

KBLA Summary Record Formatting and Print Module (DFSKBLAS) 520

Utility Control Statements for DFSKBLAS 520

Output for DFSKBLAS . 521

KBLA Knowledge-Based Record Formatting and Print Module (DFSKBLAK) 521

Utility Control Statements for DFSKBLAK 522

Output for DFSKBLAK . 523

Chapter 25. DBCTL Transaction Analysis Utility (DFSKDBC0) 525

Restrictions for DFSKDBC0 . 526

Input and Output for DFSKDBC0 526

JCL Requirements for DFSKDBC0 527

DD Statements . 527

Using DFSKDBC0 to Sort a Report 527

DD Statements . 528

Example of DFSKDBC0 . 528

Chapter 26. IMS Records User Data Scrub Utility (DFSKSCR0) 531

Restrictions for DFSKSCR0 . 531

Input and Output for DFSKSCR0 531

JCL Requirements for DFSKSCR0 532

DD Statements . 532

Example of DFSKSCR0 . 532

Chapter 27. MSC Link Performance Formatting Utility (DFSKMSC0) . . . 535

Restrictions for DFSKMSC0 . 535

Input and Output for DFSKMSC0 536

JCL Requirements for DFSKMSC0 536

DD Statements . 536

Example of DFSKMSC0 . 537

Chapter 28. Statistic Log Record Analysis Utility (DFSKDVS0) 539

Restrictions for DFSKDVS0 . 539

Input and Output for DFSKDVS0 540

JCL Requirements for DFSKDVS0 540

DD Statements . 540

© Copyright IBM Corp. 1974, 2004 501

||

||
||
||
||
||
||
||
||
||
||
||
||
||

||
||
||
||
||
||
||
||

||
||
||
||
||
||

||
||
||
||
||
||

||
||
||
||
||

Chapter 29. IRLM Lock Trace Analysis Utilities (DFSKLTA0, DFSKLTB0,

DFSKLTC0) . 543

Restrictions for IRLM Lock Trace Analysis 543

Input and Output for IRLM Lock Trace Analysis 544

DFSKLTA0 . 544

JCL Requirements for DFSKLTA0 544

DFSKLTB0 . 545

JCL Requirements for DFSKLTB0 545

DFSKLTC0 . 546

JCL Requirements for DFSKLTC0 546

Control Statements for DFSKLTC0 547

Control Keywords for DFSKLTC0 547

IRLM Lock Trace Analysis Summary Report 548

IRLM Lock Trace Analysis Detail Report 548

Chapter 30. RECON Query of Log Data Set Names Utility (DFSKARC0) 551

Input and Output for DFSKARC0 552

JCL Requirements for DFSKARC0 552

DD Statements . 552

JCL Example . 554

Control Statements for DFSKARC0 554

Keywords . 554

Output Examples of DFSKARC0 556

DSNLIST . 556

JCLOUT . 556

Return Codes for DFSKARC0 557

RECON Query Summary Report 557

Chapter 31. Log Summary Utility (DFSKSUM0) 559

Dynamic Search . 560

Input and Output for DFSKSUM0 560

JCL Requirements for DFSKSUM0 561

DD Statements . 561

JCL Example . 562

Control Statements for DFSKSUM0 562

Control Keywords for DFSKSUM0 563

Return Codes for DFSKSUM0 567

Output Examples of DFSKSUM0 567

Log Summary Report Example 567

Logical Record Selection Flow Report Example 571

Short Log Summary Report (SUMONLY) Example 572

Chapter 32. Deadlock Trace Record Analysis Utility (DFSKTDL0) 575

Input and Output for DFSKTDL0 576

JCL Requirements for DFSKTDL0 576

DD Statements . 577

JCL Example . 578

Control Statements for DFSKTDL0 578

Control Keywords for DFSKTDL0 579

Global Keywords . 579

Processing Keywords . 579

Return Codes for DFSKTDL0 580

Deadlock Trace Analysis Summary Report Example 580

Deadlock Trace Analysis Victim Report Example 583

Deadlock Trace Analysis Detail Report Example 584

502 Utilities Reference: System

|
||
||
||
||
||
||
||
||
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||

Chapter 33. Trace Record Extract Utility (DFSKXTR0) 585

Input and Output for DFSKXTR0 586

JCL Requirements for DFSKXTR0 586

DD Statements . 586

JCL Example . 587

Control Statements for DFSKXTR0 588

Control Keywords for DFSKXTR0 588

Global Keywords . 588

Processing Keywords . 588

Trace Table Log Search Keywords 589

Trace Table Entry Search Keywords 590

Return Codes for DFSKXTR0 591

Trace Entry Extract Summary Report Example 592

Chapter 34. Log Record Processing Rate Analysis Utility (DFSKRSR0) 595

Input and Output for DFSKRSR0 596

JCL Requirements for DFSKRSR0 596

DD Statements for DFSKRSR0 596

JCL Example . 597

Control Statements for DFSKRSR0 598

Control Keywords for DFSKRSR0 598

Global Keywords . 598

Processing Keywords . 598

Selection Criteria Keywords 599

Return Codes for DFSKRSR0 599

DETAIL File Layout . 600

Log Record Processing Rate Analysis Summary Report Examples 600

Example 1 . 600

Example 2 . 602

Part 6. Knowledge-Based Log Analysis 503

||
||
||
||
||
||
||
||
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

504 Utilities Reference: System

Chapter 23. Knowledge-Based Log Analysis Overview

Knowledge-Based Log Analysis (KBLA) is a collection of IMS utilities that provides

an ISPF user interface to perform log record selection and analysis by invoking

internal routines and other IMS utility programs. KBLA uses an ISPF panel-driven

user interface to simplify JCL job creation and to prevent JCL errors. KBLA

generates the JCL and control statements necessary to run the supported utilities.

This JCL preparation allows you to focus on the output of the utility used rather than

on how to code JCL to extract information.

The following topics provide additional information:

v “Invoking KBLA from the IMS Application Menu”

v “Maintaining the KBLA Environment with Option 0” on page 507

v “Defining the Selection of IMS Logs using Option 5” on page 507

v “Using KBLA to Run a Job Against IMS Log Records” on page 508

Invoking KBLA from the IMS Application Menu

KBLA can be invoked from the IMS Application Menu. To access KBLA, first access

the IMS Applications Menu by typing this command: EXEC ’hlq.SDFSEXEC(DFSAPPL)’

’HLQ(hlq)’.

Note: hlq is the high-level-qualifier associated with the installed IMS subsystem.

Figure 212 shows the IMS Applications Menu panel.

Related Reading: For more information about using the IMS Application Menu, see

the IMS Version 9: Installation Volume 1: Installation Verification.

 From the IMS Applications Menu, select option 2 for KBLA. Figure 213 on page 506

shows the main panel of KBLA.

 IMS Application Menu

 Select the desired application and press Enter.

 1 Single Point of Control (SPOC)

 2 Knowledge-Based Log Analysis (KBLA)

 3 HALDB Partition Definition Utility (PDU)

 4 Syntax Checker for IMS parameters (SC)

 5 Installation Verification Program (IVP)

 6 IVP Export Utility (IVPEX)

 To exit the application, press F3.

 Command ===>

Figure 212. IMS Applications Menu

© Copyright IBM Corp. 1974, 2004 505

|
|
|
|
|
|
|

|

|
|
|

|

|
|

KBLA provides you with a set of ISPF panels which you can use to access log

analysis-related utilities and functions. A set of help panels for each function or

sub-function can also be displayed. Field level help is supported by placing the

cursor on the subject field and pressing the HELP Key (PF1). Figure 214 shows the

structure of the KBLA ISPF panels.

 Knowledge Based Log Analysis IMS Version 9.1

 Command ===>

 TIME....17:15:07

 DATE....2003/10/01

 JULIAN..2003.274

 Select any of the following tasks and press ENTER . USERID..TSOUSER

 Tasks . . 0. KBLA Environment Maintenance

 1. IMS Log Utilities

 2. IMS Log Formatting

 3. IMS Log Data Set Summary

 4. IMS Knowledge Based Analysis

 5. Log Selection

 To Exit the KBLA MAIN menu, press END .

 For Help place cursor on any field and press PF1 .

Figure 213. Main Panel for KBLA

Figure 214. KBLA Panel Structure

Invoking KBLA from the IMS Application Menu

506 Utilities Reference: System

|
|
|
|
|

Maintaining the KBLA Environment with Option 0

Use option 0 to perform global maintenance on your KBLA environment.

Parameters entered in KBLA panels are stored as ISPF variables and are used by

other panels, as appropriate. It can be useful to complete the KBLA Maintenance

Environment panel first in order to tailor KBLA to specific needs. If entries are not

specified, KBLA fills some fields with default values. The default JCL job statement

is extracted from hlq.SDFSSLIB(DFSKJOBK). Other default values include:

 Table 55. KBLA Fields and Default Values

Field Default Value

KBLA Loadlib hlq.SDFSRESL

IMS Version 9

Reslib DSN hlq.SDFSRESL

Verify LOG DSN Exists Y

Default Output Space Parms: Type CYL

Primary 100

Secondary 50

Route output to alternate system N

Suboptions available for KBLA environment maintenance include:

1. Tailoring the KBLA panels according to your ISPF environment, DSN naming

convention, JOB JCL requirements, IMS.SDFSRESL used, and RECON-related

information

2. Creating a list of the work data sets that have been created as you use KBLA

3. Viewing the list of the work data sets

4. Deleting work data sets that are no longer needed

Defining the Selection of IMS Logs using Option 5

Use option 5 to create a list of logs to be processed by KBLA. KBLA can process

logs from different sources. Sometimes multiple IMS log data sets must be used.

The RECON data sets can be accessed to extract the names of PRIOLD, PRISLD,

PRILOG, SECOLD, SECSLD, or SECLOG data sets. A copied or manually entered

list of logs can also be used as input to KBLA. In addition to accepting a list of IMS

logs, KBLA can separate the list by IMS SYSID into multiple lists, each sorted by

time stamps.

The following suboptions create and sort the final list of logs for input to KBLA:

1. Extract log data sets from the RECON data sets or as the result of a LIST.LOG

RECON command.

2. Create a member or members in your SDFSKJCL PDS that contains a manually

entered list of log data sets to be processed by KBLA options.

3. Use the list of logs created in suboption 2 to create new sorted members in the

SDFSKJCL PDS, which can be used as input by other KBLA processing

options. This suboption separates the log data set names by IMS SYSID and

sorts the log data set names by time stamp or line sequence number.

4. Sort records within logs using up to four criteria. This suboption is used to

process unformatted log records that have been previously selected by KBLA

(use Option 2 with Log Formatting Type 'U'). The sorted log records can then be

Maintaining the KBLA Environment

Chapter 23. Knowledge-Based Log Analysis Overview 507

|
|
|
|
|
|

||

||

||

||

||

||

||

||

||

||
|

|

|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|

|
|
|

used as input for the formatting and analysis steps of KBLA. This suboption

sorts individual log records within a log data set and then sends the sorted log

to KBLA for processing.

Using KBLA to Run a Job Against IMS Log Records

Use the remaining four options from the main panel of the Knowledge-Based Log

Analysis utility to format and analyze a log record. A brief description of each option

follows.

Option 1: IMS Log Utilities

This option allows you to access the following log analysis utilities:

1. Chapter 16, “Log Transaction Analysis Utility (DFSILTA0),” on page 353

2. Chapter 14, “Fast Path Log Analysis Utility (DBFULTA0),” on page 325

3. Chapter 17, “Statistical Analysis Utility (DFSISTS0),” on page 359

4. Chapter 10, “Log Merge Utility (DFSLTMG0),” on page 263

5. Chapter 11, “Log Recovery Utility (DFSULTR0),” on page 267

6. “Program Isolation Trace Record Format and Print Module (DFSERA40)” on

page 316

7. Chapter 26, “IMS Records User Data Scrub Utility (DFSKSCR0),” on page 531

Option 2: IMS Log Formatting

This option allows you to extract or format log records. Suboptions include:

1. IMS Resources Formatting

2. IMS Subcomponent Log Filtering

3. KBLA Log Records Formatting

4. IMS Trace Formatting

5. Snap/Pseudo-Abend Record Formatting

a. Chapter 32, “Deadlock Trace Record Analysis Utility (DFSKTDL0),” on page

575 for K-formatted database deadlock traces

b. DFSERA10 using the “Record Format and Print Module (DFSERA30)” on

page 309 for all other traces

Related Reading: See Chapter 24, “KBLA Log Formatting Modules,” on page 511

for more information on suboptions 1–4.

Option 3: IMS Log Data Set Summary

This option produces a summary of the log data set that you specified along with

some statistical information. The summary function includes:

v First and last line sequence number (LSN) in the log

v Time stamp (UTC) of the first and last log record

v Total number of log records in the log data set

v Presence of internal trace records, system restarts, dump log records, system

checkpoint

v Number of log records present for each record ID

v System configuration

v Transaction, program and data bases records instances

Defining Selection of IMS Logs

508 Utilities Reference: System

|
|
|

|
|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|
|

|
|

|

|

Option 4: IMS Knowledge-Based Analysis

This option provides different methods for knowledge-based formatting, analysis

and interpretation of specific IMS log records. You can access different utilities with

the following suboptions, each one with its own ISPF panel interface.

1. Chapter 31, “Log Summary Utility (DFSKSUM0),” on page 559

You can use this utility to specify search criteria to extract the supported log

records. Log record types that can be processed during the analysis include:

X'01', X'03', X'07', X'08', X'11', X'12', X'13', X'16', X'20', X'21', X'27', X'29', X'31',

X'33', X'35', X'36', X'36', X'37', X'38', X'3F', X'40', X'41', X'42', X'42', X'45', X'47',

X'4C', X'50', X'51', X'52', X'56', X'57', X'59', X'63', and X'72'.

Search criteria can include the following:

v UOW (unit of work)

v LTERM name

v NODE name

v TRANSACTION name

v Program name (PGM)

v DBD name

v AREA name

v User ID

v RBA

v Recovery Token

v Message DRRN

v A generic character or hexadecimal search string

The “Dynamic Search Keys” parameter allows you to create an increasingly

refined and broader search argument to include additional records that are

related to the specified search criteria.

The Log Summary utility can also be used to create a summary of the log

records and to view the configuration of an IMS subsystem based on the

contents of the log records.

2. Chapter 27, “MSC Link Performance Formatting Utility (DFSKMSC0),” on page

535

This utility uses IMS MSC log records to measure the overall performance of

each link defined in the system. Two different reports are produced; one is a

summary and the other is more detailed.

3. Chapter 28, “Statistic Log Record Analysis Utility (DFSKDVS0),” on page 539

This utility enhances formatting of the IMS-produced log record X'45'.

4. Chapter 33, “Trace Record Extract Utility (DFSKXTR0),” on page 585

This utility extracts specific trace table entries that match specified selection

criteria from trace table log records for subsequent formatting by DFSERA10

and DFSERA10-related exit routines. DFSKXTR0 reduces the amount of data

unrelated to the selection criteria in the formatted reports.

5. Chapter 29, “IRLM Lock Trace Analysis Utilities (DFSKLTA0, DFSKLTB0,

DFSKLTC0),” on page 543

These utilities create and combine several outputs, including one based on wait

time order. In the wait-time-ordered report, databases are ordered by the total

lock wait time during the trace. DFSKLTC0 has an option for placing the request

completion order report to a data set, which can then be sorted either by this

ISPF panel’s options or using a SORT program to produce a report in any order.

6. Chapter 25, “DBCTL Transaction Analysis Utility (DFSKDBC0),” on page 525

Running a Job against IMS Log Records

Chapter 23. Knowledge-Based Log Analysis Overview 509

|
|
|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|

|

|

|

|
|

|
|
|
|
|

|

This utility combines the functions of the DBFULTA0 and DFSILTA0 utilities and

can produce a sorted output using key fields that can help to identify potential

performance problems.

7. Chapter 34, “Log Record Processing Rate Analysis Utility (DFSKRSR0),” on

page 595

This utility generates reports that summarize the volume of log data, by record

type and subtype, that is being generated by an IMS subsystem. The volume of

log data is expressed in number of records per second and number of bytes per

second.

External Log Processing using Option 6

Use option 6 to access any external log processing utility or IMS tool available in

your environment. You can launch up to 4 different utilities or tools from this panel

by specifying the corresponding EXEC statement in the TSO Exec field.

Running a Job against IMS Log Records

510 Utilities Reference: System

|
|
|

|
|

|

|
|
|

Chapter 24. KBLA Log Formatting Modules

The KBLA Log Formatting Modules (DFSKBLA3, DFSKBLA7, DFSKBLA8,

DFSKBLA9, DFSKBLAK, and DFSKBLAS) are exit routines based on the File

Select and Formatting Print Utility (DFSERA10). For more information on

DFSERA10, see Chapter 13, “File Select and Formatting Print Utility (DFSERA10),”

on page 295.

The following topics provide additional information:

v “KBLA Basic Record Formatting and Print Module (DFSKBLA3)”

v “KBLA Basic Record Formatting Module (DFSKBLA7)” on page 513

v “KBLA Summary Record Formatting Module (DFSKBLA8)” on page 516

v “KBLA Knowledge-Based Record Formatting Module (DFSKBLA9)” on page 518

v “KBLA Summary Record Formatting and Print Module (DFSKBLAS)” on page

520

v “KBLA Knowledge-Based Record Formatting and Print Module (DFSKBLAK)” on

page 521

KBLA Basic Record Formatting and Print Module (DFSKBLA3)

Use the KBLA Basic Record Formatting and Print Module (DFSKBLA3) to format

trace and general purpose log record types. DFSKBLA3 is an exit routine of the File

Select and Formatting Print Utility (DFSERA10). Because this routine formats log

records, it passes a return code to DFSERA10. This return code tells DFSERA10

that the log record has been processed and requires no additional processing.

For IMS log records, NODE trace entries, and SNAP subrecord types, DFSKBLA3

creates log record header information describing what the log record identifier

represents and the time stamp at which the record was written.

When using the KBLA panel-driven interface to format log records, specify 'B' (for

Basic) as the Log Formatting Type on KBLA panels 2.1, 2.2, 2.3, or 4.1 to generate

the control statements necessary to run this routine. Figure 215 on page 512 is an

example of the Log Record Formatting panel in the KBLA panel-driven interface.

© Copyright IBM Corp. 1974, 2004 511

|

|

|
|
|
|
|

|

|

|

|

|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

Utility Control Statements for DFSKBLA3

Figure 216 shows an example of the control statements required to format type

X'67aa', X'03', and X'16' log records using the DFSKBLA3 module.

 In Figure 216, aa is the log record subtype.

aa=01 Specifies TRACE log record subtype. NODE trace entry identifiers

are interpreted.

aa=FD Specifies SNAP log record subtype.

aa=FF Specifies ABEND log record subtype.

Output for DFSKBLA3

Figure 217 on page 513 shows a sample formatted log from DFSKBLA3.

. .

 == K.B.L.A. Log Record Formatting ==

COMMAND ===>

Input IMS Log DSN IMS.SAMPLE.LOG Cataloged? Y

IMS Log Version. 9

Extract Record(s). (eg. 01 02 5912)

Log Formatting Type. . . . B (B,S,K or U)

Output DSN Keyword TEST

 Output DSN: USERID.Keyword.KBLA

Optional parameters

 Print /TRA Log Record. . N (Y/N)

 Print Internal Traces. . N (Y/N)

 Filter by Keyword. . . . X’08000C3D’

 No. Records to Scan. . .

 No. Records to Skip. . .

 Log DSNs were extracted from RECON.

 PDS member containing logs

Figure 215. KBLA Log Record Formatting Panel to Invoke DFSKBLA3

Column 1 Column 10 Column 16 72

CONTROL CNTL

OPTION PRINT OFFSET=5,FLDLEN=2, X

 VALUE=67aa,COND=E, X

 EXITR=DFSKBLA3

OPTION PRINT OFFSET=5,FLDLEN=1, X

 VALUE=03,COND=E, X

 EXITR=DFSKBLA3

OPTION PRINT OFFSET=5,FLDLEN=1, X

 VALUE=16,COND=E, X

 EXITR=DFSKBLA3

END

Figure 216. Control Statements Required for DFSKBLA3

Basic Record Formatting and Print

512 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

|

|
|
|

|

||
|

||

||

|

|
|

KBLA Basic Record Formatting Module (DFSKBLA7)

Use the KBLA Basic Record Formatting module (DFSKBLA7) to:

v Produce expanded log records from compressed IMS logs.

03 RECORD OUTPUT MESSAGE QUEUED DATE/TIME: 2003-07-10 20:27:17.350994 UTC

MSG PREFIX HEADER

 00000000 000000 04EC0000 03C18110 08000006 08000006 04DC8002 E3C9F1E3 40404040 B9B30901 *.....AA.............TI1T *

 00000020 000020 C1D84482 E3C9F1E3 40404040 B9B30906 C90B2F22 40000100 00000000 00000000 *AQ.BTI1T I...*

SYSTEM PREFIX

 00000000 000000 00408100 C8100000 00000000 00000000 514D0007 00010000 00000000 00000001 *. A.H............(..............*

 00000020 000020 FEFFFFFF 2931D460 E3C3F6F7 F0F9F1F0 00000000 00000000 40404040 40404040 *......M-TC670910........ *

EXTENDED PREFIX HEADER

 00000000 000000 00108600 045CFD00 00000000 00000000 *..F..*.......... *

APPC/OTMA/LU62 PREFIX

 00000000 000000 028E8700 0040C389 05C62000 C3E2D8F0 F0F0F9F4 E3C3F6F7 D5C9C1D3 B96B792B *..G.. CI.F..CSQ00094TC67NIAL.,..*

 00000020 000020 8B253384 00000000 00000000 E3D4F1E3 40404040 40404040 40404040 E3C9F1E3 *...D........TM1T TI1T*

 00000040 000040 40404040 B96B792B 8B253384 08100078 00000000 00000000 00000000 00000000 * .,.....D....................*

 00000060 000060 00000000 00000000 2A0C8180 00000000 00000000 00000000 01400000 0040C3E2 *..........A.............. ... CS*

 00000080 000080 D8F0F0F0 F9F4A0F0 00006D8D 00000000 0000AE78 00010000 00480040 01004040 *Q00094.0.._................ .. *

 000000A0 0000A0 40404040 40402020 20202020 20202020 20202020 20207F19 6D580000 0000B9B3 * "._.......*

 000000C0 0000C0 0901C176 11030000 00000000 00000000 00000000 00004040 40404040 40400000 *..A................... ..*

 000000E0 0000E0 0060C652 51005001 80535554 55555555 55555555 55555555 55555555 55555555 *.-F...&.........................*

 00000100 000100 55555555 55555555 55555555 55555555 55555555 5555B7B6 969C808C 918C5555 *........................O...J...*

 00000120 000120 55555555 5555B796 B7B690B7 B6A45555 55555555 55550902 E2C3E2E3 C5E2E3F1 *.......O.....U..........SCSTEST1*

 00000140 000140 014ED4C4 40400000 00010000 00000000 0001FFFF FFFF0000 00000000 03110000 *.+MD *

 00000160 000160 01F4D4D8 C9D4E240 40400000 00000000 0001C3E2 D840E3D4 F1E34040 40404040 *.4MQIMS CSQ TM1T *

 00000180 000180 4040B9B3 090115A2 45A20000 00000000 00000000 00000000 00000000 00000000 * S.S......................*

 000001A0 0001A0 00000000 0000C3C9 C64BD8C1 D3C9C1E2 4BD9C5E2 D74BD3D6 C3C1D340 40404040 *......CIF.QALIAS.RESP.LOCAL *

 000001C0 0001C0 40404040 40404040 40404040 40404040 40404040 4040E3D4 F1E34040 40404040 * TM1T *

 000001E0 0001E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 00000200 000200 40404040 4040E2C3 E2E3C5E2 E3F14040 40400000 00000000 00000000 00000000 * SCSTEST1 *

 00000220 000220 00000000 00000000 00000000 00000000 00004040 40404040 40404040 40404040 *.................. *

 00000240 000240 40404040 40404040 40404040 40404040 40400000 0002E3D4 F1E3C3C8 C9D54040 * TM1TCHIN *

 00000260 000260 40404040 40404040 40404040 40404040 4040F2F0 F0F3F0F7 F1F0F2F0 F2F7F0F1 * 20030710202701*

 00000280 000280 F6F04040 4040D4D8 C9D4E2E5 E240 *60 MQIMSVS *

SECURITY PREFIX

 00000000 000000 00168800 E2C3E2E3 C5E2E3F1 00000000 00000000 E400 *..H.SCSTEST1........U. *

WORK LOAD MANAGER PREFIX

 00000000 000000 00188900 00468000 B9B30901 C1E14C01 00000000 00000000 *..I.........A.<......... *

SYSTEM EXTENSION PREFIX

 00000000 000000 00188A00 2003191F 20270231 4516016D 00000000 00000000 *..............._........ *

MSC EXTENSION PREFIX

 00000000 000000 00688B00 00000000 00000000 00000000 00000080 00000000 FEFFFFFF 2931D460 *..............................M-*

 00000020 000020 00000000 00000000 00000000 00030003 00000000 00000000 00000000 00000003 *................................*

 00000040 000040 00030003 E3C9F1E3 40404040 B9B30901 C1D84482 00000000 00000000 00000000 *....TI1T AQ.B............*

 00000060 000060 00000000 00000000 *........ *

TRANSACTION MANAGER PREFIX

 00000000 000000 00908C00 00000303 00000000 00000065 E3C3F6F7 F0F9F1F0 FEFFFFFF 2931D460 *................TC670910......M-*

 00000020 000020 03030244 20080000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

 00000040 000040 00000000 08100000 00000000 00000000 00000000 00000319 9699C5ED E6542929 *........................ORE.W...*

 00000060 000060 DCF80000 00001000 00000000 00000000 00000810 00000000 00000000 00000000 *.8..............................*

 00000080 000080 00000000 00000000 00000000 00000000 *................ *

USER PREFIX

 00000000 000000 00808E00 D6200319 1F202702 31410501 6D000000 00000000 00000000 0000C920 *....O..........._.............I.*

 00000020 000020 03191F20 27075866 60016D00 00000000 00000000 00000000 00000000 00000000 *........-._.....................*

 00000040 000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

 00000060 000060 SAME AS ABOVE

RECORD SUFFIX

 00000000 000000 B9B30910 18E52321 00000000 00DFB20C *.....V.......... *

16 RECORD VTAM TERMINAL /SIGN OFF FORCED DATE/TIME: 2003-07-10 20:32:33.680372 UTC

 00000000 000000 00500000 16264000 000040A0 E9E9D2D7 F2404040 E9E9D2D7 F2404040 D4F0F3F0 *.&....ZZZZ2 ZZZZ2 A000*

 00000020 000020 F1F0F1F6 2003191F 20323367 9955016D 40404040 40404040 D4F0F3F0 F1F0F1F6 *0006........R.._ A0000006*

 00000040 000040 B9B30A3D C5BF4D20 00000000 00DFCC47 *....E.(......... *

16 RECORD VTAM TERMINAL /SIGN OFF FORCED DATE/TIME: 2003-07-10 20:32:35.660418 UTC

 00000000 000000 00500000 16264000 000040A0 E9E9D2D7 F2404040 E9E9D2D7 F2404040 D4F0F3F0 *.&....ZZZZ2 ZZZZ2 A000*

 00000020 000020 F1F0F9F0 2003191F 20323566 0018016D 40404040 40404040 D4F0F3F0 F1F0F9F0 *0090..........._ A0000090*

 00000040 000040 B9B30A3F A9282D64 00000000 00DFCC64 *....Z........... *

 *

Figure 217. Sample Formatted Log from DFSKBLA3

Basic Record Formatting

Chapter 24. KBLA Log Formatting Modules 513

|
|

|

|

v Select and format X'5' (full function 50X and fast path 5950) log records based

on data contained within the record itself, such as the contents of a time, date, or

identification field. These records are formatted with all log record types listed

under the PARM TOKEN= description.

v Change the format of log output to identify and emphasize select log fields.

Specify the search criteria for the routine as subparameters of the PARM=

parameter of the OPTION statement for the File Select and Formatting Print utility

(DFSERA10). Each subparameter must be uppercase and cannot contain any

blanks. The subparameter data must be character or decimal. Hexadecimal data

must be preceded by an X and the data enclosed in single quotes (for example,

X'0123').

When the record is selected, it can be written to tape or DASD.

When multiple subparameters are specified, all conditions must be met to select a

record. Use multiple routines to select records if some of the conditions have been

met.

DFSKBLA7 calls DFSKBLA3 to format the output.

Unrecognized characters or invalid parameter specifications are ignored by this

routine.

The possible subparameters of PARM= are:

XFMT=

Extends the X'50' log record format to enhance the retrievability of certain data

entries.

Y Highlights the log data for certain types of processing by placing the

data on a separate line and adding identifiers for data entries. It applies

to log data that describes the following types of processing: data

sharing, XRF buffer and lock tracking, space management, key, backout

(undo), and recovery (redo). If a type of processing is not relevant, the

data section is omitted.

 These data sections are added after the unformatted log data for the

record. Each section includes identifiers followed by hexadecimal log

data, character log data, or both. They contain the following entries,

where X represents hexadecimal log data and C represents character

log data:

Data sharing

DSHRDSSN XXXXXXXX DSHRLSN XXXXXXXXXXXX DSHRUSID

XXXXXXXX RACF-UID CCCCCCCC XXXXXXXXXXXXXXXX

XRF buffer and lock tracking

TRAKPLSZ XXXX TRAKBUFN XXXX TRAKHASH XXXXXXXX

TRAKLOCK XXXXXXXX TRAKFLGS XX XX

Space management

SMGTFLGS XX XX SMGTROFF XXXX SMGTRLEN XXXX

Key

KSDS Character string describing database action

LENGTH XXXX

One or more lines of mixed hexadecimal and character data

Undo

Basic Record Formatting

514 Utilities Reference: System

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|

|

|
|

|

|
|
|

||
|
|
|
|
|

|
|
|
|
|

|

|
|

|

|
|

|

|

|

|
|
|

|
|

UNDO Character string describing database action

LENGTH XXXX OFFSET XXXX

One or more lines of mixed hexadecimal and character data

Redo

REDO Character string describing database action

LENGTH XXXX OFFSET XXXX

One or more lines of mixed hexadecimal and character data

N Does not highlight the log data for data sharing, buffer and lock

tracking, space management, key, backout or recovery. The data is

formatted as part of the raw data for the record.

 XFMT=N is the default value.

PST=pst_number

Selects records containing the PST number.

SYSID=system_id

Selects records for the system ID portion of the recovery token.

TOKEN=token

Selects records for the hexadecimal token portion of the recovery token. You

can select the following record types: X'07', X'08', X'0A', X'13', X'27', X'28',

X'31', X'32', X'35', X'37', X'38', X'39', X'3D', X'41', X'4C', X'50', X'56', X'59',

X'5901', X'5903', X'5937', and X'5938'.

PSB=psb_name

Selects records for the PSB name.

DBD=dbd_name

Selects records for the DBD name.

RBA=rba_value

Selects records for the RBA logical record length (LRECL).

BLOCK=block_rba

Selects records for the RBA block.

USERID=userid

Selects records for the user id.

KEY=ksds_key

Selects records for the key.

OFFSET=offset

Selects records that update a given offset of data in the buffer.

UNDO=undo_data

Selects records for backout data that matches the character string you specify.

The maximum length of the character string is 255 characters.

REDO=redo_data

Selects records with recovery data that matches the character string you

specify. The maximum length of the character string is 255 characters.

DATA=log_data

Selects records with data, including compressed data, that matches the

character string you specify (searches all log records). The maximum length of

the character string is 255 characters.

Basic Record Formatting

Chapter 24. KBLA Log Formatting Modules 515

|
|
|

|

|
|
|

||
|
|

|

|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

KBLA Summary Record Formatting Module (DFSKBLA8)

Use the KBLA Summary Record Formatting module (DFSKBLA8) to:

v Produce expanded log records from compressed IMS logs.

v Select and format X'5' (DL/I 5X and fast path 5950) log records based on data

contained within the record itself, such as the contents of a time, date, or

identification field. These records are formatted along with all log record types

listed under the PARM TOKEN= description.

v Change the format of log output to identify and emphasize some optional log

fields

Specify the search criteria for the routine as subparameters of the PARM=

parameter of the OPTION statement for the File Select and Formatting Print utility

(DFSERA10). Each subparameter must be uppercase and cannot contain any

blanks. The subparameter data type must be character or decimal. Hexadecimal

data must be preceded by an X and the data enclosed in single quotes (for

example, X'0123').

When the record is selected, it can be written to tape or DASD.

When multiple subparameters are specified, all conditions must be met to select a

record. Use multiple routines to select records if some of the conditions have been

met.

DFSKBLA8 calls DFSKBLAS to format the output.

Unrecognized characters or invalid parameter specifications are ignored by this

routine.

The possible subparameters of PARM= are:

XFMT=

Extends the X'50' log record format to enhance the retrievability of certain data

entries. N is the default.

Y Highlights the log data for certain types of processing by placing the

data on a separate line and adding identifiers for data entries. It applies

to log data that describes the following types of processing: data

sharing, XRF buffer and lock tracking, space management, key, backout

(undo), and recovery (redo). If a type of processing is not relevant, the

data section is omitted.

 These data sections are added after the unformatted log data for the

record. Each section includes identifiers followed by hexadecimal log

data, character log data, or both. They contain the following entries,

where X represents hexadecimal log data and C represents character

log data:

Data sharing

DSHRDSSN XXXXXXXX DSHRLSN XXXXXXXXXXXX DSHRUSID

XXXXXXXX RACF-UID CCCCCCCC XXXXXXXXXXXXXXXX

XRF buffer and lock tracking

TRAKPLSZ XXXX TRAKBUFN XXXX TRAKHASH XXXXXXXX

TRAKLOCK XXXXXXXX TRAKFLGS XX XX

Space management

SMGTFLGS XX XX SMGTROFF XXXX SMGTRLEN XXXX

Summary Record Formatting

516 Utilities Reference: System

|
|

|

|

|
|
|
|

|
|

|
|
|
|
|
|

|

|
|
|

|

|
|

|

|
|
|

||
|
|
|
|
|

|
|
|
|
|

|

|
|

|

|
|

|

|

Key

KSDS Character string describing database action

LENGTH XXXX

One or more lines of mixed hexadecimal and character data

Undo

UNDO Character string describing database action

LENGTH XXXX OFFSET XXXX

One or more lines of mixed hexadecimal and character data

Redo

REDO Character string describing database action

LENGTH XXXX OFFSET XXXX

One or more lines of mixed hexadecimal and character data

N Does not highlight the log data for data sharing, buffer and lock

tracking, space management, key, backout or recovery. The data is

formatted as part of the raw data for the record.

PST=pst_number

Selects records containing the PST number.

SYSID=system_id

Selects records for the system ID portion of recovery token.

TOKEN=token

Selects records for the hexadecimal token portion of recovery token. You can

select the following record types: X'07', X'08', X'0A', X'13', X'27', X'28', X'31',

X'32', X'35', X'37', X'38', X'39', X'3D', X'41', X'4C', X'50', X'56', X'59', X'5901',

X'5903', X'5937', and X'5938'.

PSB=psb_name

Selects records for the PSB name.

DBD=dbd_name

Selects records for the DBD name.

RBA=rba_value

Selects records for the RBA logical record length (LRECL).

BLOCK=block_rba

Selects records for the RBA (block).

USERID=userid

Selects records for the user id.

KEY=ksds_key

Selects records for the key.

OFFSET=offset

Selects records that update a given offset of data in the buffer.

UNDO=undo_data

Selects records for backout data that matches the character string you specify.

The maximum length of the character string is 255 characters.

REDO=redo_data

Selects records with recovery data that matches the character string you

specify. The maximum length of the character string is 255 characters.

DATA=log_data

Selects records with data, including compressed data, that matches the

character string you specify (searches all log records). The maximum length of

the character string is 255 characters.

Summary Record Formatting

Chapter 24. KBLA Log Formatting Modules 517

|

|
|
|

|

|
|
|

|

|
|
|

||
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

KBLA Knowledge-Based Record Formatting Module (DFSKBLA9)

Use the KBLA Knowledge-Based Record Formatting module (DFSKBLA9) to:

v Produce expanded log records from compressed IMS logs.

v Select and format X'5' (DL/I 5X and fast path 5950) log records based on data

contained within the record itself, such as the contents of a time, date, or

identification field. These records are formatted along with all log record types

listed under the PARM TOKEN= description.

v Change the format of log output to identify and emphasize some optional log

fields

Specify the search criteria for the routine as subparameters of the PARM=

parameter of the OPTION statement for the File Select and Formatting Print utility

(DFSERA10). Each subparameter must be uppercase and not have any blanks.

The subparameter data must be character or decimal. Hexadecimal data must be

preceded by an X and the data enclosed in single quotes (for example, X'0123').

When the record is selected, it can be written to tape or DASD.

When multiple subparameters are specified, all conditions must be met to select a

record. Use multiple routines to select records if some of the conditions have been

met.

DFSKBLA9 calls DFSKBLAK to format the output.

Unrecognized characters or invalid parameter specifications are ignored by this

routine.

The possible subparameters of PARM= are:

XFMT=

Extends the X'50' log record format to enhance the retrievability of certain data

entries. N is the default.

Y Highlights the log data for certain types of processing by placing the

data on a separate line and adding identifiers for data entries. It applies

to log data that describes the following types of processing: data

sharing, XRF buffer and lock tracking, space management, key, backout

(undo), and recovery (redo). If a type of processing is not relevant, the

data section is omitted.

 These data sections are added after the unformatted log data for the

record. Each section includes identifiers followed by hexadecimal log

data, character log data, or both. They contain the following entries,

where X represents hexadecimal log data and C represents character

log data:

Data sharing

DSHRDSSN XXXXXXXX DSHRLSN XXXXXXXXXXXX DSHRUSID

XXXXXXXX RACF-UID CCCCCCCC XXXXXXXXXXXXXXXX

XRF buffer and lock tracking

TRAKPLSZ XXXX TRAKBUFN XXXX TRAKHASH XXXXXXXX

TRAKLOCK XXXXXXXX TRAKFLGS XX XX

Space management

SMGTFLGS XX XX SMGTROFF XXXX SMGTRLEN XXXX

Knowledge-Based Record Formatting

518 Utilities Reference: System

|
|

|

|

|
|
|
|

|
|

|
|
|
|
|

|

|
|
|

|

|
|

|

|
|
|

||
|
|
|
|
|

|
|
|
|
|

|

|
|

|

|
|

|

|

Key

KSDS Character string describing database action

LENGTH XXXX

One or more lines of mixed hexadecimal and character data

Undo

UNDO Character string describing database action

LENGTH XXXX OFFSET XXXX

One or more lines of mixed hexadecimal and character data

Redo

REDO Character string describing database action

LENGTH XXXX OFFSET XXXX

One or more lines of mixed hexadecimal and character data

N Does not highlight the log data for data sharing, buffer and lock

tracking, space management, key, backout or recovery. The data is

formatted as part of the raw data for the record.

PST=pst_number

Selects records containing the PST number.

SYSID=system_id

Selects records for the system ID portion of the recovery token.

TOKEN=token

Selects records for the hexadecimal token portion of the recovery token. You

can select the following record types: X'07', X'08', X'0A', X'13', X'27', X'28',

X'31', X'32', X'35', X'37', X'38', X'39', X'3D', X'41', X'4C', X'50', X'56', X'59',

X'5901', X'5903', X'5937', and X'5938'.

PSB=psb_name

Selects records for the PSB name.

DBD=dbd_name

Selects records for the DBD name.

RBA=rba_value

Selects records for the RBA logical record length (LRECL).

BLOCK=block_rba

Selects records for the RBA block.

USERID=userid

Selects records for the user id.

KEY=ksds_key

Selects records for the key.

OFFSET=offset

Selects records that update a given offset of data in the buffer.

UNDO=undo_data

Selects records for backout data that matches the character string you specify.

The maximum length of the character string is 255 characters.

REDO=redo_data

Selects records with recovery data that matches the character string you

specify. The maximum length of the character string is 255 characters.

DATA=log_data

Selects records with data, including compressed data, that matches the

character string you specify (searches all log records). The maximum length of

the character string is 255 characters.

Knowledge-Based Record Formatting

Chapter 24. KBLA Log Formatting Modules 519

|

|
|
|

|

|
|
|

|

|
|
|

||
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

KBLA Summary Record Formatting and Print Module (DFSKBLAS)

Use the KBLA Summary Record Formatting and Print Module (DFSKBLAS) to

format traces and general purpose record types. DFSKBLAS is an exit routine of

the File Select and Formatting Print Utility (DFSERA10). Because this routine

formats log records, it passes a return code to DFSERA10. This return code tells

DFSERA10 that the log record has been processed and requires no additional

processing.

For IMS log records, NODE trace entries and SNAP subrecord types, DFSKBLAS

creates and print only the log record header information describing what the log

record identifier represents, the log sequence number of the record (LSN), and the

time stamp at which the record was written.

If you are using the KBLA panel driven interface for formatting log records, specify

formatting option S (for Summary) to generate the control statement necessary to

run this routine. Figure 218 is an example of the KBLA panel drive interface.

Utility Control Statements for DFSKBLAS

Figure 219 on page 521 shows the control statements required to format type

X'67aa', X'03', and X'16' log records using the DFSKBLAS module.

. .

 == K.B.L.A. Log Record Formatting ==

COMMAND ===>

Input IMS Log DSN IMS.SAMPLE.LOG Cataloged? Y

IMS Log Version. 9

Extract Record(s). (eg. 01 02 5912)

Log Formatting Type. . . . S (B,S,K or U)

Output DSN Keyword TEST

 Output DSN: USERID.Keyword.KBLA

Optional parameters

 Print /TRA Log Record. . N (Y/N)

 Print Internal Traces. . N (Y/N)

 Filter by Keyword. . . . X’08000C3D’

 No. Records to Scan. . .

 No. Records to Skip. . .

 Log DSNs were extracted from RECON.

 PDS member containing logs

Figure 218. KBLA Log Record Formatting Panel to Invoke DFSKBLAS

Summary Record Formatting and Print

520 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
||

|

|
|
|

In Figure 219, aa is the log record subtype.

aa=01 Specifies TRACE log record subtype. NODE trace entries are

interpreted.

aa=FD Specifies SNAP log record subtype.

aa=FF Specifies ABEND log record subtype.

Output for DFSKBLAS

Figure 220 shows a sample formatted log print from DFSKBLAS.

KBLA Knowledge-Based Record Formatting and Print Module

(DFSKBLAK)

Use the KBLA Knowledge-Based Record Formatting and Print Module (DFSKBLAK)

to format traces and general purpose record types. DFSKBLAK is an exit routine of

the File Select and Formatting Print Utility (DFSERA10). Because this routine

formats log records, it passes a return code to DFSERA10. This return code tells

DFSERA10 that the log record has been processed and requires no additional

processing.

DFSKBLAK formatted output records are intended to be a clear and simple,

somewhat generic description of the event that generated the record itself. For most

of the IMS log records, DFSKBLAK prints a description of what the log record

identifier represents, the log sequence number of the record (LSN), and the time

stamp at which the record was written. Not all the record’s bytes and flags are

Column 1 Column 10 Column 16 72

CONTROL CNTL

OPTION PRINT OFFSET=5,FLDLEN=2, X

 VALUE=67aa,COND=E, X

 EXITR=DFSKBLAS

OPTION PRINT OFFSET=5,FLDLEN=1, X

 VALUE=03,COND=E, X

 EXITR=DFSKBLAS

OPTION PRINT OFFSET=5,FLDLEN=1, X

 VALUE=16,COND=E, X

 EXITR=DFSKBLAS

END

Figure 219. Control Statements Required for DFSKBLAS

16 RECORD VTAM TERMINAL /SIGN ON LSN: 0000020C DATE/TIME: 2003-07-10 20:27:17.350994 UTC

01 RECORD INPUT MESSAGE QUEUED LSN: 00000211 DATE/TIME: 2003-07-10 20:27:17.355413 UTC

03 RECORD INPUT MESSAGE QUEUED LSN: 00D00214 DATE/TIME: 2003-07-10 20:27:17.404156 UTC

01 RECORD INPUT MESSAGE QUEUED LSN: 00000219 DATE/TIME: 2003-07-10 20:27:17.413053 UTC

 TRACE ID = D 07 OPNDST-LOGON/CLSDST-LOGOFF RECNO = 000008FF DATE/TIME: 2003-07-10 20:27:17.422532 UTC

 TRACE ID = C 08 GET OUTPUT BUFFER FOR MSG RECNO = 00000900 DATE/TIME: 2003-07-10 20:27:17.422542 UTC

 TRACE ID = A 05 IMS SENDS OUTPUT RECNO = 00000903 DATE/TIME: 2003-07-10 20:27:17.422550 UTC

 TRACE ID = D 07 OPNDST-LOGON/CLSDST-LOGOFF RECNO = 00000905 DATE/TIME: 2003-07-10 20:27:17.422611 UTC

 TRACE ID = C 08 GET OUTPUT BUFFER FOR MSG RECNO = 00000906 DATE/TIME: 2003-07-10 20:27:17.422733 UTC

 TRACE ID = A 05 IMS SENDS OUTPUT RECNO = 00000909 DATE/TIME: 2003-07-10 20:27:17.422781 UTC

01 RECORD INPUT MESSAGE QUEUED LSN: 00000911 DATE/TIME: 2003-07-10 20:27:17.423002 UTC

 TRACE ID = D 07 OPNDST-LOGON/CLSDST-LOGOFF RECNO = 0000091C DATE/TIME: 2003-07-10 20:27:17.423102 UTC

16 RECORD VTAM TERMINAL /SIGN ON LSN: 00001005 DATE/TIME: 2003-07-10 20:27:17.423234 UTC

 TRACE ID = A 05 IMS SENDS OUTPUT RECNO = 00001217 DATE/TIME: 2003-07-10 20:27:17.423331 UTC

 TRACE ID = D 07 OPNDST-LOGON/CLSDST-LOGOFF RECNO = 00001219 DATE/TIME: 2003-07-10 20:27:17.423599 UTC

16 RECORD VTAM TERMINAL /SIGN ON LSN: 0001220C DATE/TIME: 2003-07-10 20:27:17.423937 UTC

Figure 220. Sample Formatted Log Print from DFSKBLAS

Summary Record Formatting and Print

Chapter 24. KBLA Log Formatting Modules 521

|

||
|

||

||

|

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|

interpreted and printed by DFSKBLAK, and your analysis might require a different

formatting output than the one produced by this routine.

Note: Numeric values are always expressed in hexadecimal format unless

otherwise stated.

If you are using the KBLA panel driven interface for formatting log records specify

formatting option K (for Knowledge Based) to generate the control statement

necessary to run this routine. Figure 221 is an example of the KBLA panel driven

interface used to invoke DFSKBLAK.

Utility Control Statements for DFSKBLAK

Figure 222 shows an example of the control statements required to format type

X'03', X'16', and X'35' log records using the DFSKBLAK exit routine.

 In this figure, aa is the log record subtype.

aa=01 Specifies the TRACE log record subtype. NODE trace entries are

interpreted.

aa=FD Specifies the SNAP log record subtype.

aa=FF Specifies the ABEND log record subtype.

. .

 == K.B.L.A. Log Record Formatting ==

COMMAND ===>

Input IMS Log DSN IMS.SAMPLE.LOG Cataloged? Y

IMS Log Version. 9

Extract Record(s). (eg. 01 02 5912)

Log Formatting Type. . . . K (B,S,K or U)

Output DSN Keyword TEST

 Output DSN: USERID.Keyword.KBLA

Optional parameters

 Print /TRA Log Record. . N (Y/N)

 Print Internal Traces. . N (Y/N)

 Filter by Keyword. . . . X’08000C3D’

 No. Records to Scan. . .

 No. Records to Skip. . .

 Log DSNs were extracted from RECON.

 PDS member containing logs

Figure 221. KBLA Log Record Formatting Panel to Invoke DFSKBLAK

Column 1 Column 10 Column 16 72

CONTROL CNTL

OPTION PRINT OFFSET=5,FLDLEN=1, X

 VALUE=03,COND=E, X

 EXITR=DFSKBLAK

OPTION PRINT OFFSET=5,FLDLEN=1, X

 VALUE=16,COND=E, X

 EXITR=DFSKBLAK

OPTION PRINT OFFSET=5,FLDLEN=1, X

 VALUE=35,COND=E, X

 EXITR=DFSKBLAK

END

Figure 222. Control Statements Required for DFSKBLAK

Knowledge-Based Formatting and Print

522 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|

|
|

|
|
|
|
||

|

|
|
|

|

||
|

||

||

Output for DFSKBLAK

Figure 223 shows a sample formatted log from DFSKBLAK.

03 RECORD OUTPUT MESSAGE QUEUED

 NODE NAME: N/A SOURCE QAB: 2931D460 DEST LTERM/TRAN: TC670910

 ORIGIN IMS: TI1T PROCESSING IMS: TI1T MSG TIMESTAMP: 2003191 20270152

 1ST/CURRENT DRRN: 08000006/08000006

 UOW: E3C9F1E340404040B9B30901C1D84482E3C9F1E340404040B9B30906C90B2F224000

 DATE/TIME: 2003-07-10 20:27:17.350994 UTC LOG SEQ NO: 00DFB20C

03 RECORD OUTPUT MESSAGE QUEUED

 NODE NAME: N/A SOURCE QAB: 2931D460 DEST LTERM/TRAN: TC670910

 ORIGIN IMS: TI1T PROCESSING IMS: TI1T MSG TIMESTAMP: 2003191 20270152

 1ST/CURRENT DRRN: 0800000C/0800000C

 UOW: E3C9F1E340404040B9B3090111CE2D44E3C9F1E340404040B9B3091019F62A048000

 DATE/TIME: 2003-07-10 20:27:17.355413 UTC LOG SEQ NO: 00DFB211

35 RECORD MSG WAS ENQUEUED/RE-ENQUEUED

 CALL TYPE: ENQ COMM FIFO DESCRIPTION: PERMANENT DEST IS TRAN

 QUEUE #: N/A PCB ADDR: 131B5DE8 DEST TRAN: TC670910

 CQSPUT MESSAGE MOVED TO SQ DRRN: 0800000C

 UOW: E3C9F1E340404040B9B3090111CE2D44E3C9F1E340404040B9B3091019F62A048000

 DATE/TIME: 2003-07-10 20:27:17.355422 UTC LOG SEQ NO: 00DFB212

16 RECORD TERMINAL SIGN ON/OFF

 FUNC: VTAM /SIGN OFF FORCED NODE: M0301016 USERID: ZZKP2

 SAF GRP NAME: USER STR NAME: M0301016

 USER ALLOC/DEALLOC DONE

 DATE/TIME: 2003-07-10 20:32:33.680372 UTC LOG SEQ NO: 00DFCC47

Figure 223. Sample Formatted Log from DFSKBLAK

Knowledge-Based Formatting and Print

Chapter 24. KBLA Log Formatting Modules 523

|

|
|

524 Utilities Reference: System

Chapter 25. DBCTL Transaction Analysis Utility (DFSKDBC0)

The DBCTL Transaction Analysis utility (DFSKDBC0) combines some of the

information found in the DBFULTA0 and DFSILTA0 utilities plus some additional

DBCTL specific information. By default, the output is presented in termination (sync

point) time order, but it can be sorted by specific key fields to help identify potential

performance problems.

DFSKDBC0 runs as an exit routine of the File Select and Formatting Print utility

(DFSERA10). DFSKDBC0 can also be invoked using the KBLA panel driven

interface (option 4.6 “DBCTL Transaction Analysis”). Figure 224 is an example of

the DBCTL Transaction Analysis panel in the KBLA panel-driven interface.

 DFSKDBC0 formats log records by passing a return code to DFSERA10. This

return code tells DFSERA10 that the log record has been processed and requires

no additional processing. For more information on DFSERA10, see Chapter 13,

“File Select and Formatting Print Utility (DFSERA10),” on page 295.

DFSKDBC0 should be used primarily for DBCTL environments because it relies on

the X'07' application accounting record and any corresponding X'5937/5938' records

to gather statistical information. In a DBCTL environment, the X'07' record is always

written for any CICS transaction using IMS resources, so there is a one to one

correspondence. In an IMS TM environment, many transactions can be processed

in a single application scheduling, making the output unpredictable unless a

PROCLIM of 1 is specified.

You can use the output report information to find bottlenecks in the system and to

evaluate whether resources have been assigned and sized correctly. The report

produced is also useful for IMS system tuning and troubleshooting. DFSKDBC0 is

put into IMS.SDFSRESL during IMS system definition.

The following topics provide additional information:

v “Restrictions for DFSKDBC0” on page 526

 == K.B.L.A. DBCTL Transaction Analysis =

 COMMAND ===>

 Input IMS Log DSN IMS.SAMPLE.LOG Cataloged? Y

 IMS Log Version. 9

 Transaction Summary Report Sorted by:

 DLI I/O Time N (A/D/N)

 NBA Buffers Used N (A/D/N)

 PSBNAME N (A/D/N)

 Scheduling Elapsed Time. . . . N (A/D/N)

 SYNC Failure N (A/D/N)

 Time Waiting for DEDB BUFFER . N (A/D/N)

 Time Waiting for INTENT. . . . N (A/D/N)

 Time Waiting for POOL SPACE. . N (A/D/N)

 Time Waiting for LOCKS N (A/D/N)

 Time Waiting for CI LOCK . . . N (A/D/N)

 Time Waiting for UOW LOCK. . . N (A/D/N)

 Output DSN Keyword. TEST The Output DSN will be:

 USERID.keyword.KBLA.*

 Log DSNs were extracted from RECON . .

 PDS member containing logs

Figure 224. KBLA DBCTL Transaction Analysis Panel

© Copyright IBM Corp. 1974, 2004 525

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|

v “Input and Output for DFSKDBC0”

v “JCL Requirements for DFSKDBC0” on page 527

v “Using DFSKDBC0 to Sort a Report” on page 527

Related Reading: See Chapter 14, “Fast Path Log Analysis Utility (DBFULTA0),” on

page 325 and Chapter 16, “Log Transaction Analysis Utility (DFSILTA0),” on page

353 for more information.

Restrictions for DFSKDBC0

The following restrictions apply to the DBCTL Transaction Analysis utility

(DFSKDBC0):

v The utility works only with input log data sets created by the same release of IMS

as the utility release level.

v Logs from other than a DBCTL environment are not supported.

Input and Output for DFSKDBC0

DFSKDBC0 requires at least one IMS log data set. Additional data sets are

optional.

DFSKDBC0 produces the following output:

v When KBLA panels are used, a sorted report containing the information

described in the overview section can optionally be requested in the order

specified (ascending or descending).

v If the utility is invoked directly, the output reports the following information:

– Elapsed time in scheduling

– Time waiting for intent

– Total full function calls

– Total DL/I I/O count

– DL/I I/O time

– Total DEDB calls

– DEDB get calls

– Buffers sent to OTHREAD

– Buffers used for SDEP

– UOW lock waits

– VSO reads from data space

– Updates to VSO data space

– Sync failure codes

– Time waiting for pool space

– Time waiting for locks

– DEDB put calls

– NBA buffers used

– CI lock waits

– VSO reads from DASD

DBCTL Transaction Analysis

526 Utilities Reference: System

|

|

|

|
|
|

|
|

|
|

|
|

|

|
|

|
|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

JCL Requirements for DFSKDBC0

DFSKDBC0 runs as an exit of the File Select and Formatting Print utility

(DFSERA10), which executes as a standard operating system job. You must define

a JOB statement, an EXEC statement, and DD statements defining input and

output.

The format of the EXEC statement is:

//SELPRT1 EXEC PGM=DFSERA10

DD Statements

STEPLIB DD

Points to IMS.SDFSRESL, which contains the IMS nucleus and required utility

modules. The format is:

 //STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

SYSPRINT DD

Describes the output data set to contain the formatted print records and control

messages. It is usually defined as SYSOUT=A.

SYSIN DD

Describes the input control data set. This file must contain fixed-length

80-character records.

 To run DFSKDBC0, specify the DFSERA10 parameter EXITR= or E= as

follows:

 //SYSIN DD *

CONTROL CNTL H=EOF

OPTION PRINT E=DFSKDBC0

/*

Related Reading: For more information about the DFSERA10 control

statement, see “CONTROL Statement” on page 298.

SYSUT1 or ddname

Defines the IMS Version 9 input log data set to be examined to produce the

formatted print records.

 These data sets must be files with standard labels, either on a direct-access or

tape storage device. They can be of any record format (RECFM=F, FB, V, VB,

VBS, or U), but they must have physical sequential organization (DSORG=PS).

 If a file with RECFM=U is used, the DCB BLKSIZE parameter must be

specified. These files are processed using QSAM. Any file that QSAM supports

can be used as input.

 If the DDNAME= keyword is not specified in the CONTROL statement, the

default ddname is SYSUT1.

Using DFSKDBC0 to Sort a Report

The sort function of the DBCTL Transaction Analysis utility is an optional function

that produces sequenced reports.

The format of the EXEC statement is:

//STEP1 EXEC PGM=SORT

JCL Requirements

Chapter 25. DBCTL Transaction Analysis Utility (DFSKDBC0) 527

|
|

|
|
|
|

|

|

|

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|

|

DD Statements

SYSIN DD

Describes the sort program’s control data set. For a control data set in the input

stream, the format is:

//SYSIN DD *

SYSOUT DD

Describes the message output data set for the sort. The format is:

//SYSOUT DD SYSOUT=A

SORTIN DD

Describes the input data set to the sort. It is the data set described by the

SYSPRINT DD statement. The format is:

//SORTIN DD DSNAME=&&REPORT,DISP=(OLD,DELETE)

SORTOUT DD

Describes the output data set to the sort. It is used for printing a sequenced

report. The format is:

//SORTOUT DD SYSOUT=A

SORTWK01-12|DD

Describes the sort program’s work data sets. At least three data sets must be

used. They can reside on tape or disk. For disk, the format is:

SORTWKnn DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

Example of DFSKDBC0

Figure 225 is a sample SORT control statement that provides a report sequenced

by message get unique (GU) schedule time within a region:

Figure 226 on page 529 is an example of a report produced using the DBCTL

Transaction Analysis utility.

SORT FIELDS=(64,5,CH,A)

Figure 225. Sample SORT Control Statement

Sorting a Report

528 Utilities Reference: System

|

|

|
|
|

|

|
|

|

|
|
|

|

|
|
|

|

|
|
|

|

|

|
|
|

|
|
|

For information on the meanings of values within the report, see

“Detail-Listing-of-Exception-Transactions Report” on page 328.

CONTROL CNTL H=EOF

**

* IMS-V9 INPUT LOG DATA SET NAME(S): *

* IMSVS.TEST.LOG *

**

* *

* DBCTL TRANSACTION ANALYSIS *

* *

**

OPTION PRINT E=DFSKDBC0

COLUMN HEADING EXPLANATIONS:

SCHEL - ELAPSED TIME IN SCHEDULING INT - TIME WAITING FOR INTENT PWT - TIME WAITING FOR POOL SPACE

DLI - TOTAL FULL FUNCTION CALLS IOT - DLI I/O TIME LWT - TIME WAITING FOR LOCKS

DEC - TOTAL DEDB CALLS DEG - DEDB GET CALLS DEP - DEDB PUT CALLS

OVF - OVERFLOW BUFFERS USED BWT - DEDB BUFFER WAITS NBA - NBA BUFFERS USED

UPD - BUFFERS SENT TO OTHREAD SDP - BUFFERS USED FOR SDEP CLK - CI LOCK WAITS

ULK - UOW LOCK WAITS VRD - VSO RADS FROM DATA SPACE VDR - VSO READS FROM DASD

VWR - UPDATES TO VSO DATA SPACE S/F - SYNC FAILURE CODE - SEE UTILITIES REF MANUAL FOR EXPLANATION

PSBNAME SUBSYS R RGN ELAP SCHED_TIME SCHEL INT PWT DLI IOT LWT DEC DEG DEP OVF BWT NBA UPD SDP CLK ULK VRD VDR VWR S

 ID T NBR SS.T HH:MM:SS.T MS MS MS # MS MS # # # # # # # # # # # # # F

TXSQL6C SYS6 2 1.3 18:18:21.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TXSQL6C SYS6 2 .5 18:18:23.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EMHPSB2 SYS6 B 1 13.5 18:18:12.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U

TXSQL6C SYS6 2 .7 18:18:41.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EMHPSB2 SYS6 B 1 16.6 18:18:27.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L

DFS707I END OF FILE ON INPUT

NUMBER OF SYNC RECORDS (5937) 3

NUMBER OF SYNC FAILURES (5938) 4

NUMBER OF SCHD RECORDS (08) 5

NUMBER OF TERM RECORDS (07) 5

DFS708I OPTION COMPLETE

DFS703I END OF JOB

Figure 226. Report Produced Using DFSKDBC0

Sorting a Report

Chapter 25. DBCTL Transaction Analysis Utility (DFSKDBC0) 529

|
|

530 Utilities Reference: System

Chapter 26. IMS Records User Data Scrub Utility (DFSKSCR0)

The IMS Records User Data Scrub utility (DFSKSCR0) scans all the IMS log

records and eliminates those parts of the records that contain sensitive or

confidential user data such as customer business information. DFSKSCR0

specifically removes log records X'01', X'03', X'50', X'5901', X'5903', X'5950', and

X'67'. IMS-defined headers and suffixes, as well as the actual length of the log

record, are kept intact to provide debugging or statistical information. DFSKSCR0

can be particularly useful when IMS logs must be sent to an outside organization

for analysis.

DFSKSCR0 can be invoked using the KBLA panel-driven interface (option 1.7 “IMS

Records User Data Scrub”) or using JCL. Figure 227 is an example of the IMS

Records User Data Scrub panel in the KBLA panel-driven interface.

 DFSKSCR0 runs as an exit routine of the File Select and Formatting Print Utility

(DFSERA10). Because this routine formats log records, it passes a return code to

DFSERA10. This return code tells DFSERA10 that the log record has been

processed and requires no additional processing. For more information about

DFSERA10 JCL requirements, see “JCL Requirements for DFSERA10” on page

296.

The following topics provide additional information:

v “Restrictions for DFSKSCR0”

v “Input and Output for DFSKSCR0”

v “JCL Requirements for DFSKSCR0” on page 532

Restrictions for DFSKSCR0

The following restrictions apply to DFSKSCR0:

v Common Queue Server (CQS) logs cannot be used as input.

v The utility works only with input log data sets created by the same release of IMS

as the utility release level.

Input and Output for DFSKSCR0

One or more IMS log data sets are required as input for DFSKSCR0.

DFSKSCR0 produces the following output:

. .

 IMS K.B.L.A. - IMS Records User Data Scrub

 Command ===>

 Fill out the following variables and press ENTER .

 Input IMS Log DSN IMS.SAMPLE.LOG Cataloged? Y

 IMS Log Version 9

 Output DSN Keyword . . TEST Output DSN: USERID.Keyword.KBLA.STS.*

 Create a New Log dataset with no User Data. . Y (Y/N)

Figure 227. KBLA IMS Records User Data Scrub Panel

© Copyright IBM Corp. 1974, 2004 531

|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|

|

|

|
|

|
|

|

|

v An image of the INPUT IMS log data set without user information (OPTION

COPY statement for DFSERA10)

v A printed output of the records for verification (OPTION PRINT statement for

DFSERA10)

JCL Requirements for DFSKSCR0

DFSKSCR0 runs as an exit routine to the File Select and Formatting Print utility

(DFSERA10), which executes as a standard operating system job. You must define

a JOB statement, an EXEC statement, and DD statements defining input and

output.

The format of the EXEC statement is:

//SELPRT1 EXEC PGM=DFSERA10

DD Statements

STEPLIB DD

Points to IMS.SDFSRESL, which contains the IMS nucleus and required utility

modules. The format is:

 //STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

SYSPRINT DD

Describes the output data set to contain the formatted print records and control

messages. It is usually defined as SYSOUT=A.

SYSIN DD

Describes the input control data set. This file must contain fixed-length

80-character records.

 To run DFSKSCR0, specify the DFSERA10 parameter EXITR= or E= as

follows:

//SYSIN DD *

CONTROL CNTL H=EOF

OPTION PRINT E=DFSKSCR0

/*

Related Reading: For more information about the DFSERA10 control

statement, see “CONTROL Statement” on page 298.

SYSUT1 or ddname

Defines the IMS Version 9 input log data set to be examined to produce the

formatted print records. These data sets must be standard labeled files, on

either direct-access or tape storage device. They can be of any record format

(RECFM=F, FB, V, VB, VBS, or U), but they must have physical sequential

organization (DSORG=PS).

 If a file with RECFM=U is used, the DCB BLKSIZE parameter must be

specified. These files are processed using QSAM. Any file that QSAM supports

can be described as input.

 If the DDNAME= keyword is not specified in the CONTROL statement, the

default ddname used is SYSUT1.

Example of DFSKSCR0

Figure 228 on page 533 is an example of a report produced using the IMS Records

User Data Scrub utility.

Input and Output

532 Utilities Reference: System

|
|

|
|

|
|

|
|
|
|

|

|

|

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|

|
|
|

CONTROL CNTL STOPAFT=EOF

**

* IMS-V9 INPUT LOG DATA SET NAME(S): *

* IMSVS.TEST.LOG

**

* *

* RECORDS USER DATA SCRUB *

* *

**

OPTION COPY E=DFSKSCR0

*

DFS707I END OF FILE ON INPUT

#01 RECORDS PROCESSED: 3

#03 RECORDS PROCESSED: 16

#50 RECORDS PROCESSED: 0

#5901 RECORDS PROCESSED: 2

#5903 RECORDS PROCESSED: 2

#5950 RECORDS PROCESSED: 0

#67 RECORDS PROCESSED: 7

DFS708I OPTION COMPLETE

DFS703I END OF JOB

Figure 228. Report Produced Using DFSKSCR0

Chapter 26. IMS Records User Data Scrub Utility (DFSKSCR0) 533

|

534 Utilities Reference: System

Chapter 27. MSC Link Performance Formatting Utility

(DFSKMSC0)

The MSC Link Performance Formatting utility (DFSKMSC0) uses the IMS MSC link

trace log records to provide information about link response times, which can be

used to help isolate performance problems with MSC links.

DFSKMSC0 runs as an exit routine of the File Select and Formatting Print Utility

(DFSERA10). DFSKMSC0 can be invoked using the KBLA panel-driven interface

(option 4.2 “MSC Link Performance Formatting”) or using JCL. Figure 229 is an

example of the MSC Link Performance Formatting utility panel in the KBLA

panel-driven interface.

 DFSKMSC0 formats log records by passing a return code to DFSERA10. The

return code tells DFSERA10 that the log record has been processed and requires

no additional processing. For more information on DFSERA10, see Chapter 13,

“File Select and Formatting Print Utility (DFSERA10),” on page 295. The formatting

of these records is only available if the IMS input log contains MSC link trace

activity.

The following topics provide additional information:

v “Restrictions for DFSKMSC0”

v “Input and Output for DFSKMSC0” on page 536

v “JCL Requirements for DFSKMSC0” on page 536

Restrictions for DFSKMSC0

The following restrictions apply to DFSKMSC0:

v Common Queue Server (CQS) logs cannot be used as input.

v The utility works only with input log data sets created by the same release of IMS

as the utility release level.

. .

 == K.B.L.A. MSC Link Performance Formatting ==

COMMAND ===>

Input IMS Log DSN IMS.SAMPLE.LOG Cataloged? Y

IMS Log Version. 9

Output DSN Keyword. . . . TEST The Output DSN will be:

 USERID.keyword.KBLA

Log DSNs were extracted from RECON.

PDS member containing logs.

 Log DSNs were extracted from RECON . .

 PDS member containing logs

Figure 229. KBLA MSC Link Performance Formatting Panel

© Copyright IBM Corp. 1974, 2004 535

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|

|

|

|
|

Input and Output for DFSKMSC0

One or more IMS log data sets containing log record X'6701' are required as input

for DFSKMSC0. X'6701' log records are generated using the command:

/TRACE SET ON LINK link#

DFSKMSC0 produces two types of output reports:

v A detailed report in which an output line is produced for every send or receive for

each MSC link that was traced. The times reported are to the millisecond.

v A summary report that shows the average time in milliseconds for each of the

MSC links traced. This report can show whether a problem is isolated to a

specific link or is common to all links.

JCL Requirements for DFSKMSC0

DFSKMSC0 runs as an exit routine of the File Select and Formatting Print utility

(DFSERA10), which executes as a standard operating system job. You must define

a JOB statement, an EXEC statement, and DD statements defining the input and

output.

The format of the EXEC statement is:

//SELPRT1 EXEC PGM=DFSERA10

DD Statements

STEPLIB DD

Points to IMS.SDFSRESL, which contains the IMS nucleus and required utility

modules. The format is:

 //STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

SYSPRINT DD

Describes the output data set to contain the formatted print records and control

messages. It is usually defined as SYSOUT=A.

SYSIN DD

Describes the input control data set. This file must contain fixed-length

80-character records.

SYSUT1 or ddname

Defines the IMS Version 9 input log data set to be examined to produce the

formatted print records. These data sets must be files with standard labels, on

either direct-access or tape storage device. They can be of any record format

(RECFM=F, FB, V, VB, VBS, or U), but they must have physical sequential

organization (DSORG=PS).

 If a file with RECFM=U is used, the DCB BLKSIZE parameter must be

specified. These files are processed using QSAM. Any file that QSAM supports

can be described as input.

 If the DDNAME=keyword is not specified in the CONTROL statement, the

default ddname used is SYSUT1. To run DFSKMSC0, specify the DFSERA10

parameter EXITR= or E= as follows:

//SYSIN DD *

CONTROL CNTL H=EOF

OPTION PRINT E=DFSKMSC0

/*

Input and Output

536 Utilities Reference: System

|
|

|
|

|

|

|
|

|
|
|

|
|

|
|
|
|

|

|

|

|
|
|

|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

Related Reading: For more information about the DFSERA10 control

statement, see “CONTROL Statement” on page 298.

Example of DFSKMSC0

Figure 230 is an example of a report produced using the MSC Link Performance

Formatting utility.

CONTROL CNTL STOPAFT=EOF

**

* IMS-V9 INPUT LOG DATA SET NAME(S): *

* IMSVS.TEST.LOG

**

* *

* MSC TRACE SELECTION *

 *

**

OPTION PRINT E=DFSKMSC0

*

 RECV DATA TO ACK (MS) SEND DATA TO ACK (MS) SEND CHECK WRITE (MS) TIME

RECV FOR ID = WB 6 11:38:29.652

SEND FOR ID = WB 13 23 11:38:29.693

RECV FOR ID = WB 8 11:38:29.775

SEND FOR ID = WB 6 21 11:38:29.804

SEND FOR ID = WB 14 28 11:38:29.849

RECV FOR ID = WB 28 11:38:29.883

RECV FOR ID = WB 13 11:38:29.924

SEND FOR ID = WB 26 21 11:38:29.985

RECV FOR ID = WB 14 11:38:30.026

RECV FOR ID = WB 5 11:38:30.089

SEND FOR ID = WB 13 21 11:38:30.136

RECV FOR ID = WB 24 11:38:30.162

RECV FOR ID = WB 8 11:38:30.219

LINK PARTNER NAME RECV DATA TO ACK (MS) # RECV SAMPLES SEND DATA TO ACK (MS) SEND CHECK WRITE (MS) # SEND SAMPLES

 WB 15 1,041 23 22 667

Figure 230. Report Produced Using DFSKMSC0

JCL Requirements

Chapter 27. MSC Link Performance Formatting Utility (DFSKMSC0) 537

|
|

|

|
|
|

|

538 Utilities Reference: System

Chapter 28. Statistic Log Record Analysis Utility (DFSKDVS0)

The Statistic Log Record Analysis utility (DFSKDVS0) processes the X'45' log

records generated at each IMS checkpoint and formats a report showing the

detailed statistic information between each pair of checkpoints. This information can

be used to look for bottlenecks within the IMS system or to detect trends in internal

resource usage that can help to determine if tuning is necessary. DFSKDVS0 can

be used in DB/TM, DBCTL, or DCCTL environments.

DFSKDVS0 runs as an exit routine of the File Select and Formatting Print Utility

(DFSERA10). DFSKDVS0 can also be invoked using the KBLA panel driven

interface (option 4.3 “Statistic Log Record Analysis”). Figure 231 is an example of

the KBLA Statistic Log Record Analysis panel in the KBLA panel-driven interface.

 DFSKDVS0 formats log records by passing a return code to DFSERA10. This

return code tells DFSERA10 that the log record has been processed and requires

no additional processing. For more information about DFSERA10 JCL requirements,

see “JCL Requirements for DFSERA10” on page 296.

The following topics provide additional information:

v “Restrictions for DFSKDVS0”

v “Input and Output for DFSKDVS0” on page 540

v “JCL Requirements for DFSKDVS0” on page 540

Restrictions for DFSKDVS0

The following restrictions apply to DFSKDVS0:

v DFSKDVS0 does not process log data sets from a batch region.

v There must be at least two sets of X'45' records (created at IMS Checkpoint) for

any output to be produced.

v IRLM statistics records are not produced by an IMS STATISTICS checkpoint.

Therefore, the report program cannot provide any information regarding this

function.

v Common Queue Server (CQS) logs cannot be used as input.

v DFSKDVS0 works only with input log data sets created by the same release of

IMS as the utility release level.

v If multiple input logs are concatenated as input, they must be in sequence and

without gaps or the output is unpredictable.

== K.B.L.A. Statistic Log Record Analysis ==

 COMMAND ===>

 Input IMS Log DSN IMS.SAMPLE.LOG Cataloged? Y

 IMS Log Version. 9

 Output DSN Keyword. TEST The Output DSN will be:

 USERID.keyword.KBLA

 Log DSNs were extracted from RECON.

 PDS member containing logs.

Figure 231. KBLA Statistic Log Record Analysis Panel

© Copyright IBM Corp. 1974, 2004 539

|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|

|

|

|
|

|

|

|
|

|
|
|

|

|
|

|
|

Input and Output for DFSKDVS0

One or more IMS log data sets (OLDS or SLDS) containing at least two sets of

statistics records (generated at IMS checkpoint) are required as input for

DFSKDVS0.

DFSKDVS0 produces an output report that can include:

v Time of checkpoints

v System configuration

v QPOOL statistics

v Format pool statistics

v OSAM and VSAM buffer pool activity

v Variable pool (also referred to as scheduling pool) information

v Scheduling statistics

v Logger statistics

v Program isolation information

v IMS internal latch statistics

v CBT storage pools

v Receive-any buffer usage

v Fixed storage pools (DFSSPM)

v IMS dispatcher statistics

v RACF signon statistics

v IRLM subsystem, system, and storage pool information

JCL Requirements for DFSKDVS0

DFSKDVS0 executes as a standard operating system job. You must define a JOB

statement, an EXEC statement, and DD statements that define the input and

output.

The format of the EXEC statement is:

//SELPRT1 EXEC PGM=DFSERA10

DD Statements

STEPLIB DD

Points to IMS.SDFSRESL, which contains the IMS nucleus and required utility

modules. The format is:

 //STEPLIB DD DSNAME=IMS.SDFSRESL,DISP=SHR

SYSPRINT DD

Describes the output data set to contain the formatted print records and control

messages. It is usually defined as SYSOUT=A.

SYSUT1 DD

Any IMS Version 9 log or all data input is processed using QSAM. The log or

data input can reside on either tape or direct-access storage devices. Data set

organization must be physical sequential. The record format can be fixed or

variable in length, blocked or unblocked, or of undefined length. You can use

multiple input and output data sets, and they can reside on different device

types. Output data can be either formatted and printed on the SYSPRINT data

set, copied to a specified data set unchanged, or both.

Input and Output

540 Utilities Reference: System

|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

SYSIN DD

Describes the input control data set. This file must contain fixed-length

80-character records.

Input or Data DD

Defines the input data set to be examined to produce the formatted print

records. These data sets must be either direct-access or tape files with

standard labels. They can be of any record format (F, FB, V, VB, VBS, or U),

but they must be DSORG=PS.

 If a file with RECFM=U is used, the DCB BLKSIZE parameter must be

specified. These files are processed using QSAM. Any file that QSAM supports

can be described as input.

 If a ddname is not specified in the CONTROL statement, the default ddname

used is SYSUT1. To run DFSKDVS0, specify the DFSERA10 parameter

EXITR= or E=.

//SYSIN DD *

CONTROL CNTL H=EOF

OPTION PRINT E=DFSKDVS0

/*

Related Reading: For more information about DFSERA10, see Chapter 13,

“File Select and Formatting Print Utility (DFSERA10),” on page 295.

JCL Requirements

Chapter 28. Statistic Log Record Analysis Utility (DFSKDVS0) 541

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

542 Utilities Reference: System

Chapter 29. IRLM Lock Trace Analysis Utilities (DFSKLTA0,

DFSKLTB0, DFSKLTC0)

IRLM Lock Trace Analysis consists of three programs (DFSKLTA0, DFSKLTB0, and

DFSKLTC0) that run serially to perform IRLM Lock Trace Analysis. DFSKLTA0 is

run first to create the control file of global data management block (DMB) numbers

and their respective database names. DFSKLTB0 is then used to create the lock

wait detail and summary records. DFSKLTC0 formats and prints the information and

creates the optional output data set.

The IRLM Lock Trace Analysis utilities can be useful in finding database or

application issues that impact transaction response times by causing frequent and

long lock waits.

Recommendation: Due to the high volume of information being recorded, run

IRLM Lock Trace Analysis for only a few minutes at a time.

The IRLM Lock Trace utilities can be invoked using the KBLA panel-driven interface

(option 4.5 “IRLM Lock Trace Analysis”) or using JCL. Figure 232 is an example of

the IRLM Lock Trace Analysis panel in the KBLA panel-driven interface.

 The following topics provide additional information:

v “Restrictions for IRLM Lock Trace Analysis”

v “Input and Output for IRLM Lock Trace Analysis” on page 544

v “DFSKLTA0” on page 544

v “DFSKLTB0” on page 545

v “DFSKLTC0” on page 546

v “IRLM Lock Trace Analysis Summary Report” on page 548

v “IRLM Lock Trace Analysis Detail Report” on page 548

Restrictions for IRLM Lock Trace Analysis

The following restrictions apply to IRLM Lock Trace Analysis:

v Databases must be registered with DBRC.

DFSKBL15 == K.B.L.A. IRLM Lock Trace Analysis ==

 COMMAND ===>

 Input Trace DSN. IMS.SAMPLE.LOG Cataloged? Y

 IMS Log Version. 9

 RECON1 DSN . . . A.B.C

 Output DSN Keyword. TEST The Output DSN will be:

 USERID.keyword.S.KBLA.*

 Create dataset with raw output . . . (Y/N) USERID.keyword.D.KBLA.*

 Raw output sort selection:

 Sorted by Database Name. (A/D/N)

 Sorted by RBA (A/D/N)

 Sorted by Database Name & RBA. . C (A/D/C)

 Sorted by PST Number (A/D/C)

 Sorted by Wait Elapsed Time. . . (A/D/C)

 Log DSNs were extracted from RECON .

 PDS member containing logs

Figure 232. KBLA Log Record Formatting Panel to Invoke DFSKLT

© Copyright IBM Corp. 1974, 2004 543

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|

|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

|

|

v The RECON database information must not have changed between the time the

IMS lock trace was run and the time DFSKLTA0 was run.

v The RECON data set specified in the JCL or through the panel-driven interface

must be the RECON from the system being traced.

v IRLM Lock Trace Analysis can only handle data from up to 255 active regions at

a given time.

Input and Output for IRLM Lock Trace Analysis

IRLM Lock Trace Analysis is intended for IMS log records created when the

following command is entered:

/TRACE SET ON TABLE LOCK OPTION LOG

Types of input required for IRLM Lock Trace Analysis include:

v One or more trace data sets (or logs) containing IMS lock trace data

v A DBRC RECON data set.

Multiple types of output are produced depending on the presence of certain DD

statements:

v //TRACESUM provides a summary of lock contention.

v //DETAIL1 provides a detailed list of lock waits in lock request completion time

order.

v //DETOUT1 provides a detailed lock-wait output without headers that can then be

input to SORT for further detailed analysis.

Note: If no DFSTRAxx data sets are present in the IMS startup procedure, the

output of the trace will be logged on the OLDS.

DFSKLTA0

DFSKLTA0 reads the DBRC RECON records to gather the global DMB numbers for

the registered databases and creates a control file with this information. Any

detected error is displayed as a Write-to-Operator (WTO) message. Conditions that

can cause errors are:

v Unable to open RECON

v Unable to open the control data set

v RECON key length mismatch

v Error reading the RECON header

v First RECON record not a header

v Error reading the RECON record

JCL Requirements for DFSKLTA0

//KLTA0 creates the RECON control file.

The format of the EXEC statement is:

//KLTA0 EXEC PGM=DFSKLTA0

DD Statements for DFSKLTA0

COPY1 DD

Describes a valid DBRC RECON data set from the system that was used to

create the trace data. For example:

Restrictions

544 Utilities Reference: System

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|
|

|

|
|

|
|

|
|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

//COPY1 DD DISP=SHR,DSN=IMSV9.RECON1

CONTROL DD

The output control file of DMB names and numbers. Data communications block

(DCB) attributes are specified in DFSKLTA0 and should not be overridden. For

example:

 //CONTROL DD DSN=&CONTROL,DISP=(NEW,PASS),UNIT=SYSDA,SPACE=(CYL,(1,1))

JCL Example for DFSKLTA0

The following example shows the JCL used to run DFSKLTA0.

//KLTA0 EXEC PGM=DFSKLTA0,REGION=4M

//STEPLIB DD DSN=IMS190.SDFSRESL,DISP=SHR

//SYSUDUMP DD SYSOUT=*

//COPY1 DD DSN=IMS1.RECON1,DISP=SHR,

// AMP=’BUFSP=16380’

//CONTROL DD DSN=TSOUSR01.LOCKTRAC.CONTROL,DISP=(NEW,CATLG),

// UNIT=SYSDA,SPACE=(TRK,(2,2))

//*

DFSKLTB0

DFSKLTB0 reads the lock trace data generated as a result of the /TRA SET ON

TABLE LOCK OPTION LOG command that was issued on the IMS system at the

beginning of the time period being sampled. The utility creates an intermediate file

with detailed information and a summary for each lock request that resulted in a

wait. Any detected errors are displayed as a WTO. Conditions that can cause errors

are:

v Unable to open the TRACEIN data set

v Unable to open the TRACEOUT data set

v Unable to the control data set

v Bad return codes from the CONVTOD macro

v Internal table processing error

v Internal error that requires IBM support

JCL Requirements for DFSKLTB0

//KLTB0 reads and processes lock trace data.

The format of the EXEC statement is:

//KLTB0 EXEC PGM=DFSKLTB0

DD Statements for DFSKLTB0

TRACEIN DD

The lock trace data set created by IMS. For example:

 //TRACEIN DD DSN=IMS.DFSTRA01,DISP=(SHR),DCB=BUFNO=10

Note: BUFNO is recommended for performance.

TRACEOUT DD

An intermediate data set of lock contention data to pass to the report step. For

example:

 //TRACEOUT DD DISP=(NEW,PASS),UNIT=SYSDA,DSN=&EXTRACT,

 // DCB=BUFNO=10,SPACE=(CYL,(20,20))

CONTROL DD

The output control file from DFSKLTA0. For example:

 //CONTROL DD DSN=&CONTROL,DISP=(OLD,DELETE)

DFSKLTA0

Chapter 29. IRLM Lock Trace Analysis Utilities (DFSKLTA0, DFSKLTB0, DFSKLTC0) 545

|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|
|
|

|
|

|
|

|

JCL Example for DFSKLTB0

The following example shows the JCL used to run DFSKLTB0.

//KLTB0 EXEC PGM=DFSKLTB0,REGION=4M

//STEPLIB DD DSN=IMS910.SDFSRESL,LOAD,DISP=SHR

//SYSUDUMP DD SYSOUT=*

//TRACEIN DD DSN=IMS1.LOCKTRACE,DISP=SHR,DCB=BUFNO=10

//TRACEOUT DD DSN=TSOUSR01.TRACE.TEMP,UNIT=SYSDA,

// SPACE=(CYL,(10,10)),DISP=(NEW,PASS),DCB=BUFNO=10

//CONTROL DD DSN=TSOUSR01.LOCKTRAC.CONTROL

//*

DFSKLTC0

DFSKLTC0 reads the intermediate file generated by DFSKLTB0 and creates a

summary report and a detail report about the elapsed wait times for lock requests

by database. The report format is determined by the presence or absence of DD

statements. The default detail report created by the utility is listed in lock request

completion time order. The utility also optionally creates an additional output data

set containing the detail data, which can be sorted in any order.

DFSKLTC0 can:

v Format data into a readable form

v Print optional summary reports

v Print optional detailed reports

v Create an optional detail output data set

Any detected errors are displayed as a WTO. Conditions that can cause errors are:

v Unable to open a data set (for any supplied DD statement or data set)

v Bad return codes from the DSPSERV macro

v Bad return code from ALESERV macro

v Header record not found where expected on extract file

JCL Requirements for DFSKLTC0

//KLTC0 generates reports and optional output data sets.

The format of the EXEC statement is:

//KLTC0 EXEC PGM=DFSKLTC0

DD Statements for DFSKLTC0

SYSPRINT DD

Images of the control statement are written to this data set. This data set is

required. The DCB parameters for this data set are RECFM=FB,LRECL=80. For

example:

 //SYSPRINT DD SYSOUT=*

TRACESUM DD

Specifies summary information about the lock contention. This data set is

optional. For example:

 //TRACESUM DD SYSOUT=*

EXTRACT DD

Specifies the output file passed from DFSDLTB0. This data set is required. For

example:

 //EXTRACT DD DSN=&EXTRACT,DISP=(OLD,DELETE)

DFSKLTB0

546 Utilities Reference: System

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

|

|
|
|

|

|
|
|

|

DETAIL1 DD

Contains detailed wait data in lock request completion time sequence. This data

set is optional. For example:

 //DETAIL1 DD SYSOUT=*

DETOUT1 DD

Contains the same information as the DETAIL1 file but without headings that

can be used by subsequent sort steps. This data set is optional. For example:

 //DETOUT1 DD DSN=LCKTRACE.OUTPUT,

 // UNIT=SYSDA,DISP=(NEW,CATLG,KEEP),

 // SPACE=(CYL,(20,20),RLSE),

 // DCB=(RECFM=FBA,LRECL=120,BLKSIZE=1200),

SYSIN DD

Contains the control statements. This data set is required. The DCB parameters

for the SYSIN data set are RECFM=FB,LRECL=80. For example:

 //SYSIN DD *

JCL Example for DFSKLTC0

The following example shows the JCL used to run DFSKLTC0.

//KLTC0 EXEC PGM=DFSKLTC0,REGION=4M

//STEPLIB DD DSN=IMS910.SDFSRESL,DISP=SHR

//SYSUDUMP DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//TRACESUM DD SYSOUT=*

//EXTRACT DD DSN=TSOUSR01.TRACE.TEMP,DISP=(OLD,DELETE)

//DETAIL1 DD SYSOUT=*

//DETOUT1 DD DSN=TSOUSR01.TRACE.DETOUT,DISP=SHR

//SYSIN DD *

Control Statements for DFSKLTC0

DFSKLTC0 processing is directed by control statements that are read from the

SYSIN file. Control statements are 80-byte fixed length records. All control

statements are optional. The control statements are subject to the following

syntactical rules:

v Keywords must begin in column 1.

v Each keyword must occur on a separate line.

v Keywords can occur in any order.

v There can be no intervening blanks between keywords indicating a data value

and the value itself.

v Keywords for which multiple occurrences are allowed must have each occurrence

specified on a separate control statement.

v Individual keywords and their associated values can not span or be continued on

multiple control statements.

v Keywords must be in upper case.

Control Keywords for DFSKLTC0

INT

Indicates that internal IRLM latch waits should be included in the reports, as

well as waits due to true contention.

DB=

Indicates which databases are to be included in the reports. The DB= keyword

is optional. If omitted, all databases are reported. Multiple occurrences of the

DB= keyword are allowed. The format of the DB= keyword is a 1- to 8-character

name.

DFSKLTC0

Chapter 29. IRLM Lock Trace Analysis Utilities (DFSKLTA0, DFSKLTB0, DFSKLTC0) 547

|
|
|

|

|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|

|

|
|

|
|

|
|

|

|

|
|
|

|
|
|
|
|

Restrictions: None

MINTIME=

Specifies the minimal wait time, expressed in milliseconds, for which reporting

should occur. The MINTIME= keyword is optional. If omitted, all wait times will

be reported. The format of the MINTIME= keyword is a 1- to 3-digit number.

 Restrictions: None

PST=

Specifies the partition specification table (PST) or region, expressed as a

decimal number, for which reporting should occur. The PST= keyword is

optional. If omitted, all PSTs will be reported. Multiple occurrences of the PST=

keyword are allowed. The format of the PST= keyword is a 1- to 3-digit number.

 Restrictions: None

IRLM Lock Trace Analysis Summary Report

The summary report created by DFSKTLC0 is written to the file identified by the

TRACESUM DD statement in the JCL. Figure 233 is an example of the IRLM Lock

Trace Analysis Summary report. In the first half of the summary report, the data is

presented in DMB name order. In the second half of the summary report, the data

is presented in Wait Time Order.

IRLM Lock Trace Analysis Detail Report

The detail report created by DFSKTLC0 is written to the file identified by the

DETAIL1 DD statement in the JCL. Figure 234 on page 549 shows an example of

the IRLM Lock Trace Analysis Detail report.

 Suspended IRLM Lock Requests Summary Report - DMB Name Order Page 001

Trace Date = 11/04/2003 Trace Start Time = 17:18:38 Trace End Time = 17:20:26

Trace Elapsed Time (secs) = 107

Trace Input DSN = IDOC.D031104.V9FPATH.LOCKTRA.IM1OLP01

 Database DS Lock Req Wait Not Int Total Average Maximum

 Name Id Count Count Count Time Time Time

 CUSTDB 01 21 0 0 0.000 0.000 0.00

 CUSTDB 02 19 0 0 0.000 0.000 0.00

 CUSTDB 03 26 0 0 0.000 0.000 0.00

 CUSTDB 04 49 0 0 0.000 0.000 0.00

 CUSTDB 05 18 0 0 0.000 0.000 0.00

 Suspended IRLM Lock Requests Summary Report - Wait Time Order Page 001

Trace Date = 11/04/2003 Trace Start Time = 17:18:38 Trace End Time = 17:20:26

Trace Elapsed Time (secs) = 107

Trace Input DSN = IDOC.D031104.V9FPATH.LOCKTRA.IM1OLP01

 Database DS Lock Req Wait Not Int Total Average Maximum

 Name Id Count Count Count Time Time Time

 FP AREA 00 83 1 1 2.192 2.192 2.19

 CUSTDB 01 21 0 0 0.000 0.000 0.00

 CUSTDB 02 19 0 0 0.000 0.000 0.00

 CUSTDB 03 26 0 0 0.000 0.000 0.00

 CUSTDB 04 49 0 0 0.000 0.000 0.00

Figure 233. Example IRLM Lock Trace Analysis Summary Report

DFSKLTC0

548 Utilities Reference: System

|

|
|
|
|

|

|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

Suspended IRLM Lock Requests Report - Req Comp Order Page 0001

Trace Date = 11/04/2003 DSN = IDOC.D031104.V9FPATH.LOCKTRA.IM1OLP01

Lock Request Lock Request ----Wait----- PST --Lock-- -------Resource------- Flag --IRLM--- --------Call--------- Trace

 Start Time End Time Elapsed Type Num Type Lvl DB DS RBA/HASH S RCFB TRAC Type Num Time Seq#

17:18:41.262 17:18:43.455 2.192 L 163 FPAR 6 FP AREA C2 F8E2E3C3 KF 0000 2080 C7CD

17:18:50.413 17:18:50.413 0.004 L 134 FPCI 8 WAREDB 04 000000C0 F K 0440 2080 3A1C

17:20:07.202 17:20:07.202 0.004 L 134 FPCI 8 WAREDB 0C 000000F0 F K 0440 2080 9C2A

Figure 234. Example IRLM Lock Trace Analysis Detail Report

Chapter 29. IRLM Lock Trace Analysis Utilities (DFSKLTA0, DFSKLTB0, DFSKLTC0) 549

|

550 Utilities Reference: System

Chapter 30. RECON Query of Log Data Set Names Utility

(DFSKARC0)

The RECON Query of Log Data Set Names utility (DFSKARC0) analyzes the

RECON data sets to find appropriate log data set names. Based on the control

statements that you provide, it can determine the following information:

v Data set names for OLDS, SLDS or LOGS data sets

v The names for the primary or secondary log data sets

v The volume serial numbers for these data sets

The logs can be selected by any or all of the following parameters:

v Starting date or time

v Ending date or time

v SYSID

Information from the RECON data sets can be extracted from either of the following

places:

v The RECON data sets themselves, when available on the system that executed

DFSKARC0

v A pre-existing report generated by the DBRC control statements LIST.LOG

Although DFSKARC0 can be used to create DD statements for use with other log

analysis utilities, these utilities cannot be executed in the same job. Not only must

they be in different jobs, but the job containing the other utilities must not be

submitted until the job containing DFSKARC0 has completed. The reason for this

restrictions is related to the following two factors:

v DFSKARC0 creates JCL in the JCLPDS for the DD statements that identify the

logs that other utilities access through the INCLUDE statement.

v JES (Job Entry System) expands JCL from INCLUDE or procedure statements

as soon as the job has been submitted. If both DFSKARC0 and a subsequent

log analysis utility are executed in the same job at the time this job is received by

JES, the JCL referenced by the INCLUDE statement is expanded. However,

when the job is received by JES, DFSKARC0 has not yet run, so DFSKARC0

could not have populated the JCLPDS member, and the contents of the member

are not what the subsequent log analysis utility program expects DFSKARC0 to

provide. If these two steps are not separated, JES will reads either:

– An empty PDS member if this member has never been used before

– The contents of the prior run if this PDS member is reused

DFSKARC0 can be invoked using the KBLA panel-driven interface (option 5.1) or

using JCL. Figure 235 on page 552 is an example of the Select Logs From RECON

panel in the KBLA panel-driven interface.

© Copyright IBM Corp. 1974, 2004 551

|

|

|

|
|
|

|

|

|

|

|

|

|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

|

|
|
|
|

The following topics provide additional information:

v “Input and Output for DFSKARC0”

v “JCL Requirements for DFSKARC0”

v “Control Statements for DFSKARC0” on page 554

v “Output Examples of DFSKARC0” on page 556

v “Return Codes for DFSKARC0” on page 557

v “RECON Query Summary Report” on page 557

Input and Output for DFSKARC0

Types of input to DFSKARC0 include:

v Control statements to direct processing (File CNTLCRDS)

v DBRC data sets (Files RECON1 AND RECON2)

v DBRC control statement (File SYSIN)

Types of output from DFSKARC0 include:

v List of selected log data sets (File DSNLIST)

v List of selected log data sets in a JCL-like format (File JCLOUT)

v Statistical summary reports (File REPORT)

Depending on the control statement parameters, the DBRC List.Log report read by

DFSKARC0 (File SYSPRINT) can be considered input or output.

JCL Requirements for DFSKARC0

The EXEC statement to run DFSKARC0 must be in the following form:

//RUNRCN EXEC PGM=DFSKARC0

DD Statements

CNTLCRDS (Input)

Contains the CNTLCRDS control statements. This data set is always required.

See “Control Statements for DFSKARC0” on page 554 for more information on

CNTLCRDS.

 TIME....09:21:15

 DATE....2004/06/21

 Fill out the following variables and press ENTER . JULIAN..2004.173

 COPY1 DSN. IMSVS.IMSTESTG.P45.IRLM.LOG

 COPY2 DSN.

 IMS Log Version 9

 Start Date. (Julian Date eg: 2002190)

 Start Time (UTC). (hhmmss eg: 133000)

 Stop Date (Julian Date eg: 2002190)

 Stop Time (UTC) (hhmmss eg: 133500)

 Output DSN Keyword. The Output DSN will be:

 Use Existing LIST.LOG? . (Y/N) USERID.keyword.KBLA

 DSN Containing LIST.LOG.

 SSIDS. *

 Number of Log DSNs

 LOGTYPE SLD (OLD/SLD/LOG) Use Secondary Log? Log Cataloged? N

 UNIT. .

Figure 235. KBLA Select Logs From RECON Panel to Invoke DFSKARC0

RECON Query of Log Data Set Names

552 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

|

|
|
|
|

The data communications block (DCB) for this data set is

RECFM=FB,LRECL=80.

DSNLIST (Output)

Contains a list of the names of the selected IMS log data sets. DSNLIST can be

used during the execution of KBLA Panel Option 5.2, in which case it can be

copied as the input list of logs. This data set is always required.

 The DCB for this data set is RECFM=FB,LRECL=80.

 Related Reading: For more information on KBLA Panel Option 5.2, see

“Defining the Selection of IMS Logs using Option 5” on page 507.

JCLOUT (Output)

Contains a DD statement for each of the selected IMS log data sets. This file

can be used to specify the log data sets to be processed by various other log

analysis utilities within KBLA. The following statements should be included in

the JCL to execute the other KBLA utilities:

// JCLLIB ORDER=(a.b.c)

where a.b.c is the PDS referenced by the JCLOUT DD statement in

DFSKARC0.

// INCLUDE MEMBER=(pdsmbr)

where pdsmbr is the member name referenced by the JCLOUT DD statement

in DFSKARC0.

 This data set is always required.

 The DCB for this data set is RECFM=FB,LRECL=80.

RECON1, RECON2 (Input)

Contains the RECON data sets that are used by the DBRC function of IMS.

These data sets can also be identified through dynamic allocation. In this case,

the dynamic allocation libraries must be included in the STEPLIB concatenation

or an equivalent method of identifying the data sets. These data sets are

required if no LIST.LOG report is provided in the SYSPRINT DD statement.

REPORT (Output)

Contains diagnostic messages and summary reports.

 The DCB for this data set is RECFM=FB,LRECL=133.

STEPLIB (Input)

Describes the library that contains KBLA load modules.

SYSIN (Input)

Contains the LIST.LOG statement that is used by DBRC for processing.

 The DCB for this data set is RECFM=FB,LRECL=80.

SYSPRINT (Input/Output)

SYSPRINT is a data set that contains the results of a LIST.LOG DBRC command

that can be used in two ways. If you do not use the NORECON control

statement, DFSKARC0 invokes DBRC, and the results are written to

SYSPRINT. If you use the NORECON control statement, you must populate the

SYSPRINT file with your own LIST.LOG results. For DFSKARC0 to get read

and write access to the SYSPRINT file, a data set on a DASD must be

specified. This data set is required if the RECON data sets are not used or are

unavailable on the system running DFSKARC0.

 The DCB for this data set is RECFM=FB,LRECL=133.

JCL Requirements

Chapter 30. RECON Query of Log Data Set Names Utility (DFSKARC0) 553

|
|

|
|
|
|

|

|
|

|
|
|
|
|

|

|
|

|

|
|

|

|

|
|
|
|
|
|

|
|

|

|
|

|
|

|

|
|
|
|
|
|
|
|
|

|

JCL Example

The following example shows the JCL used to run DFSKARC0.

//RUNRCN EXEC PGM=DFSKARC0

//SYSIN DD *

 LIST.LOG

//CNTLCRDS DD *

 LOGDD=SYSUT1

 NODDNAME

 SSID=SYS3

 LOGTYPE=PRILOG

 VOLSER

 UNIT=SYSDA

 NORECON

//REPORT DD SYSOUT=*,

// DCB=(LRECL=133,RECFM=FB,BLKSIZE=6118)

//SYSPRINT DD DISP=SHR.,DSN=IMSVS.RECON.SYSPRINT

//DSNLIST DD DISP=(,PASS),DSN=&&DSNLIST,

// UNIT=SYSDA,SPACE=(TRK,(1,1)),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120)

//JCLOUT DD DISP=SHR,DSN=USERID.KBLA.SDFSKJCL(DFSKRCNC)

//SYSUDUMP DD SYSOUT=*

Control Statements for DFSKARC0

DFSKARC0 processing can be influenced by control statements that are available

to direct functions. Records that contain the control statements are read from the

CNTLCRDS file.

Control statement records are 80 bytes in length. Most control statements are

optional; the result of omitting a statement is discussed for each keyword (see

“Keywords”). Comment statements can be indicated with an asterisk (*) in column

one. Blank records are ignored. Control statement keywords are coded within the

boundaries of columns 1 through 72, and are subject to the following syntax rules:

v Keywords can start in any column.

v Keywords can occur in any order.

v There can be no intervening blanks between keywords indicating a data value

and the value itself.

v Multiple keywords are either:

– Separated by one or more blanks

– Specified on multiple control statement records

v Keywords for which multiple occurrences are allowed must have each occurrence

specified on a separate control statement record.

v Individual keywords and their associated values must be in the same control

statement.

v Keywords must be written in upper case letters.

Keywords

CATALOG

Indicates that the JCL generated by the utility to reference the log data sets

should contain the DISP=(OLD,CATLG) parameter. The CATALOG keyword is

optional. If omitted, the generated JCL contains the DISP=SHR parameter. Only

one CATALOG control statement is allowed.

LOGCOUNT=

Specifies the number of log data sets that should be processed by DFSKARC0.

JCL Requirements

554 Utilities Reference: System

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|

|

|
|

|

|

|

|
|

|
|

|

|

|
|
|
|
|

|
|

The format of the LOGCOUNT= keyword is a 1- to 8-digit number. The

LOGCOUNT= keyword is optional. If omitted, all logs that are within the time

interval specification are allowed. Only one LOGCOUNT= control statement is

allowed.

LOGDD=

Specifies the DDNAME to be contained in the generated JCL identifying the

selected log data sets. The format of the LOGDD= keyword is a 1- to

8-character string. The LOGDD= keyword is optional. If omitted, LOG is used

as the DDNAME contained in the generated JCL. Only one LOGDD= control

statement is allowed.

LOGTYPE=

Identifies the type of IMS log. The format of the LOGTYPE= keyword is one of

the following:

PRILOG

The primary log recovery data sets

PRIOLD

The primary online log data sets

PRISLD

The primary system log data sets

SECLOG

The secondary log recovery data sets

SECOLD

The secondary online log data sets

SECSLD

The secondary system log data sets

The LOGTYPE= keyword is optional. If omitted, the default value is SECSLD.

MAXLOGS=

Specifies the maximum number of log data sets that can be listed by

DFSKARC0. The format of the MAXLOGS= keyword is a 1– to 8– digit

numeral. The MAXLOGS= keyword is optional. If omitted, the default value is

100. It is only needed if error message BTSA1011E indicates that the maximum

number of log data sets has been exceeded. Only one MAXLOGS= control

statement is allowed.

NODDNAME

Indicates that JCL generated by the utility to reference the log data sets should

not contain the DDNAME parameter for the log data sets. This parameter is

used when the generated JCL is to be concatenated at run time with a DD

statement already containing a DDNAME. The NODDNAME keyword is

optional. If omitted, the generated JCL contains a DDNAME. Only one

NODDNAME control statement is allowed.

NORECON

Identifies that the results of a prior LIST.LOG is supplied to DFSKARC0 in the

SYSPRINT DD statement and that the program will evaluate this data instead of

issuing the LIST.LOG command. The NORECON keyword is optional. If it is

omitted, the LIST.LOG command is issued to DBRC.

SSID=

Specifies the subsystem identifier associated with the IMS subsystem. The

Control Statements

Chapter 30. RECON Query of Log Data Set Names Utility (DFSKARC0) 555

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

format of the SSID= keyword is an 8-character value. To include all of the

SSIDs contained in RECON. Code SSYD=* to retrieve them all. The SSID=

keyword is required.

STOPTIME=

Specifies the time of the last log data set to be processed. An exact match of

time is not required. Processing stops with the first record equal to or greater

than the indicated time. The format of the STOPTIME= keyword is the 14–digit

time stamp used by DBRC, for which the format is yyyydddhhmmsss. The

STOPTIME= keyword is optional. If omitted, the concatenation of selected logs

terminates with the last log identified in RECON.

STRTTIME=

Specifies the time of the first log data set to process. An exact match of time is

not required. Processing begins with the first record equal to or greater than the

indicated time. There are two formats of the STRTTIME= keyword:

v STRTTIME=<value>, where <value> is the 14-digit time stamp used by

DBRC, for which the format is yyyydddhhmmsss.

v STRTTIME=LAST, in which case only the latest log is used.

Recommendation: STRTTIME=LAST can be used with the LOGCOUNT=

keyword to get the latest logs, up to the LOGCOUNT value. The STRTTIME=

keyword is optional. If omitted, the concatenation of selected logs begins with

the first log identified in RECON.

UNIT=

Specifies a unit type to be used in the DD statements generated for the log

data sets instead of the unit type associated with these data sets in RECON.

The value specified by the UNIT= keyword can be either a customized or

provided unit type. The UNIT= keyword is optional. If it is omitted and a unit is

required by the generated DD statement, the unit indicated in RECON is used.

The UNIT= keyword must be specified with the VOLSER keyword.

VOLSER

This keyword specifies that the volume serial number and unit type must be

included on the DD statements that are generated for the log data sets instead

of assuming that the log data sets are cataloged. The VOLSER keyword is

optional. If it is omitted, the log data sets are assumed to be cataloged, and the

UNIT and the VOLSER keywords are not included in the generated JCL. When

you want to change UNIT=, you must specify UNIT= and VOLSER together.

Output Examples of DFSKARC0

This section includes output examples for DFSKARC0.

DSNLIST

The following is an example of the DSNLIST generated by DFSKARC0, which is

written to the DSNLIST DD statement in the JCL. Two log data sets were selected

from RECON.

IMSVS.RLDSP.IMS1.D03153.T1906417.V00

IMSVS.RLDSP.IMS1.D03153.T1910211.V00

JCLOUT

The following are examples of the JCLOUT generated by DFSKARC0, which is

written to the JCLOUT DD statement in the JCL.

Control Statements

556 Utilities Reference: System

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|

|
|
|

|
|

|

|
|

In the first example, two log data sets were selected from RECON. The first data

set does not have a ’DD DISP=SHR’ parameter associated with it. Because a

NODDNAME control statement was included, the data sets were cataloged. No

specification of unit or volume serial number is included in the output.

// DSN=IMSVS.RLDSP.IMS1.D03153.T1906417.V00

// DD DISP=SHR,

// DSN=IMSVS.RLDSP.IMS1.D03153.T1910211.V00

In the second example, two log data sets were selected from RECON. The first

data set has a ’DD DISP=SHR’ parameter associated with it, which also indicates

the ddname associated with this concatenation of data sets. The data sets were not

cataloged. The volume serial number and unit were determined from RECON

because a VOLSER control statement was included.

//SYSUT1 DD DISP=SHR,

// DSN=IMSVS.RLDSP.IMS1.D03153.T1906417.V00,

// VOL=SER=000000,

// UNIT=SYSDA

// DD DISP=SHR,

// DSN=IMSVS.RLDSP.IMS1.D03153.T1910211.V00,

// UNIT=SYSDA

// DD DISP=SHR,

Return Codes for DFSKARC0

Code Meaning

0 Utility successfully completed.

4 Warning messages were issued.

8 Utility terminated before completion.

RECON Query Summary Report

The summary report created by DFSKARC0 is written to the file identified by the

REPORT DD statement in the JCL. Figure 236 on page 558 is an example of the

RECON query summary report. In this example:

v The IMS SSID was SYS3.

v OLDS type logs were requested.

v A STRTTIME and STOPTIME range were requested.

v There were four records read from the CNTLCRDS file.

v One SSID was requested.

v 100 records were read from the SYSPRINT file to determine the appropriate log

data sets.

v The default number of log data sets (100) was the maximum number of logs

allowed to be processed, based on the selection criteria for STRTTIME and

STOPTIME.

v One log data set was selected for processing.

v The log selected was IMSTESTL.IMS01.OLDSP1.

Output Examples

Chapter 30. RECON Query of Log Data Set Names Utility (DFSKARC0) 557

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

||

||

||

||

|
|

|
|
|

|

|

|

|

|

|
|

|
|
|

|

|

|

Figure 237 is another example of the RECON query summary report. In this

example:

v The IMS SSID was SYS3.

v SLDS type logs were requested.

v No specific time range was selected.

v There were two records read from the CNTLCRDS file.

v One SSID was requested.

v 78 records were read from the SYSPRINT file to determine the appropriate log

data sets.

v The default number of log data sets (100) was the maximum number of logs

allowed to be processed, based on the selection criteria for STRTTIME and

STOPTIME.

v Three log data set were selected for processing.

v The log data set names are displayed in the report.

IMS TOOL / DFSKARC0: RECON QUERY SUMMARY REPORT PAGE: 1

DATE: 2002/180 TIME: 10:22

CNTLCRDS: SSID=SYS3

CNTLCRDS: LOGTYPE=OLDS

CNTLCRDS: STRTTIME=02179161850

CNTLCRDS: STOPTIME=02179161930

NUMBER OF CNTLCRDS RECORDS READ : 4

NUMBER OF SSIDS SUPPLIED : 1

NUMBER OF SYSPRINT LINES READ : 100

MAX. ALLOWABLE NUMBER OF LOG DSNS : 100

NUMBER OF LOG DSNS SELECTED : 1

SELECTED LOG DSN=IMSTESTL.IMS01.OLDSP1

Figure 236. DFSKARC0 DD Statement Report Example

 IMS TOOL / DFSKARC0: RECON QUERY SUMMARY REPORT PAGE: 1

DATE: 2002/180 TIME: 10:22

CNTLCRDS: SSID=SYS3

CNTLCRDS: LOGTYPE=SLDS

NUMBER OF CNTLCRDS RECORDS READ : 2

NUMBER OF SSIDS SUPPLIED : 1

NUMBER OF SYSPRINT LINES READ : 78

MAX. ALLOWABLE NUMBER OF LOG DSNS : 100

NUMBER OF LOG DSNS SELECTED : 3

SELECTED LOG DSN=IMSVS.SLDSP.SYS3.D02179.T1618169.V00

SELECTED LOG DSN=IMSVS.SLDSP.SYS3.D02179.T1618488.V00

SELECTED LOG DSN=IMSVS.SLDSP.SYS3.D02179.T1619375.V00

Figure 237. DFSKARC0 DD Statement Report Example 2

RECON Query Summary Report

558 Utilities Reference: System

|
|

|

|

|

|

|

|
|

|
|
|

|

|

|

|

Chapter 31. Log Summary Utility (DFSKSUM0)

The Log Summary utility (DFSKSUM0) can create a summary of log records, a

detailed report based on specific search criteria, and copies of log records that have

been processed.

In an IMS DB/DC or DCCTL environment, you can create a summary of the records

contained in the logs produced by the system. These records can be included in or

written to an OLDS, or included in or written to an archived OLDS. The summary

function includes:

v First and last Log Sequence Number (LSN) in the log

v Time stamp (UTC and local) of the first and last log record

v Total number of log records in the log data set

v List of internal traces record, system restarts, dump log record, and system

checkpoint (if present)

v Number of log records present for each record type and subtype

v Statistics related to individual transactions, programs, and databases

v Checking for gaps in the log

You can specify selection criteria for processing a subset of the records rather than

processing all records. You can specify processing criteria, such as a starting record

LSN or time, an ending LSN or time, the number of records to skip prior to

processing, or the number of records to process. In addition to the summary

function, DFSKSUM0 can also create a detailed report based on log information

related to selected search criteria specified by control statements. Search criteria

can include:

v Program name

v Transaction ID

v Database name

v Fast Path area name

v LTERM name

v Node name

v User ID

v RBA

v DRRN

v Recovery token

v Units of work

v A character string

In addition to creating reports, DFSKSUM0 can also create a copy of the log

records that have been processed. The copy can consist of the entire log or a

subset of the log based on any of the processing or search criteria.

The following topics provide additional information:

v “Dynamic Search” on page 560

v “Input and Output for DFSKSUM0” on page 560

v “JCL Requirements for DFSKSUM0” on page 561

v “Control Statements for DFSKSUM0” on page 562

v “Return Codes for DFSKSUM0” on page 567

© Copyright IBM Corp. 1974, 2004 559

|

|

|
|
|

|
|
|
|

|

|

|

|
|

|

|

|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|

|

|

v “Output Examples of DFSKSUM0” on page 567

Dynamic Search

DFSKSUM0 provides a dynamically enhanced search function based on matches to

the subset of data values you provide. Given as few as one data element, the utility

can return those log records where a match is found for the specified data element.

It also returns records that are logically associated with the search criteria. Dynamic

search logic is invoked by including the DYNSEARCH global keyword in the control

statements. A global keyword is an optional keyword that influences how a utility is

processed.

DFSKSUM0’s dynamic search is different than search capabilities in exit routines to

DFSERA10, such as the IBM-supplied DFSERA70, which were designed to search

for elements such as:

v Partition Specification Table (PST)

v Recovery token

v Units of work

v PSB name

v Transaction name

Many log records contain some, but not all of these fields. In order to match as

many log records as possible when exit routines such as DFSERA70 are used, you

must specify as much as possible for the search criteria. The utility then returns the

records that match the search criteria. You do not need to know the location of the

various data elements in the record, but you do need to know the values for all of

the search criteria keys that will be combined to match log records.

Input and Output for DFSKSUM0

Types of input to DFSKSUM0 include:

v CNTLCRDS

v LOGDESC

v SYSUT1

Types of output from DFSKSUM0 include:

v DETAIL

v DSNLIST

v DYNCRDS

v DYNREPT

v LOGOUT

v REPORT

v SYSPRINT

An additional DD statement named SYSUT4 is a dummy file that it is retained for

compatibility with exit routines invoked by DFSKSUM0. Include the following output

DD statement in your JCL:

//SYSUT4 DD DUMMY

Log Summary

560 Utilities Reference: System

|

|
|

|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

JCL Requirements for DFSKSUM0

The EXEC statement to run DFSKSUM0 must be in the following form:

//RUNRCN EXEC PGM=DFSKSUM0

DD Statements

CNTLCRDS (Input)

Contains the CNTLCRDS control statements. This data set is always required.

See “Control Statements for DFSKARC0” on page 554 for more information on

CNTLCRDS.

 The DCB for this data set is RECFM=FB,LRECL=80.

LOGDESC (Input)

Contains entries for every log record type and record subtype found in the log

data set. It is used to generate descriptive titles for each record type in the Log

Summary Report. This data set is always required.

 The DCB for this data set is RECFM=FB,LRECL=80

SYSUT1 (Input)

Contains the log record data to be processed. It can consist of a single log data

set, or a concatenation of data sets. This data set is always required.

 The DCB for this data set varies depending on the DCB that was used to create

the log.

DETAIL (Output)

Contains images of the log records that match search criteria provided in

CNTLCRDS. The DCB for this data set varies and must match the DCB

associated with the SYSUT1 DD statement. This data set is optional. It is

required when the DETAIL global keyword control statement has been provided

in CNTLCRDS.

 Note: This data set can become quite large depending on the size of the

SYSUT1 input data set and the number of records that matched the search

criteria.

DYNCRDS (Output)

Contains control statements matching search criteria that are dynamically

generated when the DYNSEARCH global keyword control statement is provided

in CNTLCRDS. These statements can be copied from this file to be used as

CNTLCRDS search keywords in subsequent iterations of the utility. This data

set is optional. It is required when the DYNSEARCH control statement has

been provided in CNTLCRDS.

 The DCB for this data set is RECFM=FB,LRECL=80.

DYNREPT (Output)

Contains the log record selection flow report, which is generated when the

DYNSEARCH global keyword control statement is provided in CNTLCRDS. This

data set is optional. It is required when the DYNSEARCH global keyword

control statement has been provided in CNTLCRDS. See “Logical Record

Selection Flow Report Example” on page 571 for an example of this report.

 The DCB for this data set is RECFM=FB,LRECL=133.

LOGOUT

Contains images of the log records that have been processed by the utility. The

DCB for this data set varies and must match the DCB associated with the

JCL Requirements

Chapter 31. Log Summary Utility (DFSKSUM0) 561

|
|

|

|

|

|
|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|

SYSUT1 DD statement. This data set is optional. It is required when the

LOGOUT global keyword control statement has been provided in CNTLCRDS.

 Note: This data set can become quite large depending on the size of the

SYSUT1 input data set and the number of records that matched the search

criteria.

REPORT (Output)

This file contains diagnostic messages and the summary report created by the

utility. See “Log Summary Report Example” on page 567 for an example of this

report. This data set is required.

 The DCB for this data set is RECFM=FB,LRECL=133.

SYSPRINT (Output)

Contains the formatted output based upon the search keyword control

statements provided in CNTLCRDS. This data set is required.

 The DCB for this data set is RECFM=FB,LRECL=133.

JCL Example

The following example shows the JCL used to run DFSKSUM0.

//RUNSUM EXEC PGM=DFSKSUM0

//SYSUT1 DD DISP=SHR,

// DCB=BUFNO=10,

// DSN=USERID.KBLA67FA.LOG

//SYSPRINT DD SYSOUT=*,DCB=(LRECL=133,RECFM=FBA)

//REPORT DD DISP=SHR,

// DSN=USERID.T6701.KBLA.R.X03252.Y141406

//LOGDESC DD DISP=SHR,DSN=*.RUNLGD.LOGDOUT

//LOGOUT DD DISP=(NEW,CATLG),

// DSN=USERID.T6701.KBLA.L.X03252.Y141406,

// UNIT=SYSDA,

// SPACE=(CYL,(10,5),RLSE),

// DCB=(RECFM=VB,LRECL=32756,BLKSIZE=32760)

//DETAIL DD DISP=(NEW,CATLG),

// DSN=USERID.KBLA.D.X03266.Y141550,

// UNIT=SYSDA,

// SPACE=(CYL,(10,5),RLSE),

// DCB=(RECFM=VB,LRECL=32756,BLKSIZE=32760)

//DYNCRDS DD DISP=(NEW,CATLG),

// DSN=USERID.KBLA.Y.X03266.Y141550,

// UNIT=SYSDA,SPACE=(TRK,(1,1),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//DYNREPT DD DISP=(NEW,CATLG),

// DSN=USERID.KBLA.O.X03266.Y141550,

// UNIT=SYSDA,SPACE=(CYL,(1,1),RLSE),

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=6118)

//CNTLCRDS DD *

/SYSUDUMP DD SYSOUT=*

//SYSUT4 DD DUMMY

Control Statements for DFSKSUM0

DFSKSUM0 processing can be influenced by control statements that are available

to direct functions. The image of each record containing control statements is

written to the file identified by the SYSOUT DD statement. Records that contain the

control statements are read from the CNTLCRDS file.

Control statement records are 80 bytes in length. Most control statements are

optional. The result of omitting a statement omission is discussed for each keyword.

Comment statements can be indicated with an asterisk (*) in column one. Blank

JCL Requirements

562 Utilities Reference: System

|
|

|
|
|

|
|
|
|

|

|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

records are ignored. Control statements keywords are coded within the boundaries

of columns 1 through 72, and are subject to the following syntax rules:

v Keywords can start in any column.

v Keywords can occur in any order.

v There can be no intervening blanks between keywords indicating a data value

and the value itself.

v Multiple keywords must be specified on separate control statement records.

v Keywords for which multiple occurrences are allowed must have each occurrence

specified on a separate control statement record.

v Individual keywords and their associated values must be in the same control

statement.

v Keywords must be in upper case.

Control Keywords for DFSKSUM0

Control keywords are divided into one of the following categories:

v Keywords that indicate global actions

v Keywords that indicate processing options

v Keywords that indicate search keys

Global Keywords

Global keywords are optional keywords that influence how a utility is processed. If

they are omitted, the action driven by the global keyword is not performed.

Global keywords include:

DYNSEARCH

Indicates that the current invocation of DFSKSUM0 is dynamically enhancing

the search for matching log records. See “Dynamic Search” on page 560 for

more information about this type of processing.

LOGOUT

Indicates that all log records that are being processed should be written to the

LOGOUT file.

NOWRAP

Describes how the log sequence numbers (LSN) contained on a log record are

incremented with each subsequent record. However, the LSN of a log record

can be lower than the LSN of the previous record. Examples of when this might

occur include:

v When multiple logs have been concatenated out of sequence

v When the active OLDS data set is being processed and does not contain an

end-of-file mark

In such cases, DFSKSUM0 generates a warning message in the REPORT file

indicating that an LSN out-of-sequence condition has been encountered.

 If NOWRAP was not specified, the utility continues processing until the

end-of-file has been reached. If NOWRAP has been specified, the utility

terminates processing upon detecting this condition.

SEQCHECK

Describes how the log sequence numbers (LSN) and store-clock time (STCK)

contained on a log record are incremented with each subsequent record.

However, a gap in the sequence of these values between records sometimes

occurs. An example of when this might occur is when multiple logs have been

concatenated, but a log in the sequence is missing.

Control Statements

Chapter 31. Log Summary Utility (DFSKSUM0) 563

|
|

|

|

|
|

|

|
|

|
|

|

|

|

|

|

|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|
|
|
|

If SEQCHECK was not specified, the utility continues processing until the end

of the file is reached without any additional reporting. If SEQCHECK was

specified, each time an out-of-sequence condition is encountered, the utility

reports the following in the REPORT:

v LSN of the out of sequence record and of the prior record

v Time stamp of the out of sequence record and the prior record

v Time difference between the two records

SUMONLY

Indicates that a short version of the summary report will be generated.

Processing Keywords

Processing keywords are optional keywords that indicate how much of the log is to

be processed. If they are omitted, the entire log is processed.

Restrictions:

v LOG02STA=, STARTLSN=, STARTSTCK=, SKIP= and TOKENBND are all

mutually exclusive.

v LOG02STO=, STOPLSN=, STOPSTCK=, PROCESS= and TOKENBND are all

mutually exclusive.

Processing keywords include:

FORMAT=

Specifies the type of record formatting that is to be generated as a result of a

search keyword match. The FORMAT= keyword is optional. If omitted, the

default formatting routine used is K.

 Values of the FORMAT= keyword are:

B The KBLA Basic Record Formatting and Print Module (DFSKBLA3) formats

the output. See “KBLA Basic Record Formatting and Print Module

(DFSKBLA3)” on page 511 for an example.

S The KBLA Summary Record Formatting Module (DFSKBLA8) formats the

output. See “KBLA Summary Record Formatting Module (DFSKBLA8)” on

page 516 for an example.

K The Knowledge-Based Record Formatting Module (DFSKBLA9) formats the

output. See “KBLA Knowledge-Based Record Formatting Module

(DFSKBLA9)” on page 518 for an example.

LOG02STA=

Specifies a character string that was entered on the subject IMS subsystem

with the /LOG command at the beginning of an event that was to be captured

on the log. The utility begins processing after a X'02' log record that contains

this character string is encountered. The LOG02STA= keyword is optional. If

omitted, processing starts at the beginning of the log. The format of the

LOG02STA= keyword is a 60-byte character string.

LOG02STO=

Specifies a character string that was entered on the subject IMS subsystem

with the /LOG command at the end of an event that was to be captured on the

log. The utility terminates processing after a X'02' log record which contains this

character string is encountered. The LOG02STA= keyword is optional. If

omitted, all records will be processed. The format of the LOG02STO= keyword

is a 60-byte character string.

Control Statements

564 Utilities Reference: System

|
|
|
|

|

|

|

|
|

|
|
|

|

|
|

|
|

|

|
|
|
|

|

||
|
|

||
|
|

||
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

PROCESS=

Specifies the number of log records that should be processed prior to utility

termination. The PROCESS= keyword is optional. If omitted, all records are

processed. The format of the PROCESS= keyword is a 1- to 8-digit numeral.

SKIP=

Specifies the number of log records that should be skipped before any records

are to be processed and included in reports. The SKIP= keyword is optional. If

omitted, no records are skipped prior to processing. The format of the SKIP=

keyword is a 1- to 8-digit number.

STARTLSN=

Specifies the LSN of the first log data set to be processed. An exact match of

time is not required; processing stops with the first record equal to or greater

than the indicated LSN. If omitted, processing starts at the beginning of the log.

The format of the STARTLSN= keyword is an 8-character hexadecimal value.

STARTSTCK=

Specifies the time of the first log data set to be processed. An exact match of

time is not required; processing begins with the first record equal to or greater

than the indicated time. The STARTSTCK= keyword is optional. If omitted,

processing starts at the beginning of the log. The format of the STARTSTCK=

keyword is the 14-digit timestamp used by DBRC, for which the format is

yyyydddhhmmsss.

STOPLSN=

Specifies the LSN of the last log data set to be processed. An exact match of

time is not required; processing stops with the first record equal to or greater

than the indicated time. If omitted, processing continues until the end of the log.

The format of the STOPLSN= keyword is an 8-character hexadecimal value.

STOPSTCK=

Specifies the time of the last log data set to be processed. An exact match of

time is not required; processing stops with the first record equal to or greater

than the indicated time. The STOPSTCK= keyword is optional. If omitted,

processing continues until end of log. The format of the STOPSTCK= keyword

is the 14-digit timestamp used by DBRC, for which the format is

yyyydddhhmmsss.

TOKENBND

Specifies that all records are to be skipped for processing until the X'08' record

associated with a recovery token supplied with the TOKEN= keyword is

encountered. It also specifies that processing should terminate after the

corresponding X'07' record for this recovery token is encountered.

Search Keywords

Search keywords are optional keywords that are used as keys to locate records that

are to be reported in detail. If they are omitted, no records are reported in detail. If

multiple search keywords are selected, the log records that match any of the

keywords are reported.

Search keywords include:

AREA=

Log records containing an area name that matches this keyword value are

selected for processing. The format of the AREA= keyword is an 8-character

value. The AREA= keyword is optional.

Control Statements

Chapter 31. Log Summary Utility (DFSKSUM0) 565

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

DBD=

Log records containing a DBD name that matches this keyword value are

selected for processing. The format of the DBD= keyword is an 8-character

value. The DBD= keyword is optional.

DRRN=

Log records containing a DRRN that matches this keyword value are selected

for processing. A DRRN is a hexadecimal 4 character field. The DRRN=

keyword represents a character representation of the hexadecimal value. The

format of the DRRN= keyword is an 8-character value. The DRRN= keyword is

optional.

LTERM=

Log records containing an LTERM name that matches this keyword value are

selected for processing. The format of the LTERM= keyword is an 8-character

value. The LTERM= keyword is optional.

NODE=

Log records containing a node name that matches this keyword value are

selected for processing. The format of the NODE= keyword is an 8-character

value. The NODE= keyword is optional.

PGM=

Log records containing a program that matches this keyword value are selected

for processing. The PGM= and PSB= parameters are used interchangeably by

the utility. The format of the PGM= keyword is an 8-character value. The PGM=

keyword is optional.

PSB=

Log records containing a PSB that matches this keyword value are selected for

processing. The PGM= and PSB= parameters are used interchangeably by the

utility. The format of the PSB= keyword is an 8-character value. The PSB=

keyword is optional.

RBA=

Log records containing a relative block address (RBA) that matches this

keyword value are selected for processing. Although an RBA is a hexadecimal

4-character field, the RBA= keyword is an 8-character representation of the

hexadecimal value. The RBA= keyword is optional.

SCAN=

Log records containing a character string that matches this keyword value are

selected for processing. The format of the SCAN= keyword is up to a

60-character value. If the value supplied is less than 60 characters, the value is

compared for the length supplied. The SCAN= keyword is optional.

SNAPREC

Indicates that snap log records (X'67FD') and pseudo-abend log records

(X'67FF') are selected for processing.

TOKEN=

Log records containing a recovery token that matches this keyword value are

selected for processing. Although recovery token is a hexadecimal 16-character

field, the TOKEN= keyword is a 32-character representation of the hexadecimal

value. If the value supplied is less than 32 characters, the token value is

compared with the left-justified token contained in the log records for the length

supplied. The TOKEN= keyword is optional.

 Restrictions: The TOKEN= value must be an even number of characters.

Control Statements

566 Utilities Reference: System

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

TRX=

Log records containing a transaction that matches this keyword value are

selected for processing. The format of the TRX= keyword is an 8-character

value. The TRX= keyword is optional.

USERID=

Log records containing a user ID that matches this keyword value are selected

for processing. The format of the USERID= keyword is an 8-character value.

The USERID= keyword is optional.

UOW=

Log records containing a unit of work (UOW) that matches this keyword value

are selected for processing. Although UOW is a hexadecimal 34 character field,

the UOW= keyword is a 68-character representation of the hexadecimal value.

If the value supplied is less than 68 characters, the UOW value is compared

with the left-justified UOW contained in the log records for the length supplied.

The UOW= keyword is optional.

 Restrictions: The UOW= value must be an even number of characters.

Return Codes for DFSKSUM0

Code Meaning

0 Utility successfully completed.

4 Warning messages were issued.

8 Utility terminated before completion.

Output Examples of DFSKSUM0

This section includes report examples for DFSKSUM0.

Log Summary Report Example

The summary report created by DFSKSUM0 is written to the file identified by the

REPORT DD statement in the JCL. This shows the DFSKSUM0 summary report.

In this example:

v The log contained three accounting records (X'06').

v A control statement that contains keyword PGM=BMP255 was supplied as

search criteria.

v Two log data sets were processed.

v The IMSID for this system is SYS3.

v The log contained records with log sequence numbers (LSN) 00000001 -

00000566. Although the LSN is actually an 8 byte field, only the last 4 bytes are

presented with KBLA. Processing of the log records began at the start of the log.

v The elapsed time represented in this log is displayed.

v 1382 records were read from the log.

v 61 records matched the search criteria; data from these log records is written to

SYSPRINT.

v The presence of various diagnostic and trace records is indicated.

v Message queueing statistics are presented.

v External interface DB2 communicates with this subsystem.

v Database open/close records are contained on this log.

Control Statements

Chapter 31. Log Summary Utility (DFSKSUM0) 567

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|

||

||

||

||

|
|

|

|

|
|

|

|

|
|

|

|

|
|
|

|

|

|
|

|

|

|

|

v System checkpoint statistics are present in the log.

v System configuration statistics are present in the log and are presented in the

report.

v This system is an IMS Version 9 DB/DC system.

v Record counts and a brief description are included for each log record type.

Where applicable, the records are broken down by subcode.

v Database DBOVLFPC was opened and closed.

v Database updates were logged for three databases.

v Records indicated activity with two PSBs.
 * ***

 * IMS TOOL / DFSKSUM DATE: 2003/102 TIME: 06:08 PAGE: 1 *

 * ***

 * *

 * ACCOUNTING RECORD AT LSN: 00000002 : IMS/VS STARTED *

 * ACCOUNTING RECORD AT LSN: 00000437 : FEOV ON SYSTEM LOG *

 * ACCOUNTING RECORD AT LSN: 00000565 : FEOV ON SYSTEM LOG *

 * *

 * CNTLCRDS: PGM=BMP255 *

 * *

 * ***

 * IMS TOOL / DFSKSUM DATE: 2003/102 TIME: 06:08 PAGE: 2 *

 * ***

 * *

 * INPUT LOG DATA SET NAME(S) *

 * IMSVS.SLDSP.SYS3.D02347.T0924053.V00 *

 * IMSVS.SLDSP.SYS3.D02347.T0924454.V00 *

 * *

 * ***

 * LOG INFORMATION SUMMARY FOR IMSID: SYS3 *

 * *

 * FIRST LSN: 00000001 LAST LSN: 00000566 *

 * FIRST SELECTED LSN: 00000001 *

 * *

 * FIRST LOG RECORD STCK (UTC): 2002347 1724059 (LOCAL): 2002347 0924059 *

 * LAST LOG RECORD STCK (UTC): 2002348 0049537 (LOCAL): 2002347 1649537 *

 * FIRST SELECTED LOG STCK (UTC): 2002347 1724059 (LOCAL): 2002347 0924059 *

 * DIFFERENCE BETWEEN UTC AND LOCAL TIME (HHMM): -0800 *

 * ELAPSED TIME ON SELECTED LOG(S): 000 07:25:47.8 *

 * *

 * *

 * TOTAL # OF LOG RECORDS READ AND PROCESSED : 1382 *

 * *

 * # OF LOG RECORDS WRITTEN TO SYSPRINT FILE : 61 *

 * *

 * IMS START LOG RECORDS DETECTED (X’06’) : YES *

 * TRACE LOG RECORDS DETECTED (X’6701’) : NO *

 * SYS. DIAGNOSTIC RECS. DETECTED (X’67D0’) : YES *

 * TRACE TABLE LOG RECORDS DETECTED (X’67FA’) : NO *

 * SNAP DUMP LOG RECORDS DETECTED (X’67FD’) : NO *

 * PSEUDO ABEND RECORDS DETECTED (X’67FF’) : NO *

 * # OF PGM ABENDS (X’67FF’ PSEUDO ABEND RECORDS): 0 *

 * # OF DEADLOCKS (X’67FF’ DEADLOCK RECORDS): 0 *

 * *

 * TOTAL # OF QUEUED RECORDS : 1 *

 * INPUT MESSAGES QUEUED TO MSC : 0 *

 * INPUT MESSAGES QUEUED NON-MSC : 1 *

 * INPUT MESSAGES QUEUED TO SYNC APPC : 0 *

 * INPUT MESSAGES QUEUED TO ASYNC APPC : 0 *

 * INPUT MESSAGES QUEUED TO SYNC OTMA : 0 *

 * INPUT MESSAGES QUEUED TO ASYNC OTMA : 0 *

 * IMS PARTNERS DETECTED : NO *

 * EXTERNAL INTERFACES DETECTED : YES *

 * DB2A *

Output Examples

568 Utilities Reference: System

|

|
|

|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* DB OPEN/CLOSE LOG RECS DETECTED (X’20/21’) : YES *

 * SYSTEM CHKPT LOG RECORDS DETECTED (X’4001’) : YES *

 * SYSTEM CONFIGURATION STATS AVAILABLE (X’45FF’): YES *

 * STATISTICS BEGIN RECORD AVAILABLE (X’4500’ : YES *

 * LOGGER STATISTICS RECORD AVAILABLE (X’4507) : YES *

 * *

 * ***

 * IMS SYSTEM CONFIGURATION *

 * *

 * REGION TYPE: ONLINE DB/DC *

 * IMS LEVEL : 910 *

 * *

 * APPC=N SPECIFIED *

 * ETO=Y SPECIFIED *

 * HSB=N SPECIFIED *

 * LSO=S SPECIFIED *

 * SYSTEM IS NOT XRF CAPABLE *

 * ***

 * IMS TOOL / DFSKSUM DATE: 2003/102 TIME: 06:08 PAGE: 3 *

 * ***

 * *

 * SYSTEM IS NOT RSR CAPABLE *

 * SYSTEM IS NOT USING SHARED QUEUES *

 * XRF NOT IN SYNCH *

 * *

 * OS NAME : ECDVL89 *

 * OS PRODUCT: z/OS *

 * OS VERSION: 010400 *

 * OLDS BLOCK SIZE : 22528 *

 * NUMBER OF LOG BUFFERS: 5 *

 * WADS TRACK GROUPS : 1 *

 * WADS TRACKS/CYL : 15 *

 * BLOCKS/WADS TRACK : 18 *

 * BYTES/WADS TRACK : 36864 *

 * ***

 * ***

 * IMS TOOL / DFSKSUM DATE: 2003/102 TIME: 06:08 PAGE: 4 *

 * ***

 * *

 * LOG RECORD OCCURRENCES STATISTICS *

 * *

 * OCCURRENCES OF RECORD TYPE 01: 1 INPUT MESSAGE QUEUED *

 * OCCURRENCES OF RECORD TYPE 02: 2 RECOVERABLE COMMAND ENTERED *

 * OCCURRENCES OF RECORD TYPE 03: 47 OUTPUT MESSAGE QUEUED *

 * OCCURRENCES OF RECORD TYPE 04: 1 TRACKING SITE INFORMATION *

 * OCCURRENCES OF RECORD TYPE 06: 3 IMS RESTART RELATED RECORD *

 * OCCURRENCES OF RECORD TYPE 07: 3 APPLICATION PGM TERMINATED *

 * OCCURRENCES OF RECORD TYPE 08: 3 APPLICATION PGM SCHEDULED *

 * OCCURRENCES OF RECORD TYPE 20: 1 DATABASE WAS OPENED *

 * OCCURRENCES OF RECORD TYPE 21: 1 DATABASE WAS CLOSED *

 * OCCURRENCES OF RECORD TYPE 31: 48 GET UNIQUE (GU) ISSUED FOR MSG *

 * OCCURRENCES OF RECORD TYPE 33: 47 QMGR RELEASED A DDRN *

 * OCCURRENCES OF RECORD TYPE 35: 48 MSG WAS ENQUEUED/RE-ENQUEUED *

 * OCCURRENCES OF RECORD TYPE 36: 47 THIS MESSAGE WAS DEQ/SAVED/DEL *

 * OCCURRENCES OF RECORD TYPE 37: 7 SYNCPOINT PROCESSOR LOG RECORD *

 * OCCURRENCES OF SUBCODE 3730: 7 SYNCPOINT PROCESSOR LOG RECORD *

 * OCCURRENCES OF RECORD TYPE 40: 351 TOTAL NUMBER OF CHECKPOINT REC *

 * OCCURRENCES OF SUBCODE 400F: 2 MESSAGE QUEUE TTR / LCD FOLLOW *

 * OCCURRENCES OF SUBCODE 4001: 2 CHECKPOINT PROCESS START *

 * OCCURRENCES OF SUBCODE 4003: 60 CNT AND/OR LNB CHKPT RECORDS *

 * OCCURRENCES OF SUBCODE 4004: 44 SMB(S) FOLLOW *

 * OCCURRENCES OF SUBCODE 4005: 16 NON-VTAM CTB(S) FOLLOW *

 * OCCURRENCES OF SUBCODE 4006: 26 DMB(S) FOLLOW *

 * OCCURRENCES OF SUBCODE 4007: 14 PSB FOLLOWS *

 * OCCURRENCES OF SUBCODE 4008: 2 NON-VTAM CLB AND/OR LLB FOLLOW *

Output Examples

Chapter 31. Log Summary Utility (DFSKSUM0) 569

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* OCCURRENCES OF SUBCODE 4010: 2 NON-VTAM CRB(S) FOLLOW *

 * OCCURRENCES OF SUBCODE 4014: 8 SPQB(S) FOLLOW *

 * OCCURRENCES OF SUBCODE 4021: 78 VTAM VTCB(S) FOLLOW *

 * OCCURRENCES OF SUBCODE 4022: 2 QAB/CNT DATA FIELDS CHECKPOINT *

 * OCCURRENCES OF SUBCODE 4031: 2 SIDX FOLLOW *

 * OCCURRENCES OF SUBCODE 4033: 2 TSCD, MTES AND MCBS FOLLOWS *

 * OCCURRENCES OF SUBCODE 4080: 2 FASTPATH CHKPT INFO BEGIN HERE *

 * OCCURRENCES OF SUBCODE 4083: 2 RCTE FOLLOWS *

 * OCCURRENCES OF SUBCODE 4084: 82 DMCB AND DMAC FOLLOW *

 * OCCURRENCES OF SUBCODE 4087: 1 ADSC FOLLOWS *

 * OCCURRENCES OF SUBCODE 4089: 2 FASTPATH CHKPT INFO END HERE *

 * OCCURRENCES OF SUBCODE 4098: 2 CHKPT INFORMATION ENDS HERE *

 * OCCURRENCES OF RECORD TYPE 41: 6 BATCH OR BMP ISSUED A CHKP *

 * OCCURRENCES OF RECORD TYPE 42: 4 OLDS SWITCH/CHKPT WAS TAKEN *

 * OCCURRENCES OF RECORD TYPE 43: 6 STATUS OF CURRENT OLDS D/S *

 * OCCURRENCES OF RECORD TYPE 45: 62 BEGIN-STATISTICS RECORD *

 * OCCURRENCES OF SUBCODE 45FF: 2 END OF STATISTICS RECORD *

 * OCCURRENCES OF SUBCODE 450A: 2 LATCH MANAGEMENT STATISTICS *

 * OCCURRENCES OF SUBCODE 450B: 2 SELECTIVE DISPATCHER STATS *

 * OCCURRENCES OF SUBCODE 450C: 2 STORAGE POOL STATISTICS *

 * OCCURRENCES OF SUBCODE 450D: 2 RECEIVE ANY BUFFERS STATISTICS *

 * OCCURRENCES OF SUBCODE 450E: 14 FIXED STORAGE POOL STATISTICS *

 * OCCURRENCES OF SUBCODE 450F: 2 DISPATCHER STATISTICS *

 * OCCURRENCES OF SUBCODE 4500: 2 BEGIN-STATISTICS RECORD *

 * OCCURRENCES OF SUBCODE 4502: 2 QUEUE BUFFER STATISTICS *

 * ***

 * IMS TOOL / DFSKSUM DATE: 2003/102 TIME: 06:08 PAGE: 5 *

 * ***

 * *

 * OCCURRENCES OF SUBCODE 4503: 2 FORMAT POOL STATISTICS *

 * OCCURRENCES OF SUBCODE 4504: 8 DL/I BUFFER POOL STATISTICS *

 * OCCURRENCES OF SUBCODE 4505: 2 VARIABLE STORAGE POOL STATS *

 * OCCURRENCES OF SUBCODE 4506: 2 APPLICATION SCHEDULING STATS *

 * OCCURRENCES OF SUBCODE 4507: 2 LOGGING STATISTICS *

 * OCCURRENCES OF SUBCODE 4508: 8 VSAM BUFFER POOL STATISTICS *

 * OCCURRENCES OF SUBCODE 4509: 2 PROGRAM ISOLATION STATISTICS *

 * OCCURRENCES OF SUBCODE 4510: 2 RCF MULTI-TCB STATISTICS *

 * OCCURRENCES OF SUBCODE 4521: 2 IRLM SUBSYSTEM STATISTICS *

 * OCCURRENCES OF SUBCODE 4522: 2 IRLM SYSTEM STATISTICS *

 * OCCURRENCES OF RECORD TYPE 47: 2 CHKPT JUST TAKEN.PST(S) LISTED *

 * OCCURRENCES OF RECORD TYPE 48: 56 OLDS PADDING RECORD *

 * OCCURRENCES OF RECORD TYPE 4C: 19 A BACKOUT FOR TOKEN WAS DONE *

 * OCCURRENCES OF RECORD TYPE 50: 427 DB UPDATE RECORD *

 * OCCURRENCES OF SUBCODE 5050: 427 RECOVERY/BACKOUT DATA *

 * OCCURRENCES OF RECORD TYPE 56: 56 EXT SUBSYSTEM SUPPORT RECOVERY *

 * OCCURRENCES OF SUBCODE 5607: 28 START OF A UNIT-OF-RECOVERY *

 * OCCURRENCES OF SUBCODE 5612: 28 PHASE 2 SYNCPOINT END *

 * OCCURRENCES OF RECORD TYPE 57: 6 BEGIN DB UPDATE IN RSR ENVIRON *

 * OCCURRENCES OF SUBCODE 5701: 4 BEGIN DB UPDATE IN RSR ENVIRON *

 * OCCURRENCES OF SUBCODE 5703: 2 END DB UPDATE IN RSR ENVIRON *

 * OCCURRENCES OF RECORD TYPE 59: 122 FP INPUT MESSAGE RECEIVED *

 * OCCURRENCES OF SUBCODE 59FF: 3 FP MISCELLANEOUS INTERNAL INFO *

 * OCCURRENCES OF SUBCODE 5921: 3 DEDB AREA D/S WAS OPENED *

 * OCCURRENCES OF SUBCODE 5922: 1 DEDB AREA D/S WAS CLOSED *

 * OCCURRENCES OF SUBCODE 5923: 1 DEDB AREA D/S STATUS CHANGED *

 * OCCURRENCES OF SUBCODE 5937: 19 SYNCPOINT OPERATION COMPLETED *

 * OCCURRENCES OF SUBCODE 5950: 90 DEDB UPDATED *

 * OCCURRENCES OF SUBCODE 5957: 5 LOCAL/GLOBAL PORTION OF DMAC *

 * OCCURRENCES OF RECORD TYPE 67: 6 SYSTEM DIAGNOSTIC LOG RECORD *

 * OCCURRENCES OF SUBCODE 67D0: 6 DIAGNOSTIC TRACE RECORD *

 * ***

 * ***

 * IMS TOOL / DFSKSUM DATE: 2003/102 TIME: 06:08 PAGE: 6 *

 * ***

 * *

 * DATABASE OPEN / CLOSE STATISTICS (FROM X’20’ AND ’21’ RECORDS) *

 * *

Output Examples

570 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* DATABASE DBOVLFPC: # OF TIMES OPENED : 1 *

 * DATABASE DBOVLFPC: # OF TIMES CLOSED : 1 *

 * ***

 * ***

 * IMS TOOL / DFSKSUM DATE: 2003/102 TIME: 06:08 PAGE: 7 *

 * ***

 * *

 * DATABASE LOG RECORDS STATISTICS (FROM X’50’ AND ’59’ RECORDS) *

 * *

 * DATABASE DBOVLFPC: # OF DB UPDATE RECORDS 427 *

 * DATABASE DEDBDD01: # OF DB UPDATE RECORDS 25 *

 * DATABASE DEDBJN22: # OF DB UPDATE RECORDS 70 *

 * ***

 * ***

 * IMS TOOL / DFSKSUM DATE: 2003/102 TIME: 06:08 PAGE: 8 *

 * ***

 * *

 * PROGRAM LOG RECORDS STATISTICS (FROM X’07’ RECORDS) *

 * *

 * PROGRAM BMP255 TRANSACTION: OCCURRED: 2 *

 * PROGRAM PSBCOMPT TRANSACTION: OCCURRED: 1 *

 * ***

 * ***

 * IMS TOOL / DFSKSUM DATE: 2003/102 TIME: 06:08 PAGE: 9 *

 * ***

 * *

 * PGM/TRAN LOG RECORDS STATISTICS (FROM X’08’ RECORDS) *

 * *

 * PGM/TRAN: BMP255 OCCURRED: 2 *

 * PGM/TRAN: PSBCOMPT OCCURRED: 1 *

 * ***

 * END OF IMS LOG SUMMARY REPORT *

 * ***

Logical Record Selection Flow Report Example

The logical record selection report is produced by DFSKSUM0 when search criteria

is invoked from KBLA 4.1 and a value of Y is entered in Create Dynamic Search

Keys? field.

The report consists of the following columns:

LC 2-character hexadecimal log code

LSN 8-character hexadecimal line sequence number

Reason Explanation for why this particular log record was selected

PST Decimal representation of the PST

HEXPST 4-character hexadecimal representation of the PST

Data Data that triggered a match for this log record

Figure 238 on page 572 is an example of the DFSKSUM0 logical record selection

flow report. In this example, a search was requested for Transaction TRN11301.

Log records that contained a matching value for this transaction are identified with

’TRAN MATCHED CNTLCRDS’. Records that were selected because they matched

the PST, Recovery Token, or UOW associated with this transaction are included in

the list, and the applicable reason for the match is indicated.

Output Examples

Chapter 31. Log Summary Utility (DFSKSUM0) 571

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

||

||

||

||

||

||

|
|
|
|
|
|
|

Short Log Summary Report (SUMONLY) Example

Figure 239 on page 573 is an example of a short summary report that DFSKSUM0

creates when the SUMONLY control keyword is supplied. This report is written to

the file identified by the REPORT DD statement in the JCL. Figure 239 on page 573

is an example of the DFSKSUM0 short log summary report.

1 IMS TOOL / DFSKSUM LOG RECORD SELECTION FLOW DATE: 2003/102 TIME: 06:08 PAGE: 1

LC LSN REASON PST HEXPST DATA

01 7EE9CF42 TRAN MATCHED CNTLCRDS 0 0000 TRN11301

01 7EE9CF42 UOW FOR TRAN 0 0000 C9D4E2C540404040B730664391761705C9D4E2C540404040B7306643917617050000

35 7EE9CF43 TRAN MATCHED CNTLCRDS 0 0000 TRN11301

35 7EE9CF43 TOKEN FOR 35 0 0000 00000000000000000000000000000000

35 7EE9CF43 UOW FOR 35 0 0000 C9D4E2C540404040B730664391761705C9D4E2C540404040B7306643917617050000

08 7EE9CF46 TRAN MATCHED CNTLCRDS 348 015C TRN11301

08 7EE9CF46 TOKEN FOR 08 348 015C C9D4E2C540404040014CBA2000000000

56 7EE9CF47 TOKEN MATCH 348 015C C9D4E2C540404040014CBA2000000000

56 7EE9CF47 PST MATCH 348 015C 348

56 7EE9CF47 PGM FOR 56 348 015C PGMZ1113

31 7EE9CF48 TRAN MATCHED CNTLCRDS 348 015C TRN11301

31 7EE9CF48 TOKEN FOR 31 348 015C C9D4E2C540404040014CBA2000000000

31 7EE9CF48 UOW FOR 31 348 015C C9D4E2C540404040B730664391761705C9D4E2C540404040B7306643917617050000

56 7EE9D049 TOKEN MATCH 348 015C C9D4E2C540404040014CBA2000000000

56 7EE9D049 PST MATCH 348 015C 348

56 7EE9D049 PGM FOR 56 348 015C

56 7EE9D04A TOKEN MATCH 0 0000 C9D4E2C540404040014CBA2000000000

56 7EE9D04A PGM FOR 56 0 0000

56 7EE9D0E9 TOKEN MATCH 348 015C C9D4E2C540404040014CBA2000000000

56 7EE9D0E9 PST MATCH 348 015C 348

56 7EE9D0E9 PGM FOR 56 348 015C

35 7EE9D103 TOKEN MATCH 348 015C C9D4E2C540404040014CBA2000000000

35 7EE9D103 PST MATCH 348 015C 348

35 7EE9D103 TOKEN FOR 35 348 015C C9D4E2C540404040014CBA2000000000

35 7EE9D103 UOW FOR 35 348 015C C9D4E2C540404040B730664391761705C9D4E2C540404040B73066439E600DC30000

59 7EE9D104 TOKEN MATCH 348 015C C9D4E2C540404040014CBA2000000000

59 7EE9D104 PST MATCH 348 015C 348

59 7EE9D104 PSB MATCH 348 015C PGMZ1113

59 7EE9D105 TOKEN MATCH 348 015C C9D4E2C540404040014CBA2000000000

59 7EE9D105 PST MATCH 348 015C 348

59 7EE9D105 PSB MATCH 348 015C PGMZ1113

37 7EE9D106 PST MATCH 348 015C 348

59 7EE9D107 TRAN MATCHED CNTLCRDS 0 0000 TRN11301

59 7EE9D107 PGM FOR 59 0 0000

37 7EE9D108 TOKEN MATCH 348 015C C9D4E2C540404040014CBA2000000000

37 7EE9D108 PST MATCH 348 015C 348

31 7EE9D10A UOW MATCH 768 0300 C9D4E2C540404040B730664391761705C9D4E2C540404040B73066439E600DC30000

31 7EE9D10A TOKEN FOR 31 768 0300 00000000000000000000000000000000

31 7EE9D10A UOW FOR 31 768 0300 C9D4E2C540404040B730664391761705C9D4E2C540404040B73066439E600DC30000

56 7EE9D10E TOKEN MATCH 348 015C C9D4E2C540404040014CBA2000000000

56 7EE9D10E PST MATCH 348 015C 348

56 7EE9D10E PGM FOR 56 348 015C

56 7EE9D10F PST MATCH 348 015C 348

56 7EE9D10F PSB MATCH 348 015C PGMZ1113

56 7EE9D115 PSB MATCH 0 0000 PGMZ1113

31 7EE9D126 PST MATCH 768 0300 768

31 7EE9D126 TOKEN FOR 31 768 0300 00000000000000000000000000000000

31 7EE9D126 UOW FOR 31 768 0300 C9D4E2C540404040B73066439F575742C9D4E2C540404040B73066439F5757420000

36 7EE9D163 UOW MATCH 0 0000 C9D4E2C540404040B73066439F575742C9D4E2C540404040B73066439F5757420000

33 7EE9D164 UOW MATCH 0 0000 C9D4E2C540404040B73066439F575742C9D4E2C540404040B73066439F5757420000

1 IMS TOOL / DFSKSUM LOG RECORD SELECTION FLOW DATE: 2003/102 TIME: 06:08 PAGE: 2

LC LSN REASON PST HEXPST DATA

31 7EE9D165 PST MATCH 768 0300 768

31 7EE9D165 TOKEN FOR 31 768 0300 00000000000000000000000000000000

31 7EE9D165 UOW FOR 31 768 0300 C9D4E2C540404040B7306643A1ED9781C9D4E2C540404040B7306643A1ED97810000

36 7EE9D1C3 UOW MATCH 0 0000 C9D4E2C540404040B7306643A1ED9781C9D4E2C540404040B7306643A1ED97810000

33 7EE9D1C4 UOW MATCH 0 0000 C9D4E2C540404040B7306643A1ED9781C9D4E2C540404040B7306643A1ED97810000

31 7EE9D246 PST MATCH 768 0300 768

31 7EE9D246 TOKEN FOR 31 768 0300 00000000000000000000000000000000

31 7EE9D246 UOW FOR 31 768 0300 C9D4E2F440404040B7306642B40C3D03C9D4E2C540404040B7306643A59FDF460000

56 7EE9D25A TOKEN MATCH 0 0000 C9D4E2C540404040014CBA2000000001

56 7EE9D25A PSB MATCH 0 0000 PGMZ111

307 7EE9D25B TRAN MATCHED CNTLCRDS 348 015C TRN11301

Figure 238. DFSKSUM0 Logical Record Selection Flow Report

Output Examples

572 Utilities Reference: System

|

|

|
|
|
|
|

* ***

 * IMS TOOL / DFSKSUM DATE: 2003/102 TIME: 06:08 PAGE: 1 *

 * ***

 * *

 * ACCOUNTING RECORD AT LSN: 00000002 : IMS/VS STARTED *

 * ACCOUNTING RECORD AT LSN: 00000437 : FEOV ON SYSTEM LOG *

 * ACCOUNTING RECORD AT LSN: 00000565 : FEOV ON SYSTEM LOG *

 * *

 * CNTLCRDS: PGM=BMP255 *

 * CNTLCRDS: SUMONLY *

 * *

 * ***

 * IMS TOOL / DFSKSUM DATE: 2003/102 TIME: 06:08 PAGE: 2 *

 * ***

 * *

 * INPUT LOG DATA SET NAME(S) *

 * S840636.IMSVS.SLDSP.SYS3.D02347.T0924053.V00 *

 * S840636.IMSVS.SLDSP.SYS3.D02347.T0924454.V00 *

 * *

 * ***

 * LOG INFORMATION SUMMARY FOR IMSID: SYS3 *

 * *

 * FIRST LSN: 00000001 LAST LSN: 00000566 *

 * FIRST SELECTED LSN: 00000001 *

 * *

 * FIRST LOG RECORD STCK (UTC): 2002347 1724059 (LOCAL): 2002347 0924059 *

 * LAST LOG RECORD STCK (UTC): 2002348 0049537 (LOCAL): 2002347 1649537 *

 * FIRST SELECTED LOG STCK (UTC): 2002347 1724059 (LOCAL): 2002347 0924059 *

 * DIFFERENCE BETWEEN UTC AND LOCAL TIME (HHMM): -0800 *

 * ELAPSED TIME ON SELECTED LOG(S): 000 07:25:47.8 *

 * *

 * *

 * TOTAL # OF LOG RECORDS READ AND PROCESSED : 1382 *

 * ***

 * END OF IMS LOG SHORT SUMMARY REPORT *

 * ***

Figure 239. DFSKSUM0 Short Log Summary Report

Chapter 31. Log Summary Utility (DFSKSUM0) 573

|

574 Utilities Reference: System

Chapter 32. Deadlock Trace Record Analysis Utility

(DFSKTDL0)

The Deadlock Trace Record Analysis utility is used to format and summarize data

extracted from X'67FF' pseudoabend records for database-related deadlocks. These

records are identified by a four-character requester identification indicating a

pseudoabend condition, and an eight-character element identification that indicates

deadlock.

Data describing a single logical deadlock event can span up to a maximum of four

physical deadlock pseudoabend records. Although there can be an unlimited

number of transactions or jobs participating in a deadlock event, the four

pseudoabend records can only contain details about a maximum of nine individual

deadlocks between participants. In each deadlock, one participant is identified as

the holder of the resource, and one participant is identified as the waiter for the

resource.

The Deadlock Trace Record Analysis utility processes the logical deadlock events

and the individual deadlocks to produce reports that:

v Provide details about the deadlock

v Show the hierarchy of the participants in the deadlocks (relative to the victim in

each deadlock)

v Summarize the deadlock activity, including deadlocks by:

– Hour

– DBMS

– State

– Lock type

– DBD

– PSB

– Lock name

– RBA

Selection criteria for the trace entries can include:

v Time range data

v LSN ranges

v Number of records during processing

The Deadlock Trace Record Analysis utility can be invoked using the KBLA

panel-driven interface (Option 2.5) or using JCL. Figure 240 on page 576 is an

example of the Snap/Pseudo-Abend Record Formatting panel in the KBLA

panel-driven interface. DFSKTDL0 can be invoked from this panel.

© Copyright IBM Corp. 1974, 2004 575

|

|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

The following topics provide additional information:

v “Input and Output for DFSKTDL0”

v “JCL Requirements for DFSKTDL0”

v “Control Statements for DFSKTDL0” on page 578

v “Control Keywords for DFSKTDL0” on page 579

v “Return Codes for DFSKTDL0” on page 580

v “Deadlock Trace Analysis Summary Report Example” on page 580

v “Deadlock Trace Analysis Victim Report Example” on page 583

v “Deadlock Trace Analysis Detail Report Example” on page 584

Input and Output for DFSKTDL0

Types of input to DFSKTDL0 include:

v Control statements to direct processing

v IMS log or trace data sets

Types of output from DFSKTDL0 include:

v Unformatted images of the X'67FF' deadlock pseudoabend records

v Unformatted images of the DIPENTRY and DFSIRPM control blocks associated

with the participants in the deadlock

v Statistical and summary reports

v Details about the participants in the deadlock

v Hierarchy of participants in the deadlock

v Informational messages

JCL Requirements for DFSKTDL0

The EXEC statement to run DFSKTDL0 must be in the following form:

//RUNTDL0 EXEC PGM=DFSKTDL0

 == K.B.L.A. Snap/Pseudo-Abend Record Formatting ==

 COMMAND ===>

 Input IMS Log DSN IMSDUMP.OLD02.D1203 Cataloged? Y

 IMS Log Version. 9

 Log Formatting Type. . . . K (B or K)

 Log Selection Type: (Only one can be specified) Specify (Y/N)

 All Types DB Deadlock Y

 Optional Fields

 Start Date/Time (UTC) - (YYYYDDD - HHMMSS)

 Stop Date/Time (UTC) - (YYYYDDD - HHMMSS)

 Start LSN Stop LSN

 Number of Records to Skip Number of Records to Process

 Copy images of records

 Output DSN Keyword. DEADLOCK The Output DSN will be:

 Log DSNs Were Extracted From RECON. USERID.keyword.KBLA.R.*

 PDS Member Containing Logs/Traces .

Figure 240. KBLA Snap/Pseudo-Abend Record Formatting Panel to Invoke DFSKTDL0

Deadlock Trace Record Analysis

576 Utilities Reference: System

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

DD Statements

CNTLCRDS (Input)

Contains the control statements for DFSKTDL0. This data set is always

required. See “Control Statements for DFSKTDL0” on page 578 for information

on these control statements. The DCB parameters for this data set are

RECFM=FB,LRECL=80.

DETAIL (Output)

Diagnostic messages and summary reports are written to this data set. This

data set is always required. The DCB parameters for this data set are

RECFM=FBA,LRECL=133.

JOBLIB or STEPLIB (Input)

Describes the library that contains KBLA load modules.

REPORT (Output)

Diagnostic messages and summary reports are written to this data set. This

data set is always required. The DCB parameters for this data set are

RECFM=FBA,LRECL=133.

SYSPRINT (Output)

Messages that are generated during the trace entry extract process are written

to this data set. This data set is always required. The DCB parameters for this

data set are RECFM=FBA,LRECL=133.

SYSUT1 (Input)

Defines the log record data to be processed. It can consist of a single log data

set or a concatenation of data sets. This data set is always required. The DCB

parameters for this data set vary depending on the DCB that was used to

create the log and are taken from the data set label or DCB.

SYSUT4 (Output)

Contains the images of the X'67FF' deadlock pseudo-abend log records. This

data set is generally optional; however, it is required when the WRITELOG

global keyword control statement has been provided in CNTLCRDS data set.

The DCB parameters for this data set vary and must match those of the DCB

associated with the SYSUT1 DD statement.

 Related Reading: For more information on the WRITELOG global keyword,

see “Global Keywords” on page 579.

 Note: This data set can become quite large, depending on the size of the

SYSUT1 input data set and the number of records that have been processed.

SYSUT5 (Output)

Contains the unformatted images of the DIPENTRY and DFSIRPM control

blocks associated with the participants in a logical deadlock event. These

control blocks have been extracted from the X'67FF' records. There can be a

maximum of nine of these sets of control blocks. The log sequence number

associated with the log record from which these control blocks have been

extracted is included as a header for each deadlock event. However, if the

logical deadlock event spans multiple X'67FF' log records, only the log

sequence number of the first log record associated with the event is included in

the output file. This data set is generally optional, however, it is required when

the WRITEBLOCK global keyword control statement has been provided in the

CNTLCRDS data set. The DCB parameters for this data set vary and must

match those of the DCB associated with the SYSUT1 DD statement.

 Note: This data set can become quite large, depending on the size of the

SYSUT1 input data set and the number of records that have been processed.

JCL Requirements

Chapter 32. Deadlock Trace Record Analysis Utility (DFSKTDL0) 577

|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

VICTIM (Output)

Diagnostic messages and summary reports are written. This data set is always

required. The DCB parameters for this data set are RECFM=FBA,LRECL=133.

JCL Example

The following example shows the JCL used to run DFSKTDL0.

//RUNTDL0 EXEC PGM=DFSKTDL0

//SYSUT1 DD DISP=SHR,

// DCB=BUFNO=10,

// DSN=IMSDUMP.OLD02.D1203

//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FB,LRECL=133,BLKSIZE=6118)

//VICTIM DD DSN=IMS.DFSKTDL0.VICTIM,

// DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,

// SPACE=(CYL,(100,50),RLSE),

// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)

//DETAIL DD DSN=IMS.DFSKTDL0.DETAIL,

// DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,

// SPACE=(CYL,(100,50),RLSE),

// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)

//REPORT DD DSN=IMS.DFSKTDL0.REPORT,

// DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,

// SPACE=(CYL,(100,50),RLSE),

// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)

//DETAIL DD DSN=IMS.DFSKTDL0.DETAIL,

// DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,

// SPACE=(CYL,(100,50),RLSE),

// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)

//REPORT DD DSN=IMS.DFSKTDL0.REPORT,

// DISP=(NEW,CATLG,CATLG),

// UNIT=SYSDA,

// SPACE=(CYL,(1,1),RLSE),

// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA),

//CNTLCRDS DD *

/*

Control Statements for DFSKTDL0

Processing for DFSKTDL0 is directed by control statements that are read from the

CNTLCRDS file. Control statements are 80-byte fixed length records. Most control

statements are optional. The result of omitting a statement is described with each

keyword. Comment statements are indicated with an asterisk (*) in column 1. Blank

records are ignored. Control statement keywords are coded within the boundaries of

columns 1 through 72 and are subject to the following syntax rules:

v Keywords can start in any column.

v Keywords can occur in any order.

v There can be no intervening blanks between keywords indicating a data value

and the value itself.

v Multiple keywords are either:

– Separated by one or more blanks.

– Specified on multiple control statements.

v Keywords for which multiple occurrences are allowed must have each occurrence

specified on a separate control statement.

v Individual keywords and their associated values cannot span or be continued on

multiple control statements.

JCL Requirements

578 Utilities Reference: System

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

|

|
|

|

|

|

|
|

|
|

v Keywords must be written in upper case letters.

Control Keywords for DFSKTDL0

Control statements that can be specified for DFSKTDL0 are either:

v Keywords that indicate global actions

v Keywords that indicate processing options

Global Keywords

Global keywords are optional keywords that influence how the utility is processed. If

they are omitted, no optional actions are performed.

WRITEBLOCK

Indicates that the unformatted images of the DIPENTRY and DFSIRPM control

blocks associated with the participants in a logical deadlock event are to be

written to the data set associated with the WRITEBLOCK DD statement.

WRITELOG

Indicates that the images of the X'67FF' deadlock pseudoabend log records are

to be written to the data set associated with the WRITELOG DD statement.

Processing Keywords

Processing keywords are optional keywords that indicate how much of the log is to

be processed. If they are omitted, the entire log will be processed.

Restrictions:

v STOPLSN=, STOPSTCK=, and PROCESS= are mutually exclusive.

v STARTLSN=, STARTSTCK= and SKIP= are all mutually exclusive.

PROCESS=

Specifies the number of log records to be processed prior to utility termination.

The PROCESS= keyword is optional. If omitted, all records are processed. The

format of the PROCESS= keyword is a 1- to 8-digit number.

SKIP=

Specifies the number of log records to be skipped before any records are

processed and included in reports. The SKIP= keyword is optional. If omitted,

no records are skipped prior to processing. The format of the SKIP= keyword is

a 1- to 8-digit number.

STARTLSN=

Specifies the log sequence number of the first log data set to be processed. An

exact match of time is not required; processing stops with the first record equal

to or greater than the indicated log sequence number. If omitted, processing

starts at the beginning of the log. The format of the STARTLSN= keyword is an

8-character hexadecimal value.

STARTSTCK=

Specifies the time of the first log data set to be processed. An exact match of

time is not required; processing begins with the first record equal to or greater

than the indicated time. The STARTSTCK= keyword is optional. If omitted,

processing starts at the beginning of the log. The format of the STARTSTCK=

keyword is of the format yyyydddhhmmss.

STOPLSN=

Specifies the log sequence number of the last log data set to be processed. An

exact match of time is not required; processing stops with the first record equal

Control Statements

Chapter 32. Deadlock Trace Record Analysis Utility (DFSKTDL0) 579

|

|
|

|

|

|

|

|
|

|
|
|
|

|
|
|

|

|
|

|

|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

to or greater than the indicated time. The STOPLSN= keyword is optional. If

omitted, processing continues until end of log. The format of the STOPLSN=

keyword is an 8-character hexadecimal value.

STOPSTCK=

Specifies the time of the last log data set to be processed. An exact match of

time is not required; processing stops with the first record equal to or greater

than the indicated time. The STOPSTCK= keyword is optional. If omitted,

processing continues until the end of the log. The format of the STOPSTCK=

keyword is of the format yyyydddhhmmss.

Return Codes for DFSKTDL0

Code Meaning

0 Utility has successfully completed.

4 Warning messages were issued.

8 Utility terminated before completion.

Deadlock Trace Analysis Summary Report Example

The summary report created by DFSKTDL0 is written to the file identified by the

REPORT DD statement in the JCL. This example shows a Deadlock Trace Analysis

Summary report. In this example:

v The report included four deadlock trace records where the number of participants

in the deadlock exceeded nine, the maximum number of participants for which

detail can be stored for a single deadlock event. Note: The four deadlock trace

records represented a total of six deadlocks for which there were no details

available.

v The log selected was IMSVS.DEADLOCK.TESTLOG.

v The length of the trace header was indicated.

v The length of a deadlock entry was indicated.

v The time period processed on the log was displayed.

v The first trace record on the log was also the first record processed on the log

(no records were skipped).

v The log sequence number range represented on the log was displayed. Although

the log sequence number is actually an 8-byte field, only the last 4 bytes are

presented with KBLA.

v No records were read from the CNTLCRDS file.

v No records were skipped.

v 4474 log records were read.

v All 4474 log records were X'67FF' trace records.

v All of the trace records were evaluated.

v 2880 records were written to the detail report.

v 2985 records were written to the victim report.

v Of the 4474 deadlock records:

– 1333 physical log records represented the complete logical deadlock event.

– 1547 records represented the first physical log record where the logical

deadlock event spanned multiple physical log records.

– 1594 represented the second or subsequent physical log records where the

logical deadlock event spanned multiple physical log records.

Control Keywords

580 Utilities Reference: System

|
|
|

|
|
|
|
|
|

|
|

||

||

||

||

|
|

|
|
|

|
|
|
|
|

|

|

|

|

|
|

|
|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

v No records had an error in which the number of deadlock control blocks

contained in the deadlock record exceeded the bucket size, or number of entries

expected to be on the record.

v The largest cycle count, or number of participants in the deadlock event, was 11.

v The largest record capacity encountered was 9.

v The total number of deadlocks was 7464.

v The total number of deadlocks for which details were available was 7458. Details

were not available for the six remaining deadlocks.

v Deadlock activity was summarized by:

– Hour

– DBMS

– State

– Lock type

– DBD

– PSB

– Lock name

– RBA
********************************* TOP OF DATA **********************************

* **

* 1 IMS TOOL / DFSKTDL0 DATE: 2004/161 TIME: 14:56 PAGE: 1

* **

*

*

*

* DEADLOCK COUNT EXCEEDS SNAP RECORD LIMIT AT LSN: 64207207 RECORD# : 319

* RECORD CAPACITY: 9 DEADLOCK CNT: 10

* DEADLOCK COUNT EXCEEDS SNAP RECORD LIMIT AT LSN: 64207E11 RECORD# : 323

* RECORD CAPACITY: 9 DEADLOCK CNT: 11

* DEADLOCK COUNT EXCEEDS SNAP RECORD LIMIT AT LSN: 64207FB6 RECORD# : 327

* RECORD CAPACITY: 9 DEADLOCK CNT: 10

* DEADLOCK COUNT EXCEEDS SNAP RECORD LIMIT AT LSN: 6AC8EB7F RECORD# : 4189

* RECORD CAPACITY: 9 DEADLOCK CNT: 11

*

* INPUT LOG DATA SET NAME(S)

* IMSVS.DEADLOCK.TESTLOG

*

* **

* DEADLOCK TRACE INFORMATION SUMMARY

*

* TRACE HEADER LENGTH : 48

* DEADLOCK ENTRY LENGTH : 428

*

*

* TIME STAMP ON FIRST TRACE RECORD : 2003.190 21:02:34.313915

* TIME STAMP ON FIRST PROCESSED RECORD : 2003.190 21:02:34.313915

* TIME STAMP ON LAST PROCESSED TRACE RECORD : 2003.191 20:31:03.017499

* LSN ON FIRST TRACE RECORD : 5820C9F2

* LSN ON FIRST PROCESSED RECORD : 5820C9F2

* LSN ON LAST PROCESSED TRACE RECORD : 705DDBBE

*

* TOTAL # OF NON COMMENT CNTLCRDS RECORDS READ : 0

*

* REQUESTED # OF LOG RECORDS TO BE SKIPPED : 0

* TOTAL # OF LOG RECORDS SKIPPED : 0

*

* TOTAL # OF LOG RECORDS READ : 4474

* TOTAL # OF 67FF TRACE RECORDS READ : 4474

* TOTAL # OF 67FF TRACE RECORDS EVALUATED : 4474

* TOTAL # OF RECORDS WRITTEN TO DETAIL REPORT : 2880

* TOTAL # OF RECORDS WRITTEN TO VICTIM REPORT : 2985

Summary Report Example

Chapter 32. Deadlock Trace Record Analysis Utility (DFSKTDL0) 581

|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

*

* TOTAL # OF DEADLOCK RECORDS EVALUATED : 4474

* TOTAL # OF COMPLETE DEADLOCK RECORDS : 1333

* TOTAL # OF MULTI-RECORD DEADLOCK RECORDS : 1547

* TOTAL # OF ADDITIONAL PARTS FOR DEADLOCK RECS : 1594

* TOTAL # OF DEADLOCKS EXCEEDING RECORD CAPACITY : 4

* TOTAL # OF RECORDS EXCEEDING BUCKET SIZE : 0

* TOTAL # OF DEADLOCK SITUATIONS ANALYZED : 2880

*

* LARGEST CYCLE COUNT ENCOUNTERED : 11

* LARGEST BUCKET COUNT ENCOUNTERED : 9

* TOTAL NUMBER OF DEADLOCKS : 7464

* TOTAL NUMBER OF DEADLOCK ENTRIES WITH DETAILS : 7458

*

* **

* 1 IMS TOOL / DFSKTDL0 DATE: 2004/161 TIME: 14:56 PAGE: 2

* **

*

* DEADLOCKS BY HOUR

* START TIME STOP TIME COUNT

*

* 2003190/210234 - 2003190/222241 144

* 2003190/222241 - 2003190/230053 12

* 2003190/230053 - 2003191/003002 6

*

* **

* 1 IMS TOOL / DFSKTDL0 DATE: 2004/161 TIME: 14:56 PAGE: 4

* **

*

* DEADLOCKS BY DBMS

* DBMS COUNT

*

* PROD 7458

*

* **

* 1 IMS TOOL / DFSKTDL0 DATE: 2004/161 TIME: 14:56 PAGE: 5

* **

*

* DEADLOCKS BY STATE

* STATE COUNT

*

* 00 1650

* 01 170

* 03 262

* 04 5376

*

* **

* 1 IMS TOOL / DFSKTDL0 DATE: 2004/161 TIME: 14:56 PAGE: 6

* **

*

* DEADLOCKS BY LOCKTYPE

* LOCKTYPE COUNT

*

* GFPLL 7108

* GRIDX 350

*

* ***

* 1 IMS TOOL / DFSKTDL0 DATE: 2004/161 TIME: 14:56 PAGE:

* ***

*

* DEADLOCKS BY DBD (PSB WITHIN DBD)

* COUNT

*

* DBD: DATABAS1 6

* PSB: PSB1 6

* DBD: DATABAS2 1

Summary Report Example

582 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* PSB: PSB2 1

* DBD: DATABAS3 2

* PSB: PSB2 2

* DBD: DATABAS4 4

* PSB: PSB1 2

* PSB: PSB2 2

* **

* 1 IMS TOOL / DFSKTDL0 DATE: 2004/161 TIME: 14:56 PAGE: 17

* **

*

* DEADLOCKS BY PSB (DBD WITHIN PSB)

* COUNT

*

* PSB: PSB1 5

* DBD: DATABAS1 2

* DBD: DATABAS2 3

* PSB: PSB2 1949

* DBD: DATABAS2 5

* DBD: DATABAS3 33

* DBD: DATABAS4 1911

* PSB: PSB3 3379

* DBD: DATABAS5 2

* DBD: DATABAS6 3

* **

* 1 IMS TOOL / DFSKTDL0 DATE: 2004/161 TIME: 14:56 PAGE: 25

* **

*

* DEADLOCKS BY LOCKNAME

* RBA/RBN DMB# DCB# TYPE COUNT

*

* 00000010 FDDD 00 C6 1

* 00000010 FDE3 00 C6 1

* 00000010 FDE5 00 C6 1

* 00000010 FE15 00 C6 1

* 00000010 FE16 00 C6 111

* **

* 1 IMS TOOL / DFSKTDL0 DATE: 2004/161 TIME: 14:56 PAGE: 42

* **

*

* DEADLOCKS BY RBA

* RBA COUNT

*

* 003071D0 1

* 0034CD50 1

* 0035D030 1

* 003A7300 1

**

Deadlock Trace Analysis Victim Report Example

The victim report created by DFSKTDL0 is written to the file identified by the

VICTIM DD statement in the JCL. This example shows a Deadlock Trace Analysis

Victim report. In this example, 7 deadlock events are displayed, including:

v The first deadlock event represented a 2-way deadlock where Tran/JOB S00,

which ran on IMS subsystem PROD in PST X'71', was the victim. TRAN1

benefited when the lock held by S00 was released.

v The second deadlock even represented a 2-way deadlock where JOB1 was the

victim. TRAN2 benefited when the lock held by JOB1 was released.

v The fourth deadlock event represented a 3-way deadlock where JOB1 was the

victim. TRAN3 benefited when the lock held by JOB1 was released; TRAN 1

benefited when the lock held by TRAN3 was released.

Summary Report Example

Chapter 32. Deadlock Trace Record Analysis Utility (DFSKTDL0) 583

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

********************************* TOP OF DATA **********************************

1 IMS TOOL / DFSKTDL0 DATE: 2004/161 TIME: 14:56 PAGE: 1

 1ST-LSN TIME CNT TRAN/JOB DBMS-PST TRAN/JOB DBMS-PST TRAN/JOB DBM

 -------- ---------- --- -------- -------- -------- -------- -------- ---

 5820C9F2 21:02:34.3 2 TRAN1 (PROD- 55) S00 (PROD- 71)V

 5831D2F6 21:04:55.3 2 TRAN2 (PROD-139) JOB1 (PROD-228)V

 58332504 21:05:06.0 2 TRAN1 (PROD-100) TRAN2 (PROD- 54)V

 583394BD 21:05:09.9 3 TRAN1 (PROD-139) TRAN3 (PROD-100) JOB1 (PROD-54)V

 5834DE7E 21:05:21.4 2 TRAN3 (PROD-100) TRAN5 (PROD- 54)V

 5834F6E8 21:05:22.3 2 TRAN3 (PROD-100) TRAN5 (PROD- 54)V

 583665F2 21:05:36.2 2 TRAN1 (PROD-100) TRAN9 (PROD-139)V

Deadlock Trace Analysis Detail Report Example

The detail report created by DFSKTDL0 is written to the file specified by the

DETAIL DD statement in the JCL. This example shows a Trace Analysis Detail

report. In this example, 3 deadlock events are displayed:

v The first deadlock event represented a 2-way deadlock. The deadlock entry data

did not include the keys for the database records involved.

v The second deadlock event represented a 2-way deadlock. The deadlock entry

data did not include the keys for the database records involved.

v The third deadlock event represented a 3-way deadlock. The keys to the

database records involved in the deadlock were displayed.
IMS TOOL / DFSKTDL0 DATE: 2004/179 TIME: 13:08 PAGE: 1

1ST-LSN VIC DMB-NAME PCB--DBD RBA/RBN DMB# DCB# TYPE IMS-NAME TRAN/JOB PSB-NAME PST RGN CALL LOCKFUNC STATE

 - -------- --- -------- -------- -------(LOCKNAME)------- -------- -------- -------- --- --- ---- -------- -----

** 00:28:19.1 **

1 D9FD98A1 DBDDAP DBDDAP 00AAB008 84BF 01 400002 IMS1 ARS1047 PSB142CP 42 DBT GET GRIDX 06-P

 KEY FOR RESOURCE IS NOT AVAILABLE

 2 V DBDDAP DBDDAP 06A0A004 83D9 01 400002 IMS1 ARS1047 PSB12CP 246 DBT GET GRIDX 06-P

 KEY FOR RESOURCE IS NOT AVAILABLE

** 00:28:21.1 **

 1 D9FD98A1 DBDDAP DBDDAP 00AAB008 84BF 01 400002 IMS1 ARS1047 PSB142CP 42 DBT GET GRIDX 06-P

 KEY FOR RESOURCE IS NOT AVAILABLE

 2 V DBDDAP DBDDAP 06A0A004 83D9 01 400002 IMS1 ARS1047 PSB12CP 246 DBT GET GRIDX 06-P

 KEY FOR RESOURCE IS NOT AVAILABLE

** 00:35:18.1 **

 1 DA15F71D DBDDAP DBDDAP 003E700C 8CBA 01 400002 IMS1 ARS1047 PSB146CX 34 DBT ISRT GRIDX 06-P

 KEY: C7C9F5F7

 2 DA15F71D DBDDAP DBDDAP 003E700C 8CBA 01 400002 IMS1 ARS2047 PSB246CX 37 DBT ISRT GRIDX 06-P

 KEY: C7C9F5F9

 3 V DBDDAP DBDDAP 03674004 84BF 01 400002 IMS1 ARS1047 PSB146CX 71 DBT GET GRIDX 06-P

 KEY: C7D3D340F3F1F7F4F8F0404040

Victim Report Example

584 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Chapter 33. Trace Record Extract Utility (DFSKXTR0)

The need for information for problem diagnostics or accumulation of statistics drives

trace table logging, which often generates a large number of records. The Trace

Record Extract utility (DFSKXTR0) reads an IMS log data set (OLDS/SLDS) or

trace data set (DFSTRAxx) to produce a subset of information that meets specific

selection criteria.

Unlike DFSERA10 which searches entire log records for specific strings,

DFSKXTR0 searches individual trace table entries using selection criteria. Trace

table entries are relatively small, 32- or 64-byte entries. Although the data in the

entries can vary depending on what is specifically being traced, the structure is a

constant eight words of data.

To avoid a potentially high I/O overhead of writing an individual log record for each

trace table entry, multiple individual trace table entries are grouped in a blocked log

record. A log record, for example, could be 4K in size and contain either 123

32-byte individual trace table entries or 62 64-byte individual trace table entries. Log

records also contain a 64-byte header, which contains a two-character name of the

trace type, a time stamp, indicators of how many trace entries are contained in the

record, and an offset to the next trace table entry. Multiple trace types can be

generated; however, all trace table entries in a log record are of the same type.

After searching the trace table entries, DFSKXTR0 stores the entries that match

selection criteria into new log records. These new log records can subsequently be

passed to the DFSERA60 exit for formatting.

Selection criteria for the trace table entries can include:

v Trace table IDs

v Character string searches at the trace entry level

v Specific words, half words or bytes in the trace entries

v Time range data

v Entire log records to be matched

v Number of records during processing

v Mode of SCAN to read the log records without actual processing

Search criteria is entered as a paired specification identifying the word, half word, or

byte to be examined, and the associated data value. Optionally, the entire log

record containing the matching trace table entries can also be extractedl.

The Trace Record Extract utility can be invoked using the KBLA panel-driven

interface (Option 4.1.2) or using JCL. Figure 241 on page 586 is an example of the

Trace Entry Filtering panel in the KBLA panel-driven interface. DFSKXTR0 can be

invoked from this panel.

© Copyright IBM Corp. 1974, 2004 585

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|
|

The following topics provide additional information:

v “Input and Output for DFSKXTR0”

v “JCL Requirements for DFSKXTR0”

v “Control Statements for DFSKXTR0” on page 588

v “Control Keywords for DFSKXTR0” on page 588

v “Return Codes for DFSKXTR0” on page 591

v “Trace Entry Extract Summary Report Example” on page 592

Input and Output for DFSKXTR0

Types of input to DFSKXTR0 include:

v Control statements to direct processing

v IMS Log or Trace data sets

Types of output from DFSKXTR0 include:

v Log records modified to contain only the trace entries matching the search

criteria

v Images of the original, unmodified log records

v Statistical and summary report

v Informational messages

JCL Requirements for DFSKXTR0

The EXEC statement to run DFSKXTR0 must be in the following form:

//RUNXTR0 EXEC PGM=DFSKXTR0

DD Statements

CNTLCRDS (Input)

Contains the control statements for DFSKXTR0. This data set is always

 == K.B.L.A. Trace Entry Filtering ==

 COMMAND ===>

 Input IMS Log DSN IMSDUMP.OLD02.D1203 Cataloged? Y

 IMS Log Version 9

 Trace Table Ids: DL

 Search Criteria:

 1: B01 01

 2: B01 03

 3:

 4:

 5:

 6:

 7:

 Optional Fields For Trace Records Filtering

 Start Date/Time (UTC) - (e.g YYYYDDD-HHMMSS)

 Stop Date/Time (UTC) - (e.g YYYYDDD-HHMMSS)

 Records to Skip. . . . Records to Process. . .

 Scan Only . . Merge Extract Log Record. . .

 Output DSN Keyword.

 Log DSNs were extracted from RECON. .

 PDS member containing logs

Figure 241. KBLA Trace Entry Filtering Panel for to Invoke DFSKXTR0

Trace Record Extract

586 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

required. The DCB parameters for this data set are RECFM=FB,LRECL=80. For

information on CNTLCRDS control statements, see “Control Statements for

DFSKXTR0” on page 588.

JOBLIB or STEPLIB (Input)

Describes the library that contains KBLA load modules.

REPORT (Output)

Diagnostic messages and summary reports are written to this data set. This

data set is always required. The DCB parameters for this data set are

RECFM=FBA,LRECL=133.

SYSPRINT (Output)

SYSPRINT is a data set into which messages generated during the trace entry

extract process are written. This data set is always required. The DCB

parameters for this data set are RECFM=FBA,LRECL=133.

SYSUT1 (Input)

Defines the log record data to be processed. It can consist of a single log data

set, or a concatenation of data sets. This data set is always required. The DCB

parameters for this data set vary, depending on the DCB that was used to

create the log, and are taken from the data set label or DCB.

SYSUT4 (Output)

Contains the modified log records generated to contain the trace entries which

match the specified search criteria. This data set is required. The DCB

parameters for this data set vary, and must match those of the DCB associated

with the SYSUT1 DD statement.

 Note: This data set can become quite large, depending on the size of the

SYSUT1 input data set and the number of records that have been processed.

WHOLEREC (Output)

Contains images of the log records that contain trace entries matching the

specified search criteria. This data set is optional. It is required when the

WHOLEREC global keyword control statement has been provided in

CNTLCRDS. See “Control Statements for DFSKXTR0” on page 588 for more

information on CNTRLCRDS. The DCB parameters for this data set vary, and

must match those of the DCB associated with the SYSUT1 DD statement.

 Note: This data set can become quite large, depending on the size of the

SYSUT1 input data set and the number of records that have been processed.

JCL Example

The following example shows the JCL used to run DFSKXTR0.

//RUNXTR0 EXEC PGM=DFSKXTR0

//SYSUT1 DD DISP=SHR,

// DCB=BUFNO=10,

// DSN=IMSDUMP.TRC02.D1203

//REPORT DD DISP=(NEW,CATLG),

// DSN=IMSVS.DFSKXTR0.REPORT

// UNIT=SYSDA,

// SPACE=(CYL,(1,1),RLSE),

// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)

//SYSPRINT DD SYSOUT=*,

// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FB)

//SYSUT4 DD DISP=(NEW,CATLG),

// DSN=IMSVS.DFSKXTR0.SYSUT4,

// UNIT=SYSDA,

// SPACE=(CYL,(100,50),RLSE),

// DCB=(LRECL=32756,BLKSIZE=32760,RECFM=VB)

 //CNTLCRDS DD *

JCL Requirements

Chapter 33. Trace Record Extract Utility (DFSKXTR0) 587

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SEARCH W*=44912998

 SEARCH W*=46317700

 SEARCH H4=0003

 SEARCH W2=00000003

 TRACETYPE=RR

 TRACETYPE=OA

Control Statements for DFSKXTR0

Processing for DFSKXTR0 is directed by control statements that are read from the

CNTLCRDS file. Control statement records are 80-byte fixed length records. Most

control statements are optional. The result of omitting a statement is described with

each keyword. Comment statements are indicated with an asterisk (*) in column 1.

Blank records are ignored. Control statements keywords are coded within the

boundaries of columns 1 through 72, and are subject to the following syntax rules:

v Keywords can start in any column.

v Keywords can occur in any order.

v There can be no intervening blanks between keywords indicating a data value

and the value itself.

v Multiple keywords are either:

– Separated by one or more blanks.

– Specified on multiple control statement.

v Keywords for which multiple occurrences are allowed must have each occurrence

specified on a separate control statement.

v Individual keywords and their associated values cannot span or be continued on

multiple control statements.

v Keywords must be written in upper case letters.

Control Keywords for DFSKXTR0

Control statements that can be specified include:

v Keywords that indicate global actions

v Keywords that indicate processing options

v Keywords that indicate trace table log record search criteria

v Keywords that indicate trace table entry search criteria

Global Keywords

Global keywords are optional keywords that influence how the utility is processed. If

they are omitted, no optional actions are performed.

NOWRITE

Indicates that no actual records are to be written to the SYSUT4 or

WHOLEREC data sets; instead, the summary report that is generated indicates

the number of records that would have been processed.

WHOLEREC

Indicates that the original log records that contain at least one trace entry that

matches search criteria are to be written to the data set associated with the

WHOLEREC DD statement.

Processing Keywords

Processing keywords are optional keywords that indicate how much of the log is to

be processed. If they are omitted, the entire log is processed.

JCL Requirements

588 Utilities Reference: System

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

|

|
|

|

|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|
|

|
|
|
|

|
|
|
|

|

|
|

Restrictions:

v MATCHLIM=, PROCESS=, and STOPSTCK= are mutually exclusive.

v SKIP= and STARTSTCK= are mutually exclusive.

MATCHLIM=

Specifies the number of trace entry matches that should be made prior to utility

termination. It can be used to validate search criteria without processing an

entire log of data. The PROCESS= keyword is optional. If omitted, all records

are processed. The format of the PROCESS= keyword is a 1- to 8-digit number.

PROCESS=

Specifies the number of log records that should be processed prior to utility

termination. The PROCESS= keyword is optional. If omitted, all records are

processed. The format of the PROCESS= keyword is a 1- to 8-digit number.

SKIP=

Specifies the number of log records that should be skipped before any records

are processed and included in reports. The SKIP= keyword is optional. If

omitted, no records will be skipped prior to processing. The format of the SKIP=

keyword is a 1- to 8-digit number.

STARTSTCK=

Specifies the time when the first log data set will be processed. An exact match

of time is not required; processing begins with the first record equal to or

greater than the indicated time. The STARTSTCK= keyword is optional. If

omitted, processing starts at the beginning of the log. The format of the

STARTSTCK= keyword is of the format yyyydddhhmmss.

STOPSTCK=

Specifies the time of the last log data set to be processed. An exact match of

time is not required; processing stops with the first record equal to or greater

than the indicated time. The STOPSTCK= keyword is optional. If omitted,

processing continues until the end of the log. The format of the STOPSTCK=

keyword is of the format yyyydddhhmmss.

Trace Table Log Search Keywords

Trace table log search keywords identify trace table log records to be evaluated for

processing. These keywords might be required or optional.

SEARCH

Indicates that the trace table entry search criteria keywords that follow are to be

used in a boolean 'and' search of the trace table entries. At least one

occurrence of the SEARCH followed by associated trace table entry search

criteria keywords is required. Multiple occurrences of the SEARCH keyword are

allowed; however, each use of the keyword and its associated set of trace table

entry search criteria keywords must be coded on a separate line. In this case,

each separate occurrence of the SEARCH keyword is treated as a boolean 'or'.

 Restrictions: None.

TRACETYPE=

Used to select specific trace table names for processing. If multiple trace tables

are to be processed, each must be specified with a separate TRACETYPE=

keyword; however, an unlimited number of such specifications is supported. The

TRACETYPE= keyword is optional. If it is omitted, all of the trace tables in the

log record will be processed. The format of the TRACETYPE= keyword is a

2-character value.

 Restrictions: None.

Control Keywords

Chapter 33. Trace Record Extract Utility (DFSKXTR0) 589

|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

Trace Table Entry Search Keywords

Trace table entry search keywords help locate trace table entries within a trace

table log record. Trace table entry search keywords are used with the SEARCH

keyword. At least one of these keywords is required.

A trace table entry can be either 32- or 64-bytes long. A 32-byte trace table entry

can consist of 8 words or 16 half words. A 64-byte trace table entry can consist of

16 words or 32 half words. For example, a 32-byte trace table entry might look like

this sample:

 Word0 Word1 Word2 Word3 Word4 Word5 Word6 Word7

’00010000 04042FFF 90AB3400 00000000 121234FF FFFFFFFF 00000001 00001999’X

DFSKXTR0 uses the following conventions to address the words, half words, or

bytes within a trace table entry:

v W0 - WF, which represents words 0 through F

v H00 - H1F, which represents half words 00 through 1F

v B00 - B3F, which represents bytes 0 through 3F

Bxx=

Indicates that this byte in the trace table entry should be evaluated for the

indicated value. The Bxx= keyword is optional; however, at least one trace table

entry search criteria keyword is required to be associated with each SEARCH

keyword. The format of the Bxx= keyword is a 2-digit hexadecimal value.

 ’xx’ can be one of the following values:

v 00 - 1F, corresponding to bytes 0 through 3F

v ’*,’ indicating that the associated value can be found in any byte

Restrictions: None

Hxx=

Indicates that this half word in the trace table entry should be evaluated for the

indicated value. The Hxx= keyword is optional; however, at least one trace table

entry search criteria keyword is required to be associated with each SEARCH

keyword.

 The format of the Hxx= keyword is Hxx=<value> where <value> is a 4-digit

hexadecimal value.

 ’x’ can be one of the following values:

v 00 - 1F, corresponding to half words 00 through 1F

v ’*,’ indicating that the associated value can be found in any half word

Restrictions: None

Wx=

Indicates that this word in the trace table entry should be evaluated for the

indicated value. The Wx= keyword is optional; however, at least one trace table

entry search criteria keyword is required to be associated with each SEARCH

keyword. The format of the Wx= keyword is an 8-digit hexadecimal value.

 ’x’ can be one of the following values:

v 0 - F, corresponding to words 0 through F

v ’*,’ indicating that the associated value can be found in any word

Restrictions: None

Control Keywords

590 Utilities Reference: System

|

|
|
|

|
|
|
|

|
|

|
|

|

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|
|

|
|

|

|

|

|

|
|
|
|
|

|

|

|

|

Example of Search Criteria for Trace Table Entry Selection

The output in Figure 242 would be returned if one of these control statements was

specified:

v SEARCH W*=00000001

v SEARCH W6=00000001

 Three types of boolean searches can also be used to return this entry selection:

v An 'and' search. For example, specifying either SEARCH W6=00000001 H0=0001 or

SEARCH W6=00000001 H*=0001 would return the example entry shown in

Figure 242, while specifying SEARCH W6=00000001 H1=0001 would not.

v An 'or' search. For example, by indicating multiple search statements, the

combination of SEARCH H0=0001 and SEARCH H1=0001 would return the example

entry shown in Figure 242.

v A combination of an 'and' search and an 'or' search. For example, the

combination of SEARCH W6=00000001 H0=0001 and SEARCH W6=00000001 H1=0001

would return the example entry shown in Figure 242.

Once a trace table entry has been identified, it can be used to reduce output in

DFSERA60 reports. The log record containing the identified trace table entry is

extracted, reformatted by DFSKXTR0, then passed as input to DFSERA60 for

formatting. Figure 243 is an example of a DFSERA60 report that has not been

reformatted with DFSKXTR0. Figure 244 shows how the same DFSERA60 report

would look after DFSKXTR0 reformatting.

Return Codes for DFSKXTR0

Code Meaning

0 Utility was successfully completed.

4 Warning messages were issued.

8 Utility terminated before completion.

W0 W1 W2 W3 W4 W5 W6 W7 <Word

H00 H01 H02 H03 H04 H05 H06 H07 H08 H09 H0A H0B H0C H0D H0E H0F <Half

B00 B04 B08 B0C B10 B14 B18 B1C <Byte

00010000 04042FFF 90AB3400 00000000 121234FF FFFFFFFF 00000001 00001999 <Entry

Figure 242. Example Output from Trace Table Entry Selection

FUNCTION WORD 0 WORD 1 WORD 2 WORD 3 WORD 4 WORD 5 WORD 6 WORD 7

DL7 TRACE TABLE - DATE 2004040 TIME 171902077196 OFFSET 032D SKIP 0000 TOTAL SKIP

DEADLOCK * 00010000 03171060 0116A060 00000000 D7D3C1D7 D1D2F2F3 00000001 E3D2C440

.

. Data line repeated 121 additional times

.

DEADLOCK * C70123CC 03171060 0116A060 00044000 D7A3C1A7 D1D2F2F3 00000000 E3D2C440

Figure 243. Example of a DFSERA60 Report Before DFSKXTR0 Reformatting

FUNCTION WORD 0 WORD 1 WORD 2 WORD 3 WORD 4 WORD 5 WORD 6 WORD 7

DL7 TRACE TABLE - DATE 2004040 TIME 171902077196 OFFSET 032D SKIP 0000 TOTAL SKIP

DEADLOCK * 00010000 03171060 0116A060 00000000 D7D3C1D7 D1D2F2F3 00000001 E3D2C440

Figure 244. Example of a DFSERA60 Report After DFSKXTR0 Reformatting

Control Keywords

Chapter 33. Trace Record Extract Utility (DFSKXTR0) 591

|
|
|
|

|
|
|

|
|
|

|

|

|

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
||

|
|

||

||

||

||

Trace Entry Extract Summary Report Example

The summary report created by DFSKXTR0 is written to the file identified by the

REPORT DD statement in the JCL. This example shows a trace entry extract

summary report. In this example:

v Six records are read from the CNTLCRDS file. Itemized breakdowns are shown

for each of the 6 search criteria.

– A search was done for the value X'44912998' in any word.

– A search was done for the value X'46317700' in any word.

– A search was done for the value X'0003' in half word 4.

– A search was done for the value X'00000003' in word 2.

– The resource recovery services trace table (type RR) was processed.

– The OTMA trace table (type OA) was processed.

v The log selected was IMSDUMP.TRC02.D1203.

v The time period processed on the log was displayed.

v The first trace record on the log is also the first record processed on the log (no

records were skipped).

v The last record that matched some search criteria was not the last record

processed in the log.

v 90000 log records were read from the log.

– All 90 000 log records were X'67FA' (trace table log records).

– All 90 000 log records were processed.

– 24 413 of the 90 000 log records matched the search criteria. Only records

containing the matching trace table entries were written to the SYSUT4 file.

No log records were written to the WHOLEREC data set because the

WHOLEREC keyword was not included in the CNTLCRDS file. Had this

keyword been included, counts indicating the number of records written to this

file would have been displayed.

– The 90 000 log records contained 11 070 000 trace table entries.

Note: The trace table log record header (the first two 32–byte entries) are

included in the count.

– 114 787 trace table entries matched some search criteria.

v For each statement, the number of trace table entries that match this search

criteria is shown. If a trace record matched multiple sets of search criteria, the

statistics are shown for only the first matching search criteria statement.

v For each statement, the relative location of the log record is displayed showing

the place in the log where the first and last trace table entry matches were found.

In this case, the relative number of records in the log file range from 1 to 90 000.
* **

* IMS TOOL / DFSKXTR0 DATE: 2004/160 TIME: 10:36 PAGE: 1

* **

*

* CNTLCRDS: SEARCH W*=44912998

* CNTLCRDS: SEARCH W*=46317700

* CNTLCRDS: SEARCH H04=0003

* CNTLCRDS: SEARCH W2=00000003

* CNTLCRDS: TRACETYPE=RR

* CNTLCRDS: TRACETYPE=OA

*

*

* INPUT LOG DATA SET NAME(S)

* IMSDUMP.TRC02.D1203

*

Trace Entry Extract Summary Report

592 Utilities Reference: System

|
|

|
|
|

|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

|

|
|

|
|
|
|

|

|
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* **

* LOG INFORMATION SUMMARY

*

*

* TIME STAMP ON FIRST TRACE RECORD : 2003.331 09:06:24.592339

* TIME STAMP ON FIRST PROCESSED RECORD : 2003.331 09:06:24.592339

* TIME STAMP OF FIRST LOG WITH CRITERIA MATCH : 2003.331 09:06:25.132606

* TIME STAMP ON LAST PROCESSED TRACE RECORD : 2003.331 20:30:58.041356

*

* TOTAL # OF NON COMMENT CNTLCRDS RECORDS READ : 6

* TOTAL # OF TRACE TABLE TYPES SELECTED : 2

* TRACE TABLE TYPE RR SELECTED

* TRACE TABLE TYPE OA SELECTED

* TOTAL # OF SEARCH CRITERIA STATEMENTS READ : 4

*

* REQUESTED # OF LOG RECORDS TO BE SKIPPED : 0

* TOTAL # OF LOG RECORDS SKIPPED : 0

*

* TOTAL # OF LOG RECORDS READ : 90000

* TOTAL # OF 67FA LOG RECORDS READ : 90000

* TOTAL # OF 67FA LOG RECORDS EVALUATED : 90000

* TOTAL # LOG RECORDS MATCHING SEARCH CRITERIA : 24413

* TOTAL # REFORMATTED LOG RECORDS WRITTEN : 24413

*

* TOTAL # OF TRACE ENTRIES EVALUATED : 11070000

* TOTAL # OF TRACE ENTRIES MATCHING CRITERIA : 114787

*

* 1 SEARCH CRITERIA FOR STATEMENT 1

* W*=44912998

* MATCHES FOR THIS STATEMENT : 0

* RELATIVE TRACE RECORD OF FIRST MATCH : 0

* RELATIVE TRACE RECORD OF LAST MATCH : 0

*

* 1 SEARCH CRITERIA FOR STATEMENT 2

* W*=46317700

* MATCHES FOR THIS STATEMENT : 30582

* RELATIVE TRACE RECORD OF FIRST MATCH : 47699

* RELATIVE TRACE RECORD OF LAST MATCH : 89776

*

* 1 SEARCH CRITERIA FOR STATEMENT 3

* **

* IMS TOOL / DFSKXTR0 DATE: 2004/160 TIME: 10:36 PAGE: 2

* **

*

* HWORD 04 HAS SEARCH CRITERIA APPLIED

* H04=0003

* MATCHES FOR THIS STATEMENT : 84205

* RELATIVE TRACE RECORD OF FIRST MATCH : 3

* RELATIVE TRACE RECORD OF LAST MATCH : 89999

*

* 1 SEARCH CRITERIA FOR STATEMENT 4

* WORD 02 HAS SEARCH CRITERIA APPLIED

* W2=00000003

* MATCHES FOR THIS STATEMENT : 0

* RELATIVE TRACE RECORD OF FIRST MATCH : 0

* RELATIVE TRACE RECORD OF LAST MATCH : 0

*

* ***

Trace Entry Extract Summary Report

Chapter 33. Trace Record Extract Utility (DFSKXTR0) 593

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

594 Utilities Reference: System

Chapter 34. Log Record Processing Rate Analysis Utility

(DFSKRSR0)

The Log Record Processing Rate Analysis utility (DFSKRSR0) is used to generate

reports that summarize the volume of the log data that is being generated by an

IMS subsystem. The volume of log data is expressed in number of records per

second and the number of bytes per second. The detailed log record processing

rate data is broken down by log record type, and by subtype within record type, if

requested.

The Log Record Processing Rate Analysis utility can be used to:

v Determine the size of log data sets or archiving frequency

v Track data volume for Remote Site Recovery (RSR)

Selection criteria for the DFSKRSR0 trace table entries can include:

v Log record type

v Subtypes within log record types

v Time range data

v Log sequence number ranges

v Number of records to be processed or skipped

On an IMS subsystem, the log record generation rate can vary depending on

system activity. An option is available to sample the system logging rate at specified

time intervals, to track differences in system activity.

The Log Record Processing Rate Analysis utility can be invoked using the KBLA

panel-driven interface (Option 4.7 “Log Processing Rate Analysis”) or using JCL.

Figure 245 is an example of the Log Processing Rate Analysis panel in the KBLA

panel-driven interface.

 The following topics provide additional information:

v “Input and Output for DFSKRSR0” on page 596

v “JCL Requirements for DFSKRSR0” on page 596

 == K.B.L.A. Log Processing Rate Analysis ==

 COMMAND ===>

 Input IMS Log DSN IMSVS.TESTLOG Cataloged? Y

 IMS Log Version. 9

 Selection by log type:

 Log Types: 01 03

 Optional Fields

 Include breakdown by Subtype (Y/N) Analysis Interval 10 (Minutes)

 Start Date/Time (UTC) - (YYYYDDD - HHMMSS)

 Stop Date/Time (UTC) - (YYYYDDD - HHMMSS)

 Start LSN Stop LSN

 Number of Records to Skip Number of Records to Process

 Output DSN Keyword. ANALYSIS The Output DSN will be:

 Log DSNs Were Extracted From RECON. USERID.keyword.KBLA.R.*

 PDS Member Containing Logs/Traces .

Figure 245. KBLA Log Processing Rate Analysis Panel to Invoke DFSKRSR0

© Copyright IBM Corp. 1974, 2004 595

|

|

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|
|

|

|

|

v “Control Statements for DFSKRSR0” on page 598

v “Control Keywords for DFSKRSR0” on page 598

v “Return Codes for DFSKRSR0” on page 599

v “DETAIL File Layout” on page 600

v “Log Record Processing Rate Analysis Summary Report Examples” on page 600

Input and Output for DFSKRSR0

Types of input to DFSKRSR0 include:

v Control statements to direct processing

v Descriptive titles for log record types

v IMS log or trace data sets

Types of output from DFSKRSR0 include:

v Statistical and summary reports

v Details about the participants

v Informational messages

JCL Requirements for DFSKRSR0

The EXEC statement to run DFSKRSR0 must be in the following form:

//RUNTDL0 EXEC PGM=DFSKRSR0

DD Statements for DFSKRSR0

CNTLCRDS (Input)

Contains the control statements for DFSKRSR0. This data set is always

required.

 The DCB parameters for this data set are RECFM=FB,LRECL=80.

 Related Reading: See “Control Statements for DFSKRSR0” on page 598 for

more information on the CNTLCRDS control statements.

DETAIL (Output)

Contains the originally unformatted data that was formatted and written to the

REPORT file. The DETAIL file can be sorted to present the data in an order

different from that in the REPORT file. This data set is always required

 The DCB parameters for this data set are RECFM=FB,LRECL=100.

 Related Reading: See “DETAIL File Layout” on page 600 for more information

on the DETAIL record.

JOBLIB or STEPLIB (Input)

Describes the library that contains KBLA load modules.

LOGDESC (Input)

Contains entries for every log record type and subtype that could be found in

the log data set. It is used to generate descriptive titles for each record type in

the Log Record Processing Rate Analysis report. This data set is always

required.

 The DCB parameters for this data set are RECFM=FB,LRECL=80.

REPORT (Output)

Diagnostic messages and summary reports are written to this data set. This

data set is always required.

Log Record Processing Rate Analysis

596 Utilities Reference: System

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|
|
|

|

|
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|

|

|
|
|

The DCB parameters for this data set are RECFM=FBA,LRECL=133.

SYSPRINT (Output)

A data set into which messages that were generated during the log record

processing rate analysis are written. This data set is always required.

 The DCB parameters for this data set are RECFM=FBA,LRECL=133.

SYSUT1 (Input)

Defines the log record data to be processed. It may consist of a single log data

set or a concatenation of data sets. This data set is always required.

 The DCB parameters for this data set vary depending on the DCB that was

used to create the log and are taken from the data set label or DSCB.

JCL Example

The following example shows the JCL used to run DFSKRSR0.

//**

//*** STEP 3 ***

//**

//RUNLGD EXEC PGM=DFSKLGD0

//LOGDIN DD DISP=SHR,

// DSN=STLSERV.QPPTEST.IMS910.SDFSPLIB(DFSKDESC)

//LOGDOUT DD DISP=(NEW,PASS),

// DSN=&LOGDOUT,

// UNIT=SYSDA,SPACE=(TRK,(1,1)),

// DCB=(LRECL=80,RECFM=FB)

//CNTLCRDS DD *

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

 //**

//*** STEP 4 ***

//**

//RUNRSR0 EXEC PGM=DFSKRSR0

//SYSUT1 DD DISP=SHR,

// DCB=BUFNO=10,

// DSN=IMSDUMP.OLD02.D1203

//SYSPRINT DD SYSOUT=*,DCB=(LRECL=133,RECFM=FBA)

//REPORT DD DISP=(NEW,CATLG,CATLG),

// DSN=USERID.ANALYSIS.KBLA.R.X04173.Y102001,

// UNIT=SYSDA,SPACE=(TRK,(1,1)),

// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)

//LOGDESC DD DISP=SHR,DSN=*.RUNLGD.LOGDOUT

//DETAIL DD DISP=(NEW,CATLG,CATLG),

// DSN=USERID.ANALYSIS.KBLA.D.X04173.Y102001,

// UNIT=SYSDA,

// SPACE=(CYL,(100,50),RLSE),

// DCB=(RECFM=FB,LRECL=100,BLKSIZE=8000)

//REPORT DD DISP=(NEW,CATLG,CATLG),

// DSN=USERID.ANALYSIS.KBLA.R.X04173.Y102001,

// UNIT=SYSDA,SPACE=(TRK,(1,1)),

// DCB=(LRECL=133,BLKSIZE=6118,RECFM=FBA)

//LOGDESC DD DISP=SHR,DSN=*.RUNLGD.LOGDOUT

//DETAIL DD DISP=(NEW,CATLG,CATLG),

// DSN=USERID.ANALYSIS.KBLA.D.X04173.Y102001,

// UNIT=SYSDA,

// SPACE=(CYL,(100,50),RLSE),

// DCB=(RECFM=FB,LRECL=100,BLKSIZE=8000)

//CNTLCRDS DD *

 SUBTYPE

//SYSUDUMP DD SYSOUT=*

JCL Requirements

Chapter 34. Log Record Processing Rate Analysis Utility (DFSKRSR0) 597

|

|
|
|

|

|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Control Statements for DFSKRSR0

Processing for DFSKRSR0 is directed by control statements that are read from the

CNTLCRDS file. Control statements are 80-byte fixed length records. Most control

statements are optional. The result of omitting a statement is described with each

keyword. Comment statements are indicated with an asterisk (*) in column 1. Blank

records are ignored. Control statement keywords are coded within the boundaries of

columns 1 through 72 and are subject to the following syntax rules:

v Keywords can start in any column.

v Keywords can occur in any order.

v There can be no intervening blanks between keywords indicating a data value

and the value itself.

v Multiple keywords are either:

– Separated by one or more blanks

– Specified on multiple control statements

v Keywords for which multiple occurrences are allowed must have each occurrence

specified on a separate control statement.

v Individual keywords and their associated values cannot span or be continued on

multiple control statements.

v Keywords must be in upper case.

Control Keywords for DFSKRSR0

Control statements that can be specified are keywords that indicate:

v Global actions

v Processing options

v Selection criteria

Global Keywords

Global keywords are optional keywords that influence the utility’s actions. If they are

omitted, no optional action will be performed.

SUBTYPE

Indicates that, in addition to reporting by log record type, the log processing rate

data is to be accumulated and reported by subtype within a log record type.

Processing Keywords

Processing keywords are optional keywords that indicate how much of the log is to

be processed. If they are omitted, the entire log is processed.

Restrictions:

v STOPLSN=, STOPSTCK=, and PROCESS= are mutually exclusive.

v STARTLSN=, STARTSTCK=, and SKIP= are all mutually exclusive.

INTERVAL=

Specifies a time interval at which the log processing rate should be calculated

and reported. It is specified in number of minutes elapsed since either the

previous interval or beginning of processing. The INVERVAL= keyword is

optional. If omitted, the report data will not be evaluated by time intervals. The

format of the INTERVAL= keyword is a 1- to 3-digit number.

 Restrictions: None.

Control Statements

598 Utilities Reference: System

|
|

|
|
|
|
|
|

|

|

|
|

|

|

|

|
|

|
|

|

|
|

|

|

|

|

|

|
|

|
|
|

|

|
|

|

|

|

|
|
|
|
|
|

|

PROCESS=

Specifies the number of log records that should be processed prior to utility

termination. The PROCESS= keyword is optional. If omitted, all records are

processed. The format of the PROCESS= keyword is a 1- to 8-digit number.

SKIP=

Specifies the number of log records that should be skipped before any records

are to be processed and included in reports. The SKIP= keyword is optional. If

omitted, no records are skipped prior to processing. The format of the SKIP=

keyword is a 1- to 8-digit number.

STARTLSN=

Specifies the log sequence number of the first log data set to be processed. An

exact match of time is not required. Processing will stop with the first record

equal to or greater than the indicated log sequence number. If omitted,

processing will start at the beginning of the log. The format of the STARTLSN=

keyword is an 8-character hexadecimal value.

STARTSTCK=

Specifies the time of the first log data set to be processed. An exact match of

time is not required. Processing begins with the first record equal to or greater

than the indicated time. The STARTSTCK= keyword is optional. If omitted,

processing starts at the beginning of the log. The format of the STARTSTCK=

keyword is of the format yyyydddhhmmss.

STOPLSN=

Specifies the log sequence number of the last log data set to be processed. If

omitted, processing will continue until end of log. The format of the STOPLSN=

keyword is an 8-character hexadecimal value.

STOPSTCK=

Specifies the time of the last log data set to be processed. An exact match of

time is not required. Processing stops with the first record equal to or greater

than the indicated time. The STOPSTCK= keyword is optional. If omitted,

processing continues until the end of the log. The format of the STOPSTCK=

keyword is yyyydddhhmmss.

Selection Criteria Keywords

Selection criteria keywords are optional keywords that indicate which records are to

be selected. If they are omitted, all records are processed.

LOGTYPE=

Indicates the log record types that are to be included in the reports. The

LOGTYPE= keyword is optional. If omitted, all log record types are reported.

Multiple occurrences of the LOGTYPE= keyword are allowed. The format of the

LOGTYPE= keyword is a 2-character log type ID.

 Restrictions: None.

Return Codes for DFSKRSR0

Code Meaning

0 Utility successfully completed.

4 Warning messages were issued.

8 Utility terminated before completion.

Control Keywords

Chapter 34. Log Record Processing Rate Analysis Utility (DFSKRSR0) 599

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|

|

|
|

||

||

||

||

DETAIL File Layout

Table 56 describes the record layout of the DETAIL file.

 Table 56. Layout of the DETAIL File

Data Position Length Format

Log record type 1 3 Hexadecimal

Log record subtype 3 5 Hexadecimal

Range starting time stamp

(0yyyyddd0hhmmsst)

3 16 Numeric

Range ending time stamp

(0yyyyddd0hhmmsst)

23 16 Numeric

Record count 40 4 Binary

Record length 44 4 Binary

Records per second 48 4 Binary

Bytes per second 52 4 Binary

Record count 56 8 Numeric

Record length 64 5 Numeric

Records per second 69 8 Numeric

Bytes per second 77 8 Numeric

Filler 85 16 Blanks

Log Record Processing Rate Analysis Summary Report Examples

The summary report created by DFSKRSR0 is written to the file identified by the

REPORT DD statement in the JCL. “Example 1” and “Example 2” on page 602

show examples of the Log Record Processing Rate Analysis Summary report.

Example 1

In this example:

v One control statement specified that SUBTYPE data should be included in the

report.

v The log selected was IMSVS.TESTLOG.

v The time period for this interval was displayed. The time period represented 2379

records.

v Log record processing rate data for all of the log record types and subtypes was

displayed. Records per second and Bytes per second are rounded to the nearest

whole number.

v The first log record read on the log was also the first record processed on the log

(no records were skipped).

v The log sequence number range represented on the log was displayed. Although

the log sequence number is actually an 8-byte field, only the last 4 bytes are

presented with KBLA.

v One record was read from the CNTLCRDS file.

v No records were skipped.

v A total of 7 342 792 log records were read.

v All 7 342 792 log records were evaluated.

v The entire log was processed as a single interval.

DETAIL File Layout

600 Utilities Reference: System

|
|

|

||

||||

||||

||||

|
|
|||

|
|
|||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

|
|

|
|
|

|

|

|
|

|

|
|

|
|
|

|
|

|
|
|

|

|

|

|

|

* **

* Log Rate Analysis / DFSKRSR0 DATE: 2004/173 TIME: 10:25 PAGE: 1

* **

*

* CNTLCRDS: SUBTYPE

*

* **

* **

* Log Rate Analysis / DFSKRSR0 DATE: 2004/173 TIME: 10:25 PAGE: 2

* **

*

*

* INPUT LOG DATA SET NAME(S)

* IMSVS.TESTLOG

*

* **

* **

* Log Rate Analysis / DFSKRSR0 DATE: 2004/173 TIME: 10:25 PAGE: 3

* **

*

* RATE STATS (00:07:47.9 - 00:47:27.5) ELAPSED: 000 00:39:39.6 2379 SECS

*

* LOG TOTAL RECORDS AVG. BYTES LOG RECORD

* TYPE RECORDS /SEC LEN. /SEC DESCRIPTION

* ----- -------- -------- ----- -------- ------------------------------

*

* 07 148634 62 348 21742 APPLICATION PGM TERMINATED

* 08 148638 62 112 6997 APPLICATION PGM SCHEDULED

* 09 88 0 336 12 SEQUENTIAL BUFFERING RECORD

* 18 3710 1 359 560 USER PGM ISSUED CHPT CALL

* 27 5465 2 72 166 DATA BASE WAS EXTENDED

* 2701 2733 1 84 96 DATA BASE WAS EXTENDED-PHASE 1

* 2702 2732 1 61 70 DATA BASE WAS EXTENDED-PHASE 2

* 37 150411 63 104 6613 SYNCPOINT PROCESSOR LOG RECORD

* 3730 150411 63 104 6613 SYNCPOINT PROCESSOR LOG RECORD

* 38 54 0 112 2 MSG PUT BACK ON Q. APPL ABEND

* 40 2002 0 1000 841 TOTAL NUMBER OF CHECKPOINT REC

* 4001 11 0 440 2 CHECKPOINT PROCESS START

* 4006 484 0 1000 203 DMB(S) FOLLOW

* 4007 1452 0 1020 623 PSB(S) FOLLOW

* 4030 33 0 774 10 RRE(S) FOLLOW

* 4031 11 0 392 1 SIDX FOLLOW

* 4098 11 0 104 0 CHKPT INFORMATION ENDS HERE

* 41 1834 0 106 81 BATCH OR BMP ISSUED A CHKP

* 42 12 0 600 3 OLDS SWITCH/CHKPT WAS TAKEN

* 43 417365 175 24 4212 STATUS OF CURRENT OLDS D/S

* 45 297 0 529 66 BEGIN-STATISTICS RECORD

* 4500 11 0 52 0 BEGIN-STATISTICS RECORD

* 4504 55 0 144 3 DL/I BUFFER POOL STATISTICS

* 4505 11 0 120 0 VARIABLE STORAGE POOL STATS

* 4506 11 0 144 0 APPLICATION SCHEDULING STATS

* 4507 11 0 76 0 LOGGING STATISTICS

* 4508 66 0 136 3 VSAM BUFFER POOL STATISTICS

* 4509 11 0 48 0 PROGRAM ISOLATION STATISTICS

* 450A 11 0 2148 9 LATCH MANAGEMENT STATISTICS

* 450B 11 0 52 0 SELECTIVE DISPATCHER STATS

* 450C 11 0 3556 16 STORAGE POOL STATISTICS

* 450E 33 0 856 11 FIXED STORAGE POOL STATISTICS

* 450F 11 0 3248 15 DISPATCHER STATISTICS

* 4510 11 0 48 0 RCF MULTI-TCB STATISTICS

* 4521 11 0 172 0 IRLM SUBSYSTEM STATISTICS

* 4522 11 0 484 2 IRLM SYSTEM STATISTICS

* 45FF 11 0 56 0 END OF STATISTICS RECORD

* 47 183 0 1026 78 CHKPT JUST TAKEN.PST(S) LISTED

* 48 49500 20 58 1206 OLDS PADDING RECORD

* 4C 4 0 70 0 A BACKOUT FOR TOKEN WAS DONE

* 50 5887602 2474 185 458622 DB UPDATE RECORD

Rate Analysis Summary Report

Chapter 34. Log Record Processing Rate Analysis Utility (DFSKRSR0) 601

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* 5050 5727294 2407 184 443813 RECOVERY/BACKOUT DATA

* 5052 160308 67 219 14809 PREVIOUS KSDS UPDATE FAILED

* 56 526637 221 98 21882 EXT SUBSYSTEM SUPPORT RECOVERY

* 5600 1232 0 100 51 EXT SUBSYSTEM SUPPORT RECOVERY

* 5607 150472 63 92 5819 START OF A UNIT-OF-RECOVERY

* 5610 148529 62 104 6493 PHASE 1 SYNCPOINT START

* 5611 75885 31 92 2934 PHASE 1 SYNCPOINT END

* 5612 150467 63 104 6577 PHASE 2 SYNCPOINT END

* 5616 52 0 256 5 START OF PROTECTED UOW

* **

* Log Rate Analysis / DFSKRSR0 DATE: 2004/173 TIME: 10:25 PAGE: 4

* **

*

* RATE STATS (00:07:47.9 - 00:47:27.5) ELAPSED: 000 00:39:39.6 2379 SECS

*

* LOG TOTAL RECORDS AVG. BYTES LOG RECORD

* TYPE RECORDS /SEC LEN. /SEC DESCRIPTION

* ----- -------- -------- ----- -------- ------------------------------

* 67 356 0 783 117 SYSTEM DIAGNOSTIC LOG RECORD

* 6705 9 0 731 2 TERMINATE THREAD RECORD

* 67FF 347 0 784 114 EXCEPTION CONDITION SNAP

*

* **

* LOG RECORD PROCESSING RATE INFORMATION SUMMARY *

*

*

* FIRST LSN: 598F405B LAST LSN: 59FF4B22

* FIRST SELECTED LSN: 598F405B

*

* FIRST LOG RECORD STCK (UTC): 2004160 0007479

* FIRST SELECTED LOG STCK (UTC): 2004160 0007479

* LAST LOG RECORD STCK (UTC): 2004160 0047275

*

* ELAPSED TIME ON SELECTED LOG(S): 000 00:39:39.6

*

*

* TOTAL # OF NON COMMENT CNTLCRDS RECORDS READ : 1

*

* REQUESTED # OF LOG RECORDS TO BE SKIPPED : 0

* TOTAL # OF LOG RECORDS SKIPPED : 0

*

* TOTAL # OF LOG RECORDS READ : 7342792

* TOTAL # OF LOG RECORDS EVALUATED : 7342792

*

* TOTAL # OF REPORTING INTERVALS : 1

*

* **

Example 2

In this example:

v Six control statements were specified:

– SUBTYPE data included in the report.

– Log rate analysis is performed at 10-minute analysis intervals.

– Analysis was requested for X'07', X'08', X'01' and X'03' log records.

v The log selected was IMSVS.TESTLOG.

v Four intervals were displayed:

– The first three intervals were each 10 minutes (600 seconds) in length.

– The last interval was for the remaining 579 seconds.

v Log record processing rate data for all of the requested log record types and

subtypes was displayed.

v No records were found for the X'01' and X'03' records.

Rate Analysis Summary Report

602 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

v X'07' and X'08' records are not divided into subtypes.

v The first log record read on the log was also the first record processed on the log

(no records were skipped).

v The log sequence number range represented on the log was displayed.

v Six records was read from the CNTLCRDS file.

v No records were skipped.
* **

* Log Rate Analysis / DFSKRSR0 DATE: 2004/173 TIME: 10:40 PAGE: 1

* **

*

* CNTLCRDS: SUBTYPE

* CNTLCRDS: INTERVAL=10

* CNTLCRDS: LOGTYPE=07

* CNTLCRDS: LOGTYPE=08

* CNTLCRDS: LOGTYPE=01

* CNTLCRDS: LOGTYPE=03

*

* **

* **

* Log Rate Analysis / DFSKRSR0 DATE: 2004/173 TIME: 10:40 PAGE: 2

* **

*

*

* INPUT LOG DATA SET NAME(S)

* IMSVS.TESTLOG

*

* **

* **

* Log Rate Analysis / DFSKRSR0 DATE: 2004/173 TIME: 10:40 PAGE: 3

* **

*

* RATE STATS (00:07:47.9 - 00:17:47.9) ELAPSED: 000 00:10:00.0 600 SECS

*

* LOG TOTAL RECORDS AVG. BYTES LOG RECORD

* TYPE RECORDS /SEC LEN. /SEC DESCRIPTION

* ----- -------- -------- ----- -------- ------------------------------

*

* 07 48438 80 348 28094 APPLICATION PGM TERMINATED

* 08 48440 80 112 9042 APPLICATION PGM SCHEDULED

*

* **

* **

* Log Rate Analysis / DFSKRSR0 DATE: 2004/173 TIME: 10:40 PAGE: 4

* **

*

* RATE STATS (00:17:47.9 - 00:27:47.9) ELAPSED: 000 00:10:00.0 600 SECS

*

* LOG TOTAL RECORDS AVG. BYTES LOG RECORD

* TYPE RECORDS /SEC LEN. /SEC DESCRIPTION

* ----- -------- -------- ----- -------- ------------------------------

*

* 07 47609 79 348 27613 APPLICATION PGM TERMINATED

* 08 47631 79 112 8891 APPLICATION PGM SCHEDULED

*

* **

* **

* Log Rate Analysis / DFSKRSR0 DATE: 2004/173 TIME: 10:40 PAGE: 5

* **

*

* RATE STATS (00:27:47.9 - 00:37:47.9) ELAPSED: 000 00:10:00.0 600 SECS

*

* LOG TOTAL RECORDS AVG. BYTES LOG RECORD

* TYPE RECORDS /SEC LEN. /SEC DESCRIPTION

* ----- -------- -------- ----- -------- ------------------------------

Rate Analysis Summary Report

Chapter 34. Log Record Processing Rate Analysis Utility (DFSKRSR0) 603

|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

*

* 07 28168 46 348 16337 APPLICATION PGM TERMINATED

* 08 28134 46 112 5251 APPLICATION PGM SCHEDULED

*

* **

* **

* Log Rate Analysis / DFSKRSR0 DATE: 2004/173 TIME: 10:40 PAGE: 6

* **

*

* RATE STATS (00:37:47.9 - 00:47:27.5) ELAPSED: 000 00:09:39.6 579 SECS

*

* LOG TOTAL RECORDS AVG. BYTES LOG RECORD

* TYPE RECORDS /SEC LEN. /SEC DESCRIPTION

* ----- -------- -------- ----- -------- ------------------------------

*

* 07 24419 42 348 14676 APPLICATION PGM TERMINATED

* 08 24433 42 112 4726 APPLICATION PGM SCHEDULED

*

* **

* LOG RECORD PROCESSING RATE INFORMATION SUMMARY

*

*

* FIRST LSN: 598F405B LAST LSN: 59FF4B22

* FIRST SELECTED LSN: 598F405B

*

* FIRST LOG RECORD STCK (UTC): 2004160 0007479

* FIRST SELECTED LOG STCK (UTC): 2004160 0007479

* LAST LOG RECORD STCK (UTC): 2004160 0047275

*

* ELAPSED TIME ON SELECTED LOG(S): 000 00:39:39.6

*

*

* TOTAL # OF NON COMMENT CNTLCRDS RECORDS READ : 6

*

* REQUESTED # OF LOG RECORDS TO BE SKIPPED : 0

* TOTAL # OF LOG RECORDS SKIPPED : 0

*

* TOTAL # OF LOG RECORDS READ : 7342792

* TOTAL # OF LOG RECORDS EVALUATED : 7342792

*

* TOTAL # OF LOG RECORD TYPES SELECTED : 4

*

* TOTAL # OF REPORTING INTERVALS : 4

*

* **

Rate Analysis Summary Report

604 Utilities Reference: System

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Part 7. Appendixes

© Copyright IBM Corp. 1974, 2004 605

606 Utilities Reference: System

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1974, 2004 607

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

608 Utilities Reference: System

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface Information

This information is intended to help database administrators and system

programmers run the IMS DB and TM utilities. This information primarily documents

General-use Programming Interface and Associated Guidance Information provided

by IMS.

General-use Programming Interfaces allow the customer to write programs that

obtain the services of IMS.

This information also documents Diagnosis, Modification, or Tuning Information,

which is provided to allow you to diagnose, modify, or tune IMS.

Do not use this Diagnosis, Modification, or Tuning Information as a programming

interface.

Diagnosis, Modification, or Tuning Information

Diagnosis, Modification, or Tuning Information is identified where it occurs, either by

an introductory statement to a topic or by the following marking: Diagnosis,

Modification, or Tuning Information.

End of Diagnosis, Modification, or Tuning Information

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 BookManager

 CICS

 DataPropagator

 DB2

 IMS

 Language Environment

 MVS

 MVS/ESA

 NetView

 OS/390

 RACF

 Rational Rose

 Tivoli

 VTAM

 Websphere

 z/OS

Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc., in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 609

610 Utilities Reference: System

Bibliography

This bibliography lists all of the information in the

IMS Version 9 library.

 HLASM MVS & VM Programmer’s Guide,

SC26-4941

 z/OS DFSMS Access Method Services for

Catalogs, SC26-7394

 z/OS DFSMSdfp Utilities, SC26-7414

 z/OS MVS Interactive Problem Control System

(IPCS) User’s Guide, SA22-7596

 z/OS MVS Program Management: User’s

Guide and Reference, SA22-7643

 z/OS: UNIX System Services Command

Reference, SA22-7802

 z/OS: UNIX System Services User’s Guide,

SA22-7801

IMS Version 9 Library

 Title Acronym Order

number

IMS Version 9: Administration

Guide: Database Manager

ADB SC18-7806

IMS Version 9: Administration

Guide: System

AS SC18-7807

IMS Version 9: Administration

Guide: Transaction Manager

ATM SC18-7808

IMS Version 9: Application

Programming: Database

Manager

APDB SC18-7809

IMS Version 9: Application

Programming: Design Guide

APDG SC18-7810

IMS Version 9: Application

Programming: EXEC DLI

Commands for CICS and

IMS

APCICS SC18-7811

IMS Version 9: Application

Programming: Transaction

Manager

APTM SC18-7812

IMS Version 9: Base Primitive

Environment Guide and

Reference

BPE SC18-7813

IMS Version 9: Command

Reference

CR SC18-7814

IMS Version 9: Common

Queue Server Guide and

Reference

CQS SC18-7815

IMS Version 9: Common

Service Layer Guide and

Reference

CSL SC18-7816

IMS Version 9: Customization

Guide

CG SC18-7817

Title Acronym Order

number

IMS Version 9: Database

Recovery Control (DBRC)

Guide and Reference

DBRC SC18-7818

IMS Version 9: Diagnosis

Guide and Reference

DGR LY37-3203

IMS Version 9: Failure

Analysis Structure Tables

(FAST) for Dump Analysis

FAST LY37-3204

IMS Version 9: IMS Connect

Guide and Reference

CT SC18-9287

IMS Version 9: IMS Java

Guide and Reference

JGR SC18-7821

IMS Version 9: Installation

Volume 1: Installation

Verification

IIV GC18-7822

IMS Version 9: Installation

Volume 2: System Definition

and Tailoring

ISDT GC18-7823

IMS Version 9: Master Index

and Glossary

MIG SC18-7826

IMS Version 9: Messages

and Codes, Volume 1

MC1 GC18-7827

IMS Version 9: Messages

and Codes, Volume 2

MC2 GC18-7828

IMS Version 9: Open

Transaction Manager Access

Guide and Reference

OTMA SC18-7829

IMS Version 9: Operations

Guide

OG SC18-7830

IMS Version 9: Release

Planning Guide

RPG GC17-7831

IMS Version 9: Summary of

Operator Commands

SOC SC18-7832

IMS Version 9: Utilities

Reference: Database and

Transaction Manager

URDBTM SC18-7833

IMS Version 9: Utilities

Reference: System

URS SC18-7834

Supplementary Publications

 Title Order number

IMS Connector for Java 2.2.2 and

9.1.0.1 Online Documentation for

WebSphere Studio Application

Developer Integration Edition 5.1.1

SC09-7869

IMS Version 9 Fact Sheet GC18-7697

IMS Version 9: Licensed Program

Specifications

GC18-7825

© Copyright IBM Corp. 1974, 2004 611

Publication Collections

 Title Format Order

number

IMS Version 9 Softcopy Library CD LK3T-7213

IMS Favorites CD LK3T-7144

Licensed Bill of Forms (LBOF):

IMS Version 9 Hardcopy and

Softcopy Library

Hardcopy

and CD

LBOF-7789

Unlicensed Bill of Forms

(SBOF): IMS Version 9

Unlicensed Hardcopy Library

Hardcopy SBOF-7790

OS/390 Collection CD SK2T-6700

z/OS Software Products

Collection

CD SK3T-4270

z/OS and Software Products

DVD Collection

DVD SK3T-4271

Accessibility Titles Cited in This

Library

 Title Order number

z/OS V1R1.0 TSO Primer SA22-7787

z/OS V1R5.0 TSO/E User’s Guide SA22-7794

z/OS V1R5.0 ISPF User’s Guide,

Volume 1

SC34-4822

612 Utilities Reference: System

Index

Special characters
//DFSSTAT report

OSAM-Buffer-Pool Report 477

PST-Accounting Report 475

Sequential-Buffering-Detail Report 481

Sequential-Buffering-Summary Report 479

Specifying 475

Types of Reports 475

VSAM-Buffer-Pool report 476

A
ACB (application control block)

See Application Control Block (ACB)

ACB Maintenance utility (DFSRRC00)
ACBGEN procedure 159

control statements
BUILD 162

BUILD DBD 163

DELETE 162

format 162

requirements 161

description 158

DFSACBCP control statement 161

examples 165

IMS.ACBLIB 158

input 158

JCL 160

output 158

return codes 165

ACBGEN procedure 159

DD statements 160

EXEC statement 160

ACBLIB data set
ACB Maintenance utility 158

ACBLIB library 231

ACCESS= parameter
DBD statement 22

active region messages
active region report fields 274

Log Recovery utility (DFSULTR0) 274

allocation macro
See Dynamic Allocation Macro (DFSMDA)

alternate PCB statement, PSB generation 117

ALTRESP= parameter
PCB TYPE=TP control statement 118

AOI (Automated Operator Interface)
IOASIZE requirement 136

Application Control Block (ACB)
ACBLIB library 158

maintaining
control statements 161

input and output 158

overview 157

restrictions 158

Application Control Blocks Maintenance utility
See ACB Maintenance utility

Application-Accounting report
example 500

use for accounting 499

archive utility
See Log Archive utility (DFSUARC0)

AREA statement
format 44

keywords 45

parameter description 45

Automated Operator Interface (AOI)
See AOI (Automated Operator Interface)

B
B= parameter

DFSERA10 OPTION statement 301

BLKSIZE= parameter
DFSMDA TYPE=DFSDCMON statement 208

BLOCK= parameter
DATASET statement 36

BUFNO= parameter
DFSMDA TYPE=DFSDCMON statement 208

BYTES= parameter
statements

FIELD 80

SEGM 57

C
C= parameter

File Select and Formatting Print utility 301

Call Summary report
IMS Monitor (DB/DC) 395

IMS Monitor (DBCTL) 430

IMS Monitor (DCCTL) 452

checkpoint
monitoring processing effect

DB/DC 393

DBCTL 429

DCCTL 450

CMPAT= parameter
PSBGEN statement 136

Communication Summary report
IMS Monitor (DB/DC) 405

IMS Monitor (DCCTL) 460

Communication Wait report
IMS Monitor (DB/DC) 406

IMS Monitor (DCCTL) 461

COMP= parameter
ACBGEN procedure 160

COMPRTN= parameter
DEDB 69

DL/I 68

SEGM statement 68

COND= parameter
File Select and Formatting Print utility

(DFSERA10) 301

© Copyright IBM Corp. 1974, 2004 613

CONST= keyword
XDFLD statement 84

CONTROL statement
File Select and Formatting Print utility

(DFSERA10) 298

control statement listing
assembler listing 86

diagnostics 86

control statements
typical sequence 179

COPY option
File Select and Formatting Print utility

(DFSERA10) 300

COPY statement
Log Archive utility 257

copying log records into user data sets 251

D
D= keyword

control statements
DFSERA10 CONTROL 298

DFSERA10 OPTION 303

Data Capture exit routine
See EXIT= parameter

data entry database (DEDB)
See Fast Path, DEDB

data set, dynamic allocation
See Dynamic Allocation Macro

database
monitoring buffers 403, 433

monitoring DL/I calls 389, 447

Database Buffer Pool report
IMS Monitor (DBCTL) 433

database copy
See Online Database Image Copy utility (DFSUICP0)

Database Description (DBDs)
See also DBD (Database Description) generation

generating
DEDB databases 8

GSAM databases 5

HSAM databases 4

database description rules, DBD generation 13

Database Descriptions (DBDs)
generating

HDAM and PHDAM databases 6

HIDAM and PHIDAM databases 7

HISAM databases 5, 6

Index and PSINDEX databases 8

logical segment types 9

MSDBs 7

database image copy, online
See Online Database Image Copy utility

Database-Buffer-Pool report
IMS Monitor (DB/DC) 403

database, dynamic allocation
See Dynamic Allocation Macro

DATASET statement
database

GSAM 33

HDAM 34

DATASET statement (continued)
database (continued)

HIDAM 34

HISAM 33

HSAM 33

INDEX 34

LOGICAL 35

MSDB 34

description 30

format 32

keywords 35

parameter description 35

DATXEXIT parameter
DBD statement 30

DBCTL Transaction Analysis utility (DFSKDBC0)
example 528

input and output 526

JCL requirements 527

overview 525

restrictions 526

sorting reports 527

DBD (Database Description) generation
AREA statement

description 45

format 44

keywords 45

assembler listings 86

block size, specifying minimum for databases 36

coding conventions 11

control interval size, specifying minimum for

databases 36

DATASET statement
description 30

dividing database into multiple data set

groups 31

format 32

LABEL field 32

DBD statement 14

DD statements 43, 44

description rules 13

diagnostics 86

END statement 86

error conditions 90

examples
Fast Path DEDB 100

Fast Path MSDB 99

GSAM 97

HDAM 93

HIDAM 94

HISAM 92

HSAM 91

index generation 90, 96

logical relationships 102

secondary indexes 106

secondary indexing or logical relationships 90

shared secondary indexes 108

Fast Path DEDB 8

Fast Path MSDB 7

FIELD statement
description 76

format 78

614 Utilities Reference: System

DBD (Database Description) generation (continued)
FIELD statement (continued)

keywords 78

GSAM database 5

HDAM database 6

HIDAM database 7

HISAM database 5

HSAM database 4

index generation
logical 9

primary HIDAM 8

secondary index 9

input record structure 10

LABEL field 32

LCHILD statement
defining logical relationships 70

defining primary index relationship 70

defining secondary index relationships 70

description 69

format 72

output
assembler listing 86

diagnostics 86

example 87

load module 90

segment flag codes 89

types 86

overview of DBDGEN
consists of 4

control statements 3

databases used with 4

procedure 12

SEGM statement
description 46

keyword abbreviations 56

keywords 56

pointer keyword options and abbreviations 58

statement
DBD generation 86

FINISH statement 86

summary of statement types 9

XDFLD statement
description 82

format 83

keywords 83

DBD generation input record structure (non-DEDB)
exception 9

requirement 10

DBD= keyword
ACB Maintenance utility 162

DBDGEN
procedure

JCL parameters 12

DBDGEN utility 3

DBDNAME= keyword
DL/I PCB 121

GSAM PCB 130

DBFULTA0 (Fast Path Log Analysis utility)
error processing 345

input and output 327

JCL requirements 339

DBFULTA0 (Fast Path Log Analysis utility) (continued)
overview 325

reports
Detail-Listing-of-Exception-Transactions 328

Overall Summary of Resource Usage and

Contentions 334

Overall Summary of Transit Times 334

Recapitulation-of-the-Analysis 338

Summary-of-Exception-Detail-by-Transaction-
Code 333

Summary-of-Region-Occupancy 336

Summary-of-VSO-Activity 337

restrictions 326

utility control statements 340

DBNAME= parameter
control statements

DFSMDA TYPE=DATABASE 206

DFSMDA TYPE=FPDEDB 207

DC Monitor data set, dynamic allocation
See Dynamic Allocation Macro (DFSMDA)

DD1= parameter
AREA statement 45

DDATA= parameter
XDFLD statement 85

DDNAME= keyword
control statements

DFSERA10 CONTROL 298

DFSERA10 OPTION 303

DFSMDA TYPE=DATASET 207

DFSMDA TYPE=DFSDCMON 207

DDNAME= parameter
control statements

DFSMDA TYPE=DFSDCMON 208

DDNOUT= keyword
DFSERA10 CONTROL control statement 298

Deadlock Event Summary report
IMS Monitor (DB/DC) 406

IMS Monitor (DBCTL) 435

Deadlock reporting
See also Program Isolation Trace Record Format

and Print Module (DFSERA40)

for U777 and U123 abends 309

resultant state of the lock 313

Deadlock Trace Record Analysis utility (DFSKTDL0)
control keywords

global 579

processing 579

control statements 578

deadlock trace analysis detail report 584

deadlock trace analysis summary report 580

deadlock trace analysis victim report 583

input and output 576

JCL example 578

JCL requirements 576

overview 575

return codes 580

DEDB (data entry database)
See also Fast Path, DEDB

defining
areas 44

DBD generation 8

Index 615

DEDB (data entry database) (continued)
defining (continued)

fields 78

segments 54

naming 21

restrictions with segment edit/compression exit

routines 69

DEDB segment edit/compression
See COMPRTN= parameter

Detail-Listing-of-Exception-Transactions Report
Fast Path Log Analysis utility 328

detecting bottlenecks in message processing 496

determining cross-system queuing 469

determining cross–system queuing 414

DFSACBCP control statement 161

DFSERA10 (File Select and Formatting Print utility)
control statements

COMMENT 303

CONTROL 298

description 297

END 303

OPTION 299

COPY option 300

examples 303

input 295

JCL requirements
DD statements 296

description 296

NEGOF option 300

optional keywords 300

B= 301

C= 301

COND= 301

D= 303

DDNAME= 303

E= 302

EXITR= 302

FLDLEN= 301

FLDTYP= 300

H= 301

L= 301

O= 300

OFFSET= 300

P= 303

PARM= 300

PRTSYS= 303

STARTAF= 301

STOPAFT= 301

SYM= 300

T= 300

V= 301

VALUE= 301

output 295

overview 295

PRINT option 300

DFSERA30 (Record Format and Print Module)
additional information gathered 314

control statements 315

deadlock report 309

lock states 312

overview 309

DFSERA30 (Record Format and Print Module)

(continued)
reading the report 310

reporting anomaly 314

selecting only the deadlock block 315

special situations 314

subsystem detected deadlocks 315

DFSERA40 (Program Isolation Trace Record Format

and Print module)
control statements 317

output sample 317

overview 316

DFSERA50 (DL/I Call Image Capture module)
control statements 320

overview 320

DFSERA60 (IMS Trace Table Record Format and Print

module)
control statements 320

overview 320

DFSERA70 (Enhanced Select exit routine)
examples 323

overview 321

DFSIST20 (Edit Pass 2)
Statistical Analysis utility 363

DFSIST30 (Report Writer)
Statistical Analysis utility 363

DFSIST40 (Message Select and Copy or List)
Statistical Analysis utility 365

DFSISTS0 (Sort and Edit Pass1)
Statistical Analysis utility 362

DFSKARC0 (RECON Query of Log Data Set Names

utility)
control statements 554

input and output 552

JCL example 554

JCL requirements 552

output examples 556

overview 551

RECON Query Summary report 557

return codes 557

DFSKBLA3 (KBLA Basic Record Formatting and Print

module)
control statements 512

output 512

overview 511

DFSKBLA7 (KBLA Basic Record Formatting

module) 513

DFSKBLA8 (KBLA Summary Record Formatting

module) 516

DFSKBLA9 (KBLA Knowledge-Based Record

Formatting module) 518

DFSKBLAK (KBLA Knowledge-Based Record

Formatting and Print module)
control statements 522

output 523

overview 521

DFSKBLAS (KBLA Summary Record Formatting and

Print module)
control statements 520

output 521

overview 520

616 Utilities Reference: System

DFSKDBC0 (DBCTL Transaction Analysis utility)
example 528

input and output 526

JCL requirements 527

overview 525

restrictions 526

sorting reports 527

DFSKDVS0 (Statistic Log Record Analysis utility)
input and output 540

JCL requirements 540

overview 539

restrictions
CQS 539

IRLM 539

DFSKLTA0 (IRLM Lock Trace Analysis utility)
See also IRLM Lock Trace Analysis utilities

DD statements 544

JCL example 545

JCL requirements 544

overview 544

DFSKLTB0 (IRLM Lock Trace Analysis utility)
DD statements 545

JCL example 546

JCL requirements 545

DFSKLTC0 (IRLM Lock Trace Analysis utility)
control keywords 547

control statements 547

DD statements 546

JCL example 547

JCL requirements 546

DFSKMSC0 (MSC Link Performance Formatting utility)
example 537

input and output 536

JCL requirements 536

overview 535

restrictions
CQS 535

DFSKRSR0 (Log Record Processing Rate Analysis

utility)
control keywords 598

global 598

processing 598

selection criteria 599

control statements 598

DETAIL file layout 600

input and output 596

JCL requirements 596

overview 595

return codes 599

summary report examples 600

DFSKSCR0 (IMS Records User Data Scrub utility)
example 532

input and output 531

JCL requirements 532

overview 531

restrictions 531

DFSKTDL0 (Deadlock Trace Record Analysis utility)
control keywords

global 579

processing 579

control statements 578

DFSKTDL0 (Deadlock Trace Record Analysis utility)

(continued)
deadlock trace analysis detail report 584

deadlock trace analysis summary report 580

deadlock trace analysis victim report 583

input and output 576

JCL example 578

JCL requirements 576

overview 575

return codes 580

DFSKTLA0 (IRLM Lock Trace Analysis utility)
See also IRLM Lock Trace Analysis utilities

overview 543

DFSKTLB0 (IRLM Lock Trace Analysis utility)
See also IRLM Lock Trace Analysis utilities

overview 545

DFSKTLC0 (IRLM Lock Trace Analysis utility)
See also IRLM Lock Trace Analysis utilities

overview 546

DFSKXTR0 (Trace Record Extract utility)
control keywords 588

global 588

processing 588

trace table entry search 590

trace table log search 589

control statements 588

input and output 586

JCL example 587

JCL requirements 586

overview 585

return codes 591

trace entry extract summary report 592

DFSLTMG0 (Log Merge utility)
control statement format 264

controlling log merge 263

coordinating MSC logs 417

DD statements 265

input and output 263

JCL requirements 265

MSC (Multiple Systems Coupling) 263

overview 263

restrictions 263

sample control statement 265

DFSMDA (Dynamic Allocation Macro)
examples 211

Fast Path DEDBs 202

IMSDALOC procedure 204

input and output 203

invoking the procedure 205

JCL requirements 205

logical relationships 203

macro statements 206

monitor data set 202

multiple DEDBs 202

OLDS 202

overview 201

restrictions 203

SLDS 202

statement types
DATABASE 206

DATASET 207

Index 617

DFSMDA (Dynamic Allocation Macro) (continued)
statement types (continued)

DFSDCMON 207

FINAL 211

FPDEDB 207

INITIAL 206

OLDS 209

RECON 208

SLDS 209

WADS 210

DFSMNTR0, Data Communication Monitor 291

DFSMREC control statement 237

DFSOFMD0 (Offline Dump Formatter utility)
dump format control data set

DD statement 350

description 351

subset options 351

dump formatter 347

environments
DB batch 349

DB/DC 348

DBCTL 348

DCCTL 348

TM batch 349

input and output 349

IPCS 349

load modules 348

migration considerations 348

overview 347

restrictions 348

SDUMP 348

DFSUARC0 (Log Archive utility)
Batch DASD SLDS archive 250

control statements 256

COPY statement 257

copying log records into user data sets 251

creating an RLDS 250

DD statements 254

error processing 259

examples 260

EXIT statement 259

IMSPLEX parameter 254

JCL requirements 254

OLDS archive 249

OLDS input 251

omitting log records on SLDS 251

optional functions 250

overview 249

program output 252

restrictions 255

RLDS (Recovery Log Data Set) 250

SLDS input 252

SLDS statement 256

specifying forced end of volume 251

specifying user exit routines 251

DFSULTR0 (Log Recovery utility)
CLS mode 267

dual log input
CLS mode 269

DUP mode 269

REP mode 269

DFSULTR0 (Log Recovery utility) (continued)
DUP mode 267

DUP mode, warning 267

error block listing (SYSPRINT) 271

input 268

interim log error ID record 271

modes 270

OLDS recovery 268

overview 267

PSB mode 267

REP mode 267

single log input 268

SLDS recovery 268

DFSUOCU0 (Online Change Copy utility)
active library 231

cancellation 232

DD statements 235

DFSMREC control statement 237

EXEC statement 234

inactive library 231

INITMOD procedure 236

JCL 236

libraries used 231

MSDB 232

OLCUTL procedure 232

overview 231

procedure statement 233, 237

requirements 231

restrictions 232

staging library 231

DFSUOLC0 (Global Online Change utility)
examples 242

JCL 239

OLCSTAT data set 238

overview 238

parameters 240

DFSUSVC0 (Dynamic SVC utility)
DD statements 246

error processing 245

examples 246

input 245

JCL requirements 246

output 245

overview 245

restrictions 245

return codes 245

DFSUTR20 (IMS Monitor Report Print utility)
analysis control data set 292

definition of terms 291

input 291

JCL example 293

JCL requirements 291

overview 291

restrictions 291

statements
DIS 292

DLI 292

ONLY DLI 292

DIS statement
Monitor Report Print utility (DFSUTR20) 292

618 Utilities Reference: System

DISP= keyword
DFSMDA TYPE=DATASET control statement 207

DISPLAY command, use in accounting 500

Distribution Appendix report
IMS Monitor (DB/DC) 409

IMS Monitor (DBCTL) 436

IMS Monitor (DCCTL) 463

dividing database into multiple data set groups
DBD generation 31

DL/I Call Image Capture module (DFSERA50)
control statements 320

File Select and Formatting Print utility

(DFSERA10) 320

overview 320

DL/I segment edit/compression
See COMPRTN= parameter

DLI statement
Monitor-Report Print utility (DFSUTR20) 292

DLIModel IMS Java Report
field description 171

generating 170

PCB description 171

PSB description 171

segment description 171

DLIModel utility
control statements

comment statement 189

FIELD statement 185

INCLUDE statement 188

OPTIONS statement 180

PCB statement 183

PSB statement 183

rules 180

SEGM statement 184

SIDESEG statement 188

syntax 180

XDFLD statement 188

examples 189

COBOL Copybook XMI Sample 192

JBP IVP Metadata Sample 191

JMP IVP Metadata Sample 189

go script 177

inputs and outputs 167

metadata classes
creating 167

output types
Java metadata class 170

trace 174

XMI database description 172

XML schema 173

overview 167

PROC statement parameters 176

ABSPATH 176

DSNAME 176

SOUT 176

requirements
COBOL copybook XMI 169

DBD 169

PSB 169

restrictions 170

DLIModel utility (continued)
running

UNIX System Services, from 177

z/OS job, as a 175

sample job 177

sample procedure 175

STEP 1 DD statements
STDENV DD 176

STDERR DD 176

STDOUT DD 176

SYSTSIN DD 176

STEP 1 EXEC statement parameters
PARM 176

PGM=BPXBATCH 176

STEP 2 DD statements
HFSERR DD 177

HFSOUT DD 177

STDERRL DD 177

STDOUTL DD 177

SYSPRINT DD 177

SYSTEPRT DD 177

SYSTSIN DD 177

STEP 2 EXEC statement parameters
COND 177

DYNAMNBR 176

PGM=IKJEFT01 176

DSFKSUM0 (Log Summary utility)
control statements

global 563

processing 564

search 565

dynamic search 560

input and output 560

JCL example 562

JCL requirements 561

output examples 567

overview 559

return codes 567

DSNAME= data set
control statements

DFSMDA TYPE=DATASET 207

DFSMDA TYPE=DFSDCMON 208

dump format control data set
DD statement 350

description 351

subset options 351

Dynamic Allocation Macro (DFSMDA)
examples 211

Fast Path DEDBs 202

IMSDALOC procedure 204

input and output 203

invoking the procedure 205

JCL requirements 205

logical relationships 203

macro statements 206

monitor data set 202

multiple DEDBs 202

OLDS 202

overview 201

restrictions 203

SLDS 202

Index 619

Dynamic Allocation Macro (DFSMDA) (continued)
statement types

DATABASE 206

DATASET 207

DFSDCMON 207

FINAL 211

FPDEDB 207

INITIAL 206

OLDS 209

RECON 208

SLDS 209

WADS 210

Dynamic SVC utility (DFSUSVC0)
DD statements 246

error processing 245

examples 246

input 245

JCL requirements 246

output 245

overview 245

restrictions 245

return codes 245

E
E= keyword

DFSERA10 OPTION control statement 302

END statement 86

Enhanced Select exit routing (DFSERA70)
examples 323

overview 321

error block listing (SYSPRINT)
description of fields 271

Log Recovery utility 271

error ID record, interim log
Log Recovery utility 271

examining scheduling for critical transactions 497

examples
Dynamic Allocation Macro 211

File Select and Formatting Print utility 303

selecting all log record types with token 324

selecting specific log record types with token 324

EXIT statement
Log Archive utility 259

EXIT= parameter
DBD statement 27

SEGM statement 65

EXITR= keyword
DFSERA10 OPTION control statement 302

EXPRESS= parameter
PCB TYPE=TP control statement 119

Extended Terminal Option (ETO) 217

extracting multiple system transaction statistics 417,

472

EXTRIN= parameter
XDFLD statement 85

F
Fast Path

AREA statement
DEDB DBD generation record 10

description 45

format 32

keywords 45

area, dynamic allocation
See Dynamic Allocation Macro

DEDB DBD generation
description 8

direct dependent, specifying 57

examples 100

input record structure 10

sequential dependent, specifying 58

DEDB PSB generation
alternate PCB statement 117

positioning options (POS=) 128

processing options (PROCOPT=) 121

SB= parameter 127

Log Analysis utility (DBFULTA0)
log intervals 325

MSDB DBD generation
description 7

examples 99

MSDB PSB generation
alternate PCB statement 117

examples 142

processing options (PROCOPT=) 121

PSB PROCOPT= parameter 123

Fast Path Log Analysis utility (DBFULTA0)
error processing 345

input and output 327

JCL requirements 339

overview 325

reports
Detail-Listing-of-Exception-Transactions 328

Overall Summary of Resource Usage and

Contentions 334

Overall Summary of Transit Times 334

Recapitulation-of-the-Analysis 338

Summary-of-Exception-Detail-by-Transaction-
Code 333

Summary-of-Region-Occupancy 336

Summary-of-VSO-Activity 337

restrictions 326

utility control statements 340

FIELD statement
Bytes= parameter 186

DEDB database 78

Default= parameter 187

description 76

format 78

HDAM and PHDAM database 77

HIDAM and PHIDAM database 77

HISAM database 76

HSAM database 76

Index database 78

JavaName= parameter 186

JavaType= parameter 186

keywords 78

620 Utilities Reference: System

FIELD statement (continued)
MSDB database 77

Name= parameter 186

Overflow= parameter 187

Start= parameter 186

syntax 185

TypeQualifier= parameter 187

usage 185

XMLStorageType= parameter 187

XMLType= parameter 187

File Select and Formatting Print utility (DFSERA10)
control statements

COMMENTS 303

CONTROL 298

description 297

END 303

OPTION 299

COPY option 300

DL/I Call Image Capture module (DFSERA50) 320

Enhanced Select exit routine (DFSERA70) 321

examples 303

IMS Trace Table Record Format and Print module

(DFSERA60) 320

input 295

Intent Failure 392

JCL requirements
DD statements 296

description 296

examples 303, 307

NEGOF option 300

OPTION statement
PARM= parameter, subparameters of 321

optional keywords 300

B= 301

C= 301

COND= 301

D= 303

DDNAME= 303

E= 302

EXITR= 302

FLDLEN= 301

FLDTYP= 300

H= 301

L= 301

O= 300

OFFSET= 300

P= 303

PARM= 300

PRTSYS= 303

STARTAF= 301

STOPAFT= 301

SYM= 300

T= 300

V= 301

VALUE= 301

output 295

overview 295

PRINT option 300

Program Isolation (PI) Trace Record Format and

Print Module (DFSERA40)
control statements 317

File Select and Formatting Print utility (DFSERA10)

(continued)
Program Isolation (PI) Trace Record Format and

Print Module (DFSERA40) (continued)
overview 316

sample 317

Record Format and Print Module (DFSERA30)
control statements 315

description 309

FINISH statement 86

FLDLEN= keyword
DFSERA10 OPTION control statement 301

FLDTYP= keyword
DFSERA10 OPTION control statement 300

forced EOV
Log Archive utility 251

FORMAT library 231

FORMATA, INITMOD procedure 238

FREQ= parameter
SEGM statement 58

FRSPC= keyword
DATASET statement 41

G
General IWAIT Time Events report

IMS Monitor (DCCTL) 459

General IWAITTime Events report
IMS Monitor (DB/DC) 402

Generalized Sequential Access Method
See GSAM (Generalized Sequential Access Method)

global keyword 560

Global Online Change utility (DFSUOLC0)
examples 242

JCL 239

OLCSTAT data set 238

overview 238

parameters 240

GPSB (generated PSB) 113

GSAM (Generalized Sequential Access Method)
See also DBD (Database Description) generation

DBD generation
example 97

specification 5, 23

PCB generation
example 140

H
H= statement

DFSERA10 OPTION control statement 301

HDAM database
See DBD (Database Description) generation

HIDAM database
See DBD (Database Description) generation

hiperspace buffers, VSAM Buffer Pool
//DFSSTAT 477

IMS Monitor (DB/DC) 404

IMS Monitor (DBCTL) 434

HISAM database
See DBD (Database Description) generation

Index 621

HSAM database
See DBD (Database Description) generation

I
IMS Monitor Report Print utility (DFSUTR20)

analysis control data set 292

definition of terms 291

input 291

JCL example 293

JCL requirements 291

overview 291

restrictions 291

statements
DIS 292

DLI 292

ONLY DLI 292

IMS Monitor Reports
Buffer Pool Statistics 386

Call Summary 395

Communication Summary 405

Communication-Wait 406

Database Buffer Pool 403

DB/DC
Log Merge utility (DFSLTMG0) 263

Log Recovery utility (DFSULTR0) 267

Log Transaction Analysis utility (DFSILTA0) 353

Security Maintenance utility (DFSISMP0) 215

Statistical Analysis utility (DFSISTS0) 359

Transaction Queueing 402

VSAM Buffer Pool 441

DBCTL
adding to 422

Call Summary 430

Database Buffer Pool 441

Deadlock Event Summary 435

Intent Failure 428

Latch Conflict Statistics 435

output selection options 424

overview 421

Pool Space Failure Summary 435

Program I/O 431

Program Summary 430

Programs by Region 425

Region Summary 424

Run Profile 423

System Configuration 422

verifying report occurrences 424

VSAM Buffer Pool 434

DCCTL
Call Summary 452

Communication Summary 460

Communication Wait 461

Distribution Appendix report 463

General Iwait Time Events 459

Latch Conflict Statistics 462

Line Functions 460

Message Format Buffer Pool 457

Message Queue Pool 458

MSC Queuing Summary 471

MSC Summaries 470

IMS Monitor Reports (continued)
DCCTL (continued)

MSC Traffic 469

output selection options 445

overview 441

Pool Space Failure Summary 462

Program I/O 453

Program Summary 451

Programs by Region 446

Region and Jobname 445

Region Summary 446

Region Wait 446

Run Profile 444

System Configuration 444

verifying report occurrences 445

Deadlock Event Summary 406

Distribution Appendix report 436

Distribution-Appendix report 409

General IWAIT Time Events 402

Intent Failure 392

Latch Conflict Statistics 408

Line Functions 405

Log Archive utility (DFSUARC0) 249

Message Format Buffer Pool 400

Message Queue Pool 401

MSC Queuing Summary 416

MSC Summaries 415

MSC Traffic 414

Offline Dump Formatter utility (DFSOFMD0) 347

output selection options 388, 424

overview 385

Pool Space Failure Summary 406

Print Program and MSC
interpreting for DB/DC 468

interpreting for DCCTL 414

Program I/O 396

Program Summary 394

Programs by Region 389

Region and Jobname 387

Region Summary 388

Region Wait 389, 425

Run Profile 386

System Configuration 386

verifying report occurrences 388, 424

VSAM Buffer Pool 403

IMS Monitor timed events
checkpointing 383

description 381

DL/I call NOT-WAIT times
DB/DC 384

DCCTL 442

during message input 382

elapsed execution 383

idle for intent 383

NOT-WAIT time 442

schedule of first DL/I call 383

scheduling and termination 382

summary
DB/DC 384

DBCTL 421

DCCTL 442

622 Utilities Reference: System

IMS Monitor timed events (continued)
trace intervals

DB/DC 386

DBCTL 422

DCCTL 444

wait time 383

wait-for-input (WFI)
DB/DC 383, 400

DCCTL 457

IMS Records User Data Scrub utility (DFSKSCR0)
example 532

input and output 531

JCL requirements 532

overview 531

restrictions 531

IMS Trace Table Record Format and Print module

(DFSERA60)
control statements 320

File Select and Formatting Print utility

(DFSERA10) 320

overview 320

IMS-issued subsystem detected deadlocks 315

IMSACBA, INITMOD procedure 238

IMSDALOC procedure, process 204

INCLUDE statement
Dataset= parameter 189

syntax 188

index database
See DBD (Database Description) generation

INDEX DBD generation
logical DBD 9

overview 8

primary HIDAM index 8

secondary index 9

INDEX= parameter
DBDGEN LCHILD statement 75

INDICES= parameter
SENSEG statement 132

INITMOD procedure
DFSMREC control statement 237

FORMATA 238

IMSACBA 238

JCL 237

MODBLKSA 237

MODSTAT record 237

procedure statement 237

Intent Failure Summary Report
IMS Monitor (DB/DC) 392

IMS Monitor (DBCTL) 428

Interactive Dump Formatter 347

interim log error ID record
Log Recovery utility 271

interpreting
//DFSSTAT Reports 475

IMS Monitor Reports
DBCTL 419

DCCTL 441

MSC 468

Transaction Analysis Report 417

Transaction Analysis Reports 491

IOASIZE= parameter
PSBGEN statement 136

IOEROPN= parameter
PSBGEN statement 137

IPCS (Interactive Problem Control System)
Interactive Dump Formatter 347

Offline Dump Formatter 349

Offline Dump Formatter, user control statement 349

IRLM Lock Trace Analysis utilities
detail report 548

DFSKTLA0
DD statements 544

JCL example 545

JCL requirements 544

overview 544

DFSKTLB0
DD statements 545

JCL example 546

JCL requirements 545

overview 545

DFSKTLC0
control keywords 547

control statements 547

DD statements 546

JCL example 547

JCL requirements 546

overview 546

input and output 544

overview 543

restrictions 543

summary report 548

K
KBLA (Knowledge-Based Log Analysis)

defining logs 507

option 5 507

invoking KBLA 505

maintaining KBLA 507

option 0 507

overview 505

running jobs against IMS log records
option 1 508

option 2 508

option 3 508

option 4 509

KBLA Basic Record Formatting and Print module

(DFSKBLA3)
control statements 512

output 512

overview 511

KBLA Basic Record Formatting module

(DFSKBLA7) 513

KBLA Knowledge-Based Record Formatting and Print

module (DFSKBLAK)
control statements 522

output 523

overview 521

KBLA Knowledge-Based Record Formatting module

(DFSKBLA9) 518

Index 623

KBLA Log Formatting modules
overview 511

KBLA Summary Record Formatting and Print module

(DFSKBLAS)
control statements 520

output 521

overview 520

KBLA Summary Record Formatting module

(DFSKBLA8) 516

keyword
See individual keyword listings

Knowledge-Based Log Analysis
See KBLA (Knowledge-Based Log Analysis)

L
L= keyword

DFSERA10 OPTION control statement 301

LABEL field
alternate PCB statement 118

DBD generation 32

DL/I PCB statement 120

GSAM PCB statement 130

LANG= parameter
PSBGEN statement 135

Latch Conflict Statistics report
IMS Monitor (DB/DC) 408

IMS Monitor (DBCTL) 435

IMS Monitor (DCCTL) 462

LCHILD statement
abbreviations 73

HDAM and PHDAM databases 71

HIDAM and PHIDAM databases 72

HIDAM Primary index relationship 70

HIDAM Primary Index relationship 70

HISAM databases 70

INDEX databases 72

keywords 73

logical relationships 70

PSINDEX databases 73

secondary index relationship 70

Secondary Index relationship 70

Line Functions report
IMS Monitor (DCCTL) 460

Line-and-Terminal statistics report 493

Line-Functions report
IMS Monitor (DB/DC) 405

link queuing time assessments 416, 471

LIST= parameter
alternate PCB statement 119

GSAM PCB statement 130

PSBGEN statement 129

LOCKMAX= parameter
PSBGEN statement 137, 138

Log Analysis utility
Fast Path (DBFULTA0) 325

Log Archive utility (DFSUARC0)
Batch DASD SLDS archive 250

control statements 256

COPY statement 257

copying log records into user data sets 251

Log Archive utility (DFSUARC0) (continued)
creating an RLDS 250

DD statements 254

error processing 259

examples 260

EXIT statement 259

IMSPLEX parameter 254

JCL requirements 254

OLDS archive 249

OLDS input 251

omitting log records on SLDS 251

optional functions 250

overview 249

program output 252

restrictions 255

RLDS (Recovery Log Data Set) 250

SLDS input 252

SLDS statement 256

specifying forced end of volume 251

specifying user exit routines 251

log error ID record, interim
Log Recovery utility 271

Log Merge utility (DFSLTMG0)
control of log output 417, 472

control statement format 264

controlling log merge 263

coordinating MSC logs 417, 472

DD statements 265

input and output 263

JCL requirements 265

MSC (Multiple Systems Coupling) 263

overview 263

restrictions 263

sample control statement 265

LOG parameter
DBD statement 29

SEGM statement 68

log record
Statistical Analysis utility 360

Log Record Processing Rate Analysis utility

(DFSKRSR0)
control keywords 598

global 598

processing 598

selection criteria 599

control statements 598

DETAIL file layout 600

input and output 596

JCL requirements 596

overview 595

return codes 599

summary report examples 600

Log Recovery utility (DFSULTR0)
active region messages 274

CLS mode 267

CLS mode error listing 271

control statements 277

creating a new log 279

creating an interim log 278

DD statements 275

624 Utilities Reference: System

Log Recovery utility (DFSULTR0) (continued)
dual log input

CLS mode 269

DUP mode 269

REP mode 269

Dump of data records 273

DUP mode 267

DUP mode error listing 271

DUP mode, warning 267

error block listing (SYSPRINT) 271

error processing 280

examples 281

input 268

interim log error ID record 271

JCL requirements 275

modes 267, 270

OLDS recovery 268

output 270

overview 267

print active PSB reports 280

PSB mode 267

REP mode 267

REP mode verification messages 273

single log input 268

SLDS recovery 268

Log Summary utility (DFSKSUM0)
control statements

global 563

processing 564

search 565

dynamic search 560

input and output 560

JCL example 562

JCL requirements 561

output examples 567

overview 559

return codes 567

Log Transaction Analysis utility (DFSILTA0)
description 353

ID column for MSC entries 473

MSC statistics 417, 472

parameter descriptions 354

program inputs 354

program outputs 354

reports produced
description 496

Log Analysis report 496

LOGICAL parameter
DATASET statement 35

LTERM= parameter
PCB TYPE=TP parameter 118

LU 6.2 217

M
main storage database (MSDB)

See Fast Path, MSDB

making changes online
Global Online Change Copy utility 238

Online Change Copy utility 231

MATRIX library 231

MAXQ= parameter
PSBGEN statement 136

MBR=parameter
DBD generation 12

PSB generation 115

merging logs for MSC 417, 472

Message Format Buffer Pool Report
IMS Monitor (DB/DC) 400

IMS Monitor (DCCTL) 457

Message Queue Pool Report
IMS Monitor (DB/DC) 401

IMS Monitor (DCCTL) 458

Messages
Program-To-Program Report example 494

Queued-But-Not-Sent Report example 495

report example 495

MODBLKS library 231

MODBLKSA, INITMOD procedure 237

MODEL= parameter
DATASET statement 35

MODIFY= parameter
PCB TYPE=TP parameter 118

MODSTAT record, INITMOD procedure 237

monitor data set, dynamic allocation
See Dynamic Allocation Macro (DFSMDA)

Monitor Report Print program
See IMS Monitor Report Print utility

monitor trace interval
IMS Monitor Report

DBCTL 422

DCCTL 444

IMS Monitor Reports
DB/DC 386

monitoring
application program elapsed time

DCCTL 451

database buffers
DB/DC 403

DBCTL 433

dependent regions
DB/DC 388

DBCTL 424

DCCTL 446

I/O for application program DL/I calls
DCCTL 453

internal resource usage
DB/DC 406

DBCTL 435

DCCTL 462

line activity
DB/DC 405

DCCTL 460

message handling
DB/DC 406

DCCTL 461

message queue handling
DB/DC 396, 401

DBCTL 429, 431

DCCTL 458

MFS activity
DB/DC 400

Index 625

monitoring (continued)
MFS activity (continued)

DCCTL 457

using frequency distribution
DB/DC 409

DBCTL 436

DCCTL 463

MSC (Multiple Systems Coupling)
control of log output 417, 472

determining cross-system queuing 414, 469

IMS Monitor Report Print Program 414, 468

Interpreting
IMS Monitor MSC Reports 414

Interpreting Distribution Appendix Output 467

Log Analysis Report
ID column for MSC entries 418, 473

use for MSC transactions 417, 472

Log Merge utility
coordinating MSC logs 417, 472

input 263

output 263

Log Transaction Analysis utility (DFSILTA0) 417,

472

merging logs for MSC 417, 472

MSC-Queuing Report
assessing link queuing times 416, 471

example 417, 471

interpreting 414, 468

MSC-Summaries Report
assessing queue sizes 415, 470

content 415, 470

example 416, 471

interpreting 414, 468

MSC-Traffic Report
content 414, 469

determining cross-system queuing 414, 469

example 415, 469

transaction statistics 417, 472

MSC Link Performance Formatting utility (DFSKMSC0)
example 537

input and output 536

JCL requirements 536

overview 535

restrictions
CQS 535

MSC Summaries Report
IMS Monitor (DB/DC) 414

IMS Monitor (DCCTL) 468

MSDB DBD generation
description 7

N
NAME= parameter

statements
alternate PCB statement 118

DBD 22

DL/I PCB 121

FIELD 78

GSAM PCB 130

LCHILD 73

NAME= parameter (continued)
statements (continued)

SEGM 57

SENFLD 134

SENSEG 131

XDFLD 84

NEGOF option
File Select and Formatting Program

(DFSERA10) 300

NOLOG parameter
DBD statement 29

SEGM statement 68

not message-driven option
Fast Path Log Analysis utility 343

NULLVAL= parameter
XDFLD statement 85

O
O= keyword

control statements
DFSERA10 CONTROL 298

DFSERA10 OPTION 300

Offline Dump Formatter utility (DFSOFMD0)
dump format control data set

DD statement 350

description 351

subset options 351

dump formatter 347

environments
DB batch 349

DB/DC 348

DBCTL 348

DCCTL 348

TM batch 349

input and output 349

IPCS 349

load modules 348

migration considerations 348

overview 347

restrictions 348

SDUMP 348

OFFSET= keyword
DFSERA10 OPTION control statement 300

OLCSTAT data set
description 238

initializing 238

recover procedure 239

OLCUTL procedure, process 232

OLDS (online log data set)
archive 249

dual OLDSs 251

input to Log Archive utility 251

recover points 252

recovery using the Log Recovery utility 268

termination 252

OLIC= parameter
PSBGEN statement 137

omitting log records on SLDS
Log Archive utility 251

626 Utilities Reference: System

Online Change Copy utility (DFSUOCU0)
active library 231

cancellation 232

DD statements 235

DFSMREC control statement 237

EXEC statement 234

inactive library 231

INITMOD procedure 236

JCL 236

libraries used 231

MSDB 232

OLCUTL procedure 232

overview 231

procedure statement 233, 237

requirements 231

restrictions 232

staging library 231

Online change utilities
Global Online Change 231

Online Change Copy 231

Online Database Image Copy utility (DFSUICP0)
PSBGEN specifications required 116, 123

ONLY DLI statement, Monitor Report Print utility

(DFSUTR20) 292

OPTIONS statement
DBDds= parameter 181

FieldOrder= parameter 182

GenJavaSource parameter 181

GenTrace parameter 182

GenXMI parameter 181

GenXMLSchemas= parameter 181

JavaSourcePath= parameter 182

OutPath= parameter 182

Package= parameter 181

PSBds= parameter 181

ReportPath= parameter 182

syntax 180

TracePath= parameter 182

XMIPath= parameter 182

XMLSchemaPath= parameter 182

OSAM data sets block size 39

OSAM-Buffer-Pool Report 477

output from IMS Monitor Report
DB/DC 385

output sequence and information from IMS Monitor

Report
DBCTL 421

DCCTL 443

Overall Summary of Resource Usage and Contentions

for All Transaction Codes and PSBs Report
Fast Path Log Analysis utility 334

Overall Summary of Transit Times by Transaction Code

for IFP Regions Report
Fast Path Log Analysis utility 334

OVFLW= parameter
DATASET statement 36

P
P= keyword

DFSERA10 OPTION control statement 303

PAIR= keyword
LCHILD statement 74

PARENT= parameter
SEGM statement 57

SENSEG statement 132

PARM= keyword
DFSERA10 OPTION control statement 300

subparameters of
TOKEN= subparameter 322

XFMT= subparameter 321

partition data set (PDS) 168

partition data set extended (PDSE) 168

Partitioned Hierarchical Direct Access Method

(PHDAM) 96

Partitioned Hierarchical Indexed Direct Access Method

(PHIDAM) 97

PASSWD= parameter
DBD statement 26

password security 218

/LOCK and /UNLOCK command 218

PCB statement
database PCB size 119

DL/I or Fast Path database 119

GenXMLSchema= parameter 183

GSAM 130

JavaName= parameter 183

PCBName= parameter 183

SENSEG statement 131

syntax 183

XMLRootElement= parameter 184

PCBNAME= parameter
alternate PCB statement 119

DL/I PCB statement 121

GSAM PCB statement 130

PDS (partition data set) 168

PDSE (partition data set extended) 168

PHDAM (Partitioned Hierarchical Direct Access Method)
DBD generation

example 96

PHIDAM (Partitioned Hierarchical Indexed Direct Access

Method)
DBD generation

example 97

POINTER= parameter
LCHILD statement 73

SEGM statement 58, 61

Pool Space Failure Summary report
IMS Monitor (DBCTL) 435

IMS Monitor (DCCTL) 462

Pool-Space-Failure-Summary report
IMS Monitor (DB/DC) 406

POS= parameter
PCB TYPE=DB parameter 128

PRINT option
File Select and Formatting Print utility

(DFSERA10) 300

procedure
ACBGEN 159

DBDGEN 11

IMSDALOC 204

INITMOD 236

Index 627

procedure (continued)
OLCUTL 232

PSBGEN 115

Security 219

SECURITY 219

procedure statement 11

PROCOPT= parameter
Fast Path 123

PCB
type=DB 121

type=GSAM 130

SENSEG statement 132

PROCSEQ= parameter
PCB TYPE=DB statement 129

Program I/O report
IMS Monitor (DBCTL) 431

IMS Monitor (DCCTL) 453

Program Isolation (PI) Trace Record Format and Print

Module (DFSERA40)
control statements 317

output sample 317

Program Isolation Trace Record Format and Print

module (DFSERA40)
overview 316

program output
Log Archive utility 252

Program Summary Report
IMS Monitor

DB/DC 394

DBCTL 430

DCCTL 451

Program-I/O Report
IMS Monitor (DB/DC) 396

Programs by Region Report
IMS Monitor

DB/DC 389

DBCTL 425

DCCTL 446

PRTSYS= keyword
DFSERA10 OPTION 303

PSB (Program Specification Block)
control statement formats

alternate PCB 117

DL/I or Fast Path database PCB 119

END 138

GSAM PCB 130

I/O PCB 117

PSBGEN 134

SENFLD 133

SENSEG 131

description 113

examples
application database 147

Fast Path 142

Field Level Sensitivity 141

GSAM 140

logical database 144

sample hierarchic data structure 139

shared secondary index 152

execution 116

PSB (Program Specification Block) (continued)
generating

control statement formats 164

control statements 117

input and output 113

overview 113

output
assembly listing 139

control statement listing 138

diagnostics 138

error conditions 139

load module 139

PCBNAME = parameter 141

PCBs (Program Communication Blocks) 113

Requirements 113

Rules 113

six input/output statement types 113

specifying options for DEDBs
END statement 138

PSBGEN statement 134

SENSEG statement 131

PSB statement
JavaName= parameter 183

PSBName= parameter 183

syntax 183

PSB= parameter
ACB Maintenance utility 162

PSBGEN
procedure 115

statement
maximum number of database PCBs 119

PSB generation 134

PSBGEN statement
LANG= parameter 135

PSBNAME= parameter
PSBGEN statement 135

PST-Accounting Report 475

PTR= keyword
LCHILD statement 73

SEGM statement 61

R
Rational Rose

metamodel 172

Recapitulation-of-the-Analysis Report
Fast Path Log Analysis utility 338

RECFM= parameter
DATASET statement 41

RECON Query of Log Data Set Names utility

(DFSKARC0)
control statements 554

input and output 552

JCL example 554

JCL requirements 552

output examples 556

overview 551

RECON Query Summary report 557

return codes 557

Record Format and Print Module (DFSERA30)
control statemens 315

628 Utilities Reference: System

Record Format and Print Module (DFSERA30)

(continued)
deadlock report 309

overview 309

Record Format and Print Module (DFSERS30)
additional information gathered 314

Deadlock report 309

File Select and Formatting Print utility

(DFSERA10) 309

lock states 312

reading the report 310

reporting anomaly 314

resultant state of the lock 313

selecting only the deadlock block 315

special situations 314

subsystem detected deadlocks 315

RECORD= parameter
DATASET statement 41

Recovery utility
See Database Recovery Control utility

Region and Jobname Report
IMS Monitor

DB/DC 387

DCCTL 445

Region Summary Report
IMS Monitor

DB/DC 388

DCCTL 446

IMS Monitor (DBCTL) 424

Region Wait Report
IMS Monitor

DB/DC 389

DBCTL 425

DCCTL 446

REL= parameter
DATASET statement 42

REPL= parameter
SENFLD statement 134

REPLACE= parameter
SENFLD statement 134

resource access security 218

RGN= parameter
procedures

ACBGEN 160

DBDGEN 13

PSBGEN 116

RLDS (Recovery Log Data Set)
creating 250

output to Log Archive utility 252

RMNAME= parameter
DBD statement 25

ROOT= parameter
AREA statement 45

RULES= keyword
LCHILD statement 75

SEGM statement 62

Run Profile Report
adding generalized processing ratios

DB/DC 387

DBCTL 423

DCCTL 445

Run Profile Report (continued)
IMS Monitor

DB/DC 386

DBCTL 423

DCCTL 444

overview 386

S
SAMETRM= parameter

PCB TYPE=TP parameter 118

SB-Detail report 481

SB-Summary Report 479

SB= parameter
PCB TYPE=DB parameter 127

SCAN= parameter
DATASET statement 41

SDUMP
Offline Dump Formatter 348

SEARCHA= parameter
DATASET statement 42

secondary index
DBD generation 9

relationships 70

SECURITY macro statement
resource access security 218

Security Maintenance utility (DFSISMP0)
control statements 224

description 215, 224

execution 224

IMS resource access security 218

input 216

input statement operands 224

invoking the procedure 223

JCL requirements 221

LTERM security 218

output 216, 226

overview 215

password security 218

restrictions 217

security options 215, 217

sign-on verification 219

transaction command security 218

SECURITY procedure 219

SEGM statement
CobolXMI= parameter 185

database
DEDB 54

HDAM 48

HIDAM 51

HISAM 47

HSAM 46

INDEX 56

MSDB 54

PHDAM 50

PHIDAM 53

PSINDEX 56

DBDName= parameter 185

description 46

format 56

JavaName= parameter 185

Index 629

SEGM statement (continued)
keyword abbreviations 56

logical segments, for 184

physical segments, for 184

pointer keyword options and abbreviations 58, 59

SegmentName= parameter 185

syntax 185

SEGMENT= parameter
XDFLD statement 84

selecting
extended log formatting for X'50' log records

XFMT= subparameter 321

log records by recovery token
example of selecting all record types 324

example of selecting specific record types 324

TOKEN= subparameter 322

SENSEG statement
maximum number 131

PROCOPT option 132

PSB generation 131

SF= parameter
INITMOD 237

SIDESEG statement
KeyField= parameter 188

Source= parameter 188

syntax 188

XPath= parameter 188

sign-on verification security
/SIGN command 219

single log input
Log Recovery utility 268

SIZE= parameter
AREA statement 45

DATASET statement 38

SKIP= parameter
File Select and Formatting Print utility

(DFSERA10) 298

SLDS (system log data set)
batch archive 250

closing 267

DUP mode 267

input to Log Archive utility 252

omitting log records on 251

output to Log Archive utility 252

recovery using the Log Recovery utility 268

SLDS (system log data set) statement
Log Archive utility 256

SMU
See Security Maintenance utility (DFSISMP0)

SOURCE= parameter
SEGM statement 64

SOUT= keyword
procedures

OLCUTL 233

SECURITY 221

SOUT= parameter
procedures

ACBGEN 160

DBDGEN 13

IMSDALOC 205

INITMOD 237

SOUT= parameter (continued)
procedures (continued)

PSBGEN 116

Specifying DBD generation
GSAM database 5

HIDAM and PHIDAM database 7

HISAM database 5

HSAM database 4, 8

Index and PSINDEX databases 8

Logical database 9

MSDB database
header information (BHDR) 7

secondary index database 9

SRCH= paramter
XDFLD statement 84

SSASIZE= parameter
PSBGEN statement 136

SSPTR= keyword
SENSEG statement 132

SSPTR= parameter
SEGM statement 65

START= keyword
SENFLD statement 134

START= parameter
FIELD statement 81

STARTAF= statement
DFSERA10 OPTION control statement 301

Statistic Log Record Analysis utility (DFSKDVS0)
input and output 540

JCL requirements 540

overview 539

restrictions
CQS 539

IRLM 539

Statistical Analysis utility (DFSISTS0)
calculating transaction loads 492

control statements 374

description 359

execution savings 491

input 359, 491

JCL requirements
description 369

job-stream example 369

output 359

overview 359

program flow 360

program modules
EDIT PASS2 (DFSIST20) 363

Message Select and Copy or List

(DFSIST40) 365

Report Writer (DFSIST30) 363

SORT and EDIT PASS1 (DFSISTS0) 362

reports produced, descriptions and examples
Application-Accounting report 364, 367

description 491

IMS-Accounting report 364, 367

Line-and-Terminal report 363, 366

messages produced by Message Select and Copy

(DF) 368, 374

Messages Queued But Not Sent (by

destination) 363, 366

630 Utilities Reference: System

Statistical Analysis utility (DFSISTS0) (continued)
reports produced, descriptions and examples

(continued)
Messages Queued But Not Sent (by transaction

code) 363, 367

Messages, Program-to-Program (by

destination) 363, 366

Messages, Program-to-Program (by transaction

code) 363, 367

Transaction report 367

Transaction-Response report 364

selecting a subset of transactions 491

transaction profiles 500

utility control statements
descriptions 374

hardware terminal address 375

nonprintable character 376

symbolic terminal name 374

time 375

transaction code 374

VTAM terminal name 375

utilization for accounting 499

STOPAFT= statement
DFSERA10 OPTION control statement 301

File Select and Formatting Print utility

(DFSERA10) 298

SUBSEQ= parameter
XDFLD statement 84

subset pointers
SENSEG statement 132

Summary-of-Exception-Detail-by-Transaction-Code (for

IFP Regions) Report
Fast Path Log Analysis utility 333

Summary-of-Region-Occupancy Report
Fast Path Log Analysis utility 336

Summary-of-VSO-Activity Report
Fast Path Log Analysis utility 337

SVC utility
See Dynamic SVC utility (DFSUSVC0)

SYM= option
DFSERA10 OPTION control statement 300

syntax diagram
how to read xix

SYS= keyword
OLCUTL procedure 234

SYS= parameter
INITMOD procedure 237

SYS2= keyword
procedures

IMSDALOC 205

SECURITY 221

SYS2= parameter
procedures

ACBGEN 160

DBDGEN 13

INITMOD 237

PSBGEN 116

SYSMDUMP
Offline Dump Formatter 349

SYSPRINT
Log Archive utility 252

System Configuration Report
IMS Monitor

DB/DC 386

DBCTL 422

DCCTL 444

T
T= keyword

DFSERA10 OPTION control statement 300

TOKEN= subparameter 322

Trace Record Extract utility (DFSKXTR0)
control keywords 588

global 588

processing 588

trace table entry search 590

trace table log search 589

control statements 588

input and output 586

JCL example 587

JCL requirements 586

overview 585

return codes 591

trace entry extract summary report 592

transaction
command security 218

flow and IMS Monitor events 381

statistics in MSC 417

transaction statistics in MSC 472

Transaction-Response report
description 493

example 493

Statistical Analysis utility (DFSISTS0)
reports 364

Transaction-Statistics report 493

TYPE= parameter
alternate PCB statement 118

DATASET 207

DFSDCMON 207

DFSMDA 206

DL/I PCB statement 121

FIELD statement 81

FINAL 211

FPDEDB 207

GSAM PCB statement 130

INITIAL 206

OLDS 209

RECON 208

SEGM statement 58

SLDS 209

TP 118

U
UNIT= parameter

DFSMDA TYPE=DFSCMON statement 208

UOW= parameter
AREA statement 45

utilities
ACBGEN 157

Index 631

utilities (continued)
DBDGEN

control statements 3

databases used with 4

information specified in 4

Dynamic Allocation 201

Dynamic SVC utility (DFSUSVC0) 245

Fast Path Log Analysis utility (DBFULTA0) 325

File Select and Formatting Print utility

(DFSERA10) 295

Global Online Change utility (DFSUOLC0) 238

IMS Monitor Report Print utility (DFSUTR20) 291

Interpreting
//DFSSTAT Reports 475

IMS Monitor Reports 381

IMS Monitor Reports for DBCTL 419

IMS Monitor Reports for DCCTL 441

Interpreting-Statistical-Analysis-and-Log-Transaction

Reports 491

Log Archive utility (DFSUARC0) 249

Log Merge utility (DFSLTMG0) 263

Log Recovery utility (DFSULTR0) 267

Log Transaction Analysis utility (DFSILTA0) 353

Offline Dump Formatter utility (DFSOFMD0) 347

Online Change Copy utility (DFSUOCU0) 231

PSBGEN 113

Security Maintenance utility (DFSISMP0) 215

Statistical Analysis utility (DFSISTS0) 359

V
V= parameter

DFSERA10 OPTION control statement 301

VALUE= parameter
DFSERA10 OPTION control statement 301

VERSION parameter
DBD statement 29

VIEW=MSDB parameter
PSBGEN statement 129

VSAM Buffer Pool Report
//DFSSTAT 475

description 476

IMS Monitor (DB/DC) 403

IMS Monitor (DBCTL) 434

W
WADS (write-ahead data set)

CLS mode 267, 274

data set 276

NOWADS 278

wait-for-input (WFI)
exclusion from program summary report 394

program I/O report
with input available 457

with no input available 383

time between transactions 499

X
XDFLD statement

description 82

format 83

HDAM database 83

HISAM database 83

JavaName= parameter 188

keywords 83

Name= parameter 188

parameter description 84

PHDAM database 83

syntax 188

XFMT= subparameter 321

XML schema
annotations 173

naming convention 173

output from DLIModel utility 173

sample 174

632 Utilities Reference: System

����

Program Number: 5655-J38

Printed in USA

SC18-7834-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

IM
S

U
til

iti
es

R

ef
er

en
ce

: S
ys

te
m

Ve

rs
io

n
9

	Contents
	Figures
	Tables
	About This Book
	Organization of This Book
	Prerequisite Knowledge
	Organization of Utility Descriptions
	CICS, DBCTL, and DCCTL
	IBM Product Names Used in This Information
	How to Read Syntax Diagrams
	How to Send Your Comments

	Summary of Changes
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Organizational Changes
	Terminology Changes
	Accessibility Enhancements

	Part 1. Generation Utilities
	Chapter 1. Database Description (DBD) Generation
	Information Specified in DBD Generation
	DBD Generation for Database Types
	HSAM DBD Generation
	GSAM DBD Generation
	HISAM DBD Generation
	HDAM and PHDAM DBD Generation
	HIDAM and PHIDAM DBD Generation
	MSDB DBD Generation
	DEDB DBD Generation
	Index and PSINDEX DBD Generation
	Logical DBD Generation
	DBD Generation Input Record Structure (Except for DEDB DBDs)
	DEDB DBD Generation Input Record Structure
	DBD Generation Coding Conventions

	DBDGEN Procedure
	Procedure Statement
	JCL Parameters

	DBDGEN Statements
	DBD Statement
	DBD Statement Parameter Descriptions
	DATASET Statements
	DATASET Statement Parameter Description
	Data Sets in IMS Data Set Groups
	AREA Statement
	AREA Statement Parameter Description
	SEGM Statement
	SEGM Statement Parameter Description
	LCHILD Statement
	LCHILD Statement Parameter Description
	FIELD Statement
	FIELD Statement Parameter Description
	XDFLD Statement
	XDFLD Statement Parameter Description
	DBDGEN, FINISH, and END Statements

	DBD Generation Output
	Control Statement Listing
	DBD Generation Error Conditions

	DBD Generation Examples
	Examples without Secondary Index or Logical Relationships
	Summary of Physical Database Description Examples
	Examples with Logical Relationships
	Examples with Secondary Indexes

	Chapter 2. Program Specification Block (PSB) Generation
	Input and Output for PSB Generation
	PSBGEN Procedure
	Procedure Statement
	Step C
	Step L
	Invoking the Procedure

	Utility Control Statements for PSB Generation
	Alternate PCB Statement
	DL/I or Fast Path Database PCB Statement
	GSAM PCB Statement
	SENSEG Statement
	SENFLD Statement
	PSBGEN Statement
	END Statement

	Output Messages and Statistics for PSB Generation
	PSB Examples
	Examples of PSB Generation
	Field Level Sensitivity PSB Generation Example
	Fast Path PSB Generation Examples
	Additional PSB Generation Examples
	Examples of a Sample Problem with an Application Database
	Example of a Shared Secondary Index

	Chapter 3. Application Control Blocks Maintenance Utility
	Restrictions for ACB Generation
	Input and Output for ACB Generation
	ACB Generation Procedure
	EXEC Statement
	DD Statements
	DFSACBCP Control Statement

	Utility Control Statements for ACB Generation
	Managing Dynamic Option (DOPT) PSBs

	Error Processing for ACB Generation
	Examples of ACB Generation
	Example of Creating Blocks for All PSBs
	Example of Creating Blocks for Specific PSBs
	Example of Deleting a PSB and Rebuilding Blocks

	Chapter 4. DLIModel Utility
	PSB and DBD Requirements
	COBOL Copybook XMI Requirements
	DLIModel Utility Restrictions
	Output Types of the DLIModel Utility
	Java Metadata Class
	DLIModel IMS Java Report
	XMI Description of the Databases
	XML Schema
	DLIModel Utility Trace

	Running the DLIModel Utility
	Running the DLIModel Utility as a z/OS Job
	Running the DLIModel Utility from UNIX System Services

	Control Statements for the DLIModel Utility
	Control Data Set Rules
	Control Statement Rules
	Control Statement Syntax

	Examples of Using the DLIModel Utility
	JMP IVP Metadata Sample
	JBP IVP Metadata Sample
	Sample Metadata with COBOL Copybook XMI

	Part 2. Service Utilities
	Chapter 5. Dynamic Allocation Macro (DFSMDA)
	Restrictions for DFSMDA
	Input and Output for DFSMDA
	IMSDALOC Procedure
	Procedure Statement
	JCL Parameter Description
	Step ASSEM
	Step BLDMBR
	Step LNKEDT
	Invoking the Procedure

	Macro Statements for DFSMDA
	Examples of DFSMDA
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Chapter 6. Security Maintenance Utility (DFSISMP0)
	Input and Output Flow for DFSISMP0
	Restrictions for DFSISMP0
	Security Options for DFSISMP0
	LTERM Security
	Password Security
	Transaction Command Security
	IMS Application Group Name Security
	Sign-on Verification Security

	IMS Application Resource Access Security
	SECURITY Procedure
	Procedure Statement
	JCL Parameter Description
	Step S EXEC Statement
	DD Statements
	Step C
	Step L
	Invoking the Procedure

	Utility Control Statements for DFSISMP0
	Output for DFSISMP0
	Security-Status Reports

	Examples of DFSISMP0
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	Chapter 7. Online Change Utilities and Procedures
	Online Change Copy Utility (DFSUOCU0)
	Requirements for Online Change Copy
	Restrictions for Online Change Copy
	Procedure for Online Change Copy
	INITMOD Procedure

	Global Online Change Utility (DFSUOLC0)
	JCL Requirements for DFSUOLC0

	Examples of Global Online Change

	Part 3. Log Utilities
	Chapter 8. Dynamic SVC Utility (DFSUSVC0)
	Restrictions for DFSUSVC0
	Input and Output for DFSUSVC0
	Return Codes for DFSUSVC0
	DFSUSVC0 JCL Requirements
	EXEC Statement
	DD Statements

	Examples of DFSUSVC0

	Chapter 9. Log Archive Utility (DFSUARC0)
	OLDS Archive
	Batch DASD Log Data Set Archive
	Optional Functions for DFSUARC0
	Creating an RLDS (Recovery Log Data Set)
	Omitting Log Records on SLDS
	Copying Log Records into User Data Sets
	Specifying User Exit Routines
	Specifying Forced End of Volume (EOV)

	Input for DFSUARC0
	OLDS Input
	SLDS Input

	Output for DFSUARC0
	JCL Requirements for DFSUARC0
	DD Statements

	Utility Control Statements for DFSUARC0
	SLDS Statement
	COPY Statement
	EXIT Statement

	Error Processing for DFSUARC0
	Examples of DFSUARC0
	Example 1
	Example 2

	Chapter 10. Log Merge Utility (DFSLTMG0)
	Restrictions for DFSLTMG0
	Input and Output for DFSLTMG0
	Controlling the Log Merge
	Control Statement Format

	JCL Requirements for DFSLTMG0
	DD Statements

	Chapter 11. Log Recovery Utility (DFSULTR0)
	OLDS Recovery
	SLDS Recovery
	Input for DFSULTR0
	Single Log Input
	Dual Log Input

	Output for DFSULTR0
	Interim Log Error ID Record
	Error Block Listing (SYSPRINT)
	REP Mode Verification Messages
	Dump of Data Record
	Active Region Messages

	JCL Requirements for DFSULTR0
	DD Statements

	Utility Control Statements for DFSULTR0
	CLS Mode–Close an OLDS from the WADS or NEXT OLDS
	DUP Mode–Recover an OLDS or SLDS (Create an Interim Log)
	REP Mode–Recover an OLDS or SLDS (Create a New Log)
	PSB Mode—Print “Active PSBs” Report

	Error Processing for DFSULTR0
	Examples of DFSULTR0
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	Part 4. Analysis Utilities and Reports
	Chapter 12. IMS Monitor Report Print Utility (DFSUTR20)
	Restrictions for DFSUTR20
	Input and Output for DFSUTR20
	JCL Requirements for DFSUTR20
	DD Statements
	Analysis Control Data Set
	Specifying Distribution Redefinition

	Example of DFSUTR20

	Chapter 13. File Select and Formatting Print Utility (DFSERA10)
	Input and Output for DFSERA10
	JCL Requirements for DFSERA10
	DD Statements

	Utility Control Statements for DFSERA10
	CONTROL Statement
	OPTION Statement
	Keywords
	END Statement
	COMMENTS Statement

	Examples for DFSERA10
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	Record Format and Print Module (DFSERA30)
	The Deadlock Report
	Utility Control Statements

	Program Isolation Trace Record Format and Print Module (DFSERA40)
	DFSERA40 Utility Control Statements
	Output

	DL/I Call Image Capture Module (DFSERA50)
	Utility Control Statements

	IMS Trace Table Record Format and Print Module (DFSERA60)
	Utility Control Statements

	Enhanced Select Exit Routine (DFSERA70)
	Examples of Using the Enhanced Select Exit Routine (DFSERA70)

	Chapter 14. Fast Path Log Analysis Utility (DBFULTA0)
	Restrictions for DFBUTLA0
	Input and Output for DFBUTLA0
	Format of Total Traffic and Exception Traffic Data Sets

	Detail-Listing-of-Exception-Transactions Report
	Summary-of-Exception-Detail-by-Transaction-Code (for IFP Regions) Report
	Overall-Summary-of-Transit-Times-by-Transaction-Code (for IFP-Regions) Report
	Overall Summary of Resource Usage and Contentions for All Transaction Codes and PSBs Report
	Summary-of-Region-Occupancy Report
	Summary-of-VSO-Activity Report
	Recapitulation-of-the-Analysis Report
	JCL Requirements for DFBUTLA0
	DD Statements

	Utility Control Statements for DFBUTLA0
	Transit Time Exception Specification
	Analysis Parameter Statement Formats
	Starting Date Specification (STARTDAY)
	Ending Date Specification (ENDDAY)
	Starting Time Specification (START)
	Ending Time Specification (END)
	Exceptional Transit Time Specification (TT)
	Not Message-Driven Option (NON-MESSAGE or NOT-MESSAGE)
	Detail-Listing-of-Exception-Transactions Report Size Limitation (MAXDETAIL)
	DL/I Call Specification (CALLS)
	Buffer Use Specification (BUFFER)
	Data Space Use Specification (VSO)
	Printed Page Line Count Specification (LINECNT)

	Error Processing for DFBUTLA0

	Chapter 15. Offline Dump Formatter Utility (DFSOFMD0)
	Interactive Dump Formatter
	Migration Considerations
	Restrictions for DFSOFMD0
	Environments for DFSOFMD0
	IMS Online Environments
	IMS Batch Environments

	Input and Output for DFSOFMD0
	IPCS Execution
	DD Statements

	Chapter 16. Log Transaction Analysis Utility (DFSILTA0)
	Restrictions for DFSILTA0
	Input and Output for DFSILTA0
	JCL Requirements for DFSILTA0
	DD Statements

	Chapter 17. Statistical Analysis Utility (DFSISTS0)
	Restrictions for DFSISTS0
	Input and Output for DFSISTS0
	Log Records
	SORT and EDIT PASS1 (DFSISTS0)
	EDIT PASS2 (DFSIST20)
	Report Writer (DFSIST30)
	Message Select and Copy or List (DFSIST40)

	Examples of DFSISTS0
	Report Writer (DFSIST30) Output
	Message Select and Copy or List (DFSIST40) Output

	JCL Requirements for DFSISTS0
	DD Statements

	Utility Control Statements for DFSISTS0
	Transaction Code Control Statement
	Symbolic Terminal Name Control Statement
	Hardware Terminal Address Control Statement
	VTAM Terminal Name Control Statement
	Time Control Statement
	Nonprintable Character Control Statement

	Part 5. Interpreting IMS Reports
	Chapter 18. Interpreting IMS Monitor Reports
	Transaction Flow and IMS Monitor Events
	IMS Monitor Trace Event Intervals
	Overview of IMS Monitor Reports
	Sequence of Report Output
	Units of Measure in IMS Monitor Reports

	Documenting the Monitoring Run
	Adding to the System-Configuration Report Data
	Recording the Monitor Trace Interval
	Completing the Monitor Run Profile
	Verifying IMS Monitor Report Occurrences

	Monitoring Activity in Dependent Regions
	Detecting Database Processing Intent Conflicts
	Examining the Effects of Checkpoints
	Measuring Region Occupancy

	Monitoring Application Program Elapsed Time
	Monitoring I/O for Application Program DL/I Calls
	Monitoring MFS Activity
	Monitoring Message Queue Handling
	Detecting Checkpoint Effects
	Transaction Queueing Report

	Monitoring Database Buffers
	Monitoring Line Activity
	Monitoring Message Handling Efficiency
	IMS Internal Resource Usage
	Pool Space Failure
	Programs Experiencing Deadlock
	IMS Latch Conflict

	Using Frequency Distributions from IMS Monitor Output
	How to Get a Frequency Distribution Output
	How Frequency Distribution Ranges Are Defined
	Interpreting Distribution Appendix

	Interpreting IMS Monitor MSC Reports
	Determining Cross-System Queuing
	Assessing the Effect of Link Loading
	Assessing Link Queuing Times

	Extracting Multiple System Transaction Statistics
	Controlling the Log Merge
	Interpreting the Transaction Analysis Report

	Chapter 19. Interpreting IMS Monitor Reports for DBCTL
	IMS Monitor Trace Event Intervals
	Overview of IMS Monitor Reports
	Sequence of Report Output
	Units of Measure in IMS Monitor Reports

	Documenting the Monitoring Run
	Adding to the System Configuration Report Data
	Recording the Monitor Trace Interval
	Completing the Monitor Run Profile
	Verifying IMS Monitor Report Occurrences

	Monitoring Activity in Dependent Regions
	Detecting Database Processing Intent Conflicts
	Examining the Effects of Checkpoints
	Measuring Region Occupancy

	Monitoring Application Program Elapsed Time
	Monitoring I/O for Application Program DL/I Calls
	Transaction Queuing Report

	Monitoring Database Buffers
	IMS Internal Resource Usage
	Pool Space Failure
	Programs Experiencing Deadlock
	IMS Latch Conflict

	Using Frequency Distributions from IMS Monitor Output
	How to Get a Frequency Distribution Output
	How Frequency Distribution Ranges Are Defined
	Interpreting Distribution Appendix Output

	Chapter 20. Interpreting IMS Monitor Reports for DCCTL
	IMS Monitor Trace Event Intervals
	Overview of IMS Monitor Reports
	Sequence of Report Output
	Summary of IMS Monitor Reports in Output Sequence
	Units of Measure in IMS Monitor Reports

	Documenting the Monitoring Run
	Adding to the System Configuration Report Data
	Recording the Monitor Trace Interval
	Completing the Monitor Run Profile
	Verifying IMS Monitor Report Occurrences

	Monitoring Activity in Dependent Regions
	Examining the Effects of Checkpoints
	Measuring Region Occupancy

	Monitoring Application Program Elapsed Time
	Monitoring I/O for Application Program DL/I Calls
	Monitoring MFS Activity
	Monitoring Message Queue Handling
	Detecting Checkpoint Effects
	Transaction Queuing Report

	Monitoring Line Activity
	Monitoring Message Handling Efficiency
	IMS Internal Resource Usage
	Pool Space Contention
	IMS Latch Conflict

	Using Frequency Distributions from IMS Monitor Output
	How to Get a Frequency Distribution Output
	How Frequency Distribution Ranges Are Defined
	Interpreting Distribution Appendix Output

	Interpreting IMS Monitor MSC Reports
	Determining Cross–System Queuing
	Assessing the Effect of Link Loading
	Assessing Link Queuing Times

	Extracting Multiple System Transaction Statistics
	Controlling the Log Merge
	Interpreting the Transaction Analysis Report

	Chapter 21. Interpreting //DFSSTAT Reports
	JCL Description for //DFSSTAT
	Report Descriptions for //DFSSTAT
	PST-Accounting Report
	VSAM-Buffer-Pool Report
	OSAM-Buffer-Pool Report
	Sequential-Buffering-Summary Report
	Sequential-Buffering-Detail Report

	Chapter 22. Interpreting Statistical-Analysis and Log-Transaction Reports
	Statistical Analysis Utility Reports
	Calculating Transaction Loads
	Assessing Program-to-Program Traffic
	Obtaining Counts of Unsent Messages

	Auditing Critical Transactions
	Log Transaction Analysis Utility Reports
	Examining Scheduling Activity
	IMS Accounting Information
	Using the Application-Accounting Report
	Using IMS Transaction Profiles

	Part 6. Knowledge-Based Log Analysis
	Chapter 23. Knowledge-Based Log Analysis Overview
	Invoking KBLA from the IMS Application Menu
	Maintaining the KBLA Environment with Option 0
	Defining the Selection of IMS Logs using Option 5
	Using KBLA to Run a Job Against IMS Log Records
	Option 1: IMS Log Utilities
	Option 2: IMS Log Formatting
	Option 3: IMS Log Data Set Summary
	Option 4: IMS Knowledge-Based Analysis

	External Log Processing using Option 6

	Chapter 24. KBLA Log Formatting Modules
	KBLA Basic Record Formatting and Print Module (DFSKBLA3)
	Utility Control Statements for DFSKBLA3
	Output for DFSKBLA3

	KBLA Basic Record Formatting Module (DFSKBLA7)
	KBLA Summary Record Formatting Module (DFSKBLA8)
	KBLA Knowledge-Based Record Formatting Module (DFSKBLA9)
	KBLA Summary Record Formatting and Print Module (DFSKBLAS)
	Utility Control Statements for DFSKBLAS
	Output for DFSKBLAS

	KBLA Knowledge-Based Record Formatting and Print Module (DFSKBLAK)
	Utility Control Statements for DFSKBLAK
	Output for DFSKBLAK

	Chapter 25. DBCTL Transaction Analysis Utility (DFSKDBC0)
	Restrictions for DFSKDBC0
	Input and Output for DFSKDBC0
	JCL Requirements for DFSKDBC0
	DD Statements

	Using DFSKDBC0 to Sort a Report
	DD Statements
	Example of DFSKDBC0

	Chapter 26. IMS Records User Data Scrub Utility (DFSKSCR0)
	Restrictions for DFSKSCR0
	Input and Output for DFSKSCR0
	JCL Requirements for DFSKSCR0
	DD Statements
	Example of DFSKSCR0

	Chapter 27. MSC Link Performance Formatting Utility (DFSKMSC0)
	Restrictions for DFSKMSC0
	Input and Output for DFSKMSC0
	JCL Requirements for DFSKMSC0
	DD Statements
	Example of DFSKMSC0

	Chapter 28. Statistic Log Record Analysis Utility (DFSKDVS0)
	Restrictions for DFSKDVS0
	Input and Output for DFSKDVS0
	JCL Requirements for DFSKDVS0
	DD Statements

	Chapter 29. IRLM Lock Trace Analysis Utilities (DFSKLTA0, DFSKLTB0, DFSKLTC0)
	Restrictions for IRLM Lock Trace Analysis
	Input and Output for IRLM Lock Trace Analysis
	DFSKLTA0
	JCL Requirements for DFSKLTA0

	DFSKLTB0
	JCL Requirements for DFSKLTB0

	DFSKLTC0
	JCL Requirements for DFSKLTC0
	Control Statements for DFSKLTC0
	Control Keywords for DFSKLTC0

	IRLM Lock Trace Analysis Summary Report
	IRLM Lock Trace Analysis Detail Report

	Chapter 30. RECON Query of Log Data Set Names Utility (DFSKARC0)
	Input and Output for DFSKARC0
	JCL Requirements for DFSKARC0
	DD Statements
	JCL Example

	Control Statements for DFSKARC0
	Keywords

	Output Examples of DFSKARC0
	DSNLIST
	JCLOUT

	Return Codes for DFSKARC0
	RECON Query Summary Report

	Chapter 31. Log Summary Utility (DFSKSUM0)
	Dynamic Search
	Input and Output for DFSKSUM0
	JCL Requirements for DFSKSUM0
	DD Statements
	JCL Example

	Control Statements for DFSKSUM0
	Control Keywords for DFSKSUM0

	Return Codes for DFSKSUM0
	Output Examples of DFSKSUM0
	Log Summary Report Example
	Logical Record Selection Flow Report Example
	Short Log Summary Report (SUMONLY) Example

	Chapter 32. Deadlock Trace Record Analysis Utility (DFSKTDL0)
	Input and Output for DFSKTDL0
	JCL Requirements for DFSKTDL0
	DD Statements
	JCL Example

	Control Statements for DFSKTDL0
	Control Keywords for DFSKTDL0
	Global Keywords
	Processing Keywords

	Return Codes for DFSKTDL0
	Deadlock Trace Analysis Summary Report Example
	Deadlock Trace Analysis Victim Report Example
	Deadlock Trace Analysis Detail Report Example

	Chapter 33. Trace Record Extract Utility (DFSKXTR0)
	Input and Output for DFSKXTR0
	JCL Requirements for DFSKXTR0
	DD Statements
	JCL Example

	Control Statements for DFSKXTR0
	Control Keywords for DFSKXTR0
	Global Keywords
	Processing Keywords
	Trace Table Log Search Keywords
	Trace Table Entry Search Keywords

	Return Codes for DFSKXTR0
	Trace Entry Extract Summary Report Example

	Chapter 34. Log Record Processing Rate Analysis Utility (DFSKRSR0)
	Input and Output for DFSKRSR0
	JCL Requirements for DFSKRSR0
	DD Statements for DFSKRSR0
	JCL Example

	Control Statements for DFSKRSR0
	Control Keywords for DFSKRSR0
	Global Keywords
	Processing Keywords
	Selection Criteria Keywords

	Return Codes for DFSKRSR0
	DETAIL File Layout
	Log Record Processing Rate Analysis Summary Report Examples
	Example 1
	Example 2

	Part 7. Appendixes
	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	IMS Version 9 Library
	Supplementary Publications
	Publication Collections
	Accessibility Titles Cited in This Library

	Index

