
IMS

Application Programming:

Database Manager

Version 9

SC18-7809-00

���

IMS

Application Programming:

Database Manager

Version 9

SC18-7809-00

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

373.

First Edition (October 2004)

This edition applies to Version 9 of IMS (product number 5655–J38) and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . xiii

Tables . xv

About This Book . xvii

Summary of Contents . xvii

Prerequisite Knowledge . xvii

IBM Product Names Used in This Information xviii

How to Read Syntax Diagrams xix

How to Send Your Comments xxi

Summary of Changes . xxiii

Changes to This Book for IMS Version 9 xxiii

Technical Changes . xxiii

Editorial Changes . xxiii

Library Changes for IMS Version 9 xxiii

New and Revised Titles . xxiii

Organizational Changes . xxiv

Terminology Changes . xxiv

Accessibility Enhancements xxiv

Part 1. Writing Application Programs . 1

Chapter 1. How Application Programs Work with Database Manager 7

IMS Environments . 7

DL/I and Your Application Program 9

DL/I Codes . 9

Status, Return, and Reason Codes 9

Exceptional Condition Status Codes 9

High Availability Large Databases (HALDBs) 9

Error Routines . 10

Database Descriptions (DBDs) and Program Specification Blocks (PSBs) . . . 10

DL/I for CICS Online Users . 11

DL/I using the ODBA Interface 12

Database Hierarchy Examples 13

Medical Hierarchy Example 13

Bank Account Hierarchy Example 16

Chapter 2. Writing Your Application Programs 19

Programming Guidelines . 19

Segment Search Arguments (SSAs) 20

Unqualified SSAs . 20

Qualified SSAs . 21

SSA Guidelines . 22

Multiple Qualification Statements 23

SSAs and Command Codes 26

Considerations for Coding DL/I Calls and Data Areas 27

Preparing to Run Your CICS DL/I Call Program 28

Examples of How to Code DL/I Calls and Data Areas 29

Coding a Batch Program in Assembler Language 29

Coding a CICS Online Program in Assembler Language 32

Coding a Batch Program in C Language 34

Coding a Batch Program in COBOL 37

© Copyright IBM Corp. 1974, 2004 iii

||

||

Coding a CICS Online Program in COBOL 40

Coding a Batch Program in Pascal 45

Coding a Batch Program in PL/I 48

Coding a CICS Online Program in PL/I 51

Chapter 3. Defining Application Program Elements 55

Formatting DL/I Calls for Language Interfaces 55

Assembler Language Application Programming 56

Format . 56

Parameters . 57

Example of a DL/I Call Format 58

C Language Application Programming 58

Format . 58

Parameters . 59

I/O Area . 61

Example of a DL/I Call Format 61

COBOL Application Programming 61

Format . 61

Parameters . 62

Example of a DL/I Call Format 63

Pascal Application Programming 64

Format . 64

Parameters . 65

Example of a DL/I Call Format 66

Application Programming for PL/I 66

Format . 66

Parameters . 67

Example of a DL/I Call Format 68

Specifying the I/O PCB Mask 69

Specifying the DB PCB Mask 72

Specifying the AIB Mask . 75

Specifying the AIB Mask for ODBA Applications 76

Specifying the UIB (CICS Online Programs Only) 79

Specifying the I/O Areas . 82

Formatting Segment Search Arguments (SSAs) 83

SSA Coding Rules . 83

SSA Coding Formats . 84

GSAM Data Areas . 88

The AIBTDLI Interface . 88

Language Specific Entry Points 89

Assembler Language Entry Point 89

C Language Entry Point . 90

COBOL Entry Point . 90

Pascal Entry Point . 91

PL/I Entry Point . 91

CEETDLI, AIBTDLI, and AERTDLI Interface Considerations 91

Program Communication Block (PCB) Lists 92

PCB List Format . 92

GPSB PCB List . 92

PCB Summary . 92

The AERTLDI interface . 93

Language Environments . 94

The CEETDLI interface to IMS 95

Specifying LANG= Option for PL/I Compatibility 95

Special DL/I Situations . 95

Application Program Scheduling against HALDBs 95

iv Application Programming: Database Manager

Mixed-Language Programming 96

Language Environment Routine Retention 96

Extended Addressing Capabilities of z/OS 96

Preloaded Programs . 97

Chapter 4. Current Position in the Database After Each Call 99

Current Position after Successful Calls 99

Position after Retrieval Calls 100

Position after DLET . 101

Position after REPL . 103

Position after ISRT . 103

Current Position after Unsuccessful Calls 104

Position after an Unsuccessful DLET or REPL Call 104

Position after an Unsuccessful Retrieval or ISRT Call 105

Multiple Processing . 108

Multiple Positioning . 108

Advantages of Using Multiple Positioning 111

Multiple DB PCBs . 113

Chapter 5. Recovering Databases and Maintaining Database Integrity 115

Issuing Checkpoints . 115

Restarting Your Program From the Latest Checkpoint 115

Maintaining Database Integrity (IMS Batch, BMP, and IMS Online Regions) 116

Backing Out to a Prior Commit Point: ROLL, ROLB, and ROLS 116

Backing Out to an Intermediate Backout Point: SETS, SETU, and ROLS 120

Reserving Segments for the Exclusive Use of Your Program 122

Chapter 6. The Database Resource Adapter (DRA) 125

Thread Concepts . 125

Processing Threads . 125

Processing Multiple Threads 126

CCTL Multithread Example 126

Sync Points . 128

The Two-Phase Commit Protocol 129

In-Doubt State During Two-Phase Sync 131

DRA Startup Table . 132

Sample DFSPZP00 Source Code 132

DFSPRP Macro Keywords 132

Enabling the DRA for a CCTL 133

Enabling the DRA for the ODBA Interface 134

Processing CCTL DRA Requests 135

Processing ODBA Calls . 136

CCTL-Initiated DRA Function Requests 136

INIT Request . 136

RESYNC Request . 138

TERM Request . 139

Thread Function Requests 139

PAPL Mapping Format . 145

Terminating the DRA . 145

Designing the CCTL Recovery Process 146

CCTL Performance: Monitoring DRA Thread TCBs 147

DRA Thread Statistics . 147

DRA Statistics . 149

Tracing . 150

Sending Commands to IMS DB 150

Problem Diagnosis . 150

Contents v

Chapter 7. Secondary Indexing and Logical Relationships 153

How Secondary Indexing Affects Your Program 153

SSAs with Secondary Indexes 153

Multiple Qualification Statements with Secondary Indexes 154

DL/I Returns with Secondary Indexes 156

Status Codes for Secondary Indexes 156

Processing Segments in Logical Relationships 156

How Logical Relationships Affect Your Programming 158

Status Codes for Logical Relationships 159

Chapter 8. Processing GSAM Databases 161

Accessing GSAM Databases 161

PCB Masks for GSAM Databases 161

Retrieving and Inserting GSAM Records 163

Explicit Open and Close Calls to GSAM 164

GSAM Record Formats . 164

GSAM I/O Areas . 165

GSAM Status Codes . 165

Symbolic CHKP and XRST with GSAM 166

GSAM Coding Considerations 166

Origin of GSAM Data Set Characteristics 167

DD Statement DISP Parameter for GSAM Data Sets 168

Using Extended Checkpoint Restart for GSAM Data Sets 168

Concatenated Data Sets Used by GSAM 169

Suggested Method for Specifying GSAM Data Set Attributes 169

DLI, DBB, and BMP Region Types and GSAM 169

Chapter 9. Processing Fast Path Databases 171

Fast Path Database Calls . 171

Main Storage Databases (MSDBs) 172

Data Entry Databases (DEDBs) 173

Processing MSDBs and DEDBs 173

Updating Segments: REPL, DLET, ISRT, and FLD 173

Commit-Point Processing in MSDBs and DEDBs 177

VSO Considerations . 178

Data Locking for MSDBs and DEDBs 179

Restrictions on Using Calls for MSDBs 179

Processing DEDBs (IMS and CICS with DBCTL) 180

Processing DEDBs with Subset Pointers 180

Retrieving Location with the POS Call (for DEDB Only) 185

Commit-Point Processing in a DEDB 187

P Processing Option . 187

H Processing Option . 188

Data Locking . 188

Calls with Dependent Segments for DEDBs 189

Direct Dependent Segments 189

Sequential Dependent Segments 189

Fast Path Coding Considerations 189

Part 2. Reference . 191

Chapter 10. Command Code Reference 199

General Command Codes for DL/I Calls 201

C Command Code . 201

D Command Code . 202

F Command Code . 203

vi Application Programming: Database Manager

||

L Command Code . 204

N Command Code . 205

P Command Code . 206

Q Command Code . 206

U Command Code . 209

V Command Code . 210

NULL Command Code . 211

DEDB Command Codes for DL/I 211

Sample Application Program 211

M Command Code . 212

R Command Code . 213

S Command Code . 214

W Command Code . 215

Z Command Code . 216

Chapter 11. DL/I Calls for Database Management 217

Database Management Call Summary 217

CIMS Call . 219

Format . 219

Parameters . 219

Usage . 219

CLSE Call . 220

Format . 220

Parameters . 220

Usage . 221

DEQ Call . 221

Format (Full Function) . 221

Format (Fast Path DEDB) 221

Parameters . 221

Usage . 222

Restrictions . 222

DLET Call . 222

Format . 222

Parameters . 222

Usage . 223

FLD Call . 223

Format . 224

Parameters . 224

Usage . 224

FSAs . 225

GN/GHN Call . 226

Format . 226

Parameters . 226

Usage: Get Next (GN) . 227

Usage: Get Hold Next (GHN) 229

Usage: HDAM, PHDAM, or DEDB Database with GN 229

Restriction . 230

GNP/GHNP Call . 230

Format . 230

Parameters . 230

Usage: Get Next in Parent (GNP) 231

Usage: Get Hold Next in Parent (GHNP) 233

GU/GHU Call . 233

Format . 233

Parameters . 233

Usage: Get Unique (GU) . 234

Contents vii

Usage: Get Hold Unique (GHU) 235

Restriction . 235

ISRT Call . 235

Format . 235

Parameters . 236

Usage . 237

OPEN Call . 239

Format . 239

Parameters . 239

Usage . 239

POS Call . 239

Format . 240

Parameters . 240

Usage . 242

Restrictions . 242

REPL Call . 242

Format . 243

Parameters . 243

Usage . 243

Chapter 12. DL/I Calls for System Services 245

System Service Call Summary 246

APSB Call . 248

Format . 248

Parameters . 248

Usage . 248

CHKP (Basic) Call . 249

Format . 249

Parameters . 249

Usage . 249

CHKP (Symbolic) Call . 250

Format . 250

Parameters . 250

Usage . 251

Restrictions . 251

DPSB Call . 251

Format . 251

Parameters . 251

Usage . 252

GMSG Call . 252

Format . 252

Parameters . 252

Usage . 253

Restrictions . 254

GSCD Call . 254

Format . 254

Parameters . 254

Usage . 255

Restriction . 255

ICMD Call . 255

Format . 255

Parameters . 255

Usage . 256

Restrictions . 257

INIT Call . 257

Format . 257

viii Application Programming: Database Manager

Parameters . 257

Usage . 258

Restrictions . 262

INQY Call . 262

Format . 262

Parameters . 262

Usage . 263

Restrictions . 267

LOG Call . 267

Format . 268

Parameters . 268

Usage . 269

Restrictions . 269

PCB Call (CICS Online Programs Only) 269

Format . 269

Parameters . 269

Usage . 270

Restrictions . 270

RCMD Call . 270

Format . 270

Parameters . 270

Usage . 271

Restrictions . 271

ROLB Call . 271

Format . 272

Parameters . 272

Restrictions . 272

ROLL Call . 272

Format . 272

Parameters . 273

Usage . 273

Restriction . 273

ROLS Call . 273

Format . 273

Parameters . 273

Usage . 274

Restrictions . 274

SETS/SETU Call . 274

Format . 274

Parameters . 274

Usage . 275

Restrictions . 275

SNAP Call . 275

Format . 276

Parameters . 276

Usage . 278

Restrictions . 278

STAT Call . 278

Format . 278

Parameters . 279

Usage . 280

Restrictions . 280

SYNC Call . 280

Format . 280

Parameters . 281

Usage . 281

Contents ix

Restrictions . 281

TERM Call (CICS Online Programs Only) 281

Format . 281

Usage . 281

Restrictions . 282

XRST Call . 282

Format . 282

Parameters . 282

Usage . 283

Restrictions . 285

Chapter 13. Relationship Between Calls and AIB and PCBs 287

Chapter 14. DL/I Test Program (DFSDDLT0) 289

Control Statements . 290

Planning the Control Statement Order 291

ABEND Statement . 292

Examples of ABEND Statement 292

CALL Statement . 292

CALL FUNCTION Statement 292

CALL DATA Statement . 296

OPTION DATA Statement 298

FEEDBACK DATA Statement 298

DL/I Call Functions . 299

Examples of DL/I Call Functions 302

CALL FUNCTION Statement with Column-Specific SSAs 310

DFSDDLT0 Call Functions 311

Examples of DFSDDLT0 Call Functions 312

COMMENT Statement . 313

Conditional COMMENT Statement 313

Unconditional COMMENT Statement 313

Example of COMMENT Statement 313

COMPARE Statement . 314

COMPARE DATA Statement 314

COMPARE AIB Statement 315

COMPARE PCB Statement 316

Examples of COMPARE DATA and COMPARE PCB Statements 318

IGNORE Statement . 320

Example of IGNORE Statement Using N or 320

OPTION Statement . 320

Example of OPTION Control Statement 321

PUNCH CTL Statement . 321

Example of PUNCH CTL Statement 323

Example of PUNCH CTL Statement for All Parameters 324

STATUS Statement . 324

Examples of STATUS Statement 326

WTO Statement . 327

Example of WTO Statement 327

WTOR Statement . 327

Example of WTOR Statement 328

JCL Requirements . 328

SYSIN DD Statement . 329

SYSIN2 DD Statement . 329

PRINTDD DD Statement . 329

PUNCHDD DD Statement 329

Using the PREINIT Parameter for DFSDDLT0 Input Restart 330

x Application Programming: Database Manager

Execution of DFSDDLT0 in IMS Regions 331

Explanation of DFSDDLT0 Return Codes 332

DFSDDLT0 Hints . 332

Load a Database . 332

Print the Segments in a Database 333

Retrieve and Replace a Segment 333

Delete a Segment . 334

Do Regression Testing . 334

Use as a Debugging Aid . 334

Verify How a Call Is Executed 334

Chapter 15. IMS Adapter for REXX 335

Sample Exit Routine (DFSREXXU) 336

Addressing Other Environments 336

REXX Transaction Programs 337

IMS Adapter for REXX Overview Diagram 338

IVPREXX Sample Application 339

REXXTDLI Commands . 341

REXXTDLI Calls . 341

Return Codes . 341

Parameter Handling . 342

Example DL/I Calls . 343

REXXIMS Extended Commands 344

DLIINFO . 345

IMSRXTRC . 346

MAPDEF . 347

MAPGET . 349

MAPPUT . 350

SET . 351

SRRBACK and SRRCMIT 352

STORAGE . 352

WTO, WTP, and WTL . 354

WTOR . 354

IMSQUERY Extended Functions 355

Sample Execs Using REXXTDLI 356

SAY Exec: For Expression Evaluation 357

PCBINFO Exec: Display Available PCBs in Current PSB 358

PART Execs: Database Access Examples 360

DOCMD: IMS Commands Front End 362

IVPREXX: MPP/IFP Front End for General Exec Execution 367

Chapter 16. CICS-DL/I User Interface Block Return Codes 369

Not-Open Conditions . 370

Invalid Request Conditions . 370

Part 3. Appendixes . 371

Notices . 373

Programming Interface Information 375

Trademarks . 375

Bibliography . 377

IMS Version 9 Library . 377

Supplementary Publications . 378

Publication Collections . 378

Accessibility Titles Cited in This Library 378

Contents xi

Index . 379

xii Application Programming: Database Manager

Figures

 1. DL/I Program Elements . 8

 2. Normal Relationship between Programs, PSBs, PCBs, DBDs, and Databases 10

 3. Relationship between Programs and Multiple PCBs (Concurrent Processing) 11

 4. The Structure of a Call-Level CICS Online Program 11

 5. Medical Hierarchy . 14

 6. Segment with a Noncontiguous Sequence Field 22

 7. D Command Code Example . 26

 8. Sample Assembler Language Program . 30

 9. Sample Call-Level Assembler Language Program (CICS Online) 32

10. Sample C Language Program . 35

11. Sample COBOL Program . 38

12. Sample Call-Level OS/V COBOL program (CICS Online) 43

13. Sample Pascal Program . 46

14. Sample PL/I Program . 48

15. Sample Call-Level PL/I Program (CICS Online) . 52

16. Defining the UIB, PCB Address List, and the PCB Mask for VS COBOL II 80

17. Defining the UIB, PCB Address List, and the PCB Mask for OS/VS COBOL 81

18. The COBOL COPY DLIUIB Copy Book . 81

19. Defining the UIB, PCB Address List, and the PCB Mask for PL/I 82

20. Defining the UIB, PCB Address List, and the PCB Mask for Assembler Language 82

21. Example Code: * CONSTANT AREA . 85

22. Qualified SSA without Command Codes . 87

23. Current Position Hierarchy . 100

24. Example Code: Deleting Segment C11 . 101

25. Hierarchy after Deleting a Segment . 102

26. Hierarchy after Deleting a Segment and Dependents 102

27. Hierarchy after Adding New Segments and Dependents 104

28. DL/I Positions . 105

29. Multiple Processing . 108

30. Multiple Positioning Hierarchy . 109

31. Single and Multiple Positioning Hierarchy . 110

32. SETS and ROLS Calls Working Together . 120

33. ODBA Two-Phase Sync Point Processing . 131

34. DRA Component Structure with the ODBA Interface 135

35. Example of Using the Dependent AND . 155

36. Example of Using the Independent AND . 155

37. Patient and Item Hierarchies . 157

38. Concatenated Segment . 158

39. //IMS DD Statement Example . 170

40. Sample PCB Specifying View=MSDB . 178

41. Processing a Long Chain of Segment Occurrences with Subset Pointers 181

42. Examples of Setting Subset Pointers . 181

43. Additional Examples of Setting Subset Pointers 182

44. How Subset Pointers Divide a Chain into Subsets 182

45. U Command Code Example . 209

46. Processing for the Passbook Example . 212

47. Moving the Subset Pointer to the Next Segment after Your Current Position 213

48. Retrieving the First Segment in a Chain of Segments 214

49. Unconditionally Setting the Subset Pointer to Your Current Position 215

50. Conditionally Setting the Subset Pointer to Your Current Position 216

51. Hierarchic Sequence . 228

52. I/O Area for SNAP Operation Parameters . 276

53. Example JCL Code for DD Statement Definition 328

© Copyright IBM Corp. 1974, 2004 xiii

||

||

54. Example JCL Code for DFSDDLT0 in a BMP . 328

55. Using the Binder to Copy the Name IVPREXX 337

56. JCL Code Used to Run the IVPREXX Sample Exec 338

57. IMS Adapter for REXX Logical Overview Diagram 339

58. Exec To Do Calculations . 357

59. PDF EDIT Session on the SAY Exec . 357

60. Example Output from the SAY Exec . 357

61. Example Output of PCBINFO Exec on a PSB without Database PCBs. 358

62. Example Output of PCBINFO Exec on a PSB with a Database PCB. 358

63. PCBINFO Exec Listing . 359

64. Example Output of PARTNUM Exec . 360

65. Example Output of PARTNAME Exec . 360

66. PARTNUM Exec: Show Set of Parts Near a Specified Number 361

67. PARTNAME Exec: Show Parts with Similar Names 362

68. Output from = > DOCMD . 363

69. Output from = > DOCMD /DIS NODE ALL;? . 363

70. Output from = > DOCMD /DIS NODE ALL;CID>0 363

71. Output from = > DOCMD /DIS NODE ALL;TYPE=SLU2 364

72. Output from = > DOCMD /DIS TRAN ALL;ENQCT>0 & RECTYPE=’T02’ 364

73. Output from = > DOCMD /DIS LTERM ALL;ENQCT>0 364

74. DOCMD Exec: Process an IMS Command . 365

xiv Application Programming: Database Manager

Tables

 1. Licensed Program Full Names and Short Names xviii

 2. PATIENT Segment . 14

 3. ILLNESS Segment . 15

 4. TREATMNT Segment . 15

 5. BILLING Segment . 15

 6. PAYMENT Segment . 15

 7. HOUSEHOLD Segment . 16

 8. Teller Segment in a Fixed Related MSDB . 16

 9. Branch Summary Segment in a Dynamic Related MSDB 17

10. Account Segment in a Nonrelated MSDB . 17

11. Qualified SSA Structure . 21

12. Unqualified SSA with Command Code . 27

13. Qualified SSA with Command Code . 27

14. I/O PCB Mask . 69

15. DB PCB Mask . 72

16. AIB Fields . 75

17. AIB Fields for Use of ODBA Applications . 76

18. Relational Operators . 84

19. I/O PCB and Alternate PCB Information Summary 93

20. Using LANG= Option in a Language Environment for PL/I Compatibility 95

21. Results of Single and Multiple Positioning with DL/I Calls 110

22. Comparison of ROLB, ROLL, and ROLS . 117

23. Example of Events in a Multithreading System 127

24. CCTL Single-Phase Sync Point Processing . 130

25. CCTL Two-Phase Sync Point Processing . 130

26. Information Provided for the Schedule Process: 147

27. Information Provided at UOR Termination: . 148

28. GSAM DB PCB Mask . 162

29. Summary of GSAM Calls . 167

30. Summary of Fast Path Database Calls . 171

31. Subset Pointer Command Codes and Calls . 172

32. FSA Structure . 174

33. Unqualified SSA with Subset Pointer Command Code 183

34. Qualified SSA with Subset Pointer Command Code 183

35. Qualified POS Call: Keywords and Map of I/O Area Returned 186

36. Summary of Command Codes . 199

37. Command Codes and Related Calls . 200

38. Command Codes for DL/I Calls . 200

39. Summary of DB Calls . 218

40. Unqualified POS Call: Keywords and Map of the I/O Area Return Output 241

41. Summary of System Service Calls . 246

42. GMSG Support by Application Region Type . 254

43. ICMD Support by Application Region Type . 256

44. INIT DBQUERY: Examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI 258

45. INIT DBQUERY: I/O Area Example for PLITDLI 258

46. INIT I/O Area Examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI 259

47. INIT I/O Area Examples for PLITDLI . 260

48. INIT I/O Area Examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI 260

49. INIT I/O Area Examples for PLITDLI . 261

50. INQY ENVIRON Data Output . 264

51. Subfunction, PCB, and I/O Area Combinations for the INQY Call 267

52. Log Record Formats for COBOL, C, Assembler, Pascal, and PL/I Programs for the AIBTDLI,

ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI Interfaces 268

© Copyright IBM Corp. 1974, 2004 xv

53. Log Record Formats for COBOL, C, Assembler, Pascal, and PL/I Programs for the PLITDLI

Interface . 268

54. RCMD Support by Application Region Type . 271

55. SNAP Operation Parameters . 277

56. Call Relationship to PCBs . 287

57. Summary of DFSDDLT0 Control Statements . 290

58. ABEND Statement . 292

59. CALL FUNCTION Statement . 293

60. CALL DATA Statement . 296

61. OPTION DATA Statement . 298

62. FEEDBACK DATA Statement . 298

63. DL/I Call Functions . 299

64. CALL FUNCTION Statement (Column-Specific SSAs) 310

65. CALL FUNCTION Statement with DFSDDLT0 Call Functions 311

66. COMMENT Statement . 313

67. COMPARE DATA Statement . 314

68. COMPARE AIB Statement . 316

69. COMPARE PCB Statement . 316

70. IGNORE Statement . 320

71. OPTION Statement . 320

72. PUNCH CTL Statement . 321

73. STATUS Statement . 324

74. WTO Statement . 327

75. WTOR Statement . 327

76. IMS Adapter for REXX Parameter Types and Definitions 343

77. REXXIMS Extended Commands . 345

78. Return Codes in UIBFCTR . 369

79. Return Codes in UIBDLTR if UIBFCTR='0C' (NOTOPEN) 369

80. Return Codes in UIBDLTR if UIBFCTR='08' (INVREQ) 369

xvi Application Programming: Database Manager

About This Book

This information is available as part of the DB2® Information Management Software

Information Center for z/OS® Solutions. To view the information within the DB2

Information Management Software Information Center for z/OS Solutions, go to

http://publib.boulder.ibm.com/infocenter/dzichelp. This information is also available in

PDF and BookManager® formats. To get the most current versions of the PDF and

BookManager formats, go to the IMS™ Library page at

www.ibm.com/software/data/ims/library.html.

This book is a guide to application programming in an IMS Database Manager (IMS

DB) environment. It covers basic information on coding DL/I calls for DB programs.

The book is designed to provide guidance for application programmers who use the

IMS DB environment to create and run application programs. Portions of this book

are for programmers who use IMS from a Customer Information Control System

(CICS®) environment.

This book also contains information on the DBCTL environment. DBCTL is

generated by IMS DB, contains no data communication components, and is

designed to function as a database manager for non-IMS transaction management

systems.

With IMS Version 9, you can reorganize HALDB partitions online, either by using

the integrated HALDB Online Reorganization function or by using an external

product. In this information, the term HALDB Online Reorganization refers to the

integrated HALDB Online Reorganization function that is part of IMS Version 9,

unless otherwise indicated.

Summary of Contents

This book has two parts:

v Part 1, “Writing Application Programs,” on page 1 provides basic information on

coding DL/I calls for IMS DB programs, information that you can use to

interactively develop REXX EXECs under TSO/E and execute them in IMS

MPPs, BMPs, IFPs, or batch regions.

v Part 2, “Reference,” on page 191 provides additional information that you need to

write and test your application programs.

Prerequisite Knowledge

IBM® offers a wide variety of classroom and self-study courses to help you learn

IMS. For a complete list, see the IMS home page on the World Wide Web at:

www.ibm.com/ims.

Before using this book, you should understand the concepts of application design

presented in IMS Version 9: Application Programming: Design Guide, which

assumes you understand basic IMS concepts and the various environments.

This book is an extension to IMS Version 9: Application Programming: Design

Guide. The IMS concepts explained in this manual are limited to those concepts

that are pertinent to developing and coding application programs. You should also

know how to use assembler language, C language, COBOL, Pascal, or PL/I. CICS

programs can be written in assembler language, C language, COBOL, PL/I, and

C++.

© Copyright IBM Corp. 1974, 2004 xvii

IBM Product Names Used in This Information

In this information, the licensed programs shown in Table 1 are referred to by their

short names.

 Table 1. Licensed Program Full Names and Short Names

Licensed program full name Licensed program short name

IBM Application Recovery Tool for IMS and

DB2

Application Recovery Tool

IBM CICS Transaction Server for OS/390® CICS

IBM CICS Transaction Server for z/OS CICS

IBM DB2 Universal Database™ DB2 Universal Database

IBM DB2 Universal Database for z/OS DB2 UDB for z/OS

IBM Enterprise COBOL for z/OS and OS/390 Enterprise COBOL

IBM Enterprise PL/I for z/OS and OS/390 Enterprise PL/I

IBM High Level Assembler for MVS™ & VM &

VSE

High Level Assembler

IBM IMS Advanced ACB Generator IMS Advanced ACB Generator

IBM IMS Batch Backout Manager IMS Batch Backout Manager

IBM IMS Batch Terminal Simulator IMS Batch Terminal Simulator

IBM IMS Buffer Pool Analyzer IMS Buffer Pool Analyzer

IBM IMS Command Control Facility for z/OS IMS Command Control Facility

IBM IMS Connect for z/OS IMS Connect

IBM IMS Connector for Java™ IMS Connector for Java

IBM IMS Database Control Suite IMS Database Control Suite

IBM IMS Database Recovery Facility for z/OS IMS Database Recovery Facility

IBM IMS Database Repair Facility IMS Database Repair Facility

IBM IMS DataPropagator™ for z/OS IMS DataPropagator

IBM IMS DEDB Fast Recovery IMS DEDB Fast Recovery

IBM IMS Extended Terminal Option Support IMS ETO Support

IBM IMS Fast Path Basic Tools IMS Fast Path Basic Tools

IBM IMS Fast Path Online Tools IMS Fast Path Online Tools

IBM IMS Hardware Data

Compression-Extended

IMS Hardware Data Compression-Extended

IBM IMS High Availability Large Database

(HALDB) Conversion Aid for z/OS

IBM IMS HALDB Conversion Aid

IBM IMS High Performance Change

Accumulation Utility for z/OS

IMS High Performance Change Accumulation

Utility

IBM IMS High Performance Load for z/OS IMS HP Load

IBM IMS High Performance Pointer Checker

for OS/390

IMS HP Pointer Checker

IBM IMS High Performance Prefix Resolution

for z/OS

IMS HP Prefix Resolution

IBM Tivoli® NetView® for z/OS Tivoli NetView for z/OS

IBM WebSphere® Application Server for z/OS

and OS/390

WebSphere Application Server for z/OS

xviii Application Programming: Database Manager

Table 1. Licensed Program Full Names and Short Names (continued)

Licensed program full name Licensed program short name

IBM WebSphere MQ for z/OS WebSphere MQ

IBM WebSphere Studio Application Developer

Integration Edition

WebSphere Studio

IBM z/OS z/OS

Additionally, this information might contain references to the following IBM product

names:

v ″IBM C/C++ for MVS″ or ″IBM C/C++ for MVS/ESA″ is referred to as either

″C/MVS″ or ″C++/MVS.″

v ″IBM CICS for MVS″ is referred to as ″CICS.″

v ″IBM COBOL for MVS & VM,″ ″IBM COBOL for OS/390 & VM,″ or ″IBM COBOL

for z/OS & VM″ is referred to as ″COBOL.″

v ″IBM DataAtlas for OS/2″ is referred to as ″DataAtlas.″

v ″IBM Language Environment for MVS & VM″ is referred to as ″Language

Environment.″

v ″IBM PL/I for MVS & VM″ or ″IBM PL/I for OS/390 & VM″ is referred to as ″PL/I.″

How to Read Syntax Diagrams

The following rules apply to the syntax diagrams that are used in this information:

v Read the syntax diagrams from left to right, from top to bottom, following the path

of the line. The following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.

– The ---> symbol indicates that the syntax diagram is continued on the next

line.

– The >--- symbol indicates that a syntax diagram is continued from the

previous line.

– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the

execution of the syntax element and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

About This Book xix

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path, and the

remaining choices are shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be

repeated.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can repeat the items in the

stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is

shown separately from the main syntax diagram, but the contents of the fragment

should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

 required_item

optional_item

v In IMS, a b symbol indicates one blank position.

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic

letters (for example, column-name). They represent user-supplied names or

values.

v Separate keywords and parameters by at least one space if no intervening

punctuation is shown in the diagram.

xx Application Programming: Database Manager

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,

exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest

quality information. If you have any comments about this or any other IMS

information, you can take one of the following actions:

v Go to the IMS Library page at www.ibm.com/software/data/ims/library.html and

click the Library Feedback link, where you can enter and submit comments.

v Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the

title, the part number of the title, the version of IMS, and, if applicable, the

specific location of the text on which you are commenting (for example, a page

number in the PDF or a heading in the Information Center).

About This Book xxi

xxii Application Programming: Database Manager

Summary of Changes

Changes to This Book for IMS Version 9

This book contains new technical information for IMS Version 9, as well as editorial

changes.

Technical Changes

New information on the following enhancements is included:

v The sample PL/I code in “Coding a Batch Program in PL/I” on page 48 has been

modified.

v The sample CICS PL/I code in “Coding a CICS Online Program in PL/I” on page

51 has been modified.

v Coding a batch program in COBOL includes new information . For more

information, see “Coding a Batch Program in COBOL” on page 37.

v Issuing a POS call includes new information. For more information, see “POS

Call” on page 239.

v AIB has been added to Table 56 on page 287. For more information, see

Chapter 13, “Relationship Between Calls and AIB and PCBs,” on page 287.

Editorial Changes

The following organizational changes have been made to this book:

v “Segment Search Arguments (SSAs)” on page 20 has been moved from

Chapter 1, “How Application Programs Work with Database Manager,” on page 7

to Chapter 2, “Writing Your Application Programs,” on page 19.

v “Multiple Qualification Statements” on page 23 has been added to “Segment

Search Arguments (SSAs)” on page 20.

For detailed information about technical enhancements for IMS Version 9, see the

IMS Version 9: Release Planning Guide.

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of one title, a

change of one title, organizational changes, and a major terminology change.

Changes are indicated by a vertical bar (|) to the left of the changed text.

The IMS Version 9 information is now available in the DB2 Information Management

Software Information Center for z/OS Solutions, which is available at

http://publib.boulder.ibm.com/infocenter/dzichelp. The DB2 Information Management

Software Information Center for z/OS Solutions provides a graphical user interface

for centralized access to the product information for IMS, IMS Tools, DB2 Universal

Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management Facility

(QMF™).

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:

v IMS Version 9: IMS Connect Guide and Reference

© Copyright IBM Corp. 1974, 2004 xxiii

The library includes new information: IMS Version 9: IMS Connect Guide and

Reference. This information is available in softcopy format only, as part of the

DB2 Information Management Software Information Center for z/OS Solutions,

and in PDF and BookManager formats.

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655-K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

v The information formerly titled IMS Version 8: IMS Java User’s Guide is now

titled IMS Version 9: IMS Java Guide and Reference. This information is

available in softcopy format only, as part of the DB2 Information Management

Software Information Center for z/OS Solutions, and in PDF and BookManager

formats.

v To complement the IMS Version 9 library, a new book, An Introduction to IMS by

Dean H. Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls

(ISBN # 0-13-185671-5), is available starting February 2005 from IBM Press. Go

to the IMS Web site at www.ibm.com/ims for details.

Organizational Changes

Organization changes to the IMS Version 9 library include changes to:

v IMS Version 9: IMS Java Guide and Reference

v IMS Version 9: Messages and Codes, Volume 1

v IMS Version 9: Utilities Reference: System

The chapter titled ″DLIModel Utility″ has moved from IMS Version 9: IMS Java

Guide and Reference to IMS Version 9: Utilities Reference: System.

The DLIModel utility messages that were in IMS Version 9: IMS Java Guide and

Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

Terminology Changes

IMS Version 9 introduces new terminology for IMS commands:

type-1 command

A command, generally preceded by a leading slash character, that can be

entered from any valid IMS command source. In IMS Version 8, these

commands were called classic commands.

type-2 command

A command that is entered only through the OM API. Type-2 commands

are more flexible than type-2 commands and can have a broader scope. In

IMS Version 8, these commands were called IMSplex commands or

enhanced commands.

Accessibility Enhancements

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products. The major accessibility features

in z/OS products, including IMS, enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

xxiv Application Programming: Database Manager

User Assistive Technologies

Assistive technology products, such as screen readers, function with the IMS user

interfaces. Consult the documentation of the assistive technology products for

specific information when you use assistive technology to access these interfaces.

Accessible Information

Online information for IMS Version 9 is available in BookManager format, which is

an accessible format. All BookManager functions can be accessed by using a

keyboard or keyboard shortcut keys. BookManager also allows you to use screen

readers and other assistive technologies. The BookManager READ/MVS product is

included with the z/OS base product, and the BookManager Softcopy Reader (for

workstations) is available on the IMS Licensed Product Kit (CD), which you can

download from the Web at www.ibm.com.

Keyboard Navigation of the User Interface

Users can access IMS user interfaces using TSO/E or ISPF. Refer to the z/OS

V1R1.0 TSO/E Primer, the z/OS V1R5.0 TSO/E User’s Guide, and the z/OS

V1R5.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate each

interface, including the use of keyboard shortcuts or function keys (PF keys). Each

guide includes the default settings for the PF keys and explains how to modify their

functions.

Summary of Changes xxv

xxvi Application Programming: Database Manager

Part 1. Writing Application Programs

Chapter 1. How Application Programs Work with Database Manager 7

IMS Environments . 7

DL/I and Your Application Program 9

DL/I Codes . 9

Status, Return, and Reason Codes 9

Exceptional Condition Status Codes 9

High Availability Large Databases (HALDBs) 9

Error Routines . 10

Database Descriptions (DBDs) and Program Specification Blocks (PSBs) . . . 10

DL/I for CICS Online Users . 11

DL/I using the ODBA Interface 12

Database Hierarchy Examples 13

Medical Hierarchy Example 13

Bank Account Hierarchy Example 16

Related MSDBs . 16

Nonrelated MSDBs . 17

Chapter 2. Writing Your Application Programs 19

Programming Guidelines . 19

Segment Search Arguments (SSAs) 20

Unqualified SSAs . 20

Qualified SSAs . 21

Sequence Fields of a Virtual Logical Child 22

SSA Guidelines . 22

Multiple Qualification Statements 23

Example of How to Use Multiple Qualification Statements 25

Multiple Qualification Statements for HDAM, PHDAM, or DEDB 25

SSAs and Command Codes 26

Considerations for Coding DL/I Calls and Data Areas 27

Preparing to Run Your CICS DL/I Call Program 28

Examples of How to Code DL/I Calls and Data Areas 29

Coding a Batch Program in Assembler Language 29

Binding Assembler Code to the IMS Language Interface Module 32

Coding a CICS Online Program in Assembler Language 32

Coding a Batch Program in C Language 34

Binding C Code to the Language Interface Module 37

Coding a Batch Program in COBOL 37

Binding COBOL Code to the IMS Language Interface Module 40

Coding a CICS Online Program in COBOL 40

Ensuring Addressability Using the COBOL Optimization Feature (CICS

Online Only) . 45

Coding a Batch Program in Pascal 45

Binding Pascal Code to the IMS Language Interface Module 47

Coding a Batch Program in PL/I 48

Binding PL/I Code to the IMS Language Interface Module 50

Coding a CICS Online Program in PL/I 51

Chapter 3. Defining Application Program Elements 55

Formatting DL/I Calls for Language Interfaces 55

Assembler Language Application Programming 56

Format . 56

Parameters . 57

Example of a DL/I Call Format 58

© Copyright IBM Corp. 1974, 2004 1

||

||

||

||

||

||

C Language Application Programming 58

Format . 58

Parameters . 59

I/O Area . 61

Example of a DL/I Call Format 61

COBOL Application Programming 61

Format . 61

Parameters . 62

Example of a DL/I Call Format 63

Pascal Application Programming 64

Format . 64

Parameters . 65

Example of a DL/I Call Format 66

Application Programming for PL/I 66

Format . 66

Parameters . 67

Example of a DL/I Call Format 68

Specifying the I/O PCB Mask 69

Specifying the DB PCB Mask 72

Specifying the AIB Mask . 75

Specifying the AIB Mask for ODBA Applications 76

Specifying the UIB (CICS Online Programs Only) 79

Specifying the I/O Areas . 82

Formatting Segment Search Arguments (SSAs) 83

SSA Coding Rules . 83

SSA Coding Formats . 84

Assembler Language SSA Definition Examples 84

C Language SSA Definition Examples 85

COBOL SSA Definition Examples 86

Pascal SSA Definition Examples 86

PL/I SSA Definition Examples 87

GSAM Data Areas . 88

The AIBTDLI Interface . 88

Language Specific Entry Points 89

Assembler Language Entry Point 89

C Language Entry Point . 90

COBOL Entry Point . 90

Pascal Entry Point . 91

PL/I Entry Point . 91

CEETDLI, AIBTDLI, and AERTDLI Interface Considerations 91

Program Communication Block (PCB) Lists 92

PCB List Format . 92

GPSB PCB List . 92

PCB Summary . 92

The AERTLDI interface . 93

Language Environments . 94

The CEETDLI interface to IMS 95

Specifying LANG= Option for PL/I Compatibility 95

Special DL/I Situations . 95

Application Program Scheduling against HALDBs 95

Mixed-Language Programming 96

Language Environment Routine Retention 96

Extended Addressing Capabilities of z/OS 96

Preloaded Programs . 97

Chapter 4. Current Position in the Database After Each Call 99

2 Application Programming: Database Manager

Current Position after Successful Calls 99

Position after Retrieval Calls 100

Position after DLET . 101

Position after REPL . 103

Position after ISRT . 103

Current Position after Unsuccessful Calls 104

Position after an Unsuccessful DLET or REPL Call 104

Position after an Unsuccessful Retrieval or ISRT Call 105

Multiple Processing . 108

Multiple Positioning . 108

Advantages of Using Multiple Positioning 111

How Multiple Positioning Affects Your Program 111

Resetting Position with Multiple Positioning 113

Multiple DB PCBs . 113

Chapter 5. Recovering Databases and Maintaining Database Integrity 115

Issuing Checkpoints . 115

Restarting Your Program From the Latest Checkpoint 115

Maintaining Database Integrity (IMS Batch, BMP, and IMS Online Regions) 116

Backing Out to a Prior Commit Point: ROLL, ROLB, and ROLS 116

ROLL . 117

ROLB . 118

ROLS . 119

Backing Out to an Intermediate Backout Point: SETS, SETU, and ROLS 120

SETS and SETU Calls 120

ROLS . 122

Reserving Segments for the Exclusive Use of Your Program 122

Chapter 6. The Database Resource Adapter (DRA) 125

Thread Concepts . 125

Processing Threads . 125

Processing a CCTL Thread 126

Processing an ODBA Thread 126

Processing Multiple Threads 126

Processing Multiple CCTL Threads 126

Processing Multiple ODBA Threads 126

CCTL Multithread Example 126

Sync Points . 128

The Two-Phase Commit Protocol 129

In-Doubt State During Two-Phase Sync 131

DRA Startup Table . 132

Sample DFSPZP00 Source Code 132

DFSPRP Macro Keywords 132

Enabling the DRA for a CCTL 133

Enabling the DRA for the ODBA Interface 134

Processing CCTL DRA Requests 135

Processing ODBA Calls . 136

CCTL-Initiated DRA Function Requests 136

INIT Request . 136

INIT Request, Identify to DBCTL 137

INIT Request after a Previous DRA Session Termination 138

RESYNC Request . 138

TERM Request . 139

Thread Function Requests 139

SCHED Request . 139

IMS Request . 141

Part 1. Writing Application Programs 3

SYNTERM Request . 142

PREP Request . 143

COMTERM Request . 143

ABTTERM Request . 144

TERMTHRD Request . 144

PAPL Mapping Format . 145

Terminating the DRA . 145

Designing the CCTL Recovery Process 146

CCTL Performance: Monitoring DRA Thread TCBs 147

DRA Thread Statistics . 147

DRA Statistics . 149

Evaluating the DRA Statistics 149

Tracing . 150

Sending Commands to IMS DB 150

Problem Diagnosis . 150

SDUMP . 151

SNAP . 151

Chapter 7. Secondary Indexing and Logical Relationships 153

How Secondary Indexing Affects Your Program 153

SSAs with Secondary Indexes 153

Multiple Qualification Statements with Secondary Indexes 154

The Dependent AND . 154

The Independent AND . 155

DL/I Returns with Secondary Indexes 156

Status Codes for Secondary Indexes 156

Processing Segments in Logical Relationships 156

How Logical Relationships Affect Your Programming 158

Status Codes for Logical Relationships 159

Chapter 8. Processing GSAM Databases 161

Accessing GSAM Databases 161

PCB Masks for GSAM Databases 161

Retrieving and Inserting GSAM Records 163

Explicit Open and Close Calls to GSAM 164

GSAM Record Formats . 164

GSAM I/O Areas . 165

GSAM Status Codes . 165

Symbolic CHKP and XRST with GSAM 166

GSAM Coding Considerations 166

Origin of GSAM Data Set Characteristics 167

DD Statement DISP Parameter for GSAM Data Sets 168

Using Extended Checkpoint Restart for GSAM Data Sets 168

Concatenated Data Sets Used by GSAM 169

Suggested Method for Specifying GSAM Data Set Attributes 169

DLI, DBB, and BMP Region Types and GSAM 169

Chapter 9. Processing Fast Path Databases 171

Fast Path Database Calls . 171

Main Storage Databases (MSDBs) 172

Data Entry Databases (DEDBs) 173

Processing MSDBs and DEDBs 173

Updating Segments: REPL, DLET, ISRT, and FLD 173

Checking the Contents of a Field: FLD/VERIFY 174

Changing the Contents of a Field: FLD/CHANGE 176

Example of Using FLD/VERIFY and FLD/CHANGE 177

4 Application Programming: Database Manager

||

Commit-Point Processing in MSDBs and DEDBs 177

MSDB Commit View . 178

DEDBs with MSDB Commit View 178

VSO Considerations . 178

Data Locking for MSDBs and DEDBs 179

Restrictions on Using Calls for MSDBs 179

Processing DEDBs (IMS and CICS with DBCTL) 180

Processing DEDBs with Subset Pointers 180

Before You Use Subset Pointers 182

Designating Subset Pointers 183

Using Subset Pointers . 183

Subset Pointer Status Codes 184

Retrieving Location with the POS Call (for DEDB Only) 185

Locating a Specific Sequential Dependent 185

Locating the Last Inserted Sequential Dependent Segment 185

Identifying Free Space 187

Commit-Point Processing in a DEDB 187

P Processing Option . 187

H Processing Option . 188

Data Locking . 188

Calls with Dependent Segments for DEDBs 189

Direct Dependent Segments 189

Sequential Dependent Segments 189

Fast Path Coding Considerations 189

Part 1. Writing Application Programs 5

6 Application Programming: Database Manager

Chapter 1. How Application Programs Work with Database

Manager

Application programs use Data Language I (DL/I) to communicate with the IMS.

This chapter gives an overview of the application programming techniques and the

application programming interface for IMS Database Manager (IMS DB).

The following topics provide additional information:

v “IMS Environments”

v “DL/I and Your Application Program” on page 9

v “DL/I Codes” on page 9

v “DL/I for CICS Online Users” on page 11

v “DL/I using the ODBA Interface” on page 12

v “Database Hierarchy Examples” on page 13

Related Reading:

v If your installation uses the IMS Transaction Manager (IMS TM), see IMS Version

9: Application Programming: Transaction Manager for information on transaction

management functions.

v Information on DL/I EXEC commands is in the IMS Version 9: Application

Programming: EXEC DLI Commands for CICS and IMS.

IMS Environments

Your application program can execute in different IMS environments. The three

online environments are DB/DC, DBCTL, and DCCTL. The two batch environments

are DB batch and TM batch.

Related Reading: For information on these environments, see IMS Version 9:

Administration Guide: System.

The information in this section applies to all application programs that run in IMS.

The main elements in an IMS application program are:

v Program entry

v Program communication block (PCB) or application interface block (AIB)

definition

v I/O (input/output) area definition

v DL/I calls

v Program termination

Figure 1 on page 8 shows how these elements relate to each other. The numbers

on the right in Figure 1 on page 8 refer to the notes that follow.

© Copyright IBM Corp. 1974, 2004 7

|

|
|
|

|
|
|

|

Notes for Figure 1:

1. Program entry. IMS passes control to the application program with a list of

associated PCBs.

2. PCB or AIB. IMS describes the results of each DL/I call using the AIBTDLI

interface in the application interface block (AIB) and, when applicable, the

program communication block (PCB). To find the results of a DL/I call, your

program must use the PCB that is referenced in the call. To find the results of

the call using the AIBTDLI interface, your program must use the AIB.

Your application program can use the PCB address that is returned in the AIB to

find the results of the call. To use the PCB, the program defines a mask of the

PCB and can then reference the PCB after each call to determine the success

or failure of the call. An application program cannot change the fields in a PCB;

it can only check the PCB to determine what happened when the call was

completed.

3. I/O area. IMS passes segments to and from the program in the program’s I/O

area.

4. DL/I calls. The program issues DL/I calls to perform the requested function.

5. Program termination. The program returns control to IMS DB when it has

finished processing. In a batch program, your program can set the return code

and pass it to the next step in the job.

Recommendation: If your program does not use the return code in this way,

set the return code to 0 as a programming convention. Your

program can use the return code for this same purpose in

Batch Message Processing (BMP) regions. Message

Processing Programs (MPPs) cannot pass return codes.

Figure 1. DL/I Program Elements

8 Application Programming: Database Manager

|
|
|
|
|

DL/I and Your Application Program

When an application program call is issued to IMS, control passes to IMS from the

application program. Standard subroutine linkage and parameter lists link IMS to

your application program. After control is passed, IMS examines the input

parameters, which perform the request functions.

DL/I Codes

This section contains information about the different DL/I codes that you will

encounter when working with IMS Database Manager Application Programs.

Status, Return, and Reason Codes

To give information about the results of each call, IMS places a two-character status

code in the PCB after each IMS call your program issues. Your program should

check the status code after every IMS call. If it does not check the status code, the

program might continue processing even though the previous call caused an error.

The status codes your program should test for are those that indicate exceptional

but valid conditions. IMS Version 9: Messages and Codes, Volume 1 lists the

status codes that may be returned by each call type and indicates the level of

success for each call. Your program should check for status codes which indicate

the call was successful, such as blanks. If IMS returns a status code that you did

not expect, your program should branch to an error routine.

Information for your calls is supplied in status codes that are returned in the PCB,

return and reason codes that are returned in the AIB, or both.

Exceptional Condition Status Codes

Some status codes do not mean that your call was successful or unsuccessful; they

just give information about the results of the call. Your program uses this

information to determine what to do next. The meaning of these status codes

depend on the call.

In a typical program, status codes that you should test for apply to the get calls.

Some status codes indicate exceptional conditions for other calls, and you should

provide routines other than error routines for these situations. For example, AH

means that a required segment search argument (SSA) is missing, and AT means

that the user I/O area is too long.

High Availability Large Databases (HALDBs)

You need to be aware that the feedback on data availability at PSB schedule time

shows the availability of only the High Availability Large Database (HALDB) master,

not of the HALDB partitions. However, the error settings for data unavailability of a

HALDB partition are the same as those of a non-HALDB database, namely status

code ’BA’ or pseudo abend U3303.

Also note that logical child segments cannot be loaded into a HALDB PHDAM or

PHIDAM database. Logical child segments must be inserted later in an update run.

Any attempt to load a logical child segment in either a PHDAM or PHIDAM

database results in status code LF.

Chapter 1. How Application Programs Work with Database Manager 9

|

Error Routines

If your program detects an error after checking for blanks and exceptional

conditions in the status code, it should branch to an error routine and print as much

information as possible about the error before terminating. Determining which call

was being executed when the error occurred, what parameters were on the IMS

call, and the contents of the PCB will be helpful in understanding the error. Print the

status code to help with problem determination.

Two kinds of errors can occur in your program: programming errors and system or

I/O errors. Programming errors, are usually your responsibility to find and fix. These

errors are caused by things like an invalid parameter, an invalid call, or an I/O area

that is too long. System or I/O errors are usually resolved by the system

programmer or the equivalent specialist at your installation.

Because every application program should have an error routine, and because each

installation has its own ways of finding and debugging program errors, you probably

have your own standard error routines.

Database Descriptions (DBDs) and Program Specification Blocks

(PSBs)

Application programs can communicate with databases without being aware of the

physical location of the data they possess. To do this, database descriptors (DBDs)

and program specification blocks (PSBs) are used.

A DBD describes the content and hierarchic structure of the physical or logical

database. DBDs also supply information to IMS to help in locating segments.

A PSB specifies the database segments an application program can access and the

functions it can perform on the data, such as read only, update, or delete. Because

an application program can access multiple databases, PSBs are composed of one

or more program control blocks (PCBs). The PSB describes the way a database is

viewed by your application program.

Figure 2 shows the normal relationship between application programs, PSBs, PCBs,

DBDs, and databases.

 Figure 3 on page 11 shows concurrent processing, which uses multiple PCBs for

the same database.

Figure 2. Normal Relationship between Programs, PSBs, PCBs, DBDs, and Databases

High Availability Large Database

10 Application Programming: Database Manager

DL/I for CICS Online Users

This topic applies to call-level CICS programs that use Database Control (DBCTL).

DBCTL provides a database subsystem that runs in its own address space and

gives one or more CICS systems access to IMS DL/I full-function databases and

data entry databases (DEDBs).

Figure 4 on page 11 shows the structure of a call-level CICS online program. A few

differences exist between CICS online and batch programs. For example, in a CICS

online program, you must issue a call to schedule a program specification block

(PSB). See Figure 4 on page 11 notes for a description of each program element

depicted in the figure.

 Notes to Figure 4:

Figure 3. Relationship between Programs and Multiple PCBs (Concurrent Processing)

Figure 4. The Structure of a Call-Level CICS Online Program

DL/I for CICS Online Users

Chapter 1. How Application Programs Work with Database Manager 11

1. I/O area. IMS passes segments to and from the program in the program’s I/O

area.

 2. PCB. IMS describes the results of each DL/I call in the database PCB mask.

 3. User interface block (UIB). The UIB provides the program with addresses of

the PCBs and return codes from the CICS-DL/I interface.

The horizontal line between number 3 (UIB) and number 4 (Program entry) in

Figure 4 on page 11, represents the end of the declarations section and the

start of the executable code section of the program.

 4. Program entry. CICS passes control to the application program during

program entry. Do not use an ENTRY statement as you would in a batch

program.

 5. Schedule the PSB. This identifies the PSB your program is to use and passes

the address of the UIB to your program.

 6. Issue DL/I calls. Issue DL/I calls to read and update the database.

 7. Check the return code in the UIB. You should check the return code after

issuing any DL/I call for database processing, including the PCB or TERM call. Do

this before checking the status code in the PCB.

 8. Check the status code in the PCB. You should check the status code after

issuing any DL/I call for database processing. The code gives you the results

of your DL/I call.

 9. Terminate the PSB. This terminates the PSB and commits database changes.

PSB termination is optional, and if it is not done, the PSB is released when

your program returns control to CICS.

10. Return to CICS. This returns control to either CICS or the linking program. If

control is returned to CICS, database changes are committed, and the PSB is

terminated.

DL/I using the ODBA Interface

This section applies to z/OS application programs that use database resources that

are managed by IMS DB. Open Database Access (ODBA) is an interface that

enables the z/OS application programs to access IMS DL/I full-function databases

and data entry databases (DEDBs).

The three parts to access IMS DL/I using the ODBA interface are Common Logic

Flow for SRMS and MRMS, SRMS, and MRMS.

The common logic flow for single resource manage scenarios (SRMS) and multiple

resource manager scenarios (MRMS) is described in steps one through nine. The

logic flow differences for SRMS and MRMS are described below.

1. I/O area. IMS passes segments to and from the application program in the its

I/O area.

2. PCB. IMS describes the results of each DL/I call in the database PCB mask.

3. Application interface block (AIB). The AIB provides the program with addresses

of the PCBs and return codes from the ODBA-DL/I interface.

4. Program entry. Obtain and initialize the AIB.

5. Initialize the Open Database Access (ODBA) interface.

6. Schedule the PSB. This step identifies the PSB that your program is to use and

also provides a place for IMS to keep internal tokens.

7. Issue DL/I calls. Issue DL/I calls to read and update the database. The following

calls are available:

DL/I for CICS Online Users

12 Application Programming: Database Manager

v Retrieve

v Replace

v Delete

v Insert

8. Check the return code in the AIB. You should check the return code after

issuing any DL/I call for database processing. Do this before checking the status

code in the PCB.

9. Check the status code in the PCB. If the AIB return code indicates (Return

Code X'900'), then you should check the status code after issuing any DL/I call

for database processing. The code gives you the results of your DL/I call.

The logic flow for how the programmer commits changes for SRMS follows. The

programmer:

1. Commits database changes. No DL/I calls, including system service calls such

as LOG or STAT, can be made between the commit and the termination of the

DPSB.

2. Terminates the PSB.

3. Terminates the ODBA interface.

4. Returns to environment that initialized the application program.

The logic flow for how the programmer commits changes for MRMS follows. The

programmer:

1. Terminates the PSB.

2. Terminates the ODBA interface.

3. Commits changes.

4. Returns to environment that initialized the application program.

Database Hierarchy Examples

The examples in this information use the medical hierarchy shown in Figure 5 on

page 14 and the bank hierarchies shown in Table 8 on page 16, Table 9 on page

17, and Table 10 on page 17. The medical hierarchy is used with full-function

databases and Fast Path data entry databases (DEDBs). The bank hierarchies are

an example of an application program used with main storage databases (MSDBs).

To understand these examples, familiarize yourself with the hierarchies and

segments that each hierarchy contains.

Medical Hierarchy Example

The medical database shown in Figure 5 on page 14 contains information that a

medical clinic keeps about its patients.

DL/I using the ODBA Interface

Chapter 1. How Application Programs Work with Database Manager 13

The tables that follow show the layouts of each segment in the hierarchy. The

segment’s field names are in the first row of each table. The number below each

field name is the length in bytes that has been defined for that field.

v PATIENT Segment

Table 2 shows the PATIENT segment.

It has three fields:

– The patient’s number (PATNO)

– The patient’s name (NAME)

– The patient’s address (ADDR)

PATIENT has a unique key field: PATNO. PATIENT segments are stored in

ascending order based on the patient number. The lowest patient number in the

database is 00001 and the highest is 10500.

 Table 2. PATIENT Segment

Field Name Field Length

PATNO 10

NAME 5

ADDR 30

v ILLNESS Segment

Table 3 on page 15 shows the ILLNESS segment.

It has two fields:

– The date when the patient came to the clinic with the illness (ILLDATE)

– The name of the illness (ILLNAME)

The key field is ILLDATE. Because it is possible for a patient to come to the

clinic with more than one illness on the same date, this key field is non unique,

that is, there may be more than one ILLNESS segment with the same (an equal)

key field value.

Usually during installation, the database administrator (DBA) decides the order in

which to place the database segments with equal or no keys. The DBA can use

the RULES keyword of the SEGM statement of the DBD to specify the order of

the segments.

For segments with equal keys or no keys, RULES determines where the

segment is inserted. Where RULES=LAST, ILLNESS segments that have equal

keys are stored on a first-in-first-out basis among those with equal keys.

ILLNESS segments with unique keys are stored in ascending order on the date

field, regardless of RULES. ILLDATE is specified in the format YYYYMMDD.

Figure 5. Medical Hierarchy

Database Hierarchy Examples

14 Application Programming: Database Manager

Table 3. ILLNESS Segment

Field Name Field Length

ILLDATE 8

ILLNAME 10

v TREATMNT Segment

Table 4 shows the TREATMNT segment.

It contains four fields:

– The date of the treatment (DATE)

– The medicine that was given to the patient (MEDICINE)

– The quantity of the medicine that the patient received (QUANTITY)

– The name of the doctor who prescribed the treatment (DOCTOR)

The TREATMNT segment’s key field is DATE. Because a patient may receive

more than one treatment on the same date, DATE is a non unique key field.

TREATMNT, like ILLNESS, has been specified as having RULES=LAST.

TREATMNT segments are also stored on a first-in-first-out basis. DATE is

specified in the same format as ILLDATE—YYYYMMDD.

 Table 4. TREATMNT Segment

Field Name Field Length

DATE 8

MEDICINE 10

QUANTITY 4

DOCTOR 10

v BILLING Segment

Table 5 shows the BILLING segment. It has only one field: the amount of the

current bill. BILLING has no key field.

 Table 5. BILLING Segment

Field Name Field Length

BILLING 6

v PAYMENT Segment

Table 6 shows the PAYMENT segment. It has only one field: the amount of

payments for the month. The PAYMENT segment has no key field.

 Table 6. PAYMENT Segment

Field Name Field Length

PAYMENT 6

v HOUSHOLD Segment

Table 7 on page 16 shows the HOUSHOLD segment.

It contains two fields:

– The names of the members of the patient’s household (RELNAME)

– How each member of the household is related to the patient (RELATN)

Database Hierarchy Examples

Chapter 1. How Application Programs Work with Database Manager 15

The HOUSEHOLD segment’s key field is RELNAME.

 Table 7. HOUSEHOLD Segment

Field Name Field Length

RELNAME 10

RELATN 8

Bank Account Hierarchy Example

The bank account hierarchy is an example of an application program that is used

with main storage databases (MSDBs). In the medical hierarchy example, the

database record for a particular patient comprises the PATIENT segment and all of

the segments underneath the PATIENT segment. In an MSDB, such as the one in

the bank account example, the segment is the whole database record. The

database record contains only the fields that the segment contains.

The two types of MSDBs are related and nonrelated. In related MSDBs, each

segment is “owned” by one logical terminal. The ″owned″ segment can only be

updated by the terminal that owns it. In nonrelated MSDBs, the segments are not

owned by logical terminals. “Related MSDBs” and “Nonrelated MSDBs” on page 17

illustrate the differences between these types of databases. Additional information

on how related and nonrelated MSDBs differ is provided under “Processing MSDBs

and DEDBs” on page 173.

Related MSDBs

Related MSDBs can be fixed or dynamic. In a fixed related MSDB, you can store

summary data about a particular teller at a bank. For example, you can have an

identification code for the teller’s terminal. Then you can keep a count of that teller’s

transactions and balance for the day. This type of application requires a segment

with three fields:

TELLERID A two-character code that identifies the teller

TRANCNT The number of transactions the teller has processed

TELLBAL The balance for the teller

Table 8 shows what the segment for this type of application program looks like.

 Table 8. Teller Segment in a Fixed Related MSDB

TELLERID TRANCNT TELLBAL

Some of the characteristics of fixed related MSDBs include:

v You can only read and replace segments. You cannot delete or insert segments.

In the bank teller example, the teller can change the number of transactions

processed, but you cannot add or delete any segments. You never need to add

or delete segments.

v Each segment is assigned to one logical terminal. Only the owning terminal can

change a segment, but other terminals can read the segment. In the bank teller

example, you do not want tellers to update the information about other tellers, but

you allow the tellers to view each other’s information. Tellers are responsible for

their own transactions.

v The name of the logical terminal that owns the segment is the segment’s key.

Unlike non-MSDB segments, the MSDB key is not a field of the segment. It is

used as a means of storing and accessing segments.

Database Hierarchy Examples

16 Application Programming: Database Manager

v A logical terminal can only own one segment in any one MSDB.

In a dynamic related MSDB, you can store data summarizing the activity of all bank

tellers at a single branch. For example, this segment contains:

BRANCHNO The identification number for the branch

TOTAL The bank branch’s current balance

TRANCNT The number of transactions for the branch on that day

DEPBAL The deposit balance, giving the total dollar amount of deposits for

the branch

WTHBAL The withdrawal balance, giving the dollar amount of the withdrawals

for the branch

Table 9 shows what the branch summary segment looks like in a dynamic related

MSDB.

 Table 9. Branch Summary Segment in a Dynamic Related MSDB

BRANCHNO TOTAL TRANCNT DEPBAL WTHBAL

How dynamic related MSDBs differ from fixed related MSDBs:

v The owning logical terminal can delete and insert segments in a dynamic related

MSDB.

v The MSDB can have a pool of unassigned segments. This kind of segment is

assigned to a logical terminal when the logical terminal inserts it, and is returned

to the pool when the logical terminal deletes it.

Nonrelated MSDBs

A nonrelated MSDB is used to store data that is updated by several terminals

during the same time period. For example, you might store data about an

individuals’ bank accounts in a nonrelated MSDB segment, so that the information

can be updated by a teller at any terminal. Your program might need to access the

data in the following segment fields:

ACCNTNO The account number

BRANCH The name of the branch where the account is

TRANCNT The number of transactions for this account this month

BALANCE The current balance

Table 10 shows what the account segment in a nonrelated MSDB application

program looks like.

 Table 10. Account Segment in a Nonrelated MSDB

ACCNTNO BRANCH TRANCNT BALANCE

The characteristics of nonrelated MSDBs include:

v Segments are not owned by terminals as they are in related MSDBs. Therefore,

IMS programs and Fast Path programs can update these segments. Updating

segments is not restricted to the owning logical terminal.

v Your program cannot delete or insert segments.

Database Hierarchy Examples

Chapter 1. How Application Programs Work with Database Manager 17

v Segment keys can be the name of a logical terminal. A nonrelated MSDB exists

with terminal-related keys. The segments are not owned by the logical terminals,

and the logical terminal name is used to identify the segment.

v If the key is not the name of a logical terminal, it can be any value, and it is in

the first field of the segment. Segments are loaded in key sequence.

Database Hierarchy Examples

18 Application Programming: Database Manager

Chapter 2. Writing Your Application Programs

This chapter contains information that will help you write application programs. It

contains guidelines for writing efficient application programs and using segment

search arguments (SSAs) and command codes. A checklist of coding

considerations and skeleton programs in High Level Assembler language, C

language, COBOL, Pascal, and PL/I are also available to help you.

The following topics provide additional information:

v “Programming Guidelines”

v “Segment Search Arguments (SSAs)” on page 20

v “Considerations for Coding DL/I Calls and Data Areas” on page 27

v “Preparing to Run Your CICS DL/I Call Program” on page 28

v “Examples of How to Code DL/I Calls and Data Areas” on page 29

Programming Guidelines

The number, type, and sequence of the IMS requests your program issues affects

the efficiency of your program. A program that is poorly designed can still run if it is

coded correctly. IMS will not find design errors for you. The suggestions that follow

will help you develop the most efficient design possible for your application

program. When you have a general sequence of calls mapped out for your

program, look over the guidelines on sequence to see if you can improve it. An

efficient sequence of requests results in efficient internal IMS processing. As you

write your program, keep in mind the guidelines explained in this section. The

following list offers programming guidelines that will help you write efficient and

error-free programs.

v Use the most simple call. Qualify your requests to narrow the search for IMS.

v Use the request or sequence of requests that will give IMS the shortest path to

the segment you want.

v Use as few requests as possible. Each DL/I call your program issues uses

system time and resources. You may be able to eliminate unnecessary calls by:

– Using path requests when you are replacing, retrieving, or inserting more than

one segment in the same path. If you are using more than one request to do

this, you are issuing unnecessary requests.

– Changing the sequence so that your program saves the segment in a

separate I/O area, and then gets it from that I/O area the subsequent times it

needs the segment. If your program retrieves the same segment more than

once during program execution, you are issuing unnecessary requests.

– Anticipating and eliminating needless and nonproductive requests, such as

requests that result in GB, GE, and II status codes. For example, if you are

issuing GN calls for a particular segment type, and you know how many

occurrences of that segment type exist, do not issue the GN that results in a

GE status code. Keep track of the number of occurrences your program

retrieves, and then continue with other processing when you know you have

retrieved all the occurrences of that segment type.

– Issuing an insert request with a qualification for each parent, rather than

issuing Get requests for the parents to make sure that they exist. If IMS

returns a GE status code, at least one of the parents does not exist. When

you are inserting segments, you cannot insert dependent segments unless the

parent segments exist.

© Copyright IBM Corp. 1974, 2004 19

|
|
|
|
|

|

|

|

|

|

|

v Keep the main section of the program logic together. For example, branch to

conditional routines, such as error and print routines in other parts of the

program, instead of branching around them to continue normal processing.

v Use call sequences that make good use of the physical placement of the data.

Access segments in hierarchic sequence as often as possible, and avoid moving

backward in the hierarchy.

v Process database records in order of the key field of the root segments. (For

HDAM and PHDAM databases, this order depends on the randomizing routine

that is used. Check with your DBA for this information.)

v Avoid constructing the logic of the program and the structure of commands or

calls in a way that depends heavily on the database structure. Depending on the

current structure of the hierarchy reduces the program’s flexibility.

v Minimize the number of segments your program locks. You may need to take

checkpoints to release the locks on updated segments and the lock on the

current database record for each PCB your program uses. Each PCB used by

your program has the current database record locked at share or update level. If

this lock is no longer required, issuing the GU call, qualified at the root level with a

greater-than operator for a key of X'FF' (high values), releases the current lock

without acquiring a new lock.

Using PCBs with a processing option of get (G) results in locks for the PCB at

share level. This allows other programs that use the get processing option to

concurrently access the same database record. Using a PCB with a processing

option that allows updates (I, R, or D) results in locks for the PCB at update

level. This does not allow any other program to concurrently access the same

database record.

Related Reading: For more information about segment locking, see “Reserving

Segments for the Exclusive Use of Your Program” on page 122.

Segment Search Arguments (SSAs)

Segment search arguments (SSAs) specify information for IMS to use in processing

a DL/I call. A DL/I call with one or more SSAs is a qualified call, and a DL/I call

without SSAs is an unqualified call.

Definitions:

Unqualified SSAs Contains only a segment name.

Qualified SSAs Includes one or more qualification statements that

name a segment occurrence. The C command and

a segment occurrence’s concatenated key can be

substituted for a qualification statement.

You can use SSA to select segments by name and to specify search criteria for

specific segments. Specific segments are described by adding qualification

statements to the DL/I call. You can further qualify your calls by using command

codes.

Table 11 on page 21 shows the structure of a qualified SSA. Table 12 on page 27

shows the structure of an unqualified SSA using command codes. Finally, Table 13

on page 27 shows the structure of a qualified SSA that uses command codes.

Unqualified SSAs

An unqualified SSA gives the name of the segment type that you want to access. In

an unqualified SSA, the segment name field is 8 bytes and must be followed by a

Programming Guidelines

20 Application Programming: Database Manager

1-byte blank. If the actual segment name is fewer than 8 bytes long, it must be

padded to the right with blanks. An example of an unqualified SSA follows:

PATIENT��

Qualified SSAs

To qualify an SSA, you can use either a field or the sequence field of a virtual child.

A qualified SSA describes the segment occurrence that you want to access. This

description is called a qualification statement and has three parts. Table 11 shows

the structure of a qualified SSA.

 Table 11. Qualified SSA Structure

SSA Component Field Length

Seg Name 8

(1

Fld Name 8

R.O. 2

Fld Value Variable

) 1

Using a qualification statement enables you to give IMS information about the

particular segment occurrence that you are looking for. You do this by giving IMS

the name of a field within the segment and the value of the field you are looking for.

The field and the value are connected by a relational operator (R.O. in Table 11)

which tells IMS how you want the two compared. For example, to access the

PATIENT segment with the value 10460 in the PATNO field, you could use this

SSA:

PATIENT�(PATNO���=�10460)

The qualification statement is enclosed in parentheses. The first field contains the

name of the field (Fld Name in Table 11) that you want IMS to use in searching for

the segment. The second field contains a relational operator. The relational operator

can be any one of the following:

v Equal, represented as

 =�

 �=

 EQ

v Greater than, represented as

 >�

 �>

 GT

v Less than, represented as

 <�

 �<

 LT

v Greater than or equal to, represented as

 >=

 =>

 GE

Segment Search Arguments (SSA)

Chapter 2. Writing Your Application Programs 21

v Less than or equal to, represented as

 <=

 =<

 LE

v Not equal to, represented as

 ¬=

 =¬

 NE

The third field (Fld Value in Table 11 on page 21) contains the value that you want

IMS to use as the comparative value. The length of Fld Value must be the same

length as the field specified by Fld Name.

You can use more than one qualification statement in an SSA. Special cases exist,

such as in a virtual logical child segment when the sequence field consists of

multiple fields.

Related Reading: For more information on multiple qualification statements, see

“Multiple Qualification Statements” on page 23.

Sequence Fields of a Virtual Logical Child

As a general rule, a segment can have only one sequence field. However, in the

case of the virtual logical-child segment type, multiple FIELD statements can be

used to define a noncontiguous sequence field.

When specifying the sequence field for a virtual logical child segment, if the field is

not contiguous, the length of the field named in the SSA is the concatenated length

of the specified field plus all succeeding sequence fields. Figure 6 shows a segment

with a noncontiguous sequence field.

 If the first sequence field is not included in a “scattered” sequence field in an SSA,

IMS treats the argument as a data field specification, rather than as a sequence

field.

Related Reading: For more information on the virtual logical child segment, refer to

IMS Version 9: Administration Guide: Database Manager.

SSA Guidelines

Using SSAs can simplify your programming, because the more information you can

give IMS to do the searching for you, the less program logic you need to analyze

and compare segments in your program.

Using SSAs does not necessarily reduce system overhead, such as internal logic

and I/Os, required to obtain a specific segment. To locate a particular segment

without using SSAs, you can issue DL/I calls and include program logic to examine

key fields until you find the segment you want. By using SSAs in your DL/I calls,

Figure 6. Segment with a Noncontiguous Sequence Field

Segment Search Arguments (SSA)

22 Application Programming: Database Manager

you can reduce the number of DL/I calls that are issued and the program logic

needed to examine key fields. When you use SSAs, IMS does this work for you.

Recommendations:

v Use qualified calls with qualified SSAs whenever possible. SSAs act as filters,

returning only the segments your program requires. This reduces the number of

calls your program makes, which provides better performance. It also provides

better documentation of your program. Qualified SSAs are particularly useful

when adding segments with insert calls. They ensure that the segments are

inserted where you want them to go.

v For the root segment, specify the key field and an equal relational operator, if

possible. Using a key field with an equal-to, equal-to-or-greater-than, or

greater-than operator lets IMS go directly to the root segment.

v For dependent segments, it is desirable to use the key field in the SSA, although

it is not as important as at the root level. Using the key field and an equal-to

operator lets IMS stop the search at that level when a higher key value is

encountered. Otherwise IMS must search through all occurrences of the segment

type under its established parent in order to determine whether a particular

segment exists.

v If you often must search for a segment using a field other than the key field,

consider putting a secondary index on the field. For more information on

secondary indexing, see Chapter 7, “Secondary Indexing and Logical

Relationships,” on page 153.

Example: Suppose you want to find the record for a patient by the name of Ellen

Carter. As a reminder, the patient segment in the examples contains three fields:

the patient number, which is the key field; the patient name; and the patient

address. The fact that patient number is the key field means that IMS stores the

patient segments in order of their patient numbers. The best way to get the record

for Ellen Carter is to supply her patient number in the SSA. If her number is 09000,

your program uses this call and SSA:

GU&$tab;PATIENT�(PATNO���=�09000)

If your program supplies an invalid number, or if someone has deleted Ellen

Carter’s record from the database, IMS does not need to search through all the

PATIENT occurrences to determine that the segment does not exist.

However, if your program does not have the number and must give the name

instead, IMS must search through all the patient segments and read each patient

name field until it finds Ellen Carter or until it reaches the end of the patient

segments.

Multiple Qualification Statements

When you use a qualification statement, you can do more than give IMS a field

value with which to compare the fields of segments in the database. You can give

several field values to establish limits for the fields you want IMS to compare.

You can use a maximum of 1024 qualification statements on a call.

Connect the qualification statements with one of the Boolean operators. You can

indicate to IMS that you are looking for a value that, for example, is greater than A

and less than B, or you can indicate that you are looking for a value that is equal to

A or greater than B. The Boolean operators are:

Segment Search Argument (SSA) Guidelines

Chapter 2. Writing Your Application Programs 23

Logical AND For a segment to satisfy this request, the segment must satisfy both

qualification statements that are connected with the logical AND

(coded * or &).

Logical OR For a segment to satisfy this request, the segment can satisfy either

of the qualification statements that are connected with the logical

OR (coded + or |).

One more Boolean operator exists and is called the independent AND. Use it only

with secondary indexes. “Multiple Qualification Statements with Secondary Indexes”

on page 154 describes its use.

For a segment to satisfy multiple qualification statements, the segment must satisfy

a set of qualification statements. A set is a number of qualification statements that

are joined by an AND. To satisfy a set, a segment must satisfy each of the

qualification statements within that set. Each OR starts a new set of qualification

statements. When processing multiple qualification statements, IMS reads them left

to right and processes them in that order.

When you include multiple qualification statements for a root segment, the fields

you name in the qualification statements affect the range of roots that IMS

examines to satisfy the call. DL/I examines the qualification statements to determine

the minimum acceptable key value.

If one or more of the sets do not include at least one statement that is qualified on

the key field with an operator of equal-to, greater-than, or equal-to-or-greater-than,

IMS starts at the first root of the database and searches for a root that meets the

qualification.

If each set contains at least one statement that is qualified on the key field with an

equal-to, greater-than, or equal-to-or-greater-than operator, IMS uses the lowest of

these keys as the starting place for its search. After establishing the starting

position for the search, IMS processes the call by searching forward sequentially in

the database, similar to the way it processes GN calls. IMS examines each root it

encounters to determine whether the root satisfies a set of qualification statements.

IMS also examines the qualification statements to determine the maximum

acceptable key value.

If one or more of the sets do not include at least one statement that is qualified on

the key field with an operator of equal-to, less-than-or-equal-to, or less-than, IMS

determines that no maximum key value exists. If each set contains at least one

statement that is qualified on the key field with an equal-to, less-than, or

equal-to-or-less-than operator, IMS uses the maximum of these keys to determine

when the search stops.

IMS continues the search until it satisfies the call, encounters the end of the

database, or finds a key value that exceeds the maximum. If no maximum key

value is found, the search continues until IMS satisfies the call or encounters the

end of the database.

Examples: Shown below are cases of SSAs used at the root level:

ROOTKEY�=�10&FIELDB��=XYZ+ROOTKEY��=10&FIELDB��=ABC

Multiple Qualification Statements

24 Application Programming: Database Manager

In this case, the minimum and maximum key is 10. This means that IMS starts

searching with key 10 and stops when it encounters the first key greater than 10. To

satisfy the SSA, the ROOTKEY field must be equal to 10, and FIELDB must be

equal to either ABC or XYZ.

ROOTKEY�=>10&ROOTKEY�=<20

In this case, the minimum key is 10 and the maximum key is 20. Keys in the range

of 10 to 20 satisfy the SSA. IMS stops the search when it encounters the first key

greater than 20.

ROOTKEY�=>10&ROOTKEY�=<20+ROOTKEY�=>110&ROOTKEY�=<120

In this case, the minimum key is 10 and the maximum key is 120. Keys in the

range of 10 to 20 and 110 to 120 satisfy the call. IMS stops the search when it

encounters the first key greater than 120. IMS does not scan from 20 to 110 but

skips forward (using the index for HIDAM or PHIDAM) from 20 to 110. Because of

this, you can use ranges for more efficient program operation.

When you use multiple qualification statement segments that are part of logical

relationships, additional considerations exist. See “How Logical Relationships Affect

Your Programming” on page 158 for more information about these considerations.

Example of How to Use Multiple Qualification Statements

The easiest way to understand multiple qualification statements is to look at an

example:

Did we see patient number 04120 during 1992?

To find the answer to this question, you need to give IMS more than the patient’s

name; you want IMS to search through the ILLNESS segments for that patient, read

each one, and return any that have a date in 1992. The call you would issue to do

this is:

GU PATIENT�(PATNO���EQ04120)

 ILLNESS�(ILLDATE�>=19920101&ILLDATE�<=19921231)

In other words, you want IMS to return any ILLNESS segment occurrences under

patient number 04120 that have a date on or after January 1, 1992, and on or

before December 31, 1992, joined with an AND connector. Suppose you wanted to

answer the following request:

Did we see Judy Jennison during January of 1992 or during July of 1992? Her

patient number is 05682.

You could issue a GU call with the following SSAs:

GU PATIENT�(PATNO���EQ05682)

 ILLNESS�(ILLDATE�>=19920101&ILLDATE�<=19920131|

 ILLDATE�>=19920701&ILLDATE�<=19920731)

To satisfy this request, the value for ILLDATE must satisfy either of the two sets.

IMS returns any ILLNESS segment occurrences for the month of January 1992, or

for the month of July 1992.

Multiple Qualification Statements for HDAM, PHDAM, or DEDB

For HDAM (Hierarchical Direct Access Method), PHDAM (partioned HDAM), or

data entry database (DEDB) organizations, a randomizing exit routine usually does

not store the root keys in ascending key sequence. For these organizations, IMS

Multiple Qualification Statements

Chapter 2. Writing Your Application Programs 25

determines the minimum and maximum key values. The minimum key value is

passed to the randomizing exit routine, which determines the starting anchor point.

The first root off this anchor is the starting point for the search. When IMS

encounters a key that exceeds the maximum key value, IMS terminates the search

with a GE status code. If the randomizing routine randomized so that the keys are

stored in ascending key sequence, a call for a range of keys will return all of the

keys in the range. However, if the randomizing routine did not randomize into key

sequence, the call does not return all keys in the requested range. Therefore, use

calls for a range of key values only when the keys are in ascending sequence

(when the organization is HDAM, PHDAM, or DEDB).

Recommendation: When the organization is HDAM or DEDB, do not use calls that

allow a range of values at the root level.

For more details about HDAM or PHDAM databases, see IMS Version 9:

Administration Guide: Database Manager.

SSAs and Command Codes

SSAs can also include one or more command codes, which can change and extend

the functions of DL/I calls. For information on command codes, see “General

Command Codes for DL/I Calls” on page 201.

IMS always returns the lowest segment in the path to your I/O area. If your program

codes a D command code in an SSA, IMS also returns the segment described by

that SSA. A call that uses the D command code is called a path call.

Example: Suppose your program codes a D command code on a GU call that

retrieves segment F and all segments in the path to F in the hierarchy shown in

Figure 7.

The call function and the SSAs for the call look like this:

GU A�������*D

 C�������*D

 E�������*D

 F�������

A command code consists of one letter. Code the command codes in the SSA after

the segment name field. Separate the segment name field and the command code

with an asterisk, as shown in Table 12 on page 27.

Figure 7. D Command Code Example

Multiple Qualification Statements

26 Application Programming: Database Manager

Table 12. Unqualified SSA with Command Code

SSA Component Field Length

Seg Name 8

* 1

Cmd Code Variable

b 1

Your program can use command codes in both qualified and unqualified SSAs.

However, command codes cannot be used by MSDB calls. If the command codes

are not followed by qualification statements, they must each be followed by a 1-byte

blank. If the command codes are followed by qualification statements, do not use

the blank. The left parenthesis of the qualification statement follows the command

code instead, as indicated in Table 13.

 Table 13. Qualified SSA with Command Code

SSA Component Field Length

Seg Name 8

* 1

Cmd Code Variable

(1

Fld Name 8

R.O. 2

Fld Value Variable

) 1

If your program uses command codes to manage subset pointers in a DEDB, enter

the number of the subset pointer immediately after the command code. Subset

pointers are a means of dividing a chain of segment occurrences under the same

parent into two or more groups or subsets. Your program can define as many as

eight subset pointers for any segment type. Using an application program, your

program can then manage these subset pointers. This process is described in detail

in “Processing DEDBs with Subset Pointers” on page 180.

Considerations for Coding DL/I Calls and Data Areas

If you have made all the design decisions about your program, coding the program

is a matter of implementing the decisions that you have made. Before you start

coding, make sure you have the information described in this section.

In addition to knowing the design and processing logic for your program, you need

to know about the data that your program is processing, the PCBs it references,

and the segment formats in the hierarchies your program processes. You can use

the following list as a checklist to make sure you are not missing any information. If

you are missing information about data, IMS options being used in the application

program, or segment layouts and the application program’s data structures, obtain

this information from the DBA or the equivalent specialist at your installation. Be

aware of the programming standards and conventions that have been established

at your installation.

Program design considerations:

Multiple Qualification Statements

Chapter 2. Writing Your Application Programs 27

v The sequence of calls for your program.

v The format of each call:

– Does the call include any SSAs?

– If so, are they qualified or unqualified?

– Does the call contain any command codes?

v The processing logic for the program.

v The routine the program uses to check the status code after each call.

v The error routine the program uses.

Checkpoint considerations:

v The type of checkpoint call to use (basic or symbolic).

v The identification to assign to each checkpoint call, regardless of whether the

Checkpoint call is basic or symbolic.

v If you are going to use the symbolic checkpoint call, which areas of your program

to checkpoint.

Segment considerations:

v Whether the segment is fixed length or variable length.

v The length of the segment (the maximum length, if the segment is variable

length).

v The names of the fields that each segment contains.

v Whether the segment has a key field. If it does, is the key field unique or non

unique? If it does not, what sequencing rule has been defined for it? (A

segment’s key field is defined in the SEQ keyword of the FIELD statement in the

DBD. The sequencing rule is defined in the RULES keyword of the SEGM

statement in the DBD.)

v The segment’s field layouts:

– The byte location of each field.

– The length of each field.

– The format of each field.

Data structure considerations:

v Each data structure your program processes has been defined in a DB PCB. All

of the PCBs your program references are part of a PSB for your application

program. You need to know the order in which the PCBs are defined in the PSB.

v The layout of each of the data structures your program processes.

v Whether multiple or single positioning has been specified for each data structure.

This is specified in the POS keyword of the PCB statement during PSB

generation.

v Whether any data structures use multiple DB PCBs.

Preparing to Run Your CICS DL/I Call Program

You must perform several steps before you run your CICS DL/I call program. Refer

to the appropriate CICS reference information.

v For information on translating, compiling, and link-editing your CICS online

program, see the description of installing application programs in CICS/ESA®

System Definition Guide.

Considerations for Coding DL/I Calls and Data Areas

28 Application Programming: Database Manager

v For information on which compiler options should be used for a CICS online

program, as well as for CICS considerations when converting a CICS online

COBOL program with DL/I calls to Enterprise COBOL, see CICS/ESA Application

Programming Guide.

Examples of How to Code DL/I Calls and Data Areas

This section contains sample programs written in assembler language, C language,

COBOL, Pascal, and PL/I. The programs are examples of how to code DL/I calls

and data areas. They are not complete programs. Before running them, you must

modify them to suit the requirements of your installation.

The following topics provide additional:

v “Coding a Batch Program in Assembler Language”

v “Coding a CICS Online Program in Assembler Language” on page 32

v “Coding a Batch Program in C Language” on page 34

v “Coding a Batch Program in COBOL” on page 37

v “Coding a CICS Online Program in COBOL” on page 40

v “Coding a Batch Program in Pascal” on page 45

v “Coding a Batch Program in PL/I” on page 48

v “Coding a CICS Online Program in PL/I” on page 51

Coding a Batch Program in Assembler Language

Figure 8 on page 30 is a skeleton program that shows how the parts of an IMS

program written in assembler language fit together. The numbers to the right of the

program refer to the notes that follow the program. This kind of program can run as

a batch program or as a batch-oriented BMP.

Preparing to Run Your CICS DL/I Call Program

Chapter 2. Writing Your Application Programs 29

|
|
|
|

PGMSTART CSECT NOTES

* EQUATE REGISTERS 1

* USEAGE OF REGISTERS

R1 EQU 1 ORIGINAL PCBLIST ADDRESS

R2 EQU 2 PCBLIST ADDRESS1

R5 EQU 5 PCB ADDRESSS

R12 EQU 12 BASE ADDRESS

R13 EQU 13 SAVE AREA ADDRESS

R14 EQU 14

R15 EQU 15

*

 USING PGMSTART,R12 BASE REGISTER ESTABLISHED 2

 SAVE (14,12) SAVE REGISTERS

 LR 12,15 LOAD REGISTERS

 ST R13,SAVEAREA+4 SAVE AREA CHAINING

 LA R13,SAVEAREA NEW SAVE AREA

 USING PCBLIST,R2 MAP INPUT PARAMETER LIST

 USING PCBNAME,R5 MAP DB PCB

 LR R2,R1 SAVE INPUT PCB LIST IN REG 2

 L R5,PCBDETA LOAD DETAIL PCB ADDRESS

 LA R5,0(R5) REMOVE HIGH ORDER END OF LIST FLAG 3

 CALL ASMTDLI,(GU,(R5),DETSEGIO,SSANAME),VL 4

*

*

 L R5,PCBMSTA LOAD MASTER PCB ADDRESS

 CALL ASMTDLI,(GHU,(R5),MSTSEGIO,SSAU),VL 5

*

*

 CALL ASMTDLI,(GHN,(R5),MSTSEGIO),VL 6

*

*

 CALL ASMTDLI,(REPL,(R5),MSTSEGIO),VL

*

*

 L R13,4(R13) RESTORE SAVE AREA

 RETURN (14,12) RETURN BACK 7

*

* FUNCTION CODES USED

*

GU DC CL4’GU’

GHU DC CL4’GHU’

GHN DC CL4’GHN’

REPL DC CL4’REPL’ 8

*

* SSAS

*

SSANAME DS 0C

 DC CL8’ROOTDET’

 DC CL1’(’

 DC CL8’KEYDET’ 9

 DC CL2’ =’

NAME DC CL5’ ’

 DC C’)’

*

Figure 8. Sample Assembler Language Program (Part 1 of 2)

Coding Programs in Assembler Language

30 Application Programming: Database Manager

Notes to Figure 8 on page 30:

 1. The entry point to an assembler language program can have any name. Also,

you can substitute CBLTDLI for ASMTDLI in any of the calls.

 2. When IMS passes control to the application program, register 1 contains the

address of a variable-length fullword parameter list. Each word in this list

contains the address of a PCB that the application program must save. The

high-order byte of the last word in the parameter list has the 0 bit set to a

value of 1 which indicates the end of the list. The application program

subsequently uses these addresses when it executes DL/I calls.

 3. The program loads the address of the DETAIL DB PCB.

 4. The program issues a GU call to the DETAIL database using a qualified SSA

(SSANAME).

 5. The program loads the address of the HALDB master PCB.

 6. The next three calls that the program issues are to the HALDB master. The

first is a GHU call that uses an unqualified SSA. The second is an unqualified

GHN call. The REPL call replaces the segment retrieved using the GHN call with

the segment in the MSTSEGIO area.

You can use the parmcount parameter in DL/I calls in assembler language

instead of the VL parameter, except for in the call to the sample status-code

error routine.

 7. The RETURN statement loads IMS registers and returns control to IMS.

 8. The call functions are defined as four-character constants.

 9. The program defines each part of the SSA separately so that it can modify the

SSA’s fields.

10. The program must define an I/O area that is large enough to contain the

largest segment it is to retrieve or insert (or the largest path of segments if the

program uses the D command code). This program’s I/O areas are 100 bytes

each.

11. A fullword must be defined for each PCB. The assembler language program

can access status codes after a DL/I call by using the DB PCB base

addresses.

SSAU DC CL9’ROOTMST’*

MSTSEGIO DC CL100’ ’

DETSEGIO DC CL100’ ’

SAVEAREA DC 18F’0’

* 10

PCBLIST DSECT

PCBIO DS A ADDRESS OF I/O PCB

PCBMSTA DS A ADDRESS OF MASTER PCB

PCBDETA DS A ADDRESS OF DETAIL PCB 11

*

PCBNAME DSECT

DBPCBDBD DS CL8 DBD NAME

DBPCBLEV DS CL2 LEVEL FEEDBACK

DBPCBSTC DS CL2 STATUS CODES

DBPCBPRO DS CL4 PROC OPTIONS

DBPCBRSV DS F RESERVED

DBPCBSFD DS CL8 SEGMENT NAME FEEDBACK

DBPCBMKL DS F LENGTH OF KEY FEEDBACK

DBPCBNSS DS F NUMBER OF SENSITIVE SEGMENTS IN PCB

DBPCBKFD DS C KEY FEEDBACK AREA

 END PGMSTART

Figure 8. Sample Assembler Language Program (Part 2 of 2)

Coding Programs in Assembler Language

Chapter 2. Writing Your Application Programs 31

This example assumes that an I/O PCB was passed to the application

program. If the program is a batch program, CMPAT=YES must be specified

on the PSBGEN statement of PSBGEN so that the I/O PCB is included.

Because the I/O PCB is required for a batch program to make system service

calls, CMPAT=YES should always be specified.

Binding Assembler Code to the IMS Language Interface Module

The IMS language interface module (DFSLI000) must be bound to the compiled

assembler language program.

Coding a CICS Online Program in Assembler Language

Figure 9 is a skeleton program in assembler language. It shows how you define and

establish addressability to the UIB. The numbers to the right of the program refer to

the notes that follow the program. This program can run in a CICS environment

using DBCTL.

PGMSTART DSECT NOTES

UIBPTR DS F

IOAREA DS 0CL40 1

AREA1 DS CL3

AREA2 DS CL37

 DLIUIB

 USING UIB,8 2

PCBPTRS DSECT

* PSB ADDRESS LIST

PCB1PTR DS F

PCB1 DSECT

 USING PCB1,6 3

DBPC1DBD DS CL8

DBPC1LEV DS CL2

DBPC1STC DS CL2

DBPC1PRO DS CL4

DBPC1RSV DS F

DBPC1SFD DS CL8

DBPC1MKL DS F

DBPC1NSS DS F

DBPC1KFD DS 0CL256

DBPC1NM DS 0CL12

DBPC1NMA DS 0CL14

DBPC1NMP DS CL17

ASMUIB CSECT

 B SKIP

PSBNAME DC CL8’ASMPSB’

PCBFUN DC CL4’PCB’

REPLFUN DC CL4’REPL’

TERMFUN DC CL4’TERM’

GHUFUN DC CL4’GHU’

SSA1 DC CL9’AAAA4444’

GOODRC DC XL1’00’

GOODSC DC CL2’ ’

SKIP DS 0H 4

* SCHEDULE PSB AND OBTAIN PCB ADDRESSES

Figure 9. Sample Call-Level Assembler Language Program (CICS Online) (Part 1 of 2)

Coding Programs in Assembler Language

32 Application Programming: Database Manager

Notes to the example:

 1. The program must define an I/O area that is large enough to contain the

largest segment it is to retrieve or insert (or the largest path of segments if the

program uses the D command code).

 2. The DLIUIB statement copies the UIB DSECT, which is expanded as shown

under “Specifying the UIB (CICS Online Programs Only)” on page 79.

 3. A fullword must be defined for each DB PCB. The assembler language

program can access status codes after a DL/I call by using the DB PCB base

addresses.

 4. This is an unqualified SSA. For qualified SSA, define each part of the SSA

separately so that the program can modify the fields of the SSA.

 5. This call schedules the PSB and obtains the PSB address.

 6. This call retrieves a segment from the database.

 CALLDLI ASMTDLI,(PCBFUN,PSBNAME,UIBPTR)

 L 8,UIBPTR 5

 CLC UIBFCTR,X’00’

 BNE ERROR1

* GET PSB ADDRESS LIST

 L 4,UIBPCBAL

 USING PCBPTRS,4

* GET ADDRESS OF FIRST PCB IN LIST

 L 6,PCB1PTR

* ISSUE DL/I CALL: GET A UNIQUE SEGMENT

 CALLDLI ASMTDLI,(GHUFUN,PCB1,IOAREA,SSA1) 6

 CLC UIBFCTR,GOODRC

 BNE ERROR2

 CLC DBPC1STC,GOODSC

 BNE ERROR3 7

* PERFORM SEGMENT UPDATE ACTIVITY

 MVC AREA1,.......

 MVC AREA2,.......

* ISSUE DL/I CALL: REPLACE SEGMENT AT CURRENT POSITION

 CALLDLI ASMTDLI,(REPLFUN,PCB1,IOAREA,SSA1) 8

 CLC UIBFCTR,GOODRC

 BNE ERROR4

 CLC DBPC1STC,GOODSC

 B TERM

ERROR1 DS 0H

* INSERT ERROR DIAGNOSTIC CODE

 B TERM

ERROR2 DS 0H

* INSERT ERROR DIAGNOSTIC CODE

 B TERM

ERROR3 DS 0H

* INSERT ERROR DIAGNOSTIC CODE

 B TERM

ERROR4 DS 0H

* INSERT ERROR DIAGNOSTIC CODE

ERROR5 DS 0H

* INSERT ERROR DIAGNOSTIC CODE

 B TERM

TERM DS 0H

* RELEASE THE PSB

 CALLDLI ASMDLI, (TERMFUN)

 EXEC CICS RETURN

 END ASMUIB 9,10

Figure 9. Sample Call-Level Assembler Language Program (CICS Online) (Part 2 of 2)

Coding Programs in Assembler Language

Chapter 2. Writing Your Application Programs 33

CICS online assembler language programs use the CALLDLI macro, instead of

the call statement, to access DL/I databases. This macro is similar to the call

statement. It looks like this:

CALLDLI ASMTDLI,(function,PCB-name,ioarea, SSA1,...SSAn),VL

 7. CICS online programs must check the return code in the UIB before checking

the status code in the DB PCB.

 8. The REPL call replaces the data in the segment that was retrieved by the most

recent Get Hold call. The data is replaced by the contents of the I/O area

referenced in the call.

 9. This call releases the PSB.

10. The RETURN statement loads IMS registers and returns control to IMS.

Related Reading: For more information on installing CICS application programs,

see CICS/MVS® Installation Guide.

Coding a Batch Program in C Language

Figure 10 on page 35 is a skeleton batch program that shows you how the parts of

an IMS program that is written in C fit together. The numbers to the right of the

program refer to the notes that follow the program.

Coding Programs in Assembler Language

34 Application Programming: Database Manager

|

#pragma runopts(env(IMS),plist(IMS)) NOTES

#include <ims.h>

#include <stdio.h> 1

main() { 2

/* */

/* descriptive statements */

/* */

 IO_PCB_TYPE *IO_PCB = (IO_PCB_TYPE*)PCBLIST[0];

 struct {PCB_STRUCT(10)} *mast_PCB = __pcblist[1];

struct {PCB_STRUCT(20)} *detail_PCB = __pcblist[2]; 3

const static char func_GU[4] = "GU ";

const static char func_GN[4] = "GN ";

const static char func_GHU[4] = "GHU ";

const static char func_GHN[4] = "GHN ";

const static char func_GNP[4] = "GNP "; 4

const static char func_GHNP[4] = "GHNP";

const static char func_ISRT[4] = "ISRT";

const static char func_REPL[4] = "REPL";

const static char func_DLET[4] = "DLET";

char qual_ssa[8+1+8+2+6+1+1]; /* initialized by sprintf 5

 /*below. See the */

 /*explanation for */

 /*sprintf in note 7 for the */

 /*meanings of 8,1,8,2,6,1 ——*/

 /*the final 1 is for the */

 /*trailing ’\0’ of string */

static const char unqual_ssa[]= "NAME ");

 /* 12345678_ */

struct {

 ———

 ———

 ———

 } mast_seg_io_area;

struct {

 ———

 ——— 6

 ———

 } det_seg_io_area;

Figure 10. Sample C Language Program (Part 1 of 2)

Coding Programs in C Language

Chapter 2. Writing Your Application Programs 35

Notes to Figure 10:

 1. The env(IMS) establishes the correct operating environment and the plist(IMS)

establishes the correct parameter list when invoked under IMS. The ims.h

header file contains declarations for PCB layouts, __pcblist, and the ctdli

routine. The PCB layouts define masks for the PCBs that the program uses as

structures. These definitions make it possible for the program to check fields in

the PCBs.

The stdio.h header file contains declarations for sprintf (used to build up the

SSA).

 2. After IMS has loaded the application program’s PSB, IMS gives control to the

application program through this entry point.

 3. The C run-time sets up the __pcblist values. The order in which you refer to

the PCBs must be the same order in which they have been defined in the

PSB. (Values other than “10” and “20” can be used, according to the actual

key lengths needed.) These declarations can be done using macros, such as:

#define IO_PCB (IO_PCB_TYPE *) (__pcblist[0])

#define mast_PCB (__pcblist[1])

#define detail_PCB (__pcblist[2])

This example assumes that an I/O PCB was passed to the application

program. When the program is a batch program, CMPAT=YES must be

specified on the PSBGEN statement of PSBGEN so that the I/O PCB is

included. Because the I/O PCB is required for a batch program to make

system service calls, CMPAT=YES should always be specified for batch

programs.

 4. Each of these areas defines one of the call functions used by the batch

program. Each character string is defined as four alphanumeric characters,

with a value assigned for each function. (If the [4]s had been left out, 5 bytes

would have been reserved for each constant.) You can define other constants

in the same way. Also, you can store standard definitions in a source library

and include them by using a #include directive.

Instead, you can define these by macros, although each string would have a

trailing null (’\0’).

/* */

/* Initialize the qualifier */

/* */

 sprintf(qual_ssa,

 "%—8.8s(%—8.8s%2.2s%—6.6s)",

 "ROOT", "KEY", "=", "vvvvv"); 7

/* */

/* Main part of C batch program */

/* */

 ctdli(func_GU, detail_PCB,

 &det_seg_io_area,qual_ssa); 8

 ctdli(func_GHU, mast_PCB,

 &mast_seg_io_area,qual_ssa); 9

 ctdli(func_GHN, mast_PCB,

 &mast_seg_io_area); 10

 ctdli(func_REPL, mast_PCB,

 &mast_seg_io_area; 11

} 12

Figure 10. Sample C Language Program (Part 2 of 2)

Coding Programs in C Language

36 Application Programming: Database Manager

5. The SSA is put into a string (see note 7). You can define a structure, as in

COBOL, PL/I, or Pascal, but using sprintf is more convenient. (Remember

that C strings have trailing nulls that cannot be passed to IMS.) Note that the

string is 1 byte longer than required by IMS to contain the trailing null, which is

ignored by IMS. Note also that the numbers in brackets assume that six fields

in the SSA are equal to these lengths.

 6. The I/O areas that will be used to pass segments to and from the database

are defined as structures.

 7. The sprintf function is used to fill in the SSA. The “%-8.8s” format means “a

left-justified string of exactly eight positions”. The “%2.2s” format means “a

right-justified string of exactly two positions”.

Because the ROOT and KEY parts do not change, this can also be coded:

sprintf(qual_ssa,

 "ROOT (KEY =%-6.6s)", "vvvvv");

 /* 12345678 12345678 */

 8. This call retrieves data from the database. It contains a qualified SSA. Before

you can issue a call that uses a qualified SSA, initialize the data field of the

SSA. Before you can issue a call that uses an unqualified SSA, initialize the

segment name field. Unlike the COBOL, PL/I, and Pascal interface routines,

ctdli also returns the status code as its result. (Blank is translated to 0.) So,

you can code:

switch (ctdli(....)) {

 case 0: ... /* everything ok */

 break;

 case ’AB’:

 break;

 case ’IX’: ...

 break;

 default:

}

You can pass only the PCB pointer for DL/I calls in a C program.

 9. This is another call with a qualified SSA.

10. This call is an unqualified call that retrieves data from the database. Because it

is a Get Hold call, it can be followed by REPL or DLET.

11. The REPL call replaces the data in the segment that was retrieved by the most

recent Get Hold call. The data is replaced by the contents of the I/O area that

is referenced in the call.

12. The end of the main routine (which can be done by a return statement or exit

call) returns control to IMS.

Binding C Code to the Language Interface Module

IMS provides a language interface module (DFSLI000) that is an interface between

IMS and the C language. This module must be made available to the application

program at bind time.

Coding a Batch Program in COBOL

The program in Figure 11 is a skeleton batch program that shows you how the parts

of an IMS program, written in COBOL, fit together. The numbers to the right of the

program refer to the notes that follow the program. This kind of program can run as

a batch program or as a batch-oriented BMP.

Coding Programs in C Language

Chapter 2. Writing Your Application Programs 37

|
|
|
|

ENVIRONMENT DIVI SION Note

 . 1

 .

DATA DIVISION.

WORKING—STORAGE SECTION.

 77 FUNC—GU PICTURE XXXX VALUE ’GU ’.

 77 FUNC—GHU PICTURE XXXX VALUE ’GHU ’.

 77 FUNC—GN PICTURE XXXX VALUE ’GHN ’.

 77 FUNC—GHN PICTURE XXXX VALUE ’GHN ’.

 77 FUNC—GNP PICTURE XXXX VALUE ’GNP ’.

 77 FUNC—GHNP PICTURE XXXX VALUE ’GHNP’.

 77 FUNC—REPL PICTURE XXXX VALUE ’REPL’.

 77 FUNC—ISRT PICTURE XXXX VALUE ’ISRT’.

 77 FUNC—DLET PICTURE XXXX VALUE ’DLET’.

 77 COUNT PICTURE S9(5)VALUE +4 COMPUTATIONAL.

 01 UNQUAL—SSA.

 02 SEG—NAME PICTURE X(08) VALUE ’ ’.

 02 FILLER PICTURE X VALUE ’ ’. 2

 01 QUAL—SSA—MAST.

 02 SEG—NAME—M PICTURE X(08) VALUE ’ROOTMAST’.

 02 BEGIN—PAREN—M PICTURE X VALUE ’(’.

 02 KEY—NAME—M PICTURE X(08) VALUE ’KEYMAST ’.

 02 REL—OPER—M PICTURE X(02) VALUE ’ =’.

 02 KEY—VALUE—M PICTURE X(06) VALUE ’vvvvvv’.

 02 END—PAREN—M PICTURE X VALUE ’)’. 3

 01 QUAL—SSA—DET.

 02 SEG—NAME—D PICTURE X(08) VALUE ’ROOTDET ’.

 02 BEGIN—PAREN—D PICTURE X VALUE ’(’.

 02 KEY—NAME—D PICTURE X(08) VALUE ’KEYDET ’.

 02 REL—OPER—D PICTURE X(02) VALUE ’ =’.

 02 KEY—VALUE—D PICTURE X(06) VALUE ’vvvvvv’.

 02 END—PAREN—D PICTURE X VALUE ’)’.

 01 DET—SEG—IN.

 02 ——

 02 ——

 01 MAST—SEG—IN. 4

 02 ——

 02 ——

LINKAGE SECTION.

 01 IO—PCB.

 02 FILLER PICTURE X(10).

 02 IO—STAT—CODE PICTURE XX.

 02 FILLER PICTURE X(20).

 01 DB—PCB—MAST.

 02 MAST—DBD—NAME PICTURE X(8).

 02 MAST—SEG—LEVEL PICTURE XX. 5

 02 MAST—STAT—CODE PICTURE XX.

 02 MAST—PROC—OPT PICTURE XXXX.

 02 FILLER PICTURE S9(5) COMPUTATIONAL.

 02 MAST—SEG—NAME PICTURE X(8).

 02 MAST—LEN—KFB PICTURE S9(5) COMPUTATIONAL.

 02 MAST—NU—SENSEG PICTURE S9(5) COMPUTATIONAL.

 02 MAST—KEY—FB PICTURE X———X.

 01 DB—PCB—DETAIL.

 02 DET—DBD—NAME PICTURE X(8).

 02 DET—SEG—LEVEL PICTURE XX.

 02 DET—STAT—CODE PICTURE XX.

 02 DET—PROC—OPT PICTURE XXXX.

 02 FILLER PICTURE S9(5) COMPUTATIONAL.

 02 DET—SEG—NAME PICTURE X(8).

 02 DET—LEN—KFB PICTURE S9(5) COMPUTATIONAL.

 02 DET—NU—SENSEG PICTURE S9(5) COMPUTATIONAL.

 02 DET—KEY—FB PICTURE X———X.

Figure 11. Sample COBOL Program (Part 1 of 2)

Coding Programs in COBOL

38 Application Programming: Database Manager

Notes to Figure 11:

 1. You define each of the DL/I call functions the program uses with a 77-level or

01-level working storage entry. Each picture clause is defined as four

alphanumeric characters and has a value assigned for each function. If you

want to include the optional parmcount field, you can initialize count values for

each type of call. You can also use a COBOL COPY statement to include

these standard descriptions in the program.

 2. A 9-byte area is set up for an unqualified SSA. Before the program issues a

call that requires an unqualified SSA, it moves the segment name to this area.

If a call requires two or more SSAs, you may need to define additional areas.

 3. A 01-level working storage entry defines each qualified SSA that the

application program uses. Qualified SSAs must be defined separately, because

the values of the fields are different.

 4. A 01-level working storage entry defines I/O areas that are used for passing

segments to and from the database. You can further define I/O areas with

02-level entries. You can use separate I/O areas for each segment type, or you

can define one I/O area that you use for all segments.

 5. A 01-level linkage section entry defines a mask for each of the PCBs that the

program requires. The DB PCBs represent both input and output databases.

After issuing each DL/I call, the program checks the status code through this

linkage. You define each field in the DB PCB so that you can reference it in

the program.

 6. This is the standard procedure division statement of a batch program. After

IMS has loaded the PSB for the program, IMS passes control to the

application program. The PSB contains all the PCBs that are defined in the

PSB. The coding of USING on the procedure division statement references each

of the PCBs by the names that the program has used to define the PCB

masks in the linkage section. The PCBs must be listed in the order in which

they are defined in the PSB.

PROCEDURE DIVISION USING IO—PCB, DB—PCB—MAST, DB—PCB—DETAIL

 ENTRY ’DLITCBL’ 6

 .

 .

 .

 .

 CALL ’CBLTDLI’ USING FUNC—GU, DB—PCB—DETAIL,

 DET—SEG—IN, QUAL—SSA—DET. 7

 .

 .

 CALL ’CBLTDLI’ USING COUNT, FUNC—GHU, DB—PCB—MAST,

 MAST—SEG—IN, QUAL—SSA—MAST. 8

 .

 .

 CALL ’CBLTDLI’ USING FUNC—GHN, DB—PCB—MAST,

 MAST—SEG—IN. 9

 .

 .

 CALL ’CBLTDLI’ USING FUNC—REPL, DB—PCB—MAST,

 MAST—SEG—IN. 10

 .

 .

 GOBACK. 11

Figure 11. Sample COBOL Program (Part 2 of 2)

Coding Programs in COBOL

Chapter 2. Writing Your Application Programs 39

The example in Figure 11 assumes that an I/O PCB was passed to the

application program. When the program is a batch program, CMPAT=YES

must be specified on the PSBGEN statement of PSBGEN so that the I/O PCB

is included. Because the I/O PCB is required for a batch program to make

system service calls, CMPAT=YES should always be specified for batch

programs.

The entry DLITCBL statement is only used in the main program. Do not use it

in called programs.

 7. This call retrieves data from the database by using a qualified SSA. Before

issuing the call, the program must initialize the key or data value of the SSA so

that it specifies the particular segment to be retrieved. The program should test

the status code in the DB PCB that was referenced in the call immediately

after issuing the call. You can include the parmcount parameter in DL/I calls in

COBOL programs, except in the call to the sample status-code error routine. It

is never required in COBOL.

 8. This is another retrieval call that contains a qualified SSA.

 9. This is an unqualified retrieval call.

10. The REPL call replaces the segment that was retrieved in the most recent Get

Hold call. The segment is replaced with the contents of the I/O area that is

referenced in the call (MAST-SEG-IN).

11. The program issues the GOBACK statement when it has finished processing.

Binding COBOL Code to the IMS Language Interface Module

IMS supplies a language interface module (DFSLI000). This module must be bound

to the batch program after the program has been compiled. It gives a common

interface to IMS.

If you use the IMS-supplied procedures (IMSCOBOL or IMSCOBGO), IMS binds the

language interface with the application program. IMSCOBOL is a two-step

procedure that compiles and binds your program. IMSCOBGO is a three-step

procedure that compiles, binds, and executes your program in an IMS batch region.

 Related Reading: For information on how to use these procedures, see IMS

Version 9: Installation Volume 2: System Definition and Tailoring.

Coding a CICS Online Program in COBOL

The programs in this section are skeleton online programs in Enterprise COBOL.

They show examples of how to define and set up addressability to the UIB. The

numbers to the right of the programs refer to the notes that follow them. This kind

of program can run in a CICS environment using DBCTL.

CBL APOST NOTES

 IDENTIFICATION DIVISION.

 PROGRAM—ID. CBLUIB.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING—STORAGE SECTION.

 77 PSB—NAME PIC X(8) VALUE ’CBLPSB ’.

 77 PCB—FUNCTION PIC X(4) VALUE ’PCB ’.

 77 TERM—FUNCTION PIC X(4) VALUE ’TERM’. 1

 77 GHU—FUNCTION PIC X(4) VALUE ’GHU ’.

 77 REPL—FUNCTION PIC X(4) VALUE ’REPL’.

 77 SSA1 PIC X(9) VALUE ’AAAA4444 ’.

 77 SUCCESS—MESSAGE PIC X(40).

 77 GOOD—STATUS—CODE PIC XX VALUE ’ ’. 2

 77 GOOD—RETURN—CODE PIC X VALUE LOW—VALUE.

 01 MESSAGE0.

 02 MESSAGE1 PIC X(38). 3

Coding Programs in COBOL

40 Application Programming: Database Manager

|
|
|
|

|
|
|
|

|
|

02 MESSAGE2 PIC XX.

 01 DLI—IO—AREA.

 02 AREA1 PIC X(3).

 02 AREA2 PIC X(37).

 LINKAGE SECTION.

 COPY DLIUIB. 4,5

 01 OVERLAY—DLIUIB REDEFINES DLIUIB.

 02 PCBADDR USAGE IS POINTER.

 02 FILLER PIC XX.

 01 PCB—ADDRESSES.

 02 PCB—ADDRESS—LIST

 USAGE IS POINTER OCCURS 10 TIMES.

 01 PCB1.

 02 PCB1—DBD—NAME PIC X(8).

 02 PCB1—SEG—LEVEL PIC XX.

 02 PCB1—STATUS—CODE PIC XX.

 02 PCB1—PROC—OPT PIC XXXX. 6

 02 FILLER PIC S9(5) COMP.

 02 PCB1—SEG—NAME PIC X(8).

 02 PCB1—LEN—KFB PIC S9(5) COMP.

 02 PCB1—NU—SENSEG PIC S9(5) COMP.

 02 PCB1—KEY—FB PIC X(256).

 PROCEDURE DIVISION.

 * SCHEDULE THE PSB AND ADDRESS THE UIB.

 CALL ’CBLTDLI’ USING PCB—FUNCTION, PSB—NAME, 7

 ADDRESS OF DLIUIB.

 IF UIBFCTR IS NOT EQUAL LOW—VALUES THEN

 * INSERT ERROR DIAGNOSTIC CODE.

 EXEC CICS RETURN END—EXEC.

 SET ADDRESS OF PCB—ADDRESSES TO PCBADDR.

* ISSUE DL/I CALL: GET A UNIQUE SEGMENT

 SET ADDRESS OF PCB1 TO PCB—ADDRESS—LIST(1).

 CALL ’CBLTDLI’ USING GHU—FUNCTION, PCB1, 8

 DLI—IO—AREA, SSA1.

 IF UIBFCTR IS NOT EQUAL GOOD—RETURN—CODE THEN

* INSERT ERROR DIAGNOSTIC CODE

 EXEC CICS RETURN END—EXEC.

 IF PCB1—STATUS—CODE IS NOT EQUAL GOOD—STATUS—CODE THEN

* INSERT ERROR DIAGNOSTIC CODE 9

 EXEC CICS RETURN END—EXEC.

* PERFORM SEGMENT UPDATE ACTIVITY

 MOVE TO AREA1.

 MOVE TO AREA2.

* ISSUE DL/I CALL: REPLACE SEGMENT AT CURRENT POSITION 10

 CALL ’CBLTDLI’ USING REPL—FUNCTION, PCB1,

 DLI—IO—AREA, SSA1.

 IF UIBFCTR IS NOT EQUAL GOOD—RETURN—CODE THEN

* INSERT ERROR DIAGNOSTIC CODE

 EXEC CICS RETURN END—EXEC.

 IF PCB1—STATUS—CODE IS NOT EQUAL GOOD—STATUS—CODE THEN

* INSERT ERROR DIAGNOSTIC CODE

 EXEC CICS RETURN END—EXEC.

* RELEASE THE PSB

 CALL ’CBLTDLI’ USING TERM—FUNCTION.

* OTHER APPLICATION FUNCTION 11,12

 EXEC CICS RETURN END—EXEC.

 GOBACK.

Notes to example:

 1. You define each of the DL/I call functions the program uses with a 77-level or

01-level working storage entry. Each picture clause is defined as four

alphanumeric characters and has a value assigned for each function. If you

want to include the optional parmcount field, initialize count values for each

type of call. You can also use the COBOL COPY statement to include these

standard descriptions in the program.

Coding Programs in COBOL

Chapter 2. Writing Your Application Programs 41

2. A 9-byte area is set up for an unqualified SSA. Before the program issues a

call that requires an unqualified SSA, it can either initialize this area with the

segment name or move the segment name to this area. If a call requires two

or more SSAs, you may need to define additional areas.

 3. An 01-level working storage entry defines I/O areas that are used for passing

segments to and from the database. You can further define I/O areas with

02-level entries. You can use separate I/O areas for each segment type, or you

can define one I/O area that you use for all segments.

 4. The linkage section does not contain BLLCELLS with Enterprise COBOL.

 5. The COPY DLIUIB statement will be expanded as shown in Figure 18 on page

81.

 6. The field UIBPCBAL is redefined as a pointer variable in order to address the

special register of Enterprise COBOL. This field contains the address of an

area containing the PCB addresses. Do not alter the addresses in the area.

 7. One PCB layout is defined in the linkage section. The PCB-ADDRESS-LIST

occurs n times, where n is greater than or equal to the number of PCBs in the

PSB.

 8. The PCB call schedules a PSB for your program to use. The address of the

DLIUIB parameter returns the address of DLIUIB.

 9. This unqualified GHU call retrieves a segment from the database and places it

in the I/O area that is referenced by the call. Before issuing the call, the

program must initialize the key or data value of the SSA so that it specifies the

particular segment to be retrieved.

10. CICS online programs should test the return code in the UIB before testing the

status code in the DB PCB.

11. The REPL call replaces the segment that was retrieved in the most recent Get

Hold call with the data that the program has placed in the I/O area.

12. The TERM call terminates the PSB the program scheduled earlier. This call is

optional and is only issued if a sync point is desired prior to continued

processing. The program issues the EXEC CICS RETURN statement when it

has finished its processing. If this is a RETURN from the highest-level CICS

program, a TERM call and sync point are internally generated by CICS.

Coding Programs in COBOL

42 Application Programming: Database Manager

|

|
|
|

IDENTIFICATION DIVISION. NOTES

PROGRAM—ID. ’CBLUIB’.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING—STORAGE SECTION.

77 PSB—NAME PIC X(8) VALUE ’CBLPSB ’. 1

77 PCB—FUNCTION PIC X(4) VALUE ’PCB ’.

77 TERM—FUNCTION PIC X(4) VALUE ’TERM’.

77 GHU—FUNCTION PIC X(4) VALUE ’GHU ’.

77 REPL—FUNCTION PIC X(4) VALUE ’REPL’.

77 SSA1 PIC X(9) VALUE ’AAAA4444 ’. 2

77 SUCCESS—MESSAGE PIC X(40).

77 GOOD—STATUS—CODE PIC XX VALUE ’ ’.

77 GOOD—RETURN—CODE PIC X VALUE LOW—VALUE.

01 MESSAGE.

 02 MESSAGE1 PIC X(38).

 02 MESSAGE2 PIC XX.

01 DLI—IO—AREA. 3

 02 AREA1 PIC X(3).

 02 AREA2 PIC X(37).

LINKAGE SECTION. 4

01 BLLCELLS.

 02 FILLER PIC S9(8) COMP.

 02 UIB—PTR PIC S9(8) COMP.

 02 B—PCB—PTRS PIC S9(8) COMP.

 02 PCB1—PTR PIC S9(8) COMP.

 COPY DLIUIB. 5,6

01 PCB—PTRS.

 02 B—PCB1—PTR PIC 9(8) COMP.

01 PCB1. 7

 02 PCB1—DBD—NAME PIC X(8).

 02 PCB1—SEG—LEVEL PIC XX.

 02 PCB1—STATUS—CODE PIC XX.

 02 PCB1—PROC—OPT PIC XXXX.

 02 FILLER PIC S9(5) COMP.

 02 PCB1—SEG—NAME PIC X(8).

 02 PCB1—LEN—KFB PIC S9(5) COMP.

 02 PCB1—NU——ENSEG PIC S9(5) COMP.

 02 PCB1—KEY—FB PIC X(256).

PROCEDURE DIVISION. 8

 CALL ’CBLTDLI’ USING PCB—FUNCTION, PSB—NAME, UIB—PTR

 IF UIBFCTR IS NOT EQUAL LOW—VALUES THEN

 INSERT ERROR DIAGNOSTIC CODE

 EXEC CICS RETURN END—EXEC.

 MOVE UIBPCBAL TO B—PCB—PTRS.

 MOVE B—PCB1—PTR TO PCB1—PTR.

* ISSUE DL/I CALL: GET A UNIQUE SEGMENT 9

 CALL ’CBLTDLI’ USING GHU—FUNCTION, PCB1,

 DLI—IO—AREA, SSA1.

 SERVICE RELOAD UIB—PTR

 IF UIBFCTR IS NOT EQUAL GOOD—RETURN—CODE THEN 10

* INSERT ERROR DIAGNOSTIC CODE

 EXEC CICS RETURN END—EXEC.

Figure 12. Sample Call-Level OS/V COBOL program (CICS Online) (Part 1 of 2)

Coding Programs in COBOL

Chapter 2. Writing Your Application Programs 43

Notes to Figure 12:

 1. You define each of the DL/I call functions the program uses with a 77-level or

01-level working storage entry. Each picture clause is defined as four

alphanumeric characters and has a value assigned for each function. If you

want to include the optional parmcount field, you can initialize count values for

each type of call. You can also use the COBOL COPY statement to include

these standard descriptions in the program.

 2. A 9-byte area is set up for an unqualified SSA. Before the program issues a

call that requires an unqualified SSA, it can either initialize this area with the

segment name or move the segment name to this area. If a call requires two

or more SSAs, you may need to define additional areas.

 3. An 01-level working storage entry defines I/O areas that are used for passing

segments to and from the database. You can further define I/O areas with

02-level entries. You can use separate I/O areas for each segment type, or you

can define one I/O area to use for all segments.

 4. The linkage section must start with a definition of this type to provide

addressability to a parameter list that will contain the addresses of storage that

is outside the working storage of the application program. The first 02-level

definition is used by CICS to provide addressability to the other fields in the

list. A one-to-one correspondence exists between the other 02-level names and

the 01-level data definitions in the linkage section.

 5. The COPY DLIUIB statement will be expanded as shown in Figure 18 on page

81.

 6. The UIB returns the address of an area that contains the PCB addresses. The

definition of PCB pointers is necessary to obtain the actual PCB addresses. Do

not alter the addresses in the area.

 7. The PCBs are defined in the linkage section.

 8. The PCB call schedules a PSB for your program to use.

 9. This unqualified GHU call retrieves a segment from the database and places it

in the I/O area that is referenced by the call. Before issuing the call, the

program must initialize the key or data value of the SSA so that it specifies the

particular segment to be retrieved.

10. CICS online programs should test the return code in the UIB before testing the

status code in the DB PCB.

 IF PCB1—STATUS—CODE IS NOT EQUAL GOOD—STATUS—CODE THEN

* INSERT ERROR DIAGNOSTIC CODE

 EXEC CICS RETURN END—EXEC.

* PERFORM SEGMENT UPDATE ACTIVITY

 MOVE TO AREA1.

 MOVE TO AREA2.

* ISSUE DL/I CALL: REPLACE SEGMENT AT CURRENT POSITION 11

 CALL ’CBLTDLI’ USING REPL—FUNCTION, PCB1,

 DLI—IO—AREA, SSA1.

 IF UIBFCTR IS NOT EQUAL GOOD—RETURN—CODE THEN

* INSERT ERROR DIAGNOSTIC CODE

 EXEC CICS RETURN END—EXEC.

 IF PCB1—STATUS—CODE IS NOT EQUAL GOOD—STATUS—CODE THEN

* INSERT ERROR DIAGNOSTIC CODE

 EXEC CICS RETURN END—EXEC.

 RELEASE THE PSB

 CALL ’CBLTDLI’ USING TERM—FUNCTION. 12,13

 EXEC CICS RETURN END—EXEC.

Figure 12. Sample Call-Level OS/V COBOL program (CICS Online) (Part 2 of 2)

Coding Programs in COBOL

44 Application Programming: Database Manager

11. The REPL call replaces the segment that was retrieved in the most recent Get

Hold call with the data that the program has placed in the I/O area.

12. The TERM call terminates the PSB that the program scheduled earlier. This call

is optional and is only issued if a sync point is desired prior to continued

processing.

13. The program issues the EXEC CICS RETURN statement when it has finished

its processing. If this is a return from the highest-level CICS program, a TERM

call and sync point are internally generated by CICS.

Related Reading: For more information about installing application programs, see

CICS/MVS Installation Guide.

Ensuring Addressability Using the COBOL Optimization Feature

(CICS Online Only)

If you use the OS/VS COBOL compiler (5740-CB1) with the OPTIMIZE feature, you

must use the SERVICE RELOAD compiler control statement in your program to

ensure addressability to areas that are defined in the LINKAGE SECTION. If you

use the Enterprise COBOL compiler, the SERVICE RELOAD statement is not

required.

The format of the SERVICE RELOAD statement is:

SERVICE RELOAD fieldname

fieldname is the name of a storage area defined in a 01-level statement in the

LINKAGE SECTION.

Use the SERVICE RELOAD statement after each statement that modifies

addressability to an area in the LINKAGE SECTION. Include the SERVICE

RELOAD statement after the label if the statement might cause a branch to another

label.

If you specify NOOPTIMIZE when compiling your program, you do not need to use

the SERVICE RELOAD statement. However, use this statement to ensure that the

program will execute correctly if it is compiled using the OPTIMIZE option.

For more information on using the SERVICE RELOAD statement, see CICS/ESA

Application Programmer’s Reference.

Coding a Batch Program in Pascal

Figure 13 on page 46 is a skeleton batch program in Pascal. It shows you how the

parts of an IMS program that is written in Pascal fit together. The numbers to the

right of the program refer to the notes that follow the program.

Restriction: Pascal is not supported by CICS.

Coding Programs in COBOL

Chapter 2. Writing Your Application Programs 45

|
|

|
|
|
|
|

segment PASCIMS; NOTES

 1

 type 2

 CHAR2 = packed array [1..2] of CHAR;

 CHAR4 = packed array [1..4] of CHAR;

 CHAR6 = packed array [1..6] of CHAR;

 CHARn = packed array [1..n] of CHAR;

 DB_PCB_TYPE = record 3

 DB_NAME : ALFA;

 DB_SEG_LEVEL : CHAR2;

 DB_STAT_CODE : CHAR2;

 DB_PROC_OPT : CHAR4;

 FILLER : INTEGER;

 DB_SEG_NAME : ALFA;

 DB_LEN_KFB : INTEGER;

 DB_NO_SENSEG : INTEGER;

 DB_KEY_FB : CHARn;

 end;

 procedure PASCIMS (var SAVE: INTEGER; 4

 var DB_PCB_MAST: DB_PCB_TYPE;

 var DB_PCB_DETAIL : DB_PCB_TYPE);

 REENTRANT;

 procedure PASCIMS;

 type 5

 QUAL_SSA_TYPE = record

 SEG_NAME : ALFA;

 SEQ_QUAL : CHAR;

 SEG_KEY_NAME : ALFA;

 SEG_OPR : CHAR2;

 SEG_KEY_VALUE: CHAR6;

 SEG_END_CHAR : CHAR;

 end;

 MAST_SEG_IO_AREA_TYPE = record

 (* Field declarations *)

 end;

 DET_SEG_IO_AREA_TYPE = record

 (* Field declarations *)

 end;

 var 6

 MAST_SEG_IO_AREA : MAST_SEG_IO_AREA_TYPE;

 DET_SEG_IO_AREA : DET_SEG_IO_AREA_TYPE;

 const 7

 GU = ’GU ’;

 GN = ’GN ’;

 GHU = ’GHU ’;

 GHN = ’GHN ’;

 GHNP = ’GHNP’;

 ISRT = ’ISRT’;

 REPL = ’REPL’;

 DLET = ’DLET’;

 QUAL_SSA = QUAL_SSA_TYPE(’ROOT’,’(’,’KEY’,’ =’,

 ’vvvvv’,’)’);

 UNQUAL_SSA = ’NAME ’;

 procedure PASTDLI; GENERIC; 8

 begin

Figure 13. Sample Pascal Program (Part 1 of 2)

Coding Programs in Pascal

46 Application Programming: Database Manager

Notes to Figure 13:

 1. Define the name of the Pascal compile unit.

 2. Define the data types that are needed for the PCBs used in your program.

 3. Define the PCB data type that is used in your program.

 4. Declare the procedure heading for the REENTRANT procedure that is called

by IMS. The first word in the parameter list should be an INTEGER, which is

reserved for VS Pascal’s usage. The rest of the parameters are the addresses

of the PCBs that are received from IMS.

 5. Define the data types that are needed for the SSAs and I/O areas.

 6. Declare the variables used for the I/O areas.

 7. Define the constants, such as function codes and SSAs that are used in the

PASTDLI DL/I calls.

 8. Declare the IMS interface routine by using the GENERIC directive. GENERIC

identifies external routines that allow multiple parameter list formats. A

GENERIC routine’s parameters are “declared” only when the routine is called.

 9. This call retrieves data from the database. It contains a qualified SSA. Before

you can issue a call that uses a qualified SSA, you must initialize the data field

of the SSA. Before you can issue a call that uses an unqualified SSA, you

must initialize the segment name field.

10. This is another call that has a qualified SSA.

11. This call is an unqualified call that retrieves data from the database. Because it

is a Get Hold call, it can be followed by a REPL or DLET call.

12. The REPL call replaces the data in the segment that was retrieved by the most

recent Get Hold call; the data is replaced by the contents of the I/O area that

is referenced in the call.

13. You return control to IMS by exiting from the PASCIMS procedure. You can

also code a RETURN statement to exit at another point.

Binding Pascal Code to the IMS Language Interface Module

You must bind your program to the IMS language interface module (DFSLI000) after

compiling your program.

 PASTDLI(const GU, 9

 var DB_PCB_DETAIL;

 var DET_SEG_IO_AREA;

 const QUAL_SSA);

 PASTDLI(const GHU, 10

 var DB_PCB_MAST,

 var MAST_SEG_IO_AREA,

 const QUAL_SSA);

 PASTDLI(const GHN, 11

 var DB_PCB_MAST,

 var MAST_SEG_IO_AREA);

 PASTDLI(const REPL, 12

 var DB_PCB_MAST,

 var MAST_SEG_IO_AREA);

 end; 13

Figure 13. Sample Pascal Program (Part 2 of 2)

Coding Programs in Pascal

Chapter 2. Writing Your Application Programs 47

|
|
|

Coding a Batch Program in PL/I

Figure 14 is a skeleton batch program in PL/I. It shows you how the parts of an IMS

program that is written in PL/I fit together. The numbers to the right of the program

refer to the notes that follow. This kind of program can run as a batch program or

as a batch-oriented BMP.

Restriction: IMS application programs cannot use PL/I multitasking. This is

because all tasks operate as subtasks of a PL/I control task when you use

multitasking.

/* */ NOTES

/* ENTRY POINT */

/* */

DLITPLI: PROCEDURE (IO_PTR_PCB,DB_PTR_MAST,DB_PTR_DETAIL) 1

 OPTIONS (MAIN);

/* */

/* DESCRIPTIVE STATEMENTS */

/* */

DCL IO_PTR_PCB POINTER;

DCL DB_PTR_MAST POINTER;

DCL DB_PTR_DETAIL POINTER;

DCL FUNC_GU CHAR(4) INIT(’GU ’); 2

DCL FUNC_GN CHAR(4) INIT(’GN ’);

DCL FUNC_GHU CHAR(4) INIT(’GHU ’);

DCL FUNC_GHN CHAR(4) INIT(’GHN ’);

DCL FUNC_GNP CHAR(4) INIT(’GNP ’);

DCL FUNC_GHNP CHAR(4) INIT(’GHNP’);

DCL FUNC_ISRT CHAR(4) INIT(’ISRT’);

DCL FUNC_REPL CHAR(4) INIT(’REPL’);

DCL FUNC_DLET CHAR(4) INIT(’DLET’);

DCL 1 QUAL_SSA STATIC UNALIGNED, 3

 2 SEG_NAME CHAR(8) INIT(’ROOT ’),

 2 SEG_QUAL CHAR(1) INIT(’(’),

 2 SEG_KEY_NAME CHAR(8) INIT(’KEY ’),

 2 SEG_OPR CHAR(2) INIT(’ =’),

 2 SEG_KEY_VALUE CHAR(6) INIT(’vvvvv’),

 2 SEG_END_CHAR CHAR(1) INIT(’)’);

DCL 1 UNQUAL SSA STATIC UNALIGNED,

 2 SEG_NAME_U CHAR(8) INIT(’NAME ’),

 2 BLANK CHAR(1) INIT(’ ’);

DCL 1 MAST_SEG_IO_AREA, 4

 2 ———

 2 ———

 2 ———

DCL 1 DET_SEG_IO_AREA,

 2 ———

 2 ———

 2 ———

DCL 1 IO_PCB BASED (IO_PTR_PCB), 5

 2 FILLER CHAR(10),

 2 STAT CHAR(2);

Figure 14. Sample PL/I Program (Part 1 of 2)

Coding Programs in PL/I

48 Application Programming: Database Manager

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Notes to Figure 14:

 1. After IMS has loaded the PSB of the application program, IMS gives control to

the application program through this entry point. PL/I programs must pass the

pointers to the PCBs, not the names, in the entry statement. The entry

statement lists the PCBs that the program uses by the names that it has

assigned to the definitions for the PCB masks. The order in which you refer to

the PCBs in the entry statement must be the same order in which they have

been defined in the PSB.

The example in Figure 14 on page 48 assumes that an I/O PCB was passed

to the application program. When the program is a batch program,

CMPAT=YES must be specified on the PSBGEN statement of PSBGEN so

DCL 1 DB_PCB_MAST BASED (DB_PTR_MAST),

 2 MAST_DB_NAME CHAR(8),

 2 MAST_SEG_LEVEL CHAR(2),

 2 MAST_STAT_CODE CHAR(2),

 2 MAST_PROC_OPT CHAR(4),

 2 FILLER FIXED BINARY (31,0),

 2 MAST_SEG_NAME CHAR(8),

 2 MAST_LEN_KFB FIXED BINARY (31,0),

 2 MAST_NO_SENSEG FIXED BINARY (31,0),

 2 MAST_KEY_FB CHAR(*);

DCL 1 DB_PCB_DETAIL BASE (DB_PTR_DETAIL),

 2 DET_DB_NAME CHAR(8),

 2 DET_SEG_LEVEL CHAR(2),

 2 DET_STAT_CODE CHAR(2),

 2 DET_PROC_OPT CHAR(4),

 2 FILLER FIXED BINARY (31,0),

 2 DET_SEG_NAME CHAR(8),

 2 DET_LEN_KFB FIXED BINARY (31,0),

 2 DET_NO_SENSEG FIXED BINARY (31,0),

 2 DET_KEY_FB CHAR(*);

DCL THREE FIXED BINARY (31,0) INITIAL(3); 6

DCL FOUR FIXED BINARY (31,0) INITIAL(4);

DCL FIVE FIXED BINARY (31,0) INITIAL(5);

DCL SIX FIXED BINARY (31,0) INITIAL(6);

/* */

/* MAIN PART OF PL/I BATCH PROGRAM */

/* */

CALL PLITDLI (FOUR,FUNC_GU,DB_PCB_DETAIL,DET_SEG_IO_AREA, QUAL_SSA); 7

 IF DET_STAT_CODE = GOOD_STATUS_CODE THEN DO;

 CALL PLITDLI (FOUR,FUNC_GHU,DB_PCB_MAST,MAST_SEG_IO_AREA,QUAL_SSA); 8

 IF MAST_STAT_CODE = GOOD_STATUS_CODE THEN DO;

 CALL PLITDLI (THREE,FUNC_GHN,DB_PCB_MAST,MAST_SEG_IO_AREA); 9

 IF MAST_STAT_CODE = GOOD_STATUS_CODE THEN DO;

 CALL PLITDLI (THREE,FUNC_REPL,DB_PCB_MAST,MAST_SEG_IO_AREA); 10

 IF MAST_STAT_CODE ^= GOOD_STATUS_CODE THEN DO;

 /* INSERT REPLACE DIAGNOSTIC MESSAGE */

 END;

 ELSE DO;

 /* INSERT GHN DIAGNOSTIC MESSAGE */

 END;

 ELSE DO;

 /* INSERT GHU DIAGNOSTIC MESSAGE */

 END;

ELSE DO;

 /* INSERT GU DIAGNOSTIC MESSAGE */

END;

RETURN; 11

END DLITPLI;

Figure 14. Sample PL/I Program (Part 2 of 2)

Coding Programs in PL/I

Chapter 2. Writing Your Application Programs 49

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

that the I/O PCB is included. Because the I/O PCB is required for a batch

program to make system service calls, CMPAT=YES should always be

specified for batch programs.

 2. Each of these areas defines one of the call functions used by the batch

program. Each character string is defined as four alphanumeric characters,

with a value assigned for each function. You can define other constants in the

same way. Also, you can store standard definitions in a source library and

include them by using a %INCLUDE statement.

 3. A structure definition defines each SSA the program uses. The unaligned

attribute is required for SSAs. The SSA character string must reside

contiguously in storage. You should define a separate structure for each

qualified SSA, because the value of the data field for each SSA is different.

 4. The I/O areas that are used to pass segments to and from the database are

defined as structures.

 5. Level-01 declaratives define masks for the PCBs that the program uses as

structures. These definitions make it possible for the program to check fields in

the PCBs.

 6. This statement defines the parmcount that is required in DL/I calls that are

issued from PL/I programs (except for the call to the sample status-code error

routine, where it is not allowed). The parmcount is the address of a 4-byte field

that contains the number of subsequent parameters in the call. The parmcount

is required only in PL/I programs. It is optional in the other languages. The

value in parmcount is binary. This example shows how you can code the

parmcount parameter when three parameters follow in the call:

DCL THREE FIXED BINARY (31,0) INITIAL(3);

 7. This call retrieves data from the database. It contains a qualified SSA. Before

you can issue a call that uses a qualified SSA, initialize the data field of the

SSA. Before you can issue a call that uses an unqualified SSA, initialize the

segment name field. Check the status code after each DL/I call that you issue.

Although you must declare the PCB parameters that are listed in the entry

statement to a PL/I program as POINTER data types, you can pass either the

PCB name or the PCB pointer in DL/I calls in a PL/I program.

 8. This is another call that has a qualified SSA.

 9. This is an unqualified call that retrieves data from the database. Because it is

a Get Hold call, it can be followed by REPL or DLET.

10. The REPL call replaces the data in the segment that was retrieved by the most

recent Get Hold call; the data is replaced by the contents of the I/O area

referenced in the call.

11. The RETURN statement returns control to IMS.

Binding PL/I Code to the IMS Language Interface Module

IMS provides a language interface module (DFSLI000) which gives a common

interface to IMS. This module must be bound to the program.

If you use the IMS-supplied procedures (IMSPLI or IMSPLIGO), IMS binds the

language interface module to the application program. IMSPLI is a two-step

procedure that compiles and binds your program. IMSPLIGO is a three-step

procedure that compiles, binds, and executes your program in a DL/I batch region.

For information on how to use these procedures, see IMS Version 9: Installation

Volume 2: System Definition and Tailoring.

Coding Programs in PL/I

50 Application Programming: Database Manager

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|

|
|

|
|
|

|

|
|
|

|
|
|
|
|
|

Coding a CICS Online Program in PL/I

The program in Figure 15 is a skeleton CICS online program in PL/I. It shows you

how to define and establish addressability to the UIB. The numbers to the right of

the program refer to the notes that follow. This kind of program can run in a CICS

environment using DBCTL.

Coding Programs in PL/I

Chapter 2. Writing Your Application Programs 51

Notes to Figure 15:

 1. Each of these areas defines the DL/I call functions the program uses. Each

character string is defined as four alphanumeric characters and has a value

assigned for each function. You can define other constants in the same way.

You can store standard definitions in a source library and include them by

using a %INCLUDE statement.

 PLIUIB: PROC OPTIONS(MAIN); NOTES

 DCL PSB_NAME CHAR(8) STATIC INIT(’PLIPSB ’); 1

 DCL PCB_FUNCTION CHAR(4) STATIC INIT(’PCB ’);

 DCL TERM_FUNCTION CHAR(4) STATIC INIT(’TERM’);

 DCL GHU_FUNCTION CHAR(4) STATIC INIT(’GHU ’);

 DCL REPL_FUNCTION CHAR(4) STATIC INIT(’REPL’);

 DCL SSA1 CHAR(9) STATIC INIT(’AAAA4444 ’); 2

 DCL PARM_CT_1 FIXED BIN(31) STATIC INIT(1);

 DCL PARM_CT_3 FIXED BIN(31) STATIC INIT(3);

 DCL PARM_CT_4 FIXED BIN(31) STATIC INIT(4);

 DCL GOOD_RETURN_CODE BIT(8) STATIC INIT(’0’B);

 DCL GOOD_STATUS_CODE CHAR(2) STATIC INIT(’ ’);

 %INCLUDE DLIUIB; 3

 DCL 1 PCB_POINTERS BASED(UIBPCBAL), 4

 2 PCB1_PTR POINTER;

 DCL 1 DLI_IO_AREA, 5

 2 AREA1 CHAR(3),

 2 AREA2 CHAR(37);

 DCL 1 PCB1 BASED(PCB1_PTR), 6

 2 PCB1_DBD_NAME CHAR(8),

 2 PCB1_SEG_LEVEL CHAR(2),

 2 PCB1_STATUS_CODE CHAR(2),

 2 PCB1_PROC_OPTIONS CHAR(4),

 2 PCB1_RESERVE_DLI FIXED BIN (31,0),

 2 PCB1_SEGNAME_FB CHAR(8),

 2 PCB1_LENGTH_FB_KEY FIXED BIN(31,0),

 2 PCB1_NUMB_SENS_SEGS FIXED BIN(31,0),

 2 PCB1_KEY_FB_AREA CHAR(17);

 /* SCHEDULE PSB AND OBTAIN PCB ADDRESSES */

CALL PLITDLI (PARM_CT_3,PCB_FUNCTION,PSB_NAME,UIBPTR); 7

IF UIBFCTR = GOOD RETURN CODE THEN DO;

 /* ISSUE DL/I CALL: GET A UNIQUE SEGMENT */

 CALL PLITDLI (PARM_CT_4,GHU_FUNCTION,PCB1,DLI_IO_AREA,SSA1); 8

 IF UIBFCTR = GOOD_RETURN_CODE& PCB1_STATUS_CODE = GOOD_STATUS_CODE THEN DO; 9

 /* PERFORM SEGMENT UPDATE ACTIVITY */

 AREA1 =;

 AREA2 =;

 /* ISSUE DL/I: REPLACE SEGMENT AT CURRENT POSITION */

 PLITDLI (PARM_CT_3,REPL_FUNCTION,PCB1,DLI_IO_AREA); 10

 IF UIBFCTR ^= GOOD_RETURN_CODE

 PCB1_STATUS_CODE ^= GOOD_STATUS_CODE THEN DO;

 /* INSERT REPL ERROR DIAGNOSTIC CODE */

 END;

 END;

 ELSE DO;

 /* INSERT GHU ERROR DIAGNOSTIC CODE */

 END;

END;

ELSE DO;

 /* ANALYZE UIB PROBLEM */

 /* ISSUE UIB DIAGNOSTIC MESSAGE */

END;

/* RELEASE THE PSB */

CALL PLITDLI(PARM_CT_1,TERM_FUNCTION); 11

EXEC CICS RETURN; 12

END PLIUIB;

Figure 15. Sample Call-Level PL/I Program (CICS Online)

Coding Programs in PL/I

52 Application Programming: Database Manager

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

2. A structure definition defines each SSA the program uses. The unaligned

attribute is required for SSA. The SSA character string must reside

contiguously in storage. If a call requires two or more SSA, you may need to

define additional areas.

 3. The %INCLUDE DLIUIB statement will be expanded as shown in Figure 19 on

page 82.

 4. The UIB returns the address of an area containing the PCB addresses. The

definition of PCB pointers is necessary to obtain the actual PCB addresses. Do

not alter the addresses in the area.

 5. The I/O areas that are used to pass segments to and from the database are

defined as structures.

 6. The PCBs are defined based on the addresses that are passed in the UIB.

 7. The PCB call schedules a PSB for your program to use.

 8. This unqualified GHU call retrieves a segment from the database. The segment

is placed in the I/O area that is referenced in the call. Before issuing the call,

the program must initialize the key or data value of the SSA so that it specifies

the particular segment to be retrieved.

 9. CICS online programs must test the return code in the UIB before testing the

status code in the DB PCB.

10. The REPL call replaces the segment that was retrieved in the most recent Get

Hold call. The I/O area that is referenced in the call contains the segment to

be replaced.

11. The TERM call terminates the PSB that the program scheduled earlier.

12. The program issues the EXEC CICS RETURN statement when it has finished

processing.

Related Reading: For more information about installing application programs, see

CICS/MVS Installation Guide.

Coding Programs in PL/I

Chapter 2. Writing Your Application Programs 53

|
|

|
|

Coding Programs in PL/I

54 Application Programming: Database Manager

Chapter 3. Defining Application Program Elements

This chapter describes the elements of your application program that are used with

IMS. Your application program must define these elements. This section describes

formatting DL/I calls for language interfaces and provides language calls information

for assembler language, C language, COBOL, Pascal, and PL/I.

The following topics provide additional information:

v “Formatting DL/I Calls for Language Interfaces”

v “Assembler Language Application Programming” on page 56

v “C Language Application Programming” on page 58

v “COBOL Application Programming” on page 61

v “Pascal Application Programming” on page 64

v “Application Programming for PL/I” on page 66

v “Specifying the I/O PCB Mask” on page 69

v “Specifying the DB PCB Mask” on page 72

v “Specifying the AIB Mask” on page 75

v “Specifying the AIB Mask for ODBA Applications” on page 76

v “Specifying the UIB (CICS Online Programs Only)” on page 79

v “Specifying the I/O Areas” on page 82

v “Formatting Segment Search Arguments (SSAs)” on page 83

v “GSAM Data Areas” on page 88

v “The AIBTDLI Interface” on page 88

v “Language Specific Entry Points” on page 89

v “Program Communication Block (PCB) Lists” on page 92

v “The AERTLDI interface” on page 93

v “Language Environments” on page 94

v “Special DL/I Situations” on page 95

Related Reading: For detailed information on specific parameters for the DL/I calls,

see Chapter 11, “DL/I Calls for Database Management,” on page 217 and

Chapter 12, “DL/I Calls for System Services,” on page 245.

Formatting DL/I Calls for Language Interfaces

When you use DL/I calls in a programming language supported by IMS (High Level

Assembler, C language, COBOL, Pascal, and PL/I), you must call the DL/I

language interface to initiate the functions specified with the DL/I calls. IMS offers

several interfaces for DL/I calls:

v A language-independent interface for any programs that are Language

Environment® conforming (CEETDLI)

v A nonspecific language interface for all supported languages (AIBTDLI)

v Language-specific interfaces for all supported languages (xxxTDLI)

Related Reading: Not every DL/I call uses all the parameters shown. For

descriptions of the call functions and the parameters they use, see Chapter 11,

“DL/I Calls for Database Management,” on page 217 or Chapter 12, “DL/I Calls for

System Services,” on page 245.

© Copyright IBM Corp. 1974, 2004 55

|

Because each programming language uses a different syntax, the format for calling

the language interfaces varies.

Assembler Language Application Programming

This section contains the format, parameters, and DL/I call sample formats for IMS

application programs in assembler language. In such programs, all DL/I call

parameters that are passed as addresses can be passed in a register which, if

used, must be enclosed in parentheses.

Format

�� CALL �

�
 (2)

ASMTDLI,(

function

(1)

,db pcb

A

parmcount,

,tp pcb

A

B

C

(2)

AIBTDLI,(

function,

aib

(1)

A

parmcount,

B

�

�
 (1)

)

,VL

��

A:

�

 ,i/o area

,

,ssa

,token

,stat function

,rsa

,rootssa

B:

�

 ,i/o area length, i/o area

,

,area length,area

C:

 ,psb name, uibptr

,sysserve

Notes:

1 Assembler language must use either parmcount or VL.

Formatting DL/I Calls for Language Interfaces

56 Application Programming: Database Manager

2 See Chapter 11, “DL/I Calls for Database Management,” on page 217 and

Chapter 12, “DL/I Calls for System Services,” on page 245 for descriptions of

call functions and parameters.

Parameters

parmcount

Specifies the address of a 4-byte field in user-defined storage that contains the

number of parameters in the parameter list that follows parmcount. Assembler

language application programs must use either parmcount or VL.

function

Specifies the address of a 4-byte field in user-defined storage that contains the

call function. The call function must be left-justified and padded with blanks

(such as GU��).

db pcb

Specifies the address of the database PCB to be used for the call. The PCB

address must be one of the PCB addresses passed on entry to the application

program in the PCB list.

tp pcb

Specifies the address of the I/O PCB or alternate PCB to be used for the call.

The PCB address must be one of the PCB addresses passed on entry to the

application program in the PCB list.

aib

Specifies the address of the application interface block (AIB) in user-defined

storage. For more information on AIB, see “The AIBTDLI Interface” on page 88.

i/o area

Specifies the address of the I/O area in user-defined storage that is used for the

call. The I/O area must be large enough to contain the returned data.

i/o area length

Specifies the address of a 4-byte field in user-defined storage that contains the

I/O area length (specified in binary).

area length

Specifies the address of a 4-byte field in user-defined storage that contains the

length (specified in binary) of the area immediately following it in the parameter

list. Up to seven area lengths or area pairs can be specified.

area

Specifies the address of the area in user-defined storage to be checkpointed.

Up to seven area lengths or area pairs can be specified.

token

Specifies the address of a 4-byte field in user-defined storage that contains a

user token.

stat function

Specifies the address of a 9-byte field in user-defined storage that contains the

stat function to be performed.

ssa

Specifies the address in user-defined storage that contains the SSAs to be

used for the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa

Specifies the address of a root segment search argument in user-defined

storage.

Assembler Language Application Programming

Chapter 3. Defining Application Program Elements 57

rsa

Specifies the address of the area in user-defined storage that contains the

record search argument.

psb name

Specifies the address in user-defined storage of an 8-byte PSB name to be

used for the call.

uibptr

Specifies the address in user-defined storage of the user interface block (UIB).

sysserve

Specifies the address of an 8-byte field in user-defined storage to be used for

the call.

VL

Signifies the end of the parameter list. Assembler language programs must use

either parmcount or VL.

Example of a DL/I Call Format

Using the DL/I AIBTDLI interface:

CALL AIBTDLI,(function,aib,i/o area,ssa1),VL

Using the DL/I language-specific interface:

CALL ASMTDLI,(function,db pcb,i/o area,ssa1),VL

C Language Application Programming

This section contains the format, parameters, and DL/I sample call formats for IMS

application programs in C language.

Format

��
 (1)

rc=CTDLI(

function

parmcount,

,db pcb

A

,tp pcb

A

B

C

(2)

(1)

rc=AIBTDLI(

parmcount

,

function,

aib

A

B

(1)

CEETDLI(

function

parmcount,

,db pcb

A

,i/o pcb

A

B

,aib

A

B

);

��

A:

Assembler Language Application Programming

58 Application Programming: Database Manager

�

 ,i/o area

,

,ssa

,token

,stat function

,rsa

,rootssa

B:

�

 ,i/o area length, i/o area

,

,area length,area

C:

 ,psb name, uibptr

,sysserve

Notes:

1 See Chapter 11, “DL/I Calls for Database Management,” on page 217 and

Chapter 12, “DL/I Calls for System Services,” on page 245 for descriptions of

call functions and parameters.

2 For AIBTDLI, parmcount is required for C applications.

Parameters

rc This parameter receives the DL/I status or return code. It is a two-character

field shifted into the 2 low-order bytes of an integer variable (int). If the status

code is two blanks, 0 is placed in the field. You can test the rc parameter with

an if statement. For example, if (rc == 'IX'). You can also use rc in a

switch statement. You can choose to ignore the value placed in rc and use the

status code returned in the PCB instead.

parmcount

Specifies the name of a fixed binary (31) variable in user-defined storage that

contains the number of parameters in the parameter list that follows parmcount.

function

Specifies the name of a character (4) variable, left justified in user-defined

storage, that contains the call function to be used. The call function must be

left-justified and padded with blanks (such as GU��).

db pcb

Specifies the name of a pointer variable that contains the address of the

database to be used for the call. The PCB address must be one of the PCB

addresses passed on entry to the application program in the PCB list.

tp pcb

Specifies the name of a pointer variable that contains the address of the I/O

PCB or alternate PCB to be used for the call. The PCB address must be one of

the PCB addressed passed on entry to the application program in the PCB list.

C Language Application Programming

Chapter 3. Defining Application Program Elements 59

aib

Specifies the name of the pointer variable that contains the address of the

structure that defines the application interface block (AIB) in user-defined

storage. For more information on the AIB, see “The AIBTDLI Interface” on page

88.

i/o area

Specifies the name of a pointer variable to a major structure, array, or character

string that defines the I/O area in user-defined storage used for the call. The I/O

area must be large enough to contain all of the returned data.

i/o area length

Specifies the name of a fixed binary (31) variable in user-defined storage that

contains the I/O area length.

area length

Specifies the name of a fixed binary (31) variable in user-defined storage that

contains the length of the area immediately following it in the parameter list. Up

to seven area lengths or area pairs can be specified.

area

Specifies the name of the pointer variable that contains the address of the

structure that defines the user-defined storage to be checkpointed. Up to seven

area lengths or area pairs can be specified.

token

Specifies the name of a character (4) variable in user-defined storage that

contains a user token.

stat function

Specifies the name of a character (9) variable in user-defined storage that

contains the stat function to be performed.

ssa

Specifies the name of a character variable in user-defined storage that contains

the SSAs to be used for the call. Up to 15 SSAs can be specified, one of which

is rootssa.

rootssa

Specifies the name of a character variable that defines the root segment search

argument in user-defined storage.

rsa

Specifies the name of a character variable that contains the record search

argument for a GU call or where IMS should return the rsa for an ISRT or GN call.

psb name

Specifies the name of a character (8) variable containing the PSB name to be

used for the call.

uibptr

Specifies the name of a pointer variable that contains the address of the

structure that defines the user interface block (UIB) that is used in user-defined

storage.

sysserve

Specifies the name of a character (8) variable string in user-defined storage to

be used for the call.

C Language Application Programming

60 Application Programming: Database Manager

I/O Area

In C, the I/O area can be of any type, including structures or arrays. The ctdli

declarations in ims.h do not have any prototype information, so no type checking of

the parameters is done. The area may be auto, static, or allocated (with malloc or

calloc). You need to give special consideration to C-strings because DL/I does not

recognize the C convention of terminating strings with nulls ('\0') Instead of the

usual strcpy and strcmp functions, you may want to use memcpy and memcmp.

Example of a DL/I Call Format

Using the DL/I CEETDLI interface:

#include <leawi.h> ...
CEETDLI (function,db pcb,i/o area,ssa1);

Using the DL/I AIBTDLI interface:

int rc; ...
rc=AIBTDLI (parmcount,function,aib,i/o area,ssa1);

Using the DL/I language-specific interface:

#include <ims.h>

int rc; ...
rc=CTDLI (function,db pcb,i/o area,ssa1);

COBOL Application Programming

This section contains the format, parameters, and DL/I sample call formats for IMS

application programs in COBOL.

Format

�� CALL �

�
 (1)

'CBLTDLI'

USING

function

parmcount,

,db pcb

A

,tp pcb

A

B

C

(1)

'AIBTDLI'

USING

function,

aib

parmcount,

A

B

(1)

'CEETDLI'

USING

function

parmcount,

,db pcb

A

,tp pcb

A

B

,aib

A

B

.

��

C Language Application Programming

Chapter 3. Defining Application Program Elements 61

A:

�

 ,i/o area

,

,ssa

,token

,stat function

,rsa

,rootssa

B:

�

 ,i/o area length, i/o area

,

,area length,area

C:

 ,psb name, uibptr

,sysserve

Notes:

1 See Chapter 11, “DL/I Calls for Database Management,” on page 217 and

Chapter 12, “DL/I Calls for System Services,” on page 245 for descriptions of

call functions and parameters.

Parameters

parmcount

Specifies the identifier of a usage binary (4) byte data item in user-defined

storage that contains the number of parameters in the parameter list that

follows parmcount.

function

Specifies the identifier of a usage display (4) byte data item, left justified in

user-defined storage that contains the call function to be used. The call function

must be left-justified and padded with blanks (such as GU��).

db pcb

Specifies the identifier of the database PCB group item from the PCB list that is

passed to the application program on entry. This identifier will be used for the

call.

tp pcb

Specifies the identifier of the I/O PCB or alternate PCB group item from the

PCB list that is passed to the application program on entry. This identifier will be

used for the call.

aib

Specifies the identifier of the group item that defines the application interface

block (AIB) in user-defined storage. For more information on the AIB, see “The

AIBTDLI Interface” on page 88.

i/o area

Specifies the identifier of a major group item, table, or usage display data item

COBOL Application Programming

62 Application Programming: Database Manager

that defines the I/O area length in user-defined storage used for the call. The

I/O area must be large enough to contain all of the returned data.

i/o area length

Specifies the identifier of a usage binary (4) byte data item in user-defined

storage that contains the I/O area length (specified in binary).

area length

Specifies the identifier of a usage binary (4) byte data item in user-defined

storage that contains the length (specified in binary) of the area immediately

following it in the parameter list. Up to seven area lengths or area pairs can be

specified.

area

Specifies the identifier of the group item that defines the user-defined storage to

be checkpointed. Up to seven area lengths or area pairs can be specified.

token

Specifies the identifier of a usage display (4) byte data item in user-defined

storage that contains a user token.

stat function

Specifies the identifier of a usage display (9) byte data item in user-defined

storage that contains the stat function to be performed.

ssa

Specifies the identifier of a usage display data item in user-defined storage that

contains the SSAs to be used for the call. Up to 15 SSAs can be specified, one

of which is rootssa.

rootssa

Specifies the identifier of a usage display data item that defines the root

segment search argument in user-defined storage.

rsa

Specifies the identifier of a usage display data item that contains the record

search argument.

psb name

Specifies the identifier of a usage display (8) byte data item containing the PSB

name to be used for the call.

uibptr

Specifies the identifier of the group item that defines the user interface block

(UIB) that is used in user-defined storage.

sysserve

Specifies the identifier of a usage display (8) byte data item in user-defined

storage to be used for the call.

Example of a DL/I Call Format

Using the DL/I CEETDLI interface:

CALL 'CEETDLI' USING function,db pcb,i/o area,ssa1.

Using the DL/I AIBTDLI interface:

CALL 'AIBTDLI' USING function,aib,i/o area,ssa1.

Using the DL/I language-specific interface:

CALL 'CBLTDLI' USING function,db pcb,i/o area,ssa1.

COBOL Application Programming

Chapter 3. Defining Application Program Elements 63

Pascal Application Programming

Thissection contains the format, parameters, and DL/I sample call formats for IMS

application programs in Pascal.

Format

�� PASTDLI (A

,VAR

db pcb

B

,VAR

tp pcb

B

C

D

AIBTDLI

(

A

,

VAR

aib,

B

C

); ��

A:

 (1)

CONST

function

CONST

parmcount

,

B:

�

 ,VAR i/o area

,

,VAR ssa

,CONST token

,CONST stat function

,VAR rsa

,VAR rootssa

C:

�

 ,VAR i/o area length, VAR i/o area

,

,VAR area length,VAR area

D:

 ,VAR psb name, VAR uibptr

,VAR sysserve

Notes:

1 See Chapter 11, “DL/I Calls for Database Management,” on page 217 and

Chapter 12, “DL/I Calls for System Services,” on page 245 for descriptions of

call functions and parameters.

Pascal Application Programming

64 Application Programming: Database Manager

Parameters

parmcount

Specifies the name of a fixed binary (31) variable in user-defined storage that

contains the number of parameters in the parameter list that follows parmcount.

function

Specifies the name of a character (4) variable, left justified in user-defined

storage, that contains the call function to be used. The call function must be

left-justified and padded with blanks (such as GU��).

db pcb

Specifies the name of a pointer variable that contains the address of the

database PCB defined in the call procedure statement.

tp pcb

Specifies the name of a pointer variable that contains the address of the I/O

PCB or alternate PCB defined in the call procedure statement.

aib

Specifies the name of the pointer variable that contains the address of the

structure that defines the application interface block (AIB) in user-defined

storage. For more information on the AIB, see “The AIBTDLI Interface” on page

88.

i/o area

Specifies the name of a pointer variable to a major structure, array, or character

string that defines the I/O area in user-defined storage used for the call. The I/O

area must be large enough to contain all of the returned data.

i/o area length

Specifies the name of a fixed binary (31) variable in user-defined storage that

contains the I/O area length.

area length

Specifies the name of a fixed binary (31) variable in user-defined storage that

contains the length of the area immediately following it in the parameter list. Up

to seven area lengths or area pairs can be specified.

area

Specifies the name of the pointer variable that contains the address of the

structure that defines the user-defined storage to be checkpointed. Up to seven

area lengths or area pairs can be specified.

token

Specifies the name of a character (4) variable in user-defined storage that

contains a user token.

stat function

Specifies the name of a character (9) variable in user-defined storage that

contains the stat function to be performed.

ssa

Specifies the name of a character variable in user-defined storage that contains

the SSAs to be used for the call. Up to 15 SSAs can be specified, one of which

is rootssa.

rootssa

Specifies the name of a character variable that defines the root segment search

argument in user-defined storage.

Pascal Application Programming

Chapter 3. Defining Application Program Elements 65

rsa

Specifies the name of a character variable that contains the record search

argument.

psb name

Specifies the name of a character (8) variable containing the PSB name to be

used for the call.

uibptr

Specifies the name of a pointer variable that contains the address of the

structure that defines the user interface block (UIB) that is used in user-defined

storage.

sysserve

Specifies the name of a character (8) variable string in user-defined storage to

be used for the call.

Example of a DL/I Call Format

Using the DL/I AIBTDLI interface:

AIBTDLI(CONST function,

 VAR aib,

 VAR i/o area,

 VAR ssa1);

Using the DL/I language-specific interface:

PASTDLI(CONST function,

 VAR db pcb,

 VAR i/o area,

 VAR ssa1);

Application Programming for PL/I

This section contains the format, parameters, and DL/I sample call formats for IMS

application programs in PL/I.

Exception: For the PLITDLI interface, all parameters except parmcount are indirect

pointers; for the AIBTDLI interface, all parameters are direct pointers.

Format

�� CALL PLITDLI (parmcount, function

,db pcb

A

,tp pcb

A

B

C

AIBTDLI

(

parmcount,

function,

aib

A

B

(1)

CEETDLI

(

parmcount,

function

,db pcb

A

,tp pcb

A

B

,aib

A

B

 �

Pascal Application Programming

66 Application Programming: Database Manager

�); ��

A:

�

 ,i/o area

,

,ssa

,token

,stat function

,rsa

,rootssa

B:

�

 ,i/o area length, i/o area

,

,area length,area

C:

 ,psb name, uibptr

,sysserve

Notes:

1 See Chapter 11, “DL/I Calls for Database Management,” on page 217 and

Chapter 12, “DL/I Calls for System Services,” on page 245 for descriptions of

call functions and parameters.

Parameters

parmcount

Specifies the name of a fixed binary (31-byte) variable that contains the number

of arguments that follow parmcount.

function

Specifies the name of a fixed-character (4-byte) variable left-justified, blank

padded character string containing the call function to be used (such as GU��).

db pcb

Specifies the structure associated with the database PCB to be used for the

call. This structure is based on a PCB address that must be one of the PCB

addresses passed on entry to the application program.

tp pcb

Specifies the structure associated with the I/O PCB or alternate PCB to be used

for the call.

aib

Specifies the name of the structure that defines the AIB in your application

program. For more information on the AIB, see “The AIBTDLI Interface” on page

88.

Application Programming for PL/I

Chapter 3. Defining Application Program Elements 67

i/o area

Specifies the name of the I/O area used for the call. The I/O area must be large

enough to contain all the returned data.

i/o area length

Specifies the name of a fixed binary (31) variable that contains the I/O area

length.

area length

Specifies the name of a fixed binary (31) variable that contains the length of the

area immediately following it in the parameter list. Up to seven area lengths or

area pairs can be specified.

area

Specifies the name of the area to be checkpointed. Up to seven area lengths or

area pairs can be specified.

token

Specifies the name of a character (4) variable that contains a user token.

stat function

Specifies the name of a character (9) variable string containing the stat function

to be performed.

ssa

Specifies the name of a character variable that contains the SSAs to be used

for the call. Up to 15 SSAs can be specified, one of which is rootssa.

rootssa

Specifies the name of a character variable that contains a root segment search

argument.

rsa

Specifies the name of a character variable that contains the record search

argument.

psb name

Specifies the name of a character (8) containing the PSB name to be used for

the call.

uibptr

Specifies the name of the user interface block (UIB).

sysserve

Specifies the name of a character (8) variable character string to be used for

the call.

Example of a DL/I Call Format

Using the DL/I CEETDLI interface:

CALL CEETDLI (parmcount,function,db pcb,i/o area,ssa1);

Using the DL/I AIBTDLI interface:

CALL AIBTDLI (parmcount,function,aib,i/o area,ssa1);

Using the DL/I language-specific interface:

%INCLUDE CEEIBMAW;

CALL PLITDLI (parmcount,function,db pcb,i/o area,ssa1);

Application Programming for PL/I

68 Application Programming: Database Manager

Specifying the I/O PCB Mask

After your program issues a call with the I/O Program Communications Block (I/O

PCB), IMS returns information about the results of the call to the I/O PCB. To

determine the results of the call, your program must check the information that IMS

returns.

Issuing a system service call requires an I/O PCB. Because the I/O PCB resides

outside your program, you must define a mask of the PCB in your program to check

the results of IMS calls. The mask must contain the same fields, in the same order,

as the I/O PCB. Your program can then refer to the fields in the PCB through the

PCB mask.

Table 14 shows the fields that the I/O PCB contains, their lengths, and the

applicable environment for each field.

 Table 14. I/O PCB Mask

Descriptor Byte

Length

DB/DC DBCTL DCCTL DB

Batch

TM

Batch

Logical terminal name

1 8 X X

Reserved for IMS

2 2 X X

Status code

3 2 X X X X X

4-Byte Local date and

time

4

Date 2 X X

Time 2 X X

Input message sequence

number

5

4 X X

Message output descriptor

name

6

8 X X

Userid

7 8 X X

Group name

8 8 X X

12-Byte Time Stamp

9

Date 4 X X

Time 6 X X

UTC Offset 2 X X

Userid Indicator10 1 X X

Reserved for IMS2 3

Notes:

 1. Logical Terminal Name

This field contains the name of the terminal that sent the message. When your

program retrieves an input message, IMS places the name of the logical

terminal that sent the message in this field. When you want to send a

message back to this terminal, you refer to the I/O PCB when you issue the

ISRT call, and IMS takes the name of the logical terminal from the I/O PCB as

the destination.

 2. Reserved for IMS

These fields are reserved.

I/O PCB Mask

Chapter 3. Defining Application Program Elements 69

3. Status Code

IMS places the status code describing the result of the DL/I call in this field.

IMS updates the status code after each DL/I call that the program issues. Your

program should always test the status code after issuing a DL/I call.

The three status code categories are:

v Successful status codes or status codes with exceptional but valid

conditions. This category does not contain errors. If the call was completely

successful, this field contains blanks. Many of the codes in this category are

for information only. For example, a QC status code means that no more

messages exist in the message queue for the program. When your program

receives this status code, it should terminate.

v Programming errors. The errors in this category are usually ones that you

can correct. For example, an AD status code indicates an invalid function

code.

v I/O or system errors.

For the second and third categories, your program should have an error

routine that prints information about the last call that was issued before

program termination. Most installations have a standard error routine that all

application programs at the installation use.

 4. Local Date and Time

The current local date and time are in the prefix of all input messages except

those originating from non-message-driven BMPs. The local date is a

packed-decimal, right-aligned date, in the format yyddd. The local time is a

packed-decimal time in the format hhmmsst. The current local date and time

indicate when IMS received the entire message and enqueued it as input for

the program, rather than the time that the application program received the

message. To obtain the application processing time, you must use the time

facility of the programming language you are using.

For a conversation, for an input message originating from a program, or for a

message received using Multiple System Coupling (MSC), the time and date

indicate when the original message was received from the terminal.

 5. Input Message Sequence Number

The input message sequence number is in the prefix of all input messages

except those originating from non-message-driven BMPs. This field contains

the sequence number IMS assigned to the input message. The number is

binary. IMS assigns sequence numbers by physical terminal, which are

continuous since the time of the most recent IMS startup.

 6. Message Output Descriptor Name

You only use this field when you use MFS. When you issue a GU call with a

message output descriptor (MOD), IMS places its name in this area. If your

program encounters an error, it can change the format of the screen and send

an error message to the terminal by using this field. To do this, the program

must change the MOD name by including the MOD name parameter on an

ISRT or PURG call.

Although MFS does not support APPC, LU 6.2 programs can use an interface

to emulate MFS. For example, the application program can use the MOD

name to communicate with IMS to specify how an error message is to be

formatted.

Related Reading: For more information on the MOD name and the LTERM

interface, see IMS Version 9: Administration Guide: Transaction Manager.

 7. Userid

I/O PCB Mask

70 Application Programming: Database Manager

The use of this field is connected with RACF® signon security. If signon is not

active in the system, this field contains blanks.

If signon is active in the system, the field contains one of the following:

v The user’s identification from the source terminal.

v The LTERM name of the source terminal if signon is not active for that

terminal.

v The authorization ID. For batch-oriented BMPs, the authorization ID is

dependent on the value specified for the BMPUSID= keyword in the

DFSDCxxx PROCLIB member:

– If BMPUSID=USERID is specified, the value from the USER= keyword

on the JOB statement is used.

– If USER= is not specified on the JOB statement, the program’s PSB

name is used.

– If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at

all, the program’s PSB name is used.

 8. Group Name

The group name, which is used by DB2 to provide security for SQL calls, is

created through IMS transactions.

Three instances that apply to the group name are:

v If you use RACF and SIGNON on your IMS system, the RACROUTE SAF

(extract) call returns an eight-character group name.

v If you use your own security package on your IMS system, the RACROUTE

SAF call returns any eight-character name from the package and treats it as

a group name. If the RACROUTE SAF call returns a return code of 4 or 8, a

group name was not returned, and IMS blanks out the group name field.

v If you use LU 6.2, the transaction header can contain a group name.

Related Reading: For more information about LU 6.2, see IMS Version 9:

Administration Guide: Transaction Manager.

 9. 12-Byte Time Stamp

This field contains the current date and time fields, but in the IMS internal

packed-decimal format. The time stamp has the following parts:

Date yyyydddf

 This packed-decimal date contains the year (yyyy), day of the

year (ddd), and a valid packed-decimal + sign such as (f).

Time hhmmssthmiju

 This packed-decimal time consists of hours, minutes, and

seconds (hhmmss) and fractions of the second to the

microsecond (thmiju). No packed-decimal sign is affixed to

this part of the time stamp.

UTC Offset aqq$

 The packed-decimal UTC offset is prefixed by 4 bits of

attributes (a). If the 4th bit of (a) is 0, the time stamp is UTC;

otherwise, the time stamp is local time. The control region

parameter, TSR=(U/L), specified in the DFSPBxxx PROCLIB

member, controls the representation of the time stamp with

respect to local time versus UTC time.

I/O PCB Mask

Chapter 3. Defining Application Program Elements 71

The offset value (qq$) is the number of quarter hours of offset

to be added to UTC or local time to convert to local or UTC

time respectively.

 The offset sign ($) follows the convention for a packed-decimal

plus or minus sign.

 Field 4 on page 70 always contains the local date and time.

Related Reading: For a more detailed description of the internal

packed-decimal time-format, see IMS Version 9: Database Recovery Control

(DBRC) Guide and Reference.

10. Userid Indicator

The Userid Indicator is provided in the I/O PCB and in the response to the

INQY call. The Userid Indicator contains one of the following:

v U - The user’s identification from the source terminal during signon

v L - The LTERM name of the source terminal if signon is not active

v P - The PSBNAME of the source BMP or transaction

v O - Other name

The value contained in the Userid Indicator field indicates the contents of the

userid field.

Specifying the DB PCB Mask

IMS describes the results of the calls your program issues in the DB PCB that is

referenced in the call. To determine the success or failure of the DL/I call, the

application program includes a mask of the DB PCB and then references the fields

of the DB PCB through the mask.

A DB PCB mask must contain the fields shown in Table 15. (Your program can look

at, but not change, the fields in the DB PCB.) The fields in your DB PCB mask

must be defined in the same order and with the same length as the fields shown

here. When you code the DB PCB mask, you also give it a name, but the name is

not part of the mask. You use the name (or the pointer, for PL/I) when you

reference each of the PCBs your program processes. A GSAM DB PCB mask is

slightly different from other DB PCB masks.

Related Reading: For more information about GSAM DB PCB Masks, see “GSAM

Data Areas” on page 88.

Of the nine fields, only five are important to you as you construct the program.

These are the fields that give information about the results of the call. They are the

segment level number, status code, segment name, length of the key feedback

area, and key feedback area. The status code is the field your program uses most

often to find out whether the call was successful. The key feedback area contains

the data from the segments you have specified; the level number and segment

name help you determine the segment type you retrieved after an unqualified GN or

GNP call, or they help you determine your position in the database after an error or

unsuccessful call.

 Table 15. DB PCB Mask

Descriptor Byte

Length

DB/DC DBCTL DCCTL DB

Batch

TM

Batch

Database name

1 8 X X X

I/O PCB Mask

72 Application Programming: Database Manager

Table 15. DB PCB Mask (continued)

Descriptor Byte

Length

DB/DC DBCTL DCCTL DB

Batch

TM

Batch

Segment level number

2

on page 73

2 X X X

Status code

3 2 X X X

Processing options

4 4 X X X

Reserved for IMS

5 4 X X X

Segment name

6 8 X X X

Length of key

feedback area

7

4 X X X

Number of sensitive

segments

8

4 X X X

Key feedback area

9 var length X X X

Notes:

1. Database Name

This contains the name of the database. This field is 8 bytes long and contains

character data.

2. Segment Level Number

This field contains numeric character data. It is 2 bytes long and right-justified.

When IMS retrieves the segment you have requested, IMS places the level

number of that segment in this field. If you are retrieving several segments in a

hierarchic path with one call, IMS places the number of the lowest-level

segment retrieved. If IMS is unable to find the segment that you request, it gives

you the level number of the last segment it encounters that satisfied your call.

3. Status Code

After each DL/I call, this field contains the two-character status code that

describes the results of the DL/I call. IMS updates this field after each call and

does not clear it between calls. The application program should test this field

after each call to find out whether the call was successful.

When the program is initially scheduled, this field contains a data-availability

status code, which indicates any possible access constraint based on segment

sensitivity and processing options.

Related Reading: For more information on these status codes, see“INIT Call”

on page 257.

During normal processing, four categories of status codes exist:

v Successful or exceptional but valid conditions. If the call was completely

successful, this field contains blanks. Many of the codes in this category are

for information only. For example, GB means that IMS has reached the end

of the database without satisfying the call. This situation is expected in

sequential processing and is not usually the result of an error.

v Errors in the program. For example, AK means that you have included an

invalid field name in a segment search argument (SSA). Your program should

have error routines available for these status codes. If IMS returns an error

status code to your program, your program should terminate. You can then

find the problem, correct it, and restart your program.

v I/O or system error. For example, an AO status code means that there has

been an I/O error concerning OSAM, BSAM, or VSAM. If your program

encounters a status code in this category, it should terminate immediately.

Specifying the DB PCB Mask

Chapter 3. Defining Application Program Elements 73

This type of error cannot normally be fixed without a system programmer,

database administrator, or system administrator.

v Data-availability status codes. These are returned only if your program has

issued the INIT call indicating that it is prepared to handle such status codes.

“Status Code Explanations” in IMS Version 9: Messages and Codes, Volume

1 describes possible causes and corrections in more detail.

4. Processing Options

This is a 4-byte field containing a code that tells IMS what type of calls this

program can issue. It is a security mechanism in that it can prevent a particular

program from updating the database, even though the program can read the

database. This value is coded in the PROCOPT parameter of the PCB

statement when the PSB for the application program is generated. The value

does not change.

5. Reserved for IMS

This 4-byte field is used by IMS for internal linkage. It is not used by the

application program.

6. Segment Name

After each successful call, IMS places in this field the name of the last segment

that satisfied the call. When a retrieval is successful, this field contains the

name of the retrieved segment. When a retrieval is unsuccessful, this field

contains the last segment along the path to the requested segment that would

satisfy the call. The segment name field is 8 bytes long.

When a program is initially scheduled, the name of the database type is put in

the SEGNAME field. For example, the field contains DEDB when the database

type is DEDB; GSAM when the database type is GSAM; HDAM, or PHDAM

when the database type is HDAM or PHDAM.

7. Length of Key Feedback Area

This is a 4-byte binary field that gives the current length of the key feedback

area. Because the key feedback area is not usually cleared between calls, the

program needs to use this length to determine the length of the relevant current

concatenated key in the key feedback area.

8. Number of Sensitive Segments

This is a 4-byte binary field that contains the number of segment types in the

database to which the application program is sensitive.

9. Key Feedback Area

At the completion of a retrieval or ISRT call, IMS places the concatenated key of

the retrieved segment in this field. The length of the key for this request is given

in the 4-byte 7 field. If IMS is unable to satisfy the call, the key feedback area

contains the key of the segment at the last level that was satisfied. A segment’s

concatenated key is made up of the keys of each of its parents and its own key.

Keys are positioned left to right, starting with the key of the root segment and

following the hierarchic path. IMS does not normally clear the key feedback

area. IMS sets this length of the key feedback area to indicate the portion of the

area that is valid at the completion of each call. Your program should not use

the content of the key feedback area that is not included in the key feedback

area length.

Specifying the DB PCB Mask

74 Application Programming: Database Manager

Specifying the AIB Mask

The application interface block (AIB) is used by your program to communicate with

IMS, when your application does not have a PCB address or the call function does

not use a PCB. The AIB mask enables your program to interpret the control block

defined. The AIB structure must be defined in working storage, on a fullword

boundary, and initialized according to the order and byte length of the fields as

shown in Table 16. The table’s notes describe the contents of each field.

 Table 16. AIB Fields

Descriptor Byte Length DB/DC DBCTL DCCTL DB

Batch

TM

Batch

AIB identifier

1 8 X X X X X

DFSAIB allocated

length

2

4 X X X X X

Subfunction code

3 8 X X X X X

Resource name

4 8 X X X X X

Reserved

5 16

Maximum output area

length

6

4 X X X X X

Output area length

used

7

4 X X X X X

Reserved

8 12

Return code

9 4 X X X X X

Reason code

10 4 X X X X X

Error code extension

11 4 X X

Resource address

12 4 X X X X X

Reserved

13 48

Notes:

 1. AIB Identifier (AIBID)

This 8-byte field contains the AIB identifier. You must initialize AIBID in your

application program to the value DFSAIB �� before you issue DL/I calls. This

field is required. When the call is completed, the information returned in this

field is unchanged.

 2. DFSAIB Allocated Length (AIBLEN)

This field contains the actual 4-byte length of the AIB as defined by your

program. You must initialize AIBLEN in your application program before you

issue DL/I calls. The minimum length required is 128 bytes. When the call is

completed, the information returned in this field is unchanged. This field is

required.

 3. Subfunction Code (AIBSFUNC)

This 8-byte field contains the subfunction code for those calls that use a

subfunction. You must initialize AIBSFUNC in your application program before

you issue DL/I calls. When the call is completed, the information returned in

this field is unchanged.

 4. Resource Name (AIBRSNM1)

This 8-byte field contains the name of a resource. The resource varies

depending on the call. You must initialize AIBRSNM1 in your application

Specifying the AIB Mask

Chapter 3. Defining Application Program Elements 75

program before you issue DL/I calls. When the call is complete, the information

returned in this field is unchanged. This field is required.

For PCB related calls where the AIB is used to pass the PCB name instead of

passing the PCB address in the call list, this field contains the PCB name. The

PCB name for the I/O PCB is IOPCB��. The PCB name for other types of

PCBs is defined in the PCBNAME= parameter in PSBGEN.

 5. Reserved

This 16-byte field is reserved.

 6. Maximum Output Area Length (AIBOALEN)

This 4-byte field contains the length of the output area in bytes that was

specified in the call list. You must initialize AIBOALEN in your application

program for all calls that return data to the output area. When the call is

completed, the information returned in this area is unchanged.

 7. Used Output Area Length (AIBOAUSE)

This 4-byte field contains the length of the data returned by IMS for all calls

that return data to the output area. When the call is completed this field

contains the length of the I/O area used for this call.

 8. Reserved

This 12-byte field is reserved.

 9. Return code (AIBRETRN)

When the call is completed, this 4-byte field contains the return code.

10. Reason Code (AIBREASN)

When the call is completed, this 4-byte field contains the reason code.

11. Error Code Extension (AIBERRXT)

This 4-byte field contains additional error information depending on the return

code in AIBRETRN and the reason code in AIBREASN.

12. Resource Address (AIBRSA1)

When the call is completed, this 4-byte field contains call-specific information.

For PCB related calls where the AIB is used to pass the PCB name instead of

passing the PCB address in the call list, this field returns the PCB address.

13. Reserved

This 48-byte field is reserved.

The application program can use the returned PCB address, when available, to

inspect the status code in the PCB and to obtain any other information needed by

the application program.

Related Reading: For more information about the return and reason codes, see

IMS Version 9: Messages and Codes, Volume 1.

Specifying the AIB Mask for ODBA Applications

Table 17 describes the fields for specifying the application interface block (AIB)

mask for ODBA applications. describe the contents of each field. The notes that

follow describe the contents of each field.

 Table 17. AIB Fields for Use of ODBA Applications

AIB Fields Byte

Length

DB/DC IMS DB DCCTL DB

Batch

TM

Batch

AIB identifier¹ 8 X X X X X

Specifying the AIB Mask

76 Application Programming: Database Manager

Table 17. AIB Fields for Use of ODBA Applications (continued)

AIB Fields Byte

Length

DB/DC IMS DB DCCTL DB

Batch

TM

Batch

DFSAIB allocated length² 4 X X X X X

Subfunction code³ 8 X X X X X

Resource name #1⁴ 8 X X X X X

Resource name #2⁵ 8

Reserved⁶ 8 X

Maximum output area

length⁷

4 X X X X X

Output area length used⁸ 4 X X X X X

Reserved⁹ 12

Return code¹⁰ 4 X X X X X

Reason code¹¹ 4 X X X X X

Error code extension¹² 4 X

Resource address #1 ¹³ 4 X X X X X

Resource address #2¹⁴ 4

Resource address #3¹⁵ 4

Reserved¹⁶ 40

Reserved for ODBA¹⁷ 136

Notes for AIB Fields for Use of ODBA Applications:

 1. AIB Identifier (AIBID)

This 8-byte field contains the AIB identifier. You must initialize AIBID in your

application program to the value DFSAIB�� before you issue DL/I calls. This

field is required. When the call is completed, the information returned in this

field is unchanged.

 2. DFSAIB Allocated Length (AIBLEN)

This field contains the actual 4-byte length of the AIB as defined by your

program. You must initialize AIBLEN in your application program before you

issue DL/I calls. The minimum length required is 264 bytes for ODBA. When

the call is completed, the information returned in this field is unchanged. This

field is required.

 3. Subfunction Code (AIBSFUNC)

This 8-byte field contains the subfunction code for those calls that use a

subfunction. You must initialize AIBSFUNC in your application program before

you issue DL/I calls. When the call is completed, the information returned in

this field is unchanged.

 4. Resource Name (AIBRSNM1) #1

This 8-byte field contains the name of a resource. The resource varies

depending on the call. You must initialize AIBRSNM1 in your application

program before you issue DL/I calls. When the call is complete, the information

returned in this field is unchanged. This field is required.

For PCB related calls where the AIB is used to pass the PCB name instead of

passing the PCB address in the call list, this field contains the PCB name. The

PCB name for the I/O PCB is IOPCB��. The PCB name for other types of

PCBs is defined in the PCBNAME= parameter in PSBGEN.

Specifying the AIB Mask

Chapter 3. Defining Application Program Elements 77

5. Resource Name (AIBRSNM2) #2

Specify a 4-character ID of ODBA startup table DFSxxxx0, where xxxx is a

four-character ID.

 6. Reserved

This 8-byte field is reserved.

 7. Maximum Output Area Length (AIBOALEN)

This 4-byte field contains the length of the output area in bytes that was

specified in the call list. You must initialize AIBOALEN in your application

program for all calls that return data to the output area. When the call is

completed, the information returned in this area is unchanged.

 8. Used Output Area Length (AIBOAUSE) This 4-byte field contains the length

of the data returned by IMS for all calls that return data to the output area.

When the call is completed this field contains the length of the I/O area used

for this call.

 9. Reserved

This 12-byte field is reserved.

10. Return code (AIBRETRN)

When the call is completed, this 4-byte field contains the return code.

11. Reason Code (AIBREASN)

When the call is completed, this 4-byte field contains the reason code.

12. Error Code Extension (AIBERRXT)

This 4-byte field contains additional error information depending on the return

code in AIBRETRN and the reason code in AIBREASN.

13. Resource Address (AIBRSA1) #1

When the call is completed, this 4-byte field contains call-specific information.

For PCB related calls where the AIB is used to pass the PCB name instead of

passing the PCB address in the call list, this field returns the PCB address.

14. Resource Address (AIBRSA2) #2

This 4-byte field is reserved for ODBA.

15. Resource Address (AIBRSA3) #3

This 4-byte token, returned on the APSB call, is required for subsequent DLI

calls and the DPSB call related to this thread.

16. Reserved

This 40-byte field is reserved.

17. Reserved for ODBA

This 136-byte field is reserved for ODBA

The application program can use the returned PCB address, when available, to

inspect the status code in the PCB and to obtain any other information needed by

the application program.

COBOL AIB Mask Example

 01 AIB

 02 AIBRID PIC x(8).

 02 AIBRLEN PIC 9(9) USAGE BINARY.

 02 AIBRSFUNC PIC x(8).

 02 AIBRSNM1 PIC x(8).

 02 AIBRSNM2 PIC x(8).

 02 AIBRESV1 PIC x(8).

 02 AIBOALEN PIC 9(9) USAGE BINARY.

 02 AIBOAUSE PIC 9(9) USAGE BINARY.

Specifying the AIB Mask

78 Application Programming: Database Manager

02 AIBRESV2 PIC x(12).

 02 AIBRETRN PIC 9(9) USAGE BINARY.

 02 AIBREASN PIC 9(9) USAGE BINARY.

 02 AIBERRXT PIC 9(9) USAGE BINARY.

 02 AIBRESA1 USAGE POINTER.

 02 AIBRESA2 USAGE POINTER.

 02 AIBRESA3 USAGE POINTER.

 02 AIBRESV4 PIC x(40).

 02 AIBRSAVE OCCURS 18 TIMES USAGE POINTER.

 02 AIBRTOKN OCCURS 6 TIMES USAGE POINTER.

 02 AIBRTOKC PIC x(16).

 02 AIBRTOKV PIC x(16).

 02 AIBRTOKA OCCURS 2 TIMES PIC 9(9) USAGE BINARY.

Assembler AIB Mask Example

 DFSAIB DSECT

 AIBID DS CL8’DFSAIB’

 AIBLEN DS F

 AIBSFUNC DS CL8

 AIBRSNM1 DS CL8

 AIBRSVM2 DS CL8

 DS 2F

 AIBOALEN DS F

 AIBOAUSE DS F

 DS 2F

 DS H

 DS H

 AIBRETRN DS F

 AIBREASN DS F

 AIBRRXT DS F

 AIBRSA1 DS A

 AIBRSA2 DS A

 AIBRSA3 DS A

 DS 10F

 AIBLL EQU *-DFSAIB

 AIBSAVE DS 18F

 AIBTOKN DS 6F

 AIBTOKC DS CL16

 AIBTOKV DS XL16

 AIBTOKA DS 2F

 AIBAERL EQU *-DFSAIB

Specifying the UIB (CICS Online Programs Only)

The interface between your CICS online program and DL/I passes additional

information to your program in a user interface block (UIB). The UIB contains the

address of the PCB list and any return codes your program must examine before

checking the status code in the DB PCB.

When you issue the PCB call to obtain a PSB for your program, a UIB is created for

your program. As with any area outside your program, you must include a definition

of the UIB and establish addressability to it. CICS provides a definition of the UIB

for all programming languages:

v In COBOL programs, use the COPY DLIUIB statement (Figure 16 on page 80 for

VS COBOL II, or Figure 17 for OS/VS COBOL). “Coding a CICS Online Program

in COBOL” on page 40 shows how to establish addressability to the UIB.

Figure 18 on page 81 shows the fields defined when you use the COBOL COPY

DLIUIB statement.

v In PL/I programs, use a %INCLUDE DLIUIB statement (Figure 19 on page 82).

“Coding a CICS Online Program in PL/I” on page 51 shows how to establish

addressability to the UIB.

Specifying the AIB Mask

Chapter 3. Defining Application Program Elements 79

v In assembler language programs, use the DLIUIB macro (Figure 20 on page 82).

“Coding a CICS Online Program in Assembler Language” on page 32 shows how

to establish addressability to the UIB.

Three fields in the UIB are important to your program: UIBPCBAL, UIBFCTR, and

UIBDLTR. UIBPCBAL contains the address of the PCB address list. Through it you

can obtain the address of the PCB you want to use. Your program must check the

return code in UIBFCTR (and possibly UIBDLTR) before checking the status code

in the DB PCB. If the contents of UIBFCTR and UIBDLTR are not null, the content

of the status code field in the DB PCB is not meaningful. The return codes are

described in Chapter 16, “CICS-DL/I User Interface Block Return Codes,” on page

369.

Immediately after the statement that defines the UIB in your program, you must

define the PCB address list and the PCB mask.

Figure 16 provides an example of using the COPY DLIUIB statement in a VS

COBOL II program:

 Figure 17 provides an example of using the COPY DLIUIB statement in an OS/VS

COBOL program.

LINKAGE SECTION.

 COPY DLIUIB.

01 OVERLAY-DLIUIB REDEFINES DLIUIB.

 02 PCBADDR USAGE IS POINTER.

 02 FILLER PIC XX.

01 PCB-ADDRESSES.

 02 PCB-ADDRESS-LIST

 USAGE IS POINTER OCCURS 10 TIMES.

01 PCB1.

 02 PCB1-DBD-NAME PIC X(8).

 02 PCB1-SEG-LEVEL PIC XX.

 .

 .

 .

Figure 16. Defining the UIB, PCB Address List, and the PCB Mask for VS COBOL II

Specifying the UIB (CICS Online Programs Only)

80 Application Programming: Database Manager

Figure 18 provides an example of using the COBOL COPY DLIUIB statement.

 The values placed in level 88 entries are not printable. They are described in

Chapter 16, “CICS-DL/I User Interface Block Return Codes,” on page 369. The

meanings of the field names and their hexadecimal values are shown below:

FCNORESP

Normal response X'00'

FCNOTOPEN

Not open X'0C'

FCINVREQ

Invalid request X'08'

FCINVPCB

Invalid PCB X'10'

LINKAGE SECTION.

01 BLL CELLS.

 02 FILLER PIC S9(8) COMP.

 02 UIB-PTR PIC S9(8) COMP.

 02 PCB-LIST-PTR PIC S9(8) COMP.

 02 PCB1-PTR PIC S9(8) COMP.

 COPY DLIUIB.

01 PCB-ADDRESS-LIST.

 02 PCB1-LIST-PTR PIC S9(8) COMP.

01 PCB1.

 02 PCB1-DBD-NAME PIC X(8).

 02 PCB1-SEG-LEVEL PIC XX.

 .

 .

 .

Figure 17. Defining the UIB, PCB Address List, and the PCB Mask for OS/VS COBOL

01 DLIUIB.

* Address of the PCB addr list

 02 UIBPCBAL PIC S9(8) COMP.

* DL/I return codes

 02 UIBRCODE.

* Return codes

 03 UIBFCTR PIC X.

 88 FCNORESP VALUE ’ ’.

 88 FCNOTOPEN VALUE ’ ’.

 88 FCINVREQ VALUE ’ ’.

 88 FCINVPCB VALUE ’ ’.

* Additional information

 03 UIBDLTR PIC X.

 88 DLPSBNF VALUE ’ ’.

 88 DLTASKNA VALUE ’ ’.

 88 DLPSBSCH VALUE ’ ’.

 88 DLLANGCON VALUE ’ ’.

 88 DLPSBFAIL VALUE ’ ’.

 88 DLPSBNA VALUE ’ ’.

 88 DLTERMNS VALUE ’ ’.

 88 DLFUNCNS VALUE ’ ’.

 88 DLINA VALUE ’ ’.

Figure 18. The COBOL COPY DLIUIB Copy Book

Specifying the UIB (CICS Online Programs Only)

Chapter 3. Defining Application Program Elements 81

DLPSBNF

PSB not found X'01'

DLTASKNA

Task not authorized X'02'

DLPSBSCH

PSB already scheduled X'03'

DLLANGCON

Language conflict X'04'

DLPSBFAIL

PSB initialization failed X'05'

DLPSBNA

PSB not authorized X'06'

DLTERMNS

Termination not successful X'07'

DLFUNCNS

Function unscheduled X'08'

DLINA

DL/I not active X'FF'

 Figure 19 shows you how to define the UIB, PCB address list, and PCB mask for

PL/I.

Figure 20 shows you how to define the UIB, PCB address list, and PCB mask for

assembler language.

Specifying the I/O Areas

Use an I/O area to pass segments between your program and IMS. What the I/O

area contains depends on the type of call you are issuing:

v When you retrieve a segment, IMS DB places the segment you requested in the

I/O area.

DCL UIBPTR PTR; /* POINTER TO UIB */

DCL 1 DLIUIB UNALIGNED BASED(UIBPTR),

 /* EXTENDED CALL USER INTFC BLK*/

 2 UIBPCBAL PTR, /* PCB ADDRESS LIST */

 2 UIBRCODE, /* DL/I RETURN CODES */

 3 UIBFCTR BIT(8) ALIGNED, /* RETURN CODES */

 3 UIBDLTR BIT(8) ALIGNED; /* ADDITIONAL INFORMATION */

Figure 19. Defining the UIB, PCB Address List, and the PCB Mask for PL/I

DLIUIB DSECT

UIB DS 0F EXTENDED CALL USER INTFC BLK

UIBPCBAL DS A PCB ADDRESS LIST

UIBRCODE DS 0XL2 DL/I RETURN CODES

UIBFCTR DS X RETURN CODE

UIBDLTR DS X ADDITIONAL INFORMATION

 DS 2X RESERVED

 DS 0F LENGTH IS FULLWORD MULTIPLE

UIBLEN EQU *-UIB LENGTH OF UIB

Figure 20. Defining the UIB, PCB Address List, and the PCB Mask for Assembler Language

Specifying the UIB (CICS Online Programs Only)

82 Application Programming: Database Manager

v When you add a new segment, you first build the new segment in the I/O area.

v Before modifying a segment, your program must first retrieve it. When you

retrieve the segment, IMS DB places the segment in an I/O area.

The format of the record segments you pass between your program and IMS can

be fixed length or variable length. Only one difference is important to the application

program: a message segment containing a 2-byte length field (or 4 bytes for the

PLITDLI interface) at the beginning of the data area of the segment.

The I/O area for IMS calls must be large enough to hold the largest segment your

program retrieves from or adds to the database. If your program issues any Get or

ISRT calls that use the D command code, the I/O area must be large enough to

hold the largest path of segments that the program retrieves or inserts.

Formatting Segment Search Arguments (SSAs)

This section describes the coding rules and provides coding formats and examples

for defining SSAs in assembler language, C language, COBOL, Pascal, and PL/I.

SSA Coding Rules

The rules for coding an SSA are as follows:

v Define the SSA in the data area of your program.

v The segment name field must:

– Be 8 bytes long. If the name of the segment you are specifying is less than 8

bytes long, it should be left justified and padded on the right with blanks.

– Contain a segment name that has been defined in the DBD that your

application program uses. In other words, make sure you use the exact

segment name, or your SSA will be invalid.

v If the SSA contains only the segment name, byte 9 must contain a blank.

v If the SSA contains one or more command codes:

– Byte 9 must contain an asterisk (*).

– The last command code must be followed by a blank unless the SSA contains

a qualification statement. If the SSA contains a qualification statement, the

command code must be followed by the left parenthesis of the qualification

statement.

v If the SSA contains a qualification statement:

– The qualification statement must begin with a left parenthesis and end with a

right parenthesis.

– There must not be any blanks between the segment name or command

codes, if used, and the left parenthesis.

– The field name must be 8 bytes long. If the field name is less than 8 bytes, it

must be left justified and padded on the right with blanks. The field name

must have been defined for the specified segment type in the DBD the

application program is using.

– The relational operator follows the field name. It must be 2 bytes long and can

be represented alphabetically or symbolically. Table 18 on page 84 lists the

relational operators.

Specifying the I/O Areas

Chapter 3. Defining Application Program Elements 83

Table 18. Relational Operators

Symbolic Alphabetic Meaning

=�= EQ Equal to

>= or => GE Greater than or equal to

<= or =< LE Less than or equal to

>�> GT Greater than

<�< LT Less than

¬= or =¬ NE Not equal to

– The comparative value follows the relational operator. The length of this value

must be equal to the length of the field that you specified in the field name.

This length is defined in the DBD. The comparative value must include

leading zeros for numeric values or trailing blanks for alphabetic values as

necessary.

v If you are using multiple qualification statements within one SSA (Boolean

qualification statements), the qualification statements must be separated by one

of these symbols:

* or & Dependent AND

+ or | Logical OR

Independent AND

One of these symbols must appear between the qualification statements that the

symbol connects.

v The last qualification statement must be followed by a right parenthesis.

An SSA created by the application program must not exceed the space allocated for

the SSA in the PSB.

Related Reading: For additional information about defining the PSB SSA size, see

the explanation of the PSBGEN statement in IMS Version 9: Utilities Reference:

Database and Transaction Manager.

SSA Coding Formats

This section shows examples of coding formats for assembler language, C

language, COBOL, Pascal, and PL/I.

Assembler Language SSA Definition Examples

Figure 21 on page 85 shows how you would define a qualified SSA without

command codes. If you want to use command codes with this SSA, code the

asterisk (*) and command codes between the 8-byte segment name field and the

left parenthesis that begins the qualification statement.

Formatting Segment Search Arguments (SSAs)

84 Application Programming: Database Manager

This SSA looks like this:

ROOT����(KEY������=vv...v)

C Language SSA Definition Examples

An unqualified SSA that does not use command codes looks like this in C:

 const struct {

 char seg_name_u[8];

 char blank[1];

} unqual_ssa = {"NAME ", " "};

You can use an SSA that is coded like this for each DL/I call that needs an

unqualified SSA by supplying the name of the segment type you want during

program execution. Note that the string size declarations are such that the C null

terminators do not appear within the structure.

You can, of course, declare this as a single string:

const char unqual_ssa[] = "NAME "; /* 8 chars + 1 blank */

DL/I ignores the trailing null characters.

You can define SSAs in any of the ways explained for the I/O area.

The easiest way to create a qualified SSA is using the sprintf function. However,

you can also define it using a method similar to that used by COBOL or PL/I.

The following is an example of a qualified SSA without command codes. To use

command codes with this SSA, code the asterisk (*) and command codes between

the 8-byte segment name field and the left parenthesis that begins the qualification

statement.

struct {

 seg_name char[8];

 seg_qual char[1];

 seg_key_name char[8];

 seg_opr char[2];

 seg_key_value char[n];

 seg_end_char char[1];

} qual_ssa = {"ROOT ", "(", "KEY ", " =", "vv...vv", ")"};

Another way is to define the SSA as a string, using sprintf. Remember to use the

preprocessor directive #include <stdio.h>.

char qual_ssa[8+1+8+2+6+1+1]; /* the final 1 is for the */

 /* trailing ’\0’ of string */

sprintf(qual_ssa,

 "%-8.8s(%-8.8s%2.2s%-6.6s)",

 "ROOT", "KEY", "=", "vvvvv");

* CONSTANT AREA ...
SSANAME DS 0CL26

ROOT DC CL8'ROOT '

 DC CL1'('

 DC CL8'KEY '

 DC CL2' ='

NAME DC CLn'vv...v'

 DC CL1')'

Figure 21. Example Code: * CONSTANT AREA

Formatting Segment Search Arguments (SSAs)

Chapter 3. Defining Application Program Elements 85

Alternatively, if only the value were changing, the sprintf call can be:

sprintf(qual_ssa,

 "ROOT (KEY =%-6.6s)", "vvvvv");

 /* 12345678 12345678 */

In both cases, the SSA looks like this:

ROOT����(KEY������=vv...v)

These SSAs are both taken from the C skeleton program shown in Figure 10 on

page 35. To see how SSAs are used in DL/I calls, refer to that program.

COBOL SSA Definition Examples

An unqualified SSA without command codes looks like this in COBOL:

DATA DIVISION.

WORKING-STORAGE SECTION. ...
01 UNQUAL-SSA.

 02 SEG-NAME PICTURE X(08) VALUE '........'.

 02 FILLER PICTURE X VALUE ' '.

By supplying the name of the segment type you want during program execution,

you can use an SSA coded like the one in this example for each DL/I call that

needs an unqualified SSA.

Use a 01 level working storage entry to define each SSA that the program is to use.

Then use the name you have given the SSA as the parameter in the DL/I call, in

this case:

UNQUAL-SSA,

The following SSA is an example of a qualified SSA that does not use command

codes. If you use command codes in this SSA, code the asterisk (*) and the

command code between the 8-byte segment name field and the left parenthesis

that begins the qualification statement.

DATA DIVISION.

WORKING-STORAGE SECTION. ...
01 QUAL-SSA-MAST.

 02 SEG-NAME-M PICTURE X(08) VALUE 'ROOT '.

 02 BEGIN-PAREN-M PICTURE X VALUE '('.

 02 KEY-NAME-M PICTURE X(08) VALUE 'KEY '.

 02 REL-OPER-M PICTURE X(02) VALUE ' ='.

 02 KEY-VALUE-M PICTURE X(n) VALUE 'vv...v'.

 02 END-PAREN-M PICTURE X VALUE ')'.

The SSA looks like this:

ROOT����(KEY������=vv...v)

These SSAs are both taken from the COBOL skeleton program in Figure 11 on

page 38. To see how they are used in a DL/I call, refer to that program.

Pascal SSA Definition Examples

An unqualified SSA without command codes looks like this in Pascal:

type

 STRUCT = record

 SEG_NAME : ALFA;

Formatting Segment Search Arguments (SSAs)

86 Application Programming: Database Manager

BLANK : CHAR;

 end;

const

 UNQUAL_SSA = STRUCT('NAME',' ');

You can, of course, declare this as a single string:

const

 UNQUAL_SSA = 'NAME ';

The SSA shown in Figure 22 is an example of a qualified SSA that does not use

command codes. If you use command codes in this SSA, code the asterisk (*) and

the command code between the 8-byte segment name field and the left parenthesis

that begins the qualification statement.

 This SSA looks like this:

ROOT����(KEY������=vv...v)

PL/I SSA Definition Examples

An unqualified SSA that does not use command codes looks like this in PL/I:

DCL 1 UNQUAL_SSA STATIC UNALIGNED,

 2 SEG_NAME_U CHAR(8) INIT('NAME '),

 2 BLANK CHAR(1) INIT(' ');

You can use a SSA that is coded like this for each DL/I call that needs an

unqualified SSA by supplying the name of the segment type you want during

program execution.

In PL/I you define SSAs in structure declarations. The unaligned attribute is

required for SSA data interchange with IMS. The SSA character string must reside

contiguously in storage. For example, assignment of variable key values might

cause IMS to construct an invalid SSA if the key value has changed the aligned

attribute.

A separate SSA structure is required for each segment type that the program

accesses because the value of the key fields differs among segment types. After

you have initialized the fields (other than the key values), the SSA should not need

to be changed again. You can define SSAs in any of the ways explained for the I/O

area.

The following is an example of a qualified SSA without command codes. If you use

command codes in this SSA, code the asterisk (*) and command codes between

the 8-byte segment name field and the left parenthesis that begins the qualification

statement.

type

 STRUCT = record

 SEG_NAME : ALFA;

 SEG_QUAL : CHAR;

 SEG_KEY_NAME : ALFA;

 SEG_OPR : CHAR;

 SEG_KEY_VALUE : packed array[1..n] of CHAR;

 SEG_END_CHAR : CHAR;

 end;

const

 QUAL_SSA = STRUCT('ROOT','(','KEY',' =','vv...v',')');

Figure 22. Qualified SSA without Command Codes

Formatting Segment Search Arguments (SSAs)

Chapter 3. Defining Application Program Elements 87

DCL 1 QUAL_SSA STATIC UNALIGNED,

 2 SEG_NAME CHAR(8) INIT('ROOT '),

 2 SEG_QUAL CHAR(1) INIT('('),

 2 SEG_KEY_NAME CHAR(8) INIT('KEY '),

 2 SEG_OPR CHAR(2) INIT(' ='),

 2 SEG_KEY_VALUE CHAR(n) INIT('vv...v'),

 2 SEG_END_CHAR CHAR(1) INIT(')');

This SSA looks like this:

ROOT����(KEY������=vv...v)

Both of these SSAs are taken from the PL/I skeleton program shown in Figure 14

on page 48. To see how they are used in DL/I calls, refer to that program.

GSAM Data Areas

Thissection shows how to code GSAM data areas. GSAM applies only to batch and

BMPs. The PCB mask and the RSA that you use in a GSAM call have special

formats.

Generalized Sequential Access Method (GSAM) DB PCB masks are slightly

different from other DB PCB masks. The fields that are different are the length of

the key feedback area and the key feedback area. Also, an additional field exists

that gives the length of the record being retrieved or inserted when using

undefined-length records.

The RSA (record search argument) is an 8-byte token that can be returned on GN

and ISRT calls. The application program can save the RSA for use in a subsequent

GU call.

Related Reading: For more information on RSAs for GSAM, see Chapter 8,

“Processing GSAM Databases,” on page 161.

The AIBTDLI Interface

This section explains how to use the application interface block (AIB), an interface

between your application program and IMS.

When you use the AIBTDLI interface, you specify the PCB that is requested for the

call by placing the PCB name (as defined by PSBGEN) in the resource name field

of the AIB. You do not specify the PCB address. Because the AIB contains the PCB

name, your application can refer to the PCB name rather than to the PCB address.

The AIBTDLI call allows you to select PCBs directly by name rather than by a

pointer to the PCB. At completion of the call, the AIB returns the PCB address that

corresponds to the PCB name that is passed by the application program.

For PCBs to be used in a AIBTDLI call, you must assign a name in PSBGEN, either

with PCBNAME= or with the name as a label on the PCB statement. PCBs that

have assigned names are also included in the positional pointer list, unless you

specify LIST=NO. During PSBGEN, you define the names of the DB PCBs and

alternate PCBs. All I/O PCBs are generated with the PCB name IOPCB���. For a

generated program specification block (GPSB), the I/O PCB is generated with the

PCB name IOPCB���, and the modifiable alternate PCB is generated with the PCB

name TPPCB1�.

Because you can pass the PCB name, you do not need to know the relative PCB

number in the PCB list. In addition, the AIBTDLI interface enables your application

Formatting Segment Search Arguments (SSAs)

88 Application Programming: Database Manager

program to make calls on PCBs that do not reside in the PCB list. The LIST=

keyword, which is defined in the PCB macro during PSBGEN, controls whether the

PCB is included in the PCB list.

The AIB resides in user-defined storage that is passed to IMS for DL/I calls that use

the AIBTDLI interface. When the call is completed, the AIB is updated by IMS.

Recommendation: Allocate at least 128 bytes of storage for the AIB.

Restriction: No fields in the AIB can be used by the application program except as

defined by IMS.

Related Reading: For more information about PSBGEN, see IMS Version 9:

Utilities Reference: System.

Language Specific Entry Points

IMS gives control to an application program through an entry point. The formats for

coding entry statements in assembler language, C language, COBOL, Pascal, and

PL/I are shown in these sections: “Assembler Language Entry Point,” “C Language

Entry Point” on page 90, “COBOL Entry Point” on page 90, “Pascal Entry Point” on

page 91, and “PL/I Entry Point” on page 91. Your entry point must refer to the PCBs

in the order in which they have been defined in the PSB.

IMS passes the PCB pointers to a PL/I program differently than it passes them to

assembler language, C language, COBOL, or Pascal programs. In addition, Pascal

requires that IMS pass an integer before passing the PCB pointers. IMS uses the

LANG keyword or the PSBGEN statement of PSBGEN to determine the type of

program to which it is passing control. Therefore, you must be sure that the

language that is specified during PSBGEN is consistent with the language of the

program.

When you code each DL/I call, you must provide the PCB you want to use for that

call. In all cases except CICS online, the list of PCBs that the program can access

is passed to the program at its entry point. For CICS online, you must first schedule

a PSB as described in “PCB Call (CICS Online Programs Only)” on page 269.

Application interfaces that use the AIB structure (AIBTDLI or CEETDLI) use the

PCB name rather than the PCB structure, and they do not require the PCB list to

be passed at entry to the application.

In a CICS online program, you do not obtain the address of the PCBs through an

entry statement, but through the user interface block (UIB). For more information,

see “Specifying the UIB (CICS Online Programs Only)” on page 79.

Assembler Language Entry Point

You can use any name for the entry statement to an assembler language DL/I

program. When IMS passes control to the application program, register 1 contains

the address of a variable-length fullword parameter list. Each word in the list

contains the address of a PCB. Save the content of register 1 before you overwrite

it. IMS sets the high-order byte of the last fullword in the list to X'80' to indicate the

end of the list. Use standard z/OS linkage conventions with forward and backward

chaining.

AIBTDLI Interface

Chapter 3. Defining Application Program Elements 89

C Language Entry Point

When IMS passes control to your program, it passes the addresses, in the form of

pointers, for each of the PCBs that your program uses. The usual argc and argv

arguments are not available to a program that is invoked by IMS. The IMS

parameter list is made accessible by using the __pcblist macro. You can directly

reference the PCBs by __pcblist[0], __pcblist[1], or you can define macros to give

these more meaningful names. Note that I/O PCBs must be cast to get the proper

type:

(IO_PCB_TYPE *)(__pcblist[0])

The entry statement for a C language program is the main statement.

#pragma runopts(env(IMS),plist(IMS))

#include <ims.h>

main()

{ ...
}

The env option specifies the operating environment in which your C language

program is to run. For example, if your C language program is invoked under IMS

and uses IMS facilities, specify env(IMS). The plist option specifies the format of

the invocation parameters that is received by your C language program when it is

invoked. When your program is invoked by a system support services program, the

format of the parameters passed to your main program must be converted into the

C language format: argv, argc, and envp. To do this conversion, you must specify

the format of the parameter list that is received by your C language program. The

ims.h include file contains declarations for PCB masks.

You can finish in three ways:

v End the main procedure without an explicit return statement.

v Execute a return statement from main.

v Execute an exit or an abort call from anywhere, or alternatively issue a longjmp

back to main, and then do a normal return.

One C language program can pass control to another by using the system function.

The normal rules for passing parameters apply; in this case, the argc and argv

arguments can be used to pass information. The initial __pcblist is made available

to the invoked program.

COBOL Entry Point

The procedure statement must refer to the I/O PCB first, then to any alternate PCB

it uses, and finally to the DB PCBs it uses. The alternate PCBs and DB PCBs must

be listed in the order in which they are defined in the PSB.

PROCEDURE DIVISION USING PCB-NAME-1 [,...,PCB-NAME-N]

In previous versions of IMS, USING might be coded on the entry statement to

reference PCBs. However, IMS continues to accept such coding on the entry

statement.

Recommendation: Use the procedure statement rather than the entry statement to

reference the PCBs.

Language Specific Entry Points

90 Application Programming: Database Manager

Pascal Entry Point

The entry point must be declared as a REENTRANT procedure. When IMS passes

control to a Pascal procedure, the first address in the parameter list is reserved for

Pascal’s use, and the other addresses are the PCBs the program uses. The PCB

types must be defined before this entry statement. The IMS interface routine

PASTDLI must be declared with the GENERIC directive.

procedure ANYNAME(var SAVE: INTEGER;

 var pcb1-name: pcb1-name-type[;

 ...

 var pcbn-name: pcbn-name-type]); REENTRANT;

procedure ANYNAME;

(* Any local declarations *)

 procedure PASTDLI; GENERIC;

begin

 (* Code for ANYNAME *)

end;

PL/I Entry Point

The entry statement must appear as the first executable statement in the program.

When IMS passes control to your program, it passes the addresses of each of the

PCBs your program uses in the form of pointers. When you code the entry

statement, make sure you code the parameters of this statement as pointers to the

PCBs, and not the PCB names.

anyname: PROCEDURE (pcb1_ptr [,..., pcbn_ptr]) OPTIONS (MAIN); ...
RETURN;

The entry statement can be any valid PL/I name.

CEETDLI, AIBTDLI, and AERTDLI Interface Considerations

This section explains the interfaces: CEETDLI, AIBTDLI, and AERTDLI.

The considerations for CEETDLI are:

v For PL/I programs, the CEETDLI entry point is defined in the CEEIBMAW include

file. Alternatively, you can declare it yourself, but it must be declared as an

assembler language entry (DCL CEETDLI OPTIONS(ASM);).

v For C language application programs, you must specify env(IMS) and plist(IMS);

these specifications enable the application program to accept the PCB list of

arguments. The CEETDLI function is defined in <leawi.h>; the CTDLI function is

defined in <ims.h>.

The considerations for AIBTDLI are:

v When using the AIBTDLI interface for C/MVS™, Enterprise COBOL, or PL/I

language application programs, the language run-time options for suppressing

abend interception (that is, NOSPIE and NOSTAE) must be specified. However,

for Language Environment-conforming application programs, the NOSPIE and

NOSTAE restriction is removed.

v The AIBTDLI entry point for PL/I programs must be declared as an assembler

language entry (DCL AIBTDLI OPTIONS(ASM);).

v For C language applications, you must specify env(IMS) and plist(IMS); these

specifications enable the application program to accept the PCB list of

arguments.

Language Specific Entry Points

Chapter 3. Defining Application Program Elements 91

The considerations for AERTDLI are:

v When using the AERTDLI interface for C/MVS, COBOL, or PL/I language

application programs, the language run-time options for suppressing abend

interception (that is, NOSPIE and NOSTAE) must be specified. However, for

Language Environment-conforming application programs, the NOSPIE and

NOSTAE restriction is removed.

v The AERTDLI entry point for PL/I programs must be declared as an assembler

language entry (DCL AERTDLI OPTIONS(ASM);).

v For C language applications, you must specify env(IMS) and plis(IMS). These

specifications enable the application program to accept the PCB list of

arguments.

v AERTDLI must receive control with 31 bit addressability.

Program Communication Block (PCB) Lists

This section describes the formats of PCB lists and GPSB PCB lists, and provides

a description of PCBs in various types of application programs.

PCB List Format

The following example shows the general format of a PCB list.

[IOPCB]

[Alternate PCB ... Alternate PCB]

[DB PCB ... DB PCB]

[GSAM PCB ... GSAM PCB]

Each PSB must contain at least one PCB. An I/O PCB is required for most system

service calls. An I/O PCB or alternate PCB is required for transaction management

calls. (Alternate PCBs can exist in IMS TM.) DB PCBs for DL/I databases are used

only with the IMS Database Manager under DCCTL. GSAM PCBs can be used with

DCCTL.

GPSB PCB List

A generated program specification block (GPSB) takes this format:

[IOPCB]

[Alternate PCB]

A GPSB contains only an I/O PCB and one modifiable alternate PCB. (A modifiable

alternate PCB enables you to change the destination of the alternate PCB while the

program is running.)A GPSB can be used by all transaction management

application programs, and permits access to the specified PCBs without the need

for a specific PSB for the application program.

The PCBs in a GPSB have predefined PCB names. The name of the I/O PCB is

IOPCB. The name of the alternate PCB is TPPCB1��.

PCB Summary

This section summarizes the information concerning I/O PCBs and alternate PCBs

in various types of application programs. You should read this section if you intend

to issue system service requests.

DB Batch Programs If CMPAT=Y is specified in PSBGEN, the I/O PCB is

present in the PCB list; otherwise, the I/O PCB is

not present, and the program cannot issue system

Language Specific Entry Points

92 Application Programming: Database Manager

service calls. Alternate PCBs are always included in

the list of PCBs that IMS supplies to the program.

BMPs, MPPs, and IFPs The I/O PCB and alternate PCBs are always

passed to BMPs, MPPs, and IFPs.

 The PCB list always contains the address of the I/O

PCB, followed by the addresses of any alternate

PCBs, followed by the addresses of the DB PCBs.

CICS Online Programs with DBCTL

If you specify the IOPCB option on the PCB call, the

first PCB address in your PCB list is the I/O PCB,

followed by any alternate PCBs, followed by the

addresses of the DB PCBs.

 If you do not specify the I/O PCB option, the first

PCB address in your PCB list points to the first DB

PCB.

Table 19 summarizes the I/O PCB and alternate PCB information.

 Table 19. I/O PCB and Alternate PCB Information Summary

Environment

CALL DL/I

I/O PCB address in PCB list Alternate PCB address in

PCB list

MPP Yes Yes

IFP Yes Yes

BMP Yes Yes

DB Batch1 No Yes

DB Batch2 Yes Yes

TM Batch3 Yes Yes

CICS DBCTL4 No No

CICS DBCTL5 Yes Yes

Notes:

1. CMPAT = N specified.

2. CMPAT = Y specified.

3. CMPAT = Option. Default is always to Y, even when CMPAT = N is specified.

4. SCHD request issued without the IOPCB or SYSSERVE option.

5. SCHD request issued with the IOPCB or SYSSERVE for a CICS DBCTL request or for a

function-shipped request which is satisfied by a CICS system using DBCTL.

The AERTLDI interface

This section explains how to use the AIB with ODBA applications.

When you use the AERTDLI interface, the AIB used for database calls must be the

same AIB as used for the APSB call. Specify the PCB that is requested for the call

by placing the PCB name (as defined by PSBGEN) in the resource name field of

the AIB. You do not specify the PCB address. Because the AIB contains the PCB

name, your application can refer to the PCB name rather than to the PCB address.

The AERTDLI call allows you to select PCBs directly by name rather than by a

PCB Lists

Chapter 3. Defining Application Program Elements 93

pointer to the PCB. At completion of the call, the AIB returns the PCB address that

corresponds to the PCB name that is passed by the application program.

For PCBs to be used in a AERTDLI call, you must assign a name in PSBGEN,

either with PCBNAME= or with the name as a label on the PCB statement. PCBs

that have assigned names are also included in the positional pointer list, unless you

specify LIST=NO. During PSBGEN, you define the names of the DB PCBs and

alternate PCBs. All I/O PCBs are generated with the PCB name IOPCB���.

Because you pass the PCB name, you do not need to know the relative PCB

number in the PCB list. In addition, the AERTDLI interface enables your application

program to make calls on PCBs that do not reside in the PCB list. The LIST=

keyword, which is defined in the PCB macro during PSBGEN, controls whether the

PCB is included in the PCB list.

The AIB resides in user-defined storage that is passed to IMS for DL/I calls that use

the AERTDLI interface. When the call is completed, the AIB is updated by IMS.

Because some of the fields in the AIB are used internally by IMS, the same APSB

AIB must be used for all subsequent calls for that PSB.

Requirement: Allocate 264 bytes of storage for the AIB.

Language Environments

IBM z/OS Language Environment provides the strategic execution environment for

running your application programs written in one or more high-level languages. It

provides not only language-specific run-time support, but also cross-language

run-time services for your application programs, such as support for initialization,

termination, message handling, condition handling, storage management, and

National Language Support. Many of Language Environment services are

accessible explicitly through a set of Language Environment interfaces that are

common across programming languages; these services are accessible from any

Language Environment-conforming program.

Language Environment-conforming programs can be compiled with:

v IBM z/OS C/C++ Compilers

v Enterprise COBOL

v Enterprise PL/I

These programs can be produced by programs coded in assembler. All these

programs can use CEETDLI, the Language Environment-provided

language-independent interface to IMS, as well as older language-dependent

interfaces to IMS, such as CTDLI, CBLTDLI, and PLITDLI.

Although they do not conform to Language Environment, programs compiled with

the following older compilers can run under Language Environment:

v IBM C/370™

v IBM VS COBOL II

v IBM OS PL/I

These programs cannot use CEETDLI, but they can use the older

language-dependent interfaces to IMS.

Related Reading: For more information about Language Environment, see IBM

Language Environment for MVS and VM Programming Guide.

PCB Lists

94 Application Programming: Database Manager

The CEETDLI interface to IMS

The language-independent CEETDLI interface to IMS is provided by Language

Environment. It is the only IMS interface that supports the advanced error handling

capabilities that Language Environment provides. The CEETDLI interface supports

the same functionality as the other IMS application interfaces. The characteristics

are:

v The parmcount variable is optional.

v Length fields are 2 bytes long.

v Direct pointers are used.

Related Reading: For more information about Language Environment, see IBM

Language Environment for MVS and VM Programming Guide and Language

Environment for MVS & VM Installation and Customization.

Specifying LANG= Option for PL/I Compatibility

For IMS PL/I applications running in a compatibility mode that uses the PLICALLA

entry point, you must specify LANG=PLI on the PSBGEN, or you can change the

entry point and add SYSTEM(IMS) to the EXEC PARM of the compile step so that

you can specify LANG=blank or LANG=PLI on the PSBGEN. Table 20 summarizes

when you can use LANG=� and LANG=PLI.

 Table 20. Using LANG= Option in a Language Environment for PL/I Compatibility

Compile EXEC statement is

PARM=(...,SYSTEM(IMS)...

and entry point name is

PLICALLA

Then LANG= is

Yes Yes LANG=PLI

Yes No LANG= � or LANG=PLI

No No Not valid for IMS PL/I applications

No Yes LANG=PLI

Restriction: PLICALLA is only valid for PL/I compatibility with Language

Environment. If a PL/I application program that uses the PLICALLA entry at bind

time is bound using Language Environment with the PLICALLA entry, the bind will

work; however, you must use LANG=PLI in the PSB. If you recompile the

application program (without the PLICALLA entry) by using Enterprise PL/I, and

then attempt to bind using Language Environment Version 1 Release 2 or later, the

bind will fail. To bind successfully, you first must remove the PLICALLA entry

statement from the bind.

Special DL/I Situations

Application Program Scheduling against HALDBs

Application programs are scheduled against HALDBs the same way they are

against non-HALDBs. Scheduling is based on the availability status of the HALDB

master and is not affected by individual partition access and status.

The application programmer needs to be aware of changes to the handling of

unavailable data for HALDBs. The feedback on data availability at PSB schedule

time shows the availability of the HALDB master, not of the partitions. However, the

error settings for data unavailability of a partition at the first reference to the

partition during the processing of a DL/I call are the same as those of a

non-HALDB, namely status code BA or pseudo ABENDU3303.

Language Environments

Chapter 3. Defining Application Program Elements 95

|
|
|
|
|
|
|
|

Example: If you issue the IMS /DBR command to half of the partitions to take them

offline, the remaining partitions are available to the programs.

If you load a new HALDB that contains logical relationships, the logical child

segments are not loaded as part of the load step. Add logical children through

normal update processing after the database is loaded.

When a program accesses a partition for the first time, an indicator records that the

PSB accessed the partition. Commands can operate against a partition currently not

in use. A DFS05651 message results if a BMP uses a partition and the command

was against that partition. If an application attempts to access data from a stopped

partition, a pseudo abend results or the application receives a BA status code. If the

partition starts before the application attempts to access data in that partition again,

the DL/I call succeeds.

Mixed-Language Programming

When an application program uses the Language Environment

language-independent interface, CEETDLI, IMS does not need to know the

language of the calling program.

When the application program calls IMS in a language-dependent interface, IMS

determines the language of the calling program according to the entry name that is

specified in the CALL statement. That is, IMS assumes that the program is:

v Assembler language when the application program uses CALL ASMTDLI

v C language when the application program uses rc=CTDLI

v COBOL when the application program uses CALL CBLTDLI

v Pascal when the application program uses CALL PASTDLI

v PL/I when the application program uses CALL PLITDLI

For example, if a PL/I program calls an assembler language subroutine and the

assembler language subroutine makes DL/I calls by using CALL ASMTDLI, the

assembler language subroutine should use the assembler language calling

convention, not the PL/I convention.

In this situation, where the I/O area uses the LLZZ format, LL is a halfword, not the

fullword that is used for PL/I.

Language Environment Routine Retention

If you run programs in an IMS TM dependent region that requires Language

Environment (such as an IMS message processing region), you can improve

performance if you use Language Environment library routine retention along with

the existing PREINIT feature of IMS TM.

Related Reading: For more information about Language Environment routine

retention, see IBM Language Environment for MVS & VM Programming Guide and

IBM Language Environment for MVS & VM Installation and Customization.

Extended Addressing Capabilities of z/OS

The two modes in z/OS with extended addressing capabilities are: the addressing

mode (AMODE) and the residency mode (RMODE). IMS places no constraints on

the RMODE and AMODE of an application program. The program can reside in the

extended virtual storage area. The parameters that are referenced in the call can

also be in the extended virtual storage area.

Special DL/I Situations

96 Application Programming: Database Manager

Preloaded Programs

If you compile your COBOL program with the Enterprise COBOL compiler and

preload it, you must use the COBOL compiler option RENT.

If you compile your COBOL program with the VS COBOL II compiler and preload it,

you must use the COBOL compiler options RES and RENT.

Special DL/I Situations

Chapter 3. Defining Application Program Elements 97

|
|

98 Application Programming: Database Manager

Chapter 4. Current Position in the Database After Each Call

Positioning means that DL/I tracks your place in the database after each call that

you issue. By tracking your position in the database, DL/I enables you to process

the database sequentially.

The following topics provide additional information:

v “Current Position after Successful Calls”

v “Current Position after Unsuccessful Calls” on page 104

v “Multiple Processing” on page 108

Current Position after Successful Calls

Position is important when you process the database sequentially by issuing GN,

GNP, GHN, and GHNP calls. Current position is where IMS starts its search for the

segments that you specify in the calls.

This section explains current position for successful calls. Current position is also

affected by an unsuccessful retrieval or ISRT call. “Current Position after

Unsuccessful Calls” on page 104 explains current position in the database after an

unsuccessful call.

Before you issue the first call to the database, the current position is the place

immediately before the first root segment occurrence in the database. This means

that if you issue an unqualified GN call, IMS retrieves the first root segment

occurrence. It is the next segment occurrence in the hierarchy that is defined by the

DB PCB that you referenced.

Certain calls cancel your position in the database. You can reestablish this position

with the GU call. Because the CHKP and SYNC (commit point) calls cancel position,

follow either of these calls with a GU call. The ROLS and ROLB calls also cancel your

position in the database.

When you issue a GU call, your current position in the database does not affect the

way that you code the GU call or the SSA you use. If you issue the same GU call at

different points during program execution (when you have different positions

established), you will receive the same results each time you issue the call. If you

have coded the call correctly, IMS returns the segment occurrence you requested

regardless of whether the segment is before or after the current position.

Exception: If a GU call does not have SSAs for each level in the call, it is possible

for IMS to return a different segment at different points in your program. This is

based on the position at each level.

Example: Suppose you issue the following call against the data structure shown in

Figure 23 on page 100.

GU A�������

(AKEY����=�A1)

 B�������(BKEY����=�B11)

 D�������(DKEY�����D111)

The structure in the figure contains six segment types: A, B, C, D, E, and F.

Figure 23 on page 100 shows one database record, the root of which is A1.

© Copyright IBM Corp. 1974, 2004 99

|

When you issue this call, IMS returns the D segment with the key D111, regardless

of where your position is when you issue the call. If this is the first call your

program issues (and if this is the first database record in the database), current

position before you issue the call is immediately before the first segment occurrence

in the database—just before the A segment with the key of A1. Even if current

position is past segment D111 when you issue the call (for example, just before

segment F111), IMS still returns the segment D111 to your program. This is also

true if the current position is in a different database record.

When you issue GN and GNP calls, current position in the database affects the way

that you code the call and the SSA. That is because when IMS searches for a

segment described in a GN or GNP call, it starts the search from current position and

can only search forward in the database. IMS cannot look behind that segment

occurrence to satisfy a GN or GNP. These calls can only move forward in the

database when trying to satisfy your call, unless you use the F command code, the

use of which is described in “F Command Code” on page 203.

If you issue a GN call for a segment occurrence that you have already passed, IMS

starts searching at the current position and stops searching when it reaches the end

of the database (resulting in a GB status code), or when it determines from your

SSA that it cannot find the segment you have requested (GE status code). “Current

Position after Unsuccessful Calls” on page 104 explains where your position is

when you receive a GE status code.

Current position affects ISRT calls when you do not supply qualified SSAs for the

parents of the segment occurrence that you are inserting. If you supply only the

unqualified SSA for the segment occurrence, you must be sure that your position in

the database is where you want the segment occurrence to be inserted.

Position after Retrieval Calls

After you issue any kind of successful retrieval call, position immediately follows the

segment occurrence you just retrieved—or the lowest segment occurrence in the

Figure 23. Current Position Hierarchy

Current Position after Successful Calls

100 Application Programming: Database Manager

|
|

path if you retrieved several segment occurrences using the D command code.

When you use the D command code in a retrieval call, a successful call is one that

IMS completely satisfies.

Example: If you issue the following call against the database shown in Figure 23 on

page 100, IMS returns the C segment occurrence with the key of C111. Current

position is immediately after C111. If you then issue an unqualified GN call, IMS

returns the C112 segment to your program.

GU A(�������(AKEY����=�A1)

 B�������(BKEY����=�B11)

 C�������(CKEY����=�C111)

Your current position is the same after retrieving segment C111, whether you

retrieve it with GU, GN, GNP, or any of the Get Hold calls.

If you retrieve several segment occurrences by issuing a Get call with the D

command code, current position is immediately after the lowest segment occurrence

that you retrieved. If you issue the GU call as shown in the example above, but

include the D command code in the SSA for segments A and B, the current position

is still immediately after segment C111. C111 is the last segment that IMS retrieves

for this call. With the D command code, the call looks like this:

GU A�������*D(AKEY����=�A1)

 B�������*D(BKEY����=�B11)

 C�������(CKEY����=�C111)

You do not need the D command code on the SSA for the C segment because IMS

always returns to your I/O area the segment occurrence that is described in the last

SSA.

Position after DLET

After a successful DLET call, position immediately follows the segment occurrence

you deleted. This is true when you delete a segment occurrence with or without

dependents.

Example: If you issue the call shown Figure 24 to delete segment C111, current

position is immediately after segment C111. Then, if you issue an unqualified GN

call, IMS returns segment C112.

Figure 25 on page 102 shows what the hierarchy looks like after this call. The

successful DLETcall has deleted segment C111.

GHU A�������(AKEY����=�A1)

 B�������(BKEY����=�B11)

 C�������(CKEY����=�C111)

DLET

Figure 24. Example Code: Deleting Segment C11

Current Position after Successful Calls

Chapter 4. Current Position in the Database After Each Call 101

|
|
|

When you issue a successful DLET call for a segment occurrence that has

dependents, IMS deletes the dependents, and the segment occurrence. Current

position still immediately follows the segment occurrence you deleted. An

unqualified GN call returns the segment occurrence that followed the segment you

deleted.

Example: If you delete segment B11 in the hierarchy shown in Figure 25, IMS

deletes its dependent segments, C112 and D111, as well. Current position

immediately follows segment B11, just before segment B12. If you then issue an

unqualified GN call, IMS returns segment B12. Figure 26 shows what the hierarchy

looks like after you issued this call.

 Because IMS deletes the segment’s dependents, you can think of current position

immediately following the last (lowest, right-most) dependent. In the example in

Figure 25, this immediately follows segment D111. But if you then issue an

Figure 25. Hierarchy after Deleting a Segment

Figure 26. Hierarchy after Deleting a Segment and Dependents

Current Position after Successful Calls

102 Application Programming: Database Manager

unqualified GN call, IMS still returns segment B12. You can think of position in either

place—the results are the same either way. An exception to this can occur for a

DLET that follows a GU path call, which returned a GE status code. See “Current

Position after Unsuccessful Calls” on page 104 regarding position after

unsuccessful calls.

Position after REPL

A successful REPL call does not change your position in the database. Current

position is just where it was before you issued the REPL call. It immediately follows

the lowest segment that is retrieved by the Get Hold call that you issued before the

REPL call.

Example: If you retrieve segment B13 in Figure 26 on page 102 using a GHU

instead of a GU call, change the segment in the I/O area, and then issue a REPL call,

current position immediately follows segment B13.

Position after ISRT

After you add a new segment occurrence to the database, current position

immediately follows the new segment occurrence.

Example: In Figure 27 on page 104, if you issue the following call to add segment

C113 to the database, current position immediately follows segment C113. An

unqualified GN call would retrieve segment D111.

ISRT A�������(AKEY����=

If you are inserting a segment that has a unique key, IMS places the new segment

in key sequence. If you are inserting a segment that has either a non unique key or

no key at all, IMS places the segment according to the rules parameter of the

SEGM statement of the DBD for the database. “ISRT Call” on page 235 explains

these rules.

If you insert several segment occurrences using the D command code, current

position immediately follows the lowest segment occurrence that is inserted.

Example: Suppose you insert a new segment B (this would be B14), and a new C

segment occurrence (C141), which is a dependent of B14. Figure 27 on page 104

shows what the hierarchy looks like after these segment occurences are inserted.

The call to do this looks like this:

ISRT A�������(AKEY����=

You do not need the D command code in the SSA for the C segment. On ISRT

calls, you must include the D command code in the SSA for the only first segment

you are inserting. After you issue this call, position immediately follows the C

segment occurrence with the key of C141. Then, if you issue an unqualified GN call,

IMS returns segment E11.

If your program receives an II status code as a result of an ISRT call (which means

that the segment you tried to insert already exists in the database), current position

is just before the duplicate of the segment that you tried to insert.

Current Position after Successful Calls

Chapter 4. Current Position in the Database After Each Call 103

Current Position after Unsuccessful Calls

IMS establishes another kind of position when you issue retrieval and ISRT calls.

This is position on one segment occurrence at each hierarchic level in the path to

the segment that you are retrieving or inserting. You need to know how IMS

establishes this position to understand the U and V command codes described in

“General Command Codes for DL/I Calls” on page 201. Also, you need to

understand where your position in the database is when IMS returns a not-found

status code to a retrieval or ISRT call.

In “Current Position after Successful Calls” on page 99 you saw what current

position is, why and when it is important, and how successful DL/I calls affect it. But

chances are that not every DL/I call that your program issues will be completely

successful. When a call is unsuccessful, you should understand how to determine

your position in the database after that call.

Position after an Unsuccessful DLET or REPL Call

DLET and REPL calls do not affect current position. Your position in the database is

the same as it was before you issued the call. However, an unsuccessful Get call or

ISRT call does affect your current position.

To understand where your position is in the database when IMS cannot find the

segment you have requested, you need to understand how DL/I determines that it

cannot find your segment.

In addition to establishing current position after the lowest segment that is retrieved

or inserted, IMS maintains a second type of position on one segment occurrence at

each hierarchic level in the path to the segment you are retrieving or inserting.

Example: In Figure 28 on page 105, if you had just successfully issued the GU call

with the SSA shown below, IMS has a position established at each hierarchic level.

Figure 27. Hierarchy after Adding New Segments and Dependents

Current Position after Unsuccessful Calls

104 Application Programming: Database Manager

GU A�������(AKEY����=b�A1)

 B�������(BKEY�����B11)

 C�������(CKEY����=�C111)

Now DL/I has three positions, one on each hierarchic level in the call:

v One on the A segment with the key A1

v One on the B segment with the key B11

v One on the C segment with the key C111

 When IMS searches for a segment occurrence, it accepts the first segment

occurrence it encounters that satisfies the call. As it does so, IMS stores the key of

that segment occurrence in the key feedback area.

Position after an Unsuccessful Retrieval or ISRT Call

Current position after a retrieval or ISRT call that receives a GE status code

depends on how far IMS got in trying to satisfy the SSA in the call. When IMS

processes an ISRT call, it checks for each of the parents of the segment occurrence

you are inserting. An ISRT call is similar to a retrieval call, because IMS processes

the call level by level, trying to find segment occurrences to satisfy each level of the

call. When IMS returns a GE status code on a retrieval call, it means that IMS was

unable to find a segment occurrence to satisfy one of the levels in the call. When

IMS returns a GE status code on an ISRT call, it means that IMS was unable to find

one of the parents of the segment occurrence you are inserting. These are called

not-found calls.

When IMS processes retrieval and ISRT calls, it tries to satisfy your call until it

determines that it cannot. When IMS first tries to find a segment matching the

description you have given in the SSA and none exists under the first parent, IMS

tries to search for your segment under another parent. How you code the SSA in

the call determines whether IMS can move forward and try again under another

parent.

Figure 28. DL/I Positions

Current Position after Unsuccessful Calls

Chapter 4. Current Position in the Database After Each Call 105

Example: Suppose you issue the following GN call to retrieve the C segment with

the key of C113 in the hierarchy shown in Figure 28 on page 105.

GN A�������(AKEY����=�A1)

 B�������(BKEY����=�B11)

 C�������(CKEY����=�C113)

When IMS processes this call, it searches for a C segment with the key equal to

C113. IMS can only look at C segments whose parents meet the qualifications for

the A and B segments. The B segment that is part of the path must have a key

equal to B11, and the A segment that is part of the path must have a key equal to

A1. IMS then looks at the first C segment. Its key is C111. The next C segment has

a key of C112. IMS looks for a third C segment occurrence under the B11 segment

occurrence. No more C segment occurrences exist under B11.

Because you have specified in the SSA that the A and B segment occurrences in

C’s path must be equal to certain values, IMS cannot look for a C segment

occurrence with a key of C113 under any other A or B segment occurrence. No

more C segment occurrences exist under the parent B11; the parent of C must be

B11, and the parent of B11 must be A1. IMS determines that the segment you have

specified does not exist and returns a not-found (GE) status code.

When you receive the GE status code on this call, you can determine where your

position is from the key feedback area, which reflects the positions that IMS has at

the levels it was able to satisfy—in this case, A1 and B11.

After this call, current position immediately follows the last segment occurrence that

IMS examined in trying to satisfy your call—in this case, C112. Then, if you issue

an unqualified GN call, IMS returns D111.

The current position after this call is different if A and B have non unique keys.

Suppose A’s key is unique and B’s is non unique. After IMS searches for a C113

segment under B11 and is unable to find one, IMS moves forward from B11 to look

for another B segment with a key of B11. When IMS does not find one, DL/I returns

a GE status code. Current position is further in the database than it was when both

keys were unique. Current position immediately follows segment B11. An

unqualified GN call would return B12.

If A and B both have non unique keys, current position after the previous call

immediately follows segment A1. Assuming no more segment A1s exist, an

unqualified GN call would return segment A2. If other A1s exist, IMS tries to find a

segment C113 under the other A1s.

But suppose you issue the same call with a greater-than-or-equal-to relational

operator in the SSA for segment B:

GU A�������(AKEY����=�A1)

 B�������(BKEY����=B11)

 C�������(CKEY����=�C113)

IMS establishes position on segment A1 and segment B11. Because A1 and B11

satisfy the first two SSAs in the call, IMS stores their keys in the key feedback area.

IMS searches for a segment C113 under segment B11. None is found. But this

time, IMS can continue searching, because the key of the B parent can be greater

than or equal to B11. The next segment is B12. Because B12 satisfies the

qualification for segment B, IMS places B12’s key in the key feedback area. IMS

Current Position after Unsuccessful Calls

106 Application Programming: Database Manager

then looks for a C113 under B12 and does not find one. The same thing happens

for B13: IMS places the key of B13 in the key feedback area and looks for a C113

under B13.

When IMS finds no more B segments under A1, it again tries to move forward to

look for B and C segments that satisfy the call under another A parent. But this time

it cannot; the SSA for the A segment specifies that the A segment must be equal to

A1. (If the keys were non unique, IMS could look for another A1 segment.) IMS

then knows that it cannot find a C113 under the parents you have specified and

returns a GE status code to your program.

In this example, you have not limited IMS’s search for segment C113 to only one B

segment, because you have used the greater-than-or-equal-to operator. IMS’s

position is further than you might have expected, but you can tell what the position

is from the key feedback area. The last key in the key feedback area is the key of

segment B13; The current position of IMS immediately follows segment B13. If you

then issue an unqualified GN call, IMS returns segment E11.

Each of the B segments that IMS examines for this call satisfies the SSA for the B

segment, so IMS places the key of each in the key feedback area. But if one or

more of the segments IMS examines does not satisfy the call, IMS does not place

the key of that segment in the key feedback area. This means that IMS’s position in

the database might be further than the position reflected by the key feedback area.

For example, suppose you issue the same call, but you qualify segment B on a

data field in addition to the key field. To do this, you use multiple qualification

statements for segment B.

Assume the data field you are qualifying the call on is called BDATA. Assume the

value you want is 14, but that only one of the segments, B11, contains a value in

BDATA of 14:

GN A�������(AKEY����=�A1)

 B�������(BKEY����>=B11*BDATA���=�14)

 C�������(CKEY����=�C113)

After you issue this call, the key feedback area contains the key for segment B11. If

you continue issuing this call until you receive a GE status code, IMS’s current

position immediately follows segment B13, but the key feedback area still contains

only the key for segment B11. Of the B segments IMS examines, only one of them

(B11) satisfies the SSA in the call.

When you use a greater-than or greater-than-or-equal-to relational operator, you do

not limit IMS’s search. If you get a GE status code on this kind of call, and if one or

more of the segments IMS examines does not satisfy an SSA, IMS’s position in the

database may be further than the position reflected in the key feedback area. If,

when you issue the next GN or GNP call, you want IMS to start searching from the

position reflected in the key feedback area instead of from its “real” position, you

can either:

v Issue a fully qualified GU call to reestablish position to where you want it.

v Issue a GN or GNP call with the U command code. Including a U command code

on an SSA tells IMS to use the first position it established at that level as

qualification for the call. This is like supplying an equal-to relational operator for

the segment occurrence that IMS has positioned on at that level.

Example: Suppose that you first issue the GU call with the greater-than-or-equal-to

relational operator in the SSA for segment B, and then you issue this GN call:

Current Position after Unsuccessful Calls

Chapter 4. Current Position in the Database After Each Call 107

GN A�������*U

 B�������*U

 C��������

The U command code tells IMS to use segment A1 as the A parent, and segment

B11 as the B parent. IMS returns segment C111. But if you issue the same call

without the U command code, IMS starts searching from segment B13 and moves

forward to the next database record until it encounters a B segment. IMS returns

the first B segment it encounters.

Multiple Processing

The order in which an application program accesses segments in a hierarchy

depends on the purpose of the application program. Some programs access

segments directly, others sequentially. Some application programs require that the

program process segments in different hierarchic paths, or in different database

records, in parallel.

If your program must process segments from different hierarchic paths or from

different database records in parallel, using multiple positioning or multiple PCBs

can simplify the program’s processing. For example:

v Suppose your program must retrieve segments from different hierarchic paths

alternately: for example, in Figure 29, it might retrieve B11, then C11, then B12,

then C12, and so on. If your program uses multiple positioning, IMS maintains

positions in both hierarchic paths. Then the program is not required to issue GU

calls to reset position each time it needs to retrieve a segment from a different

path.

v Suppose your program must retrieve segments from different database records

alternately: for example, it might retrieve a B segment under A1, and then a B

segment under another A root segment. If your program uses multiple PCBs,

IMS maintains positions in both database records. Then the program does not

have to issue GU calls to reset position each time it needs to access a different

database record.

Multiple Positioning

When you define the PSB for your application program, you have a choice about

the kind of positioning you want to use: single or multiple. All of the examples used

so far, and the explanations about current position, have used single positioning.

This section explains what multiple positioning is, why it is useful, and how it affects

your programming.

Specify the kind of position you want to use for each PCB on the PCB statement

when you define the PSB. The POS operand for a DEDB is disregarded. DEDBs

support multiple positioning only.

Figure 29. Multiple Processing

Current Position after Unsuccessful Calls

108 Application Programming: Database Manager

Definitions:

v Single positioning means that IMS maintains position in one hierarchic path for

the hierarchy that is defined by that PCB. When you retrieve a segment, IMS

clears position for all dependents and all segments on the same level.

v Multiple positioning means that IMS maintains position in each hierarchic path in

the database record that is being accessed. When you retrieve a segment, IMS

clears position for all dependents but keeps position for segments at the same

level.

Example: Suppose you issue these two calls using the hierarchy shown in

Figure 30:

GU A�������(AKEY����=�A1)

 B�������(BKEYY����=�B11)

 C�������(CKEYY����=�C111)

GN E�������(EKEYY����=�E11)

 After issuing the first call with single positioning, IMS has three positions

established: one on A1, one on B11, and one on C111. After issuing the second

call, the positions on B11 and C111 are canceled. Then IMS establishes positions

on A1 and E11.

After issuing the first call with single and multiple positioning, IMS has three

positions established: one on A1, one on B11, and one on C111. However, after

issuing the second call, single positioning cancels positions on B11 and C111 while

multiple positioning retains positions on B11 and C111. IMS then establishes

positions on segments A1 and E11 for both single and multiple positioning.

After issuing the first call with multiple positioning, IMS has three positions

established (just as with single positioning): one on A1, one on B11, and one on

C111. But after issuing the second call, the positions on B11 and C111 are retained.

In addition to these positions, IMS establishes position on segments A1 and E11.

Figure 30. Multiple Positioning Hierarchy

Multiple Positioning

Chapter 4. Current Position in the Database After Each Call 109

The examples that follow compare the results of single and multiple positioning

using the hierarchy in Figure 31.

 Table 21. Results of Single and Multiple Positioning with DL/I Calls

 Sequence

Result of Single

Positioning

Result of Multiple

Positioning

Example 1

GU (where AKEY equals A1) A1 A1

GNP B B11 B11

GNP C C11 C11

GNP B Not found B12

GNP C C12 C12

GNP B Not found Not found

GNP C C13 C13

GNP B Not found Not found

GNP C Not found Not found

Example 2

GU A (where AKEY equals A1) A1 A1

GN B B11 B11

GN C C11 C11

GN B B21 B12

GN C C21 C12

Example 3

GU A (where AKEY equals A1) A1 A1

GN C C11 C11

GN B B21 B11

GN B B22 B12

GN C C21 C12

Example 4

GU A (where AKEY equals A1) A1 A1

GN B B11 B11

GN C C11 C11

GN D D111 D111

GN E E111 E111

GN B B21 B12

GN D D221 D112

GN C C under next A C12

GN E E under next A E121

Figure 31. Single and Multiple Positioning Hierarchy

Multiple Positioning

110 Application Programming: Database Manager

Multiple positioning is useful when you want to examine or compare segments in

two hierarchic paths. It lets you process different segment types under the same

parent in parallel. Without multiple positioning, you would have to issue GU calls to

reestablish position in each path.

Advantages of Using Multiple Positioning

The advantages of using multiple positioning are:

v You might be able to design your program with greater data independence than

you would using single positioning. You can write application programs that use

GN and GNP calls, and GU and ISRT calls with missing levels in their SSAs,

independent of the relative order of the segment types being processed. If you

improve your program’s performance by changing the relative order of segment

types and all of the application programs that access those segment types use

multiple positioning, you could make the change without affecting existing

application programs. To do this without multiple positioning, the program would

have to use GN and GNP calls, and GU and ISRT calls with incompletely specified

SSAs.

v Your program can process dependent segment types in parallel (it can switch

back and forth between hierarchic paths without reissuing GU calls to reset

position) more efficiently than is possible with single positioning. You indicate to

IMS the hierarchic path that contains the segments you want in your SSAs in the

call. IMS uses the position established in that hierarchic path to satisfy your call.

The control blocks that IMS builds for each kind of positioning are the same.

Multiple positioning does not require more storage, nor does it have a big impact

on performance.

Keep in mind that multiple positioning might use more processor time than single

positioning, and that multiple positioning cannot be used with HSAM databases.

How Multiple Positioning Affects Your Program

Multiple positioning affects the order and structure of your DL/I calls.

v “GU and ISRT”

v “DLET and REPL with Multiple Positioning” on page 112

v “Qualified GN and GNP Calls” on page 112

v “Mixing Qualified and Unqualified GN and GNP Calls” on page 112

GU and ISRT: The only time multiple positioning affects GU and ISRT calls is when

you issue these calls with missing SSAs in the hierarchic path. When you issue a

GU or ISRT call that does not contain an SSA for each level in the hierarchic path,

IMS builds the SSA for the missing levels according to the current position:

v If IMS has a position established at the missing level, the qualification IMS uses

is derived from that position, as reflected in the DB PCB.

v If no position is established at the missing level, IMS assumes a segment type

for that level.

v If IMS moves forward from a position that is established at a higher level, it

assumes a segment type for that level.

Because IMS builds the missing qualification based on current position, multiple

positioning makes it possible for IMS to complete the qualification independent of

current positions that are established for other segment types under the same

parent occurrence.

Multiple Positioning

Chapter 4. Current Position in the Database After Each Call 111

DLET and REPL with Multiple Positioning: Multiple positioning does not affect

DLET or REPL calls; it only affects the Get Hold calls that precede them.

Qualified GN and GNP Calls: When your program issues a GN or GNP call, IMS

tries to satisfy the call by moving forward from current position. When you use

multiple positioning, more than one current position exist: IMS maintains a position

at each level in all hierarchic paths, instead of at each level in one hierarchic path.

To satisfy GN and GNP calls with multiple positioning, IMS moves forward from the

current position in the path that is referred to in the SSA.

Mixing Qualified and Unqualified GN and GNP Calls: Although multiple

positioning is intended to be used with qualified calls for parallel processing and

data independence, you may occasionally want to use unqualified calls with multiple

positioning. For example, you may want to sequentially retrieve all of the segment

occurrences in a hierarchy, regardless of segment type.

Recommendation: Limit unqualified calls to GNP calls in order to avoid inconsistent

results. Mixing qualified and unqualified SSAs may be valid for parallel processing,

but doing so might also decrease the program’s data independence.

There are three rules that apply to mixing qualified and unqualified GN and GNP calls:

1. When you issue an unqualified GN or GNP, IMS uses the position that is

established by the preceding call to satisfy the GN or GNP call. For example:

 Your program issues these calls: DL/I returns these segments:

GU A (where AKEY = A1) A1

GN B B11

GN E E11

GN F111

When your program issues the unqualified GN call, IMS uses the position that is

established by the last call, the call for the E segment, to satisfy the unqualified

call.

2. After you successfully retrieve a segment with an unqualified GN or GNP, IMS

establishes position in only one hierarchic path: the path containing the segment

just retrieved. IMS cancels positions in other hierarchic paths. IMS establishes

current position on the segment that is retrieved and sets parentage on the

parent of the segment that is retrieved. If you issue a qualified call for a

segment in a different hierarchic path after issuing an unqualified call, the

results are unpredictable. For example:

 Your program issues these calls: DL/I returns these segments:

GU A (where AKEY = A1) A1

GN B B11

GN E E11

GN F111

GN B unpredictable

When you issue the unqualified GN call, IMS no longer maintains a position in

the other hierarchic path, so the results of the GN call for the B segment are

unpredictable.

3. If you issue an unqualified GN or GNP call and IMS has a position established on

a segment that the unqualified call might encounter, the results of the call are

Multiple Positioning

112 Application Programming: Database Manager

|
|
|

unpredictable. Also, when you issue an unqualified call and you have

established position on the segment that the call “should” retrieve, the results

are unpredictable.

For example:

 Your program issues these calls: DL/I returns these segments:

GU A (where AKEY = A1) A1

GN E E11

GN D D111

GN B B12

GN B B13

GN E11 (The only position IMS has is the one

established by the GN call.)

In this example, IMS has a position established on E11. An unqualified GN call

moves forward from the position that is established by the previous call. Multiple

positions are lost; the only position IMS has is the position that is established by

the GN call.

To summarize these rules:

1. To satisfy an unqualified GN or GNP call, IMS uses the position established in the

last call for that PCB.

2. If an unqualified GN or GNP call is successful, IMS cancels positions in all other

hierarchic paths. Position is maintained only within the path of the segment

retrieved.

Resetting Position with Multiple Positioning

To reset position, your program issues a GU call for a root segment. If you want to

reset position in the database record you are currently processing, you can issue a

GU call for that root segment, but the GU call cannot be a path call.

Example: Suppose you have positions established on segments B11 and E11. Your

program can issue one of the calls below to reset position on the next database

record.

Issuing this call causes IMS to cancel all positions in database record A1:

GU A�������(AKEY����=�A2)

Or, if you wanted to continue processing segments in record A1, you issue this call

to cancel all positions in record A1:

GU A�������(AKEY����=�A1)

Issuing this call as a path call does not cancel position.

Multiple DB PCBs

When a program has multiple PCBs, it usually means that you are defining views of

several databases, but this also can mean that you need several positions in one

database record. Defining multiple PCBs for the same hierarchic view of a database

is another way to maintain more than one position in a database record. Using

multiple PCBs also extends what multiple positioning does, because with multiple

PCBs you can maintain positions in two or more database records and within two or

more hierarchic paths in the same record.

Multiple Positioning

Chapter 4. Current Position in the Database After Each Call 113

Example: Suppose you were processing the database record for Patient A. Then

you wanted to look at the record for Patient B and also be able to come back to

your position for Patient A. If your program uses multiple PCBs for the medical

hierarchy, you issue the first call for Patient A using PCB1 and then issue the next

call, for Patient B, using PCB2. To return to Patient A’s record, you issue the next

call using PCB1, and you are back where you left off in that database record.

Using multiple PCBs can decrease the number of Get calls required to maintain

position and can sometimes improve performance. Multiple PCBs are particularly

useful when you want to compare information from segments in two or more

database records. On the other hand, the internal control block requirements

increase with each PCB that you define.

You can use the AIBTDLI interface with multiple PCBs by assigning different

PCBNAMEs to the PCBs during PSB generation. Just as multiple PCBs must have

different addresses in the PSB PCBLIST, multiple PCBs must have different

PCBNAMEs when using the AIBTDLI interface. For example, if your application

program issues DL/I calls against two different PCBs in a list that identifies the

same database, you achieve the same effect with the AIBTDLI interface by using

different PCBNAMEs on the two PCBs at PSB generation time.

Multiple DB PCBs

114 Application Programming: Database Manager

Chapter 5. Recovering Databases and Maintaining Database

Integrity

This chapter describes the programming tasks of issuing checkpoints, restarting

programs, and maintaining database integrity.

The following topics provide additional information:

v “Issuing Checkpoints”

v “Restarting Your Program From the Latest Checkpoint”

v “Maintaining Database Integrity (IMS Batch, BMP, and IMS Online Regions)” on

page 116

v “Reserving Segments for the Exclusive Use of Your Program” on page 122

Issuing Checkpoints

Two kinds of checkpoint (CHKP) calls exist: the basic CHKP and the symbolic CHKP. All

IMS programs and CICS shared database programs can issue the basic CHKP call;

only BMPs and batch programs can use either call.

IMS Version 9: Application Programming: Design Guide explains when and why you

should issue checkpoints in your program. Both checkpoint calls cause a loss of

database position when the call is issued, so you must reestablish position with a

GU call or some other method. You cannot reestablish position in the middle of non

unique keys or nonkeyed segments.

Restriction: You must not specify CHKPT=EOV on any DD statement to take an

IMS checkpoint.

Some differences exist if you issue the same call sequence against a full-function

database or a DEDB, and an MSDB. For more information about the differences,

see “Commit-Point Processing in MSDBs and DEDBs” on page 177.

Depending on the database organization, a CHKP call can result in the database

position for the PCB being reset. When the CHKP call is issued, the locks held by the

program are released. Therefore, if locks are necessary for maintaining your

database position, the position is reset by the CHKP call. Position is reset in all cases

except those in which the organization is either GSAM (locks are not used) or

DEDB, and the CHKP call is issued after a GC status code. For a DEDB, the position

is maintained at the unit-of-work boundary.

Issuing a CHKP resets the destination of the modifiable alternate PCB.

Related Reading: For more information on CHKP calls, see “CHKP (Basic) Call” on

page 249 and “CHKP (Symbolic) Call” on page 250.

Restarting Your Program From the Latest Checkpoint

If you use basic checkpoints instead of symbolic checkpoints, provide the necessary

code to restart the program from the latest checkpoint if the program terminates

abnormally.

One way to restart the program from the latest checkpoint is to store repositioning

information in a HDAM or PHDAM database. With this method, your program writes

© Copyright IBM Corp. 1974, 2004 115

|

a database record containing repositioning information to the database each time a

checkpoint is issued. Before your program terminates, it should delete the database

record.

For more information on the XRST call, see “XRST Call” on page 282.

Maintaining Database Integrity (IMS Batch, BMP, and IMS Online

Regions)

IMS uses these DL/I calls to back out database updates: ROLB, ROLL, ROLS, SETS,

and SETU. The ROLB and ROLS calls can back out the database updates or cancel the

output messages that the program has created since the program’s most recent

commit point. A ROLL call backs out the database updates and cancels any

non-express output messages the program has created since the last commit point.

It also deletes the current input message. SETS allows multiple intermediate backout

points to be noted during application program processing. SETU operates like SETS

except that it is not rejected by unsupported PCBs in the PSB. If your program

issues a subsequent ROLS call specifying one of these points, database updates and

message activity performed since that point are backed out.

CICS online programs with DBCTL can use the ROLS and SETS or SETU DL/I calls to

back out database changes to a previous commit point or to an intermediate

backout point.

Backing Out to a Prior Commit Point: ROLL, ROLB, and ROLS

When a program determines that some of its processing is invalid, some calls

enable the program to remove the effects of its incorrect processing. These are the

Roll Back calls: ROLL, ROLS using a DB PCB (or ROLS without an I/O area or token),

and ROLB. When you issue one of these calls, IMS:

v Backs out the database updates that the program has made since the program’s

most recent commit point.

v Cancels the non-express output messages that the program has created since

the program’s most recent commit point.

The main difference between these calls is that ROLB returns control to the

application program after backing out updates and canceling output messages, ROLS

does not return control to the application program, and ROLL terminates the program

with an abend code of U0778. ROLB can return the first message segment to the

program since the most recent commit point, but ROLL and ROLS cannot.

The ROLL and ROLB calls, and the ROLS call without a specified token, are valid when

the PSB contains PCBs for GSAM data sets. However, segments inserted in the

GSAM data sets since the last commit point are not backed out by these calls. An

extended checkpoint-restart can be used to reposition the GSAM data sets when

restarting.

You can use a ROLS call either to back out to the prior commit point or to back out to

an intermediate backout point that was established by a prior SETS call. This section

refers only to the form of the ROLS call that backs out to the prior commit point. For

information about the other form of ROLS, see “Backing Out to an Intermediate

Backout Point: SETS, SETU, and ROLS” on page 120.

Table 22 summarizes the similarities and the differences between the ROLB, ROLL,

and ROLS calls.

Restarting Your Program and Checking for Position

116 Application Programming: Database Manager

Table 22. Comparison of ROLB, ROLL, and ROLS

Actions Taken: ROLB ROLL ROLS

Back out database updates since the last commit point. X X X

Cancel output messages created since the last commit point. X1 X1 X1

Delete from the queue the message in process. Previous

messages (if any) processed since the last commit point are

returned to the queue to be reprocessed.

 X

Return the first segment of the first input message issued

since the most recent commit point.

X2

U3303 abnormal termination. Returns the processed input

messages to the message queue.

 X3

U0778 abnormal termination. No dump. X

No abend. Program continues processing. X

Notes:

1. ROLB, ROLL, or ROLS calls cancel output messages that are sent with an express PCB

unless the program issued a PURG. For example, if the program issues the call sequence

that follows, MSG1 would be sent to its destination because PURG tells IMS that MSG1 is

complete and the I/O area now contains the first segment of the next message (which in

this example is MSG2). MSG2, however, would be canceled.

ISRT EXPRESS PCB, MSG1

PURG EXPRESS PCB, MSG2

ROLB I/O PCB

Because IMS has the complete message (MSG1) and because an express PCB is being

used, the message can be sent before a commit point.

2. Returned only if you supply the address of an I/O area as one of the call parameters.

3. The transaction is suspended and requeued for subsequent processing.

ROLL

A ROLL call backs out the database updates and cancels any non-express output

messages the program has created since the last commit point. It also deletes the

current input message. Any other input messages that were processed since the

last commit point are returned to the queue to be reprocessed. IMS then terminates

the program with an abend code U0778. This type of abnormal termination

terminates the program without a storage dump.

When you issue a ROLL call, the only parameter you supply is the call function,

ROLL.

You can use the ROLL call in a batch program. If your system log is on DASD, and if

dynamic backout has been specified through the use of the BKO execution

parameter, database changes made since the last commit point will be backed out;

otherwise they will not. One reason for issuing ROLL in a batch program is for

compatibility.

After backout is complete, the original transaction is discarded if it can be, and it is

not re-executed. IMS issues the APPC/MVS verb, ATBCMTP TYPE(ABEND),

specifying the TPI to notify remote transaction programs. Issuing the APPC/MVS

verb causes all active conversations (including any that are spawned by the

application program) to be DEALLOCATED TYP(ABEND_SVC).

Maintaining Database Integrity

Chapter 5. Recovering Databases and Maintaining Database Integrity 117

ROLB

The advantage of using a ROLB call is that IMS returns control to the program after

executing a ROLB call, so the program can continue processing. The parameters for

the ROLB call are:

v The call function, ROLB

v The name of the I/O PCB or AIB

The total effect of the ROLB call depends on the type of IMS application program that

issued it.

v For current IMS application programs:

After IMS backout is complete, the original transaction is represented to the IMS

application program. Any resources that cannot be rolled back by IMS are

ignored; for example, output that is sent to an express alternate PCB and a PURG

call that is issued before the ROLB call.

v For modified IMS application programs:

The same consideration for the current IMS application program applies. The

application program must notify any spawned conversations that a ROLB was

issued.

v For CPI-C driven IMS application programs:

Only IMS resources are affected. All database changes are backed out. Any

messages that are inserted to non-express alternate PCBs are discarded. Also,

any messages that are inserted to express PCBs that have not had a PURG call

are discarded. The application program must notify the originating remote

program and any spawned conversations that a ROLB call was issued.

MPPs and Transaction-Oriented BMPs: If the program supplies the address of

an I/O area as one of the ROLB parameters, the ROLB call acts as a message

retrieval call and returns the first segment of the first input message issued since

the most recent commit point. This is true only if the program has issued a GU call

to the message queue since the last commit point; it if has not, it was not

processing a message when it issued the ROLB call.

If the program issues GN call to the message queue after issuing a ROLB call, IMS

returns the next segment of the message that was being processed when the ROLB

call was issued. If no more segments exist for that message, IMS returns a QD

status code.

If the program issues a GU call to the message queue after the ROLB call, IMS

returns the first segment of the next message to the application program. If no more

messages exist on the message queue for the program to process, IMS returns a

QC status code.

If you include the I/O area parameter, but you have not issued a successful GU call

to the message queue since the last commit point, IMS returns a QE status code to

your program.

If you do not include the address of an I/O area in the ROLB call, IMS does the same

thing for you. If the program has issued a successful GU call in the commit interval

and then issues a GN call, IMS returns a QD status code. If the program issues a GU

call after the ROLB call, IMS returns the first segment of the next message or a QC

status code, if no more messages exist for the program.

Maintaining Database Integrity

118 Application Programming: Database Manager

If you have not issued a successful GU call since the last commit point, and you do

not include an I/O area parameter on the ROLB call, IMS backs out the database

updates and cancels the output messages that were created since the last commit

point.

Batch Programs: If your system log is on DASD, and if dynamic backout has

been specified through the use of the BKO execution parameter, you can use the

ROLB call in a batch program. The ROLB call does not process messages as it does

for MPPs; it backs out the database updates made since the last commit point and

returns control to your program. You cannot specify the address of an I/O area as

one of the parameters on the call; if you do, an AD status code is returned to your

program. You must, however, have an I/O PCB for your program. Specify

CMPAT=YES on the CMPAT keyword in the PSBGEN statement for your program’s

PSB.

Related Reading: For more information on using the CMPAT keyword, see IMS

Version 9: Utilities Reference: System. For information on coding the ROLB call, see

“ROLB Call” on page 271.

ROLS

You can use the ROLS call in two ways to back out to the prior commit point and

return the processed input messages to IMS for later reprocessing:

v Have your program issue the ROLS call using the I/O PCB but without an I/O area

or token in the call. The parameters for this form of the ROLS call are:

 The call function, ROLS

 The name of the I/O PCB or AIB

v Have your program issue the ROLS call using a database PCB that has received

one of the data-unavailable status codes. This has the same result as if

unavailable data were encountered and the INIT call was not issued. A ROLS call

must be the next call for that PCB. Intervening calls using other PCBs are

permitted.

On a ROLS call with a TOKEN, message queue repositioning can occur for all

non-express messages, including all messages processed by IMS. The processing

uses APPC/MVS calls, and includes the initial message segments. The original

input transaction can be represented to the IMS application program. Input and

output positioning is determined by the SETS call. This positioning applies to current

and modified IMS application programs but does not apply to CPI-C driven IMS

programs. The IMS application program must notify all remote transaction programs

of the ROLS.

On a ROLS call without a TOKEN, IMS issues the APPC/MVS verb, ATBCMTP

TYPE(ABEND), specifying the TPI. Issuing this verb causes all conversations

associated with the application program to be DEALLOCATED

TYPE(ABEND_SVC). If the original transaction is entered from an LU 6.2 device

and IMS receives the message from APPC/MVS, a discardable transaction is

discarded rather than being placed on the suspend queue like a non-discardable

transaction. See IMS Version 9: Administration Guide: Transaction Manager for

more information on LU 6.2.

The parameters for this form of the ROLS call are:

v The call function, ROLS

v The name of the DB PCB that received the BA or BB status code

Maintaining Database Integrity

Chapter 5. Recovering Databases and Maintaining Database Integrity 119

In both of the these parameters, the ROLS call causes a U3303 abnormal termination

and does not return control to the application program. IMS keeps the input

message for future processing.

Backing Out to an Intermediate Backout Point: SETS, SETU, and ROLS

You can use a ROLS call either to back out to an intermediate backout point that was

established by a prior SETS or SETU call, or to back out to the prior commit point.

This section refers only to the form of ROLS that backs out to the intermediate

backout point. For information about the other form of ROLS, see “Backing Out to a

Prior Commit Point: ROLL, ROLB, and ROLS” on page 116.

The ROLS call that backs out to an intermediate point backs out only DL/I changes.

This version of the ROLS call does not affect CICS changes that use CICS file

control or CICS transient data.

The SETS and ROLS calls set intermediate backout points within the call processing

of the application program and then backout database changes to any of these

points. Up to nine intermediate backout points can be set. The SETS call specifies a

token for each point. IMS then associates this token with the current processing

point. A subsequent ROLS call using the same token backs out all database changes

and discards all non-express messages that were performed after the SETS call with

the same token. Figure 32 shows how the SETS and ROLS calls work together.

In addition, to assist the application program in managing other variables that it may

wish to reestablish after a ROLS call, user data can be included in the I/O area of the

SETS call. This data is then returned when the ROLS call is issued with the same

token.

SETS and SETU Calls

The SETS call sets up to nine intermediate backout points or cancels all existing

backout points. With the SETS call, you can back out pieces of work. If the

Figure 32. SETS and ROLS Calls Working Together

Maintaining Database Integrity

120 Application Programming: Database Manager

necessary data to complete one piece of work is unavailable, you can complete a

different piece of work and then return to the former piece.

To set an intermediate backout point, issue the call using the I/O PCB, and include

an I/O area and a token. The I/O area has the format LLZZuser-data, where LL is

the length of the data in the I/O area including the length of the LLZZ portion. The

ZZ field must contain binary zeros. The data in the I/O area is returned to the

application program on the related ROLS call. If you do not want to save some of the

data that is to be returned on the ROLS call, set the LL that defines the length of the

I/O area to 4.

For PLITDLI, you must define the LL field as a fullword rather than a halfword, as it

is for the other languages. The content of the LL field for PLITDLI is consistent with

the I/O area for other calls using the LLZZ format. The content is the total length of

the area, including the length of the 4-byte LL field, minus 2.

A 4-byte token associated with the current processing point is also required. This

token can be a new token for this program execution, or it can match a token that

was issued by a preceding SETS call. If the token is new, no preceding SETS calls

are canceled. If the token matches the token of a preceding SETS call, the current

SETS call assumes that position. In this case, all SETS calls that were issued

subsequent to the SETS call with the matching token are canceled.

The parameters for this form of the SETS call are:

v The call function, SETS

v The name of the I/O PCB or AIB

v The name of the I/O area containing the user data

v The name of an area containing the token

For the SETS call format, see “SETS/SETU Call” on page 274.

To cancel all previous backout points, the call is issued using the I/O PCB but does

not include an I/O area or a token. When an I/O area is not included in the call, all

intermediate backout points that were set by prior SETS calls are canceled.

The parameters for this form of the SETS call are:

v The call function, SETS

v The name of the I/O PCB or AIB

Because it is not possible to back out committed data, commit-point processing

causes all outstanding SETS to be canceled.

If PCBs for DEDB, MSDB, and GSAM organizations are in the PSB, or if the

program accesses an attached subsystem, a partial backout is not possible. In that

case, the SETS call is rejected with an SC status code. If the SETU call is used

instead, it is not rejected because of unsupported PCBs, but will return an SC

status code as a warning that the PSB contains unsupported PCBs and that the

function is not applicable to these unsupported PCBs.

Related Reading: For status codes that are returned after the SETS call, see IMS

Version 9: Messages and Codes, Volume 1. For explanations of those status codes

and the response required, see IMS Version 9: Messages and Codes, Volume 1.

Maintaining Database Integrity

Chapter 5. Recovering Databases and Maintaining Database Integrity 121

ROLS

The ROLS call backs out database changes to a processing point set by a previous

SETS or SETU call, or to the prior commit point. The ROLS call then returns the

processed input messages to the message queue.

To back out database changes and message activity that have occurred since a

prior SETS call, issue the ROLS call using the I/O PCB, and specify an I/O area and

token in the call. If the token does not match a token that was set by a preceding

SETS call, an error status is returned. If the token matches the token of a preceding

SETS call, the database updates made since this corresponding SETS call are backed

out, and all non-express messages that were inserted since the corresponding SETS

are discarded. SETS that are issued as part of processing that was backed out are

canceled. The existing database positions for all supported PCBs are reset.

If a ROLS call is in response to a SETU call, and if there are unsupported PCBs

(DEDB, MSDB, or GSAM) in the PSB, the position of the PCBs is not affected. The

token specified by the ROLS call can be set by either a SETS or SETU call. If no

unsupported PCBs exist in the PSB, and if the program has not used an attached

subsystem, the function of the ROLS call is the same regardless of whether the token

was set by a SETS or SETU call.

If the ROLS call is in response to a SETS call, and if unsupported PCBs exist in the

PSB or the program used an attached subsystem when the preceding SETS call was

issued, the SETS call is rejected with an SC status code. The subsequent ROLS call

is either rejected with an RC status code, indicating unsupported options, or it is

rejected with an RA status code, indicating that a matching token that was set by a

preceding successful SETS call does not exist.

If the ROLS call is in response to a SETU call, the call is not rejected because of

unsupported options. If unsupported PCBs exist in the PSB, this is not reflected

with a status code on the ROLS call. If the program is using an attached subsystem,

the ROLS call is processed, but an RC status is returned as a warning indicating that

if changes were made using the attached subsystem, those changes were not

backed out.

The parameters for this form of the ROLS call are:

v The call function, ROLS

v The name of the I/O PCB or AIB

v The name of the I/O area to receive the user data

v The name of an area containing the 4-byte token

Related Reading: For status codes that are returned after the ROLS call, see IMS

Version 9: Messages and Codes, Volume 1. For explanations of those status codes

and the response required, see IMS Version 9: Messages and Codes, Volume 1.

Reserving Segments for the Exclusive Use of Your Program

You may want to reserve a segment and prohibit other programs from updating the

segment while you are using it. To some extent, IMS does this for you through

resource lock management. The Q command code lets you reserve segments in a

different way.

Restriction: The Q command code is not supported for MSDB organizations or for

a secondary index that is processed as a database.

Maintaining Database Integrity

122 Application Programming: Database Manager

Resource lock management and the Q command code both reserve segments for

your program’s use, but they work differently and are independent of each other. To

understand how and when to use the Q command code and the DEQ call, you must

understand resource lock management.

The function of resource lock management is to prevent one program from

accessing data that another program has altered until the altering program reaches

a commit point. Therefore, you know that if you have altered a segment, no other

program (except those using the GO processing option) can access that segment

until your program reaches a commit point. For database organizations that support

the Q command code, if the PCB processing option allows updates and the PCB

holds position in a database record, no other program can access the database

record.

The Q command code allows you to prevent other programs from updating a

segment that you have accessed, even when the PCB that accessed the segment

moves to another database record.

Related Reading: For more information on the Q command code, see “Q

Command Code” on page 206.

Reserving Segments

Chapter 5. Recovering Databases and Maintaining Database Integrity 123

Reserving Segments

124 Application Programming: Database Manager

Chapter 6. The Database Resource Adapter (DRA)

The DRA is an interface to IMS DB full-function databases and data entry

databases (DEDBs). The DRA can be used by a coordinator controller (CCTL) or a

z/OS application program that uses the Open Database Access (ODBA) interface.

This chapter is intended for the designer of a CCTL or an ODBA application

program. If you want more information about a specific CCTL’s interaction with IMS

DB or DB/DC, see the documentation for that CCTL.

Related Reading:

v For additional information on defining the ODBA interface, see IMS Version 9:

Installation Volume 2: System Definition and Tailoring

v For information on designing application programs that use ODBA, see IMS

Version 9: Application Programming: Design Guide

The following topics provide additional information:

v “Thread Concepts”

v “Processing Multiple Threads” on page 126

v “Sync Points” on page 128

v “DRA Startup Table” on page 132

v “Enabling the DRA for a CCTL” on page 133

v “Enabling the DRA for the ODBA Interface” on page 134

v “Processing CCTL DRA Requests” on page 135

v “Processing ODBA Calls” on page 136

v “CCTL-Initiated DRA Function Requests” on page 136

v “PAPL Mapping Format” on page 145

v “Terminating the DRA” on page 145

v “Designing the CCTL Recovery Process” on page 146

v “CCTL Performance: Monitoring DRA Thread TCBs” on page 147

Thread Concepts

A DRA thread is a DRA structure that connects:

v A CCTL task (which makes database calls to IMS DB) with an IMS DB task that

can process those calls. A CCTL thread is a CCTL task that issues IMS DB

requests using the DRA.

v A z/OS application program task (which makes database calls to IMS DB) with

an IMS DB task that can process those calls. An ODBA thread is a z/OS task

that issues IMS DB calls using the DRA.

A single DRA thread is associated with every CCTL or ODBA thread. CCTL or

ODBA threads cannot establish a connection with more than one DRA thread at a

time.

Processing Threads

The way that the DRA processes a CCTL thread is different from how it processes

an ODBA thread.

© Copyright IBM Corp. 1974, 2004 125

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Processing a CCTL Thread

When a CCTL application program needs data from an IMS DB database, a CCTL

task must issue a SCHED request for a PSB. To process the SCHED request, the

DRA must create a DRA thread. To do this, the DRA chooses an available DRA

thread TCB and assigns to it the CCTL thread token (a unique token that CCTL

puts in the SCHED PAPL PAPLTTOK) and its own IMS DB task, which schedules

the PSB. If the scheduling is successful, the DRA thread is considered complete

because it now connects a CCTL thread to a IMS DB task using a specific DRA

thread TCB.

Subsequent DRA requests from this CCTL thread must use the same CCTL thread

token in order to ensure that the request goes to the correct DRA thread. When the

application program finishes and the CCTL thread no longer needs the services of

the DRA thread, the CCTL issues a TERMTHRD (Terminate Thread) request to

remove the CCTL thread token from the DRA thread TCB and terminates the DRA

thread. The thread TCB can then become part of a new DRA thread.

Processing an ODBA Thread

When an ODBA application program needs data from an IMS DB database, an

ODBA task must issue an APSB call to initialize the ODBA environment. To process

the APSB call, the DRA creates a DRA thread. The DRA chooses an available DRA

thread TCB and assigns to it the ODBA thread and its own IMS DB task, which

schedules the PSB. If the scheduling is successful, the DRA thread is considered

complete because it now connects an ODBA thread to a IMS DB task using a

specific DRA thread block.

When the application program finishes and the ODBA thread no longer needs the

services of the DRA thread, the ODBA application issues a DPSB call to terminate

the DRA thread. The thread block can then become part of a new DRA thread.

Processing Multiple Threads

The DRA is capable of processing more than one thread at the same time. This is

known as multithreading. Multithreading means that multiple CCTL or ODBA threads

can be using the DRA at the same time. Multithreading applies to all DRA requests

and ODBA calls.

Processing Multiple CCTL Threads

To use the multithreading capability:

v The DRA must be initialized with more that one thread TCB. To initialize the DRA

with more that one thread TCB, specify the MINTHRD and MAXTHRD

parameters (in the DRA Startup Table) as greater than one.

v The CCTL must be capable of processing its CCTL threads concurrently.

v The CCTL must have Suspend and Resume exit routines. The DRA uses these

routines to notify the CCTL of the status of thread processing.

Processing Multiple ODBA Threads

To use the multithreading capability, the DRA must be initialized with more than one

DRA thread. To do this, specify the MINTHRD and MAXTHRD parameters (in the

DRA Startup Table) as greater than one.

CCTL Multithread Example

Events in a multithreading system are shown in chronological order from top to

bottom in Table 23 on page 127. To illustrate the concept of concurrent processing,

the figure is split into two columns.

Thread Concepts

126 Application Programming: Database Manager

There are two CCTL threads and two DRA threads in the example. xxxRTNA is the

module name (for this example) of the CCTL routine that builds PAPLs and calls

DFSPRRC0 to process DRA requests.

 Table 23. Example of Events in a Multithreading System

CCTL TCB Events DRA TCB Events

Application program1 needs a PSB, so CCTL

thread1 is created.

CCTL thread1 events:

v DFSRTNA builds the SCHED PAPL and

calls DFSPRRC0.

v DFSPRRC0 creates a DRA thread, and the

thread token (PAPLTTOK) is assigned to

DRA thread TCB1.

v DFSPRRC0 activates thread TCB1.

v DFSPRRC0 calls the Suspend exit routine.

DRA thread TCB1 events:

v The Suspend exit routine suspends CCTL

thread1.

 v The DRA processes the SCHED request

and asks IMS DB to perform a schedule

process.

 v Scheduling is in progress.

CCTL can now dispatch other CCTL threads

for the CCTL TCB.

Application program2 needs a PSB, so CCTL

thread2 is created.

CCTL thread2 events:

v DFSRTNA builds the SCHED PAPL and

calls DFSPRRC0.

v DFSPRRC0 creates a DRA thread, and a

new thread token (PAPLTTOK) is assigned

to DRA thread TCB2.

v DFSPRRC0 activates thread TCB2.

v DFSPRRC0 calls the Suspend exit routine.

The Suspend exit routine suspends CCTL

thread2.

DRA thread TCB2 events:

 v The DRA processes the SCHED request

and asks IMS DB to perform a schedule

process.

 v Scheduling is in progress.

Both threads are now suspended. The CCTL

TCB is inactive until one of the threads

resumes execution.

 TCB2 scheduling finishes first.

 DRA thread TCB2 events:

 v Scheduling completes in IMS DB, and the

PAPL is filled in with the results.

 v The DRA calls the Resume exit routine

and passes the PAPL back to the CCTL.

Thread Concepts

Chapter 6. The Database Resource Adapter (DRA) 127

Table 23. Example of Events in a Multithreading System (continued)

CCTL TCB Events DRA TCB Events

Thread2 can resume immediately because

the CCTL TCB is idle. It resumes execution

directly after the point at which it was

suspended by the Suspend exit routine.

v The Resume exit routine sees the thread

token (PAPLTTOK) and flags CCTL

thread2 as ’ready to resume’.

v The Resume exit routine returns to the

DRA, and TCB2 becomes inactive.

 TCB1 scheduling completes.

 DRA thread TCB1 events:

 v Scheduling completes in IMS DB and the

PAPL is filled in with the results.

 v The DRA calls the Resume exit routine

and passes the PAPL back to the CCTL.

Thread1 must wait until the Resume exit

routine is available because thread2 has just

resumed.

v The Resume exit routine sees the thread

token (PAPLTTOK) and flags CCTL

thread1 as ’ready to resume’.

 v The Resume exit routine returns control to

the DRA and TCB1 becomes inactive.

CCTL thread2 events:

v The Suspend exit routine returns to its

caller, DFSPRRC0.

v DFSPRRC0 returns to DFSRTNA.

v DFSRTNA gets the results from the

SCHED PAPL and gives them to the

application program2.

v DFSRTNA finishes the thread2 SCHED

request.

After thread2 completes in CCTL TCB, the

CCTL can dispatch thread1, which is

currently waiting.

CCTL thread1 events:

v The Suspend exit routine returns to its

caller, DFSPRRC0.

v DFSPRRC0 returns to DFSRTNA.

v DFSRTNA gets the results from the

SCHED PAPL and gives them to the

application program1.

v DFSRTNA finishes the thread1 SCHED

request.

Sync Points

Sync point processing finalizes changes to resources. Sync point requests specify

actions to take place for the resource changed (for example, commit or abort). A

sync point is when IMS DB actually processes the request.

Each sync point is based on a unit of recovery (UOR). A UOR covers the time

during which database resources are allocated and can be updated until a request

is received to commit or abort any changes. Normally, the UOR starts with a CCTL

SCHED (schedule a PSB) request or an ODBA APSB call and ends with a sync

point request. Other DRA thread requests can also define the start and end of a

UOR.

Thread Concepts

128 Application Programming: Database Manager

A CCTL UOR is identified by a recovery token (PAPLRTOK) that is received as part

of a thread request that creates a new UOR. It is 16 bytes in length. The first 8

bytes contain the CCTL identification. This identification is the same as the CCTL ID

that was a final DRA startup parameter determined from USERID or PAPLUSID in

INIT request. The second 8 bytes must be a unique identifier specified by the CCTL

for each UOR.

Related Reading: See the request descriptions under “CCTL-Initiated DRA

Function Requests” on page 136 for more information on the DRA thread requests.

IMS DB expects the CCTL or the ODBA application to make the sync point decision

and the resulting request. In the case of a CCTL, the CCTL is the sync point

manager and coordinates the sync point process with all of the database resource

managers (including those other than IMS DB) that are associated with a UOR. In

the case of an ODBA application, RRS/MVS is the sync point manager and

coordinates all the resource managers (including those other than IMS) that are

associated with the UOR.

A CCTL working with a single resource manager may request a sync point in a

single request or can use the two-phase sync point protocol which is required for a

CCTL working with multiple resource managers. The single-phase sync point

request can be issued when the CCTL has decided to commit the UOR, and when

IMS DB owns all of the resources modified by the UOR.

An ODBA application must use the two-phase sync point protocol for committing

changes to the IMS database.

The Two-Phase Commit Protocol

The two-phase sync point protocol consists of two requests issued by the sync

point manager to each of the resource managers involved in the UOR:

Phase 1 The sync point manager asks all participants if they are ready to

commit a UOR.

Phase 2 The sync point manager tells each participant to commit or abort

based on the response to the request issued in phase 1.

A UOR has two states: in-flight and in-doubt. The UOR is in an in-flight state from

its creation time until the time IMS DB logs the phase 1 end (point C in Table 24 on

page 130 and Table 25 on page 130). The UOR is in an in-doubt state from (point

C) until IMS DB logs phase 2 (point D inTable 24 on page 130 and point H in

Table 25 on page 130).

The in-doubt state for a single-phase sync point request is a momentary state

between points C and D in Table 24 on page 130.

The in-flight and in-doubt states are important because they define what happens to

the UOR in the event of a thread failure. If a thread fails while its IMS DB UOR is

in-flight the UOR database changes are backed out. If a thread fails when its IMS

DB UOR is in-doubt, during single-phase commit, the UOR database changes are

kept for an individual thread abend, but are not kept for a system abend. If a thread

fails when its IMS DB UOR is in-doubt during two-phase commit, the database

changes are kept.

Thread failure refers to either of these cases:

v Individual thread abends.

Sync Points

Chapter 6. The Database Resource Adapter (DRA) 129

v System abends: IMS DB failure, CCTL failure, ODBA application failure, or z/OS

failure (which abends all threads).

The following shows the system events that occur when CCTL is used for

single-phase sync point processing.

Time →

–––A–––B––––––C–––D–––E––––

 Table 24. CCTL Single-Phase Sync Point Processing

Points In Time System Events

A CCTL phase 1 send

B IMS DB phase 1 receive

C IMS DB log phase 1 end

D IMS DB log phase 2

E CCTL phase 2 receive

Table 25 shows the system events that occur when CCTL is used for two-phase

sync point processing.

Time →

–––A–––B–––––C–––D–––E–––––––––––F–––G––––H––––––J–––K––––––––

 Table 25. CCTL Two-Phase Sync Point Processing

Points In Time System Events

A CCTL phase 1 send

B IMS DB phase 1 receive

C IMS DB log phase 1 end

D IMS DB phase 1 respond

E CCTL phase 1 receive

F CCTL phase 2 send

G IMS DB phase 2 receive

H IMS DB log phase 2

J IMS DB phase 2 respond

K CCTL phase 2 receive

Figure 33 on page 131 shows the system events that occur when two-phase sync

point processing is done using ODBA.

Sync Points

130 Application Programming: Database Manager

Notes:

 1. The ODBA application and IMS DB make a connection using the ODBA

interface.

 2. IMS expresses protected interest in the work started by the ODBA application.

This informs RRS/MVS that IMS will participate in the two-phase commit

process.

 3. The ODBA application makes a read request to an IMS resource.

 4. The ODBA application updates a protected resource.

 5. Control is returned to the ODBA application following its update request.

 6. The ODBA application requests that the update be made permanent by issuing

the SRRCMIT call.

 7. RRS/MVS calls IMS to do the prepare (phase 1) process.

 8. IMS returns to RRS/MVS with its vote to commit.

 9. RRS/MVS calls IMS to do the commit (phase 2) process.

10. IMS informs RRS/MVS that it has completed phase 2.

11. Control is returned to the ODBA application following its commit request.

In-Doubt State During Two-Phase Sync

A IMS DB UOR remains in the in-doubt state until a phase 2 request is received.

This process is called “resolving the in-doubt”. While a UOR is in-doubt, the

database resources owned by that UOR are inaccessible to other requests. It is

vital that in-doubts are resolved immediately.

CCTL Example: If in-doubt UORs are created because IMS DB failed, the following

sequence must occur to resolve the in-doubt UORs.

1. After restarting IMS DB, the CCTL should identify itself to IMS DB using an INIT

request.

Figure 33. ODBA Two-Phase Sync Point Processing

Sync Points

Chapter 6. The Database Resource Adapter (DRA) 131

2. If identification is successful, the DRA notifies the CCTL control exit, passing to

it a list of IMS DB UORs that are in-doubt.

3. The CCTL must resolve each in-doubt by making a RESYNC call, which causes

a phase 2 action, commit or abort.

For CCTL to resolve a IMS DB in-doubt UOR, the CCTL must have a record of

this UOR and the appropriate phase 2 action it must take. In this example, the

CCTL record of a possible IMS DB in-doubt UOR is called a transition UOR.

4. The CCTL must define a transition UOR for the interval A-K (refer to Table 25

on page 130). Because this interval encompasses the IMS DB in-doubt period

C-H, CCTL can resolve any in-doubts.

If a CCTL defines a transition UOR as interval E-K and if IMS DB fails while a

thread is between C and D, IMS DB has an in-doubt UOR for which CCTL has no

corresponding transition UOR, even though the phase 1 call failed. CCTL cannot

resolve this UOR during the identify process. The only way to resolve this in-doubt

is by using the IMS DB command, CHANGE INDOUBT.

ODBA Example: For ODBA, all in-doubts are resolved through z/OS using the

Recoverable Resource Service (RRS).

DRA Startup Table

The database resource adapater (DRA) Startup Table contains values used to

define the characteristics of the DRA. The DRA Startup Table is created by

assembling:

v The DFSPZPxx module for a CCTL’s use.

v The DFSxxxx0 module for ODBA’s use.

The CCTL or ODBA system programmer must make the required changes to these

modules to correctly specify the DRA parameters desired. The DRA parameters are

specified as keywords on the DFSPRP macro invocation. These keywords and their

definitions are found in “DFSPRP Macro Keywords.”

Sample DFSPZP00 Source Code

DFSPZP00 CSECT

 DFSPRP DSECT=NO

 END

DFSPRP Macro Keywords

Keyword Description

AGN= A one-to-eight character application group name. This is used as

part of the IMS DB and DB/DC security function (see IMS Version

9: Administration Guide: System for more information on IMS DB

and DB/DC security).

CNBA= Total Fast Path NBA buffers for the CCTL’s or ODBA’s use. For a

description of Fast Path DEDB buffer usage, see IMS Version 9:

Administration Guide: System.

DBCTLID= The four-character name of the IMS DB or DB/DC region. This is

the same as the IMSID parameter in the DBC procedure. For more

information on the DBC procedure, see IMS Version 9: Installation

Volume 2: System Definition and Tailoring. The default name is

SYS1.

Sync Points

132 Application Programming: Database Manager

DDNAME= A one-to-eight character ddname used with the dynamic allocation

of the IMS DB execution library. The default ddname is CCTLDD.

DSNAME= A 1-to-44 character data set name of the IMS DB execution library,

which must contain the DRA modules and must be z/OS

authorized. The default DSNAME is IMS.SDFSRESL. This library

must contain the DRA modules.

FPBOF= The number of Fast Path DEDB overflow buffers allocated per

thread. For a description of Fast Path DEDB buffer usage, see IMS

Version 9: Administration Guide: System. The default is 00.

FPBUF= The number of Fast Path DEDB buffers allocated and fixed per

thread. For a description of Fast Path DEDB buffer usage, see IMS

Version 9: Administration Guide: System. The default is 00.

FUNCLV= Specifies the DRA level that the CCTL or ODBA supports. The

default is 1.

IDRETRY= The number of times a z/OS application region is to attempt to

IDENTIFY (or attach) to IMS after the first IDENTIFY attempt fails.

The maximum number 255. The default is 0.

MAXTHRD= The maximum number of DRA thread TCBs available at one time.

The maximum number is 999. The default is number 1.

MINTHRD= The minimum number of DRA thread TCBs to be available at one

time. The maximum number is 999. The default is number 1.

SOD= The output class used for a SNAP DUMP of abnormal thread

terminations. The default is A.

TIMEOUT= (CCTL only). The amount of time (in seconds) a CCTL waits for the

successful completion of a DRA TERM request. Specify this value

only if the CCTL application is coded to use it. This value is

returned to the CCTL upon completion of an INIT request.

TIMER= The time (in seconds) between attempts of the DRA to identify itself

to IMS DB or DB/DC during an INIT request. The default is 60

seconds.

USERID= An eight-character name of the CCTL or ODBA region.

This keyword is ignored for an ODBA Region.

Enabling the DRA for a CCTL

This section describes the two steps required to enable the DRA.

1. The coordinator controller (CCTL) system programmer must copy the DRA

Startup/Router routine (DFSPRRC0) into a CCTL load library, because the

CCTL must load DFSPRRC0. Although the DRA is shipped with the IMS

product, it runs in the CCTL address space.

The system programmer can copy the routine from the IMS.SDFSRESL library

(built by the IMS definition process), or can concatenate the IMS.SDFSRESL

library to the ODBA step library.

2. The system programmer must put the DFSPZPxx load module (DRA Startup

Table) in a load library. The DRA is now ready to be initialized.

The CCTL starts the initialization process as a result of the CCTL application

program issuing an initialization (INIT) request. At this point in time, the CCTL loads

DFSPRRC0 and then calls the DRA to process the INIT request.

DRA Startup Table

Chapter 6. The Database Resource Adapter (DRA) 133

As part of the initialization request, the CCTL application program specifies the

startup table name suffix (xx). The default load module, DFSPZP00, is in the

IMS.SDFSRESL library.

After processing the INIT request, the DRA identifies itself to IMS DB. The DRA is

then capable of handling other requests.

Related Reading: For an example of DFSPZP00, see IMS Version 9: Installation

Volume 2: System Definition and Tailoring.

DFSPZP00 contains default values for the DRA initialization parameters. If you want

to specify values other than the defaults, write your own module (naming it

DFSPZPxx), assemble it, and load it in the CCTL load library. Use the supplied

module, DFSPZP00, as an example.

The remainder of the DRA modules reside in a load library that is dynamically

allocated by DFSPRRC0. The DDNAME and DSNAME of this load library are

specified in the startup table. The default DSNAME (IMS.SDFSRESL) contains all

the DRA code and is specified in the default startup table, DFSPZP00.

Enabling the DRA for the ODBA Interface

There are four steps required to enable the DRA before an ODBA interface can use

it:

1. Create the ODBA DRA Startup Table.

2. Verify that the ODBA and DRA modules reside in the STEPLIB or JOBLIB in the

z/OS application region.

3. Link the ODBA application programs with DFSCDLI0.

4. Set up security.

These steps are described in detail in the IMS Version 9: Installation Volume 2:

System Definition and Tailoring.

The ODBA interface starts the initialization process as a result of the ODBA

application program issuing an initialization (CIMS INIT) request or an APSB call. At

this point in time, the ODBA interface calls the DRA to process the CIMS INIT

request or APSB call. Optionally, the ODBA application program can specify the

startup table name (xxxx) in the AIBRSNM2 field of the AIB.

After processing the CIMS INIT request, the DRA identifies itself to one IMS DB.

The DRA is then capable of handling other requests. The DRA’s structure at this

time is shown in Figure 34 on page 135.

DRA Startup Table

134 Application Programming: Database Manager

The remainder of the DRA modules reside in a load library that is dynamically

allocated by DFSAERA0. The DDNAME and DSNAME of this load library are

specified in the startup table. The default DSNAME (IMS.SDFSRESL) contains all

the DRA code.

Processing CCTL DRA Requests

The CCTL communicates with IMS DB through DRA requests. These requests are

passed from the CCTL to the DRA using a participant adapter parameter list

(PAPL). See Chapter 6, “The Database Resource Adapter (DRA),” on page 125 for

a sample PAPL listing. There are different types of DRA requests shown in the

sample PAPL listing.

To make a DRA request the CCTL must pass control to the DRA Startup/Router

Routine DFSPRRC0, and have register 1 point to a PAPL.

Before passing control to DFSPRRC0, the CCTL must fill in the PAPL according to

the desired request. These requests are specified by a function code in the

PAPLFUNC field.

To specify a thread function request, put the PAPLTFUN value into the PAPLFUNC

field.

The function requests are further broken down into many subfunctions. A thread

function request is referred to by its subfunction name (for example, a thread

request with a schedule subfunction is referred to as a SCHED request).

Non-thread function requests are referred to by function name (for example, an

initialization request is called an INIT request).

The term “DRA request” applies to both thread and non-thread function requests.

Once the PAPL is built and the DRA Startup/Router routine is loaded, the CCTL

passes control to DFSPRRC0. The contents of the registers upon entry to

DFSPRRC0 are:

Register Contents

1 Address of the PAPL

13 Address of a standard 18-word save area

14 Return address of the calling routine

Figure 34. DRA Component Structure with the ODBA Interface

Enabling the DRA for the ODBA Interface

Chapter 6. The Database Resource Adapter (DRA) 135

The DRA Startup/Router routine puts itself into 31-bit addressing mode and will

return to the calling routine in the caller’s original addressing mode with all its

registers restored. Register 15 is always returned with a zero in it.

The return code for the request is in the PAPLRETC field of the PAPL.

Processing ODBA Calls

Unlike a CCTL’s use of the PAPL, an ODBA application program communicates

with IMS DB using the AERTDLI interface. The AERTDLI call interface processes

DL/I calls from the ODBA application and also returns the results of those calls back

to the ODBA using an AIB.

Related Reading: For information on using the AIB mask for configuring ODBA

calls, see “Specifying the AIB Mask for ODBA Applications” on page 76.

CCTL-Initiated DRA Function Requests

This section documents General-Use Programming Interface and Associated

Guidance Information.

This section discusses the requests available to the CCTL that allow it to

communicate with DBCTL. These requests are passed to the DRA through the

PAPL.

For all DRA requests, there are PAPL fields that the CCTL must fill in. When the

DRA completes the request, there are some output PAPL fields that the DRA fills in.

Some fields in the returned PAPL might contain the original input value.

(The PAPLTTOK and PAPLUSER fields will retain the original input values.)

The PAPLUSER field is a field to be used at the CCTL’s discretion. One possible

use for it is to pass data to exit routines.

The DRA returns a code (in the PAPLRETC field) to the CCTL after processing a

DRA request. The code indicates the status of the request and can be either an

IMS code, a DRA code, or a z/OS code. Failed DRA requests return a nonzero

value in the PAPLRETC field.

Related Reading:

v See “Problem Diagnosis” on page 150 for more information on the codes

returned when a DRA request fails.

v For a complete list and description of all DRA return codes, see IMS Version 9:

Messages and Codes, Volume 1.

INIT Request

The INIT request initializes the DRA. The DRA startup parameter table contains all

of the required parameters that you need to define the DRA. You can use the

parameters given in the default module, DFSPZP00, or you can write your own

module and bind it into the IMS.SDFSRESL.

Related Reading: For more information, see “Enabling the DRA for a CCTL” on

page 133.

Processionally DRA Requests

136 Application Programming: Database Manager

|
|
|
|

The INIT PAPL also contains some parameters needed to initialize the DRA. If the

same parameter appears in both the INIT PAPL and in the DRA startup parameter

table, the specification in the INIT PAPL will override that in the startup table.

In addition to the required parameters of INIT PAPL, the optional parameters

include:

Field Contents

PAPLFUNC PAPLINIT

PAPLSUSP The address of the Suspend exit routine

PAPLRESM The address of the Resume exit routine

PAPLCNTL The address of the Control exit routine

PAPLTSTX The address of the Status exit routine

After the INIT request and the startup table have been processed, the DRA returns

the following data to the CCTL in the INIT PAPL:

Field Contents

PAPLDBCT The IMS DB identifier (this is the IMSID parameter from system

definition)

PAPLCTOK The request token that identifies the CCTL to the DRA

PAPLTIMO DRA TERM request timeout value (in seconds)

PAPLRETC A code returned to the CCTL specifying the status of the request

PAPLDLEV A flag indicating to CCTL which functions the DRA supports. (For

the latest version of PAPL mapping format see the IMS. library;

member name is DFSPAPL.)

INIT Request, Identify to DBCTL

To make the DRA functional, the DRA must identify itself to IMS DB, thus

establishing a link between IMS DB and the CCTL. The identify process occurs in

two cases:

v As a direct result of an INIT request.

v As part of a terminate/reidentify request from a Control exit routine invocation.

The DRA identifies itself to the IMS DB subsystem specified in the final DRA startup

parameters. The identify process executes asynchronously to the INIT process.

Therefore, it is possible for the INIT request to complete successfully while the

identify process fails. In this case, the Control exit routine notifies the CCTL that the

connection to IMS DB failed.

If IMS DB is not active, the console operator will receive a DFS690 message (a

code of 0 was returned in the PAPLRETC field). You must reply with either a

CANCEL or WAIT response. If you reply with WAIT, the DRA waits for a specified

time interval before attempting to identify again. The waiting period is necessary

because the identify process won’t succeed until the DBCTL restart process is

complete. You specify the length of the waiting period on the TIMER DRA startup

parameter. If subsequent attempts to identify fail, the console operator will receive

message DFS691, WAITING FOR IMS DB.

If the DRA cannot identify to IMS DB because the subsystem does not reach a

restart complete state, there are two ways to terminate the identify process:

CCTL-Initiated DRA Function Requests

Chapter 6. The Database Resource Adapter (DRA) 137

v The Control exit routine is called with each identify failure. This sets a PAPL

return code of 4 or 8, which terminates the identify process.

v The CCTL can issue a TERM request.

If you reply with CANCEL to message DFS690, control is passed to the Control exit

routine, and the DRA acts upon the routine’s decision.

After the identify process successfully completes, the DRA makes the CCTL

address space non-swappable and calls the Control exit routine with a list of

in-doubt UORs. If no in-doubt UORs exist, a null list is passed. The CCTL can use

the RESYNC request to resolve any in-doubt UORs that do exist.

The INIT request will attempt to create the MINTHRD number of thread TCBs. The

actual number of TCBs created might be less than this value due to storage

constraints.

INIT Request after a Previous DRA Session Termination

If a prior DRA session ended with a TERM request that received a PAPL return

code=0, this INIT request must specify PAPLCTOK=0. If PAPLCTOK other than 0 is

sent, the INIT request will fail.

The INIT request must pass the PAPLCTOK value of the prior session in the current

PAPLCTOK field if a DRA session ended because of:

v A nonzero return code from a TERM request.

v An internal TERM request from a Control exit routine request.

v A DRA failure.

RESYNC Request

The RESYNC request tells IMS DB what to do with in-doubt UORs. The 4 following

subfunction values indicate possible actions:

PAPLRCOM Commit the in-doubt UOR.

PAPLRABT Abort the in-doubt UOR. Changes made to any recoverable

resource are backed out.

PAPLSCLD The UOR was lost to the transaction manager due to a coldstart.

PAPLSUNK The in-doubt UOR is unknown to the CCTL. This can occur when

the CCTL’s in-doubt period does not include the start of phase 1.

(See Table 25 on page 130 for an illustration of in-doubt periods.)

You must fill in the following input fields of the PAPL:

Field Contents

PAPLCTOK Request token

 This token identifies the CCTL to the DRA. The DRA establishes

the token and returns it to the CCTL in the parameter list on the

startup INIT request. The request token must be passed on to the

DRA for all RESYNC requests.

PAPLRTOK Recovery token

 This 16-byte token is associated with a UOR. The first 8 bytes must

be the transaction manager subsystem ID. The second 8 bytes

must be unique for one CCTL thread. This is one of the in-doubt

recovery tokens passed to the Control exit routine.

CCTL-Initiated DRA Function Requests

138 Application Programming: Database Manager

PAPLFUNC PAPLRSYN

PAPLSNC This field must contain PAPLRCOM, PAPLRABT, PAPLSCLD, or

PAPLSUNK.

TERM Request

The TERM request results in a termination of the IMS DB/CCTL connection and a

removal of the DRA from the CCTL environment. The DRA terminates after all

threads have been resolved. No new DRA or thread requests are allowed, and

current requests in progress must complete.

You must fill in the following input fields in the PAPL:

Field Contents

PAPLFUNC PAPLTERM, DRA terminate function code

PAPLCTOK The DRA request token (output from an INIT request)

After receiving the TERM request results, the CCTL may remove DFSPPRC0.

The fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC The return code

PAPLMXNB The number of times the maximum thread count was encountered

during this DRA session

PAPLMTNB The number of times the minimum thread count was encountered

during this DRA session

PAPLHITH The largest number of thread TCBs that were scheduled during this

DRA session

PAPLTIMX The elapsed time at maximum thread for this DRA session

Thread Function Requests

The Thread Function requests consist of the SCHED, IMS, SYNTERM, PREP,

COMTERM, ABTTERM, and TERMTHRD requests and are described in the

following topics:

v “SCHED Request”

v “IMS Request” on page 141

v “SYNTERM Request” on page 142

v “PREP Request” on page 143

v “COMTERM Request” on page 143

v “ABTTERM Request” on page 144

v “TERMTHRD Request” on page 144

SCHED Request

The SCHED request schedules a PSB in IMS DB. The first SCHED request made

by a CCTL thread requires a new DRA thread. If any existing DRA thread TCBs are

not currently processing a DRA thread, one of these is used. If no TCBs are

available, the DRA either creates a new thread TCB (until the maximum number of

threads as specified by the MAXTHRD parameter in the INIT request is reached),

or makes the SCHED request wait until a thread becomes available.

CCTL-Initiated DRA Function Requests

Chapter 6. The Database Resource Adapter (DRA) 139

|
|

The value in the PAPLWCMD field indicates whether the thread to which the

SCHED request applies is a short or long thread. The type of thread determines the

action that IMS takes when a database command is entered for a database

scheduled to the thread. The /STOP DATABASE, /DBDUMP DATABASE, or /DBRECOVERY

DATABASE command issued against a database scheduled on a short thread will wait

for the database to be unscheduled. IMS rejects these commands if they are

entered for a database scheduled on a long thread.

You must fill in the following input fields in the PAPL:

Field Contents

PAPLFUNC PAPLTFUN, thread function code

PAPLSFNC PAPLSCHE, schedule request subfunction code

PAPLCTOK The DRA request token (output from an INIT request)

PAPLTTOK The thread token set up by the CCTL

PAPLRTOK The 16-byte UOR token (RTOKEN). For more information about

UORs, see “Sync Points” on page 128.

PAPLPSB The PSB name

PAPLWRTH Deadlock Worth Value

 If this thread hits a deadlock condition with any other DRA thread or

with any IMS region, DBCTL collapses the thread with the lower

deadlock worth value.

PAPLWCMD This bit defines the thread as either a short or long thread which

determines what action IMS takes on a /STOP DATABASE, /DBDUMP

DATABASE, or /DBRECOVERY DATABASE command for a database

scheduled to the thread. If the bit is set on (X'80'), the database is

scheduled on a short thread; if the bit is set off, the database is

scheduled for a long thread.

PAPLFTRD Fast Path Trace Option

 If this bit is on (X'40'), Fast Path tracing in IMS DB is activated. (For

more information, see “Tracing” on page 150 in “CCTL

Performance: Monitoring DRA Thread TCBs” on page 147.)

PAPLKEYP Public Key Option

 If this bit is set (X'10'), DBCTL will build UPSTOR area in a special

subpool so that applications running in public key can fetch the

UPSTOR area.

PAPLLKGV Lockmax Option

 If this bit is set (X'08'), DBCTL uses the value in PAPLLKMX as the

maximum number of locks that this UOR can hold. Exceeding the

maximum results in a U3301 abend.

PAPLLKMX Lockmax Value, 0 to 255

 This value overrides any LOCKMAX parameter specified on the

PSBGEN for the PSB referenced in the SCHED request.

PAPLALAN Application language type

Specifying the following input field is optional:

Field Contents

Thread Function Requests

140 Application Programming: Database Manager

PAPLSTAT Address of an area where scheduled statistical data is returned to

the CCTL.

PAPLPBTK Address of the token for the z/OS Workload Manager performance

block obtained by the CCTL.

 You must specify this field for z/OS Workload Manager support for

DRA threads.

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC The return code

PAPLCTK2 The thread request token number 2. This is another DRA token

required on future DRA requests originating from this thread.

PAPLPCBL The address of the PCB list. There is one entry in the list for each

PCB in the PSB that was scheduled, even if the PCB cannot be

used with IMS DB.

PAPL1PCB The address of the PCBLIST entry pointing to the first database

PCB

PAPLIOSZ The size of the maximum I/O area

PAPLPLAN The language type of the PSB

PAPLMKEY The maximum key length

PAPLSTAT The address of the schedule statistical data area. This address

must be specified on the input field.

CCTLs currently using the IMS Database Manager and migrating to DBCTL will

experience a change in the PCBLIST and user PCB area on a schedule request.

The first PCB pointer in the PCBLIST contains the address of an I/O PCB. The I/O

PCB is internally allocated during the schedule process in a DBCTL environment.

The I/O PCB is normally used for output messages or to request control type

functions to be processed. The PCBLIST and the PCBs reside in a contiguous

storage area known as UPSTOR. If the PSB was generated with LANG=PLI, the

PCBLIST points to pointers for the PCBs. If LANG= was not PLI, the PCBLIST

points to the PCBs directly.

IMS Request

This request makes an IMS or Fast Path database request against the currently

scheduled PSB.

You must fill in the following input fields in the PAPL:

Field Contents

PAPLFUNC PAPLTFUN

PAPLSFNC PAPLDLI, DL1 request subfunction code

PAPLCTOK DRA request token (output from an INIT request)

PAPLCTK2 Thread Token number 2. This is the DRA request token that is part

of the output from a SCHED request.

PAPLTTOK Thread token set up by the CCTL

PAPLRTOK RTOKEN

Thread Function Requests

Chapter 6. The Database Resource Adapter (DRA) 141

A 16-byte UOR token. See “Sync Points” on page 128 for more

information about UORs.

PAPLCLST The address of an IMS call list. See Chapter 3, “Defining

Application Program Elements,” on page 55 for call list formats.

PAPLALAN Application language type. This must reflect how the call list is set

up. If PAPLALAN=‘PLI’, the DRA expects the call list to contain

pointers to the PCB’s pointers. For any other programming

language, the DRA expects direct pointers.

 PAPLALAN does not have to match PAPLPLAN which schedules

request returns. For example, if PAPLPLAN=PLI, the PCBLIST in

UPSTOR points to an indirect list. If desired, the CCTL can use this

to create a PCBLIST that application programs use. If the

application programs are written in COBOL, the CCTL may create a

new PCBLIST without pointers as long as the new list actually

points to PCBs in UPSTOR. The application program IMS call lists

can specify PAPLALAN=COBOL, and the DRA will not expect

pointers in the call list.

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC Code returned

PAPLSEGL Length of data returned

SYNTERM Request

This is a single-phase sync point request to commit the UOR. It also releases the

PSB.

You must fill in the following input fields in the PAPL:

Field Contents

PAPLFUNC PAPLTFUN

PAPLSFNC PAPLSTRM, sync point commit/terminate subfunction code

PAPLCTOK DRA request token (output from INIT request)

PAPLCTK2 The thread request token number 2. This DRA token is the output

from the SCHED request.

PAPLTTOK The thread token set up by the CCTL

PAPLRTOK A 16-byte UOR token (RTOKEN). For information on UORs see

“Sync Points” on page 128.

You can specify the following, optional input fields:

Field Contents

PAPLSTAT Address of an area where transaction statistical data is returned to

the CCTL.

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC Code returned

Thread Function Requests

142 Application Programming: Database Manager

PAPLSSCC State of the single-phase sync point request at the time of the

thread failure. This field is set if PAPLRETC is not equal to zero.

PAPLSTAT The address of the transaction statistical data area. The address

must be specified on the input field.

PREP Request

This is a phase 1 sync-point request that asks IMS DB if it is ready to commit this

UOR.

You must fill in the following input fields of the PAPL:

Field Contents

PAPLFUNC PAPLTFUN

PAPLSFNC PAPLPREP, sync-point prepare subfunction code

PAPLCTOK DRA request token (output from an INIT request)

PAPLCTK2 Thread Token number 2. This is the DRA request token which is

output from a SCHED request.

PAPLTTOK The thread token set up by the CCTL

PAPLRTOK A 16-byte UOR token (RTOKEN). See “Sync Points” on page 128

for more information about UORs.

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC Code returned

PAPLSTCD Fast Path status code

 If the value in the PAPLRETC field is decimal 35, the PAPLSTCD

field contains a status code that further describes the error.

COMTERM Request

This is a phase 2 sync-point request to commit the UOR. It also releases the PSB.

You must issue a PREP request prior to issuing a COMTERM request.

You must fill in the following input fields in the PAPL:

Field Contents

PAPLFUNC PAPLTFUN

PAPLSFNC PAPLCTRM, sync-point commit/terminate subfunction code

PAPLCTOK DRA request token (output from an INIT request)

PAPLCTK2 Thread Token number 2. This is the DRA request token, which is

output from a SCHED request.

PAPLTTOK The thread token set up by the CCTL

PAPLRTOK A 16-byte UOR token (RTOKEN). See “Sync Points” on page 128

for more information about UORs.

Specifying the following input field is optional:

Field Contents

PAPLSTAT Address of an area where transaction statistical data is returned to

the CCTL

Thread Function Requests

Chapter 6. The Database Resource Adapter (DRA) 143

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC Code returned

PAPLSTAT The address of the transaction statistical data area. This address

must be specified on the input field.

ABTTERM Request

This is a phase 2 sync-point request for abort processing. It also releases the PSB.

It does not require a preceding PREP request.

You must fill in the following input fields of the PAPL:

Field Contents

PAPLFUNC PAPLTFUN

PAPLSFNC PAPLATRM, sync-point abort/terminate subfunction code

PAPLCTOK DRA request token (output from an INIT request)

PAPLCTK2 Thread Token number 2. This is the DRA request token, which is

output from a SCHED request.

PAPLTTOK The thread token set up by the CCTL

PAPLRTOK A 16-byte UOR token (RTOKEN). See “Sync Points” on page 128

for more information about UORs.

Specifying the following input field is optional:

Field Contents

PAPLSTAT Address of an area where transaction statistical data is returned to

the CCTL.

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC Code returned

PAPLSTAT The address of the transaction statistical data area. This address

must be specified on the input field.

TERMTHRD Request

This request terminates the DRA thread.

You must fill in the following input fields of the PAPL:

Field Contents

PAPLFUNC PAPLTFUN

PAPLSFNC PAPLTTHD, thread terminate subfunction code

PAPLCTOK DRA request token (output from an INIT request)

PAPLCTK2 Thread Token number 2. This is the DRA request token which is

output from a SCHED request.

PAPLTTOK The thread token set up by the CCTL

Specifying the following input field is optional:

Thread Function Requests

144 Application Programming: Database Manager

Field Contents

PAPLSTAT Address of an area where transaction statistical data is returned to

the CCTL

The output fields returned in the PAPL to the CCTL are:

Field Contents

PAPLRETC Code returned

PAPLSTAT The address of the transaction statistical data area. This address

must be specified on the input field.

PAPL Mapping Format

The PAPL is the parameter list used by the DRA interface in a CCTL environment.

For the latest version of PAPL mapping format, see the IMS.ADFSMAC library; the

member name is DFSPAPL.

Terminating the DRA

Termination isolation should be one of your primary considerations when you design

a CCTL subsystem or an ODBA application.

Definition:Termination isolation means that a failure of the IMS DB subsystem does

not cause a direct failure of any attached CCTL subsystem or ODBA application

and vice versa.

Although IMS DB was designed to prevent failure between connecting subsystems,

a termination of a CCTL subsystem can cause IMS DB failure. If a DRA thread TCB

terminates while IMS DB is processing a thread DL/I call on the CCTL’s behalf, IMS

DB fails with a U0113 abend. To promote termination isolation, see the “Designing

the CCTL Recovery Process” on page 146.

The conditions that cause a thread TCB to terminate while IMS DB processes a

DL/I call are:

v A DRA thread abend due to code failure. This can be corrected by fixing the

failing code.

v The CCTL TCB collapses while a thread TCB still exists. The thread TCB

collapses with an S13E or S33E abend and can result from three situations: a

CCTL abend, a cancel command, or a shutdown. The number of U0113 abends

caused by a CCTL cancel command can be reduced by following the design

recommendations listed in the “Designing the CCTL Recovery Process” on page

146.

v A DRA thread abend due to a IMS DB /STOP REGION CANCEL command initiated

by CCTL.

An IMS DB U0113 abend can be prevented by designing the CCTL recovery

process so that it issues a TERM request and waits for the request to complete.

This allows the DRA and thread TCBs to terminate before the CCTL TCB

terminates.

Thread Function Requests

Chapter 6. The Database Resource Adapter (DRA) 145

Designing the CCTL Recovery Process

Under the conditions of a nonrecoverable z/OS abend, a DRA TERM request lets

all threads collapse and U0113 is possible. To reduce the number of nonrecoverable

abends of the CCTL, IMS DB intercepts any operator CANCEL of a CCTL that is

connected to IMS DB, and converts it to a S08E recoverable abend of the CCTL.

You can also as a last resort, force a CCTL to shut down. If an operator enters a

FORCE command after CANCEL has been entered (and converted to S08E), IMS

DB converts FORCE into a z/OS cancel command. Subsequent FORCE attempts

are not intercepted by IMS DB. In these cases of nonrecoverable abends, a U0113

is possible.

A CCTL might have a means of allowing its own shutdown. The CCTL shutdown

logic should issue a DRA TERM request and wait for the request completion to

prevent a U0113 abend in IMS DB. The DRA TERM request waits for current thread

requests to complete. One thing that can prevent a current thread DL/I call from

completing normally is if the call has to wait in IMS DB for a database segment to

become available. The reason the segment might not be available is that it is held

by another UOR, either in a thread belonging to another CCTL or in an IMS

dependent region (for example, a BMP). The solution is to not have CCTL threads

or BMPs that have long-running UORs.

Recommendation: BMPs should take frequent checkpoints.

No matter how you choose to prevent or discourage long-running CCTL threads,

you must decide how long to wait for the DRA TERM request to complete

(TIMEOUT). In most cases, it is undesirable to get a U113 abend in IMS DB during

a CCTL termination, so the timeout value should be greater than the longest

possible UOR. If the CCTL has a means of limiting the UOR time or allowing the

installation to specify this time limit, the DRA TERM timeout value can be

determined. This timeout value can be specified in the DRA startup table and is

returned to the CCTL in the INIT PAPL.

Recommendation: CCTL should use this DRA TERM timeout value when waiting

for the DRA TERM request to complete. At the very least, by using the DRA TERM

timeout value, you can control whether CCTL terminations cause IMS DB failures

with respect to the UOR time length of the applications that run in a given IMS

DB/CCTL session.

CCTL Operations Recommendation:

v Avoid using CANCEL or FORCE commands against CCTL regions that are

connected to IMS DB.

CCTL Design Recommendations:

v The CCTL should issue a DRA TERM request during recoverable abend

processing.

v CCTL shutdown functions should issue a DRA TERM request.

v Whenever a DRA TERM request is issued, wait for it to complete. If this time

must have an upper limit, use the TIMEOUT value specified in the DRA startup

table.

v The CCTL should prevent long-running UORs in its threads using IMS DB.

User Installation Recommendations:

Designing the CCTL Recovery

146 Application Programming: Database Manager

v Have BMPs take frequent checkpoints.

v Limit long-running UOR applications.

v Set the TIMEOUT startup parameter as high as possible, preferably longer than

longest running UOR.

CCTL Performance: Monitoring DRA Thread TCBs

Requirement: The DRA initialization process requires a minimum and maximum

value (MINTHRD and MAXTHRD) for DRA thread TCBs. The value of MINTHRD

and MAXTHRD determine the number of multithreading executions that can occur

concurrently. These values also define the range of thread TCBs that the DRA will

maintain under normal conditions with no thread failures. The number of TCBs can

go below the MINTHRD value when the following thread failures occur:

v An abend.

v A nonzero DRA thread request return code that causes the thread TCB to be

collapsed.

v Termination using a IMS DB /STOP REGION command.

Failed thread TCBs are not automatically recreated. The thread TCB number

increases again if a new thread is created to process a SCHED request. If the

number of thread TCBs is greater than the MINTHRD value and all thread activity

ceases normally, the number of thread TCBs left in the DRA will be the MINTHRDD

value.

During CCTL processing, the number of active DRA threads occupying thread TCBs

varies from 0 to the MAXTHRD number. Active DRA threads indicate that at least

one SCHED request has been made but not any TERMTHRD requests. If the

number of non-active thread TCBs becomes too large, the DRA automatically

collapses some thread TCBs to release IMS DB resources.

The status of DRA thread TCBs can be evaluated from the output of the /DISPLAY

CCTL ALL command, except for one case.

Related Reading: See IMS Version 9: Command Reference for examples of this

command.

If there were no thread failures, the output might show fewer thread TCBs than the

MINTHRD value because of internal short lived conditions. In fact, the actual

number of thread TCBs does equal the MINTHRD.

DRA Thread Statistics

DRA thread statistics are returned for a SCHED request and for any DRA requests

that terminate a UOR. The statistics are in a CCTL area that is pointed to by the

PAPLSTAT field. The PAPL listing maps this area, as shown in Table 26. The

statistics also appear in the IMS DB log records X'08' (SCHED) and X'07' (UOR

terminate).

 Table 26. Information Provided for the Schedule Process:

PAPL Field

Field Length

(Hexadecimal) Contents

PAPLNPSB 8 PSB name

PAPLPOOL 8 Elapsed wait time for pool space (packed:

microseconds)

Designing the CCTL Recovery

Chapter 6. The Database Resource Adapter (DRA) 147

Table 26. Information Provided for the Schedule Process: (continued)

PAPL Field

Field Length

(Hexadecimal) Contents

PAPLINTC 8 Elapsed wait time - intent conflict (packed:

microseconds)

PAPLSCHT 8 Elapsed time for schedule process (packed:

microseconds)

PAPLTIMO 8 Elapsed time for DB I/O (packed: microseconds)

PAPLTLOC 8 Elapsed time for DI locking (packed:

microseconds)

PAPLDBIO 4 Number of DB I/Os

 Table 27. Information Provided at UOR Termination:

PAPL Field

Field Length

(Hexadecimal) Contents

PAPLGU1 4 Number of database GU calls issued

PAPLGN 4 Number of database GN calls issued

PAPLGNP 4 Number of database GNP calls issued

PAPLGHU 4 Number of database GHU calls issued

PAPLGHN 4 Number of database GHN calls issued

PAPLGHNP 4 Number of database GHNP calls issued

PAPLISRT 4 Number of database ISRT calls issued

PAPLDLET 4 Number of database DLET calls issued

PAPLREPL 4 Number of database REPL calls issued

PAPLTOTC 4 Total number of DL/I database calls

PAPLTENQ 4 Number of test enqueues

PAPLWTEQ 4 Number of WAITS on test enqueues

PAPLTSDQ 4 Number of test dequeues

PAPLUENQ 4 Number of update enqueues

PAPLWUEQ 4 Number of WAITs on updates and enqueues

PAPLUPDQ 4 Number of update dequeues

PAPLEXEQ 4 Number of exclusive enqueues

PAPLWEXQ 4 Number of WAITs on exclusive enqueues

PAPLEXDQ 4 Number of exclusive dequeues

PAPLDATS 8 STCK time schedule started

PAPLDATN 8 STCK time schedule completed

PAPLDECL 2 Number of DEDB calls

PAPLDERD 2 Number of DEDB read operations

PAPLMSCL 2 Reserved for Fast Path

PAPLOVFN 2 Number of overflow buffers used

PAPLUOWC 2 Number of UOW contentions

PAPLBFWT 2 Number of WAITs for DEDB buffers

PAPLUSSN 4 Unique schedule sequence number

Monitoring DRA Thread TCBs

148 Application Programming: Database Manager

Table 27. Information Provided at UOR Termination: (continued)

PAPL Field

Field Length

(Hexadecimal) Contents

PAPLCTM1 4 Elapsed UOR CPU time (for thread TCB) (For

timer units, see z/OS STIMER macro)

DRA Statistics

DRA statistics are contained in the returned PAPL as a result of a DRA TERM

request, or in the Control exit routine’s PAPL when it is called for DRA termination.

This routine is called when the DRA fails or when a previous Control exit routine

invocation resulted in return code 4.

The statistics in the returned PAPL are:

1. The number of times the MAXTHRD value was reached.

2. The number of times the MINTHRD value was reached (only includes the times

the value is reached when the thread TCB number is decreasing.)

3. The largest number of thread TCBs ever reached during this DRA session. (This

is the number of TCBs, not the number of DRA threads, so it is at least the

minimum thread value.)

4. The time (in seconds) during which the DRA thread TCB count was at the

MAXTHRD value.

You can find the field names for the previous statistics in the PAPL extensions for

the TERM PAPL and control exit routine PAPL.

Before attempting to evaluate the statistics DRA performance, remember:

v If the DRA is using the maximum number of threads (MAXTHRD), when the DRA

receives any new SCHED requests it will make these requests wait until a thread

is available.

v As active threads become available (for example, as a result of TERMTHRD

call), some of the available threads might be collapsed.

These factors can adversely affect performance, but both improve IMS DB resource

availability because fewer DRA threads require fewer IMS DB resources. The IMS

DB resources (PSTs) are then available for other BMPs or other CCTLs to use.

Statistics 1, 2, and 4 can serve as a measurement of the two factors, and will help

you decide how to balance performance and resource usage. For the sake of this

discussion, these statistics are presented solely from a performance point of view

(for example, assume only 1 CCTL connected to a IMS DB).

Evaluating the DRA Statistics

If statistics 1 and 4 are high, a SCHED request had to wait for an available thread

many times. To improve performance, raise the MAXTHRD value.

The impact of statistic 2 on performance can only be estimated if thread activity

history is known (the DRA does not provide this history but the CCTL can). If

activity is steady, little thread collapsing occurs and statistic 2 is meaningless. If

activity fluctuates a lot, statistic 2 can be useful.

v If statistic 2 is 0, much thread collapsing might occurring, but the MINTHRD

value was never reached.

Monitoring DRA Thread TCBs

Chapter 6. The Database Resource Adapter (DRA) 149

|
|
|

v If statistic 2 is not zero, the MINTHRD value was reached and at those points,

thread collapsing was stopped, thus enhancing performance. Therefore, if you

have highly fluctuating thread activity, you can improve performance by raising

MINTHRD until statistic 2 has a nonzero value.

Finally, statistic 3 can be useful for adjusting your MAXTHRD value.

Note: These statistics are useful in determining MINTHRD and MAXTHRD

definitions. When MINTHRD=MAXTHRD, these statistics will be of no value.

Tracing

There is no tracing (logging) of activity in the DRA, but there is tracing in IMS DB of

DL/I and Fast Path activity. The setup and invocation of DL/I tracing for IMS DB is

the same as for IMS. The output trace records for CCTL threads contain the

recovery token.

Fast Path tracing in IMS DB is different from IMS. Fast Path tracing in IMS DB is

activated when a SCHED request to the DRA has the PAPLFTRD equal to ON

(Fast Path trace desired for this UOR).

When this UOR completes, a trace output file is closed and sent to SYSOUT Class

A.

If a thread request fails during Fast Path processing, the DRA might return the

PAPL with the PAPLFTRR field equal to ON. This recommends to the CCTL that it

request the PAPLFTRD field be equal to ON (Fast Path trace desired) in the

SCHED PAPL if this failing transaction is run again by the CCTL.

Sending Commands to IMS DB

In an IMS DB warm standby or IMS/ESA® XRF environment, a CCTL might desire

to have the IMS alternate system become the primary IMS system. To do this

without operator intervention, a CCTL can use a z/OS SVC 34 to broadcast an

emergency restart command to a IMS DB alternate, or a SWITCH command to an

IMS XRF alternate. These are the only IMS commands that can be done using this

interface. The command verb can be preceded by either the command recognition

character or the 4-character IMS identification that is in the PAPLDBCT field of the

INIT PAPL.

Problem Diagnosis

Failed DRA requests have a nonzero value in the PAPLRETC field of the PAPL

returned to the CCTL. The format of PAPLRETC is:

HHSSSUUU

Where: HH= X'00'- No output

UUU IMS DB return codes

X'88'- No output

SSS All z/OS non-retryable abend codes (for example, 222, 13E) or,

UUU IMS abend codes (775, 777, 844, 849, 2478, 2479, 3303)

X'84'- SNAP only

UUU IMS abend codes (260, 261, 263)

Monitoring DRA Thread TCBs

150 Application Programming: Database Manager

X'80'- SDUMP/SNAP provided

SSS All the z/OS retryable abend codes

UUU All IMS abend codes besides those listed for the format of PAPLRETC

Diagnostic information is provided by the DRA in the form of an SDUMP, or a SNAP

dataset output. For X'80', the SDUMP is attempted first. If it fails, SNAP is done.

For X'84', no SDUMP is attempted, but a SNAP is attempted.

A z/OS or IMS abend code failure results in DRA thread termination and thread

TCB collapse. A IMS DB return code has no affect on the DRA itself or the thread

TCB.

DRA thread TCB failures that occur when not processing a thread request result in

a SDUMP/SNAP process. DRA control TCB failures that occur when not processing

a DRA request result in a SDUMP/SNAP process and the Control exit routine is

called. For a SCHED type of thread request, a failure with X'80' or X'84' can result

in either SNAP or SDUMP.

SDUMP

SDUMP output contains:

v The IMS control region.

v DLISAS address space.

v Key 0 and key 7 CSA.

v Selected parts of DRA private storage, including the ASCB, TCB, and RBs.

You can format the IMS control blocks by using the Offline Dump Formatter (ODF).

Related Reading: The ODF is described in IMS Version 9: Diagnosis Guide and

Reference.

The ODF will not format DRA storage. You can use IPCS to format the z/OS blocks

in the CCTL’s private storage.

DRA SDUMPS have their own SDUMP options. As a result of this, any

CHNGDUMP specifications cannot cause sections of DRA SDUMPs to be omitted.

If these specifications aren’t in the DRA’s list of options, they can have an additive

effect on DRA SDUMPS.

SNAP

The SNAP dump datasets are dynamically allocated whenever a SNAP dump is

needed. A parameter in the DRA Startup Table defines the SYSOUT class.

The SNAP output contains:

v Selected parts of DRA private storage, including the ASCB, TCB, and RBs.

v IMS DB’s control blocks.

Monitoring DRA Thread TCBs

Chapter 6. The Database Resource Adapter (DRA) 151

Monitoring DRA Thread TCBs

152 Application Programming: Database Manager

Chapter 7. Secondary Indexing and Logical Relationships

This chapter describes two ways in which IMS can provide flexibility in how your

program views the data. Secondary indexing and logical relationships are

techniques that can change your application program’s view of the data. The DBA

makes the decision about whether to use these options. Examples of when you use

these techniques are:

v If an application program must access a segment type in a sequence other than

the sequence specified by the key field, secondary indexing can be used.

Secondary indexing also can change the application program’s access to or view

of the data based on a condition in a dependent segment.

v If an application program requires a logical structure that contains segments from

different databases, logical relationships are used.

The following topics provide additional information:

v “How Secondary Indexing Affects Your Program”

v “Processing Segments in Logical Relationships” on page 156

How Secondary Indexing Affects Your Program

One instance of using a secondary index occurs when an application program

needs to select database records in a sequence other than that defined by the root

key. IMS stores root segments in the sequence of their key fields. A program that

accesses root segments out of the order of their key fields cannot operate

efficiently.

You can index any field in a segment by defining an XDFLD statement for the field

in the DBD for the database. If the Get call is not qualified on the key but uses

some other field, IMS must search all the database records to find the correct

record. With secondary indexing, IMS can go directly to a record based on a field

value that is not in the key field. This section explains how secondary indexing

affects your programming.

For more information about secondary indexes and examples, see IMS Version 9:

Application Programming: Design Guide.

SSAs with Secondary Indexes

If your program uses a secondary index, you can use the name of an indexed field

in your SSAs. When you do this, IMS goes directly to the secondary index and finds

the pointer segment with the value you specify. Then IMS locates the segment that

the index segment points to in the database and returns the segment to your

program.

To use an indexed field name in the SSA, follow these guidelines:

v Define the indexed field, using the XDFLD statement, in the DBD for the primary

database during DBD generation.

v Use the name that was given on the XDFLD statement as the field name in the

qualification statement.

v Specify the secondary index as the processing sequence during PSB generation.

Do this by specifying the name of the secondary index database on the

PROCSEQ parameter on the PCB during PSB generation.

© Copyright IBM Corp. 1974, 2004 153

|

Related Reading: For more detailed information about generating a DBD and a

PSB, refer to the IMS Version 9: Utilities Reference: System.

If you modify the XDFLD of the indexed segment (using the REPL call), you lose any

parentage that you had established before issuing the REPL call. The key feedback

area is no longer valid after a successful REPL call.

Example: For you to index the PATIENT segment on the NAME field, the segment

must have been defined on the XDFLD statement in the DBD for the medical

database. If the name of the secondary index database is INDEX, you specify

PROCSEQ=INDEX in the PCB. To issue a qualification that identifies a PATIENT by

the NAME field instead of by PATNO, use the name that you specified on the

XDFLD statement. If the name of the XDFLD is XNAME, use XNAME in the SSA,

as follows:

In the DBD: XDFLD NAME=XNAME

In the PSB: PROCSEQ=INDEX

In the program:

GU PATIENT�(XNAME���=�JBBROKE���)

Multiple Qualification Statements with Secondary Indexes

When you qualify a call using the name of an indexed field, you can include

multiple qualification statements. You can use two AND operators to connect the

qualification statements:

* or & When used with secondary indexing, this AND is called the

dependent AND. To satisfy the call, IMS scans the index once and

searches for one pointer segment in the index that satisfies both

qualification statements.

This is called the independent AND. You use it only with secondary

indexing. When you use the independent AND to satisfy the call,

IMS scans the index twice and searches for two or more different

pointer segments in the index that point to the same target

segment.

The distinction between the two ANDs applies only when the indexed field (the one

defined as XDFLD in the DBD) is used in all qualifications. If one of the qualification

statements uses another field, both ANDs work like the dependent AND.

The next two sections give examples of the dependent and independent AND.

Although the examples show only two qualification statements in the SSA, you can

use more than two. No set limit exists for the number of qualification statements

you can include in an SSA, but a limit on the maximum size of the SSA does exist.

You specify this size on the SSASIZE parameter of the PSBGEN statement. For

information on this parameter, see IMS Version 9: Utilities Reference: System.

The Dependent AND

When you use the dependent AND, IMS scans the index only once. To satisfy the

call, it must find one pointer segment that satisfies both qualification statements.

Example: Suppose you want to list patients whose bills are between $500 and

$1000. To do this, you index the PATIENT segment on the BILLING segment, and

specify that you want IMS to use the secondary index as the processing sequence.

Figure 35 on page 155 shows the three secondary indexing segments.

Secondary Indexing Affects Your Program

154 Application Programming: Database Manager

You then use this call:

GU PATIENT (XBILLING>=00500*XBILLING<=01000)

To satisfy this call, IMS searches for one pointer segment with a value between 500

and 1000. IMS returns the PATIENT segment that is pointed to by that segment.

The Independent AND

Example: Suppose you want a list of the patients who have had both tonsillitis and

strep throat. To get this information, you index the PATIENT segment on the

ILLNAME field in the ILLNESS segment, and specify that you want IMS to use the

secondary index as the processing sequence. In this example, you retrieve the

PARENT segments based on a dependent’s (the ILLNESS segment’s) qualification.

Figure 36 shows the four secondary indexing segments.

 You want IMS to find two pointer segments in the index that point to the same

PATIENT segment, one with ILLNAME equal to TONSILLITIS and one with

ILLNAME equal to STREPTHRT. Use this call:

GU PATIENT�(XILLNAME=TONSILITIS#XILLNAME=�STREPTHRT)

This call retrieves the first PATIENT segment with ILLNESS segments of strep

throat and tonsillitis. When you issue the call, IMS searches for an index entry for

tonsillitis. Then it searches for an index entry for strep throat that points to the same

PATIENT segment.

When you use the independent AND with GN and GNP calls, a special situation can

occur. If you repeat a GN or a GNP call using the same qualification, it is possible for

Figure 35. Example of Using the Dependent AND

Figure 36. Example of Using the Independent AND

Secondary Indexing Affects Your Program

Chapter 7. Secondary Indexing and Logical Relationships 155

IMS to return the same segment to your program more than once. You can check to

find out whether IMS has already returned a segment to you by checking the key

feedback area.

If you continue issuing a GN call until you receive a not-found (GE) status code, IMS

returns a segment occurrence once for each independent AND group. When IMS

returns a segment that is identical to one that was already returned, the PCB key

feedback area is different.

DL/I Returns with Secondary Indexes

The PATIENT segment that IMS returns to the application program’s I/O area looks

just as it would if you had not used secondary indexing. The key feedback area,

however, contains something different. The concatenated key that IMS returns is the

same, except that, instead of giving you the key for the segment you requested (the

key for the PATIENT segment), IMS gives you the search portion of the key of the

secondary index (the key for the segment in the INDEX database).

The term “key of the pointer segment” refers to the key as perceived by the

application program. That is, the key does not include subsequent fields. IMS

places this key in the position where the root key would be located if you had not

used a secondary index—in the left-most bytes of the key feedback area. The IMS

Version 9: Application Programming: Design Guide gives some examples of this.

If you try to insert or replace a segment that contains a secondary index source

field that is a duplicate of one that is already reflected in the secondary index, IMS

returns an NI status code. An NI status code is returned only for batch programs

that log to direct-access storage. Otherwise, the application program is abnormally

terminated. You can avoid having your program terminated by making sure a

duplicate index source field does not exist. Before inserting a segment, try to

retrieve the segment using the secondary index source field as qualification.

Status Codes for Secondary Indexes

If a secondary index is defined for a segment and if the definition specifies a unique

key for the secondary index (most secondary indexes allow duplicate keys), your

application program might receive the NI status code in addition to regular status

codes. This status code can be received for a PCB that either uses or does not use

the secondary index as a processing sequence. See IMS Version 9: Messages and

Codes, Volume 1 for additional information about the NI status code.

Processing Segments in Logical Relationships

Sometimes an application program needs to process a hierarchy that is made up of

segments that already exist in two or more separate database hierarchies. Logical

relationships make it possible to establish hierarchic relationships between these

segments. When you use logical relationships, the result is a new hierarchy—one

that does not exist in physical storage but that can be processed by application

programs as though it does exist. This type of hierarchy is called a logical structure.

One advantage of using logical relationships is that programs can access the data

as though it exists in more than one hierarchy, even though it is only stored in one

place. When two application programs need to access the same segment through

different paths, an alternative to using logical relationships is to store the segment

in both hierarchies. The problem with this approach is that you must update the

data in two places to keep it current.

Secondary Indexing Affects Your Program

156 Application Programming: Database Manager

Processing segments in logical relationships is not very different from processing

other segments. This section uses the example about an inventory application

program that processes data in a purchasing database, but which also needs

access to a segment in a patient database.

Related Reading:

v For more information about application programming requirements that logical

relationships can satisfy, see IMS Version 9: Application Programming: Design

Guide.

v For a full description of the inventory application program example, see IMS

Version 9: Application Programming: Design Guide.

Example: The hierarchy that an inventory application program needs to process

contains four segment types:

v An ITEM segment containing the name and an identification number of a

medication that is used at a medical clinic

v A VENDOR segment that contains the name and address of the vendor who

supplies the item

v A SHIPMENT segment that contains information such as quantity and date for

each shipment of the item that the clinic receives

v A DISBURSE segment that contains information about the disbursement of the

item at the clinic, such as the quantity, the date, and the doctor who prescribed it

The TREATMNT segment in the medical database used throughout this section

contains the same information that the inventory application program needs to

process in the DISBURSE segment. Rather than store this information in both

hierarchies, you can store the information in the TREATMNT segment, and define a

logical relationship between the DISBURSE segment in the item hierarchy and the

TREATMNT segment in the patient hierarchy. Doing this makes it possible to

process the TREATMNT segment through the item hierarchy as though it is a child

of SHIPMENT. DISBURSE then has two parents: SHIPMENT is DISBURSE’s

physical parent, and TREATMNT is DISBURSE’s logical parent.

Three segments are involved in this logical relationship: DISBURSE, SHIPMENT,

and TREATMNT. Figure 37 shows the item hierarchy on the right. The DISBURSE

segment points to the TREATMNT segment in the patient hierarchy shown on the

left. (The patient hierarchy is part of the medical database.)

 Three types of segments are found in a logical relationship:

v TREATMNT is called the logical parent segment. It is a physical dependent of

ILLNESS, but it can be processed through the item hierarchy because a path is

established by the logical child segment DISBURSE. The logical parent segment

can be accessed through both hierarchies, but it is stored in only one place.

Figure 37. Patient and Item Hierarchies

Processing Segments in Logical Relationships

Chapter 7. Secondary Indexing and Logical Relationships 157

v SHIPMENT is called a physical parent segment. The physical parent is the

parent of the logical child in the physical database hierarchy.

v DISBURSE is called a logical child segment. It establishes a path to the

TREATMNT segment in the PATIENT hierarchy from the SHIPMENT segment in

the ITEM hierarchy.

Because a logical child segment points to its logical parent, two paths exist through

which a program can access the logical parent segment:

v When a program accesses the logical parent segment through the physical path,

it reaches this logical parent segment through the segment’s physical parent.

Accessing the TREATMNT segment through ILLNESS is accessing the logical

parent segment through its physical path.

v When a program accesses the logical parent segment through the logical path, it

reaches this logical parent segment through the segment’s logical child.

Accessing the TREATMNT segment through SHIPMENT is accessing the logical

parent segment through its logical path.

When a logical parent segment is accessed through the logical child, the logical

child is concatenated with both the data from its logical parent segment and any

data the user has chosen to associate with this pairing (intersection data) in a

single segment I/O area, like this:

 LL is the length field of the logical parent if this segment is a variable-length

segment.

How Logical Relationships Affect Your Programming

The calls you issue to process segments in logical relationships are the same calls

that you use to process other segments. However, the processing is different

depending on how the logical segment looks in your I/O area, what the DB PCB

mask contains after a retrieve call, and how you can replace, delete, and insert

physical and logical parent segments. Because it is possible to access segments in

logical relationships through the logical path or the physical path, the segments

must be protected from being updated by unauthorized programs.

When DBAs define logical relationships, they define a set of rules that determine

how the segments can be deleted, replaced, and inserted. Defining these rules is a

database design decision. If your program processes segments in logical

relationships, the DBA (or the person at your installation responsible for database

design) should tell you:

v What segments look like in your I/O area when you retrieve them

v Whether your program is allowed to update and insert segments

v What to do if you receive a DX, IX, or RX status code

The requirements for inserting a logical child segment are:

Figure 38. Concatenated Segment

Processing Segments in Logical Relationships

158 Application Programming: Database Manager

|

v In load mode, the logical child can be inserted only under its physical parent. You

do not supply the logical parent in the I/O area.

v In update mode, the format of the logical child is different, depending on whether

it is accessed from its physical parent or from its logical parent.

– If accessed from its physical parent, the logical child’s format is the

concatenated key of the logical parent followed by intersection data.

– If accessed from its logical parent, the logical child’s format is the

concatenated key of the physical parent, followed by intersection data.

v The logical child can be inserted or replaced, depending on the insert rule for the

logical or physical parent. Unless the insert rule of the logical or physical parent

is PHYSICAL, the logical or physical parent must be supplied in the I/O area

following the logical child, as illustrated in Figure 38 on page 158.

Status Codes for Logical Relationships

These status codes apply specifically to segments that are involved in logical

relationships. These are not all of the status codes that you can receive when

processing a logical child segment or a physical or logical parent. If you receive one

of these status codes, it means that you are trying to update the database in a way

that you are not allowed to. Check with the DBA or person responsible for

implementing logical relationships at your installation to find out what the problem

is.

DX IMS did not delete the segment because the physical delete rule was

violated. If the segment is a logical parent, it still has active logical children.

If the segment is a logical child, it has not been deleted through its logical

path.

IX You tried to insert either a logical child segment or a concatenated

segment. If it was a logical child segment, the corresponding logical or

physical parent segment does not exist. If it was a concatenated segment,

either the insert rule was physical and the logical or physical parent does

not exist, or the insert rule is virtual and the key of the logical or physical

parent in the I/O area does not match the concatenated key of the logical or

physical parent.

RX The physical replace rule has been violated. The physical replace rule was

specified for the destination parent, and an attempt was made to change its

data. When a destination parent has the physical replace rule, it can be

replaced only through the physical path.

Processing Segments in Logical Relationships

Chapter 7. Secondary Indexing and Logical Relationships 159

Processing Segments in Logical Relationships

160 Application Programming: Database Manager

Chapter 8. Processing GSAM Databases

GSAM databases are available to application programs that can run as batch

programs, batch-oriented BMPs, or transaction-oriented BMPs. If your application

program accesses GSAM databases, as you design your program consider that:

v An IMS program can retrieve records and add records to the end of the GSAM

database, but the program cannot delete or replace records in the database.

v You use separate calls to access GSAM databases. (Additional checkpoint and

restart considerations are involved in using GSAM.)

v Your program must use symbolic CHKP and XRST calls if it uses GSAM. Basic CHKP

calls cannot checkpoint GSAM databases.

v When an IMS program uses a GSAM data set, the program treats a GSAM data

set like a sequential nonhierarchic database. The z/OS access methods that

GSAM can use are BSAM on direct access, unit record, and tape devices; and

VSAM on direct-access storage. VSAM data sets must be nonkeyed, non

indexed, entry-sequenced data sets (ESDS) and must reside on DASD. VSAM

does not support temporary, SYSIN, SYSOUT, and unit-record files.

v Because GSAM is a sequential nonhierarchic database, it has no segments,

keys, or parentage.

The following topics provide additional information:

v “Accessing GSAM Databases”

v “GSAM Record Formats” on page 164

v “GSAM I/O Areas” on page 165

v “GSAM Status Codes” on page 165

v “Symbolic CHKP and XRST with GSAM” on page 166

v “GSAM Coding Considerations” on page 166

v “Origin of GSAM Data Set Characteristics” on page 167

Accessing GSAM Databases

The calls you use to access Generalized Sequential Access Method (GSAM)

databases are different from those you use to access other IMS databases, and

you can use GSAM databases for input and output. For example, your program can

read input from a GSAM database sequentially and then load another GSAM

database with the output data. Programs that retrieve input from a GSAM database

usually retrieve GSAM records sequentially and then process them. Applications

that send output to a GSAM database must add output records to the end of the

database as the program processes the records. You cannot delete or replace

records in a GSAM database, and any records that you add must go at the end of

the database.

PCB Masks for GSAM Databases

For the most part, you process GSAM databases in the same way that you process

other IMS databases. You use calls that are very similar to DL/I calls to

communicate your requests. GSAM describes the results of those calls in a GSAM

DB PCB.

Calls to GSAM databases can use either the AIBTDLI or the PCB interface. For

information on the AIBTDLI interface, see “The AIBTDLI Interface” on page 88.

© Copyright IBM Corp. 1974, 2004 161

|

The DB PCB mask for a GSAM database serves the same purpose as it does for

other IMS databases. The program references the fields of the DB PCB through the

GSAM DB PCB mask. The GSAM DB PCB mask must contain the same fields as

the GSAM DB PCB and must be of the same length.

Some differences exist between a DB PCB for a GSAM database and one for other

IMS databases. Some of the fields are different, and the GSAM DB PCB has one

field that the other PCBs do not. Table 28 on page 162 shows the order and lengths

of these fields. Because GSAM is not a hierarchical database, some fields in a PCB

mask for other IMS databases do not have meanings in a GSAM PCB mask. The

fields that are not used when you access GSAM databases are:

v The second field: segment level number

v The sixth field: segment name

v The eighth field: number of sensitive segments

Even though GSAM does not use these fields, you must define them in the order

and length shown in Table 28 in the GSAM DB PCB mask.

When you code the fields in a DB PCB mask, name the area that contains all the

fields as you do for a DB PCB. The entry statement associates each DB PCB mask

in your program with a DB PCB in your program’s PSB based on the order of the

PCBs in the PSB. The entry statement refers to the DB PCB mask in your program

by the name of the mask or by a pointer. When you code consider that the entry

statement in:

v COBOL, Pascal, C, and assembler language programs, it must list the names of

the DB PCB masks in your program.

v PL/I programs, it must list the pointers to the DB PCB masks in your program.

The first PCB name or pointer in the entry statement corresponds to the first PCB.

The second name or pointer in the entry statement corresponds to the second PCB,

and so on.

 Table 28. GSAM DB PCB Mask

Descriptor Byte

Length

DB/DC DBCTL DCCTL DB

Batch

TM

Batch

Database name1 8 X X X X X

Segment level number2 2 N/A N/A N/A N/A N/A

Status code3 2 X X X X X

Processing options4 4 X X X X X

Reserved for IMS5 4 X X X X X

Segment name6 8 N/A N/A N/A N/A N/A

Length of key feedback

area and

undefined-length records

area7

4 X X X X X

Number of sensitive

segments8

4 N/A N/A N/A N/A N/A

Key feedback area9 8 X X X X X

Length of

undefined-length

records10

4 X X X X X

Accessing GSAM Databases

162 Application Programming: Database Manager

Notes:

 1. Database Name. The name of the GSAM DBD. This field is 8 bytes and

contains character data.

 2. Segment Level Number. Not used by GSAM, but you must code it. It is 2

bytes.

 3. Status Code. IMS places a two-character status code in this field after each

call to a GSAM database. This code describes the results of the call. IMS

updates this field after each call and does not clear it between calls. The

application program should test this field after each call to find out whether the

call was successful. If the call was completed successfully, this field contains

blanks.

 4. Processing Options. This is a 4-byte field containing a code that tells IMS the

types of calls this program can issue. It is a security mechanism in that it can

prevent a particular program from updating the database, even though the

program can read the database. This value is coded in the PROCOPT

parameter of the PCB statement when generating the PSB for the application

program. The value does not change. For GSAM, the values are G, GS, L, or

LS.

 5. Reserved for IMS. This 4-byte field is used by IMS for internal linkage. It is

not used by the application program.

 6. Segment Name. This field is not used by GSAM, but it must be coded as part

of the GSAM DB PCB mask. It is 8 bytes.

 7. Length of Key Feedback Area and Undefined-Length Records Area. This

is a 4-byte field that contains the decimal value of 12. This is the sum of the

lengths of the 9 and 10.

 8. Number of Sensitive Segments. This field is not used by GSAM, but it

should be coded as part of the GSAM DB PCB mask. This field is 4 bytes.

 9. Key Feedback Area. After a successful retrieval call, GSAM places the

address of the record that is returned to your program in this field. This is

called a record search argument (RSA). You can use it later if you want to

retrieve that record directly by including it as one of the parameters on a GU

call. This field is 8 bytes.

10. Undefined-Length Records Area. If you use undefined-length records

(RECFM=U), the length in binary of the record you are processing is passed

between your program and GSAM in this field. This field is 4 bytes long. When

you issue a GU or GN call, GSAM places the binary length of the retrieved

record in this field. When you issue an ISRT call, put the binary length of the

record you are inserting in this field before issuing the ISRT call.

Retrieving and Inserting GSAM Records

To retrieve GSAM records sequentially, use the GN call. The only required

parameters are the GSAM PCB and the I/O area for the segment. To process the

whole database, issue the GN call until you get a GB status code in the GSAM PCB.

This means that you have reached the end of the database. GSAM automatically

closes the database when you reach the end of it. To create a new data set or to

add new records to the end of the database, use the ISRT call. GSAM adds the

records sequentially in the order in which you supply them.

You can retrieve records directly from a GSAM database, but you must supply the

record’s address. To do this, use a record search argument (RSA). An RSA is

similar to an SSA, but it contains the exact address of the record that you want to

retrieve. The specific contents and format of the RSA depend on the access method

GSAM is using. For BSAM tape data sets and VSAM data sets, the RSA contains

Accessing GSAM Databases

Chapter 8. Processing GSAM Databases 163

the relative byte address (RBA). For BSAM disk data sets, the RSA contains the

disk address in the TTR track record) format.

Before you can give GSAM the RSA, you must know the RSA yourself. To do this,

you must know in advance what records you want to retrieve at a later time. When

you are retrieving records sequentially or adding records to the end of the GSAM

database, you can include a parameter on the GN or ISRT call that tells GSAM to

return the address of that record to a certain area in your program, as shown in

Table 29 on page 167. Save this address until you want to retrieve that particular

record. At that time, you issue a GU call for the record and give the address of its

RSA as a parameter of the GU call. GSAM returns the record to the I/O area that

you named as one of the call parameters. Do this on DASD only. When using

buffered I/O, this may degrade performance for output PCBs.

You can also use a GU call and an RSA to position yourself at a certain place in the

GSAM database. If you place a doubleword, consisting of a fullword containing the

binary value “1” followed by a fullword containing the binary value “0”, in the RSA

and issue a GU call using that RSA, GSAM repositions you to the first record in the

database.

Explicit Open and Close Calls to GSAM

IMS opens the GSAM data set when the first call is made and closes the data set

when the application program terminates. Therefore, the application program does

not usually need to make explicit open or close calls to GSAM. However, explicit

OPEN and CLSE calls are useful if:

v the application program loads a GSAM data set, and then in the same step reads

the data set using GSAM (for example, to sort the data set). The application

program should issue the GSAM CLSE call after the load is complete.

v the GSAM data set is an output data set, and it is possible that when the

program executes it does not make GSAM ISRT calls. A data set is not created.

Subsequent attempts to read the nonexistent data set (using GSAM or not) will

likely result in an error. To avoid this situation, explicitly open the data set. DL/I

closes the data set when the step terminates. Closing the data set prevents the

possibility of attempting to read an empty data set.

The explicit OPEN or CLSE call need not include an I/O area parameter. Depending on

the processing option of the PCB, the data set is opened for input or output. You

can specify that an output data set contain either ASA or machine control

characters. Including an I/O area parameter in the call and specifying OUTA in the

I/O area indicates ASA control characters. Specifying OUTM specifies machine

control characters.

GSAM Record Formats

GSAM records are nonkeyed. For variable-length records you must include the

record length as the first 2 bytes of the record. Undefined-length records, like

fixed-length records, contain only data (and control characters, if needed). If you

use undefined-length records, record length is passed between your program and

GSAM in the 4-byte field that follows the key feedback area of the GSAM DB PCB.

This is the tenth field in Table 28 on page 162. It is called the undefined-length

records area. When you issue an ISRT call, supply the length. When you issue a GN

or GU call, GSAM places the length of the returned record in this field. The

advantage of using undefined-length records is that you do not need to include the

record length at the beginning of the record, and records do not need to be of fixed

Accessing GSAM Databases

164 Application Programming: Database Manager

length. The length of any record must be less than or equal to the block size

(BLKSIZE) and greater than 11 bytes (an z/OS convention).

If you are using VSAM, you can use blocked or unblocked fixed-length or

variable-length records. If you are using BSAM, you can use blocked or unblocked

fixed-length, variable-length, or undefined-length records. Whichever you use, be

sure to specify this on the RECFM keyword in the DATASET statement of the

GSAM DBD. You can override this in the RECFM statement of the DCB parameter

in the JCL. You can also include carriage control characters in the JCL for all

formats. “Origin of GSAM Data Set Characteristics” on page 167 explains what you

can use to override each type of record format.

GSAM I/O Areas

If you provide an optional I/O area, it must contain one of these values:

v INP for an input data set

v OUT for an output data set

v OUTA for an output data set with ASA control characters

v OUTM for an output data set with machine control characters

For GN, ISRT, and GU calls, the format of the I/O area depends on whether the

record is fixed-length, undefined-length (valid only for BSAM), or variable-length.

For each kind of record, you have the option of using control characters.

The formats of an I/O area for fixed-length or undefined-length records are:

v With no control characters, the I/O area contains only data. The data begins in

byte 0.

v With control characters, the control characters are in byte 0 and the data begins

in byte 1.

If you are using undefined-length records, the record length is passed between your

program and GSAM in the PCB field that follows the key feedback area. When you

are issuing an ISRT call, supply the length. When you are issuing a GN or GU call,

GSAM places the length of the returned record in this field. This length field is 4

bytes long.

The formats for variable-length records differ because variable-length records

include a length field, which other records do not have. The length field is 2 bytes.

Variable-length I/O areas, like fixed-length and undefined-length I/O areas, can have

control characters.

v Without control characters, bytes 0 and 1 contain the 2-byte length field, and the

data begins in byte 2.

v With control characters, bytes 0 and 1 still contain the length field, but byte 2

contains the control characters, and the data starts in byte 3.

GSAM Status Codes

Your program should test for status codes after each GSAM call, just as it does

after each DL/I or system service call.

If, you find that you have an error and terminate your program after checking the

status codes, be sure to note the PCB in error before you terminate. The GSAM

GSAM Record Formats

Chapter 8. Processing GSAM Databases 165

|
|

PCB address is helpful in determining problems. When a program that uses GSAM

terminates abnormally, GSAM issues PURGE and CLSE calls internally, which changes

the PCB information.

Status codes that have specific meanings for GSAM are:

AF GSAM detected a BSAM variable-length record with an invalid format.

Terminate your program.

AH You have not supplied an RSA for a GU call.

AI There has been a data management OPEN error.

AJ One of the parameters on the RSA that you supplied is invalid.

AM You have issued an invalid request against a GSAM database.

AO An I/O error occurred when the data set was accessed or closed.

GB You reached the end of the database, and GSAM has closed the database.

The next position is the beginning of the database.

IX You issued an ISRT call after receiving an AI or AO status code. Terminate

your program.

Symbolic CHKP and XRST with GSAM

To checkpoint GSAM databases, use symbolic CHKP and XRST calls. By using GSAM

to read or write the data set, symbolic CHKP and XRST calls can be used to reposition

the data set at the time of restart, enabling you to make your program restartable.

When you use an XRST call, IMS repositions GSAM databases for processing. CHKP

and XRST calls are available to application programs that can run as batch

programs, batch-oriented BMPs, or transaction-oriented BMPs.

Restriction: When restarting GSAM databases:

v You cannot use temporary data sets with a symbolic CHKP or XRST call.

v A SYSOUT data set at restart time may give duplicate output data.

v You cannot restart a program that is loading a GSAM or VSAM database.

When IMS restores the data areas specified in the XRST call, it also repositions any

GSAM databases that your program was using when it issued the symbolic CHKP

call. If your program was loading GSAM databases when the symbolic CHKP call

was issued, IMS repositions them (if they are accessed by BSAM). If you make a

copy of the GSAM data set for use as input to the restart process, ensure that the

short blocks are written to the new data set as short blocks, for example, using

IEBGENER with RECFM=U for SYSUT1. You can also do the restart using the

original GSAM data set.

GSAM Coding Considerations

The calls your program uses to access GSAM databases are not the same as the

DL/I calls. This section tells you how to code GSAM calls and GSAM data areas.

The system service calls that you use with GSAM are symbolic CHKP and XRST.

Table 29 summarizes GSAM database calls. The five calls you can use to process

GSAM databases are:

v CLSE

v GN

GSAM Status Codes

166 Application Programming: Database Manager

|
|
|

v GU

v ISRT

v OPEN

The COBOL, PL/I, Pascal, C, and assembler language call formats and parameters

for these calls are the same and are described in Table 29. GSAM calls do not differ

significantly from DL/I calls, but GSAM calls must reference the GSAM PCB, and

they do not use SSAs.

 Table 29. Summary of GSAM Calls

Call Formats Meaning Use Options Parameters

CLSE Close Explicitly closes GSAM

database

None function, gsam pcb

GN�� Get Next Retrieves next sequential

record

Can supply

address for RSA

to be returned

function, gsam pcb, i/o area

[,rsa name]

GU�� Get Unique Establishes position in

database or retrieves a

unique record

None function, gsam pcb, i/o

area, rsa name

ISRT Insert Adds new record at end of

database

Can supply

address for RSA

to be returned

function, gsam pcb, i/o area

[,rsa name]

OPEN Open Explicitly opens GSAM

database

Can specify printer

or punch control

characters

function, gsam pcb [, open

option]

Origin of GSAM Data Set Characteristics

For an input data set, the record format (RECFM), logical record length (LRECL),

and block size (BLKSIZE) are based on the input data set label. If this information

is not provided by a data set label, the DD statement or the DBD specifications are

used. The DD statement has priority.

An output data set can have the following characteristics:

v Record format

v Logical record length

v Block size

v Other JCL DCB parameters

Specify the record format on the DATASET statement of the GSAM DBD. The

options are:

v V for variable

v VB for variable blocked

v F for fixed

v FB for fixed blocked

v U for undefined

The V, F, or U definition applies and is not overridden by the DCB=RECFM=

specification on the DD statement. However, if the DD RECFM indicates blocked

and the DBD does not, RECFM is set to blocked. If the DD RECFM of A or M

control character is specified, it applies as well.

GSAM Coding Considerations

Chapter 8. Processing GSAM Databases 167

Unless an undefined record format is used, specify the logical record using the

RECORD= parameter of the DATASET statement of DBDGEN, or use

DCB=LRECL=xxx on the DD statement. If the logical record is specified on both,

the DD statement has priority.

Specify block size using the BLOCK= or SIZE= parameter of the DATASET

statement of DBDGEN, or use DCB=BLKSIZE=xxx on the DD statement. If block

size is specified on both, the DD statement has priority. If the block size is not

specified by the DBD or the DD statement, the system determines the size based

on the device type, unless the undefined record format is used.

The other JCL DCB parameters that can be used, include:

v CODE

v DEN

v TRTCH

v MODE

v STACK

v PRTSP, which can be used if RECFM does not include A or M

v DCB=BUFNO=X, which, when used, causes GSAM to use X number of buffers

Restriction: Do not use BFALN, BUFL, BUFOFF, FUNC, NCP, and KEYLEN.

DD Statement DISP Parameter for GSAM Data Sets

The DD statement DISP parameter varies, depending on whether you are creating

input or output data sets and how you plan to use the data sets:

v For input data sets, use DISP=OLD.

v For output data sets, you have a number of options:

– If you are creating an output data set allocated by the DD statement, use

DISP=NEW.

– To create an output data set that was previously cataloged, but is now empty,

use DISP=MOD.

– When restarting the step, use DISP=OLD.

– Finally, to add new records to the end of an existing data set, use

DISP=MOD.

Using Extended Checkpoint Restart for GSAM Data Sets

Recommendation: If you are using extended checkpoint restart for GSAM data

sets:

v Do not use passed data sets.

v Do not use backward references to data sets in previous steps.

v Do not use DISP=MOD to add records to an existing tape data set.

v Do not use DISP=DELETE or DISP=UNCATLG.

v Additionally, keep in mind that:

– If the PSB contains an open GSAM VSAM output data set when the symbolic

checkpoint call is issued, the system returns an AM status code in the

database PCB as a warning. This means that the data set is not repositioned

at restart, but, in all other respects, the checkpoint has completed normally.

– No attempt is made to reposition a SYSIN, SYSOUT, or temporary data set.

– No attempt is made to reposition any of the concatenated data sets for a

concatenated DD statement if any of the data sets are a SYSIN or SYSOUT.

GSAM Data Set Characteristics

168 Application Programming: Database Manager

– If you are using concatenated data sets, specify the same number and

sequence of data sets at restart and checkpoint time.

– GSAM uses the relative track and record (TTR) on the volume to position

GSAM DASD data sets when restarting. For a tape data set, the relative

record on the volume is used. If a data set is copied between checkpoint and

restart, the TTR on the volume for DASD or the relative record on the volume

cannot be changed. To avoid this problem:

1. Copy the data set to the same device type.

2. Use RECFM=U for both the input and the output data set to avoid any

reblocking.

3. Be sure that each copied volume contains the same number of records as

the original volumes when copying a multivolume data set.

Concatenated Data Sets Used by GSAM

GSAM can use concatenated data sets, which may be on unlike device types, such

as DASD and tape, or on different DASD devices. Logical record lengths and block

sizes can differ, and it is not required that the data set with the largest block size be

concatenated first. The maximum number of concatenated data sets for a single DD

statement is 255. The number of buffers determined for the first of the concatenated

data sets is used for all succeeding data sets. Generation data groups can result in

concatenated data sets.

Suggested Method for Specifying GSAM Data Set Attributes

Recommendation: When specifying GSAM data set attributes:

v On the DBD, specify RECFM. (It is required.)

v On the DATASET statement, specify the logical record length using RECORD=.

v On the DD statement, do not specify LRECL, RECFM, or BLKSIZE. The system

determines block size, with the exception of RECFM=U. The system determines

logical record length from the DBD.

v For the PSB, specify PROCOPT=LS for output and GS for input. If you include

S, GSAM uses multiple buffers instead of a single buffer for improved

performance.

IMS will add 2 bytes to the record length value specified in the DBD in order to

accommodate the ZZ field that is needed to make up the BSAM RDW. Whenever

the database is GSAM or BSAM and the records are variable (V or VB), IMS adds

2 bytes. The record size of the GSAM database is 2 bytes greater than the longest

segment that is passed to IMS by the application program.

DLI, DBB, and BMP Region Types and GSAM

To access GSAM databases, IMS builds its DLI control blocks using PSB and DBD

information from PSBLIB, DBDLIB and ACBLIB. The source of the PSB and DBD

information depends on the region type. For DLI offline batch regions, IMS obtains

PSB and DBD information from PSBLIB and DBDLIB. For DBB offline batch

regions, IMS database management obtains PSB and DBD information from

ACBLIB. For online batch regions (BMPs), IMS builds its DLI control blocks with

information from ACBLIB. If an application is scheduled in a BMP region and the

PSB associated with the application contains one or more GSAM PCBs, IMS

scheduling obtains PSB information from ACBLIB and PSBLIB. In this case, the

PSB in ACBLIB and PSBLIB must be the same. GSAM database management

does not obtain PSB and DBD information from ACBLIB. Instead, GSAM database

management obtains PSB and DBD information from PSBLIB and DBDLIB.

GSAM Data Set Characteristics

Chapter 8. Processing GSAM Databases 169

|

|
|
|
|
|
|
|
|
|
|
|
|

When you initialize a DLI, DBB or BMP region using GSAM, you must include an

//IMS DD and GSAM DD statements. When DBB or BMP regions are not using

GSAM, //IMS DD statements do not need to be included. To load PSBs and DBDs

and build GSAM control blocks, you must include an //IMS DD statement. In

Figure 39, an example of the //IMS DD statement is shown.

//STEP EXEC PGM=DFSRRC00,PARM=[BMP|DBB|DLI],...’

//STEPLIB DD DSN=executionlibrary-name,DISP=SHR

// DD DSN=pgmlib-name,DISP=SHR

//IMS DD DSN=psblib-name,DISP=SHR

// DD DSN=dbdlib-name,DISP=SHR

//IMSACB DD DSN=acblib-name,disp=shr (required for DBB)

//SYSPRINT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//ddnamex DD (add DD statements for required GSAM databases)

//ddnamex DD (add DD statements for non-GSAM IMS databases

 for DLI/DBB)

 .

 .

 .

/*

Figure 39. //IMS DD Statement Example

GSAM Data Set Characteristics

170 Application Programming: Database Manager

|
|
|
|
|
|

Chapter 9. Processing Fast Path Databases

This chapter contains information on Fast Path database calls and MSDB and

DEBD information that is required by Fast Path calls. Fast Path message calls

appear in IMS Version 9: Application Programming: Transaction Manager manual.

Restriction: This DEDB information applies to CICS users with DBCTL. MSDBs

and cannot be accessed through CICS and DBCTL.

The two kinds of Fast Path databases are:

v Main storage databases (MSDBs) are available in a DB/DC environment, and

contain only root segments in which you store data that you access most

frequently.

v Data entry databases (DEDBs) are hierarchic databases that can have as many

as 15 hierarchic levels and as many as 127 segment types. DEDBs are available

to both IMS users and CICS users with DBCTL.

The following topics provide additional information:

v “Fast Path Database Calls”

v “Main Storage Databases (MSDBs)” on page 172

v “Data Entry Databases (DEDBs)” on page 173

v “Processing MSDBs and DEDBs” on page 173

v “Restrictions on Using Calls for MSDBs” on page 179

v “Processing DEDBs (IMS and CICS with DBCTL)” on page 180

v “Calls with Dependent Segments for DEDBs” on page 189

v “Fast Path Coding Considerations” on page 189

Related Reading: For more information on the types of processing requirements

the two types of Fast Path databases satisfy, see IMS Version 9: Administration

Guide: Database Manager. This section contains information on how to write

programs to access data in MSDBs and DEDBs.

Fast Path Database Calls

Table 30 summarizes the database calls you can use with Fast Path databases.

 Table 30. Summary of Fast Path Database Calls

Function Code

Types of MSDBs:

DEDBs

Nonterminal-

Related

Terminal-

Related Fixed

Terminal-

Related

Dynamic

DEQ X

FLD X X X X

GU, GHU X X X X

GN, GHN X X X X

GNP, GHNP

DLET

X X

ISRT X X

POS X

© Copyright IBM Corp. 1974, 2004 171

|

Table 30. Summary of Fast Path Database Calls (continued)

Function Code

Types of MSDBs:

DEDBs

Nonterminal-

Related

Terminal-

Related Fixed

Terminal-

Related

Dynamic

REPL X X X X

DL/I calls to DEDBs can include the same number of SSAs as existing levels in the

hierarchy (a maximum of 15). They can also include command codes and multiple

qualification statements.

Restriction:

v Fast Path ignores command codes that are used with sequential dependent

segments.

v If you use a command code that does not apply to the call you are using, Fast

Path ignores the command code.

v If you use F or L in an SSA for a level greater than the established parent, Fast

Path ignores the F or L command code.

v DL/I calls to DEDBs cannot include the independent AND, which is used only

with secondary indexing.

Calls to DEDBs can use all command codes. Only calls to DEDBs that use subset

pointers can use the R, S, Z, W, and M command codes. Table 31 shows which

calls you can use with these command codes.

 Table 31. Subset Pointer Command Codes and Calls

Command

Code DLET GU GHU GN GHN GNP GHNP ISRT REPL

M X X X X X

R X X X X

S X X X X X

W X X X X X

X X X X X X X

Main Storage Databases (MSDBs)

MSDBs contain only root segments. Each segment is like a database record,

because the segment contains all of the information about a particular subject. In a

DL/I hierarchy, a database record is made up of a root segment and all its

dependents. For example, in the medical hierarchy, a particular PATIENT segment

and all the segments underneath that PATIENT segment comprise the database

record for that patient. In an MSDB, the segment is the whole database record. The

database record contains only the fields that the segment contains. MSDB

segments are fixed length.

The two kinds of MSDBs are terminal related and non-terminal related. In

terminal-related MSDBs, each segment is owned by one logical terminal. The

segment that is owned can be updated only by that terminal. Related MSDBs can

be fixed or dynamic. You can add segments to and delete segments from dynamic

related MSDBs. You cannot add segments to or delete segments from fixed related

MSDBs.

Fast Path Database Calls

172 Application Programming: Database Manager

In the second kind of MSDB, called non-terminal related (or nonrelated) MSDBs,

the segments are not owned by logical terminals. One way to understand the

differences between these types of databases and why you would use each one, is

to look at the examples of each in “Bank Account Hierarchy Example” on page 16.

Data Entry Databases (DEDBs)

A DEDB contains a root segment and as many as 127 dependent segment types.

One of these can be a sequential dependent; the other 126 are direct dependents.

Sequential dependent segments are stored in chronological order. Direct dependent

segments are stored hierarchically.

DEDBs can provide high data availability. Each DEDB can be partitioned, or divided

into multiple areas. Each area contains a different collection of database records. In

addition, you can make as many as seven copies of each area data set. If an error

exists in one copy of an area, application programs continue to access the data by

using another copy of that area. Use of the copy of an area is transparent to the

application program. When an error occurs to data in a DEDB, IMS does not stop

the database. IMS makes the data in error unavailable but continues to schedule

and process application programs. Programs that do not need the data in error are

unaffected.

DEDBs can be shared among application programs in separate IMS systems.

Sharing DEDBs is virtually the same as sharing full-function databases, and most of

the same rules apply. IMS systems can share DEDBs at the area level (instead of

at the database level as with full-function databases), or at the block level.

Related Reading: For more information on DEDB data sharing, see the explanation

of administering IMS systems that share data in IMS Version 9: Administration

Guide: System.

Processing MSDBs and DEDBs

Updating Segments: REPL, DLET, ISRT, and FLD

Three of the calls that you can use to update an MSDB or DEDB are the same

ones that you use to update other IMS databases: REPL, DLET, and ISRT. You can

issue a REPL call to a related MSDB or nonrelated MSDB, and you can issue any of

the three calls for non-terminal-related MSDBs (without terminal-related keys) or

DEDBs. When you issue REPL or DLET calls against an MSDB or DEDB, you must

first issue a Get Hold call for the segment you want to update, just as you do when

you replace or delete segments in other IMS databases.

One call that you can use against MSDBs and DEDBs that you cannot use against

other types of IMS databases is the Field (FLD) call, which enables you to access

and change the contents of a field within a segment. The FLD call has two types:

v FLD/VERIFY

This type of call compares the value of the field in the target segment to the

value you supply in the FSA.

v FLD/CHANGE

This type of call changes the value of the field in the target segment in the way

that you specify in the FSA. A FLD/CHANGE call is only successful if the previous

FLD/VERIFY call is successful.

Main Storage Databases (MSDBs)

Chapter 9. Processing Fast Path Databases 173

The FLD call does in one call what a Get Hold call and a REPL call do in two calls.

For example, using the ACCOUNT segment shown in Table 10 on page 17 a bank

would need to perform the following processing to find out whether a customer

could withdraw a certain amount of money from a bank account:

1. Retrieve the segment for the customer’s account.

2. Verify that the balance in the account is more than the amount that the

customer wants to withdraw.

3. Update the balance to reflect the withdrawal if the amount of the balance is

more than the amount of the withdrawal.

Without using the FLD call, a program would issue a GU call to retrieve the segment,

then verify its contents with program logic, and finally issue a REPL call to update

the balance to reflect the withdrawal. If you use the FLD call with a root SSA, you

can retrieve the desired segment. The FLD call has the same format as SSAs for

other calls. If no SSA exists, the first segment in the MSDB or DEDB is retrieved.

You use the FLD/VERIFY to compare the BALANCE field to the amount of the

withdrawal. A FLD/CHANGE call can update the BALANCE field if the comparison is

satisfactory.

The segment retrieved by a FLD call is the same as can be retrieved by a GHU call.

After the FLD call, the position is lost. An unqualified GN call after a FLD call returns

the next segment in the current area.

Checking the Contents of a Field: FLD/VERIFY

A FLD/VERIFY call compares the contents of a specified field in a segment to the

value that you supply. The way that a FLD/VERIFY call compares the two depends

on the operator you supply. When you supply the name of a field and a value for

comparison, you can determine if the value in the field is:

v Equal to the value you have supplied

v Greater than the value you have supplied

v Greater than or equal to the value you have supplied

v Less than the value you have supplied

v Less than or equal to the value you have supplied

v Not equal to the value you have supplied

After IMS performs the comparison that you have asked for, it returns a status code

(in addition to the status code in the PCB) to tell you the results of the comparison.

You specify the name of the field and the value that you want its value compared to

in a field search argument, or FSA. The FSA is also where IMS returns the status

code. You place the FSA in an I/O area before you issue a FLD call, and then you

reference that I/O area in the call—just as you do for an SSA in a DL/I call. An FSA

is similar to an SSA in that you use it to give information to IMS about the

information you want to retrieve from the database. An FSA, however, contains

more information than an SSA. Table 32 shows the structure and format of an FSA.

 Table 32. FSA Structure

FSA Component Field Length

FLD NAME 8

SC 1

OP 1

Processing MSDBs and DEDBs

174 Application Programming: Database Manager

Table 32. FSA Structure (continued)

FSA Component Field Length

FLD VALUE Variable

CON 1

The five fields in an FSA are:

Field Name (FLD Name)

This is the name of the field that you want to update. The field must be defined

in the DBD.

Status Code (SC)

This is where IMS returns the status code for this FSA. If IMS successfully

processes the FSA, it returns a blank status code. If IMS fails to process the

FSA, it returns a FE status code to the PCB to indicate a nonblank status code

in the FSA and returns a nonblank FSA status code. The FSA status codes that

IMS might return to you on a FLD/VERIFY call are:

B The length of the data supplied in the field value is invalid.

D The verify check is unsuccessful. In other words, the answer to your

query is no.

E The field value contains invalid data. The data you supplied in this field

is not the same type of data that is defined for this field in the DBD.

H The requested field is not found in the segment.

Operator (OP)

This tells IMS how you want the two values compared. For a FLD/VERIFY call,

you can specify:

E Verify that the value in the field is equal to the value you have supplied

in the FSA.

G Verify that the value in the field is greater than the value you have

supplied in the FSA.

H Verify that the value in the field is greater than or equal to the value you

have supplied in the FSA.

L Verify that the value in the field is less than the value you have supplied

in the FSA.

M Verify that the value in the field is less than or equal to the value you

have supplied in the FSA.

N Verify that the value in the field is not equal to the value you have

supplied in the FSA.

Field Value (FLD Value)

This area contains the value that you want IMS to compare to the value in the

segment field. The data that you supply in this area must be the same type of

data in the field you have named in the first field of the FSA. The five types of

data are: hexadecimal, packed decimal, alphanumeric (or a combination of data

types), binary fullword, and binary halfword. The length of the data in this area

must be the same as the length that is defined for this field in the DBD.

 Exceptions:

v If you are processing hexadecimal data, the data in the FSA must be in

hexadecimal. This means that the length of the data in the FSA is twice the

Processing MSDBs and DEDBs

Chapter 9. Processing Fast Path Databases 175

length of the data in the field in the database. IMS checks the characters in

hexadecimal fields for validity before that data is translated to database

format. (Only 0 to 9 and A to F are valid characters.)

v For packed-decimal data, you do not need to supply the leading zeros in the

field value. This means that the number of digits in the FSA might be less

than the number of digits in the corresponding database field. The data that

you supply in this field must be in a valid packed-decimal format and must

end in a sign digit.

 When IMS processes the FSA, it does logical comparisons for alphanumeric

and hexadecimal fields; it does arithmetic comparisons for packed decimal and

binary fields.

Connector (CON)

If this is the only or last FSA in this call, this area contains a blank. If another

FSA follows this one, this area contains an asterisk (*). You can include several

FSAs in one FLD call, if all the fields that the FSAs reference are in the same

segment. If you get an error status code for a FLD call, check the status codes

for each of the FSAs in the FLD call to determine where the error is.

When you have verified the contents of a field in the database, you can change the

contents of that field in the same call. To do this, supply an FSA that specifies a

change operation for that field.

Changing the Contents of a Field: FLD/CHANGE

To indicate to IMS that you want to change the contents of a particular field, use an

FSA, just as you do in a FLD/VERIFY call. The difference is in the operators that you

can specify and the FSA status codes that IMS can return to you after the call.

Using Table 32 on page 174 FLD/CHANGE works like this:

v You specify the name of the field that you want to change in the first field of the

FSA (Field Name).

v You specify an operator in the third field of the FSA (Operator), which indicates to

IMS how you want to change that field.

v You specify the value that IMS must use to change the field in the last area of

the FSA (Field Value).

By specifying different operators in a FLD/CHANGE call, you change the field in the

database in these ways:

v Add the value supplied in the FSA to the value in the field.

v Subtract the value supplied in the FSA from the value in the field.

v Set the value in the database field to the value supplied in the FSA.

You code these operators in the FSA with these symbols:

v To add: +

v To subtract: −

v To set the field equal to the new value: =

You can add and subtract values only when the field in the database contains

arithmetic (packed-decimal, binary-fullword, or binary-halfword) data.

The status codes you can receive in a FLD/CHANGE FSA are:

A Invalid operation; for example, you specified the + operator for a field that

contains character data.

Processing MSDBs and DEDBs

176 Application Programming: Database Manager

B Invalid data length. The data you supplied in the FSA is not the length that

is defined for that field in the DBD.

C You attempted to change the key field in the segment. Changing the key

field is not allowed.

E Invalid data in the FSA. The data that you supplied in the FSA is not the

type of data that is defined for this field in the DBD.

F You tried to change an unowned segment. This status code applies only to

related MSDBs.

G An arithmetic overflow occurred when you changed the data field.

H The requested field was not found in the segment.

Example of Using FLD/VERIFY and FLD/CHANGE

The example in this section uses the bank account segment shown in Table 10 on

page 17. Assume that a customer wants to withdraw $100 from a checking account.

The checking account number is 24056772. To find out whether the customer can

withdraw this amount, you must check the current balance. If the current balance is

greater than $100, you want to subtract $100 from the balance, and add 1 to the

transaction count in the segment.

You can do all of this processing by using one FLD call and three FSAs. The three

FSAs are described:

1. Verify that the value in the BALANCE field is greater than or equal to $100. For

this verification, you specify the BALANCE field, the H operator for greater than

or equal to, and the amount. The amount is specified without a decimal point.

Field names less than eight characters long must be padded with trailing blanks

to equal eight characters. You also have to leave a blank between the field

name and the operator for the FSA status code. This FSA looks like this:

BALANCE��H10000*

The last character in the FSA is an asterisk, because this FSA will be followed

by other FSAs.

2. Subtract $100 from the value in the BALANCE field if the first FSA is successful.

If the first FSA is unsuccessful, IMS does not continue processing. To subtract

the amount of the withdrawal from the amount of the balance, you use this FSA:

BALANCE��-10000*

Again, the last character in the FSA is an asterisk, because this FSA is followed

by a third FSA.

3. Add 1 to the transaction count for the account. To do this, use this FSA:

TRANCNT��+001�

In this FSA, the last character is a blank (�), because this is the last FSA for this

call.

When you issue the FLD call, you do not reference each FSA individually; you

reference the I/O area that contains all of them.

Commit-Point Processing in MSDBs and DEDBs

This section describes the MSDB commit view and DEDBs with an MSDB commit

view. (The following information assumes that you are already familiar with the

concepts of commit point processing, as described in IMS Version 9: Application

Programming: Design Guide.)

Processing MSDBs and DEDBs

Chapter 9. Processing Fast Path Databases 177

MSDB Commit View

When you update a segment in an MSDB, IMS does not apply your updates

immediately. Updates do not go into effect until your program reaches a commit

point.

As a result of the way updates are handled, you can receive different results if you

issue the same call sequence against a full-function database or a DEDB and an

MSDB. For example, if you issue GHU and REPL calls for a segment in an MSDB,

and then issue another Get call for the same segment in the same commit interval,

the segment that IMS returns to you is the “old” value, not the updated one. If, on

the other hand, you issue the same call sequence for a segment in a full-function

database or DEDB, the second Get call returns the updated segment.

When the program reaches a commit point, IMS also reprocesses the FLD

VERIFY/CHANGE call. If the VERIFY test passes, the change is applied to the

database. If the VERIFY test fails, the changes made since the previous commit

point are undone, and the transaction is reprocessed.

DEDBs with MSDB Commit View

Your existing application programs can use either the MSDB commit view or the

default DEDB commit view. To use the MSDB commit view for DEDBs, specify

VIEW=MSDB on the PCB statement; if you do not specify VIEW=MSDB, the DEDB uses

the default DEDB commit view. So no changes to any existing application programs

are required in order to migrate your MSDBs to DEDBs.

Assume that you specify VIEW=MSDB in the PCB and an application program issues

GHU and REPL calls to a DEDB followed by another GHU call for the segment in the

same commit interval. Then the application program receives the old value of the

data and not the new value from the REPL call. If you do not specify VIEW=MSDB, your

application program receives the new updated values of the data, just as you

expect for a DEDB or other DL/I database.

You can specify VIEW=MSDB for any DEDB PCB. If it is specified for a non-DEDB

database, you receive message DFS0904 during ACBGEN.

If you issue a REPL call with a PCB that specifies VIEW=MSDB, the segment must

have a key. This requirement applies to any segment in a path if command code ’D’

is specified. Otherwise, the AM status code is returned. See IMS Version 9:

Messages and Codes, Volume 1 for information about that status code.

Figure 40 shows an example of a PCB that specifies the VIEW option.

VSO Considerations

VSO is transparent to the processing of an application. Where the data resides is

immaterial to the application.

 PCB , *00000100

 TYPE=DB, *00000200

 NAME=DEDBJN21, *00000300

 PROCOPT=A, *00000400

 KEYLEN=30, *00000500

 VIEW=MSDB, *00000600

 POS=M 00000700

Figure 40. Sample PCB Specifying View=MSDB

Processing MSDBs and DEDBs

178 Application Programming: Database Manager

Data Locking for MSDBs and DEDBs

All MSDB calls, including the FLD call, can lock the data at the segment level. The

lock is acquired at the time the call is processed and is released at the end of the

call. All DEDB calls, with the exception of HSSP calls, are locked at the VSAM CI

level. For single-segment, root-only, fixed-length VSO areas, if you specify

PROCOPT R or G, the application program can obtain segment-level locks for all

calls. If you specify any other PROCOPT, the application program obtains VSAM CI

locks.

Related Reading: For more information on HSSP, see IMS Version 9:

Administration Guide: Database Manager.

Segment-level locking (SLL) provides a two-tier locking scheme. First, a share

(SHR) lock is obtained for the entire CI. Then, an exclusive (EXCL) segment lock is

obtained for the requested segment. This scheme allows for contention detection

between SLL users of the CI and EXCL requestors of the CI. When contention

occurs between an existing EXCL CI lock user and a SHR CI lock requestor, the

SHR CI lock is upgraded to an EXCL CI lock. During the time that this EXCL CI

lock is held, subsequent SHR CI lock requests must wait until the EXCL CI is

released at the next commit point.

DEDB FLD calls are not locked at call time. Instead, the lock is acquired at a commit

point.

During sync-point processing, the lock is re-acquired (if not already held), and the

changes are verified. Verification failure results in the message being reprocessed

(for message-driven applications) or an FE status code (for non-message-driven

applications). Verification can fail if the segment used by the FLD call has been

deleted or replaced before a sync-point.

Segment retrieval for a FLD call is the same as for a GU call. An unqualified FLD call

returns the first segment in the current area, just as an unqualified GU call does.

After the FLD call is processed, all locks for the current CI are released if the current

CI is unmodified by any previous call.

When a compression routine is defined on the root segment of a DEDB with a

root-only structure, and when that root segment is a fixed-length segment, its length

becomes variable after being compressed. To replace a compressed segment, you

must perform a delete and an insert. In this case, segment level control and locking

will not be available.

Restrictions on Using Calls for MSDBs

To retrieve segments from an MSDB

1, you can issue Get calls just as you do to

retrieve segments from other IMS databases. Because MSDBs contain only root

segments, you only use GU and GN calls (and GHU and GHN calls when you plan to

update a segment). If the segment name field in the SSA contains *MYLTERM, the

GU, GHU, and FLD calls return the LTERM-owned segment, and the remainder of the

SSA is ignored.

When you are processing MSDBs, you should consider the following differences

between calls to MSDBs and to other IMS databases:

1. This section does not apply to CICS users.

Processing MSDBs and DEDBs

Chapter 9. Processing Fast Path Databases 179

v You can use only one SSA in a call to an MSDB.

v MSDB calls cannot use command codes.

v MSDB calls cannot use multiple qualification statements (Boolean operators).

v The maximum length for an MSDB segment key is 240 bytes (not 255 bytes, as

in other IMS databases).

v If the SSA names an arithmetic field (types P, H, or F) as specified in the

database description (DBD), the database search is performed using arithmetic

comparisons (rather than the logical comparisons that are used for DL/I calls).

v If a hexadecimal field is specified, each byte in the database field is represented

in the SSA by its two-character hexadecimal representation. This representation

makes the search argument twice as long as the database field.

Characters in hexadecimal-type SSA qualification statements are tested for

validity before translation to the database format. Only numerals 0 through 9 and

letters A through F are accepted.

v Terminal-related and non-terminal-related LTERM-keyed MSDBs are not

supported for ETO or LU 6.2 terminals. Attempted access results in no data

being retrieved and an AM status code. See IMS Version 9: Administration

Guide: Transaction Manager for more information on ETO and LU 6.2.

v MSDBs cannot be shared among IMS subsystems in a sysplex group. When

using the Fast Path Expedited Message Handler (EMH), terminal related and

non-terminal related with terminal key MSDBs can only be accessed by static

terminals. These static terminals run transactions with Sysplex Processing Code

(SPC) of Locals Only as specified in DBFHAGU0 (Input Edit Router exit routine).

Processing DEDBs (IMS and CICS with DBCTL)

This section explains subset pointers, the POS call, data locking, and the P and H

processing options.

Processing DEDBs with Subset Pointers

Subset pointers and the command codes you use with them are optimization tools

that significantly improve the efficiency of your program when you need to process

long segment chains. Subset pointers are a means of dividing a chain of segment

occurrences under the same parent into two or more groups or subsets. You can

define as many as eight subset pointers for any segment type. You then define the

subset pointers from within an application program. (This is further described in

“Using Subset Pointers” on page 183.) Each subset pointer points to the start of a

new subset. For example, in Figure 41 on page 181, suppose you define one

subset pointer that divides the last three segment occurrences from the first four.

Your program can then refer to that subset pointer through command codes and

directly retrieve the last three segment occurrences.

Restrictions on Using Calls for MSDBs

180 Application Programming: Database Manager

You can use subset pointers at any level of the database hierarchy, except at the

root level. If you try to use subset pointers at the root level, they are ignored.

Figure 42 and Figure 43 on page 182show some of the ways you can set subset

pointers. Subset pointers are independent of one another, which means that you

can set one or more pointers to any segment in the chain. For example, you can

set more than one subset pointer to a segment, as shown in Figure 42.

 You can also define a one-to-one relationship between the pointers and the

segments, as shown inFigure 43 on page 182.

Figure 41. Processing a Long Chain of Segment Occurrences with Subset Pointers

Figure 42. Examples of Setting Subset Pointers

Processing DEDBs (IMS, CICS with DBCTL)

Chapter 9. Processing Fast Path Databases 181

Figure 44 shows how the use of subset pointers divides a chain of segment

occurrences under the same parent into subsets. Each subset ends with the last

segment in the entire chain. For example, the last segment in the subset that is

defined by subset pointer 1 is B7.

Before You Use Subset Pointers

For your program to use subset pointers, the pointers must be defined in the DBD

for the DEDB and in your program’s PSB:

v In the DBD, you specify the number of pointers for a segment chain. You can

specify as many as eight pointers for any segment chain.

v In the PSB, you specify which pointers your program is to use. Define this on the

SENSEG statement. (Each pointer is defined as an integer from 1 to 8.) Also,

indicate on the SENSEG statement whether your program can set the pointers it

uses. If your program has read sensitivity, it cannot set pointers but can only

retrieve segments using subset pointers that are already set. If your program has

update sensitivity, it can also update subset pointers by using the S, W, M, and Z

command codes.

Figure 43. Additional Examples of Setting Subset Pointers

Figure 44. How Subset Pointers Divide a Chain into Subsets

Processing DEDBs (IMS, CICS with DBCTL)

182 Application Programming: Database Manager

After the pointers are defined in the DBD and the PSB, an application program can

set the pointers to segments in a chain. When an application program finishes

executing, the subset pointers used by that program remain as they were set by the

program; they are not reset.

Designating Subset Pointers

To use subset pointers in your program, you must know the numbers for the

pointers as they were defined in the PSB. When you use the subset pointer

command codes, specify the number of each subset pointer you want to use

followed by the command code. For example, you use R3 to indicate that you want

to retrieve the first segment occurrence in the subset defined by subset pointer 3.

No default exists, so if you do not include a number between 1 and 8, IMS

considers your SSA invalid and returns an AJ status code.

Using Subset Pointers

To take advantage of subsets, application programs use five command codes. The

R command code retrieves the first segment in a subset. The following 4 command

codes, which are explained in “General Command Codes for DL/I Calls” on page

201, redefine subsets by modifying the subset pointers:

Z Sets a subset pointer to 0.

M Sets a subset pointer to the segment following the current segment.

S Unconditionally sets a subset pointer to the current segment.

W Conditionally sets a subset pointer to the current segment.

Before your program can set a subset pointer, it must establish a position in the

database. A call must be fully satisfied before a subset pointer is set. The segment

a pointer is set to depends on your current position at the completion of the call. If a

call to retrieve a segment is not completely satisfied and a position is not

established, the subset pointers remain as they were before the call was made. You

can use subset pointer command codes in either an unqualified SSA or a qualified

SSA. To use a command code in a call with an unqualified SSA, use the command

code along with the number of the subset pointer you want, after the segment

name. This is shown in Table 33.

 Table 33. Unqualified SSA with Subset Pointer Command Code

Seg Name * Cmd Code Ssptr. �

8 1 Variable Variable 1

To use a subset pointer command code with a qualified SSA, use the command

code and subset pointer number immediately before the left parenthesis of the

qualification statement, as shown in Table 34.

 Table 34. Qualified SSA with Subset Pointer Command Code

Seg Name * Cmd Code Ssptr. (Fld Name R.O. Fld Value)

8 1 Variable Variable 1 8 2 Variable 1

The examples in this section use calls with unqualified SSA. The examples are

based on Sample Application Program, which is described in “Fast Path Coding

Considerations” on page 189.

Processing DEDBs (IMS, CICS with DBCTL)

Chapter 9. Processing Fast Path Databases 183

Inserting Segments in a Subset: When you use the R command code to insert

an unkeyed segment in a subset, the new segment is inserted before the first

segment occurrence in the subset. However, the subset pointer is not automatically

set to the new segment occurrence.

Example: The following call inserts a new B segment occurrence in front of

segment B5, but does not set subset pointer 1 to point to the new B segment

occurrence:

ISRT A�������(Akey����=�A1)

 B�������*R1

To set subset pointer 1 to the new segment, you use the S command code along

with the R command code, as shown in the following example:

ISRT A�������(Akey����=�A1)

 B�������*R1S1

If the subset does not exist (subset pointer 1 is set to 0), the segment is added to

the end of the segment chain.

Deleting the Segment Pointed to by a Subset Pointer: If you delete the

segment pointed to by a subset pointer, the subset pointer points to the next

segment occurrence in the chain. If the segment you delete is the last segment in

the chain, the subset pointer is set to 0.

Combining Command Codes: You can use the S, M, and W command codes

with other command codes, and you can combine subset pointer command codes

with each other, as long as they do not conflict. For example, you can use R and S

together, but you cannot use S and Z together because their functions conflict. If

you combine command codes that conflict, IMS returns an AJ status code to your

program.

You can use one R command code for each SSA and one update command code

(Z, M, S, or W) for each subset pointer.

Subset Pointer Status Codes

If you make an error in an SSA that contains subset pointer command codes, IMS

can return either of these status codes to your program:

AJ The SSA used an R, S, Z, W, or M command code for a segment that does

not have subset pointers defined in the DBD.

 The subset command codes included in the SSA are in conflict. For

example, if one SSA contains an S command code and a Z command code

for the same subset pointer, IMS returns an AJ status code. S indicates that

you want to set the pointer to current position; Z indicates that you want to

set the pointer to 0. You cannot use these command codes in one SSA.

 The SSA includes more than one R command code.

 The pointer number following a subset pointer command code is invalid.

You either did not include a number, or you included an invalid character.

The number following the command code must be between 1 and 8.

AM The subset pointer referenced in the SSA is not specified in the program’s

PSB. For example, if your program’s PSB specifies that your program can

use subset pointers 1 and 4, and your SSA references subset pointer 5,

IMS returns an AM status code.

Processing DEDBs (IMS, CICS with DBCTL)

184 Application Programming: Database Manager

Your program tried to use a command code that updates the pointer (S, W,

or M), but the program’s PSB did not specify pointer-update sensitivity.

Retrieving Location with the POS Call (for DEDB Only)

With the POS (Position) call, you can:

v Retrieve the location of a specific sequential dependent segment.

v Retrieve the location of the last-inserted sequential dependent segment, its time

stamp, and the IMS ID.

v Retrieve the time stamp of a sequential dependent or Logical Begin.

v Tell the amount of unused space within each DEDB area. For example, you can

use the information that IMS returns for a POS call to scan or delete the

sequential dependent segments for a particular time period.

“POS Call” on page 239 explains how you code the POS call and what the I/O area

for the POS call looks like. If the area that the POS call specifies is unavailable, the

I/O area is unchanged, and the FH status code is returned.

Locating a Specific Sequential Dependent

When you have position on a particular root segment, you can retrieve the position

information and the area name of a specific sequential dependent of that root. If

you have a position established on a sequential dependent segment, the search

starts from that position. IMS returns the position information for the first sequential

dependent segment that satisfies the call. To retrieve this information, issue a POS

call with a qualified or unqualified SSA containing the segment name of the

sequential dependent. Current position after this kind of POS call is the same place

that it would be after a GNP call.

After a successful POS call, the I/O area contains:

LL A 2-byte field giving the total length of the data in the I/O area, in

binary.

Area Name An 8-byte field giving the ddname from the AREA statement.

Position An 8-byte field containing the position information for the requested

segment.

 Exception: If the sequential dependent segment that is the target

of the POS call is inserted in the same synchronization interval, no

position information is returned. Bytes 11-18 contain X'FF'. Other

fields contain normal data.

Unused CIs A 4-byte field containing the number of unused CIs in the sequential

dependent part.

Unused CIs A 4-byte field containing the number of unused CIs in the

independent overflow part.

Locating the Last Inserted Sequential Dependent Segment

You can also retrieve the position information for the most recently inserted

sequential dependent segment of a given root segment. To do this, you issue a POS

call with an unqualified or qualified SSA containing the root segment as the

segment name. Current position after this type of call follows the same rules as

position after a GU call.

You can also retrieve the position of the SDEP, its time stamp, and the ID of the

IMS that owns the segment. To do this, you issue a POS call with a qualified SSA

and provide the keyword PCSEGTSP in position one of the I/O area as input to the

Processing DEDBs (IMS, CICS with DBCTL)

Chapter 9. Processing Fast Path Databases 185

POS call. The keyword requests the POS call to return the position of the SDEP, its

time stamp, and the ID of the IMS that owns the segment.

Requirement: The I/O area must be increased in size to 42 bytes to allow for the

added data being returned. The I/O area includes a 2-byte LL field that is not shown

in Table 35. This LL field is described after Table 35.

 Table 35. Qualified POS Call: Keywords and Map of I/O Area Returned

Keyword word 0 word 1 word 2 word 3 word 4 word 5 word 6 word 7 word 8 word 9

<null> Field 1 Field 2 Field 3 Field 4 N/A N/A

PCSEGTSP Field 1 Field 2 Field 5 Field 6 Field 7

Field 1 Area name

Field 2 Sequential dependent location from qualified SSA

Field 3 Unused CIs in sequential dependent part

Field 4 Unused CIs in independent overflow part

Field 5 Committed sequential dependent segment time stamp

Field 6 IMS ID

Field 7 Pad

After a successful POS call, the I/O area contains:

LL (Not shown in table) A 2-byte field, in binary, containing the total

length of the data in the I/O area.

(Field 1)

Area Name

An 8-byte field giving the ddname from the AREA

statement.

(Field 2)

Position

An 8-byte field containing the position information for the

most recently inserted sequential dependent segment. This

field contains zeros if no sequential dependent exists for

this root.

Sequential dependent location from qualified SSA

IMS places two pieces of data in this 8-byte field after a

successful POS call. The first 4 bytes contain the cycle

count, and the second 4 bytes contain the VSAM RBA.

 If the sequential dependent segment that is the target of the

POS call is inserted in the same synchronization interval, no

position information is returned. Bytes 11-18 contain X'FF'.

Other fields contain normal data.

(Field 3)

Unused CIs in sequential dependent part

A 4-byte field containing the number of unused control

intervals in the sequential dependent part.

(Field 4)

Processing DEDBs (IMS, CICS with DBCTL)

186 Application Programming: Database Manager

Unused CIs in independent overflow part

A 4-byte field containing the number of unused control

intervals in the independent overflow part.

(Field 5)

Committed Sequential Dependent Segment Time Stamp

An 8-byte field containing the time stamp that corresponds

to the SDEP segment located by the qualified POS call.

(Field 6)

IMS ID

Identifies the IMS that owns the CI where the SDEP

segment was located.

(Field 7)

Pad An 8-byte pad area to align the I/O area on a double word

boundary. No data is returned to this field.

Identifying Free Space

To retrieve the area name and the next available position within the sequential

dependent part from all online areas, you can issue an unqualified POS call. This

type of call also retrieves the unused space in the independent overflow and

sequential dependent parts.

After a unsuccessful unqualified POS call, the I/O area contains the length (LL),

followed by the same number of entries as existing areas within the database. Each

entry contains the fields shown below:

Area Name An 8-byte field giving the ddname from the AREA.

Position An 8-byte field with binary zeros.

Unused SDEP CIs A 4-byte field with binary zeros.

Unused IOV CIs A 4-byte field with two binary zeros followed by a

bad status code.

Commit-Point Processing in a DEDB

IMS retains database updates in processor storage until the program reaches a

commit point. IMS saves updates to a DEDB in Fast Path buffers. The database

updates are not applied to the DEDB until after the program has successfully

completed commit-point processing. Unlike Get calls to an MSDB, however, a Get

call to an updated segment in a DEDB returns the updated value, even if a commit

point has not occurred.

When a BMP is processing DEDBs, it must issue a CHKP or SYNC call to do

commit-point processing before it terminates. Otherwise, the BMP abnormally

terminates with abend U1008.

If you want a DEDB to have an MSDB commit view, refer to “Commit-Point

Processing in MSDBs and DEDBs” on page 177.

P Processing Option

If the P processing option is specified in the PCB for your program, a GC status

code is returned to your program whenever a call to retrieve or insert a segment

causes a unit of work (UOW) boundary to be crossed.

Processing DEDBs (IMS, CICS with DBCTL)

Chapter 9. Processing Fast Path Databases 187

Related Reading: For more information on the UOW for DEDBs, see IMS Version

9: Administration Guide: Database Manager.

Although crossing the UOW boundary probably has no particular significance for

your program, the GC status code indicates that this is a good time to issue either a

SYNC or CHKP call. The advantages of issuing a SYNC or CHKP call after your program

receives a GC status code are:

v Your position in the database is retained. Issuing a SYNC or CHKP call normally

causes position in the database to be lost, and the application program must

reestablish position before it can resume processing.

v Commit points occur at regular intervals.

When a GC status code is returned, no data is retrieved or inserted. In your

program, you can either:

v Issue a SYNC or CHKP call, and resume database processing by reissuing the call

that caused the GC status code.

v Ignore the GC status code, and resume database processing by reissuing the

call that caused the status code.

H Processing Option

If the H processing option has been specified in the PCB for your call program, a

GC status code is returned whenever a call to retrieve or insert a segment causes a

unit of work (UOW) or an area boundary to be crossed. The program must cause a

commit process before any other calls can be issued to that PCB.

If a commit process is not caused, an FR status code results (total buffer allocation

exceeded), and all database changes for this synchronization interval are “washed”

(sync-point failure).

A GC status code is returned when crossing the area boundary so that the

application program can issue a SYNC or CHKP call to force cleanup of resources

(such as buffers) that were obtained in processing the previous area. This cleanup

might cause successive returns of a GC status code for a GN or GHN call, even if a

SYNC or CHKP call is issued appropriately for the previous GC status code.

When an application is running HSSP and proceeding through the DEDB AREA

sequentially, a buffer shortage condition may occur due to large IOV chains. In this

case, a FW status code is returned to the application. Usually, the application

issues a commit request and position is set to the next UOW. However, this does

not allow the previous UOW to finish processing. In order to finish processing the

previous UOW, you can issue a commit request after the FW status code is

received and set the position to remain in the same UOW. You must also reposition

the application to the position that gave the FW status code. The following shows

an example of the command sequence and corresponding application responses.

 GN root1

 GN root2

 GN root3

 GN root4 /*FW status code received*/

 CHKP

 GN SSA=(root4) root4 /*User reposition prior to CHKP*/

 GN root5

Data Locking

For information on how data locking is handled for DEDBs, see “Data Locking for

MSDBs and DEDBs” on page 179.

Processing DEDBs (IMS, CICS with DBCTL)

188 Application Programming: Database Manager

Calls with Dependent Segments for DEDBs

This section provides information on which calls you can use with direct and

sequential dependent segments for DEDBs. The DL/I calls that you can issue

against a root segment are: GU, GN (GNP has no meaning for a root segment), DLET,

ISRT, and REPL. You can issue all DL/I calls against a direct dependent segment,

and you can issue Get and ISRT calls against sequential dependents segments.

Direct Dependent Segments

DL/I calls to direct dependents include the same number of SSAs as existing levels

in the hierarchy (a maximum of 15). They can also include command codes and

multiple qualification statements. The same rules apply to using command codes on

DL/I calls to DEDBs as to full-function databases.

Exception:

v If you use the D command code in a call to a DEDB, the P processing option

need not be specified in the PCB for the program. The P processing option has a

different meaning for DEDBs than for full-function databases. (See “P Processing

Option” on page 187.)

Some special command codes can be used only with DEDBs that use subset

pointers. Your program uses these command codes to read and update the subset

pointers. Subset pointers are explained in “Processing DEDBs with Subset Pointers”

on page 180.

Sequential Dependent Segments

Because sequential dependents are stored in chronological order, they are useful in

journaling, data collection, and auditing application programs. You can access

sequential dependents directly. However, sequential dependents are normally

retrieved sequentially using the Database Scan utility.

Restriction: When processing sequential dependent segments:

v You can only use the F command code with sequential dependents; IMS ignores

all other command codes.

v You cannot use Boolean operators in calls to sequential dependents.

Related Reading: For more information about the utility, see IMS Version 9: Utilities

Reference: Database and Transaction Manager.

Fast Path Coding Considerations

You can use DL/I calls to access Fast Path databases. You can also use two

additional calls: FLD and POS. The type of Fast Path database that you are

processing determines when you can use each of these calls.

To process MSDBs, you can use these calls:

v For nonterminal-related MSDBs:

 FLD

 GU and GHU

 GN and GHN

 REPL

v For terminal-related, fixed MSDBs:

Calls with Dependent Segments for DEDBs

Chapter 9. Processing Fast Path Databases 189

FLD

 GU and GHU

 GN and GHN

 REPL

v For terminal-related, dynamic MSDBs:

 DLET

 FLD

 GU and GHU

 GN and GHN

 ISRT

 REPL

You can use these calls to process a DEDB:

v DEQ

v DLET

v FLD

v GU and GHU

v GN and GHN

v GNP and GHNP

v ISRT

v POS

v REPL

Fast Path Coding Considerations

190 Application Programming: Database Manager

Part 2. Reference

Chapter 10. Command Code Reference 199

General Command Codes for DL/I Calls 201

C Command Code . 201

D Command Code . 202

Retrieving a Sequence of Segments 202

Inserting a Sequence of Segments 203

F Command Code . 203

Retrieving a Segment as the First Occurrence 203

Inserting a Segment as the First Occurrence 204

L Command Code . 204

Retrieving a Segment as the Last Occurrence 205

Inserting a Segment as the Last Occurrence 205

N Command Code . 205

P Command Code . 206

Q Command Code . 206

Limiting the Number of Database Calls 207

Using Segment Lock Class 207

Using the DEQ Call with the Q Command Code 208

Retrieving Segments with Full-Function DEQ Calls 208

Retrieving Buffers with Fast Path DEQ Calls 208

Considerations for Root and Dependent Segments (Full Function Only) 208

U Command Code . 209

V Command Code . 210

NULL Command Code . 211

DEDB Command Codes for DL/I 211

Sample Application Program 211

M Command Code . 212

R Command Code . 213

S Command Code . 214

W Command Code . 215

Z Command Code . 216

Chapter 11. DL/I Calls for Database Management 217

Database Management Call Summary 217

CIMS Call . 219

Format . 219

Parameters . 219

Usage . 219

CLSE Call . 220

Format . 220

Parameters . 220

Usage . 221

DEQ Call . 221

Format (Full Function) . 221

Format (Fast Path DEDB) 221

Parameters . 221

Usage . 222

Restrictions . 222

DLET Call . 222

Format . 222

Parameters . 222

Usage . 223

FLD Call . 223

© Copyright IBM Corp. 1974, 2004 191

Format . 224

Parameters . 224

Usage . 224

FSAs . 225

GN/GHN Call . 226

Format . 226

Parameters . 226

Usage: Get Next (GN) . 227

Usage: Get Hold Next (GHN) 229

Usage: HDAM, PHDAM, or DEDB Database with GN 229

Restriction . 230

GNP/GHNP Call . 230

Format . 230

Parameters . 230

Usage: Get Next in Parent (GNP) 231

Linking with Previous DL/I Calls 231

Processing with Parentage 231

How DL/I Calls Affect Parentage 232

Usage: Get Hold Next in Parent (GHNP) 233

GU/GHU Call . 233

Format . 233

Parameters . 233

Usage: Get Unique (GU) . 234

Usage: Get Hold Unique (GHU) 235

Restriction . 235

ISRT Call . 235

Format . 235

Parameters . 236

Usage . 237

Root Segment Occurrence 237

Insert Rules . 237

Mix Qualified and Unqualified SSA 238

Using SSA with the ISRT Call 238

OPEN Call . 239

Format . 239

Parameters . 239

Usage . 239

POS Call . 239

Format . 240

Parameters . 240

Usage . 242

Restrictions . 242

REPL Call . 242

Format . 243

Parameters . 243

Usage . 243

Chapter 12. DL/I Calls for System Services 245

System Service Call Summary 246

APSB Call . 248

Format . 248

Parameters . 248

Usage . 248

CHKP (Basic) Call . 249

Format . 249

Parameters . 249

192 Application Programming: Database Manager

Usage . 249

CHKP (Symbolic) Call . 250

Format . 250

Parameters . 250

Usage . 251

Restrictions . 251

DPSB Call . 251

Format . 251

Parameters . 251

Usage . 252

GMSG Call . 252

Format . 252

Parameters . 252

Usage . 253

Restrictions . 254

GSCD Call . 254

Format . 254

Parameters . 254

Usage . 255

Restriction . 255

ICMD Call . 255

Format . 255

Parameters . 255

Usage . 256

Restrictions . 257

INIT Call . 257

Format . 257

Parameters . 257

Usage . 258

Determining Database Availability: INIT DBQUERY 258

Automatic INIT DBQUERY 259

Performance Considerations for the INIT Call (IMS Online Only) 259

Enabling Data Availability Status Codes: INIT STATUS GROUPA 259

Enabling Deadlock Occurrence Status Codes: INIT STATUS GROUPB 260

Restrictions . 262

INQY Call . 262

Format . 262

Parameters . 262

Usage . 263

Querying Data Availability: INQY DBQUERY 263

Querying the Environment: INQY ENVIRON 264

Querying the PCB: INQY FIND 266

Querying for LE Overrides: INQY LERUNOPT 266

Querying the Program Name: INQY PROGRAM 267

INQY Return Codes and Reason Codes 267

Map of INQY Subfunction to PCB Type 267

Restrictions . 267

LOG Call . 267

Format . 268

Parameters . 268

Usage . 269

Restrictions . 269

PCB Call (CICS Online Programs Only) 269

Format . 269

Parameters . 269

Usage . 270

Part 2. Reference 193

Restrictions . 270

RCMD Call . 270

Format . 270

Parameters . 270

Usage . 271

Restrictions . 271

ROLB Call . 271

Format . 272

Parameters . 272

Restrictions . 272

ROLL Call . 272

Format . 272

Parameters . 273

Usage . 273

Restriction . 273

ROLS Call . 273

Format . 273

Parameters . 273

Usage . 274

Restrictions . 274

SETS/SETU Call . 274

Format . 274

Parameters . 274

Usage . 275

Restrictions . 275

SNAP Call . 275

Format . 276

Parameters . 276

Usage . 278

Restrictions . 278

STAT Call . 278

Format . 278

Parameters . 279

Usage . 280

Restrictions . 280

SYNC Call . 280

Format . 280

Parameters . 281

Usage . 281

Restrictions . 281

TERM Call (CICS Online Programs Only) 281

Format . 281

Usage . 281

Restrictions . 282

XRST Call . 282

Format . 282

Parameters . 282

Usage . 283

Starting Your Program Normally 283

Restarting Your Program 283

Position in the Database after Issuing XRST 284

Restrictions . 285

Chapter 13. Relationship Between Calls and AIB and PCBs 287

Chapter 14. DL/I Test Program (DFSDDLT0) 289

194 Application Programming: Database Manager

Control Statements . 290

Planning the Control Statement Order 291

ABEND Statement . 292

Examples of ABEND Statement 292

CALL Statement . 292

CALL FUNCTION Statement 292

CALL DATA Statement . 296

OPTION DATA Statement 298

FEEDBACK DATA Statement 298

DL/I Call Functions . 299

Examples of DL/I Call Functions 302

CALL FUNCTION Statement with Column-Specific SSAs 310

DFSDDLT0 Call Functions 311

STAK/END (stacking) Control Statements 312

SKIP/START (skipping) Control Statements 312

Examples of DFSDDLT0 Call Functions 312

COMMENT Statement . 313

Conditional COMMENT Statement 313

Unconditional COMMENT Statement 313

Example of COMMENT Statement 313

COMPARE Statement . 314

COMPARE DATA Statement 314

COMPARE AIB Statement 315

COMPARE PCB Statement 316

Examples of COMPARE DATA and COMPARE PCB Statements 318

IGNORE Statement . 320

Example of IGNORE Statement Using N or 320

OPTION Statement . 320

Example of OPTION Control Statement 321

PUNCH CTL Statement . 321

Example of PUNCH CTL Statement 323

Example of PUNCH CTL Statement for All Parameters 324

STATUS Statement . 324

Examples of STATUS Statement 326

WTO Statement . 327

Example of WTO Statement 327

WTOR Statement . 327

Example of WTOR Statement 328

JCL Requirements . 328

SYSIN DD Statement . 329

SYSIN2 DD Statement . 329

PRINTDD DD Statement . 329

PUNCHDD DD Statement 329

Using the PREINIT Parameter for DFSDDLT0 Input Restart 330

Execution of DFSDDLT0 in IMS Regions 331

Explanation of DFSDDLT0 Return Codes 332

DFSDDLT0 Hints . 332

Load a Database . 332

Print the Segments in a Database 333

Retrieve and Replace a Segment 333

Delete a Segment . 334

Do Regression Testing . 334

Use as a Debugging Aid . 334

Verify How a Call Is Executed 334

Chapter 15. IMS Adapter for REXX 335

Part 2. Reference 195

Sample Exit Routine (DFSREXXU) 336

Addressing Other Environments 336

REXX Transaction Programs 337

IMS Adapter for REXX Overview Diagram 338

IVPREXX Sample Application 339

IVPREXX Example 1 . 339

IVPREXX Example 2 . 340

IVPREXX Example 3 . 340

IVPREXX Example 4 . 340

REXXTDLI Commands . 341

REXXTDLI Calls . 341

Return Codes . 341

Parameter Handling . 342

Example DL/I Calls . 343

Environment Determination 344

REXXIMS Extended Commands 344

DLIINFO . 345

Format . 346

Usage . 346

Example . 346

IMSRXTRC . 346

Format . 346

Usage . 347

Example . 347

MAPDEF . 347

Format . 347

Usage . 348

Example . 349

MAPGET . 349

Format . 349

Usage . 349

Examples . 350

MAPPUT . 350

Format . 350

Usage . 350

Examples . 350

SET . 351

Format . 351

Usage . 351

Examples . 352

SRRBACK and SRRCMIT 352

Format . 352

Usage . 352

STORAGE . 352

Format . 352

Usage . 353

Example . 354

WTO, WTP, and WTL . 354

Format . 354

Usage . 354

Example . 354

WTOR . 354

Format . 354

Usage . 354

Example . 355

IMSQUERY Extended Functions 355

196 Application Programming: Database Manager

Format . 355

Usage . 355

Example . 356

Sample Execs Using REXXTDLI 356

SAY Exec: For Expression Evaluation 357

PCBINFO Exec: Display Available PCBs in Current PSB 358

PART Execs: Database Access Examples 360

PARTNUM Exec: Show Set of Parts Near a Specified Number 361

PARTNAME Exec: Show a Set of Parts with a Similar Name 361

DFSSAM01 Exec: Load the Parts Database 362

DOCMD: IMS Commands Front End 362

IVPREXX: MPP/IFP Front End for General Exec Execution 367

Chapter 16. CICS-DL/I User Interface Block Return Codes 369

Not-Open Conditions . 370

Invalid Request Conditions . 370

Part 2. Reference 197

198 Application Programming: Database Manager

Chapter 10. Command Code Reference

This chapter contains reference information on all of the command codes.

The following topics provide additional information:

v “General Command Codes for DL/I Calls” on page 201

v “DEDB Command Codes for DL/I” on page 211

See Table 36, Table 37 on page 200, and Table 38 for all the command codes and

their usage.

Restriction: Command codes cannot be used by MSDB calls.

 Table 36. Summary of Command Codes

Command

Code Allows You to...

C Use the concatenated key of a segment to identify the segment.

D Retrieve or insert a sequence of segments in a hierarchic path using only

one call, instead of having to use a separate (path) call for each segment.

F Back up to the first occurrence of a segment under its parent when

searching for a particular segment occurrence. Disregarded for a root

segment.

L Retrieve the last occurrence of a segment under its parent.

M Move a subset pointer to the next segment occurrence after your current

position. (Used with DEDBs only.)

N Designate segments that you do not want replaced when replacing segments

after a Get Hold call. Usually used when replacing a path of segments.

P Set parentage at a higher level than what it usually is (the lowest-level SSA

of the call).

Q Reserve a segment so that other programs will not be able to update it until

you have finished processing and updating it.

R Retrieve the first segment occurrence in a subset. (Used with DEDBs only.)

S Unconditionally set a subset pointer to the current position. (Used with

DEDBs only.)

U Limit the search for a segment to the dependents of the segment occurrence

on which position is established.

V Use the hierarchic level at the current position and higher as qualification for

the segment.

W Set a subset pointer to your current position, if the subset pointer is not

already set. (Used with DEDBs only.)

Z Set a subset pointer to 0, so it can be reused. (Used with DEDBs only.)

- Null. Use an SSA in command code format without specifying the command

code. Can be replaced during execution with the command codes that you

want.

© Copyright IBM Corp. 1974, 2004 199

|

|

|

|

|
|

Table 37 shows the list of command codes with applicable calls.

 Table 37. Command Codes and Related Calls

Command Code GU GHU GN GHN

GNP

GHNP REPL ISRT DLET

C X X X X

D X X X X

F X X X X

L X X X X

M X X X X X

N X

P X X X X

Q X X X X

R X X X X

S X X X X X

U X X X X

V X X X X

W X X X X X

Z X X X X X X

- X X X X X X

 Table 38. Command Codes for DL/I Calls

Command

Code

Usage

C Supplies concatenated key in SSA

D Retrieves or inserts a sequence of segments

F Starts search with first occurrence

L Locates last occurrence

M1 Moves subset pointer forward to the next segment

N Prevents replacement of a segment on a path call

P Establishes parentage of present level

Q Enqueues segment

R1 Retrieves first segment in the subset

S1 Sets subset pointer unconditionally

U Maintains current position

V Maintains current position at present level and higher

W1 Sets subset pointer conditionally

Z1 Sets subset pointer to 0

- (null) Reserves storage positions for program command codes in SSA

Note:

1. This command code is used only with DEDBs.

Command Code Reference

200 Application Programming: Database Manager

General Command Codes for DL/I Calls

This section has descriptions and examples for general command codes DL/I calls.

C Command Code

You can use the C command code to indicate to IMS that (instead of supplying a

qualification statement) you are supplying the segment’s concatenated key as a

means of identifying it. You can use either the C command code or a qualification

statement, but not both.

You can use the C command code for all Get calls and for the ISRT call. When you

code the concatenated key, enclose it in parentheses following the *C, and place it

in the same position that would otherwise contain the qualification statement.

Example: Suppose you wanted to satisfy this request:

Did Joan Carter visit the clinic on March 3, 1993? Her patient number is

07755.

The PATIENT segment’s key field is the patient number, and the ILLNESS

segment’s key field is the date field, so the concatenated key is 0775519930303.

This number is comprised of four digits for the year, followed by two digits for both

the month and the day. You issue a GU call with the following SSA to satisfy the

request:

GU ILLNESS�*C(0775519930303)

Using the C command code is sometimes more convenient than a qualification

statement because it is easier to use the concatenated key than to move each part

of the qualification statement to the SSA area during program execution. Using the

segment’s concatenated key is the equivalent of giving all the SSA in the path to

the segment qualified on their keys.

Example: Suppose that you wanted to answer this request:

What treatment did Joan Carter, patient number 07755, receive on March 3,

1993?

Using qualification statements, you would specify the following SSA with a GU call:

GU PATIENT�(PATNO���EQ07755)

 ILLNESS�(ILLDATE�EQ19930303)

 TREATMNT�

Using a C command code, you can satisfy the previous request by specifying the

following SSA on a GU call:

GU ILLNESS�*C(0775519930303)

 TREATMNT�

If you need to qualify a segment by using a field other than the key field, use a

qualification statement instead of the C command code.

Only one SSA with a concatenated key is allowed for each call. To return segments

to your program in the path to the segment specified by the concatenated key, you

can use unqualified SSA containing the D command code.

Command Code Reference

Chapter 10. Command Code Reference 201

Example: If you want to return the PATIENT segment for Joan Carter to your I/O

area, in addition to the ILLNESS segment, use the call:

GU PATIENT�*D�

 ILLNESS�*C(0775519930303)

You can use the C command code with the object segment for a Get call, but not

for an ISRT call. The object segment for an ISRT call must be unqualified.

D Command Code

You can use the D command code to retrieve or insert a sequence of segments in a

hierarchic path with one call rather than retrieving or inserting each segment with a

separate call. A call that uses the D command code is called a path call.

For your program to use the D command code, the P processing option must be

specified in the PCB, unless your program uses command code D when processing

DEDBs.

Related Reading: For more information on using the P processing option, see the

description of PSB generation in IMS Version 9: Utilities Reference: System.

Retrieving a Sequence of Segments

When you use the D command code with retrieval calls, IMS places the segments

in your I/O area. The segments in the I/O area are placed one after the other, left to

right, starting with the first SSA you supplied. To have IMS return each segment in

the path, you must include the D command code in each SSA. You can, however,

include an intervening SSA without the D command code. You do not need to

include the D command code on the last segment in the path, because IMS always

returns the last segment in the path to your I/O area.

The D command code has no effect on IMS’s retrieval logic. The only thing it does

is cause each segment to be moved to your I/O area. The segment name in the

PCB is the lowest-level segment that is retrieved or the last level that is satisfied in

the call in the case of a GE (not-found) status code. Higher-level segments with the

D command code are placed in the I/O area.

If IMS is unable to find the lowest segment your program has requested, it returns a

GE (not-found) status code, just as it does if your program does not use the D

command code and IMS is unable to find the segment your program has requested.

This is true even if IMS reaches the end of the database before finding the lowest

segment your program requested. If IMS reaches the end of the database without

satisfying any levels of a path call, it returns a GB (end of database) status code.

However, if IMS returns one or more segments to your I/O area (new segments for

which there was no current position at the start of the current call), and if IMS is

unable to find the lowest requested segment, IMS returns a GE status code, even if

it has reached the end of the database.

The advantages of using the D command code are significant even if your program

is not sure that it will need the dependent segment returned by D. For example,

suppose that after examining the dependent segment, your program still needs to

use it. Using the D command, your program has the segment if you need it, and

your program is not required to issue another call for the segment.

Example: As an example of the D command code, suppose your program has this

request:

Command Code Reference

202 Application Programming: Database Manager

Compute the balance due for each of the clinic’s patients by subtracting the

payments received from the amount billed; print bills to be mailed to each

patient.

To process this request for each patient, your program needs to know the patient’s

name and address, what the charges are for the patient, and the amount of

payment the patient has made. Issue this call until your program receives a GE

status code indicating that no more patient segments exist:

GN PATIENT�*D

 BILLING�*D

 PAYMENT��

Each time you issue this call, your I/O area contains the patient segment, the billing

segment, and the payment segment for a particular person.

Inserting a Sequence of Segments

With ISRT calls, your program can use the D command code to insert a path of

segments simultaneously. Your program need not include D for each SSA in the

path. Your program just specifies D on the first segment that you want IMS to insert.

IMS inserts the segments in the path that follow.

Example: Suppose your program has this request:

Judy Jennison visited the clinic for the first time. Add a record that includes

PATIENT, ILLNESS, and TREATMNT segments.

After building the segments in your I/O area, issue an ISRT call with the following

SSA:

ISRT PATIENT�*D�

 ILLNESS��

 TREATMNT�

Not only is the PATIENT segment added, but the segments following the PATIENT

segment, ILLNESS and TREATMNT, are also added to the database.

You cannot use the D command code to insert segments if a logical child segment

in the path exists.

F Command Code

You can use the F command code to start the search with the first occurrence of a

certain segment type or to insert a new segment as the first occurrence in a chain

of segments.

Retrieving a Segment as the First Occurrence

You can use the F command code for GN and GNP calls. Using it with GU calls is

redundant (and is disregarded) because GU calls can already back up in the

database. When you use F, you indicate that you want the search to start with the

first occurrence of the segment type you indicate under its parent in attempting to

satisfy this level of the call.

You can use the F command code for GN and GNP calls to back up in the database.

You can back up to the first occurrence of the segment type that has current

position, or you can back up to a segment type that is before the current position in

the hierarchy.

Command Code Reference

Chapter 10. Command Code Reference 203

Restriction: The parent of the segment that you are backing up from must be in

the same hierarchic path as the segment you are backing up to. IMS disregards F

when you supply it at the root level or with a GU or GHU.

The search must start with the first occurrence of the segment type that you

indicate under the parent. When the search at that level is satisfied, that level is

treated as though a new occurrence of a segment has satisfied the search. This is

true even when the segment that satisfies an SSA where F command code is

specified as the same segment occurrence on which DL/I was positioned before the

call was processed.

When a new segment occurrence satisfies an SSA, the position of all dependent

segments is reset. New searches for dependent segments then start with the first

occurrence of that segment type under its parent.

Inserting a Segment as the First Occurrence

When you use F with an ISRT call, you are indicating that you want IMS to insert

the segment you have supplied as the first segment occurrence of its segment type.

Use F with segments that have either no key at all or a non unique key, and that

have HERE specified on the RULES operand of the SEGM statement in the DBD. If

you specify HERE in the DBD, the F command code overrides this, and IMS inserts

the new segment occurrence as the first occurrence of that segment type.

Using the F command code to override the RULES specification on the DBD

applies only to the path (either logical or physical) that you are using to access the

segment for the ISRT call. For example, if you are using the physical path to access

the segment, the command code applies to the physical path but not to the logical

path. For clarification of using command codes with the RULES specification, ask

the database administrator at your installation.

Example: Suppose that you specified RULES=HERE in the DBD for the

TREATMNT segment. You want to satisfy this request:

Mary Martin visited the clinic today and visited a number of different doctors.

Add the TREATMNT segment for Dr. Smith as the first TREATMNT segment

for the most recent illness.

First you build a TREATMNT segment in your I/O area:

19930302ESEDRIX���0040SMITH�����

Then you issue an ISRT call with the following SSA. This adds a new occurrence of

the TREATMNT segment as the first occurrence of the TREATMNT segment type

among those with equal keys.

ISRT PATIENT�(PATNO���=�06439)

 ILLNESS�*L

 TREATMNT*F

This example applies to HDAM or PHDAM root segments and to dependent

segments for any type of database.

L Command Code

You can use the L command code to retrieve the last occurrence of a particular

segment type or to insert a segment as the last occurrence of a segment type.

The following topics provide additional information:

Command Code Reference

204 Application Programming: Database Manager

v “Retrieving a Segment as the Last Occurrence”

v “Inserting a Segment as the Last Occurrence”

Retrieving a Segment as the Last Occurrence

The L command code indicates that you want to retrieve the last segment

occurrence that satisfies the SSA, or that you want to insert the segment

occurrence you are supplying as the last occurrence of that segment type. Like F, L

simplifies your programming because you can go directly to the last occurrence of a

segment type without having to examine the previous occurrences with program

logic, if you know that it is the last segment occurrence that you want. L can be

used with GU or GHU, because IMS normally returns the first occurrence when you

use a GU call. IMS disregards L at the root level.

Using L with GU, GN, and GNP indicates to IMS that you want the last occurrence of

the segment type that satisfies the qualification you have provided. The qualification

is the segment type or the qualification statement of the SSA. If you have supplied

just the segment type (an unqualified SSA), IMS retrieves the last occurrence of this

segment type under its parent.

Example: Suppose you have this request using the medical hierarchy:

What was the illness that brought Jennifer Thompson, patient number 10345,

to the clinic most recently?

In this example, assume that RULES=LAST is specified in the DBD for the

database on ILLNESS. Issue this call to retrieve this information:

GU PATIENT�(PATNO���=�10345)

 ILLNESS�*L

The first SSA gives IMS the number of the particular patient. The second SSA asks

for the last occurrence (in this case, the first occurrence chronologically) of the

ILLNESS segment for this patient.

Inserting a Segment as the Last Occurrence

Use L with ISRT only when the segment has no key or a non unique key, and the

insert rule for the segment is either FIRST or HERE. Using the L command code

overrides both FIRST and HERE for HDAM or PHDAM root segments and

dependent segments in any type of database.

Using the L command code to override the RULES specification on the DBD applies

only to the path (either logical or physical) that you are using to access the segment

for the ISRT call. For example, if you are using the physical path to access the

segment, the command code applies to the physical path but not to the logical path.

For clarification of using command codes with the RULES specification, ask your

database administrator.

N Command Code

The N command code prevents you from replacing a segment on a path call. In

conjunction with the D command code, it lets the application program to process

multiple segments using one call. Alone, the D command code retrieves a path of

segments in your I/O area. With the N command code, the D command code lets

you distinguish which segments you want to replace.

Example: The following code only replaces the TREATMNT segment.

Command Code Reference

Chapter 10. Command Code Reference 205

GHU PATIENT*D(PATNO���=�06439)

 ILLNESS�*D(ILLDATE�=19930301)

 TREATMNT

REPL PATIENT*N(PATNO���=�06439)

 ILLNESS�*N(ILLDATE�=19930301)

 TREATMNT

Restriction: If you use D and N command codes together, IMS retrieves the

segment but does not replace it.

The N command code applies only to REPL calls, and IMS ignores it if you include

the code in any other call.

P Command Code

Ordinarily, IMS sets parentage at the level of the lowest segment that is accessed

during a call. To set parentage at a higher level, you can use the P command code

in a GU, GN, or GNP call.

The parentage that you set with P works just like the parentage that IMS sets: it

remains in effect for subsequent GNP calls, and is not affected by ISRT, DLET, or REPL

calls. It is only affected by GNP if you use the P command code in the GNP call.

Parentage is canceled by a subsequent GU, GHU, GN, or GHN.

Use the P command code at only one level of the call. If you mistakenly use P in

multiple levels of a call, IMS sets parentage at the lowest level of the call that

includes P.

If IMS cannot fully satisfy the call that uses P (for example, IMS returns a GE status

code), but the level that includes P is satisfied, P is still valid. If IMS cannot fully

satisfy the call including the level that contains P, IMS does not set any parentage.

You would receive a GP (no parentage established) if you then issued a GNP.

If you use P with a GNP call, IMS processes the GNP call with the parentage that was

already set by preceding calls. IMS then resets parentage with the parentage you

specified using P after processing the GNP call.

Example: If you want to send a current bill to all of the patients seen during the

month, the determining value is in the ILLNESS segment. You want to look at only

patients whose ILLNESS segments have dates after the first of the month. For

patients who have been to the clinic during the month, you need to look at their

addresses and the amount of charges in the BILLING segment so that you can print

a bill. For this example, assume the date is March 31, 1993. Issue these two calls

to process this information:

GN PATIENT�*PD

 ILLNESS�(ILLDATE�>=19930301)

GNP BILLING��

After you locate a patient who has been to the clinic during the month, you issue

the GNP call to retrieve that patient’s BILLING segment. Then you repeat the GN call

to find each patient who has been to the clinic during the month, until IMS returns a

GB status code.

Q Command Code

Use the Q command code if you want to prevent another program from updating a

segment until your program reaches a commit point. The Q command code tells

IMS that your application program needs to work with a segment and that no other

Command Code Reference

206 Application Programming: Database Manager

tasks can be allowed to modify the segment until the program has finished. This

means that you can retrieve segments using the Q command code, then retrieve

them again later, knowing that they have not been altered by another program. (You

should be aware, however, that reserving segments for the exclusive use of your

program can affect system performance.)

You can use the Q command code in batch programs in a data-sharing environment

and in CICS and IMS online programs. IMS ignores Q in non-data sharing batch

programs.

Limiting the Number of Database Calls

For full function, before you use the Q command code in your program, you must

specify a MAXQ value during PSBGEN. This establishes the maximum number of

database calls (with Q command codes) that you can make between sync points.

Related Reading: For information on PSBGEN, see IMS Version 9: Utilities

Reference: System.

Fast Path does not support the MAXQ parameter. Consequently in Fast Path, you

can issue as many database calls with Q command codes as you want.

Using Segment Lock Class

For full function, when you use the Q command code to retrieve a segment, you

specify the letter Q followed by a letter (A-J), designating the lock class of that

segment (for example, QA). If the lock class is not a letter (A-J), IMS returns the

status code GL.

Fast Path supports the Q command code alone, without a letter designating the

lock class. However, for consistency between Fast Path and full function, Fast Path

treats the Q command code as a 2-byte string, where the second byte must be a

letter (A-J). If the second byte is not a letter (A-J), IMS returns the status code AJ.

Example: Suppose a customer wants to place an order for items 1, 2, and 3, but

only if 50 item 1’s, 75 item 2’s, and 100 item 3’s are available. Before placing this

order, the program must examine all three item segments to determine whether an

adequate number of each item is available. You do not want other application

programs to change any of the segments until your program has determined this

and, if possible, placed the order.

To process this request for full function, your program uses the Q command code

when it issues the Get calls for the item segments. When you use the Q command

code in the SSA, you assign a lock class immediately following the command code

in the SSA.

GU PART X

 ITEM 1 *QA

GU PART X

 ITEM 2 *QA

GU PART X

 ITEM 3 *QA

Exception: For Fast Path, the second byte of the lock class is not interpreted as

lock class ’A’.

After retrieving the item segments, your program can examine them to determine

whether an adequate number of each item are on hand to place the order. Assume

100 of each item are on hand. Your program then places the order and updates the

Command Code Reference

Chapter 10. Command Code Reference 207

database accordingly. To update the segment, your program issues a GHU call for

each segment and follows it immediately with a REPL call:

GHU ITEM 1

REPL ITEM 1 with the value 50

GHU ITEM 2

REPL ITEM 2 with the value 25

GHU ITEM 3

REPL ITEM 3 with the value 0

Using the DEQ Call with the Q Command Code

When you use the Q command code and the DEQ call, you reserve and release

segments.

For full function, to issue a DEQ call against an I/O PCB to release a segment, you

place the letter designating the segment’s lock class in the first byte of an I/O area.

Then, you issue the DEQ call with the name of the I/O area that contains the letter.

A DEDB DEQ call is issued against a DEDB PCB. Because Fast Path does not

support lock class, a DEDBDEQ call does not require that a lock class be specified

in the I/O area.

Restriction: The EXEC DL/I interface does not support DEDB DEQ calls, because

EXEC DL/I disallows a PCB for DEQ calls.

Retrieving Segments with Full-Function DEQ Calls

The DEQ call releases all segments that are retrieved using the Q command code,

except:

v Segments modified by your program, until your program reaches a commit point

v Segments required to keep your position in the hierarchy, until your program

moves to another database record

v A class of segments that has been locked again as another class

If your program only reads segments, it can release them by issuing a DEQ call. If

your program does not issue a DEQ call, IMS releases the reserved segments when

your program reaches a commit point. By releasing them with a DEQ call before your

program reaches a commit point, you make them available to other programs more

quickly.

Retrieving Buffers with Fast Path DEQ Calls

DEQ calls cause Fast Path to release a buffer that satisfies one of the conditions:

v The buffer has not been modified, or the buffer does not protect a valid root

position.

v The buffer has been protected by a Q command code.

Fast Path returns an FW status code when no buffers can be released for a DEQ

call.

Any CI locking or segment-level locking performed with a Q command code is

protected from other application programs until a DEQ call is issued or a commit

point is reached.

Considerations for Root and Dependent Segments (Full Function

Only)

If you use the Q command code on a root segment, other programs in which the

PCB does not have update capability can access the database record. Programs in

which the PCB has update capability cannot access any of the segments in that

Command Code Reference

208 Application Programming: Database Manager

database record. If you use the Q command code on a dependent segment, other

programs can read the segment using one of the Get calls without the hold. If your

program accesses shared databases, and if any of the segments in that block are

reserved with the Q command code, application programs in other IMS systems

cannot update anything in that block. The Q command code does not hold

segments from one step of a conversation to another.

Related Reading: For more information on the relationship between the Q

command code and the DEQ call, see “Reserving Segments for the Exclusive Use of

Your Program” on page 122.

U Command Code

As IMS satisfies each level in a retrieval or ISRT call, a position on the segment

occurrence that satisfies that level is established.

The U command code prevents position from being moved from a segment during a

search of its hierarchic dependents. If the segment has a unique sequence field,

using this code is equivalent to qualifying the SSA so that it is equal to the current

value of the key field. When a call is being satisfied, if the position is moved above

the level that the U code was issued at, the code has no effect for the segment

type whose parent changed position.

U is especially useful when unkeyed dependents or non unique keyed segments

are being processed. The position on a specific occurrence of an unkeyed or non

unique keyed segment can be held by using this code.

Example: Suppose you want to find out about the illness that brought a patient

named Mary Warren to the clinic most recently, and about the treatments she

received for that illness. Figure 45 shows the PATIENT, ILLNESS, and TREATMNT

segments for Mary Warren.

 To retrieve this information, retrieve the first ILLNESS segment and the TREATMNT

segments associated with that ILLNESS segment. To retrieve the most recent

ILLNESS segment, you can issue the following GU call:

GU PATIENT�(PATNO���=�05810

 ILLNESS�*L

After this call, IMS establishes a position at the root level on the PATIENT segment

with the key 05810 and on the last ILLNESS segment. Because other ILLNESS

segments with the key 19860412 may exist, you can think of this one as the most

recent ILLNESS segment. You might want to retrieve the TREATMNT segment

Figure 45. U Command Code Example

Command Code Reference

Chapter 10. Command Code Reference 209

occurrences that are associated with that ILLNESS segment. You can do this by

issuing the GN call below with the U command code:

GN PATIENT�*U

 ILLNESS�*U

 TREATMNT

In this example, the U command code indicates to IMS that you want only

TREATMNT segments that are dependents of the ILLNESS and PATIENT segments

on which IMS has established position. Issuing the above GN call the first time

retrieves the TREATMNT segment with the key of 19860412. Issuing the GN call the

second time retrieves the TREATMNT segment with the key 19860418. If you issue

the call a third time, IMS returns a not-found status code. The U command code

tells IMS that, if it does not find a segment that satisfies the lower qualification

under this parent, it cannot continue looking under other parents. If the U command

code was not in the PATIENT SSA, the third GN call causes IMS to move forward at

the root level in an attempt to satisfy the call. If you supply a U command code for

a qualified SSA, IMS ignores the U.

If used in conjunction with command code F or L, the U command code is

disregarded at the level and all lower levels of SSA for that call.

V Command Code

Using the V command code on an SSA is similar to using a U command code in

that SSA and all preceding SSA. Specifying the V command code for a segment

level tells IMS that you want to use the position that is established at that level and

above as a qualification for the call.

Using the V command code is analogous to qualifying your request with a qualified

SSA that specifies the current IMS position.

Example: Suppose that you wanted to answer this request:

Did Joan Carter, patient number 07755, receive any treatment on March 3,

1993?

Using a qualified SSA, specify the following call:

GU PATIENT�(PATNO���=�07755)

 ILLNESS�(ILLDATE�=19930303)

 TREATMNT

If you have position established on the PATIENT segment for patient number 07755

and on the ILLNESS segment for March 3, 1993, you can use your position to

retrieve the TREATMNT segments in which you are interested. You do this by

specifying the V command code as follows:

GN PATIENT��

 ILLNESS�*V

 TREATMNT

Using the V command code for a call is like establishing parentage and issuing a

subsequent GNP call, except that the V command code sets the parentage for the

call it is used with, not for subsequent calls. For example, to satisfy the previous

request, you could have set parentage at the ILLNESS segment level and issued a

GNP to retrieve any TREATMNT segments under that parent. With the V command

code, you specify that you want the ILLNESS segment to be used as parentage for

that call.

Command Code Reference

210 Application Programming: Database Manager

You can specify the V command code for any parent segment. If you use the V

command code with a qualified SSA, it is ignored for that level and for any higher

level that contains a qualified SSA.

NULL Command Code

The null command code (-) enables you to reserve one or more positions in a SSA

in which a program can store command codes, if they are needed during program

execution.

Example: Reserve position for two command codes as follows:

GU PATIENT�*--(PATNO���=�07755)

 ILLNESS�(ILLDATE�=19930303)

 TREATMNT

Using the null command code lets you use the same set of SSAs for more than one

purpose. However, dynamically modifying the SSA makes debugging more difficult.

DEDB Command Codes for DL/I

The M, R, S, W, and Z command codes are only used with a DEDB. The examples

in this topic are based on the scenario given in “Sample Application Program.”

Sample Application Program

The examples in this section are based on one sample application program—the

recording of banking transactions for a passbook (savings account) account. The

transactions are written to a database as either posted or unposted, depending on

whether they were posted to the customer’s passbook.

For example, when Bob Emery does business with the bank but forgets to bring in

his passbook, an application program writes the transactions to the database as

unposted. The application program sets a subset pointer to the first unposted

transaction, so it can be easily accessed later. The next time Bob remembers to

bring in his passbook, a program posts the transactions.

The program can directly retrieve the first unposted transaction using the subset

pointer that was previously set. After the program has posted the transactions, it

sets the subset pointer to 0. An application program that updates the database later

will be able to tell that no unposted transactions exist. Figure 46 summarizes the

processing that is performed when the passbook is unavailable and when it is

available.

Command Code Reference

Chapter 10. Command Code Reference 211

M Command Code

To move the subset pointer forward to the next segment after your current position,

your program issues a call with the M command code. Using the passbook account

example, suppose that you want to post some, but not all, of the transactions, and

that you want the subset pointer to be set to the first unposted transaction. The

following command sets subset pointer 1 to segment B6, as shown in Figure 47.

GU A�������(AKEY���

B�������*R1M1

If the current segment is the last in the chain, and you use an M command code,

IMS sets the pointer to 0.

Figure 46. Processing for the Passbook Example

Command Code Reference

212 Application Programming: Database Manager

R Command Code

To retrieve the first segment occurrence in the subset, your program issues a Get

call with the R command code. The R command code does not set or move the

pointer. It indicates to IMS that you want to establish position on the first segment

occurrence in the subset. The R command code is like the F command code,

except that the R command code applies to the subset instead of to the entire

segment chain.

Using the passbook account example, suppose that Bob Emery visits the bank and

brings his passbook; you want to post all of the unposted transactions. Because

subset pointer 1 was previously set to the first unposted transaction, your program

uses the following call to retrieve that transaction:

GU A�������(AKEY����=�A1)

 B�������*R1

As shown by Figure 48 on page 214, this call retrieves segment B5. To continue

processing segments in the chain, you can issue GN calls as you would if you were

not using subset pointers.

If the subset does not exist (subset pointer 1 has been set to 0), IMS returns a GE

status code, and your position in the database will be immediately following the last

Figure 47. Moving the Subset Pointer to the Next Segment after Your Current Position

Command Code Reference

Chapter 10. Command Code Reference 213

segment in the chain. Using the passbook example, the GE status code tells you

that no unposted transactions exist.

You can specify only one R command code for each SSA. If you use more than one

R in a SSA, IMS returns an AJ status code to your program.

You can use R with other command codes, except F and Q. Other command codes

in a SSA take effect after the R command code has been processed, and after

position has been successfully established on the first segment in the subset. If you

use the L and R command codes together, the last segment in the segment chain is

retrieved. (If the subset pointer that was specified with the R command code, IMS

returns a GE status code instead of the last segment in the segment chain.) Do not

use the R and F command codes together. If you do, you will receive an AJ status

code. The R command code overrides all insert rules, including LAST.

S Command Code

To set a subset pointer unconditionally, regardless of whether it is already set, your

program issues a call with the S command code. “W Command Code” on page 215

describes how to set a subset pointer only if it is not already set. When your

program issues a call that includes the S command code, IMS sets the pointer to

your current position.

Example: To retrieve the first B segment occurrence in the subset defined by

subset pointer 1 and to reset pointer 1 at the next B segment occurrence, you

would issue the following commands:

GU A�������(AKEY����=�B1)

 B�������*R1

GN B�������*S1

After you issue this call, instead of pointing to segment B5, subset pointer 1 points

to segment B6, as shown in Figure 49 on page 215.

Figure 48. Retrieving the First Segment in a Chain of Segments

Command Code Reference

214 Application Programming: Database Manager

W Command Code

Like the S command code, the W command code sets the subset pointer

conditionally. Unlike the S command code, the W command code updates the

subset pointer only if the subset pointer is not already set to a segment.

Example: Using the passbook example, suppose that Bob Emery visits the bank

and forgets to bring his passbook. You add the unposted transactions to the

database. You want to set the pointer to the first unposted transaction, so that later,

when you post the transactions, you can immediately access the first one. The

following call sets the subset pointer to the transaction you are inserting if it is the

first unposted one.

ISRT A�������(AKEY����=�A1)

 B�������*W1

Figure 49. Unconditionally Setting the Subset Pointer to Your Current Position

Command Code Reference

Chapter 10. Command Code Reference 215

As shown by Figure 50, this call sets subset pointer 1 to segment B5. If unposted

transactions already exist, the subset pointer is not changed.

Z Command Code

The Z command code sets the value of the subset pointer to 0. After your program

issues a call with the Z command code, the pointer is no longer set to a segment,

and the subset defined by that pointer no longer exists. (IMS returns a status code

of GE to your program if you try to use a subset pointer having a value of 0.)

Example: Using the passbook example, suppose that you used the R command

code to retrieve the first unposted transaction. You then process the chain of

segments, posting the transactions. After posting the transactions and inserting any

new ones into the chain, use the Z command code to set the subset pointer to 0 as

shown in the following call:

ISRT A�������(AKEY����=�A1)

 B�������*Z1

After this call, subset pointer 1 is set to 0, which indicates to a program that

subsequently updates the database that no unposted transactions exist.

Figure 50. Conditionally Setting the Subset Pointer to Your Current Position

Command Code Reference

216 Application Programming: Database Manager

Chapter 11. DL/I Calls for Database Management

This chapter describes the calls you can use with IMS DB to perform database

management functions in your application program. The calls are listed in

alphabetical order.

Each call description contains:

v A syntax diagram

v Definitions for parameters that are available to the call

v Details on how to use the call in your application program

v Restrictions on call usage, where applicable

Each parameter is described as an input parameter or output parameter. “Input”

refers to input to IMS from the application program. “Output” refers to output from

IMS to the application program.

Database management calls must use either db pcb or aib parameters. The syntax

diagrams for these calls begin with the function parameter. The call, call interface

(xxxTDLI), and parmcount (if it is required) are not included in the syntax diagrams.

The following topics provide additional information:

v “Database Management Call Summary”

v “CIMS Call” on page 219

v “CLSE Call” on page 220

v “DEQ Call” on page 221

v “DLET Call” on page 222

v “FLD Call” on page 223

v “GN/GHN Call” on page 226

v “GNP/GHNP Call” on page 230

v “GU/GHU Call” on page 233

v “ISRT Call” on page 235

v “OPEN Call” on page 239

v “POS Call” on page 239

v “REPL Call” on page 242

Related Reading: For specific information about coding your program in assembler

language, C language, COBOL, Pascal, and PL/I, see Chapter 3, “Defining

Application Program Elements,” on page 55. For information on the DL/I calls used

for transaction management and EXEC DLI commands used in CICS, see IMS

Version 9: Application Programming: Transaction Manager and IMS Version 9:

Application Programming: EXEC DLI Commands for CICS and IMS.

Database Management Call Summary

Table 39 on page 218 shows the parameters that are valid for each database

management call. Optional parameters are enclosed in brackets ([]).

© Copyright IBM Corp. 1974, 2004 217

|

Restriction: Language-dependent parameters are not shown here. The variable

parmcount is required for all PLITDLI calls. Either parmcount or VL is required for

assembler language calls. Parmcount is optional in COBOL, C, and Pascal

programs.

Related Reading: For more information on language-dependent application

elements, see Chapter 3, “Defining Application Program Elements,” on page 55.

 Table 39. Summary of DB Calls

Function Code Meaning and Use Options Parameters Valid for

CIMS Initializes and

terminates the ODBA

interface in a z/OS

application region.

aib DB/DC, IMS DB

CLSE Close Closes a GSAM

database explicitly

function, gsam pcb or

aib

DB/DC, DBCTL, DB

batch, ODBA

DEQ� Dequeue Releases segments

reserved by Q

command code

function, i/o pcb (full

function only), or aib,

i/o area (full function

only)

DB batch, BMP, MPP,

IFP, DBCTL, ODBA

DLET Delete Removes a segment

and its dependents

from the database

function, db pcb or

aib, i/o area, [ssa]

DB/DC, DBCTL, DB

batch, ODBA

FLD� Field Accesses a field

within a segment

function, db pcb or

aib, i/o area, rootssa

DB/DC, ODBA

GHN� Get Hold Next Retrieves subsequent

message segments

function, db pcb or

aib, i/o area, [ssa]

DB/DC, DBCTL, DB

batch, ODBA

GHNP Get Hold Next in

Parent

Retrieves dependents

sequentially

function, db pcb or

aib, i/o area, [ssa]

DB/DC, DBCTL, DB

batch, ODBA

GHU� Get Hold Unique Retrieves segments

and establishes a

starting position in the

database

function, db pcb or

aib, i/o area, [ssa]

DB/DC, DBCTL, DB

batch, ODBA

GN�� Get Next Retrieves subsequent

message segments

function, db pcb or

aib, i/o area, [ssa or

rsa]

DB/DC, DBCTL, DB

batch, ODBA

GNP� Get Hold Next in

Parent

Retrieves dependents

sequentially

function, db pcb or

aib, i/o area, [ssa]

DB/DC, DBCTL, DB

batch, ODBA

GU�� Get Unique Retrieves segments

and establishes a

starting position in the

database

function, db pcb or

aib, i/o area, [ssa or

rsa]

DB/DC, DBCTL, DB

batch, ODBA

ISRT Insert Loads and adds one

or more segments to

the database

function, db pcb or

aib, i/o area, [ssa or

rsa]

DB/DC, DCCTL, DB

batch, ODBA

OPEN Open Opens a GSAM

database explicitly

function, gsam pcb or

aib, [i/o area]

DB/DC, DBCTL, DB

batch, ODBA

POS� Position Retrieves the location

of a specific

dependent or

last-inserted

sequential dependent

segment

function, db pcb or

aib, i/o area, [ssa]

DB/DC, DBCTL, DB

batch, ODBA

Database Management Call Summary

218 Application Programming: Database Manager

Table 39. Summary of DB Calls (continued)

Function Code Meaning and Use Options Parameters Valid for

REPL Replace Changes values of

one or more fields in

a segment

function, db pcb or

aib, i/o area, [ssa]

DB/DC, DBCTL, DB

batch, ODBA

CIMS Call

The CIMS call is used to initialize and terminate the ODBA interface in a z/OS

application region.

Format

�� CIMS aib ��

 Call Name DB/DC IMS DB DCCTL DB Batch TM Batch

CIMS X X

Parameters

aib

Specifies the application interface block (AIB) that is used for the call. This

parameter is an input and output parameter.

 These fields must be initialized in the AIB:

AIBID

Eye-catcher. This 8-byte field must contain DFSAIB ��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Character value. This field is optional.

AIBSFUNC

Subfunction code. This field must contain one of the 8-byte subfunction

codes as follows:

INIT

AIBRSNM2. A four-character ID of the ODBA startup table (optional).

TERM

AIBRSNM2. A four-character ID of the ODBA startup table representing

the IMS connection that is to be terminated.

TALL

Terminate all IMS connections.

Usage

The CIMS call is used by an application program that is running in an application

address space to establish/terminate the ODBA environment.

Database Management Call Summary

Chapter 11. DL/I Calls for Database Management 219

INITbbbb

The CIMS subfunction INIT must be issued by the application to establish the

ODBA environment in the z/OS application address space.

 Optionally, AIBRSNM2 can specify the 4-character ID of the ODBA Startup table

member. This is the member named DFSxxxx0 where xxxx is equal to the

4-character ID. If AIBRSNM2 is specified, ODBA will attempt to establish a

connection to the IMS specified in the DFSxxxx0 member after the ODBA

environment has been initialized in the z/OS application address space.

TERMbbbb

The CIMS subfunction TERM can be issued to terminate one and only one IMS

connection. AIBRSNM2 specifies the 4-character ID of the startup table member

representing the IMS connection to be terminated. Upon completion of the

TERM subfunction the ODBA environment will remain intact in the z/OS

application address space.

Note: If the application that issued CIMS INIT chooses to return to the

operating system following completion of the CIMS TERM, the address

space will experience a system abend A03. This can be avoided by

issuing the CIMS TALL prior to returning to the operating system

TALLbbbb

The CIMS subfunction TALL must be issued to terminate all IMS connections

and terminate the ODBA environment in the application address space.

CLSE Call

The close (CLSE) call is used to explicitly close a GSAM database. For more

information on GSAM, see Chapter 8, “Processing GSAM Databases,” on page 161.

Format

�� CLSE gsam pcb

aib
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For GSAM: CLSE X X X X X

Parameters

gsam pcb

Specifies the GSAM PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB length. This field must contain the actual length of the AIB that the

application program obtained.

DB Call: CIMS

220 Application Programming: Database Manager

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of a

GSAM PCB.

Usage

For information on using CLSE, see “Explicit Open and Close Calls to GSAM” on

page 164.

DEQ Call

The Dequeue (DEQ) call is used to release a segment that is retrieved using the Q

command code.

Format (Full Function)

�� DEQ i/o pcb

aib
 i/o area ��

Format (Fast Path DEDB)

�� DEQ DEDB pcb

aib
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function and DEDB: DEQ X X X

Parameters

DEDB pcb (Fast Path only)

Specifies any DEDB PCB for the call.

i/o pcb (full function only)

Specifies the I/O PCB for the DEQ call. This is an input and output parameter.

aib

Specifies the AIB for the call. This is an input and output parameter. These

fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name

IOPCB���.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

DB Call: CLSE

Chapter 11. DL/I Calls for Database Management 221

i/o area (full function only)

Specifies the 1-byte area containing a letter (A-J), which represents the lock

class of the locks to be released. This is a mandatory input parameter.

Usage

The DEQ call releases all segments that are retrieved using the Q command code,

except:

v Segments modified by your program, until your program reaches a commit point

v Segments required to keep your position in the hierarchy, until your program

moves to another database record

v A class of segments that has been locked using a different lock class

If your program only reads segments, it can release them by issuing a DEQ call. If

your program does not issue a DEQ call, IMS releases the reserved segments when

your program reaches a commit point. By releasing the segments with a DEQ call

before your program reaches a commit point, you make them available to other

programs more quickly.

For more information on the relationship between the DEQ call and the Q command

code, see “Reserving Segments for the Exclusive Use of Your Program” on page

122.

Restrictions

In a CICS DL/I environment, calls made from one CICS (DBCTL) system are

supported in a remote CICS DL/I environment, if the remote environment is also

CICS (DBCTL).

DLET Call

The Delete (DLET) call is used to remove a segment and its dependents from the

database.

Format

�� DLET db pcb

aib
 i/o area

�

ssa

 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: DLET X X X

For DEDB: DLET X X

For MSDB: DLET X

Parameters

db pcb

Specifies the DB PCB for the call. This parameter is an input and output

parameter.

DB Call: DEQ

222 Application Programming: Database Manager

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of a

DB PCB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the I/O area in your program that communicates with IMS. This

parameter is an input parameter. Before deleting a segment, you must first

issue a Get Hold call to place the segment in the I/O area. You can then issue

the DLET call to delete the segment and its dependents in the database.

ssa

Specifies the SSA, if any, to be used in the call. This parameter is an input

parameter. The SSA that you supply in the call point to data areas in your

program where the SSAs have been defined for the call. You can use only one

SSA in the parameter. This parameter is optional for the DLET call.

Usage

The DLET call must be preceded by one of the three Get Hold calls. When you issue

the DLET call, IMS deletes the held segment, along with all its physical dependents

from the database, regardless of whether your program is sensitive to all of these

segments. IMS rejects the DLET call if the preceding call for the PCB was not a Get

Hold, REPL, or DLET call. If the DLET call is successful, the previously retrieved

segment and all of its dependents are removed from the database and cannot be

retrieved again.

If the Get Hold call that precedes the DLET call is a path call, and you do not want

to delete all the retrieved segments, you must indicate to IMS which of the retrieved

segments (and its dependents, if any) you want deleted; to do this, specify an

unqualified SSA for that segment. Deleting a segment this way automatically

deletes all dependents of the segment. Only one SSA is allowed in the DLET call,

and this is the only time a SSA is applicable in a DLET call.

No command codes apply to the DLET call. If you use a command code in a DLET

call, IMS disregards the command code.

FLD Call

The Field (FLD) call is used to access a field within a segment for MSDBs or

DEDBs.

DB Call: DLET

Chapter 11. DL/I Calls for Database Management 223

Format

�� FLD db pcb

aib
 i/o area

�

ssa

 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For MSDB: FLD X

For DEDB: FLD X X

Parameters

db pcb

Specifies the DB PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of a

DB PCB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies your program’s I/O area, which contains the field search argument

(FSA) for this call. This parameter is an input parameter.

ssa

Specifies the SSA, if any, that you want to use in this call. You can use up to 15

SSAs in this input parameter. The SSA that you supply will point to those data

areas that you have defined for the call. This parameter is optional for the FLD

call.

Usage

Use the FLD call to access and change the contents of a field within a segment.

The FLD call does two things for you: it compares the value of a field to the value

you supply (FLD/VERIFY), and it changes the value of the field in the way that you

specify (FLD/CHANGE).

All DL/I command codes are available to DEDBs, using the FLD call. The FLD call

formats for DEDBs are the same as for other DL/I calls. So, if your MSDBs have

been converted to DEDBs, you do not need to change application programs that

DB Call: FLD

224 Application Programming: Database Manager

use the FLD call. For more information on the FLD call, see “Updating Segments:

REPL, DLET, ISRT, and FLD” on page 173.

You can also use the FLD call in application programs for DEDBs, instead of the

combination of GHU, REPL, and DL/I calls.

FSAs

The field search argument (FSA) is equivalent to the I/O area that is used by other

DL/I database calls. For a FLD call, data is not moved into the I/O area; rather, the

FSAs are moved into the I/O area.

Multiple FSAs are allowed on one FLD call. This is specified in the FSA’s connector

field. Each FSA can operate on either the same or different fields within the target

segment.

The FSA that you reference in a FLD call contains five fields. The rules for coding

these fields are as follows:

Field name

This field must be 8 bytes long. If the field name you are using is less than 8

bytes, the name must be left-justified and padded on the right with blanks.

FSA status code

This field is 1 byte. After a FLD call, IMS returns one of these status codes to

this area:

� Successful

A Invalid operation

B Operand length invalid

C Invalid call—program tried to change key field

D Verify check was unsuccessful

E Packed decimal or hexadecimal field is invalid

F Program tried to change an unowned segment

G Arithmetic overflow

H Field not found in segment

Op code

This 1-byte field contains one of these operators for a change operation:

+ To add the operand to the field value

− To subtract the operand from the field value

= To set the field value to the value of the operand

For a verify operation, this field must contain one of the following:

E Verify that the field value and the operand are equal.

G Verify that the field value is greater than the operand.

H Verify that the field value is greater than or equal to the operand.

L Verify that the field value is less than the operand.

M Verify that the field value is less than or equal to the operand.

N Verify that the field value is not equal to the operand.

DB Call: FLD

Chapter 11. DL/I Calls for Database Management 225

Operand

This variable length field contains the value that you want to test the field value

against. The data in this field must be the same type as the data in the

segment field. (You define this in the DBD.) If the data is hexadecimal, the

value in the operand is twice as long as the field in the database. If the data is

packed decimal, the operand does not contain leading zeros, so the operand

length might be shorter than the actual field. For other types of data, the lengths

must be equal.

Connector

This 1-byte field must contain a blank if this is the last or only FSA, or an

asterisk (*) if another FSA follows this one.

The format of SSA in FLD calls is the same as the format of SSA in DL/I calls. If no

SSA exists, the first segment in the MSDB or DEDB is retrieved.

For more information on the FLD call and some examples, see “Processing MSDBs

and DEDBs” on page 173.

GN/GHN Call

The Get Next (GN) call is used to retrieve segments sequentially from the database.

The Get Hold Next (GHN) is the hold form for a GN call.

Format

��

�

�

 GN db pcb i/o area

aib

ssa

rsa

GHN

db pcb

i/o area

aib

ssa

 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: GN/GHN X X X

For GSAM: GN X X X X X

For DEDB: GN X X X

For MSDB: GN X

Parameters

db pcb

Specifies the DB PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

DB Call: FLD

226 Application Programming: Database Manager

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of a

DB PCB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the I/O area. This parameter is an output parameter. When you issue

one of the Get calls successfully, IMS returns the requested segment to this

area. If your program issues any path calls, the I/O area must be long enough

to hold the longest path of concatenated segments following a path call. This

area always contains left-justified segment data. The I/O area points to the first

byte of this area.

 When you use the GN call with GSAM, the area named by the i/o area

parameter contains the record you are retrieving.

ssa

Specifies the SSA, if any, to be used in the call. This parameter is an input

parameter. The SSA that you supply in the call point to data areas in your

program where the SSA have been defined for the call. You can use up to 15

SSAs in the parameter. This parameter is optional for the GN call.

rsa

Specifies the area in your program where the RSA for the record should be

returned. This output parameter is used for GSAM only and is optional. See

“GSAM Data Areas” on page 88 for more information on RSAs.

Usage: Get Next (GN)

A Get Next (GN) call is a request for a segment, as described by the SSA you

supply, that is linked to the call that was issued prior to the GN call. IMS starts its

search at the current position.

When you use theGN call:

v Processing moves forward from current position (unless the call includes the F

command code).

v IMS uses the current position (that was set by the previous call) as the search

starting point.

v The segment retrieved is determined by a combination of the next sequential

position in the hierarchy and the SSA included in the call.

v Be careful when you use GN, because it is possible to use SSAs that force IMS to

search to the end of the database without retrieving a segment. This is

particularly true with the “not equal” or “greater than” relational operators.

A GN call retrieves the next segment in the hierarchy that satisfies the SSA that you

supplied. Because the segment retrieved by a GN call depends on the current

position in the hierarchy, GN is often issued after a GU call. If no position has been

established in the hierarchy, GN retrieves the first segment in the database. A GN call

retrieves a segment or path of segments by moving forward from the current

position in the database. As processing continues, IMS looks for segments at each

level to satisfy the call.

DB Call: GN/GHN

Chapter 11. DL/I Calls for Database Management 227

Example:Sequential retrieval in a hierarchy is always top to bottom and left to right.

For example, if you repeatedly issue unqualified GN calls against the hierarchy in

Figure 51, IMS returns the segment occurrences in the database record in this

order:

1. A1 (the root segment)

2. B1 and its dependents (C1,D1,F1,D2,D3,E1,E2, and G1)

3. H1 and its dependents (I1,I2,J1, and K1).

If you issue an unqualified GN again after IMS has returned K1, IMS returns the root

segment occurrence whose key follows segment A1 in the database.

A GN call that is qualified with the segment type can retrieve all the occurrences of a

particular segment type in the database.

 Example: If you issue a GN call with qualified SSAs for segments A1 and B1, and

an unqualified SSA for segment type D, IMS returns segment D1 the first time you

issue the call, segment D2 the second time you issue the call, and segment D3 the

third time you issue the call. If you issue the call a fourth time, IMS returns a status

code of GE, which means that IMS could not find the segment you requested.

You can use unqualified GN calls to retrieve all of the occurrences of a segment in a

hierarchy, in their hierarchic sequence, starting at the current position. Each

unqualified GN call retrieves the next sequential segment forward from the current

position. For example, to answer the processing request:

Print out the entire medical database.

You would issue an unqualified GN call repeatedly until IMS returned a GB status

code, indicating that it had reached the end of the database without being able to

satisfy your call. If you issued the GN again after the GB status code, IMS would

return the first segment occurrence in the database.

Like GU, a GN call can have as many SSAs as the hierarchy has levels. Using fully

qualified SSAs with GN calls clearly identifies the hierarchic path and the segment

you want, thus making it useful in documenting the call.

A GN call with an unqualified SSA retrieves the next occurrence of that segment type

by going forward from the current position.

Figure 51. Hierarchic Sequence

DB Call: GN/GHN

228 Application Programming: Database Manager

GN with a qualified SSA retrieves the next occurrence of the specified segment type

that satisfies the SSAs.

When you specify a GN that has multiple SSAs, the presence or absence of

unqualified SSAs in the call has no effect on the operation unless you use

command codes on the unqualified SSA. IMS uses only qualified SSAs plus the last

SSA to determine the path and retrieve the segment. Unspecified or unqualified

SSAs for higher-level segments in the hierarchy mean that any high-level segment

that is the parent of the correct lower-level, specified or qualified segment will

satisfy the call.

A GN call with a SSA that is qualified on the key of the root can produce different

results from a GU with the same SSA, depending on the position in the database

and the sequence of keys in the database. If the current position in the database is

beyond a segment that would satisfy the SSA, the segment is not retrieved by the

GN. GN returns the GE status code if both of these conditions are met:

v The value of the key in the SSA has an upper limit that is set, for example, to

less-than-or-equal-to the value.

v A segment with a key greater than the value in the SSA is found in a sequential

search before the specified segment is found.

GN returns the GE status code, even though the specified segment exists and would

be retrieved by a GU call.

Usage: Get Hold Next (GHN)

Before your program can delete or replace a segment, it must retrieve the segment

and indicate to IMS that it is going to change the segment in some way. The

program does this by issuing a Get call with a “hold” before deleting or replacing

the segment. When the program has successfully retrieved the segment with a Get

Hold call, it can delete the segment or change one or more fields (except the key

field) in the segment.

The only difference between Get calls with a hold and Get calls without a hold is

that the hold calls can be followed by REPL or DLET.

The hold status on the retrieved segment is canceled and must be reestablished

before you reissue the DLET or REPL call. After issuing a Get Hold call, you can issue

more than one REPL or DLET call to the segment if you do not issue intervening calls

to the same PCB.

If you find out that you do not need to update it after issuing a Get Hold call, you

can continue with other processing without releasing the segment. The segment is

freed as soon as the current position changes—when you issue another call to the

same PCB that you used for the Get Hold call. In other words, a Get Hold call must

precede a REPL or DLET call. However, issuing a Get Hold call does not require you

to replace or delete the segment.

Usage: HDAM, PHDAM, or DEDB Database with GN

For database organizations other than HDAM, PHDAM, and DEDB, processing the

database sequentially using GN calls returns the root segments in ascending key

sequence. However, the order of the root segments for a HDAM, PHDAM, or DEDB

database depends on the randomizing routine that is specified for that database.

Unless a sequential randomizing routine was specified, the order of the root

segments in the database is not in ascending key sequence.

DB Call: GN/GHN

Chapter 11. DL/I Calls for Database Management 229

For a hierarchic direct access method (HDAM, PHDAM) or a DEDB database, a

series of unqualified GN calls or GN calls that are qualified only on the root segment:

1. Returns all the roots from one anchor point

2. Moves to the next anchor point

3. Returns the roots from the anchor point

Unless a sequential randomizing routine was specified, the roots on successive

anchor points are not in ascending key sequence. One situation to consider for

HDAM, PHDAM, and DEDB organizations is when a GN call is qualified on the key

field of the root segment with an equal-to operator or an equal-to-or-greater-than

operator. If IMS has an existing position in the database, it checks to ensure that

the requested key is equal to or greater than the key of the current root. If it is not,

a GE status code is returned. If it is equal to or greater than the current key and is

not satisfied using the current position, IMS calls the randomizing routine to

determine the anchor point for that key. IMS tries to satisfy the call starting with the

first root of the selected anchor.

Restriction

You can use GN to retrieve the next record of a GSAM database, but GHN is not valid

for GSAM.

GNP/GHNP Call

The Get Next in Parent (GNP) call is used to retrieve dependents sequentially. The

Get Hold Next in Parent (GHNP) call is the hold form for the GNP call.

Format

�� GNP

GHNP
 db pcb

aib
 i/o area

�

ssa

 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: GNP/GHNP X X X

For DEDB: GNP/GHNP X X X

For MSDB: GNP/GHNP X

Parameters

db pcb

Specifies the DB PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

DB Call: GN/GHN

230 Application Programming: Database Manager

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of a

DB PCB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the I/O area. This parameter is an output parameter. When you issue

the Get call successfully, IMS returns the requested segment to this area. If

your program issues any path calls, the I/O area must be long enough to hold

the longest path of concatenated segments following a path call. The segment

data that this area contains is always left-justified. The I/O area points to the

first byte of this area.

ssa

Specifies the SSA, if any, to be used in the call. This parameter is an input

parameter. The SSA you supply in the call point to data areas in your program

in which you have defined the SSAs for the call. You can use up to 15 SSAs for

this parameter. This parameter is optional for the GNP call.

Usage: Get Next in Parent (GNP)

A GNP call retrieves segments sequentially. The difference between a GN and a GNP is

that GNP limits the segments that can satisfy the call to the dependent segments of

the established parent.

An unqualified GNP retrieves the first dependent segment occurrence under the

current parent. If your current position is already on a dependent of the current

parent, an unqualified GNP retrieves the next segment occurrence.

If you are moving forward in the database, even if you are not retrieving every

segment in the database, you can use GNP to restrict the returned segments to only

those children of a specific segment.

Linking with Previous DL/I Calls

A GNP call is linked to the previous DL/I calls that were issued by your program in

two ways:

v Current position: The search for the requested segment starts at the current

position established by the preceding GU, GN, or GNP call.

v Parentage: The search for the requested segment is limited to the dependents of

the lowest-level segment most recently accessed by a GU or GN call. Parentage

determines the end of the search and is in effect only following a successful GU

or GN call.

Processing with Parentage

You can set parentage in two ways:

v By issuing a successful GU or GN call. When you issue a successful GU or GN call,

IMS sets parentage at the lowest-level segment returned by the call. Issuing

another GU or GN call (but against a different PCB) does not affect the parentage

that you set using the first PCB in the previous call. An unsuccessful GU or GN call

cancels parentage.

DB Call: GNP/GHNP

Chapter 11. DL/I Calls for Database Management 231

v By using the P command code with a GU, GN, or GNP call, you can set parentage

at any level.

How DL/I Calls Affect Parentage

A GNP call does not affect parentage unless it includes the P command code.

Unless you are using a secondary index, REPL does not affect parentage. If you are

using a secondary index, and you replace the indexed segment, parentage is lost.

For more information, see “How Secondary Indexing Affects Your Program” on page

153.

A DLET call does not affect parentage unless you delete the established parent. If

you do delete the established parent, you must reset parentage before issuing a

GNP call.

ISRT affects parentage only when you insert a segment that is not a dependent of

the established parent. In this case, ISRT cancels parentage. If the segment you are

inserting is a dependent at some level of the established parent, parentage is

unaffected. For example, in Figure 27 on page 104, assume segment B11 is the

established parent. Neither of these two ISRT calls would affect parentage:

ISRT A��������(AKEY����=�A1)

 B��������(BKEY����=�B11)

 C��������

ISRT A��������(AKEY����=�A1)

 B��������(BKEY����=�B11)

 C��������(CKEY����=�C111)

 D��������

The following ISRT call would cancel parentage, because the F segment is not a

direct dependent of B, the established parent:

ISRT A��������(AKEY����=�A1)

 F��������

You can include one or more SSAs in a GNP call. The SSA can be qualified or

unqualified. Without SSAs, a GNP call retrieves the next sequential dependent of the

established parent. The advantage of using SSAs with GNP is that they allow you to

point IMS to a specific dependent or dependent type of the established parent.

A GNP with an unqualified SSA sequentially retrieves the dependent segment

occurrences of the segment type you have specified under the established parent.

A GNP with a qualified SSA describes to IMS the segment you want retrieved or the

segment that is to become part of the hierarchic path to the segment you want

retrieved. A qualified GNP describes a unique segment only if it is qualified on a

unique key field and not a data field or a non unique key field.

A GNP with multiple SSAs defines the hierarchic path to the segment you want. If

you specify SSAs for segments at levels above the established parent level, those

SSAs must be satisfied by the current position at that level. If they cannot be

satisfied using the current position, a GE status code is returned and the existing

position remains unchanged. The last SSA must be for a segment that is below the

established parent level. If it is not, a GP status code is returned. Multiple

unqualified SSAs establish the first occurrence of the specified segment type as

part of the path you want. If some SSAs between the parent and the requested

segment in a GNP call are missing, they are generated internally as unqualified

DB Call: GNP/GHNP

232 Application Programming: Database Manager

SSAs. This means that IMS includes the first occurrence of the segment from the

missing SSAs as part of the hierarchic path to the segment you have requested.

Usage: Get Hold Next in Parent (GHNP)

Retrieval for the GHNP call is the same as for the GHN call. For more information, see

“Usage: Get Hold Next (GHN)” on page 229.

GU/GHU Call

The Get Unique (GU) call is used to directly retrieve segments and to establish a

starting position in the database for sequential processing. The Get Hold Unique

(GHU) is the hold form for a GU call.

Format

��

�

�

 GU db pcb i/o area

aib

ssa

rsa

GHU

db pcb

i/o area

aib

ssa

 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: GU/GHU X X X

For GSAM: GU X X X X X

For DEDB: GU X X X

For MSDB: GU X

Parameters

db pcb

Specifies the DB PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of a

DB PCB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

DB Call: GNP/GHNP

Chapter 11. DL/I Calls for Database Management 233

i/o area

Specifies the I/O area. This parameter is an output parameter. When you issue

one of the Get calls successfully, IMS returns the requested segment to this

area. If your program issues any path calls, the I/O area must be long enough

to hold the longest path of concatenated segments following a path call. The

segment data that this area contains is always left-justified. The I/O area points

to the first byte of this area.

 When you use the GU call with GSAM, the area named by the i/o area

parameter contains the record you are retrieving.

ssa

Specifies the SSA, if any, to be used in the call. This parameter is an input

parameter. The SSA you supply in the call point to data areas in your program

where you have defined the SSAs for the call. You can use up to 15 SSAs for

the parameter. This parameter is optional for the GU call.

rsa

Specifies the area in your program that contains the record search argument.

This required input parameter is only used for GSAM. See “GSAM Data Areas”

on page 88 for more information on RSAs.

Usage: Get Unique (GU)

GU is a request for a segment, as described by the SSAs you supply. You use it

when you want a specific segment. You can also use it to establish your position in

the database.

The GU call is the only call that can establish position backward in the database.

(The GN and GNP calls, when used with the F command code, can back up in the

database, but with limitations. “F Command Code” on page 203 explains this.)

Unlike GN and GNP, a GU call does not move forward in the database automatically.

If you issue the same GU call repeatedly, IMS retrieves the same segment each time

you issue the call. If you want to retrieve only particular segments, use fully

qualified GUs for these segments instead of GNs. If you want to retrieve a specific

segment occurrence or obtain a specific position within the database, use GU.

If you want to retrieve a specific segment or to set your position in the database to

a specific place, you generally use qualified GU calls. A GU call can have the same

number of SSAs as the hierarchy has levels, as defined by the DB PCB. If the

segment you want is on the fourth level of the hierarchy, you can use four SSAs to

retrieve the segment. (No reason would ever exist to use more SSAs than levels in

the hierarchy. If your hierarchy has only three levels, you would never need to

locate a segment lower than the third level.) The following is additional information

for using the GU call with SSAs:

v A GU call with an unqualified SSA at the root level attempts to satisfy the call by

starting at the beginning of the database. If the SSA at the root level is the only

SSA, IMS retrieves the first segment in the database.

v A GU call with a qualified SSA can retrieve the segment described in the SSA,

regardless of that segment’s location relative to current position.

v When you issue a GU that mixes qualified and unqualified SSAs at each level,

IMS retrieves the first occurrence of the segment type that satisfies the call.

v If you leave out an SSA for one of the levels in a GU call that has multiple SSAs,

IMS assumes an SSA for that level. The SSA that IMS assumes depends on

current position:

DB Call: GU/GHU

234 Application Programming: Database Manager

– If IMS has a position established at the missing level, the SSA that IMS uses

is derived from that position, as reflected in the DB PCB.

– If IMS does not have a position established at the missing level, IMS assumes

an unqualified SSA for that level.

– If IMS moves forward from a position established at a higher level, IMS

assumes an unqualified SSA for that level.

– If the SSA for the root level is missing, and IMS has position established on a

root, IMS does not move from that root when trying to satisfy the call.

Usage: Get Hold Unique (GHU)

Before your program can delete or replace a segment, it must retrieve the segment

and indicate to IMS that it is going to change the segment in some way. The

program does this by issuing a Get call with a “hold” before deleting or replacing

the segment. Once the program has successfully retrieved the segment with a Get

Hold call, it can delete the segment or change one or more fields (except the key

field) in the segment.

The only difference between Get calls with a hold and without a hold is that the

hold calls can be followed by a REPL or DLET call.

The hold status on the retrieved segment is canceled and must be reestablished

before you reissue the DLET or REPL call. After issuing a Get Hold call, you can issue

more than one REPL or DLET call to the segment if you do not issue intervening calls

to the same PCB.

If you find out that you do not need to update it after issuing a Get Hold call, you

can continue with other processing without releasing the segment. The segment is

freed as soon as the current position changes—when you issue another call to the

same PCB you used for the Get Hold call. In other words, a Get Hold call must

precede a REPL or DLET call. However, issuing a Get Hold call does not require you

to replace or delete the segment.

Restriction

You can use GU to retrieve the record with the RSA you provide with a GSAM

database, but GHU is not valid for GSAM.

ISRT Call

The Insert (ISRT) call is used to load a database and to add one or more segments

to the database. You can use ISRT to add a record to the end of a GSAM database

or for an alternate PCB that is set up for IAFP processing.

Format

�� ISRT db pcb

aib
 i/o area

�

ssa

rsa

 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: ISRT X X X

DB Call: GU/GHU

Chapter 11. DL/I Calls for Database Management 235

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For GSAM: ISRT X X X X X

For DEDB: ISRT X X X

For MSDB: ISRT X

Parameters

db pcb

Specifies the DB PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of a

DB PCB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the I/O area. This parameter is an input parameter. When you want to

add a new segment to the database, you place the new segment in this area

before issuing the ISRT call. This area must be long enough to hold the longest

segment that IMS returns to this area. For example, if none of the segments

your program retrieves or updates is longer than 48 bytes, your I/O area should

be 48 bytes.

 If your program issues any path calls, the I/O area must be long enough to hold

the longest concatenated segment following a path call. The segment data that

this area contains is always left-justified. The I/O area points to the first byte of

this area.

 When you use the ISRT call with GSAM, the area named by the i/o area

parameter contains the record you want to add. The area must be long enough

to hold these records.

ssa

Specifies the SSA, if any, to be used in the call. This parameter is an input

parameter. The SSA you supply in the call point to data areas in your program

where you have defined the SSAs for the call. You can use up to 15 SSAs on

the call. This parameter is required.

rsa

Specifies the area in your program where the RSA should be returned by DL/I.

This output parameter is used for GSAM only and is optional. See “GSAM Data

Areas” on page 88 for more information on RSAs.

DB Calls: ISRT

236 Application Programming: Database Manager

Usage

Your program uses the ISRT call to initially load a database and to add information

to an existing one. The call looks the same in either case. However, the way it is

used is determined by the processing option in the PCB. This section explains how

you use ISRT to add segments to an existing database.

ISRT can add new occurrences of an existing segment type to a HIDAM, PHIDAM,

HISAM, HDAM, PHDAM, DEDB, or MSDB database.

Restriction: New segments cannot be added to a HSAM database unless you

reprocess the whole database or add the new segments to the end of the database.

Before you issue the ISRT call, build the new segment in the I/O area. The new

segment fields must be in the same order and of the same length as defined for the

segment. (If field sensitivity is used, they must be in the order defined for the

application program’s view of the segment.) The DBD defines the fields that a

segment contains and the order in which they appear in the segment.

Root Segment Occurrence

If you are adding a root segment occurrence, IMS places it in the correct sequence

in the database by using the key you supply in the I/O area. If the segment you are

inserting is not a root, but you have just inserted its parent, you can insert the child

segment by issuing an ISRT call with an unqualified SSA. You must build the new

segment in your I/O area before you issue the ISRT call. Also, you use an

unqualified SSA when you insert a root. When you are adding new segment

occurrences to an existing database, the segment type must have been defined in

the DBD. You can add new segment occurrences directly or sequentially after you

have built them in the program’s I/O area. At least one SSA is required in an ISRT

call; the last (or only) SSA specifies the segment being inserted. To insert a path of

segments, you can set the D command code for the highest-level segment in the

path.

Insert Rules

If the segment type you are inserting has a unique key field, the place where IMS

adds the new segment occurrence depends on the value of its key field. If the

segment does not have a key field, or if the key is not unique, you can control

where the new segment occurrence is added by specifying either the FIRST, LAST,

or HERE insert rule. Specify the rules on the RULES parameter of the SEGM

statement of DBDGEN for this database.

Related Reading: For information on performing a DBDGEN, see IMS Version 9:

Utilities Reference: Database and Transaction Manager.

The rules on the RULES parameter are as follows:

FIRST IMS inserts the new segment occurrence before the first existing

occurrence of this segment type. If this segment has a nonunique

key, IMS inserts the new occurrence before all existing occurrences

of that segment that have the same key field.

LAST IMS inserts the new occurrence after the last existing occurrence of

the segment type. If the segment occurrence has a nonunique key,

IMS inserts the new occurrence after all existing occurrences of that

segment type that have the same key.

HERE IMS assumes you have a position on the segment type from a

previous IMS call. IMS places the new occurrence before the

DB Calls: ISRT

Chapter 11. DL/I Calls for Database Management 237

segment occurrence that was retrieved or deleted by the last call,

which is immediately before current position. If current position is

not within the occurrences of the segment type being inserted, IMS

adds the new occurrence before all existing occurrences of that

segment type. If the segment has a nonunique key and the current

position is not within the occurrences of the segment type with

equal key value, IMS adds the new occurrence before all existing

occurrences that have equal key fields.

You can override the insert rule of FIRST with the L command code. You can

override the insert rule of HERE with either the F or L command code. This is true

for HDAM and PHDAM root segments and for dependent segments in any type of

database that have either nonunique keys or no keys at all.

An ISRT call must have at least one unqualified SSA for each segment that is added

to the database. Unless the ISRT is a path call, the lowest-level SSA specifies the

segment being inserted. This SSA must be unqualified. If you use the D command

code, all the SSAs below and including the SSA containing the D command code

must be unqualified.

Provide qualified SSAs for higher levels to establish the position of the segment

being inserted. Qualified and unqualified SSAs can be used to specify the path to

the segment, but the last SSA must be unqualified. This final SSA names the

segment type to be inserted.

If you supply only one unqualified SSA for the new segment occurrence, you must

be sure that current position is at the correct place in the database to insert that

segment.

Mix Qualified and Unqualified SSA

You can mix qualified and unqualified SSAs, but the last SSA must be unqualified. If

the SSAs are unqualified, IMS satisfies each unqualified SSA with the first

occurrence of the segment type, assuming that the path is correct. If you leave out

a SSA for one of the levels in an ISRT with multiple SSAs, IMS assumes an SSA for

that level. The SSA that IMS assumes depends on current position:

v If IMS has a position established at the missing level, the SSA that IMS uses is

derived from that position, as reflected in the DB PCB.

v If IMS does not have a position established at the missing level, IMS assumes an

unqualified SSA for that level.

v If IMS moves forward from a position established at a higher level, IMS assumes

an unqualified SSA for that level.

v If the SSA for the root level is missing, and IMS has position established on a

root, IMS does not move from that root when trying to satisfy the call.

Using SSA with the ISRT Call

Using SSA with ISRT is a good way to check for the parent segments of the

segment you want to insert. You cannot add a segment unless its parent segments

exist in the database. Instead of issuing Get calls for the parents, you can define a

fully qualified set of SSAs for all the parents and issue the ISRT call for the new

segment. If IMS returns a GE status code, at least one of the parents does not

exist. You can then check the segment level number in the DB PCB to find out

which parent is missing. If the level number in the DB PCB is 00, IMS did not find

any of the segments you specified. A 01 means that IMS found only the root

segment; a 02 means that the lowest-level segment that IMS found was at the

second level; and so on.

DB Calls: ISRT

238 Application Programming: Database Manager

OPEN Call

The OPEN call is used to explicitly open a GSAM database.

Format

�� OPEN gsam pcb

aib

i/o area
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For GSAM: OPEN X X X X X

Parameters

gsam pcb

Specifies the GSAM PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name

of a GSAM PCB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the kind of data set you are opening. This parameter is an input

parameter.

Usage

For more information, see “Explicit Open and Close Calls to GSAM” on page 164.

POS Call

A qualified Position (POS) call is used to retrieve the location of a specific sequential

dependent segment. In addition to location, a qualified POS call using an SSA for a

committed segment will return the sequential dependent segment (SDEP) time

stamp and the ID of the IMS owner that inserted it. For more information about the

qualified POS call, refer to table“Locating the Last Inserted Sequential Dependent

Segment” on page 185.

An unqualified POS points to the logical end of the sequential dependent segment

(SDEP) data. By default, an unqualified POS call returns the DMACNXTS value,

DB Call: OPEN

Chapter 11. DL/I Calls for Database Management 239

which is the next SDEP CI to be allocated. Because this CI has not been allocated,

its specification without the EXCLUDE keyword will often result in a DFS2664A

message from the SDEP utilities.

Format

�� POS db pcb

aib

keyword

 i/o area

ssa
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For DEDB: POS X X

Parameters

db pcb

Specifies the DB PCB for the DEDB that you are using for this call. This

parameter is an input and output parameter.

aib

Specifies the AIB for the DEDB that you are using for this call. This parameter

is an input and output parameter. These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of a

DB PCB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

keyword

Specifies the Keyword for the DEDB that you are using for this call. Returns six

words containing field codes to I/O area. Table 40 on page 241 lists the five

keywords and the corresponding output.

i/o area

Specifies the I/O area in your program that you want to contain the positioning

information that is returned by a successful POS call. This parameter is an output

parameter. The I/O area should be long enough to contain all the returned

entries. IMS returns an entry for each area in the DEDB.

 The I/O area on a POS call contains six words with nine potential fields of data

for each return output. Each field is four or eight bytes. When the successful

POS is an unqualified call, the I/O area contains a 2–byte field that contains the

length of the data area (LL), followed by a return output in the existing I/O areas

contained in the database. By selecting one of the five keywords in position

one, the user specifies the kind of data returned in the I/O area. Table 40 on

page 241 lists the five keywords and the data that an unqualifed POS call returns

based on the keyword you choose for position one.

DB Call: POS

240 Application Programming: Database Manager

|

|
|
|
|

|
|
|
|
|
|
|
|

Table 40. Unqualified POS Call: Keywords and Map of the I/O Area Return Output

Keyword byte 2 word 0 word 1 word 2 word 3 word 4 word 5

<null> LL Field 1 Field 2 Field 4 Field 5

V5SEGRBA LL Field 1 Field 3 <null>

PCSEGRTS LL Field 1 Field 3 Field 6

PCSEGHWM LL Field 1 Field 3 Field 7

PCHSEGTS LL Field 1 Field 8 Field 6

PCLBSGTS LL Field 1 Field 9 Field 6

Field 1

Area name

This 8-byte field contains the ddname from the AREA statement.

Position

IMS places two pieces of data in this 8-byte field after a successful POS

call. The first 4 bytes contain the cycle count, and the second 4 bytes

contain the VSAM RBA. These two fields uniquely identify a sequential

dependent segment during the life of an area.

 If the sequential dependent segment that is the target of the POS call is

inserted in the same synchronization interval, no position information is

returned. Bytes 11-18 contain X'FF'. Other fields contain normal data.

Field 2

Sequential dependent next to allocate CI

This field is the default if no keyword is specified as input in position

one of the I/O area. The data returned is the 8-byte cycle count and

RBA (CC+RBA) acquired from the global DMACNXTS field. This data

represents the next pre-allocated CI as a CI boundary.

Field 3

Local sequential dependent next segment

The data returned is the 8-byte CC+RBA of a segment boundary where

the next SDEP to be inserted will be placed. This data is specific to

only the IMS that executes the POS call. Its scope is for local IMS use

only.

Field 4

Unused CIs in sequential dependent part

This 4-byte field contains the number of unused control intervals in the

sequential dependent part.

Field 5

Unused CIs in independent overflow part

This 4-byte field contains the number of unused control intervals in the

independent overflow part.

Field 6

Highest committed SDEP segment time stamp

The data returned is the 8-byte time stamp of the highest committed

SDEP segment across partners, or for a local IMS, the time stamp of

the pre-allocated SDEP dummy segment. If the area (either local or

DB Call: POS

Chapter 11. DL/I Calls for Database Management 241

|

|
|

|
|
|
|
|

|
|
|

shared) has not been opened, or a /DBR was performed without any

subsequent SDEP segment inserts, the current time is returned.

Field 7

Sequential dependent High Water Mark

This 8-byte field contains the cycle count plus RBA (CC+RBA) of the

last pre-allocated CI which is the High Water Mark (HWM) CI.

Field 8

Highest committed SDEP segment

The data returned is the 8-byte cycle count plus RBA (CC+RBA) for the

highest committed SDEP segment across partners, or for a local IMS,

the CC+RBA of the highest committed SDEP segment. If the area

(either local or shared) has not been opened, or a /DBR was performed

without any subsequent SDEP segment inserts, the HWM CI is

returned.

Field 9

Logical begin time stamp

This 8-byte field contains the logical begin time stamp from the

DMACLBTS field.

ssa

Specifies the SSA that you want to use in this call. This parameter is an input

parameter. The format of SSA in POS calls is the same as the format of SSA in

DL/I calls. You can use only one SSA in this parameter. This parameter is

optional for the POS call.

Usage

The POS call:

v Retrieves the location of a specific sequential dependent segment.

v Retrieves the location of last-inserted sequential dependent segment, its time

stamp, and the IMS ID.

v Retrieves the time stamp of a sequential dependent segment or Logical Begin.

v Tells you the amount of unused space within each DEDB area. For example, you

can use the information that IMS returns for a POS call to scan or delete the

sequential dependent segments for a particular time period.

If the area which the POS call specifies is unavailable, the I/O area is unchanged,

and the status code FH is returned.

Restrictions

You can only use the POS call with a DEDB.

REPL Call

The Replace (REPL) call is used to change the values of one or more fields in a

segment.

DB Call: POS

242 Application Programming: Database Manager

Format

�� REPL db pcb

aib
 i/o area

�

ssa

 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: REPL X X X

For DEDB: REPL X X

For MSDB: REPL X

Parameters

db pcb

Specifies the DB PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of a

DB PCB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the area in your program that communicates with IMS. This parameter

is an input parameter. When you want to replace an existing segment in the

database with a new segment, you first issue a Get Hold call to place the new

segment in the I/O area. You can modify the data in the I/O area, and then

issue the REPL call to replace the segment in the database.

ssa

Specifies the SSA, if any, to be used in the call. This parameter is an input

parameter. The SSA you supply in the call point to data areas in your program

in which you have defined the SSA for the call. You can use up to 15 SSAs in

this parameter. This parameter is optional for the REPL call.

Usage

A REPL call must be preceded by one of the three Get Hold calls. After you retrieve

the segment, you modify it in the I/O area, and then issue a REPL call to replace it in

the database. IMS replaces the segment in the database with the segment you

modify in the I/O area. You cannot change the field lengths of the segments in the

I/O area before you issue the REPL call.

DB Call: REPL

Chapter 11. DL/I Calls for Database Management 243

For example, if you do not change one or more segments that are returned on a

Get Hold call, or if you change the segment in the I/O area but do not want the

change reflected in the database, you can inform IMS not to replace the segment.

Specify an unqualified SSA with an N command code for that segment, which tells

IMS not to replace the segment.

The N command enables you to tell IMS not to replace one or more of the multiple

segments that were returned using the D command code. However, you can specify

an N command code even if there were no D command codes on the preceding

Get Hold call.

You should not include a qualified SSA on a REPL call. If you do, you receive an AJ

status code.

For your program to successfully replace a segment, the segment must have been

previously defined as replace-sensitive by PROCOPT=A or PROCOPT=R on the

SENSEG statement in the PCB.

Related Reading: For more information on the PROCOPT option, see IMS Version

9: Utilities Reference: Database and Transaction Manager.

If your program attempts to do a path replace of a segment where it does not have

replace sensitivity, and command code N is not specified, the data for the segment

in the I/O area for the REPL call must be the same as the segment returned on the

preceding Get Hold call. If the data changes in this situation, your program receives

the status code, AM, and data does not change as a result of the REPL call.

DB Call: REPL

244 Application Programming: Database Manager

Chapter 12. DL/I Calls for System Services

This chapter describes the calls you can use to obtain IMS DB system services for

use in each type of application program and the parameters of each call.

Each call description contains:

v A syntax diagram

v Definitions for parameters that are available to the call

v Details on how to use the call in your application program

v Restrictions on call usage, where applicable

Each parameter is described as an input parameter or output parameter. “Input”

refers to input to IMS from the application program. “Output” refers to output from

IMS to the application program.

Syntax diagrams for these calls begin with the function parameter. The call interface

(xxxTDLI) and parmcount (if it is required) are not included in the syntax diagrams.

The following topics provide additional information:

v “System Service Call Summary” on page 246

v “APSB Call” on page 248

v “CHKP (Basic) Call” on page 249

v “CHKP (Symbolic) Call” on page 250

v “DPSB Call” on page 251

v “GMSG Call” on page 252

v “GSCD Call” on page 254

v “ICMD Call” on page 255

v “INIT Call” on page 257

v “INQY Call” on page 262

v “LOG Call” on page 267

v “PCB Call (CICS Online Programs Only)” on page 269

v “RCMD Call” on page 270

v “ROLB Call” on page 271

v “ROLL Call” on page 272

v “ROLS Call” on page 273

v “SETS/SETU Call” on page 274

v “SNAP Call” on page 275

v “STAT Call” on page 278

v “SYNC Call” on page 280

v “TERM Call (CICS Online Programs Only)” on page 281

v “XRST Call” on page 282

Related Reading: For specific information about coding your program in assembler

language, C language, COBOL, Pascal, and PL/I, see Chapter 3, “Defining

Application Program Elements,” on page 55 for the complete structure. For

information on calls that apply to TM, see IMS Version 9: Application Programming:

Transaction Manager. Calls within the section are in alphabetic order. For

information on DL/I calls used for transaction management and EXEC DLI

© Copyright IBM Corp. 1974, 2004 245

|
|

|

commands used in CICS, see IMS Version 9: Application Programming: Transaction

Manager and IMS Version 9: Application Programming: EXEC DLI Commands for

CICS and IMS.

System Service Call Summary

Table 41 summarizes which system service calls you can use in each type of IMS

DB application program and the parameters for each call. Optional parameters are

enclosed in brackets ([]).

Exception: Language-dependent parameters are not shown here.

For more information on language-dependent application elements, see Chapter 3,

“Defining Application Program Elements,” on page 55.

 Table 41. Summary of System Service Calls

Function Code Meaning Use/Options Parameters Valid for

APSB Allocate PSB Allocates a PSB for

an ODBA application

aib DB/DC, IMS DB

CHKP (Basic) Basic checkpoint Prepares for

recovery

function, i/o pcb or aib,

i/o area

DB batch, TM batch,

BMP, MPP, IFP

CHKP (Symbolic) Symbolic checkpoint Prepares for

recovery. Specifies

up to seven program

areas to be saved

function, i/o pcb or aib,

i/o area len, i/o area[,

area len, area]

DB batch, TM batch,

BMP

GMSG Get Message Retrieves a

message from the

AO exit routine.

Waits for an AOI

message when none

is available

function, aib, i/o area DB/DC and DCCTL

(BMP, MPP, IFP),

DB/DC and DBCTL

(DRA thread), DBCTL

(BMP non-message

driven), ODBA

GSCD1 Get System Contents

Directory

Gets address of

system contents

directory

function, db pcb, i/o

pcb or aib, i/o area

DB Batch, TM Batch

ICMD Issue Command Issues an IMS

command and

retrieves the first

command response

segment

function, aib, i/o area DB/DC and DCCTL

(BMP, MPP, IFP),

DB/DC and DBCTL

(DRA thread), DBCTL

(BMP non-message

driven), ODBA

INIT Initialize application Receives data

availability and

deadlock occurrence

status codes and

checks each PCB

database for data

availability

function, i/o pcb or aib,

i/o area

DB batch, TM batch,

BMP, MPP, IFP,

DBCTL, ODBA

INQY Inquiry Returns information

and status codes

about I/O or

alternate PCB

destination type,

location, and

session status

function, aib, i/o area,

AIBFUNC=FIND|

DBQUERY| ENVIRON

DB batch, TM batch,

BMP, MPP, IFP, ODBA

DL/I Calls for System Services

246 Application Programming: Database Manager

Table 41. Summary of System Service Calls (continued)

Function Code Meaning Use/Options Parameters Valid for

LOG� Log Writes a message to

the system log

function, i/o pcb or aib,

i/o area

DB batch, TM batch,

BMP, MPP, IFP,

DBCTL, ODBA

PCB� Program

Communication Block

Specifies and

schedules another

PSB

function, psb name,

uibptr, [,sysserve]

CICS (DBCTL or

DB/DC)

RCMD Retrieve Command Retrieves the

second and

subsequent

command response

segments resulting

from an ICMD call

function, aib, i/o area DB/DC and DCCTL

(BMP, MPP, IFP),

DB/DC and DBCTL

(DRA thread), DBCTL

(BMP non-message

driven), ODBA

ROLB Roll back Eliminates database

updates and returns

last message to i/o

area

function, i/o pcb or aib,

i/o area

DB batch, TM batch,

BMP, MPP, IFP

ROLL Roll Eliminates database

updates

function DB batch, TM batch,

BMP, MPP, IFP

ROLS Roll back to SETS Issues call using

name of DB PCB or

i/o PCB and backs

out database

changes to SETS

points

function, db pcb, i/o

pcb or aib, i/o area,

token

DB batch, TM batch,

BMP, MPP, IFP,

DBCTL, ODBA

SETS/SETU Set a backout point Cancels all existing

backout points and

establishes as many

as nine intermediate

backout points

function, i/o pcb or aib,

i/o area, token

DB batch, TM batch,

BMP, MPP, IFP,

DBCTL, ODBA

SNAP2 Collects diagnostic

information; choose

SNAP options

function, db pcb or aib,

i/o area

DB batch, BMP, MPP,

IFP, CICS (DBCTL or

DB/DC), ODBA

STAT3 Statistics Retrieves IMS

system statistics;

choose type and

format

function, db pcb or aib,

i/o area, stat function

DB batch, BMP, MPP,

IFP, DBCTL, ODBA

SYNC Synchronization Releases locked

resources and

requests

commit-point

processing

function, i/o pcb or aib BMP

TERM Terminate Releases a PSB so

another can be

scheduled commit

database changes

function CICS (DBCTL or

DB/DC)

XRST Extended restart Specifies up to

seven areas to be

saved. Works with

symbolic checkpoint

to restart application

program

function, i/o pcb or aib,

i/o area len, i/o area[,

area len, area]

DB batch, TM batch,

BMP

System Service Call Summary

Chapter 12. DL/I Calls for System Services 247

Table 41. Summary of System Service Calls (continued)

Function Code Meaning Use/Options Parameters Valid for

Note:

1. GSCD is a Product-sensitive programming interface.

2. SNAP is a Product-sensitive programming interface.

3. STAT is a Product-sensitive programming interface.

APSB Call

The Allocate PSB (APSB) calls are used to allocate a PSB for an ODBA application.

Format

�� APSB aib ��

 Call Name DB/DC IMS DB DCCTL DB Batch TM Batch

APSB X X

Parameters

aib

Specifies the application interface block (AIB) that is used for the call. This

parameter is an input and output parameter.

 These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB ��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PSB name.

AIBRSNM2

This is the 4-character ID of ODBA startup table representing the target IMS

of the APSB.

Usage

The ODBA application must load or be link edited with the ODBA application

interface AERTDLI.

The APSB call must be issued prior to any DLI calls.

The APSB call uses the AIB to allocate a PSB for ODBA application programs.

RRS/MVS must be active at the time of the APSB call. If RRS/MVS is not active,

the APSB call will fail and the application will receive:

AIBRETRN = X'00000108'

AIBREASN = X'00000548'

System Service Call Summary

248 Application Programming: Database Manager

CHKP (Basic) Call

A basic Checkpoint (CHKP) call is used for recovery purposes.

The ODBA interface does not support this call.

Format

�� CHKP i/o pcb

aib
 i/o area ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters

i/o pcb

Specifies the I/O PCB for the call. A basic CHKP call must refer to the I/O PCB.

This parameter is an input and output parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name,

IOPCB���.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies your program’s I/O area that contains the 8-byte checkpoint ID. This

parameter is an input parameter. If the program is an MPP or a message-driven

BMP, the CHKP call implicitly returns the next input message to this I/O area.

Therefore, the area must be large enough to hold the longest returned

message.

Usage

Basic CHKP commits the changes your program has made to the database and

establishes places in your program from which you can restart your program, if it

terminates abnormally.

System Service Call: CHKP (Basic)

Chapter 12. DL/I Calls for System Services 249

CHKP (Symbolic) Call

A symbolic Checkpoint (CHKP) call is used for recovery purposes. If you use the

symbolic Checkpoint call in your program, you also must use the XRST call.

The ODBA interface does not support this call.

Format

�� CHKP i/o pcb

aib
 i/o area length i/o area

�

area length

area

 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters

i/o pcb

Specifies the I/O PCB for the call. This parameter is an input and output

parameter. A symbolic CHKP call must refer to the I/O PCB.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name,

IOPCB���.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area length

This parameter is no longer used by IMS. For compatibility reasons, this

parameter must be included in the call, and it must contain a valid address. You

can get a valid address by specifying the name of any area in your program.

i/o area

Specifies the I/O area in your program that contains the 8-byte ID for this

checkpoint. This parameter is an input parameter. If the program is a

message-driven BMP, the CHKP call implicitly returns the next input message into

this I/O area. Therefore, the area must be large enough to hold the longest

returned message.

area length

Specifies a 4-byte field in your program that contains the length (in binary) of

the area to checkpoint. This parameter is an input parameter. You can specify

up to seven area lengths. For each area length, you must also specify the area

System Service Call: CHKP (Symbolic) Call

250 Application Programming: Database Manager

parameter. All seven area parameters (and corresponding length parameters)

are optional. When you restart the program, IMS restores only the areas you

specified in the CHKP call.

area

Specifies the area in your program that you want IMS to checkpoint. This

parameter is an input parameter. You can specify up to seven areas. Each area

specified must be preceded by an area length parameter.

Usage

The symbolic CHKP call commits the changes your program has made to the

database and establishes places in your program from which you can restart your

program, if it terminates abnormally. In addition, the CHKP call:

v Works with the Extended Restart (XRST) call to restart your program if it

terminates abnormally

v Enables you to save as many as seven data areas in your program, which are

restored when your program is restarted

An XRST call is required before a CHKP call to indicate to IMS that symbolic check

points are being taken. The XRST call must specify a checkpoint ID of blanks. For

more information, see “XRST Call” on page 282.

Restrictions

The Symbolic CHKP call is allowed only from batch and BMP applications.

DPSB Call

The DPSB call is used to deallocate IMS DB resources.

Format

�� DPSB aib ��

 Call Name DB/DC IMS DB DCCTL DB Batch TM Batch

DPSB X X

Parameters

aib

Specifies the application interface block (AIB) that is used for the call. This

parameter is an input and output parameter.

 These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB ��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PSB name.

System Service Call: CHKP (Symbolic) Call

Chapter 12. DL/I Calls for System Services 251

AIBSFUNC

Subfunction code. This field must contain one of the 8-byte subfunction

codes as follows:

bbbbbbbb (Null)

PREPbbbb

Usage

The DPSB call is used by an application running in a z/OS application region to

deallocate a PSB. If the PREP subfunction is not used, the application must

activate sync-point processing prior to issuing the DPSB. Use the RRS/MVS

SRRCMIT/ATRCMIT calls to activate the sync-point process. Refer to MVS

Programming: Resource Recovery for more information on these calls.

If the DPSB is issued before changes are committed, and, or locks released, the

application will receive:

AIBRETRN = X'00000104'

AIBREASN = X'00000490'

The thread will not be terminated. The application should issue a SRRCMIT or

SRRBACK call, and retry the DPSB.

The PREP sub-function allows the application to issue the DPSB prior to activating

the sync-point process. The sync-point activation can occur at a later time, but still

must be issued.

GMSG Call

A Get Message (GMSG) call is used in an automated operator (AO) application

program to retrieve a message from the AO exit routine DFSAOE00.

Format

�� GMSG aib i/o area ��

Parameters

aib

Specifies the application interface block (AIB) to be used for this call. This

parameter is an input and output parameter.

 You must initialize the follo fields in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the length of the AIB the application

actually obtained.

AIBSFUNC

Subfunction code. This field must contain one of these 8-byte subfunction

codes:

8-blanks (null)

When coded with an AOI token in the AIBRSNM1 field, indicates IMS is

to return when no AOI message is available for the application program.

System Service Call: CHKP (Symbolic) Call

252 Application Programming: Database Manager

WAITAOI

When coded with an AOI token in the AIBRSNM1 field, WAITAOI

indicates IMS is to wait for an AOI message when none is currently

available for the application program. This subfunction value is invalid if

an AOI token is not coded in AIBRSNM1. In this case, error return and

reason codes are returned in the AIB.

 The value WAITAOI must be left justified and padded on the right with a

blank character.

AIBRSNM1

Resource name. This field must contain the AOI token or blanks. The AOI

token identifies the message the AO application is to retrieve. The token is

supplied for the first segment of a message. If the message is a

multisegment message, set this field to blanks to retrieve the second

through the last segment. AIBRSNM1 is an 8-byte alphanumeric left-justified

field that is padded on the right with blanks.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list. This field is not changed by IMS.

AIBOAUSE

Length of the data returned in the I/O area. This parameter is an output

parameter.

 When partial data is returned because the I/O area is not large enough,

AIBOAUSE contains the length required to receive all of the data, and

AIBOALEN contains the actual length of the data.

i/o area

Specifies the I/O area to use for this call. This parameter is an output

parameter. The I/O area should be large enough to hold the largest segment

that is passed from IMS to the AO application program. If the I/O area is not

large enough to contain all the data, IMS returns partial data.

Usage

GMSG is used in an AO application program to retrieve a message associated with an

AOI token. The AO application program must pass an 8-byte AOI token to IMS in

order to retrieve the first segment of the message. IMS uses the AOI token to

associate messages from AO exit routine DFSAOE00 with the GMSG call from an AO

application program. IMS returns to the application program only those messages

associated with the AOI token. By using different AOI tokens, DFSAOE00 can direct

messages to different AO application programs. Note that your installation defines

the AOI token.

Related Reading: For more information on the AOI exits, see IMS Version 9:

Customization Guide.

To retrieve the second through the last segments of a multisegment message, issue

GMSG calls with no token specified (set the token to blanks). If you want to retrieve

all segments of a message, you must issue GMSG calls until all segments are

retrieved. IMS discards all nonretrieved segments of a multisegment message when

a new GMSG call that specifies an AOI token is issued.

Your AO application program can specify a wait on the GMSG call. If no messages

are currently available for the associated AOI token, your AO application program

waits until a message is available. The decision to wait is specified by the AO

System Service Call: GMSG

Chapter 12. DL/I Calls for System Services 253

application program, unlike a WFI transaction where the wait is specified in the

transaction definition. The wait is done on a call basis; that is, within a single

application program some GMSG calls can specify waits, while others do not.

Table 42 shows, by IMS environment, the types of AO application programs that can

issue GMSG. GMSG is also supported from a CPI-C driven program.

 Table 42. GMSG Support by Application Region Type

 Application Region Type

IMS Environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

Restrictions

A CPI-C driven program must issue an allocate PSB (APSB) call before issuing GMSG.

GSCD Call

This sectioncontains product-sensitive programming interface information.

A Get System Contents Directory (GSCD) call retrieves the address of the IMS

system contents directory for batch programs.

The ODBA interface does not support this call.

Format

�� GSCD db pcb

i/o pcb

aib

 i/o area ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GSCD X X

Parameters

db pcb

Specifies the DB PCB for the call. This parameter is an input and output

parameter.

i/o pcb

Specifies the I/O PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

The these fields must be initialized in the AIB:

System Service Call: GMSG

254 Application Programming: Database Manager

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name,

IOPCB��� (if the I/O PCB is used), or the name of a DB PCB (if a DB PCB

is used).

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the I/O area, which must be 8 bytes long. IMS places the address of

the system contents directory (SCD) in the first 4 bytes and the address of the

program specification table (PST) in the second 4 bytes. This parameter is an

output parameter.

Usage

IMS does not return a status code to a program after it issues a successful GSCD

call. The status code from the previous call that used the same PCB remains

unchanged in the PCB. For more information on GSCD, see IMS Version 9:

Application Programming: Design Guide.

Restriction

The GSCD call can be issued only from batch application programs.

ICMD Call

An Issue Command (ICMD) call enables an automated operator (AO) application

program to issue an IMS command and retrieve the first command response

segment.

Format

�� ICMD aib i/o area ��

Parameters

aib

Specifies the application interface block (AIB) for this call. This parameter is an

input and output parameter.

 These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

System Service Call: GSCD

Chapter 12. DL/I Calls for System Services 255

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list. This field is not changed by IMS.

AIBOAUSE

Length of data returned in the I/O area. This parameter is an output

parameter.

 Your program must check this field to determine whether the ICMD call

returned data to the I/O area. When the only response to the command is a

DFS058 message indicating that the command is either in progress or

complete, the response is not returned.

 When partial data is returned because the I/O area is not large enough,

AIBOAUSE contains the length required to receive all of the data, and

AIBOALEN contains the actual length of the data.

i/o area

Specifies the I/O area to use for this call. This parameter is an input and output

parameter. The I/O area should be large enough to hold the largest command

that is passed from the AO application program to IMS, or the largest command

response segment that is passed from IMS to the AO application program. If the

I/O area is not large enough to contain all the data, IMS returns partial data.

Usage

ICMD enables an AO application to issue an IMS command and retrieve the first

command response segment.

When using ICMD, put the IMS command that is to be issued in your application

program’s I/O area. After IMS has processed the command, it returns the first

segment of the response message to your AO application program’s I/O area. To

retrieve subsequent segments (one segment at a time) use the RCMD call.

Some IMS commands that complete successfully result in a DFS058 message

indicating that the command is complete. Some IMS commands that are processed

asynchronously result in a DFS058 message indicating that the command is in

progress. For a command entered on an ICMD call, neither DFS058 message is

returned to the AO application program. In this case, the AIBOAUSE field is set to 0

to indicate that no segment was returned. So, your AO application program must

check the AIBOAUSE field along with the return and reason codes to determine if a

response was returned.

Related Reading: For more information on the AOI exits, see IMS Version 9:

Customization Guide.

Table 43 shows, by IMS environment, the types of AO application programs that can

issue ICMD. ICMD is also supported from a CPI-C driven program.

 Table 43. ICMD Support by Application Region Type

 Application Region Type

IMS Environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

System Service Call: ICMD

256 Application Programming: Database Manager

Table 43. ICMD Support by Application Region Type (continued)

 Application Region Type

IMS Environment

DBCTL DB/DC DCCTL

IFP N/A Yes Yes

See IMS Version 9: Command Reference for a list of commands that can be issued

using the ICMD call.

Restrictions

Before issuing ICMD, a CPI-C driven program must issue an allocate PSB (APSB)

call.

INIT Call

The Initialize (INIT) call allows an application to receive status codes regarding

deadlock occurrences and data availability (by checking each DB PCB).

Format

�� INIT i/o pcb

aib
 i/o area ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INIT X X X X X

Parameters

i/o pcb

Specifies the I/O PCB for the call. INIT must refer to the I/O PCB. This

parameter is an input and output parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name,

IOPCB���.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the I/O area in your program that contains the character string or

System Service Call: ICMD

Chapter 12. DL/I Calls for System Services 257

strings indicating which INIT functions are requested. This parameter is an input

parameter. INIT function character strings include DB QUERY, STATUS

GROUPA, and STATUS GROUPB.

Usage

You can use the call in any application program, including IMS batch in a sharing

environment.

Specify the function in your application program with a character string in the I/O

area.

Example: Use the format LLZZ Character-String, where LL is the length of the

character string including the length of the LLZZ portion; ZZ must be binary 0. For

PL/I, you must define the LL field as a fullword; the value is the length of the

character string including the length of the LLZZ portion, minus 2. If the I/O area is

invalid, an AJ status code is returned. Table 46 on page 259 and Table 47 on page

260 contain sample I/O areas for INIT when it is used with assembler language,

COBOL, C language, Pascal, and PL/I.

Determining Database Availability: INIT DBQUERY

When the INIT call is issued with the DBQUERY character string in the I/O area,

the application program can obtain information regarding the availability of data for

each PCB. Table 44 contains a sample I/O area for the INIT call with DBQUERY for

assembler language, COBOL, C language, and Pascal.

 Table 44. INIT DBQUERY: Examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character String

00 0B 00 00 DBQUERY

 Note: The LL value of X'0B' is a hexadecimal representation of decimal 11. ZZ fields are

binary.

Table 45 contains a sample I/O area for the INIT call with DBQUERY for PL/I.

 Table 45. INIT DBQUERY: I/O Area Example for PLITDLI

L L L L Z Z Character String

00 00 00 0B 00 00 DBQUERY

 Note: The LL value of X'0B' is a hexadecimal representation of decimal 11. ZZ fields are

binary.

LL or LLLL A 2-byte field that contains the length of the character string, plus

two bytes for LL. For the PLITDLI interface, use the 4-byte field

LLLL. When you use the AIB interface (AIBTDLI), PL/I programs

require only a 2-byte field.

ZZ A 2-byte field of binary zeros.

 One of the following status codes is returned for each database PCB:

NA At least one of the databases that can be accessed using this PCB is not

available. A call made using this PCB probably results in a BA or BB status

code if the INIT STATUS GROUPA call has been issued, or in a DFS3303I

message and 3303 pseudoabend if it has not. An exception is when the

System Service Call: INIT

258 Application Programming: Database Manager

database is not available because dynamic allocation failed. In this case, a

call results in an AI (unable to open) status code.

 In a DCCTL environment, the status code is always NA.

NU At least one of the databases that can be updated using this PCB is

unavailable for update. An ISRT, DLET, or REPL call using this PCB might

result in a BA status code if the INIT STATUS GROUPA call has been issued,

or in a DFS3303I message and 3303 pseudoabend if it has not. The

database that caused the NU status code might be required only for delete

processing. In that case, DLET calls fail, but ISRT and REPL calls succeed.

�� The data that can be accessed with this PCB can be used for all functions

that the PCB allows. DEDBs and MSDBs always have the �� status code.

In addition to data availability status, the name of the database organization of the

root segment is returned in the segment name field of the PCB. The segment name

field contains one of the following database organizations: DEDB, MSDB, GSAM,

HDAM, PHDAM, HIDAM, PHIDAM, HISAM, HSAM, INDEX, SHSAM, or SHISAM.

For a DCCTL environment, the database organization is UNKNOWN.

Important: If you are working with a High Availability Large Database (HALDB), you

need to be aware that the feedback on data availability at PSB schedule time only

shows the availability of the HALDB master, not of the HALDB partitions. However,

the error settings for data unavailability of a HALDB partition are the same as those

of a non-HALDB database, namely status code ’BA’ or pseudo abend U3303.

Related Reading: For more information on HALDB, see “High Availability Large

Databases (HALDBs)” on page 9.

Automatic INIT DBQUERY

When the program is initially scheduled, the status code in the database PCBs is

initialized as if the INIT DBQUERY call were issued. The application program can

therefore determine database availability without issuing the INIT call.

For a DCCTL environment, the status code is NA.

Performance Considerations for the INIT Call (IMS Online Only)

For performance reasons, the INIT call should not be issued before the first GU call

to the I/O PCB. If the INIT call is issued first, the GU call is not processed as

efficiently.

Enabling Data Availability Status Codes: INIT STATUS GROUPA

Table 46 contains a sample I/O area for the INIT call for assembler language,

COBOL, C language, and Pascal.

 Table 46. INIT I/O Area Examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character String

00 11 00 00 STATUS GROUPA

 Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are

binary.

System Service Call: INIT

Chapter 12. DL/I Calls for System Services 259

Table 47 contains a sample I/O area for the INIT call for PL/I.

 Table 47. INIT I/O Area Examples for PLITDLI

L L L L Z Z Character String

00 00 00 11 00 00 STATUS GROUPA

 Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are

binary.

LL or LLLL LL is a halfword-length field. For non-PLITDLI calls, LLLL is a

fullword-length field for PLITDLI.

ZZ A 2-byte field of binary zeros.

 The value for LLZZ data or LLLLZZ data is always 4 bytes (for LLZZ or LLLLZZ),

plus data length.

Recommendation: You should be familiar with data availability.

Related Reading: For more information about data availability, see IMS Version 9:

Application Programming: Design Guide.

When the INIT call is issued with the character string STATUS GROUPA in the I/O

area, the application program informs IMS that it is prepared to accept status codes

regarding data unavailability. IMS then returns a status code rather than a resultant

pseudoabend if a subsequent call requires access to unavailable data. The status

codes that are returned when IMS encounters unavailable data are BA and BB.

Status codes BA and BB both indicate that the call could not be completed because

it required access to data that was not available. DEDBs can receive the BA or BB

status code.

In response to status code BA, the system backs out only the updates that were

done for the current call before it encountered the unavailable data. If changes have

been made by a previous call, the application must decide to commit or not commit

to these changes. The state of the database is left as it was before the failing call

was issued. If the call was a REPL or DLET call, the PCB position is unchanged. If

the call is a Get type or ISRT call, the PCB position is unpredictable.

In response to status code BB, the system backs out all database updates that the

program made since the last commit point and cancels all nonexpress messages

that were sent since the last commit point. The PCB position for all PCBs is at the

start of the database.

Enabling Deadlock Occurrence Status Codes: INIT STATUS

GROUPB

Table 48 contains a sample I/O area for the INIT call for assembler language,

COBOL, C language, and Pascal.

 Table 48. INIT I/O Area Examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character String

00 11 00 00 STATUS GROUPB

 Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are

binary.

System Service Call: INIT

260 Application Programming: Database Manager

Table 49 contains a sample I/O area for the INIT call for PL/I.

 Table 49. INIT I/O Area Examples for PLITDLI

L L L L Z Z Character String

00 00 00 11 00 00 STATUS GROUPB

 Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are

binary.

LL or LLLL LL is a halfword-length field. For non-PLITDLI calls, LLLL is a

fullword-length field for PLITDLI.

ZZ A 2-byte field of binary zeros.

 The value for LLZZ data or LLLLZZ data is always four bytes (for LLZZ or LLLLZZ),

plus data length.

When the INIT call is issued with the character string STATUS GROUPB in the I/O

area, the application program informs IMS that it is prepared to accept status codes

regarding data unavailability and deadlock occurrences. The status codes for data

unavailability are BA and BB, as described under “Enabling Data Availability Status

Codes: INIT STATUS GROUPA” on page 259.

When a deadlock occurs in batch and the INITSTATUS GROUPB call has been issued,

the following occurs:

v If no changes were made to the database, the BC status code is returned.

v If updates were made to the database, and if a datalog exists and BKO=YES is

specified, the BC status code is returned.

v If changes were made to the database, and a disklog does not exist or

BKO=YES is not specified, a 777 pseudoabend occurs.

When the application program encounters a deadlock occurrence, IMS:

v Backs out all database resources (with the exception of GSAM and DB2) to the

last commit point. Although GSAM PCBs can be defined for pure batch or BMP

environments, GSAM changes are not backed out. Database resources are

backed out for DB2 only when IMS is the sync-point coordinator.

When you use INIT STATUS GROUPB in a pure batch environment, you must

specify the DISKLOG and BACKOUT options.

v Backs out all output messages to the last commit point.

v Requeues all input messages as follows:

Environment Action

MPP and BMP All input messages are returned to the message

queue. The application program no longer

controls its input messages.

IFP All input messages are returned to IMS Fast

Path (IFP) balancing group queues (BALGRP),

making them available to any other IFP region on

the BALGRP. The IFP that is involved in the

deadlock receives the next transaction or

message that is available on the BALGRP.

DBCTL Action is limited to resources that are managed

by DBCTL, for example, database updates.

System Service Call: INIT

Chapter 12. DL/I Calls for System Services 261

v Returns a BC status code to the program in the database PCB.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must

both be DBCTL.

You should be familiar with deadlock occurrences as described in IMS Version 9:

Administration Guide: System.

INQY Call

The Inquiry (INQY) call is used to request information regarding execution

environment, destination type and status, and session status. INQY is valid only

when using the AIB interface.

Format

�� INQY aib i/o area ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INQY X X X X X

Parameters

aib

Specifies the address of the application interface block (DFSAIB) for the call.

This parameter is an input and output parameter. These fields must be

initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBSFUNC

Subfunction code. This field must contain one of the 8-byte subfunction

codes as follows:

v DBQUERY�

v ENVIRON�

v FIND����

v LERUNOPT

v PROGRAM� Not supported with the ODBA interface.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of

any named PCB in the PSB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list. This field is not changed by IMS.

System Service Call: INIT

262 Application Programming: Database Manager

i/o area

Specifies the data output area to use with the call. This parameter is an output

parameter. An I/O area is required for INQY subfunctions ENVIRON� and

PROGRAM�. It is not required for subfunctions DBQUERY� and FIND����.

Usage

The INQY call operates in both batch and online IMS environments. IMS application

programs can use the INQY call to request information regarding the output

destination, the session status, the current execution environment, the availability of

databases, and the PCB address, which is based on the PCB name. You must use

the AIB when issuing an INQY call. Before you can issue an INQY call, initialize the

fields of the AIB. For more information on initializing AIBs, see “The AIBTDLI

Interface” on page 88.

When you use the INQY call, specify an 8-byte subfunction code, which is passed in

the AIB. The INQY subfunction determines the information that the application

program receives. For a summary of PCB type and I/O area use for each

subfunction, see Table 51 on page 267.

The INQY call returns information to the caller’s I/O area. The length of the data that

is returned from the INQY call is passed back to the application program in the AIB

field, AIBOAUSE.

You specify the size of the I/O area in the AIB field, AIBOALEN. The INQY call

returns only as much data as the area can hold in one call. If the area is not large

enough for all the information, an AG status code is returned, and partial data is

returned in the I/O area. In this case, the AIB field AIBOALEN contains the actual

length of the data returned to the I/O area, and the AIBOAUSE field contains the

output area length that would be required to receive all the data.

Querying Data Availability: INQY DBQUERY

When the INQY call is issued with the DBQUERY subfunction, the application

program obtains information regarding the data for each PCB. The only valid PCB

name that can be passed in AIBRSNM1 is IOPCB���. The INQY DBQUERY call is

similar to the INITDBQUERY call. The INIT DBQUERY call does not return information in

the I/O area, but like the INIT DBQUERY call, it updates status codes in the database

PCBs.

In addition to the INIT DBQUERY status codes, the INQY DBQUERY call returns these

status codes in the I/O PCB:

�� The call is successful and all databases are available.

BJ None of the databases in the PSB are available, or no PCBs exist in the

PSB. All database PCBs (excluding GSAM) contain an NA status code as

the result of processing the INQY DBQUERY call.

BK At least one of the databases in the PSB is not available or availability is

limited. At least one database PCB contains an NA or NU status code as

the result of processing the INQY DBQUERY call.

The INQY call returns the following status codes in each DB PCB:

NA At least one of the databases that can be accessed using this PCB is not

available. A call that is made using this PCB probably results in a BA or BB

status code if the INIT STATUS GROUPA call has been issued, or in a

DFS3303I message and 3303 pseudoabend if the call has not been issued.

System Service Call: INQY

Chapter 12. DL/I Calls for System Services 263

An exception is when the database is not available because dynamic

allocation failed. In this case, a call results in an AI (unable to open) status

code.

 In a DCCTL environment, the status code is always NA.

NU At least one of the databases that can be updated using this PCB is

unavailable for update. An ISRT, DLET, or REPL call using this PCB might

result in a BA status code if the INIT STATUS GROUPA call has been issued,

or in a DFS3303I message and 3303 pseudoabend if it has not been

issued. The database that caused the NU status code might be required

only for delete processing. In that case, DLET calls fail, but ISRT and REPL

calls succeed.

�� The data that can be accessed with this PCB can be used for all functions

the PCB allows. DEDBs and MSDBs always have the �� status code.

Querying the Environment: INQY ENVIRON

When the INQY call is issued with the ENVIRON subfunction, the application program

obtains information regarding the current execution environment. The only valid

PCB name that can be passed in AIBRSNM1 is IOPCB���. This includes the IMS

identifier, release, region, and region type.

The INQY ENVIRON call returns character-string data. The output is left justified and

padded with blanks on the right.

Recommendation: To receive the following data and to account for expansion,

define the I/O area length to be larger than 152 bytes. If you define the I/O area

length to be exactly 152 bytes and the I/O area is expanded in future releases, you

will receive an AG status code.

 100 bytes INQY ENVIRON data

 2 bytes Length field for Recovery Token section (18 bytes)

 16 bytes Recovery Token

 2 bytes Length field for APARM section (maximum of 34 bytes)

 32 bytes APARM data

152 bytes Total I/O area length

Table 50 lists the output that is returned from the INQY ENVIRON call. Included with

the information returned is the output’s byte length, the actual value, and an

explanation.

 Table 50. INQY ENVIRON Data Output

Information Returned

Length in

Bytes

Actual

Value Explanation

IMS Identifier 8 Provides the identifier from the execution parameters.

IMS Release Level 4 Provides the release level for IMS. For example,

X'00000410'.

IMS Control Region Type

8 BATCH Indicates that an IMS batch region is active.

DB Indicates that only the IMS Database Manager is active.

(DBCTL system)

TM Indicates that only the IMS Transaction Manager is active.

(DCCTL system)

DB/DC Indicates that both the IMS Database and Transaction

managers are active. (DBDC system)

System Service Call: INQY

264 Application Programming: Database Manager

Table 50. INQY ENVIRON Data Output (continued)

Information Returned

Length in

Bytes

Actual

Value Explanation

IMS Application Region Type

8 BATCH Indicates that the IMS Batch region is active.

BMP Indicates that the Batch Message Processing region is active.

DRA Indicates that the Database Resource Adapter Thread region

is active.

IFP Indicates that the IMS Fast Path region is active.

MPP Indicates that the Message Processing region is active.

Region Identifier 4 Provides the region identifier. For example, X'00000001'.

Application Program Name 8 Provides the name of the application program being run.

PSB Name (currently

allocated)

8 Provides the name of the PSB currently allocated.

Transaction Name 8 Provides the name of the transaction.

� Indicates that no associated transaction exists.

User Identifier1 8 Provides the user ID.

� Indicates that the user ID is unavailable.

Group Name 8 Provides the group name.

� Indicates that the group name is unavailable.

Status Group Indicator 4 A Indicates an INIT STATUS GROUPA call is issued.

B Indicates an INIT STATUS GROUPB call is issued.

� Indicates that a status group is not initialized.

Address of Recovery Token

2 4 Provides the address of the LL field, followed by the recovery

token.

Address of the Application

Parameter String

2

4 Provides the address of the LL field, followed by the

application program parameter string.

0 Indicates that the APARM= parameter is not coded in the

execution parameters of the dependent region JCL.

Shared Queues Indicator 4 Indicates IMS is not using Shared Queues.

SHRQ Indicates IMS is using Shared Queues.

 Userid of Address Space 8 Userid of dependent address space.

 Userid Indicator 1 The Userid Indicator field has one of four possible values.

This value indicates the contents of the userid field.

U Indicates the user’s identification from the source terminal

during sign-on.

L Indicates the LTERM name of the source terminal in sign-on

is not active.

P Indicates the PSBNAME of the source BMP or transaction.

O Indicates some other name.

3 Reserved for IMS.

RRS Indicator 3 � Indicates IMS has not expressed interest in the UR with

RRS. Therefore, the application should refrain from

performing any work that causes RRS to become the

syncpoint manager for the UR because IMS will not be

involved in the commit scope. For example, the application

should not issue any outbound protected conversations.

System Service Call: INQY

Chapter 12. DL/I Calls for System Services 265

1111
1
1
1
1
1

Table 50. INQY ENVIRON Data Output (continued)

Information Returned

Length in

Bytes

Actual

Value Explanation

RRS Indicates IMS has expressed interest in the UR with RRS.

Therefore, IMS will be involved in the commit scope if RRS is

the syncpoint manager for the UR.

Notes:

1. The user ID is derived from the PSTUSID field of the PST that represents the region making the INQY ENVIRON call.

The PSTUSID field is one of the following:

v For message-driven BMP regions that have not completed successful GU calls to the IMS message queue and

for non-message-driven BMP regions, the PSTUSID field is derived from the name of the PSB that is currently

scheduled into the BMP region.

v For message-driven BMP regions that have completed a successful GU call and for any MPP region, the

PSTUSID field is derived which is usually the input terminal’s RACF ID. If the terminal has not signed on to

RACF, the ID is the input terminal’s LTERM.

2. The pointer identifies a length field (LL) that contains the length of the recovery token or application program

parameter string in binary, including the two bytes required for LL.

Querying the PCB: INQY FIND

When the INQY call is issued with the FIND subfunction, the application program is

returned with the PCB address of the requested PCB name. The only valid PCB

names that can be passed in AIBRSNM1 are IOPCB��� or the name of an alternate

PCB or DB PCB, as defined in the PSB.

On a FIND subfunction, the requested PCB remains unmodified, and no information

is returned in an I/O area.

The FIND subfunction is used to get a PCB address following an INQY DBQUERY call.

This process allows the application program to analyze the PCB status code to

determine if either an NA or NU status code is set in the PCB.

Querying for LE Overrides: INQY LERUNOPT

When the LERUNOPT call is issued with the LERUNOPT subfunction, IMS determines

if LE overrides are allowed based on the LEOPT system parameter. The LE

override parameters are defined to IMS through the UPDATE LE command. IMS

checks to see if there are any overrides applicable to the caller based on the

specific combinations of transaction name, lterm name, userid, or program name in

the caller’s environment. IMS will return the address of the string to the caller if an

override parameter is found. The LE overrides are used by the IMS supplied

CEEBXITA exit, DFSBXITA, to allow dynamic overrides for LE runtime parameters.

Related Reading:

v For more information about the UPDATE LE command, see IMS Version 9:

Command Reference.

v For more information about the IMS supplied CEEBXITA, DFSBXITA, see IMS

Version 9: Customization Guide.

The call string must contain the function code and the AIB address. The I/O area is

not a required parameter and will be ignored if specified. The only valid PCB name

that can be passed in AIBRSNM1 is IOPCB. The AIBOALEN and AIBOAUSE fields

are not used.

The rules for matching an entry that results in it being returned on a DL/I INQY

LERUNOPT call are:

System Service Call: INQY

266 Application Programming: Database Manager

v An MPP or JMP region uses transaction name, lterm, userid, and program to

match with each entry.

v An IFB, JBP, or non-message driven BMP uses program name to match with

each entry. If an entry has a defined filter for transaction name, lterm, or userid, it

does not match. Message driven BMPs also use transaction name.

v The entries are scanned to find the entry with the most filter matches. The first

entry in the list with the most exact filter matches is selected. The scan stops

with an entry found with all of the filters matching the entry.

Note: Searching table entries may cause user confusion because of the way

entries are built and searched. For example, assume there are two entries

in the table that match on the filters specified on the DL/I INQY call. The

first transaction matches on transaction name and lterm name. The

second entry matches on transaction name and program name. IMS

chooses the first entry because it was the first entry encountered with

highest number of filter matches. If the second entry is now updated with

a longer parameter string, which causes a new entry to be built, it will be

added to the head of the queue. The next search would result in the entry

with transaction name and program name being selected. This could

result in a set of runtime options being selected that were not expected by

the user.

Querying the Program Name: INQY PROGRAM

When you issue the INQY call with the PROGRAM subfunction, the application program

name is returned in the first 8 bytes of the I/O area. The only valid PCB name that

can be passed in AIBRSNM1 is IOPCB���.

INQY Return Codes and Reason Codes

When you issue the INQY call, return and reason codes are returned to the AIB.

Status codes can be returned to the PCB. If return and reason codes other than

those that apply to INQY are returned, your application should examine the PCB to

see what status codes are found.

Map of INQY Subfunction to PCB Type

 Table 51. Subfunction, PCB, and I/O Area Combinations for the INQY Call

 Subfunction I/O PCB

Alternate

PCB DB PCB

I/O Area

Required

FIND OK OK OK NO

ENVIRON OK NO NO YES

DBQUERY OK NO NO NO

LERUNOPT OK NO NO NO

PROGRAM OK NO NO YES

Restrictions

The INQY call is valid only when using the AIB. An INQY call issued through the PCB

interface is rejected with an AD status code.

LOG Call

The Log (LOG) call is used to send and write information to the IMS system log.

System Service Call: INQY

Chapter 12. DL/I Calls for System Services 267

Format

�� LOG io pcb

aib
 i/o area ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

LOG X X X X X

Parameters

i/o pcb

Specifies the I/O PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name,

IOPCB���.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the area in your program that contains the record that you want to

write to the system log. This is an input parameter. This record must follow the

format shown in Table 52and Table 53.

 Table 52. Log Record Formats for COBOL, C, Assembler, Pascal, and PL/I Programs for the

AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI Interfaces

LL ZZ C Text

2 2 1 Variable

 Table 53. Log Record Formats for COBOL, C, Assembler, Pascal, and PL/I Programs for the

PLITDLI Interface

LLLL ZZ C Text

4 2 1 Variable

The fields must be:

LL or LLLL Specifies a 2-byte field (or, for PL/I, a 4-byte-long field) to

contain the length of the record. The length of the record is

equal to LL + ZZ + C + text of the record. When you calculate

the length of the log record, you must account for all fields. The

total length you specify includes:

System Service Call: LOG

268 Application Programming: Database Manager

v 2 bytes for LL or LLLL. (For PL/I, include the length as 2,

even though LLLL is a 4-byte field.)

v 2 bytes for the ZZ field.

v 1 byte for the C field.

v n bytes for the length of the record itself.

If you are using the PLITDLI interface, your program must

define the length field as a binary fullword.

ZZ Specifies a 2-byte field of binary zeros.

C Specifies a 1-byte field containing a log code, which must be

equal to or greater than X'A0'.

Text Specifies any data to be logged.

Usage

An application program can write a record to the system log by issuing the LOG call.

When you issue the LOG call, specify the I/O area that contains the record you want

written to the system log. You can write any information to the log, and you can use

different log codes to distinguish between different types of information.

You can issue the LOG call:

v In a batch program, and the record is written to the IMS log

v In an online program in the DBCTL environment, and the record is written to the

DBCTL log

v In the IMS DB/DC environment, and the record is written to the IMS log

Restrictions

The length of the I/O area (including all fields) cannot be larger than the logical

record length (LRECL) for the system log data set, minus four bytes, or the I/O area

specified in the IOASIZE keyword of the PSBGEN statement of the PSB.

For function shipping in the CICS environment, the local and remote CICS must

both be DBCTL.

PCB Call (CICS Online Programs Only)

The PCB call is used to schedule a PSB call.

The ODBA interface does not support this call.

Format

�� PCB psb name uibptr

sysserve
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

PCB X X

Parameters

The AIB is not valid for PCB calls.

System Service Call: LOG

Chapter 12. DL/I Calls for System Services 269

psb name

Specifies the PSB. An asterisk can be used for the parameter to indicate the

default. This parameter is an input parameter.

uibptr

Specifies a pointer, which is set to the address of the UIB after the call. This

parameter is an output parameter.

sysserve

Specifies an optional 8-byte field that contains either IOPCB or NOIOPCB. This

parameter is an input parameter.

Usage

Before a CICS online program can issue any DL/I calls, it must indicate to DL/I its

intent to use a particular PSB. A PCB call accomplishes this and also obtains the

address of the PCB list in the PSB. When you issue a PCB call, specify:

v The call function: PCB�

v The PSB you want to use, or an asterisk to indicate that you want to use the

default name. The default PSB name is not necessarily the name of the program

issuing the PCB call, because that program could have been called by another

program.

v A pointer, which is set to the address of the UIB after the call.

For more information on defining and establishing addressability to the UIB, see

“Specifying the UIB (CICS Online Programs Only)” on page 79.

v The system service call parameter that names an optional 8-byte field that

contains either IOPCB or NOIOPCB.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must

both be DBCTL.

RCMD Call

A Retrieve Command (RCMD) call enables an automated operator (AO) application

program retrieve the second and subsequent command response segments after an

ICMD call.

Format

�� RCMD aib i/o area ��

Parameters

aib

Specifies the application interface block (AIB) used for this call. This parameter

is an input and output parameter.

 These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

System Service Call: PCB

270 Application Programming: Database Manager

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list. This field is not changed by IMS.

AIBOAUSE

Length of data returned in the I/O area. This parameter is an output

parameter.

 When partial data is returned because the I/O area is not large enough,

AIBOAUSE contains the length required to receive all of the data, and

AIBOALEN contains the actual length of the data.

i/o area

Specifies the I/O area to use for this call. This parameter is an output

parameter. The I/O area should be large enough to hold the largest command

response segment that is passed from IMS to the AO application program. If the

I/O area is not large enough for all of the information, partial data is returned in

the I/O area.

Usage

RCMD lets an AO application program retrieve the second and subsequent command

response segments resulting from an ICMD call.

Related Reading For more information on the AOI exits, see IMS Version 9:

Customization Guide.

Table 54 shows, by IMS environment, the types of AO application programs that can

issue RCMD. RCMD is also supported from a CPI-C driven program.

 Table 54. RCMD Support by Application Region Type

 Application Region Type

IMS Environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

RCMD retrieves only one response segment at a time. If you need additional

response segments, you must issue RCMD one time for each response segment that

is issued by IMS.

Restrictions

An ICMD call must be issued before an RCMD call.

ROLB Call

The Roll Back (ROLB) call is used to dynamically back out database changes and

return control to your program. For more information on the ROLB call, see

“Maintaining Database Integrity (IMS Batch, BMP, and IMS Online Regions)” on

page 116.

The ODBA interface does not support this call.

System Service Call: RCMD

Chapter 12. DL/I Calls for System Services 271

Format

�� ROLB i/o pcb

aib

i/o area
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLB X X X X X

Parameters

i/o pcb

Specifies the I/O PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name,

IOPCB���.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the area in your program where IMS returns the first message

segment. This parameter is an output parameter.

Restrictions

The AIB must specify the I/O PCB for this call.

ROLL Call

The Roll (ROLL) call is used to abnormally terminate your program and to

dynamically back out database changes. For more information on the ROLL call, see

“Maintaining Database Integrity (IMS Batch, BMP, and IMS Online Regions)” on

page 116.

The ODBA interface does not support this call.

Format

�� ROLL ��

System Service Call: ROLB

272 Application Programming: Database Manager

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLL X X X X X

Parameters

The only parameter required for the ROLL call is the call function.

Usage

When you issue a ROLL call, IMS terminates the application program with a U0778

abend.

Restriction

Unlike the ROLB call, the ROLL call does not return control to the program.

ROLS Call

The Roll Back to SETS (ROLS) call is used to back out to a processing point set by

a prior SETS or SETU call. For more information on the ROLS call, see “Maintaining

Database Integrity (IMS Batch, BMP, and IMS Online Regions)” on page 116.

Format

�� ROLS i/o pcb

aib

db pcb

i/o area

token
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLS X X X X X

Parameters

db pcb

Specifies the DB PCB for the call. This parameter is an input and output

parameter.

i/o pcb

Specifies the I/O PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name,

IOPCB���, or the name of a DB PCB.

System Service Call: ROLL

Chapter 12. DL/I Calls for System Services 273

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the I/O area has the same format as the I/O area supplied on the

SETS call. This parameter is an output parameter.

token

Specifies the area in your program that contains a 4-byte identifier. This

parameter is an input parameter.

Usage

When you use the Roll Back to SETS (ROLS) call to back out to a processing point

set by a prior SETS or SETU, the ROLS enables you to continue processing or to back

out to the prior commit point and place the input message on the suspend queue

for later processing.

Issuing a ROLS call for a DB PCB can result in the user abend code 3303.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must

both be DBCTL.

The ROLS call is not valid when the PSB contains a DEDB or MSDB PCB, or when

the call is made to a DB2 database.

SETS/SETU Call

The Set a Backout Point (SETS) call is used to set an intermediate backout point or

to cancel all existing backout points. The SET Unconditional (SETU) call operates like

the SETS call, except that the SETU call is accepted even if unsupported PCBs exist

or an external subsystem is used. For more information on the SETS and SETU calls,

see “Maintaining Database Integrity (IMS Batch, BMP, and IMS Online Regions)” on

page 116.

Format

�� SETS

SETU
 i/o pcb

aib

i/o area

token
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SETS/SETU X X X X X

Parameters

i/o pcb

Specifies the I/O PCB for the call. SETS and SETU must refer to the I/O PCB.

This parameter is an input and output parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

System Service Call: ROLS

274 Application Programming: Database Manager

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name,

IOPCB���.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the area in your program that contains the data to be returned on the

corresponding ROLS call. This parameter is an input parameter.

token

Specifies the area in your program that contains a 4-byte identifier. This

parameter is an input parameter.

Usage

The SETS and SETU format and parameters are the same, except for the call

functions, SETS and SETU.

The SETS and SETU calls provide the backout points that IMS uses in the ROLS call.

The ROLS call operates with the SETS and SETU call backout points.

The meaning of the SC status code for SETS and SETU is as follows:

SETS The SETS call is rejected. The SC status code in the I/O PCB indicates that

either the PSB contains unsupported options or the application program

made calls to an external subsystem.

SETU The SETU call is not rejected. The SC status code indicates either that

unsupported PCBs exist in the PSB or the application program made calls

to an external subsystem.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must

both be DBCTL.

The SETS call is not valid when the PSB contains a DEDB or MSDB PCB, or when

the call is made to a DB2 database. The SETU call is valid, but not functional, if

unsupported PCBs exist in the PSB or if the program uses an external subsystem.

Before a ROLS call, you can specify a maximum of 255 SETS calls with the same

token and still back out to the correct message level. After 255 SETS calls, the

messages continue to back out, but only to the same message level as at 255th

SETS call. The SETS token count resets to zero during sync point processing.

SNAP Call

This section contains product-sensitive programming interface information.

The SNAP call is used to collect diagnostic information.

System Service Call: SETS/SETU

Chapter 12. DL/I Calls for System Services 275

|
|
|
|

Format

�� SNAP db pcb

aib
 i/o area ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SNAP X X X

Parameters

db pcb

Specifies the address that refers to a full-function PCB that is defined in a

calling program PSB. This parameter is an input and output parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of a

full-function DB PCB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies the area in your program that contains SNAP operation parameters.

This parameter is an input parameter. Figure 52 shows the SNAP operation

parameters you specify, including:

v Length for bytes 1 through 2

v Destination for bytes 3 through 10

v Identification for bytes 11 through 18

v SNAP options for bytes 19 through 22

Figure 52. I/O Area for SNAP Operation Parameters

System Service Call: SNAP

276 Application Programming: Database Manager

Table 55 explains the values that you can specify.

 Table 55. SNAP Operation Parameters

Byte Value Meaning

1-2 xx This 2-byte binary field specifies the length of the SNAP operation

parameters. The length must include this 2-byte length field.

When you do not specify operation parameters, IMS uses default

values. This chart lists the lengths that result from your parameter

specifications.

If you supply values

for:

And IMS supplies

default values for:

Then the length (in

hexadecimal) is:

Destination,

Identification, SNAP

options

 16

Destination,

Identification

SNAP options 12

Destination Identification, SNAP

options

10

 Destination,

Identification, SNAP

options

2

If you specify another length, IMS uses default values for the

destination, identification, and SNAP operation parameters.

3-10 This 8-byte field tells IMS where to send SNAP output. You can

direct output to the IMS log by specifying LOG or �����

Directs the output to the IMS log. This is the default destination.

dcbaddr Directs the output to the data set defined by this DCB address.

The application program must open the data set before the SNAP

call refers to it. This option is valid only in a batch environment. The

output data set must conform to the rules for a z/OS SNAP data set.

ddname Directs the output to the data set defined by the corresponding DD

statement. The DD statement must conform to the rules for a z/OS

SNAP data set. The data set specified by ddname is opened and

closed for this SNAP request.

In a DB/DC environment, you must supply the DD statement in the

JCL for the control region.

If the destination is invalid, IMS directs output to the IMS log.

11-18 cccccccc This is an eight-character name you can supply to identify the SNAP.

If you do not supply a name, IMS uses the default value,

NOTGIVEN.

19-22 cccc This four-character field identifies which data elements you want

the SNAP output to include. YYYN is the default.

19 Buffer Pool:

Y Dump all buffer pools and sequential buffering control blocks with a

SNAP call.

N Do not dump buffer pools or sequential buffering control blocks with

a SNAP call.

System Service Call: SNAP

Chapter 12. DL/I Calls for System Services 277

Table 55. SNAP Operation Parameters (continued)

Byte Value Meaning

20 Control Blocks:

Y Dump control blocks related to the current DB PCB with a SNAP call.

N Do not dump control blocks related to the current DB PCB with a

SNAP call.

21 Y Dump all control blocks for this PSB with a SNAP call. Specifying Y

in byte 21 produces a snap dump for the current DB PCB request

in byte 20 to Y, regardless of the current value.

N Do not dump all control blocks for this PSB with a SNAP call. In this

case, the current DB PCB SNAP request in position 20 is used as

specified.

19-21 ALL This is equivalent to specifying YYY in positions 19-21.

22 Region:

Y Dump the entire region on the DCB address or data set ddname

that you supplied in bytes 3-10 with a SNAP call. IMS processes this

request before it acts on any SNAP requests made in bytes 19-21. If

the destination is the IMS log, IMS does not dump the entire region.

Instead, it processes the request as if you had specified ALL.

N Do not dump the entire region with a SNAP call.

S Dump subpools 0-127 with a SNAP call.

After the SNAP call, IMS can return the AB, AD, or �� (blank) status code. For a

description of these codes and the response required, see IMS Version 9:

Application Programming: EXEC DLI Commands for CICS and IMS.

Usage

Any application program can issue this call.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must

both be DBCTL.

STAT Call

This sectioncontains product-sensitive programming interface information.

The Statistics (STAT) call is used in a CICS, IMS online, or batch program to obtain

database statistics that might be useful for performance monitoring.

Format

�� STAT db pcb

aib
 i/o area stat function ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

STAT X X X

System Service Call: SNAP

278 Application Programming: Database Manager

Parameters

db pcb

Specifies the DB PCB used to pass status information to the application

program. The VSAM statistics used by the data sets associated with this PCB

are not related to the type of statistics that is returned from the STAT call. This

PCB must reference a full-function database. This parameter is an input and

output parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the name of a

full-function DB PCB.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list.

i/o area

Specifies an area in the application program that is large enough to hold the

requested statistics. This parameter is an output parameter. In PL/I, this

parameter should be specified as a pointer to a major structure, array, or

character string.

stat function

Specifies a 9-byte area whose content describes the type and format of the

statistics required. The first 4 bytes define the type of statistics requested and

byte 5 defines the format to be provided. The remaining 4 bytes contain

EBCDIC blanks. If the stat function that is provided is not one of the defined

functions, an AC status code is returned. This parameter is an input parameter.

The 9-byte field contains:

v 4 bytes that define the type of statistics you want:

DBAS OSAM database buffer pool statistics

DBES OSAM database buffer pool statistics, enhanced or extended

VBAS VSAM database subpool statistics

VBES VSAM database subpool statistics, enhanced or extended

v 1 byte that gives the format of the statistics:

F Full statistics to be formatted. If you specify F, your I/O area must be

at least 360 bytes for DBAS or VBAS and 600 bytes for DBES or

VBES.

O Full OSAM database subpool statistics in a formatted form. If you

specify O, your I/O area must be at least 360 bytes.

S Summary of the statistics to be formatted. If you specify S, your I/O

area must be at least 120 bytes for DBAS or VBAS and 360 bytes

for DBES or VBES.

System Service Call: STAT

Chapter 12. DL/I Calls for System Services 279

U Full statistics to be unformatted. If you specify U, your I/O area must

be at least 72 bytes.

v 4 bytes of EBCDIC blanks for normal or enhanced STAT call, or �E1�, for

extended STAT call.

Restriction: The extended format parameter is supported by the DBESO,

DBESU, and DBESF functions only.

Extended OSAM buffer pool statistics can be retrieved by including the

parameter �E1� following the enhanced call function. The extended STAT call

returns all of the statistics returned with the enhanced call, plus the statistics

on the coupling facility buffer invalidates, OSAM caching, and sequential

buffering IMMED and SYNC read counts.

Usage

The STAT call can be helpful in debugging because it retrieves IMS database

statistics. It is also helpful in monitoring and tuning for performance. The STAT call

retrieves OSAM database buffer pool statistics and VSAM database buffer supports.

When you request VSAM statistics, each issued STAT call retrieves the statistics for

a subpool. Statistics are retrieved for all VSAM local shared resource pools in the

order in which they are defined. For each local shared resource pool, statistics are

retrieved in ascending order based on buffer size. Statistics for index subpools

always follow those for data subpools if any index subpool exists in the shared

resource pool. The index subpools are also retrieved in ascending order based on

buffer size.

For more information on the STAT call, see IMS Version 9: Application Programming:

Design Guide.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must

both be DBCTL.

SYNC Call

The Synchronization Point (SYNC) call is used to release resources that IMS has

locked for the application program.

The ODBA interface does not support this call.

Format

�� SYNC i/o pcb

aib
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SYNC X X X

System Service Call: STAT

280 Application Programming: Database Manager

Parameters

i/o pcb

Specifies the IO PCB for the call. This parameter is an input and output

parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name,

IOPCB���.

Usage

SYNC commits the changes your program has made to the database, and

establishes places in your program from which you can restart, if your program

terminates abnormally.

Restrictions

The SYNC call is valid only in non-message driven BMPs; you cannot issue a SYNC

call from an CPI-C driven application program.

For important considerations about using the SYNC call, see IMS Version 9:

Administration Guide: Database Manager.

TERM Call (CICS Online Programs Only)

The Terminate (TERM) call is used to terminate a PSB in a CICS online program.

The ODBA interface does not support this call.

Format

�� TERM ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

TERM X X

Usage

If your program needs to use more than one PSB, you must issue a TERM call to

release the first PSB it uses and then issue a second PCB call to schedule the

second PSB. The TERM call also commits database changes.

The only parameter in the TERM call is the call function: TERM or T���. When your

program issues the call, CICS terminates the scheduled PSB, causes a CICS sync

point, commits changes, and frees resources for other tasks.

System Service Call: SYNC

Chapter 12. DL/I Calls for System Services 281

Restrictions

For function shipping in the CICS environment, the local and remote CICS must

both be DBCTL.

XRST Call

The Extended Restart (XRST) call is used to restart your program. If you use the

symbolic Checkpoint call in your program, you must precede it with an XRST call

that specifies checkpoint data of blanks.

The ODBA interface does not support this call.

Format

�� XRST i/o pcb

aib
 i/o area length i/o area

�

area length

area

 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

XRST X X X X X

Parameters

i/o pcb

Specifies the I/O PCB for the call. XRST must refer to the I/O PCB. This

parameter is an input and output parameter.

aib

Specifies the AIB for the call. This parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID

Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN

AIB lengths. This field must contain the actual length of the AIB that the

application program obtained.

AIBRSNM1

Resource name. This 8-byte, left-justified field must contain the PCB name,

IOPCB���.

AIBOALEN

I/O area length. This field must contain the length of the I/O area specified

in the call list. This parameter is not used during the XRST call. For

compatibility reasons, this parameter must still be coded.

i/o area length

This parameter is no longer used by IMS. For compatibility reasons, this

parameter must still be included in the call, and it must contain a valid address.

You can get a valid address by specifying the name of any area in your

program.

System Service Call: TERM

282 Application Programming: Database Manager

i/o area

Specifies a 14-byte area in your program. This area must be either set to

blanks if starting your program normally or, if performing an extended restart,

have a checkpoint ID.

area length

Specifies a 4-byte field in your program that contains the length (in binary) of

the area to restore. This parameter is an input parameter. You can specify up to

seven area lengths. For each area length, you must specify the area parameter.

All seven area parameters (and corresponding area length parameters) are

optional. When you restart the program, IMS restores only the areas specified

on the CHKP call.

 The number of areas you specify on an XRST call must be less than or equal to

the number of areas you specify on a CHKP call.

area

Specifies the area in your program that you want IMS to restore. You can

specify up to seven areas. Each area specified must be preceded by an area

length. This is an input parameter.

Usage

Programs that wish to issue Symbolic Checkpoint calls (CHKP) must also issue the

Extended Restart call (XRST). The XRST call must be issued only once and should be

issued early in the execution of the program. It does not need to be the first call in

the program. However, it must precede any CHKP call. Any Database calls issued

before the XRST call are not within the scope of a restart.

To determine whether to perform a normal start or a restart, IMS evaluates the I/O

area provided by the XRST call or CKPTID= value in the PARM field on the EXEC

statement in your program’s JCL.

Starting Your Program Normally

When you are starting your program normally, the I/O area pointed to in the XRST

call must contain blanks and the CKPTID= value in the PARM field must be nulls.

This indicates to IMS that subsequent CHKP calls are symbolic checkpoints rather

than basic checkpoints. Your program should test the I/O area after issuing the XRST

call. IMS does not change the area when you are starting the program normally.

However, an altered I/O area indicates that you are restarting your program.

Consequently, your program must handle the specified data areas that were

previously saved and that are now restored.

Restarting Your Program

You can restart the program from a symbolic checkpoint taken during a previous

execution of the program. The checkpoint used to perform the restart can be

identified by entering the checkpoint ID either in the I/O area pointed to by the XRST

call (left-most justified, with the rest of the area containing blanks) or by specifying

the ID in the CKPTID= field of the PARM= parameter on the EXEC statement in

your program’s JCL. (If you supply both, IMS uses the CKPTID= value specified in

the parm field of the EXEC statement.)

The ID specified can be:

v A 1 to 8-character extended checkpoint ID

v A 14-character ″time stamp″ ID from message DFS0540I, where:

– IIII is the region ID

– DDD is the day of the year

System Service Call: XRST

Chapter 12. DL/I Calls for System Services 283

– HHMMSST is the time in hours, minutes, seconds, and tenth of a second

v The 4-character constant ″LAST″. (BMPs only: this indicates to IMS that the last

completed checkpoint issued by the BMP will be used for restarting the program)

The system message DFS0540I supplies the checkpoint ID and the time stamp.

The system message DFS682I supplies the checkpoint ID of the last completed

checkpoint which can be used to restart a batch program or batch message

processing program (BMP) that was abnormally terminated.

If the program being restarted is in either a batch region or a BMP region, and the

checkpoint log records no longer reside on the Online Log Data Set (OLDS) or

System Log Data Set (SLDS), the //IMSLOGR DD defining the log data set must be

supplied in the JCL for the BATCH or BMP region. IMS reads these data sets and

searches for the checkpoint records with the ID that was specified.

Restriction: To issue a checkpoint restart from a batch job, you must use the

original job name, or IMS cannot locate the checkpoint and the job fails with a

U0102.

At completion of the XRST call the I/O area always contains the 8-character

checkpoint ID used for the restart. An exception exists when the checkpoint ID is

equal to 8 blank characters; the I/O area then contains a 14-character time stamp

(IIIIDDDHHMMSST).

Also check the status code in the I/O PCB. The only successful status code for an

XRST call are blanks.

Position in the Database after Issuing XRST

The XRST call attempts to reposition all databases to the position that was held

when the last checkpoint was taken. This is done by including each PCB and PCB

key feedback area in the checkpoint record. Issuing XRST causes the key feedback

area from the PCB in the checkpoint record to be moved to the corresponding PCB

in the PSB that is being restarted. Then IMS issues a GU call, qualified with the

concatenated key (using the C command code), for each PCB that held a position

when the checkpoint was taken.

After the XRST call, the PCB reflects the results of the GU repositioning call, not the

value that was present when the checkpoint was taken. The GU call is not made if

the PCB did not hold a position on a root or lower-level segment when the

checkpoint was taken. A GE status code in the PCB means that the GU for the

concatenated key was not fully satisfied. The segment name, segment level, and

key feedback length in the PCB reflect the last level that was satisfied on the GU

call. A GE status code can occur because IMS is unable to find a segment that

satisfies the segment search argument that is associated with a Get call for one of

the following reasons:

v The call preceding the checkpoint call was a DLET call issued against the same

PCB. In this case, the position is correct because the not-found position is the

same position that would exist following the DLET call.

Restriction: Avoid taking a checkpoint immediately after a DLET call.

v The segment was deleted by another application program between the time your

program terminated abnormally and the time you restarted your program. A GN

call issued after the restart returns the first segment that follows the deleted

segment or segments.

System Service Call: XRST

284 Application Programming: Database Manager

This explanation assumes that position at the time of checkpoint was on a segment

with a unique key. XRST cannot reposition to a segment if that segment or any of its

parents have a non unique key.

For a DEDB, the GC status code is received when position is not on a segment but

at a unit-of-work (UOW) boundary. Because the XRST call attempts to reestablish

position on the segment where the PCB was positioned when the symbolic

checkpoint was taken, the XRST call does not reestablish position on a PCB if the

symbolic checkpoint is taken when the PCB contains a GC status code.

If your program accesses GSAM databases, the XRST call also repositions these

databases. For more information on processing GSAM databases, see Chapter 8,

“Processing GSAM Databases,” on page 161.

Restrictions

If your program is being started normally, the first 5 bytes of the I/O area must be

set to blanks.

If your program is restarted and the CKPTID= value in the PARM field of the EXEC

statement is not used, then the right-most bytes beyond the checkpoint ID being

used in the I/O area must be set to blanks.

The XRST call is allowed only from Batch and BMP application programs.

System Service Call: XRST

Chapter 12. DL/I Calls for System Services 285

286 Application Programming: Database Manager

Chapter 13. Relationship Between Calls and AIB and PCBs

Table 56 shows the relationship of calls to full function (FF), main storage database

(MSDB), data entry database (DEDB), I/O, and general sequential access method

(GSAM) PCBs.

 Table 56. Call Relationship to PCBs

CALL AIB FF PCBs MSDB

PCBs

DEDB

PCBs

I/O PCBs GSAM

PCBs

APSB X

CHKP X X

CIMS X

CLSE X X

DEQ X X X

DLET X X X X

DPSB X

FLD X X X

GHN X X X X

GHNP X X X X

GHU X X X X

GMSG X

GN X X X X X X

GNP X X X X

GSCD1 X X X X X

GU X X X X X X

ICMD X

INIT X X

INQY X

ISRT X X X X X X

LOG X X

OPEN X X

PCB2

POS X X

REPL X X X X

ROLB X X

ROLL2

RCMD X

ROLS X X X X X

SETS/SETU X X

SNAP3 X X X X X

STAT3 X X

SYNC X X

TERM2

© Copyright IBM Corp. 1974, 2004 287

Table 56. Call Relationship to PCBs (continued)

CALL AIB FF PCBs MSDB

PCBs

DEDB

PCBs

I/O PCBs GSAM

PCBs

XRST X X

Note:

1. GSCD is a Product-sensitive programming interface.

2. The PCB, ROLL, and TERM calls do not have an associated PCB.

3. SNAP is a Product-sensitive programming interface.

4. STAT is a Product-sensitive programming interface.

Relationship Between Calls and AIB and PCBs

288 Application Programming: Database Manager

Chapter 14. DL/I Test Program (DFSDDLT0)

DFSDDLT0 is an IMS application program test tool that issues calls to IMS based

on control statement information. You can use it to verify and debug DL/I calls

independently of application programs. You can run DFSDDLT0 using any PSB,

including those that use an IMS-supported language. You can also use DFSDDLT0

as a general-purpose database utility program.

The functions that DFSDDLT0 provides include:

v Issuing any valid DL/I call against any database using:

– Any segment search argument (SSA) or PCB, or both

– Any SSA or AIB, or both

v Comparing the results of a call to expected results. This includes the contents of

selected PCB fields, the data returned in the I/O area, or both.

v Printing the control statements, the results of calls, and the results of

comparisons only when the output is useful, such as after an unequal compare.

v Dumping DL/I control blocks, the I/O buffer pool, or the entire batch region.

v Punching selected control statements into an output file to create new test data

sets. This simplifies the construction of new test cases.

v Merging multiple input data sets into a single input data set using a SYSIN2 DD

statement in the JCL. You can specify the final order of the merged statements in

columns 73 to 80 of the DFSDDLT0 control statements.

v Sending messages to the z/OS system console (with or without a reply).

v Repeating each call up to 9,999 times.

The following topics provide additional information:

v “Control Statements” on page 290

v “Planning the Control Statement Order” on page 291

v “ABEND Statement” on page 292

v “CALL Statement” on page 292

v “COMMENT Statement” on page 313

v “COMPARE Statement” on page 314

v “IGNORE Statement” on page 320

v “OPTION Statement” on page 320

v “PUNCH CTL Statement” on page 321

v “STATUS Statement” on page 324

v “WTO Statement” on page 327

v “WTOR Statement” on page 327

v “JCL Requirements” on page 328

v “Execution of DFSDDLT0 in IMS Regions” on page 331

v “Explanation of DFSDDLT0 Return Codes” on page 332

v “DFSDDLT0 Hints” on page 332

© Copyright IBM Corp. 1974, 2004 289

Control Statements

DFSDDLT0 processes control statements to control the test environment.

DFSDDLT0 can issue calls to IMS full-function databases and Fast Path databases,

as well as DC calls. Table 57 gives an alphabetical summary of the types of control

statements DFSDDLT0 uses. A detailed description of each type of statement

follows.

 Table 57. Summary of DFSDDLT0 Control Statements

Control Statement Code Description

ABEND1 ABEND Causes user abend 252.

CALL There are two types of CALL statements:

L CALL FUNCTION identifies the type of IMS call function to be made and

supplies information to be used by the call.

CALL DATA provides IMS with additional information.

COMMENT There are two types of COMMENT statements:

T Conditional allows a limited number of comments that are printed or not

depending on how the STATUS statement is coded and the results of the

PCB or DATA COMPARE.

U1 Unconditional allows an unlimited number of comments, all of which are

printed.

COMPARE There are three types of COMPARE statements:

E COMPARE DATA verifies that the correct segment was retrieved by

comparing the segment returned by IMS with data in this statement.

COMPARE AIB compares values that IMS returns to the AIB.

COMPARE PCB checks fields in the PCB and calls for a snap dump of the

DL/I blocks, the I/O buffer pool, or the batch region if the compare is

unequal.

IGNORE N or . The program ignores statements that contain an N or . (period) in column

1.

OPTION1 O Shows which control blocks are to be dumped, the number of unequal

comparisons allowed, whether dumps are produced, number of lines

printed per page, and the SPA size.

PUNCH1 CTL PUNCH CTL produces an output data set consisting of the COMPARE

PCB statements, the COMPARE AIB statements, the DATA statements,

and all other control statements read.

STATUS1 S Establishes print options and selects the PCB or AIB against which

subsequent calls are to be issued.

WTO1 WTO Sends a message to the z/OS console without waiting for reply.

WTOR1 WTOR Sends a message to the z/OS console and waits for a reply before

proceeding.

Note:

1. These control statements are acted on immediately when encountered in an input stream. Do not code them

where they will interrupt call sequences. (See “Planning the Control Statement Order” on page 291.)

The control statements from Table 57 are described below:

v The CALL statement is the central DFSDDLT0 statement. The CALL statement

has two parts: CALL FUNCTION and CALL DATA. CALL FUNCTION identifies

Control Statements

290 Application Programming: Database Manager

the type of IMS call function and supplies information about segment search

arguments (SSAs). CALL DATA provides more information required for the type

of call identified by CALL FUNCTION.

v The STATUS statement controls the PCB, AIB, and handling of output.

v The three types of COMPARE statements, DATA, PCB, and AIB, compare

different values:

– If you want specific data from a call, use COMPARE DATA to check the

segment data for mismatches when the call is made.

– Use COMPARE PCB to check status codes, segment levels, and feedback

keys. It also indicates mismatches when you specify output.

– Use COMPARE AIB to compare values that IMS returns to the AIB.

v The two COMMENT statements, Conditional and Unconditional, allow you to set

limits on the number of comments on the DFSDDLT0 job stream and to specify

whether you want the comments printed.

v The OPTION statement controls several overall functions such as the number of

unequal comparisons allowed and the number of lines printed per page.

v The remaining statements, ABEND, IGNORE, CTL, WTO and WTOR, are not as

important as the others at first. Read the sections describing these statements so

that you can become familiar with the functions they offer.

When you are coding the DFSDDLT0 control statements, keep these items in mind:

v If you need to temporarily override certain control statements in the DFSDDLT0

streams, go to the JCL requirements section and read about SYSIN/SYSIN2

processing under “SYSIN2 DD Statement” on page 329.

v You must fill in column 1 of each control statement. If column 1 is blank, the

statement type defaults to the prior statement type. DFSDDLT0 attempts to use

any remaining characters as it would for the prior statement type.

v Use of reserved fields can produce invalid output and unpredictable results.

v Statement continuations are important, especially for the CALL statement.

v Sequence numbers are not required, but they can be very useful for some

DFSDDLT0 functions. To understand how to use sequence numbers, see

“PUNCH CTL Statement” on page 321, “SYSIN DD Statement” on page 329 and

“SYSIN2 DD Statement” on page 329.

v All codes and fields in the DFSDDLTO statements must be left justified followed

by blanks, unless otherwise specified.

Planning the Control Statement Order

The order of control statements is critical in constructing a successful call. To avoid

unpredictable results, follow these guidelines:

1. If you are using STATUS and OPTION statements, place them somewhere

before the calls that are to use them.

2. Both types of COMMENT statements are optional but, if present, must appear

before the call they document.

3. You must code CALL FUNCTION statements and any required SSAs

consecutively without interruption.

4. CALL DATA statements must immediately follow the last continuation, if any, of

the CALL FUNCTION statements.

5. COMPARE statements are optional but must follow the last CALL (FUNCTION

or DATA) statement.

Control Statements

Chapter 14. DL/I Test Program (DFSDDLT0) 291

6. When CALL FUNCTION statements, CALL DATA statements, COMPARE DATA

statements, COMPARE PCB statements, and COMPARE AIB statements are

coded together, they form a call sequence. Do not interrupt call sequences with

other DFSDDLT0 control statements.

Exception: IGNORE statements are the only exception to this rule.

7. Use IGNORE statements (N or .) to override any statement, regardless of its

position in the input stream. You can use IGNORE statements in either SYSIN

or SYSIN2 input streams.

ABEND Statement

The ABEND statement causes IMS to issue an abend and terminate DFSDDLT0.

Table 58 shows the format of the ABEND statement.

 Table 58. ABEND Statement

Column Function Code Description

1-5 Identifies control

statement

ABEND Issues abend U252. (No dump is produced unless

you code DUMP on the OPTION statement.)

6-72 Reserved �

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Examples of ABEND Statement

If you use ABEND in the input stream and want a dump, you must specify DUMP

on the OPTION statement. The default on the OPTION statement is NODUMP.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

ABEND 22100010

Dump will be produced; OPTION statement provided requests dump.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O DUMP 22100010

No dump will be produced; OPTION statement provided requests NODUMP.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O NODUMP 22100010

CALL Statement

The CALL control statement has two parts: CALL FUNCTION and CALL DATA.

v The CALL FUNCTION statement supplies the DL/I call function, the segment

search arguments (SSAs), and the number of times to repeat the call. SSAs are

coded according to IMS standards.

v With the CALL DATA statement you provide any data (database segments, z/OS

commands, checkpoint IDs) required by the DL/I call specified in the CALL

FUNCTION statement. See “CALL DATA Statement” on page 296.

CALL FUNCTION Statement

Table 59 on page 293 gives the format for CALL FUNCTION statements, including

the column number, function, code, and description. This is the preferred format

when you are not working with column-specific SSAs.

Planning the Control Statement Order

292 Application Programming: Database Manager

Table 59. CALL FUNCTION Statement

Column Function Code Description

1 Identifies control statement L Issues an IMS call

2 Reserved �

3 SSA level � SSA level (optional)

n Range of

hexadecimal

characters allowed is

1-F

4 Reserved �

5-8 Repeat count ���� If blank, repeat

count defaults to 1.

nnnn 'nnnn' is the number

of times to repeat

this call. Range is 1

to 9999,

right-justified, with or

without leading

zeros.

9 Reserved �

10-13 Identifies DL/I call function ���� If blank, use function

from previous CALL

statement.

xxxx 'xxxx' is a DL/I call

function.

 Continue SSA CONT Continuation

indicator for SSAs

too long for a single

CALL FUNCTION

statement. Column

72 of the preceding

CALL FUNCTION

statement must have

an entry. The next

CALL statement

should have CONT

in columns 10 - 13

and the SSA should

continue in column

16.

14-15 Reserved �

16-23

or

SSA name xxxxxxxx Must be left-justified.

16-23

or

Token xxxxxxxx Token name

(SETS/ROLS).

16-23

or

MOD name xxxxxxxx Modname

(PURG+ISRT).

16-23

or

Subfunction xxxxxxxx nulls, DBQUERY,

FIND, ENVIRON,

PROGRAM (INQY).

CALL Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 293

Table 59. CALL FUNCTION Statement (continued)

Column Function Code Description

16-19

and

Statistics type xxxx DBAS/DBES-OSAM

or

VBAS/VBES-VSAM

(STAT).2

20 or Statistics format x F - Formatted U-

Unformatted S -

Summary.

16–19 SETO ID1 SETx Where x is 1, 2, or

3. Specified on

SETO and CHNG

calls as defined in

Note.

21-24 SETO IOAREA SIZE nnnn Value of 0000 to

8192.

If a value greater

than 8192 is

specified, it defaults

to 8192.

If no value is

specified, the call is

made with no SETO

size specified.

24–71 Remainder of SSA Unqualified SSAs

must be blank.

Qualified search

arguments should

have either an '*' or

a '(' in column 24

and follow IMS SSA

coding conventions.

72 Continuation column � No continuations for

this statement.

x Alone, it indicates

multiple SSAs each

beginning in column

16 of successive

statements. With

CONT in columns

10-13 of the next

statement, indicates

a single SSA that is

continued beginning

in column 16 of the

following statement.

73-80 Sequence indication nnnnnnnn For SYSIN2

statement override.

CALL Statement

294 Application Programming: Database Manager

Table 59. CALL FUNCTION Statement (continued)

Column Function Code Description

Note:

1. SETO CALL:

The SETO ID (SET1, SET2, or SET3) is required on the SETO call if DFSDDLT0 is to keep track of the text unit

address returned on the SETO call that would be passed on the CHNG call for option parameter TXTU.

If the SETO ID is omitted on the SETO call, DFSDDLT0 does not keep track of the data returned and is unable

to reference it on a CHNG call.

CHNG CALL:

The SETO ID (SET1, SET2, or SET3) is required on the CHNG call if DFSDDLT0 is to place the address of the

SETO ID I/O area returned on the SETO call. This is the SETO call of the text unit returned on the SETO call

with a matching SETO ID for this CHNG call into the “TXTU=ADDR” field of the option parameter in the CHNG

call.

When the SETO ID is specified on the CHNG call, DFSDDLT0 moves the address of that text unit returned on

the SETO call using the same SETO ID.

Code the OPTION statement parameter TXTU as follows: TXTU=xxxx where xxxx is any valid non-blank

character. It cannot be a single quote character.

Suggested value for xxxx could be SET1, SET2, or SET3. This value is not used by DFSDDLT0.

2. STAT is a Product-sensitive programming interface.

This information applies to different types of continuations:

v Column 3, the SSA level, is usually blank. If it is blank, the first CALL FUNCTION

statement fills SSA 1, and each following CALL FUNCTION statement fills the

next lower SSA. If column 3 is not blank, the statement fills the SSA at that level,

and the following CALL FUNCTION statement fills the next lower one.

v Columns 5 through 8 are usually blank, but if used, must be right justified. The

same call is repeated as specified by the repeat call function.

v Columns 10 through 13 contain the DL/I call function. The call function is

required only for the first CALL FUNCTION statement when multiple SSAs are in

a call. If left blank, the call function from the previous CALL FUNCTION

statement is used.

v Columns 16 through 23 contain the segment name if the call uses a SSA.

v If the DL/I call contains multiple SSAs, the statement must have a nonblank

character in column 72, and the next SSA must start in column 16 of the next

statement. The data in columns 1 and 10 through 13 are blank for the second

through last SSAs.

Restriction: On ISRT calls, the last SSA can have only the segment name with

no qualification or continuation.

v If a field value extends past column 71, put a nonblank character in column 72.

(This character is not read as part of the field value, only as a continuation

character.) In the next statement insert the keyword CONT in columns 10 through

13 and continue the field value starting at column 16.

v Maximum length for the field value is 256 bytes, maximum size for a SSA is 290

bytes, and the maximum number of SSAs for this program is 15, which is the

same as the IMS limit.

v If columns 5 through 8 in the CALL FUNCTION statement contain a repeat count

for the call, the call will terminate when reaching that count, unless it first

encounters a GB status code.

Related Reading: See “CALL FUNCTION Statement with Column-Specific SSAs”

on page 310 for another format supported by DFSDDLT0.

CALL Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 295

CALL DATA Statement

CALL DATA statements provide IMS with information normally supplied in the I/O

area for that type of call function.

CALL DATA statements must follow the last CALL FUNCTION statement. You must

enter an L in column 1, the keyword DATA in columns 10 through 13, and code the

necessary data in columns 16 through 71. You can continue data by entering a

nonblank character in column 72. On the continuation statement, columns 1 through

15 are blank and the data resumes in column 16. Table 60 shows the format for a

CALL DATA statement.

 Table 60. CALL DATA Statement

Column Function Code Description

1 Identifies control

statement

L CALL DATA statement.

2 Increase segment length K Adds 2500 bytes to the length of data defined in columns 5

through 8.

3 Propagate remaining I/O

indicator

P Causes 50 bytes (columns 16 through 65) to be propagated

through remaining I/O area.

Note: This must be the last data statement and cannot be

continued.

4 Format options � Not a variable-length segment.

V For the first statement describing the only variable-length

segment or the first variable-length segment of multiple

variable-length segments, LL field is added before the

segment data.

M For statements describing the second through the last

variable-length segments, LL field is added before the

segment data.

P For the first statement describing a fixed-length segment in a

path call.

Z For message segment, LLZZ field is added before the data.

U Undefined record format for GSAM records. The length of

segment for an ISRT is placed in the DB PCB key feedback

area.

5-8 Length of data in

segment

nnnn This value must be right justified but need not contain leading

zeros. If you do not specify a length, DFSDDLT0 will use the

number of DATA statements read multiplied by 56 to derive

the length.

9 Reserved �

10-13 Identifies CALL DATA

statement

DATA Identifies this as a DATA statement.

14-15 Reserved �

16-71

or

Data area xxxx Data that goes in the I/O area.

16-23

or

Checkpoint ID Checkpoint ID (SYNC).

CALL Statement

296 Application Programming: Database Manager

Table 60. CALL DATA Statement (continued)

Column Function Code Description

16-23

or

Destination name Destination name (CHNG).

16 DEQ option DEQ options (A,B,C,D,E,F,G,H,I, or J).

72 Continuation column � If no more continuations for this segment.

x If more data for this segment or more segments.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

When inserting variable-length segments or including variable-length data for a

CHKP or LOG call:

v You must use a V or M in column 4 of the CALL DATA statement.

v Use V if only one variable-length segment is being processed.

v You must enter the length of the data with leading zeros, right justified, in

columns 5 through 8. The value is converted to binary and becomes the first 2

bytes of the segment data.

v You can continue a CALL DATA statement into the next CALL DATA statement by

entering a nonblank character in column 72. For subsequent statements, leave

columns 1 through 15 blank, and start the data in column 16.

If multiple variable-length segments are required (that is, concatenation of logical

child and logical parent segments, both of which are variable-length) for the first

segment:

v You must enter a V in column 4.

v You must enter the length of the first segment in columns 5 through 8.

v If the first segment is longer than 56 bytes, continue the data as described for

inserting variable-length segments.

Exceptions:

– The last CALL DATA statement to contain data for this segment must have a

nonblank character in column 72.

– The next CALL DATA statement applies to the next variable-length statement

and must contain an M in column 4 and the length of the segment in columns

5 through 8.

You can concatenate any number of variable-length segments in this manner. Enter

M or V and the length (only in CALL DATA statements that begin data for a

variable-length segment).

When a program is inserting or replacing through path calls:

v Enter a P in column 4 to specify that the length field is to be used as the length

the segment will occupy in the user I/O area.

v You only need to use P in the first statement of fixed-length-segment CALL DATA

statements in path calls that contain both variable- and fixed-length segments.

v You can use V, M, and P in successive CALL DATA statements.

For INIT, SETS, ROLS, and LOG calls:

v The format of the I/O area is

LLZZuser-data

CALL Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 297

where LL is the length of the data in the I/O area, including the length of the

LLZZ portion.

v If you want the program to use this format for the I/O area, enter a Z in column 4

and the length of the data in columns 5 through 8. The length in columns 5

through 8 is the length of the data, not including the 4-byte length of LLZZ.

OPTION DATA Statement

The OPTION DATA statement contains options as required for SETO and CHNG

calls.

Table 61 shows the format for an OPTION DATA statement, including the column

number, function, code, and description.

 Table 61. OPTION DATA Statement

Column Function Code Description

1 Identifies control

statement

L OPTION statement.

2-9 Reserved �

10-13 Identifies OPT Identifies this as OPTION statement.

CONT Identifies this as a continuation of an option input.

14-15 Reserved �

16-71 Option area xxxx Options as defined for SETO and CHNG call.

72 Continuation column � If no more continuations for options.

x If more option data exists in following statement.

73-80 Sequence number nnnnnnnn For SYSIN2 statement override.

FEEDBACK DATA Statement

The FEEDBACK DATA statement defines an area to contain feedback data.

The FEEDBACK DATA statement is optional. However, if the FEEDBACK DATA

statement is used, an OPTION DATA statement is required.

Table 62 shows the format for a FEEDBACK DATA statement, including the column

number, function, code, and description.

 Table 62. FEEDBACK DATA Statement

Column Function Code Description

1 Identifies control

statement

L FEEDBACK statement.

2-3 Reserved �

4 Format option � Feedback area contains LLZZ.

Z Length of feedback area will be computed and the LLZZ will

be added to the feedback area.

5-8 Length of feedback

area

nnnn This value must be right justified but need not contain leading

zeros. If you do not specify a length, DFSDDLT0 uses the

number of FDBK inputs read multiplied by 56 to derive the

length.

2-9 Reserved �

CALL Statement

298 Application Programming: Database Manager

Table 62. FEEDBACK DATA Statement (continued)

Column Function Code Description

10-13 Identifies FDBK Identifies this as feedback statement and continuation of

feedback statement.

14-15 Reserved �

16-71 Feedback area xxxx Contains user pre-defined initialized area.

72 Continuation column � If no more continuations for feedback.

x If more feedback data exists in following statement.

73-80 Sequence number nnnnnnnn For SYSIN2 statement override.

DL/I Call Functions

Table 63 shows the DL/I call functions supported in DFSDDLT0 and which ones

require data statements.

 Table 63. DL/I Call Functions

Call

AIB

Support

PCB

Support Data Stmt

1 Description

CHKP yes yes R Checkpoint.

CHNG yes yes R Change alternate PCB.

R Contains the alternate PCB name option statement and

feedback statement optional.

CMD yes yes R Issue IMS command. This call defaults to I/O PCB.

DEQ yes yes R Dequeue segments locked with the Q command code. For full

function, this call defaults to the I/O PCB, provided a DATA

statement containing the class to dequeue immediately follows

the call. For Fast Path, the call is issued against a DEDB PCB.

Do not include a DATA statement immediately following the

DEQ call.

DLET yes yes O Delete. If the data statement is present, it is used. If not, the

call uses the data from the previous Get Hold Unique (GHU).

FLD yes yes R Field—for Fast Path MSDB calls using FSAs. This call

references MSDBs only. If there is more than one FSA, put a

nonblank character in column 34, and put the next FSA in

columns 16-34 of the next statement. A DATA statement

containing FSA is required.

GCMD yes yes N Get command response. This call defaults to I/O PCB.

GHN yes yes O2 Get Hold Next.

GHNP yes yes O2 Get Hold Next in Parent.

GHU yes yes O2 Get Hold Unique.

GMSG3 yes no R Get Message is used in an automated operator (AO)

application program to retrieve a message from AO exit routine

DFSAOE00. The DATA statement is required to allow for area

in which to return data. The area must be large enough to hold

this returned data.

GN yes yes O2 Get Next segment.

GNP yes yes O2 Get Next in Parent.

GU yes yes O2 Get Unique segment.

CALL Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 299

Table 63. DL/I Call Functions (continued)

Call

AIB

Support

PCB

Support Data Stmt

1 Description

ICMD3 yes no R Issue Command enables an automated operator (AO)

application program to issue an IMS command and retrieve the

first command response segment. The DATA statement is

required to contain the input command and to allow for area in

which to return data. The area must be large enough to hold

this returned data.

INIT yes yes R Initialization This call defaults to I/O PCB. A DATA statement is

required. Use the LLZZ format.

INQY3 yes no R Request environment information using the AIB and the

ENVIRON subfunction. The DATA statement is required to

allow for area in which to return data. The area must be large

enough to hold this returned data.

R Request database information using the AIB and the

DBQUERY subfunction, which is equivalent to the INIT

DBQUERY call. The DATA statement is required to allow for

area in which to return data. The area must be large enough to

hold this returned data.

ISRT yes yes Insert.

R DB PCB, DATA statement required.

O I/O PCB using I/O area with MOD name, if any, in columns

16-23.

R Alt PCB.

LOG yes yes R Log system request. This call defaults to I/O PCB. DATA

statement is required and can be specified in one of two ways.

POS yes yes N Position - for DEDBs to determine a segment location. This

call references DEDBs only.

PURG yes yes Purge.

R This call defaults to use I/O PCB. If column 16 is not blank,

MOD (message output descriptor) name is used and a DATA

statement is required.

O If column 16 is blank, the DATA statement is optional.

RCMD3 yes no R Retrieve Command enables an automated operator (AO)

application program to retrieve the second and subsequent

command response segments after an ICMD call. The DATA

statement is required to allow for area in which to return data.

The area must be large enough to hold this returned data.

REPL yes yes R Replace—This call references DB PCBs only. The DATA

statement is required.

ROLB yes yes O Roll Back call.

ROLL no yes O Roll Back call and issue U778 abend.

ROLS yes yes O Back out updates and issue 3303 abend. Uses the I/O PCB.

Can be used with the SETS call function. To issue a ROLS

with an I/O area and token as the fourth parameter, specify the

4-byte token in column 16 of the CALL statement. Leaving

columns 16-19 blank will cause the call to be made without the

I/O area and the token. (To issue a ROLS using the current

DB PCB, use ROLX.)

CALL Statement

300 Application Programming: Database Manager

Table 63. DL/I Call Functions (continued)

Call

AIB

Support

PCB

Support Data Stmt

1 Description

ROLX yes yes O Roll call against the DB PCB (DFSDDLT0 call function). This

call is used to request a Roll Back call to DB PCB, and is

changed to ROLS call when making the DL/I call.

SETO yes yes N Set options. OPTION statement required. FEEDBACK

statement optional.

SETS/SETU yes yes O Create or cancel intermediate backout points. Uses I/O PCB.

To issue a SETS with an I/O area and token as the fourth

parameter, specify the four-byte token in column 16 of the

CALL statement and include a DATA statement. Leaving

columns 16-19 blank will cause the call to be made without the

I/O area and the token.

SNAP4 yes yes O Sets the identification and destination for snap dumps. If a

SNAP call is issued without a CALL DATA statement, a snap of

the I/O buffer pools and control blocks will be taken and sent

to LOG if online and to PRINTDD DCB if batch. The SNAP ID

will default to SNAPxxxx where xxxx starts at 0000 and is

incremented by 1 for every SNAP call without a DATA

statement. The SNAP options default to YYYN. If a CALL

DATA statement is used, columns 16-23 specify the SNAP

destination, columns 24-31 specify the SNAP identification,

and columns 32-35 specify the SNAP options. SNAP options

are coded using ‘Y’ to request a snap dump and ‘N’ to prevent

it. Column 32 snaps the I/O buffer pools, columns 33 and 34

snap the IMS control blocks and column 35 snaps the entire

region. The SNAP call function is only supported for

full-function database PCB.

STAT5 yes yes O The STAT call retrieves statistics on the IMS system. This call

must reference only full-function DB PCBs. See the examples

on 309. Statistics type is coded in columns 16-19 of the CALL

FUNCTION statement.

DBAS For OSAM database buffer pool statistics.

VBAS For VSAM database subpool statistics.
Statistics format is coded in column 20 of the CALL

FUNCTION statement.

F For the full statistics to be formatted if F is specified,

the I/O area must be at least 360 bytes.

U For the full statistics to be unformatted if U is

specified, the I/O area must be at least 72 bytes.

S For a summary of the statistics to be formatted if S is

specified, the I/O area must be at least 120 bytes.

SYNC yes yes R Synchronization.

XRST yes yes R Restart.

Notes:

1. R = required; O = optional; N = none

2. The data statement is required on the AIB interface.

3. Valid only on the AIB interface.

4. SNAP is a Product-sensitive programming interface.

5. STAT is a Product-sensitive programming interface.

CALL Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 301

Examples of DL/I Call Functions

Basic CHKP Call: Use a CALL FUNCTION statement to contain the CHKP function

and a CALL DATA statement to contain the checkpoint ID.

 Symbolic CHKP Call with Two Data Areas to Checkpoint: Use a CALL

FUNCTION statement to contain the CHKP function, a CALL DATA statement to

contain the checkpoint ID data, and two CALL DATA statements to contain the data

that you want to checkpoint.

You also need to use an XRST call when you use the symbolic CHKP call. Prior

usage of an XRST call is required when using the symbolic CHKP call, as the

CHKP call keys on the XRST call for symbolic CHKP.

Recommendation: Issue an XRST call as the first call in the application program.

 CHNG Call: Use a CALL FUNCTION statement to contain the CHNG function and

a CALL DATA statement to contain the new logical terminal name.

 The following is an example of a CHNG statement using SETO ID SET2, OPTION

statement, DATA statement with MODNAME, and FDBK statement.

 CMD Call: Use a CALL FUNCTION statement to contain the CMD function and a

CALL DATA statement to contain the Command data.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L CHKP 10101400

L DATA TESTCKPT

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L XRST

L .

L .

L .

L CHKP

L DATA TSTCHKP2 X

L 8 DATA STRING2- X

L 16 DATA STRING2-STRING2-

U EIGHT BYTES OF DATA (STRING2-) IS CHECKPOINTED AND

U SIXTEEN BYTES OF DATA (STRING2-STRING2-) IS CHECKPOINTED ALSO

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L CHNG SET1

L OPT IAFP=A1M,PRTO=LLOPTION1,OPTION2,

L CONT OPTION4

L Z0023 DATA DESTNAME

LL is the hex value of the length of LLOPTION,.........OPTION4.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L CHNG SET2

L OPT IAFP=A1M,TXTU=SET2

L Z0023 DATA DESTNAME

L Z0095 FDBK FEEDBACK AREA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L CMD

L ZXXXX DATA COMMAND DATA

WHERE XXXX = THE LENGTH OF THE COMMAND DATA

CALL Statement

302 Application Programming: Database Manager

DEQ Call: For full function, use a CALL FUNCTION statement to contain the DEQ

function and a CALL DATA statement to contain the DEQ value (A,B,C,D,E,F,G,H,I

or J).

 For Fast Path, use a CALL FUNCTION statement to contain the DEQ function.

 DLET Call: Use a CALL FUNCTION statement to contain the DLET function. The

data statement is optional. If there are intervening calls to other PCBs between the

Get Hold call and the DLET call, you must use a data statement to refresh the I/O

area with the segment to be deleted.

 FLD Call: Use a CALL FUNCTION statement to contain the FLD function and

ROOTSSA, and a CALL DATA statement to contain the FSAs.

 GCMD Call: Use a CALL FUNCTION statement to contain the GCMD function; no

CALL DATA statement is required.

 GHN Call: Use a CALL FUNCTION statement to contain the GHN function; no

CALL DATA statement is required.

 GHNP Call: Use a CALL FUNCTION statement to contain the GHNP function; no

CALL DATA statement is required.

 GHU Call with a Continued SSA: Use two CALL FUNCTION statements to

contain the single SSA.

 GMSG Call: Use a CALL FUNCTION statement to contain the GMSG function. Use

a CALL DATA statement to retrieve messages from AO exit routine.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L DEQ

L DATA A

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L DEQ

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L DLET

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L FLD ROOTA (KEYA =ROOTA)

L DATA ??????? X

L DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GCMD

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GHN 10103210

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GHNP 10103210

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GHU SEGG (FILLRG = G131G131G131G131G131G131G131G131G131G*

 CONT 131G131G131G131G131G131G131)

CALL Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 303

GN Call: Use a CALL FUNCTION statement to contain the GN function; no CALL

DATA statement is required.

 GNP Call: Use a CALL FUNCTION statement to contain the GNP function; no

CALL DATA statement is required.

 GU Call with a Single SSA and a Relational Operator: Use a CALL FUNCTION

statement to contain the GU function; no CALL DATA statement is required. The

qualified SSA begins in column 24 and is contained in parentheses.

 GU Call with a Single SSA and a Relational Operator Extended Across

Multiple Inputs with Boolean Operators: Use a CALL FUNCTION statement to

contain the GU function and three additional continuation of CALL FUNCTION input

to continue with Boolean operators. No CALL DATA statement is required. The

qualified SSA begins in column 24 and is contained in parentheses. This type of

SSA can continue over several statements.

 GU Path Call: Use a CALL FUNCTION statement to contain the GU function and

three additional continuation of CALL function input to continue with two additional

SSAs. No CALL DATA statement is required. The call uses command codes in

columns 24 and 25 to construct the path call. This type of call cannot be made with

the column-specific SSA format.

 ICMD Call: Use a CALL FUNCTION statement to contain the ICMD function. Use a

CALL DATA statement to contain the command.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GMSG TOKEN111 WAITAOI

L Z0132 DATA

L GMSG

L Z0132 DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GN 10103210

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GNP 10103210

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GU SEGF (KEYF > F131*KEYF < F400)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GU SEGG (FILLRG > G131G131G131G131G131G131G131G131G131G*

 CONT 131G131G131G131G131G131G131 &FILLRG < G400G400G4*

 CONT 00G400G400G400G400G400G400G400G400G400G400G400G400G400 *

 CONT)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GU SEGA *D(KEYA = A200) *

 SEGF *D(KEYF = F250) *

 SEGG *D(KEYG = G251)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ICMD

L Z0132 DATA /DIS ACTIVE

CALL Statement

304 Application Programming: Database Manager

INIT Call: Use a CALL FUNCTION statement to contain the INIT call and a CALL

DATA statement to contain the INIT function DBQUERY, STATUS GROUPA, or

STATUS GROUPB.

 INQY Call: Use a CALL FUNCTION statement to contain the INQY call and either

the DBQUERY or ENVIRON subfunction. The subfunctions are in the call input

rather than the data input as in the INIT call.

 ISRT Call: Use two CALL FUNCTION statements to contain the multiple SSAs and

a CALL DATA statement to contain the segment data.

 ISRT Containing Only One Fixed-Length Segment: Use a CALL FUNCTION

statement to contain the ISRT function and segment name, and two CALL DATA

statements to contain the fixed-length segment. When inserting only one

fixed-length segment, leave columns 4 through 8 blank and put data in columns 16

through 71. To continue data, put a nonblank character in column 72, and the

continued data in columns 16 through 71 of the next statement.

 ISRT Containing Only One Variable-Length Segment: Use a CALL FUNCTION

statement to contain the ISRT function and segment name, and two CALL DATA

statements to contain the variable-length segment. When only one segment of

variable-length is being processed, you must enter a V in column 4, and columns 5

through 8 must contain the length of the segment data. The length in columns 5

through 8 is converted to binary and becomes the first two bytes of the segment

data. To continue data, put a nonblank character in column 72, and the continued

data in columns 16 through 71 of the next statement.

 ISRT Containing Multiple Variable-Length Segments: Use a CALL FUNCTION

statement to contain the ISRT function and segment name, and four CALL DATA

statements to contain the variable-length segments. For the first segment, you must

enter a V in column 4 and the length of the segment data in columns 5 through 8. If

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L INIT 10103210

L Z0011 DATA DBQUERY

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L INQY ENVIRON 10103210

L V0256 DATA 10103211

L 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L INQY DBQUERY 10103210

L V0088 DATA 10103211

L 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ISRT STOCKSEG(NUMFIELD =20011) X10103210

 ITEMSSEG 10103211

L V0018 DATA 3002222222222222 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ISRT JOKESSEG 10103210

L DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

 XJUMPEDOVERTHELAZYDOGSIR 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ISRT JOKESSEG 10103210

L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

 XJUMPEDOVERTHELAZYDOGSIR 10103212

CALL Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 305

the segment is longer than 56 bytes, put a nonblank character in column 72, and

continue data on the next statement. The last statement to contain data for this

segment must have a nonblank character in column 72.

The next DATA statement applies to the next variable-length segment and it must

contain an M in column 4, the length of the new segment in columns 5 through 8,

and data starting in column 16. Any number of variable-length segments can be

concatenated in this manner. If column 72 is blank, the next statement must have

the following:

v An L in column 1

v An M in column 4

v The length of the new segment in columns 5 through 8

v The keyword DATA in columns 10 through 13

v Data starting in column 16

 ISRT Containing Multiple Segments in a PATH CALL: Use a CALL FUNCTION

statement to contain the ISRT function and segment name, and seven CALL DATA

statements to contain the multiple segments in the PATH CALL.

When DFSDDLT0 is inserting or replacing segments through path calls, you can

use V and P in successive statements. The same rules apply for coding multiple

variable-length segments, but fixed-length segments must have a P in column 4 of

the DATA statement. This causes the length field in columns 5 through 8 to be used

as the length of the segment, and causes the data to be concatenated in the I/O

area without including the LL field.

Rules for continuing data in the same segment or starting a new segment in the

next statement are the same as those applied to the variable-length segment.

 LOG Call Using an LLZZ Format: Use a CALL FUNCTION statement to contain

the LOG function and a CALL DATA statement to contain the LLZZ format of data to

be logged.

When you put a Z in column 4, the first word of the record is not coded in the DATA

statement. The length specified in columns 5 through 8 must include the 4 bytes for

the LLZZ field that is not in the DATA statement.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ISRT AAAAASEG 10103210

L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

 XJUMPEDOVERTHELAZYDOGSIR *10103212

 M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103213

 ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY 10103214

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ISRT LEV01SEG*D *10103210

 LEV02SEG *10103211

 LEV03SEG *10103212

 LEV04SEG 10103213

L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103214

 XJUMPEDOVERTHELAZYDOGSIR *10103215

 M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103216

 ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY *10103217

L P0039 DATA THEQUICKBROWNFOXJUMPEDOVERTHELAZYDOGSIR *10103218

L M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103219

 ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY 10103220

CALL Statement

306 Application Programming: Database Manager

The A in column 16 becomes the log record ID.

POS Call: Use a CALL FUNCTION statement to contain the POS function and

SSA; CALL DATA statement is optional.

 PURG Call with MODNAME and Data: Use a CALL FUNCTION statement to

contain the PURG function and MOD name. Use the CALL DATA statement to

contain the message data. If MOD name is provided, a DATA statement is required.

 PURG Call with Data and no MODNAME: Use a CALL FUNCTION statement to

contain the PURG function; a DATA statement is optional.

 PURG Call without MODNAME or Data: Use a CALL FUNCTION statement to

contain the PURG function; CALL DATA statement is optional.

 RCMD Call: Use a CALL FUNCTION statement to contain the RCMD function. Use

a CALL DATA statement to retrieve second and subsequent command response

segments resulting from an ICMD call.

 REPL Call: Use a CALL FUNCTION statement to contain the REPL function. Use a

CALL DATA statement to contain the replacement data.

 ROLB Call Requesting Return of First Segment of Current Message: Use a

CALL FUNCTION statement to contain the ROLB function. Use the CALL DATA

statement to request first segment of current message.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L LOG 10103210

L Z0016 DATA ASEGMENT ONE 10103211

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L POS SEGA (KEYA =A300)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L PURG MODNAME1

L DATA FIRST SEGMENT OF NEW MESSAGE

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L PURG

L DATA FIRST SEGMENT OF NEW MESSAGE

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L PURG

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L RCMD

L Z0132 DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L REPL

L V0028 DATA THIS IS THE REPLACEMENT DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ROLB

L DATA THIS WILL BE OVERLAID WITH FIRST SEGMENT OF MESSAGE

CALL Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 307

ROLB Call Not Requesting Return of First Segment of Current Message: Use a

CALL FUNCTION statement to contain the ROLB function. The CALL DATA

statement is optional.

 ROLL Call: Use a CALL FUNCTION statement to contain the ROLL function. The

CALL DATA statement is optional.

 ROLS Call with a Token: Use a CALL FUNCTION statement to contain the ROLS

function and token, and the CALL DATA statement to provide the data area that will

be overlaid by the data from the SETS call.

 ROLS Call without a Token: Use a CALL FUNCTION statement to contain the

ROLS function. The CALL DATA statement is optional.

 ROLX Call: Use a CALL FUNCTION statement to contain the ROLX function. The

CALL DATA statement is optional. The ROLX function is treated as a ROLS call

with no token.

 SETO Call: Use a CALL FUNCTION statement to contain the SETO function. The

DATA statement is optional; however, if an OPTION statement is passed on the call,

the DATA statement is required. Also, if a FEEDBACK statement is passed on the

call, then both the DATA and OPTION statements are required. The following is an

example of a SETO statement using the OPTION statement and SETO token of

SET1.

 11 is the hex value of the length of 11OPTION,.........OPTION4.

The following is an example of a SETO statement using the OPTION statement and

SETO token of SET1.

 11 is the hex value of the length of 11OPTION,.........OPTION4.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ROLB

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ROLL

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ROLS TOKEN1

L Z0046 DATA THIS WILL BE OVERLAID WITH DATA FROM SETS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ROLS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ROLX

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L SETO SET1 5000

L OPT PRTO=11OPTION1,OPTION2,

L CONT OPTION3,

L CONT OPTION4

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L SETO SET1 7000

L OPT PRTO=11OPTION1,OPTION2,OPTION3,OPTION4

CALL Statement

308 Application Programming: Database Manager

The following is an example of a SETO statement using the OPTION statement and

SETO token of SET2 and FDBK statement.

 11 is the hex value of the length of 11OPTION,.........OPTION4.

SETS Call with a Token: Use a CALL FUNCTION statement to contain the SETS

function and token; use the CALL DATA statement to provide the data that is to be

returned to ROLS call.

 SETS Call without a Token: Use a CALL FUNCTION statement to contain the

SETS function; CALL DATA statement is optional.

 This section (SNAP call) contains product-sensitive programming interface

information.

SNAP Call: Use a CALL FUNCTION statement to contain the SNAP function and a

CALL DATA statement to contain the SNAP data.

 This section (STAT call) contains product-sensitive programming interface

information.

STAT Call: OSAM statistics require only one STAT call. STAT calls for VSAM

statistics retrieve only one subpool at a time, starting with the smallest. See IMS

Version 9: Application Programming: Design Guide for further information about the

statistics returned by STAT.

 SYNC Call: Use a CALL FUNCTION statement to contain the SYNC function. The

CALL DATA statement is optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L SETO SET2 5500

L OPT PRTO=11OPTION1,OPTION2,OPTION3,OPTION4

L Z0099 FDBK OPTION ERROR FEEDBACK AREA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L SETS TOKEN1

L Z0033 DATA RETURN THIS DATA ON THE ROLS CALL

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L SETS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L SNAP 10103210

L V0022 DATA PRINTDD 22222222 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L STAT DBASF

L STAT VBASS

L STAT VBASS

L STAT VBASS

L STAT VBASS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L SYNC

CALL Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 309

Initial XRST Call: Use a CALL FUNCTION statement to contain the XRST

FUNCTION and a CALL DATA statement that contains a checkpoint ID of blanks to

indicate that you are normally starting a program that uses symbolic checkpoints.

 Basic XRST Call: Use a CALL FUNCTION statement to contain the XRST function

and a CALL DATA statement to contain the checkpoint ID.

 Symbolic XRST Call: Use a CALL FUNCTION statement to contain the XRST

function, a CALL DATA statement to contain the checkpoint ID data, and one or

more CALL DATA statements where the data is to be returned.

The XRST call is used with the symbolic CHKP call.

CALL FUNCTION Statement with Column-Specific SSAs

In this format, the SSA has intervening blanks between fields. Columns 24, 34, and

37 must contain blanks. Command codes are not permitted. Table 64 gives the

format for the CALL FUNCTION statement with column-specific SSAs.

 Table 64. CALL FUNCTION Statement (Column-Specific SSAs)

Column Function Code Description

1 Identifies control

statement

L Call statement (see columns 10-13).

2 Reserved �

3 Reserved �

4 Reserved �

5-8 Repeat Count � If blank, repeat count defaults to 1.

nnnn 'nnnn' is the number of times to repeat this call.

Range 1 to 9999, right-justified but need not contain

leading zeros.

10-13 Identifies DL/I call

function

� If blank, use function from previous CALL statement.

xxxx 'xxxx' is a DL/I call function.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L XRST 10101400

L DATA

L CKPT

L DATA YOURID01

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L XRST 10101400

L DATA TESTCKPT

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L XRST

L DATA TSTCHKP2 X

L 8 DATA OVERLAY2 X

L 16 DATA OVERLAY2OVERLAY2

U EIGHT BYTES OF DATA (OVERLAY2) SHOULD BE OVERLAID WITH CHECKPOINTED DATA

U SIXTEEN BYTES OF DATA (OVERLAY2OVERLAY2) IS OVERLAID ALSO

CALL Statement

310 Application Programming: Database Manager

Table 64. CALL FUNCTION Statement (Column-Specific SSAs) (continued)

Column Function Code Description

CONT Continuation indicator for SSAs too long for a single

CALL FUNCTION statement. Column 72 of preceding

CALL FUNCTION statement must contain a nonblank

character. The next CALL statement should have

CONT in columns 10 through 13 and the SSA should

continue in column 16.

14-15 Reserved �

16-23 SSA name s-name Required if call contains SSA.

24 Reserved � Separator field.

25 Start character for SSA (Required if segment is qualified.

26-33 SSA field name f-name Required if segment is qualified.

34 Reserved � Separator field.

35-36 DL/I call operator(s) name Required if segment is qualified.

37 Reserved � Separator field.

38-nn Field value nnnnn Required if segment is qualified.

Note: Do not use '5D' or ')' in field value.

nn+1 End character for SSA) Required if segment is qualified.

72 Continuation column � No continuations for this statement.

x Alone, it indicates multiple SSAs each beginning in

column 16 of successive statements. With CONT in

columns 10-13 of the next statement, indicates a

single SSA that is continued beginning in column 16

of the following statement

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

If a CALL FUNCTION statement contains multiple SSAs, the statement must have a

nonblank character in column 72 and the next SSA must start in column 16 of the

next statement. If a field value extends past column 71, put a nonblank character in

column 72. In the next statement insert the keyword CONT in columns 10 through

13 and continue the field value starting at column 16. Maximum length for field

value is 256 bytes, maximum size for a SSA is 290 bytes, and the maximum

number of SSAs for this program is 15, which is the same as the IMS limit.

DFSDDLT0 Call Functions

The DFSDDLT0 call functions were created for DFSDDLT0. They do not represent

“valid” IMS calls and are not punched as output if DFSDDLT0 encounters them

while a CTL (PUNCH) statement is active. Table 65 shows the special call functions

of the CALL FUNCTION statement. Descriptions and examples of these special

functions follow.

 Table 65. CALL FUNCTION Statement with DFSDDLT0 Call Functions

Column Function Code Description

1 Identifies control

statement

L Call statement.

2-4 Reserved �

5-8 Repeat count � If blank, repeat count defaults to 1.

CALL Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 311

Table 65. CALL FUNCTION Statement with DFSDDLT0 Call Functions (continued)

Column Function Code Description

nnnn 'nnnn' is the number of times to repeat

this call. Range is 1 to 9999,

right-justified but need not contain

leading zeros.

9 Reserved �

10-15 Special call

function

STAK� Stack control statements for later

execution.

END�� Stop stacking and begin execution.

SKIP� Skip statements until START function is

encountered.

START Start processing statements again.

73-80 Sequence

indication

nnnnnnnn For SYSIN2 statement override.

STAK/END (stacking) Control Statements

With the STAK statement, you repeat a series of statements that were read from

SYSIN and held in memory. All control statements between the STAK statement

and the END statement are read and saved. When DFSDDLT0 encounters the END

statement, it executes the series of calls as many times as specified in columns 5

through 8 of the STAK statement. STAK calls imbedded within another STAK cause

the outer STAK call to be abnormally terminated.

SKIP/START (skipping) Control Statements

With the SKIP and START statements, you identify groups of statements that you

do not want DFSDDLT0 to process. These functions are normally read from

SYSIN2 and provide a temporary override to an established SYSIN input stream.

DFSDDLT0 reads all control statements occurring between the SKIP and START

statements, but takes no action. When DFSDDLT0 encounters the START

statement, it reads and processes the next statement normally.

Examples of DFSDDLT0 Call Functions

STAK/END Call: The following example shows the STAK and END call functions.

 SKIP/START Call: The following example demonstrates the use of the SKIP and

START call functions in SYSIN2 to override and stop the processing of the STAK

and END call functions in SYSIN. DFSDDLT0 executes the GU call function in

SYSIN, skips the processing of STACK, WTO, T comment, GN, and END in SYSIN,

and goes to the COMMENT.

//BATCH.SYSIN DD * 10000700

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O SNAP= ,ABORT=0 10000800

S 1 1 1 1 1 10001000

L GU SEGA (KEYA =A300) 10001100

L 0003 STAK 10001150

WTO THIS IS PART OF THE STAK 10001200

T THIS COMMENT IS PART OF THE STAK 10001300

L GN 10001400

L END 10001450

U THIS COMMENT SHOULD GET PRINTED AFTER THE STAK IS DONE 3 TIMES 10001500

L 0020 GN 10001600

/*

CALL Statement

312 Application Programming: Database Manager

COMMENT Statement

Use the COMMENT statement to print comments in the output data. The two types

of COMMENT statements, conditional and unconditional are described. Table 66

shows the format of the COMMENT statement.

Conditional COMMENT Statement

You can use up to five conditional COMMENT statements per call; no continuation

mark is required in column 72. Code the statements in the DFSDDLT0 stream

before the call they are to document. Conditional COMMENTS are read and held

until a CALL is read and executed. (If a COMPARE statement follows the CALL,

conditional COMMENTS are held until after the comparison is completed.) You

control whether the conditional comments are printed with column 3 of the STATUS

statement. DFSDDLT0 prints the statements according to the STATUS statement in

the following order: conditional COMMENTS, the CALL, and the COMPARE(s). The

time and date are also printed with each conditional COMMENT statement.

Unconditional COMMENT Statement

You can use any number of unconditional COMMENT statements. Code them in the

DFSDDLT0 stream before the call they are to document. The time and date are

printed with each unconditional COMMENT statement. Table 66 lists the column

number, function, code, and description

 Table 66. COMMENT Statement

Column Function Code Description

1 Identifies control

statement

T Conditional comment statement.

U Unconditional comment statement.

2-72 Comment data Any relevant comment.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of COMMENT Statement

T/U Comment Calls: The following example shows the T and U comment calls.

//BATCH.SYSIN DD * 10000700

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O SNAP= ,ABORT=0 10000800

S 1 1 1 1 1 10001000

L GU SEGA (KEYA =A300) 10001100

L 0003 STAK 10001150

WTO THIS IS PART OF THE STAK 10001200

T THIS COMMENT IS PART OF THE STAK 10001300

L GN 10001400

L END 10001450

U THIS COMMENT SHOULD GET PRINTED AFTER THE STAK IS DONE 3 TIMES 10001500

L 0020 GN 10001600

/*

//BATCH.SYSIN2 DD *

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L SKIP 10001150

L START 10001450

U THIS COMMENT SHOULD REPLACE THE STAK COMMENT 10001500

U ********THIS COMMENT SHOULD GET PRINTED BECAUSE OF SYSIN2********* 10001650

/*

COMMENT Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 313

COMPARE Statement

The COMPARE statement compares the actual results of a call with the expected

results. The three types of COMPARE statements are the COMPARE PCB,

COMPARE DATA, and COMPARE AIB.

When you use the COMPARE PCB, COMPARE DATA, and COMPARE AIB

statements you must:

v Code COMPARE statements in the DFSDDLT0 stream immediately after either

the last continuation, if any, of the CALL DATA statement or another COMPARE

statement.

v Specify the print option for the COMPARE statements in column 7 of the

STATUS statement.

For all three COMPARE statements:

v The condition code returned for a COMPARE gives the total number of unequal

comparisons.

v For single fixed-length segments, DFSDDLT0 uses the comparison length to

perform comparisons if you provide a length. The length comparison option

(column 3) is not applicable.

When you use the COMPARE PCB statement and you want a snap dump when

there is an unequal comparison, request it on the COMPARE PCB statement. A

snap dump to a log with SNAP ID COMPxxxx is issued along with the snap dump

options specified in column 3 of the COMPARE PCB statement.

The numeric part of the SNAP ID is initially set to 0000 and is incremented by 1 for

each SNAP resulting from an unequal comparison.

COMPARE DATA Statement

The COMPARE DATA statement is optional. It compares the segment returned by

IMS to the data in the statement to verify that the correct segment was retrieved.

Table 67 gives the format of the COMPARE DATA statement.

 Table 67. COMPARE DATA Statement

Column Function Code Description

1 Identifies control statement E COMPARE statement.

2 Reserved �

3 Length comparison option � For fixed-length segments or if the LL field

of the segment is not included in the

comparison; only the data is compared.

L The length in columns 5-8 is converted to

binary and compared against the LL field

of the segment.

//BATCH.SYSIN DD * 10000700

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O SNAP= ,ABORT=0 10000800

S 1 1 1 1 1 10001000

L GU SEGB (KEYA =A400) 10001100

T THIS COMMENT IS A CONDITIONAL COMMENT FOR THE FIRST GN 10001300

L GN 10001400

U THIS COMMENT IS AN UNCONDITIONAL COMMENT FOR THE SECOND GN 10001500

L 0020 GN 10001600

/*

COMPARE Statement

314 Application Programming: Database Manager

Table 67. COMPARE DATA Statement (continued)

Column Function Code Description

4 Segment length option �

V For a variable-length segment only, or for

the first variable-length segment of multiple

variable-length segments in a path call, or

for a concatenated logical-child–logical-
parent segment.

M For the second or subsequent

variable-length segment of a path call, or

for a concatenated logical-child–logical-
parent segment.

P For fixed-length segments in path calls.

Z For message segment.

5-8 Comparison length nnnn Length to be used for comparison.

(Required for length options V, M, and P if

L is coded in column 3.)

9 Reserved �

10-13 Identifies type of statement DATA Required for the first I/O COMPARE

statement and the first statement of a new

segment if data from previous I/O

COMPARE statement is not continued.

14-15 Reserved �

16-71 String of data Data against which the segment in the I/O

area is to be compared.

72 Continuation column � If blank, data is NOT continued.

x If not blank, data will be continued, starting

in columns 16-71 of the subsequent

statements for a maximum of 3840 bytes.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Notes:

v If you code an L in column 3, the value in columns 5 through 8 is converted to binary and compared against the LL

field of the returned segment. If you leave column 3 blank and the segment is not in a path call, then the value in

columns 5 through 8 is used as the length of the comparison.

v If you code column 4 with a V, P, or M, you must enter a value in columns 5 through 8.

v If this is a path call comparison, code a P in column 4. The value in columns 5 through 8 must be the exact length

of the fixed segment used in the path call.

v If you specify the length of the segment, this length is used in the COMPARE and in the display. If you do not

specify a length, DFSDDLT0 uses the shorter value for the length of the comparison and display of:

– The length of data supplied in the I/O area by IMS

– The number of DATA statements read times 56

COMPARE AIB Statement

The COMPARE AIB statement is optional. You can use it to compare values

returned to the AIB by IMS. Table 68 on page 316 shows the format of the

COMPARE AIB statement.

COMPARE Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 315

|
|
|
|
|

|
|
|
|

Table 68. COMPARE AIB Statement

Column Function Code Description

1 Identifies control statement E COMPARE statement.

2 Hold compare option H Hold COMPARE statement. See note for

COMPARE AIB Statement.

� Reset hold condition for a single

COMPARE statement.

3 Reserved �

4-6 AIB compare AIB Identifies an AIB compare.

7 Reserved �

8-11 Return code xxxx Allow specified return code only.

12 Reserved

13-16 Reason code xxxx Allow specified reason code only.

17-72 Reserved � �

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Note for COMPARE AIB Statement: To execute the same COMPARE AIB after a

series of calls, put an H in column 2. When

you specify an H, the COMPARE statement

executes after each call. The H COMPARE

statement is particularly useful when

comparing with the same status code on

repeated calls. The H COMPARE statement

stays in effect until another COMPARE AIB

statement is read.

COMPARE PCB Statement

The COMPARE PCB statement is optional. You can use it to compare values

returned to the PCB by IMS or to print blocks or buffer pool. Table 69 shows the

format of the COMPARE PCB statement.

 Table 69. COMPARE PCB Statement

Column Function Code Description

1 Identifies control

statement

E COMPARE statement.

2 Hold compare option H Hold compare statement.

� Reset hold condition for a single COMPARE statement.

3 Snap dump options (if

compare was unequal)

� Use default value. (You can change the default value

or turn off the option by coding the value in an

OPTION statement.)

1 The complete I/O buffer pool.

2 The entire region (batch regions only).

4 The DL/I blocks.

8 Terminate the job step on miscompare of DATA or

PCB.

COMPARE Statement

316 Application Programming: Database Manager

Table 69. COMPARE PCB Statement (continued)

Column Function Code Description

S To SNAP subpools 0 through 127. Requests for

multiple SNAP dump options can be obtained by

summing their respective hexadecimal values. If

anything other than a blank, 1-9, A-F, or S is coded in

column 3, the SNAP dump option is ignored.

4 Extended SNAP1 options � Ignore extended option.

P SNAP the complete buffer pool (batch).

S SNAP subpools 0 through 127 (batch).

An area is never snapped twice. The SNAP option is a

combination of columns 3 (SNAP dump option) and 4

(extended SNAP option).

5-6 Segment level nn 'nn' is the segment level for COMPARE PCB. A leading

zero is required.

7 Reserved �

8-9 Status code � Allow blank status code only.

xx Allow specified status code only.

XX Do not check status code.

OK blank, GA, GC, or GK allowed.

10 Reserved �

11-18 Segment name

User Identification

xxxxxxxx Segment name for DB PCB compare.

Logical terminal for I/O.

Destination for ALT PCB.

19 Reserved �

20-23 Length of key nnnn 'nnnn' is length of the feedback key.

24-71 or Concatenated key Concatenated key feedback for DB PCB compare.

24-31 User ID User identification for TP PCB.

72 Continuation column � If blank, key feedback is not continued.

x If not blank, key feedback is continued, starting in

columns 16-71 of subsequent statements.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Note:

1. SNAP is a Product-sensitive programming interface.

Blank fields are not compared to the corresponding field in the PCB, except for the

status code field. (Blanks represent a valid status code.) To accept the status codes

blank, GA, GC, or GK as a group, put OK in columns 8 and 9. To stop comparisons

of status codes, put XX in columns 8 and 9.

To execute the same compare after a series of calls, put an H in column 2. This

executes the COMPARE statement after each call. This is particularly useful to

compare to a blank status code only when loading a database. The H COMPARE

statement stays in effect until another COMPARE PCB statement is read.

COMPARE Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 317

Examples of COMPARE DATA and COMPARE PCB Statements

COMPARE PCB Statement for Blank Status Code: The COMPARE PCB

statement is coded blank. It checks a blank status code for the GU.

 COMPARE PCB Statement for SSA Level, Status Code, Segment Name,

Concatenated Key Length, and Concatenated Key: The COMPARE PCB

statement is a request to compare the SSA level, a status code of OK (which

includes blank, GA, GC, and GK), segment name of SEGA, concatenated key

length of 0004, and a concatenated key of A100.

 COMPARE PCB Statement for SSA Level, Status Code, Segment Name,

Concatenated Key Length, and Concatenated Key: The COMPARE PCB

statement causes the job step to terminate based on the 8 in column 3 when any of

the fields in the COMPARE PCB statement are not equal to the corresponding field

in the PCB.

 COMPARE PCB Statement for Status Code with Hold Compare: The COMPARE

PCB statement is a request to compare the status code of OK (which includes

blank, GA, GC, and GK) and hold that compare until the next COMPARE PCB

statement. The compare of OK is used on GN following GU and is also used on a

GN that has a request to be repeated six times.

 COMPARE DATA Statement for Fixed-Length Segment: The COMPARE DATA

statement is a request to compare the data returned. 72 bytes of data are

compared.

 COMPARE DATA Statement for Fixed-Length Data for 64 Bytes: The COMPARE

DATA statement is a request to compare 64 bytes of the data against the data

returned.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GU 10101100

E 10101200

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GU

E 01 OK SEGA 0004A100

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GU 10105100

E 8 01 OK SEGK 0004A100 10105200

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GU SEGA (KEYA = A300) 20201100

L GN 20201300

EH OK 20201400

L 0006 GN 20201500

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GU

E DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10102200

E A100A100A100A100 10102300

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GU 10101600

E 0064 DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10101700

E A100A100B111B111 10101800

COMPARE Statement

318 Application Programming: Database Manager

COMPARE DATA Statement for Fixed-Length Data for 72 Bytes: The COMPARE

DATA statement is a request to compare 72 bytes of the data against the data

returned.

 COMPARE DATA Statement for Variable-Length Data of Multiple-Segments

Data and Length Fields: The COMPARE DATA statement is a request to compare

36 bytes of the data against the data returned for segment 1 and 16 bytes of data

for segment 2. It compares the length fields of both segments.

 COMPARE DATA Statement for Variable-Length Data of Multiple Segments

with no Length Field COMPARE: The COMPARE DATA statement is a request to

compare 36 bytes of the data against the data returned for segment 1 and 16 bytes

of data for segment 2 with no length field compares of either segment.

 COMPARE DATA Statement for Variable-Length Data of Multiple Segments and

One Length Field COMPARE: The COMPARE DATA statement is a request to

compare 36 bytes of the data against the data returned for segment 1 and 16 bytes

of data for segment 2. It compares the length field of segment 1 only.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L GU 10103900

E LP0072 DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10104000

E A100A100A100A100 10104100

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ISRT D (DSS = DSS01) X38005500

L DJ (DJSS = DJSS01) X38005600

L QAJAXQAJ 38005700

L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800

L M0016 DATA QAJSS01*IQAJ** 38005850

L GHU D (DSS = DSS01) X38006000

 DJ (DJSS = DJSS01) X38006100

 QAJAXQAJ (QAJASS = QAJASS97) 38006200

E LV0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300

E LM0016 DATA QAJSS01*2QAJ** 38006350

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ISRT D (DSS = DSS01) X38005500

L DJ (DJSS = DJSS01) X38005600

L QAJAXQAJ 38005700

L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800

L M0016 DATA QAJSS01*IQAJ** 38005850

L GHU D (DSS = DSS01) X38006000

 DJ (DJSS = DJSS01) X38006100

 QAJAXQAJ (QAJASS = QAJASS97) 38006200

E V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300

 M0016 DATA QAJSS01*2QAJ** 38006350

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L ISRT D (DSS = DSS01) X38005500

L DJ (DJSS = DJSS01) X38005600

L QAJAXQAJ 38005700

L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800

L M0016 DATA QAJSS01*IQAJ** 38005850

L GHU D (DSS = DSS01) X38006000

 DJ (DJSS = DJSS01) X38006100

 QAJAXQAJ (QAJASS = QAJASS97) 38006200

E LV0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300

 M0016 DATA QAJSS01*2QAJ** 38006350

COMPARE Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 319

IGNORE Statement

DFSDDLT0 ignores any statement with an N or a period (.) in column 1. You can

use the N or . (period) to comment out a statement in either the SYSIN or SYSIN2

input streams. Using N or . (period) in a SYSIN2 input stream causes the SYSIN

input stream to be ignored as well. See “SYSIN2 DD Statement” on page 329 for

information on how to override SYSIN input. Table 70 gives the format of the

IGNORE statement. An example of the statement follows.

 Table 70. IGNORE Statement

Column Function Code Description

1 Identifies control

statement

N or . IGNORE statement.

2-72 Ignored

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of IGNORE Statement Using N or .

OPTION Statement

Use the OPTION statement to override various default options. Use multiple

OPTION statements if you cannot fit all the options you want in one statement. No

continuation character is necessary. Once you set an option, it remains in effect

until you specify another OPTION statement to change the first parameter. Table 71

shows the format of the OPTION statement. An example follows.

 Table 71. OPTION Statement

Column Function Code Description

1 Identifies control

statement

O OPTION statement (free-form parameter

fields).

2 Reserved � �

3-72 Keyword parameters:

ABORT= v 0

v 1 to 9999

v Turns the ABORT parameter off.

v Number of unequal compares before

aborting job. Initial default is 5.

LINECNT= 10 to 99 Number of lines printed per page. Must be

filled with zeros. Initial default 54.

SNAP1 x SNAP option default, when results of compare

are unequal. To turn the SNAP option off, code

'SNAP='. See “COMPARE PCB Statement” on

page 316 for the appropriate values for this

parameter. (Initial default is 5 if this option is

not coded. This causes the I/O buffer pool and

the DL/I blocks to be dumped with a SNAP

call.)

DUMP/NODUMP Produce/do not produce dump if job abends.

Default is NODUMP.

 |---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

 . NOTHING IN THIS AREA WILL BE PROCESSED. ONLY THE SEQUENCE NUMBER 67101010

 N WILL BE USED IF READ FROM SYSIN2 OR SYSIN. 67101020

IGNORE Statement

320 Application Programming: Database Manager

Table 71. OPTION Statement (continued)

Column Function Code Description

LCASE= v H

v C

v Hexadecimal representation for lower case

characters. This is the initial default.

v Character representation for lower case

characters.

STATCD/NOSTATCD Issue/do not issue an error message for the

internal, end-of-job stat call that does not

receive a blank or GA status code. NOSTATCD

is the default.

ABU249/NOABU249 Issue/do not issue a DFSDDLT0 ABENDU0249

when an invalid status code is returned for any

of the internal end-of-job stat calls in a batch

environment. NOABU249 is the default.

73 - 80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Note:

1. SNAP is a Product-sensitive programming interface.

OPTION statement parameters can be separated by commas.

Example of OPTION Control Statement

PUNCH CTL Statement

The PUNCH CTL statement allows you to produce an output data set consisting of

COMPARE PCB statements, COMPARE DATA statements, COMPARE AIB

statements, other control statements (with the exceptions noted in Table 72), or

combinations of these statements. Table 72 shows the format and keyword

parameters for the PUNCH CTL statement.

 Table 72. PUNCH CTL Statement

Column Function Code Description

1-3 Identifies control

statement

CTL PUNCH statement.

4-9 Reserved �

10-13 Punch control PUNC Begin punching (no default

values).

NPUN Stop punching (default value).

14-15 Reserved �

16-72 Keyword parameters:

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O ABORT=5,DUMP,LINECNT=54,SPA=4096,SNAP=5 67101010

OPTION Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 321

Table 72. PUNCH CTL Statement (continued)

Column Function Code Description

OTHER Reproduces all input control

statements except:

v CTL (PUNCH) statements.

v N or . (IGNORE)

statements.

v COMPARE statements.

v CALL statements with

functions of SKIP and

START. Any control

statements that appear

between SKIP and START

CALLs are not punched.

(See “SKIP/START

(skipping) Control

Statements” on page 312).

v CALL statements with

functions of STAK and

END. Control statements

that appear between STAK

and END CALLS are saved

and then punched the

number of times indicated

in the STAK CALL. (See

“STAK/END (stacking)

Control Statements” on

page 312).

DATAL Create a full data COMPARE

using all of the data returned

to the I/O area. Multiple

COMPARE statements and

continuations are produced as

needed.

DATAS Create a single data

COMPARE statement using

only the first 56 bytes of data

returned to the I/O area.

PCBL Create a full PCB COMPARE

using the complete key

feedback area returned in the

PCB. Multiple COMPARE

statements and continuations

are produced as needed.

PCBS Create a single PCB

COMPARE statement using

only the first 48 bytes of the

key feedback area returned in

the PCB.

SYNC/NOSYNC If a GB status code is

returned on a Fast Path call

while in STAK, but prior to

exiting STAK, this function

issues or does not issue

SYNC.

PUNCH Statement

322 Application Programming: Database Manager

Table 72. PUNCH CTL Statement (continued)

Column Function Code Description

START= 00000001 to 99999999.

This is the starting sequence

number to be used for the

punched statements. Eight

numeric bytes must be coded.

INCR= 1 to 9999.

Increment the sequence

number of each punched

statement by this value.

Leading zeros are not

required.

AIB Create an AIB COMPARE

statement.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement

override.

To change the punch control options while processing a single DFSDDLT0 input

stream, always use PUNCH CTL statements in pairs of PUNC and NPUN.

One way to use the PUNCH CTL statement is as follows:

1. Code only the CALL statements for a new test. Do not code the COMPARE

statements.

2. Verify that each call was executed correctly.

3. Make another run using the PUNCH CTL statement to have DFSDDLT0 merge

the proper COMPARE statements and produce a new output data set that can

be used as input for subsequent regression tests.

You can also use PUNCH CTL if segments in an existing database are changed.

The control statement causes DFSDDLT0 to produce a new test data set that has

the correct COMPARE statements rather than you having to manually change the

COMPARE statements.

Parameters in the CTL statement must be the same length as described in

Table 72, and they must be separated by commas.

Example of PUNCH CTL Statement

 The DD statement for the output data set is labeled PUNCHDD. The data sets are

fixed block with LRECL=80. Block size as specified on the DD statement is used. If

not specified, the block size is set to 80. If the program is unable to open

PUNCHDD, DFSDDLT0 issues abend 251.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

CTL PUNC PCBS,DATAS,OTHER,START=00000010,INCR=0010 33212010

CTL NPUN 33212020

PUNCH Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 323

Example of PUNCH CTL Statement for All Parameters

STATUS Statement

With the STATUS statement, you establish print options and name the PCB that you

want subsequent calls to be issued against. Table 73 shows the format of the

STATUS statement.

 Table 73. STATUS Statement

Column Function Code Description

1 Identifies control statement S STATUS statement.

2 Output device option � Use PRINTDD when in a DL/I region; use I/O

PCB in MPP region.

1 Use PRINTDD in MPP region if DD statement

is provided; otherwise, use I/O PCB.

A Same as if 1, and disregard all other fields in

this STATUS statement.

3 Print comment option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

4 Print AIB option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

5 Print call option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

6 Reserved �

7 Print compare option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

8 Reserved �

9 Print PCB option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

10 Reserved �

11 Print segment option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

12 Set task and real time � Do not time

1 Time each call.

2 Time each call if compare done and unequal.

13-14 Reserved �

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

CTL PUNC OTHER,DATAL,PCBL,START=00000001,INCR=1000,AIB 33212010

PUNCH Statement

324 Application Programming: Database Manager

Table 73. STATUS Statement (continued)

Column Function Code Description

15 PCB selection option 1 PCB name passed in columns 16-23 (use

option 1).

2 DBD name passed in columns 16-23 (use

option 2).

3 Relative DB PCB passed in columns 16-23

(use option 3).

4 Relative PCB passed in columns 16-23 (use

option 4).

5 $LISTALL passed in columns 16-23 (use

option 5).

� If column 15 is blank, DFSDDLT0 selects

options 2 through 5 based on content of

columns 16-23.

Opt. 1

16-23

PCB selection

PCB name

alpha These columns must contain the name of the

label on the PCB at PSBGEN, or the name

specified on the PCBNAME= operand for the

PCB at PSBGEN time.

Opt. 2

16-23

PCB selection

DBD name

�

alpha

The default PCB is the first database PCB in

the PSB. If columns 16-23 are blank, current

PCB is used. If DBD name is specified, this

must be the name of a database DBD in the

PSB.

Opt. 3

16-18

19-23

PCB selection

Relative position

of PCB in PSB

�

numeric

When columns 16 through 18 are blank,

columns (19-23) of this field are interpreted as

the relative number of the DB PCB in the

PSB. This number must be right-justified to

column 23, but need not contain leading

zeros.

Opt. 4

16-18

19-23

PCB selection

I/O PCB

Relative position

of PCB in PSB

TP�

numeric

When columns 16 through 18 = 'TP�',

columns (19-23) of this field are interpreted as

the relative number of the PCB from the start

of the PCB list. This number must be

right-justified to column 23, but need not

contain leading zeros. I/O PCB is always the

first PCB in the PCB list in this program.

Opt. 5

16-23

List all PCBs in the PSB $LISTALL Prints out all PCBs in the PSB for test script.

24 Print status option � Use print options to print this STATUS

statement.

1 Do not use print options in this statement;

print this STATUS statement.

2 Do not print this STATUS statement but use

print options in this statement.

3 Do not print this STATUS statement and do

not use print options in this statement.

25-28 PCB processing option xxxx This is optional and is only used when two

PCBs have the same name but different

processing options. If not blank, it is used in

addition to the PCB name in columns 16

through 23 to select which PCB in the PSB to

use.

STATUS Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 325

Table 73. STATUS Statement (continued)

Column Function Code Description

29 Reserved �

30-32 AIB interface AIB Indicates that the AIB interface is used and

the AIB is passed rather than passing the

PCB. (Passing the PCB is the default.)

Note: When the AIB interface is used, the

PCB must be defined at PSBGEN with

PCBNAME=name. IOPCB is the PCB name

used for all I/O PCBs. DFSDDLT0 recognizes

that name when column 15 contains a 1 and

columns 16 through 23 contain IOPCB.

33 Reserved

37-72 Reserved

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

If DFSDDLT0 does not encounter a STATUS statement, all default print options

(columns 3 through 12) are 2 and the default output device option (column 2) is 1.

You can code a STATUS statement before any call sequence in the input stream,

changing either the PCB to be referenced or the print options.

The referenced PCB stays in effect until a subsequent STATUS statement selects

another PCB. However, a call that must be issued against an I/O PCB (such as

LOG) uses the I/O PCB for that call. After the call, the PCB changes back to the

original PCB.

Examples of STATUS Statement

To Print Each CALL Statement: The following STATUS statement tells DFSDDLT0

to print these options: COMMENTS, CALL, COMPARE, PCB, and SEGMENT DATA

for all calls.

 To Print Each CALL Statement, Select a PCB: The following STATUS statements

tell DFSDDLT0 to print the COMMENTS, CALL, COMPARE, PCB, and SEGMENT

DATA options for all calls, and select a PCB.

The 1 in column 15 is required for PCBNAME. If omitted, the PCBNAME is treated

as a DBDNAME.

 To print each CALL statement, select PCB based on a DBD name: The

following STATUS statements tell DFSDDLT0 to print the COMMENTS, CALL,

COMPARE, PCB, and SEGMENT DATA options for all calls, and select a PCB by a

DBD name.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S 1 1 1 1 1

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S 1 1 1 1 1 1PCBNAME

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S 1 1 1 1 1 1PCBNAME AIB�

STATUS Statement

326 Application Programming: Database Manager

The 2 in column 15 is optional.

 If you do not use the AIB interface, you do not need to change STATUS statement

input to existing streams; existing call functions will work just as they have in the

past. However, if you want to use the AIB interface, you must change the STATUS

statement input to existing streams to include AIB in columns 30 through 32. The

existing DBD name, Relative DB PCB, and Relative PCB will work if columns 30

through 32 contain AIB and the PCB has been defined at PSBGEN with

PCBNAME=name.

WTO Statement

The WTO (Write to Operator) statement sends a message to the z/OS console

without waiting for a reply. Table 74 shows the format for the WTO statement.

 Table 74. WTO Statement

Column Function Code Description

1-3 Identifies control

statement

WTO WTO statement.

4 Reserved �

5-72 Message to send Message to be written to the system

console.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of WTO Statement

This WTO statement sends a message to the z/OS console and continues the test

stream.

WTOR Statement

The WTOR (Write to Operator with Reply) statement sends a message to the z/OS

system console and waits for a reply. Table 75 shows the format of the WTOR

statement.

 Table 75. WTOR Statement

Column Function Code Description

1-4 Identifies control

statement

WTOR WTOR statement.

5 Reserved �

6-72 Message to send Message to be written to the system

console.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S 1 1 1 1 1 2DBDNAME

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S 1 1 1 1 1 2DBDNAME AIB�

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

WTO AT A “WTO” WITHIN TEST STREAM --WTO NUMBER 1-- TEST STARTED

STATUS Statement

Chapter 14. DL/I Test Program (DFSDDLT0) 327

Example of WTOR Statement

This WTOR statement causes the test stream to hole until DFSDDLT0 receives a

response from the z/OS console operator. Any response is valid.

JCL Requirements

This section defines the DD statements that DFSDDLT0 uses. Execution JCL

depends on the installation data set naming standards as well as the IMS

environment (batch or online). See Figure 53.

Figure 54 is an example of coding JCL for DFSDDLT0 in a BMP. Use of a

procedure is optional and is only shown here as an example.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

WTOR AT A “WTOR” WITHIN TEST STREAM - ANY RESPONSE WILL CONTINUE

//SAMPLE JOB ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=3,PRTY=8 33001100

//GET EXEC PGM=DFSRRC00,PARM=’DLI,DFSDDLT0,PSBNAME’ 33001200

//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR 33001300

//IMS DD DSN=IMS2.PSBLIB,DISP=(SHR,PASS) 33001400

// DD DSN=IMS2.DBDLIB,DISP=(SHR,PASS) 33001500

//DDCARD DD DSN=DATASET,DISP=(OLD,KEEP) 33001600

//IEFRDER DD DUMMY 33001700

//PRINTDD DD SYSOUT=A 33001800

//SYSUDUMP DD SYSOUT=A 33001900

//SYSIN DD * 33002000

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

U THIS IS PART OF AN EXAMPLE 33002100

S 1 1 1 1 1 PCB-NAME 33002200

L GU 33002300

/*

//SYSIN2 DD *

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

ABEND 33002300

/*

Figure 53. Example JCL Code for DD Statement Definition

//SAMPLE JOB ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=A 00010047

//***

//* BATCH DL/I JOB TO RUN FOR RSR TESTING *

//***

//BMP EXEC IMSBATCH,MBR=DFSDDLT0,PSB=PSBNAME

//BMP.PRINTDD DD SYSOUT=A

//BMP.PUNCHDD DD SYSOUT=B

//BMP.SYSIN DD *

U ***THIS IS PART OF AN EXAMPLE OF SYSIN DATA 00010000

S 1 1 1 1 1 1 00030000

L GU 00040000

L 0099 GN 00050000

/*

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

//BMP.SYSIN2 DD *

U ***THIS IS PART OF AN EXAMPLE OF SYSIN2 DATA ******************* 00020000

ABEND 00050000

/*

Figure 54. Example JCL Code for DFSDDLT0 in a BMP

WTOR Statement

328 Application Programming: Database Manager

SYSIN DD Statement

The data set specified by the SYSIN DD statement is the normal input data set for

DFSDDLT0. When processing input data that is on direct-access or tape, you may

want to override certain control statements in the SYSIN input stream or to add

other control statements to it. You do this with a SYSIN2 DD statement and the

control statement sequence numbers.

Sequence numbers in columns 73 to 80 for SYSIN data are optional unless a

SYSIN2 override is used. If a SYSIN2 override is used, follow the directions for

using sequence numbers as described in “SYSIN2 DD Statement.”

SYSIN2 DD Statement

DFSDDLT0 does not require the SYSIN2 DD statement, but if it is present in the

JCL, DFSDDLT0 will read and process the specified data sets. When using

SYSIN2:

v The SYSIN DD data set is the primary input. DFSDDLT0 attempts to insert the

SYSIN2 control statements into the SYSIN DD data set.

v You must code the control groups and sequence numbers properly in columns 73

to 80 or the merging process will not work.

v Columns 73 and 74 indicate the control group of the statement.

v Columns 75 to 80 indicate the sequence number of the statement.

v Sequence numbers must be in numeric order within their control group.

v Control groups in SYSIN2 must match the SYSIN control groups, although

SYSIN2 does not have to use all the control groups used in SYSIN. DFSDDLT0

does not require that control groups be in numerical order, but the control groups

in SYSIN2 must be in the same order as those in SYSIN.

v When DFSDDLT0 matches a control group in SYSIN and SYSIN2, it processes

the statements by sequence number. SYSIN2 statements falling before or after a

SYSIN statement are merged accordingly.

v If the sequence number of a SYSIN2 statement matches the sequence number

of a SYSIN statement in its control group, the SYSIN2 overrides the SYSIN.

v If the program reaches the end of SYSIN before it reaches the end of SYSIN2, it

processes the records of SYSIN2 as if they were an extension of SYSIN.

v Replacement or merging occurs only during the current run. The original SYSIN

data is not changed.

v During merge, if one of the control statements contains blanks in columns 73

through 80, DFSDDLT0 discards the statement containing blanks, sends a

message to PRINTDD, and continues the merge until end-of-file is reached.

PRINTDD DD Statement

The PRINTDD DD statement defines output data set for DFSDDLT0, including

displays of control blocks using the SNAP call. It must conform to the z/OS SNAP

data set requirements.

PUNCHDD DD Statement

The DD statement for the output data set is labeled PUNCHDD. The data sets are

fixed block with LRECL=80. Block size as specified on the DD statement is used; if

not specified, the block size is set to 80. If the program is unable to open

PUNCHDD, DFSDDLT0 issues abend 251. Here is an example of the PUNCHDD

DD statement.

JCL Requirements

Chapter 14. DL/I Test Program (DFSDDLT0) 329

Using the PREINIT Parameter for DFSDDLT0 Input Restart

You use the DFSDDLT0 restart function to restart a DFSDDLT0 input stream within

the same dependent region. The PREINIT parameter in the EXEC statement

invokes the restart function. Code the PREINIT parameter of DFSMPR as

PREINIT=xx, where xx is the two-character suffix of the DFSINTxx PROCLIB

member. (PREINIT=DL refers to the default PROCLIB member.)

The PREINIT process establishes a checkpoint field for each active IMS region.

This field is updated with the sequence number of each GU call to an I/O PCB as it

is processed. For this reason, sequence numbers are required for all such GU calls

that are used. On a restart, if the checkpoint field contains a sequence number, the

DFSDDLT0 stream starts at the next GU call to an I/O PCB following the sequence

number in the checkpoint field; otherwise the DFSDDLT0 stream starts from the

beginning.

The DFSDDLSI module and the default IMS.PROCLIB member, DFSINTDL, are

shipped with IMS and are installed as part of normal IMS installation.

The following code shows examples of SYSIN/SYSIN2 and PREINIT.

//TSTPGM JOB CARD

//DDLTTST EXEC DFSMPR,PREINIT=DL

//MPP.SYSIN DD *

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S11 1 1 1 1 TP 1 01000000

OPTIONS SNAP= ,ABORT=9999 01000010

U** 01000040

S11 1 1 1 1 TP 1 01000050

L GU 01000060

E OK 01000070

S11 1 1 1 1 DBPCBXXX 01000080

L GU 01000090

E DATA A INIT-LOAD UOW 01000100

E 01 ROOTSEG1 0008A 0004D 01000110

S11 1 1 1 1 TP 1 01000120

L ISRT 01000130

L Z0080 DATA -SYNC INTERVAL 1 SEG 1 -MESSAGE 1 X01000140

L P DATA 111 01000150

L ISRT 01000160

L Z0080 DATA -SYNC INTERVAL 1 SEG 2 -END EOM 1 X01000170

L P DATA 111 01000180

U** 01000190

U* ENDING FIRST SYNC INTERVAL 01000200

U** 01000210

L GU 01000220

E QC 01000230

L GU 01000240

E OK 01000250

S11 1 1 1 1 DBPCBXXX 01000260

WTO GETTING DATA BASE SEGMENT 1 FROM DBPCBXXX 01000270

L U GHU 01000280

E DATA INIT-LOAD UOW. 1 A.P. 1 01000290

E OK 01000300

L U0003 GN 01000310

E OK 01000320

S11 1 1 1 1 TP 1 01000330

L ISRT 01000340

L Z0080 DATA -SYNC INTERVAL 2 SEG 1 -MESSAGE 1 X01000350

L P DATA 22211 01000360

//PUNCHDD DD SYSOUT=B

JCL Requirements

330 Application Programming: Database Manager

L ISRT 01000370

L Z0080 DATA -SYNC INTERVAL 2 SEG 2 -END EOM 1 X01000380

L P DATA 22211 01000390

U** 01000400

U* ENDING SECOND SYNC INTERVAL 01000410

U** 01000420

L GU 01000430

E QC 01000440

L GU 01000450

E OK 01000460

S11 1 1 1 1 DBPCBXXX 01000470

S11 1 1 1 1 TP 1 01000480

L ISRT 01000490

L Z0080 DATA -SYNC INTERVAL 3 SEG 1 -MESSAGE 1 X01000500

L P DATA 33311 01000510

L ISRT 01000520

L Z0080 DATA -SYNC INTERVAL 3 SEG 2 -END EOM 1 X01000530

L P DATA 33311 01000580

U** 01000590

U* ENDING THIRD SYNC INTERVAL 01000600

U** 01000610

L GU 01000620

E QC 01000630

//MPP.SYSIN2 DD *

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

ABEND 01000430

/*

Notes for the SYSIN/SYSIN2 and PREINIT examples:

1. The PREINIT= parameter coded in the EXEC statement invokes the restart

process.

2. When DFSDDLT0 starts processing, it substitutes the SYSIN2 ABEND

statement for the statement in SYSIN with the same sequence number. (It is the

GU call with sequence number 01000430.)

3. DFSDDLT0 begins with statement 01000000 and processes until it encounters

the ABEND statement (statement number 01000430). The GU calls to the I/O

PCB have already been tracked in the checkpoint field (statements 01000060,

01000220, and 01000240).

4. When DFSDDLT0 is rescheduled, it examines the checkpoint field and finds

01000240. DFSDDLT0 begins processing at the next GU call to the I/O PCB,

statement 01000450.

If the statement currently numbered 01000240 did not have a sequence

number, DFSDDLT0 would restart from statement 01000000 when it was

rescheduled.

Execution of DFSDDLT0 in IMS Regions

DFSDDLT0 is designed to operate in a DL/I or BMP region but can be executed in

an IFP or MPP region. In a BMP or DL/I region, the EXEC statement allows the

program name to be different from the PSB name. There is no problem executing

calls against any database in a BMP or DL/I region.

In an MPP region, the program name must be the same as the PSB name. To

execute a DFSDDLT0 program in an MPP region, you must give DFSDDLT0 the

PSB name or an alias of the PSB named in the IMS definition. You can use a

temporary step library.

In an MPP region or a BMP region with an input transaction code specified in the

EXEC statement, DFSDDLT0 normally gets input by issuing a GU and GNs to the

JCL Requirements

Chapter 14. DL/I Test Program (DFSDDLT0) 331

I/O PCB. DFSDDLT0 issues GU and GN calls until it receives the “No More

Messages” status code, QC. If there is a SYSIN DD statement and a PRINTDD DD

statement in the dependent region, DFSDDLT0 reads input from SYSIN and

SYSIN2, if present, and sends output to the PRINTDD. If the dependent region is

an MPP region and the input stream does not cause a GU to be issued to the I/O

PCB before encountering end-of-file from SYSIN, the program will implicitly do a

GU to the I/O PCB to get the message that caused the program to be scheduled. If

the input stream causes a GU to the I/O PCB and a “No More Messages” status

code is received, this is treated as the end of file. When input is from the I/O PCB,

you can send output to PRINTDD by coding a 1 or an A in column 2 of the STATUS

statement.

Because the input is in fixed form, it is difficult to key it from a terminal. To use

DFSDDLT0 to test DL/I in a message region, execute another message program

that reads control statements stored as a member of a partitioned set. Insert these

control statements to an input transaction queue. IMS then schedules the program

to process the transactions. This method allows you to use the same control

statements to execute in any region type.

Explanation of DFSDDLT0 Return Codes

A non-zero return code from DFSDDLT0 indicates the number of unequal

comparisons that occurred during that time.

A return code of 0 (zero) from DFSDDLTO does not necessarily mean that

DFSDDLT0 executed without errors. There are several messages issued by

DSFDDLT0 that do not change the return code, but do indicate some sort of error

condition. This preserves the return code field for the unequal comparison count.

If an error message was issued during the run, a message ERRORS WERE DETECTED

WITHIN THE INPUT STREAM. REVIEW OUTPUT TO DETERMINE ERRORS. appears at the

end of the DFSDDLT0 output. You must examine the output to ensure DFSDDLT0

executed as expected.

DFSDDLT0 Hints

This section describes loading a database, printing, retrieving, replacing, and

deleting segments, regression testing, using a debugging aid, and verifying how a

call is executed.

Load a Database

Use DFSDDLT0 for loading only very small databases because you must to provide

all the calls and data rather than have them generated. The following example

shows CALL FUNCTION and CALL DATA statements that are used to load a

database.

Execution of DFSDDTLT0 in IMS Regions

332 Application Programming: Database Manager

Print the Segments in a Database

Use either of the following sequences of control statements to print the segments in

a database.

 |---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<

 .* Use PRINTDD, print call, compare, and PCB if compare unequal

 .* Do 1 Get Unique call

 .* Hold PCB compare, End step if status code is not blank, GA, GC, GK

 .* Do 9,999 Get Next calls

 S 2 2 2 1 DBDNAME

 L GU

 EH8 OK

 L 9999 GN

 |---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<

 .* Use PRINTDD, print call, compare, and PCB if compare unequal

 .* Do 1 Get Unique call

 .* Hold PCB compare, Halt GN calls when status code is GB.

 .* Do 9,999 Get Next calls

 S 2 2 2 1 DBDNAME

 L GU

 EH OK

 L 9999 GN

Both examples request the GN to be repeated 9999 times. Note that the first

example uses a COMPARE PCB of EH8 while the second uses a COMPARE PCB

of EH.

The difference between these two examples is that the first halts the job step the

first time the status code is not blank, GA, GC, or GK. The second example halts

repeating the GN and goes on to process any remaining DFSDDLT0 control

statements when a GB status code is returned or the GN has been repeated 9999

times.

Retrieve and Replace a Segment

Use the following sequence of control statements to retrieve and replace a

segment.

 |---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<

 O SNAP= ,ABORT=0

 S 1 2 2 1 1

 L ISRT COURSE

 L DATA FRENCH

 L ISRT COURSE

 L DATA COBOL

 L ISRT CLASS

 L DATA 12

 L ISRT CLASS

 L DATA 27

 L ISRT STUDENT

 L DATA SMITH THERESE

 L ISRT STUDENT

 L DATA GRABOWSKY MARION

DFSDDLT0 Hints

Chapter 14. DL/I Test Program (DFSDDLT0) 333

Delete a Segment

Use the following sequence of control statements to delete a segment.

Do Regression Testing

DFSDDLT0 is ideal for doing regression testing. By using a known database,

DFSDDLT0 can issue calls and then compare the results of the call to expected

results using COMPARE statements. The program then can determine if DL/I calls

are executed correctly. If you code all the print options as 2’s (print only if

comparisons done and unequal), only the calls not properly satisfied are displayed.

Use as a Debugging Aid

When debugging a program, you usually need a print of the DL/I blocks. You can

snap the blocks to a log data set at appropriate times by using a COMPARE

statement that has an unequal compare in it. You can then print the blocks from the

log. If you need the blocks even though the call executed correctly, such as for the

call before the failing call, insert a SNAP function in the CALL statement in the input

stream.

Verify How a Call Is Executed

Because it is very easy to execute a particular call, you can use DFSDDLT0 to

verify how a particular call is handled. This can be of value if you suspect DL/I is

not operating correctly in a specific situation. You can issue the calls suspected of

not executing properly and examine the results.

|----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----

 S 1 1 1 1 1 COURSEDB

 L GHU COURSE (TYPE =FRENCH) X

 CLASS (WEEK =27) X

 STUDENT (NAME =SMITH)

 L REPL

 L DATA SMITH THERESE

|----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----

 S 1 1 1 1 1 4

 L GHU COURSE (TYPE =FRENCH) X

 CLASS *L X

 INSTRUC (NUMBER =444)

 L DLET

DFSDDLT0 Hints

334 Application Programming: Database Manager

Chapter 15. IMS Adapter for REXX

The IMS adapter for REXX (REXXTDLI) provides an environment in which IMS

users can interactively develop REXX EXECs under TSO/E (time-sharing option

extensions) and execute them in IMS MPPs, BMPs, IFPs, or Batch regions.

This product does not compete with DFSDDLT0 but is used as an adjunct. The IMS

adapter for REXX provides an application programming environment for prototyping

or writing low-volume transaction programs.

The REXX environment executing under IMS has the same abilities and restrictions

as those documented in the IBM TSO Extensions for MVS/REXX Reference. These

few restrictions pertain to the absence of the TSO, ISPEXEC, and ISREDIT

environments, and to the absence of TSO-specific functions such as LISTDS. You

can add your own external functions to the environment as documented in the IBM

TSO Extensions for MVS/REXX Reference.

IMS calls the REXX EXEC using IRXJCL. When this method is used, Return Code

20 (RC20) is a restricted return code. Return Code 20 is returned to the caller of

IRXJCL when processing was not successful, and the EXEC was not processed.

A REXX EXEC runs as an IMS application and has characteristics similar to other

IMS-supported programming languages, such as COBOL. Programming language

usage (REXX and other supported languages) can be mixed in MPP regions. For

example, a COBOL transaction can be executed after a REXX transaction is

completed, or vice versa.

The advantages of REXX are:

v REXX is an easy-to-use interpretive language.

v REXX does not require a special PSB generation to add an EXEC and run it

because EXECs can run under a standard PSB (IVPREXX or one that is

established by the user).

v The REXX interface supports DL/I calls and provides these functions:

– Call tracing of DL/I calls, status, and parameters

– Inquiry of last DL/I call

– Extensive data mapping

– PCB specification by name or offset

– Obtaining and releasing storage

– Messaging through WTO, WTP, WTL, and WTOR

The following system environment conditions are necessary to run REXX EXECs:

v DFSREXX0 and DFSREXX1 must be in a load library accessible to your IMS

dependent or batch region; for example, STEPLIB.

v DFSREXX0 is stand-alone and must have the RENT option specified.

v DFSREXX1 must be link-edited with DFSLI000 and DFSCPIR0 (for SRRCMIT and

SRRBACK) and optionally, DFSREXXU. The options must be REUS, not RENT.

v IVPREXX (copy of DFSREXX0 program) must be installed as an IMS transaction

program. IVP (Installation Verification Program) installs the program. For more

information, see “REXX Transaction Programs” on page 337.

v The PSB must be defined as assembler language or COBOL.

© Copyright IBM Corp. 1974, 2004 335

v SYSEXEC DD points to a list of data sets containing the REXX EXECs that will

be run in IMS. You must put this DD in your IMS dependent or batch region JCL.

v SYSTSPRT DD is used for REXX output, for example tracing, errors, and SAY

instructions. SYSTSPRT DD is usually allocated as SYSOUT=A or another class,

depending on installation, and must be put in the IMS dependent or batch region

JCL.

v SYSTSIN DD is used for REXX input because no console exists in an IMS

dependent region, as under TSO. The REXX PULL statement is the most

common use of SYSTSIN.

The following topics provide additional information:

v “Sample Exit Routine (DFSREXXU)”

v “Addressing Other Environments”

v “REXX Transaction Programs” on page 337

v “REXXTDLI Commands” on page 341

v “REXXTDLI Calls” on page 341

v “REXXIMS Extended Commands” on page 344

v “Sample Execs Using REXXTDLI” on page 356

Related Reading: For more information on SYSTSPRT and SYSTSIN, see IBM

TSO Extensions for MVS/REXX Reference.

Sample Exit Routine (DFSREXXU)

IMS provides a sample user exit routine that is used with the IMS Adapter for

REXX. For a description of how to write the user exit routine see IMS Version 9:

Customization Guide. The sample user exit routine checks to see if it is being called

on entry. If so, the user exit routine sets the parameter list to the transaction code

with no arguments and sets the start-up IMSRXTRC level to 2. The return code is

set to 0. For the latest version of the DFSREXXU source code, see the

IMS.SDFSSRC distribution library; the member name is DFSREXXU.

Addressing Other Environments

Use the REXX ADDRESS instruction to change the destination of commands. The

IMS Adapter for REXX functions through two host command environments:

REXXTDLI and REXXIMS. Other host command environments can be accessed

with an IMS EXEC as well.

The z/OS environment is provided by TSO in both TSO and non-TSO address

spaces. It is used to run other programs such as EXECIO for file I/O. IMS does not

manage the z/OS EXECIO resources. An IMS COMMIT or BACKOUT, therefore,

has no effect on these resources. Because EXECIO is not an IMS-controlled

resource, no integrity is maintained. If integrity is an issue for flat file I/O, use IMS

GSAM, which ensures IMS-provided integrity.

If APPC/MVS is available (MVS 4.2 or higher), other environments can be used.

The environments are:

APPCMVS Used for z/OS-specific APPC interfacing

CPICOMM Used for CPI Communications

LU62 Used for z/OS-specific APPC interfacing

IMS Adapter for REXX

336 Application Programming: Database Manager

|
|
|
|
|
|
|

Related Reading: For more information on addressing environments, see IBM TSO

Extensions for MVS/REXX Reference.

REXX Transaction Programs

A REXX transaction program can use any PSB definition. The definition set up by

the IVP for testing is named IVPREXX. A section of the IMS stage 1 definition is

shown in the following example:

 This example uses a GPSB, but you could use any PSB that you have defined. The

GPSB provides a generic PSB that has an TP PCB and a modifiable alternate PCB.

It does not have any database PCBs. The language type of ASSEM is specified

because no specific language type exists for a REXX application.

Recommendation: For a REXX application, specify either assembler language or

COBOL.

IMS schedules transactions using a load module name that is the same as the PSB

name being used for MPP regions or the PGM name for other region types. You

must use this load module even though your application program consists of the

REXX EXEC. The IMS adapter for REXX provides a load module for you to use.

This module is called DFSREXX0. You can:

v Copy to a steplib data set with the same name as the application PSB name.

Use either a standard utility intended for copying load modules (such as

IEBCOPY or SAS), or the Linkage Editor.

v Use the Linkage Editor to define an alias for DFSREXX0 that is the same as the

application PGM name.

Example: Figure 55 shows is section from the PGM setup job that uses the binder

to perform the copy function to the name IVPREXX. The example uses the IVP.

 When IMS schedules an application transaction, the load module is loaded and

given control. The load module establishes the REXX EXEC name as the PGM

name with an argument of the Transaction Code (if applicable). The module calls a

**

* IVP APPLICATIONS DEFINITION FOR DB/DC, DCCTL *

**

 APPLCTN GPSB=IVPREXX,PGMTYPE=TP,LANG=ASSEM REXXTDLI SAMPLE

 TRANSACT CODE=IVPREXX,MODE=SNGL, X

 MSGTYPE=(SNGLSEG,NONRESPONSE,1)

//* REXXTDLI SAMPLE - GENERIC APPLICATION DRIVER

//*

//LINK EXEC PGM=IEWL,

// PARM=’XREF,LIST,LET,SIZE=(192K,64K)’

//SYSPRINT DD SYSOUT=*

//SDFSRESL DD DISP=SHR,DSN=IMS.SDFSRESL

//SYSLMOD DD DISP=SHR,DSN=IMS1.PGMLIB

//SYSUT1 DD UNIT=(SYSALLDA,SEP=(SYSLMOD,SYSLIN)),

// DISP=(,DELETE,DELETE),SPACE=(CYL,(1,1))

//SYSLIN DD *

 INCLUDE SDFSRESL(DFSREXX0)

 ENTRY DFSREXX0

 NAME IVPREXX(R)

/*

Figure 55. Using the Binder to Copy the Name IVPREXX

Addressing Other Environments

Chapter 15. IMS Adapter for REXX 337

|
|

user exit routine (DFSREXXU) if it is available. The user exit routine selects the

REXX EXEC (or a different EXEC to run) and can change the EXEC arguments, or

do any other desired processing.

Related Reading: For more information on the IMS adapter for REXX exit routine,

see IMS Version 9: Customization Guide.

Upon return from the user exit routine, the action requested by the routine is

performed. This action normally involves calling the REXX EXEC. The EXEC load

occurs using the SYSEXEC DD allocation. This allocation must point to one or

more partitioned data sets containing the IMS REXX application programs that will

be run as well as any functions written in REXX that are used by the programs.

Standard REXX output, such as SAY statements and tracing, is sent to SYSTSPRT.

This DD is required and can be set to SYSOUT=A.

When the stack is empty, the REXX PULL statement reads from the SYSTSIN DD.

In this way, you can conveniently provide batch input data to a BMP or batch

region. SYSTSIN is optional; however, you will receive an error message if you

issue a PULL from an empty stack and SYSTSIN is not allocated. Figure 56 shows

the JCL necessary for MPP region that runs the IVPREXX sample EXEC.

IMS Adapter for REXX Overview Diagram

Figure 57 on page 339 shows the IMS adapter for REXX environment at a high

level. This figure shows how the environment is structured under the IMS program

//IVP32M11 EXEC PROC=DFSMPR,TIME=(1440),

// AGN=IVP, AGN NAME

// NBA=6,

// OBA=5,

// SOUT=’*’, SYSOUT CLASS

// CL1=001, TRANSACTION CLASS 1

// CL2=000, TRANSACTION CLASS 2

// CL3=000, TRANSACTION CLASS 3

// CL4=000, TRANSACTION CLASS 4

// TLIM=10, MPR TERMINATION LIMIT

// SOD=, SPIN-OFF DUMP CLASS

// IMSID=IVP1, IMSID OF IMS CONTROL REGION

// PREINIT=DC, PROCLIB DFSINTXX MEMBER

// PWFI=Y PSEUDO=WFI

//*

//* ADDITIONAL DD STATEMENTS

//*

//DFSCTL DD DISP=SHR,

// DSN=IVPSYS32.PROCLIB(DFSSBPRM)

//DFSSTAT DD SYSOUT=*

//* REXX EXEC SOURCE LOCATION

//SYSEXEC DD DISP=SHR,

// DSN=IVPIVP32.INSTALIB

// DD DISP=SHR,

// DSN=IVPSYS32.SDFSEXEC

//* REXX INPUT LOCATION WHEN STACK IS EMPTY

//SYSTSIN DD *

/*

//* REXX OUTPUT LOCATION

//SYSTSPRT DD SYSOUT=*

//* COBOL OUTPUT LOCATION

//SYSOUT DD SYSOUT=*

Figure 56. JCL Code Used to Run the IVPREXX Sample Exec

REXX Transaction Programs

338 Application Programming: Database Manager

controller, and some of the paths of interaction between the components of the

environment.

IVPREXX Sample Application

Figure 56 on page 338 shows the JCL needed to use IVPREXX from an MPP

region. This EXEC can also be run from message-driven BMPs or IFP regions.

To use the IVPREXX driver sample program in a message-driven BMP or IFP

environment, specify IVPREXX as the program name and PSB name in the IMS

region program’s parameter list. Specifying IVPREXX loads the IVPREXX load

module, which is a copy of the DFSREXX0 front-end program. The IVPREXX

program loads and runs an EXEC named IVPREXX that uses message segments

sent to the transaction as arguments to derive the EXEC to call or the function to

perform.

Interactions with IVPREXX from an IMS terminal are shown in the following

examples:

v “IVPREXX Example 1”

v “IVPREXX Example 2” on page 340

v “IVPREXX Example 3” on page 340

v “IVPREXX Example 4” on page 340

IVPREXX Example 1

Entry:

 IVPREXX execname

or

 IVPREXX execname arguments

Response:

 EXEC execname ended with RC= x

Figure 57. IMS Adapter for REXX Logical Overview Diagram

REXX Transaction Programs

Chapter 15. IMS Adapter for REXX 339

IVPREXX Example 2

Entry:

 IVPREXX LEAVE

Response:

 Transaction IVPREXX leaving dependent region.

IVPREXX Example 3

Entry:

 IVPREXX HELLOHELLO

Response:

 One-to-eight character EXEC name must be specified.

IVPREXX Example 4

Entry:

 IVPREXX

or

 IVPREXX ?

Response:

 TRANCODE EXECNAME <Arguments> Run specified EXEC

 TRANCODE LEAVE Leave Dependent Region

 TRANCODE TRACE level 0=None,1=Some,2=More,3=Full

 TRANCODE ROLL Issue ROLL call

When an EXEC name is supplied, all of the segments it inserts to the I/O PCB are

returned before the completion message is returned.

REXX return codes (RC) in the range of 20000 to 20999 are usually syntax or other

REXX errors, and you should check the z/OS system console or region output for

more details.

Related Reading: For more information on REXX errors and messages, see IBM

TSO Extensions for MVS/REXX Reference.

Stopping an Infinite Loop: To stop an EXEC that is in an infinite loop, you can

enter either of the following IMS commands from the master terminal or system

console:

 /STO REGION p1 ABDUMP p2

 /STO REGION p1 CANCEL

In these examples, p1 is the region number and p2 is the TRANCODE that the

EXEC is running under. Use the /DISPLAY ACTIVE command to find the region

number. This technique is not specific to REXX EXECs and can be used on any

transaction that is caught in an infinite loop.

Related Reading: For more information about these commands and others to help

in this situation, see IMS Version 9: Command Reference.

REXX Transaction Programs

340 Application Programming: Database Manager

REXXTDLI Commands

This section contains REXX commands and describes how they apply to DL/I calls.

The terms command and call can be used interchangeably when explaining the

REXXTDLI environment. However, the term command is used exclusively when

explaining the REXXIMS environment. For consistency, call is used when explaining

DL/I, and command is used when explaining REXX.

To issue commands in the IMS adapter for REXX environment, you must first

address the correct environment. Two addressable environments are provided with

the IMS adapter for REXX. The environments are as follows:

REXXTDLI Used for standard DL/I calls, for example GU and ISRT. The

REXXTDLI interface environment is used for all standard DL/I calls

and cannot be used with REXX-specific commands. All commands

issued to this environment are considered to be standard DL/I calls

and are processed appropriately. A GU call for this environment

could look like this:

Address REXXTDLI "GU MYPCB DataSeg"

REXXIMS Used to access REXX-specific commands (for example, WTO and

MAPDEF) in the IMS adapter for REXX environment. The REXXIMS

interface environment is used for both DL/I calls and REXX-specific

commands. When a command is issued to this environment, IMS

checks to see if it is REXX-specific. If the command is not

REXX-specific, IMS checks to see if it is a standard DL/I call. The

command is processed appropriately.

 The REXX-specific commands, also called extended commands,

are REXX extensions added by the IMS adapter for the REXX

interface. A WTO call for this environment could look like this:

Address REXXIMS "WTO Message"

On entry to the scheduled EXEC, the default environment is z/OS. Consequently,

you must either use ADDRESS REXXTDLI or ADDRESS REXXIMS to issue the

IMS adapter for REXX calls.

Related Reading: For general information on addressing environments, see IBM

TSO Extensions for MVS/REXX Reference.

REXXTDLI Calls

�� dlicall

parm1

parm2

...
 ��

The format of a DL/I call varies depending on call type. The parameter formats for

supported DL/I calls can be found in Chapter 11, “DL/I Calls for Database

Management,” on page 217 and Chapter 12, “DL/I Calls for System Services,” on

page 245. The parameters for the calls are case-independent, separated by one or

more blanks, and are generally REXX variables. See “Parameter Handling” on page

342 for detailed descriptions.

Return Codes

If you use the AIBTDLI interface, the REXX RC variable is set to the return code

from the AIB on the DL/I call.

REXXTDLI Commands

Chapter 15. IMS Adapter for REXX 341

|
|
|
|
|

If you do not use the AIBTDLI interface, a simulated return code is returned. This

simulated return code is set to zero if the PCB status code was GA, GK, or bb��. If

the status code had any other value, the simulated return code is X'900' or decimal

2304.

Parameter Handling

The IMS adapter for REXX performs some parameter setup for application

programs in a REXX environment. This setup occurs when the application program

uses variables or maps as the parameters. When the application uses storage

tokens, REXX does not perform this setup. The application program must provide

the token and parse the results just as a non-REXX application would. For a list of

parameter types and definitions, see Table 76 on page 343.

The REXXTDLI interface performs the following setup:

v The I/O area retrieval for the I/O PCB is parsed. The LL field is removed, and the

ZZ field is removed and made available by means of the REXXIMS(’ZZ’) function

call. The rest of the data is placed in the specified variable or map. Use the

REXX LENGTH() function to find the length of the returned data.

v The I/O area building for the TP PCB or alternate PCB is done as follows:

– The appropriate LL field.

– The ZZ field from a preceding SET ZZ command or X'0000' if the command

was not used.

– The data specified in the passed variable or map.

v The I/O area processing for the SPA is similar to the first two items, except that

the ZZ field is 4 bytes long.

v The feedback area on the CHNG and SETO calls is parsed. The LLZZLL fields are

removed, and the remaining data is returned with the appropriate length.

v The parameters that have the LLZZ as part of their format receive special

treatment. These parameters occur on the AUTH, CHNG, INIT, ROLS, SETO, and SETS

calls. The LLZZ fields are removed when IMS returns data to you and added (ZZ

is always X'0000') when IMS retrieves data from you. In effect, your application

ignores the LLZZ field and works only with the data following it.

v The numeric parameters on XRST and symbolic CHKP are converted between

decimal and a 32-bit number (fullword) as required.

REXXTDLI Commands

342 Application Programming: Database Manager

Table 76. IMS Adapter for REXX Parameter Types and Definitions

Type1 Parameter Definition

PCB PCB Identifier specified as a variable containing one

of the following:

v PCB name as defined in the PSB generation on

the PCBNAME= parameter. See IMS Version 9:

Utilities Reference: System for more information

on defining PCB names. The name can be from 1

to 8 characters long and does not have to be

padded with blanks. If this name is given, the

AIBTDLI interface is used, and the return codes

and reason codes are acquired from that

interface.

v An AIB block formatted to DFSAIB specifications.

This variable is returned with an updated AIB.

v A # followed by PCB offset number (#1=first

PCB). Example settings are:

– IOPCB=:"#1"

– ALTPCB=:"#2"

– DBPCB=:"#3"

The IOAREA length returned by a database DL/I

call defaults to 4096 if this notation is used. The

correct length is available only when the AIBTDLI

interface is used.

In Input variable. It can be specified as a constant,

variable, *mapname2, or !token3.

SSA Input variable with an SSA (segment search

argument). It can be specified as a constant,

variable, *mapname2, or !token3.

Out Output variable to store a result after a successful

command. It can be specified as a variable,

*mapname2, or !token3.

In/Out Variable that contains input on entry and contains a

result after a successful command. It can be

specified as a variable, *mapname2, or !token3.

Const Input constant. This command argument must be the

actual value, not a variable containing the value.

Note:

1. The parameter types listed in Table 76 correspond to the types shown in Table 39 on

page 218 and Table 41 on page 246, as well as to those shown in Table 77 on page 345.

All parameters specified on DL/I calls are case independent except for the values

associated with the STEM portion of the compound variable (REXX terminology for an

array-like structure). A period (.) can be used in place of any parameter and is read as a

NULL (zero length string) and written as a void (place holder). Using a period in place of

a parameter is useful when you want to skip optional parameters.

2. For more information on *mapname, see “MAPGET” on page 349 and “MAPPUT” on

page 350.

3. For more information on !token, see “STORAGE” on page 352.

Example DL/I Calls

The following example shows an ISRT call issued against the I/O PCB. It writes the

message “Hello World”.

REXXTDLI Commands

Chapter 15. IMS Adapter for REXX 343

IO = "IOPCB" /* IMS Name for I/O PCB */

OutMsg="Hello World"

Address REXXTDLI "ISRT IO OutMsg"

If RC¬=0 Then Exit 12

In this example, IO is a variable that contains the PCB name, which is the constant

“IOPCB” for the I/O PCB. If a non-zero return code (RC) is received, the EXEC

ends (Exit) with a return code of 12. You can do other processing here.

The next example gets a part from the IMS sample parts database. The part

number is "250239". The actual part keys have a "02" prefix and the key length

defined in the DBD is 17 bytes.

The following example puts the segment into the variable called Part_Segment.

PartNum = "250239"

DB = "DBPCB01"

SSA = ’PARTROOT(PARTKEY = ’||Left(’02’||PartNum,17)||’)’

Address REXXTDLI "GU DB Part_Segment SSA"

Notes:

v In a real EXEC, you would probably find the value for PartNum from an argument

and would have to check the return code after the call.

v The LEFT function used here is a built-in REXX function. These built-in functions

are available to any IMS REXX EXEC. For more information on functions, see

IBM TSO Extensions for MVS/REXX Reference.

v The single quote (') and double quote (") are interchangeable in REXX, as long

as they are matched.

The IMS.SDFSISRC library includes the DFSSUT04 EXEC. You can use this EXEC

to process any unexpected return codes or status codes. To acquire the status code

from the last DL/I call issued, you must execute the IMSQUERY('STATUS') function.

It returns the two character status code.

If you use an EXEC that runs in both IMS and non-IMS environments, check to see

if the IMS environment is available. You can check to see if the IMS environment is

available in two ways:

v Use the z/OS SUBCOM command and specify either the REXXTDLI or

REXXIMS environments. The code looks like this:

 Address MVS ’SUBCOM REXXTDLI’

 If RC=0 Then Say "IMS Environment is Available."

 Else Say "Sorry, no IMS Environment here."

v Use the PARSE SOURCE instruction of REXX to examine the address space

name (the 8th word). If it is running in an IMS environment, the token will have

the value IMS. The code looks like this:

 Parse Source Token .

 If Token=’IMS’ Then Say "IMS Environment is Available."

 Else Say "Sorry, no IMS Environment here."

Environment Determination

REXXIMS Extended Commands

The IMS adapter for REXX gives access to the standard DL/I calls and it supplies a

set of extended commands for the REXX environment. These commands are listed

in Table 77 and are available when you ADDRESS REXXIMS. DL/I calls are also

available when you address the REXXIMS environment.

REXXTDLI Commands

344 Application Programming: Database Manager

The following topics include additional information about REXX commands:

v “DLIINFO”

v “IMSRXTRC” on page 346

v “MAPDEF” on page 347

v “MAPGET” on page 349

v “MAPPUT” on page 350

v “SET” on page 351

v “SRRBACK and SRRCMIT” on page 352

v “STORAGE” on page 352

v “WTO, WTP, and WTL” on page 354

v “WTOR” on page 354

v “IMSQUERY Extended Functions” on page 355

 Table 77. REXXIMS Extended Commands

Command Parameter Types

1

DLIINFO Out [PCB]

IMSRXTRC In

MAPDEF Const In [Const]

MAPGET Const In

MAPPUT Const Out

SET Const In

SRRBACK Out

SRRCMIT Out

STORAGE Const Const [In [Const]]

WTO In

WTP In

WTL In

WTOR In Out

Note:

1. The parameter types listed correspond to the types shown in Table 76 on page 343.

All parameters specified on DL/I calls are case-independent except for the values

associated with the STEM portion of the compound variable (REXX terminology for an

array-like structure). A period (.) can be used in place of any parameter and has the

effect of a NULL (zero length string) if read and a void (place holder) if written. Use a

period in place of a parameter to skip optional parameters.

DLIINFO

The DLIINFO call requests information from the last DL/I call or on a specific PCB.

The following topics contain additional information:

v “Format” on page 346

v “Usage” on page 346

v “Example” on page 346

v

REXXIMS Extended Commands

Chapter 15. IMS Adapter for REXX 345

Format

�� DLIINFO infoout

pcbid
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

DLIINFO X X X X X

Usage

The infoout variable name is a REXX variable that is assigned the DL/I information.

The pcbid variable name, when specified as described in “Parameter Handling” on

page 342, returns the addresses associated with the specified PCB and its last

status code.

The format of the returned information is as follows:

Word Description

1 Last DL/I call ('.' if N/A)

2 Last DL/I PCB name (name or #number, '.' if N/A)

3 Last DL/I AIB address in hexadecimal (00000000 if N/A)

4 Last DL/I PCB address in hexadecimal (00000000 if N/A)

5 Last DL/I return code (0 if N/A)

6 Last DL/I reason code (0 if N/A)

7 Last DL/I call status ('.' if blank or N/A)

Example

Address REXXIMS ’DLIINFO MyInfo’ /* Get Info */

Parse Var MyInfo DLI_Cmd DLI_PCB DLI_AIB_Addr DLI_PCB_Addr,

 DLI_RC DLI_Reason DLI_Status .

Always code a period after the status code (seventh word returned) when parsing to

allow for transparent additions in the future if needed. Words 3, 4, and 7 can be

used when a pcbid is specified on the DLIINFO call.

IMSRXTRC

The IMSRXTRC command is used primarily for debugging. It controls the tracing

action taken (that is, how much trace output through SYSTSPRT is sent to the user)

while running a REXX program.

v “Format”

v “Usage” on page 347

v “Example” on page 347

Format

�� IMSRXTRC level ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

IMSRXTRC X X X X X

REXXIMS Extended Commands

346 Application Programming: Database Manager

Usage

The level variable name can be a REXX variable or a digit, and valid values are

from 0 to 9. The initial value at EXEC start-up is 1 unless it is overridden by the

user Exit. Traced output is sent to the DDNAME SYSTSPRT. See IMS Version 9:

Customization Guide for more information on the IMS adapter for REXX exit

routine.

The IMSRXTRC command can be used in conjunction with or as a replacement for

normal REXX tracing (TRACE).

Level Description

0 Trace errors only.

1 The previous level and trace DL/I calls, their return codes, and environment

status (useful for flow analysis).

2 All the previous levels and variable sets.

3 All the previous levels and variable fetches (useful when diagnosing

problems).

4-7 All previous levels.

8 All previous levels and parameter list to/from standard IMS language

interface. See message DFS3179 in IMS Version 9: Messages and Codes,

Volume 1.

9 All previous levels.

Example

Address REXXIMS ’IMSRXTRC 3’

IMSRXTRC is independent of the REXX TRACE instruction.

MAPDEF

The MAPDEF command makes a request to define a data mapping.

Format

�� MAPDEF mapname A

REPLACE
 ��

A:

�

 :

variable

C

length

V

*

startpos

B

length

P

.digit

Z

.

C

length

*

:

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPDEF X X X X X

REXXIMS Extended Commands

Chapter 15. IMS Adapter for REXX 347

Usage

Data mapping is an enhancement added to the REXXIMS interface. Because REXX

does not offer variable structures, parsing the fields from your database segments

or MFS output maps can be time consuming, especially when data conversion is

necessary. The MAPDEF, MAPGET, and MAPPUT commands allow simple extraction of

most formatted data.

v mapname is a 1- to 16-character case-independent name.

v definition (A) is a variable containing the map definition.

v REPLACE, if specified, indicates that a replacement of an existing map name is

allowed. If not specified and the map name is already defined, an error occurs

and message DFS3171E is sent to the SYSTPRT.

The map definition has a format similar to data declarations in other languages, with

simplifications for REXX. In this definition, you must declare all variables that you

want to be parsed with their appropriate data types. The formiat is shown in A in

the syntax diagram.

Variable name: The variable name variable is a REXX variable used to contain

the parsed information. Variable names are case-independent. If you use a STEM

(REXX terminology for an array-like structure) variable, it is resolved at the time of

use (at the explicit or implicit MAPGET or MAPPUT call time), and this can be very

powerful. If you use an index type variable as the STEM portion of a compound

variable, you can load many records into an array simply by changing the index

variable. Map names or tokens cannot be substituted for variable names inside a

map definition.

Repositioning the internal cursor: A period (.) can be used as a variable place

holder for repositioning the internal cursor position. In this case, the data type must

be C, and the length can be negative, positive, or zero. Use positive values to skip

over fields of no interest. Use negative lengths to redefine fields in the middle of a

map without using absolute positioning.

The data type values are:

C Character

V Variable

B Binary (numeric)

Z Zoned Decimal (numeric)

P Packed Decimal (numeric)

All numeric data types can have a period and a number next to them. The number

indicates the number of digits to the right of a decimal point when converting the

number.

Length value: The length value can be a number or an asterisk (*), which

indicates that the rest of the buffer will be used. You can only specify the length

value for data types C and V. Data type V maps a 2-byte length field preceding the

data string, such that a when the declared length is 2, it takes 4 bytes.

Valid lengths for data types are:

C 1 to 32767 bytes or *

V 1 to 32765 bytes or *

REXXIMS Extended Commands

348 Application Programming: Database Manager

B 1 to 4 bytes

Z 1 to 12 bytes

P 1 to 6 bytes

If a value other than asterisk (*) is given, the cursor position is moved by that value.

The startpos value resets the parsing position to a fixed location. If startpos is

omitted, the column to the right of the previous map variable definition (cursor

position) is used. If it is the first variable definition, column 1 is used.

Note: A length of asterisk (*) does not move the cursor position, so a variable

declared after one with a length of asterisk (*) without specifying a start

column overlays the same definition.

Example

This example defines a map named DBMAP, which is used implicitly on a GU call by

placing an asterisk (*) in front of the map name.

DBMapDef = ’RECORD C * :’, /* Pick up entire record */

 ’NAME C 10 :’, /* Cols 1-10 hold the name */

 ’PRICE Z.2 6 :’, /* Cols 11-16 hold the price */

 ’CODE C 2 :’, /* Cols 11-16 hold the code */

 ’. C 25 :’, /* Skip 25 columns */

 ’CATEGORY B 1’ /* Col 42 holds category */

Address REXXIMS ’MAPDEF DBMAP DBMapDef’

...
Address REXXTDLI ’GU DBPCB *DBMAP’ /* Read and decode a segment */

If RC¬=0 Then Signal BadCall /* Check for failure */

Say CODE /* Can now access any Map Variable*/

The entire segment retrieved on the GU call is placed in RECORD. The first 10

characters are placed in NAME, and the next 6 are converted from zoned decimal

to EBCDIC with two digits to the right of the decimal place and placed in PRICE.

The next 2 characters are placed in CODE, the next 25 are skipped, and the next

character is converted from binary to EBCDIC and placed in CATEGORY. The 25

characters that are skipped are present in the RECORD variable.

MAPGET

The MAPGET command is a request to parse or convert a buffer into a specified data

mapping previously defined with the MAPDEF command.

Format

�� MAPGET mapname buffer ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPGET X X X X X

Usage

The mapname variable name specifies the data mapping to use. It is a 1- to

16-character case-independent name. The buffer variable name is the REXX

variable containing the data to parse.

REXXIMS Extended Commands

Chapter 15. IMS Adapter for REXX 349

Map names can also be specified in the REXXTDLI calls in place of variable names

to be set or written. This step is called an implicit MAPGET. Thus, the explicit (or

variable dependent) MAPGET call can be avoided. To indicate that a Map name is

being passed in place of a variable in the DL/I call, precede the name with an

asterisk (*), for example, ’GU IOPCB *INMAP’.

Examples

This example uses explicit support.

Address REXXTDLI ’GU DBPCB SegVar’

If RC=0 Then Signal BadCall /* Check for failure */

Address REXXIMS ’MAPGET DBMAP SegVar’/* Decode Segment */

Say VAR_CODE /*Can now access any Map Variable */

This example uses implicit support.

Address REXXTDLI ’GU DBPCB *DBMAP’ /* Read and decode segment if read*/

If RC=0 Then Signal BadCall /* Check for failure */

Say VAR_CODE /* Can now access any Map Variable*/

If an error occurs during a MAPGET, message DFS3172I is issued. An error could

occur when a Map is defined that is larger than the input segment to be decoded or

during a data conversion error from packed or zoned decimal format. The program

continues, and an explicit MAPGET receives a return code 4. However, an implicit

MAPGET (on a REXXTDLI call, for example) does not have its return code affected.

Either way, the failing variable’s value is dropped by REXX.

MAPPUT

This MAPPUT command makes a request to pack or concatenate variables from a

specified Data Mapping, defined by the MAPDEF command, into a single variable.

Format

�� MAPPUT mapname buffer ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPPUT X X X X X

Usage

The mapname variable name specifies the data mapping to use, a 1- to

16-character case-independent name. The buffer variable name is the REXX

variable that will contain the resulting value.

Map names can also be specified in the REXXTDLI call in place of variable names

to be fetched or read. This step is called an implicit MAPPUT and lets you avoid the

explicit MAPPUT call. To indicate that a Map name is being passed in the DL/I call,

precede the name with an asterisk (*), for example, ’ISRT IOPCB *OUTMAP’.

Note: If the data mapping is only partial and some fields in the record are not

mapped to REXX variables, then the first field in the mapping should be a

character type of length asterisk (*), as shown in the “Example” on page 349.

This step is the only way to ensure that non-mapped (skipped) fields are not

lost between the MAPGET and MAPPUT calls, whether they be explicit or implicit.

Examples

This example uses explicit support.

REXXIMS Extended Commands

350 Application Programming: Database Manager

Address REXXTDLI

’GHU DBPCB SegVar SSA1’ /* Read segment */

If RC¬=0 Then Signal BadCall /* Check for failure */

Address REXXIMS ’MAPGET DBMAP SegVar’ /* Decode Segment */

DBM_Total = DBM_Total + Deposit_Amount /* Adjust Mapped Variable */

Address REXXIMS ’MAPPUT DBMAP SegVar’ /* Encode Segment */

’REPL DBPCB SegVar’ /* Update Database */

If RC¬=0 Then Signal BadCall /* Check for failure */

This example uses implicit support.

Address REXXTDLI

’GHU DBPCB *DBMAP SSA1’ /* Read and decode segment if read */

If RC¬=0 Then Signal BadCall /* Check for failure */

DBM_Total = DBM_Total + Deposit_Amount /* Adjust Mapped Variable */

’REPL DBPCB *DBMAP’ /* Update Database */

If RC¬=0 Then Signal BadCall /* Check for failure */

If an error occurs during a MAPPUT, such as a Map field defined larger than the

variable’s contents, then the field is truncated. If the variable’s contents are shorter

than the field, the variable is padded:

Character (C) Padded on right with blanks

Character (V) Padded on right with zeros

Numeric (B,Z,P) Padded on the left with zeros

If a MAP variable does not exist when a MAPPUT is processed, the variable and its

position are skipped. All undefined and skipped fields default to binary zeros. A null

parameter is parsed normally. Conversion of non-numeric or null fields to numeric

field results in a value of 0 being used and no error.

SET

The SET command resets AIB subfunction values and ZZ values before you issue a

DL/I call.

Format

�� SET SUBFUNC variable

ZZ

variable
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SET X X X X X

Usage

The SET SUBFUNC command sets the AIB subfunction used on the next DL/I call.

This value is used only if the next REXXTDLI call passes a PCB name. If the call

does pass a PCB name, the IMS adapter for REXX places the subfunction name (1

to 8 characters or blank) in the AIB before the call is issued. This value initially

defaults to blanks and is reset to blanks on completion of any REXXTDLI DL/I call.

The SET ZZ command is used to set the ZZ value used on a subsequent DL/I call.

This command is most commonly used in IMS conversational transactions and

terminal dependent applications to set the ZZ field to something other than the

default of binary zeros. Use the SET command before an ISRT call that requires

other than the default ZZ value. For more explanation on ZZ processing, see

“Parameter Handling” on page 342.

REXXIMS Extended Commands

Chapter 15. IMS Adapter for REXX 351

Examples

This example shows the SET SUBFUNC command used with the INQY call to get

environment information.

IO="IOPCB"

Func = "ENVIRON" /* Sub-Function Value */

Address REXXIMS "SET SUBFUNC Func" /* Set the value */

Address REXXTDLI "INQY IO EnviData" /* Make the DL/I Call */

IMS_Identifier = Substr(EnviData,1,8) /* Get IMS System Name*/

This example shows the SET ZZ command used with a conversational transaction

for SPA processing.

Address REXXTDLI ’GU IOPCB SPA’ /* Get first Segment */

Hold_ZZ = IMSQUERY(’ZZ’) /* Get ZZ Field (4 bytes) */

...
Address REXXIMS ’SET ZZ Hold_ZZ’ /* Set ZZ for SPA ISRT */

Address REXXTDLI ’ISRT IOPCB SPA’ /* ISRT the SPA */

This example shows the SET ZZ command used for setting 3270 Device

Characteristics Flags.

Bell_ZZ = ’0040’X /* ZZ to Ring Bell on Term */

Address REXXIMS ’SET ZZ Bell_ZZ’ /* Set ZZ for SPA ISRT */

Address REXXTDLI ’ISRT IOPCB Msg’ /* ISRT the Message */

SRRBACK and SRRCMIT

The Common Programming Interface Resource Recovery (CPI-RR) commands

allow an interface to use the SAA® resource recovery interface facilities for back-out

and commit processing.

Format

�� SRRBACK return_code

SRRCMIT

return_code
 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SRRBACK,

SRRCMIT

X X

Usage

The return code from the SRR command is returned and placed in the return_code

variable name as well as the REXX variable RC.

For more information on SRRBACK and SRRCMIT, see IMS Version 9: Administration

Guide: Transaction Manager and System Application Architecture Common

Programming Interface: Resource Recovery Reference.

STORAGE

The STORAGE command allows the acquisition of system storage that can be used in

place of variables for parameters to REXXTDLI and REXXIMS calls.

Format

REXXIMS Extended Commands

352 Application Programming: Database Manager

�� STORAGE OBTAIN !token length

KEEP

BELOW

RELEASE

!token

 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

STORAGE X X X X X

Usage

Although REXX allows variables to start with characters (!) and (#), these

characters have special meanings on some commands. When using the REXXTDLI

interface, you must not use these characters as the starting characters of variables.

The !token variable name identifies the storage, and it consists of an exclamation

mark followed by a 1- to 16-character case-independent token name. The length

variable name is a number or variable containing size in decimal to OBTAIN in the

range 4 to 16777216 bytes (16 MB). The storage class has two possible override

values, BELOW and KEEP, of which only one can be specified for any particular

token. The BELOW function acquires the private storage below the 16 MB line. The

KEEP function marks the token to be kept after this EXEC is terminated. The

default action gets the storage in any location and frees the token when the EXEC

is terminated.

Use the STORAGE command to get storage to use on DL/I calls when the I/O area

must remain in a fixed location (for example, Spool API) or when it is not desirable

to have the LLZZ processing. For more information on LLZZ processing, see

“Parameter Handling” on page 342. Once a token is allocated, you can use it in

REXXTDLI DL/I calls or on the STORAGE RELEASE command.

When using STORAGE:

v When used on DL/I calls, none of the setup for LLZZ fields takes place. You must

fill the token in and parse the results from it just as required by a non-REXX

application.

v You cannot specify both KEEP and BELOW on a single STORAGE command.

v The RELEASE function is only necessary for tokens marked KEEP. All tokens not

marked KEEP and not explicitly released by the time the EXEC ends are

released automatically by the IMS adapter for REXX.

v When you use OBTAIN, the entire storage block is initialized to 0.

v The starting address of the storage received is always on the boundary of a

double word.

v You cannot re-obtain a token until RELEASE is used or the EXEC that obtained

it, non-KEEP, terminates. If you try, a return code of -9 is given and the error

message DFS3169 is issued.

v When KEEP is specified for the storage token, it can be accessed again when

this EXEC or another EXEC knowing the token’s name is started in the same

IMS region.

v Tokens marked KEEP are not retained when an ABEND occurs or some other

incident occurs that causes region storage to be cleared. It is simple to check if

the block exists on entry with the IMSQUERY(!token) function. For more

information, see “IMSQUERY Extended Functions” on page 355.

REXXIMS Extended Commands

Chapter 15. IMS Adapter for REXX 353

Example

This example shows how to use the STORAGE command with Spool API.

/* Get 4K Buffer below the line for Spool API Usage */

Address REXXIMS ’STORAGE OBTAIN !MYTOKEN 4096 BELOW’

/* Get Address and length (if curious) */

Parse Value IMSQUERY(’!MYTOKEN’) With My_Token_Addr My_Token_Len.

Address REXXIMS ’SETO ALTPCB !MYTOKEN SETOPARMS SETOFB’

...
Address REXXIMS ’STORAGE RELEASE !MYTOKEN’

WTO, WTP, and WTL

The WTO command is used to write a message to the operator. The WTP command is

used to write a message to the program (WTO ROUTCDE=11). The WTL command

is used to write a message to the console log.

Format

�� WTO message

WTP

message

WTL

message

 ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

WTO, WTP,

WTL

X X X X X

Usage

The message variable name is a REXX variable containing the text that is stored

displayed in the appropriate place.

Example

This example shows how to write a simple message stored the REXX variable

MSG.

Msg = ’Sample output message.’ /* Build Message */

Address REXXIMS ’WTO Msg’ /* Tell Operator */

Address REXXIMS ’WTP Msg’ /* Tell Programmer */

Address REXXIMS ’WTL Msg’ /* Log It */

WTOR

The WTOR command requests input or response from the z/OS system operator.

Format

�� WTOR message response ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

WTOR X X X X X

Usage

The message variable name is a REXX variable containing the text that will be

displayed on the z/OS console. The operator's response is placed in the REXX

variable signified by the response variable name.

REXXIMS Extended Commands

354 Application Programming: Database Manager

Attention: This command hangs the IMS region in which it is running until the

operator responds.

Example

This example prompts the operator to enter ROLL or CONT on the z/OS master or

alternate console. Once the WTOR is answered, the response is placed in the REXX

variable name response, and the EXEC will continue and process the IF statement

appropriately.

Msg = ’Should I ROLL or Continue. Reply "ROLL" or "CONT"’

Address REXXIMS ’WTOR Msg Resp’ /* Ask Operator */

If Resp = ’ROLL’ Then /* Tell Programmer */

 Address REXXTDLI ’ROLL’ /* Roll Out of this */

IMSQUERY Extended Functions

The IMSQUERY function is available to query certain IMS information either on the

environment or on the prior DL/I call.

Format

�� IMSQUERY (FEEDBACK

IMSRXTRC

REASON

SEGLEVEL

SEGNAME

STATUS

TRANCODE

USERID

ZZ

!token

) ��

 Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

IMSQUERY X X X X X

Usage

The format of the function call is: IMSQUERY(’Argument’) where Argument is one of

the following values:

Argument Description of Data Returned

FEEDBACK FEEDBACK area from current PCB.

IMSRXTRC Current IMSRXTRC trace level #.

REASON Reason code from last call (from AIB if used on last

REXXTDLI type call).

SEGLEVEL Segment level from current PCB (Last REXXTDLI

call must be against a DB PCB, or null is returned).

SEGNAME Segment name from current PCB (Last REXXTDLI

call must be against a DB PCB, or null is returned).

STATUS IMS status code from last executed REXXTDLI call

(DL/I call). This argument is the two character

status code from the PCB.

TRANCODE Current transaction code being processed, if

available.

REXXIMS Extended Commands

Chapter 15. IMS Adapter for REXX 355

USERID Input terminal’s user ID, if available. If running in a

non-message-driven region, the value is dependent

on the specification of the BMPUSID= keyword in

the DFSDCxxx PROCLIB member:

v If BMPUSID=USERID is specified, the value from

the USER= keyword on the JOB statement is

used.

v If USER= is not specified on the JOB statement,

the program’s PSB name is used.

v If BMPUSID=PSBNAME is specified, or if

BMPUSID= is not specified at all, the program’s

PSB name is used.

ZZ ZZ (of LLZZ) from last REXXTDLI command. This

argument can be used to save the ZZ value after

you issue a GU call to the I/O PCB when the

transaction is conversational.

!token Address (in hexadecimal) and length of specified

token (in decimal), separated by a blank.

This value can be placed in a variable or resolved from an expression. In these

cases, the quotation marks should be omitted as shown below:

Token_Name="!MY_TOKEN"

AddrInfo=IMSQUERY(Token_Name)

 /* or */

AddrInfo=IMSQUERY("!MY_TOKEN")

Although the function argument is case-independent, no blanks are allowed within

the function argument. You can use the REXX STRIP function on the argument, if

necessary. IMSQUERY is the preferred syntax, however REXXIMS is supported

and can be used, as well.

Example

If REXXIMS(’STATUS’)=’GB’ Then Signal End_Of_DB ...
Hold_ZZ = IMSQUERY(’ZZ’) /* Get current ZZ field*/ ...
Parse Value IMSQUERY(’!MYTOKEN’) With My_Token_Addr My_Token_Len .

Related Reading: For information on the IMS adapter for REXX exit routine, see

IMS Version 9: Customization Guide.

Sample Execs Using REXXTDLI

This chapter shows samples of REXX execs that use REXXTDLI to access IMS

services.

The example sets are designed to highlight various features of writing IMS

applications in REXX. The samples are simplified and might not reflect actual usage

(for example, they do not use databases).

The PART exec database access example is a set of three execs that access the

PART database, which is built by the IMS installation verification program (IVP). The

first two execs in this example, PARTNUM and PARTNAME, are extensions of the

PART transaction that runs the program DFSSAM02, which is supplied with IMS as

REXXIMS Extended Commands

356 Application Programming: Database Manager

|
|

part of IVP. The third exec is the DFSSAM01 exec supplied with IMS and is an

example of the use of EXECIO within an exec.

SAY Exec: For Expression Evaluation

Figure 58 is a listing of the SAY exec. SAY evaluates an expression supplied as an

argument and displays the results. The REXX command INTERPRET is used to

evaluate the supplied expression and assign it to a variable. Then that variable is

used in a formatted reply message.

 This exec shows an example of developing applications with IMS Adapter for

REXX. It also shows the advantages of REXX, such as dynamic interpretation,

which is the ability to evaluate a mathematical expression at run-time.

A PDF EDIT session is shown in Figure 59. This figure shows how you can enter a

new exec to be executed under IMS.

 To execute the SAY exec, use IVPREXX and supply an expression such as:

IVPREXX SAY 5*5+7

This expression produces the output shown in Figure 60.

/* EXEC TO DO CALCULATIONS */

Address REXXTDLI

Arg Args

If Args=’’ Then

 Msg=’SUPPLY EXPRESSION AFTER EXEC NAME.’

Else Do

 Interpret ’X=’Args /* Evaluate Expression */

 Msg=’EXPRESSION:’ Args ’=’ X

End

’ISRT IOPCB MSG’

Exit RC

Figure 58. Exec To Do Calculations

 EDIT ---- USER.PRIVATE.PROCLIB(SAY) - 01.03 ------------------ COLUMNS 001 072

 COMMAND ===> SCROLL ===> PAGE

 ****** ***************************** TOP OF DATA ******************************

 000001 /* EXEC TO DO CALCULATIONS */

 000002 Address REXXTDLI

 000003 Arg Args

 000004 If Args=’’ Then

 000005 Msg=’SUPPLY EXPRESSION AFTER EXEC NAME.’

 000006 Else Do

 000007 Interpret ’X=’Args /* Evaluate Expression */

 000008 Msg=’EXPRESSION:’ Args ’=’ X

 000009 End

 000010

 000011 ’ISRT IOPCB MSG’

 000012 Exit RC

 ****** **************************** BOTTOM OF DATA ****************************

Figure 59. PDF EDIT Session on the SAY Exec

 EXPRESSION: 5*5+7 = 32

 EXEC SAY ended with RC= 0

Figure 60. Example Output from the SAY Exec

Sample Execs Using REXXTDLI

Chapter 15. IMS Adapter for REXX 357

PCBINFO Exec: Display Available PCBs in Current PSB

The PCB exec maps the PCBs available to the exec, which are the PCBs for the

executing PSB. The mapping consists of displaying the type of PCB (IO, TP, or DB),

the LTERM or DBD name that is associated, and other useful information. Mapping

displays this information by using the PCB function described in “DLIINFO” on page

345. Example output screens are shown in Figure 61 and Figure 62. The listing is

shown in Figure 63 on page 359. PCB mappings are created by placing

DFSREXX0 in an early concatenation library and renaming it to an existing

application with a PSB/DBD generation.

 IMS PCB System Information Exec: PCBINFO

 System Date: 09/26/92 Time: 15:52:15

 PCB # 1: Type=IO, LTERM=T3270LC Status= UserID= OutDesc=DFSMO2

 Date=91269 Time=1552155

 PCB # 2: Type=TP, LTERM=* NONE * Status=AD

 PCB # 3: Type=TP, LTERM=* NONE * Status=

 PCB # 4: Type=TP, LTERM=CTRL Status=

 PCB # 5: Type=TP, LTERM=T3275 Status=

 EXEC PCBINFO ended with RC= 0

Figure 61. Example Output of PCBINFO Exec on a PSB without Database PCBs.

 IMS PCB System Information Exec: PCBINFO

 System Date: 09/26/92 Time: 15:53:34

 PCB # 1: Type=IO, LTERM=T3270LC Status= UserID= OutDesc=DFSMO2

 Date=89320 Time=1553243

 PCB # 2: Type=DB, DBD =DI21PART Status= Level=00 Opt=G

 EXEC PCBINFO ended with RC= 0

Figure 62. Example Output of PCBINFO Exec on a PSB with a Database PCB.

PCBINFO Exec

358 Application Programming: Database Manager

/* REXX EXEC TO SHOW SYSTEM LEVEL INFO */

Address REXXTDLI

Arg Dest .

WTO=(Dest=’WTO’)

Call SayIt ’IMS PCB System Information Exec: PCBINFO’

Call SayIt ’System Date:’ Date(’U’) ’ Time:’ Time()

Call Sayit ’ ’

/* A DFS3162 message is given when this exec is run because it does */

/* not know how many PCBs are in the list and it runs until it gets */

/* an error return code. Note this does not show PCBs that are */

/* available to the PSB by name only, in other words, not in the PCB list. */

Msg=’PCBINFO: Error message normal on DLIINFO.’

’WTP MSG’

Do i=1 by 1 until Result=’LAST’

 Call SayPCB i

End

Exit 0

SayPCB: Procedure Expose WTO

 Arg PCB

 ’DLIINFO DLIINFO #’PCB /* Get PCB Address */

 If rc<0 Then Return ’LAST’ /* Invalid PCB Number */

 Parse Var DLIInfo . . AIBAddr PCBAddr .

 PCBINFO=Storage(PCBAddr,255) /* Read PCB */

 DCPCB=(Substr(PCBInfo,13,1)=’00’x) /* Date Field, must be DC PCB */

 If DCPCB then Do

 Parse Value PCBInfo with,

 LTERM 9 . 11 StatCode 13 CurrDate 17 CurrTime 21,

 InputSeq 25 OutDesc 33 UserID 41

 If LTERM=’’ then LTERM=’* NONE *’

 CurrDate=Substr(c2x(CurrDate),3,5)

 CurrTime=Substr(c2x(CurrTime),1,7)

 If CurrDate¬=’000000’ then Do

 Call SayIt ’PCB #’Right(PCB,2)’: Type=IO, LTERM=’LTERM,

 ’Status=’StatCode ’UserID=’UserID ’OutDesc=’OutDesc

 Call SayIt ’ Date=’CurrDate ’Time=’CurrTime

 End

 Else

 Call SayIt ’PCB #’Right(PCB,2)’: Type=TP, LTERM=’LTERM,

 ’Status=’StatCode

 End

 Else Do

 Parse Value PCBInfo with,

 DBDName 9 SEGLev 11 StatCode 13 ProcOpt 17 . 21 Segname . 29,

 KeyLen 33 NumSens 37

 KeyLen = c2d(KeyLen)

 NumSens= c2d(NumSens)

 Call SayIt ’PCB #’Right(PCB,2)’: Type=DB, DBD =’DBDName,

 ’Status=’StatCode ’Level=’SegLev ’Opt=’ProcOpt

 End

Return ’

SayIt: Procedure Expose WTO

 Parse Arg Msg

 If WTO Then

 ’WTO MSG’

 Else

 ’ISRT IOPCB MSG’

Return

Figure 63. PCBINFO Exec Listing

PCBINFO Exec

Chapter 15. IMS Adapter for REXX 359

PART Execs: Database Access Examples

This set of execs accesses the PART database shipped with IMS. These execs

demonstrate fixed-record database reading, SSAs, and many REXX functions. The

PART database execs (PARTNUM, PARTNAME, and DFSSAM01) are described in

this section.

The PARTNUM exec is used to show part numbers that begin with a number equal

to or greater than the number you specify. An example output screen is shown in

Figure 64.

To list part numbers beginning with the number “300” or greater, enter the

command:

PARTNUM 300

All part numbers that begin with a 300 or larger numbers are listed. The listing is

shown in Figure 66 on page 361.

 PARTNAME is used to show part names that begin with a specific string of

characters.

To list part names beginning with “TRAN”, enter the command:

PARTNAME TRAN

All part names that begin with “TRAN” are listed on the screen. The screen is

shown in Figure 65. The listing is shown in Figure 67 on page 362.

 The DFSSAM01 exec is used to load the parts database. This exec is executed in

batch, is part of the IVP, and provides an example of EXECIO usage in an exec.

Related Reading: For details, see IMS Version 9: Installation Volume 1: Installation

Verification.

 IMS Parts DATABASE Transaction

 System Date: 02/16/92 Time: 23:28:41

 Request: Display 5 Parts with Part_Number >= 300

 1 Part=3003802 Desc=CHASSIS

 2 Part=3003806 Desc=SWITCH

 3 Part=3007228 Desc=HOUSING

 4 Part=3008027 Desc=CARD FRONT

 5 Part=3009228 Desc=CAPACITOR

 EXEC PARTNUM ended with RC= 0

Figure 64. Example Output of PARTNUM Exec

 IMS Parts DATABASE Transaction

 System Date: 02/16/92 Time: 23:30:09

 Request: Display 5 Parts with Part Name like TRAN

 1 Part=250239 Desc=TRANSISTOR

 2 Part=7736847P001 Desc=TRANSFORMER

 3 Part=975105-001 Desc=TRANSFORMER

 4 Part=989036-001 Desc=TRANSFORMER

 End of DataBase reached before 5 records shown.

 EXEC PARTNAME ended with RC= 0

Figure 65. Example Output of PARTNAME Exec

PART Execs

360 Application Programming: Database Manager

PARTNUM Exec: Show Set of Parts Near a Specified Number

Requirement: Figure 66is designed to be run by the IVPREXX exec with

PSB=DFSSAM02.

PARTNAME Exec: Show a Set of Parts with a Similar Name

Requirement: The REXX exec shown in Figure 67 on page 362 is designed to be

run by the IVPREXX exec with PSB=DFSSAM02.

/* REXX EXEC TO SHOW A SET OF PARTS NEAR A SPECIFIED NUMBER */

/* Designed to be run by the IVPREXX exec with PSB=DFSSAM02 */

/* Syntax: IVPREXX PARTNUM string <start#> */

Address REXXTDLI

IOPCB=’IOPCB’ /* PCB Name */

DataBase=’#2’ /* PCB # */

RootSeg_Map = ’PNUM C 15 3 : DESCRIPTION C 20 27’

’MAPDEF ROOTSEG ROOTSEG_MAP’

Call SayIt ’IMS Parts DATABASE Transaction’

Call SayIt ’System Date:’ Date(’U’) ’ Time:’ Time()

Call Sayit ’ ’

Arg PartNum Segs .

If ¬DataType(Segs,’W’) then Segs=5 /* default view amount */

PartNum=Left(PartNum,15) /* Pad to 15 with Blanks */

If PartNum=’’ then

 Call Sayit ’Request: Display first’ Segs ’Parts in the DataBase’

Else

 Call Sayit ’Request: Display’ Segs ’Parts with Part_Number >=’ PartNum

SSA1=’PARTROOT(PARTKEY >=02’PartNum’)’

’GU DATABASE *ROOTSEG SSA1’

Status=IMSQUERY(’STATUS’)

If Status=’GE’ then Do /* Segment Not Found */

 Call Sayit ’No parts found with larger Part_Number’

 Exit 0

End

Do i=1 to Segs While Status=’ ’

 Call Sayit Right(i,2) ’Part=’PNum ’ Desc=’Description

 ’GN DATABASE *ROOTSEG SSA1’

 Status=IMSQUERY(’STATUS’)

End

If Status=’GB’ then

 Call SayIt ’End of DataBase reached before’ Segs ’records shown.’

Else If Status¬=’ ’ then Signal BadCall

Call Sayit ’ ’

 Exit 0

SayIt: Procedure Expose IOPCB

 Parse Arg Msg

 ’ISRT IOPCB MSG’

 If RC¬=0 then Signal BadCall

Return

BadCall:

 ’DLIINFO INFO’

 Parse Var Info Call PCB Status .

 Msg = ’Unresolved Status Code’ Status,

 ’on’ Call ’on PCB’ PCB

 ’ISRT IOPCB MSG’

Exit 99

Figure 66. PARTNUM Exec: Show Set of Parts Near a Specified Number

PART Execs

Chapter 15. IMS Adapter for REXX 361

DFSSAM01 Exec: Load the Parts Database

For the latest version of the DFSSAM01 source code, see the IMS.ADFSEXEC

distribution library; member name is DFSSAM01.

DOCMD: IMS Commands Front End

DOCMD is an automatic operator interface (AOI) transaction program that issues

IMS commands and allows dynamic filtering of their output. The term “dynamic”

means that you use the headers for the command as the selectors (variable names)

in the filter expression (Boolean expression resulting in 1 if line is to be displayed

and 0 if it is not). This listing is shown in Figure 74 on page 365.

/* REXX EXEC TO SHOW ALL PARTS WITH A NAME CONTAINING A STRING */

/* Designed to be run by the IVPREXX exec with PSB=DFSSAM02 */

/* Syntax: IVPREXX PARTNAME string <#parts> */

Arg PartName Segs .

Address REXXIMS

Term =’IOPCB’ /* PCB Name */

DataBase=’DBPCB01’ /* PCB Name for Parts Database */

Call SayIt ’IMS Parts DATABASE Transaction’

Call SayIt ’System Date:’ Date(’U’) ’ Time:’ Time()

Call Sayit ’ ’

If ¬DataType(Segs,’W’) & Segs¬=’*’ then Segs=5

If PartName=’’ then Do

 Call Sayit ’Please supply the first few characters of the part name’

 Exit 0

End

Call Sayit ’Request: Display’ Segs ’Parts with Part Name like’ PartName

SSA1=’PARTROOT ’

’GU DATABASE ROOT_SEG SSA1’

Status=REXXIMS(’STATUS’)

i=0

Do While RC=0 & (i<Segs | Segs=’*’)

 Parse Var Root_Seg 3 PNum 18 27 Description 47

 ’GN DATABASE ROOT_SEG SSA1’

 Status=REXXIMS(’STATUS’)

 If RC¬=0 & Status¬=’GB’ Then Leave

 If Index(Description,PartName)=0 then Iterate

 i=i+1

 Call Sayit Right(i,2)’) Part=’PNum ’ Desc=’Description

End

If RC¬=0 & Status¬=’GB’ Then Signal BadCall

If i<Segs & Segs¬=’*’ then

 Call SayIt ’End of DataBase reached before’ Segs ’records shown.’

Call Sayit ’ ’

Exit 0

SayIt: Procedure Expose Term

 Parse Arg Msg

 ’ISRT Term MSG’

 If RC¬=0 then Signal BadCall

Return

BadCall:

 Call "DFSSUT04" Term

Exit 99

Figure 67. PARTNAME Exec: Show Parts with Similar Names

PART Execs

362 Application Programming: Database Manager

Not all commands are allowed through transaction AOI, and some setup needs to

be done to use this AOI.

Related Reading: See “Security Considerations for Automated Operator

Commands” in IMS Version 9: Administration Guide: System for more information.

Some examples of DOCMD are given in Figure 68, Figure 69, Figure 70, Figure 71

on page 364, Figure 72 on page 364, and Figure 73 on page 364.

 Please supply an IMS Command to execute.

 EXEC DOCMD ended with RC= 0

Figure 68. Output from = > DOCMD

 Headers being shown for command: /DIS NODE ALL

 Variable (header) #1 = RECTYPE

 Variable (header) #2 = NODE_SUB

 Variable (header) #3 = TYPE

 Variable (header) #4 = CID

 Variable (header) #5 = RECD

 Variable (header) #6 = ENQCT

 Variable (header) #7 = DEQCT

 Variable (header) #8 = QCT

 Variable (header) #9 = SENT

 EXEC DOCMD ended with RC= 0

Figure 69. Output from = > DOCMD /DIS NODE ALL;?

 Selection criteria =>CID>0<= Command: /DIS NODE ALL

 NODE_SUB TYPE CID RECD ENQCT DEQCT QCT SENT

 L3270A 3277 01000004 5 19 19 0 26 IDLE CON

 L3270C 3277 01000005 116 115 115 0 122 CON

 Selected 2 lines from 396 lines.

 DOCMD Executed 402 DL/I calls in 2.096787 seconds.

 EXEC DOCMD ended with RC= 0

Figure 70. Output from = > DOCMD /DIS NODE ALL;CID>0

DOCMD

Chapter 15. IMS Adapter for REXX 363

The source code for the DOCMD exec is shown in Figure 74 on page 365.

 Selection criteria =>TYPE=SLU2<= Command: /DIS NODE ALL

 NODE_SUB TYPE CID RECD ENQCT DEQCT QCT SENT

 WRIGHT SLU2 00000000 0 0 0 0 0 IDLE

 Q3290A SLU2 00000000 0 0 0 0 0 IDLE

 Q3290B SLU2 00000000 0 0 0 0 0 IDLE

 Q3290C SLU2 00000000 0 0 0 0 0 IDLE

 Q3290D SLU2 00000000 0 0 0 0 0 IDLE

 V3290A SLU2 00000000 0 0 0 0 0 IDLE

 V3290B SLU2 00000000 0 0 0 0 0 IDLE

 H3290A SLU2 00000000 0 0 0 0 0 IDLE

 H3290B SLU2 00000000 0 0 0 0 0 IDLE

 E32701 SLU2 00000000 0 0 0 0 0 IDLE

 E32702 SLU2 00000000 0 0 0 0 0 IDLE

 E32703 SLU2 00000000 0 0 0 0 0 IDLE

 E32704 SLU2 00000000 0 0 0 0 0 IDLE

 E32705 SLU2 00000000 0 0 0 0 0 IDLE

 ADLU2A SLU2 00000000 0 0 0 0 0 IDLE

 ADLU2B SLU2 00000000 0 0 0 0 0 IDLE

 ADLU2C SLU2 00000000 0 0 0 0 0 IDLE

 ADLU2D SLU2 00000000 0 0 0 0 0 IDLE

 ADLU2E SLU2 00000000 0 0 0 0 0 IDLE

 ADLU2F SLU2 00000000 0 0 0 0 0 IDLE

 ADLU2X SLU2 00000000 0 0 0 0 0 IDLE

 ENDS01 SLU2 00000000 0 0 0 0 0 IDLE

 ENDS02 SLU2 00000000 0 0 0 0 0 IDLE

 ENDS03 SLU2 00000000 0 0 0 0 0 IDLE

 ENDS04 SLU2 00000000 0 0 0 0 0 IDLE

 ENDS05 SLU2 00000000 0 0 0 0 0 IDLE

 ENDS06 SLU2 00000000 0 0 0 0 0 IDLE

 NDSLU2A1 SLU2 00000000 0 0 0 0 0 ASR IDLE

 NDSLU2A2 SLU2 00000000 0 0 0 0 0 ASR IDLE

 NDSLU2A3 SLU2 00000000 0 0 0 0 0 ASR IDLE

 NDSLU2A4 SLU2 00000000 0 0 0 0 0 ASR IDLE

 NDSLU2A5 SLU2 00000000 0 0 0 0 0 IDLE

 NDSLU2A6 SLU2 00000000 0 0 0 0 0 ASR IDLE

 OMSSLU2A SLU2 00000000 0 0 0 0 0 IDLE

 Selected 34 lines from 396 lines.

 DOCMD Executed 435 DL/I calls in 1.602206 seconds.

 EXEC DOCMD ended with RC= 0

Figure 71. Output from = > DOCMD /DIS NODE ALL;TYPE=SLU2

 Selection criteria =>ENQCT>0 & RECTYPE=’T02’<= Command: /DIS TRAN ALL

 TRAN CLS ENQCT QCT LCT PLCT CP NP LP SEGSZ SEGNO PARLM RC

 TACP18 1 119 0 65535 65535 1 1 1 0 0 NONE 1

 Selected 1 lines from 1104 lines.

 DOCMD Executed 1152 DL/I calls in 5.780977 seconds.

 EXEC DOCMD ended with RC= 0

Figure 72. Output from = > DOCMD /DIS TRAN ALL;ENQCT>0 & RECTYPE=’T02’

 Selection criteria =>ENQCT>0<= Command: /DIS LTERM ALL

 LTERM ENQCT DEQCT QCT

 CTRL 19 19 0

 T3270LC 119 119 0

 Selected 2 lines from 678 lines.

 DOCMD Executed 681 DL/I calls in 1.967670 seconds.

 EXEC DOCMD ended with RC= 0

Figure 73. Output from = > DOCMD /DIS LTERM ALL;ENQCT>0

DOCMD

364 Application Programming: Database Manager

/***/

/* A REXX exec that executes an IMS command and parses the */

/* output by a user supplied criteria. */

/* */

/***/

/* Format: tranname DOCMD IMS-Command;Expression */

/* Where: */

/* tranname is the tranname of a command capable transaction that */

/* will run the IVPREXX program. */

/* IMS-Command is any valid IMS command that generates a table of */

/* output like /DIS NODE ALL or /DIS TRAN ALL */

/* Expression is any valid REXX expression, using the header names*/

/* as the variables, like CID>0 or SEND=0 or more */

/* complex like CID>0 & TYPE=SLU2 */

/* Example: TACP18 DOCMD DIS A Display active */

/* TACP18 DOCMD DIS NODE ALL;? See headers of DIS NODE */

/* TACP18 DOCMD DIS NODE ALL;CID>0 Show active Nodes */

/* TACP18 DOCMD DIS NODE ALL;CID>0 & TYPE=’SLU2’ */

/***/

Address REXXTDLI

Parse Upper Arg Cmd ’;’ Expression

Cmd=Strip(Cmd);

Expression=Strip(Expression)

If Cmd=’’ Then Do

 Call SayIt ’Please supply an IMS Command to execute.’

 Exit 0

End

AllOpt= (Expression=’ALL’)

If AllOpt then Expression=’

If Left(Cmd,1)¬=’/’ then Cmd=’/’Cmd /* Add a slash if necessary */

If Expression=’’ Then

 Call SayIt ’No Expression supplied, all output shown’,

 ’from:’ Cmd

Else If Expression=’?’ Then

 Call SayIt ’Headers being shown for command:’ Cmd

Else

 Call SayIt ’Selection criteria =>’Expression’<=’,

 ’Command:’ Cmd

x=Time(’R’); Calls=0

ExitRC= ParseHeader(Cmd,Expression)

If ExitRC¬=0 then Exit ExitRC

If Expression=’?’ Then Do

 Do i=1 to Vars.0

 Call SayIt ’Variable (header) #’i ’=’ Vars.i

 Calls=Calls+1

 End

End

Figure 74. DOCMD Exec: Process an IMS Command (Part 1 of 3)

DOCMD

Chapter 15. IMS Adapter for REXX 365

Else Do

 Call ParseCmd Expression

 Do i=1 to Line.0

 If AllOpt then Line=Line.i

 Else Line=Substr(Line.i,5)

 Call SayIt Line

 Calls=Calls+1

 End

 If Expression¬=’’ then

 Call SayIt ’Selected’ Line.0-1 ’lines from’,

 LinesAvail ’lines.’

 Else

 Call SayIt ’Total lines of output:’ Line.0-1

 Call SayIt ’DOCMD Executed’ Calls ’DL/I calls in’,

 Time(’E’) ’seconds.’

 End

 Exit 0

ParseHeader:

 CurrCmd=Arg(1)

 CmdCnt=0

 ’CMD IOPCB CURRCMD’

 CmdS= IMSQUERY(’STATUS’)

 Calls=Calls+1

 If CmdS=’ ’ then Do

 Call SayIt ’Command Executed, No output available.’

 Return 4

 End

 Else If CmdS¬=’CC’ then Do

 Call SayIt ’Error Executing Command, Status=’CmdS

 Return 16

 End

 CurrCmd=Translate(CurrCmd,’ ’,’15’x) /* Drop special characters */

 CurrCmd=Translate(CurrCmd,’__’,’-/’) /* Drop special characters */

 CmdCnt=CmdCnt+1

 Interpret ’LINE.’||CmdCnt ’= Strip(CurrCmd)’

 Parse Var CurrCmd RecType Header

 If Expression=’’ then Nop

 Else If Right(RecType,2)=’70’ then Do

 Vars.0=Words(Header)+1

 Vars.1 = "RECTYPE"

 Do i= 2 to Vars.0

 Interpret ’VARS.’i ’= "’Word(CurrCmd,i)’"’

 End

 End

 Else Do

 Call SayIt ’Command did not produce a header’,

 ’record, first record’s type=’RecType

 Return 12

 End

Return 0

Figure 74. DOCMD Exec: Process an IMS Command (Part 2 of 3)

DOCMD

366 Application Programming: Database Manager

IVPREXX: MPP/IFP Front End for General Exec Execution

The IVPREXX exec is a front-end generic exec that is shipped with IMS as part of

the IVP. It runs other execs by passing the exec name to execute after the

TRANCODE (IVPREXX). For further details on IVPREXX, see “IVPREXX Sample

Application” on page 339. For the latest version of the IVPREXX source code, see

the IMS.ADFSEXEC distribution library; member name is IVPREXX.

ParseCmd:

 LinesAvail=0

 CurrExp=Arg(1)

 Do Forever

 ’GCMD IOPCB CURRCMD’

 CmdS= IMSQUERY(’STATUS’)

 Calls=Calls+1

 If CmdS¬=’ ’ then Leave

 /* Skip Time Stamps */

 If Word(CurrCmd,1)=’X99’ & Expression¬=’’ then Iterate

 LinesAvail=LinesAvail+1

 CurrCmd=Translate(CurrCmd,’ ’,’15’x)/* Drop special characters */

 If Expression=’’ then OK=1

 Else Do

 Do i= 1 to Vars.0

 Interpret Vars.i ’= "’Word(CurrCmd,i)’"’

 End

 Interpret ’OK=’Expression

 End

 If OK then Do

 CmdCnt=CmdCnt+1

 Interpret ’LINE.’||CmdCnt ’= Strip(CurrCmd)’

 End

 End

 Line.0 = CmdCnt

 If CmdS¬=’QD’ Then

 Call SayIt ’Error Executing Command:’,

 Arg(1) ’Stat=’CmdS

Return

SayIt: Procedure

 Parse Arg Line

 ’ISRT IOPCB LINE’

Return RC

Figure 74. DOCMD Exec: Process an IMS Command (Part 3 of 3)

IVPREXX

Chapter 15. IMS Adapter for REXX 367

368 Application Programming: Database Manager

Chapter 16. CICS-DL/I User Interface Block Return Codes

After issuing any kind of a DL/I call, CICS online programs must check the return

code in the UIB before checking the DL/I status code. If the value in UIBRCODE is

not null, the contents of the PCB status code are not meaningful.

For more information on defining and addressing a UIB, see “Specifying the UIB

(CICS Online Programs Only)” on page 79.

The UIBRCODE contains two bytes, UIBFCTR and UIBDLTR. You should first

check the contents of UIBFCTR; the contents of UIBDLTR are meaningful only if

UIBFCTR indicates a NOTOPEN or INVREQ condition. Table 78, Table 79, and

Table 80 show the return codes from the CICS-DL/I interface.

 Table 78. Return Codes in UIBFCTR

Condition ASM COBOL PL/I

NORESP (normal

response)

X'00' LOW-VALUES 00000 000

NOTOPEN (not open) X'0C' 12-4-8-9 00001 100

INVREQ (invalid

request)

X'08' 12-8-9 00001 000

 Table 79. Return Codes in UIBDLTR if UIBFCTR='0C' (NOTOPEN)

Condition ASM COBOL PL/I

Database not open X'00' LOW-VALUES 00000 000

Intent scheduling

conflict

X'02' 12-2-9 00000 010

 Table 80. Return Codes in UIBDLTR if UIBFCTR='08' (INVREQ)

Condition ASM COBOL PL/I

Invalid argument passed

to DL/I

X'00' LOW-VALUES 00000 000

PSBNF (PSB not found) X'01' 12-1-9 00000 001

PSBSCH (PSB already

scheduled)

X'03' 12-3-9 00000 011

NOTDONE (request not

executed)

X'04' 12-4-9 00000 100

PSBFAIL (PSB

initialization failed)

X'05' 12-5-9 00000 101

TERMNS (termination

not successful)

X'07' 12-7-9 00000 111

FUNCNS (function

unscheduled)

X'08' 12-8-9 00001 000

INVPSB (invalid PSB) X'10' 12-10-9 00010 000

DLINA (DL/I not active) X'FF' 12-11-0-7-8-9 11111 111

If these codes do not appear to be due to programming errors, they may be caused

by not-open or invalid-request conditions.

© Copyright IBM Corp. 1974, 2004 369

The following topics provide additional information:

v “Not-Open Conditions”

v “Invalid Request Conditions”

Not-Open Conditions

A NOTOPEN condition is indicated if UIBFCTR contains X'0C'

UIBDLTR='00'

Explanation: This is returned on a database call if the

database was stopped after the PSB is scheduled.

UIBDLTR='02'

Explanation: This indicates that an intent-scheduling

conflict exists. This condition does not occur if you are

using IMS program isolation.

Invalid Request Conditions

An invalid request is indicated by UIBFCTR=X'08'

UIBDLTR='00' (INVARG)

Explanation: An invalid argument was passed to DL/I

indicating one of these problems:

v Count argument exists, but count is too high.

v I/O area is missing.

v Received data length is greater than 65520.

v Call type is invalid.

UIBDLTR='01' (PSBNF)

Explanation: This is returned after a scheduling call; it

indicates that the PSB to be scheduled was not defined

in the PSB directory (PDIR).

UIBDLTR='03' (PSBSCH)

Explanation: This PSB has already been scheduled.

UIBDLTR='04' (NOTDONE)

Explanation: The XDLIPRE exit routine indicates that

a DL/I request should not be issued.

UIBDLTR='05' (PSBFAIL)

Explanation: The PSB could not be scheduled,

possibly because:

v The database has been stopped.

v The master terminal operator has entered a DUMPDB

command. This command sets the read-only flag in

the DMB directory (DDIR). You will not be able to

schedule any PSBs with update intent.

v The master terminal operator has entered a

RECOVERDB command. This command sets the

do-not-schedule-flag in the DDIR. You will not be able

to schedule any PSB that references the database.

v The END statement in the PDIR generation stream

did not specify the DFSIDIR0 operand.

The trace entry, which contains the PCB status, gives

you the reason for the scheduling failure.

UIBDLTR='07' (TERMNS)

Explanation: A terminate request was issued, but no

PSB was currently scheduled. It could indicate that the

PSB has already taken place because of a terminate

request or CICS sync point.

UIBDLTR='08' (FUNCNS)

Explanation: A database call was issued when the

PSB was not scheduled.

UIBDLTR='10' (INVPSB)

Explanation: SYSSERVE IOPCB specified for local

DL/I.

UIBDLTR='FF' (DLINA)

Explanation: DLI=NO has been specified in the

system initialization table (SIT).

CICS-DL/I User Interface Block Return Codes

370 Application Programming: Database Manager

Part 3. Appendixes

© Copyright IBM Corp. 1974, 2004 371

372 Application Programming: Database Manager

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1974, 2004 373

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

374 Application Programming: Database Manager

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface Information

This book is intended to help the application programmer write IMS application

programs. This book primarily documents General-use Programming Interface and

Associated Guidance Information provided by IMS.

General-use programming interfaces allow the customer to write programs that

obtain the services of IMS.

However, this book also documents Product-sensitive Programming Interface and

Associated Guidance Information provided by IMS.

Product-sensitive programming interfaces allow the customer installation to perform

tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of

IMS. Use of such interfaces creates dependencies on the detailed design or

implementation of the IBM software product. Product-sensitive programming

interfaces should be used only for these specialized purposes. Because of their

dependencies on detailed design and implementation, it is to be expected that

programs written to such interfaces may need to be changed to run with new

product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is

identified where it occurs, either by an introductory statement to a chapter or

section or by the following marking:

Product-sensitive Programming Interface and Associated Guidance Information.

Trademarks

The following terms are trademarks of International Business Machines Corporation

in the United States, other countries, or both.

 BookManager

 C/370

 C/MVS

 CICS

 CICS/ESA

 DataPropagator

 DB2

 DB2 Universal Database

 IBM

 IMS

 IMS/ESA

 Language Environment

 MVS

 MVS/ESA

 NetView

 OS/390

 RACF

 SAA

 Tivoli

 WebSphere

 z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

Notices 375

Other company, product or service names may be trademarks or service marks of

others.

376 Application Programming: Database Manager

Bibliography

This bibliography lists all of the information in the

IMS Version 9 library.

v CICS/ESA Application Programming Guide,

SC33-1169

v CICS/ESA Application Programming Reference,

SC33-1170

v CICS/ESA CICS-IMS Database Control Guide,

SC33-1184

v CICS/MVS Installation Guide, SC33-0506

v CICS/ESA System Definition Guide, SC33-1164

v IBM Language Environment Installation and

Customization on MVS, SC26-4817

v IBM Language Environment for MVS & VM

Programming Guide, SC26-4818

v MVS/ESA™: JCL Reference MVS/ESA System

Product: JES2 Version 5 , GC28-1479

v MVS/ESA System Programming Library:

Application Development Guide, GC28-1852

v System Application Architecture Common

Programming Interface: Resource Recovery

Reference, SC31-6821

v IBM TSO Extensions for MVS/REXX Reference,

SC28-1883

IMS Version 9 Library

 Title Acronym Order

number

IMS Version 9: Administration

Guide: Database Manager

ADB SC18-7806

IMS Version 9: Administration

Guide: System

AS SC18-7807

IMS Version 9: Administration

Guide: Transaction Manager

ATM SC18-7808

IMS Version 9: Application

Programming: Database

Manager

APDB SC18-7809

IMS Version 9: Application

Programming: Design Guide

APDG SC18-7810

IMS Version 9: Application

Programming: EXEC DLI

Commands for CICS and

IMS

APCICS SC18-7811

IMS Version 9: Application

Programming: Transaction

Manager

APTM SC18-7812

IMS Version 9: Base Primitive

Environment Guide and

Reference

BPE SC18-7813

IMS Version 9: Command

Reference

CR SC18-7814

Title Acronym Order

number

IMS Version 9: Common

Queue Server Guide and

Reference

CQS SC18-7815

IMS Version 9: Common

Service Layer Guide and

Reference

CSL SC18-7816

IMS Version 9: Customization

Guide

CG SC18-7817

IMS Version 9: Database

Recovery Control (DBRC)

Guide and Reference

DBRC SC18-7818

IMS Version 9: Diagnosis

Guide and Reference

DGR LY37-3203

IMS Version 9: Failure

Analysis Structure Tables

(FAST) for Dump Analysis

FAST LY37-3204

IMS Version 9: IMS Connect

Guide and Reference

CT SC18-9287

IMS Version 9: IMS Java

Guide and Reference

JGR SC18-7821

IMS Version 9: Installation

Volume 1: Installation

Verification

IIV GC18-7822

IMS Version 9: Installation

Volume 2: System Definition

and Tailoring

ISDT GC18-7823

IMS Version 9: Master Index

and Glossary

MIG SC18-7826

IMS Version 9: Messages

and Codes, Volume 1

MC1 GC18-7827

IMS Version 9: Messages

and Codes, Volume 2

MC2 GC18-7828

IMS Version 9: Open

Transaction Manager Access

Guide and Reference

OTMA SC18-7829

IMS Version 9: Operations

Guide

OG SC18-7830

IMS Version 9: Release

Planning Guide

RPG GC17-7831

IMS Version 9: Summary of

Operator Commands

SOC SC18-7832

IMS Version 9: Utilities

Reference: Database and

Transaction Manager

URDBTM SC18-7833

IMS Version 9: Utilities

Reference: System

URS SC18-7834

© Copyright IBM Corp. 1974, 2004 377

Supplementary Publications

 Title Order number

IMS Connector for Java 2.2.2 and

9.1.0.1 Online Documentation for

WebSphere Studio Application

Developer Integration Edition 5.1.1

SC09-7869

IMS Version 9 Fact Sheet GC18-7697

IMS Version 9: Licensed Program

Specifications

GC18-7825

Publication Collections

 Title Format Order

number

IMS Version 9 Softcopy Library CD LK3T-7213

IMS Favorites CD LK3T-7144

Licensed Bill of Forms (LBOF):

IMS Version 9 Hardcopy and

Softcopy Library

Hardcopy

and CD

LBOF-7789

Unlicensed Bill of Forms

(SBOF): IMS Version 9

Unlicensed Hardcopy Library

Hardcopy SBOF-7790

OS/390 Collection CD SK2T-6700

z/OS Software Products

Collection

CD SK3T-4270

z/OS and Software Products

DVD Collection

DVD SK3T-4271

Accessibility Titles Cited in This

Library

 Title Order number

z/OS V1R1.0 TSO Primer SA22-7787

z/OS V1R5.0 TSO/E User’s Guide SA22-7794

z/OS V1R5.0 ISPF User’s Guide,

Volume 1

SC34-4822

378 Application Programming: Database Manager

Index

Special characters
!token

IMSQUERY function 355

STORAGE command 352

. (period) usage
null or void placeholder 345

parsing, transparent additions 346

REXX 343

*mapname 349, 350

Numerics
12-byte time stamp, field in I/O PCB 71

8-blanks (null) 252

A
abend statement 292

accessing
GSAM databases 161

AD/Cycle C/370 94

addressability to UIB, establishing 80

addressing environments 336, 341

addressing mode (AMODE) 96

AIB (application interface block)
address return 91

AIB identifier (AIBID) 75

in APSB call 248

in CHKP (basic) call 249

in CHKP (symbolic) call 250

in DPSB call 251

in GMSG call 252

in GSCD call 255

in ICMD call 255

in INIT call 257

AIB Identifier (AIBID)
in INQY call 262

AIB0LEN (maximum output area length)
in ICMD call 256

AIBERRXT (reason code) 76

AIBFUNC (subfunction code)
in DPSB call 252

in GMSG call 252

AIBLEN
in GSCD call 255

in INIT call 257

AIBLEN (DFSAIB allocated length)
in APSB call 248

in CHKP (basic) call 249

in CHKP (symbolic) call 250

in DPSB call 251

in GMSG call 252

in ICMD call 255

in INQY 262

AIBOALEN (maximum output area length) 76

in CHKP (symbolic) call 250

in GMSG call 253

AIB (application interface block) (continued)
AIBOALEN (maximum output area length)

(continued)
in GSCD call 255

in INIT call 257

in INQY call 262

AIBOAUSE (used output area length) 76

in GMSG call 253

AIBOLEN (maximum output area length)
in ICMD call 256

AIBREASN (reason code) 76

AIBRSA1 (resource address) 76

AIBRSNM1
in GSCD call 255

in INIT call 257

AIBRSNM1 (resource name) 75

in APSB call 248

in CHKP (basic) call 249

in CHKP (symbolic) call 250

in DPSB call 251

in GMSG call 253

in INQY call 262

AIBRSNM2
in APSB call 248

in CHKP (basic) call 249

AIBSFUNC (subfunction code) 75

in INQY call 262

and program entry statement 91

description 88

DFSAIB allocated length (AIBLEN) 75

fields 75

interface, REXX 341

mask 75, 76

specifying 75

storage, defining 89

subfunction, setting 351

AIB mask
specifying 75

AIBERRXT (reason code) 76

AIBID (AIB identifier) field, AIB mask 75

AIBLEN (DFSAIB allocated length) field, AIB mask 75

AIBOALEN (maximum output area length) field, AIB

mask 76

AIBOAUSE (used output area length) field, AIB

mask 76

AIBREASN (reason code)
AIB mask, field 76

AIBREASN (reason code) field, AIB mask 76

AIBRSA1 (resource address) field, AIB mask 76

AIBRSNM1 (resource name) field, AIB mask 75

AIBSFUNC (subfunction code) field, AIB mask 75

AIBTDLI interface
See AIB (application interface block)

Allocate PSB (APSB) call 248

format 248

parameters 248

usage 248

AMODE 96

© Copyright IBM Corp. 1974, 2004 379

AND
dependent 154

independent 155

logical 23

AO (automated operator) application
GMSG call 252

ICMD call 255

RCMD call 270

AOI token
usage 253

APPC environment 336

application program
DBDs (database descriptions), about 10

deadlock occurrence, in 261

environments 7

HALDB environment
scheduling 95

hierarchy examples 13, 16

PSBs (program specification blocks), about 10

APSB (Allocate PSB) call 248

format 248

parameters 248

usage 248

area
in CHKP (symbolic) call 251

area length
in CHKP (symbolic) call 250

areas
I/O 82

assembler language
DL/I call format, example 58

DL/I call-level sample 32

DL/I program structure 29

entry statement 89

parameters, DL/I call format 57

program entry 89

register 1, program entry 89

return statement 89

SSA definition examples 84

syntax diagram, DL/I call format 56

UIB, specifying 79

B
backout point, intermediate

backing out 120

bank account database example 16

Basic Checkpoint (CHKP Basic) 249

format 249

parameters 249

usage 249

batch programs
assembler language 29

C language 34

COBOL 37

deadlock occurrence, in 261

maintaining integrity 119

overview 7

Pascal 45

PL/I 48

structure 7

BILLING segment 15

binding, reference 32

BMPs, transaction-oriented
ROLB 118

Boolean operators
dependent AND 154

independent AND 155

logical AND 23

logical OR 23

SSA, coding 84

C
C language 90

__pcblist 90

batch program, coding 34

DL/I call formats, example 61

DL/I program structure 34

entry statement 89, 90

exit 90

I/O area 61

parameters, DL/I call format 59

PCBs, passing 90

return statement 89

SSA definition examples 85

syntax diagram, DL/I call format 58

system function 90

C/C++ 94

call functions, DL/I 302

call results
status codes, exceptional 9

CALL statement 292

CALL DATA 296

CALL DATA statement internal field 296

CALL FUNCTION 292

call-level programs, CICS online 11

calls, DB
CIMS 219

CLSE 220

DEQ 221

DLET 222

FLD 223

GHNP 230

GHU 233

GN 226

GNP 230

GU 233

ISRT 235

OPEN 239

POS 239

REPL 242

calls, system service
APSB (allocate PSB) 248

CHKP (basic) 249

CHKP (symbolic) 250

GMSG (get message) 252

ICMD (issue command) 255

INIT (initialize) 257

INQY (inquiry) 262

LOG (log) 267

PCB (schedule a PSB) 269

380 Application Programming: Database Manager

calls, system service (continued)
RCMD (retrieve command) 270

ROLB (roll back) 271

SETS/SETU (set a backout point) 274

SNAP 275

STAT (statistics) 278

SYNC (synchronization point) 280

TERM (terminate) 281

XRST (extended restart) 282

calls,system service
SETS/SETU (set a backout point)

backing out to an intermediate backout point 120

using 120

CCTL (coordinator controller)
design recommendation 146

performance considerations
thread monitoring 147

CEETDLI 94

address return 91

interface to IMS 95

program entry statement 55, 91

checkpoint (CHKP)
call, necessary information 28

checkpoint call
See CHKP call

checkpoints (CHKP)
issuing 115

CHKP (basic checkpoint) call
description 249

format 249

parameters 249

usage 249

CHKP (checkpoint) call, necessary information 28

CHKP (symbolic checkpoint) call
description 250

format 250

parameters 250

usage 251

with GSAM 166

CHKP call function 299

CHNG call function 299

CICS DL/I call program, compiling 28

CICS online programs 269

assembler language, sample 32

COBOL, establishing addressability 45

COBOL, optimization feature 45

COBOL, sample 40

PCB call 269

PL/I, sample 51

structure 11

TERM call 281

CIMS call
description 219

format 219

parameters 219

usage 219

class, record segment 207

closing a GSAM database explicitly 164, 220

CLSE (Close) call
description 220

format 220

CLSE (Close) call (continued)
parameters 220

usage 221

CMD call function 299

COBOL
CICS online, establishing addressability 45

CICS online, optimization feature 45

DL/I call formats, example 63

DL/I call-level, sample 40

DL/I program structure 37

entry statement 89

parameters, DL/I call format 62

return statement 89

SSA definition examples 86

syntax diagram, DL/I call format 61

UIB, specifying 79

COBOL and Language Environment 94

COBOL/370 and Language Environment 94

codes, status
checking 9

logical relationships 159

coding rules
SSA 83

command code
reference 199

command codes 202

C
description 201

C command
SSAs (segment search arguments) 20

D
examples 26, 202

Get calls 202

ISRT call 203

P processing option 202

DEDBs 27

description 26

DL/I calls 199

F
Get calls 203

HERE insert rule 238

ISRT call 204

restrictions 189

L
FIRST insert rule 205, 238

Get calls 205

M 212

N 205

Null 211

overview 26

P 206

Q 122, 206

qualified SSAs 26

R 213

restrictions 83

S 214

SSAs (segment search arguments) 20

subset pointers 27, 183, 184

summary 26

unqualified SSAs 26

V 210

Index 381

command codes (continued)
Z 216

Command codes
U 209

COMMENT statement
conditional (T) 313

unconditional (U) 313

commit point processing
DEDB 187

MSDB 177

COMPARE statement
COMPARE AIB 315

COMPARE DATA 314

COMPARE PCB 316

introduction 314

concatenated datasets
GSAM 169

concatenated key and PCB mask 74, 163

concatenated segments, logical relationships 158

connector 226

CTL (PUNCH) statement 321

current position
determining 99

multiple positioning 108

qualification 209

unsuccessful calls 104

D
data areas, coding 27

data availability, status codes 73

data entry database (DEDB)
See DEDB (data entry database)

data entry databases (DEDBs) 173

data locking 179

data mapping, define with MAXDEF command 347

data redundancy, reducing 156

data structures 28

database
administrator 14

calls
Fast Path 189

summary 217

DB PCB, name 73, 163

deallocating resources 251

position
after XRST 284

determining 99

establishing using GU 234

multiple positioning 108

unsuccessful calls 104

recovery with ROLL call 118

recovery, back out changes 117

database descriptions (DBDs)
description 10

database resource adapter 125

DB PCB
database name 73, 163

entry statement, pointer 162

fields 72, 73

in GSCD 254

DB PCB (continued)
key feedback area 163

key feedback area length field 74, 163

mask 72, 73

fields 163

fields, GSAM 162

name 162

relation 72

multiple DB PCBs 113

number of sensitive segments field 74

processing options field 74, 163

relation to DB PCB 72

secondary indexing, contents 156

segment level number field 73

segment name field 74

sensitive segments 74

status code field 73, 163

status codes
NA 258

NU 259

DB PCB (database program communication block)
masks

DB PCB 72

DB PCB mask
general description 72

specifying 72

DB PCB mask, GSAM reference 88

DBA 14

DBDs (database descriptions)
description 10

DBQUERY
using with INIT call 258

deadlock occurrence
application programs 261

batch programs, in 261

debugging, IMSRXTRC 346

DEDB
multiple qualification statements 25

DEDB (data entry database)
call restrictions 189

command codes 211

DL/I calls 189

PCBs and DL/I calls 287

processing
commit point 187

data locking 179

fast path 171

H option 188

overview 173

P option 187

POS call 185

subset pointers 180

root segments, order 229

updating with subset pointers 180

DEDB(data entry database)
data locking 179

updating segments 173

DEDBs (data entry databases) 173

define a data mapping with MAXDEF command 347

delete call
See DLET Call

382 Application Programming: Database Manager

dependent AND 154

dependents, direct 173

DEQ (Dequeue) call
and Q command code 207, 222

description 221

format
Fast Path 221

full function 221

parameters
Fast Path 221

full function 221

restrictions 222

summary 218

usage 222

DEQ call function 299

DFSDDLT0 (DL/I Test Program)
See DL/I Test Program (DFSDDLT0)

DFSDDLT0 internal control statements
AB0C1 statement (INTERNAL CALL

STATEMENT) 290

WTSR statement (INTERNAL CALL

STATEMENT) 290

DFSPRP
macro keywords 132

DFSPSP00 (DRA startup table) 132

DFSREXXU (Example User Exit Routine)
sample 336

DFSSAM01 (Loads the Database) 362

DL/I
Open Database Access (ODBA) interface 12

DL/I call formats, example
assembler language 58

C language 61

COBOL 63

Pascal 66

PL/I 68

DL/I call functions 299, 302

special DFSDDLT0
END 311

SKIP 311

STAK 311

START 311

supported
CHKP 299

CHNG 299

CMD 299

DEQ 299

DLET 299

FLD 299

GCMD 299

GHN 299

GHNP 299

GHU 299

GMSG 299

GN 299

GNP 299

GU 299

ICMD 300

INIT 300

INQY 300

ISRT 300

DL/I call functions (continued)
supported (continued)

LOG 300

POS 300

PURG 300

RCMD 300

REPL 300

ROLB 300

ROLL 300

ROLS 300

ROLX 301

SETO 301

SETS 301

SNAP 301

STAT 301

SYNC 301

XRST 301

DL/I calls (general information)
qualified calls 20

qualifying calls
segment type 20

qualifying your calls
command codes 26

concatenated key 201

field 21

relationships to PCBs
FF PCBs 287

REXXTDLI 341

segment search arguments (SSAs) 20

types 20

unqualified calls 20

DL/I calls, database management
CIMS 219

CLSE 220

DEQ 221

DLET 222, 223

FLD 223, 226

GHNP call 233

GHU call 235

GN 226, 230

GNHP call 229

GNP 230, 233

GU 233, 235

ISRT 235, 238

OPEN 239

POS 239, 242

REPL 242, 244

summary 217

DL/I calls, general information
coding 27

getting started with 7

DL/I calls, system service 245, 249

APSB 248

CHKP 249, 250, 251

DPSB 251

GMSG 252

GSCD 254, 255

INIT 257, 262

INQY 262

LOG 267, 269

PCB 269, 270

Index 383

DL/I calls, system service (continued)
ROLB 118, 271, 272

ROLL 117, 272, 273

ROLS 273, 274

SETS/SETU 274, 275

SNAP 275, 278

STAT 278, 280, 281, 282

summary 246

SYNC 280, 281

XRST 282

DL/I language interfaces
overview 55

supported interfaces 55

DL/I options
logical relationships 156

secondary indexing 153

DL/I program structure 7

DL/I return codes (REXX) 341

DL/I Test Program (DFSDDLT0)
control statements 290, 328

execution in IMS regions 331, 332

explanation of return codes 332

hints on usage 332, 334

JCL requirements 328, 331

overview 289

restarting input stream 330

DL/I, CICS online
getting started with 11

DLET (Delete) call
description 222

format 222

parameters 220, 222, 239

SSA 223

usage 223

with MSDB, DEDB or VSO DEDB 173

DLET call function 299

DLIINFO
. (period) usage 346

REXX extended command 344, 345

DLITCBL 90

DLITPLI 91

DOCMD exec 362

DPSB call
description 251

format 251

parameters 251

usage 252

DRA (database resource adapter) 125

CCTL function requests 136

INIT 136

RESYNC 138

TERM 139

CCTL recovery process 146

DRA statistics 149

enabling
CCTL 133

ODBA 134

initializing
CCTL 133

ODBA 134

macro keywords 132

DRA (database resource adapter) (continued)
multithreading 126

PAPL 145

problem determination 150

processing
CCTL requests 135

ODBA calls 136

startup table 132

DFSPZPxx 132

sync-point processing 128

in-doubt state 131

protocol 129

termination 145

thread
ODBA 126

processing 125

structure 125

thread function requests 139

ABTTERM 144

COMTERM 143

IMS 141

PREP 143

SCHED 139

SYNTERM 142

TERMTHRD 144

thread statistics 147

tracing 150

dynamic, MSDBs (main storage databases) 16

E
E (COMPARE) statement 314

enabling
data availability status codes 73

END call function 311

entry and return conventions 89

environment (REXX)
address 336, 341

determining 344

extended 341

equal-to relational operator 21

error routines 10

explanation 10

I/O errors 10

programming errors 10

system errors 10

types of errors 10

examples
bank account database 16

Boolean operators 25

D command code 26, 202

DFSDDLT0 statements
COMMENT 313

DATA/PCB COMPARE 318

DD 329

DL/I call functions 302

IGNORE 320

OPTION 321

PUNCH 323

STATUS 326

SYSIN, SYSIN2, and PREINIT 330

384 Application Programming: Database Manager

examples (continued)
DFSDDLT0 statements (continued)

WTO 327

WTOR 328

FLD/CHANGE 177

FLD/VERIFY 177

L command code 205

medical database 13

multiple qualification statements 25

N command code 205

Null command code 211

P command code 206

path call 26

SSA, secondary indexing 154

U Command Code 209

UIB, defining 80

V command code 210

EXECIO
example 362

managing resources 336

explicitly opening and closing a GSAM database 164

extended commands
See REXXIMS commands

extended environment
See environment (REXX)

extended functions
See IMSQUERY extended function

Extended Restart (XRST) 251

description 282

parameters 282

position in database 284

restarting your program 283

restrictions 285

starting your program normally 283

usage 283

F
F command code

restrictions 189

Fast Path
database calls 171

databases, processing 171

DEDB (data entry database) 171

FSA 225

MSDB (main storage database) 171

processing MSDBs and VSO DEDBs 173

subset pointers, using with DEDBs 180

types of databases 171

field
changing contents 176

checking contents: FLD/VERIFY 174

Field (FLD) call
See FLD (Field) call

field name
FSA 175, 225

SSA, qualification statement 21

field search argument
description 174

reference 225

field value
FSA 175

SSA, qualification statement 21, 22

fields in a DB PCB mask 73, 163

file I/O
See EXECIO

FIRST insert rule, L command code 205

fixed-length records 165

fixed, MSDBs (main storage databases) 16

FLD (Field) call
description 173, 223

FLD/CHANGE 176

FLD/VERIFY 174

format 224

FSAs 225

parameters 224

summary 218

usage 224

FLD call function 299

free space, identifying 187

FSA (field search argument)
connector 226

description 174

Field name 225

FSA status code 225

Op code 225

operand 226

reference 225

with DL/I calls 174

FSA status code 225

full-function database
PCBs and DL/I calls 287

segment release 208

G
GB (end of database)

return status code 202

GCMD call function 299

GE (segment not found)
return status code 202

Get calls
D command code 202

F command code 203

function 299

L command code 205

Null command code 211

P command code 206

Q command code 206

U Command Code 209

V command code 210

get hold next (GHN)
usage 229

Get Message (GMSG) call
See GMSG call 252

GHN (get hold next)
usage 229

GHNP
call 230

hold form 233

Index 385

GHU (Get Hold Unique)
description 235

GMSG call
description 252, 254

format 252

parameters 252

restrictions 254

use 253

GN (Get Next) call
description 226

format 226

hold form (GHN) 229

parameters 226

SSA 228

usages 227

GNP (Get Next in Parent) call
description 230

effect in parentage 232

format 230

hold form (GHNP) 233

parameters 230

SSA 232

usages 231

linking with previous DL/I calls 231

processing with parentage 231

GPSB (generated program specification block),

format 92

greater-than relational operator 21

greater-than-or-equal-to relational operator 21

group name, field in I/O PCB 71

GSAM (generalized sequential access method)
accessing databases 161

BMP region type 169

call summary 166

CHKP 166

coding considerations 166

data areas 88

data set
attributes, specifying 169

characteristics, origin 167

concatenated 169

DD statement DISP parameter 168

extended checkpoint restart 168

database, explicitly opening and closing 164

DB PCB mask, fields 162

DB PCB masks 88

DBB region type 169

description 161

designing a program 161

DLI region types 169

fixed-length records 164

I/O areas 165

PCBs and DL/I calls 287

record formats 164

records, retrieving and inserting 163

restrictions on CHKP and XRST 166

RSA 88, 163

status codes 165

undefined-length records 164

variable-length records 164

XRST 166

GSCD (Get System Contents Directory) call
description 254

format 254

parameters 254

usage 255

GU (Get Unique) call 233

description 233

format 233

hold form (GHU) 235

parameters 233

restrictions 235

SSA 234

usage 234

guidelines
programming 19

H
H processing option 188

HALDB (High Availability Large Database)
HALDB

application programs, scheduling against 95

initial load of 96

HALDBs (high availability large databases)
HALDB partitions

data availability 9

error settings 9

handling 9

restrictions for loading logical child segments 9

scheduling 9

status codes 9

HDAM
multiple qualification statements 25

HDAM database, order of root segments 229

HERE insert rule
F command code 204

L command code 205

hierarchic sequence 228

hierarchical database example, medical 14

hierarchy
bank account database 16

data structures 28

medical database 13

hierarchy examples 13, 16

high availability large databases (HALDB)
see HALDBs (high availability large databases) 9

HOUSHOLD segment 15

I
I/O area

C language 61

coding 83

for XRST 283

in CHKP (symbolic) call 250

in GMSG call 253

in GSCD call 255

in INIT call 257

in INQY call 263

I/O Area
specifying 82

386 Application Programming: Database Manager

I/O Area (input/output area) 82

I/O area length
in CHKP (symbolic) call 250

I/O area returned
keywords 240

map of 240

I/O PCB
in GSCD 254

in INIT call 257

PCBs and DL/I calls 287

I/O PCB mask
12-byte time stamp 71

general description 69

group name field 71

input message sequence number 70

logical terminal name field 69

message output descriptor name 70

specifying 69

status code field 70

userid field 70

userid indicator field 72

ICMD call
commands that can be issued 257

description 255, 257

format 255

parameters 255

restrictions 257

use 256

IGNORE (N or .) statement 320

ILLNESS segment 14

IMSQUERY extended function
arguments 355

usage 355

IMSRXTRC command 344, 346

independent AND 155

indexed field in SSA 154

indexing, secondary
DL/I Returns 156

effect on program 153

multiple qualification statements 154

SSAs 153

status codes 156

infinite loop, stopping 340

INIT
using with DBQUERY 258

INIT (Initialize) call
automatic INIT DBQERY 259

database availability, determining 258

description 257

enabling data availability, status codes 259

enabling deadlock occurrence, status codes 260

format 257

INIT STATUS GROUPA 259

INIT STATUS GROUPB 260

parameters 257

performance 259

performance considerations (IMS online) 259

restrictions 262

status codes 259

usage 258

INIT call function 300

input for a DL/I program 27

input message sequence number, field in I/O PCB 70

INQY (Inquiry) call
description 262

format 262

map of INQY subfunction to PCB type 267

parameters 262

querying
data availability 263

environment 264

PCB 266

program name 267

restriction 267

return and reason codes 267

usage 263

INQY call
querying

LERUNOPT, using LERUNOPT subfunction 266

INQY call function 300

INQY DBQUERY 263

INQY ENVIRON, data output 264

INQY FIND 266

INQY PROGRAM 267

inserting
first occurrence of a segment 203

last occurrence 205

segments 237

inserting a segment
as first occurrence 204

as last occurrence 205

GSAM records 163

in sequence 203

path of segments 203

root 237

rules to obey 237

specifying rules 237

integrity
batch programs 119

maintaining,database 116

using ROLB 117

MPPs and transaction-oriented BMPs 118

using ROLL 117

using ROLS 119

interfaces, DL/I 94

interfaces, DL/I.
See DL/I interfaces

intermediate backout point
backing out 120

internal control statements, summary 290

ISRT (Insert) call
D command code 203

description 235

F command code 204

format 235

L command code 205

loading a database 205

parameters 236

RULES parameter 204

SSA 238

with MSDB, DEDB or VSO DEDB 173

ISRT call function 300

Index 387

Issue Command (ICMD) call
See ICMD call 255

IVPREXX exec 367

IVPREXX sample application 339

J
JCL (job control language), requirements 328, 331

K
key feedback area

DB PCB, length field 74

length field in DB PCB 163

overview 74

keys
concatenated 201

L
L (CALL) statement 292

Language Environment 94

LANG = option for PL/I compatibility 95

language interfaces, DL/I 94

language interfaces, DL/I.
See DL/I interfaces

length of key feedback area 163

less-than relational operator 21

less-than-or-equal-to relational operator 21

level number, field in DB PCB 73

limiting
number of full-function database calls 207

link-editing, reference 32, 50

locating dependents in DEDBs
last-inserted sequential dependent, POS call 185

POS call 185

specific sequential dependent, POS call 185

lock class and Q command code 207

lock management 123

LOG (Log) call
description 267

format 268

parameters 268

restrictions 269

usage 269

LOG call function 300

logging
DRA (database resource adapter) 150

logical AND, Boolean operator 23

logical child 156

logical child segments
HALDBs (high availability large databases),

restrictions 9

logical OR, Boolean operator 23

logical parent 156

logical relationships
effect on programming 158

introduction 156

logical child 156

logical parent 156

physical parent 156

logical relationships (continued)
processing segments 156

programming, effect 156

status codes 159

logical structure 156

logical terminal name, field in I/O PCB 69

M
M command code

examples 212

subset pointers, moving forward 212

main storage database (MSDB)
See MSDB (main storage database)

main storage database (MSDBs)
types

nonrelated 17

main storage databases (MSDBs)
types

related 16

managing subset pointers in DEDBs with command

codes 172

MAP definition (MAPDEF) 344, 347

map name
See *mapname

MAP reading (MAPGET) 344, 349

MAP writing (MAPPUT) 344, 350

mapping
MAPDEF 347

MAPGET 349

MAPPUT 350

mask
AIB 75

DB PCB 72

MAXQ and Q command code 207

medical database example 13

description 14

segments 14

message output descriptor name, field in I/O PCB 70

mixed-language programming 96

modifiable alternate PCBs 115

MPPs
ROLB 118

MSDB (main storage database)
call restrictions 179

commit point processing 177

PCBs and DL/I calls 287

processing 173

data locking 179

updating segments 173

MSDB(main storage database)
data locking 179

MSDBs (main storage database)
processing commit points 177

MSDBs (main storage databases)
nonrelated 172

terminal related 172

types
description 172

nonrelated 17

related 16

388 Application Programming: Database Manager

multiple
DB PCBs 113

positioning 108

processing 108

qualification statements 23

qualification statements, DEDB 25

qualification statements, HDAM 25

qualification statements, PHDAM 25

multiple positioning
advantages of 111

effecting your program 111

resetting position 113

MYLTERM 179

N
N command code 205

NA 258

name field, segments 20

nonrelated (non-terminal-related) MSDBs 172

not-equal-to relational operator 21

not-found status code
description 104

position after 104

NU 259

Null command code 211

O
O (OPTION) Statement 320

ODBA (Open Database Access) interface, DLI/I
getting started with 12

op code 225

OPEN (Open) call
description 239

format 239

usage 239

Open Database Access (ODBA) interface, DL/I
getting started with 12

operand
FSA 226

operation parameter, SNAP external call 277

operator
FSA 175

SSA 21

operators
Boolean 23

relational 23

OPTION statement 320

options, processing; field in DB PCB 74, 163

OR, logical 23

OS/VS COBOL and Language Environment 94

overriding
FIRST insert rule 205

HERE insert rule 204, 205

insert rules 238

P
P command code 206

P processing option 187, 202

parameters
assembler language, DL/I call format 57

C language, DL/I call format 59

COBOL, DL/I call format 62

Pascal, DL/I call format 65

PL/I, DL/I call format 67

parentage, P command code 206

PART exec 360

PARTNAME exec 361

PARTNUM exec 361

parts of DL/I program 7

Pascal
batch program, coding 45

DL/I call formats, example 66

DL/I program structure 45

entry statement 89, 91

parameters, DL/I call format 65

PCBs, passing 91

SSA definition examples 86

syntax diagram, DL/I call format 64

path call 202

D command code 202

definition 26

example 26

overview 26

PATIENT segment 14

PAYMENT segment 15

PCB (program communication block)
address list, accessing 79

DL/I calls, relationship 287

DLIINFO call 345

masks
description 8

GSAM databases 161

I/O PCB 69

modifiable alternate PCBs 115

types 92

PCB (schedule a PSB) call
description 269

format 269

parameters 269

usage 270

PCBINFO exec 358

PCHSEGTS 241

PCLBSGTS 241

PCSEGRTS 241

period usage
See usage

PHDAM
multiple qualification statements 25

PHDAM database 229

physical parent 156

PL/I
batch program, coding 48

DL/I call formats, example 68

DL/I call-level sample 51

DL/I program, multitasking restriction 48

entry statement 89

parameters, DL/I call format 67

PCBs, passing 91

pointers in entry statement 91

Index 389

PL/I (continued)
return statement 89

SSA definition examples 87

syntax diagram, DL/I call format 66

UIB, specifying 79

PL/I and Language Environment 94

PL/I Compatibility
LANG= Option 95

PLITDLI 121

POS (Position) call
description 185, 239

examples 242

format 240

I/O area 240

parameters 240

unqualified
keywords 240

usage 242

POS call function 300

POS(positioning)=MULT(multiple) 108

position
establishing in database 234

positioning
after DLET 101

after ISRT 103

after REPL 103

after retrieval calls 100

after unsuccessful calls 104

after unsuccessful DLET or REPL call 104

after unsuccessful retrieval or ISRT call 105

CHKP, effect 115

current, after unsuccessful calls 104

determining 99

multiple 108

understanding current 99

PREINIT parameter, input restart 328

preloaded programs 97

processing
commit-point in DEDB 187

commit-point in MSDB 177

database, several views 113

DEDBs 180

Fast Path databases 171

GSAM databases 161

MSDBs and VSO DEBDs 173

multiple 108

options
field in DB PCB 74, 163

H (position), for Fast Path 188

P (path) 202

P (position), for Fast Path 187

segments in logical relationships 156

program
batch structure 7

design 27

restarting 115

program communication block
See also DB (database program communication

block)

See PCB (program communication block)

program deadlock 260

program specification blocks (PSBs)
description 10

programming
guidelines 19

mixed language 96

secondary indexing 153

PSB (program specification block)
format 92

PSBGEN
LANG= Option 95

PSBs (program specification blocks)
description 10

PSSEGHWM 241

PUNCH statement 321

PURG call function 300

Q
Q command code 122

and the DEQ call 208

example 207

full function and segment release 208

lock class 207

MAXQ 207

qualification statement
coding 83

field name 21

field value 21, 22

multiple qualification statements 23

multiple qualification statements, DEDB 25

multiple qualification statements, HDAM 25

multiple qualification statements, PHDAM 25

relational operator 21

segment name 21

structure 21

qualification statements
overview 21

qualified calls
definition 20

overview 20

qualified SSA
structure with command code 26

qualified SSAs (segment search arguments)
qualification statement 21

structure 21

qualifying
DL/I calls with command codes 26

SSAs 21

R
R command code 213

RACF signon security 71

RACROUTE SAF 71

randomizing routine
exit routine 25, 229

RCMD call
description 270, 271

format 270

parameters 270

restrictions 271

390 Application Programming: Database Manager

RCMD call (continued)
use 271

reading segments in MSDBs 174, 179

record search argument
See RSA (record search argument)

related (terminal related) MSDBs 172

relational operators
Boolean operators 23

independent AND 23

list 21

logical AND 23

logical OR 23

overview 21

SSA, coding 83

SSA, qualification statement 21

REPL (Replace) call
description 242

format 243

N command code 205

parameters 243

SSAs 243

usage 243

with MSDB, DEDB or VSO DEDB 173

REPL call function 300

requesting a segment
using GU 234

reserving
place for command codes 189

segment
command code 122

lock management 123

resetting a subpointer 214

residency mode (RMODE) 96

Restart, Extended
parameters 282

position in database 284

restarting your program 283

restrictions 285

starting your program normally 283

usage 283

Restart, Extended (XRST) 251

description 282

restarting your program
XRST call 283

restarting your program, basic checkpoints 115

restrictions
CHKP and XRST with GSAM 166

database calls
to DEDBs 189

to MSDBs 179

F command code 203

number of database calls and Fast Path 207

retrieval calls
D command code 202

F command code 203

L command code 205

status codes, exceptional 9

Retrieve Command (RCMD) call
See RCMD call 270

retrieving
dependents sequentially 230

retrieving (continued)
first occurrence of a segment 203

last occurrence 205

segments
Q command code, Fast Path 207

Q command code, full function 207

sequentially 202

segments with D 202

return codes
UIB 79, 369

REXX
. (period) usage 343

calls
return codes 341

summary 341

syntax 341

commands
DL/I calls 341

summary 341

DL/I calls, example 343

execs
DFSSAM01 362

DOCMD 362

IVPREXX 367

PART 360

PARTNAME 361

PARTNUM 361

PCBINFO 358

SAY 357

IMSRXTRC, trace output 346

REXX, IMS adapter
. (period) usage 345

address environment 336

AIB, specifying 343

description 335

DFSREXX0 program 335, 339

DFSREXX1 335

DFSREXXU user exit 335

DFSRRC00 339

diagram 338

DL/I parameters 342

environment 344

example execs 356

feedback processing 342

I/O area 342

installation 335

IVPREXX exec 339

IVPREXX PSB 337

IVPREXX setup 337

LLZZ processing 342

LNKED requirements 335

non-TSO/E 335

PCB, specifying 343

programs 335

PSB requirements 335

sample generation 337

sample JCL 337

SPA processing 342

SRRBACK 335

SRRCMIT 335

SSA, specifying 343

Index 391

REXX, IMS adapter (continued)
SYSEXEC DD 335, 337

system environment 335, 337

SYSTSIN DD 337

SYSTSPRT DD 335, 337

TSO environment 335

TSO/E restrictions 335

ZZ processing 342

REXXIMS commands 347, 349

See also IMSQUERY extended function

DLIINFO 344, 345

IMSRXTRC 344, 346

MAPDEF 344

MAPGET 344

MAPPUT 344, 350

SET 344, 351

SRRBACK 344, 352

SRRCMIT 344, 352

STORAGE 344, 352

WTL 344, 354

WTO 344, 354

WTOR 344, 354

WTP 344, 354

REXXTDLI commands 341

RMODE 96

ROLB
in MPPs and transaction-oriented BMPs 118

ROLB (Roll Back) call
compared to ROLL call 116

description 118, 271

format 272

maintaining database integrity 116

parameters 272

usage 118

ROLB call function 300

ROLL (Roll) call
compared to ROLB call 116

description 117, 272

format 272

maintaining database integrity 116

ROLL call function 300

ROLS
backing out to an intermediate backout point 120

ROLS (Roll Back to SETS) call
description 273

format 273

maintaining database integrity 116

parameters 273

TOKEN 119

ROLS call function 300

ROLX call function 301

routines, error 10

RSA (record search argument)
description 163

GSAM, reference 88

overview 163

rules
coding an SSA 83

RULES parameter
FIRST, L command code 205

RULES parameter (continued)
HERE

F command code 204

L command code 205

S
S (STATUS) statement 324

S command code
examples 214

subpointer, resetting 214

sample JCL 328

sample programs
call-level assembler language, CICS online 32

call-level COBOL, CICS online 40

call-level PL/I, CICS online 51

SAY exec 357

scheduling HALDBs
application programs, against 95

scheduling HALDBs (high availability large

databases) 9

secondary indexes
multiple qualification statements 154

secondary indexing
DB PCB contents 156

effect on programming 153

information returned by DL/I 156

SSAs 153

status codes 156

secondary processing sequence 154

segment
requesting using GU 234

segment level number field 73

segment name
DB PCB, field 74

SSA, qualification statement 21

segment search argument (SSA)
coding rules 83

segment search arguments (SSAs)
See SSAs (segment search arguments)

segment, information needed 28

segments
medical database example 14

sensitive segments in DB PCB 74

sequence
hierarchy 228

sequence field
virtual logical child, in 22

sequence, indication for statements 328

sequential dependent segments
how stored 173

sequential dependents 173

overview 173

SET command (REXX) 344, 351

SET SUBFUNC command (REXX) 351

SET ZZ 351

SETO call function 301

SETO, DFSDDLT0
description 292

SETS
backing out to an intermediate backout point 120

392 Application Programming: Database Manager

SETS (Set a Backout Point) call
description 120, 274

format 274

parameters 274

SETS call function 301

setting
parentage with the P command code 206

subset pointer to zero 216

SETU
backing out to an intermediate backout point 120

SETU (Set a Backout Point Unconditional) call
description 120, 274

format 274

parameters 274

SETU, call function 120

signon security, RACF 71

single positioning 108

skeleton programs
assembler language 29

C language 34

COBOL 37

Pascal 45

PL/I 48

SKIP call function 311

SNAP call
description 275

format 276

parameters 276

status codes 278

SNAP call function 301

specifying
command codes for DEDBs 183

DB PCB mask 72

GSAM data set attributes 169

processing options for DEDBs 187

Spool API
STORAGE command example 354

SRRBACK command (REXX)
description 344

format, usage 352

SRRCMIT command (REXX)
description 344

format, usage 352

SSA (segment search argument)
coding

formats 84

restrictions 84

rules 83

coding rules 83

command codes 26

qualification statement 83

reference 83

relational operators 21

restrictions 83

segment name field 83

structure with command code 26

usage
command codes 26

guidelines 22

multiple qualification statements 23

virtual logical child, in 22

SSAs (segment search argument)
overview 20

segment name field 20

SSAs (segment search arguments)
definition 20

qualified 20, 21

unqualified 20

usage 223

DLET 223

GN 228

GNP 232

GU 234

ISRT 238

REPL 243

secondary indexing 153

STAK call function 311

START call function 311

STAT (Statistics) call
description 278

format 278

parameters 279

usage 280

STAT call function 301

status code
GE (segment not found) 202

status codes
blank 9

checking 9

DB PCB, for 258

error routines 10

field in DB PCB 73, 163

FSA 175

GB, end of database 202

GSAM 165

H processing option 188

HALDB (high availability large databases)

partitions 9

logical relationships 159

P processing option 187

retrieval calls 9

subset pointers 184

status codes, exceptional
call results 9

status codes, field in I/O PCB 70

STATUS statement 324

storage
!token 352

STORAGE command 352

STORAGE command (REXX)
description 344

format, usage 352

subset pointer command codes
restrictions 27

subset pointers
DEDB, managed by command codes 27

defining, DBD 183

defining, PCB 183

description 180

M command 212

preparing to use 182

R command code 213

Index 393

subset pointers (continued)
resetting 214

S command code 214

sample application 183, 211

status codes 184

using 180

Z command code 216

Summary
database management call 217

system service calls 246

summary of changes for DFSDDLT0 internal control

statements 290

summary of command codes 26

Symbolic Checkpoint (CHKP Symbolic) 250

format 250

parameters 250

restrictions 251

usage 251

SYNC (Synchronization Point) call
description 280

format 280

parameters 281

usage 281

SYNC call function 301

syntax diagram
assembler language, DL/I call format 56

C language, DL/I call format 58

COBOL, DL/I call format 61

how to read xix

Pascal, DL/I call format 64

PL/I, DL/I call format 66

SYSIN input 328

SYSIN2 input processing 328

system service calls
APSB (Allocate PSB) 248

CHKP (Basic) 249

CHKP (Symbolic) 250

DPSB (deallocate) 251

GMSG (Get Message) 252

ICMD (Issue Command) 255

INIT (Initialize) 257

INQY (Inquiry) 262

LOG (Log) 267

PCB (schedule a PSB) 269

RCMD (Retrieve Command) 270

ROLB (Roll Back) 271

SETS/SETU (Set a Backout Point) 274

SNAP 275

STAT (Statistics) 278

SYNC (Synchronization Point) 280

TERM (Terminate) 281

XRST (Extended Restart) 282

T
T (Comment) statement 313

TERM (Terminate) call
description 281

format 281

usage 281

test program
See DL/I Test Program (DFSDDLT0)

testing status codes 9

tracing
DRA (database resource adapter) 150

transaction-oriented BMPs
ROLB 118

TREATMNT segment 15

TSO/E REXX
See REXX, IMS adapter

U
U (Comment) statement 313

U Command Code 209

UIB (user interface block)
defining, in program 79

field names 81

PCB address list, accessing 79

return codes, accessing 79

return codes, list 369

UIBDLTR
introduction 80

return codes, checking 369

UIBFCTR
introduction 80

return codes, checking 369

UIBPCBAL
introduction 80

return codes, checking 369

undefined-length records 163

unqualified calls
definition 20

overview 20

unqualified POS call
I/O returned area

key words 240

map of 240

keywords 240

unqualified SSA
structure with command code 26

usage with command codes 26

unqualified SSAs
segment name field 20

UOW boundary, processing DEDB 187, 188

updating
segments in an MSDB, DEDB or VSO DEDB 173

user interface block
See UIB (user interface block)

userid indicator, field in I/O PCB 72

userid, field in I/O PCB 70

V
V command code 210

V5SEGRBA 241

variable-length records 163

virtual logical child 22

virtual storage option data entry database (VSO DEDB)
See VSO DEDB (virtual storage option data entry

database), processing

394 Application Programming: Database Manager

VS COBOL II and Language Environment 94

VSAM, STAT call 280

VSO DEDB (virtual storage option data entry database),

processing 173

W
WAITAOI 253

WTL command (REXX)
description 344

format, usage 354

WTO command (REXX)
description 344

format, usage 354

WTO statement 327

WTOR command (REXX)
description 344

format, usage 354

WTOR statement 327

WTP command (REXX)
description 344

format, usage 354

X
XRST (Extended Restart) 251

XRST (Extended Restart) call
description 282

format 282

parameters 282

restrictions 285

usage 283

with GSAM 166

XRST call function 301

Z
Z command code

examples 216

setting a subpointer to zero 216

z/OS environment 336

Index 395

396 Application Programming: Database Manager

����

Program Number: 5655-J38

Printed in USA

SC18-7809-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

IM
S

Ap
pl

ic
at

io
n

Pr
og

ra
m

m
in

g:

D

at
ab

as
e

M
an

ag
er

Ve

rs
io

n
9

	Contents
	Figures
	Tables
	About This Book
	Summary of Contents
	Prerequisite Knowledge
	IBM Product Names Used in This Information
	How to Read Syntax Diagrams
	How to Send Your Comments

	Summary of Changes
	Changes to This Book for IMS Version 9
	Technical Changes
	Editorial Changes

	Library Changes for IMS Version 9
	New and Revised Titles
	Organizational Changes
	Terminology Changes
	Accessibility Enhancements
	User Assistive Technologies
	Accessible Information
	Keyboard Navigation of the User Interface

	Part 1. Writing Application Programs
	Chapter 1. How Application Programs Work with Database Manager
	IMS Environments
	DL/I and Your Application Program
	DL/I Codes
	Status, Return, and Reason Codes
	Exceptional Condition Status Codes
	High Availability Large Databases (HALDBs)
	Error Routines

	Database Descriptions (DBDs) and Program Specification Blocks (PSBs)
	DL/I for CICS Online Users
	DL/I using the ODBA Interface
	Database Hierarchy Examples
	Medical Hierarchy Example
	Bank Account Hierarchy Example
	Related MSDBs
	Nonrelated MSDBs

	Chapter 2. Writing Your Application Programs
	Programming Guidelines
	Segment Search Arguments (SSAs)
	Unqualified SSAs
	Qualified SSAs
	Sequence Fields of a Virtual Logical Child

	SSA Guidelines
	Multiple Qualification Statements
	Example of How to Use Multiple Qualification Statements
	Multiple Qualification Statements for HDAM, PHDAM, or DEDB

	SSAs and Command Codes

	Considerations for Coding DL/I Calls and Data Areas
	Preparing to Run Your CICS DL/I Call Program
	Examples of How to Code DL/I Calls and Data Areas
	Coding a Batch Program in Assembler Language
	Binding Assembler Code to the IMS Language Interface Module

	Coding a CICS Online Program in Assembler Language
	Coding a Batch Program in C Language
	Binding C Code to the Language Interface Module

	Coding a Batch Program in COBOL
	Binding COBOL Code to the IMS Language Interface Module

	Coding a CICS Online Program in COBOL
	Ensuring Addressability Using the COBOL Optimization Feature (CICS Online Only)

	Coding a Batch Program in Pascal
	Binding Pascal Code to the IMS Language Interface Module

	Coding a Batch Program in PL/I
	Binding PL/I Code to the IMS Language Interface Module

	Coding a CICS Online Program in PL/I

	Chapter 3. Defining Application Program Elements
	Formatting DL/I Calls for Language Interfaces
	Assembler Language Application Programming
	Format
	Parameters
	Example of a DL/I Call Format

	C Language Application Programming
	Format
	Parameters
	I/O Area
	Example of a DL/I Call Format

	COBOL Application Programming
	Format
	Parameters
	Example of a DL/I Call Format

	Pascal Application Programming
	Format
	Parameters
	Example of a DL/I Call Format

	Application Programming for PL/I
	Format
	Parameters
	Example of a DL/I Call Format

	Specifying the I/O PCB Mask
	Specifying the DB PCB Mask
	Specifying the AIB Mask
	Specifying the AIB Mask for ODBA Applications
	Specifying the UIB (CICS Online Programs Only)
	Specifying the I/O Areas
	Formatting Segment Search Arguments (SSAs)
	SSA Coding Rules
	SSA Coding Formats
	Assembler Language SSA Definition Examples
	C Language SSA Definition Examples
	COBOL SSA Definition Examples
	Pascal SSA Definition Examples
	PL/I SSA Definition Examples

	GSAM Data Areas
	The AIBTDLI Interface
	Language Specific Entry Points
	Assembler Language Entry Point
	C Language Entry Point
	COBOL Entry Point
	Pascal Entry Point
	PL/I Entry Point
	CEETDLI, AIBTDLI, and AERTDLI Interface Considerations

	Program Communication Block (PCB) Lists
	PCB List Format
	GPSB PCB List
	PCB Summary

	The AERTLDI interface
	Language Environments
	The CEETDLI interface to IMS
	Specifying LANG= Option for PL/I Compatibility

	Special DL/I Situations
	Application Program Scheduling against HALDBs
	Mixed-Language Programming
	Language Environment Routine Retention
	Extended Addressing Capabilities of z/OS
	Preloaded Programs

	Chapter 4. Current Position in the Database After Each Call
	Current Position after Successful Calls
	Position after Retrieval Calls
	Position after DLET
	Position after REPL
	Position after ISRT

	Current Position after Unsuccessful Calls
	Position after an Unsuccessful DLET or REPL Call
	Position after an Unsuccessful Retrieval or ISRT Call

	Multiple Processing
	Multiple Positioning
	Advantages of Using Multiple Positioning
	How Multiple Positioning Affects Your Program
	Resetting Position with Multiple Positioning

	Multiple DB PCBs

	Chapter 5. Recovering Databases and Maintaining Database Integrity
	Issuing Checkpoints
	Restarting Your Program From the Latest Checkpoint
	Maintaining Database Integrity (IMS Batch, BMP, and IMS Online Regions)
	Backing Out to a Prior Commit Point: ROLL, ROLB, and ROLS
	ROLL
	ROLB
	ROLS

	Backing Out to an Intermediate Backout Point: SETS, SETU, and ROLS
	SETS and SETU Calls
	ROLS

	Reserving Segments for the Exclusive Use of Your Program

	Chapter 6. The Database Resource Adapter (DRA)
	Thread Concepts
	Processing Threads
	Processing a CCTL Thread
	Processing an ODBA Thread

	Processing Multiple Threads
	Processing Multiple CCTL Threads
	Processing Multiple ODBA Threads

	CCTL Multithread Example

	Sync Points
	The Two-Phase Commit Protocol
	In-Doubt State During Two-Phase Sync

	DRA Startup Table
	Sample DFSPZP00 Source Code
	DFSPRP Macro Keywords

	Enabling the DRA for a CCTL
	Enabling the DRA for the ODBA Interface
	Processing CCTL DRA Requests
	Processing ODBA Calls
	CCTL-Initiated DRA Function Requests
	INIT Request
	INIT Request, Identify to DBCTL
	INIT Request after a Previous DRA Session Termination

	RESYNC Request
	TERM Request
	Thread Function Requests
	SCHED Request
	IMS Request
	SYNTERM Request
	PREP Request
	COMTERM Request
	ABTTERM Request
	TERMTHRD Request

	PAPL Mapping Format
	Terminating the DRA
	Designing the CCTL Recovery Process
	CCTL Performance: Monitoring DRA Thread TCBs
	DRA Thread Statistics
	DRA Statistics
	Evaluating the DRA Statistics

	Tracing
	Sending Commands to IMS DB
	Problem Diagnosis
	SDUMP
	SNAP

	Chapter 7. Secondary Indexing and Logical Relationships
	How Secondary Indexing Affects Your Program
	SSAs with Secondary Indexes
	Multiple Qualification Statements with Secondary Indexes
	The Dependent AND
	The Independent AND

	DL/I Returns with Secondary Indexes
	Status Codes for Secondary Indexes

	Processing Segments in Logical Relationships
	How Logical Relationships Affect Your Programming
	Status Codes for Logical Relationships

	Chapter 8. Processing GSAM Databases
	Accessing GSAM Databases
	PCB Masks for GSAM Databases
	Retrieving and Inserting GSAM Records
	Explicit Open and Close Calls to GSAM

	GSAM Record Formats
	GSAM I/O Areas
	GSAM Status Codes
	Symbolic CHKP and XRST with GSAM
	GSAM Coding Considerations
	Origin of GSAM Data Set Characteristics
	DD Statement DISP Parameter for GSAM Data Sets
	Using Extended Checkpoint Restart for GSAM Data Sets
	Concatenated Data Sets Used by GSAM
	Suggested Method for Specifying GSAM Data Set Attributes
	DLI, DBB, and BMP Region Types and GSAM

	Chapter 9. Processing Fast Path Databases
	Fast Path Database Calls
	Main Storage Databases (MSDBs)
	Data Entry Databases (DEDBs)
	Processing MSDBs and DEDBs
	Updating Segments: REPL, DLET, ISRT, and FLD
	Checking the Contents of a Field: FLD/VERIFY
	Changing the Contents of a Field: FLD/CHANGE
	Example of Using FLD/VERIFY and FLD/CHANGE

	Commit-Point Processing in MSDBs and DEDBs
	MSDB Commit View
	DEDBs with MSDB Commit View

	VSO Considerations
	Data Locking for MSDBs and DEDBs

	Restrictions on Using Calls for MSDBs
	Processing DEDBs (IMS and CICS with DBCTL)
	Processing DEDBs with Subset Pointers
	Before You Use Subset Pointers
	Designating Subset Pointers
	Using Subset Pointers
	Subset Pointer Status Codes

	Retrieving Location with the POS Call (for DEDB Only)
	Locating a Specific Sequential Dependent
	Locating the Last Inserted Sequential Dependent Segment
	Identifying Free Space

	Commit-Point Processing in a DEDB
	P Processing Option
	H Processing Option
	Data Locking

	Calls with Dependent Segments for DEDBs
	Direct Dependent Segments
	Sequential Dependent Segments

	Fast Path Coding Considerations

	Part 2. Reference
	Chapter 10. Command Code Reference
	General Command Codes for DL/I Calls
	C Command Code
	D Command Code
	Retrieving a Sequence of Segments
	Inserting a Sequence of Segments

	F Command Code
	Retrieving a Segment as the First Occurrence
	Inserting a Segment as the First Occurrence

	L Command Code
	Retrieving a Segment as the Last Occurrence
	Inserting a Segment as the Last Occurrence

	N Command Code
	P Command Code
	Q Command Code
	Limiting the Number of Database Calls
	Using Segment Lock Class
	Using the DEQ Call with the Q Command Code
	Retrieving Segments with Full-Function DEQ Calls
	Retrieving Buffers with Fast Path DEQ Calls
	Considerations for Root and Dependent Segments (Full Function Only)

	U Command Code
	V Command Code
	NULL Command Code

	DEDB Command Codes for DL/I
	Sample Application Program
	M Command Code
	R Command Code
	S Command Code
	W Command Code
	Z Command Code

	Chapter 11. DL/I Calls for Database Management
	Database Management Call Summary
	CIMS Call
	Format
	Parameters
	Usage

	CLSE Call
	Format
	Parameters
	Usage

	DEQ Call
	Format (Full Function)
	Format (Fast Path DEDB)
	Parameters
	Usage
	Restrictions

	DLET Call
	Format
	Parameters
	Usage

	FLD Call
	Format
	Parameters
	Usage
	FSAs

	GN/GHN Call
	Format
	Parameters
	Usage: Get Next (GN)
	Usage: Get Hold Next (GHN)
	Usage: HDAM, PHDAM, or DEDB Database with GN
	Restriction

	GNP/GHNP Call
	Format
	Parameters
	Usage: Get Next in Parent (GNP)
	Linking with Previous DL/I Calls
	Processing with Parentage
	How DL/I Calls Affect Parentage

	Usage: Get Hold Next in Parent (GHNP)

	GU/GHU Call
	Format
	Parameters
	Usage: Get Unique (GU)
	Usage: Get Hold Unique (GHU)
	Restriction

	ISRT Call
	Format
	Parameters
	Usage
	Root Segment Occurrence
	Insert Rules
	Mix Qualified and Unqualified SSA
	Using SSA with the ISRT Call

	OPEN Call
	Format
	Parameters
	Usage

	POS Call
	Format
	Parameters
	Usage
	Restrictions

	REPL Call
	Format
	Parameters
	Usage

	Chapter 12. DL/I Calls for System Services
	System Service Call Summary
	APSB Call
	Format
	Parameters
	Usage

	CHKP (Basic) Call
	Format
	Parameters
	Usage

	CHKP (Symbolic) Call
	Format
	Parameters
	Usage
	Restrictions

	DPSB Call
	Format
	Parameters
	Usage

	GMSG Call
	Format
	Parameters
	Usage
	Restrictions

	GSCD Call
	Format
	Parameters
	Usage
	Restriction

	ICMD Call
	Format
	Parameters
	Usage
	Restrictions

	INIT Call
	Format
	Parameters
	Usage
	Determining Database Availability: INIT DBQUERY
	Automatic INIT DBQUERY
	Performance Considerations for the INIT Call (IMS Online Only)
	Enabling Data Availability Status Codes: INIT STATUS GROUPA
	Enabling Deadlock Occurrence Status Codes: INIT STATUS GROUPB

	Restrictions

	INQY Call
	Format
	Parameters
	Usage
	Querying Data Availability: INQY DBQUERY
	Querying the Environment: INQY ENVIRON
	Querying the PCB: INQY FIND
	Querying for LE Overrides: INQY LERUNOPT
	Querying the Program Name: INQY PROGRAM
	INQY Return Codes and Reason Codes
	Map of INQY Subfunction to PCB Type

	Restrictions

	LOG Call
	Format
	Parameters
	Usage
	Restrictions

	PCB Call (CICS Online Programs Only)
	Format
	Parameters
	Usage
	Restrictions

	RCMD Call
	Format
	Parameters
	Usage
	Restrictions

	ROLB Call
	Format
	Parameters
	Restrictions

	ROLL Call
	Format
	Parameters
	Usage
	Restriction

	ROLS Call
	Format
	Parameters
	Usage
	Restrictions

	SETS/SETU Call
	Format
	Parameters
	Usage
	Restrictions

	SNAP Call
	Format
	Parameters
	Usage
	Restrictions

	STAT Call
	Format
	Parameters
	Usage
	Restrictions

	SYNC Call
	Format
	Parameters
	Usage
	Restrictions

	TERM Call (CICS Online Programs Only)
	Format
	Usage
	Restrictions

	XRST Call
	Format
	Parameters
	Usage
	Starting Your Program Normally
	Restarting Your Program
	Position in the Database after Issuing XRST

	Restrictions

	Chapter 13. Relationship Between Calls and AIB and PCBs
	Chapter 14. DL/I Test Program (DFSDDLT0)
	Control Statements
	Planning the Control Statement Order
	ABEND Statement
	Examples of ABEND Statement

	CALL Statement
	CALL FUNCTION Statement
	CALL DATA Statement
	OPTION DATA Statement
	FEEDBACK DATA Statement
	DL/I Call Functions
	Examples of DL/I Call Functions
	CALL FUNCTION Statement with Column-Specific SSAs
	DFSDDLT0 Call Functions
	STAK/END (stacking) Control Statements
	SKIP/START (skipping) Control Statements

	Examples of DFSDDLT0 Call Functions

	COMMENT Statement
	Conditional COMMENT Statement
	Unconditional COMMENT Statement
	Example of COMMENT Statement

	COMPARE Statement
	COMPARE DATA Statement
	COMPARE AIB Statement
	COMPARE PCB Statement
	Examples of COMPARE DATA and COMPARE PCB Statements

	IGNORE Statement
	Example of IGNORE Statement Using N or .

	OPTION Statement
	Example of OPTION Control Statement

	PUNCH CTL Statement
	Example of PUNCH CTL Statement
	Example of PUNCH CTL Statement for All Parameters

	STATUS Statement
	Examples of STATUS Statement

	WTO Statement
	Example of WTO Statement

	WTOR Statement
	Example of WTOR Statement

	JCL Requirements
	SYSIN DD Statement
	SYSIN2 DD Statement
	PRINTDD DD Statement
	PUNCHDD DD Statement
	Using the PREINIT Parameter for DFSDDLT0 Input Restart

	Execution of DFSDDLT0 in IMS Regions
	Explanation of DFSDDLT0 Return Codes
	DFSDDLT0 Hints
	Load a Database
	Print the Segments in a Database
	Retrieve and Replace a Segment
	Delete a Segment
	Do Regression Testing
	Use as a Debugging Aid
	Verify How a Call Is Executed

	Chapter 15. IMS Adapter for REXX
	Sample Exit Routine (DFSREXXU)
	Addressing Other Environments
	REXX Transaction Programs
	IMS Adapter for REXX Overview Diagram
	IVPREXX Sample Application
	IVPREXX Example 1
	IVPREXX Example 2
	IVPREXX Example 3
	IVPREXX Example 4

	REXXTDLI Commands
	REXXTDLI Calls
	Return Codes
	Parameter Handling
	Example DL/I Calls
	Environment Determination

	REXXIMS Extended Commands
	DLIINFO
	Format
	Usage
	Example

	IMSRXTRC
	Format
	Usage
	Example

	MAPDEF
	Format
	Usage
	Example

	MAPGET
	Format
	Usage
	Examples

	MAPPUT
	Format
	Usage
	Examples

	SET
	Format
	Usage
	Examples

	SRRBACK and SRRCMIT
	Format
	Usage

	STORAGE
	Format
	Usage
	Example

	WTO, WTP, and WTL
	Format
	Usage
	Example

	WTOR
	Format
	Usage
	Example

	IMSQUERY Extended Functions
	Format
	Usage
	Example

	Sample Execs Using REXXTDLI
	SAY Exec: For Expression Evaluation
	PCBINFO Exec: Display Available PCBs in Current PSB
	PART Execs: Database Access Examples
	PARTNUM Exec: Show Set of Parts Near a Specified Number
	PARTNAME Exec: Show a Set of Parts with a Similar Name
	DFSSAM01 Exec: Load the Parts Database

	DOCMD: IMS Commands Front End
	IVPREXX: MPP/IFP Front End for General Exec Execution

	Chapter 16. CICS-DL/I User Interface Block Return Codes
	Not-Open Conditions
	Invalid Request Conditions

	Part 3. Appendixes
	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	IMS Version 9 Library
	Supplementary Publications
	Publication Collections
	Accessibility Titles Cited in This Library

	Index

