<|lI!

DB2 Universal Database for OS/390 and z/0OS

ODBC Guide and Reference

Version 7

SC26-9941-03

<|lI!

DB2 Universal Database for OS/390 and z/0OS

ODBC Guide and Reference

Version 7

SC26-9941-03

Note
Before using this information and the product it supports, be sure to read the
general information under|Appendix G, “Notices”, on page 535|

Fourth Edition, Softcopy Only (June 2003)

This edition applies to Version 7 of IBM DATABASE 2 Universal Database Server for OS/390 and z/OS (DB2 for
0S/390 and z/OS), 5675-DB2, and to any subsequent releases until otherwise indicated in new editions. Make sure
you are using the correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed
version by vertical bars. Additional changes made to this softcopy version of the book since the hardcopy book was
published are indicated by the hash (#) symbol in the left-hand margin. Editorial changes that have no technical
significance are not noted.

This and other books in the DB2 for OS/390 and z/OS library are periodically updated with technical changes. These
updates are made available to licensees of the product on CD-ROM and on the Web (currently at
www.ibm.com/software/data/db2/0s390/library.html). Check these resources to ensure that you are using the most
current information.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book

Who should use this book
Product terminology and citations
How to send your comments .

Summary of changes to this book .

Chapter 1. Summary of changes to DB2 for 0S/390 and z/OS Version 7.

Enhancements for managing data

Enhancements for reliability, scalability, and avallablllty

Easier development and integration of e-business applications .
Improved connectivity . . .

Features of DB2 for OS/390 and z/OS

Migration considerations .

Chapter 2. Introduction to DB2 ODBC .
DB2 ODBC background information.

Differences between DB2 ODBC and ODBC version 2 O
Differences between DB2 ODBC and embedded SQL .
Advantages of using DB2 ODBC
Deciding which interface to use .

Static and dynamic SQL

Use both interfaces .

Write a mixed application .

Other information sources .

Chapter 3. Writing a DB2 ODBC appllcatlon .
Initialization and termination . .o
Handles .
ODBC connection model .
Connect type 1 and type 2 .o
Connecting to one or more data sources
Transaction processing .
Allocating statement handles
Preparation and execution.
Processing results.
Commit or rollback
Freeing statement handles
Diagnostics .
Function return codes
SQLSTATEs .
SQLCA.
Data types and data conversion
C and SQL data types .
Other C data types
Data conversion .
Working with string arguments .
Length of string arguments
Null-termination of strings .
String truncation
Interpretation of strings . . .
Querying environment and data source mformatlon
Querying environment information example

© Copyright IBM Corp. 1997, 2001

Chapter 4. Configuring DB2 ODBC and running sample appllcatlons ... M

Installing DB2 ODBC. L. .M
DB2 ODBC runtime environment4
Connectivity requirements O 4 24
Setting up DB2 ODBC runtime enwronment P XS
Bind DBRMs to packages .43
Bind packages at remote sites45
Bind stored procedures. .45
Bind an application plan . . . - o)
Setting up OS/390 UNIX enwronment e 1)
Setting up suffix-W API support. . . e)
Preparing and executing a DB2 ODBC appllcatron e e 48
DB2 ODBC application requirements.49
Application preparation and executionsteps50
DB2 ODBC initialization file .5b2
Using the initialization file .53
Initialization keywords e 19
DB2 ODBC migration con3|derat|ons C e e65
Chapter 5. Functions67
Function summary068
SQLAllocConnect - AIIocate connectron handle &€
SQLAllocEnv - Allocate environment handle77
SQLAllocHandle - Allocate handle.79
SQLAllocStmt - Allocate a statementhandle83
SQLBindCol - Bind a column to an application variable85
SQLBindParameter - Binds a parameter marker to a buffer or LOB Iocator .91
SQLCancel - Cancel statement . . . T [0
SQLCloseCursor - Close cursor and d|scard pendrng results T [0
SQLColAttribute - Get column attributes 106
SQLColAttributes - Get column attributes. 114
SQLColumnPrivileges - Get privileges associated wrth the cqumns of a table 120
SQLColumns - Get column information foratable 124
SQLConnect - Connectto adatasource129
SQLDataSources - Get list of datasources 134
SQLDescribeCol - Describe column attributes 137
SQLDescribeParam - Describe parameter marker 142
SQLDisconnect - Disconnect from a data source 144
SQLDriverConnect - (Expanded) connect to a data source 146
SQLEndTran - End transaction of a connecton 152
SQLError - Retrieve error information 1565
SQLExecDirect - Execute a statement directly 161
SQLExecute - Execute a statement.166
SQLExtendedFetch - Extended fetch (fetch array of rows) o 189
SQLFetch - Fetch next row . . . T ()
SQLForeignKeys - Get the list of fore|gn key cqumns e 21
SQLFreeConnect - Free connection handle 189
SQLFreeEnv - Free environmenthandle 191
SQLFreeHandle - Free handle resources.193
SQLFreeStmt - Free (or reset) a statementhandle 196
SQLGetConnectAttr - Get current attribute setting . . . co. ... 199
SQLGetConnectOption - Returns current setting of a connect optron. 202
SQLGetCursorName - Get cursorname204
SQLGetData - Get data from a column210
SQLGetDiagRec - Get multiple field settings of dlagnostlc record223
SQLGetEnvAttr - Returns current setting of an environment attribute. 226

iV ODBC Guide and Reference

SQLGetFunctions - Get functions.

SQLGetInfo - Get general information .

SQLGetLength - Retrieve length of a string value
SQLGetPosition - Return starting position of string
SQLGetSQLCA - Get SQLCA data structure .
SQLGetStmtAttr - Get current setting of a statement attnbute
SQLGetStmtOption - Returns current setting of a statement option
SQLGetSubString - Retrieve portion of a string value
SQLGetTypelnfo - Get data type information

SQLMoreResults - Determine if there are more result sets
SQLNativeSql - Get native SQL text

SQLNumParams - Get number of parameters ina SQL statement
SQLNumResultCols - Get number of result columns.

SQLParamData - Get next parameter for which a data value is needed

SQLParamOptions - Specify an input array for a parameter .
SQLPrepare - Prepare a statement .
SQLPrimaryKeys - Get primary key columns of a table

SQLProcedureColumns - Get |nput/output parameter information for a

procedure
SQLProcedures - Get Irst of procedure names .
SQLPutData - Passing data value for a parameter
SQLRowCount - Get row count
SQLSetColAttributes - Set column attrlbutes
SQLSetConnectAttr - Set connection attributes.
SQLSetConnection - Set connection handle.
SQLSetConnectOption - Set connection option.
SQLSetCursorName - Set cursor name
SQLSetEnvAttr - Set environment attribute .
SQLSetParam - Binds a parameter marker to a buffer
SQLSetStmtAttr - Set options related to a statement
SQLSetStmtOption - Set statement option
SQLSpecialColumns - Get special (row identifier) columns

SQLStatistics - Get index and statistics information for a base table .

SQLTablePrivileges - Get privileges associated with a table .
SQLTables - Get table information
SQLTransact - Transaction management .

Chapter 6. Using advanced features. .

Environment, connection, and statement options .

Distributed unit of work (coordinated distributed transactrons)
Options that govern distributed unit of work semantics .
Establishing a coordinated transaction connection

Global transaction processing .

Querying system catalog information
Using the catalog query functions .
Directing catalog queries to the DB2 ODBC shadow catalog.

Sending/retrieving long data in pieces . .

Specifying parameter values at execute time
Fetching data in pieces

Using arrays to input parameter vaIues
Array input example .

Retrieving a result set into an array .

Returning array data for column-wise bound data
Returning array data for row-wise bound data .
Column-wise, row-wise binding example .

Using large objects .

. 228
. 234
. 257
. 259
. 263
. 270
. 273
. 275
. 278
. 286
. 290
. 292
. 294
. 296
. 298
. 300
. 308

. 313
. 323
. 327
. 330
. 332
. 336
. 343
. 345
. 347
. 350
. 354
. 360
. 367
. 369
. 374
. 379
. 382
. 386

. 389
. 389
. 391
. 392
. 394
. 396
. 397
. 397
. 399
. 401
. 401
. 402
. 403
. 405
. 406
. 407
. 408
. 409
. 411

Contents

\'}

Using LOB locators.42

Using distincttypes. .414
Distinct type example .415
Using stored procedures . . . 2
Advantages of using stored prooedures e 2 4
Catalog table for stored procedures. 418
Calling stored procedures from a DB2 ODBC applrcatron418
Writing a DB2 ODBC stored procedure 419
Returning result sets from stored procedures 420
Writing multithreaded applications . . e 24
DB2 ODBC support of multiple LE threads e oA
When to use multiple LE threads.428
DB2 ODBC support of multiple contexts 424
Application deadlocks .428
Using Unicode functions .429
Background . . Y 4 YRS
DB2 ODBC Unrcode support P < Y24
Application programming guidelines.A483
Example: ODBC application using suffix-W APIs e K 7
Mixing embedded SQL and DB2 ODBC . . . e e 446
Mixed embedded SQL and DB2 ODBC example Y .
Using vendor escape clauses448
Escape clause syntax . . . e e
Using ODBC defined SQL extensrons N e
ODBC date, time, timestamp data 449
ODBC outerjoinsyntax .450
Like predicate escape clauses.450
Stored procedure CALLsyntax451
ODBC scalar functions .45
Programming hints and tips. . . . N S Y24
Avoiding common initialization file problems S Y24
Setting common connection options.452
Setting common statement options . . . Ce e o ... 4k2
Using SQLSetColAttributes to reduce network flowA453
Comparing binding and SQLGetData 453
Increasing transfer efficiency454
Limiting use of catalog functions . . . Y < X Y
Using column names of function generated result sets N < 1
Making use of dynamic SQL statementcaching 454
Optimizing insertion and retrieval ofdata. 455
Optimizing for large object data455
Using SQLDriverConnect instead of SQLConnect455
Turning off statement scanning455
Casting distincttypes .455
Chapter 7. Problem diagnosis457
Tracing . . < Y 4
Application trace < Y 4
Diagnostictrace .489
Stored procedure trace .462
Debugging e e e466
Abnormal termlnatlon e e e e46
Internal errorcode .466
Appendix A. DB2ODBCandODBC467
DB2 ODBC and ODBC drivers467

Vi ODBC Guide and Reference

ODBC APIs and data types .
Isolation levels .

Appendix B. Extended scalar functions
String functions . .

Date and time functions .

System functions.

Appendix C. SQLSTATE cross reference .

Appendix D. Data conversion

Data type attributes.
Precision
Scale .
Length
Display size .

Converting data from SQL to C data types .
Converting character SQL data to C data.
Converting graphic SQL data to C data
Converting numeric SQL data to C data .
Converting binary SQL data to C data .
Converting date SQL data to C data
Converting time SQL data to C data
Converting timestamp SQL data to C data
Converting row ID SQL data to C data.
SQL to C data conversion examples

Converting data from C to SQL data types .
Converting character C data to SQL data.
Converting numeric C data to SQL data .
Converting binary C data to SQL data .
Converting DBCHAR C data to SQL data.
Converting date C data to SQL data
Converting time C data to SQL data
Converting timestamp C data to SQL data
C to SQL data conversion examples

Appendix E. Deprecated function .
Mapping deprecated functions.

Changes to SQLGetInfo information types
Changes to SQLSetConnectAttr attributes
Changes to SQLSetEnvAttr attributes .
Changes to SQLSetStmtAttr attributes .
ODBC 3.0 driver behavior .
SQLSTATE mappings . .
Changes to datetime data types .

Appendix F. Example code
DSN8O3VP sample application

Client application calling a DB2 ODBC stored procedure .

Appendix G. Notices . .
Programming interface mformatron .
Trademarks.

Glossary

Contents

. 468
. 470

. 471
. 471
. 472
. 472

. 475

. 485
. 485
. 485
. 486
. 487
. 488
. 489
. 490
. 491
. 492
. 493
. 493
. 493
. 494
. 495
. 495
. 495
. 496
. 497
. 498
. 498
. 498
. 499
. 499
. 500

. 501
. 501
. 501
. 502
. 502
. 502
. 503
. 504
. 505

. 507
. 508
. 514

. 535
. 536
. 536

. 539

Vii

Bibliography .b45

Index. .Bb553

Viii ODBC Guide and Reference

About this book

This book provides the information necessary to write applications using DB2®
ODBC to access IBM® DATABASE 2™ servers, as well as any database that
supports DRDA® level 1 or DRDA level 2 protocols. This book should also be used
as a supplement when writing portable ODBC applications that can be executed in
a native DB2 for 0S/390® and z/OS™ environment using DB2 ODBC.

Who should use this book

This book is intended for:

« DB2 application programmers with a knowledge of SQL and the C programming
language.

+ ODBC application programmers with a knowledge of SQL and the C
programming language.

Important
In this version of DB2 for OS/390 and z/OS, some utility functions are
available as optional products. You must separately order and purchase a
license to such utilities, and discussion of those utility functions in this
publication is not intended to otherwise imply that you have a license to them.

Product terminology and citations

In this book, DB2 Universal Database™ Server for 0S/390 and z/OS is referred to
as "DB2 for OS/390 and z/OS." In cases where the context makes the meaning
clear, DB2 for OS/390 and z/OS is referred to as "DB2." When this book refers to
other books in this library, a short title is used. (For example, "See DB2 SQL
Reference" is a citation to IBM DATABASE 2 Universal Database Server for OS/390
and z/OS SQL Reference.)

When referring to a DB2 product other than DB2 for OS/390 and z/OS, this book
uses the product’s full name to avoid ambiguity.
The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2
subsystem.

C, C++, and the C language
Represent the C or C++ programming language.

CICS® Represents CICS/ESA® and CICS Transaction Server for 0S/390.
IMS™ Represents IMS or IMS/ESA®.
MVS Represents the MVS element of OS/390.

0S/390
Represents the OS/390 or z/OS operating system.

RACF®
Represents the functions that are provided by the RACF component of the
SecureWay® Security Server for 0S/390 or by the RACF component of the
0OS/390 Security Server.

© Copyright IBM Corp. 1997, 2001 ix

How to send your comments

Your feedback helps IBM to provide quality information. Please send any comments
that you have about this book or other DB2 for OS/390 and z/OS documentation.
You can use any of the following methods to provide comments:

* Send your comments by e-mail to db2pubs@vnet.ibm.com and include the name
of the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title, page number, or a help topic title).

» Send your comments from the Web. Visit the Web site at:
http://www.ibm.com/software/db20s390

The Web site has a feedback page that you can use to send comments.

» Complete the readers’ comment form at the back of the book and return it by
mail, by fax (800-426-7773 for the United States and Canada), or by giving it to
an IBM representative.

X ODBC Guide and Reference

=

H o H H O H H

Summary of changes to this book

The major changes to this edition of the book include:

* Instructions for installing and configuring the conversion environment required for
Unicode UCS-2 support. See [‘Setting up suffix-W API support” on page 46}

» User ID and password support for authenticating the end user on a connection
string to a designated server. See [‘SQLConnect - Connect to a data source” on|
page 129|and [*SQLDriverConnect - (Expanded) connect to a data source” on|
page 146

© Copyright IBM Corp. 1997, 2001 Xi

Xii ODBC Guide and Reference

Chapter 1. Summary of changes to DB2 for 0S/390 and z/OS
Version 7

DB2 for OS/390 and z/OS Version 7 delivers an enhanced relational database
server solution for OS/390. This release focuses on greater ease and flexibility in
managing your data, better reliability, scalability, and availability, and better
integration with the DB2 family.

In Version 7, some utility functions are available as optional products; you must
separately order and purchase a license to such utilities. Discussion of utility
functions in this publication is not intended to otherwise imply that you have a
license to them. See |DB2 Utility Guide and Referenced for more information about
utilities products.

Enhancements for managing data

Version 7 delivers the following enhancements for managing data:

» DB2 now collects a comprehensive statistics history that:
— Lets you track changes to the physical design of DB2 objects
— Lets DB2 predict future space requirements for table spaces and indexes
more accurately and run utilities to improve performance

» Database administrators can now manage DB2 objects more easily and no
longer must maintain their utility jobs (even when new objects are added) by
using enhancements that let them:

— Dynamically create object lists from a pattern-matching expression
— Dynamically allocate the data sets that are required to process those objects

* More flexible DBADM authority lets database administrators create views for
other users.

» Enhancements to management of constraints let you specify a constraint at the
time you create primary or unique keys. A new restriction on the DROP INDEX
statement requires that you drop the primary key, unique key, or referential
constraint before you drop the index that enforces a constraint.

Enhancements for reliability, scalability, and availability

Version 7 delivers the following enhancements for the reliability, scalability, and
availability of your e-business:

» The DB2 Utilities Suite provides utilities for all of your data management tasks
that are associated with the DB2 catalog.

* The new UNLOAD utility lets you unload data from a table space or an image
copy data set. In most cases, the UNLOAD utility is faster than the DSNTIAUL
sample program, especially when you activate partition parallelism for a large
partitioned table space. UNLOAD is also easier to use than REORG UNLOAD
EXTERNAL.

* The new COPYTOCOPY utility lets you make additional image copies from a
primary image copy and registers those copies in the DB2 catalog.
COPYTOCOPY leaves the target object in read/write access mode (UTRW),
which allows Structured Query Language (SQL) statements and some utilities to
run concurrently with the same target objects.

© Copyright IBM Corp. 1997, 2001

» Parallel LOAD with multiple inputs lets you easily load large amounts of data into
partitioned table spaces for use in data warehouse applications or business
intelligence applications. Parallel LOAD with multiple inputs runs in a single step,
rather than in different jobs.

» A faster online REORG is achieved through the following enhancements:

— Online REORG no longer renames data sets, which greatly reduces the time
that data is unavailable during the SWITCH phase.

— Additional parallel processing improves the elapsed time of the BUILD2 phase
of REORG SHRLEVEL(CHANGE) or SHRLEVEL(REFERENCE).

» More concurrency with online LOAD RESUME is achieved by letting you give
users read and write access to the data during LOAD processing so that you can
load data concurrently with user transactions.

» More efficient processing for SQL queries:

— More transformations of subqueries into a join for some UPDATE and
DELETE statements

— Fewer sort operations for queries that have an ORDER BY clause and
WHERE clauses with predicates of the form COL=constant

— More parallelism for IN-list index access, which can improve performance for
queries involving IN-list index access

* The ability to change system parameters without stopping DB2 supports online
transaction processing and e-business without interruption.

* Improved availability of user objects that are associated with failed or canceled
transactions:
— You can cancel a thread without performing rollback processing.
— Some restrictions imposed by the restart function have been removed.
— A NOBACKOUT option has been added to the CANCEL THREAD command.

» Improved availability of the DB2 subsystem when a log-read failure occurs: DB2
now provides a timely warning about failed log-read requests and the ability to
retry the log read so that you can take corrective action and avoid a DB2 outage.

* Improved availability in the data sharing environment:

— Group attachment enhancements let DB2 applications generically attach to a
DB2 data sharing group.

— A new LIGHT option of the START DB2 command lets you restart a DB2 data
sharing member with a minimal storage footprint, and then terminate normally
after DB2 frees the retained locks that it can.

— You can let changes in structure size persist when you rebuild or reallocate a
structure.

— A new function in z/OS Version 1 Release 2 supports SCA and lock structure
duplexing. As a result, a more robust failure recovery is possible in some data
sharing environments.

» Additional data sharing enhancements include:
— Notification of incomplete units of recovery
— Use of a new 0OS/390 and z/OS function to improve failure recovery of group
buffer pools

» An additional enhancement for e-business provides improved performance with
preformatting for INSERT operations.

2 ODBC Guide and Reference

o o3

Easier development and integration of e-business applications

Version 7 provides the following enhancements, which let you more easily develop
and integrate applications that access data from various DB2 operating systems
and distributed environments:

DB2 XML Extender for OS/390 and z/OS, a new member of the DB2 Extender
family, lets you store, retrieve, and search XML documents in a DB2 database.

Improved support for UNION and UNION ALL operators in a view definition, a
nested table expression, or a subquery predicate, improves DB2 family
compatibility and is consistent with SQL99 standards.

More flexibility with SQL gives you greater compatibility with DB2 on other
operating systems:

— Scrollable cursors let you move forward, backward, or randomly through a
result table or a result set. You can use scrollable cursors in any DB2
applications that do not use DB2 private protocol access.

— A search condition in the WHERE clause can include a subquery in which the
base object of both the subquery and the searched UPDATE or DELETE
statement are the same.

— Anew SQL clause, FETCH FIRST n ROWS, improves performance of
applications in a distributed environment.

— Fast implicit close in which the DB2 server, during a distributed query,
automatically closes the cursor when the application attempts to fetch beyond
the last row.

— Support for options USER and USING in a new authorization clause for
CONNECT statements lets you easily port applications that are developed on
the workstation to DB2 for OS/390 and z/OS. These options also let
applications that run under WebSphere to reuse DB2 connections for different
users and to enable DB2 for OS/390 and z/OS to check passwords.

— For positioned updates, you can specify the FOR UPDATE clause of the
cursor SELECT statement without a list of columns. As a result, all updatable
columns of the table or view that is identified in the first FROM clause of the
fullselect are included.

— A new option of the SELECT statement, ORDER BY expression, lets you
specify operators as the sort key for the result table of the SELECT
statement.

— New datetime ISO functions return the day of the week with Monday as day 1
and every week with seven days.

Enhancements to Open Database Connectivity (ODBC) provide partial ODBC 3.0
support, including many new application programming interfaces (APIs), which
increase application portability and alignment with industry standards.

Enhancements to the LOAD utility let you load the output of an SQL SELECT
statement directly into a table.

A new component called Precompiler Services lets compiler writers modify their
compilers to invoke Precompiler Services and produce an SQL statement
coprocessor. An SQL statement coprocessor performs the same functions as the
DB2 precompiler, but it performs those functions at compile time. If your compiler
has an SQL statement coprocessor, you can eliminate the precompile step in
your batch program preparation jobs for C, COBOL, and PL/l programs.

Support for Unicode-encoded data lets you easily store multilingual data within
the same table or on the same DB2 subsystem. The Unicode encoding scheme
represents the code points of many different geographies and languages.

Chapter 1. Summary of changes to DB2 for OS/390 and z/OS Version 7 3

H H H H*

Improved connectivity

Version 7 offers improved connectivity:

Support for COMMIT and ROLLBACK in stored procedures lets you commit or
roll back an entire unit of work, including uncommitted changes that are made
from the calling application before the stored procedure call is made.

Support for Windows Kerberos security lets you more easily manage workstation
clients who seek access to data and services from heterogeneous environments.

Global transaction support for distributed applications lets independent DB2
agents participate in a global transaction that is coordinated by an XA-compliant
transaction manager on a workstation or a gateway server (Microsoft Transaction
Server or Encina, for example).

Support for a DB2 Connect Version 7 enhancement lets remote workstation
clients quickly determine the amount of time that DB2 takes to process a request
(the server elapsed time).

Additional enhancements include:

— Support for connection pooling and transaction pooling for IBM DB2 Connect

— Support for DB2 Call Level Interface (DB2 CLI) bookmarks on DB2 UDB for
UNIX, Windows, OS/2

Features of DB2 for OS/390 and z/OS

Version 7 of DB2 UDB Server for OS/390 and z/OS offers several features that help
you integrate, analyze, summarize, and share data across your enterprise:

DB2 Warehouse Manager feature. The DB2 Warehouse Manager feature brings
together the tools to build, manage, govern, and access DB2 for OS/390 and
z/OS-based data warehouses. The DB2 Warehouse Manager feature uses
proven technologies with new enhancements that are not available in previous
releases, including:

— DB2 Warehouse Center, which includes:
- DB2 Universal Database Version 7 Release 1 Enterprise Edition
- Warehouse agents for UNIX, Windows, and OS/390
- Information Catalog

— QMF Version 7
— QMF High Performance Option
— QMF for Windows

DB2 Management Clients Package. The elements of the DB2 Management
Clients Package are:

— DB2 Control Center

— DB2 Stored Procedure Builder

DB2 Installer

DB2 Visual Explain

DB2 Estimator

* Net Search Extender for in-memory text search for e-business applications
* Net.Data for secure Web applications

Migration considerations

Migration with full fallback protection is available when you have either DB2 for
0S/390 Version 5 or Version 6 installed. You should ensure that you are fully
operational on DB2 for OS/390 Version 5, or later, before migrating to DB2 for
0S/390 and z/OS Version 7.

4 ODBC Guide and Reference

To learn about all of the migration considerations from Version 5 to Version 7, read
the DB2 Release Planning Guide for Version 6 and Version 7; to learn about
content information, also read appendixes A through F in both books.

Chapter 1. Summary of changes to DB2 for OS/390 and z/OS Version 7 5

6 ODBC Guide and Reference

Chapter 2. Introduction to DB2 ODBC

DB2 Open Database Connectivity (ODBC) is IBM’s callable SQL interface by the
DB2 family of products. It is a ’C’ and 'C++’ application programming interface for
relational database access, and it uses function calls to pass dynamic SQL
statements as function arguments. It is an alternative to embedded dynamic SQL,
but unlike embedded SQL, it does not require a precompiler.

DB2 ODBC is based on the Microsoft® Open Database Connectivity (ODBC)
specification, and the X/Open Call Level Interface specification. These specifications
were chosen as the basis for the DB2 ODBC in an effort to follow industry
standards and to provide a shorter learning curve for those application
programmers already familiar with either of these data source interfaces. In
addition, some DB2 specific extensions were added to help the DB2 application
programmer specifically exploit DB2 features.

DB2 ODBC background information

To understand DB2 ODBC or any callable SQL interface, it is helpful to understand
what it is based on, and to compare it with existing interfaces.

The X/Open Company and the SQL Access Group jointly developed a specification
for a callable SQL interface referred to as the X/Open Call Level Interface. The goal
of this interface is to increase the portability of applications by enabling them to
become independent of any one database product vendor's programming interface.
Most of the X/Open Call Level Interface specification was accepted as part of the
ISO Call Level Interface Draft International Standard (ISO CLI DIS).

Microsoft developed a callable SQL interface called Open Database Connectivity
(ODBC) for Microsoft operating systems based on a preliminary draft of X/Open
CLI. The Call Level Interface specifications in ISO, X/Open, ODBC, and DB2 ODBC
continue to evolve in a cooperative manner to provide functions with additional
capabilities.

The ODBC specification also includes an operating environment where data source
specific ODBC drivers are dynamically loaded at run time by a driver manager
based on the data source name provided on the connect request. The application is
linked directly to a single driver manager library rather than to each DBMS's library.
The driver manager mediates the application's function calls at run time and
ensures they are directed to the appropriate DBMS specific ODBC driver.

The ODBC driver manager only knows about the ODBC-specific functions, that is,
those functions supported by the DBMS for which no API is specified. Therefore,
DBMS-specific functions cannot be directly accessed in an ODBC environment.
However, DBMS-specific dynamic SQL statements are indirectly supported using a
mechanism called the vendor escape clause. See [‘Using vendor escape clauses’]

on page 448 for detailed information.

ODBC is not limited to Microsoft operating systems. Other implementations are
available, such as DB2 ODBC, or are emerging on various platforms.

Differences between DB2 ODBC and ODBC version 2.0

DB2 ODBC is derived from the ISO Call Level Interface Draft International Standard
(ISO CLI DIS) and ODBC Version 2.0.

© Copyright IBM Corp. 1997, 2001 7

8

If you port existing ODBC applications to DB2 for OS/390 and z/OS or write a new
application according to the ODBC specifications, you must comply with the
specifications defined in this publication. However, before you write to any API,
validate that the API is supported by DB2 for OS/390 and z/OS and that the syntax
and semantics are identical. If there are any differences, you must code to the APIs
documented in this publication.

On the DB2 for OS/390 and z/OS platform, no ODBC driver manager exists.
Consequently, DB2 ODBC support is implemented as a CLI/ODBC driver/driver
manager that is loaded at run time into the application address space. See
ODBC runtime environment” on page 41|for details about the DB2 ODBC runtime
environment.

The DB2 UDB for Linux, UNIX and Windows support for CLI executes on Windows
and AIX as an ODBC driver, loaded by the Windows driver manager (Windows
environment) or the Visi genic driver manager (UNIX platforms). In this context,
DB2 ODBC support is limited to the ODBC specifications. Alternatively, an
application can directly invoke the CLI application programming interfaces (APIs)
including those not supported by ODBC. In this context, the set of APIs supported
by DB2 UDB is referred to as the "Call Level Interface”. See DB2 UDB CLI Guide
and Reference.

The use of DB2 ODBC in this publication refers to DB2 for OS/390 and z/OS
support of DB2 ODBC unless otherwise noted.

General information about DB2 for OS/390 and z/OS is available from the DB2 for
0S/390 and z/OS World Wide Web page:

http://www.software.ibm.com/data/db2/0s390/

ODBC features supported

DB2 ODBC support should be viewed as consisting of most of ODBC Version 2.0
as well as IBM extensions. Where differences exist, applications should be written
to the specifications defined in this publication.

DB2 ODBC includes support of the following ODBC functions:
» All ODBC level 1 functions

» All ODBC level 2 functions with the following four exceptions:
SQLBrowseConnect()
SQLDrivers()
SQLSetPos()
SQLSetScrollOptions()

» Some X/Open CLI functions
* Some DB2 specific functions

For a complete list of supported functions, see I“Function summary” on page 68|.

The following DB2 features are available to both ODBC and DB2 ODBC
applications:

* The double byte (graphic) data types

» Stored procedures

 Distributed unit of work (DUW) as defined by DRDA, two-phase commit
» Distinct types

» User-defined functions

DB2 ODBC contains extensions to access DB2 features that can not be accessed
by ODBC applications:

ODBC Guide and Reference

* SQLCA access for detailed DB2 specific diagnostic information
» Control over null termination of output strings.
» Support of large objects (LOBs) and LOB locators

DB2 ODBC does not support the following functions (a deviation from the Microsoft
ODBC Version 2.0 Specification):

» Asynchronous SQL
» Scrollable cursor support

* Interactive data source connection specified using SQLBrowseConnect () and
SQLDriverConnect ().

For more information on the relationship between DB2 ODBC and ODBC, see
IAppendix A, “DB2 ODBC and ODBC”, on page 467}

Differences between DB2 ODBC and embedded SQL

An application that uses an embedded SQL interface requires a precompiler to
convert the SQL statements into code, which is then compiled, bound to the data
source, and executed. In contrast, a DB2 ODBC application does not have to be
precompiled or bound, but instead uses a standard set of functions to execute SQL
statements and related services at run time.

This difference is important because, traditionally, precompilers have been specific
to each database product, which effectively ties your applications to that product.
DB2 ODBC enables you to write portable applications that are independent of any
particular database product. The DB2 ODBC driver contains a fixed set of
precompiler options. Therefore, the settings of DB2 for OS/390 and z/OS
precompiler options have no affect on ODBC behavior.

This independence means DB2 ODBC applications do not have to be recompiled or
rebound to access different DB2 or DRDA data sources, but rather just connect to
the appropriate data source at run time.

DB2 ODBC and embedded SQL also differ in the following ways:

+ DB2 ODBC does not require the explicit declaration of cursors. They are
generated by DB2 ODBC as needed. The application can then use the generated
cursor in the normal cursor fetch model for multiple row SELECT statements and
positioned UPDATE and DELETE statements.

* The OPEN statement is not used in DB2 ODBC. Instead, the execution of a SELECT
automatically causes a cursor to be opened.

* Unlike embedded SQL, DB2 ODBC allows the use of parameter markers on the
equivalent of the EXECUTE IMMEDIATE statement (the SQLExecDirect() function).

* A COMMIT or ROLLBACK in DB2 ODBC is issued using the SQLEndTran() function
call rather than by passing it as an SQL statement.

+ DB2 ODBC manages statement related information on behalf of the application,
and provides a statement handle to refer to it as an abstract object. This handle
eliminates the need for the application to use product specific data structures.

» Similar to the statement handle, the environment handle and connection handle
provide a means to refer to all global variables and connection specific
information.

+ DB2 ODBC uses the SQLSTATE values defined by the X/Open SQL CAE
specification. Although the format and most of the values are consistent with
values used by the IBM relational database products, there are differences.

Chapter 2. Introduction to DB2 ODBC 9

(There are also differences between ODBC SQLSTATEs and the X/Open defined
SQLSTATES). Refer to[Table 173 on page 475| for a cross reference of all DB2
ODBC SQLSTATEs.

Despite these differences, there is an important common concept between
embedded SQL and DB2 ODBC:
DB2 ODBC can execute any SQL statement that can be prepared dynamically
in embedded SQL.

lists each DB2 for 0S/390 and z/OS SQL statement, and indicates whether
or not it can be executed using DB2 ODBC.

Each DBMS might have additional statements that can be dynamically prepared, in

which case DB2 ODBC passes them to the DBMS. There is one exception:
COMMIT and ROLLBACK can be dynamically prepared by some DBMSs but are
not passed. The SQLEndTran() function should be used instead to specify either
COMMIT or ROLLBACK.

Table 1. SQL statements

SQL statement Dynamic ? DB2 ODBC °

ALTER TABLE X X

ALTER DATABASE X X

ALTER INDEX X X

ALTER STOGROUP X X

ALTER TABLESPACE X X

BEGIN DECLARE SECTION

CALL xd

CLOSE SQLFreeHandle()

COMMENT ON X X

COMMIT X SQLEndTran()

CONNECT (type 1) SQLConnect (), SQLDriverConnect ()
CONNECT (type 2) SQLConnect (), SQLDriverConnect()
CREATE { ALIAS, DATABASE, INDEX, X X

STOGROUP, SYNONYM, TABLE,

TABLESPACE, VIEW, DISTINCT

TYPE }

DECLARE CURSOR P SQLATTocHandle()

DECLARE STATEMENT

DECLARE TABLE

DELETE X X

DESCRIBE SQLDescribeCol(), SQLCoTAttribute()
DROP X X

END DECLARE SECTION P

EXECUTE SQLExecute()

EXECUTE IMMEDIATE SQLExecDirect ()

EXPLAIN X X

FETCH SQLFetch()

FREE LOCATOR ¢ X

10 ODBC Guide and Reference

Table 1. SQL statements (continued)

SQL statement Dynamic ? DB2 ODBC °

GRANT X X

HOLD LOCATOR ¢ X

INCLUDE ®

INSERT X X

LABEL ON X X

LOCK TABLE X X

OPEN SQLExecute(), SQLExecDirect()

PREPARE SQLPrepare()

RELEASE

REVOKE X X

ROLLBACK X SQLEndTran()

select-statement X X

SELECT INTO

SET CONNECTION SQLSetConnection()

SET host_variable

SET CURRENT DEGREE X X

SET CURRENT PACKAGESET

SET CURRENT PATH X X

SET CURRENT SQLID X X

UPDATE X X

WHENEVER ®

Note:

a All statements in this list can be coded as static SQL, but only those marked with X can be coded as
dynamic SQL.

This statement is not executable.

¢ An X indicates that this statement can be executed using either SQLExecDirect () or SQLPrepare() and
SQLExecute(). If there is an equivalent DB2 ODBC function, the function name is listed.

d Although this statement is not dynamic, DB2 ODBC allows the statement to be specified when calling either
SQLExecDirect() or SQLPrepare() and SQLExecute().

Advantages of using DB2 ODBC

DB2 ODBC provides a number of key features that offer advantages in contrast to
embedded SQL. DB2 ODBC:

 |deally suits the client-server environment in which the target data source is
unknown when the application is built. It provides a consistent interface for
executing SQL statements, regardless of which database server the application
connects to.

» Lets you write portable applications that are independent of any particular
database product. DB2 ODBC applications do not have to be recompiled or
rebound to access different DB2 or DRDA data sources. Instead they connect to
the appropriate data source at run time.

Chapter 2. Introduction to DB2 ODBC 11

Reduces the amount of management required for an application while in general
use. Individual DB2 ODBC applications do not need to be bound to each data
source. Bind files provided with DB2 ODBC need to be bound only once for all
DB2 ODBC applications.

Lets applications connect to multiple data sources from the same application.

Allocates and controls data structures, and provides a handle for the application
to refer to them. Applications do not have to control complex global data areas
such as the SQLDA and SQLCA.

Provides enhanced parameter input and fetching capability. You can specify
arrays of data on input to retrieve multiple rows of a result set directly into an
array. You can execute statements that generate multiple result sets.

Lets you retrieve multiple rows and result sets generated from a call to a stored
procedure.

Provides a consistent interface to query catalog information that is contained in
various DBMS catalog tables. The result sets that are returned are consistent
across DBMSs. Application programmers can avoid writing version-specific and
server-specific catalog queries.

Provides extended data conversion which requires less application code when
converting information between various SQL and C data types.

Aligns with the emerging ISO CLI standard in addition to using the accepted
industry specifications of ODBC and X/Open CLI.

Allows application developers to apply their knowledge of industry standards
directly to DB2 ODBC. The interface is intuitive for programmers who are familiar
with function libraries but know little about product specific methods of
embedding SQL statements into a host language.

Deciding which interface to use

DB2 ODBC is ideally suited for query-based applications that require portability. Use
the following guidelines to help you decide which interface meets your needs.

Static and dynamic SQL

Only embedded SQL applications can use static SQL. Both static and dynamic SQL
have advantages. Consider these factors:

Performance

Dynamic SQL is prepared at run time. Static SQL is prepared at bind time. The
preparation step for dynamic SQL requires more processing and might incur
additional network traffic.

However, static SQL does not always perform better than dynamic SQL. Dynamic
SQL can make use of changes to the data source, such as new indexes, and
can use current catalog statistics to choose the optimal access plan.

Encapsulation and security

In static SQL, authorization to objects is associated with a package and validated
at package bind time. Database administrators can grant execute authority on a
particular package to a set of users rather than grant explicit access to each
database object.

In dynamic SQL, authorization is validated at run time on a per statement basis;
therefore, users must be granted explicit access to each database object.

12 ODBC Guide and Reference

Use both interfaces

An application can take advantage of both static and dynamic interfaces. An
application programmer can create a stored procedure that contains static SQL.
The stored procedure is called from within a DB2 ODBC application and executed
on the server. After the stored procedure is created, any DB2 ODBC or ODBC
application can call it.

Write a mixed application

You can write a mixed application that uses both DB2 ODBC and embedded SQL.
In this scenario, DB2 ODBC provides the base application, and you write key
modules using static SQL for performance or security. Choose this option only if
stored procedures do not meet your applications requirements.

Other information sources

Application developers should refer to Microsoft ODBC 3.0 Software Development
Kit and Programmer's Reference as a supplement to this publication.

When writing DB2 ODBC applications, you also might need to reference information
for the database servers that are being accessed, in order to understand any
connectivity issues, environment issues, SQL language support issues, and other
server-specific information. For DB2 for OS/390 and z/OS versions, see
|Referenceland [DB2 Application Programming and SQL Guide, If you are writing
applications that access other DB2 server products, see IBM SQL Reference for
information that is common to all products, including any differences.

Chapter 2. Introduction to DB2 ODBC 13

14 ODBC Guide and Reference

Chapter 3. Writing a DB2 ODBC application

This section introduces a conceptual view of a typical DB2 ODBC application.

A DB2 ODBC application can be broken down into a set of tasks. Some of these
tasks are organized into discrete steps, while others might apply throughout the
application. Each task is carried out by calling one or more DB2 ODBC functions.

Tasks described in this section are basic tasks that apply to all applications. More
advanced tasks, such as using array insert, are described in [Chapter 6, “Using|
fadvanced features”, on page 389,

The functions are used in examples to illustrate their use in DB2 ODBC
applications. See|Chapter 5, “Functions”, on page 67| for complete descriptions and
usage information for each of the functions.

Initialization

V;

Transaction
processing

ll—

’ Termination

Figure 1. Conceptual view of a DB2 ODBC application

Every DB2 ODBC application contains the three main tasks shown in .

Initialization
This task allocates and initializes some_resources in preparation for the
main_transaction processing task. See ['Initialization and termination” on|

for details.

Transaction processing
This is the main task of the application. SQL statements are passed to DB2
ODBC to query and modify the data. See |“Transaction processing” on|

for details.

Termination
This task frees allocated resources. The resources generally consist of data
areas identified by unique handles. See [Initialization and termination” on|

page 16]for details.

In addition to the three tasks listed above, there are general tasks, such as handling
diagnostic messages, which occur throughout an application.

© Copyright IBM Corp. 1997, 2001 15

Initialization and termination

Allocate environment \
SQLAIllocHandle()
Allocate connection
SQLAIllocHandle()

A ;

Connect
SQLConnect()

or
SQLDriverConnect()

} Initialization

V;

Transaction
processing

—
| —

Disconnect)
SQLDisconnect()

l___

Free connection
SQLFreeHandle()
v
Free environment
SQLFreeHandle())

Termination

Figure 2. Conceptual view of initialization and termination tasks

shows the function call sequences for both the initialization and termination
tasks. The transaction processing task in the middle of the diagram is shown in
[Figure 3 on page 21|

Handles

The initialization task consists of the allocation and initialization of environment and
connection handles (which are later freed in the termination task). An application
then passes the appropriate handle when it calls other DB2 ODBC functions. A
handle is a variable that refers to a data object controlled by DB2 ODBC. Using
handles relieves the application from having to allocate and manage global
variables or data structures, such as the SQLDA or SQLCA, used in IBM’s
embedded SQL interfaces.

There are three types of handles:

Environment handle
The environment handle refers to the data object that contains information
regarding the global state of the application, such as attributes and
connections. This handle is allocated by calling SQLAT11ocHandle() (with
HandleType set to SQL_HANDLE_ENYV), and freed by calling

16 ODBC Guide and Reference

SQLFreeHandle() (with HandleType set to SQL_HANDLE_ENV). An
environment handle must be allocated before a connection handle can be
allocated.

Connection handle
A connection handle refers to a data object that contains information
associated with a connection to a particular data source. This includes
connection options, general status information, transaction status, and
diagnostic information. Each connection handle is allocated by calling
SQLA1TocHandle() (with HandleType set to SQL_HANDLE_DBC) and freed
by calling SQLFreeHandle() (with HandleType set to SQL_HANDLE_DBC).

An application can be connected to several database servers at the same
time. An application requires a connection handle for each concurrent
connection to a database server. For information on multiple connections,
see [‘Connecting to one or more data sources” on page 18}

Call SQLGetInfo() to determine if a user-imposed limit on the number of
connection handles has been set.

Statement handles

Statement handles are discussed in the next section,

processing” on page 20|

ODBC connection model

The ODBC specifications support any number of concurrent connections, each of
which is an independent transaction. That is, the application can issue
SQLConnect () to X, perform some work, issue SQLConnect () to Y, perform some
work, and then commit the work at X. ODBC supports multiple concurrent and
independent transactions, one per connection.

DB2 ODBC restrictions on the ODBC connection model

If the application is not using the MULTICONTEXT=1 initialization file setting, there are
restrictions on DB2 ODBC’s support of the ODBC connection model. To obtain
simulated support of the ODBC connection model, the application must specify a
CONNECT type value of 1 (either by using the initialization file or the
SQLSetConnectAttr() API. See [‘Initialization keywords” on page 55 and [‘Specifying|
the connect type” on page 18))

The application can then logically connect to any number of data sources. However,
the DB2 ODBC driver maintains only a single physical connection, that of the last
data source to which the application successfully connected or at which the last
SQL statement was executed.

As a result, the application is affected as follows:

* When connected to one or more data sources so that the application has
allocated some number of connect handles, any attempt to connect to a new
data source commits the work on the current data source and terminates that
connection. Therefore, the application cannot have cursors concurrently open at
two data sources (including cursors WITH HOLD).

« If the application is currently connected to X and has performed work at X that
has not yet been committed or rolled back, then any execution of an API to
perform work on a valid statement handle Y results in committing the transaction
at X and reestablishing the connection to Y.

With multiple context support, DB2 ODBC can fully support the ODBC connection
model. See ['DB2 ODBC support of multiple contexts” on page 424,

Chapter 3. Writing a DB2 ODBC applicaton 17

Connect type 1 and type 2

Every IBM RDBMS supports both type 1 and type 2 CONNECT semantics. In both
cases, there is only one transaction active at any time.

CONNECT (type 1) lets the application connect to only a single database at any
time so that the single transaction is active on the current connection. This models
the DRDA remote unit of work (RUW) processing.

Conversely, CONNECT (type 2) connect lets the application connect concurrently to
any number of database servers, all of which participate in the single transaction.
This models the DRDA distributed unit of work (DUW) processing.

ODBC does not support multiple connections participating in a distributed
transaction.

Specifying the connect type
Important: The connect type must be established prior to issuing SQLConnect ().

You can establish the connect type using either of the following methods:

» Specify the CONNECTTYPE keyword in the common section of the initialization
file with a value of 1 (CONNECT (type 1)) or 2 (CONNECT (type 2)). The
initialization file is described in[‘DB2 ODBC initialization file” on page 52|

* Invoke SQLSetConnectAttr(). Specify fOption = SQL_CONNECTTYPE with a
value of SQL_CONCURRENT_TRANS (CONNECT (type 1)) or a value of
SQL_COORDINATED_TRANS (CONNECT (type 2)).

Connecting to one or more data sources
DB2 ODBC supports connections to remote data sources through DRDA.

If the application is executing with CONNECT (type 1) and MULTICONTEXT=0, then
DB2 ODBC allows an application to logically connect to multiple data sources;
however, all transactions other than the transaction associated with the current
connection, must be complete (committed or rolled back). If the application is
executing with CONNECT (type 2), then the transaction is a distributed unit of work
and all data sources participate in the disposition of the transaction (commit or
rollback).

To connect concurrently to one or more data sources, an application calls
SQLATTocHandle() (with HandleType set to SQL_HANDLE_DBC) once for each
connection. The subsequent connection handle is used with SQLConnect() to
request a data source connection and with SQLAT1ocHandle() (with HandleType set
to SQL_HANDLE_STMT) to allocate statement handles for use within that
connection. There is also an extended connect function, SQLDriverConnect (), which
allows for additional connect options.

Unlike the distributed unit of work connections described in [‘Distributed unit of work
|(coordinated distributed transactions)” on page 391l there is no coordination
between the statements that are executed on different connections.

18 ODBC Guide and Reference

Initialization and connection example

[% .. %/
/***
*% - demonstrate basic connection to two datasources.
*k - error handling mostly ignored for simplicity

%

*% Functions used:
*% SQLA1TocHandle SQLDisconnect
*k SQLConnect SQLFreeHandle
** Local Functions:

*k DBconnect
*%x

**/

#include <stdio.h>
#include <stdlib.h>
#include "sqlclil.h"

int

DBconnect (SQLHENV henv,
SQLHDBC * hdbc,
char * server);

#define MAX UID_LENGTH 18
#define MAX_PWD_LENGTH 30
#define MAX_CONNECTIONS 2

int
main()
{
SQLHENV henv;
SQLHDBC hdbc [MAX_CONNECTIONS];
char * svr[MAX_CONNECTIONS] =
"KARACHI" .
"DAMASCUS"
1

/* allocate an environment handle %/

SQLATTocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

/* Connect to first data source */
DBconnect (henv, &hdbc[0],
svr[0]);

/* Connect to second data source =/
DBconnect (henv, &hdbc[1],
svr[1]);

Chapter 3. Writing a DB2 ODBC application

19

YEEZ TS, Start Processing Step KhARIIRKERKRK AR KK AR F AR H* [

/* allocate statement handle, execute statement, etc. */
YEZT I T, End Processing Step T R a A T T Ty

/**/

/* Commit work on connection 1. */
/**/

SQLEndTran (SQL_HANDLE_DBC, hdbc[0], SQL_COMMIT);

/**/

/* Commit work on connection 2. This has NO effect on the =*/

/* transaction active on connection 1. */
/**/

SQLEndTran (SQL_HANDLE_DBC, hdbc[1], SQL_COMMIT);

printf("\nDisconnecting \n");
SQLDisconnect (hdbc[0]); /* disconnect first connection */
SQLDisconnect (hdbc[1]); /* disconnect second connection */

SQLFreeHandle (SQL_HANDLE_DBC, hdbc[0]); /* free first connection handle =/
SQLFreeHandle (SQL_HANDLE DBC, hdbc[1]); /* free second connection handle */
SQLFreeHandle (SQL_HANDLE_ENV, henv); /*free environment handle */

return (SQL_SUCCESS);

[HH KKKk K R SR e R R R e e et Kk khxhhhhrhhhhrhhhhrhk ko *hkhkkk
** Server is passed as a parameter. Note that USERID and PASSWORD*=*
*% are always NULL. %

**/

int

DBconnect (SQLHENV henv,
SQLHDBC * hdbc,
char * server)

SQLRETURN rc;

SQLCHAR buffer[255];

SQLSMALLINT outlen;

SQLAT11ocHand1e(SQL_HANDLE DBC, henv, hdbc);/*allocate connection handle */

rc = SQLConnect (+hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);
if (rc 1= SQL_SUCCESS) {

printf(">--- Error while connecting to database: %s ------- \n", server);
return (SQL_ERROR);
} else {

printf(">Connected to %s\n", server);
return (SQL_SUCCESS);

Transaction processing

The following figure shows the typical order of function calls in a DB2 ODBC
application. Not all functions or possible paths are shown.

20 ODBC Guide and Reference

Allocate a statement

SQLAllocHandle()

¥
vy v

Prepare a statement Directly execute
a statement
SQLPrepare() :
SQLBindParameter()* SQLBindParameter()*
SQLExecDirect()
+‘V

Execute a statement

SQLExecute()

v -
. . -

Other

Receive query results Update data (ALTER, CREATE
(SELECT, VALUES) (UPDATE, DELETE, DROP, GRANT,
INSERT) REVOKE, SET)

SQLNumResultsCol()

(no functions
required)

SQLDesOcI;ribeCoI() SQLRowCount()
SQLColAttributes()

SQLBindCol()

SQLFetch()
SQLGetData()
L

A

&

»
»

A 4

Commit or Rollback

SQLEnNndTran()

| vIf statement is not executed again,

Free statement

SQLFreeHandle()
(statement)

}

Figure 3. Transaction processing

Figure 3| shows the steps and the DB2 ODBC functions in the transaction
processing task. This task contains five steps:

Allocating statement handles

Preparation and execution of SQL statements

Processing result

Commit or rollback

Optionally, freeing statement handles if the statement is unlikely to be executed
again.

Generally, you can use the SQLSetParam() function in place of the
SQLBindParameter() function. SQLSetParam() is slightly simpler.

Chapter 3. Writing a DB2 ODBC application 21

Recommendation: Use the SQLBindParameter() function which is more current.

Allocating statement handles

SQLATTocHandle() (with HandleType set to SQL_HANDLE_STMT) allocates a
statement handle. A statement handle refers to the data object that is used to track
the execution of a single SQL statement. This includes information such as
statement options, SQL statement text, dynamic parameters, cursor information,
bindings for dynamic arguments and columns, result values and status information
(these are discussed later). Each statement handle is associated with a unique
connection handle.

A statement handle must be allocated before a statement can be executed. By
default, the maximum number of statement handles that can be allocated at any
one time is limited by the application heap size. The maximum number of statement
handles that can actually be used, however, is defined by DB2 ODBC. lists
the number of statement handles allowed for each isolation level. If an application
exceeds these limits, SQLSTATE S1014 is returned on the call to SQLPrepare() or

SQLExecDirect().

Table 2. Maximum number of statement handles allocated at one time

Isolation level Without hold With hold Total
Cursor stability 296 254 550
No commit 296 254 550
Repeatable read 296 254 550
Read stability 296 254 550
Uncommitted read 296 254 550

Preparation and execution

After a statement handle is allocated, there are two methods of specifying and
executing SQL statements:

1. Prepare then execute
a. Call SQLPrepare() with an SQL statement as an argument.
b. Call SQLBindParameter(), or SQLSetParam() if the SQL statement contains
parameter markers.
c. Call SQLExecute().

2. Execute direct
a. Call SQLBindParameter() or SQLSetParam() if the SQL statement contains
parameter markers.
b. Call SQLExecDirect() with an SQL statement as an argument.

The first method splits the preparation of the statement from the execution. This

method is used when:

* The statement is executed repeatedly (usually with different parameter values).
This avoids having to prepare the same statement more than once. The
subsequent executions make use of the access plans already generated by the
prepare.

* The application requires information about the columns in the result set, prior to
statement execution.

The second method combines the prepare step and the execute step into one. This
method is used when:

22 ODBC Guide and Reference

* The statement is executed only once. This avoids having to call two functions to
execute the statement.

» The application does not require information about the columns in the result set,
before the statement is executed.

DB2 for OS/390 and z/OS and DB2 UDB provide dynamic statement caching at the
database server. In DB2 ODBC terms this means that for a given statement handle,
once a statement is prepared, it does not need to be prepared again (even after
commits or rollbacks), as long as the statement handle is not freed. Applications
that repeatedly execute the same SQL statement across multiple transactions, can
save a significant amount of processing time and network traffic by:

1. Associating each such statement with its own statement handle, and
2. Preparing these statements once at the beginning of the application, then

3. Executing the statements as many times as is needed throughout the
application.

Binding parameters in SQL statements

Both of the execution methods described above, allow the use of parameter
markers in place of an expression (or host variable in embedded SQL) in an SQL
statement.

Parameter markers are represented by the ‘?’ character and indicate the position in
the SQL statement where the contents of application variables are to be substituted
when the statement is executed. The parameter markers are referenced
sequentially, from left to right, starting at 1. SQLNumParams () can be used to
determine the number of parameters in a statement.

When an application variable is associated with a parameter marker it is bound to
the parameter marker. The application must bind an application variable to each
parameter marker in the SQL statement before it executes that statement. Binding
is carried out by calling the SQLBindParameter() function with a number of
arguments to indicate, the numerical position of the parameter, the SQL type of the
parameter, the data type of the variable, a pointer to the application variable, and
length of the variable. For UCS-2 application variables, applications must bind
parameter markers to the SQL_C_WCHAR data type.

The bound application variable and its associated length are called deferred input
arguments since only the pointers are passed when the parameter is bound; no
data is read from the variable until the statement is executed. Deferred arguments
allow the application to modify the contents of the bound parameter variables, and
repeat the execution of the statement with the new values.

Information for each parameter remains in effect until overridden, or until the
application unbinds the parameter or drops the statement handle. If the application
executes the SQL statement repeatedly without changing the parameter binding,
then DB2 ODBC uses the same pointers to locate the data on each execution. The
application can also change the parameter binding to a different set of deferred
variables. The application must not deallocate or discard variables used for deferred
input fields between the time it binds the fields to parameter markers and the time
DB2 ODBC accesses them at execution time.

It is possible to bind the parameters to a variable of a different type from that
required by the SQL statement. The application must indicate the C data type of the
source, and the SQL type of the parameter marker, and DB2 ODBC converts the
contents of the variable to match the SQL data type specified. For example, the

Chapter 3. Writing a DB2 ODBC applicaton 23

SQL statement might require an integer value, but your application has a string
representation of an integer. The string can be bound to the parameter, and DB2
ODBC converts the string to the corresponding integer value when you execute the
statement.

SQLDescribeParam() can be used to determine the data type of a parameter marker.
If the application indicates an incorrect type for the parameter marker, either an
extra conversion by the DBMS, or an error can occur. See |“Data types and datal
lconversion” on page 30| for more information about data conversion.

A parameter marker that is part of a predicate on a query and is associated with a
distinct type must be cast to the built-in type in the predicate portion of the
statement. Otherwise, an error occurs. For an example of casting distinct types, see
['Casting distinct types” on page 455

For information on more advanced methods of binding application storage to
parameter markers, see [‘Using arrays to input parameter values” on page 403 and
{‘Sending/retrieving long data in pieces” on page 401|

Processing results

The next step after the statement has been executed depends on the type of SQL
statement.

Processing query (SELECT, VALUES) statements

If the statement is a query statement, the following steps are generally needed in

order to retrieve each row of the result set:

1. Establish (describe) the structure of the result set, number of columns, column
types and lengths

2. (Optionally) bind application variables to columns in order to receive the data

3. Repeatedly fetch the next row of data, and receive it into the bound application
variables

4. (Optionally) retrieve columns that were not previously bound, by calling
SQLGetData() after each successful fetch

Each of the above steps requires some diagnostic checks. [Chapter 6, “Using|
fadvanced features”, on page 389 discusses advanced techniques of using
SQLExtendedFetch() to fetch multiple rows at a time.

Step 1
Analyze the executed or prepared statement. If the SQL statement was
generated by the application, then this step might not be necessary since
the application might know the structure of the result set and the data types
of each column. If the application does know the structure of the entire
result set, and if there are a very large number of columns to retrieve, then
the application might wish to supply DB2 ODBC with the descriptor
information. This can reduce network traffic since DB2 ODBC does not
have to retrieve the information from the server.

On the other hand, if the SQL statement was generated at runtime (for
example, entered by a user), then the application has to query the number
of columns, the type of each column, and perhaps the names of each
column in the result set. This information can be obtained by calling
SQLNumResul1tCols() and SQLDescribeCol() (or SQLCoTAttribute()) after
preparing or after executing the statement.

Step 2
The application retrieves column data directly into an application variable on

24 ODBC Guide and Reference

the next call to SQLFetch(). For each column to be retrieved, the application
calls SQLBindCo1() to bind an application variable to a column in the result
set. The application can use the information obtained from Step 1 to
determine the C data type of the application variable and to allocate the
maximum storage the column value could occupy. Similar to variables
bound to parameter markers using SQLBindParameter() and SQLSetParam(),
columns are bound to deferred arguments. This time the variables are
deferred output arguments, as data is written to these storage locations
when SQLFetch() is called.

If the application does not bind any columns, as in the case when it needs
to retrieve columns of long data in pieces, it can use SQLGetData(). Both
the SQLBindCo1() and SQLGetData() techniques can be combined if some
columns are bound and some are unbound. The application must not
deallocate or discard variables used for deferred output fields between the
time it binds them to columns of the result set and the time DB2 ODBC
writes the data to these fields.

Step 3
Call SQLFetch() to fetch the first or next row of the result set. If any
columns are bound, the application variable is updated. There is also a
method that allows the application to fetch multiple rows of the result set
into an array, see [‘Retrieving a result set into an array” on page 406 for
more information.

If data conversion was indicated by the data types specified on the call to
SQLBindCol (), the conversion occurs when SQLFetch() is called. See [Datq
types and data conversion” on page 30| for an explanation.

Step 4 (optional)
Call SQLGetData() to retrieve any unbound columns. All columns can be
retrieved this way, provided they were not bound. SQLGetData() can also be
called repeatedly to retrieve large columns in smaller pieces, which cannot
be done with bound columns.

Data conversion can also be indicated here, as in SQLBindCo1(), by
specifying the desired target C data type of the application variable. See
[‘Data types and data conversion” on page 30| for more information.

To unbind a particular column of the result set, use SQLBindCo1() with a null
pointer for the application variable argument (rgbValue) To unbind all of the
columns with one function call, use SQLFreeStmt ().

Applications generally perform better if columns are bound rather than retrieved
using SQLGetData(). However, an application can be constrained in the amount of
long data that it can retrieve and handle at one time. If this is a concern, then
SQLGetData() might be the better choice.

For information on more advanced methods for binding application storage to result
set columns, see [‘Retrieving a result set into an array” on page 406| and
r‘Sending/retrieving long data in pieces” on page 401|

Processing UPDATE, DELETE and INSERT statements

If the statement is modifying data (UPDATE, DELETE or INSERT), no action is
required, other than the normal check for diagnostic messages. In this case,
SQLRowCount () can be used to obtain the number of rows affected by the SQL
statement.

Chapter 3. Writing a DB2 ODBC applicaton 25

If the SQL statement is a positioned UPDATE or DELETE, it is necessary to use a
cursor. A cursor is a moveable pointer to a row in the result table of an active query
statement. (This query statement must contain the FOR UPDATE OF clause to
ensure that the query is not opened as read-only.) In embedded SQL, cursors
names are used to retrieve, update or delete rows. In DB2 ODBC, a cursor name is
needed only for positioned UPDATE or DELETE SQL statements as they reference
the cursor by name.

To update a row that was fetched, the application uses two statement handles, one
for the fetch and one for the update. The application calls SQLGetCursorName() to
obtain the cursor name. The application generates the text of a positioned UPDATE
or DELETE, including this cursor name, and executes that SQL statement using a
second statement handle. The application cannot reuse the fetch statement handle
to execute a positioned UPDATE or DELETE as it is still in use. You can also define
your own cursor name using SQLSetCursorName(), but it is best to use the
generated name, since all error messages reference the generated name, rather
than the name defined by SQLSetCursorName().

Processing other statements
If the statement neither queries nor modifies the data, then there is no further action
other than the normal check for diagnostic messages.

Commit or rollback

A transaction is a recoverable unit of work, or a group of SQL statements that can
be treated as one atomic operation. This means that all the operations within the
group are guaranteed to be completed (committed) or undone (rolled back), as if
they were a single operation. A transaction can also be referred to as a unit of work
or a logical unit of work. When the transaction spans multiple connections, it is
referred to as a distributed unit of work.

DB2 ODBC supports two commit modes: auto-commit and manual-commit.

In auto-commit mode, every SQL statement is a complete transaction, which is
automatically committed. For a non-query statement, the commit is issued at the
end of statement execution. For a query statement, the commit is issued after the
cursor is closed. Given a single statement handle, the application must not start a
second query before the cursor of the first query is closed.

In manual-commit mode, transactions are started implicitly with the first access to
the data source using SQLPrepare(), SQLExecDirect(), SQLGetTypeInfo(), or any
function that returns a result set, such as those described in [‘Querying system|
icatalog information” on page 397| At this point a transaction begins, even if the call
failed. The transaction ends when you use SQLEndTran() to either rollback or
commit the transaction. This means that any statements executed (on the same
connection) between these are treated as one transaction.

The default commit mode is auto-commit (except when participating in a
coordinated transaction, see [‘Distributed unit of work (coordinated distributed|
|transactions)” on page 391b. An application can switch between manual-commit and
auto-commit modes by calling SQLSetConnectAttr(). Typically, a query-only
application might wish to stay in auto-commit mode. Applications that need to
perform updates to the data source should turn off auto-commit as soon as the data
source connection is established.

When multiple connections exist, each connection has its own transaction (unless
CONNECT (type 2) is specified). Special care must be taken to call SQLEndTran()

26 ODBC Guide and Reference

with the correct connection handle to ensure that only the intended connection and
related transaction is affected. Unlike distributed unit of work connections (described
in [‘Distributed unit of work (coordinated distributed transactions)” on page 391),
there is no coordination between the transactions on each connection.

When to call SQLEndTran()
If the application is in auto-commit mode, it never needs to call SQLEndTran(), a

commit is issued implicitly at the end of each statement execution.

In manual-commit mode, SQLEndTran() must be called before calling
SQLDisconnect (). If distributed unit of work is involved, additional rules can apply.
See r‘Distributed unit of work (coordinated distributed transactions)” on page 391|for
details.

Recommendation: An application that performs updates should not wait until the
disconnect before committing or rolling back a transaction.

The other extreme is to operate in auto-commit mode, which is also not
recommended as this adds extra processing. The application can modify the
auto-commit mode by invoking the SQLSetConnectAttr() function. See
FEnvironment, connection, and statement options” on page 389|and the
SQLSetConnectAttr() function for information about switching between auto-commit
and manual-commit.

Consider the following when deciding where in the application to end a transaction:

» If using CONNECT (type 1) with MULTICONTEXT=0, only the current connection can
have an outstanding transaction. If using CONNECT (type 2), all connections
participate in a single transaction.

» |If using MULTICONTEXT=1, each connection can have an outstanding transaction.

» Various resources can be held while you have an outstanding transaction. Ending
the transaction releases the resources for use by other users.

* When a transaction is successfully committed or rolled back, it is fully
recoverable from the system logs. Open transactions are not recoverable.

Effects of calling SQLEndTran()

When a transaction ends:

» All locks on DBMS objects are released, except those that are associated with a
held cursor.

* Prepared statements are preserved from one transaction to the next if the data
source supports statement caching (DB2 for OS/390 and z/OS Version 5 does).
After a statement is prepared on a specific statement handle, it does not need to
be prepared again even after a commit or rollback, provided the statement
continues to be associated with the same statement handle.

» Cursor names, bound parameters, and column bindings are maintained from one
transaction to the next.

» By default, cursors are preserved after a commit (but not a rollback). All cursors
are defined using the WITH HOLD clause (except when connected to DB2
Server for VSE & VM, which does not support the WITH HOLD clause). For
information about changing the default behavior, see ['SQLSetStmtOption - Set|
[statement option” on page 367}

For more information and an example see [‘SQLTransact - Transaction|
Imanagement” on page 386}

Chapter 3. Writing a DB2 ODBC applicaton 27

Freeing statement handles

Call SQLFreeHandle() (with HandleType set to SQL_HANDLE_STMT) to end
processing for a particular statement handle. This function can be used to do one or
more of the following:

* Unbind all columns of the result set

* Unbind all parameter markers

» Close any cursors and discard any pending results

* Drop the statement handle, and release all associated resources

The statement handle can be reused for other statements provided it is not
dropped. If a statement handle is reused for another SQL statement string, any
cached access plan for the original statement is discarded.

The columns and parameters should always be unbound before using the handle to
process a statement with a different number or type of parameters or a different
result set; otherwise application programming errors might occur.

Diagnostics

Diagnostics refers to dealing with warning or error conditions generated within an
application. There are two levels of diagnostics when calling DB2 ODBC functions:
* Return codes

» Detailed diagnostics (SQLSTATESs, messages, SQLCA)

Each DB2 ODBC function returns the function return code as a basic diagnostic.
The SQLGetDiagRec() function provides more detailed diagnostic information. The
SQLGetSQLCA() function provides access to the SQLCA, if the diagnostic is reported
by the data source. This arrangement lets applications handle the basic flow
control, and the SQLSTATESs allow determination of the specific causes of failure.

The SQLGetDiagRec() function returns three pieces of information:
* SQLSTATE

* Native error: if the diagnostic is detected by the data source, this is the
SQLCODE; otherwise, this is set to -99999.

* Message text: this is the message text associated with the SQLSTATE.

For the detailed function information and example usage, see [‘SQLError - Retrieve]
ferror information” on page 155

For diagnostic information about DB2 ODBC traces and debugging, see|Chapter 7,
[‘Problem diagnosis”, on page 457,

Function return codes
The following table lists all possible return codes for DB2 ODBC functions.

Table 3. DB2 ODBC function return codes

Return code Explanation

SQL_SUCCESS The function completed successfully, no additional
SQLSTATE information is available.

SQL_SUCCESS_WITH_INFO The function completed successfully, with a warning or

other information. Call SQLGetDiagRec () to receive the
SQLSTATE and any other informational messages or
warnings. The SQLSTATE class is '01’. See

28 ODBC Guide and Reference

SQLSTATEs

Table 3. DB2 ODBC function return codes (continued)

Return code Explanation

SQL_NO_DATA_FOUND The function returned successfully, but no relevant data
was found. When this is returned after the execution of
an SQL statement, additional information might be
available which can be obtained by calling
SQLGetDiagRec ().

SQL_NEED_DATA The application tried to execute an SQL statement but
DB2 ODBC lacks parameter data that the application
had indicated would be passed at execute time. For
more information, see[‘Sending/retrieving long data in|
[pieces” on page 401|

SQL_ERROR The function failed. Call SQLGetDiagRec() to receive the
SQLSTATE and any other error information.
SQL_INVALID_HANDLE The function failed due to an invalid input handle

(environment, connection or statement handle). This is a
programming error. No further information is available.

Since different database servers often have different diagnostic message codes,
DB2 ODBC provides a standard set of SQLSTATESs that are defined by the X/Open
SQL CAE specification. This allows consistent message handling across different
database servers.

SQLSTATESs are alphanumeric strings of 5 characters (bytes) with a format of
ccsss, where cc indicates class and sss indicates subclass. Any SQLSTATE that
has a class of:

* ’071’, is a warning.

* ’'S1’, is generated by the DB2 ODBC driver.

Note: X/Open has reserved class 'HY’ for ODBC/CLI implementations, which is
currently equivalent to the ’S1’ class. This might be a consideration if you
intend to follow the X/Open and/or ISO CLI standard in the future.

For some error conditions, DB2 ODBC returns SQLSTATESs that differ from
those states listed in the Microsoft ODBC 3.0 Software Development Kit and
Programmer's Reference. This is a result of DB2 ODBC following the
X/Open SQL CAE and SQL92 specifications.

DB2 ODBC SQLSTATEs include both additional IBM-defined SQLSTATEs that are
returned by the database server, and DB2 ODBC defined SQLSTATEs for
conditions that are not defined in the X/Open specification. This allows for the
maximum amount of diagnostic information to be returned.

Follow these guidelines for using SQLSTATEs within your application:

« Always check the function return code before calling SQLGetDiagRec() to
determine if diagnostic information is available.

» Use the SQLSTATESs rather than the native error code.

» To increase your application’s portability, only build dependencies on the subset
of DB2 ODBC SQLSTATEs that are defined by the X/Open specification, and
return the additional ones as information only. (Dependencies refers to the
application making logic flow decisions based on specific SQLSTATEs.)

Chapter 3. Writing a DB2 ODBC applicaton 29

SQLCA

Note: It might be useful to build dependencies on the class (the first 2
characters) of the SQLSTATEs.

* For maximum diagnostic information, return the text message along with the
SQLSTATE (if applicable, the text message also includes the IBM-defined
SQLSTATE). It is also useful for the application to print out the name of the
function that returned the error.

See [Table 173 on page 475|for a listing and description of the SQLSTATESs explicitly
returned by DB2 ODBC.

Embedded applications rely on the SQLCA for all diagnostic information. Although
DB2 ODBC applications can retrieve much of the same information by using
SQLGetDiagRec (), there still might be a need for the application to access the
SQLCA related to the processing of a statement. (For example, after preparing a
statement, the SQLCA contains the relative cost of executing the statement.) The
SQLCA only contains meaningful information if there was an interaction with the
data source on the previous request (for example: connect, prepare, execute, fetch,
disconnect).

The SQLGetSQLCA() function is used to retrieve this structure. See [‘SQLGetSQLCA -
[Get SQLCA data structure” on page 263 for more information.

Data types and data conversion

When writing a DB2 ODBC application it is necessary to work with both SQL data
types and C data types. This is unavoidable since the DBMS uses SQL data types,
and the application must use C data types. This means the application must match
C data types to SQL data types when transferring data between the DBMS and the
application (when calling DB2 ODBC functions).

To help address this, DB2 ODBC provides symbolic names for the various data
types, and manages the transfer of data between the DBMS and the application. It
also performs data conversion (from a C character string to an SQL INTEGER type,
for example) if required. To accomplish this, DB2 ODBC needs to know both the
source and target data type. This requires the application to identify both data types
using symbolic names.

C and SQL data types

[Table 4 on page 31|lists each of the SQL data types, with its corresponding
symbolic name, and the default C symbolic name. These data types represent the
combination of the ODBC V2.0 minimum, core, and extended data types. The
ODBC extended data type SQL_BIGINT is not supported. In addition, DB2 ODBC
supports SQL_GRAPHIC, SQL_VARGRAPHIC and SQL_LONGVARGRAPHIC.

SQL data type
This column contains the SQL data types as they would appear in an SQL
CREATE DDL statement. The SQL data types are dependent on the DBMS.

Symbolic SQL data type
This column contains SQL symbolic names that are defined (in sqlclil.h)
as an integer value. These values are used by various functions to identify
the SQL data types listed in the first column. See ['‘Example” on page 139
for an example using these values.

30 ODBC Guide and Reference

Default C symbolic data type
This column contains C symbolic names, also defined as integer values.
These values are used in various function arguments to identify the C data
type as shown in [Table 5 on page 32| The symbolic names are used by
various functions, (such as SQLBindParameter(), SQLGetData(),
SQLBindCo1()) to indicate the C data types of the application variables.
Instead of explicitly identifying the C data type when calling these functions,
SQL_C_DEFAULT can be specified instead, and DB2 ODBC assumes a
default C data type based on the SQL data type of the parameter or column
as shown by this table. For example, the default C data type of
SQL_DECIMAL is SQL_C_CHAR.

Table 4. SQL symbolic and default data types

SQL data type

Symbolic SQL data type

Default symbolic C data type

BLOB SQL_BLOB SQL_C_BINARY

BLOB LOCATOR @ SQL_BLOB_LOCATOR SQL_C_BLOB_LOCATOR
CHAR SQL_CHAR SQL_C_CHAR

CHAR FOR BIT DATA SQL_BINARY SQL_C_BINARY

CLOB SQL_CLOB SQL_C_CHAR

CLOB LOCATOR @

SQL_CLOB_LOCATOR

SQL_C_CLOB_LOCATOR

DATE SQL_TYPE_DATE ° SQL_C_TYPE_DATE ©

DBCLOB SQL_DBCLOB SQL_C_DBCHAR

DBCLOB LOCATOR @ SQL_DBCLOB_LOCATOR SQL_C_DBCLOB_LOCATOR

DECIMAL SQL_DECIMAL SQL_C_CHAR

DOUBLE SQL_DOUBLE SQL_C_DOUBLE

FLOAT SQL_FLOAT SQL_C_DOUBLE

GRAPHIC SQL_GRAPHIC SQL_C_DBCHAR

INTEGER SQL_INTEGER SQL_C_LONG

LONG VARCHAR ® SQL_LONGVARCHAR SQL_C_CHAR
SQL_LONGVARBINARY SQL_C_BINARY

LONG VARCHAR FOR BIT DATA
b

LONG VARGRAPHIC ®

SQL_LONGVARGRAPHIC

SQL_C_DBCHAR

NUMERIC ° SQL_NUMERIC ° SQL_C_CHAR

REAL ¢ SQL_REAL SQL_C_FLOAT

ROWID SQL_ROWID SQL_C_CHAR

SMALLINT SQL_SMALLINT SQL_C_SHORT

TIME SQL_TYPE_TIME °© SQL_C_TYPE_TIME ©
TIMESTAMP SQL_TYPE_TIMESTAMP © SQL_C_TYPE_TIMESTAMP °©
VARCHAR SQL_VARCHAR SQL_C_CHAR

VARCHAR FOR BIT DATA ® SQL_VARBINARY SQL_C_BINARY
VARGRAPHIC SQL_VARGRAPHIC SQL_C_DBCHAR

Chapter 3. Writing a DB2 ODBC application

31

Table 4. SQL symbolic and default data types (continued)
SQL data type

Note:
a LOB locator types are not persistent SQL data types (columns cannot be defined by a locator type;
instead, it describes parameter markers, or represents a LOB value). See ['Using large objects” on|
page 411|for more information.
b Whenever possible, replace long data types and FOR BIT DATA data types with appropriate LOB
types.
¢ NUMERIC is a synonym for DECIMAL on DB2 for OS/390 and z/OS, DB2 for VSE & VM and DB2
UDB.
d REAL is not valid for DB2 UDB or DB2 for OS/390 and z/OS.
e See[‘Changes to datetime data types” on page 505|for information about data types used in
previous releases.

Symbolic SQL data type Default symbolic C data type

The data types, DATE, DECIMAL, NUMERIC, TIME, and TIMESTAMP cannot be transferred to their
default C buffer types without a conversion.

shows the generic C type definitions for each symbolic C type.

C symbolic data type
This column contains C symbolic names, defined as integer values. These
values are used in various function arguments to identify the C data type
shown in the last column. See [‘Example” on page 90|for an example using
these values.

C type
This column contains C defined types, defined in sqlclil.h using a C
typedef statement. The values in this column should be used to declare all
DB2 ODBC related variables and arguments, in order to make the
application more portable. See [Table 7 on page 33| for a list of additional
symbolic data types used for function arguments.

Base C type
This column is shown for reference only. All variables and arguments should
be defined using the symbolic types in the previous column. Some of the
values are C structures that are described in|Table 6 on page 33|

Table 5. C data types

C symbolic data type C type Base C type

SQL_C_CHAR SQLCHAR unsigned char

SQL_C_BIT SQLCHAR unsigned char or char (Value
1 or 0)

SQL_C_TINYINT SQLSCHAR signed char (Range -128 to
127)

SQL_C_SHORT SQLSMALLINT short int

SQL_C_LONG SQLINTEGER long int

SQL_C_DOUBLE SQLDOUBLE double

SQL_C_FLOAT SQLREAL float

SQL_C_TYPE_DATE @ DATE_STRUCT see(Table 6 on page 33|

SQL_C_TYPE_TIME @ TIME_STRUCT see(Table 6 on page 33|

SQL_C_TYPE_TIMESTAMP @ TIMESTAMP_STRUCT see(Table 6 on page 33|

SQL_C_CLOB_LOCATOR SQLINTEGER long int

SQL_C_BINARY SQLCHAR unsigned char

SQL_C_BLOB_LOCATOR SQLINTEGER long int

32 ODBC Guide and Reference

Table 5. C data types (continued)

C symbolic data type C type Base C type
SQL_C_DBCHAR SQLDBCHAR wchar_t
SQL_C_DBCLOB_LOCATOR SQLINTEGER long int
SQL_C_WCHAR SQLWCHAR wchar_t

Note: a Seel[‘Changes to datetime data types” on page 505| for information about data types

used in previous releases.

Table 6. C date, time, and timestamp structures

C type

Generic structure

DATE_STRUCT

{
SQLSMALLINT
SQLUSMALLINT
SQLUSMALLINT
} DATE_STRUCT;

typedef struct DATE_STRUCT

year;
month;
day;

TIME_STRUCT

{
SQLUSMALLINT
SQLUSMALLINT
SQLUSMALLINT

typedef struct TIME_STRUCT

hour;
minute;
second;

} TIME_STRUCT;

TIMESTAMP_STRUCT typedef struct TIMESTAMP_STRUCT

{

SQLUSMALLINT year;
SQLUSMALLINT month;
SQLUSMALLINT day;
SQLUSMALLINT hour;
SQLUSMALLINT minute;
SQLUSMALLINT second;
SQLINTEGER fraction;

} TIMESTAMP_STRUCT;

See [Table 7]for more information on the SQLUSMALLINT C data type.

Other C data types

In addition to the data types that map to SQL data types, there are also C symbolic
types used for other function arguments, such as pointers and handles. Both the
generic and ODBC data types are shown below.

Table 7. C data types and base C data types

Defined C type Base C type Typical usage

SQLPOINTER void * Pointers to storage for data and parameters.

SQLHENV long int Handle referencing environment information.

SQLHDBC long int Handle referencing data source connection
information.

SQLHSTMT long int Handle referencing statement information.

SQLUSMALLINT unsigned short int Function input argument for unsigned short integer

values.

SQLUINTEGER unsigned long int Function input argument for unsigned long integer

values.

Chapter 3. Writing a DB2 ODBC application 33

Table 7. C data types and base C data types (continued)

Defined C type Base C type Typical usage
SQLRETURN short int Return code from DB2 ODBC functions.
SQLWCHAR wchar_t Function input argument for suffix-W API use.

Data conversion

As mentioned previously, DB2 ODBC manages the transfer and any required
conversion of data between the application and the DBMS. Before the data transfer
actually takes place, the source, target or both data types are indicated when
calling SQLBindParameter(), SQLBindCol() or SQLGetData(). These functions use the
symbolic type names shown in|TabIe 4 on page 31[to identify the data types
involved.

For example, to bind a parameter marker that corresponds to an SQL data type of
DECIMAL(5,3), to an application’s C buffer type of double, the appropriate
SQLBindParameter() call would look like:

SQLBindParameter (hstmt, 1, SQL PARAM_INPUT, SQL_C_DOUBLE,
SQL_DECIMAL, 5, 3, double ptr, NULL);

shows only the default data conversions. The functions mentioned in the
previous paragraph can be used to convert data to other types, but not all data
conversions are supported or make sense. [Table 8 on page 35 shows all the
conversions supported by DB2 ODBC.

The first column in [Table 8§ contains the data type of the SQL data type, the
remaining columns represent the C data types. If the C data type columns contains:

D The conversion is supported and is the default conversion for the SQL data
type.
X All IBM DBMSs support the conversion,

Blank No IBM DBMS supports the conversion.

For example, the table indicates that a char (or a C character string as indicated in
Table 8) can be converted into a SQL_C_LONG (a signed long). In contrast, a
LONGVARCHAR cannot be converted to a SQL_C_LONG.

See|Appendix D, “Data conversion”, on page 485|for information about required
formats and the results of converting between data types.

Limits on precision, and scale, as well as truncation and rounding rules for type
conversions follow rules specified in the IBM SQL Reference with the following
exception; truncation of values to the right of the decimal point for numeric values
returns a truncation warning, whereas truncation to the left of the decimal point
returns an error. In cases of error, the application should call SQLGetDiagRec() to
obtain the SQLSTATE and additional information on the failure. When moving and
converting floating point data values between the application and DB2 ODBC, no
correspondence is guaranteed to be exact as the values can change in precision
and scale.

34 ODBC Guide and Reference

Table 8. Supported data conversions

SQL data type

SQL_C_CHAR

SQL_C_TYPE_TIMESTAMP

SQL_C_CLOB_LOCATOR
SQL_C_BLOB_LOCATOR
SQL_C_DBCLOB_LOCATOR

SQL_C_WCHAR
SQL_C_SHORT
SQL_C_TINYINT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_TYPE_DATE
SQL_C_TYPE_TIME
SQL_C_BINARY
SQL_C_DBCHAR

SQL_C_LONG
SQL_C_BIT

SQL_BLOB

O
x

SQL_CHAR

SQL_CLOB

SQL_TYPE_DATE

X|O|X| X

SQL_DBCLOB

SQL_DECIMAL

SQL_DOUBLE

SQL_FLOAT

SQL_GRAPHIC

SQL_INTEGER

SQL_LONGVARCHAR

SQL_LONGVARGRAPHI

SQL_NUMERIC

SQL_REAL

SQL_ROWID

SQL_SMALLINT

SQL_TYPE_TIME

SQL_TYPE_TIMESTAMP

SQL_VARCHAR

SQL_VARGRAPHIC

X|IO[X|X|[X[|X|X|O|X|O|X|[X|X|X|O
x
x
X
x
x
x

Note:

» Data is not converted to LOB locator types; locators represent a data value.

* REAL is not supported by DB2 UDB.

* NUMERIC is a synonym for DECIMAL on DB2 for OS/390 and z/OS, DB2 for VSE & VM, and DB2 UDB.

+ The application must bind data to the SQL_C_WCHAR data type for UCS-2 data. See[Using Unicode functions” on page 429|for

more information.

Working with string arguments

The following conventions deal with the various aspects of working with string
arguments in DB2 ODBC functions.

Length of string arguments

Input string arguments have an associated length argument. This argument
indicates to DB2 ODBC, either the exact length of the argument (not including the
null terminator), the special value SQL_NTS to indicate a null-terminated string, or
SQL_NULL_DATA to pass a NULL value. If the length is set to SQL_NTS, DB2
ODBC determines the length of the string by locating the null terminator. For a
UCS-2 string, SQL_NTS indicates the string length, including a two-byte null
terminator.

Chapter 3. Writing a DB2 ODBC application 35

Output string arguments have two associated length arguments, an input length
argument to specify the length of the allocated output buffer, and an output length
argument to return the actual length of the string returned by DB2 ODBC. The
returned length value is the total length of the string available for return, regardless
of whether it fits in the buffer or not.

For SQL column data, if the output is a null value, SQL_NULL_DATA is returned in
the length argument and the output buffer is untouched.

If a function is called with a null pointer for an output length argument, DB2 ODBC
does not return a length, and assumes that the data buffer is large enough to hold
the data. When the output data is a NULL value, DB2 ODBC can not indicate that

the value is NULL. If it is possible that a column in a result set can contain a NULL
value, a valid pointer to the output length argument must always be provided. It is

highly recommended that a valid output length argument always be used.

If the length argument (pcbValue) and the output buffer (rgbValue) are contiguous in
memory, DB2 ODBC can return both values more efficiently, improving application
performance. For example, if the following structure is defined and
&buffer.pchValue and buffer.rgbValue are passed to SQLBindCol(), DB2 ODBC
updates both values in one operation.

struct

{ SQLINTEGER pchValue;

SQLCHAR rgbValue [BUFFER SIZE];
} buffer;

Null-termination of strings

By default, every character string that DB2 ODBC returns is terminated with a null
terminator (hex 00), except for strings returned from the graphic and DBCLOB data
types into SQL_C_CHAR application variables. Graphic and DBCLOB data types
that are retrieved into SQL_C_DBCHAR and SQL_C_WCHAR application variables
are null terminated with a double byte null terminator. This requires that all buffers
allocate enough space for the maximum number of bytes expected, plus the
null-terminator.

It is also possible to use SQLSetEnvAttr() and set an environment attribute to
disable null termination of variable length output (character string) data. In this case,
the application allocates a buffer exactly as long as the longest string it expects.
The application must provide a valid pointer to storage for the output length
argument so that DB2 ODBC can indicate the actual length of data returned;
otherwise, the application has no means to determine this. The DB2 ODBC default
is to always write the null terminator.

String truncation

If an output string does not fit into a buffer, DB2 ODBC truncates the string to the
size of the buffer, and writes the null terminator. If truncation occurs, the function
returns SQL_SUCCESS_WITH_INFO and an SQLSTATE of 01004 indicating
truncation. The application can then compare the buffer length to the output length
to determine which string was truncated.

For example, if SQLFetch() returns SQL_SUCCESS_WITH_INFO, and an
SQLSTATE of 01004, at least one of the buffers bound to a column is too small to
hold the data. For each buffer that is bound to a column, the application can
compare the buffer length with the output length and determine which column was
truncated.

36 ODBC Guide and Reference

ODBC specifies that string data can be truncated on input or output with the
appropriate SQLSTATE. As the data source, an IBM relational database (DB2) does
not truncate data on input, but might truncate data on output to maintain data
integrity. On input, DB2 rejects string truncation with a negative SQLCODE (-302)
and an SQLSTATE of 22001. On output, DB2 truncates the data and issues
SQL_SUCCESS_WITH_INFO and an SQLSTATE of 01004.

Interpretation of strings

Normally, DB2 ODBC interprets string arguments in a case-sensitive manner and
does not trim any spaces from the values. The one exception is the cursor name
input argument on the SQLSetCursorName() function. In this case, if the cursor name
is not delimited (enclosed by double quotes) the leading and trailing blanks are
removed and case is preserved.

Querying environment and data source information

There are many situations when an application requires information about the
characteristics and capabilities of the current DB2 ODBC driver or the data source
that it is connected to.

One of the most common situations involves displaying information for the user.
Information such as the data source name and version, or the version of the DB2
ODBC driver might be displayed at connect time, or as part of the error reporting
process.

These functions are also useful to generic applications that are written to adapt and
take advantage of facilities that might be available from some, but not all database
servers. The following DB2 ODBC functions provide data source specific
information:

+ [‘SQLDataSources - Get list of data sources” on page 134

+ [*SQLGetFunctions - Get functions” on page 228

+ [‘SQLGetlInfo - Get general information” on page 234

+ [‘SQLGetTypelnfo - Get data type information” on page 278|

Chapter 3. Writing a DB2 ODBC applicaton 37

Querying environment information example

[Fk Kk ke kok R kK xx I IR KRRk ko xhhh kKK k% Kk kxrhhhhhhkrrrhh kK kk /
/* Querying environment and data source information */
/**************** ** *k*k *k*k **********************/

#include <stdio.h>

#include <string.h>
#include <stdlib.h>
#include <sqlclil.h>

void main()

{

SQLHENV hEnv; /* Environment handle
SQLHDBC hDbc; /* Connection handle
SQLRETURN rc; /* Return code for API calls
SQLHSTMT hStmt; /* Statement handle
SQLCHAR dsname[30]; /* Data source name
SQLCHAR dsdescr[255]; /* Data source description
SQLSMALLINT dslen; /* Length of data source
SQLSMALLINT desclen; /* Length of dsdescr
BOOL found = FALSE;
SQLSMALLINT funcs[100];
SQLINTEGER rgbValue;
/*

* Initialize environment - allocate environment handle.

*

/
rc SQLA11ocHandle(SQL_HANDLE_ENV, SQL_NULL HANDLE, &hEnv);

rc = SQLAT1ocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);

/*
* Use SQLDataSources to verify MVSDB2 does exist.
*/
while((rc = SQLDataSources(hEnv,
SQL_FETCH_NEXT,

dsname,
SQL_MAX_DSN_LENGTH+1,
&dslen,
dsdescr,
&desclen)) != SQL_NO_DATA_FOUND)
{
if(!strcmp(dsname, "MVSDB2")) /x data source exist
{
found = TRUE;
break;
1
1
if(!found)
{
fprintf(stdout, "Data source %s does not exist...\n", dsname);
fprintf(stdout, "program aborted.\n");
exit(1);
1

38 ODBC Guide and Reference

*/
*/
*/
*/
*/
*/
*/
*/

if((rc = SQLConnect(hDbc, dsname, SQL_NTS, "myid", SQL_NTS,
"mypd", SQL_NTS))== SQL_SUCCESS)
{

fprintf(stdout, "Connect to %s\n", dsname);

SQLA11ocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);

/*

* Use SQLGetFunctions to store all APIs status.

*/

rc = SQLGetFunctions(hDbc, SQL_API_ALL_FUNCTIONS, funcs);

/*

* Check whether SQLGetInfo is supported in this driver. If so,
* verify whether DATE is supported for this data source.

*/

if(funcs[SQL_API_SQLGETINFQ] == 1)

SQLGetInfo(hDbc, SQL_CONVERT DATE, (SQLPOINTER)&rgbValue,
255, &desclen);

if(rgbValue & SQL_CVT_DATE)

{
SQLGetTypeInfo(hStmt, SQL_DATE);

/* use SQLBindCol and SQLFetch to retrieve data*/
1

Chapter 3. Writing a DB2 ODBC application

39

40 ODBC Guide and Reference

Chapter 4. Configuring DB2 ODBC and running sample

applications

This section provides information about installing DB2 ODBC, the DB2 ODBC
runtime environment, and the preparation steps needed to run a DB2 ODBC
application.

« [“Installing DB2 ODBC’|

« [‘DB2 ODBC runtime environment’]

« [‘Setting up DB2 ODBC runtime environment” on page 43

« [‘Preparing and executing a DB2 ODBC application” on page 48]

« [‘DB2 ODBC initialization file” on page 52

- [‘DB2 ODBC migration considerations” on page 65|

Installing DB2 ODBC

You must edit and run SMP/E jobs to install DB2 ODBC. Section 2 of [DBJ
installation Guidd has information about the SMP/E jobs to receive, apply, and
accept the FMIDs for DB2 ODBC. These jobs are run as part of the DB2 installation
process.

1. Copy and edit the SMP/E jobs.

For sample JCL to invoke the MVS utility IEBCOPY to copy the SMP/E jobs to
disk, see the DB2 Program Directory.

2. Run the receive job: DSNRECV3.
3. Run the apply job: DSNAPPLY.
4. Run the accept job: DSNACCEP.

Customize these jobs to specify data set names for your DB2 installation and
SMP/E data sets. See the header notes in each job for details.

DB2 ODBC runtime environment

DB2 ODBC does not support an ODBC driver manager. All API calls are routed
through the single ODBC driver that is loaded at run time into the application
address space. DB2 ODBC support is implemented as an IBM C/C++ Dynamic
Load Library (DLL). By providing DB2 ODBC support using a DLL, DB2 ODBC
applications do not need to link-edit any DB2 ODBC driver code with the application
load module. Instead, the linkage to the DB2 ODBC APIs is resolved dynamically at
runtime by the IBM Language Environment® (LE) runtime support.

The DB2 ODBC driver can use either the call attachment facility (CAF) or the
Recoverable Resource Manager Services attachment facility (RRSAF) to connect to
the DB2 for OS/390 and z/OS address space.

» |If the DB2 ODBC application is not running as a DB2 for OS/390 and z/OS

stored procedure, the MVSATTACHTYPE keyword in the DB2 ODBC initialization file
determines the attachment facility that DB2 ODBC uses.

» |If the DB2 ODBC application is running as a DB2 for OS/390 and z/OS stored
procedure, then DB2 ODBC uses the attachment facility that was specified for
stored procedures.

When the DB2 ODBC application invokes the first ODBC function,
SQLATTocHandle() (with HandleType set to SQL_HANDLE_ENV), the DB2 ODBC
driver DLL is loaded.

© Copyright IBM Corp. 1997, 2001 41

DB2 ODBC supports access to the local DB2 for OS/390 and z/OS subsystems and
any remote data source that is accessible using DB2 for OS/390 and z/OS Version
7. This includes:

* Remote DB2 subsystems using specification of an alias or three-part name

* Remote DRDA-1 and DRDA-2 servers using LU 6.2 or TCP/IP.

The relationship between the application, the DB2 for OS/390 and z/OS V7 ODBC
driver and the DB2 for 0S/390 and z/OS subsystem are illustrated in

DB2 for OS/390 and z/OS
ODBC application

DSNAOINI v DSNAOTRC
. » DB2 for 0S/390 and z/OS >
I T
fﬂg ODBC driver DLL e

v

Call Attach (CAF)
or
RRS Attach (RRSAF)

v

DB2 for OS/390 and z/OS

Local table, alias or
3-part name if
connected locally

LU 6.2 or
TCP/IP

DRDA
AS

Figure 4. Relationship between DB2 for 0S/390 and z/OS V7 ODBC components

Connectivity requirements
DB2 for OS/390 and z/OS V7 ODBC has the following connectivity requirements:

« DB2 ODBC applications must execute on a machine on which Version 7 of DB2
for OS/390 and z/OS is installed.

 If the application is executing with MULTICONTEXT=1, then there are multiple
physical connections. Each connection corresponds to an independent
transaction and DB2 thread.

+ If the application is executing CONNECT (type 1) (described in [‘Connect type 1|
[and type 2” on page 18) and MULTICONTEXT=0, then there is only one current
physical connection and one transaction on that connection. All transactions on
logical connections (that is, with a valid connection handle) are rolled back by the
application or committed by DB2 ODBC. This is a deviation from the ODBC
connection model.

42 ODBC Guide and Reference

H+ H H OH H HF OH*

o o o F

Setting up DB2 ODBC runtime environment

This section describes the general setup required to enable DB2 ODBC
applications. The steps in this section only need to be performed once, and are
usually performed as part of the installation process for DB2 for OS/390 and z/OS.

The DB2 ODBC bind files must be bound to the data source. The following two bind
steps are required:

» Create packages at every data source

» Create at least one plan to name those packages.

These bind steps are described in the following sections:
- |'Bind DBRMs to packages’]
« ['Bind an application plan” on page 45|

The online bind sample, DSNTIJCL, is available in DSN710.SDSNSAMP. We
strongly recommend that you use this bind sample as a guide for binding DBRMS
to packages and binding an application plan.

Special considerations for the OS/390 UNIX environment are described in the
following section:
+ [“Setting up 0S/390 UNIX environment” on page 46|

In OS/390 Release 6, the name 0S/390 OpenEdition® is replaced with 0S/390
UNIX System Services or OS/390 UNIX. Throughout this book, we use the name
0S/390 UNIX.

Setup required for using suffix-W APls is described in the following section:
+ [“Setting up suffix-W API support” on page 46|

Bind DBRMs to packages

This section explains how to bind DBRMs to packages. Use the online bind sample,
DSN710.SDSNSAMP(DSNTIJCL), for guidance.

For an application to access a data source using DB2 ODBC, the following IBM
supplied DBRMs (shipped in DSN710.SDSNDBRM) must be bound to their
corresponding data sources, including the local DB2 for OS/390 and z/OS
subsystem and all remote (DRDA) data sources.

» Bind the following DBRMs to all data sources:
— DSNCLICS with ISOLATION(CS)*
— DSNCLIRR with ISOLATION(RR)*
— DSNCLIRS with ISOLATION(RS)*
— DSNCLIUR with ISOLATION(UR)*
— DSNCLINC with ISOLATION(NC)

Note:

*For DB2 UDB Version 5.2 or earlier, do not use these DBRMs. Bind the
following four DBRMs instead:

- DSNCLICU with ISOLATION(CS)
- DSNCLIRU with ISOLATION(RR)
- DSNCLISU with ISOLATION(RS)
- DSNCLIUU with ISOLATION(UR)

Chapter 4. Configuring DB2 ODBC and running sample applications 43

H oH HF OH H O H OH H H H*

H*

» Bind the following DBRMs with default options to all OS/390 servers:
— DSNCLIC1
— DSNCLIC2
— DSNCLIMS
— DSNCLIF4
+ Bind DSNCLIVM with default options to SQL/DS™ servers
+ Bind DSNCLIAS with ISOLATION(NC) to OS/400® servers
« Bind DSNCLIV1 with default options to DB2 UDB Version 1
* Bind DSNCLIV2 with default options to DB2 UDB Version 2 or later
» Bind DSNCLIQR to any site that supports DRDA query result sets

Package bind options

For packages listed above that use the ISOLATION keyword, the impact of package
bind options in conjunction with the DB2 ODBC initialization file keywords is as
follows:

* ISOLATION
Packages must be bound with the isolation specified.
« DYNAMICRULES(BIND)

Binding the packages with this option offers encapsulation and security similar to
that of static SQL. The recommendations and consequences for using this option
are as follows:

1. Bind DB2 ODBC packages or plan with DYNAMICRULES(BIND) from a
'driver' authorization ID with table privileges.

2. Issue GRANT EXECUTE on each collection.package or plan name to
individual users. Plans are differentiated by plan name; packages are
differentiated by collection.

3. Select a plan or package by using the PLANNAME or COLLECTIONID
keywords in the DB2 ODBC initialization file.

4. When dynamic SQL is issued, the statement is processed with the ’driver
authorization ID. Users need execute privileges; table privileges are not
required.

5. The CURRENTSQLID keyword cannot be used in the DB2 ODBC
initialization file. Use of this keyword results in an error at SQLConnect ().

* SQLERROR(CONTINUE)

Use this keyword to bind DB2 ODBC to Version 5 of DB2 for OS/390. The
symptoms of binding to a downlevel server are:

— Binding DSNCLIMS results in SQLCODE -199 on the VALUES INTO
statement. Bind with the SQLERROR(CONTINUE) keyword to avoid this error.

— Binding DSNCLIMS results in SQLCODE -199 on the DESCRIBE INPUT
statement. Apply APAR PQ24584 and retry the bind to avoid this error.
Alternatively, you can bind with the SQLERROR(CONTINUE) keyword,
however, the SQLDescribeParam() API will be unavailable to you at that DB2
for OS/390 Version 5 server.

Bind return codes: A bind to DB2 for OS/390 and z/OS receives several
expected warnings:

* For all packages:
WARNING, ONLY IBM-SUPPLIED COLLECTION-IDS SHOULD BEGIN WITH "DSN"
» For bind of DSNCLINC package to DB2 for OS/390 and z/OS:
BIND WARNING - ISOLATION NC NOT SUPPORTED CHANGED TO ISOLATION UR

44 ODBC Guide and Reference

» For bind of DSNCLIF4 package to DB2 for OS/390 and z/OS for
SYSIBM.LOCATIONS due to differences in catalog table names between
releases. For example, when bound to a Version 6 system you receive this
warning message:

SYSIBM.SYSLOCATIONS IS NOT DEFINED

Bind packages at remote sites

For an application to access a data source using DB2 ODBC, bind the DBRMs
listed above to all data sources, including the local DB2 for OS/390 and z/OS
subsystem and all remote (DRDA) data sources. The SQLConnect () argument
szDSN identifies the data source. The data source is the location in the DB2
SYSIBM.LOCATION catalog table. An application running under DB2 ODBC to a
remote DB2 for OS/390 and z/OS, or another DBMS, does not need to be bound
into the DB2 ODBC plan; rather it can be bound as a package at the remote site.
Failure to bind the package at the remote site results in SQLCODE -805.

Bind stored procedures

A stored procedure running under DB2 ODBC to a remote DB2 for OS/390 and
z/OS, or another DBMS, does not need to be bound into the DB2 ODBC plan;
rather it can be bound as a package at the remote site.

For a stored procedure that resides on the local DB2 for OS/390 and z/OS, the
stored procedure package must be bound in the DB2 ODBC plan, using PKLIST.
Stored procedures on remote servers only need to bind to that remote server as a
package.

For example, DB2 ODBC must always be bound in a plan to a DB2 for OS/390 and
z/OS subsystem to which DB2 ODBC first establishes an affinity on the
SQLATTocHandle() call (with HandleType set to SQL_HANDLE_ENYV). This is the
local DB2. The scenario in this example is equivalent to specifying the
MVSDEFAULTSSID keyword in the initialization file. If DB2 ODBC calls a stored
procedure that resides at this local DB2 for OS/390 and z/OS, that stored procedure
package must be in the DB2 ODBC plan, using PKLIST.

This process is unique to DB2 for OS/390 and z/OS stored procedure support. For
more information about using stored procedures, see [‘Using stored procedures” on|

Include local, remote, and stored procedure packages in the PKLIST of the plan at
the site where the client will execute.

Bind an application plan

This section explains how to bind an application plan. Use the online bind sample,
DSN710.SDSNSAMP(DSNTIJCL), for guidance.

A DB2 plan must be created using the PKLIST keyword to name all packages listed
in f‘Bind DBRMs to packages” on page 4Sl Any name can be selected for the plan;
the default name is DSNACLI. If a name other than the default is selected, that

name must be specified within the initialization file by using the PLANNAME keyword.

Plan bind options
Use PLAN bind options as follows:

» DISCONNECT(EXPLICIT)

Chapter 4. Configuring DB2 ODBC and running sample applications 45

All DB2 ODBC plans are created using this option. DISCONNECT(EXPLICIT) is
the default value; do not change it.
« CURRENTSERVER

Do not specify this keyword when binding plans.

Setting up 0S/390 UNIX environment

To use DB2 ODBC in the OS/390 UNIX environment, the DB2 ODBC definition
side-deck must be available to OS/390 UNIX users.

The OS/390 UNIX compiler determines the contents of an input file based on the
file extension. In the case of a file residing in an MVS partitioned data set (PDS),
the last qualifier in the PDS name is treated as the file extension.

The OS/390 UNIX compiler recognizes the DB2 ODBC definition side-deck by these
criteria:

* It must reside in an MVS PDS

* The last qualifier in the PDS name must be .EXP

Therefore, to make the DB2 ODBC definition side-deck available to OS/390 UNIX
users, you should define an MVS data set alias that uses .EXP as the last qualifier
in the name. This alias should relate to the SDSNMACS data set which is where the
DB2 ODBC definition side-deck is installed.

For example, assume that DB2 is installed using DSN710 as the high level data set
qualifier. You can define the alias using the following command:

DEFINE ALIAS(NAME('DSN710.SDSNC.EXP') RELATE('DSN710.SDSNMACS'))

This alias allows OS/390 UNIX users to directly reference the DB2 ODBC definition
side-deck by specifying:
"//'DSN710.SDSNC.EXP(DSNAOCLI) "

as one of the input files to the OS/390 UNIX ¢89 command.

As an alternative to defining a system alias for the ODBC side-deck, use the
_XSUFFIX_HOST environmental variable that specifies the MVS data set suffix. The
default value is EXP. For example, changing the default from EXP to SDSNMACS allows
the link to work without a Define Alias.

For the c89 compiler issue:
export _C89 XSUFFIX HOST="SDSNMACS"

For thecxx compiler issue:
export _CXX_XSUFFIX_HOST="SDSNMACS"

Setting up suffix-W API support

This section provides an overview of the setup required to enable Unicode UCS-2
support. DB2 ODBC provides Unicode UCS-2 support with suffix-W APIs. See

FUsing Unicode functions” on page 429| for information about suffix-W API support.
You need to set up OS/390 support for Unicode which includes a conversion

environment and conversion services that use the conversion environment.

Installation and customization is required for PTF UQ54199. You must install

46 ODBC Guide and Reference

E™S

I+ 3

HF oH FH H H H HH

oW O K W O W H O W HE K

0S/390 V2 Release 8, Release 9, Release 10 support for Unicode: FMID HUNI2AO.
After completing the installation, you need to customize the conversion
environment.

If PTF UQ54199 is not applied to your system, installation and customization is not
required.

Installing and activating 0S/390 support for Unicode

Follow the instructions in Program Directory for OS/390 V2 R8/R9/R10 support for
Unicode to install and activate 0S/390 V2 R8/R9/R10 support for Unicode. You
must perform the following tasks:

1. Obtain the SMP/E PTFs UR52471 and UR52473.

2. Download the package: OS/390 V2 R8/R9/R10 support for Unicode.
3. Run the sample job provided in README.TXT.

4. Complete the installation.

Customizing the conversion environment

After installation is complete, follow instructions in OS/390 Support for Unicode:
Using Conversion Services to customize the Unicode conversion environment. You
must perform the following tasks:

1. Use the following REXX execs to customize the jobs provided for your
conversion environment:
* CUNRUCST lets you customize job values
* CUNRUALL supplies the values you specify on JCL images
2. Create the conversion environment.
a. Create the conversion image.
Use the image generator in batch job hlq.SCUNJCL(CUNJIUTL) to create
the conversion image. After you create the conversion image, the updated
CUNJIUTL JCL member should appear as shown in |[Figure 5 on page 48}

Chapter 4. Configuring DB2 ODBC and running sample applications 47

HHHFHFHHFHFHHFEHFFHHFEHFFFHFHFFFHFFHFHFHFHF

HoH H FH OH H H OH H H H H H HHH

//CUNMIUTL EXEC PGM=CUNMIUTL

//SYSPRINT DD SYSOUT=+

//TABIN DD DISP=SHR,DSN=h1q.SCUNTBL
//SYSIMG DD DSN=h1q.IMAGES(CUNIMGO®),DISP=SHR
//SYSIN DD *

/**

* INPUT STATEMENTS FOR THE IMAGE GENERATOR =

**/

CONVERSION 00850,01047,ER; /* ASCII -> EBCDIC */
CONVERSION 01047,00850,ER; /* EBCDIC -> ASCII */
CONVERSION 00037,1200,ER; /* EBCDIC 037 -> UCS-2 */
CONVERSION 1200,00037,ER; /* UCS-2 -> EBCDIC 037 =/
CONVERSION 00500,1200,ER; /* Latin-1 EBC -> UCS-2 */
CONVERSION 1200,00500,ER; /* UCS-2 -> Latin-1 EBC */
CONVERSION 01047,1200,ER; /* EBCDIC 1047 -> UCS-2 */
CONVERSION 1200,01047,ER; /* UCS-2 -> EBCDIC 1047 */
CONVERSION 01208,1200,ER; /* UnicodeCCSID-> UCS-2 */
CONVERSION 1200,01208,ER; /* UCS-2 -> UnicodeCCSID*/
CONVERSION 01383,1200,ER; /* Simp Chines -> UCS-2 */
CONVERSION 1200,01383,ER; /* UCS-2 -> Simp Chines */
CONVERSION 00932,1200,ER; /* Jpn MCCSID -> UCS-2 */
CONVERSION 1200,00932,ER; /* UCS-2 -> Jpn MCCSID =/
CONVERSION 00939,1200,ER; /* Jpn-ExtEng -> UCS-2 */
CONVERSION 1200,00939,ER; /* UCS-2 -> Jpn-ExtEng =*/
CONVERSION 00300,1200,ER; /* Jpn GCCSID -> UCS-2 */
CONVERSION 1200,00300,ER; /* UCS-2 -> Jpn GCCSID =/
CONVERSION 00500,00850,ER; /* Latin-1 EBC -> ASCII */
CONVERSION 00850,00500,ER; /* ASCII -> Latin-1 EBC =/

Figure 5. Updated CUNJIUTL JCL member

b. Calculate the main storage required for a conversion image.

Issue the system command "D UNI,STORAGE" to determine the size of a
currently active image.

Find the CUN10171 message in the SYSPRINT log to determine the size of
the new conversion image. For example:

CUN10171 GENERATED IMAGE SIZE 291 PAGES........
c. Create parmlib member CUNUNIxx to activate a conversion environment.
d. Edit IEASYSxx.
e. IPL to initialize the conversion environment.
3. Change or check the status of the conversion environment.

* Use the DISPLAY UNI system command to view the status of the conversion
environment.

* Use the SET UNI system command to change the conversion environment.

Preparing and executing a DB2 ODBC application

This section provides an overview of the DB2 ODBC components and explains the
steps you follow to prepare and execute a DB2 ODBC application.

[Figure 6 on page 49 shows the DB2 ODBC components used to build the DB2
ODBC DLL, and the process you follow to install and prepare a DB2 ODBC
application. The shaded areas identify the components that are shipped.

48 ODBC Guide and Reference

---------------------------------- DB2 ODBC base cr:cie\A
DB2 precompiler — DB2 ODBC source code DB2 ODBC include file
object decks (.obj)

prelink » Definition sidedeck
(DSN710.SDSNMACS(DSNAOCLI))
v ’ Nonexecutable ODBC load module '
----- InStall- oo oo
DBRMs

(DSN710.SDSNDBRM(DSNCLIxxx))

DB2 install-BIND DB2 install-linkedit

DB2 packages (14) DB2 ODBCI DLL-

(DSNCLIxx) (executable load module
DSN710.SDSNLOAD.DSNAOQOCLI)

[DB2 PLAN(DSNACLI)|

-~ DB2 ODBC application preparation - -------o-cooeoerrr
User ODBC source code(.c)

Compile DB2 ODBC include files
(in DSN710.SDSNC.H)
SQL
SQLCA
SQLCLI
SQLCLH
SQLEXT
v SQLSYSTM

object decks(.obj)

prelink < Definition sidedeck
(DSN710.SDSNMACS(DSNAOCLLI))

linkedit

User DLL application
(executable load module)

Figure 6. DB2 ODBC application development and execution

The following sections describe the requirements and steps that are necessary to
run a DB2 ODBC application.

- [‘DB2 ODBC application requirements”|

« [‘Application preparation and execution steps” on page 50

DB2 ODBC application requirements

To successfully build a DLL application, you must ensure that the correct compile,
pre-link, and link-edit options are used. In particular, your application must generate
the appropriate DLL linkage for the exported DB2 ODBC DLL functions.

The C++ compiler always generates DLL linkage. However, the C compiler only
generates DLL linkage if the DLL compile option is used. Failure to generate the

Chapter 4. Configuring DB2 ODBC and running sample applications 49

necessary DLL linkage can cause the prelinker and linkage editor to issue warning
messages for unresolved references to DB2 ODBC functions.

The minimum requirements for a DB2 ODBC application are as follows:

» 0S/390 Version 1 Release 3 Application Enablement optional feature for C/C++.
If the C compiler is used, then the DLL compiler option must be specified.

* 0S/390 Release 3 Language Environment Application Enablement base feature.

» The DB2 ODBC application must be written and link-edited to execute with a
31-bit addressing mode, AMODE(31).

Special considerations for 0S/390 UNIX
A special consideration applies to DB2 ODBC product data set access. If you build

a DB2 ODBC application in OS/390 UNIX, you can use the c89 compile command
to compile your application. Although you compile your application under OS/390
UNIX, you can directly reference the non-HFS DB2 ODBC data sets in the c89
command. There is no need to copy the DB2 ODBC product files to HFS.

Application preparation and execution steps

The following steps describe application preparation and execution:
+ [“Step 1. Compile the application’]

+ [“Step 2. Pre-link and link-edit the application” on page 51|

+ [“Step 3. Execute the application” on page 52

DB2 ODBC provides online samples for installation verification:

DSN8O3VP
A sample C application. You can use this sample to verify that your DB2
ODBC 3.0 installation is correct. See|"“DSN80O3VP sample application” on

DSN8OIVP
A sample C application. You can use this sample to verify that your DB2
ODBC 2.0 installation is correct.

DSNTEJS8
Sample JCL. You can use this sample to compile, pre-link, link-edit, and
execute the sample application DSN8O3VP or DSN8OIVP.

The DSNTEJ8, DSN803VP, and DSN8OIVP online samples are available in
DSN710.SDSNSAMP. We strongly recommend that you use these samples for
guidance when running an application.

Using the ODBC sample in 0S/390 UNIX: To use the ODBC sample DSN803VP
or DSN8OIVP in OS/390 UNIX, copy DSN803VP or DSN8OIVP from the sample
data set to HFS. user/db2 is considered the user’s directory. For example:

oput 'dsn710.sdsnsamp(dsn8o3vp)' '/usr/db2/dsn8o3vp.c' TEXT

Step 1. Compile the application
Include the following statement in your DB2 ODBC application:

#include <sqlclil.h>
The sqlclil.h file includes all information that is required for compiling your DB2

ODBC application. All DB2 ODBC header files, including sqlc1il.h, that define the
function prototypes, constants, and data structures that are needed for a DB2

50 ODBC Guide and Reference

ODBC application are shipped in the DSN710.SDSNC.H data set. Therefore, you must
add this dataset to your SYSPATH concatenation when you compile your DB2 ODBC
application.

For an example of a compile job, use the DSNTEJ8 online sample in
DSN710.SDSNSAMP.

Compiling in 0S/390 UNIX: If you build a DB2 ODBC application in OS/390
UNIX, you can use the c89 command to compile your application. For example, to
compile a C application named 'dsn8o3vp.c' that resides in the current working
directory, the c89 compile command might look like:
c89 -c -W 'c,d11,long,source,list' -

-1"//'DSN710.SDSNC.H'" \

dsn8o3vp.c

Alternatively, if you write an application in C++, the cxx command might look like:

cxx -c -W 'c,Tong,source,list' -
-1"//'DSN710.SDSNC.H"'" \
dsn8o3vp.C

If your source code is in C, rather than C++, you must compile using the 'd11"
option to enable use of the DB2 ODBC driver. This is a requirement even when
using the cxx compile command to compile C parts.

Step 2. Pre-link and link-edit the application

Before you can link-edit your DB2 ODBC application, you must pre-link your
application with the DB2 ODBC definition side-deck provided with Version 7 of DB2
for OS/390 and z/OS.

The definition side-deck defines all of the exported functions in the DB2 ODBC
dynamic load library, DSNAOCLI. It resides in the DSN710.SDSNMACS data set, as
member DSNAOCLI. The definition side-deck should also be available under the alias
data set name of DSN710.SDSNC.EXP as member DSNAOCLI (see [‘Setting up OS/390|
[UNIX environment” on page 46| for details). You must include the DSNAOCLT member
as input to the Prelinker by specifying it in the pre-link SYSIN DD card
concatenation.

For an example of pre-link and link-edit jobs, use the DSNTEJ8 online sample in
DSN710.SDSNSAMP.

For more information about DLL, see OS/390 C/C++ Programming Guide

Pre-linking and link-editing in 0S/390 UNIX: If you build a DB2 ODBC
application in OS/390 UNIX, you can use the ¢89 command to pre-link and link-edit
your application. You need to include the DB2 ODBC definition side-deck as one of
the input data sets to the c89 command and specify 'd11"' as one of the link-edit
options.

For example, assume that you have already compiled a C application named
'myapp.c' to create a 'myapp.o' file in the current working directory. The c89
command to pre-link and link-edit your application might look like:

c89 -W 1,p,map,noer -W 1,d11,AMODE=31,map \
-0 dsn8o3vp dsn8o3vp.o "//'DSN710.SDSNC.EXP(DSNAOCLI)"'"

The following command references the ODBC side-deck as a €89 XSUFFIX HOST
environmental variable (as described in [‘Setting up 0S/390 UNIX environment” on|

page 46):

Chapter 4. Configuring DB2 ODBC and running sample applications 51

c89 -W 1,p,map,noer -W 1,d11,AMODE=31,map -0 dsn8o3vp dsn8o3vp.o
"//'DSN710.SDSNMACS (dsnaocli)'"

Step 3. Execute the application
DB2 ODBC applications must access the DSN710.SDSNLOAD data set at execution

time. The SDSNLOAD data set contains both the DB2 ODBC dynamic load library and
the attachment facility used to communicate with DB2.

In addition, the DB2 ODBC driver accesses the DB2 for OS/390 and z/OS load
module DSNHDECP. DSNHDECP contains, among other things, the coded character set
ID (CCSID) information that DB2 for OS/390 and z/OS uses.

A default DSNHDECP is shipped with DB2 for OS/390 and z/OS in the
DSN710.SDSNLOAD data set. However, if the values provided in the default DSNHDECP
are not appropriate for your site, a new DSNHDECP can be created during the
installation of DB2 for OS/390 and z/OS. If a site specific DSNHDECP is created during
installation, you should concatenate the data set containing the new DSNHDECP
before the DSN710.SDSNLOAD data set in your STEPLIB or JOBLIB DD card.

For an example of an execute job, use the DSNTEJ8 online sample in
DSN710.SDSNSAMP.

Executing in 0S/390 UNIX: To execute a DB2 ODBC application in OS/390
UNIX, you need to include the DSN710.SDSNEXIT and DSN710.SDSNLOAD data sets in
the data set concatenation of your STEPLIB environmental variable. The STEPLIB
environmental variable can be set in your .profile with the statement:

export STEPLIB=DSN710.SDSNEXIT:DSN710.SDSNLOAD

Defining a subsystem
There are two ways to define a DB2 subsystem to DB2 ODBC. You can identify the

DB2 subsystem by specifying the MVSDEFAULTSSID keyword in the common section
of initialization file. If the MVSDEFAULTSSID keyword does not exist in the initialization
file, DB2 ODBC uses the default subsystem name specified in the DSNHDECP load
module that was created when DB2 was installed. Therefore, you should ensure
that DB2 ODBC can find the intended DSNHDECP when your application issues
the SQLATTocHandle() call (with HandleType set to SQL_HANDLE_ENV).

The DSNHDECP load module is usually link-edited into the DSN710.SDSNEXIT data set.
In this case, your STEPLIB DD card includes:

//STEPLIB DD DSN=DSN710.SDSNEXIT,DISP=SHR
/l DD DSN=DSN710.SDSNLOAD,DISP=SHR

DB2 ODBC initialization file

A set of optional keywords can be specified in a DB2 ODBC initialization file, an
EBCDIC file that stores default values for various DB2 ODBC configuration options.
Because the initialization file has EBCDIC text, it can be updated using a file editor,
such as the TSO editor.

For most applications, use of the DB2 ODBC initialization file is not necessary.
However, to make better use of IBM RDBMS features, the keywords can be
specified to:

» Help improve the performance or usability of an application.

» Provide support for applications written for a previous version of DB2 ODBC.
* Provide specific work-arounds for existing ODBC applications.

52 ODBC Guide and Reference

The following sections describe how to create the initialization file and define the
keywords:

+ [‘Using the initialization file’]

« [“Initialization keywords” on page 55|

Using the initialization file

The DB2 ODBC initialization file is read at application run time. The file can be
specified by either a DSNAOINI DD card or by defining a DSNAOINI OS/390 UNIX
environmental variable. DB2 ODBC opens the DSNAOINI data set allocated in your
JCL first. If a DSNAOINI data set is not allocated, then DB2 ODBC opens the
environmental variable data set.

The initialization file specified can be either a tradition MVS data set or an OS/390
UNIX HFS file. For MVS data sets, the record format of the initialization file can be
either fixed or variable length.

The following JCL examples use a DSNAOINI JCL DD card to specify the DB2 ODBC
initialization file types supported:

MVS sequential data set USER1.DB20DBC.0ODBCINI:
//DSNAOINI DD DSN=USER1.DB20DBC.ODBCINI,DISP=SHR

MVS partitioned data set USER1.DB20DBC.DATA, member ODBCINI:
//DSNAOINI DD DSN=USER1.DB20DBC.DATA(ODBCINI),DISP=SHR

Inline JCL DSNAOINI DD specification:

//DSNAOINI DD *
[COMMON]
MVSDEFAULTSSID=V61A

/*

HFS file /u/userl/db2odbc/odbcini:
//DSNAOINI DD PATH='/u/userl/db2odbc/odbcini’

The following examples of OS/390 UNIX export statements define the DB2 ODBC
DSNAOINI OS/390 UNIX environmental variable for the DB2 ODBC initialization file
types supported:

HFS fully qualified file /u/userl/db2odbc/odbcini:
export DSNAOINI="/u/userl/db2odbc/odbcini"

HFS file ./db2odbc/odbcini, relative to the present working directory of the
application:
export DSNAOINI="./db2odbc/odbcini"

MVS sequential data set USER1.0DBCINI:
export DSNAOINI="USER1.0DBCINI"

Redirecting to use a file specified by another DD card, MYDD, that is already
allocated:

export DSNAOINI="//DD:MYDD"

MVS partitioned data set USER1.DB20DBC.DATA, member ODBCINI:
export DSNAOINI="USER1.DB20DBC.DATA(ODBCINI)"

Chapter 4. Configuring DB2 ODBC and running sample applications 53

When specifying an HFS file, the value of the DSNAOINI environmental variable must
begin with either a single forward slash (/), or a period followed by a single forward
slash (./). If a setting starts with any other characters, DB2 ODBC assumes that an
MVS data set name is specified.

Allocation precedence: DB2 ODBC opens the DSNAOINI data set allocated in your
JCL first. If a DSNAOINI data set is not allocated, then DB2 ODBC opens the
environmental variable data set.

Initialization file structure
The initialization file consists of the following three sections, or stanzas:

Common section
Contains parameters that are global to all applications using this
initialization file.

Subsystem section
Contains parameter values unique to that subsystem.

Data source sections
Contain parameter values to be used only when connected to that data
source. You can specify zero or more data source sections.

Each section is identified by a syntactic identifier enclosed in square brackets.
Specific guidelines for coding square brackets are described in the list item below
marked ’Attention’.

The syntactic identifier is either the literal 'common’, the subsystem ID or the data
source (location name). For example:

[data-source-name]
This is the section header.

The parameters are set by specifying a keyword with its associated keyword value
in the form:

KeywordName =keywordValue

« All the keywords and their associated values for each data source must be
located below the data source section header.

* The keyword settings in each section apply only to the data source name in that
section header.

* The keywords are not case sensitive; however, their values can be if the values
are character based.

+ For the syntax associated with each keyword, see [nitialization keywords” on|
page 58

» If a data source name is not found in the DB2 ODBC initialization file, the default
values for these keywords are in effect.

» Comment lines are introduced by having a semi-colon in the first position of a
new line.

* Blank lines are also permitted. If duplicate entries for a keyword exist, the first
entry is used (and no warning is given).

» Attention: You can avoid common errors by ensuring that the following contents
of the initialization file are accurate:
— Square brackets: The square brackets in the initialization file must consist of

the correct EBCDIC characters. The open square bracket must use the

54 ODBC Guide and Reference

hexadecimal characters X'AD'. The close square bracket must use the
hexadecimal characters X'BD'. DB2 ODBC does not recognize brackets if
coded differently.

— Sequence numbers: The initialization file cannot accept sequence numbers.
All sequence numbers must be removed.

The following is a sample DB2 ODBC initialization file with a common stanza, a
subsystem stanza, and two data source stanzas.

; This is a comment line...

s Example COMMON stanza

[COMMON]
MVSDEFAULTSSID=V61A

; Example SUBSYSTEM stanza for V61A subsystem
[V61A]

MVSATTACHTYPE=CAF

PLANNAME=DSNACLI

s Example DATA SOURCE stanza for STLEC1 data source
[STLEC1]

AUTOCOMMIT=0

CONNECTTYPE=2

s Example DATA SOURCE stanza for STLECIB data source
[STLEC1B]

CONNECTTYPE=2

CURSORHOLD=0

Initialization keywords

The initialization keywords are described in this section. The section (common,
subsystem, or data source) in which each keyword must be defined is identified.

APPLTRACE =011
This keyword is placed in the common section.

The APPLTRACE keyword controls whether the DB2 ODBC application trace is
enabled. The application trace is designed for diagnosis of application errors. If
enabled, every call to any DB2 ODBC API from the application is traced,
including input parameters. The trace is written to the file specified on the
APPLTRACEFILENAME keyword.

0 = Disabled (default)

1 = Enabled

For more information about using the APPLTRACE keyword, see [‘Application
trace” on page 457|

Important: This keyword is renamed. DB2 ignores the Version 6 keyword name
CLITRACE.

APPLTRACEFILENAME = dataset name
This keyword is placed in the common section.

APPLTRACEFILENAME is only used if a trace is started by the APPLTRACE keyword.
When APPLTRACE is set to 1, use the APPLTRACEFILENAME keyword to identify an
MVS data set name or OS/390 UNIX HFS file name that records the DB2
ODBC application trace. |“Diagnostic trace” on page 4591 provides detailed
information about specifying file name formats.

Important: This keyword is renamed. DB2 ignores the Version 6 keyword name
TRACEFILENAME.

Chapter 4. Configuring DB2 ODBC and running sample applications 55

AUTOCOMMIT =110
This keyword is placed in the data source section.

To be consistent with ODBC, DB2 ODBC defaults with AUTOCOMMIT on,
which means each statement is treated as a single, complete transaction. This
keyword can provide an alternative default, but is only used if the application
does not specify a value for AUTOCOMMIT as part of the program.

1 = on (default)

0 = off

Most ODBC applications assume the default of AUTOCOMMIT is on. Extreme
care must be used when overriding this default during runtime as the
application might depend on this default to operate properly.

This keyword also allows you to specify whether autocommit should be enabled
in a distributed unit of work (DUW) environment. If a connection is part of a
coordinated DUW, and AUTOCOMMIT is not set, the default does not apply;
implicit commits arising from autocommit processing are suppressed. If
AUTOCOMMIT is set to 1, and the connection is part of a coordinated DUW,
the implicit commits are processed. This can result in severe performance
degradations, and possibly other unexpected results elsewhere in the DUW
system. However, some applications might not work at all unless this is
enabled.

A thorough understanding of the transaction processing of an application is
necessary, especially applications written by a third party, before applying it to a
DUW environment.

For transactions on a global connection, specify AUTOCOMMIT=0,
MULTICONTEXT=0, and MVSATTACHTYPE=RRSAF to complete global transaction
processing.

BITDATA=110
This keyword is placed in the data source section.

The BITDATA keyword allows you to specify whether ODBC binary data types,
SQL_BINARY, SQL_VARBINARY, and SQL_LONGVARBINARY, and
SQL_BLOB are reported as binary type data. IBM DBMSs support columns with
binary data types by defining CHAR, VARCHAR and LONG VARCHAR columns
with the FOR BIT DATA attribute.

Only set BITDATA = 0 if you are sure that all columns defined as FOR BIT DATA
or BLOB contain only character data, and the application is incapable of
displaying binary data columns.

1 = Report FOR BIT DATA and BLOB data types as binary data types. This is

the default.

0 = Disabled.

CLISCHEMA = schema_name
This keyword is placed in the data source section.

The CLISCHEMA keyword lets you indicate the schema of the DB2 ODBC shadow
catalog tables or views to search when a you issue an ODBC catalog function
call. For example, if you specify CLISCHEMA=PAYROLL, the ODBC catalog
functions that normally reference the DB2 system catalog tables (SYSIBM
schema), will reference the following views of the DB2 ODBC shadow catalog
tables:

* PAYROLL.COLUMNS

* PAYROLL.TABLES

56 ODBC Guide and Reference

¢ PAYROLL.COLUMNPRIVILIGES
* PAYROLL.TABLEPRIVILIGES

* PAYROLL.SPECIALCOLUMNS
* PAYROLL.PRIMARYKEYS

* PAYROLL.FOREIGNKEYS

* PAYROLL.TSTATISTICS

* PAYROLL.PROCEDURES

You must build the DB2 ODBC shadow catalog tables and optional views
before using the CLISCHEMA keyword. If this keyword is not specified, the ODBC
catalog query APlIs reference the DB2 (SYSIBM) system tables by default.

COLLECTIONID = collection_id
This keyword is placed in the data source section.

The COLLECTIONID keyword allows you to specify the collection identifier that is
used to resolve the name of the package allocated at the server. This package
supports the execution of subsequent SQL statements.

The value is a character string and must not exceed 18 characters. It can be
overridden by executing the SET CURRENT PACKAGESET statement.

CONNECTTYPE =112
This keyword is placed in the common section.

The CONNECTTYPE keyword allows you to specify the default connect type for all
connections to data sources.

* 1 = Multiple concurrent connections, each with its own commit scope. If
MULTICONTEXT=0 is specified, a new connection might not be added unless the
current transaction on the current connection is on a transaction boundary
(either committed or rolled back). This is the default.

» 2 = Coordinated connections where multiple data sources participate under
the same distributed unit of work. CONNECTTYPE=2 is ignored if MULTICONTEXT=1
is specified.

CURRENTFUNCTIONPATH = "’schema?t’, ’schema2 ,..."
This keyword is placed in the data source section.

The CURRENTFUNCTIONPATH keyword defines the path used to resolve unqualified
user-defined functions, distinct types, and stored procedure references that are
used in dynamic SQL statements. It contains a list of one or more schema
names, which are used to set the CURRENT PATH special register using the
SET CURRENT PATH SQL statement upon connection to the data source.
Each schema name in the keyword string must be delimited with single quotes
and separated by commas. The entire keyword string must be enclosed in
double quotes and must not exceed 254 characters.

The default value of the CURRENT PATH special register is:
"SYSIBM", "SYSFUN", "SYSPROC", X

where X is the value of the USER special register as a delimited identifier. The
schemas SYSIBM, SYSFUN, and SYSPROC do not need to be specified. If any
of these schemas is not included in the current path, then it is implicitly
assumed at the beginning of the path in the order shown above. The order of
the schema names in the path determines the order in which the names are
resolved. For more detailed information on schema name resolution, see

SQL Reference

Unqualified user-defined functions, distinct types, and stored procedures are
searched from the list of schemas specified in the CURRENTFUNCTIONPATH

Chapter 4. Configuring DB2 ODBC and running sample applications 57

setting in the order specified. If the user-defined function, distinct type, or stored
procedures is not found in a specified schema, the search continues in the
schema specified next in the list. For example:

CURRENTFUNCTIONPATH="'USERO1"', 'PAYROLL', 'SYSIBM', 'SYSFUN', 'SYSPROC'"

results in searching schema "USERO01”, followed by schema "PAYROLL",
followed by schema "SYSIBM", etc..

Although the SQL statement CALL is a static statement, the
CURRENTFUNCTIONPATH setting affects a CALL statement if the stored procedure
name is specified with a host variable (making the CALL statement a
pseudo-dynamic SQL statement). This is always the case for a CALL statement
processed by DB2 ODBC.

CURRENTSQLID = current_sqlid
This keyword is placed in the data source section.

The CURRENTSQLID keyword is valid only for those DB2 DBMSs that support SET
CURRENT SQLID (such as DB2 for OS/390 and z/OS). If this keyword is
present, then a SET CURRENT SQLID statement is sent to the DBMS after a
successful connect. This allows the end user and the application to name SQL
objects without having to qualify by schema name.

Do not specify this keyword if you are binding the DB2 ODBC packages with
DYNAMICRULES(BIND).

CURSORHOLD =110
This keyword is placed in the data source section.

The CURSORHOLD keyword controls the effect of a transaction completion on open
cursors.
1 = Cursor hold. The cursors are not destroyed when the transaction is
committed. This is the default.
0 = Cursor no hold. The cursors are destroyed when the transaction is
committed.

Cursors are always destroyed when transactions are rolled back.

This keyword can be used by an end user to improve performance. If the user

is sure that the application:

1. Does not have behavior that is dependent on the
SQL_CURSOR_COMMIT_BEHAVIOR or the
SQL_CURSOR_ROLLBACK_BEHAVIOR information returned using
SQLGetInfo(), and

2. Does not require cursors to be preserved from one transaction to the next,

then the value of this keyword can be set to 0. The DBMS operates more
efficiently as resources no longer need to be maintained after the end of a
transaction.

DBNAME = dbname
This keyword is placed in the data source section.

The DBNAME keyword is only used when connecting to DB2 for OS/390 and
z/OS, and only if (base) table catalog information is requested by the
application.

58 ODBC Guide and Reference

If a large number of tables exist in the DB2 for OS/390 and z/OS subsystem, a
dbname can be specified to reduce the time it takes for the database to process
the catalog query for table information, and reduce the number of tables
returned to the application.

The value of the dbname keyword maps to the DBNAME column in the DB2 for
0S/390 and z/OS system catalog tables. If no value is specified, or if views,
synonyms, system tables, or aliases are also specified using TABLETYPE, only
table information is restricted; views, aliases, and synonyms are not restricted
with DBNAME. This keyword can be used in conjunction with SCHEMALIST
and TABLETYPE to further limit the number of tables for which information is
returned.

DIAGTRACE =01
This keyword is placed in the common section.

The DIAGTRACE keyword lets you enable the DB2 ODBC diagnostic trace.
0 = The DB2 ODBC diagnostic trace is not enabled. No diagnostic data is
captured. This is the default.

You can enable the diagnostic trace using the DSNAOTRC command when
the DIAGTRACE keyword is set to O.

1 = The DB2 ODBC diagnotic trace is enabled. Diagnostic data is recorded
in the application address space. If you include a DSNAOTRC DD statement
in your job or TSO logon procedure that identifies an MVS data set or an
0S/390 UNIX HFS file name, the trace is externalized at normal program
termination. You can format the trace using the DSNAOTRC trace formatting
program.

For more information about using the DIAGTRACE keyword and the DSNAOTRC
command, see [‘Diagnostic trace” on page 459

Important: This keyword is renamed. DB2 ignores the Version 6 keyword name
TRACE.

DIAGTRACE_BUFFER_SIZE = buffer size
This keyword is placed in the common section.

The DIAGTRACE_BUFFER_SIZE keyword controls the size of the DB2 ODBC
diagnotic trace buffer. This keyword is only used if a trace is started by using
the DIAGTRACE keyword.

buffer size is an integer value that represents the number of bytes to allocate
for the trace buffer. The buffer size is rounded down to a multiple of 65536
(64K). If the value specified is less than 65536, then 65536 is used. The default
value for the trace buffer size is 65536.

If a trace is already active, this keyword is ignored.
Important: DB2 ignores the Version 6 keyword name TRACE_BUFFER SIZE.

DIAGTRACE_NO_WRAP =011
This keyword is placed in the common section.

The DIAGTRACE_NO_WRAP keyword controls the behavior of the DB2 ODBC
diagnotic trace when the DB2 ODBC diagnostic trace buffer fills up. This
keyword is only used if a trace is started by the DIAGTRACE keyword.
0 = The trace table is a wrap-around trace. In this case, the trace remains
active to capture the most current trace records. This is the default.
1 = The trace stops capturing records when the trace buffer fills. The trace
captures the initial trace records that were written.

Chapter 4. Configuring DB2 ODBC and running sample applications 59

If a trace is already active, this keyword is ignored.

Important: This keyword is renamed. DB2 ignores the Version 6 keyword name
TRACE_NO_WRAP.

GRAPHIC=0111213
This keyword is placed in the data source section.

The GRAPHIC keyword controls whether DB2 ODBC reports IBM GRAPHIC
(double byte character support) as one of the supported data types when
SQLGetTypeInfo() is called. SQLGetTypeInfo() lists the data types supported by
the data source for the current connection. These are not native ODBC types
but have been added to expose these types to an application connected to a
DB2 family product.

0 = disabled (default)

1 = enabled

2 = report the length of graphic columns returned by DESCRIBE in nhumber

of bytes rather than DBCS characters. This applies to all DB2 ODBC and

ODBC functions that return length or precision either on the output argument

or as part of the result set.

3 = settings 1 and 2 combined; that is, GRAPHIC=3 achieves the combined

effect of 1 and 2.

The default is that GRAPHIC is not returned since many applications do not
recognize this data type and cannot provide proper handling.

MAXCONN =0 | positive number
This keyword is placed in the common section.

The MAXCONN keyword is used to specify the maximum number of connections
allowed for each DB2 ODBC application program. This can be used by an
administrator as a governor for the maximum number of connections
established by each application.

A value of 0 can be used to represent no limit; that is, an application is allowed
to open up as many connections as permitted by the system resources. This is
the default.

This parameter limits the number of SQLConnect () statements that the
application can successfully issue. In addition, if the application is executing
with CONNECT (type 1) semantics, then this value specifies the number of
logical connections. There is only one physical connection to either the local
DB2/MVS subsystem or a remote DB2 subsystem or remote DRDA-1 or
DRDA-2 server.

MULTICONTEXT =01 1
This keyword is placed in the common section.

The MULTICONTEXT keyword controls whether each connection in an application
can be treated as a separate unit of work with its own commit scope that is
independent of other connections.
0 = The DB2 ODBC code does not create an independent context for a data
source connection. Connection switching among multiple data sources
governed by the CONNECTTYPE=1 rules is not allowed unless the current
transaction on the current connection is on a transaction boundary (either
committed or rolled back). This is the default.

ODBC external context management support requires MULTICONTEXT=0,
MVSATTACHTTYPE=RRSAF, and OS/390 Version 2 Release 5 or higher. DB2
ODBC does not support external contexts when the application runs under a
stored procedure.

60 ODBC Guide and Reference

For transactions on a global connection, specify AUTOCOMMIT=0,
MULTICONTEXT=0, and MVSATTACHTYPE=RRSAF to complete global transaction
processing.

1 = The DB2 ODBC code creates an independent context for a data source
connection at the connection handle level when SQLA11ocHandle() is issued.
Each connection to multiple data sources is governed by CONNECTTYPE=1
rules and is associated with an independent DB2 thread. Connection
switching among multiple data sources is not prevented due to the commit
status of the transaction; an application can use multiple connection handles
without having to perform a commit or rollback on a connection before
switching to another connection handle. The use of MULTICONTEXT=1 requires
MVSATTACHTYPE=RRSAF and OS/390 Version 2 Release 5 or higher.

The application can use SQLGetInfo() with finfoType=SQL MULTIPLE ACTIVE_ TXN
to determine whether MULTICONTEXT=1 is supported.

MULTICONTEXT=1 is ignored if any of these conditions are true:

» The application created a DB2 thread before invoking DB2 ODBC. This is
always the case for a stored procedure using DB2 ODBC.

* The application created and switched to a private context using OS/390
Context Services before invoking DB2 ODBC.

» The application started a unit of recovery with any RRS resource manager
(for example, IMS) before invoking DB2 ODBC.

» MVSATTACHTYPE=CAF is specified in the initialization file.

» The OS/390 operating system level does not support Unauthorized Context
Services.

MVSATTACHTYPE = CAF | RRSAF
This keyword is placed in the subsystem section.

The MVSATTACHTYPE keyword is used to specify the DB2 for OS/390 and z/OS
attachment type that DB2 ODBC uses to connect to the DB2 for OS/390 and
z/OS address space. This parameter is ignored if the DB2 ODBC application is
running as a DB2 for OS/390 and z/OS stored procedure. In that case, DB2
ODBC uses the attachment type that was defined for the stored procedure.
CAF: DB2 ODBC uses the DB2 for OS/390 and z/OS call attachment facility
(CAF). This is the default.
RRSAF: DB2 ODBC uses the DB2 for OS/390 and z/OS Recoverable
Resource Manager Services attachment facility (RRSAF).

ODBC external context management support requires MVSATTACHTTYPE=RRSAF,
MULTICONTEXT=0, and OS/390 Version 2 Release 5 or higher. DB2 ODBC does
not support external contexts when the application runs under a stored
procedure.

For transactions on a global connection, specify AUTOCOMMIT=0,
MULTICONTEXT=0, and MVSATTACHTYPE=RRSAF to complete global transaction
processing.

MVSDEFAULTSSID = ssid
This keyword is placed in the common section.

The MVSDEFAULTSSID keyword specifies the default DB2 subsystem to which the
application is connected when invoking the SQLATTocHandle function (with
HandleType set to SQL_HANDLE_ENV). Specify the DB2 subsystem name or
group attachment name (if used in a data sharing group) to which connections
will be made. The default subsystem is 'DSN'.

Chapter 4. Configuring DB2 ODBC and running sample applications 61

OPTIMIZEFORNROWS = integer
This keyword is placed in the data source section.

The OPTIMIZEFORNROWS keyword appends the "OPTIMIZE FOR n ROWS” clause
to every select statement, where n is an integer larger than 0. The default
action is not to append this clause.

For more information on the effect of the OPTIMIZE FOR n ROWS clause, see
IDB2 SQL Reference .

PATCH2 = patch number
This keyword is placed in the data source section.

The PATCH2 keyword specifies a workaround for known problems with ODBC
applications. To set multiple PATCH2 values, list the values sequentially,
separated by commas. For example, if you want patches 300, 301, and 302,
specify PATCH2= "300,301,302" in the initialization file. The valid values for the
PATCH2 keyword are:

0: No workaround (default).

300

PATCH2=300 behavior: SQLExecute() and SQLExecDirect () will return
SQL_NO_DATA_FOUND instead of SQL_SUCCESS when SQLCODE=100. In
this case, a delete or update affected no rows, or the result of the subselect of
an insert statement is empty.

explains how PATCH2 settings affect return codes.

Table 9. PATCH2 settings and SQL return codes
If the SQL statement is... SQLExecute and SQLExecDirect return...

A searched update or searched delete « SQL_SUCCESS without a patch (PATCH2=0)
and no rows satisfy the search condition « SQL_NO_DATA_FOUND with a patch
(PATCH2=300)

A mass delete or update and no rows * SQL_SUCCESS_WITH_INFO without a patch
satisfy the search condition (PATCH2=0)
* SQL_NO_DATA_FOUND with a patch
(PATCH2=300)

A mass delete or update and one or SQL_SUCCESS_WITH_INFO without a patch
more rows satisfy the search condition (PATCH2=0) or with a patch (PATCH2=300)

In ODBC 3.0, applications do not need to set the patch on. ODBC 3.0 behavior
is equivalent to setting PATCH2=300.

PLANNAME = planname
This keyword is placed in the subsystem section.

The PLANNAME keyword specifies the name of the DB2 for OS/390 and z/OS
PLAN that was created during installation. A PLAN name is required when
initializing the application connection to the DB2 for OS/390 and z/OS
subsystem which occurs during the processing of the SQLATT1ocHandle() call
(with HandleType set to SQL_HANDLE_ENYV).

If no PLANNAME is specified, the default value DSNACLI is used.

SCHEMALIST = ""schemat’, ’schemaZ2 ,..."
This keyword is placed in the data source section.

The SCHEMALIST keyword specifies a list of schemas in the data source.

62 ODBC Guide and Reference

If there are a large number of tables defined in the database, a schema list can
be specified to reduce the time it takes for the application to query table
information, and reduce the number of tables listed by the application. Each
schema name is case sensitive, must be delimited with single quotes and
separated by commas. The entire string must also be enclosed in double
quotes, for example:

SCHEMALIST="'USER1"','USER2"',USER3""

For DB2 for OS/390 and z/OS, CURRENT SQLID can also be included in this
list, but without the single quotes, for example:

SCHEMALIST=""'USER1',CURRENT SQLID, 'USER3""
The maximum length of the keyword string is 256 characters.

This keyword can be used in conjunction with DBNAME and TABLETYPE to
further limit the number of tables for which information is returned.

SCHEMALIST is used to provide a more restrictive default in the case of those
applications that always give a list of every table in the DBMS. This improves
performance of the table list retrieval in cases where the user is only interested
in seeing the tables in a few schemas.

SYSSCHEMA = sysschema
This keyword is placed in the data source section. This keyword is placed in the
data source section.

The SYSSCHEMA keyword indicates an alternative schema to be searched in place
of the SYSIBM (or SYSTEM, QSYS2) schemas when the DB2 ODBC and
ODBC catalog function calls are issued to obtain system catalog information.

Using this schema name, the system administrator can define a set of views
consisting of a subset of the rows for each of the following system catalog
tables:

+ SYSCOLAUTH

+ SYSCOLUMNS

* SYSDATABASE

*« SYSFOREIGNKEYS

+ SYSINDEXES

+ SYSKEYS

+ SYSPARMS

* SYSRELS

+ SYSROUTINES

*+ SYSSYNONYMS

* SYSTABAUTH

* SYSTABLES

For example, if the set of views for the system catalog tables are in the ACME
schema, then the view for SYSIBM.SYSTABLES is ACME.SYSTABLES; and
SYSSCHEMA should then be set to ACME.

Defining and using limited views of the system catalog tables reduces the
number of tables listed by the application, which reduces the time it takes for
the application to query table information.

If no value is specified, the default is:

« SYSIBM on DB2 for OS/390 and z/OS and OS/400
e SYSTEM on DB2 for VSE & VM

Chapter 4. Configuring DB2 ODBC and running sample applications 63

* QSYS2 on DB2 for AS/400

This keyword can be used in conjunction with SCHEMALIST, TABLETYPE (and
DBNAME on DB2 for OS/390 and z/OS) to further limit the number of tables for
which information is returned.

TABLETYPE="TABLE’ | /ALIAS’ | /VIEW’ | ,’ |,
’SYSTEM TABLE’ | SYNONYM”
This keyword is placed in the data source section.

The TABLETYPE keyword specifies a list of one or more table types. If there are a
large number of tables defined in the data source, a table type string can be
specified to reduce the time it takes for the application to query table
information, and reduce the number of tables listed by the application.

Any number of the values can be specified, but each type must be delimited
with single quotes, separated by commas, and in upper case. The entire string
must also be enclosed in double quotes, for example:

TABLETYPE="'TABLE','VIEW"'"

This keyword can be used in conjunction with DBNAME and SCHEMALIST to
further limit the number of tables for which information is returned.

TABLETYPE is used to provide a default for the DB2 ODBC function that
retrieves the list of tables, views, aliases, and synonyms in the data source. If
the application does not specify a table type on the function call, and this
keyword is not used, information about all table types is returned. If the
application does supply a value for the tabletype on the function call, then that
argument value overrides this keyword value.

If TABLETYPE includes any value other than TABLE, then the DBNAME
keyword setting cannot be used to restrict information to a particular DB2 for
0S/390 and z/OS subsystem.

THREADSAFE=110
This keyword is placed in the common section.

The THREADSAFE keyword controls whether DB2 ODBC uses POSIX mutexes to
make the DB2 ODBC code threadsafe for multiple concurrent or parallel LE
threads.

* 1 =The DB2 ODBC code is threadsafe if the application is executing in a
POSIX(ON) environment. Multiple LE threads in the process can use DB2
ODBC. The threadsafe capability cannot be provided in a POSIX(OFF)
environment. This is the default.

* 0 =The DB2 ODBC code is not threadsafe. This reduces the overhead of
serialization code in DB2 ODBC for applications that are not multithreaded,
but provides no protection for concurrent LE threads in applications that are
multithreaded.

TXNISOLATION=1121418132
This keyword is placed in the data source section.

The TXNISOLATION keyword sets the isolation level to:
1 = Read uncommitted (uncommitted read)
2 = Read committed (cursor stability) (default)
4 = Repeatable read (read stability)
8 = Serializable (repeatable read)
32 = (No commit, DB2 for OS/400 only)

64 ODBC Guide and Reference

The words in round brackets are the DB2 equivalents for SQL92 isolation
levels. Note that no commit is not an SQL92 isolation level and is supported
only on DATABASE 2 for 0S/400. See |DB2 Application Programming and SQL
for more information on isolation levels.

UNDERSCORE =110

This keyword is placed in the data source section.

The UNDERSCORE keyword specifies whether the underscore character ”_" is to
be used as a wildcard character (matching any one character, including no
character), or to be used as itself. This parameter only affects catalog function
calls that accept search pattern strings.

1 ="_"acts as a wildcard (default)

The underscore is treated as a wildcard matching any one character or
none. For example, if two tables are defined as follows:

CREATE TABLE "OWNER"."KEY_WORDS" (COL1 INT)
CREATE TABLE "OWNER"."KEYWORDS" (COL1 INT)

The DB2 ODBC catalog function call that returns table information
(SQLTables()) returns both of these entries if "KEY_WORDS" is specified in
the table name search pattern argument.

0 ="_" acts as itself

The underscore is treated as itself. If two tables are defined as shown in the
example above, SQLTables() returns only the "KEY_WORDS" entry if
"KEY_WORDS" is specified in the table name search pattern argument.
Setting this keyword to 0 can result in performance improvement in those

cases where object names (owner, table, column) in the data source contain
underscores.

DB2 ODBC migration considerations

Changes to the columns of the result set for several DB2 ODBC catalog functions
are introduced with the DB2 for OS/390 Version 6 ODBC driver. These changes,
which include new and reordered columns, will affect existing applications that are
migrating from a DB2 for OS/390 Version 5 ODBC driver to a Version 6 ODBC
driver and are issuing the SQLColumns (), SQLForeignKeys(), or
SQLProcedureColumns () APls. For a list of the columns returned for each of these
APls, see:

Table 38 on page 125

Table 63 on page 182

Table 123 on page 314

Chapter 4. Configuring DB2 ODBC and running sample applications 65

66 ODBC Guide and Reference

Chapter 5. Functions

This section provides a description of each function. Each description has the
following sections.

* Purpose

* Syntax

» Function arguments
* Usage

* Return codes

» Diagnostics

* Restrictions

* Example

* References

Each section is described below.

Purpose
This section gives a brief overview of what the function does. It also indicates if
any functions should be called before and after calling the function being
described.

Each function also has a table, such as the one below that indicates which
specification or standard the function conforms to. The first column indicates
which version (1.0, 2.0, or 3.0) of the ODBC specification the function was first
provided. The second and third columns indicate if the function is included in
the X/Open CLI CAE specification and the 1ISO CLI standard.

Table 10. Sample function specification table
Specification: ODBC 1.0 X/OPEN CLI ISO CLI

This table indicates support of the function. Some functions use a set of options
that do not apply to all specifications or standards. The restrictions section
identifies any significant differences.

Syntax
This section contains the generic 'C’ prototype. If the function is defined by
ODBC V2.0, then the prototype should be identical to that specified in Microsoft
ODBC 3.0 Software Development Kit and Programmer's Reference.

All function arguments that are pointers are defined using the FAR macro. This
macro is defined out (set to a blank). This is consistent with the ODBC
specification.

Function arguments
This section lists each function argument, along with its data type, a description
and whether it is an input or output argument.

Only SQLGetInfo() and SQLBindParameter() have parameters that are both
input and output.

Some functions contain input or output arguments which are known as deferred
or bound arguments. These arguments are pointers to buffers allocated by the
application, and are associated with (or bound to) either a parameter in an SQL
statement, or a column in a result set. The data areas specified by the function
are accessed by DB2 ODBC at a later time. It is important that these deferred
data areas are still valid at the time DB2 ODBC accesses them.

© Copyright IBM Corp. 1997, 2001 67

Usage
This section provides information about how to use the function, and any
special considerations. Possible error conditions are not discussed here, but are
listed in the diagnostics section instead.

Return codes
This section lists all the possible function return codes. When SQL_ERROR or
SQL_SUCCESS_WITH_INFO is returned, error information can be obtained by
calling SQLGetDiagRec().

See [‘Diagnostics” on page 28| for more information about return codes.

Diagnostics
This section contains a table that lists the SQLSTATESs explicitly returned by
DB2 ODBC (SQLSTATEs generated by the DBMS can also be returned) and
indicates the cause of the error. These values are obtained by calling
SQLGetDiagRec () after the function returns an SQL_ERROR or
SQL_SUCCESS_WITH_INFO.

See [‘Diagnostics” on page 28] for more information about diagnostics.

Restrictions
This section indicates any differences or limitations between DB2 ODBC and
ODBC that can affect an application.

Example
This section contains a code fragment that demonstrates the use of the
function, using the generic data type definitions.

See [Chapter 4, “Configuring DB2 ODBC and running sample applications”, on|
lpage 41|for more information on setting up the DB2 ODBC environment and
accessing the sample applications.

References
This section lists related DB2 ODBC functions.

Function summary

able 11|provides a complete list of functions that DB2 ODBC and Microsoft ODBC
3.0 support. For each function, the table indicates whether ODBC or DB2 ODBC
supports it, the ODBC conformance level, and a brief description of the function.

Table 11. Function list by category

Task ODBC DB2 ODBC
function name 3.0 support Purpose

Note: Depr in the ODBC 3.0 column indicates that the function has been deprecated in ODBC. See [‘DB2 ODBGC
[migration considerations” on page 65|for more information.

Connecting to a data source

SQLAllocEnv Depr Yes Obtains an environment handle. One environment
handle is used for one or more connections.

SQLAllocConnect Depr Yes Obtains a connection handle.

SQLAllocHandle Core Yes Obtains a handle.

SQLConnect Core Yes Connects to specific driver by data source name,

user ID, and password.

68 ODBC Guide and Reference

Table 11. Function list by category (continued)

Task ODBC DB2 ODBC
function name 3.0 support Purpose

SQLDriverConnect Lvl 1 Yes Connects to a specific driver by connection string or
requests that the driver manager and driver display
connection dialogs for the user.

Note: This function is also extended by the
additional IBM keywords supported in the ODBC.INI
file in the DB2 UDB CLI environment. Within the DB2
for OS/390 and z/OS CLI environment, there is no
equivalent of the ODBC.INI file.

SQLSetConnection No Yes Connects to a specific data source by connection
string.

SQLBrowseConnect Lvl 2 No Returns successive levels of connection attributes
and valid attribute values. When a value is specified
for each connection attribute, connects to the data

source.
Obtaining information about a driver and data source
SQLDataSources Lvl 2 Yes Returns the list of available data sources.
SQLDrivers Lvl 2 No Returns the list of installed drivers and their attributes
(ODBC 2.0).

Note: This function is implemented within the ODBC
driver manager and is therefore not applicable within
the DB2 for OS/390 and z/OS ODBC environment.

SQLGetInfo Lvl 1 Yes Returns information about a specific driver and data
source.

SQLGetFunctions Lvl 1 Yes Returns supported driver functions.

SQLGetTypelnfo Lvl 1 Yes Returns information about supported data types.

Setting and retrieving driver options

SQLSetConnectAttr Core Yes Sets an connection attribute.

SQLGetConnectAttr Core Yes Returns the value of a connection attribute.

SQLSetEnvAttr No Yes Sets an environment option.

SQLGetEnvAttr No Yes Returns the value of an environment option.

SQLSetStmtAttr Core Yes Sets a statement attribute.

SQLGetStmtAttr Core Yes Returns the value of a statement attribute.

SQLSetConnectOption Depr Yes Sets a connection option.

SQLGetConnectOption Depr Yes Returns the value of a connection option.

SQLSetStmtOption Depr Yes Sets a statement option.

SQLGetStmtOption Depr Yes Returns the value of a statement option.

Preparing SQL Requests

SQLAIllocStmt Depr Yes Allocates a statement handle.

SQLPrepare Core Yes Prepares an SQL statement for later execution.

SQLBindParameter Lvl 1 Yes Assigns storage for a parameter in an SQL statement
(ODBC 2.0)

SQLSetParam Core Yes Assigns storage for a parameter in an SQL statement

(ODBC 2.0). In ODBC, SQLBindParameter() replaces
this function.

SQLParamOptions Lvl 2 Yes Specifies the use of multiple values for parameters.

Chapter 5. Functions 69

Table 11. Function list by category (continued)

Task ODBC DB2 ODBC

function name 3.0 support Purpose

SQLGetCursorName Core Yes Returns the cursor name associated with a statement
handle.

SQLSetCursorName Core Yes Specifies a cursor name.

SQLSetScrollOptions Lvl 2 No Sets options that control cursor behavior.

Submitting Requests

SQLExecute Core Yes Executes a prepared statement.

SQLExecDirect Core Yes Executes a statement.

SQLNativeSql Lvl 2 Yes Returns the text of an SQL statement as translated
by the driver.

SQLDescribeParam 2 Lvl 2 Yes Returns the description for a specific input parameter
in a statement.

SQLNumParams Lvl 2 Yes Returns the number of parameters in a statement.

SQLParamData Lvl 1 Yes Used in conjunction with SQLPutData() to supply
parameter data at execution time. (Useful for long
data values.)

SQLPutData Lvl 1 Yes Send part or all of a data value for a parameter.

(Useful for long data values.)

Retrieving results and information about results

SQLRowCount Core Yes Returns the number of rows affected by an insert,
update, or delete request.

SQLNumResultCols Core Yes Returns the number of columns in the result set.

SQLDescribeCol Core Yes Describes a column in the result set.

SQLColAttributes Depr Yes Describes attributes of a column in the result set.

SQLSetColAttributes No Yes Sets attributes of a column in the result set.

SQLBindCol Core Yes Assigns storage for a result column and specifies the
data type.

SQLFetch Core Yes Returns a result row.

SQLExtendedFetch Lvl 2 Yes Returns multiple result rows.

SQLGetData Lvl 1 Yes Returns part or all of one column of one row of a
result set. (Useful for long data values.)

SQLSetPos Lvl 2 No Positions a cursor within a fetched block of data.

SQLMoreResults Lvl 2 Yes Determines whether there are more result sets
available and, if so, initializes processing for the next
result set.

SQLError Depr Yes Returns additional error or status information.

SQLGetDiagRec Core Yes Returns additional diagnostic information.

SQLGetSQLCA No Yes Returns the SQLCA associated with a statement

handle.

Large object support

SQLGetLength @ No Yes

Gets length of a string referenced by a LOB locator.

SQLGetPosition # No Yes

70 ODBC Guide and Reference

Gets the position of a string within a source string
referenced by a LOB locator.

Table 11. Function list by category (continued)

Task obBC DB2 ODBC
function name 3.0 support Purpose
SQLGetSubString 2 No Yes Creates a new LOB locator that references a

substring within a source string (the source string is
also represented by a LOB locator).

Obtaining information about the data source’s system tables (catalog functions)

SQLColumnPrivileges Lvl 2 Yes Returns a list of columns and associated privileges
for a table.

SQLColumns Lvl 1 Yes Returns the list of column names in specified tables.

SQLForeignKeys Lvl 2 Yes Returns a list of column names that comprise foreign

keys, if they exist for a specified table.

SQLPrimaryKeys Lvl 2 Yes Returns the list of column names that comprise the
primary key for a table.

SQLProcedureColumns Lvl 2 Yes Returns the list of input and output parameters, as
well as the columns that make up the result set for
the specified procedures.

SQLProcedures Lvl 2 Yes Returns the list of procedure names stored in a
specific data source.

SQLSpecialColumns Lvl 1 Yes Returns information about the optimal set of columns
that uniquely identifies a row in a specified table, or
the columns that are automatically updated when any
value in the row is updated by a transaction.

SQLStatistics Lvl 1 Yes Returns statistics about a single table and the list of
indexes associated with the table.

SQLTablePrivileges Lvl 2 Yes Returns a list of tables and the privileges associated
with each table.

SQLTables Lvl 1 Yes Returns the list of table names stored in a specific
data source.

Terminating a Statement

SQLFreeStmt Core Yes End statement processing and closes the associated
cursor, discards pending results, and, optionally, frees
all resources associated with the statement handle.

SQLCloseCursor Core Yes Closes a cursor that has been opened on a
statement handle.

SQLCancel Core Yes Cancels an SQL statement.

SQLTransact Depr Yes Commits or rolls back a transaction.

SQLENndTran Core Yes Commits or rolls back a transaction.

Terminating a Connection

SQLDisconnect Core Yes Closes the connection.

SQLFreeHandle Core Yes Releases and environment, connection, statement, or
descriptor handle.

SQLFreeConnect Depr Yes Releases the connection handle.

SQLFreeEnv Depr Yes Releases the environment handle.

Chapter 5. Functions 71

Table 11. Function list by category (continued)

Task ODBC DB2 ODBC

function name 3.0 support Purpose
Note:

a This function is supported by Version 6 of DB2 ODBC or later.

ODBC functions not supported by DB2 ODBC:

* SQLSetPos() and SQLBrowseConnect() are not supported by Call Level Interface or DB2 ODBC.

* SQLSetScroll10ptions() is not supported. It is superceded by the SQL_CURSOR_TYPE, SQL_CONCURRENCY,
SQL_KEYSET_SIZE, and SQL_ROWSET_SIZE statement options.

* SQLDrivers() is implemented by the ODBC driver manager and is not supported by DB2 ODBC.

72 ODBC Guide and Reference

SQLAllocConnect

SQLAllocConnect - Allocate connection handle

Purpose

|Specification: | ODBC 1.0 | X/OPEN CLI ISO CLI

In ODBC 3.0, SQLA11ocHandle() replaces the ODBC 2.0 function
SQLATTocConnect(). See SQLAT1ocHandle() for more information.

SQLA1T1ocConnect() allocates a connection handle and associated resources within
the environment identified by the input environment handle. Call SQLGetInfo() with
fInfoType set to SQL_ACTIVE_CONNECTIONS, to query the number of
connections that can be allocated at any one time.

While this API is active, the DB2 ODBC driver establishes an affinity with the DB2
subsystem. Processing includes allocating a DB2 for OS/390 and z/OS plan as a
resource.

SQLATTocEnv() must be called before calling this function.

This function must be called before calling SQLConnect () or SQLDriverConnect ().

Syntax

SQLRETURN SQLATlocConnect (SQLHENV henv,
SQLHDBC FAR phdbc);

Function arguments

Table 12. SQLAllocConnect arguments

Data type Argument Use Description

SQLHENV henv input Environment handle
SQLHDBC * phdbc output Pointer to connection handle
Usage

The output connection handle is used by DB2 ODBC to reference all information
related to the connection, including general status information, transaction state,
and error information.

If the pointer to the connection handle (phdbc) already points to a valid connection
handle previously allocated by SQLA11ocConnect (), then the original value is
overwritten as a result of this call. This is an application programming error which is
not detected by DB2 ODBC.

Return codes
.« SQL_SUCCESS
« SQL_ERROR
« SQL_INVALID_HANDLE

If SQL_ERROR is returned, the phdbc argument is set to SQL_NULL_HDBC. The
application should call SQLGetDiagRec() with the environment handle (henv) and
with hdbc and hstmt arguments set to SQL_NULL_HDBC and SQL_NULL_HSTMT
respectively.

Chapter 5. Functions 73

SQLAllocConnect

Diagnostics

Table 13. SQLAllocConnect SQLSTATEs

SQLSTATE Description Explanation

58004 Unexpected system failure. This could be a failure to establish the association with the DB2 for
0S/390 and z/OS subsystem or any other system related error.

S1001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

S$1009 Invalid argument value. phdbc was a null pointer.

S$1013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

S1014 No more handles. Returned if the MAXCONN keyword or SQL_MAXCONN attribute is
set to a positive integer and the number of connections has reached
that value. If MAXCONN is set to zero, there is no limit.

DB2 ODBC is not able to allocate a handle due to internal
resources.

Restrictions

None.

Example

The following example shows a basic connect, with minimal error handling.

[* oo %/
/***
*% - demonstrate basic connection to two data sources.
*% - error handling mostly ignored for simplicity

*%

*% Functions used:
%

*k SQLA1TocConnect SQLDisconnect

*% SQLATTocEnv
*k SQLConnect
*% Local Functions:

*k DBconnect
*%

SQLFreeConnect
SQLFreeEnv

**/

#include <stdio.h>
#include <stdlib.h>
#include "sqlclil.h"
int

DBconnect (SQLHENV henv,
SQLHDBC * hdbc,
char * server);

#define MAX_UID_LENGTH
#define MAX_PWD_LENGTH

18
30

#define MAX_CONNECTIONS 2

74 ODBC Guide and Reference

SQLAllocConnect

int
main()
{
SQLHENV henv;
SQLHDBC hdbc [MAX_CONNECTIONS] 5
SERVER svr[MAX_CONNECTIONS] =
{
"KARACHI" ,
"DAMASCUSS"
}
/* allocate an environment handle =/
SQLATTocEnv (&henv);
/* Connect to first data source x/
DBconnect (henv, &hdbc[0],
svr[0]);
/* Connect to second data source =*/
DBconnect (henv, &hdbc[1],
svr(1]);
[*FkF gk Kk Start Processing Step Fkkkkkkkkkkkkkkhkkkkhkkkk [
/* allocate statement handle, execute statement, etc. */
[*kHr kK HkKk End Processing Step Fkkkhkkkkkkhh kR hkkkhkkkhhkx [
/*******‘k**‘k‘k**‘k**‘k‘k*"k‘k**‘k‘k*****‘k‘k*‘k‘k**‘k**‘k***‘k**‘k******‘k‘k*‘k*/
/* Commit work on connection 1. This has NO effect on the */
/* transaction active on connection 2. x/
[kK ke k kK R R R e R R R R R e T *kkxrhhhhh kA xR **A /
SQLTransact (henv,
hdbc[0],
SQL_COMMIT) ;
[kK ko ke kK R 2 R bt a R R /
/* Commit work on connection 2. This has NO effect on the */
/* transaction active on connection 1. */
/**/
SQLTransact (henv,
hdbc[1],
SQL_COMMIT) ;
printf("\nDisconnecting \n");
SQLDisconnect (hdbc[0]); /* disconnect first connection */
SQLDisconnect (hdbc[1]); /* disconnect second connection x/
SQLFreeConnect (hdbc[0]); /* free first connection handle =/
SQLFreeConnect (hdbc[1]); /* free second connection handle =/
SQLFreeEnv (henv); /* free environment handle */
return (SQL_SUCCESS);
1

Chapter 5. Functions

75

SQLAllocConnect

/*******k*~k*k*"k**k**‘k******‘k******‘k*~k*k****k***k*"k****‘k********************

** Server is passed as a parameter. Note that USERID and PASSWORD==*
*% are always NULL. *%

int

DBconnect (SQLHENV henv,
SQLHDBC * hdbc,
char * server)

SQLRETURN rc;

SQLCHAR buffer[255];
SQLSMALLINT outlen;

SQLA1TocConnect (henv, hdbc);/* allocate a connection handle x/

rc = SQLConnect(*hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);
if (rc != SQL_SUCCESS) {

printf(">--- Error while connecting to database: %s ------- \n", server);
return (SQL_ERROR);
} else {

printf(">Connected to %s\n", server);
return (SQL_SUCCESS);

References

« [“SQLAIllocEnv - Allocate environment handle” on page 77|

« [“SQLConnect - Connect to a data source” on page 129

« [“SQLDriverConnect - (Expanded) connect to a data source” on page 146
« [‘SQLDisconnect - Disconnect from a data source” on page 144

* [‘SQLFreeConnect - Free connection handle” on page 189

* [“SQLGetConnectOption - Returns current setting of a connect option” on|
page 202|

* |“SQLSetConnectOption - Set connection option” on page 345|

76 ODBC Guide and Reference

SQLAIllocEnv

SQLAIllocEnv - Allocate environment handle

Purpose

|Specification: | ODBC 1.0 | X/OPEN CLI | ISO CLI |

In ODBC 3.0, SQLA11ocHandle() replaces the ODBC 2.0 function SQLAT1ocEnv().
See SQLA1TocHandle() for more information.

SQLATT1ocEnv() allocates an environment handle and associated resources. There
can be only one environment active at any one time per application.

An application must call this function prior to SQLATTocConnect() or any other DB2
ODBC functions. The henv value is passed in all subsequent function calls that
require an environment handle as input.

Syntax

SQLRETURN SQLA1locEnv (SQLHENV FAR phenv);

Function arguments

Table 14. SQLAllocEnv arguments

Data type Argument Use Description
SQLHENV * phenv output Pointer to environment handle
Usage

There can be only one active environment at a time per application. Any
subsequent calls to SQLAT1ocEnv () return the same handle as the first
SQLATTocEnv() call.

SQLFreeEnv () must be called for each successful SQLATTocEnv() call before the
resources associated with the handle are released. SQLFreeEnv() must also be
called to free a restricted environment handle as described under 'Return Codes'
below.

Return codes
- SQL_SUCCESS
< SQL_ERROR

If SQL_ERROR is returned and phenv is equal to SQL_NULL_HENYV, then
SQLGetDiagRec() cannot be called because there is no handle with which to
associate additional diagnostic information.

If the return code is SQL_ERROR and the pointer to the environment handle is not
equal to SQL_NULL_HENYV, then the handle is a restricted handle. This means the
handle can only be used in a call to SQLGetDiagRec() to obtain more error
information, or to SQLFreeEnv().

Chapter 5. Functions 77

SQLAIllocEnv

Diagnostics
Table 15. SQLAllocEnv SQLSTATEs
SQLSTATE Description Explanation
S1001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
Restrictions
None.
Example
See [‘Example” on page 74
References

« [“SQLAllocConnect - Allocate connection handle” on page 73|
+ [‘SQLFreeEnv - Free environment handle” on page 191|

78 ODBC Guide and Reference

SQLAllocHandle

SQLAIllocHandle - Allocate handle

Purpose

Syntax

|Specification: | ODBC 3.0 X/OPEN CLI ISO CLI

SQLA1TocHandle() allocates an environment, connection or statement handle.

This function is a generalized function for allocating handles that replaces the
deprecated ODBC 2.0 functions SQLA11ocEnv (), SQLA11ocConnect () and
SQLATTocStmt ().

SQLRETURN SQLATlocHandle (SQLSMALLINT HandleType,
SQLHANDLE InputHandle,
SQLHANDLE *QutputHandlePtr);

Function arguments

Table 16. SQLAllocHandle arguments

Data type

Argument Use Description

SQLSMALLINT

HandleType input The type of handle to be allocated by SQLATTocHandle(). Must

be one of the following values:
+ SQL_HANDLE_ENV
* SQL_HANDLE_DBC
* SQL_HANDLE_STMT

SQLHANDLE

InputHandle input Existing handle to use as a context for the new handle being

allocated. If HandleType is:

* SQL_HANDLE_ENV, this is SQL_NULL_HANDLE value(it
is ignored).

* SQL_HANDLE_DBC, this must be the environment handle.

* SQL_HANDLE_STMT, this must be a connection handle.

SQLHANDLE *

Usage

OQutputHandlePtr output Pointer to a buffer in which to return the newly allocated

handle.

SQLATTlocHandle() is used to allocate environment, connection, and statement
handles:

* Allocating an environment handle

An environment handle provides access to global information. To request an
environment handle, an application calls SQLATTocHandle() with a HandleType of
SQL_HANDLE_ENV and a InputHandle of SQL_NULL_HANDLE (/nputHandle is
ignored). DB2 ODBC allocates the environment handle, and passes the value of
the associated handle back to the *OutputHandlePtr argument. The application
passes the *OutputHandle value in all subsequent calls that require an
environment handle argument.

On the call to SQLAT1ocHandle() to request an environment handle, the DB2
ODBC 3.0 driver implicitly sets SQL_ATTR_ODBC_VERSION =
SQL_OV_ODBC3. See [‘ODBC 3.0 driver behavior’ on page 503 for more
information.

Chapter 5. Functions 79

SQLAllocHandle

Return codes

When the DB2 ODBC 3.0 driver processes the SQLA1TocHandle() function with a
HandleType of SQL_HANDLE_ENYV, it checks the trace keywords in the common
section of the DB2 ODBC initialization file. If set, the DB2 ODBC enables tracing
if not already started. Tracing ends when the environment handle is freed. See
[Chapter 7, “Problem diagnosis”, on page 457/ and [‘DB2 ODBC initialization file’]

|on page Sg for more information.

The DB2 ODBC 3.0 driver does not support multiple environments. See
[‘Restrictions” on page 81|

Allocating a connection handle

A connection handle provides access to information such as the valid statement
handles on the connection and whether a transaction is currently open. To
request a connection handle, an application calls SQLA11ocHandle() with a
HandleType of SQL_HANDLE_DBC. The InputHandle argument is set to the
environment handle that was returned by the call to SQLAT1ocHandle() that
allocated that handle. DB2 ODBC allocates the connection handle, and passes
the value of the associated handle back in *OutputHandlePtr. The application
passes the *OutputHandlePtr value in all subsequent calls that require a
connection handle argument.

Allocating a statement handle

A statement handle provides access to statement information, such as
messages, the cursor name, and status information for SQL statement
processing. To request a statement handle, an application connects to a data
source. The application then calls SQLA1TocHand1e() prior to submitting SQL
statements. In this call, HandleType should be set to SQL_HANDLE_STMT and
InputHandle should be set to the connection handle that was returned by call to
SQLAT1ocHandle() that allocated that handle. DB2 ODBC allocates the statement
handle, associates the statement handle with the connection specified, and
passes the value of the associated handle back in “OutputHandlePtr. The
application passes the *OutputHandlePtr value in subsequent calls that require a
statement handle argument.

Managing handles

Multiple connection and statement handles can be allocated by an application at
the same time. DB2 ODBC 3.0 driver applications can use the same
environment, connection, or statement handle on different threads. DB2 ODBC
provides thread-safe access for all handles and function calls. Applications can
have multiple connections to the same or different data sources at the same time
and each connections maintains its own unit of recovery. The application itself
might experience unpredictable behavior if the threads it creates do not
coordinate their use of DB2 ODBC resources. For example, application behavior
might be unpredictable if multiple threads call ODBC functions on the same
connection simultaneously. See [‘Writing multithreaded applications” on page 421|
for more information.

If the application calls SQLA1TocHandle() with *OutputHandlePtr set to a
connection or statement handle that already exists, DB2 ODBC overwrites the
information associated with the handle. DB2 ODBC does not check to see
whether the handle entered in *OutputHandlePtr is already in use, nor does it
check the previous contents of a handle before overwriting it.

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_INVALID_HANDLE
SQL_ERROR

80 ODBC Guide and Reference

SQLAllocHandle

Environment handle allocation errors: When allocating an environment handle:

If SQLAT1ocHandle() returns SQL_ERROR and OutputHandlePtr is set to
SQL_NULL_HENYV, SQLGetDiagRec() cannot be called because there is no
handle with which to associate additional information.

If SQLA11ocHandle() returns SQL_ERROR and OutputHandlePtr is not set to
SQL_NULL_HENYV, the handle is a restricted environment handle. This means
that the handle can be used only to call SQLGetDiagRec() to obtain more error
information or SQLFreeHandle to free the restricted environment handle.

Connection or statement handle allocation errors: When allocating a handle
other than an environment handle:

If SQLAT1ocHandle() returns SQL_ERROR, it will set OutputHandlePtr to
SQL_NULL_HDBC or SQL_NULL_HSTMT depending on the value of
HandleType (unless the output argument is a null pointer). The application should
call SQLGetDiagRec () with the environment handle.

If SQLATTocHandle() returns SQL_SUCCESS_WITH_INFO, it will set
OutputHandlePtr. The application can then obtain additional information by calling
SQLGetDiagRec() with the appropriate HandleType and Handle set to the value of
SQLA11ocHandle() HandleType and InputHandle.

Diagnostics

Table 17. SQLAllocHandle SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The HandleType argument was SQL_HANDLE_STMT, but the

connection specified by the InputHandle argument was not open.
The connection process must be completed successfully (and the
connection must be open) for DB2 ODBC to allocate a statement
handle.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HYO0O01 Memory allocation failure. DB2 ODBC was unable to allocate memory for the specified handle.
HY009 Invalid use of a null pointer. The OutputHandlePtr argument was a null pointer
HY013 Unexpected memory handling The HandleType argument was SQL_HANDLE_DBC or

error.

SQL_HANDLE_STMT and the function call could not be processed
because the underlying memory objects could not be accessed,
possibly because of low memory conditions.

HYO014 No more handles. The limit for the number of handles that can be allocated for the
type of handle indicated by the HandleType argument has been
reached.

HY092 Option type out of range. The HandleType argument was not:

Restrictions

* SQL_HANDLE_ENV
 SQL_HANDLE_DBC
* SQL_HANDLE_STMT

The DB2 ODBC 3.0 driver does not support multiple environments. The DB2 ODBC
3.0 driver behaves like the DB2 ODBC 2.0 driver; there can be only one active
environment at any time. Subsequent calls to SQLATTocHandle() to allocate another

Chapter 5. Functions 81

SQLAllocHandle

environment handle will return the same environment handle and SQL_SUCCESS.
The DB2 ODBC driver keeps an internal count of environment requests.
SQLFreeHandle() must then be called for each successful SQLAT1ocHandle() for an
environment handle. The last successful SQLFreeHandle() for an environment
handle will free the DB2 ODBC 3.0 driver environment. This ensures that the driver
environment is not prematurely deallocated under an ODBC application. The DB2
ODBC 2.0 driver and DB2 ODBC 3.0 driver behave consistently in this situation.

Example
Refer to sample program DSN8O3VP in DSN710.SDSNSAMP.

References

+ [‘SQLFreeHandle - Free handle resources” on page 193

* |“SQLGetDiagRec - Get multiple field settings of diagnostic record” on page 223|
 [“SQLSetEnvAtir - Set environment attribute” on page 350

+ [“SQLSetConnectAttr - Set connection attributes” on page 336|

+ [“SQLSetStmtAttr - Set options related to a statement” on page 360

82 ODBC Guide and Reference

SQLAllocStmt

SQLAllocStmt - Allocate a statement handle

Purpose

Syntax

|Specification: | ODBC 1.0 | X/OPEN CLI | ISO CLI |

In ODBC 3.0, SQLA11ocHand1e() replaces the ODBC 2.0 function SQLAT1ocStmt ().
See SQLA1TocHandle() for more information.

SQLATTocStmt () allocates a new statement handle and associates it with the
connection specified by the connection handle. There is no defined limit on the
number of statement handles that can be allocated at any one time.

SQLConnect () or SQLDriverConnect () must be called before calling this function.
This function must be called before SQLBindParameter(), SQLPrepare(),

SQLExecute(), SQLExecDirect(), or any other function that has a statement handle
as one of its input arguments.

SQLRETURN SQLA1TocStmt (SQLHDBC hdbc,
SQLHSTMT ~ FAR *phstmt);

Function arguments

Table 18. SQLAllocStmt arguments

Data type Argument Use Description

SQLHDBC hdbc input Connection handle
SQLHSTMT * phstmt output Pointer to statement handle
Usage

Return codes

DB2 ODBC uses each statement handle to relate all the descriptors, attribute
values, result values, cursor information, and status information to the SQL
statement processed. Although each SQL statement must have a statement handle,
you can reuse the handles for different statements.

A call to this function requires that hdbc references an active database connection.

To execute a positioned UPDATE or DELETE, the application must use different
statement handles for the SELECT statement and the UPDATE or DELETE
statement.

If the input pointer to the statement handle (phstmt) already points to a valid
statement handle allocated by a previous call to SQLATTocStmt (), then the original
value is overwritten as a result of this call. This is an application programming error
that is not detected by DB2 ODBC.

* SQL_SUCCESS
+ SQL_ERROR
* SQL_INVALID_HANDLE

Chapter 5. Functions 83

SQLAllocStmt

If SQL_ERROR is returned, the phstmt argument is set to SQL_NULL_HSTMT. The
application should call SQLGetDiagRec() with the same hdbc and with the hstmt
argument set to SQL_NULL_HSTMT.

Diagnostics

Table 19. SQLAllocStmt SQLSTATEs

SQLSTATE Description Explanation

08003 Connection is closed. The connection specified by the hdbc argument is not open. The
connection must be established successfully (and the connection
must be open) for the application to call SQLA1TocStmt().

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S$1001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

S$1009 Invalid argument value. phstmt was a null pointer.

S$1013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

S1014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.

Restrictions

None.
Example
See ['‘Example” on page 180]
References

+ [“SQLConnect - Connect to a data source” on page 129

« [*SQLDriverConnect - (Expanded) connect to a data source” on page 146

+ [*SQLFreeStmt - Free (or reset) a statement handle” on page 196

- [‘SQLGetStmtOption - Returns current setting of a statement option” on page 273]
+ [*SQLSetStmtOption - Set statement option” on page 367

84 ODBC Guide and Reference

SQLBindCol

SQLBindCol - Bind a column to an application variable

Purpose

|Specification: | ODBC 1.0 | X/OPEN CLI | ISO CLI

SQLBindCo1() is used to associate (bind) columns in a result set to:

* Application variables or arrays of application variables (storage buffers), for all C
data types. In this case, data is transferred from the DBMS to the application
when SQLFetch() or SQLExtendedFetch() is called. Data conversion can occur as
the data is transferred.

* A LOB locator, for LOB columns. In this case a LOB locator, not the data itself, is
transferred from the DBMS to the application when SQLFetch() is called. A LOB
locator can represent the entire data or a portion of the data.

SQLBindCo1() is called once for each column in the result set that the application

needs to retrieve.

In general, SQLPrepare(), SQLExecDirect() or one of the schema functions is called

before this function, and SQLFetch() or SQLExtendedFetch() is called after. Column

attributes might also be needed before calling SQLBindCo1 (), and can be obtained
using SQLDescribeCol() or SQLCoTAttribute().
Syntax
SQLRETURN SQLBindCol (SQLHSTMT hstmt,
SQLUSMALLINT icol,
SQLSMALLINT fCType,
SQLPOINTER rgbValue,
SQLINTEGER cbValueMax,
SQLINTEGER FAR *pchValue);
Function arguments
Table 20. SQLBindCol arguments
Data type Argument Use Description
SQLHSTMT hstmt input Statement handle
SQLUSMALLINT icol input Number identifying the column. Columns are numbered

sequentially, from left to right, starting at 1.

Chapter 5. Functions

85

SQLBindCol

Table 20. SQLBindCol arguments (continued)

Data type Argument Use Description

SQLSMALLINT fCType input The C data type for column number icol in the result set. The
following types are supported:
* SQL_C_BINARY
« SQL_C_BIT
+ SQL_C_BLOB_LOCATOR
+ SQL_C_CHAR
*+ SQL_C_CLOB_LOCATOR
*+ SQL_C_DBCHAR
* SQL_C_DBCLOB_LOCATOR
+ SQL_C_DOUBLE
+ SQL_C_FLOAT
+ SQL_C_LONG
 SQL_C_SHORT
* SQL_C_TYPE_DATE
+ SQL_C_TYPE_TIME
+ SQL_C_TYPE_TIMESTAMP
e SQL_C_TINYINT
*+ SQL_C_WCHAR
The supported data types are based on the data source to
which you are connected. Specifying SQL_C_DEFAULT
causes data to be transferred to its default C data type. See
[Table 4 on page 31| for more information.

SQLPOINTER rgbValue output Pointer to buffer (or an array of buffers if using

(deferred) SQLExtendedFetch()) where DB2 ODBC is to store the column

data or the LOB locator when the fetch occurs.
If rgbValue is null, the column is unbound.

SQLINTEGER cbValueMax input Size of rgbValue buffer in bytes available to store the column
data or the LOB locator.
If fCType denotes a binary or character string (either single or
double byte) or is SQL_C_DEFAULT, then cbValueMax must
be > 0, or an error is returned. Otherwise, this argument is
ignored.

SQLINTEGER * pcbValue output Pointer to value (or array of values) which indicates the

(deferred) number of bytes DB2 ODBC has available to return in the
rgbValue buffer. If fCType is a LOB locator, the size of the
locator is returned, not the size of the LOB data.
SQLFetch() returns SQL_NULL_DATA in this argument if the
data value of the column is null.
This pointer value must be unique for each bound column, or
NULL.
SQL_NO_LENGTH can also be returned. See the 'Usage’
section below for more information.
Note:

* For this function, pointers rgbValue and pcbValue are deferred outputs, meaning
that the storage locations they point to do not get updated until a result set row is
fetched. As a result, the locations referenced by these pointers must remain valid
until SQLFetch() or SQLExtendedFetch() is called. For example, if SQLBindCol() is
called within a local function, SQLFetch() must be called from within the same
scope of the function or the rgbValue buffer must be allocated as static or global.

86 ODBC Guide and Reference

Usage

SQLBindCol

+ DB2 ODBC performs better for all variable length data types if rgbValue is placed
consecutively in memory after pcbValue. See the 'Usage' section for more
details.

The application calls SQLBindCo1() once for each column in the result set for which
it wishes to retrieve either the data, or optionally in the case of LOB columns, a
LOB locator. Result sets are generated either by calling SQLPrepare(),
SQLExecDirect(), SQLGetTypeInfo(), or one of the catalog functions. When
SQLFetch() is called, the data in each of these bound columns is placed into the
assigned location (given by the pointers rgbValue and cbValue). If fCType is a LOB
locator, a locator value is returned (not the LOB data). The LOB locator references
the entire data value in the LOB column.

SQLExtendedFetch() can be used in place of SQLFetch() to retrieve multiple rows
from the result set into an array. In this case, rgbValue references an array. For
more information, see[‘Retrieving a result set into an array” on page 406|and
F'SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 169] Use of
SQLExtendedFetch() and SQLFetch() cannot be mixed for the same result set.

Columns are identified by a number, assigned sequentially from left to right, starting
at 1. The number of columns in the result set can be determined by calling
SQLNumResultCols() or by calling SQLCoTAttribute() with the fdescType argument
set to SQL_COLUMN_COUNT.

The application can query the attributes (such as data type and length) of the
column by first calling SQLDescribeCol() or SQLColAttribute(). (As an alternative,
see [‘Programming hints and tips” on page 452 for information about using
SQLSetColAttributes() when the application has prior knowledge of the format of
the result set.) This information can then be used to allocate a storage location of
the correct data type and length to indicate data conversion to another data type, or
in the case of LOB data types, optionally return a locator. See [‘Data types and data|
iconversion” on page 30| for more information on default types and supported
conversions.

An application can choose not to bind every column, or even not to bind any
columns. Data in any of the columns can also be retrieved using SQLGetData() after
the bound columns have been fetched for the current row. Generally, SQLBindCo1 ()
is more efficient than SQLGetData(). For a discussion of when to use one function
over the other, refer to [‘Programming hints and tips” on page 452|

In subsequent fetches, the application can change the binding of these columns or
bind previously unbound columns by calling SQLBindCo1(). The new binding does
not apply to data already fetched, it is used on the next fetch. To unbind a single
column, call SQLBindCo1() with the rgbValue pointer set to NULL. To unbind all the
columns, the application should call SQLFreeStmt () with the fOption input set to
SQL_UNBIND.

The application must ensure enough storage is allocated for the data to be
retrieved. If the buffer is to contain variable length data, the application must
allocate as much storage as the maximum length of the bound column requires;
otherwise, the data might be truncated. If the buffer is to contain fixed length data,
DB2 ODBC assumes the size of the buffer is the length of the C data type. If data
conversion is specified, the required size might be affected, see [“Data types and|
[data conversion” on page 30| for more information.

Chapter 5. Functions 87

SQLBindCol

If string truncation does occur, SQL_SUCCESS_WITH_INFO is returned and
pcbValue is set to the actual size of rgbValue available for return to the application.

Truncation is also affected by the SQL_MAX_LENGTH statement option (used to
limit the amount of data returned to the application). The application can specify not
to report truncation by calling SQLSetStmtAttr() with SQL_MAX_LENGTH and a
value for the maximum length to return for all variable length columns, and by
allocating an rgbValue buffer of the same size (plus the null-terminator). If the
column data is larger than the set maximum length, SQL_SUCCESS is returned
when the value is fetched and the maximum length, not the actual length, is
returned in pcbValue.

If the column to be bound is an SQL_GRAPHIC, SQL_VARGRAPHIC or
SQL_LONGVARGRAPHIC type, then fCType can be set to SQL_C_DBCHAR or
SQL_C_CHAR. If fCType is SQL_C_DBCHAR, the data fetched into the rgbValue
buffer is null-terminated by a double byte null-terminator. If fCType is
SQL_C_CHAR, then the data is not null-terminated. In both cases, the length of the
rgbValue buffer (cbValueMax) is in units of bytes and should therefore be a multiple
of 2.

When binding any variable length column, DB2 ODBC can write pcbValue and
rgbValue in one operation if they are allocated contiguously. For example:
struct { SQLINTEGER pcbValue;

SQLCHAR rgbValue [MAX_BUFFER] 5
} column;

Note: SQL_NO_TOTAL is returned in pcbValue if:
* The SQL type is a variable length type, and
* pcbValue and rgbValue are contiguous, and
* The column type is NOT NULLABLE, and
« String truncation occurred.

If the column to be bound is an SQL_ROWID type, then fCType can be set to
SQL_C_CHAR or SQL_C_DEFAULT. The data fetched into the rgbValue buffer is
null-terminated. The maximum length of a ROWID column in the DBMS is 40 bytes,
therefore, the application must allocate an rgbValue buffer of at least 40 bytes for
the data to be retrieved without truncation.

To retrieve UCS-2 data, set fCType to SQL_C_WCHAR. The retrieved data is
terminated by a double-byte null terminator.

LOB locators are generally treated like any other data type, but there are some
important differences:

» Locators are generated at the server when a row is fetched and a LOB locator C
data type is specified on SQLBindCo1 (), or when SQLGetSubString() is called to
define a locator on a portion of another LOB. Only the locator is transferred to
the application.

* The value of the locator is only valid within the current transaction. You cannot
store a locator value and use it beyond the current transaction, even if the cursor
used to fetch the LOB locator has the WITH HOLD attribute.

* A locator can be freed before the end of the transaction using the FREE
LOCATOR statement.

88 ODBC Guide and Reference

Return codes

SQLBindCol

* When a locator is received, the application can use SQLGetSubString() to either
receive a portion of the LOB value, or to generate another locator representing
the substring. The locator value can also be used as input for a parameter
marker (using SQLBindParameter()).

A LOB locator is not a pointer to a database position; rather it is a reference to a
LOB value, a snapshot of that LOB value. There is no association between the
current position of the cursor and the row from which the LOB value is extracted.
Therefore, even after the cursor moves to a different row, the LOB locator {and
thus the value that it represents) can still be referenced.

* SQLGetPosition() and SQLGetLength() can be used with SQLGetSubString() to
define the substring.

A given LOB column in the result set can be bound to one of the following:
+ Storage buffer, for holding the entire LOB data value
* LOB locator

The most recent bind column function call determines the type of binding that is in
effect.

* SQL_SUCCESS
+ SQL_ERROR
* SQL_INVALID_HANDLE

Diagnostics

Table 21. SQLBindCol SQLSTATEs

SQLSTATE Description Explanation

07009 Invalid descriptor index. The value specified for icol was less than 0 or the value specified
for the argument icol was greater than the number of columns in the
result set.

40003 08S01 Communication link failure. The communication link between the application and data source

fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY003 Program type out of range. The argument TargetType was not a valid data type or
SQL_C_DEFAULT.

HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HY013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument cbValueMax is less than 0.

HYCO00 Driver not capable. The value specified for the argument fCType was not supported by
DB2 ODBC.

Note: Additional diagnostic messages relating to the bound columns might be reported at fetch time.

Restrictions

None.

Chapter 5. Functions 89

SQLBindCol

Example

See ['‘Example” on page 180]

References

« [*SQLFetch - Fetch next row” on page 176)
* |“SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 16q

90 ODBC Guide and Reference

SQLBindParameter

SQLBindParameter - Binds a parameter marker to a buffer or LOB

starting at 1.

locator
Purpose

|Specification: | ODBC 2.0 |

SQLBindParameter() associates (bind) parameter markers in an SQL statement to

either:

» Application variables or arrays of application variables (storage buffers), for all C
data types. In this case, data is transferred from the application to the DBMS
when SQLExecute() or SQLExecDirect() is called. Data conversion can occur as
the data is transferred.

* A LOB locator, for SQL LOB data types. In this case, the application transfers a
LOB locator value (not the LOB data itself) to the server when the SQL statement
is executed.

This function must also be used to bind application storage to a parameter of a

stored procedure CALL statement where the parameter can be input, output or

both. This function is essentially an extension of SQLSetParam().
Syntax
SQLRETURN SQL_API SQLBindParameter(
SQLHSTMT hstmt,
SQLUSMALLINT ipar,
SQLSMALLINT fParamType,
SQLSMALLINT fCType,
SQLSMALLINT fSql1Type,
SQLUINTEGER cbColDef,
SQLSMALLINT ibScale,
SQLPOINTER rgbValue,
SQLINTEGER cbValueMax,
SQLINTEGER FAR *pchValue);
Function arguments
Table 22. SQLBindParameter arguments
Data type Argument Use Description
SQLHSTMT hstmt input Statement handle
SQLUSMALLINT ipar input Parameter marker number, ordered sequentially left to right,

Chapter 5. Functions 91

SQLBindParameter

Table 22. SQLBindParameter arguments (continued)

Data type Argument

Use

Description

SQLSMALLINT fParamType

input

The type of parameter. The supported types are:
* SQL_PARAM_INPUT: The parameter marker is associated

with an SQL statement that is not a stored procedure CALL;
or, it marks an input parameter of the CALLed stored
procedure.

When the statement is executed, actual data value for the
parameter is sent to the server: the rgbValue buffer must
contain valid input data values; the pcbValue buffer must
contain the corresponding length value or SQL_NTS,
SQL_NULL_DATA, or (if the value should be sent using
SQLParamData() and SQLPutData()) SQL_DATA_AT_EXEC.

SQL_PARAM_INPUT_OUTPUT: The parameter marker is
associated with an input/output parameter of the CALLed
stored procedure.

When the statement is executed, actual data value for the
parameter is sent to the server: the rgbValue buffer must
contain valid input data values; the pcbValue buffer must
contain the corresponding length value or SQL_NTS,
SQL_NULL_DATA, or (if the value should be sent using
SQLParamData() and SQLPutData()) SQL_DATA_AT_EXEC.

SQL_PARAM_OUTPUT: The parameter marker is
associated with an output parameter of the CALLed stored
procedure or the return value of the stored procedure.

After the statement is executed, data for the output
parameter is returned to the application buffer specified by
rgbValue and pcbValue, unless both are NULL pointers, in
which case the output data is discarded.

SQLSMALLINT fCType

92 ODBC Guide and Reference

input

C data type of the parameter. The following types are
supported:

SQL_C_BINARY
SQL_C_BIT
SQL_C_BLOB_LOCATOR
SQL_C_CHAR
SQL_C_CLOB_LOCATOR
SQL_C_DBCHAR
SQL_C_DBCLOB_LOCATOR
SQL_C_DOUBLE
SQL_C_FLOAT
SQL_C_LONG
SQL_C_SHORT
SQL_C_TYPE_DATE
SQL_C_TYPE_TIME
SQL_C_TYPE_TIMESTAMP
SQL_C_TINYINT
SQL_C_WCHAR

Specifying SQL_C_DEFAULT causes data to be transferred
from its default C data type to the type indicated in fSqi/Type.

Table 22. SQLBindParameter arguments (continued)

Data type

Argument

Use

SQLBindParameter

Description

SQLSMALLINT

fSqlType

input

SQL data type of the parameter. The supported types are:
* SQL_BINARY

+ SQL_BLOB

* SQL_BLOB_LOCATOR

+ SQL_CHAR

+ SQL_CLOB

+ SQL_CLOB_LOCATOR

*+ SQL_DBCLOB

* SQL_DBCLOB_LOCATOR
* SQL_DECIMAL

* SQL_DOUBLE

* SQL_FLOAT

* SQL_GRAPHIC

* SQL_INTEGER

* SQL_LONGVARBINARY
* SQL_LONGVARCHAR

* SQL_LONGVARGRAPHIC
* SQL_NUMERIC

*+ SQL_REAL

* SQL_ROWID

* SQL_SMALLINT

* SQL_TYPE_DATE

* SQL_TYPE_TIME

* SQL_TYPE_TIMESTAMP
* SQL_VARBINARY

* SQL_VARCHAR

* SQL_VARGRAPHIC

Note: SQL_BLOB_LOCATOR, SQL_CLOB_LOCATOR, and
SQL_DBCLOB_LOCATOR are application related concepts
and do not map to a data type for column definition during a
CREATE TABLE.

SQLUINTEGER

cbColDef

input

Precision of the corresponding parameter marker. If fSqlType

denotes:

» A binary or single byte character string (for example,
SQL_CHAR, SQL_BINARY), this is the maximum length in
bytes for this parameter marker.

* A double byte character string (for example,
SQL_GRAPHIC), this is the maximum length in double-byte
characters for this parameter.

e SQL_DECIMAL, SQL_NUMERIC, this is the maximum
decimal precision.

* SQL_ROWID, this must be set to 40, the maximum length
in bytes for this data type. Otherwise, an error is returned.

* Otherwise, this argument is ignored.

SQLSMALLINT

ibScale

input

Scale of the corresponding parameter if fSqlType is
SQL_DECIMAL or SQL_NUMERIC. If fSqlType is
SQL_TYPE_TIMESTAMRP, this is the number of digits to the
right of the decimal point in the character representation of a
timestamp (for example, the scale of yyyy-mm-dd hh:mm:ss.fff
is 3).

Other than for the fSqlType values mentioned here, ibScale is
ignored.

Chapter 5. Functions 93

SQLBindParameter

Table 22. SQLBindParameter arguments (continued)

Data type Argument

Use

Description

SQLPOINTER rgbValue

input
(deferred)
and/or
output
(deferred)

* On input (fParamType set to SQL_PARAM_INPUT, or
SQL_PARAM_INPUT_OUTPUT):

At execution time, if pcbValue does not contain
SQL_NULL_DATA or SQL_DATA_AT_EXEC, then rgbValue
points to a buffer that contains the actual data for the
parameter.

If pcbValue contains SQL_DATA_AT_EXEC, then rgbValue
is an application-defined 32-bit value that is associated with
this parameter. This 32-bit value is returned to the
application using a subsequent SQLParamData() call.

If SQLParamOptions() is called to specify multiple values for
the parameter, then rgbValue is a pointer to an input buffer
array of cbValueMax bytes.

* On output (fParamType) set to SQL_PARAM_OUTPUT, or
SQL_PARAM_INPUT_OUTPUT):
rgbValue points to the buffer where the output parameter
value of the stored procedure is stored.
If fParamType is set to SQL_PARAM_OUTPUT, and both
rgbValue and pcbValue are NULL pointers, then the output
parameter value or the return value from the stored
procedure call is discarded.

SQLINTEGER cbValueMax

94 ODBC Guide and Reference

input

For character and binary data, cbValueMax specifies the
length of the rgbValue buffer (if treated as a single element) or
the length of each element in the rgbValue array (if the
application calls SQLParamOptions() to specify multiple values
for each parameter). For non-character and non-binary data,
this argument is ignored -- the length of the rgbValue buffer (if
it is a single element) or the length of each element in the
rgbValue array (if SQLParamOptions() is used to specify an
array of values for each parameter) is assumed to be the
length associated with the C data type.

For output parameters, cbValueMax is used to determine
whether to truncate character or binary output data in the
following manner:

» For character data, if the number of bytes available to
return is greater than or equal to cbValueMax, the data in
rgbValue is truncated to cbValueMax-1 bytes and is
null-terminated (unless null-termination has been turned off).

» For binary data, if the number of bytes available to return is
greater than cbValueMax, the data in rgbValue is truncated
to cbValueMax bytes.

Table 22. SQLBindParameter arguments (continued)

SQLBindParameter

Data type Argument Use Description

SQLINTEGER * pcbValue input - If this is an input or input/output parameter:
(deferred)
and/or This is the pointer to the location which contains (when the
output statement is executed) the length of the parameter marker
(deferred) value stored at rgbValue.

Usage

To specify a null value for a parameter marker, this storage
location must contain SQL_NULL_DATA.

If fCType is SQL_C_CHAR or SQL_C_WCHAR, this storage
location must contain either the exact length of the data stored
at rgbValue, or SQL_NTS if the contents at rgbValue are
null-terminated.

If fCType indicates character data (explicitly, or implicitly using
SQL_C_DEFAULT), and this pointer is set to NULL, it is
assumed that the application always provides a null-terminated
string in rgbValue. This also implies that this parameter marker
never has a null value.

If fSqlType denotes a graphic data type and the fCType is
SQL_C_CHAR, the pointer to pcbValue can never be NULL
and the contents of pcbValue can never hold SQL_NTS. In
general for graphic data types, this length should be the
number of octets that the double byte data occupies;
therefore, the length should always be a multiple of 2. In fact,
if the length is odd, then an error occurs when the statement
is executed.

When SQLExecute() or SQLExecDirect() is called, and
pcbValue points to a value of SQL_DATA_AT_EXEC, the data
for the parameter is sent with SQLPutData(). This parameter is
referred to as a data-at-execution parameter.

If SQLParamOptions() is used to specify multiple values for
each parameter, pcbValue points to an array of SQLINTEGER
values where each of the elements can be the number of
bytes in the corresponding rgbValue element (excluding the
null-terminator), or SQL_NULL_DATA.

- If this is an output parameter (fParamType is set to
SQL_PARAM_OUTPUT):

This must be an output parameter or return value of a stored

procedure CALL and points to one of the following, after the

execution of the stored procedure:

* number of bytes available to return in rgbValue, excluding
the null-termination character.

* SQL_NULL_DATA

* SQL_NO_TOTAL if the number of bytes available to return
cannot be determined.

A parameter marker is represented by a "?” character in an SQL statement and is
used to indicate a position in the statement where an application supplied value is
to be substituted when the statement is executed. This value can be obtained from:

Chapter 5. Functions 95

SQLBindParameter

* An application variable. SQLBindParameter() (or SQLSetParam()) is used to bind
the application storage area to the parameter marker.

* A LOB value from the database server (by specifying a LOB locator).

SQLBindParameter() (or SQLSetParam() is used to bind a LOB locator to the
parameter marker. The LOB value itself is supplied by the database server, so
only the LOB locator is transferred between the database server and the
application.

An application can use a locator with SQLGetSubstring(), SQLGetPosition(). or
SQLGetLength(). SQLGetSubstring() can either return another locator or the data
itself. All locators remain valid until the end of the transaction in which they are
created (even when the cursor moves to another row), or until it is freed using
the FREE LOCATOR statement.

The application must bind a variable to each parameter marker in the SQL
statement before executing the SQL statement. For this function, rgbValue and
pcbValue are deferred arguments, the storage locations must be valid and contain
input data values when the statement is executed. This means either keeping the
SQLExecDirect() or SQLExecute() call in the same procedure scope as the
SQLBindParameter() calls, or, these storage locations must be dynamically allocated
or declared statically or globally.

SQLSetParam() can be called before SQLPrepare() if the columns in the result set
are known; otherwise, the attributes of the result set can be obtained after the
statement is prepared.

Parameter markers are referenced by number (icol) and are numbered sequentially
from left to right, starting at 1.

All parameters bound by this function remain in effect until:

* SQLFreeHandle() is called with HandleType set to SQL_HANDLE_STMT, or
* SQLFreeStmt() is called with the SQL_RESET_PARAMS option, or

» SQLBindParameter() is called again for the same parameter ipar number.

After the SQL statement is executed, and the results processed, the application
might wish to reuse the statement handle to execute a different SQL statement. If
the parameter marker specifications are different (number of parameters, length or
type), SQLFreeStmt () should be called with SQL_RESET_PARAMS to reset or clear
the parameter bindings.

The C buffer data type given by fCType must be compatible with the SQL data type
indicated by fSqglType, or an error occurs.

An application can pass the value for a parameter either in the rgbValue buffer or
with one or more calls to SQLPutData(). In the latter case, these parameters are
data-at-execution parameters. The application informs DB2 ODBC of a
data-at-execution parameter by placing the SQL_DATA_AT_EXEC value in the
pcbValue buffer. It sets the rgbValue input argument to a 32-bit value which is
returned on a subsequent SQLParamData() call and can be used to identify the
parameter position.

Since the data in the variables referenced by rgbValue and pcbValue is not verified

until the statement is executed, data content or format errors are not detected or
reported until SQLExecute() or SQLExecDirect() is called.

96 ODBC Guide and Reference

SQLBindParameter

SQLBindParameter() essentially extends the capability of the SQLSetParam() function

by providing a method of:

» Specifying whether a parameter is input, input / output, or output, necessary for
proper handling of parameters for stored procedures.

» Specifying an array of input parameter values when SQLParamOptions() is used
in conjunction with SQLBindParameter(). SQLSetParam() can still be used to bind
single element application variables to parameter markers that are not part of a
stored procedure CALL statement.

The fParamType argument specifies the type of the parameter. All parameters in the
SQL statements that do not call procedures are input parameters. Parameters in
stored procedure calls can be input, input/output, or output parameters. Even
though the DB2 stored procedure argument convention typically implies that all
procedure arguments are input/output, the application programmer can still choose
to specify the nature of input or output more exactly on the SQLBindParameter() to
follow a more rigorous coding style.

Note:

« If an application cannot determine the type of a parameter in a procedure call,
set fParamType to SQL_PARAM_INPUT; if the data source returns a value for
the parameter, DB2 ODBC discards it.

 |If an application has marked a parameter as SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT and the data source does not return a value, DB2 ODBC
sets the pcbValue buffer to SQL_NULL_DATA.

 If an application marks a parameter as SQL_PARAM_OUTPUT, data for the
parameter is returned to the application after the CALL statement is processed. If
the rgbValue and pcbValue arguments are both null pointers, DB2 ODBC
discards the output value. If the data source does not return a value for an output
parameter, DB2 ODBC sets the pcbValue buffer to SQL_NULL_DATA.

» For this function, rgbValue and pcbValue are deferred arguments. In the case
where fParamType is set to SQL_PARAM_INPUT or
SQL_PARAM_INPUT_OUTPUT, the storage locations must be valid and contain
input data values when the statement is executed. This means either keeping the
SQLExecDirect() or SQLExecute() call in the same procedure scope as the
SQLBindParameter() calls, or, these storage locations must be dynamically
allocated or statically or globally declared.

Similarly, if fParamType is set to SQL_PARAM_OUTPUT or
SQL_PARAM_INPUT_OUTPUT, the rgbValue and pcbValue buffer locations must
remain valid until the CALL statement is executed.

» If 1SqlType is SQL_ROWID, the cbColDef value must be set to 40, the maximum
length in bytes for a ROWID data type. If cbColDef is not set to 40, the
application receives SQLSTATE=22001 when cbColDef is less than 40 and
SQLSTATE=HY104 when cbColDef is greater than 40.

For character and binary C data, the cbValueMax argument specifies the length of
the rgbValue buffer if it is a single element; or, if the application calls
SQLParamOptions() to specify multiple values for each parameter, cbValueMax is the
length of each element in the rgbValue array, incLubing the null-terminator. If the
application specifies multiple values, cbValueMax is used to determine the location
of values in the rgbValue array. For all other types of C data, the cbValueMax
argument is ignored.

An application can pass the value for a parameter either in the rgbValue buffer or
with one or more calls to SQLPutData(). In the latter case, these parameters are

Chapter 5. Functions 97

SQLBindParameter

data-at-execution parameters. The application informs DB2 ODBC of a
data-at-execution parameter by placing the SQL_DATA_AT_EXEC value in the
pcbValue buffer. It sets the rgbValue input argument to a 32-bit value which is
returned on a subsequent SQLParamData() call and can be used to identify the
parameter position.

When SQLBindParameter() is used to bind an application variable to an output
parameter for a stored procedure, DB2 ODBC can provide some performance
enhancement if the rgbValue buffer is placed consecutively in memory after the

pcbValue buffer. For example:

struct {
SQLCHAR
} column;

Return codes

* SQL_SUCCESS

SQLINTEGER pchValue;
rgbValue[MAX_BUFFER] ;

* SQL_SUCCESS_WITH_INFO

+ SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 23. SQLBindParameter SQLSTATEs
SQLSTATE Description Explanation
07006 Invalid conversion. The conversion from the data value identified by the fCType
argument to the data type identified by the fSq/Type argument is not
a meaningful conversion. (For example, conversion from
SQL_C_TYPE_DATE to SQL_DOUBLE.)
07009 Invalid descriptor index. The value specified for ColumnNumber was less than 0 or the value

specified for the argument ColumnNumber was greater than the
number of columns in the result set.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY003 Program type out of range. The argument TargetType was not a valid data type or
SQL_C_DEFAULT.

HY004 Invalid SQL data type. The value specified for the argument fSq/Type is not a valid SQL
data type.

HY009 Invalid use of a null pointer. The argument OutputHandlePtr is a null pointer.

HYO010 Function sequence error. Function is called after SQLExecute() or SQLExecDirect() returned
SQL_NEED_DATA, but data have not been sent for all
data-at-execution parameters.

HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength is less than 0.

98 ODBC Guide and Reference

SQLBindParameter

Table 23. SQLBindParameter SQLSTATEs (continued)
SQLSTATE Description Explanation

HY104 Invalid precision or scale The value specified for fSq/Type was either SQL_DECIMAL or

value.

SQL_NUMERIC and the value specified for cbParamDef was less
than 1.

The value specified for fCType is SQL_C_TYPE_TIMESTAMP; the
value for fSqlType is either SQL_CHAR or SQL_VARCHAR; and the
value for ibScale is less than 0 or greater than 6.

HY105 Invalid parameter type. fParamType is not one of SQL_PARAM_INPUT,

SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT.

HYCO00 Driver not capable. DB2 ODBC or data source does not support the conversion

Restrictions

Example

specified by the combination of the value specified for the argument
fCType and the value specified for the argument fSq/Type.

The value specified for the argument fSq/Type is not supported by
either DB2 ODBC or the data source.

In ODBC 2.0, this function has replaced SQLSetParam().

A new value for pcbValue, SQL_DEFAULT_PARAM, was introduced in ODBC 2.0,
to indicate that the procedure should use the default value of a parameter, rather
than a value sent from the application. Since DB2 stored procedure arguments do
not have the concept of default values, specification of this value for pcbValue
argument results in an error when the CALL statement is executed since the
SQL_DEFAULT_PARAM value is considered an invalid length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(/ength) macro to be
used with the pcbValue argument. The macro is used to specify the sum total
length of the entire data that is sent for character or binary C data using the
subsequent SQLPutData() calls. Since the DB2 ODBC driver does not need this
information, the macro is not needed. An ODBC application calls SQLGetInfo() with
the SQL_NEED_LONG_DATA_LEN option to check if the driver needs this
information. The DATABASE 2 ODBC driver returns 'N’ to indicate that this
information is not needed by SQLPutData().

The example shown below binds a variety of data types to a set of parameters. For
an additional example seelAppendix F, “Example code”, on page 507|.

Chapter 5. Functions 99

SQLBindParameter

[* ... %/
SQLCHAR stmt[] =
"INSERT INTO PRODUCT VALUES (?, 2, ?, ?, ?2)";

SQLINTEGER Prod_Num[NUM_PRODS] = {
100110, 100120, 100210, 100220, 100510, 100520, 200110,
200120, 200210, 200220, 200510, 200610, 990110, 990120,
500110, 500210, 300100

1

SQLCHAR Description[NUM_PRODS] [257] = {
"Aquarium-Glass-25 litres", "Aquarium-Glass-50 Titres",
"Aquarium-Acrylic-25 litres", "Aquarium-Acrylic-50 litres",
"Aquarium-Stand-Small", "Aquarium-Stand-Large",
"Pump-Basic-25 Titre", "Pump-Basic-50 litre",
"Pump-Deluxe-25 litre", "Pump-Deluxe-50 Titre",
"Pump-Filter-(for Basic Pump)",

"Pump-Filter-(for Deluxe Pump)",
"Aquarium-Kit-Small", "Aquarium-Kit-Large",
"Gravel-Colored", "Fish-Food-Deluxe-Bulk",
"Plastic-Tubing"

1

SQLDOUBLE UPrice[NUM_PRODS] = {

110.00, 190.00, 100.00, 150.00, 60.00, 90.00, 30.00,
45.00, 55.00, 75.00, 4.75, 5.25, 160.00, 240.00,
2.50, 35.00, 5.50

1

SQLCHAR Units[NUM_PRODS] [3] = {

n H: n ": n H: n H: n H: Hkg": HkgH: HmH ’ ’
}s
SQLCHAR Combo[NUM_PRODS] [2] = {

"N"’ HNH’ "NH’ HN"’ "NH’ HN"’ "NH’ HN"’ "NH’
HNH’ HNH, HNH, HYH, HYH, HNH’ HNH’ HNH
}s
SQLUINTEGER pirow = 0;
[* ... %/

/* Prepare the statement =*/
rc = SQLPrepare(hstmt, stmt, SQL_NTS);

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER,
0, 0, Prod Num, 0, NULL);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,
257, 0, Description, 257, NULL);

rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_DOUBLE, SQL_DECIMAL,
10, 2, UPrice, 0, NULL);

rc = SQLBindParameter(hstmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
3, 0, Units, 3, NULL);

rc = SQLBindParameter(hstmt, 5, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
2, 0, Combo, 2, NULL);

rc = SQLParamOptions(hstmt, NUM_PRODS, &pirow);

rc = SQLExecute(hstmt);

printf("Inserted %1d Rows\n", pirow);

[* ... ox/

References

» |“SQLExecDirect - Execute a statement directly” on page 161|
« [‘SQLExecute - Execute a statement” on page 166

100 ODBC Guide and Reference

SQLBindParameter

“SQLParamData - Get next parameter for which a data value is needed” on|
page 296|

“SQLParamOptions - Specify an input array for a parameter” on page 298|
“SQLPutData - Passing data value for a parameter” on page 327

Chapter 5. Functions 101

SQLCancel

SQLCancel - Cancel statement

Purpose
|Specification: | ODBC 1.0 X/OPEN CLI | ISO CLI
SQLCancel () can be used to prematurely terminate the data-at-execution sequence
described in|“Sending/retrieving long data in pieces” on page 401|.

Syntax

SQLRETURN SQLCancel (SQLHSTMT hstmt) ;

Function arguments

Table 24. SQLCancel arguments

Data type Argument Use Description
SQLHSTMT hstmt input Statement handle
Usage

After SQLExecDirect () or SQLExecute() returns SQL_NEED_DATA to solicit for
values for data-at-execution parameters, SQLCancel () can be used to cancel the
data-at-execution sequence described in[‘Sending/retrieving long data in pieces” on|
SQLCancel () can be called any time before the final SQLParamData() in
the sequence. After the cancellation of this sequence, the application can call
SQLExecute() or SQLExecDirect() to re-initiate the data-at-execution sequence.

If an application calls SQLCancel() on an hstmt not associated with a
data-at-execution sequence, SQLCancel () has the same effect as SQLFreeHandle()
with the HandleType set to SQL_HANDLE_STMT. Applications should not call
SQLCancel() to close a cursor; but rather SQLFreeStmt () should be used.

Return codes
- SQL_SUCCESS
« SQL_INVALID_HANDLE

* SQL_ERROR

Diagnostics

Table 25. SQLCancel SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.
Restrictions

DB2 ODBC does not support asynchronous statement execution.

102 ODBC Guide and Reference

SQLCancel

Example

See [‘Example” on page 329}

References

« [*sQLPutData - Passing data value for a parameter’ on page 327
» ['SQLParamData - Get next parameter for which a data value is needed” on|

page 296|

Chapter 5. Functions 103

SQLCloseCursor

SQLCloseCursor - Close cursor and discard pending results

Purpose
SQLCloseCursor() closes a cursor that has been opened on a statement and
discards pending results.
|Specification: | ODBC 3.0 X/OPEN CLI ISO CLI
Syntax
SQLRETURN SQLCToseCursor (SQLHSTMT StatementHandle);

Function arguments

Table 26. SQLCloseCursor arguments

Data type Argument Use Description
SQLHSTMT StatementHandle input Statement handle.
Usage

SQLCloseCursor() closes a cursor that has been opened on a statement, and
discards pending results. After an application calls SQLCToseCursor(), the
application can reopen the cursor by executing a SELECT statement again with the
same or different parameter values. When the cursor is reopened, the application
uses the same statement handle.

SQLCloseCursor() returns SQLSTATE 24000 (invalid cursor state) if no cursor is
open. Calling SQLC1oseCursor() is equivalent to calling the ODBC 2.0 function
SQLFreeStmt () with the SQL_CLOSE option. An exception is that SQLFreeStmt ()
with SQL_CLOSE has no effect on the application if no cursor is open on the
statement, while SQLCToseCursor() returns SQLSTATE 24000 (invalid cursor state).

Return codes

+ SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
« SQL_INVALID_HANDLE

« SQL_ERROR

Diagnostics

Table 27. SQLCloseCursor SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state. No cursor was open on the StatementHandle.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HYO0O01 Memory allocation failure. DB2 ODBC was unable to allocate memory required to support

execution or completion of the function.

104 ODBC Guide and Reference

SQLCloseCursor

Table 27. SQLCloseCursor SQLSTATEs (continued)
SQLSTATE Description Explanation

HYO010 Function sequence error. SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns. Invoke SQLCancel () to cancel the
data-at-execution condition.

HY013 Unexpected memory handling DB2 ODBC was unable to access memory required to support
error. execution or completion of the function.
Restrictions
None.
Example

rc=SQLCToseCursor(hstmt) ;
CHECK_H/-\NDLE(SQL_HANDLE_STMT, hstmt, rc)

References

+ [‘SQLSetStmtAttr - Set options related to a statement” on page 360
+ [“SQLSetConnectAttr - Set connection attributes” on page 336|
+ [“SQLGetConnectAttr - Get current attribute setting” on page 199

Chapter 5. Functions 105

SQLColAttribute

SQLColAttribute - Get column attributes

Purpose

Syntax

| Specification: |

ODBC 3.0 | X/OPEN CLI ISO CLI

SQLColAttribute() returns descriptor information for a column in a result set.
Descriptor information is returned as a character string, a 32-bit
descriptor-dependent value, or an integer value.

SQLRETURN SQLColAttribute (SQLHSTMT StatementHandle,
SQLSMALLINT CoTumnNumber,
SQLSMALLINT FieldIdentifier,
SQLPOINTER CharacterAttributePtr,
SQLSMALLINT BufferLength,
SQLSMALLINT *StringlLengthPtr,
SQLPOINTER NumericAttributePtr);
Function arguments
Table 28. SQLColAttribute
Data type Argument Use Description
SQLHSTMT StatementHandle input Statement handle.
SQLUSMALLINT ColumnNumber input Column number to be described. Columns are numbered
sequentially from left to right, starting at 1.
Column zero might not be defined. The DB2 ODBC 3.0 driver
does not support bookmarks. See [‘Restrictions” on page 113
SQLSMALLINT Fieldldentifier input The field in row ColumnNumber that will be returned. See

[Table 29 on page 107]

SQLPOINTER

CharacterAttributePtr output

Pointer to a buffer in which to return the value in the
Fieldldentifier field of the ColumnNumber row if the field is a
character string. Otherwise, the field is not used.

SQLSMALLINT

BufferLength input

The length of the *CharacterAttributePtr buffer, if the field is a
character string. Otherwise, this field is ignored.

SQLSMALLINT *

StringLengthPtr output

Pointer to a buffer in which to return the total number of bytes
(excluding the null termination byte for character data)
available to return in *CharacterAttributePtr.

For character data, if the number of bytes available to return
is greater than or equal to BufferLength, the descriptor
information in *CharacterAttributePtr is truncated to
BufferLength minus the length of a null termination character
and is null-terminated by DB2 ODBC.

For all other types of data, the value of BufferLength is
ignored and DB2 ODBC assumes the size of
*CharacterAttributePtr is 32 bits.

SQLPOINTER

NumericAttributePtr ~ output

106 ODBC Guide and Reference

Pointer to an integer buffer in which to return the value in the
Fieldldentifier field of the ColumnNumber row, if the field is a
numeric descriptor type, such as
SQL_DESC_COLUMN_LENGTH. Otherwise, the field is
unused.

Usage

SQLColAttribute

SQLCoTAttribute() returns information either in *NumericAttributePtr or in
*CharacterAttributePtr. Integer information is returned in *NumericAttributePtr as a
32-bit, signed value; all other formats of information are returned in
*CharacterAttributePtr. When information is returned in *NumericAttributePtr, DB2
ODBC ignores CharacterAttributePtr, BufferLength and StringLengthPtr. When
information is returned in *CharacterAttributePtr, DB2 ODBC ignores
NumericAttributePtr.

ODBC 3.0 SQLCoTAttribute() replaces the deprecated ODBC 1.0 function
SQLDescribeCol() and ODBC 2.0 function SQLCoTAttribute(). You can continue
calling SQLDescribeCol() and SQLCoTAttribute(). SQLColAttribute() allows access
to the more extensive set of descriptor information available in ANSI SQL-92 and
DBMS vendor extensions.

DB2 ODBC must return a value for each of the descriptor types. If a descriptor type
does not apply to a data source, then, unless otherwise stated, DB2 ODBC returns
0 in *StringLengthPtr or an empty string in “CharacterAttributePtr.

lists the descriptor types returned by ODBC 3.0 SQLCoTAttribute() and
notes (in parentheses) the ODBC 2.0 SQLCoTAttribute() attribute values replaced
or renamed.

Table 29. SQLColAttribute Fieldldentifiers

Information returned in

Fieldldentifier arguments Description
SQL_DESC_AUTO_UNIQUE_VALUE Numeric AttributePtr Indicates if the column data type is an
(SQL_COLUMN_AUTO_INCREMENT)" autoincrementing data type. SQL_FALSE is

returned in NumericAttributePtr for all DB2
SQL data types.

SQL_DESC_BASE_COLUMN_NAME ' CharacterAttributePtr The base column name for the set column. If

a base column name does not exist (for
example, columns that are expressions), this
variable contains an empty string.
SQL_DESC_BASE_COLUMN_NAME record

SQL_DESC_BASE_TABLE_NAME ' CharacterAttributePtr The name of the base table that contains the

column. If the base table name cannot be
defined or is not applicable, this variable
contains an empty string.

SQL_DESC_CASE_SENSITIVE NumericAttributePtr Indicates if the column data type is case
(SQL_COLUMN_CASE_SENSITIVE)' sensitive. Either SQL_TRUE or SQL_FALSE

is returned in NumericAttributePtr, depending
on the data type. Case sensitivity does not
apply to graphic data types. SQL_FALSE is
returned for non-character data types.

SQL_DESC_CATALOG_NAME CharacterAttributePtr The catalog of the table that contains the
(SQL_COLUMN_CATALOG_NAME)’ column is returned in CharacterAttributePtr.
(SQL_COLUMN_QUALIFIER_NAME)" An empty string is returned because DB2

ODBC supports two part naming for a table.

SQL_DESC_CONCISE_TYPE ' CharacterAttributePtr The concise data type. For datetime data

types, this field returns the concise data
type, such as SQL_TYPE_TIME.

SQL_DESC_COUNT

NumericAttributePtr The number of columns in the result set is

(SQL_COLUMN_COUNT)’ returned in NumericAttributePtr.

Chapter 5. Functions 107

SQLColAttribute

Table 29. SQLColAttribute Fieldldentifiers (continued)

Fieldldentifier

Information returned in
arguments

Description

SQL_DESC_DISPLAY_SIZE
(SQL_COLUMN_DISPLAY_SIZE)’

NumericAttributePtr

The maximum number of bytes needed to
display the data in character form is returned
in NumericAttributePtr. See ﬁppendix D,|
[‘Data conversion”, on page 485 for details
about the display size of each of the column
data types.

SQL_DESC_DISTINCT_TYPE
(SQL_COLUMN_DISTINCT_TYPE)"

CharacterAttributePtr

The distinct type name of the column is
returned in CharacterAttributePtr. If the
column is a built-in SQL type and not a
distinct type, an empty string is returned.
This is an IBM-defined extension to the list
of descriptor attributes that ODBC defines.

SQL_DESC_FIXED_PREC_SCALE
(SQL_COLUMN_MONEY)’

NumericAttributePtr

SQL_TRUE if the column has a fixed
precision and non-zero scale that are
data-source-specific. SQL_FALSE if the
column does not have a fixed precision and
non-zero scale that are data-source-specific.
SQL_FALSE is returned in
NumericAttributePtr for all DB2 SQL data
types.

SQL_DESC_LABEL
(SQL_COLUMN_LABEL)"

CharacterAttributePtr

The column label is returned in
CharacterAttributePtr. If the column does not
have a label, the column name or the
column expression is returned. If the column
is not labeled and named, an empty string is
returned.

SQL_DESC_LENGTH '

NumericAttributePtr

A numeric value that is either the maximum
or actual character length of a character
string or binary data type. It is the maximum
character length for a fixed-length data type,
or the actual character length for a
variable-length data type. Its value always
excludes the null termination byte that ends
the character string.

SQL_DESC_LITERAL_PREFIX '

CharacterAttributePtr

This VARCHAR(128) record field contains
the character or characters that DB2 ODBC
recognizes as a prefix for a literal of this
data type. This field contains an empty string
if a literal prefix is not applicable to this data

type.

SQL_DESC_LITERAL_SUFFIX '

108 ODBC Guide and Reference

CharacterAttributePtr

This VARCHAR(128) record field contains
the character or characters that DB2 ODBC
recognizes as a suffix for a literal of this data
type. This field contains an empty string if a
literal prefix is not applicable to this data

type.

Table 29. SQLColAttribute Fieldldentifiers (continued)

Fieldldentifier

Information returned in
arguments

SQLColAttribute

Description

SQL_DESC_LOCAL_TYPE_NAME '

CharacterAttributePtr

This VARCHAR(128) record field contains
any localized (native language) name for the
data type that might be different from the
regular name of the data type. If there is no
localized name, an empty string is returned.
This field is for display purposes only. The
character set of the string is
locale-dependent; it is typically the default
character set of the server.

SQL_DESC_NAME
(SQL_COLUMN_NAME)’

CharacterAttributePtr

The name of the column ColumnNumber is
returned in CharacterAttributePtr. If the
column is an expression, the column number
is returned.

In either case, SQL_DESC_UNNAMED is
set to SQL_NAMED. If there is no column
name or column alias, an empty string is
returned and SQL_DESC_UNNAMED is set
to SQL_UNNAMED.

SQL_DESC_NULLABLE NumericAttributePtr If the column identified by ColumnNumber
(SQL_COLUMN_NULLABLE)" can contain nulls, SQL_NULLABLE is
returned in NumericAttributePtr. If the
column is constrained not to accept nulls,
SQL_NO_NULLS is returned in
NumericAttributePtr.
SQL_DESC_NUM_PREX_RADIX ! NumericAttributePtr

 If the datatype in the SQL_DESC_TYPE
field is an approximate data type, this
SQLINTEGER field contains a value of 2,
because the SQL_DESC_PRECISION
field contains the number of bits.

 |f the datatype in the SQL_DESC_TYPE
field is an exact numeric data type, this
field contains a value of 10, because the
SQL_DESC_PRECISION field contains
the number of decimal digits.

» This field is set to O for all non-numeric
data types.

Chapter 5. Functions 109

SQLColAttribute

Table 29. SQLColAttribute Fieldldentifiers (continued)

Information returned in
Fieldldentifier arguments

Description

SQL_DESC_OCTET_LENGTH NumericAttributePtr
(SQL_COLUMN_LENGTH)’

The number of bytes of data associated with
the column is returned in
NumericAttributePtr. This is the length in
bytes of data transferred on the fetch or
SQLGetData() for this column if
SQL_C_DEFAULT is specified as the C data
type. See |Appendix D, “Data conversion”, on|

Ppage 485|for details about the length of each

of the SQL data types.

If the column identified in ColumnNumber is
a fixed length character or binary string, (for
example, SQL_CHAR or SQL_BINARY), the
actual length is returned.

If the column identified in ColumnNumber is
a variable length character or binary string,
(for example, SQL_VARCHAR or
SQL_BLOB), the maximum length is
returned.

SQL_DESC_PRECISION NumericAttributePtr
(SQL_COLUMN_PRECISION)'

The precision in units of digits is returned in
NumericAttributePtr if the column is:
 SQL_DECIMAL

* SQL_NUMERIC

* SQL_DOUBLE

+ SQL_FLOAT

* SQL_INTEGER

« SQL_REAL

e SQL_SMALLINT

If the column is a character SQL data type,
the precision returned in NumericAttributePtr,
indicates the maximum number of characters
the column can hold.

If the column is a graphic SQL data type, the
precision returned in NumericAttributePtr,
indicates the maximum number of
double-byte characters the column can hold.
See|Appendix D, “Data conversion”, on|
bage 485| for information about the precision
of each of the SQL data types.

SQL_DESC_SCALE NumericAttributePtr
(SQL_COLUMN_SCALE)"

The scale attribute of the column is returned.
See|Appendix D, “Data conversion”, on|
Ppage 485|for information about the precision
of each of the SQL data types.

SQL_DESC_SCHEMA_NAME CharacterAttributePtr
(SQL_COLUMN_OWNER_NAME)’

110 ODBC Guide and Reference

The schema of the table that contains the
column is returned in CharacterAttributePtr.
An empty string is returned; DB2 is not able
to determine this attribute.

Table 29. SQLColAttribute Fieldldentifiers (continued)

Information returned in
Fieldldentifier arguments

SQLColAttribute

Description

SQL_DESC_SEARCHABLE NumericAttributePtr
(SQL_COLUMN_SEARCHABLE)’

Indicates if the column data type is
searchable:

¢ SQL_PRED_NONE
(SQL_UNSEARCHABLE in ODBC 2.0) if
the column cannot be used in a WHERE
clause.

* SQL_PRED_CHAR (SQL_LIKE_ONLY in
ODBC 2.0) if the column can be used in a
WHERE clause only with the LIKE
predicate.

* SQL_PRED_BASIC
(SQL_ALL_EXCEPT_LIKE in ODBC 2.0)
if the column can be used in a WHERE
clause with all comparison operators
except LIKE.

* SQL_SEARCHABLE if the column can be
used in a WHERE clause with any
comparison operator.

SQL_DESC_TABLE_NAME CharacterAttributePtr
(SQL_COLUMN_TABLE_NAME)’

The name of the table that contains the
column is returned in CharacterAttributePtr.
An empty string is returned; DB2 ODBC
cannot determine this attribute.

SQL_DESC_TYPE NumericAttributePtr
(SQL_COLUMN_TYPE)"

The SQL data type of the column identified
in ColumnNumber is returned in
NumericAttributePtr. See [Appendix D, “Data|
fconversion”, on page 4895 for a list of
possible data type values that can be
returned. For the datetime data types, this
field returns the verbose data type, such as
SQL_DATETIME.

SQL_DESC_TYPE_NAME CharacterAttributePtr
(SQL_COLUMN_TYPE_NAME)’

The type of the column (specified in an SQL
statement) is returned in
CharacterAttributePtr. See[Appendix D]
[‘Data conversion”, on page 485 for
information on each data type.

SQL_DESC_UNNAMED NumericAttributePtr

SQL_NAMED or SQL_UNNAMED. If the
SQL_DESC_NAME contains a column
name, SQL_NAMED is returned. If there is
no column name, SQL_UNNAMED is
returned.

SQL_DESC_UNSIGNED NumericAttributePtr
(SQL_COLUMN_UNSIGNED)*

Indicates if the column data type is an
unsigned type. SQL_TRUE is returned in
NumericAttributePtr for all non-numeric data
types. SQL_FALSE is returned for all
numeric data types.

Chapter 5. Functions 111

SQLColAttribute

Table 29. SQLColAttribute Fieldldentifiers (continued)

Information returned in
arguments Description

Fieldldentifier

SQL_DESC_UPDATABLE

(SQL_COLUMN_UPDATABLE)"

Return codes

SQL_SUCCESS

NumericAttributePtr Indicates if the column data type is an

updateable data type:

¢ SQL_ATTR_READWRITE_UNKNOWN is
returned in NumericAttributePtr for all DB2
SQL data types.

¢ SQL_ATTR_READONLY is returned if the
column is obtained from a catalog function
call. ODBC also defines the following
values, however DB2 ODBC does not
return these values:
— SQL_DESC_UPDATABLE
— SQL_UPDT_WRITE

* SQL_SUCCESS_WITH_INFO
» SQL_INVALID_HANDLE

+ SQL_ERROR

Diagnostics

Table 30. SQLColAttribute SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *CharacterAttributePtr was not large enough to return the
entire string value, so the string value was truncated. The length of
the untruncated string value is returned in *StringLengthPtr.
(Function returns SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The value specified for ColumnNumber was less than 0 or the value
specified for the argument ColumnNumber was greater than the
number of columns in the result set.

07005 The statement did not return a The statement associated with the StatementHandle did not return a

result set. result set. There were no columns to describe.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HYO0O01 Memory allocation failure. DB2 ODBC was not able to allocate memory support execution or
completion of the function.

HYO010 Function sequence error. The function was called prior to calling SQLPrepare() or

SQLExecDirect () for the StatementHandle.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

1. The deprecated ODBC 2.0 SQLCoTAttribute() descriptor (argument fDescType) values. These values are supported in either the
SQLColAttribute() or the SQLCoTAttribute() function.

112 ODBC Guide and Reference

SQLColAttribute

Table 30. SQLColAttribute SQLSTATEs (continued)

SQLSTATE Description Explanation
HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0.
HYO091 Descriptor type out of range. The value specified for the argument Fieldldentifier was not one of

the defined values and was not an implementation-defined value.

HYCO00 Driver not capable. DB2 ODBC does not support the value specified for the argument
Fieldldentifier.

Restrictions

ColumnNumber zero might not be defined. The DB2 ODBC 3.0 driver does not
support bookmarks.

Example
Sample to retrieve displaysize of first output column.

SQLINTEGER displaysize ;
SQLColAttribute(hstmt,
(SQLSMALLINT) (1),
SQL_DESC_DISPLAY_SIZE,
NULL,
0,
NULL,
&displaysize
) s

References

+ [“SQLBindCol - Bind a column to an application variable” on page 85|
» |"SQLDescribeCol - Describe column attributes” on page 13
+ [‘SQLFetch - Fetch next row” on page 176]

+ [‘SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 169

Chapter 5. Functions 113

SQLColAttributes

SQLColAttributes - Get column attributes

Purpose

|Specification: | ODBC 1.0 | X/OPEN CLI ISO CLI

In ODBC 3.0, SQLCoTAttribute() replaces the ODBC 2.0 function
SQLColAttributes(). See SQLColAttribute() for more information.

SQLCoTAttributes() is used to get an attribute for a column of the result set, and
can also be used to determine the number of columns. SQLColAttributes() is a

more extensible alternative to the SQLDescribeCol() function, but can only return
one attribute per call.

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

If the application does not know the various attributes (such as, data type and
length) of the column, this function (or SQLDescribeCol()) must be called before
binding, using SQLBindCo1(), to any columns.

Note: 1 - X/Open and ISO define this function with a singular name,
SQLColAttribute().

Syntax

SQLRETURN SQLColAttributes (SQLHSTMT hstmt,
SQLUSMALLINT icol,
SQLUSMALLINT fDescType,
SQLPOINTER rgbDesc,
SQLSMALLINT cbDescMax,
SQLSMALLINT FAR =*pchDesc,
SQLINTEGER FAR *pfDesc);

Function arguments
Table 31. SQLColAttributes arguments

Data type Argument Use Description
SQLHSTMT hstmt input Statement handle
SQLUSMALLINT icol input Column number in result set (must be between 1 and the

number of columns in the results set inclusive). This argument
is ignored when SQL_COLUMN_COUNT is specified.

SQLUSMALLINT fDescType input The supported values are described inTable 32 on page 115
SQLCHAR * rgbDesc output Pointer to buffer for string column attributes

SQLSMALLINT cbDescMax input Length of rgbDesc descriptor buffer.

SQLSMALLINT * pcbDesc output Actual number of bytes returned in rgbDesc buffer. If this

argument contains a value equal to or greater than the length
specified in cbDescMax, truncation occurred. The column
attribute value is then truncated to cbDescMax bytes minus
the size of the null-terminator (or to cbDescMax bytes if null
termination is off).

SQLINTEGER * pfDesc output Pointer to integer which holds the value of numeric column
attributes.

114 ODBC Guide and Reference

SQLColAttributes

The following values can be specified for the fDescType argument:

Table 32. fdesctype descriptor types

Descriptor

Description

SQL_COLUMN_AUTO_INCREMENT

Indicates if the column data type is an auto
increment data type.

FALSE is returned in pfDesc for all DB2 SQL data
types.

SQL_COLUMN_CASE_SENSITIVE

Indicates if the column data type is a case
sensitive data type.

Either TRUE or FALSE is returned in pfDesc
depending on the data type.

Case sensitivity does not apply to graphic data
types, FALSE is returned.

FALSE is returned for non-character data types.

SQL_COLUMN_CATALOG_NAME
(SQL_COLUMN_QUALIFIER_NAME)

The catalog of the table that contains the column is
returned in rgbDesc. An empty string is returned
since DB2 ODBC only supports two-part naming
for a table.

SQL_COLUMN_QUALIFIER_NAME is defined for
compatibility with ODBC. DB2 ODBC applications
should use SQL_COLUMN_CATALOG_NAME.

SQL_COLUMN_COUNT

The number of columns in the result set is returned
in pfDesc.

SQL_COLUMN_DISPLAY_SIZE

The maximum number of bytes needed to display
the data in character form is returned in pfDesc.

See [Table 177 on page 489 for the display size of
each of the column types.

SQL_COLUMN_DISTINCT_TYPE

The distinct type data type name of the column is
returned in rgbDesc. If the column is a built-in SQL
type and not a distinct type, an empty string is
returned.

Note: This is an IBM-defined extension to the list
of descriptor attributes defined by ODBC.

SQL_COLUMN_LABEL

The column label is returned in rgbDesc. If the
column does not have a label, the column name or
the column expression is returned. If the column is
unlabeled and unnamed, an empty string is
returned.

Chapter 5. Functions 115

SQLColAttributes

Table 32. fdesctype descriptor types (continued)

Descriptor

Description

SQL_COLUMN_LENGTH

The number of bytes of data associated with the
column is returned in pfDesc. This is the length in
bytes of data transferred on the fetch or
SQLGetData() for this column if SQL_C_DEFAULT
is specified as the C data type. See [Table 176 or]
for the length of each of the SQL data
types.

If the column identified in icol is a fixed length
character or binary string, (for example,
SQL_CHAR or SQL_BINARY) the actual length is
returned.

If the column identified in icol is a variable length
character or binary string, (for example,
SQL_VARCHAR) the maximum length is returned.

SQL_COLUMN_MONEY

Indicates if the column data type is a money data
type.

FALSE is returned in pfDesc for all DB2 SQL data
types.

SQL_COLUMN_NAME

The name of the column icol is returned in
rgbDesc. If the column is an expression, then the
result returned is product specific.

SQL_COLUMN_NULLABLE

If the column identified by icol can contain nulls,
then SQL_NULLABLE is returned in pfDesc.

If the column is constrained not to accept nulls,
then SQL_NO_NULLS is returned in pfDesc.

SQL_COLUMN_PRECISION

The precision in units of digits is returned in pfDesc
if the column is SQL_DECIMAL, SQL_NUMERIC,
SQL_DOUBLE, SQL_FLOAT, SQL_INTEGER,
SQL_REAL or SQL_SMALLINT.

If the column is a character SQL data type, then
the precision returned in pfDesc, indicates the
maximum number of characters the column can
hold.

If the column is a graphic SQL data type, then the
precision returned in pfDesc, indicates the
maximum number of double-byte characters the
column can hold.

See [Table 174 on page 486|for the precision of
each of the SQL data types.

SQL_COLUMN_SCALE

The scale attribute of the column is returned. See
[Table 175 on page 487|for the scale of each of the
SQL data types.

SQL_COLUMN_SCHEMA_NAME
(SQL_COLUMN_OWNER_NAME)

116 ODBC Guide and Reference

The schema of the table that contains the column
is returned in rgbDesc. An empty string is returned
as DB2 ODBC is unable to determine this attribute.

SQL_COLUMN_OWNER_NAME is defined for
compatibility with ODBC. DB2 ODBC applications
should use SQL_COLUMN_SCHEMA_NAME.

Usage

SQLColAttributes

Table 32. fdesctype descriptor types (continued)
Descriptor Description

SQL_COLUMN_SEARCHABLE Indicates if the column data type is searchable:

* SQL_UNSEARCHABLE if the column cannot be
used in a WHERE clause.

* SQL_LIKE_ONLY if the column can be used in a
WHERE clause only with the LIKE predicate.

* SQL_ALL_EXCEPT_LIKE if the column can be
used in a WHERE clause with all comparison
operators except LIKE.

* SQL_SEARCHABLE if the column can be used
in a WHERE clause with any comparison
operator.

SQL_COLUMN_TABLE_NAME The name of the table that contains the column is
returned in rgbDesc. An empty string is returned as
DB2 ODBC cannot determine this attribute.

SQL_COLUMN_TYPE The SQL data type of the column identified in icol
is returned in pfDesc. The possible values for
pfSqlType are listed in[Table 4 on page 31|

SQL_COLUMN_TYPE_NAME The type of the column (as entered in an SQL
statement) is returned in rgbDesc.

For information on each data type see the

TYPE_NAME attribute found in [‘Data types ana
|data conversion” on page 30|

SQL_COLUMN_UNSIGNED Indicates if the column data type is an unsigned
type or not.

TRUE is returned in pfDesc for all non-numeric
data types, FALSE is returned for all numeric data
types.

SQL_COLUMN_UPDATABLE Indicates if the column data type is an updateable
data type.

SQL_ATTR_READWRITE_UNKNOWN is returned
in pfDesc for all DB2 SQL data types.

SQL_ATTR_READONLY is returned if the column
is obtained from a catalog function call.

Instead of returning a specific set of attributes like SQLDescribeCol(),
SQLColAttributes() allows you to specify which attribute you wish to receive for a
specific column. If the desired information is a string, it is returned in rgbDesc. If the
desired information is a number, it is returned in pfDesc.

SQLColAttributes() is an extensible alternative to SQLDescribeCol (), which is used
to return a fixed set of commonly used column attribute information.

If an fDescType descriptor type does not apply to the database server, an empty
string is returned in rgbDesc or zero is returned in pfDesc, depending on the
expected result of the descriptor.

Columns are identified by a number (numbered sequentially from left to right
starting with 1) and can be described in any order.

Chapter 5. Functions 117

SQLColAttributes

Calling SQLCoTAttributes() with fDescType set to SQL_COLUMN_COUNT is an
alternative to calling SQLNumResultCols() to determine whether any columns can be

returned.

Return codes

SQL_SUCCESS

SQL_SUCCESS_WITH_INFO

« SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 33. SQLColAttributes SQLSTATEs
SQLSTATE Description Explanation
01004 Data truncated. The character string returned in the argument rgbDesc is longer
than the value specified in the argument cbDescMax. The argument
pcbDesc contains the actual length of the string to be returned.
(Function returns SQL_SUCCESS_WITH_INFO.)
07005 The statement did not return a The statement associated with the hstmt did not return a result set.

result set.

There are no columns to describe.

To prevent encountering this error, call SQLNumResul1tCols() before
calling SQLColAttributes().

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

$1002 Invalid column number. The value specified for the argument icol is less than 1.
The value specified for the argument icol is greater than the number
of columns in the result set. Not returned if SQL_COLUMN_COUNT
is specified.

S1010 Function sequence error. The function is called prior to calling SQLPrepare() or
SQLExecDirect() for the hstmt.
The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

$1013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

$1090 Invalid string or buffer length. The length specified in the argument cbDescMax is less than 0 and
fDescType requires a character string be returned in rgbDesc.

S$1091 Descriptor type out of range. The value specified for the argument fDescType was not equal to a
value specified in [Table 32 on page 115

S1C00 Driver not capable. The SQL data type returned by the database server for column icol
is not recognized by DB2 ODBC.

Restrictions

None.
Example

See [FExample” on page 139|

118 ODBC Guide and Reference

SQLColAttributes

References

« [“SQLDescribeCol - Describe column attributes” on page 137]
« [‘SQLExecDirect - Execute a statement directly” on page 161|
+ [‘SQLPrepare - Prepare a statement” on page 300|

« ['SQLSetColAttributes - Set column attributes” on page 332

Chapter 5. Functions 119

SQLColumnPrivileges

SQLColumnPrivileges - Get privileges associated with the columns of

a table
Purpose
|Specification: | ODBC 1.0
SQLCoTumnPrivileges() returns a list of columns and associated privileges for the
specified table. The information is returned in an SQL result set, which can be
retrieved using the same functions that are used to process a result set generated
from a query.
Syntax
SQLRETURN SQLCoTumnPrivileges (SQLHSTMT hstmt,
SQLCHAR FAR =*szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR ~ FAR =*szTableName,
SQLSMALLINT cbTableName,
SQLCHAR FAR *szColumnName,
SQLSMALLINT cbColumnName) ;
Function arguments
Table 34. SQLColumnPrivileges arguments
Data type Argument Use Description
SQLHSTMT hstmt input Statement handle.
SQLCHAR * szCatalogName input Catalog qualifier of a 3-part table name. This must be a NULL

pointer or a zero length string.

SQLSMALLINT

cbCatalogName input Length of szCatalogName. This must be set to 0.

SQLCHAR * szSchemaName input Schema qualifier of table name.

SQLSMALLINT cbSchemaName input Length of szSchemaName.

SQLCHAR * szTableName input Table name.

SQLSMALLINT cbTableName input Length of szTableName.

SQLCHAR * szColumnName input Buffer that can contain a pattern-value to qualify the result set

by column name.

SQLSMALLINT

Usage

cbColumnName input Length of szColumnName.

The results are returned as a standard result set containing the columns listed in
[Table 35 on page 121} The result set is ordered by TABLE_CAT, TABLE_SCHEM,
TABLE_NAME, COLUMN_NAME, and PRIVILEGE. If multiple privileges are
associated with any given column, each privilege is returned as a separate row. A
typical application might wish to call this function after a call to SQLCoTumns () to
determine column privilege information. The application should use the character
strings returned in the TABLE_SCHEM, TABLE_NAME, COLUMN_NAME columns
of the SQLCoTumns () result set as input arguments to this function.

120 ODBC Guide and Reference

SQLColumnPrivileges

Since calls to SQLColumnPrivileges() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating the calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Note that the szColumnName argument accepts a search pattern. For more
information about valid search patterns, see ['Input arguments on catalog functions’|

fon page 394

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 35. Columns returned by SQLColumnPrivileges

Column

number/name Data type Description

1 TABLE_CAT VARCHAR(128) This is always NULL.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME VARCHAR(128) not NULL Name of the table or view.

4 COLUMN_NAME VARCHAR(128) not NULL Name of the column of the specified table or view.

5 GRANTOR VARCHAR(128) Authorization ID of the user who granted the privilege.

6 GRANTEE VARCHAR(128) Authorization ID of the user to whom the privilege is
granted.

7 PRIVILEGE VARCHAR(128) The column privilege. This can be:

* ALTER

* CONTROL

* DELETE

* INDEX

* INSERT

+ REFERENCES
» SELECT

* UPDATE

Supported privileges are based on the data source to
which you are connected.

Note: Most IBM RDBMSs do not offer column level
privileges at the column level. DB2 for OS/390 and z/OS
and DB2 for VSE & VM support the UPDATE column
privilege; there is one row in this result set for each
updateable column. For all other privileges for DB2 for
0S/390 and z/OS and DB2 for VSE & VM, and for all
privileges for other IBM RDBMSs, if a privilege has been
granted at the table level, a row is present in this result
set.

Chapter 5. Functions 121

SQLColumnPrivileges

Table 35. Columns returned by SQLColumnPrivileges (continued)

Column
number/name Data type Description
8 |IS_GRANTABLE VARCHAR(3) Indicates whether the grantee is permitted to grant the

privilege to other users.

Either "YES”, "NO".

Note: The column names used by DB2 ODBC follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLColumnPrivileges() result set in ODBC.

If there is more than one privilege associated with a column, then each privilege is
returned as a separate row in the result set.

Return codes

* SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 36. SQLColumnPrivileges SQLSTATEs
SQLSTATE Description Explanation
24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY009 Invalid use of a null pointer. szTableName is a null.

HYO014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal to SQL_NTS.

HYCO00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.

Restrictions

None.

122 ODBC Guide and Reference

SQLColumnPrivileges

Example
[* ... %/
SQLRETURN
1ist_column_privileges(SQLHDBC hdbc, SQLCHAR *schema, SQLCHAR xtablename)
{
/* ... %/
rc = SQLColumnPrivileges(hstmt, NULL, 0, schema, SQL _NTS,
tablename, SQL_NTS, columnname.s, SQL_NTS);
rc = SQLBindCol (hstmt, 4, SQL_C_CHAR, (SQLPOINTER) columnname.s, 129,
&columnname.ind);
rc = SQLBindCol (hstmt, 5, SQL_C_CHAR, (SQLPOINTER) grantor.s, 129,
&grantor.ind);
rc = SQLBindCol (hstmt, 6, SQL_C_CHAR, (SQLPOINTER) grantee.s, 129,
&grantee.ind);
rc = SQLBindCol (hstmt, 7, SQL_C_CHAR, (SQLPOINTER) privilege.s, 129,
&privilege.ind);
rc = SQLBindCol (hstmt, 8, SQL_C_CHAR, (SQLPOINTER) is_grantable.s, 4,
&is_grantable.ind);
printf("Column Privileges for %s.%s\n", schema, tablename);
/* Fetch each row, and display */
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {
sprintf(cur_name, " Column: %s\n", columnname.s);
if (strcmp(cur_name, pre_name) != 0) {
printf("\n%s\n", cur_name);
printf(" Grantor Grantee Privilege Grantable\n");
printf (" mmmmmm e e s oo \n");
1
strcpy(pre_name, cur_name);
printf(" %-15s", grantor.s);
printf(" %-15s", grantee.s);
printf(" %-10s", privilege.s);
printf(" %-3s\n", is_grantable.s);
} /* endwhile */
[* ... %/
References

+ [“SQLColumns - Get column information for a table” on page 124|
+ [“SQLTables - Get table information” on page 382

Chapter 5. Functions 123

SQLColumns

SQLColumns - Get column information for a table

Purpose
| Specification: ODBC 1.0 | X/OPEN CLI
SQLCoTumns () returns a list of columns in the specified tables. The information is
returned in an SQL result set, which can be retrieved using the same functions that
are used to fetch a result set generated by a query.
Syntax
SQLRETURN SQLColumns (SQLHSTMT hstmt,
SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTabTeName,
SQLSMALLINT cbTableName,
SQLCHAR FAR *szColumnName,
SQLSMALLINT cbColumnName) ;
Function arguments
Table 37. SQLColumns arguments
Data type Argument Use Description
SQLHSTMT hstmt input Statement handle.
SQLCHAR * szCatalogName input Buffer that can contain a pattern-value to qualify the result set.
Catalog is the first part of a 3-part table name.
This must be a NULL pointer or a zero length string.
SQLSMALLINT cbCatalogName input Length of szCatalogName. This must be set to 0.
SQLCHAR * szSchemaName input Buffer that can contain a pattern-value to qualify the result set
by schema name.
SQLSMALLINT cbSchemaName input Length of szSchemaName.
SQLCHAR * szTableName input Buffer that can contain a pattern-value to qualify the result set
by table name.
SQLSMALLINT cbTableName input Length of szTableName.
SQLCHAR * szColumnName input Buffer that can contain a pattern-value to qualify the result set
by column name.
SQLSMALLINT cbColumnName input Length of szColumnName.

Usage

This function is called to retrieve information about the columns of either a table or
a set of tables. A typical application might wish to call this function after a call to
SQLTables() to determine the columns of a table. The application should use the
character strings returned in the TABLE_SCHEMA and TABLE_NAME columns of
the SQLTables() result set as input to this function.

SQLCoTumns () returns a standard result set, ordered by TABLE_CAT,
TABLE_SCHEM, TABLE_NAME, and ORDINAL_POSITION. [Table 38 on page 125
lists the columns in the result set.

124 ODBC Guide and Reference

SQLColumns

The szSchemaName, szTableName, and szColumnName arguments accept search
patterns. For more information about valid search patterns, see ['Input arguments on|
fcatalog functions” on page 398}

Since calls to SQLCoTumns () in many cases map to a complex and thus expensive
query against the system catalog, they should be used sparingly, and the results
saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 38. Columns returned by SQLColumns

Column

number/name Data type Description

1 TABLE_CAT VARCHAR(128) This is always NULL.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME

VARCHAR(128) NOT NULL Name of the table, view, alias, or synonym.

4 COLUMN_NAME

VARCHAR(128) NOT NULL Column identifier. Name of the column of the specified
table, view, alias, or synonym.

5 DATA_TYPE SMALLINT NOT NULL SQL data type of column identified by COLUMN_NAME.
This is one of the values in the Symbolic SQL Data Type
column in[Table 4 on page 31}

6 TYPE_NAME VARCHAR(128) NOT NULL Character string representing the name of the data type

corresponding to DATA_TYPE.

7 COLUMN_SIZE

INTEGER If the DATA_TYPE column value denotes a character or
binary string, then this column contains the maximum
length in characters for the column.

For date, time, timestamp data types, this is the total
number of characters required to display the value when
converted to character.

For numeric data types, this is either the total number of
digits, or the total number of bits allowed in the column,
depending on the value in the NUM_PREC_RADIX
column in the result set.

See also, [Table 174 on page 486}

8 BUFFER_LENGTH

INTEGER The maximum number of bytes for the associated C
buffer to store data from this column if SQL_C_DEFAULT
is specified on the SQLBindCol1(), SQLGetData() and
SQLBindParameter() calls. This length does not include
any null-terminator. For exact numeric data types, the
length accounts for the decimal and the sign.

See also, [Table 176 on page 488}

Chapter 5. Functions 125

SQLColumns

Table 38. Columns returned by SQLColumns (continued)

Column

number/name Data type Description

9 DECIMAL_DIGITS SMALLINT The scale of the column. NULL is returned for data types
where scale is not applicable.
See also, [Table 175 on page 487}

10 NUM_PREC_RADIX SMALLINT Either 10 or 2 or NULL. If DATA_TYPE is an approximate

numeric data type, this column contains the value 2, then
the COLUMN_SIZE column contains the number of bits
allowed in the column.

If DATA_TYPE is an exact numeric data type, this column
contains the value 10 and the COLUMN_SIZE contains
the number of decimal digits allowed for the column.

For numeric data types, the DBMS can return a
NUM_PREC_RADIX of either 10 or 2.

NULL is returned for data types where radix is not
applicable.

11 NULLABLE SMALLINT NOT NULL

SQL_NO_NULLS if the column does not accept NULL
values.

SQL_NULLABLE if the column accepts NULL values.

12 REMARKS VARCHAR(254)

Might contain descriptive information about the column.

13 COLUMN_DEF VARCHAR(254)

The column’s default value. If the default value is a
numeric literal, then this column contains the character
representation of the numeric literal with no enclosing
single quotes. If the default value is a character string,
then this column is that string enclosed in single quotes.
If the default value is a pseudo-literal, such as for DATE,
TIME, and TIMESTAMP columns, then this column
contains the keyword of the pseudo-literal (for example,
CURRENT DATE) with no enclosing quotes.

If NULL was specified as the default value, then this
column returns the word NULL, not enclosed in quotes. If
the default value cannot be represented without
truncation, then this column contains TRUNCATED with
no enclosing single quotes. If no default value was
specified, then this column is NULL.

14 SQL_DATA_TYPE SMALLINT NOT NULL

The SQL data type. This columns is the same as the
DATA_TYPE column. For datetime data types, the
SQL_DATA_TYPE field in the result set is
SQL_DATETIME, and the SQL_DATETIME_SUB field
returns the subcode for the specific datetime data type
(SQL_CODE_DATE, SQL_CODE_TIME or
SQL_CODE_TIMESTAMP).

15 SQL_DATATIME_SUB SMALLINT

126 ODBC Guide and Reference

The subtype code for datetime data types:
+ SQL_CODE_DATE

+ SQL_CODE_TIME

+ SQL_CODE_TIMESTAMP

For all other data types, this column returns a NULL.

SQLColumns

Table 38. Columns returned by SQLColumns (continued)

Column
number/name

Data type

Description

16 CHAR_OCTET_LENGTH INTEGER

Contains the maximum length in octets for a character
data type column. For Single Byte character sets, this is
the same as COLUMN_SIZE. For all other data types it is
NULL.

17 ORDINAL_POSITION

INTEGER NOT NULL The ordinal position of the column in the table. The first

column in the table is number 1.

18 IS_NULLABLE

VARCHAR(254)

Contains the string 'NO’ if the column is known to be not
nullable; and "YES’ otherwise.

Note: This result set is identical to the X/Open CLI Columns() result set specification, which is an extended version of
the SQLCoTumns () result set specified in ODBC V2. The ODBC SQLColumns () result set includes every column in the
same position up to the REMARKS column.

DB2 ODBC applications that issue SQLColumns () against a DB2 for OS/390 and z/OS server, Version 5 or later, should
expect the result set columns listed in the table above. Revision bars identify the new and changed columns.

Return codes

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO

+ SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 39. SQLColumns SQLSTATEs
SQLSTATE Description Explanation
24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal SQL_NTS.

HYCO00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.

Restrictions

None.

Chapter 5. Functions 127

SQLColumns

Example
[* ... %/
SQLRETURN
1ist_columns (SQLHDBC hdbc, SQLCHAR *schema, SQLCHAR xtablename)
{
/% ... %/
rc = SQLColumns(hstmt, NULL, 0, schema, SQL _NTS,
tablename, SQL_NTS, "%", SQL_NTS);
rc = SQLBindCol (hstmt, 4, SQL_C_CHAR, (SQLPOINTER) column_name.s, 129,
&column_name.ind);
rc = SQLBindCol (hstmt, 6, SQL_C_CHAR, (SQLPOINTER) type name.s, 129,
&type_name.ind);
rc = SQLBindCol (hstmt, 7, SQL_C_LONG, (SQLPOINTER) &length,
sizeof(length), &length_ind);
rc = SQLBindCol(hstmt, 9, SQL_C_SHORT, (SQLPOINTER) &scale,
sizeof(scale), &scale_ind);
rc = SQLBindCol (hstmt, 12, SQL_C_CHAR, (SQLPOINTER) remarks.s, 129,
&remarks.ind);
rc = SQLBindCol (hstmt, 11, SQL_C_SHORT, (SQLPOINTER) & nullable,
sizeof(nullable), &nullable_ind);
printf("Schema: %s Table Name: %s\n", schema, tablename);
/* Fetch each row, and display */
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {
printf(" %s", column_name.s);
if (nullable == SQL_NULLABLE) {
printf(", NULLABLE");
} else {
printf(", NOT NULLABLE");
1
printf(", %s", type_name.s);
if (length_ind != SQL_NULL_DATA) {
printf(" (%1d", length);
} else {
printf("(\n");
}
if (scale_ind != SQL_NULL_DATA) f{
printf(", %d)\n", scale);
} else {
printf(")\n");
}
1 /* endwhile */
/% ... %/
References

+ [‘SQLTables - Get table information” on page 382

+ [‘SQLColumnPrivileges - Get privileges associated with the columns of a table” on|
page 120|

+ [‘SQLSpecialColumns - Get special (row identifier) columns” on page 369

128 ODBC Guide and Reference

SQLConnect

SQLConnect - Connect to a data source

Purpose
| Specification: | ODBC 1.0 X/OPEN CLI ISO CLI
SQLConnect () establishes a connection to the target database. The application must
supply a target SQL database.
A connection handle must be allocated using SQLA11ocHandle() before calling this
function.
This function must be called before allocating a statement handle using
SQLATTocHandle().
Syntax
SQLRETURN SQLConnect (SQLHDBC hdbc,
SQLCHAR FAR *szDSN,
SQLSMALLINT cbDSN,
SQLCHAR FAR *szUID,
SQLSMALLINT cbUID,
SQLCHAR FAR *szAuthStr,
SQLSMALLINT cbAuthStr);
Function arguments
Table 40. SQLConnect arguments
Data type Argument Use Description
SQLHDBC hdbc input Connection handle
SQLCHAR * szDSN input Data Source: The name or alias-name of the database.
SQLSMALLINT cbDSN input Length of contents of szDSN argument.
SQLCHAR * szUID input Authorization-name (user identifier). This parameter is
validated and authenticated.
SQLSMALLINT cbUID input Length of contents of szUID argument. This parameter is
validated and authenticated.
SQLCHAR * szAuthStr input Authentication-string (password). This parameter is validated
and authenticated.
SQLSMALLINT cbAuthStr input Length of contents of szAuthStr argument. This parameter is

Usage

validated and authenticated.

The target database (also known as data source) for IBM RDBMSs is the location
name as defined in SYSIBM.LOCATIONS when DDF has been configured in the
DB2 subsystem. The application can obtain a list of databases available to connect
to by calling SQLDataSources (). For many applications, a local database is being
accessed (DDF is not being used). The local database name is the name that was
set during DB2 installation as 'DB2 LOCATION NAME’ on the DSNTIPR installation
panel for the DB2 subsystem. Your local DB2 administration staff can provide you
with this name, or the application can use a 'null connect’, as described below, to
connect to the default local database without supplying a database name.

Chapter 5. Functions 129

H o H H

H o H

SQLConnect

The input length arguments to SQLConnect () (cbDSN, cbUID, cbAuthStr) can be set
to the actual length of their associated data (not including any null-terminating
character) or to SQL_NTS to indicate that the associated data is null-terminated.

If a user ID is specified on SQLConnect(), the user ID (szuid) and a password
(szauthstr) are passed to the target data source for authentication. szuid and
szauthstr must not contain any blanks. If the user ID is null or empty, authentication
is not performed.

The user is authenticated when argument values are specified on SQLConnect () for
both a user ID (szuid) and a password (szauthstr) . When authentication is
performed, a CONNECT statement is run. The CONNECT statement cannot run if
the user ID is null or empty. szuid and szauthstr must not contain any blanks.

The semantics of szDSN are as follows:

» |If the szDSN argument pointer is NULL or the ¢cbDSN argument value is 0, this is
a null SQLConnect (). (The function performed by a null SQLConnect() is referred
to as a ’'null connect’.)

A null SQLConnect () still requires that SQLA11ocHandle() with HandleType
SQL_HANDLE_ENV and SQLA11ocHandle() with HandleType
SQL_HANDLE_DBC be called first. Reasons for coding a null SQLConnect ()
include:

— The DB2 ODBC application needs to connect to the default data source. (The
default data source is the DB2 subsystem specified by the MVSDEFAULTSSID
initialization file setting.)

— The DB2 ODBC application is mixing embedded SQL and DB2 ODBC calls,
and the application already connected to a data source before invoking DB2
ODBC. In this case, the application must issue a null SQLConnect ().

— The DB2 ODBC application is running as a stored procedure. DB2 ODBC
applications running as stored procedures must issue a null SQLConnect().

 If the szDSN argument pointer is not NULL and the cbDSN argument value is not
0, DB2 ODBC issues a CONNECT to the data source.

Use the more extensible SQLDriverConnect () function to connect when the
application needs to override any or all of the keyword values specified for this data
source in the initialization file.

Various connection characteristics (options) can be specified by the end user in the
section of the initialization file associated with the szDSN data source argument or
set by the application using SQLSetConnectAttr(). The extended connect function,
SQLDriverConnect (), can be called with additional connect options and can also
perform a null connect.

For a null SQLConnect (), the CONNECT type defaults to the value of the
CONNECTTYPE keyword specified in the common section of the initialization file. The
DB2 ODBC application can override the CONNECT type by specifying the
parameter of the SQL_CONNECTTYPE option using:

e SQLSetConnectAttr() before the null SQLConnect() is issued, or

» SQLSetEnvAttr before the null SQLConnect () is issued.

A connection established by SQLConnect () recognizes externally created contexts
and allows multiple connections to the same data source from different contexts.

130 ODBC Guide and Reference

I+ F I+

Return codes

SQL_SUCCESS

SQL_ERROR

Diagnostics
Table 41. SQLConnect SQLSTATEs

SQLConnect

SQL_SUCCESS_WITH_INFO

SQL_INVALID_HANDLE

SQLSTATE Description Explanation
08001 Unable to connect to data DB2 ODBC is not able to establish a connection with the data
source. source (server).
The connection request is rejected because an existing connection
established using embedded SQL already exists.
08002 Connection in use. The specified hdbc is already being used to establish a connection
with a data source and the connection is still open.
08004 The application server rejected The data source (server) rejected the establishment of the
establishment of the connection.
connection.
The number of connections specified by the MAXCONN keyword
has been reached.
58004 Unexpected system failure. Unrecoverable system error.
HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HY013 Unexpected memory handling DB2 ODBC is not able to access memory required to support
error. execution or completion of the function.
HY024 Invalid argument value. A non-matching double quote (") is found in either the szDSN,
szUID, or szAuthStr argument.
HY090 Invalid string or buffer length. The value specified for argument cbDSN is less than 0, but not
equal to SQL_NTS and the argument szDSN is not a null pointer.
The value specified for argument cbUID is less than 0, but not
equal to SQL_NTS and the argument szUID is not a null pointer.
The value specified for argument cbAuthStr is less than 0, but not
equal to SQL_NTS and the argument szAuthStr is not a null pointer.
The authorization name specified for argument szUID exceeded the
maximum length supported.
The authentication string specified for argument szAuthStr
exceeded the maximum length supported.
S$1501 Invalid data source name. An invalid data source name is specified in argument szDSN.
Restrictions

The implicit connection (or default database) option for IBM RDBMSs is not
supported. SQLConnect () must be called before any SQL statements can be

executed.

Chapter 5. Functions 131

SQLConnect

Example

[* ...

*/

/* Global Variables for user id and password, defined in main module.

*/

To keep samples simple, not a recommended practice.
The INIT_UID_PWD macro is used to initialize these variables.

extern SQLCHAR server[SQL_MAX_DSN_LENGTH + 1];

/**/

SQLRETURN
DBconnect (SQLHENV henv,

{

}

SQLHDBC * hdbc)

SQLRETURN rc;

SQLSMALLINT outlen;

/* allocate a connection handle */

if (SQLATTocHandle(SQL_HANDLE_DBC, henv, hdbc) != SQL_SUCCESS) {
printf(">---ERROR while allocating a connection handle----- \n");

return (SQL_ERROR);

1

/* Set AUTOCOMMIT OFF =/

rc =SQLSetConnectAttr(*hdbc,SQL_ATTR_AUTOCOMMIT,

(void*)SQL_AUTOCOMMIT_OFF,SQL_NTS);

if (rc != SQL_SUCCESS) {
printf(">---ERROR while setting AUTOCOMMIT OFF -----e--aam- \n");
return (SQL_ERROR);

1

/* Pass user ID and password to target server for authentication */

rc = SQLConnect(*hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL NTS);

if (rc != SQL_SUCCESS) {
printf(">--- Error while connecting to database: %s ------- \n", server);
SQLDisconnect (*hdbc) ;

SQLFreeHandle (SQL_HANDLE_DBC, xhdbc);

return (SQL_ERROR);
} else { /* Print Connection Information x/
printf(">Connected to %s\n", server);

return (SQL_SUCCESS);

/**/

/* DBconnect2 - Connect with connect type */
/* Valid connect types SQL_CONCURRENT_TRANS, SQL_COORDINATED TRANS =/

/**/

SQLRETURN DBconnect2 (SQLHENV henv,

SQLHDBC * hdbc, SQLINTEGER contype)
SQLHDBC * hdbc, SQLINTEGER contype, SQLINTEGER conphase)

SQLRETURN rcs

SQLSMALLINT outlen;

/* allocate a connection handle x/

if (SQLA1TocHandle(SQL_HANDLE_DBC, henv, hdbc) != SQL_SUCCESS) f{
printf(">---ERROR while allocating a connection handle----- \n");

return (SQL_ERROR);

/* Set AUTOCOMMIT OFF =*/
rc =SQLSetConnectAttr(*hdbc,SQL_ATTR_AUTOCOMMIT,
(void*)SQL_AUTOCOMMIT OFF,SQL_NTS);
if (rc != SQL_SUCCESS) {
printf(">---ERROR while setting AUTOCOMMIT OFF -------muu-- \n");
return (SQL_ERROR);

132 ODBC Guide and Reference

References

SQLConnect

rc =SQLSetConnectAttr(hdbc[0],SQL_ATTR_CONNECTTYPE,
(void*)contype,SQL_NTS);
if (rc != SQL_SUCCESS) {
printf(">---ERROR while setting Connect Type ------------- \n");
return (SQL_ERROR);

if (contype == SQL_COORDINATED_TRANS) {
rc =SQLSetConnectAttr(hdbc[0],SQL_ATTR_SYNC_POINT,
(voidx)conphase,SQL_NTS);
if (rc != SQL_SUCCESS) {
printf(">---ERROR while setting Syncpoint Phase -------- \n");
return (SQL_ERROR);

rc = SQLConnect(*hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

if (rc != SQL_SUCCESS) {
printf(">--- Error while connecting to database: %s ------- \n", server);
SQLDisconnect (xhdbc) ;
SQLFreeHandle(SQL_HANDLE DBC, =*hdbc)
return (SQL_ERROR);

} else { /* Print Connection Information =/
printf(">Connected to %s\n", server);

}
return (SQL_SUCCESS);

.o/

“SQLAllocHandle - Allocate handle” on page 79

“SQLSetConnectOption - Set connection option” on page 345|

“SQLDataSources - Get list of data sources” on page 134

“SQLDisconnect - Disconnect from a data source” on page 144

“SQLDriverConnect - (Expanded) connect to a data source” on page 146|

“SQLGetConnectOption - Returns current setting of a connect option” on|

page 202]

Chapter 5. Functions 133

SQLDataSources

SQLDataSources - Get list of data sources

Purpose
|Specification: | ODBC 1.0 X/OPEN CLI ISO CLI
SQLDataSources () returns a list of target databases available, one at a time.
SQLDataSources () is usually called before a connection is made, to determine the
databases that are available to connect to.
Syntax
SQLRETURN SQLDataSources (SQLHENV henv,
SQLUSMALLINT fDirection,
SQLCHAR FAR *szDSN,
SQLSMALLINT cbDSNMax,

SQLSMALLINT FAR *pcbDSN,

SQLCHAR FAR *szDescription,
SQLSMALLINT cbDescriptionMax,
SQLSMALLINT FAR *pcbDescription);

Function arguments

Table 42. SQLDataSources arguments

Data Type Argument Use Description
SQLHENV henv input Environment handle.
SQLUSMALLINT fDirection input Used by application to request the first data source name in

the list or the next one in the list. fDirection can take on only
the following values:

* SQL_FETCH_FIRST

e SQL_FETCH_NEXT

SQLCHAR * szDSN output Pointer to buffer to hold the data source name retrieved.

SQLSMALLINT cbDSNMax input Maximum length of the buffer pointed to by szDSN. This
should be less than or equal to SQL_MAX_DSN_LENGTH +
1.

SQLSMALLINT * pcbDSN output Pointer to location where the maximum number of bytes
available to return in the szDSN are stored.

SQLCHAR * szDescription output Pointer to buffer where the description of the data source is
returned. DB2 ODBC returns the Comment field associated
with the database cataloged to the DBMS.

Note: IBM RDBMSs always return blank padded to 30 bytes.

SQLSMALLINT cbDescriptionMax input Maximum length of the szDescription buffer. DB2 for OS/390
and z/OS always returns NULL.

SQLSMALLINT * pcbDescription output Pointer to location where this function returns the actual
number of bytes available to return for the description of the
data source. DB2 for OS/390 and z/OS always returns zero.

Usage

The application can call this function any time with fDirection set to either
SQL_FETCH_FIRST or SQL_FETCH_NEXT.

134 ODBC Guide and Reference

SQLDataSources

If SQL_FETCH_FIRST is specified, the first database in the list is always returned.

If SQL_FETCH_NEXT is specified:

 Directly following a SQL_FETCH_FIRST call, the second database in the list is
returned

» Before any other SQLDataSources() call, the first database in the list is returned

* When there are no more databases in the list, SQL_NO_DATA_FOUND is
returned. If the function is called again, the first database is returned.

* Any other time, the next database in the list is returned.

Return codes

* SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

* SQL_INVALID_HANDLE

* SQL_NO_DATA_FOUND

Diagnostics

Table 43. SQLDataSources SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data source name returned in the argument szDSN is longer
than the value specified in the argument cbDSNMax. The argument
pcbDSN contains the length of the full data source name. (Function
returns SQL_SUCCESS_WITH_INFO.)

The data source name returned in the argument szDescription is
longer than the value specified in the argument cbDescriptionMax.
The argument pcbDescription contains the length of the full data
source description. (Function returns
SQL_SUCCESS_WITH_INFO.)

58004 Unexpected system failure. Unrecoverable system error.

HYO000 General error. An error occurred for which there is no specific SQLSTATE and for
which no specific SQLSTATE is defined. The error message
returned by SQLGetDiagRec() in the argument szErrorMsg describes
the error and its cause.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument coDSNMax is less than 0.

The value specified for argument cbDescriptionMax is less than 0.

HY103 Direction option out of range. The value specified for the argument fDirection is not equal to
SQL_FETCH_FIRST or SQL_FETCH_NEXT.

Restrictions

None.

Chapter 5. Functions 135

SQLDataSources

Example

[* ... %/

/***

*% - demonstrate SQLDataSource function

*% - list available servers

*k (error checking has been ignored for simplicity)

*%

** Functions used:

* %

*% SQLATTocHandle SQLFreeHandle

*k SQLDataSources

**/

#include <stdio.h>

#include <stdlib.h>

#include "sqlclil.h"

int

main()

{
SQLRETURN rc;
SQLHENV henv;
SQLCHAR source[SQL_MAX DSN_LENGTH + 1], description[255];
SQLSMALLINT buffl, desl;
/* allocate an environment handle =/
SQLATTocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
/* 1ist the available data sources (servers) */
printf("The following data sources are available:\n");
printf("ALIAS NAME Comment (Description)\n");
Printf (M emmmm e e e e \n");
while ((rc = SQLDataSources(henv, SQL_FETCH_NEXT, source,

SQL_MAX_DSN_LENGTH + 1, &buffl, description, 255, &desl))
1= SQL_NO_DATA_FOUND) {
printf("%-30s %s\n", source, description);

!
SQLFreeHandle (SQL_HANDLE_ENV, henv);
return (SQL_SUCCESS);

}

/% ... %/

References
None.

136 ODBC Guide and Reference

SQLDescribeCol

SQLDescribeCol - Describe column attributes

Purpose

Syntax

|Specification: | ODBC 1.0 | X/OPEN CLI ISO CLI

SQLDescribeCol() returns a set of commonly used descriptor information (column
name, type, precision, scale, nullability) for the indicated column in the result set
generated by a query.

If the application needs only one attribute of the descriptor information, or needs an
attribute not returned by SQLDescribeCol(), the SQLCoTAttribute() function can be

used in place of SQLDescribeCol(). See[‘SQLColAttributes - Get column attributes’]
on page 114{for more information.

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

This function (or SQLCoTAttribute()) is usually called before a bind column function
SQLBindCo1() to determine the attributes of a column before binding it to an
application variable.

SQLRETURN SQLDescribeCol (SQLHSTMT hstmt,
SQLUSMALLINT icol,
SQLCHAR FAR *szColName,
SQLSMALLINT cbColNameMax,

SQLSMALLINT FAR *pcbColName,
SQLSMALLINT FAR *pfSqlType,
SQLUINTEGER FAR *pcbColDef,
SQLSMALLINT FAR *pibScale,
SQLSMALLINT FAR *pfNullable);

Function arguments

Table 44. SQLDescribeCol arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT icol input Column number to be described. Columns are numbered
sequentially from left to right, starting at 1.

SQLCHAR * szColName output Pointer to column name buffer. Set this to NULL if column

name is not needed.

SQLSMALLINT

cbColNameMax input Size of szColName buffer.

SQLSMALLINT *

pcbColName output Bytes available to return for szColName argument. Truncation
of column name (szColName) to cbColNameMax - 1 bytes
occurs if pcbColName is greater than or equal to

cbColNameMax.

SQLSMALLINT *

Base SQL data type of column. To determine if there is a
distinct type associated with the column, call
SQLColAttribute() with fDescType set to
SQL_COLUMN_DISTINCT_TYPE. See the symbolic SQL data
type column of[Table 4 on page 31| for the data types that are
supported.

pfSqlType output

Chapter 5. Functions 137

SQLDescribeCol

Table 44. SQLDescribeCol arguments (continued)

Data type Argument Use

Description

SQLUINTEGER * pcbColDef output

Precision of column as defined in the database.

If fSqlType denotes a graphic or DBCLOB SQL data type, then
this variable indicates the maximum number of double-byte
characters the column can hold.

SQLSMALLINT * pibScale output

Scale of column as defined in the database (only applies to
SQL_DECIMAL, SQL_NUMERIC, SQL_TYPE_TIMESTAMP).
See[Table 175 on page 487|for the scale of each of the SQL
data types.

SQLSMALLINT * pfNullable output

Usage
Columns are identified

Indicates whether NULLS are allowed for this column
¢ SQL_NO_NULLS
* SQL_NULLABLE

by a number, are numbered sequentially from left to right

starting with 1, and can be described in any order.

If a null pointer is specified for any of the pointer arguments, DB2 ODBC assumes
that the information is not needed by the application and nothing is returned.

If the column is a distinct type, SQLDescribeCol() only returns the built-in type in
pfSqlType. Call SQLColAttribute() with fDescType set to
SQL_COLUMN_DISTINCT_TYPE to obtain the distinct type.

Return codes

SQL_SUCCESS

SQL_ERROR

Diagnostics

SQL_SUCCESS_WITH_INFO

SQL_INVALID_HANDLE

If SQLDescribeCol() returns either SQL_ERROR, or SQL_SUCCESS_WITH_INFO,
one of the following SQLSTATEs can be obtained by calling the SQLGetDiagRec ()

function.

Table 45. SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The column name returned in the argument szColName is longer
than the value specified in the argument cbColNameMax. The
argument pcbColName contains the length of the full column name.
(Function returns SQL_SUCCESS_WITH_INFO.)

07005 The statement did not return a The statement associated with the hstmt did not return a result set.

result set.

There are no columns to describe. (Call SQLNumResultCols() first to
determine if there are any rows in the result set.)

40003 08S01 Communication link failure.

The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure.

Unrecoverable system error.

HYO001 Memory allocation failure.

138 ODBC Guide and Reference

DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

SQLDescribeCol

Table 45. SQLDescribeCol SQLSTATEs (continued)

SQLSTATE Description

Explanation

HY007 HY010 Function sequence error. The function is called prior to calling SQLPrepare() or

SQLExecDirect() for the hstmt.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support
error. execution or completion of the function.

HY090 Invalid string or buffer length. The length specified in argument cbColNameMax is less than 1.

HYCO00 Driver not capable. The SQL data type of column icol is not recognized by DB2 ODBC.

$1002 Invalid column number. The value specified for the argument icol is less than 1.

Restrictions

The value specified for the argument icol is greater than the number
of columns in the result set.

The ODBC defined data type SQL_BIGINT is not supported.

Example

/* ...

VEZTE

*/

*% process_stmt

** -
*%k -
*k -
*%
**
*%
*%
**
*%
**
*% -

allocates a statement handle
executes the statement
determines the type of statement
- if there are no result columns, therefore non-select statement
- if rowcount > 0, assume statement was UPDATE, INSERT, DELETE
else
- assume a DDL, or Grant/Revoke statement
else
- must be a select statement.
- display results
frees the statement handle

***/

int

process_stmt (SQLHENV henv,

SQLHDBC hdbc,
SQLCHAR * sqlstr)

SQLHSTMT hstmt;
SQLSMALLINT nresultcols;
SQLINTEGER rowcount;
SQLRETURN rc;

/* allocate a statement handle */
SQLATTocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

Chapter 5. Functions 139

SQLDescribeCol

/* execute the SQL statement in "sqlstr" */

rc = SQLExecDirect(hstmt, sqlstr, SQL_NTS);
if (rc != SQL_SUCCESS)
if (rc == SQL_NO_DATA_FOUND) {
printf("\nStatement executed without error, however,\n");
printf("no data was found or modified\n");
return (SQL_SUCCESS);
} else
CHECK_HANDLE(SQL_HANDLE _STMT, hstmt, rc);

rc = SQLNumResultCols(hstmt, &nresultcols);

/* determine statement type =/
if (nresultcols == 0) { /* statement is not a select statement */
rc = SQLRowCount (hstmt, &rowcount);
if (rowcount > 0) { /* assume statement is UPDATE, INSERT, DELETE */
printf("Statement executed, %1d rows affected\n", rowcount);
} else { /* assume statement is GRANT, REVOKE or a DLL
* statement */
printf("Statement completed successful\n");

1

} else { /* display the result set */
display_results(hstmt, nresultcols);

} /* end determine statement type */

rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt); /* free statement handle */

return (0);
} /* end process_stmt */

/***
*x% display_results

**

*x - for each column

*% - get column name
*% - bind column

** - display column headings
** - fetch each row

*x - if value truncated, build error message
*% - if column null, set value to "NULL"

*% - display row

*% - print truncation message

** - free local storage
***/
display_results(SQLHSTMT hstmt,

SQLSMALLINT nresultcols)
{

SQLCHAR colname[32];
SQLSMALLINT coltype;
SQLSMALLINT colnamelen;
SQLSMALLINT nullable;
SQLINTEGER col1en[MAXCOLS] ;
SQLUINTEGER precision;
SQLSMALLINT scale;

SQLINTEGER outlen[MAXCOLS] ;
SQLCHAR xdata[MAXCOLS] ;
SQLCHAR errmsg[256] ;
SQLRETURN rc;

SQLINTEGER i;

SQLINTEGER X3

SQLINTEGER displaysize;

140 ODBC Guide and Reference

References

SQLDescribeCol

for (i = 0; i < nresultcols; i++) {

SQLDescribeCol (hstmt, i + 1, colname, sizeof(colname),
&colnamelen, &coltype, &precision, &scale, NULL);
collen[i] = precision; /* Note, assignment of unsigned int to signed */

/* get display length for column =/
SQLColAttribute(hstmt, i + 1, SQL_DESC_DISPLAY SIZE, NULL, 0,
NULL, &displaysize);

/*

* set column Tength to max of display length, and column name
* length. Plus one byte for null terminator

*/

collen[i] = max(displaysize, strlen((char *) colname)) + 1;
printf("%-*.xs", collen[i], collen[i], colname);

/* allocate memory to bind column */
data[i] = (SQLCHAR =) malloc(collen[i]);

/* bind columns to program vars, converting all types to CHAR */
rc = SQLBindCol(hstmt, i + 1, SQL_C_CHAR, data[i], collen[i], &outlen[i]);

1
printf("\n");

/* display result rows */
while ((rc = SQLFetch(hstmt)) != SQL_NO_DATA_FOUND) {

errmsg[0] = '\0';
for (i = 0; i < nresultcols; i++) {
/* Build a truncation message for any columns truncated */
if (outlen[i] >= collen[i]) {
sprintf((char *) errmsg + strlen((char *) errmsg),
"%1d chars truncated, col %d\n",
outlen[i] - collen[i] + 1, i + 1);
sprintf((char *) errmsg + strlen((char *) errmsg),
"Bytes to return = %1d sixe of buffer\n",
outlen[i], collen[i]);

}
if (outlen[i] == SQL_NULL_DATA)
printf("%-x.+s", collen[i], collen[i], "NULL");
else
printf("%-x.+s", collen[i], collen[i], data[i]);
/* for all columns in this row x/

printf("\n%s", errmsg); /* print any truncation messages */
/* while rows to fetch */

/* free data buffers */
for (i = 0; i < nresultcols; i++) {
free(data[i]);
/* end display_results =*/

.o/

“SQLColAttributes - Get column attributes” on page 114

“SQLExecDirect - Execute a statement directly” on page 161|

“SQLNumResultCols - Get number of result columns” on page 294

“SQLPrepare - Prepare a statement” on page 300|

Chapter 5. Functions 141

SQLDescribeParam

SQLDescribeParam - Describe parameter marker

Purpose

Syntax

| Specification: |

ODBC 1.0 |

X/OPEN CLI ISO CLI

SQLDescribeParam() retrieves the description of a parameter marker associated with

a prepared statement.

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

SQLRETURN SQLDescribeParam

Function arguments

Table 46. SQLDescribeParam arguments

(SQLHSTMT hstmt,
SQLUSMALLINT ipar,
SQLSMALLINT FAR *pfSqlType,
SQLUINTEGER FAR *pchColDef,
SQLSMALLINT FAR *pibScale,
SQLSMALLINT FAR *pfNullable);

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT ipar input Parameter marker number ordered sequentially left to right in
prepared SQL statement, starting from 1.

SQLSMALLINT * pfSqlType output Base SQL data type.

SQLUINTEGER * pcbColDef output Precision of the parameter marker. See|Appendix D, “Data)
|conversion”, on page 485| for more details on precision, scale,
length, and display size.

SQLSMALLINT * pibScale output Scale of the parameter marker. See|Appendix D, “Datal
|conversion”, on page 485| for more details on precision, scale,
length, and display size.

SQLSMALLINT * pfNullable output Indicates whether the parameter allows NULL values. Returns

Usage

Return codes

one of the following values:

* SQL_NO_NULLS: The parameter does not allow NULL
values (this is the defualt).

* SQL_NULLABLE: The parameter allows NULL values.

* SQL_NULLABLE_UNKNOWN: The driver cannot determine
if the parameter allows NULL values.

For distinct types, SQLDescribeParam() returns both base data types for the input

parameter.

For information about a parameter marker associated with the SQL CALL

statement, use the SQLProc

+ SQL_SUCCESS

* SQL_SUCCESS_WITH_

142 ODBC Guide and Reference

edureColumns () function.

INFO

+ SQL_ERROR

SQLDescribeParam

* SQL_INVALID_HANDLE

Diagnostics

Table 47. SQLDescribeParam SQLSTATEs
SQLSTATE Description

Explanation

01000 Warning. Informational message indicating an internal commit was issued on
behalf of the application as part of the processing to set the
specified connection option.

07009 Invalid descriptor index. The value specified for the argument ipar is less than 1 or greater
than the maximum number of parameters supported by the server.

HY000 General error. An error occurred for which there is no specific SQLSTATE and for
which no specific SQLSTATE is defined. The error message
returned by SQLGetDiagRec() in the argument szErrorMsg describes
the error and its cause.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYCO00 Driver not capable. The data source does not support the description of input
parameters.

Restrictions

None.

References

+ [‘SQLBindParameter - Binds a parameter marker to a buffer or LOB locator” on|

page 91|

+ [‘SQLCancel - Cancel statement” on page 102|

+ [*SQLExecDirect - Execute a statement directly” on page 161|

+ [*SQLExecute - Execute a statement” on page 166)

+ [*SQLPrepare - Prepare a statement” on page 300|

Chapter 5. Functions 143

SQLDisconnect

SQLDisconnect - Disconnect from a data source

Purpose
|Specification: | ODBC 1.0 | X/OPEN CLI ISO CLI
SQLDisconnect() closes the connection associated with the database connection
handle.
SQLEndTran() must be called before calling SQLDisconnect () if an outstanding
transaction exists on this connection.
After calling this function, either call SQLConnect () to connect to another database,
or call SQLFreeHandle().

Syntax

SQLRETURN SQLDisconnect (SQLHDBC hdbc) ;

Function arguments

Table 48. SQLDisconnect arguments

Data type Argument Use Description
SQLHDBC hdbc input Connection handle
Usage

If an application calls SQLDisconnect() before it has freed all the statement handles
associated with the connection, DB2 ODBC frees them after it successfully
disconnects from the database.

If SQL_SUCCESS_WITH_INFO is returned, it implies that even though the
disconnect from the database is successful, additional error or implementation
specific information is available. For example, a problem was encountered on the
clean up subsequent to the disconnect, or if there is no current connection because
of an event that occurred independently of the application (such as communication
failure).

After a successful SQLDisconnect () call, the application can re-use hdbc to make
another SQLConnect () or SQLDriverConnect() request.

Return codes

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

» SQL_INVALID_HANDLE

Diagnostics

Table 49. SQLDisconnect SQLSTATEs

SQLSTATE Description Explanation

01002 Disconnect error. An error occurred during the disconnect. However, the disconnect

succeeded. (Function returns SQL_SUCCESS_WITH_INFO.)

144 ODBC Guide and Reference

SQLDisconnect

Table 49. SQLDisconnect SQLSTATEs (continued)

SQLSTATE

Description

Explanation

08003

Connection is closed.

The connection specified in the argument hdbc is not open.

25000 25501

Invalid transaction state.

A transaction is in process on the connection specified by the
argument hdbc. The transaction remains active, and the connection
cannot be disconnected.

Note: This error does not apply to stored procedures written in DB2
ODBC.

58004 Unexpected system failure. Unrecoverable system error.
HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.
HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support
error. execution or completion of the function.
Restrictions
None.
Example
See ['‘Example” on page 74}
References

+ [*SQLAllocHandle - Allocate handle” on page 79

+ [*SQLConnect - Connect to a data source” on page 129

« [*SQLDriverConnect - (Expanded) connect to a data source” on page 146

+ [*SQLTransact - Transaction management” on page 386

Chapter 5. Functions 145

SQLDriverConnect

SQLDriverConnect - (Expanded) connect to a data source

Purpose
|Specification: | ODBC 1.0 | |
SQLDriverConnect () is an alternative to SQLConnect (). Both functions establish a
connection to the target database, but SQLDriverConnect() supports additional
connection parameters.
Use SQLDriverConnect() when you want to pass any or all keyword values defined
in the DB2 ODBC initialization file.
When a connection is established, the completed connection string is returned.
Applications can store this string for future connection requests. This allows you to
override any or all keyword values in the DB2 ODBC initialization file.
Syntax
Generic
SQLRETURN SQLDriverConnect (SQLHDBC hdbc,
SQLHWND hwnd,
SQLCHAR FAR *szConnStriIn,
SQLSMALLINT cbConnStrin,
SQLCHAR FAR *szConnStrOut,
SQLSMALLINT cbConnStrlOutMax,
SQLSMALLINT FAR +*pcbConnStrOut,
SQLUSMALLINT fDriverCompletion);
Function arguments
Table 50. SQLDriverConnect arguments
Data type Argument Use Description
SQLHDBC hdbc input Connection handle.
SQLHWND hwindow input NULL value. Not used.
SQLCHAR * szConnStrin input A full, partial or empty (null pointer) connection string (see
syntax and description below).
SQLSMALLINT cbConnStrin input Length of szConnStrin.
SQLCHAR * szConnStrOut output Pointer to buffer for the completed connection string.

If the connection is established successfully, this buffer
contains the completed connection string. Applications should
allocate at least SQL_MAX_OPTION_STRING_LENGTH bytes
for this buffer.

SQLSMALLINT cbConnStrOutMainput Maximum size of the buffer pointed to by szConnStrOut.
SQLCHAR * pcbConnStrOut output Pointer to the number of bytes available to return in the
szConnStrOut buffer.

If the value of pcbConnStrOut is greater than or equal to
cbConnStrOutMax, the completed connection string in
szConnStrOut is truncated to cbConnStrOutMax - 1 bytes.

146 ODBC Guide and Reference

E™

SQLDriverConnect

Table 50. SQLDriverConnect arguments (continued)

Data type Argument Use Description
SQLUSMALLINT fDriverCompletiorinput Indicates when DB2 ODBC should prompt the user for more
information.

Possible values:
 SQL_DRIVER_PROMPT

* SQL_DRIVER_COMPLETE

* SQL_DRIVER_COMPLETE_REQUIRED
* SQL_DRIVER_NOPROMPT

However, DB2 for OS/390 and z/OS supports
SQL_DRIVER_NOPROMPT only.

Usage

The connection string is used to pass one or more values needed to complete a
connection.

Connection string syntax

f DSN =—attribute
UID
PWD
DB2 0DBC-defined-keyword—

A\
A

Each keyword above has an attribute that is equal to the following:

DSN Data source name. The name or alias-name of the database. Required if
fDriverCompletion is equal to SQL_DRIVER_NOPROMPT.

uiD Authorization-name (user identifier). This value is validated and
authenticated. If there is no user ID, an empty string is specified (UID=;).

PWD The password corresponding to the authorization name. If there is no
password for the user ID, an empty string is specified (PWD=;). This value
is validated and authenticated.

The user is authenticated when values are specified for both UID and PWD on the
connection string. When authentication is performed, a CONNECT statement is run.
The CONNECT statement cannot run if the user ID is null or empty.

The list of DB2 ODBC defined keywords and their associated attribute values are
discussed in|“|nitia|ization keywords” on page 55I Any one of the keywords in that
section can be specified on the connection string. If any keywords are repeated in
the connection string, the value associated with the first occurrence of the keyword
is used.

If any keywords exist in the DB2 ODBC initialization file, the keywords and their
respective values are used to augment the information passed to DB2 ODBC in the

Chapter 5. Functions 147

SQLDriverConnect

Return codes

Diagnostics

connection string. If the information in the DB2 ODBC initialization file contradicts
information in the connection string, the values in connection string take
precedence.

The application receives an error on any value of fDriverCompletion as follows:

SQL_DRIVER_PROMPT:
DB2 ODBC returns SQL_ERROR.

SQL_DRIVER_COMPLETE:
DB2 ODBC returns SQL_ERROR.

SQL_DRIVER_COMPLETE_REQUIRED:
DB2 ODBC returns SQL_ERROR.

SQL_DRIVER_NOPROMPT:
The user is not prompted for any information. A connection is attempted
with the information contained in the connection string. If there is not
enough information, SQL_ERROR is returned.

When a connection is established, the complete connection string is returned.

* SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO
* SQL_NO_DATA_FOUND

* SQL_INVALID_HANDLE

* SQL_ERROR

All of the diagnostics generated by ['SQLConnect - Connect to a data source” on
can be returned here as well. The following table shows the additional
diagnostics that can be returned.

Table 51. SQLDriverConnect SQLSTATEs
SQLSTATE Description Explanation

01004 Data truncated. The buffer szConnstrOut is not large enough to hold the entire

connection string. The argument pcbConnStrOut contains the actual
length of the connection string available for return. (Function returns
SQL_SUCCESS_WITH_INFO)

01S00 Invalid connection string An invalid keyword or attribute value is specified in the input
attribute. connection string, but the connection to the data source is

successful because one of the following occurred:

» The unrecognized keyword is ignored.

e The invalid attribute value is ignored, the default value is used
instead.

(Function returns SQL_SUCCESS_WITH_INFO)

01S02 Option value changed. SQL_CONNECTTYPE changed to SQL_CONCURRENT_TRANS
when MULTICONTEXT=1 in use.

HY090 Invalid string or buffer length. The value specified for cbConnStrin is less than 0, but not equal to
SQL_NTS.

The value specified for cbConnStrOutMax is less than 0.

HY110 Invalid driver completion. The value specified for the argument fCompletion is not equal to

one of the valid values.

148 ODBC Guide and Reference

SQLDriverConnect

Restrictions
See restrictions described above for fDriverCompletion and SQLHWND parameters.

Chapter 5. Functions 149

SQLDriverConnect

Example

/* Issue SQLDriverConnect to pass a string of initialization */
/* parameters to compliment the connection to the data source. */
/**/

#include <stdio.h>

#include <string.h>
#include <stdlib.h>
#include "sqlclil.h"

/**/

/* SQLDriverConnect ----------- */

/**/

int main()

{
SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char *ConnStrin =

"dsn=STLEC1;connecttype=2;bitdata=2;optimizefornrows=30";

char ConnStrOut [200];
SQLSMALLINT cbConnStrout;
int is
char *token;

(void) printf ("#*** Entering CLIP10.\n\n");

/***/

/* CONNECT to DB2 for 0S/390 */

YEZI I kK xx I IR *Khhh Ik kI *h* kKK H % kKK I I IR *Khhhh kI I h* kKK * % *kkkkk [

rc = SQLATTocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);

if(rc != SQL_SUCCESS)
goto dberror;

YEZI I kK xx I IR KhKhhhhhkrhhh Kk kK * ok R R R a s /

/* Allocate Connection Handle to DSN */

[ek e ok ko ok ok ko ok ok ko ok ko ok ok ko ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ko ok ok ke
RETCODE = SQLATTocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle
goto dberror;

/***/

/* Invoke SQLDriverConnect ----------- «/
/***/

RETCODE = SQLDriverConnect (hDbc s
NULL ,
(SQLCHAR *)ConnStriIn ,
strlen(ConnStrin) ,
(SQLCHAR =*)ConnStrOut,

150 ODBC Guide and Reference

SQLDriverConnect

sizeof(ConnStrout) ,
&cbConnStrlut .
SQL_DRIVER NOPROMPT);
if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

(void) printf ("+*x% Driver Connect Failed. rc = %d.\n", RETCODE);
goto dberror;

}

/***/

/* Enumerate keywords and values returned from SQLDriverConnect =/
/***/

(void) printf ("#*** ConnStrOut = %s.\n", ConnStrOut);

for (i = 1, token = strtok (ConnStrOut, ";");
(token != NULL);
token = strtok (NULL, ";"), i++)
(void) printf ("s**x Keyword # %d is: %s.\n", i, token);

/***/

/* DISCONNECT from data source */

/***/
RETCODE = SQLDisconnect (hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

R — e 5k 5 3 e ek ok ok ok ok ok ok o e ok ok ok ok ok o I ——

/* Deallocate Connection Handle */
/***/

RETCODE = SQLFreeHandle (SQL_HANDLE_DBC, hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Disconnect from data sources in Connection Table */
/***/

SQLFreeHandle (SQL_HANDLE ENV, hEnv); /* free the environment handle */
goto exit;

dberror:
RETCODE=12;

exit:
(void) printf ("#*** Exiting CLIP10.\n\n");

return(RETCODE) ;

References

+ [“SQLAllocHandle - Allocate handle” on page 79
+ [“SQLConnect - Connect to a data source” on page 129

Chapter 5. Functions 151

SQLEndTran

SQLENdTran - End transaction of a connection

Purpose
|Specification: | ODBC 3.0 | X/OPEN CLI | ISO CLI
SQLEndTran() requests a commit or rollback operation for all active operations on all
statements associated with a connection. SQLEndTran() can also request that a
commit or rollback operation be performed for all connections associated with an
environment.
Syntax
SQLRETURN SQLEndTran (SQLSMALLINT HandleType,
SQLHANDLE Handle,
SQLSMALLINT CompletionType);

Function arguments

Table 52. SQLEndTran arguments
Data type Argument Use Description

SQLSMALLINT HandleType input Handle type identifier. Contains either SQL_HANDLE_ENV if
Handle is an environment handle or SQL_HANDLE_DBC if
Handle is a connection handle.

SQLHANDLE Handle input The handle, of the type indicated by HandleType, that
indicates the scope of the transaction. See for more
information.

SQLSMALLINT CompletionType input One of the following values:

* SQL_COMMIT
* SQL_ROLLBACK

Usage

A new transaction is implicitly started when an SQL statement that can be contained
within a transaction is executed against the current data source. The application
might need to commit or rollback based on execution status.

If HandleType is SQL_HANDLE_ENV and Handle is a valid environment handle,
DB2 ODBC attempts to commit or roll back transactions one at a time, depending
on the value of CompletionType, on all connections that are in a connected state on
that environment. SQLEndTran() returns SQL_SUCCESS if it receives
SQL_SUCCESS for each connection. If it receives SQL_ERROR on one or more
connections, SQLEndTran() returns SQL_ERROR to the application, and the
diagnostic information is placed in the diagnostic data structure of the environment.
To determine which connection(s) failed during the commit or rollback operation, the
application can call SQLGetDiagRec() for each connection.

If CompletionType is SQL_COMMIT, SQLEndTran() issues a commit request for all
statements on the connection. If CompletionType is SQL_ROLLBACK,
SQLEndTran() issues a rollback request for all statements on the connection.

It is important to note that unless the connection option SQL_CONNECTTYPE is
set to SQL_COORDINATED_TRANS (to indicate coordinated distributed

152 ODBC Guide and Reference

Return codes

SQLEndTran

transactions), there is no attempt to provide a coordinated global transaction with
one-phase or two-phase commit protocols.

Completing a transaction has the following effects:

Prepared SQL statements (using SQLPrepare()) survive transactions; they can be
executed again without first calling SQLPrepare().

Cursor positions are maintained after a commit unless one or more of the
following is true:

— The server is DB2 Server for VSE and VM.

— The SQL_CURSOR_HOLD statement option for this handle is set to
SQL_CURSOR_HOLD_OFF.

— The CURSORHOLD keyword in the DB2 ODBC initialization file is set so that
cursor with hold is not in effect and this has not been overridden by resetting
the SQL_CURSOR_HOLD statement option.

— The CURSORHOLD keyword is present in a the connection string on the
SQLDriverConnect() call that set up this connection, and it indicates cursor
with hold is not in effect, and this has not been overridden by resetting the
SQL_CURSOR_HOLD statement option.

If the cursor position is not maintained due to any one of the above
circumstances, the cursor is closed and all pending results are discarded

If the cursor position is maintained after a commit, the application must fetch to
reposition the cursor (to the next row) before continuing to process the remaining
result set.

To determine how transaction operations affect cursors, an application calls
SQLGetInfo() with the SQL_CURSOR_ROLLBACK_BEHAVIOR and
SQL_CURSOR_COMMIT_BEHAVIOR options.

Cursors are closed after a rollback and all pending results are discarded.

Statement handles are still valid after a call to SQLEndTran(), and can be reused
for subsequent SQL statements or deallocated by calling SQLFreeStmt () or
SQLFreeHandle() with HandleType set to SQL_HANDLE_STMT.

Cursor names, bound parameters, and column bindings survive transactions.

Whether DB2 ODBC is in auto-commit mode (using the ODBC default
SQL_ATTR_AUTOCOMMIT=SQL_AUTOCOMMIT_ON) or manual-commit mode
(when the application calls SQLSetConnectAttr() with the
SQL_ATTR_AUTOCOMMIT attribute set to SQL_AUTOCOMMIT_OFF), calling
SQLEndTran() always flows the request to the database for execution.

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_INVALID_HANDLE

« SQL_ERROR
Diagnostics
Table 53. SQLEndTran SQLSTATEs
SQLSTATE Description Explanation
01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

Chapter 5. Functions 153

SQLEndTran

Table 53. SQLEndTran SQLSTATEs (continued)

SQLSTATE Description Explanation

08003 Connection is closed. The ConnectionHandle was not in a connected state.

08007 Connection failure during The connection associated with the ConnectionHandle failed during

transaction. the execution of the function and it cannot be determined whether
the requested COMMIT or ROLLBACK occurred before the failure.

40001 Transaction rollback. The transaction was rolled back due to a resource deadlock with
another transaction.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HYO0O01 Memory allocation failure. DB2 ODBC was not able to allocate memory required to support
execution or completion of the function.

HYO010 Function sequence error. SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns. Invoke SQLCancel () to cancel the
data-at-execution condition.

HYO012 Invalid transaction code. The value specified for the argument CompletionType was neither
SQL_COMMIT nor SQL_ROLLBACK.

HY092 Option type out of range. The value specified for the argument HandleType was not neither
SQL_HANDLE_ENV nor SQL_HANDLE_DBC.

Restrictions

SQLEndTran() cannot be used if the ODBC application is executing as a stored
procedure.

Example

Refer to sample program DSN8O3VP in DSN710.SDSNSAMP.

References

« [‘SQLGetlInfo - Get general information” on page 234

« [‘SQLFreeHandle - Free handle resources” on page 193]

+ [*SQLFreeStmt - Free (or reset) a statement handle” on page 196

154 ODBC Guide and Reference

SQLError

SQLError - Retrieve error information

Purpose

Syntax

|Specification: | ODBC 1.0 X/OPEN CLI | ISO CLI |

In ODBC 3.0, SQLGetDiagRec() replaces the ODBC 2.0 function SQLError(). See
SQLGetDiagRec() for more information.

SQLError() returns the diagnostic information (both errors and warnings) associated
with the most recently invoked DB2 ODBC function for a particular statement,
connection or environment handle.

The information consists of a standardized SQLSTATE and native error code. See
tDiagnostics” on page 28| for more information.

Call SQLError() after receiving a return code of SQL_ERROR or
SQL_SUCCESS_WITH_INFO from another function call.

Note: Some database servers provide product-specific diagnostic information after
returning SQL_NO_DATA_FOUND from the execution of a statement.

SQLRETURN SQLError (SQLHENV henv,
SQLHDBC hdbc,
SQLHSTMT hstmt,

SQLCHAR FAR *szSqlState,
SQLINTEGER FAR =pfNativeError,
SQLCHAR FAR *szErrorMsg,
SQLSMALLINT cbErrorMsgMax,
SQLSMALLINT FAR *pcbErrorMsg);

Function arguments

Table 54. SQLError arguments

Data type

Argument Use Description

SQLHENV

henv input Environment handle. To obtain diagnostic information associated
with an environment, pass a valid environment handle. Set hdbc
and hstmt to SQL_NULL_HDBC and SQL_NULL_HSTMT
respectively.

SQLHDBC

hdbc input Database connection handle. To obtain diagnostic information
associated with a connection, pass a valid database connection
handle, and set hstmt to SQL_NULL_HSTMT. The henv argument
is ignored.

SQLHSTMT

hstmt input Statement handle. To obtain diagnostic information associated
with a statement, pass a valid statement handle. The henv and
hdbc arguments are ignored.

SQLCHAR *

szSqlState output SQLSTATE as a string of 5 characters terminated by a null
character. The first 2 characters indicate error class; the next 3
indicate subclass. The values correspond directly to SQLSTATE
values defined in the X/Open SQL CAE specification and the
ODBC specification, augmented with IBM specific and product
specific SQLSTATE values.

Chapter 5. Functions 155

SQLError

Table 54. SQLError arguments (continued)

Data type

Argument Use Description

SQLINTEGER *

pfNativeError output Native error code. In DB2 ODBC, the pfNativeError argument
contains the SQLCODE value returned by the DBMS. If the error
is generated by DB2 ODBC and not the DBMS, then this field is
set to -99999.

SQLCHAR *

szErrorMsg output Pointer to buffer to contain the implementation defined message
text. If the error is detected by DB2 ODBC, then the error
message is prefaced by:

[DB2 for 0S/390 and z/0S][CLI Driver]

to indicate that it is DB2 ODBC that detected the error and there
is no database connection yet.

The error location, ERRLOC x:y:z, keyword value is embedded in
the buffer also. This is an internal error code for diagnostics.

If the error is detected while there is a database connection, then
the error message returned from the DBMS is prefaced by:

[DB2 for 0S/390 and z/0S][CLI Driver] [DBMS-name]

where DBMS-name is the name returned by SQLGetInfo() with
SQL_DBMS_NAME information type.

For example,
DB2
DB2/6000
Vendor

Vendor indicates a non-IBM DRDA DBMS.

If the error is generated by the DBMS, the IBM-defined
SQLSTATE is appended to the text string.

SQLSMALLINT

cbErrorMsgMax input The maximum (that is, the allocated) length of the buffer
szErrorMsg. The recommended length to allocate is
SQL_MAX_MESSAGE_LENGTH + 1.

SQLSMALLINT *

Usage

pcbErrorMsg output Pointer to total number of bytes available to return to the
szErrorMsg buffer. This does not include the null termination
character.

The SQLSTATES are those defined by the X’OPEN SQL CAE and the X/Open SQL
CLI CAE, augmented with IBM specific and product specific SQLSTATE values.

To obtain diagnostic information associated with:

* An environment, pass a valid environment handle. Set hdbc and hstmt to
SQL_NULL_HDBC and SQL_NULL_HSTMT respectively.

» A connection, pass a valid database connection handle, and set hstmt to
SQL_NULL_HSTMT. The henv argument is ignored.

» A statement, pass a valid statement handle. The henv and hdbc arguments are
ignored.

If diagnostic information generated by one DB2 ODBC function is not retrieved
before a function other than SQLError() is called with the same handle, the

156 ODBC Guide and Reference

Return codes

Diagnostics

Restrictions

Example

SQLError

information for the previous function call is lost. This is true whether or not
diagnostic information is generated for the second DB2 ODBC function call.

Multiple diagnostic messages might be available after a given DB2 ODBC function
call. These messages can be retrieved one at a time by repeatedly calling
SQLError(). For each message retrieved, SQLError() returns SQL_SUCCESS and
removes it from the list of messages available. When there are no more messages
to retrieve, SQL_NO_DATA_FOUND is returned, the SQLSTATE is set to "00000",
pfNativeError is set to 0, and pcbErrorMsg and szErrorMsg are undefined.

Diagnostic information stored under a given handle is cleared when a call is made
to SQLError() with that handle, or when another DB2 ODBC function call is made
with that handle. However, information associated with a given handle type is not
cleared by a call to SQLError() with an associated but different handle type: for
example, a call to SQLError() with a connection handle input does not clear errors
associated with any statement handles under that connection.

SQL_SUCCESS is returned even if the buffer for the error message (szErrorMsg) is
too short since the application is not able to retrieve the same error message by
calling SQLError() again. The actual length of the message text is returned in the
pcbErrorMsg.

To avoid truncation of the error message, declare a buffer length of
SQL_MAX_MESSAGE_LENGTH + 1. The message text is never longer than this.

SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if no diagnostic information is available for the
input handle, or if all of the messages are retrieved by calls to SQLError().

SQLSTATESs are not defined, since SQLError() does not generate diagnostic
information for itself.

Although ODBC also returns X/Open SQL CAE SQLSTATEs, only DB2 ODBC (and
the DB2 ODBC driver) returns the additional IBM-defined SQLSTATEs. For more
information on ODBC specific SQLSTATEs see Microsoft ODBC 3.0 Software
Development Kit and Programmer's Reference.

Because of this, you should only build dependencies on the standard SQLSTATEs.
This means any branching logic in the application should only rely on the standard
SQLSTATESs. The augmented SQLSTATEs are most useful for debugging purposes.

Note: It might be useful to build dependencies on the class (the first 2 characters)
of the SQLSTATEs.

This example shows several utility functions used by most of the other DB2 ODBC
examples.

Chapter 5. Functions 157

SQLError

/% ... %/
/***
** - print_error - call SQLError(), display SQLSTATE and message
k% - called by check_error, see below
***/

SQLRETURN

print_error(SQLHENV henv,
SQLHDBC hdbc,
SQLHSTMT hstmt,
SQLRETURN frc, /* Return code to be included with error msg =/
SQLINTEGER 1ine, /* Used for output message, indicate where */
SQLCHAR * file) /x the error was reported from =*/

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];
SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];
SQLINTEGER sqlcode;

SQLSMALLINT length;

printf(">--- ERROR -- RC= %1d Reported from %s, line %1d ------=----- \n",
frc, file, line);
while (SQLError(henv, hdbc, hstmt, sqlstate, &sqlcode, buffer,
SQL_MAX_MESSAGE_LENGTH + 1, &length) == SQL_SUCCESS) {

printf(" SQLSTATE: %s\n", sqlstate);
printf("Native Error Code: %1d\n", sqlcode);
printf("%s \n", buffer);

1

Printf (> mm e o e \n");

return (SQL_ERROR);

}

/***
** - check_error - call print_error(), checks severity of return code
***/
SQLRETURN
check_error(SQLHENV henv,

SQLHDBC hdbc,

SQLHSTMT hstmt,

SQLRETURN frc,

SQLINTEGER 1line,

SQLCHAR * file)

SQLRETURN rc;
print_error(henv, hdbc, hstmt, frc, Tine, file);

switch (frc) {
case SQL_SUCCESS:

break;
case SQL_INVALID HANDLE:
printf("\n>------ ERROR Invalid Handle ==---=--mmmmmmmmmmeeee o \n");

158 ODBC Guide and Reference

}

[* ...

}

SQLError

case SQL_ERROR:
printf("\n>--- FATAL ERROR, Attempting to rollback transaction --\n");
rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);
if (rc != SQL_SUCCESS)
printf(">Rollback Failed, Exiting application\n");
else
printf(">Rol1back Successful, Exiting application\n");
exit(0);
break;
case SQL_SUCCESS_WITH_INFO:
printf("\n> ----- Warning Message, application continuing -------- \n");
break;
case SQL_NO_DATA_FOUND:
printf("\n> ----- No Data Found, application continuing --------- \n");
break;
default:
printf("\n> ---cceuun-- Invalid Return Code ----=---cmmmmmmmamee \n");
printf("> --------- Attempting to rollback transaction ---------- \n");
SQLTransact(henv, hdbc, SQL_ROLLBACK);
exit(0);
break;
}
return (SQL_SUCCESS);

*/

/***
* The following macros use check_error

*

*
*
*
*
*

{check_error(henv, SQL_NULL_HDBC, SQL_NULL_HSTMT, RC, _ LINE_, _ FILE_);}
{check_error(SQL_NULL_HENV, hdbc, SQL_NULL_HSTMT, RC, _ LINE_, _ FILE_);}

{check_error(SQL_NULL_HENV, SQL_NULL_HDBC, hstmt, RC, _LINE_, _FILE_);}

***/

/***

** - check_error - call print_error(), checks severity of return code
***/
SQLRETURN

check_error(SQLHENV henv,
SQLHDBC hdbc,
SQLHSTMT hstmt,
SQLRETURN frc,
SQLINTEGER Tine,
SQLCHAR * file)

SQLRETURN rc;

print_error(henv, hdbc, hstmt, frc, Tine, file);

Chapter 5. Functions

159

SQLError

References

[* ...

switch (frc) {
case SQL_SUCCESS:

break;
case SQL_INVALID_HANDLE:
printf("\n>------ ERROR Invalid Handle --=--ccmmmmmmmmomemeo o \n");

case SQL_ERROR:
printf("\n>--- FATAL ERROR, Attempting to rollback transaction --\n");
rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);
if (rc != SQL_SUCCESS)
printf(">Rollback Failed, Exiting application\n");
else
printf(">Rollback Successful, Exiting application\n");
exit(terminate(henv, frc));
break;
case SQL_SUCCESS_WITH_INFO:
printf("\n> ----- Warning Message, application continuing -------- \n");
break;
case SQL_NO_DATA_FOUND:
printf("\n> ----- No Data Found, application continuing --------- \n");
break;
default:
printf("\n> ---ceeuean-- Invalid Return Code -------ommmmmmmmmoo \n");
printf("> --------- Attempting to rollback transaction ---------- \n");
SQLTransact (henv, hdbc, SQL_ROLLBACK);
exit(terminate(henv, frc));
break;
1
return (SQL_SUCCESS);

/* end check_error */
*/

* [“SQLGetSQLCA - Get SQLCA data structure” on page 263

160 ODBC Guide and Reference

SQLEXxecDirect

SQLExecDirect - Execute a statement directly

Purpose

Syntax

|Specification: | ODBC 1.0 | X/OPEN CLI ISO CLI

SQLExecDirect () directly executes the specified SQL statement. The statement can
only be executed once. Also, the connected database server must be able to
dynamically prepare statement. (For more information about supported SQL
statements see|Table 1 on page 10|.)

SQLRETURN SQLExecDirect (SQLHSTMT hstmt,
SQLCHAR FAR *szSqlStr,
SQLINTEGER chSql1Str);

Function arguments

Table 55. SQLExecDirect arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle. There must not be an open cursor
associated with hstmt, see ['SQLFreeStmt - Free (or reset) a
|statement handle” on page 196 for more information.

SQLCHAR * 5zSqlStr input SQL statement string. The connected database server must be
able to prepare the statement, see[Table 1 on page 10| for
more information.

SQLINTEGER cbSqlStr input Length of contents of szSq/Str argument. The length must be
set to either the exact length of the statement, or if the
statement is null-terminated, set to SQL_NTS.

Usage

If the SQL statement text contains vendor escape clause sequences, DB2 ODBC
first modifies the SQL statement text to the appropriate DB2-specific format before
submitting it for preparation and execution. If the application does not generate SQL
statements that contain vendor escape clause sequences ([‘Using vendor escape|
iclauses” on page 448), then it should set the SQL_NO_SCAN statement option to
SQL_NOSCAN_ON at the connection level so that each statement passed to DB2
ODBC does not incur the performance impact of scanning for vendor escape
clauses.

The SQL statement cannot be a COMMIT or ROLLBACK. Instead, SQLEndTran ()
must be called to issue COMMIT or ROLLBACK. For more information about
supported SQL statements see [Table 1 on page 10}

The SQL statement string can contain parameter markers. A parameter marker is
represented by a "?” character, and is used to indicate a position in the statement
where an application supplied value is to be substituted when SQLExecDirect() is
called. This value can be obtained from:

* An application variable.

SQLSetParam() or SQLBindParameter() is used to bind the application storage
area to the parameter marker.
» A LOB value residing at the server referenced by a LOB locator.

Chapter 5. Functions 161

SQLEXxecDirect

SQLBindParameter() or SQLSetParam() is used to bind a LOB locator to a
parameter marker. The actual value of the LOB is kept at the server and does
not need to be transferred to the application before being used as the input
parameter value for another SQL statement.

All parameters must be bound before calling SQLExecDirect().

If the SQL statement is a query, SQLExecDirect() generates a cursor name, and
open the cursor. If the application has used SQLSetCursorName() to associate a
cursor name with the statement handle, DB2 ODBC associates the application
generated cursor name with the internally generated one.

If a result set is generated, SQLFetch() or SQLExtendedFetch() retrieves the next
row (or rows) of data into bound variables. Data can also be retrieved by calling
SQLGetData() for any column that was not bound.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row and must be defined on a
separate statement handle under the same connection handle.

There must not already be an open cursor on the statement handle.

If SQLParamOptions () is called to specify that an array of input parameter values is
bound to each parameter marker, then the application needs to call
SQLExecDirect() only once to process the entire array of input parameter values.

Return codes
.« SQL_SUCCESS
« SQL_SUCCESS_WITH_INFO
« SQL_ERROR
¢ SQL_INVALID_HANDLE
¢ SQL_NEED_DATA
¢ SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application requests to input
data-at-execution parameter values by calling SQLParamData() and SQLPutData().

SQL_SUCCESS is returned if the SQL statement is a searched UPDATE or
searched DELETE and no rows satisfy the search condition. Use SQLRowCount () to
determine the number of rows in a table that were affected by an UPDATE,
INSERT, or DELETE statement executed against the table, or a view of the table.

Diagnostics

Table 56. SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE 5z5qlStr contains an UPDATE or DELETE statement but no

statement does not include a WHERE clause. (Function returns SQL_SUCCESS_WITH_INFO or
WHERE clause. SQL_NO_DATA_FOUND if there are no rows in the table).

07001 Wrong number of parameters. The number of parameters bound to application variables using
SQLBindParameter() is less than the number of parameter markers
in the SQL statement contained in the argument szSq/Str.

07006 Invalid conversion. Transfer of data between DB2 ODBC and the application variables

would result in incompatible data conversion.

162 ODBC Guide and Reference

SQLEXxecDirect

Table 56. SQLExecDirect SQLSTATEs (continued)

SQLSTATE Description Explanation

21S01 Insert value list does not 5zS5qlIStr contains an INSERT statement and the number of values

match column list. to be inserted did not match the degree of the derived table.

21802 Degrees of derived table does szSq/Str contains a CREATE VIEW statement and the number of

not match column list. names specified is not the same degree as the derived table
defined by the query specification.

22001 String data right truncation. A character string assigned to a character type column exceeded
the maximum length of the column.

22008 Invalid datetime format or 5zSqIStr contains an SQL statement with an invalid datetime format;

datetime field overflow. that is, an invalid string representation or value was specified, or the
value was an invalid date.
Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within the
valid range of dates, or a datetime value cannot be assigned to a
bound variable because it is too small.

22012 Division by zero is invalid. 5zSqIStr contains an SQL statement with an arithmetic expression
that caused division by zero.

22018 Error in assignment. 5zSqlStr contains an SQL statement with a parameter or literal and
the value or LOB locator was incompatible with the data type of the
associated table column.

The length associated with a parameter value (the contents of the
pcbValue buffer specified on SQLBindParameter()) is not valid.

The argument fSQLType used in SQLBindParameter() or
SQLSetParam(), denoted an SQL graphic data type, but the deferred
length argument (pcbValue) contains an odd length value. The
length value must be even for graphic data types.

23000 Integrity constraint violation. The execution of the SQL statement is not permitted because the
execution would cause integrity constraint violation in the DBMS.

24000 Invalid cursor state. A cursor was already opened on the statement handle.

24504 The cursor identified in the Results were pending on the hstmt from a previous query or a

UPDATE, DELETE, SET, or cursor associated with the hsmt had not been closed.
GET statement is not
positioned on a row.

34000 Invalid cursor name. 5z5qlStr contains a positioned DELETE or a positioned UPDATE
and the cursor referenced by the statement being executed was not
open.

37xxx & Invalid SQL syntax. 5z5qlStr contains one or more of the following:

« ACOMMIT
« AROLLBACK
» An SQL statement that the connected database server could not
prepare
» A statement containing a syntax error
40001 Transaction rollback. The transaction to which this SQL statement belongs is rolled back

due to a deadlock or timeout.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

Chapter 5. Functions 163

SQLEXxecDirect

Table 56. SQLExecDirect SQLSTATEs (continued)

SQLSTATE Description Explanation

42xxx Syntax error or access rule 425xx indicates the authorization ID does not have permission to
violation execute the SQL statement contained in szSq/Str.

Other 42xxx SQLSTATEsS indicate a variety of syntax or access
problems with the statement.

42895 The value of a host variable in The LOB locator type specified on the bind parameter function call
the EXECUTE or OPEN does not match the LOB data type of the parameter marker.
statement cannot be used
because of its data type The argument fSQLType used on the bind parameter function

specified a LOB locator type but the corresponding parameter
marker is not a LOB.

42501 Database object already 5zS5qlStr contains a CREATE TABLE or CREATE VIEW statement
exists. and the table name or view name specified already exists.

42502 Database object does not 5zSqIStr contains an SQL statement that references a table name
exist. or view name which does not exist.

42511 Index already exists. 5z5qlIStr contains a CREATE INDEX statement and the specified

index name already exists.

42512 Index not found. 5zSqlStr contains a DROP INDEX statement and the specified
index name does not exist.

42521 Column already exists. 5zS5qlStr contains an ALTER TABLE statement and the column
specified in the ADD clause is not unique or identifies an existing
column in the base table.

42522 Column not found. 5zS5qIStr contains an SQL statement that references a column name
that does not exist.

44000 Integrity constraint violation. 5zS5qlIStr contains an SQL statement with a parameter or literal. This
parameter value is NULL for a column defined as NOT NULL in the
associated table column, or a duplicate value is supplied for a
column constrained to contain only unique values, or some other
integrity constraint is violated.

58004 Unexpected system failure. Unrecoverable system error.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY009 Invalid use of a null pointer. 5zSqIStris a null pointer.

HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

HY014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.

HY019 Numeric value out of range. A numeric value assigned to a numeric type column caused
truncation of the whole part of the number, either at the time of
assignment or in computing an intermediate result.
5zS5qIStr contains an SQL statement with an arithmetic expression
which caused division by zero.

HY090 Invalid string or buffer length. The argument ¢cbSq/Stris less than 1 but not equal to SQL_NTS.

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37 class.

Restrictions

None.

164 ODBC Guide and Reference

Example

References

SQLEXxecDirect

See [‘Example” on page 180}

» |'SQLBindParameter - Binds a parameter marker to a buffer or LOB locator” on|
page 91|

« [“SQLExecute - Execute a statement” on page 166)

* |“SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 16$1

» [“'SQLFetch - Fetch next row” on page 176

« [*SQLParamData - Get next parameter for which a data value is needed” on|
page 296|

+ ['SQLPutData - Passing data value for a parameter” on page 327|

« ['SQLSetParam - Binds a parameter marker to a buffer’ on page 354

Chapter 5. Functions 165

SQLExecute

SQLExecute - Execute a statement

Purpose
|Specification: | ODBC 1.0 X/OPEN CLI ISO CLI
SQLExecute() executes a statement, that is successfully prepared using
SQLPrepare(), once or multiple times. The statement is executed using the current
value of any application variables that are bound to parameter markers by
SQLBindParameter() or SQLSetParam() .

Syntax

SQLRETURN SQLExecute (SQLHSTMT hstmt) ;

Function arguments

Table 57. SQLExecute arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle. There must not be an open cursor
associated with hstmt, see [‘SQLFreeStmt - Free (or reset) al
|statement handle” on page 196 for more information.

Usage

The SQL statement string can contain parameter markers. A parameter marker is
represented by a "?” character, and is used to indicate a position in the statement
where an application supplied value is to be substituted when SQLExecute() is
called. This value can be obtained from:

* An application variable.

SQLSetParam() or SQLBindParameter() is used to bind the application storage
area to the parameter marker.

* A LOB value residing at the server referenced by a LOB locator.

SQLBindParameter() or SQLSetParam() is used to bind a LOB locator to a
parameter marker. The actual value of the LOB is kept at the server and does
not need to be transferred to the application before being used as the input
parameter value for another SQL statement.

You must bind all parameters before calling SQLExecute().

After the application processes the results from the SQLExecute() call, it can
execute the statement again with new (or the same) parameter values.

A statement executed by SQLExecDirect () cannot be re-executed by calling
SQLExecute(); SQLPrepare() must be called first.

If the prepared SQL statement is a query, SQLExecute() generates a cursor name,
and open the cursor. If the application uses SQLSetCursorName() to associate a
cursor name with the statement handle, DB2 ODBC associates the application
generated cursor name with the internally generated one.

166 ODBC Guide and Reference

Return codes

Diagnostics

Restrictions

Example

References

SQLExecute

To execute a query more than once, the application must close the cursor by calling
SQLFreeStmt () with the SQL_CLOSE option. There must not be an open cursor on
the statement handle when calling SQLExecute().

If a result set is generated, SQLFetch() or SQLExtendedFetch() retrieves the next
row (or rows) of data into bound variables or LOB locators. Data can also be
retrieved by calling SQLGetData() for any column that was not bound.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row at the time SQLExecute()
is called, and must be defined on a separate statement handle under the same
connection handle.

If SQLParamOptions () is called to specify that an array of input parameter values is
bound to each parameter marker, then the application needs to call
SQLExecDirect () only once to process the entire array of input parameter values. If
the executed statement returns multiple result sets (one for each set of input
parameters), then SQLMoreResults() should be used to advance to the next result
set when processing on the current result set is complete. See [‘SQLMoreResults 1
[Determine if there are more result sets” on page 286| for more information.

+ SQL_SUCCESS

+ SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

* SQL_INVALID_HANDLE

* SQL_NEED_DATA

+ SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application requests to input
data-at-execution parameter values by calling SQLParamData() and SQLPutData().

SQL_SUCCESS is returned if the SQL statement is a searched UPDATE or
searched DELETE and no rows satisfy the search condition. Use SQLRowCount () to
determine the number of rows in a table that were affected by an UPDATE,
INSERT, or DELETE statement executed against the table, or a view of the table.

The SQLSTATESs for SQLExecute() include all those for SQLExecDirect() (see
[Table 56 on page 162) except for HY009, HY014, and HY090, and with the addition
of HY010.

None.

See [‘Example” on page 303]

« |'SQLBindParameter - Binds a parameter marker to a buffer or LOB locator” on|
page 91
* [[SQLExecDirect - Execute a statement directly” on page 161

- [‘SQLExecute - Execute a statement” on page 166|

+ [‘SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 169

Chapter 5. Functions 167

SQLExecute

+ [‘SQLFetch - Fetch next row” on page 176

« [“SQLParamOptions - Specify an input array for a parameter” on page 298|
* |“SQLPrepare - Prepare a statement” on page 300
« [‘SQLSetParam - Binds a parameter marker to a buffer’ on page 354|

168 ODBC Guide and Reference

SQLExtendedFetch

SQLExtendedFetch - Extended fetch (fetch array of rows)

Purpose

Syntax

|Specification: | ODBC 1.0 | |

SQLExtendedFetch() extends the function of SQLFetch() by returning a block of data
containing multiple rows (called a rowset), in the form of an array, for each bound
column. The size of the rowset is determined by the SQL_ROWSET_SIZE option
on an SQLSetStmtAttr() call.

To fetch one row of data at a time, an application should call SQLFetch().

For more description on block or array retrieval, see ['Retrieving a result set into an|
larray” on page 4086,

SQLRETURN SQLExtendedFetch (SQLHSTMT hstmt,
SQLUSMALLINT fFetchType,
SQLINTEGER irow,

SQLUINTEGER FAR +*pcrow,
SQLUSMALLINT FAR *rgfRowStatus);

Function arguments

Table 58. SQLExtendedFetch arguments

Data type Argument Use Description
SQLHSTMT hstmt Input Statement handle.
SQLUSMALLINT fFetchType Input Direction and type of fetch. DB2 ODBC only supports the fetch

direction SQL_FETCH_NEXT; that is, forward only cursor
direction. The next array (rowset) of data is retrieved.

SQLINTEGER

irow Input Reserved for future use.

SQLUINTEGER *

pcrow Output Number of the rows actually fetched. If an error occurs during
processing, pcrow points to the ordinal position of the row (in
the rowset) that precedes the row where the error occurred. If
an error occurs retrieving the first row pcrow points to the
value 0.

SQLUSMALLINT *

rgfRowStatus ~ Output An array of status values. The number of elements must equal
the number of rows in the rowset (as defined by the
SQL_ROWSET_SIZE option). A status value for each row
fetched is returned:
+ SQL_ROW_SUCCESS

If the number of rows fetched is less than the number of
elements in the status array (i.e. less than the rowset size),
the remaining status elements are set to SQL_ROW_NOROW.

DB2 ODBC cannot detect whether a row has been updated or
deleted since the start of the fetch. Therefore, the following
ODBC-defined status values are not reported:

+ SQL_ROW_DELETED

* SQL_ROW_UPDATED

Chapter 5. Functions 169

SQLExtendedFetch

Usage

SQLExtendedFetch() performs an array fetch of a set of rows. An application
specifies the size of the array by calling SQLSetStmtAttr() with the
SQL_ROWSET_SIZE option.

Before SQLExtendedFetch() is called the first time, the cursor is positioned before
the first row. After SQLExtendedFetch() is called, the cursor is positioned on the row
in the result set corresponding to the last row element in the rowset just retrieved.

For any columns in the result set that are bound using the SQLBindCo1 () function,
DB2 ODBC converts the data for the bound columns as necessary and stores it in
the locations bound to these columns. As mentioned in section [‘Retrieving a result
Iset into an array” on page 406|, the result set can be bound in a column-wise or
row-wise fashion.

* For column-wise binding of application variables:

To bind a result set in column-wise fashion, an application specifies
SQL_BIND_BY_COLUMN for the SQL_BIND_TYPE statement option. (This is
the default value.) Then the application calls the SQLBindCo1() function.

When the application calls SQLExtendedFetch(), data for the first row is stored at
the start of the buffer. Each subsequent row of data is stored at an offset of
cbValueMax bytes (argument on SQLBindCo1() call) or, if the associated C buffer
type is fixed width (such as SQL_C_LONG), at an offset corresponding to that
fixed length from the data for the previous row.

For each bound column, the number of bytes available to return for each element
is stored in the pcbValue array buffer (deferred output argument on
SQLBindCo1()) buffer bound to the column. The number of bytes available to
return for the first row of that column is stored at the start of the buffer, and the
number of bytes available to return for each subsequent row is stored at an
offset of sizeof(SQLINTEGER) bytes from the value for the previous row. If the
data in the column is NULL for a particular row, the associated element in the
pcbValue array is set to SQL_NULL_DATA.

» For row-wise binding of application variables:

The application needs to first call SQLSetStmtAttr() with the SQL_BIND_TYPE
option, with the vParam argument set to the size of the structure capable of
holding a single row of retrieved data and the associated data lengths for each
column data value.

For each bound column, the first row of data is stored at the address given by
the rgbValue supplied on the SQLBindCol () call for the column and each
subsequent row of data at an offset of vParam bytes (used on the
SQLSetStmtAttr() call) from the data for the previous row.

For each bound column, the number of bytes available to return for the first row
is stored at the address given by the pcbValue argument supplied on the
SQLBindCo1() call, and the number of bytes available to return for each
subsequent row at an offset of vParam bytes from address containing the value
for the previous row.

If SQLExtendedFetch() returns an error that applies to the entire rowset, the
SQL_ERROR function return code is reported with the appropriate SQLSTATE. The
contents of the rowset buffer are undefined and the cursor position is unchanged.

If an error occurs that applies to a single row:

» The corresponding element in the rgfRowStatus array for the row is set to
SQL_ROW_ERROR

170 ODBC Guide and Reference

Return codes

SQLExtendedFetch

* An SQLSTATE of 01S01 is added to the list of errors that can be obtained using
SQLGetDiagRec ()

» Zero or more additional SQLSTATES, describing the error for the current row, are
added to the list of errors that can be obtained using SQLGetDiagRec()

An SQL_ROW_ERROR in the rgfRowStatus array only indicates that there was an
error with the corresponding element; it does not indicate how many SQLSTATEs
were generated. Therefore, SQLSTATE 01S01 is used as a separator between the
resulting SQLSTATEs for each row. DB2 ODBC continues to fetch the remaining
rows in the rowset and returns SQL_SUCCESS_WITH_INFO as the function return
code. After SQLExtendedFetch() returns, for each row encountering an error there is
an SQLSTATE of 01S01 and zero or more additional SQLSTATESs indicating the
errors for the current row, retrievable using SQLGetDiagRec (). Individual errors that
apply to specific rows do not affect the cursor which continues to advance.

The number of elements in the rgfRowStatus array output buffer must equal the
number of rows in the rowset (as defined by the SQL_ ROWSET_SIZE statement
option). If the number of rows fetched is less than the number of elements in the
status array, the remaining status elements are set to SQL_ROW_NOROW.

An application cannot mix SQLExtendedFetch() with SQLFetch() calls.

* SQL_SUCCESS

» SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

* SQL_INVALID_HANDLE

+ SQL_NO_DATA_FOUND

Diagnostics

Table 59. SQLExtendedFetch SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data returned for one or more columns is truncated. (Function

returns SQL_SUCCESS_WITH_INFO.)

01S01 Error in row. An error occurred while fetching one or more rows. (Function

returns SQL_SUCCESS_WITH_INFO.)

07002 Too many columns. A column number specified in the binding for one or more columns

is greater than the number of columns in the result set.

The application has used SQLSetColAttributes() to inform DB2
ODBC of the descriptor information of the result set, but it did not
provide this for every column in the result set.

07006 Invalid conversion. The data value could not be converted in a meaningful manner to
the data type specified by fCType in SQLBindCo1 ().
22002 Invalid output or indicator The pointer value specified for the argument pcbValue in
buffer specified. SQLBindCo1 () is a null pointer and the value of the corresponding

column is null. There is no means to report SQL_NULL_DATA.

Chapter 5. Functions 171

SQLExtendedFetch

Table 59. SQLExtendedFetch SQLSTATEs (continued)

SQLSTATE

Description

Explanation

22008

Invalid datetime format or
datetime field overflow.

Conversion from character string to datetime format is indicated, but
an invalid string representation or value is specified, or the value is
an invalid date.

The value of a date, time, or timestamp does not conform to the
syntax for the specified data type.

Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within the
valid range of dates, or a datetime value cannot be assigned to a
bound variable because it is too small.

22012

Division by zero is invalid.

A value from an arithmetic expression is returned which results in
division by zero.

22018

Error in assignment.

A returned value is incompatible with the data type of the bound
column.

A returned LOB locator was incompatible with the data type of the
bound column.

24000

Invalid cursor state.

The previous SQL statement executed on the statement handle is
not a query.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

58004

Unexpected system failure.

Unrecoverable system error.

HYO001

Memory allocation failure.

DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO010

Function sequence error.

SQLExtendedFetch() is called for an hstmt after SQLFetch() is called
and before SQLFreeStmt () is called with the SQL_CLOSE option.

The function is called prior to calling SQLPrepare() or
SQLExecDirect() for the hstmt.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO013

Unexpected memory handling
error.

DB2 ODBC is not able to access memory required to support
execution or completion of the function.

HYO019

Numeric value out of range.

Returning the numeric value (as numeric or string) for one or more
columns causes the whole part of the number to be truncated either
at the time of assignment or in computing an intermediate result.

A value from an arithmetic expression is returned which results in
division by zero.

HY106

Fetch type out of range.

The value specified for the argument fFetchType is not recognized.

HYCO00

Driver not capable.

Restrictions

None.

172 ODBC Guide and Reference

DB2 ODBC or the data source does not support the conversion
specified by the combination of the fCType in SQLBindCo1() and the
SQL data type of the corresponding column.

A call to SQLBindCo1() is made for a column data type which is not
supported by DB2 ODBC.

The specified fetch type is recognized, but not supported.

SQLExtendedFetch

Example

[* .. %/
"SELECT deptnumb, deptname, id, name FROM staff, org \
WHERE dept=deptnumb AND job = 'Mgr'";

/* Column-Wise =/

SQLINTEGER deptnumb [ROWSET SIZE];
SQLCHAR deptname [ROWSET_SIZE][15];
SQLINTEGER deptname_1[ROWSET_SIZE];

SQLSMALLINT id[ROWSET_SIZE];

SQLCHAR name [ROWSET_SIZE][10];
SQLINTEGER name_1[ROWSET SIZE];
/* Row-Wise (Includes buffer for both column data and length) */
struct {
SQLINTEGER deptnumb_1; /* length */
SQLINTEGER deptnumb; /* value =/
SQLINTEGER deptname_1;
SQLCHAR deptname[15];
SQLINTEGER id 1;
SQLSMALLINT id;
SQLINTEGER name_1;
SQLCHAR name[10];
} R[ROWSET_SIZE];

SQLUSMALLINT Row_Stat[ROWSET SIZE];
SQLUINTEGER pcrow;
int i

[* oo o®/

Chapter 5. Functions 173

SQLExtendedFetch

/"k‘k‘k*‘k‘k*‘k‘k**‘k‘k*‘k‘k***‘k*‘k‘k**‘k**‘k‘k*‘k‘k**‘k‘k*‘k‘k**‘k‘k*/

/* Column-Wise Binding */
/***/

rc = SQLA11ocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

rc = SQLSetStmtAttr(hstmt, SQL_ATTR_ROWSET SIZE, (void *) ROWSET SIZE, 0);
rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

rc = SQLBindCol (hstmt,

—_

, SQL_C LONG, (SQLPOINTER) deptnumb, O, NULL);

rc = SQLBindCol (hstmt, 2, SQL_C_CHAR, (SQLPOINTER) deptname, 15, deptname_1);
rc = SQLBindCol (hstmt, 3, SQL_C_SSHORT, (SQLPOINTER) id, 0, NULL);

rc = SQLBindCol (hstmt, 4, SQL_C_CHAR, (SQLPOINTER) name, 10, name_1);

/* Fetch ROWSET_SIZE rows ast a time, and display */
printf("\nDEPTNUMB DEPTNAME ID NAME\n") ;
printf(Memmmmmme mmm e e e \n");
while ((rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 0, &pcrow, Row_Stat))

== SQL_SUCCESS) {

for (i = 0; i < pcrow; i++) {
printf("%81d %-14s %81d %-9s\n", deptnumb[i], deptname[i],
id[i], name[i]);

if (pcrow < ROWSET_SIZE)
break;
} /* endwhile */

if (rc != SQL_NO_DATA FOUND && rc != SQL_SUCCESS)
CHECK_HANDLE (SQL_HANDLE_STMT, hstmt, rc);

rc = SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

174 ODBC Guide and Reference

SQLExtendedFetch

/*‘k'k*‘k‘k*‘k‘k*"k‘k**‘k‘k*‘k‘k**‘k‘k*‘k‘k***‘k*‘k‘k***‘k*‘k**‘k‘k**/

/* Row-Wise Binding */
/***/

rc = SQLAT1ocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
CHECK_HANDLE (SQL_HANDLE_STMT, hstmt, rc);

/* Set maximum number of rows to receive with each extended fetch */
rc = SQLSetStmtAttr(hstmt, SQL_ATTR_ROWSET SIZE, (void *) ROWSET SIZE, 0);
CHECK_HANDLE (SQL_HANDLE_STMT, hstmt, rc);

/*
* Set vparam to size of one row, used as offset for each bindcol
* rgbValue
*/
/* ie. &(R[0].deptnumb) + vparam = &(R[1].deptnum) x/
rc = SQLSetStmtAttr(hstmt, SQL_ATTR BIND_TYPE,
(void *) (sizeof(R)/ROWSET SIZE), 0);

rc = SQLExecDirect(hstmt, stmt, SQL_NTS);

rc = SQLBindCol (hstmt, 1, SQL_C LONG, (SQLPOINTER) & R[0].deptnumb, 0,

&R[0] .deptnumb_1);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) R[0].deptname, 15,
&R[0] .deptname_1);

rc = SQLBindCol(hstmt, 3, SQL_C_SSHORT, (SQLPOINTER) & R[0].id, O,
&R[0].id 1);
rc = SQLBindCol (hstmt, 4, SQL_C_CHAR, (SQLPOINTER) R[0].name, 10, &R[0].name_1);

/* Fetch ROWSET_SIZE rows at a time, and display */
printf("\nDEPTNUMB DEPTNAME ID NAME\n") ;
Printf(Memmmmmme mm e e e \n");
while ((rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 0, &pcrow, Row_Stat))
== SQL_SUCCESS) {
for (i = 0; i < pcrow; i++) {
printf("%81d %-14s %81d %-9s\n", R[i].deptnumb, R[i].deptname,
R[i].id, R[i].name);

!
if (pcrow < ROWSET SIZE)
break;
} /* endwhile */

if (rc != SQL_NO_DATA_FOUND && rc != SQL_SUCCESS)
CHECK_HANDLE (SQL_HANDLE_STMT, hstmt, rc);
/* Free handles, commit, exit */

[* oo o®/

References

+ [“SQLExecute - Execute a statement” on page 166)
+ [“SQLExecDirect - Execute a statement directly” on page 161|
+ [‘SQLFetch - Fetch next row” on page 176)

Chapter 5. Functions 175

SQLFetch

SQLFetch - Fetch next row

Purpose
|Specification: ODBC 1.0 X/OPEN CLI ISO CLI
SQLFetch() advances the cursor to the next row of the result set, and retrieves any
bound columns.
Columns can be bound to:
* Application storage
* LOB locators
When SQLFetch() is called, the appropriate data transfer is performed, along with
any data conversion if conversion was indicated when the column was bound. The
columns can also be received individually after the fetch, by calling SQLGetData().
SQLFetch() can only be called after a result set is generated (using the same
statement handle) by either executing a query, calling SQLGetTypeInfo() or calling a
catalog function.
To retrieve multiple rows at a time, use SQLExtendedFetch().

Syntax

SQLRETURN SQLFetch (SQLHSTMT hstmt);

Function arguments

Table 60. SQLFetch arguments

Data type Argument Use Description
SQLHSTMT hstmt input Statement handle
Usage

SQLFetch() can only be called after a result set is generated on the same statement
handle. Before SQLFetch() is called the first time, the cursor is positioned before the
start of the result set.

The number of application variables bound with SQLBindCo1() must not exceed the
number of columns in the result set or SQLFetch() fails.

If SQLBindCo1() has not been called to bind any columns, then SQLFetch() does not
return data to the application, but just advances the cursor. In this case,
SQLGetData() can be called to obtain all of the columns individually. Data in
unbound columns is discarded when SQLFetch() advances the cursor to the next
row. For fixed length data types, or small variable length data types, binding
columns provides better performance than using SQLGetData().

Columns can be bound to:
» Application storage

176 ODBC Guide and Reference

Return codes

SQLFetch

SQLBindCo1() is used to bind application storage to the column. Data is
transferred from the server to the application at fetch time. Length of the
available data to return is also set.

e LOB locators

SQLBindCo1() is used to bind LOB locators to the column. Only the LOB locator
(4 bytes) is transferred from the server to the application at fetch time.

When an application receives a locator, it can use the locator in
SQLGetSubString(), SQLGetPosition(),SQLGetLength(), or as the value of a
parameter marker in another SQL statement. SQLGetSubString() can either
return another locator, or the data itself. All locators remain valid until the end of
the transaction in which they are created (even when the cursor moves to
another row), or until they are freed using the FREE LOCATOR statement.

If LOB values are too large to retrieve in one fetch, they can be retrieved in pieces
by either using SQLGetData() (which can be used for any column type), or by
binding a LOB locator, and using SQLGetSubString().

If any bound storage buffers are not large enough to hold the data returned by
SQLFetch(), the data is truncated. If character data is truncated,
SQL_SUCCESS_WITH_INFO is returned, and an SQLSTATE is generated
indicating truncation. The SQLBindCo1() deferred output argument pcbValue
contains the actual length of the column data retrieved from the server. The
application should compare the actual output length to the input buffer length
(pcbValue and cbValueMax arguments from SQLBindCo1()) to determine which
character columns are truncated.

Truncation of numeric data types is reported as a warning if the truncation involves
digits to the right of the decimal point. If truncation occurs to the left of the decimal
point, an error is returned (see the diagnostics section).

Truncation of graphic data types is treated the same as character data types,
except that the rgbValue buffer is filled to the nearest multiple of two bytes that is
still less than or equal to the cbValueMax specified in SQLBindCo1 (). Graphic
(DBCS) data transferred between DB2 ODBC and the application is not
null-terminated if the C buffer type is SQL_C_CHAR. If the buffer type is
SQL_C_DBCHAR, then null-termination of graphic data does occur.

Truncation is also affected by the SQL_MAX_LENGTH statement option. The
application can specify that DB2 ODBC should not report truncation by calling
SQLSetStmtAttr() with SQL_MAX_LENGTH and a value for the maximum length to
return for any one column, and by allocating an rgbValue buffer of the same size
(plus the null-terminator). If the column data is larger than the set maximum length,
SQL_SUCCESS is returned and the maximum length, not the actual length is
returned in pcbValue.

When all the rows are retrieved from the result set, or the remaining rows are not
needed, SQLFreeStmt () or SQLCloseCursor() should be called to close the cursor
and discard the remaining data and associated resources.

To retrieve multiple rows at a time, use SQLExtendedFetch(). An application cannot
mix SQLFetch() with SQLExtendedFetch() calls on the same statement handle.

+ SQL_SUCCESS
+ SQL_SUCCESS_WITH_INFO

Chapter 5. Functions 177

SQLFetch

* SQL_ERROR

* SQL_INVALID_HANDLE
* SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if there are no rows in the result set, or
previous SQLFetch() calls have fetched all the rows from the result set.

If all the rows were fetched, the cursor is positioned after the end of the result set.

Diagnostics
Table 61. SQLFetch SQLSTATEs

SQLSTATE

Description

Explanation

01004

Data truncated.

The data returned for one or more columns is truncated. String
values or numeric values are right truncated.
(SQL_SUCCESS_WITH_INFO is returned if no error occurred.)

07002

Too many columns.

A column number specified in the binding for one or more columns
is greater than the number of columns in the result set.

The application used SQLSetColAttributes() to inform DB2 ODBC
of the descriptor information of the result set, but it did not provide
this for every column in the result set.

07006

Invalid conversion.

The data value cannot be converted in a meaningful manner to the
data type specified by fCType in SQLBindCo1 ()

07009

Invalid column number.

The specified column is less than 0 or greater than the number of
result columns.

The specified column is 0, but DB2 ODBC does not support ODBC
bookmarks (icol = 0).

SQLExtendedFetch() is called for this result set.

22002

Invalid output or indicator
buffer specified.

The pointer value specified for the argument pcbValue in
SQLBindCo1 () is a null pointer and the value of the corresponding
column is null. There is no means to report SQL_NULL_DATA.

22008

Invalid datetime format or
datetime field overflow.

Conversion from character string to datetime format is indicated, but
an invalid string representation or value is specified, or the value is
an invalid date.

The value of a date, time, or timestamp does not conform to the
syntax for the specified data type.

Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within the
valid range of dates, or a datetime value cannot be assigned to a
bound variable because it is too small.

22012

Division by zero is invalid.

A value from an arithmetic expression is returned which results in
division by zero.

22018

Error in assignment.

A returned value is incompatible with the data type of binding.

A returned LOB locator is incompatible with the data type of the
bound column.

24000

Invalid cursor state.

The previous SQL statement executed on the statement handle is
not a query.

40003 08S01

Communication link failure.

178 ODBC Guide and Reference

The communication link between the application and data source
fails before the function completes.

Table 61. SQLFetch SQLSTATEs (continued)

SQLFetch

SQLSTATE Description Explanation
54028 The maximum number of Maximum LOB locator assigned.
concurrent LOB handles has
been reached. The maximum number of concurrent LOB locators has been
reached. A new locator can not be assigned.

58004 Unexpected system failure. Unrecoverable system error.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO010 Function sequence error. SQLFetch() is called for an hstmt after SQLExtendedFetch() is called
and before SQLCloseCurosr() had been called.

The function is called prior to calling SQLPrepare() or
SQLExecDirect() for the hstmt.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

HYO019 Numeric value out of range. Returning the numeric value (as numeric or string) for one or more
columns causes the whole part of the number to be truncated either
at the time of assignment or in computing an intermediate result.

A value from an arithmetic expression is returned which results in
division by zero.

Note: The associated cursor is undefined if this error is detected by
DB2 for OS/390 and z/OS. If the error is detected by DB2 UDB or
by other IBM RDBMSs, the cursor remains open and continues to
advance on subsequent fetch calls.

HYCO00 Driver not capable. DB2 ODBC or the data source does not support the conversion
specified by the combination of the fCType in SQLBindCol1() and the
SQL data type of the corresponding column.

A call to SQLBindCo1() was made for a column data type which is
not supported by DB2 ODBC.

Restrictions

None.

Chapter 5. Functions 179

SQLFetch

Example

[x ... %/
/***
*% main
***/
int
main(int argc, char * argv[])
{
SQLHENV henv;
SQLHDBC hdbc;
SQLHSTMT hstmt;
SQLRETURN rc;
SQLCHAR sqlstmt[] = "SELECT deptname, location from org where
division = 'Eastern'";
struct { SQLINTEGER ind;
SQLCHAR s[15];
} deptname, location;

/* macro to initalize server, uid and pwd */
INIT_UID_PWD;

/* allocate an environment handle */
rc = SQLATTocHandle(SQL_HANDLE_ENV, SQL_NULL HANDLE, ;&henv);
if (rc != SQL_SUCCESS)
return (terminate(henv, rc));
rc = DBconnect (henv, &hdbc); /* allocate a connect handle, and connect */
if (rc != SQL_SUCCESS)
return (terminate(henv, rc));
SQLA11ocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
SQLExecDirect(hstmt, sqlstmt, SQL_NTS);
SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER) deptname.s, 15,
&deptname.ind);
SQLBindCol(hstmt, 2, SQL_C CHAR, (SQLPOINTER) Tocation.s, 15,
&location.ind);

rc
rc
rc

rc

printf("Departments in Eastern division:\n");
printf("DEPTNAME Location\n");
printf("---mmmmmmmmmme e \n");

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {
printf("%-14.14s %-14.14s \n", deptname.s, Tlocation.s);
1

if (rc != SQL_NO_DATA_FOUND)
CHECK_HANDLE (SQL_HANDLE_STMT, hstmt, RETCODE);

rc
rc

SQLFreeHandle (SQL_HANDLE_STMT, hstmt);
SQLEndTran (SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

printf("Disconnecting \n");

SQLDisconnect (hdbc) ;
rc = SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
rc = SQLFreeHandle (SQL_HANDLE_ENV, henv);
if (rc != SQL_SUCCESS)
return (terminate(henv, rc));
} /* end main */

[* oo %/

rc

References

« [‘SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 169
« [‘SQLExecute - Execute a statement” on page 166

« [‘SQLExecDirect - Execute a statement directly” on page 161|

+ [‘SQLGetData - Get data from a column” on page 210|

180 ODBC Guide and Reference

SQLForeignKeys

SQLForeignKeys - Get the list of foreign key columns

Purpose

Syntax

| Specification:

ODBC 1.0 |

SQLForeignKeys() returns information about foreign keys for the specified table. The
information is returned in an SQL result set which can be processed using the same

functions that are used to retrieve a result generated by a query.

SQLRETURN SQLForeignKeys (SQLHSTMT hstmt,
SQLCHAR FAR =szPkCatalogName,
SQLSMALLINT cbPkCatalogName,
SQLCHAR FAR *szPkSchemaName,
SQLSMALLINT cbPkSchemaName,
SQLCHAR FAR *szPkTableName,
SQLSMALLINT cbPkTableName,
SQLCHAR FAR =szFkCatalogName,
SQLSMALLINT cbFkCatalogName,
SQLCHAR FAR *szFkSchemaName,
SQLSMALLINT cbFkSchemaName,
SQLCHAR FAR *szFkTableName,
SQLSMALLINT cbFkTableName) ;
Function arguments
Table 62. SQLForeignKeys arguments
Data type Argument Use Description
SQLHSTMT hstmt input Statement handle.
SQLCHAR * szPkCatalogName input Catalog qualifier of the primary key table. This must be a
NULL pointer or a zero length string.
SQLSMALLINT cbPkCatalogName input Length of szPkCatalogName. This must be set to 0.
SQLCHAR * szPkSchemaName input Schema qualifier of the primary key table.
SQLSMALLINT cbPkSchemaName input Length of szPkSchemaName.
SQLCHAR * szPkTableName input Name of the table name containing the primary key.
SQLSMALLINT cbPkTableName input Length of szPkTableName.
SQLCHAR * szFkCatalogName input Catalog qualifier of the table containing the foreign key. This
must be a NULL pointer or a zero length string.
SQLSMALLINT cbFkCatalogName input Length of szFkCatalogName. This must be set to 0.
SQLCHAR * szFkSchemaName input Schema qualifier of the table containing the foreign key.
SQLSMALLINT cbFkSchemaName input Length of szFkSchemaName.
SQLCHAR * szFkTableName input Name of the table containing the foreign key.
SQLSMALLINT cbFkTableName input Length of szFkTableName.

Usage

If szPkTableName contains a table name, and szFkTableName is an empty string,
SQLForeignKeys () returns a result set containing the primary key of the specified
table and all of the foreign keys (in other tables) that refer to it.

Chapter 5. Functions 181

SQLForeignKeys

If szFkTableName contains a table name, and szPkTableName is an empty string,
SQLForeignKeys () returns a result set containing all of the foreign keys in the
specified table and the primary keys (in other tables) to which they refer.

If both szPkTableName and szFkTableName contain table names,
SQLForeignKeys () returns the foreign keys in the table specified in szFkTableName
that refer to the primary key of the table specified in szPkTableName. This should
be one key at the most.

If the schema qualifier argument associated with a table name is not specified, then
the schema name defaults to the one currently in effect for the current connection.

lists the columns of the result set generated by the SQLForeignKeys () call.
If the foreign keys associated with a primary key are requested, the result set is
ordered by FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME, and
ORDINAL_POSITION. If the primary keys associated with a foreign key are
requested, the result set is ordered by PKTABLE_CAT, PKTABLE_SCHEM,
PKTABLE_NAME, and ORDINAL_POSITION.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo () with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the associated TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME
columns supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 63. Columns returned by SQLForeignKeys

Column number/name Data type Description
1 PKTABLE_CAT VARCHAR(128) This is always NULL.
2 PKTABLE_SCHEM VARCHAR(128) The name of the schema containing PKTABLE_NAME.

3 PKTABLE_NAME

VARCHAR(128) NOT NULL Name of the table containing the primary key.

4 PKCOLUMN_NAME

VARCHAR(128) NOT NULL Primary key column name.

5 FKTABLE_CAT

VARCHAR(128) This is always NULL.

6 FKTABLE_SCHEM

VARCHAR(128) The name of the schema containing FKTABLE_NAME.

7 FKTABLE_NAME

VARCHAR(128) NOT NULL The name of the table containing the foreign key.

8 FKCOLUMN_NAME

VARCHAR(128) NOT NULL Foreign key column name.

9 KEY_SEQ

SMALLINT NOT NULL The ordinal position of the column in the key, starting at
1.

182 ODBC Guide and Reference

SQLForeignKeys

Table 63. Columns returned by SQLForeignKeys (continued)

Column number/name Data type

Description

10 UPDATE_RULE SMALLINT

Action to be applied to the foreign key when the SQL
operation is UPDATE:

+ SQL_RESTRICT

* SQL_NO_ACTION

The update rule for IBM DB2 DBMSs is always either
RESTRICT or SQL_NO_ACTION. However, ODBC
applications might encounter the following
UPDATE_RULE values when connected to non-IBM
RDBMSs:

+ SQL_CASCADE

+ SQL_SET_NULL

11 DELETE_RULE SMALLINT

Action to be applied to the foreign key when the SQL
operation is DELETE:

* SQL_CASCADE

SQL_NO_ACTION

* SQL_RESTRICT

* SQL_SET_DEFAULT

* SQL_SET_NULL

12 FK_NAME VARCHAR(128)

Foreign key identifier. NULL if not applicable to the data
source.

13 PK_NAME VARCHAR(128)

Primary key identifier. NULL if not applicable to the data
source.

14 DEFERRABILITY SMALLINT

One of the following:

« SQL_INITIALLY_DEFERRED
* SQL_INITIALLY_IMMEDIATE
+ SQL_NOT_DEFERRABLE

DB2 ODBC returns NULL.

Note: The column names used by DB2 ODBC follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLForeignKeys() result set in ODBC.

DB2 ODBC applications that issue SQLForeignKeys() against a DB2 for OS/390 and z/OS server, Version 5 or later,
should expect the result set columns listed in the table above. Revision bars identify the new and changed columns.

Return codes

SQL_SUCCESS

SQL_ERROR

Diagnostics

Table 64. SQLForeignKeys SQLSTATEs
SQLSTATE Description

SQL_SUCCESS_WITH_INFO

SQL_INVALID_HANDLE

Explanation

24000 Invalid cursor state.

A cursor is already opened on the statement handle.

40003 08S01 Communication link failure.

The communication link between the application and data source
fails before the function completes.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HY009 Invalid use of a null pointer. The arguments szPkTableName and szFkTableName are both

NULL pointers.

Chapter 5. Functions 183

SQLForeignKeys

Table 64. SQLForeignKeys SQLSTATEs (continued)
SQLSTATE Description Explanation

HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal SQL_NTS.

The length of the table or owner name is greater than the maximum
length supported by the server. See[*SQLGetInfo - Get generall
[information” on page 234|

HYCO00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.
S1014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.
Restrictions
None.
Example
/**/
/* Invoke SQLForeignKeys against PARENT Table. Find all */
/* tables that contain foreign keys on PARENT. */

/**/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

#include "cli.h"

#include "sqlclil.h"

#include "sqlclil.h"

int main()

{

SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 03

char pTable [200];

char *pDSN = "STLEC1";

SQLSMALLINT update_rule;
SQLSMALLINT delete_rule;

SQLINTEGER update_rule_ind;
SQLINTEGER delete_rule_ind;
char update [25];
char delet [25];

184 ODBC Guide and Reference

SQLForeignKeys

typedef struct varchar // define VARCHAR type

SQLSMALLINT Tength;
SQLCHAR name [128];
SQLINTEGER ind;

} VARCHAR;

VARCHAR pktable_schem;
VARCHAR pktable_name;
VARCHAR pkcolumn_name;
VARCHAR fktable_schem;
VARCHAR fktable_name;
VARCHAR fkcolumn_name;

(void) printf ("#*** Entering CLIP02.\n\n");
/***/

/* Allocate environment handle */
/***/

RETCODE = SQLA1TocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Allocate connection handle to DSN */
/***/

RETCODE =SQLATTocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a connect handle
goto dberror;

/***/

/* CONNECT TO data source (STLECI) */
[F kg ke kk K KR R 2 R R s R R T R *xk [
RETCODE = SQLConnect (hDbc, // Connect handle

(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated

NULL, // Null UID
o,
NULL, // Null Auth string
0);
if(RETCODE != SQL_SUCCESS) // Connect failed

goto dberror;
/***/

/* Allocate statement handle */
/***/

rc = SQLATTocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);

if (rc != SQL_SUCCESS)
goto exit;

Chapter 5. Functions

185

SQLForeignKeys

/***/

/* Invoke SQLForeignKeys against PARENT Table, specifying NULL

/* for table with foreign key.

/*********************

*/
*/

rc = SQLForeignKeys (hStmt,

NULL,
0’

(SQLCHAR) "ADMFOO1",
SQL_NTS,

(SQLCHAR) "PARENT",
SQL_NTS,

NULL,

0,
NULL,
SQL_NTS,
NULL,
SQL_NTS);

if (rc != SQL_SUCCESS)
{

(void) printf ("s*** SQLForeignKeys Failed.\n");
goto dberror;

}

/***/
/* Bind following columns of answer set:

/*
/*
/*
/*
/*
/*
/*
/* 1
/* 1
/*

2)
3)

pktable_schem
pktable _name
pkcolumn_name
fktable_schem
fktable_name
fkcolumn_name
update _rule
delete_rule

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

rc

rc

rc

186 ODBC Guide and Reference

SQLBindCol (hStmt, // bind pktable_schem

2,

SQL_C_CHAR,

(SQLPOINTER) pktable_schem.name,
128,

&pktable_schem.ind);

SQLBindCol (hStmt, // bind pktable_name

3,
SQL_C_CHAR,

(SQLPOINTER) pktable_name.name,
128,

&pktable_name.ind);

SQLBindCol (hStmt, // bind pkcolumn_name

4,
SQL_C_CHAR,

(SQLPOINTER) pkcolumn_name.name,
128,

&pkcolumn_name.ind);

rc

rc

rc

rc

rc

SQLBindCol (hStmt,
6,
SQL_C_CHAR,

SQLForeignKeys

// bind fktable_schem

(SQLPOINTER) fktable_schem.name,

128,

&fktable_schem.ind);

SQLBindCol (hStmt,
7,
SQL_C_CHAR,

// bind fktable_name

(SQLPOINTER) fktable_name.name,

128,

&fktable_name.

SQLBindCol (hStmt,
8,
SQL_C_CHAR,

ind);

// bind fkcolumn_name

(SQLPOINTER) fkcolumn_name.name,

128,

&fkcolumn_name.ind);

= SQLBindCol (hStmt,
10,
SQL_C_SHORT,

// bind update rule

(SQLPOINTER) &update_rule;

0

&update_rule_ind);

= SQLBindCol (hStmt,
11,
SQL_C_SHORT,

// bind delete rule

(SQLPOINTER) &delete_rule,

0

&delete_rule_ind);

/***/

/* Retrieve all tables with foreign keys defined on PARENT */

/***/

wh

ile ((rc = SQLFetch (hStmt))

(void) printf ("s#** Primary

pktable_schem.

(void) printf ("s**x Primary

pkcolumn_name.

(void) printf ("#**x Foreign

fktable_schem.

(void) printf ("s%** Foreign

fkcolumn_name.

== SQL_SUCCESS)

Table Schema is %s. Primary Table Name is %s.\n",
name, pktable name.name);

Table Key Column is %s.\n",

name) ;

Table Schema is %s. Foreign Table Name is %s.\n",
name, fktable_name.name);

Table Key Column is %s.\n",

name) ;

if (update_rule == SQL_RESTRICT) // isolate update rule
strcpy (update, "RESTRICT");

else

if (update_rule == SQL_CASCADE)

strcpy (update, "CASCADE");

else

strcpy (update, "SET NULL");

Chapter 5. Functions 187

SQLForeignKeys

if (delete_rule == SQL_RESTRICT) // isolate delete rule
strcpy (delet, "RESTRICT");
else
if (delete_rule == SQL_CASCADE)
strcpy (delet, "CASCADE");
else
if (delete_rule == SQL_NO_ACTION)
strcpy (delet, "NO ACTION");
else
strcpy (delet, "SET NULL");

(void) printf ("s#** Update Rule is %s. Delete Rule is %s.\n",
update, delet);
}

/************** """"""""""" ******************************/

/* Deallocate statement handle */
/***/

rc = SQLFreeHandle (SQL_HANDLE_STMT, hStmt);
/***/

/* DISCONNECT from data source */

/***/

RETCODE = SQLDisconnect (hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Deallocate connection handle */
/***/

RETCODE = SQLFreeHandle (SQL_HANDLE_DBC, hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Free environment handle */
/***/

RETCODE = SQLFreeHandle (SQL_HANDLE_ENV, hEnv);

if (RETCODE == SQL_SUCCESS)
goto exit;

dberror:
RETCODE=12;

exit:
(void) printf ("#*** Exiting CLIP02.\n\n");

return RETCODE;

References

+ [‘SQLPrimaryKeys - Get primary key columns of a table” on page 308|
+ [“SQLStatistics - Get index and statistics information for a base table” on|

page 374|

188 ODBC Guide and Reference

SQLFreeConnect

SQLFreeConnect - Free connection handle

Purpose
|Specification: | ODBC 1.0 | X/OPEN CLI | ISO CLI |
In ODBC 3.0, SQLFreeHandle() replaces the ODBC 2.0 function SQLFreeConnect().
See SQLFreeHandle() for more information.
SQLFreeConnect () invalidates and frees the connection handle. All DB2 ODBC
resources associated with the connection handle are freed.
SQLDisconnect () must be called before calling this function.

Syntax

SQLRETURN SQLFreeConnect (SQLHDBC hdbc) ;

Function arguments

Table 65. SQLFreeConnect arguments

Data type Argument Use Description
SQLHDBC hdbc input Connection handle
Usage

If this function is called when a connection still exists, SQL_ERROR is returned,
and the connection handle remains valid.

To continue termination, call SQLFreeEnv(), or, if a new connection handle is
required, call SQLATTocConnect().

Return codes

SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_SUCCESS_WITH_INFO

Diagnostics

Table 66. SQLFreeConnect SQLSTATEs

SQLSTATE Description Explanation

58004 Unexpected system failure. Unrecoverable system error.

S1001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support

execution or completion of the function.

S$1010 Function sequence error. The function is called prior to SQLDisconnect () for the hdbc.

$1013 Unexpected memory handling DB2 ODBC is not able to access memory required to support
error. execution or completion of the function.

Restrictions

None.

Chapter 5. Functions 189

SQLFreeConnect

Example

See ['‘Example” on page 74,

References

» |“SQLDisconnect - Disconnect from a data source” on page 144|
+ [‘SQLFreeEnv - Free environment handle” on page 191|

190 ODBC Guide and Reference

SQLFreeEnv

SQLFreeEnv - Free environment handle

Purpose

|Specification: | ODBC 1.0 | X/OPEN CLI | ISO CLI |

In ODBC 3.0, SQLFreeHandle() replaces the ODBC 2.0 function SQLFreeEnv(). See
SQLFreeHandle() for more information.

SQLFreeEnv () invalidates and frees the environment handle. All DB2 ODBC
resources associated with the environment handle are freed.

SQLFreeConnect () must be called before calling this function.

This function is the last DB2 ODBC step an application needs to do before
terminating.

Syntax

SQLRETURN SQLFreeEnv (SQLHENV henv) ;

Function arguments

Table 67. SQLFreeEnv arguments

Data type Argument Use Description
SQLHENV henv input Environment handle
Usage

If this function is called when there is still a valid connection handle, SQL_ERROR
is returned, and the environment handle remains valid.

The number of SQLFreeEnv () calls must equal the number of SQLAT1ocEnv() calls
before the environment information is reset.

Return codes
.« SQL_SUCCESS
« SQL_ERROR
¢« SQL_INVALID_HANDLE

Diagnostics

Table 68. SQLFreeEnv SQLSTATEs

SQLSTATE Description Explanation

58004 Unexpected system failure. Unrecoverable system error.

S$1001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

S$1010 Function sequence error. There is an hdbc which is in allocated or connected state. Call
SQLDisconnect () and SQLFreeConnect() for the hdbc before calling
SQLFreeEnv().

S$1013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

Chapter 5. Functions 191

SQLFreeEnv

Restrictions
None.

Example

See [‘Example” on page 74

References

“SQLFreeConnect - Free connection handle” on page 189

192 ODBC Guide and Reference

SQLFreeHandle

SQLFreeHandle - Free handle resources

Purpose
|Specification: | ODBC 3.0 X/OPEN CLI ISO CLI
SQLFreeHandle() frees an environment, connection, or statement handle.
SQLFreeHandle() is a generalized function for allocating handles that replaces the
deprecated ODBC 2.0 functions SQLFreeEnv(), SQLFreeConnect (), and
SQLFreeStmt () (with the SQL_DROP option) for freeing a statement handle.
Syntax
SQLRETURN SQLFreeHandle (SQLSMALLINT HandleType,
SQLHANDLE Handle);

Function arguments

Table 69. SQLFreeHandle arguments
Data type Argument Use Description

SQLSMALLINT HandleType input The type of handle to be freed by SQLFreeHandle(). Must be
one of the following values:
* SQL_HANDLE_ENV
< SQL_HANDLE_DBC
« SQL_HANDLE_STMT

SQLHANDLE Handle input Handle to be freed.

Usage
SQLFreeHandle() is used to free handles for environments, connections, and
statements. An application should not use a handle after it has been freed.
* Freeing an environment handle

Prior to calling SQLFreeHandle() with a HandleType of SQL_HANDLE_ENYV, an
application must call SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC
for all connections allocated under the environment. Otherwise, the call to
SQLFreeHandle() returns SQL_ERROR and the environment and any active
connection remains valid.

* Freeing a connection handle

Prior to calling SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC, an
application must call SQLDisconnect () for the connection. Otherwise, the call to
SQLFreeHandle() returns SQL_ERROR and the connection remains valid.

* Freeing a statement handle

A call to SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT frees all
resources that were allocated by a call to SQLAT1ocHandle() with a HandleType
of SQL_HANDLE_STMT. When an application calls SQLFreeHandle() to free a

statement that has pending results, those results are deleted.

SQLDisconnect () automatically drops any statements open on the connection.

Chapter 5. Functions 193

SQLFreeHandle

Return codes
« SQL_SUCCESS
« SQL_INVALID_HANDLE
« SQL_ERROR

If the HandleType is not a valid type, SQLFreeHandle() returns
SQL_INVALID_HANDLE. If SQLFreeHandle() returns SQL_ERROR, the handle is
still valid.

Diagnostics

Table 70. SQLFreeHandle SQLSTATEs
SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The HandleType argument was SQL_HANDLE_DBC, and the
communication link between DB2 ODBC and the data source to
which it was trying to connect failed before the function completed
processing.

HYO000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HYO001 Memory allocation failure. DB2 ODBC was not able to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. + The HandleType argument was SQL_HANDLE_ENV, and at least
one connection was in an allocated or connected state.
SQLDisconnect () and SQLFreeHandle() with a HandleType of
SQL_HANDLE_DBC must be called for each connection before
calling SQLFreeHandle() with a HandleType of
SQL_HANDLE_ENV. The HandleType argument was
SQL_HANDLE_DBC, and the function was called before calling
SQLDisconnect() for the connection.

* The HandleType argument was SQL_HANDLE_STMT;
SQLExecute() or SQLExecDirect() was called with the statement
handle, and returned SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution parameters or
columns. SQLCancel() must be issued to free the statement
handle.

HYO013 Unexpected memory handling The HandleType argument was SQL_HANDLE_STMT and the
error. function call could not be processed because the underlying
memory objects could not be accessed, possibly because of low
memory conditions.

Restrictions
None.

Example
Refer to sample program DSN8O3VP in DSN710.SDSNSAMP.

References

« [“SQLAllocHandle - Allocate handle” on page 79
« [“SQLGetDiagRec - Get multiple field settings of diagnostic record” on page 223
« [“SQLCancel - Cancel statement” on page 102|

194 ODBC Guide and Reference

SQLFreeHandle

« [‘SQLDisconnect - Disconnect from a data source” on page 144

Chapter 5. Functions 195

SQLFreeStmt

SQLFreeStmt - Free (or reset) a statement handle

Purpose
|Specification: | ODBC 1.0 | X/OPEN CLI ISO CLI
SQLFreeStmt () ends processing on the statement referenced by the statement
handle. Use this function to:
» Close a cursor
» Drop the statement handle and free the DB2 ODBC resources associated with
the statement handle.
SQLFreeStmt () is called after executing an SQL statement and processing the
results.
Syntax
SQLRETURN SQLFreeStmt (SQLHSTMT hstmt,
SQLUSMALLINT fOption);
Function arguments
Table 71. SQLFreeStmt arguments
Data type Argument Use Description
SQLHSTMT hstmt input Statement handle
SQLUSMALLINT fOption input Option which specified the manner of freeing the statement
handle. The option must have one of the following values:
* SQL_CLOSE
 SQL_DROP
* SQL_UNBIND

* SQL_RESET_PARAMS

Usage
SQLFreeStmt () can be called with the following options:

SQL_CLOSE
The cursor (if any) associated with the statement handle (hstmi) is closed
and all pending results are discarded. The application can reopen the
cursor by calling SQLExecute() or SQLExecDirect() with the same or
different values in the application variables (if any) that are bound to hstmt.
The cursor name is retained until the statement handle is dropped or the
next successful SQLSetCursorName() call. If a cursor is not associated with
the statement handle, this option has no effect (no warning or error is
generated).

You can also call the ODBC 3.0 API SQLCloseCursor() to close the cursor.
See ['SQLCloseCursor - Close cursor and discard pending results” on|

|page 104| for more information.

SQL_DROP
DB2 ODBC resources associated with the input statement handle are freed,
and the handle is invalidated. The open cursor, if any, is closed and all
pending results are discarded.

196 ODBC Guide and Reference

Return codes

SQLFreeStmt

The SQL_DROP option is deprecated in ODBC 3.0. SQLFreeHandle() with
HandleType set to SQL_HANDLE_STMT replaces the SQL_DROP option.

SQL_UNBIND
All the columns bound by previous SQLBindCo1() calls on this statement
handle are released (the association between application variables or file
references and result set columns is broken).

SQL_RESET_PARAMS
All the parameters set by previous SQLBindParameter() calls on this
statement handle are released (the association between application
variables or file references and parameter markers in the SQL statement for
the statement handle is broken).

SQLFreeStmt () has no effect on LOB locators. Call SQLExecDirect() with the FREE
LOCATOR statement to free a locator. See [‘Using large objects” on page 411 for
more information on using LOBs.

You can reuse a statement handle to execute a different statement. If the handle is:

» Associated with a query, catalog function, or SQLGetTypeInfo(), you must close
the cursor.

* Bound with a different number or type of parameters, the parameters must be
reset.

» Bound with a different number or type of column bindings, the columns must be
unbound.

Alternatively, you can drop the statement handle and allocate a new one.

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_ERROR
SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO is not returned if fOption is set to SQL_DROP, since
there would be no statement handle to use when SQLGetDiagRec() is called.

Diagnostics

Table 72. SQLFreeStmt SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HY092 Option type out of range. The value specified for the argument fOption is not SQL_CLOSE,
SQL_DROP, SQL_UNBIND, or SQL_RESET_PARAMS.

S1506 Error closing a file. Error encountered while trying to close a temporary file.

Restrictions

None.

Chapter 5. Functions 197

SQLFreeStmt

Example

See ['‘Example” on page 180]

References

« [*SQLAllocHandle - Allocate handle” on page 79

- ['SQLBindParameter - Binds a parameter marker to a buffer or LOB locator” on|
page 91|

* |“SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 16q

« [“SQLFetch - Fetch next row” on page 176

« ["SQLSetParam - Binds a parameter marker to a buffer’ on page 354

198 ODBC Guide and Reference

SQLGetConnectAttr

SQLGetConnectAttr - Get current attribute setting

Purpose

Syntax

| Specification:

ODBC 3.0 | X/OPEN CLI ISO CLI

SQLGetConnectAttr() returns the current setting of a connection attribute. These
attributes are set using the SQLSetConnectAttr()function.

SQLRETURN SQLGetConnectAttr (SQLHDBC ConnectionHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER *StringlengthPtr);

Function arguments

Table 73. SQLGetConnectAttr arguments

Data type

Argument

Use

Description

SQLHDBC

ConnectionHandle

input

Connection handle.

SQLINTEGER

Attribute

input

Connection attribute to retrieve. Refer to[Table 136 on

for a complete list of attributes.

SQLPOINTER

ValuePtr

input

A pointer to memory in which to return the current value of the
attribute specified by Afttribute. *ValuePtr will be a 32-bit
unsigned integer value or point to a null-terminated character
string. If the Attribute argument is a driver-specific value, the
value in *ValuePtr might be a signed integer.

SQLINTEGER

BufferLength

input

Information about the *ValuePtr argument.
* For ODBC-defined attributes:

— If ValuePtr points to a character string, this argument
should be the length of *ValuePtr.

— If ValuePtr points to an integer, BufferLength is ignored.
» For driver-defined attributes (IBM extension):

— If ValuePtr points to a character string, this argument
should be the length of *ValuePtr or SQL_NTS. If
SQL_NTS, the driver assumes that the length of
*ValuePtr is SQL_MAX_OPTIONS_STRING_LENGTH
bytes (excluding the null-terminator).

— If ValuePtr points to an integer, BufferLength is ignored.

SQLINTEGER *

StringLengthPtr

output

Pointer to a buffer in which to return the total number of bytes
(excluding the number of bytes returned for the
null-termination character) available to return in ValuePtr.

» If ValuePtris a null pointer, no length is returned.

 If the attribute value is a character string, and the number
of bytes available to return is greater than or equal to
BufferLength, the data in ValuePtr is truncated to
BufferLength minus the length of a null-termination
character and is null-terminated by DB2 ODBC.

» If Attribute does not denote a string, DB2 ODBC ignores
BufferLength and does not set StringLengthPtr.

Chapter 5. Functions 199

SQLGetConnectAttr

Usage

SQLGetConnectAttr() returns the current setting of a connection attribute. These
options are set using the SQLSetConnectAttr() function. For a list of valid
environment attributes, refer to[Table 136 on page 337

An application can set statement attributes using SQLSetConnectAttr(). However,
an application cannot use SQLGetConnectAttr() to retrieve statement attribute
values; it must call SQLGetStmtAttr() to retrieve the setting of statement attributes.

Return codes
- SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

+ SQL_NO_DATA

» SQL_INVALID_HANDLE

* SQL_ERROR

Diagnostics

Table 74. SQLGetConnectAttr SQLSTATEs
SQLSTATE Description

Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The data returned in *ValuePtr was truncated to be BufferLength
minus the length of a null termination character. The length of the
untruncated string value is returned in *StringLengthPtr. (Function
returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. An Attribute value was specified that required an open connection,
but the ConnectionHandle was not in a connected state.

HYO000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HYO0O01 Memory allocation failure. DB2 ODBC was not able to allocate memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for this
version of DB2 ODBC.

HYCO00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for this version of the DB2 ODBC
driver, but was not supported by the data source.

Restrictions

None.

Example

SQLINTEGER output_nts,autocommit;
rc = SQLGetConnectAttr(hdbc, SQL_AUTOCOMMIT,

&autocommit, 0, NULL) ;

CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;
printf("\nAutocommit is: ") ;
if (autocommit == SQL_AUTOCOMMIT ON)

printf("ON\n") ;
else
printf("OFF\n") ;

200 ODBC Guide and Reference

SQLGetConnectAttr

References

« [“SQLSetConnectAttr - Set connection attributes” on page 336|
« [‘SQLGetStmtAttr - Get current setting of a statement attribute” on page 270
« [“SQLSetStmtAttr - Set options related to a statement” on page 360

Chapter 5. Functions 201

SQLGetConnectOption

SQLGetConnectOption - Returns current setting of a connect option

Purpose
|Specification: | ODBC 1.0 | X/OPEN CLI |
In ODBC 3.0, SQLGetConnectAttr() replaces the ODBC 2.0 function
SQLGetConnectOption(). See SQLGetConnectAttr() for more information.
SQLGetConnectOption() returns the current settings for the specified connection
option.
These options are set using the SQLSetConnectOption() function.
Syntax
SQLRETURN SQLGetConnectOption (
SQLHDBC hdbc,
SQLUSMALLINT fOption,
SQLPOINTER pvParam);
Function arguments
Table 75. SQLGetConnectOption arguments
Data type Argument Use Description
HDBC hdbc input Connection handle.
SQLUSMALLINT fOption input Option to set. See[Table 136 on page 337] for the complete list

of connection options and their descriptions.

SQLPOINTER pvParam input/output Value associated with fOption. Depending on the value of
fOption, this can be a 32-bit integer value, or a pointer to a
null terminated character string. The maximum length of any
character string returned is
SQL_MAX_OPTION_STRING_LENGTH bytes (excluding the
null-terminator).

Usage

If SQLGetConnectOption() is called, and the specified fOption has not been set
using SQLSetConnectOption and does not have a default, then
SQLGetConnectOption() returns SQL_NO_DATA_FOUND.

Although SQLSetConnectOption() can be used to set statement options,
SQLGetConnectOption() cannot be used to retrieve statement options, use
SQLGetStmtOption() instead.

For a list of valid connect options, see|Table 136 on page 337} in the function
description for SQLSetConnectAttr().

Return codes
« SQL_SUCCESS
« SQL_SUCCESS_WITH_INFO
¢ SQL_ERROR
¢ SQL_INVALID_HANDLE

202 ODBC Guide and Reference

Diagnostics

Table 76. SQLGetConnectOption SQLSTATEs
SQLSTATE Description

SQLGetConnectOption

Explanation

40003 08S01 Communication link failure.

The function is called after the communication link source to which
DB2 ODBC is connected, failed during the processing of a previous
request.

S1001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
S$1009 Invalid argument value. The pvParam argument is NULL.
S$1092 Option type out of range. An invalid fOption value is specified.
S1C00 Driver not capable. The fOption is recognized, but is not supported.
Restrictions
None.
Example
[* ... %/

rc = SQLGetConnectOption(hdbc, SQL_AUTOCOMMIT, &autocommit);
printf("Autocommit is: ");
if (autocommit == SQL_AUTOCOMMIT ON)

printf("ON\n");

else

printf("OFF\n");

[* o0 %/

References

» [*SQLSetConnectOption - Set connection option” on page 345|

» [*SQLSetStmtOption - Set statement option” on page 367|

« [*SQLGetStmtOption - Returns current setting of a statement option” on page 273|

Chapter 5. Functions 203

SQLGetCursorName

SQLGetCursorName - Get cursor name

Purpose
|Specification: | ODBC 1.0 X/OPEN CLI | ISO CLI
SQLGetCursorName() returns the cursor name associated with the input statement
handle. If a cursor name is explicitly set by calling SQLSetCursorName(), this name is
returned; otherwise, an implicitly generated name is returned.
Syntax
SQLRETURN SQLGetCursorName (SQLHSTMT hstmt,
SQLCHAR FAR *szCursor,
SQLSMALLINT cbCursorMax,

SQLSMALLINT FAR =pchCursor);

Function arguments

Table 77. SQLGetCursorname arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLCHAR * szCursor output Cursor name

SQLSMALLINT cbCursorMax input Length of buffer szCursor

SQLSMALLINT * pcbCursor output Number of bytes available to return for szCursor
Usage

SQLGetCursorName () returns the cursor name set explicitly with SQLSetCursorName(),
or if no name is set, it returns the cursor name internally generated by DB2 ODBC.

If a name is set explicitly using SQLSetCursorName(), this name is returned until the
statement is dropped, or until another explicit name is set.

Internally generated cursor names always begin with SQLCUR or SQL_CUR. For
query result sets, DB2 ODBC also reserves SQLCURQRS as a cursor name prefix.
Cursor names are always 18 characters or less, and are always unique within a
connection.

Return codes

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_ERROR

* SQL_INVALID_HANDLE

204 ODBC Guide and Reference

SQLGetCursorName

Diagnostics

Table 78. SQLGetCursorName SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The cursor name returned in szCursor is longer than the value in

cbCursorMax, and is truncated to cbCursorMax - 1 bytes. The
argument pcbCursor contains the length of the full cursor name
available for return. The function returns
SQL_SUCCESS_WITH_INFO.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.
HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HY010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.
HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support
error. execution or completion of the function.
HYO015 No cursor name available. There is no open cursor on the statement handle specified by hstmt
and no cursor name is set with SQLSetCursorName().
HY090 Invalid string or buffer length. The value specified for the argument cbCursorMax is less than 0.
HY092 Option type out of range. The value specified for the argument hstmt is not valid.
Restrictions
ODBC generated cursor names begin with SQL_CUR. X/Open CLI generated
cursor names begin with either SQLCUR or SQL_CUR. DB2 ODBC also generates
a cursor name that begins with SQLCUR or SQL_CUR.
Example

[k Fkkkdk ko k ok ko k ok k&

""" *******"""'"'"""'*****************/

/* Perform a positioned update on a column of a cursor. */
/**/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>

#include "sqlclil.h"

int main()

{
SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT, hStmt2 = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS, rc2 = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char *pDSN = "STLEC1";

205

Chapter 5. Functions

SQLGetCursorName

SWORD cbCursor;

SDWORD cbValuel;

SDWORD cbValue2;

char employee [30];

int salary = 0;

char cursor_name [20];

char update [200];

char *stmt = "SELECT NAME, SALARY FROM EMPLOYEE WHERE

SALARY > 100000 FOR UPDATE OF SALARY";

(void) printf ("#*** Entering CLIPO4.\n\n");

/***/

/* Allocate environment handle */
/***/

RETCODE = SQLA1locHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Allocate connection handle to DSN */
/***/

RETCODE = SQLA1locHandle(SQL_HANDLE DBC, hEnv, &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle
goto dberror;

/***/

/* CONNECT TO data source (STLEC1) */

/***/

RETCODE = SQLConnect (hDbc, // Connect handle
(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated

NULL, // Null UID
0 H)
NULL, // Null Auth string
0);
if(RETCODE != SQL_SUCCESS) // Connect failed

goto dberror;
/***/

/* Allocate statement handles */
/***/

rc = SQLATTocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);

if (rc != SQL_SUCCESS)
goto exit;

206 ODBC Guide and Reference

SQLGetCursorName

rc =SQLATTocHandle(SQL_HANDLE_STMT, hDbc, &hStmt2);

if (rc != SQL_SUCCESS)
goto exit;

/***/

/* Execute query to retrieve employee names */
/***/

rc = SQLExecDirect (hStmt,
(SQLCHAR *) stmt,
strlen(stmt));

if (rc != SQL_SUCCESS)

{
(void) printf ("s%** EMPLOYEE QUERY FAILED.\n");
goto dberror;

}

/***/

/* Extract cursor name -- required to build UPDATE statement. */
/***/

rc = SQLGetCursorName (hStmt,
(SQLCHAR *) cursor_name,
sizeof(cursor_name),
&cbCursor) ;

if (rc != SQL_SUCCESS)

{
(void) printf ("#**x GET CURSOR NAME FAILED.\n");
goto dberror;

}

(void) printf ("#*** Cursor Name is %s.\n");

rc = SQLBindCol (hStmt, // bind employee name
1’
SQL_C_CHAR,
employee,
sizeof (employee),
&cbValuel);

if (rc != SQL_SUCCESS)

(void) printf ("#%*x BIND OF NAME FAILED.\n");
goto dberror;

}

rc = SQLBindCol (hStmt, // bind employee salary
2,
SQL_C_LONG,
&salary,
Os
&cbValue?);

if (rc != SQL_SUCCESS)

{
(void) printf ("s**x BIND OF SALARY FAILED.\n");
goto dberror;

}

Chapter 5. Functions

207

SQLGetCursorName

/***/

/* Answer set is available -- Fetch rows and update salary x/
/***/

while (((rc = SQLFetch (hStmt)) == SQL_SUCCESS) &&;
(rc2 == SQL_SUCCESS))
{

int new_salary = salary*l.1;

(void) printf ("#%** Employee Name %s with salary %d. New salary = %d.\n",
employee,
salary,
new_salary);

sprintf (update,
"UPDATE EMPLOYEE SET SALARY = %d WHERE CURRENT OF %s",
new_salary,
cursor_name) ;

(void) printf ("s***x Update statement is : %s\n", update);

rc2 = SQLExecDirect (hStmt2,
(SQLCHAR =*) update,
SQL_NTS);
}

if (rc2 1= SQL_SUCCESS)
{

(void) printf ("s%* EMPLOYEE UPDATE FAILED.\n");
goto dberror;

}

/***/

/* Reexecute query to validate that salary was updated */
/***/

rc = SQLCloseCursor (hStmt);

SQLExecDirect (hStmt,
(SQLCHAR *) stmt,
strien(stmt));

rc

if (rc != SQL_SUCCESS)
{
(void) printf ("#%%x EMPLOYEE QUERY FAILED.\n");
goto dberror;
}
while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
{
(void) printf ("#**x Employee Name %s has salary %d.\n",

employee,
salary);

208 ODBC Guide and Reference

References

SQLGetCursorName

/***/

/* Deallocate statement handles */
/***/

rc =SQLFreeHandle (SQL_HANDLE_STMT, hStmt);

rc =SQLFreeHandle (SQL_HANDLE_STMT, hStmt2);

/***/

/* DISCONNECT from data source */

/***/
RETCODE = SQLDisconnect (hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Deallocate connection handle */
/***/

RETCODE = SQLFreeHandle (SQL_HANDLE DBC, hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Free environment handle */
/***/

RETCODE =SQLFreeHandle (SQL_HANDLE_ENV, hEnv);

if (RETCODE == SQL_SUCCESS)
goto exit;

dberror:
RETCODE=12;

exit:
(void) printf ("#*** Exiting CLIPO4.\n\n");

return RETCODE;

“SQLExecute - Execute a statement” on page 166)|
“SQLExecDirect - Execute a statement directly” on page 161|
“SQLPrepare - Prepare a statement” on page 300
“SQLSetCursorName - Set cursor name” on page 34

Chapter 5. Functions

209

SQLGetData

SQLGetData - Get data from a column

Purpose
|Specification: | ODBC 1.0 | X/OPEN CLI ISO CLI
SQLGetData() retrieves data for a single column in the current row of the result set.
This is an alternative to SQLBindCo1(), which is used to transfer data directly into
application variables or LOB locators on each SQLFetch() or SQLExtendedFetch()
call. SQLGetData() can also be used to retrieve large data values in pieces.
SQLFetch() must be called before SQLGetData().
After calling SQLGetData() for each column, SQLFetch() or SQLExtendedFetch() is
called to retrieve the next row.
Syntax
SQLRETURN ~ SQLGetData (SQLHSTMT hstmt,
SQLUSMALLINT icol,
SQLSMALLINT fCType,
SQLPOINTER rgbValue,
SQLINTEGER cbValueMax,

SQLINTEGER FAR =*pcbValue);

Function arguments

Table 79. SQLGetData arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT icol input Column number for which the data retrieval is requested.
SQLSMALLINT fCType input The C data type of the column identifier by icol. The following

types are supported:

* SQL_C_BINARY

« SQL_C_BIT

*+ SQL_C_BLOB_LOCATOR
*+ SQL_C_CHAR

« SQL_C_CLOB_LOCATOR
« SQL_C_DBCHAR

*+ SQL_C_DBCLOB_LOCATOR
 SQL_C_DOUBLE
 SQL_C_FLOAT

*+ SQL_C_LONG

*+ SQL_C_SHORT

» SQL_C_TYPE_DATE

« SQL_C_TYPE_TIME

* SQL_C_TYPE_TIMESTAMP
* SQL_C_TINYINT

« SQL_C_WCHAR

Specifying SQL_C_DEFAULT results in the data being
converted to its default C data type, see [Table 4 on page 31|
for more information.

SQLPOINTER rgbValue output Pointer to buffer where the retrieved column data is to be
stored.
SQLINTEGER cbValueMax input Maximum size of the buffer pointed to by rgbValue.

210 ODBC Guide and Reference

SQLGetData

Table 79. SQLGetData arguments (continued)

Data Type

Argument Use Description

SQLINTEGER *

pcbValue output Pointer to value which indicates the number of bytes DB2
ODBC has available to return in the rgbValue buffer. If the
data is being retrieved in pieces, this contains the number of
bytes still remaining.

The value is SQL_NULL_DATA if the data value of the column
is null. If this pointer is NULL and SQLFetch() has obtained a
column containing null data, then this function fails because it
has no means of reporting this.

If SQLFetch() has fetched a column containing binary data,
then the pointer to pcbValue must not be NULL or this function
fails because it has no other means of informing the
application about the length of the data retrieved in the
rgbValue buffer.

Note: DB2 ODBC provides some performance enhancement if rgbValue is placed consecutively in memory after

pcbValue.

Usage

SQLGetData() can be used with SQLBindCo1() for the same result set, as long as

SQLFetch() and not SQLExtendedFetch() is used. The general steps are:

1. SQLFetch() - advances cursor to first row, retrieves first row, transfers data for
bound columns.

2. SQLGetData() - transfers data for the specified column.

3. Repeat step 2 for each column needed.

4. SQLFetch() - advances cursor to next row, retrieves next row, transfers data for
bound columns.

5. Repeat steps 2, 3 and 4 for each row in the result set, or until the result set is
no longer needed.

SQLGetData() can also be used to retrieve long columns if the C data type (fCType)
is SQL_C_CHAR, SQL_C_BINARY, SQL_C_DBCHAR, or if fCType is
SQL_C_DEFAULT and the column type denotes a binary or character string.

To retrieve UCS-2 data, set fCType to SQL_C_WCHAR.

Upon each SQLGetData() call, if the data available for return is greater than or equal
to cbValueMax, truncation occurs. Truncation is indicated by a function return code
of SQL_SUCCESS_WITH_INFO coupled with a SQLSTATE denoting data
truncation. The application can call SQLGetData() again, with the same icol value, to
get subsequent data from the same unbound column starting at the point of
truncation. To obtain the entire column, the application repeats such calls until the
function returns SQL_SUCCESS. The next call to SQLGetData() returns
SQL_NO_DATA_FOUND.

Although SQLGetData() can be used for the sequential retrieval of LOB column data,
use the DB2 ODBC LOB functions if only a portion of the LOB data or a few
sections of the LOB column data are needed:

1. Bind the column to a LOB locator.
2. Fetch the row.

Chapter 5. Functions 211

SQLGetData

Return codes

3. Use the locator in a SQLGetSubString() call to retrieve the data in pieces.
(SQLGetLength() and SQLGetPosition() might also be required for determining
the values of some of the arguments).

4. Repeat step 2.

Truncation is also affected by the SQL_MAX_LENGTH statement option. The
application can specify that truncation is not to be reported by calling
SQLSetStmtAttr() with SQL_MAX_LENGTH and a value for the maximum length to
return for any one column, and by allocating a rgbValue buffer of the same size
(plus the null-terminator). If the column data is larger than the set maximum length,
SQL_SUCCESS is returned and the maximum length, not the actual length is
returned in pcbValue.

To discard the column data part way through the retrieval, the application can call
SQLGetData() with icol set to the next column position of interest. To discard data
that has not been retrieved for the entire row, the application should call SQLFetch ()
to advance the cursor to the next row; or, if it is not interested in any more data
from the result set, call SQLFreeStmt () or SQLCloseCursor() to close the cursor.

The fCType input argument determines the type of data conversion (if any) needed
before the column data is placed into the storage area pointed to by rgbValue.

For SQL graphic column data:

» The length of the rgbValue buffer (cbValueMax) should be a multiple of 2. The
application can determine the SQL data type of the column by first calling
SQLDescribeCol() or SQLColAttribute().

* The pointer to pcbValue must not be NULL since DB2 ODBC stores the number
of octets stored in rgbValue.

 If the data is retrieved in piecewise fashion, DB2 ODBC attempts to fill rgbValue
to the nearest multiple of two octets that is still less than or equal to cbValueMax.
This means if cbValueMax is not a multiple of two, the last byte in that buffer is
untouched; DB2 ODBC does not split a double-byte character.

The contents returned in rgbValue are always null-terminated unless the column
data to be retrieved is binary, or if the SQL data type of the column is graphic
(DBCS) and the C buffer type is SQL_C_CHAR. If the application is retrieving the
data in multiple chunks, it should make the proper adjustments (for example, strip
off the null-terminator before concatenating the pieces back together assuming the
null termination environment attribute is in effect).

Truncation of numeric data types is reported as a warning if the truncation involves
digits to the right of the decimal point. If truncation occurs to the left of the decimal
point, an error is returned (see the 'Diagnostics' section).

Applications that use SQLExtendedFetch() to retrieve data should call SQLGetData()
only when the rowset size is 1 (equivalent to issuing SQLFetch()). SQLGetData() can
only retrieve column data for a row where the cursor is currently positioned.

» SQL_SUCCESS

» SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

» SQL_INVALID_HANDLE

» SQL_NO_DATA_FOUND

212 ODBC Guide and Reference

SQLGetData

SQL_NO_DATA_FOUND is returned when the preceding SQLGetData() call has
retrieved all of the data for this column.

SQL_SUCCESS is returned if a zero-length string is retrieved by SQLGetData(). If
this is the case, pcbValue contains 0, and rgbValue contains a null terminator.

If the preceding call to SQLFetch() failed, SQLGetData() should not be called since
the result is undefined.

Diagnostics

Table 80. SQLGetData SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. Data returned for the specified column (icol) is truncated. String or
numeric values are right truncated. SQL_SUCCESS_WITH_INFO is
returned.

07006 Invalid conversion. The data value cannot be converted to the C data type specified by
the argument fCType.

The function has been called before for the same icol value but with
a different fCType value.

07009 Invalid column number. The specified column is less than 0 or greater than the number of
result columns.

The specified column is 0, but DB2 ODBC does not support ODBC
bookmarks (icol = 0).
SQLExtendedFetch() is called for this result set.

22002 Invalid output or indicator The pointer value specified for the argument pcbValue is a null

buffer specified. pointer and the value of the column is null. There is no means to
report SQL_NULL_DATA.

22008 Invalid datetime format or Datetime field overflow occurred; for example, an arithmetic

datetime field overflow. operation on a date or timestamp has a result that is not within the
valid range of dates, or a datetime value cannot be assigned to a
bound variable because it is too small.

22018 Error in assignment. A returned value is incompatible with the data type denoted by the
argument fCType.

24000 Invalid cursor state. The previous SQLFetch() resulted in SQL_ERROR or
SQL_NO_DATA found; as a result, the cursor is not positioned on a
row.

40003 08S01 Communication link failure. The communication link between the application and data source

fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY003 Program type out of range. fCType is not a valid data type or SQL_C_DEFAULT.

HY009 Invalid use of a null pointer. The argument rgbValue is a null pointer.

The argument pcbValue is a null pointer; the column SQL data type
is graphic (DBCS); and fcType is set to SQL_C_CHAR.

Chapter 5. Functions 213

SQLGetData

Table 80. SQLGetData SQLSTATEs (continued)
SQLSTATE Description

Explanation

HYO010 Function sequence error.

The specified hstmt is not in a cursor positioned state. The function
is called without first calling SQLFetch().

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO013 Unexpected memory handling
error.

DB2 ODBC is not able to access memory required to support
execution or completion of the function.

HYO019 Numeric value out of range.

Returning the numeric value (as numeric or string) for the column
causes the whole part of the number to be truncated.

HY090 Invalid string or buffer length.

The value of the argument cbValueMax is less than 0 and the
argument fCType is SQL_C_CHAR, SQL_C_BINARY,
SQL_C_DBCHAR or (SQL_C_DEFAULT and the default type is one
of SQL_C_CHAR, SQL_C_BINARY, or SQL_C_DBCHAR).

HYCO00 Driver not capable.

Restrictions

The SQL data type for the specified data type is recognized but not
supported by DB2 ODBC.

The requested conversion from the SQL data type to the application
data fCType cannot be performed by DB2 ODBC or the data
source.

SQLExtendedFetch() is called for the specified hstmt.

ODBC has defined column 0 for bookmarks. DB2 ODBC does not support

bookmarks.

Example

See ['‘Example” on page 180|for a comparison between using bound columns and

using SQLGetData().

214 ODBC Guide and Reference

/**/

/* Populate BIOGRAPHY table from flat file text. Insert x/
/* VITAE in 80-byte pieces via SQLPutData. Also retrieve */
/* NAME, UNIT and VITAE for all members. VITAE is retrieved*/
/* via SQLGetData. */

/**/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlclil.h"

#define TEXT_SIZE 80

int insert_bio (SQLHSTMT hStmt, // insert_bio prototype
char *bio,
int bcount);
int main()
{
SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT, hStmt2 = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
FILE *fp;
SQLINTEGER RETCODE = 03
char pTable [200];
char *pDSN = "STLEC1";
UDWORD pirow;
SDWORD chValue;

Chapter 5.

SQLGetData

Functions 215

SQLGetData

char *7_stmt = "INSERT INTO BIOGRAPHY VALUES (7, 2,)"
char *query = "SELECT NAME, UNIT, VITAE FROM BIOGRAPHY";
char text [TEXT _SIZE]; // file text

char vitae [3200]; // biography text

char Narrative [TEXT_SIZE];

SQLINTEGER vitae_ind = SQL_DATA_AT_EXEC; // bio data is

// passed at execute time
// via SQLPutData

SQLINTEGER vitae_cbValue = TEXT_SIZE;
char *t = NULL;

char *c = NULL;

char name [21];

SQLINTEGER name_ind = SQL_NTS;
SQLINTEGER name_cbValue = sizeof(name);
char unit [31];

SQLINTEGER unit_ind = SQL_NTS;
SQLINTEGER unit_cbValue = sizeof(unit);
char tmp [80];

char *token = NULL, *pbio = vitae;
char insert = SQL_FALSE;

int i, bcount = 0;

(void) printf ("#*x* Entering CLIP09.\n\n");

/***/

/* Allocate Environment Handle */
/***/

RETCODE = SQLATTocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, hEnv, &hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Allocate Connection Handle to DSN */

/***/

RETCODE = SQLATTocHandle(SQL_HANDLE _DBC, hEnv,

&hDbc) ;
if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle
goto dberror;
YR I kKK T I IR KRRk kI hh* kKK Kk R S e s /
/* CONNECT TO data source (STLEC1) */

/***/

RETCODE = SQLConnect (hDbc, // Connect handle
(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated

NULL, // Null UID
o,
NULL, // Null Auth string
0);
if(RETCODE != SQL_SUCCESS) // Connect failed

goto dberror;

216 ODBC Guide and Reference

SQLGetData

/***/

/* Allocate Statement Handles */

/***/

rc = SQLATTocHandle(SQL_HANDLE_STMT, hDbc,
&hStmt) ;

if (rc != SQL_SUCCESS)

{
(void) printf ("+**x Allocate Statement Handle Failed.\n");
goto dberror;

}

rc = SQLATTocHandle(SQL_HANDLE_STMT, hDbc,
&hStmt2) ;

if (rc 1= SQL_SUCCESS)
{

(void) printf ("«**x Allocate Statement Handle Failed.\n");
goto dberror;

R — o 5k 5o 36 e ek ok ok ok ok ok ok o e ek ok ok ok ok o N ——

/* Prepare INSERT statement. */

/***/

rc = SQLPrepare (hStmt,
(SQLCHAR *) 1i_stmt,
SQL_NTS);

if (rc 1= SQL_SUCCESS)
{

(void) printf ("#**x Prepare of INSERT Failed.\n");
goto dberror;

}
[F gk kK R e e e o o o e o ok ko o e e o ok ok o ok ok o o ok o o o o ok ok o o o o ok o ok o kK *xk [
/* Bind NAME and UNIT. Bind VITAE so that data can be passed */
/* via SQLPutData. */
/***/
rc = SQLBindParameter (hStmt, // bind NAME
1,
SQL_PARAM_INPUT,
SQL_C_CHAR,
SQL_CHAR,
sizeof (name),
05
name,

sizeof (name),
&name_ind) ;

if (rc != SQL_SUCCESS)
{
(void) printf ("s**x Bind of NAME Failed.\n");

goto dberror;

}

Chapter 5. Functions 217

SQLGetData

rc = SQLBindParameter (hStmt, // bind Branch
2,
SQL_PARAM_INPUT,
SQL_C_CHAR,
SQL_CHAR,
sizeof (unit),
0,
unit,
sizeof (unit),
&unit_ind);

if (rc != SQL_SUCCESS)

{
(void) printf ("#%%* Bind of UNIT Failed.\n");
goto dberror;

}

rc = SQLBindParameter (hStmt, // bind Rank
3,
SQL_PARAM_INPUT,
SQL_C_CHAR,
SQL_LONGVARCHAR,
3200,
0,
(SQLPOINTER) 3,
0,
&vitae_ind);

if (rc != SQL_SUCCESS)

{
(void) printf ("s%*x Bind of VITAE Failed.\n");
goto dberror;

/***/
/* Read Biographical text from flat file */
RIS ok kxx I IR KRk hh ko rhhhh kK * ok R R R R A s /

if ((fp = fopen ("DD:BIOGRAF", "r")) == NULL) // open command file
{

rc = SQL_ERROR; // open failed

goto exit;

}

/***/

/* Process file and insert Biographical text */
/***/

while (((t = fgets (text, sizeof(text), fp)) != NULL) &&;
(rc == SQL_SUCCESS))

{
if (text[0] == #') // if commander data
if (insert) // if BIO data to be inserted
{
rc = insert_bio (hStmt,
vitae,
bcount); // insert row into BIOGRAPHY Table
bcount = 0; // reset text line count
pbio = vitae; // reset text pointer
}

218 ODBC Guide and Reference

token = strtok (text+l, ","); // get member NAME

(void) strcpy (name, token);

token = strtok (NULL, "#"); // extract UNIT

(void) strcpy (unit, token); // copy to local variable
// SQLPutData

SQLGetData

insert = SQL_TRUE; // have row to insert
}
else
{
memset (pbio, ' ', sizeof(text));
strcpy (pbio, text); // populate text
i = strlen (pbio); // remove '\n' and '\0'
pbio [i--] ="' ';
pbio [i] ="' ";
pbio += sizeof (text); // advance pbio
bcount++; // one more text line
}
}
if (insert) // if BIO data to be inserted
{
rc = insert_bio (hStmt,
vitae,
bcount) ; // insert row into BIOGRAPHY Table
}
fclose (fp); // close text flat file
JEZTIETEE RIS R 2 2 R R R R R T T TR E *kkxrhhhhh kAR *K*A *xk [
/* Commit Insert of rows */

/***/

rc =SQLEndTran(SQL_HANDLE_DBC, hDbc, SQL_COMMIT);
if (rc != SQL_SUCCESS)
{

(void) printf ("s*x%x COMMIT FAILED.\n");
goto dberror;

}

/‘k*****‘k**‘k‘k*‘k‘k**‘k‘k*‘k‘k**k‘k‘k**‘k**‘k**‘k‘k**‘k**‘k‘k*‘k*********************/
/* Open query to retrieve NAME, UNIT and VITAE. Bind NAME and x/
/* UNIT but Teave VITAE unbound. Retrieved using SQLGetData. */

[FrK R gk gk Kk kk ko k ok kR ok ok k ok ok k ko k ko kok ok k ok ok k ok Fkkkkkkkkkkkkkkhk [

RETCODE = SQLPrepare (hStmt2,
(SQLCHAR =*)query,
strlen(query));

if (RETCODE != SQL_SUCCESS)

{
(void) printf ("#*xx Prepare of Query Failed.\n");
goto dberror;

}

Chapter 5. Functions 219

SQLGetData

RETCODE = SQLExecute (hStmt2);

if (RETCODE != SQL_SUCCESS)

{
(void) printf ("#%** Query Failed.\n");
goto dberror;

}

RETCODE = SQLBindCol (hStmt2, // bind NAME
1,
SQL_C_DEFAULT,
name,

sizeof (name),
&name_cbValue);

if (RETCODE != SQL_SUCCESS)

{
(void) printf ("#%%* Bind of NAME Failed.\n");
goto dberror;

1

RETCODE = SQLBindCol (hStmt2, // bind UNIT
2,
SQL_C_DEFAULT,
unit,

sizeof (unit),
&unit_cbValue);

if (RETCODE != SQL_SUCCESS)

{
(void) printf ("#%%x Bind of UNIT Failed.\n");
goto dberror;

}

while ((RETCODE = SQLFetch (hStmt2)) != SQL_NO_DATA_FOUND)

{
(void) printf ("s+** Name is %s. Unit is %s.\n\n", name, unit);
(void) printf ("#%** Vitae follows:\n\n");

for (i = 0; (i < 3200 & RETCODE != SQL_NO_DATA_FOUND); i += TEXT SIZE)

RETCODE = SQLGetData (hStmt2,
3,
SQL_C_CHAR,
Narrative,
sizeof (Narrative) + 1,
&vitae_chValue);

if (RETCODE != SQL_NO_DATA_FOUND)
(void) printf ("%s\n", Narrative);
}

/***/
/* Deallocate Statement Handles */

/***/

rc =SQLATTocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);

rc =SQLATTocHandle(SQL_HANDLE_STMT, hDbc, &hStmt2);

220 ODBC Guide and Reference

/***/

/* DISCONNECT from data source */

/***/

RETCODE = SQLDisconnect (hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Deallocate Connection Handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE DBC, hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Free Environment Handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE_ENV, hEnv);

if (RETCODE == SQL_SUCCESS)
goto exit;

dberror:
RETCODE=12;

exit:
(void) printf ("s*** Exiting CLIP09.\n\n");

return RETCODE;

}

/***/

/* function insert_bio is invoked to insert one row into the */
/* BIOGRAPHY Table. The biography text is inserted in sets of */
/* 80 bytes via SQLPutData. */

/***/

int insert_bio (SQLHSTMT hStmt,

char *vitae,
int bcount)
{
SQLINTEGER rc = SQL_SUCCESS;
SQLPOINTER prgbValue;
int i3
char *text;

SQLGetData

Chapter 5. Functions 221

SQLGetData

/***/
/* NAME and UNIT are bound... VITAE is provided after execution =/
/* of the INSERT using SQLPutData. */

[k ok ko ke ko ko /

rc = SQLExecute (hStmt);

if (rc != SQL_NEED_DATA) // expect SQL_NEED DATA
{
rc = 12;
(void) printf ("s**x NEED DATA not returned.\n");
goto exit;

}

/***/

/* Invoke SQLParamData to position ODBC driver on input parameters/
/**** """" khkhkkkkhkhkrhhkkhhkhhhhkhrhhrk ******************************/

if ((rc = SQLParamData (hStmt,
&prgbValue)) != SQL_NEED DATA)
{

rc = 12;
(void) printf ("s%%* NEED DATA not returned.\n");
goto exit;

}

/***/

/* Iterate through VITAE in 80 byte increments.... pass to */
/* ODBC Driver via SQLPutData. */

/***/

for (i = 0, text = vitae, rc = SQL_SUCCESS;
(i < bcount) && (rc == SQL_SUCCESS);
i++, text += TEXT_SIZE)

rc = SQLPutData (hStmt,
text,
TEXT _SIZE);
}

/***/
/* Invoke SQLParamData to trigger ODBC driver to execute the */

/* statement. */
/***/

if ((rc = SQLParamData (hStmt,
&prgbValue)) != SQL_SUCCESS)
{

rc = 12;
(void) printf ("#*x% INSERT Failed.\n");

exit:
return (rc);

References

+ [“SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 169
+ [‘SQLFetch - Fetch next row” on page 176)

222 ODBC Guide and Reference

SQLGetDiagRec

SQLGetDiagRec - Get multiple field settings of diagnostic record

Purpose

Syntax

| Specification:

ODBC 3.0 | X/OPEN CLI | ISO CLI

SQLGetDiagRec() returns the current values of multiple fields of a diagnostic record
that contains error, warning, and status information. SQLGetDiagRec () returns
several commonly used fields of a diagnostic record, including the SQLSTATE, the
native error code, and the error message text.

SQLRETURN SQLGetDiagRec (SQLSMALLINT HandleType,
SQLHANDLE Handle,
SQLSMALLINT RecNumber,
SQLCHAR *SQLState,
SQLINTEGER *NativeErrorPtr,
SQLCHAR *MessageText,
SQLSMALLINT BufferLength,
SQLSMALLINT *xTextLengthPtr);

Function arguments

Table 81. SQLGetDiagRec arguments

Data type Argument Use Description

SQLSMALLINT HandleType input A handle type identifier that describes the type of handle for
which diagnostics are desired. Must be one of the following:
* SQL_HANDLE_ENV
* SQL_HANDLE_DBC
 SQL_HANDLE_STMT

SQLHANDLE Handle input A handle for the diagnostic data structure, of the type
indicated by HandleType.

SQLSMALLINT RecNumber input Indicates the status record from which the application seeks
information. Status records are numbered from 1.

SQLCHAR * SQLState output Pointer to a buffer in which to return a five-character
SQLSTATE code pertaining to the diagnostic record
RecNumber. The first two characters indicate the class; the
next three indicate the subclass.

SQLINTEGER * NativeErrorPtr output Pointer to a buffer in which to return the native error code,
specific to the data source.

SQLCHAR * MessageText output Pointer to a buffer in which to return the error message text.
The fields returned by SQLGetDiagRec() are contained in a text
string.

SQLSMALLINT BufferLength input Length (in bytes) of the *MessageText buffer.

SQLSMALLINT * TextLengthPtr output Pointer to a buffer in which to return the total number of bytes

(excluding the number of bytes required for the null
termination character) available to return in *MessageText. If
the number of bytes available to return is greater than
BufferLength, the error message text in *MessageText is
truncated to BufferLength minus the length of a null
termination character.

Chapter 5. Functions 223

SQLGetDiagRec

Usage

An application typically calls SQLGetDiagRec() when a previous call to a DB2 ODBC
function has returned anything other than SQL_SUCCESS. However, since any
function can post zero or more errors each time it is called, an application can call
SQLGetDiagRec() after any function call. An application can call SQLGetDiagRec()
multiple times to return some or all of the records in the diagnostic data structure.

SQLGetDiagRec() retrieves only the diagnostic information most recently associated
with the handle specified in the Handle argument. If the application calls any other
function, except SQLGetDiagRec() (or ODBC 2.0 functions SQLGetDiagRec()), any
diagnostic information from the previous calls on the same handle is lost.

An application can scan all diagnostic records by looping, incrementing RecNumber,
as long as SQLGetDiagRec() returns SQL_SUCCESS.

Calls to SQLGetDiagRec() are non-destructive to the diagnostic record fields. The
application can call SQLGetDiagRec() again at a later time to retrieve a field from a
record, as long as no other function, except SQLGetDiagRec() (or ODBC 2.0
functions SQLGetDiagRec()), has been called in the interim.

Return codes

+ SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
« SQL_INVALID_HANDLE
SQL_ERROR

Diagnostics
SQLGetDiagRec() does not post error values. It uses the following return values to
report the outcome of its own execution:
* SQL_SUCCESS: The function successfully returned diagnostic information.

* SQL_SUCCESS_WITH_INFO: The *MessageText buffer was too small to hold
the requested diagnostic message. No diagnostic records were generated. To
determine that a truncation occurred, the application must compare BufferLength
to the actual number of bytes available, which is written to *StringLengthPtr.

* SQL_INVALID_HANDLE: The handle indicated by HandleType and Handle was
not a valid handle.

+ SQL_ERROR: One of the following occurred:
— RecNumber was negative or O.
— BufferLength was less than zero.

* SQL_NO_DATA: RecNumber was greater than the number of diagnostic records
that existed for the handle specified in Handle. The function also returns
SQL_NO_DATA for any positive RecNumber if there are no diagnostic records for
Handle.

Restrictions
None.

Example
Refer to sample program DSN8O3VP in DSN710.SDSNSAMP.

224 ODBC Guide and Reference

SQLGetDiagRec

References

+ [‘SQLGetlInfo - Get general information” on page 234|
« [‘SQLFreeHandle - Free handle resources” on page 193]
* [‘SQLFreeStmt - Free (or reset) a statement handle” on page 196

Chapter 5. Functions 225

SQLGetEnvAttr

SQLGetEnvAtir - Returns current setting of an environment attribute

Purpose
|Specification: | | X/OPEN CLI | ISO CLI |
SQLGetEnvAttr() returns the current setting for the specified environment attribute.
These options are set using the SQLSetEnvAttr() function.
Syntax
SQLRETURN SQLGetEnvAttr (SQLHENV EnvironmentHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER *StringlengthPtr);

Function arguments

Table 82. SQLGetEnvAttr arguments

Data type Argument Use Description

SQLHENV EnvironmentHandle input Environment handle.

SQLINTEGER Attribute input Attribute to retrieve. See(Table 145 on page 351|for the list of
environment attributes and their descriptions.

SQLPOINTER ValuePtr output The current value associated with Attribute. The type of the
value returned depends on Afttribute.

SQLINTEGER BufferLength input Maximum size of buffer pointed to by ValuePtr.

» If ValuePtr points to a character string, this argument should
be the length of *ValuePtr or SQL_NTS. If SQL_NTS, the
driver assumes that the length of *ValuePtris
SQL_MAX_OPTIONS_STRING_LENGTH bytes (excluding
the null-terminator).

» If ValuePtr points to an integer, BufferLength is ignored.

SQLINTEGER * StringLengthPtr output Pointer to a buffer in which to return the total number of bytes
(excluding the number of bytes returned for the null-termination
character) available to return in ValuePtr.If ValuePtris a null
pointer, no length is returned. If the attribute value is a
character string, and the number of bytes available to return is
greater than or equal to BufferLength, the data in ValuePir is
truncated to BufferLength minus the length of a
null-termination character and is null-terminated by DB2
ODBC.

If Attribute does not denote a string, then DB2 ODBC ignores
BufferLength and does not set StringLengthPtr.

Usage
SQLGetEnvAttr() can be called at any time between the allocation and freeing of
the environment handle. It obtains the current value of the environment attribute.

For a list of valid environment attributes, see[Table 145 on page 351|

226 ODBC Guide and Reference

SQLGetEnvAttr

Return codes
« SQL_SUCCESS
« SQL_ERROR
« SQL_INVALID_HANDLE

Diagnostics
Table 83. SQLGetEnvAttr SQLSTATEs
SQLSTATE Description Explanation
HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HY092 Option type out of range. An invalid Attribute value was specified.
Restrictions
None.
Example
SQLINTEGER output_nts,autocommit;
rc = SQLGetEnvAttr(henv, SQL_ATTR_OUTPUT_NTS, &output nts, 0, 0);
CHECK_HANDLE(SQL_HANDLE_ENV, henv, rc);
printf("\nNull Termination of Output strings is: ");
if (output_nts == SQL_TRUE)
printf("True\n");
else
printf("False\n");
References

» |“SQLSetEnvAttr - Set environment attribute” on page 350|
+ [‘SQLAllocHandle - Allocate handle” on page 79

Chapter 5. Functions 227

SQLGetFunctions

SQLGetFunctions - Get functions

Purpose

|Specification: | ODBC 1.0 X/OPEN CLI ISO CLI

SQLGetFunctions() to query whether a specific function is supported. This allows
applications to adapt to varying levels of support when connecting to different
database servers.

A connection to a database server must exist before calling this function.

Syntax

SQLRETURN SQLGetFunctions (SQLHDBC hdbc,
SQLUSMALLINT fFunction,
SQLUSMALLINT FAR =*pfExists);

Function arguments

Table 84. SQLGetFunctions arguments

Data type Argument Use Description

SQLHDBC hdbc input Database connection handle.

SQLUSMALLINT fFunction input The function being queried. Valid fFunction values are shown
in|Figure 7 on page 229

SQLUSMALLINT * pfEXists output Pointer to location where this function returns SQL_TRUE or

SQL_FALSE depending on whether the function being queried
is supported.

Usage

[Figure 7 on page 229 shows the valid values for the fFunction argument and
whether the corresponding function is supported.

If fFunction is set to SQL_API_ALL_FUNCTIONS, then pfExists must point to an
SQLSMALLINT array of 100 elements. The array is indexed by the fFunction values
used to identify many of the functions. Some elements of the array are unused and
reserved. Since some fFunction values are greater than 100, the array method can
not be used to obtain a list of functions. The SQLGetFunction() call must be
explicitly issued for all fFunction values equal to or above 100. The complete set of
fFunction values is defined in sqlclil.h.

228 ODBC Guide and Reference

Return codes

Diagnostics

Table 85. SQLGetFunctions SQLSTATEs

SQLSTATE

Description

SQL_API_SQLALLOCCONNECT = TRUE
SQL_API_SQLALLOCHANDLE = TRUE
SQL_API_SQLBINDCOL = TRUE
SQL_API_SQLBINDFILETOPARAM = FALSE
SQL_API_SQLBROWSECONNECT = FALSE
SQL_API_SQLCLOSECURSOR = TRUE
SQL_API_SQLCOLATTRIBUTES = TRUE
SQL_API_SQLCOLUMNS = TRUE
SQL_API_SQLDATASOURCES = TRUE
SQL_API_SQLDESCRIBEPARAM = TRUE
SQL_API_SQLDRIVERCONNECT = TRUE
SQL_API_SQLERROR = TRUE
SQL_API_SQLEXECUTE = TRUE
SQL_API_SQLFETCH = TRUE
SQL_API_SQLFREECONNECT = TRUE
SQL_API_SQLFREEHANDLE = TRUE
SQL_API SQLGETCONNECTATTR = TRUE
SQL_API_SQLGETCURSORNAME = TRUE
SQL_API_SQLGETDIAGREC = TRUE
SQL_API_SQLGETFUNCTIONS = TRUE
SQL_API_SQLGETLENGTH = TRUE
SQL_API_SQLSQLGETSQLCA = TRUE
SQL_API_SQLGETSTMTOPTION = TRUE
SQL_API_SQLGETTYPEINFO = TRUE
SQL_API_SQLNATIVESQL = TRUE
SQL_API_SQLNUMRESULTCOLS = TRUE
SQL_API_SQLPARAMOPTIONS = TRUE
SQL_API_SQLPRIMARYKEYS = TRUE
SQL_API_SQLPROCEDURES = TRUE
SQL_API_SQLROWCOUNT = TRUE
SQL_API SQLSETCONNECTATTR = TRUE
SQL_API_SQLSETCONNECTOPTION = TRUE
SQL_API_SQLSETENVATTR = TRUE
SQL_API_SQLSETPOS = FALSE
SQL_API_SQLSETSTMTATTR = TRUE
SQL_API_SQLSPECIALCOLUMNS = TRUE
SQL_API_SQLTABLEPRIVILEGES = TRUE
SQL_API_TRANSACT = TRUE
Figure 7. Supported functions list
+ SQL_SUCCESS
+ SQL_ERROR
* SQL_INVALID_HANDLE
Explanation

SQLGetFunctions

SQL_API_SQLALLOCENV
SQL_API_SQLALLOCSTMT
SQL_API_SQLBINDFILETOCOL
SQL_API_SQLBINDPARAMETER
SQL_API_SQLCANCEL
SQL_API_SQLCOLATTRIBUTE
SQL_API_SQLCOLUMNPRIVILEGES
SQL_API_SQLCONNECT
SQL_API_SQLDESCRIBECOL
SQL_API_SQLDISCONNECT
SQL_API_SQLENDTRAN
SQL_API_SQLEXECDIRECT
SQL_API_SQLEXTENDEDFETCH
SQL_API_SQLFOREIGNKEYS
SQL_API_SQLFREEENV
SQL_API_SQLFREESTMT
SQL_API_SQLGETCONNECTOPTION
SQL_API_SQLGETDATA
SQL_API_SQLGETENVATTR
SQL_API_SQLGETINFO
SQL_API_SQLGETPOSITION
SQL_API_SQLGETSTMTATTR
SQL_API_SQLGETSUBSTRING
SQL_API_SQLMORERESULTS
SQL_API_SQLNUMPARAMS
SQL_API_SQLPARAMDATA
SQL_API_SQLPREPARE
SQL_API_SQLPROCEDURECOLUMNS
SQL_API_SQLPUTDATA
SQL_API_SQLSETCOLATTRIBUTES
SQL_API_SQLSETCONNECTION
SQL_API_SQLSETCURSORNAME
SQL_API_SQLSETPARAM
SQL_API_SQLSETSCROLLOPTIONS
SQL_API_SQLSETSTMTOPTION
SQL_API_SQLSTATISTICS
SQL_API_SQLTABLES

TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE

40003 08S01

Communication link failure.

fails before the function completes.

The communication link between the application and data source

58004 Unexpected system failure. Unrecoverable system error.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO009 Invalid use of a null pointer. The argument pfExists was a null pointer.

Chapter 5. Functions

SQLGetFunctions

Table 85. SQLGetFunctions SQLSTATEs (continued)

SQLSTATE Description Explanation
HYO010 Function sequence error. SQLGetFunctions() was called before a database connection was
established.
HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support
error. execution or completion of the function.
Restrictions
None.

230 ODBC Guide and Reference

SQLGetFunctions

Example
[k F gk dok ke ok ko k R 2 2 R R R R T T IR T e *kkxrhhhhhkkxk* kA *xk [
/* Execute SQLGetFunctions to verify that APIs required */
/* by application are supported. */

/**/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlclil.h"

typedef struct odbc_api

SQLUSMALLINT api;
char api_name _40];
} ODBC_API;

/**/

/* CLI APIs required by application */

/**/

ODBC_API o_api [7] = {
{ SQL_API_SQLBINDPARAMETER, "SQLBindParameter"
{ SQL_API_SQLDISCONNECT , "SQLDisconnect"
{ SQL_API SQLGETTYPEINFO , "SQLGetTypeInfo"
{ SQL_API_SQLFETCH , "SQLFetch"
{ SQL_API_SQLTRANSACT , "SQLTransact"
{ SQL_API_SQLBINDCOL , "SQLBindCol1"
{ SQL_API SQLEXECDIRECT , "SQLExecDirect"
s

e e S S et
v e v e uow

/**/

/* Validate that required APIs are supported. */

/**/

int main()

{
SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
int i

// SQLGetFunctions parameters
SQLUSMALLINT fExists = SQL_TRUE;
SQLUSMALLINT *pfExists = &fExists;

(void) printf ("#*** Entering CLIP05.\n\n");

Chapter 5. Functions 231

SQLGetFunctions

/***/

/* Allocate Environment Handle */
/***/

RETCODE =SQLA17locHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Allocate Connection Handle to DSN */

/***/

RETCODE =SQLA11ocHandle(SQL_HANDLE DBC, hEnv, &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle
goto dberror;

/***/

/* CONNECT TO data source (STLEC1) */

/***/

RETCODE = SQLConnect (hDbc, // Connect handle
(SQLCHAR =) "STLEC1", // DSN
SQL_NTS, // DSN is nul-terminated

NULL, // Null UID
O H)
NULL, // Null Auth string
0);
if(RETCODE != SQL_SUCCESS) // Connect failed

goto dberror;

/***/

/* See if DSN supports required ODBC APIs x/

/***/

for (i = 0, (*pfExists = SQL_TRUE);
(i < (sizeof(o_api)/sizeof(ODBC_API)) && (*pfExists) == SQL_TRUE);
i++)

RETCODE = SQLGetFunctions (hDbc,
o_api[i].api,
pfExists);
if (#pfExists == SQL_TRUE) // if api is supported then print

(void) printf ("#*** ODBC api %s IS supported.\n",
o_api[i].api_name);
}

1
if (*pfExists == SQL_FALSE) // a required api is not supported
{

(void) printf ("#%%* ODBC api %s not supported.\n",
o_api[i].api_name);

232 ODBC Guide and Reference

References

SQLGetFunctions

/***/

/* DISCONNECT from data source */

/***/

RETCODE = SQLDisconnect (hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Deallocate Connection Handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE DBC, hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Free Environment Handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE_ENV, hEnv);

if (RETCODE == SQL_SUCCESS)
goto exit;

dberror:
RETCODE=12;

exit:
(void) printf("\n\n**xx Exiting CLIPO5.\n\n ");

return(RETCODE) ;

None.

Chapter 5. Functions

233

SQLGetInfo

SQLGetInfo - Get general information

Purpose
|Specification: | ODBC 1.0 | X/OPEN CLI ISO CLI |
SQLGetInfo() returns general information, (including supported data conversions)
about the DBMS that the application is currently connected to.
Syntax
SQLRETURN SQLGetInfo (SQLHDBC ConnectionHandle,
SQLUSMALLINT InfoType,
SQLPOINTER InfoValuePtr,
SQLSMALLINT BufferlLength,
SQLSMALLINT *FAR StringlLengthPtr);

Function arguments

Table 86. SQLGetInfo arguments

Data type Argument Use Description
SQLHDBC ConnectionHandle input Connection handle
SQLUSMALLINT InfoType input The type of information requested. The argument must be one
of the values in the first column of [Table 87 on page 235,
SQLPOINTER InfoValuePtr output Pointer to buffer where this function stores the desired
(also input) information. Depending on the type of information being
retrieved, 5 types of information can be returned:
* 16-bit integer value
» 32-bit integer value
» 32-bit binary value
» 32-bit mask
* Null-terminated character string
SQLSMALLINT BufferLength input Maximum length of the buffer pointed to by InfoValuePtr
pointer.
SQLSMALLINT * StringLengthPtr output Pointer to location where this function returns the total number

Usage

of bytes available to return the desired information. In the
case of string output, this size does not include the null
terminating character.

If the value in the location pointed to by StringLengthPtr is
greater than the size of the InfoValuePtr buffer as specified in
BufferLength, the string output information is truncated to
BufferLength - 1 bytes and the function returns with
SQL_SUCCESS_WITH_INFO.

[Table 87 on page 235|lists the possible values of InfoType and a description of the

information that SQLGetInfo() would return for that value. This table indicates which
InfoTypes were renamed in ODBC 3.0.

[Table 88 on page 255| lists the values of the InfoType arguments for SQLGetInfo()

arguments that were renamed in ODBC 3.0.

234 ODBC Guide and Reference

Table 87. Information returned by SQLGetInfo

InfoType Format

SQLGetInfo

Description and notes

Note: DB2 ODBC returns a value for each fInfoType in this table. If the fiInfoType does not apply or is not supported, the result is

dependent on the return type. If the return type is a:
» Character string containing 'Y’ or 'N’, "N” is returned.

» Character string containing a value other than just 'Y’ or ’N’, an empty string is returned.

» 16-bit integer, 0 (zero).
+ 32-bit integer, 0 (zero).
» 32-bit mask, 0 (zero).

SQL_ACCESSIBLE_PROCEDURES string

A character string of "Y" indicates that the user can
execute all procedures returned by the function
SQLProcedures (). "N” indicates that procedures can be
returned that the user cannot execute.

SQL_ACCESSIBLE_TABLES string

A character string of "Y” indicates that the user is
guaranteed SELECT privilege to all tables returned by the
function SQLTables (). "N” indicates that tables can be
returned that the user cannot access.

SQL_ACTIVE_ENVIRONMENTS 16-bit
integer

The maximum number of active environments that the
DB2 ODBC driver can support. If there is no specified
limit or the limit is unknown, this value is set to zero.

SQL_AGGREGATE_FUNCTIONS (32-bit mask) 32-bit
mask

A bitmask enumerating support for aggregation functions:
« SQL_AF_ALL

« SQL_AF_AVG

* SQL_AF_COUNT

* SQL_AF_DISTINCT

* SQL_AF_MAX

* SQL_AF_MIN

* SQL_AF_SUM

SQL_ALTER_DOMAIN 32-bit
mask

DB2 ODBC returns 0 indicating that the ALTER DOMAIN
statement is not supported. ODBC also defines the
following values that DB2 ODBC does not return:

* SQL_AD_ADD_CONSTRAINT_DEFERRABLE

* SQL_AD_ADD_CONSTRAINT_NON_DEFERRABLE

* SQL_AD_ADD_CONSTRAINT_INITIALLY_DEFERRED
* SQL_AD_ADD_CONSTRAINT_INITIALLY_IMMEDIATE
* SQL_AD_ADD_DOMAIN_CONSTRAINT

* SQL_AD_ADD_DOMAIN_DEFAULT

* SQL_AD_CONSTRAINT_NAME_DEFINITION

* SQL_AD_DROP_DOMAIN_CONSTRAINT

* SQL_AD_DROP_DOMAIN_DEFAULT

SQL_ALTER_TABLE 32-bit
mask

Indicates which clauses in ALTER TABLE are supported
by the DBMS.

* SQL_AT_ADD_COLUMN

« SQL_AT_DROP_COLUMN

SQL_BATCH_ROW_COUNT 32-bit
mask

Indicates the availability of row counts. DB2 ODBC
always returns SQL_BRC_ROLLED_UP indicating that
row counts for consecutive INSERT, DELETE, or
UPDATE statements are rolled up into one. ODBC also
defines the following values that DB2 ODBC does not
return:

+ SQL_BRC_PROCEDURES

* SQL_BRC_EXPLICIT

Chapter 5. Functions 235

SQLGetInfo

Table 87. Information returned by SQLGetInfo (continued)

InfoType Format Description and notes

SQL_BATCH_SUPPORT 32-bit Indicates which level of batches are supported:

mask + SQL_BS_SELECT_EXPLICIT, supports explicit
batches that can have result-set generating
statements.

+ SQL_BS_ROW_COUNT_EXPLICIT, supports explicit
batches that can have row-count generating
statements.

+ SQL_BS_SELECT_PROC, supports explicit
procedures that can have result-set generating
statements.

* SQL_BS_ROW_COUNT_PROC, supports explicit
procedures that can have row-count generating
statements.

SQL_BOOKMARK_PERSISTENCE 32-bit Reserved option, zero is returned for the bit-mask.

mask

SQL_CATALOG_LOCATION 16-bit A 16-bit integer value indicated the position of the

integer qualifier in a qualified table name. Zero indicates that

(In previous versions of DB2 ODBC this InfoType was qualified names are not supported.

SQL_QUALIFIER_LOCATION.)

SQL_CATALOG_NAME string A character string of 'Y’ indicates that the server supports
catalog names. ‘N’ indicates that catalog names are not
supported.

SQL_CATALOG_NAME_SEPARATOR string The characters used as a separator between a catalog
name and the qualified name element that follows it.

(In previous versions of DB2 ODBC this InfoType was

SQL_QUALIFIER_NAME_SEPARATOR.)

SQL_CATALOG_TERM string The database vendor’s terminology for a qualifier.

(In previous versions of DB2 ODBC this InfoType was The name that the vendor uses for the high order part of

SQL_QUALIFIER_TERM.) a three part name.

Since DB2 ODBC does not support three part names, a

zero-length string is returned.

For non-ODBC applications, the SQL_CATALOG_TERM

symbolic name should be used instead of

SQL_QUALIFIER_NAME.

SQL_CATALOG_USAGE 32-bit This is similar to SQL_OWNER_USAGE except that this

(In previous versions of DB2 ODBC this mask is used for catalog.

InfoType was SQL_QUALIFIER_USAGE.)

SQL_COLLATION_SEQ string The name of the collation sequence. This is a character
string that indicates the name of the default collation for
the default character set for this server (for example,
EBCDIC). If this is unknown, an empty string is returned.

SQL_COLUMN_ALIAS string Returns "Y" if column aliases are supported, or "N" if
they are not.

SQL_CONCAT_NULL_BEHAVIOR 16-bit Indicates how the concatenation of NULL valued

integer character data type columns with non-NULL valued

236 ODBC Guide and Reference

character data type columns is handled.

* SQL_CB_NULL - indicates the result is a NULL value
(this is the case for IBM RDBMs).

* SQL_CB_NON_NULL - indicates the result is a
concatenation of non-NULL column values.

Table 87. Information returned by SQLGetInfo (continued)

SQLGetInfo

InfoType Format Description and notes
SQL_CONVERT_BIGINT 32-bit Indicates the conversions supported by the data source
SQL_CONVERT_BINARY mask with the CONVERT scalar function for data of the type
SQL_CONVERT_BIT named in the finfoType. If the bitmask equals zero, the
SQL_CONVERT_CHAR data source does not support any conversions for the
SQL_CONVERT_DATE data of the named type, including conversions to the
SQL_CONVERT_DECIMAL same data type.
SQL_CONVERT_DOUBLE
SQL_CONVERT_FLOAT For example, to find out if a data source supports the
SQL_CONVERT_INTEGER conversion of SQL_INTEGER data to the SQL_DECIMAL
SQL _CONVERT INTERVAL DAY TIME data type, an application calls SQLGetInfo() with
SQL CONVERT INTERVAL YEAR MONTH finfoType of SQL_CONVERT_INTEGER. The application
SQL CONVERT LONGVARBINARY then ANDs the returned bitmask with
SQL CONVERT LONGVARCHAR SQL_CVT_DECIMAL. If the resulting value is nonzero
SQL_CONVERT_NUMERIC then the conversion is supported.
SQL_CONVERT_REAL
SQL CONVERT ROWID The following bitmasks are used to determine which
SQL_CONVERT_SMALLINT conversions are Supported:
SQL_CONVERT_TIME * SQL_CVT_BIGINT
SQL_CONVERT_TIMESTAMP * SQL_CVT_BINARY
SQL_CONVERT_TINYINT * SQL CVT_BIT
SQL_CONVERT_VARBINARY * SQL_CVT_CHAR
SQL_CONVERT_VARCHAR * SQL_CVT_DATE

+ SQL_CVT_DECIMAL

*« SQL_CVT_DOUBLE

* SQL_CVT_FLOAT

* SQL_CVT_INTEGER

* SQL_CVT_LONGVARBINARY

* SQL_CVT_LONGVARCHAR

* SQL_CVT_NUMERIC

+ SQL_CVT_REAL

* SQL_CVT_ROWID

¢ SQL_CVT_SMALLINT

* SQL_CVT_TIME

* SQL_CVT_TIMESTAMP

*« SQL_CVT_TINYINT

* SQL_CVT_VARBINARY

* SQL_CVT_VARCHAR
SQL_CONVERT_FUNCTIONS 32-bit Indicates the scalar conversion functions supported by

mask the driver and associated data source.
* SQL_FN_CVT_CONVERT - used to determine which
conversion functions are supported.
* SQL_FN_CVT_CAST - used to determine which cast
functions are supported.
SQL_CORRELATION_NAME 16-bit Indicates the degree of correlation name support by the
integer server:

» SQL_CN_ANY, supported and can be any valid
user-defined name.

* SQL_CN_NONE, correlation name not supported.

* SQL_CN_DIFFERENT, correlation name supported but
it must be different than the name of the table that it
represents.

Chapter 5. Functions 237

SQLGetInfo

Table 87. Information returned by SQLGetInfo (continued)

InfoType

Format

Description and notes

SQL_CLOSE_BEHAVIOR

32-bit
integer

Indicates whether or not locks are released when the

cursor is closed. The possible values are:

* SQL_CC_NO_RELEASE: locks are not released when
the cursor on this statement handle is closed. This is
the default.

* SQL_CC_RELEASE: locks are released when the
cursor on this statement handle is closed.

Typically cursors are explicitly closed when the function
SQLFreeStmt () is called with the SQL_CLOSE or
SQL_DROP option. In addition, the end of the transaction
(when a commit or rollback is issued) can also cause the
closing of the cursor (depending on the WITH HOLD
attribute currently in use).

SQL_CREATE_ASSERTION

32-bit
mask

Indicates which clauses in the CREATE ASSERTION
statement are supported by the DBMS. DB2 ODBC
always returns zero; the CREATE ASSERTION statement
is not supported. ODBC also defines the following values
that DB2 ODBC does not return:

+ SQL_CA_CREATE_ASSERTION

* SQL_CA_CONSTRAINT_INITIALLY_DEFERRED

* SQL_CA_CONSTRAINT_INITIALLY_IMMEDIATE

* SQL_CA_CONSTRAINT_DEFERRABLE

+ SQL_CA_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_CHARACTER_SET

32-bit
mask

Indicates which clauses in the CREATE CHARACTER
SET statement are supported by the DBMS. DB2 ODBC
always returns zero; the CREATE CHARACTER SET
statement is not supported. ODBC also defines the
following values that DB2 ODBC does not return:

+ SQL_CCS_CREATE_CHARACTER_SET

+ SQL_CCS_COLLATE_CLAUSE

* SQL_CCS_LIMITED_COLLATION

SQL_CREATE_COLLATION

32-bit
mask

Indicates which clauses in the CREATE COLLATION
statement are supported by the DBMS. DB2 ODBC
always returns zero; the CREATE COLLATION statement
is not supported. ODBC also defines the following values
that DB2 ODBC does not return:

* SQL_CCOL_CREATE_COLLATION

SQL_CREATE_DOMAIN

32-bit
mask

Indicates which clauses in the CREATE DOMAIN
statement are supported by the DBMS. DB2 ODBC
always returns zero; the CREATE DOMAIN statement is
not supported. ODBC also defines the following values
that DB2 ODBC does not return:

+ SQL_CDO_CREATE_DOMAIN

+ SQL_CDO_CONSTRAINT_NAME_DEFINITION

+ SQL_CDO_DEFAULT

* SQL_CDO_CONSTRAINT

+ SQL_CDO_COLLATION

* SQL_CDO_CONSTRAINT_INITIALLY_DEFERRED
* SQL_CDO_CONSTRAINT_INITIALLY_IMMEDIATE
+ SQL_CDO_CONSTRAINT_DEFERRABLE

* SQL_CDO_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_SCHEMA

238 ODBC Guide and Reference

32-bit
mask

Indicates which clauses in the CREATE SCHEMA
statement are supported by the DBMS:

+ SQL_CS_CREATE_SCHEMA

* SQL_CS_AUTHORIZATION

+ SQL_CS_DEFAULT_CHARACTER_SET

Table 87. Information returned by SQLGetInfo (continued)

InfoType

Format

SQLGetInfo

Description and notes

SQL_CREATE_TABLE

32-bit
mask

Indicates which clauses in the CREATE TABLE statement
are supported by the DBMS. The following bitmasks are
used to determine which clauses are supported:

* SQL_CT_CREATE_TABLE

e SQL_CT_TABLE_CONSTRAINT

* SQL_CT_CONSTRAINT_NAME_DEFINITION

The following bits specify the ability to create temporary
tables:

*« SQL_CT_COMMIT_PRESERVE, deleted rows are
preserved on commit.

¢ SQL_CT_COMMIT_DELETE, deleted rows are deleted
on commit.

+ SQL_CT_GLOBAL_TEMPORARY, global temporary
tables can be created.

* SQL_CT_LOCAL_TEMPORARY, local temporary
tables can be created.

The following bits specify the ability to create column

constraints:

+ SQL_CT_COLUMN_CONSTRAINT, specifying column
constraints is supported.

* SQL_CT_COLUMN_DEFAULT, specifying column
defaults is supported.

* SQL_CT_COLUMN_COLLATION, specifying column
collation is supported.

The following bits specify the supported constraint
attributes if specifying column or table constraints is
supported:

* SQL_CT_CONSTRAINT_INITIALLY_DEFERRED
* SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE
* SQL_CT_CONSTRAINT_DEFERRABLE

* SQL_CT_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_TRANSLATION

32-bit
mask

Indicates which clauses in the CREATE TRANSLATION
statement are supported by the DBMS. DB2 ODBC
always returns zero; the CREATE TRANSLATION
statement is not supported. ODBC also defines the
following value that DB2 ODBC does not return:

* SQL_CTR_CREATE_TRANSLATION

SQL_CURSOR_COMMIT_BEHAVIOR

16-bit
integer

Indicates how a COMMIT operation affects cursors. A

value of:

* SQL_CB_DELETE, destroys cursors and drops access
plans for dynamic SQL statements.

» SQL_CB_CLOSE, destroys cursors, but retains access
plans for dynamic SQL statements (including
non-query statements)

* SQL_CB_PRESERVE, retains cursors and access
plans for dynamic statements (including non-query
statements). Applications can continue to fetch data, or
close the cursor and re-execute the query without
re-preparing the statement.

After COMMIT, a FETCH must be issued to reposition the
cursor before actions such as positioned updates or
deletes can be taken.

Chapter 5. Functions 239

SQLGetInfo

Table 87. Information returned by SQLGetInfo (continued)

InfoType

Format

Description and notes

SQL_CURSOR_ROLLBACK_BEHAVIOR

16-bit
integer

Indicates how a ROLLBACK operation affects cursors. A

value of:

* SQL_CB_DELETE, destroys cursors and drops access
plans for dynamic SQL statements.

» SQL_CB_CLOSE, destroys cursors, but retains access
plans for dynamic SQL statements (including
non-query statements)

» SQL_CB_PRESERVE, retains cursors and access
plans for dynamic statements (including non-query
statements). Applications can continue to fetch data, or
close the cursor and re-execute the query without
re-preparing the statement.

DB2 servers do not have the SQL_CB_PRESERVE
property.

SQL_CURSOR_SENSITIVITY

32-bit
unsigned
integer

Indicates support for cursor sensitivity:

* SQL_INSENSITIVE, all cursors on the statement
handle show the result set without reflecting any
changes made to it by any other cursor within the
same transaction.

* SQL_UNSPECIFIED, it is unspecified whether cursors
on the statement handle make visible the changes
made to a result set by another cursor within the same
transaction. Cursors on the statement handle may
make visible none, some, or all such changes.

* SQL_SENSITIVE, cursors are sensitive to changes
made by other cursors within the same transaction.

SQL_DATA_SOURCE_NAME

string

The name used as data source on the input to
SQLConnect (), or the DSN keyword value in the
SQLDriverConnect() connection string.

SQL_DATA_SOURCE_READ_ONLY

string

A character string of "Y” indicates that the database is
set to READ ONLY mode; an "N” indicates that it is not
set to READ ONLY mode.

SQL_DATABASE_NAME

string

The name of the current database in use.
Note: Also returned by SELECT CURRENT SERVER on
IBM DBMS'’s.

SQL_DBMS_NAME

string

The name of the DBMS product being accessed. For
example:

+ "DB2/6000"

+ "DB2/2"

SQL_DBMS_VER

string

The Version of the DBMS product accessed. A string of
the form 'mm.vv.rrrr’ where mm is the major version, vv is
the minor version and rrrr is the release. For example,
"02.01.0000" translates to major version 2, minor version
1, release 0.

SQL_DDL_INDEX

240 ODBC Guide and Reference

32-bit
unsigned
integer

Indicates support for the creation and dropping of
indexes:

+ SQL_DI_CREATE_INDEX

* SQL_DI_DROP_INDEX

Table 87. Information returned by SQLGetInfo (continued)

InfoType

Format

SQLGetInfo

Description and notes

SQL_DEFAULT_TXN_ISOLATION

32-bit
mask

The default transaction isolation level supported.

One of the following masks are returned:

* SQL_TXN_READ_UNCOMMITTED = Changes are
immediately perceived by all transactions (dirty read,
non-repeatable read, and phantoms are possible).

This is equivalent to IBM’s UR level.

« SQL_TXN_READ_COMMITTED = Row read by
transaction 1 can be altered and committed by
transaction 2 (non-repeatable read and phantoms are
possible)

This is equivalent to IBM’s CS level.

» SQL_TXN_REPEATABLE_READ = A transaction can
add or remove rows matching the search condition or
a pending transaction (repeatable read, but phantoms
are possible)

This is equivalent to IBM’s RS level.

* SQL_TXN_SERIALIZABLE = Data affected by pending
transaction is not available to other transactions
(repeatable read, phantoms are not possible)

This is equivalent to IBM’s RR level.

* SQL_TXN_VERSIONING = Not applicable to IBM
DBMSs.

* SQL_TXN_NOCOMMIT = Any chnages are effectively
committed at the end of a successful operation; no
explicit commit or rollback is allowed.

This is a DB2 for AS/400 isolation level.

In IBM terminology,

* SQL_TXN_READ_UNCOMMITTED is uncommitted
read;

* SQL_TXN_READ_COMMITTED is cursor stability;

+ SQL_TXN_REPEATABLE_READ is read stability;

* SQL_TXN_SERIALIZABLE is repeatable read.

SQL_DESCRIBE_PARAMETER

STRING

'Y’ if parameters can be described; ‘N’ if not.

SQL_DRIVER_HDBC

32 bits

DB2 ODBC'’s current database handle.

SQL_DRIVER_HENV

32 bits

DB2 ODBC'’s environment handle.

SQL_DRIVER_HLIB

32 bits

Reserved.

SQL_DRIVER_HSTMT

32 bits

DB2 ODBC'’s current statement handle for the current
connection.

SQL_DRIVER_NAME

string

The file name of the DB2 ODBC implementation. DB2
ODBC returns NULL.

SQL_DRIVER_ODBC_VER

string

The version number of ODBC that the Driver supports.
DB2 ODBC returns "2.1".

SQL_DRIVER_VER

string

The version of the CLI driver. A string of the form
‘'mm.vv.rrrr’ where mm is the major version, vv is the
minor version and rrrr is the release. For example,
"02.01.0000" translates to major version 2, minor version
1, release 0.

SQL_DROP_ASSERTION

32-bit
mask

Indicates which clause in the DROP ASSERTION
statement is supported by the DBMS. DB2 ODBC always
returns zero; the DROP ASSERTION statement is not
supported. ODBC also defines the following value that
DB2 ODBC does not return:

* SQL_DA_DROP_ASSERTION

Chapter 5. Functions 241

SQLGetInfo

Table 87. Information returned by SQLGetInfo (continued)

InfoType Format Description and notes
SQL_DROP_CHARACTER_SET 32-bit Indicates which clause in the DROP CHARACTER SET
mask statement is supported by the DBMS. DB2 ODBC always
returns zero; the DROP CHARACTER SET statement is
not supported. ODBC also defines the following value
that DB2 ODBC does not return..
+ SQL_DCS_DROP_CHARACTER_SET
SQL_DROP_COLLATION 32-bit Indicates which clause in the DROP COLLATION
mask statement is supported by the DBMS. DB2 ODBC always
returns zero; the DROP COLLATION statement is not
supported. ODBC also defines the following value that
DB2 ODBC does not return:
+ SQL_DC_DROP_COLLATION
SQL_DROP_DOMAIN 32-bit Indicates which clauses in the DROP DOMAIN statement
mask are supported by the DBMS. DB2 ODBC always returns
zero; the DROP DOMAIN statement is not supported.
ODBC also defines the following values that DB2 ODBC
does not return:
+ SQL_DD_DROP_DOMAIN
+ SQL_DD_CASCADE
+ SQL_DD_RESTRICT
SQL_DROP_SCHEMA 32-bit Indicates which clauses in the DROP SCHEMA statement
mask are supported by the DBMS.
+ SQL_DS_DROP_SCHEMA
+ SQL_DS_CASCADE
* SQL_DS_RESTRICT
SQL_DROP_TABLE 32-bit Indicates which clauses in the DROP TABLE statement
mask are supported by the DBMS:
+ SQL_DT_DROP_TABLE
+ SQL_DT_CASCADE
+ SQL_DT_RESTRICT
SQL_DROP_TRANSLATION 32-bit Indicates which clauses in the DROP TRANSLATION
mask statement are supported by the DBMS. DB2 ODBC
always returns zero; the DROP TRANSLATION statement
is not supported. ODBC also defines the following value
that DB2 ODBC does not return:
+ SQL_DTR_DROP_TRANSLATION
SQL_DROP_VIEW 32-bit Indicates which clauses in the DROP VIEW statement
mask are supported by the DBMS.

242 ODBC Guide and Reference

* SQL_DV_DROP_VIEW
* SQL_DV_CASCADE
* SQL_DV_RESTRICT

Table 87. Information returned by SQLGetInfo (continued)

InfoType

Format

SQLGetInfo

Description and notes

SQL_DYNAMIC_CURSOR_ATTRIBUTESH1

32-it
mask

Indicates the attributes of a dynamic cursor that DB2
ODBC supports (subset 1 of 2).

¢ SQL_CA1_NEXT

» SQL_CA1_ABSOLUTE

* SQL_CA1_RELATIVE

+ SQL_CA1_BOOKMARK

* SQL_CA1_LOCK_EXCLUSIVE

* SQL_CA1_LOCK_NO_CHANGE

* SQL_CA1_LOCK_UNLOCK

+ SQL_CA1_POS_POSITION

» SQL_CA1_POS_UPDATE

+ SQL_CA1_POS_DELETE

+ SQL_CA1_POS_REFRESH

* SQL_CA1_POSITIONED_UPDATE

+ SQL_CA1_POSITIONED_DELETE

* SQL_CA1_SELECT_FOR_UPDATE

+ SQL_CA1_BULK_ADD

* SQL_CA1_BULK_UPDATE_BY_BOOKMARK
* SQL_CA1_BULK_DELETE_BY_BOOKMARK
* SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_DYNAMIC_CURSOR_ATTRIBUTES2

32-bit
mask

Indicates the attributes of a dynamic cursor that DB2
ODBC supports (subset 2 of 2).

* SQL_CA2_READ_ONLY_CONCURRENCY
+ SQL_CA2_LOCK_CONCURRENCY

* SQL_CA2_OPT_ROWVER_CONCURRENCY
* SQL_CA2_OPT_VALUES_CONCURRENCY
* SQL_CA2_SENSITIVITY_ADDITIONS

* SQL_CA2_SENSITIVITY_DELETIONS

* SQL_CA2_SENSITIVITY_UPDATES

* SQL_CA2_MAX_ROWS_SELECT

* SQL_CA2_MAX_ROWS_INSERT

* SQL_CA2_MAX_ROWS_DELETE

* SQL_CA2_MAX_ROWS_UPDATE

* SQL_CA2_MAX_ROWS_CATALOG

* SQL_CA2_MAX_ROWS_AFFECTS_ALL

* SQL_CA2_CRC_EXACT

* SQL_CA2_CRC_APPROXIMATE

* SQL_CA2_SIMULATE_NON_UNIQUE

* SQL_CA2_SIMULATE_TRY_UNIQUE

* SQL_CA2_SIMULATE_UNIQUE

SQL_EXPRESSIONS_IN_ORDERBY

string

The character string "Y" indicates the database server
supports the DIRECT specification of expressions in the
ORDER BY list, "N” indicates that is does not.

SQL_FETCH_DIRECTION

32-bit
mask

The supported fetch directions.

The following bit-masks are used in conjunction with the
flag to determine which options are supported.

* SQL_FD_FETCH_NEXT

* SQL_FD_FETCH_FIRST

*« SQL_FD_FETCH_LAST

* SQL_FD_FETCH_PREV
SQL_FD_FETCH_ABSOLUTE
 SQL_FD_FETCH_RELATIVE

* SQL_FD_FETCH_RESUME

SQL_FILE_USAGE

16-bit
integer

Reserved. Zero is returned.

Chapter 5. Functions 243

SQLGetInfo

Table 87. Information returned by SQLGetInfo (continued)
InfoType Format

Description and notes

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTESH1 32-bit
mask

Indicates the attributes of a forward-only cursor that DB2
ODBC supports (subset 1 of 2).

» SQL_CA1_NEXT

+ SQL_CA1_POSITIONED_UPDATE

* SQL_CA1_POSITIONED_DELETE

+ SQL_CA1_SELECT_FOR_UPDATE

* SQL_CA1_LOCK_EXCLUSIVE

+ SQL_CA1_LOCK_NO_CHANGE

* SQL_CA1_LOCK_UNLOCK

+ SQL_CA1_POS_POSITION

+ SQL_CA1_POS_UPDATE

+ SQL_CA1_POS_DELETE

+ SQL_CA1_POS_REFRESH

* SQL_CA1_BULK_ADD

» SQL_CA1_BULK_UPDATE_BY_BOOKMARK
+ SQL_CA1_BULK_DELETE_BY_BOOKMARK
* SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 32-bit
mask

Indicates the attributes of a forward-only cursor that DB2
ODBC supports (subset 2 of 2).

+ SQL_CA2_READ_ONLY_CONCURRENCY
+ SQL_CA2_LOCK_CONCURRENCY

+ SQL_CA2_MAX_ROWS_SELECT

+ SQL_CA2_MAX_ROWS_CATALOGQUE

* SQL_CA2_OPT_ROWVER_CONCURRENCY
+ SQL_CA2_OPT_VALUES_CONCURRENCY
+ SQL_CA2_SENSITIVITY_ADDITIONS

* SQL_CA2_SENSITIVITY_DELETIONS

+ SQL_CA2_SENSITIVITY_UPDATES

+ SQL_CA2_MAX_ROWS_INSERT

+ SQL_CA2_MAX_ROWS_DELETE

+ SQL_CA2_MAX_ROWS_UPDATE

+ SQL_CA2_MAX_ROWS_AFFECTS_ALL

» SQL_CA2_CRC_EXACT

+ SQL_CA2_CRC_APPROXIMATE

+ SQL_CA2_SIMULATE_NON_UNIQUE

+ SQL_CA2_SIMULATE_TRY_UNIQUE

* SQL_CA2_SIMULATE_UNIQUE

SQL_GETDATA_EXTENSIONS 32-bit
mask

Indicates whether extensions to the SQLGetData()
function are supported. The following extensions are
currently identified and supported by DB2 ODBC:

* SQL_GD_ANY_COLUMN, SQLGetData() can be called
for unbound columns that precede the last bound
column.

* SQL_GD_ANY_ORDER, SQLGetData() can be called
for columns in any order.

ODBC also defines SQL_GD_BLOCK and
SQL_GD_BOUND; these bits are not returned by DB2
ODBC.

SQL_GROUP_BY 16-bit
integer

244 ODBC Guide and Reference

Indicates the degree of support for the GROUP BY

clause by the server:

* SQL_GB_NO_RELATION, there is no relationship
between the columns in the GROUP BY and in the
SELECT list

+ SQL_GB_NOT_SUPPORTED, GROUP BY not
supported

+ SQL_GB_GROUP_BY_EQUALS_SELECT, GROUP
BY must include all non-aggregated columns in the
select list.

+ SQL_GB_GROUP_BY_CONTAINS_SELECT, the
GROUP BY clause must contain all non-aggregated
columns in the SELECT list.

Table 87. Information returned by SQLGetInfo (continued)
InfoType Format

SQLGetInfo

Description and notes

SQL_IDENTIFIER_CASE 16-bit
integer

Indicates case sensitivity of object names (such as
table-name).

A value of:

* SQL_IC_UPPER = identifier names are stored in upper
case in the system catalog.

* SQL_IC_LOWER = identifier names are stored in
lower case in the system catalog.

* SQL_IC_SENSITIVE = identifier names are case
sensitive, and are stored in mixed case in the system
catalog.

¢ SQL_IC_MIXED = identifier names are not case
sensitive, and are stored in mixed case in the system
catalog.

Note: Identifier names in IBM DBMSs are not case
sensitive.

SQL_IDENTIFIER_QUOTE_CHAR string

Indicates the character used to surround a delimited
identifier.

SQL_INFO_SCHEMA_VIEWS 32-bit
mask

Indicates the views in the INFORMATIONAL_SCHEMA
that are supported. DB2 ODBC always returns zero; no
views in the INFORMATIONAL_SCHEMA are supported.
ODBC also defines the following values that DB2 ODBC
does not return:

* SQL_ISV_ASSERTIONS

* SQL_ISV_CHARACTER_SETS

* SQL_ISV_CHECK_CONSTRAINTS

* SQL_ISV_COLLATIONS

* SQL_ISV_COLUMN_DOMAIN_USAGE

* SQL_ISV_COLUMN_PRIVILEGES

* SQL_ISV_COLUMNS

* SQL_ISV_CONSTRAINT_COLUMN_USAGE

* SQL_ISV_CONSTRAINT_TABLE_USAGE

* SQL_ISV_DOMAIN_CONSTRAINTS

+ SQL_ISV_DOMAINS

¢ SQL_ISV_KEY_COLUMN_USAGE

* SQL_ISV_REFERENTIAL_CONSTRAINTS

* SQL_ISV_SCHEMATA

+ SQL_ISV_SQL_LANGUAGES

* SQL_ISV_TABLE_CONSTRAINTS

* SQL_ISV_TABLE_PRIVILEGES

* SQL_ISV_TABLES

* SQL_ISV_TRANSLATIONS

* SQL_ISV_USAGE_PRIVILEGES

* SQL_ISV_VIEW_COLUMN_USAGE

* SQL_ISV_VIEW_TABLE_USAGE

* SQL_ISV_VIEWS

SQL_INSERT_STATEMENT 32-bit
mask

Indicates support for INSERT statements:
* SQL_IS_INSERT_LITERALS

* SQL_IS_INSERT_SEARCHED

* SQL_IS_SELECT_INTO

SQL_INTEGRITY string

(In previous versions of DB2 ODBC this InfoType was
SQL_ODBC_SQL_OPT_IEF.)

The "Y" character string indicates that the data source
supports Integrity Enhanced Facility (IEF) in SQL89 and
in X/Open XPG4 Embedded SQL; an "N” indicates it
does not.

Chapter 5. Functions 245

SQLGetInfo

Table 87. Information returned by SQLGetInfo (continued)

InfoType

Format

Description and notes

SQL_KEYSET_CURSOR_ATTRIBUTES1

32-bit
mask

Indicates the attributes of a keyset cursor that DB2
ODBC supports (subset 1 of 2).

+ SQL_CA1_NEXT

+ SQL_CA1_ABSOLUTE

+ SQL_CA1_RELATIVE

+ SQL_CA1_BOOKMARK

* SQL_CA1_LOCK_EXCLUSIVE

+ SQL_CA1_LOCK_NO_CHANGE

* SQL_CA1_LOCK_UNLOCK

+ SQL_CA1_POS_POSITION

+ SQL_CA1_POS_UPDATE

+ SQL_CA1_POS_DELETE

+ SQL_CA1_POS_REFRESH

* SQL_CA1_POSITIONED_UPDATE

+ SQL_CA1_POSITIONED_DELETE

* SQL_CA1_SELECT_FOR_UPDATE

+ SQL_CA1_BULK_ADD

+ SQL_CA1_BULK_UPDATE_BY_BOOKMARK
+ SQL_CA1_BULK_DELETE_BY_BOOKMARK
+ SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_KEYSET_CURSOR_ATTRIBUTES2

32-bit
mask

Indicates the attributes of a keyset cursor that DB2
ODBC supports (subset 2 of 2).

+ SQL_CA2_READ_ONLY_CONCURRENCY
* SQL_CA2_LOCK_CONCURRENCY

* SQL_CA2_OPT_ROWVER_CONCURRENCY
+ SQL_CA2_OPT_VALUES_CONCURRENCY
* SQL_CA2_SENSITIVITY_ADDITIONS

+ SQL_CA2_SENSITIVITY_DELETIONS

+ SQL_CA2_SENSITIVITY_UPDATES

* SQL_CA2_MAX_ROWS_SELECT

+ SQL_CA2_MAX_ROWS_INSERT

+ SQL_CA2_MAX_ROWS_DELETE

+ SQL_CA2_MAX_ROWS_UPDATE

+ SQL_CA2_MAX_ROWS_CATALOG

+ SQL_CA2_MAX_ROWS_AFFECTS_ALL

+ SQL_CA2_CRC_EXACT

+ SQL_CA2_CRC_APPROXIMATE

+ SQL_CA2_SIMULATE_NON_UNIQUE

* SQL_CA2_SIMULATE_TRY_UNIQUE

+ SQL_CA2_SIMULATE_UNIQUE

SQL_KEYWORDS

sting

This is a string of all the keywords at the DBMS that are
not in the ODBC'’s list of reserved words.

SQL_LIKE_ESCAPE_CLAUSE

string

A character string that indicates if an escape character is
supported for the metacharacters percent and underscore
in a LIKE predicate.

SQL_LOCK_TYPES

32-bit
mask

Reserved option, zero is returned for the bit-mask.

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS

32-bit
unsigned
integer

The maximum number of active concurrent statements in
asynchronous mode that DB2 ODBC can support on a
given connection. This value is zero if there is no specific
limit, or the limit is unknown.

SQL_MAX_BINARY_LITERAL_LEN

32-bit
integer

A 32-bit integer value specifying the maximum length of a
hexadecimal literal in a SQL statement.

SQL_MAX_CATALOG_NAME_LEN

(In previous versions of DB2 ODBC this InfoType was
SQL_MAX_QUALIFIER_NAME_LEN.)

16-bit
integer

The maximum length of a catalog qualifier name; first part
of a 3 part table name (in bytes).

SQL_MAX_CHAR_LITERAL_LEN

246 ODBC Guide and Reference

32-bit
integer

The maximum length of a character literal in an SQL
statement (in bytes).

Table 87. Information returned by SQLGetInfo (continued)

SQLGetInfo

InfoType Format Description and notes
SQL_MAX_COLUMN_NAME_LEN 16-bit The maximum length of a column name (in bytes).
integer
SQL_MAX_COLUMNS_IN_GROUP_BY 16-bit Indicates the maximum number of columns that the
integer server supports in a GROUP BY clause. Zero if no limit.
SQL_MAX_COLUMNS_IN_INDEX 16-bit Indicates the maximum number of columns that the
integer server supports in an index. Zero if no limit.
SQL_MAX_COLUMNS_IN_ORDER_BY 16-bit Indicates the maximum number of columns that the
integer server supports in an ORDER BY clause. Zero if no limit.
SQL_MAX_COLUMNS_IN_SELECT 16-bit Indicates the maximum number of columns that the
integer server supports in a select list. Zero if no limit.
SQL_MAX_COLUMNS_IN_TABLE 16-bit Indicates the maximum number of columns that the
integer server supports in a base table. Zero if no limit.
SQL_MAX_CONCURRENT_ACTIVITIES 16-bit The maximum number of active statements per
integer connection.
(In previous versions of DB2 ODBC this InfoType was
SQL_ACTIVE_STATEMENTS.) Zero is returned, indicating that the limit is dependent on
database system and DB2 ODBC resources, and limits.
SQL_MAX_CURSOR_NAME_LEN 16-bit The maximum length of a cursor name (in bytes).
integer
SQL_MAX_DRIVER_CONNECTIONS 16-bit The maximum number of active connections supported
integer per application.
(In previous versions of DB2 ODBC this InfoType was
SQL_ACTIVE_CONNECTIONS.) Zero is returned, indicating that the limit is dependent on
system resources.
The MAXCONN keyword in the initialization file or the
SQL_MAX_CONNECTIONS environment/connection
option can be used to impose a limit on the number of
connections. This limit is returned if it is set to any value
other than zero.
SQL_MAX_IDENTIFIER_LEN 16-bit The maximum size (in characters) that the data source
integer supports for user-defined names.
SQL_MAX_INDEX_SIZE 32-bit Indicates the maximum size in bytes that the server
integer supports for the combined columns in an index. Zero if no
limit.
SQL_MAX_PROCEDURE_NAME_LEN 16-bit The maximum length of a procedure name (in bytes).
integer
SQL_MAX_ROW_SIZE 32-bit Specifies the maximum length in bytes that the server
integer supports in single row of a base table. Zero if no limit.
SQL_MAX_ROW_SIZE_INCLUDES_LONG string Set to "Y” to indicate that the value returned by
SQL_MAX_ROW_SIZE fInfoType includes the length of
product-specific long string data types. Otherwise, set to
"N
SQL_MAX_SCHEMA_NAME_LEN 16-bit The maximum length of a schema qualifier name (in
integer bytes).
(In previous versions of DB2 ODBC this InfoType was
SQL_MAX_OWNER_NAME_LEN.)
SQL_MAX_STATEMENT_LEN 32-bit Indicates the maximum length of an SQL statement string
integer in bytes, including the number of white spaces in the
statement.
SQL_MAX_TABLE_NAME_LEN 16-bit The maximum length of a table name (in bytes).
integer
SQL_MAX_TABLES_IN_SELECT 16-bit Indicates the maximum number of table names allowed in
integer a FROM clause in a <query specification>.
SQL_MAX_USER_NAME_LEN 16-bit Indicates the maximum size allowed for a <user
integer identifier> (in bytes).

Chapter 5. Functions 247

SQLGetInfo

Table 87. Information returned by SQLGetInfo (continued)

InfoType

Format

Description and notes

SQL_MULT_RESULT_SETS

string

The character string "Y" indicates that the database
supports multiple result sets, "N” indicates that it does
not.

SQL_MULTIPLE_ACTIVE_TXN

string

The character string "Y" indicates that active transactions
on multiple connections are allowed. "N" indicates that
only one connection at a time can have an active
transaction.

SQL_NEED_LONG_DATA_LEN

string

A character string reserved for the use of ODBC. "N is”
always returned.

SQL_NON_NULLABLE_COLUMNS

16-bit
integer

Indicates whether non-nullable columns are supported:

* SQL_NNC_NON_NULL, columns can be defined as
NOT NULL.

* SQL_NNC_NULL, columns can not be defined as NOT
NULL.

SQL_NULL_COLLATION

16-bit
integer

Indicates where NULLs are sorted in a list:
* SQL_NC_HIGH, null values sort high
* SQL_NC_LOW, to indicate that null values sort low

SQL_NUMERIC_FUNCTIONS

32-bit
mask

Indicates the ODBC scalar numeric functions supported.
These functions are intended to be used with the ODBC
vendor escape sequence described in
lescape clauses” on page 448,

The following bit-masks are used to determine which
numeric functions are supported:
+ SQL_FN_NUM_ABS

+ SQL_FN_NUM_ACOS

* SQL_FN_NUM_ASIN

+ SQL_FN_NUM_ATAN

* SQL_FN_NUM_ATAN2

* SQL_FN_NUM_CEILING

+ SQL_FN_NUM_COS

+ SQL_FN_NUM_COT

+ SQL_FN_NUM_DEGREES
* SQL_FN_NUM_EXP

+ SQL_FN_NUM_FLOOR

* SQL_FN_NUM_LOG

* SQL_FN_NUM_LOG10

+ SQL_FN_NUM_MOD

* SQL_FN_NUM_PI

* SQL_FN_NUM_POWER

* SQL_FN_NUM_RADIANS
+ SQL_FN_NUM_RAND

* SQL_FN_NUM_ROUND

+ SQL_FN_NUM_SIGN

* SQL_FN_NUM_SIN

* SQL_FN_NUM_SQRT

* SQL_FN_NUM_TAN

* SQL_FN_NUM_TRUNCATE

SQL_ODBC_API_CONFORMANCE

16-bit
integer

The level of ODBC conformance.
+ SQL_OAC_NONE

* SQL_OAC_LEVEL1

* SQL_OAC_LEVEL2

SQL_ODBC_SAG_CLI_CONFORMANCE

248 ODBC Guide and Reference

16-bit
integer

The compliance to the functions of the SQL Access
Group (SAG) CLI specification.

A value of:

* SQL_OSCC_NOT_COMPLIANT - the driver is not
SAG-compliant.

* SQL_OSCC_COMPLIANT - the driver is
SAG-compliant.

Table 87. Information returned by SQLGetInfo (continued)
InfoType Format

SQLGetInfo

Description and notes

SQL_ODBC_SQL_CONFORMANCE 16-bit
integer

A value of:

< SQL_OSC_MINIMUM - means minimum ODBC SQL
grammar supported

*« SQL_OSC_CORE - means core ODBC SQL Grammar
supported

¢« SQL_OSC_EXTENDED - means extended ODBC SQL
Grammar supported

For the definition of the above 3 types of ODBC SQL
grammar, see Microsoft ODBC 3.0 Software Development
Kit and Programmer's Reference.

SQL_ODBC_VER string

The version number of ODBC that the driver manager
supports.

DB2 ODBC returns the string "02.10".

SQL_OJ_CAPABILITIES 32-bit
mask

A 32-bit bit-mask enumerating the types of outer join
supported.

The bitmasks are:

* SQL_OJ_LEFT : Left outer join is supported.

» SQL_OJ_RIGHT : Right outer join is supported.

* SQL_OJ_FULL : Full outer join is supported.

* SQL_OJ_NESTED : Nested outer join is supported.

* SQL_OJ_NOT_ORDERED : The order of the tables
underlying the columns in the outer join ON clause

need not be in the same order as the tables in the
JOIN clause.

* SQL_OJ_INNER : The inner table of an outer join can
also be an inner join.

* SQL_OJ_ALL_COMPARISONS_OPS : Any predicate
can be used in the outer join ON clause. If this bit is
not set, the equality (=) operator is the only valid
comparison operator in the ON clause.

SQL_ORDER_BY_COLUMNS_IN_SELECT string

Set to "Y” if columns in the ORDER BY clauses must be
in the select list; otherwise set to "N".

SQL_OUTER_JOINS string

The character string:

« "Y" indicates that outer joins are supported, and DB2
ODBC supports the ODBC outer join request syntax.

« "N” indicates that it is not supported.

(See ['Using vendor escape clauses” on page 448)

SQL_OWNER_TERM string

(In previous versions of DB2 ODBC this InfoType was
SQL_SCHEMA_TERM.)

The database vendor’s terminology for a schema (owner)

Chapter 5. Functions 249

SQLGetInfo

Table 87. Information returned by SQLGetInfo (continued)

InfoType

Format

Description and notes

SQL_PARAM_ARRAY_ROW_COUNTS

32-bit
unsigned
integer

Indicates the availability of row counts in a parameterized
execution:

* SQL_PARC_BATCH: Individual row counts are
available for each set of parameters. This is
conceptually equivalent to the driver generating a
batch of SQL statements, one for each parameter set
in the array. Extended error information can be
retrieved by using the SQL_PARAM_STATUS_PTR
descriptor field.

* SQL_PARC_NO_BATCH: Only one row count is
available, which is the cumulative row count resulting
from the execution of the statement for the entire array
of parameters. This is conceptually equivalent to
treating the statement along with the entire parameter
array as one atomic unit. Errors are handled the same
as if one statement were executed.

SQL_PARAM_ARRAY_SELECTS

32-bit
unsigned
integer

Indicates the availability of result sets in a parameterized
execution:

* SQL_PAS_BATCH: One result set is available per set
of parameters. This is conceptually equivalent to the
driver generating a batch of SQL statements, one for
each parameter set in the array.

* SQL_PAS_NO_BATCH: Only one result set is
available, which represents the cumulative result set
resulting from the execution of the statement for the
entire array of parameters. This is conceptually
equivalent to treating the statement along with the
entire parameter array as one atomic unit.

» SQL_PAS_NO_SELECT: A driver does not allow a
result-set generating statement to be executed with an
array of parameters.

SQL_POS_OPERATIONS

32-bit
mask

Reserved option, zero is returned for the bit-mask.

SQL_POSITIONED_STATEMENTS

32-bit
mask

Indicates the degree of support for positioned UPDATE

and positioned DELETE statements:

+ SQL_PS_POSITIONED_DELETE

+ SQL_PS_POSITIONED_UPDATE

* SQL_PS_SELECT_FOR_UPDATE, indicates whether
or not the server requires the FOR UPDATE clause to
be specified on a <query expression> in order for a
column to be updateable using the cursor.

SQL_PROCEDURE_TERM

string

The name a database vendor uses for a procedure

SQL_PROCEDURES

250 ODBC Guide and Reference

string

A character string of "Y" indicates that the data source
supports procedures and DB2 ODBC supports the ODBC
procedure invocation syntax specified in

lorocedures” on page 417] "N” indicates that it does not.

Table 87. Information returned by SQLGetInfo (continued)
InfoType Format

SQLGetInfo

Description and notes

SQL_QUOTED_IDENTIFIER_CASE 16-bit
integer

Returns:

* SQL_IC_UPPER - quoted identifiers in SQL are case
insensitive and stored in upper case in the system
catalog.

* SQL_IC_LOWER - quoted identifiers in SQL are case
insensitive and are stored in lower case in the system
catalog.

* SQL_IC_SENSITIVE - quoted identifiers (delimited
identifiers) in SQL are case sensitive and are stored in
mixed case in the system catalog.

« SQL_IC_MIXED - quoted identifiers in SQL are case
insensitive and are stored in mixed case in the system
catalog.

This should be contrasted with the
SQL_IDENTIFIER_CASE fInfoType which is used to
determine how (unquoted) identifiers are stored in the
system catalog.

SQL_ROW_UPDATES string

A character string of "Y" indicates changes are detected
in rows between multiple fetches of the same rows, "N”
indicates that changes are not detected.

SQL_SCHEMA_USAGE 32-bit

mask
(In previous versions of DB2 ODBC this InfoType was
SQL_OWNER_USAGE .)

Indicates the type of SQL statements that have schema

(owners) associated with them when these statements

are executed. Schema qualifiers (owners) are:

* SQL_OU_DML_STATEMENTS - supported in all DML
statements.

* SQL_OU_PROCEDURE_INVOCATION - supported in
the procedure invocation statement.

* SQL_OU_TABLE_DEFINITION - supported in all table
definition statements.

* SQL_OU_INDEX_DEFINITION - supported in all index
definition statements.

* SQL_OU_PRIVILEGE_DEFINITION - supported in all
privilege definition statements (i.e. grant and revoke
statements).

SQL_SCROLL_CONCURRENCY 32-bit Indicates the concurrency options supported for the
mask cursor.
The following bit-masks are used in conjunction with the
flag to determine which options are supported:
* SQL_SCCO_READ_ONLY
+ SQL_SCCO_LOCK
* SQL_SCCO_OPT_TIMESTAMP
* SQL_SCCO_OPT_VALUES
DB2 ODBC returns SQL_SCCO_LOCK indicating that the
lowest level of locking that is sufficient to ensure the row
can be updated is used.
SQL_SCROLL_OPTIONS 32-bit The scroll options supported for scrollable cursors.
mask

The following bit-masks are used in conjunction with the
flag to determine which options are supported:

+ SQL_SO_FORWARD_ONLY

* SQL_SO_KEYSET_DRIVEN

* SQL_SO_STATIC

* SQL_SO_DYNAMIC

* SQL_SO_MIXED

DB2 ODBC returns SQL_SO_FORWARD_ONLY,
indicating that the cursor scrolls forward only.

Chapter 5. Functions 251

SQLGetInfo

Table 87. Information returned by SQLGetInfo (continued)

InfoType

Format

Description and notes

SQL_SEARCH_PATTERN_ESCAPE

string

Used to specify what the driver supports as an escape
character for catalog functions such as (SQLTables(),
SQLColumns()).

SQL_SERVER_NAME

string

The name of DB2 subsystem to which the application is
connected.

SQL_SPECIAL_CHARACTERS

string

Contains all the characters in addition to a...z, A...Z,
0...9, and _ that the server allows in non-delimited
identifiers.

SQL_SQL92_PREDICATES

32-bit
mask

Indicates the predicates supported in a SELECT
statement that SQL-92 defines.

» SQL_SP_BETWEEN

+ SQL_SP_COMPARISON

+ SQL_SP_EXISTS

+ SQL_SP_IN

* SQL_SP_ISNOTNULL

* SQL_SP_ISNULL

+ SQL_SP_LIKE

* SQL_SP_MATCH_FULL

* SQL_SP_MATCH_PARTIAL

+ SQL_SP_MATCH_UNIQUE_FULL

* SQL_SP_MATCH_UNIQUE_PARTIAL
+ SQL_SP_OVERLAPS

* SQL_SP_QUANTIFIED_COMPARISON
+ SQL_SP_UNIQUE

SQL_SQL92_VALUE_EXPRESSIONS

32-bit
mask

Indicates the value expressions supported that SQL-92
defines.

+ SQL_SVE_CASE

+ SQL_SVE_CAST

* SQL_SVE_COALESCE

* SQL_SVE_NULLIF

SQL_STATIC_SENSITIVITY

252 ODBC Guide and Reference

32-bit
mask

Indicates whether changes made by an application with a
positioned UPDATE or DELETE statement can be
detected by that application:

* SQL_SS_ADDITIONS: Added rows are visible to the
cursor; the cursor can scroll to these rows. All DB2
servers see added rows.

* SQL_SS_DELETIONS: Deleted rows are no longer
available to the cursor and do not leave a hole in the
result set; after the cursor scrolls from a deleted row, it
cannot return to that row.

* SQL_SS_UPDATES: Updates to rows are visible to the
cursor; if the cursor scrolls from and returns to an
updated row, the data returned by the cursor is the
updated data, not the original data.

Table 87. Information returned by SQLGetInfo (continued)

InfoType

Format

SQLGetInfo

Description and notes

SQL_STRING_FUNCTIONS

32-bit
mask

Indicates which string functions are supported.

The following bit-masks are used to determine which
string functions are supported:
* SQL_FN_STR_ASCII

« SQL_FN_STR_CHAR

* SQL_FN_STR_CONCAT

* SQL_FN_STR_DIFFERENCE
* SQL_FN_STR_INSERT

* SQL_FN_STR_LCASE

« SQL_FN_STR_LEFT

* SQL_FN_STR_LENGTH

« SQL_FN_STR_LOCATE

*+ SQL_FN_STR_LOCATE_2
* SQL_FN_STR_LTRIM

* SQL_FN_STR_REPEAT

* SQL_FN_STR_REPLACE
*« SQL_FN_STR_RIGHT

* SQL_FN_STR_RTRIM

*« SQL_FN_STR_SOUNDEX
* SQL_FN_STR_SPACE

* SQL_FN_STR_SUBSTRING
« SQL_FN_STR_UCASE

If an application can call the LOCATE scalar function with
the string1, string2, and start arguments, the
SQL_FN_STR_LOCATE bitmask is returned. If an
application can only call the LOCATE scalar function with
the string1 and string2, the SQL_FN_STR_LOCATE_2
bitmask is returned. If the LOCATE scalar function is fully
supported, both bitmasks are returned.

SQL_SUBQUERIES

32-bit
mask

Indicates which predicates support subqueries:

* SQL_SQ_COMPARISION - the comparison predicate

« SQL_SQ_CORRELATE_SUBQUERIES - all predicates

* SQL_SQ_EXISTS - the exists predicate

* SQL_SQ_IN - the in predicate

* SQL_SQ_QUANTIFIED - the predicates containing a
quantification scalar function.

SQL_SYSTEM_FUNCTIONS

32-bit
mask

Indicates which scalar system functions are supported.

The following bit-masks are used to determine which
scalar system functions are supported:

+ SQL_FN_SYS_DBNAME

* SQL_FN_SYS_IFNULL

* SQL_FN_SYS_USERNAME

Note: These functions are intended to be used with the
escape sequence in ODBC.

SQL_TABLE_TERM

string

The database vendor’s terminology for a table.

Chapter 5. Functions 253

SQLGetInfo

Table 87. Information returned by SQLGetInfo (continued)
InfoType Format Description and notes

SQL_TIMEDATE_ADD_INTERVALS 32-bit Indicates whether or not the special ODBC system
mask function TIMESTAMPADD is supported, and, if it is, which
intervals are supported.

The following bitmasks are used to determine which
intervals are supported:

+ SQL_FN_TSI_FRAC_SECOND
* SQL_FN_TSI_SECOND

* SQL_FN_TSI_MINUTE

* SQL_FN_TSI_HOUR

* SQL_FN_TSI_DAY

* SQL_FN_TSI_WEEK

*+ SQL_FN_TSI_MONTH

+ SQL_FN_TSI_QUARTER

* SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS 32-bit Indicates whether or not the special ODBC system
mask function TIMESTAMPDIFF is supported, and, if it is,
which intervals are supported.

The following bitmasks are used to determine which
intervals are supported:

* SQL_FN_TSI_FRAC_SECOND
* SQL_FN_TSI_SECOND

* SQL_FN_TSI_MINUTE

* SQL_FN_TSI_HOUR

* SQL_FN_TSI_DAY

* SQL_FN_TSI_WEEK

* SQL_FN_TSI_MONTH

* SQL_FN_TSI_QUARTER

« SQL_FN_TSI_YEAR

SQL_TIMEDATE_FUNCTIONS 32-bit Indicates which time and date functions are supported.
mask

The following bit-masks are used to determine which date
functions are supported:

* SQL_FN_TD_CURDATE

* SQL_FN_TD_CURTIME

* SQL_FN_TD_DAYNAME

* SQL_FN_TD_DAYOFMONTH
* SQL_FN_TD_DAYOFWEEK

+ SQL_FN_TD_DAYOFYEAR

* SQL_FN_TD_HOUR

* SQL_FN_TD_JULIAN_DAY

* SQL_FN_TD_MINUTE

* SQL_FN_TD_MONTH

+ SQL_FN_TD_MONTHNAME

* SQL_FN_TD_NOW

* SQL_FN_TD_QUARTER

* SQL_FN_TD_SECOND

* SQL_FN_TD_SECONDS_SINCE_MIDNIGHT
* SQL_FN_TD_TIMESTAMPADD
* SQL_FN_TD_TIMESTAMPDIFF
* SQL_FN_TD_WEEK

* SQL_FN_TD_YEAR

Note: These functions are intended to be used with the
escape sequence in ODBC.

254 ODBC Guide and Reference

Table 87. Information returned by SQLGetInfo (continued)

InfoType

Format

SQLGetInfo

Description and notes

SQL_TXN_CAPABLE

16-bit
integer

Indicates whether transactions can contain DDL or DML

or both.

* SQL_TC_NONE = transactions not supported.

* SQL_TC_DML = transactions can only contain DML
statements (SELECT, INSERT, UPDATE, DELETE,
etc.) DDL statements (CREATE TABLE, DROP INDEX,
etc.) encountered in a transaction cause an error.

* SQL_TC_DDL_COMMIT = transactions can only
contain DML statements. DDL statements encountered
in a transaction cause the transaction to be committed.

» SQL_TC_DDL_IGNORE = transactions can only
contain DML statements. DDL statements encountered
in a transaction are ignored.

¢ SQL_TC_ALL = transactions can contain DDL and
DML statements in any order.

SQL_TXN_ISOLATION_OPTION

32-bit
mask

The transaction isolation levels available at the currently
connected database server.

The following masks are used in conjunction with the flag
to determine which options are supported:

* SQL_TXN_READ_UNCOMMITTED

* SQL_TXN_READ_COMMITTED

* SQL_TXN_REPEATABLE_READ

* SQL_TXN_SERIALIZABLE

* SQL_TXN_NOCOMMIT

* SQL_TXN_VERSIONING

For descriptions of each level, see
SQL_DEFAULT_TXN_ISOLATION.

SQL_UNION

32-bit
mask

Indicates if the server supports the UNION operator:

* SQL_U_UNION - supports the UNION clause

* SQL_U_UNION_ALL - supports the ALL keyword in the
UNION clause

If SQL_U_UNION_ALL is set, so is SQL_U_UNION.

SQL_USER_NAME

string

The user name used in a particular database. This is the
identifier specified on the SQLConnect () call.

SQL_XOPEN_CLI_YEAR

Table 88. Renamed SQLGetlinfo InfoTypes

ODBC 2.0 InfoType

string

Indicates the year of publication of the X/Open
specification with which the version of the driver fully
complies.

ODBC 3.0 InfoType

SQL_ACTIVE_CONNECTIONS

SQL_MAX_DRIVER_CONNECTIONS

SQL_ACTIVE_STATEMENTS

SQL_MAX_CONCURRENT_ACTIVITIES

SQL_MAX_OWNER_NAME_LEN

SQL_MAX_SCHEMA_NAME_LEN

SQL_MAX_QUALIFIER_NAME_LEN

SQL_MAX_CATALOG_NAME_LEN

SQL_ODBC_SQL_OPT_IEF

SQL_INTEGRITY

SQL_SCHEMA_TERM

SQL_OWNER_TERM

SQL_OWNER_USAGE

SQL_SCHEMA_USAGE

SQL_QUALIFIER_LOCATION

SQL_CATALOG_LOCATION

SQL_QUALIFIER_NAME_SEPARATOR

SQL_CATALOG_NAME_SEPARATOR

SQL_QUALIFIER_TERM

SQL_CATALOG_TERM

SQL_QUALIFIER_USAGE

SQL_CATALOG_USAGE

Chapter 5. Functions 255

SQLGetInfo

Return codes

* SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

+ SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 89. SQLGetInfo SQLSTATEs
SQLSTATE Description Explanation
01004 Data truncated. The requested information is returned as a string and its length
exceeds the length of the application buffer as specified in
BufferLength. The argument StringLengthPtr contains the actual
(not truncated) length of the requested information. (Function
returns SQL_SUCCESS_WITH_INFO.)
08003 Connection is closed. The type of information requested in InfoType requires an open

connection. Only SQL_ODBC_VER does not require an open
connection.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.
HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HY090 Invalid string or buffer length. The value specified for argument BufferLength is less than 0.
HY096 Invalid information type. An invalid InfoType was specified.
HYCO00 Driver not capable. The value specified in the argument InfoType is not supported by
either DB2 ODBC or the data source.
Restrictions
None.
Example
SQLCHAR buffer[255];
SQLSMALLINT outlen;
rc = SQLGetInfo(hdbc, SQL_DATA SOURCE_NAME, buffer, 255, &outlen);
printf("\nServer Name: %s\n", buffer);
References

« [*SQLGetTypelnfo - Get data type information” on page 278|

« [*SQLGetConnectAttr - Get current attribute setting” on page 199

256 ODBC Guide and Reference

SQLGetLength

SQLGetLength - Retrieve length of a string value

Purpose

Syntax

| Specification: | |

SQLGetLength() retrieves the length of a large object value, referenced by a large
object locator that is returned from the server (as a result of a fetch, or an
SQLGetSubString() call) during the current transaction.

SQLRETURN SQLGetLength (SQLHSTMT hstmt,
SQLSMALLINT LocatorCType,
SQLINTEGER Locator,

SQLINTEGER FAR *StringLength,
SQLINTEGER FAR xIndicatorValue);

Function arguments

Table 90. SQLGetLength arguments

Data type

Argument Use Description

SQLHSTMT

hstmt input Statement handle. This can be any statement handle that is
allocated but does not currently have a prepared statement
assigned to it.

SQLSMALLINT

LocatorCType input The C type of the source LOB locator. This can be:
+ SQL_C_BLOB_LOCATOR
+ SQL_C_CLOB_LOCATOR
+ SQL_C_DBCLOB_LOCATOR

SQLINTEGER

Locator input Must be set to the LOB locator value.

SQLINTEGER *

StringLength output The length of the returned information in rgbValue in bytes?® if
the target C buffer type is intended for a binary or character
string variable and not a locator value.

If the pointer is set to NULL, nothing is returned.

SQLINTEGER * IndicatorValue output Always set to zero.
Note:
a This is in bytes even for DBCLOB data.

Usage

SQLGetLength() can determine the length of the data value represented by a LOB
locator. Applications use it to determine the overall length of the referenced LOB
value so that the appropriate strategy for obtaining some or all of that value can be
chosen.

The Locator argument can contain any valid LOB locator that is not explicitly freed
using a FREE LOCATOR statement or implicitly freed because the transaction
during which it was created has terminated.

The statement handle must not be associated with any prepared statements or
catalog function calls.

Chapter 5. Functions 257

SQLGetLength

Return codes
- SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

+ SQL_ERROR

» SQL_INVALID_HANDLE

Diagnostics
Table 91. SQLGetLength SQLSTATEs

SQLSTATE Description

Explanation

07006 Invalid conversion. The combination of LocatorCType and Locator is not valid.

0FO001 The LOB token variable does The value specified for Locator is not associated with a LOB locator.
not currently represent any
value.

40003 08S01 Communication link failure.

The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY003 Program type out of range. LocatorCType is not one of the following:
*+ SQL_C_CLOB_LOCATOR
« SQL_C_BLOB_LOCATOR
« SQL_C_DBCLOB_LOCATOR

HY009 Invalid use of a null pointer. Pointer to StringLength is NULL.

HY013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

HYCO00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

Restrictions

This function is not available when connected to a DB2 server that does not support
large objects. Call SQLGetFunctions() with the function type set to
SQL_API_SQLGETLENGTH and check the fExists output argument to determine if
the function is supported for the current connection.

Example

See ['Example” on page 261|

References

+ [*SQLBindCol - Bind a column to an application variable” on page 85|

+ [‘SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 169

+ [‘SQLFetch - Fetch next row” on page 176|

+ [“SQLGetPosition - Return starting position of string” on page 259

+ [“SQLGetSubString - Retrieve portion of a string value” on page 275|

258 ODBC Guide and Reference

SQLGetPosition

SQLGetPosition - Return starting position of string

Purpose

Syntax

| Specification:

SQLGetPosition() returns the starting position of one string within a LOB value (the
source). The source value must be a LOB locator; the search string can be a LOB

locator or a literal string.

The source and search LOB locators can be any value that is returned from the
database from a fetch or a SQLGetSubString() call during the current transaction.

SQLRETURN SQLGetPosition

Function arguments

Table 92. SQLGetPosition arguments

Data type

Argument

Use

(SQLHSTMT hstmt,

SQLSMALLINT LocatorCType,
SQLINTEGER Sourcelocator,
SQLINTEGER SearchlLocator,
SQLCHAR FAR *SearchlLiteral,
SQLINTEGER SearchLiterallLength,
SQLUINTEGER FromPosition,
SQLUINTEGER FAR *LocatedAt,

SQLINTEGER FAR xIndicatorValue);

Description

SQLHSTMT

hstmt

input

Statement handle. This can be any statement handle that is
allocated but does not currently have a prepared statement
assigned to it.

SQLSMALLINT

LocatorCType

input

The C type of the source LOB locator. This can be:
+ SQL_C_BLOB_LOCATOR

+ SQL_C_CLOB_LOCATOR

+ SQL_C_DBCLOB_LOCATOR

SQLINTEGER

Locator

input

Locator must be set to the source LOB locator.

SQLINTEGER

SearchLocator

input

If the SearchLiteral pointer is NULL and if SearchLiteralLength
is set to 0, then SearchlLocator must be set to the LOB locator
associated with the search string. Otherwise, this argument is
ignored.

SQLCHAR *

SearchLiteral

input

This argument points to the area of storage that contains the
search string literal.

If SearchLiteralLength is 0, this pointer must be NULL.

SQLINTEGER

SearchLiteralLength

input

The length of the string in SearchLiteral(in bytes). #

If this argument value is 0, then the argument SearchLocator
is meaningful.

SQLUINTEGER

FromPosition

input

For BLOBs and CLOBs, this is the position of the first byte
within the source string at which the search is to start. For
DBCLOBEs, this is the first character. The start byte or
character is numbered 1.

Chapter 5. Functions 259

SQLGetPosition

Table 92. SQLGetPosition arguments (continued)

Data type Argument Use Description

SQLUINTEGER * LocatedAt output For BLOBs and CLOBs, this is the byte position at which the
string was located or, if not located, the value zero. For
DBCLOBs, this is the character position.
If the length of the source string is zero, the value 1 is
returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Note:

a This is in bytes even for DBCLOB data.

Usage

SQLGetPosition() is used in conjunction with SQLGetSubString() to obtain any

portion of a string in a

random manner. To use SQLGetSubString(), the location of

the substring within the overall string must be known in advance. In situations
where a search string finds the start of that substring, SQLGetPosition() can be

used to obtain the star

ting position of the substring.

The Locator and SearchLocator arguments (if used) can contain any valid LOB

locator that is not expli
freed because the tran

citly freed using a FREE LOCATOR statement or implicitly
saction during which it was created has terminated.

The Locator and SearchLocator must have the same LOB locator type.

The statement handle
catalog function calls.

Return codes

SQL_SUCCESS
SQL_SUCCESS_ W
SQL_ERROR

must not be associated with any prepared statements or

ITH_INFO

* SQL_INVALID_HANDLE
Diagnostics
Table 93. SQLGetPosition SQLSTATEs
SQLSTATE Description Explanation
07006 Invalid conversion. The combination of LocatorCType and either of the LOB locator

values is not valid.

0F001 The LOB token variable does
not currently represent any

value.

The value specified for Locator or SearchLocator is not currently a
LOB locator.

40003 08S01 Communication link failure.

The communication link between the application and data source
fails before the function completes.

42818 The operands of an operator ~ The length of the pattern is longer than 4000 bytes.
or function are not compatible.
58004 Unexpected system failure. Unrecoverable system error.
HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support

260 ODBC Guide and Reference

execution or completion of the function.

SQLGetPosition

Table 93. SQLGetPosition SQLSTATEs (continued)
SQLSTATE Description Explanation

HYO009 Invalid use of a null pointer. The pointer to the LocatedAt argument is NULL.

The argument value for FromPosition is not greater than 0.

LocatorCType is not one of SQL_C_CLOB_LOCATOR,
SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.
HY090 Invalid string or buffer length. The value of SearchLiteralLength is less than 1, and not SQL_NTS.
HYCO00 Driver not capable. The application is currently connected to a data source that does

Restrictions

Example

not support large objects.

This function is not available when connected to a DB2 server that does not support
large objects. Call SQLGetFunctions() with the function type set to
SQL_API_SQLGETPOSITION and check the fExists output argument to determine
if the function is supported for the current connection.

[* .0 %/
SQLCHAR stmt2[] =
"SELECT resume FROM emp_resume "
"WHERE empno = ? AND resume_format = 'ascii'";
[* ... %/

/**

** Get CLOB Tocator to selected Resume #**
***/

rc = SQLSetParam(hstmt, 1, SQL_C_CHAR, SQL CHAR, 7,
0, Empno.s, &Empno.ind);

printf("\n>Enter an employee number:\n");
gets(Empno.s);

rc = SQLExecDirect(hstmt, stmt2, SQL_NTS);

rc = SQLBindCol(hstmt, 1, SQL_C_CLOB_LOCATOR, &ClobLocl, 0,
&pchValue);

rc = SQLFetch(hstmt);

Chapter 5. Functions 261

SQLGetPosition

/****************‘k*"k*********************‘k*"k****‘k******‘k**‘k***‘k**‘k*
Search CLOB locator to find "Interests"

Get substring of resume (from position of interests to end)
R T L B X /

rc = SQLA11ocHandle(SQL_HANDLE_STMT, hdbc, &lhstmt);

/* Get total length =/
rc = SQLGetLength(1hstmt, SQL_C_CLOB_LOCATOR, ClobLocl, &SLength, &Ind);

/* Get Starting postion x/
rc = SQLGetPosition(Thstmt, SQL_C CLOB_LOCATOR, ClobLocl, 0,
"Interests", 9, 1, &Posl, &Ind);

buffer = (SQLCHAR *)malloc(SLength - Posl + 1);

/* Get just the "Interests" section of the Resume CLOB */

/* (From Posl to end of CLOB) =/

rc = SQLGetSubString(Thstmt, SQL_C_CLOB_LOCATOR, ClobLocl, Posl,
SLength - Posl, SQL_C_CHAR, buffer, SLength - Posl +1,
&OutlLength, &Ind);

/* Print Interest section of Employee's resume */

printf("\nEmployee #: %s\n %s\n", Empno.s, buffer);
[x oo %/

References

+ [“SQLBindCol - Bind a column to an application variable” on page 85|

« [‘SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 169
« [‘SQLFetch - Fetch next row” on page 176

« [‘SQLGetFunctions - Get functions” on page 228|

« [“SQLGetLength - Retrieve length of a string value” on page 257]

« [“SQLGetSubString - Retrieve portion of a string value” on page 275|

262 ODBC Guide and Reference

SQLGetSQLCA

SQLGetSQLCA - Get SQLCA data structure

Purpose

Syntax

| Specification: | |

SQLGetSQLCA() is used to return the SQLCA associated with preparing and
executing an SQL statement, fetching data, or closing a cursor. The SQLCA can
return information that supplements the information obtained by using
SQLGetDiagRec().

For a detailed description of the SQLCA structure, see Appendix C of |DB2 SQ

An SQLCA is not available if a function is processed strictly on the application side,
such as allocating a statement handle. In this case, an empty SQLCA is returned
with all values set to zero.

SQLRETURN SQLGetSQLCA (SQLHENV henv,
SQLHDBC hdbc,
SQLHSTMT hstmt,

struct sqlca FAR +*pSqlca);

Function arguments
Table 94. SQLGetSQLCA arguments

Data type Argument Use Description

SQLHENV henv input Environment Handle
SQLHDBC hdbc input Connection Handle
SQLHSTMT hstmt input Statement Handle
SQLCA * pqlCA output SQL Communication Area
Usage

The handles are used in the same way as for the SQLGetDiagRec() function. To

obtain the SQLCA associated with:

* An environment, pass a valid environment handle. Set hdbc and hstmt to
SQL_NULL_HDBC and SQL_NULL_HSTMT respectively.

» A connection, pass a valid database connection handle, and set hstmt to
SQL_NULL_HSTMT. The henv argument is ignored.

» A statement, pass a valid statement handle. The henv and hdbc arguments are
ignored.

If diagnostic information generated by one DB2 ODBC function is not retrieved
before a function other than SQLGetDiagRec() is called with the same handle, the
information for the previous function call is lost. This is true whether or not
diagnostic information is generated for the second DB2 ODBC function call.

Chapter 5. Functions 263

SQLGetSQLCA

If a DB2 ODBC function is called that does not result in interaction with the DBMS,
then the SQLCA contains all zeroes. Meaningful information is returned for the
following functions:

e SQLCancel()

e SQLConnect (), SQLDisconnect ()

e SQLExecDirect(), SQLExecute()

e SQLFetch()

* SQLPrepare()

e SQLEndTran()

e SQLColumns ()

e SQLConnect ()

» SQLGetData (if LOB column is involved)

» SQLSetConnectAttr() (for SQL_AUTOCOMMIT)
e SQLStatistics()

e SQLTables()

e SQLColumnPrivileges()

* SQLExtendedFetch()

* SQLForeignKeys()

e SQLMoreResults()

e SQLPrimaryKeys ()

e SQLProcedureColumns ()

* SQLProcedures()

e SQLTablePrivileges()

Return codes
.+ SQL_SUCCESS
« SQL_ERROR
« SQL_INVALID_HANDLE

Diagnostics
None.

Restrictions
None.

264 ODBC Guide and Reference

Example

#
#
#

SQLGetSQLCA

[k F gk dok ke ok ko k R 2 2 R R R R T T IR T e *kkxrhhhhhkkxk* kA *xk [
/* Prepare a query and execute that query against a non- */
/* existent table. Then invoke SQLGetSQLCA to extract */
/* native SQLCA data structure. Note that this API is NOT =/
/* defined within ODBC, i.e. this is unique to IBM CLI. */

/**/

include <stdio.h>
include <string.h>
include <stdlib.h>

#include <sqlca.h>
#include "sqlclil.h"

void print_sqlca (SQLHENV,

1

{

// prototype for print_sqlca

SQLHDBC,
SQLHSTMT) ;
nt main()

SQLHENV hEnv = SQL_NULL_HENV;

SQLHDBC hDbc = SQL_NULL_HDBC;

SQLHSTMT hStmt = SQL_NULL_HSTMT;

SQLRETURN rc = SQL_SUCCESS;

SQLINTEGER RETCODE = 03

char *pDSN = "STLEC1";

SWORD cbCursor;

SDWORD chValuel;

SDWORD chValue2;

char employee [30];

int salary = 0;

int param_salary = 30000;

char *stmt = "SELECT NAME, SALARY FROM EMPLOYEES WHERE SALARY > ?";

(void) printf ("#**x Entering CLIP11.\n\n");

/***/

/* Allocate Environment Handle */
/***/

RETCODE = SQLA1locHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Allocate Connection Handle to DSN */

/***/

RETCODE = SQLA11locHandle(SQL_HANDLE DBC, hEnv, &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

goto dberror;

Chapter 5. Functions

265

SQLGetSQLCA

/***/

/* CONNECT TO data source (STLEC1) */

/***/

RETCODE = SQLConnect (hDbc, // Connect handle
(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated
NULL, // Null UID
o .,
NULL, // Null Auth string
0);
if(RETCODE != SQL_SUCCESS) // Connect failed
goto dberror;
/**** """" *Ahkhkhhhhkhhhhhhhhhhhkhhkhkx%k ******************************/
/* Allocate Statement Handles */

[ke ko o ko ko ko ke ke ko ko ko ko ko ke ko ko ko ko ok
rc = SQLATTocHandle(SQL_HANDLE_STMT, SQL_NULL_HANDLE, hDbc, &hStmt);

if (rc != SQL_SUCCESS)
goto exit;

/***/

/* Prepare the query for multiple execution within current */
/* transaction. Note that query is collapsed when transaction */
/* is committed or rolled back. */

/***/

rc = SQLPrepare (hStmt,
(SQLCHAR *) stmt,
strien(stmt));

if (rc != SQL_SUCCESS)
{

(void) printf ("s+xx PREPARE OF QUERY FAILED.\n");
(void) print_sqlca (hStmt,

hDbc,
hEnv) ;
goto dberror;
}
rc = SQLBindCol (hStmt, // bind employee name
1,
SQL_C_CHAR,
employee,

sizeof(employee),
&cbValuel);

if (rc != SQL_SUCCESS)
{
(void) printf ("s+xx BIND OF NAME FAILED.\n");

goto dberror;

}

266 ODBC Guide and Reference

SQLGetSQLCA

rc = SQLBindCol (hStmt, // bind employee salary
2,
SQL_C_LONG,
&salary,
0,
&chValue?2);

if (rc != SQL_SUCCESS)

{
(void) printf ("s¥%% BIND OF SALARY FAILED.\n");
goto dberror;

}

/***/
/* Bind parameter to replace '?' in query. This has an initial =*/
/* value of 30000. */

/***/

rc = SQLBindParameter (hStmt,
19
SQL_PARAM_INPUT,
SQL_C_LONG,
SQL_INTEGER,
0,
0’
¶m_salary,

/* Execute prepared statement to generate answer set. */
/***/

rc = SQLExecute (hStmt);

if (rc != SQL_SUCCESS)
{
(void) printf ("s%*% EXECUTE OF QUERY FAILED.\n");
(void) print_sqlca (hStmt,
hDbc,
hEnv);
goto dberror;

}

/***/
/* Answer Set is available -- Fetch rows and print employees */

/* and salary. */
/***/

(void) printf ("#*** Employees whose salary exceeds %d follow.\n\n",
param_salary);

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
(void) printf ("s¥** Employee Name %s with salary %d.\n",

employee,
salary);

Chapter 5. Functions 267

SQLGetSQLCA

}

/***/

/* Deallocate Statement Handles -- statement is no longer in a */
/* Prepared state. */
[Frk gk kk ok kk ok kk kR ok ok kR kk kR ok ok kR ok ok kR k ko k ko k ok k ok k ko kok Kk k kK /

rc =SQLFreeHandle(SQL_HANDLE_STMT, hStmt);
[k kdkkdkkkkkkk ok okk ko k ko k ok k ok ko k ok ko k ko k ko k ko k ko k ko k ko k ko k ko k kK k kK [

/* DISCONNECT from data source */

/***/

RETCODE = SQLDisconnect (hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Deallocate Connection Handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE DBC, hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Free Environment Handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE_ENV, hEnv);

if (RETCODE == SQL_SUCCESS)
goto exit;

dberror:
RETCODE=12;

exit:
(void) printf ("#*** Exiting CLIP11.\n\n");

return RETCODE;

/***/

/* print_sqlca invokes SQLGetSQLCA and prints the native SQLCA. =/

/***/

void print_sqlca (SQLHENV hEnv ,

SQLHDBC hDbc ,
SQLHSTMT hStmt)

SQLRETURN rc
struct sqlca sqlca;
struct sqlca *pSQLCA
int code ;

char state [6];

char errp [9];

char tok [40];

int count, len, start, end, i;

SQL_SUCCESS;

&sqlcas

268 ODBC Guide and Reference

References

SQLGetSQLCA

if ((rc = SQLGetSQLCA (hEnv ,
hDbc ,
hStmt,
pSQLCA)) != SQL_SUCCESS)

(void) printf ("#**x SQLGetSQLCA failed Return Code = %d.\n", rc);
goto exit;

}

code = (int) pSQLCA->sqlcode;
memcpy (state, pSQLCA->sqlstate, 5);
state [5] = '\0';

(void) printf ("#«**x sqlcode = %d, sqlstate = %s.\n", code, state);

memcpy (errp, pSQLCA->sqlerrp, 8);
errp [8] = '\0';
(void) printf ("**xx sqlerrp = %s.\n", errp);

if (pSQLCA->sglerrml == 0)
(void) printf ("#%+* No tokens.\n");
else

for (Ten = 0, count = 0; Ten < pSQLCA->sqlerrml; len = ++end)
{
start = end = Ten;
while ((pSQLCA->sqlerrmc [end] != OXFF) &&;
(end < pSQLCA->sqlerrml))

end++;

if (start != end)

{
memcpy (tok, &pSQLCA->sqlerrmc[start],

(end-start));

tok [end-start+1l] = '\0';
(void) printf ("#%%* Token # %d = %s.\n", count++, tok);

}

}
}

for (i = 0; 1 <= 5; i++)
(void) printf ("=*** sqlerrd # %d = %d.\n", i+1, pSQLCA->sqlerrd_i]);

for (i = 0; i <= 10; i++)
(void) printf ("=**+ sqwarn # %d = %c.\n", i+1, pSQLCA->sqlwarn_i]);

exit:
return;

« [“SQLGetDiagRec - Get multiple field settings of diagnostic record” on page 223

Chapter 5. Functions

269

SQLGetStmtAttr

SQLGetStmtAtir - Get current setting of a statement attribute

Purpose

Syntax

| Specification:

ODBC 3.0 | X/OPEN CLI | ISO CLI

SQLGetStmtAttr() returns the current setting of a statement attribute. These options
are set using the SQLSetStmtAttr() function.

SQLRETURN SQLGetStmtAttr (SQLHSTMT StatementHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER *StringlengthPtr);

Function arguments

Table 95. SQLGetStmtAttr arguments

Data type

Argument

Use

Description

SQLHSTMT

StatementHandle

input

Connection handle.

SQLINTEGER

Attribute

input

Statement attribute to retrieve. Refer to[Table 150 o

for a complete list of attributes.

SQLPOINTER

ValuePtr

output

A pointer to memory in which to return the current value of the
attribute specified by Attribute. *ValuePtr will be a 32-bit
unsigned integer value or point to a null-terminated character
string. If the Attribute argument is a driver-specific value, the
value in *ValuePtr may be a signed integer.

SQLINTEGER

BufferLength

input

¢ For ODBC-defined attributes:

— If ValuePtr points to a character string, this argument
should be the length of *ValuePtr.

— If ValuePtr points to an integer, BufferLength is ignored.
» For driver-defined attributes (IBM extension):

— If ValuePtr points to a character string, this argument
should be the length of *ValuePtr or SQL_NTS. If
SQL_NTS, the driver assumes the length of *ValuePtr to
be SQL_MAX_OPTIONS_STRING_LENGTH bytes
(excluding the null-terminator).

— If ValuePtr points to an integer, BufferLength is ignored.

SQLINTEGER *

StringLengthPtr

270 ODBC Guide and Reference

output

Pointer to a buffer in which to return the total number of bytes
(excluding the number of bytes returned for the
null-termination character) available to return in ValuePtr.

* If ValuePtris a null pointer, no length is returned.

 If the attribute value is a character string, and the number
of bytes available to return is greater than or equal to
BufferLength, the data in ValuePir is truncated to
BufferLength minus the length of a null-termination
character and is null-terminated by DB2 ODBC.

« If Attribute does not denote a string, DB2 ODBC ignores
BufferLength and does not set StringLengthPtr.

Usage

SQLGetStmtAttr

SQLGetStmtAttr() returns the current setting of a statement attribute. These options
are set using the SQLSetStmtAttr() function. For a list of valid environment

attributes, refer to[Table 150 on page 361}

For information about overriding DB2 CCSIDs from DSNHDECP, see

Return codes

SQL_SUCCESS

SQL_SUCCESS_WITH_INFO
SQL_INVALID_HANDLE

+ SQL_ERROR

Diagnostics

Table 96. SQLGetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The data returned in *ValuePtr was truncated to be BufferLength
minus the length of a null termination character. The length of the
untruncated string value is returned in *StringLengthPtr. (Function
returns SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state. The argument Attribute was SQL_ATTR_ROW_NUMBER and the
cursor was not open, or the cursor was positioned before the start
of the result set or after the end of the result set.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HYO001 Memory allocation failure. DB2 ODBC was not able to allocate memory required to support
execution or completion of the function.

HYO010 Function sequence error. SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns. Invoke SQLCancel () to cancel the
data-at-execution condition.

HYO013 Unexpected memory handling DB2 ODBC was not able to access memory required to support

error. execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for this
version of DB2 ODBC.

HY109 Invalid cursor position. The Attribute argument was SQL_ATTR_ROW_NUMBER and the
row had been deleted or could not be fetched.

HYCO00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for the version of the DB2 ODBC
driver, but was not supported by the data source.

Restrictions

None.

Chapter 5. Functions 271

SQLGetStmtAttr

Example
SQLINTEGER cursor_hold;
rc = SQLGetStmtAttr(hstmt, SQL_ATTR_CURSOR_HOLD,
&cursor_hold, 0, NULL) ;
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;
printf("\nCursor With Hold is: ") ;
if (cursor_hold == SQL_CURSOR_HOLD_ON)
printf("ON\n") ;
else
printf("OFF\n") ;
References

* |“SQLSetStmtAttr - Set options related to a statement” on page 36d
» [*SQLSetConnectAttr - Set connection attributes” on page 336|
« ["SQLGetConnectAttr - Get current attribute setting” on page 199|

272 ODBC Guide and Reference

SQLGetStmtOption

SQLGetStmtOption - Returns current setting of a statement option

Purpose

|Specification: | ODBC 1.0 | X/OPEN CLI |

In ODBC 3.0, SQLGetStmtAttr() replaces the ODBC 2.0 function
SQLGetStmtOption(). See SQLGetStmtAttr() for more information.

SQLGetStmtOption() returns the current settings of the specified statement option.

These options are set using the SQLSetStmtOption() function.

Syntax

SQLRETURN SQLGetStmtOption (SQLHSTMT hstmt,
SQLUSMALLINT fOption,
SQLPOINTER pvParam) ;

Function arguments

Table 97. SQLGetStmtOption arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT fOption input Option to set.

SQLPOINTER pvParam output Value of the option. Depending on the value of fOption this

can be a 32-bit integer value, or a pointer to a null terminated
character string. The maximum length of any character string
returned is SQL_MAX_OPTION_STRING_LENGTH bytes
(excluding the null-terminator).

Usage

See [Table 150 on page 361|in the function description of SQLSetStmtAttr() for a list
of statement options. The following table lists the statement options that are
read-only (can be read but not set).

Table 98. Statement options

fOption Contents

SQL_ROW_NUMBER A 32-bit integer value that specifies the number of the current row in the entire result set.
If the number of the current row cannot be determined or there is no current row, 0 is
returned.

Note: ODBC architecture also defines the read-only statement option SQL_GET_BOOKMARK. This option is not
supported by DB2 ODBC. If it is specified, this function returns SQL_ERROR (SQLSTATE HY011 -- Operation invalid
at this time.)

Return codes
« SQL_SUCCESS
« SQL_ERROR
¢« SQL_INVALID_HANDLE

Chapter 5. Functions 273

SQLGetStmtOption

Diagnostics

Table 99. SQLGetStmtOption SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. There is no open cursor on the statement handle.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

S1001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
S$1009 Invalid use of a null pointer. pvParam was null.
S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.
$1092 Option type out of range. An invalid fOption value was specified.
S1C00 Driver not capable. DB2 ODBC recognizes the option but does not support it.
Restrictions
None.
Example
/% ... %/
rc = SQLGetStmtOption(hstmt, SQL_CURSOR_HOLD, &cursor_hold);
printf("Cursor With Hold is: ");
if (cursor_hold == SQL_CURSOR_HOLD_ON)
printf("ON\n");
else
printf("OFF\n");
/% ... %/
References

» [*'SQLSetConnectOption - Set connection option” on page 34
* [*SQLSetStmtOption - Set statement option” on page 367

274 ODBC Guide and Reference

SQLGetSubString

SQLGetSubString - Retrieve portion of a string value

Purpose

Syntax

| Specification: | | | |

SQLGetSubString() retrieves a portion of a large object value, referenced by a LOB
locator that the server returns (returned by a fetch or a previous SQLGetSubString()
call) during the current transaction.

SQLRETURN SQLGetSubString (SQLHSTMT hstmt,

SQLSMALLINT LocatorCType,
SQLINTEGER Sourcelocator,
SQLUINTEGER FromPosition,
SQLUINTEGER ForLength,
SQLSMALLINT TargetCType,
SQLPOINTER rghValue,
SQLINTEGER cbValueMax,

SQLINTEGER FAR *StringlLength,
SQLINTEGER FAR xIndicatorValue);

Function arguments

Table 100. SQLGetSubstring arguments

Data type

Argument Use Description

SQLHSTMT

hstmt input Statement handle. This can be any statement handle that is
allocated but does not currently have a prepared statement
assigned to it.

SQLSMALLINT

LocatorCType input The C type of the source LOB locator. This can be:
+ SQL_C_BLOB_LOCATOR
+ SQL_C_CLOB_LOCATOR
+ SQL_C_DBCLOB_LOCATOR

SQLINTEGER

Locator input Locator must be set to the source LOB locator value.

SQLUINTEGER

FromPosition input For BLOBs and CLOBs, this is the position of the first byte the
function returns. For DBCLOBS, this is the first character. The
start byte or character is numbered 1.

SQLUINTEGER

ForLength input This is the length of the string to be returned by the function.
For BLOBs and CLOBs, this is the length in bytes. For
DBCLOBs, this is the length in characters.

If FromPosition is less than the length of the source string but
FromPosition + ForLength -1 extends beyond the end of the
source string, the result is padded on the right with the
necessary number of characters (X'00’ for BLOBs, single-byte
blank character for CLOBs, and double-byte blank character
for DBCLOBS).

SQLSMALLINT

TargetCType input The C data type of the rgbValue. The target must always be
either a LOB locator C buffer type (SQL_C_CLOB_LOCATOR,
SQL_C_BLOB_LOCATOR, SQL_C_DBCLOB_LOCATOR) or a
C string variable (SQL_C_CHAR for CLOB, SQL_C_BINARY
for BLOB, and SQL_C_DBCHAR for DBCLOB).

SQLPOINTER

rgbValue output Pointer to the buffer where the retrieved string value or a LOB
locator is stored.

Chapter 5. Functions 275

SQLGetSubString

Table 100. SQLGetSubstring arguments (continued)

Data type Argument Use Description
SQLINTEGER cbValueMax input Maximum size of the buffer pointed to by rgbValue in bytes.
SQLINTEGER * StringLength output The length of the returned information in rgbValue in bytes?® if

the target C buffer type is intended for a binary or character
string variable and not a locator value.

If the pointer is set to NULL, nothing is returned.

SQLINTEGER * IndicatorValue output Always set to zero.
Note:

a This is in bytes even for DBCLOB data.

Usage

Return codes

SQLGetSubString() is used to obtain any portion of the string that is represented by
the LOB locator. The target can be one of the following:

* An appropriate C string variable.

* A new LOB value that is created on the server. The LOB locator for this value
can be assigned to a target application variable on the client.

SQLGetSubString() can be used as an alternative to SQLGetData() for getting data
in pieces. In this case, a column is first bound to a LOB locator, which is then used
to fetch the LOB as a whole or in pieces.

The Locator argument can contain any valid LOB locator that is not explicitly freed
using a FREE LOCATOR statement or implicitly freed because the transaction
during which it was created has terminated.

The statement handle must not be associated with any prepared statements or
catalog function calls.

SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

» SQL_INVALID_HANDLE

Diagnostics

Table 101. SQLGetSubstring SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The amount of returned data is longer than cbValueMax. Actual

length available for return is stored in StringLength.

07006 Invalid conversion. The value specified for TargetCType is not SQL_C_CHAR,

SQL_C_BINARY, SQL_C_DBCHAR or a LOB locator.

The value specified for TargetCType is inappropriate for the source
(for example SQL_C_DBCHAR for a BLOB column).

0F001 The LOB token variable does The value specified for Locator or SearchLocator is not currently a
not currently represent any LOB locator.
value.

22011 A substring error occurred. FromPosition is greater than the length of the source string.

276 ODBC Guide and Reference

SQLGetSubString

Table 101. SQLGetSubstring SQLSTATEs (continued)

SQLSTATE

Description

Explanation

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.
HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HY003 Program type out of range. LocatorCType is not one of the following:
* SQL_C_CLOB_LOCATOR
+ SQL_C_BLOB_LOCATOR
+ SQL_C_DBCLOB_LOCATOR
HY013 Unexpected memory handling DB2 ODBC is not able to access memory required to support
error. execution or completion of the function.
HY024 Invalid argument value. The value specified for FromPosition or for ForLength is not a
positive integer.
HY090 Invalid string or buffer length. The value of cbValueMax is less than 0.
HYCO00 Driver not capable. The application is currently connected to a data source that does
not support large objects.
Restrictions
This function is not available when connected to a DB2 server that does not support
large objects. Call SQLGetFunctions() with the function type set to
SQL_API_SQLGETSUBSTRING, and check the fExists output argument to
determine if the function is supported for the current connection.
Example
See [‘Example” on page 261}
References

+ [*SQLBindCol - Bind a column to an application variable” on page 85|

+ [*SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 169

« [‘SQLFetch - Fetch next row” on page 176]

+ [‘SQLGetLength - Retrieve length of a string value” on page 257

+ [‘SQLGetSubString - Retrieve portion of a string value” on page 275|

Chapter 5. Functions 277

SQLGetTypeinfo

SQLGetTypelnfo - Get data type information

Purpose

| Specification: |

ODBC 1.0 | X/OPEN CLI ISO CLI

SQLGetTypeInfo() returns information about the data types that are supported by
the DBMSs associated with DB2 ODBC. The information is returned in an SQL
result set. The columns can be received using the same functions that are used to

process a query.

Syntax

SQLRETURN SQLGetTypeInfo

Function arguments

Table 102. SQLGetTypelnfo arguments
Data type Argument Use

(SQLHSTMT hstmt,
SQLSMALLINT fSq1Type);

Description

SQLHSTMT hstmt input

Statement handle.

SQLSMALLINT fSqlType input

Usage

The SQL data type being queried. The supported types are:
* SQL_ALL_TYPES

* SQL_BINARY

+ SQL_BLOB

+ SQL_CHAR
 SQL_CLOB

* SQL_DBCLOB

* SQL_DECIMAL
 SQL_DOUBLE

* SQL_FLOAT

* SQL_GRAPHIC

* SQL_INTEGER

* SQL_LONGVARBINARY
* SQL_LONGVARCHAR

* SQL_LONGVARGRAPHIC
* SQL_NUMERIC

* SQL_REAL

* SQL_ROWID

* SQL_SMALLINT
 SQL_TYPE_DATE

* SQL_TYPE_TIME

* SQL_TYPE_TIMESTAMP
* SQL_VARBINARY

* SQL_VARCHAR

* SQL_VARGRAPHIC

If SQL_ALL_TYPES is specified, information about all
supported data types is returned in ascending order by
TYPE_NAME. All unsupported data types are absent from the
result set.

Since SQLGetTypeInfo() generates a result set and is equivalent to executing a
query, it generates a cursor and begins a transaction. To prepare and execute
another statement on this statement handle, the cursor must be closed.

278 ODBC Guide and Reference

SQLGetTypeinfo

If SQLGetTypeInfo() is called with an invalid fSq/Type, an empty result set is

returned.

The columns of the result set generated by this function are described below.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.
The data types returned are those that can be used in a CREATE TABLE, ALTER
TABLE, DDL statement. Non-persistent data types such as the locator data types
are not part of the returned result set. User defined data types are not returned

either.

Table 103. Columns returned by SQLGetTypelnfo

Column number/name

Data type

Description

1 TYPE_NAME

VARCHAR(128) NOT NULL

Character representation of the SQL data type name. For
example, VARCHAR, BLOB, DATE, INTEGER.

2 DATA_TYPE

SMALLINT NOT NULL

SQL data type define values. For example,
SQL_VARCHAR, SQL_BLOB, SQL_TYPE_DATE,
SQL_INTEGER.

3 COLUMN_SIZE

INTEGER

If the data type is a character or binary string, then this
column contains the maximum length in bytes; if it is a
graphic (DBCS) string, this is the number of double byte
characters for the column.

For date, time, timestamp data types, this is the total
number of characters required to display the value when
converted to character.

For numeric data types, this is the total number of digits.

4 LITERAL_PREFIX

VARCHAR(128)

Character that DB2 recognizes as a prefix for a literal of
this data type. This column is null for data types where a
literal prefix is not applicable.

5 LITERAL_SUFFIX

VARCHAR(128)

Character that DB2 recognizes as a suffix for a literal of
this data type. This column is null for data types where a
literal prefix is not applicable.

6 CREATE_PARAMS

VARCHAR(128)

The text of this column contains a list of keywords,
separated by commas, that correspond to each
parameter the application can specify in parenthesis
when using the name in the TYPE_NAME column as a
data type in SQL. The keywords in the list can be any of
the following: LENGTH, PRECISION, SCALE. They
appear in the order that the SQL syntax requires that
they be used.

A NULL indicator is returned if there are no parameters
for the data type definition, (such as INTEGER).

Note: The intent of CREATE_PARAMS is to enable an
application to customize the interface for a DDL builder.
An application should expect, using this, only to be able
to determine the number of arguments required to define
the data type and to have localized text that could be
used to label an edit control.

7 NULLABLE

SMALLINT NOT NULL

Indicates whether the data type accepts a NULL value
* Set to SQL_NO_NULLS if NULL values are disallowed.
» Set to SQL_NULLABLE if NULL values are allowed.

Chapter 5. Functions 279

SQLGetTypeinfo

Table 103. Columns returned by SQLGetTypelnfo (continued)

Column number/name Data type

Description

8 CASE_SENSITIVE SMALLINT NOT NULL

Indicates whether the data type can be treated as case
sensitive for collation purposes; valid values are
SQL_TRUE and SQL_FALSE.

9 SEARCHABLE SMALLINT NOT NULL

Indicates how the data type is used in a WHERE clause.

Valid values are:

+ SQL_UNSEARCHABLE : if the data type cannot be
used in a WHERE clause.

* SQL_LIKE_ONLY : if the data type can be used in a
WHERE clause only with the LIKE predicate.

* SQL_ALL_EXCEPT_LIKE : if the data type can be
used in a WHERE clause with all comparison
operators except LIKE.

+ SQL_SEARCHABLE : if the data type can be used in a
WHERE clause with any comparison operator.

10

UNSIGNED_ATTRIBUTE SMALLINT

Indicates whether the data type is unsigned. The valid
values are: SQL_TRUE, SQL_FALSE or NULL. A NULL
indicator is returned if this attribute is not applicable to
the data type.

11

FIXED_PREC_SCALE SMALLINT NOT NULL

Contains the value SQL_TRUE if the data type is exact
numeric and always has the same precision and scale;
otherwise, it contains SQL_FALSE.

12

AUTO_INCREMENT SMALLINT

Contains SQL_TRUE if a column of this data type is
automatically set to a unique value when a row is
inserted; otherwise, contains SQL_FALSE.

13

LOCAL_TYPE_NAME VARCHAR(128)

This column contains any localized (native language)
name for the data type that is different from the regular
name of the data type. If there is no localized name, this
column is NULL.

This column is intended for display only. The character
set of the string is locale-dependent and is typically the
default character set of the database.

14

MINIMUM_SCALE SMALLINT

The minimum scale of the SQL data type. If a data type
has a fixed scale, the MINIMUM_SCALE and
MAXIMUM_SCALE columns both contain the same
value. NULL is returned where scale is not applicable.

15

MAXIMUM_SCALE SMALLINT

Return codes

+ SQL_SUCCESS
* SQL_ERROR
* SQL_INVALID_HANDLE

280 ODBC Guide and Reference

The maximum scale of the SQL data type. NULL is
returned where scale is not applicable. If the maximum
scale is not defined separately in the DBMS, but is
defined instead to be the same as the maximum length of
the column, then this column contains the same value as
the COLUMN_SIZE column.

SQLGetTypeinfo

Diagnostics

Table 104. SQLGetTypelnfo SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle. hstmt is not
closed.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO004 Invalid SQL data type. An invalid fSqlType is specified.

HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),

Restrictions

Example

SQLPutData()) operation.

The following ODBC specified SQL data types (and their corresponding fSql/Type
define values) are not supported by any IBM RDBMS:

Data type fSqlType

TINY INT SQL_TINYINT
BIG INT SQL_BIGINT
BIT SQL_BIT
[k F gk ke ok kk Kok ko k R 2 2 R R R R R T T TR T e Kk kxrhhhhhk kxR * kA *xk [

/* Invokes SQLGetTypeInfo to retrieve SQL data types supported =/

/**/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlclil.h"

/**/

/* Invoke SQLGetTypeInfo to retrieve all SQL data types supported */

/* by data source. */
/**/

int main()

{
SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT;

Chapter 5. Functions 281

SQLGetTypeinfo

SQLRETURN rc
SQLINTEGER RETCODE

SQL_SUCCESS;
0;

(void) printf ("#*x* Entering CLIP06.\n\n");

/***/

/* Allocate environment handle */
/***/

RETCODE = SQLA1locHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Allocate connection handle to DSN */
/***/

RETCODE = SQLA1locHandle(SQL_HANDLE DBC, hEnv, &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle
goto dberror;

/***/

/* CONNECT TO data source (STLEC1) */

/***/

RETCODE = SQLConnect (hDbc, // Connect handle
(SQLCHAR =) "STLEC1", // DSN
SQL_NTS, // DSN is null-terminated

NULL, // Null UID
0)
NULL, // Null Auth string
0);
if(RETCODE != SQL_SUCCESS) // Connect failed

goto dberror;

/***/
/* Retrieve SQL data types from DSN */
/***/
// local variables to Bind to retrieve TYPE_NAME, DATA_TYPE,

// COLUMN_SIZE and NULLABLE

struct // TYPE_NAME is VARCHAR(128)
{

SQLSMALLINT Tength;

SQLCHAR name [128];

SQLINTEGER ind;
} typename;

SQLSMALLINT data_type; // DATA_TYPE is SMALLINT
SQLINTEGER data_type_ind;

SQLINTEGER column_size; // COLUMN_SIZE is integer
SQLINTEGER column_size_ind;

SQLSMALLINT nullable; // NULLABLE is SMALLINT
SQLINTEGER nulTlable_ind;

282 ODBC Guide and Reference

SQLGetTypeinfo

/***/

/* Allocate statement handle */
/***/

rc = SQLATTocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);

if (rc != SQL_SUCCESS)
goto exit;

/***/

/* */
/* Retrieve native SQL types from DSN ------------ > */
/* */
/* The result set consists of 15 columns. We only bind x/

/* TYPE_NAME, DATA_TYPE, COLUMN_SIZE and NULLABLE. Note: Need */
/* not bind all columns of result set -- only those required. x/
/* */

/***/

rc = SQLGetTypelnfo (hStmt,
SQL_ALL_TYPES);

if (rc != SQL_SUCCESS)

goto exit;
rc = SQLBindCol (hStmt, // bind TYPE_NAME
1’
SQL_CHAR,
(SQLPOINTER) typename.name,
128,
&typename.ind);
if (rc != SQL_SUCCESS)
goto exit;
rc = SQLBindCol (hStmt, // bind DATA_NAME

23

SQL_C_DEFAULT,
(SQLPOINTER) &data_type,
sizeof(data_type),
&data_type_ind);

if (rc != SQL_SUCCESS)
goto exit;

rc = SQLBindCol (hStmt, // bind COLUMN_SIZE
3,
SQL_C_DEFAULT,
(SQLPOINTER) &column_size,
sizeof(column_size),
&column_size_ind);

if (rc != SQL_SUCCESS)
goto exit;

rc = SQLBindCol (hStmt, // bind NULLABLE
7,
SQL_C_DEFAULT,
(SQLPOINTER) &nullable,
sizeof(nullable),
&nullable_ind);

Chapter 5. Functions

283

SQLGetTypeinfo

if (rc != SQL_SUCCESS)

goto exit;
R R T R R R S AT /
/* Fetch all native DSN SQL types and print type name, type, */
/* precision and nullability. */

/***/

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
{
(void) printf ("#**x Type Name is %s. Type is %d. Precision is %d.",
typename.name,
data_type,
column_size);
if (nullable == SQL_NULLABLE)
(void) printf (" Type is nullable.\n");
else
(void) printf (" Type is not nullable.\n");

if (rc == SQL_NO_DATA_FOUND) // if result set exhausted reset
rc = SQL_SUCCESS; // rc to OK

/***/

/* Free statement handle */
/***/

rc =SQLFreeHandle(SQL_HANDLE_STMT, hStmt);

if (RETCODE != SQL_SUCCESS) // An advertised API failed
goto dberror;

/***/

/* DISCONNECT from data source */

/***/

RETCODE = SQLDisconnect (hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Deallocate connection handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE_DBC, hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Free environment handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE_ENV, hEnv);

if (RETCODE == SQL_SUCCESS)
goto exit;

284 ODBC Guide and Reference

SQLGetTypeinfo
dberror:
RETCODE=12;
exit:
(void) printf ("s#+* Exiting CLIP06.\n\n");

return (RETCODE) ;

References

+ [“SQLColAttribute - Get column attributes” on page 106)
+ [‘SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 169
+ [‘SQLGetlInfo - Get general information” on page 234

Chapter 5. Functions 285

SQLMoreResults

SQLMoreResults - Determine if there are more result sets

Purpose
|Specification: | ODBC 1.0 |
SQLMoreResults() determines whether there is more information available on the
statement handle which has been associated with:
* Array input of parameter values for a query, or
* A stored procedure that is returning result sets.

Syntax

SQLRETURN SQLMoreResults (SQLHSTMT hstmt) ;

Function arguments

Table 105. SQLMoreResults arguments

Data type Argument Use Description
SQLHSTMT hstmt input Statement handle.
Usage

This function is used to return multiple results set in a sequential manner upon the
execution of:

* A parameterized query with an array of input parameter values specified with
SQLParamOptions() and SQLBindParameter(), or
» A stored procedure containing SQL queries, the cursors of which have been left

open so that the result sets remain accessible when the stored procedure has
finished execution.

See ['Using arrays to input parameter values” on page 403| and [‘Returning result|
lsets from stored procedures” on page 420|for more information.

After completely processing the first result set, the application can call
SQLMoreResults() to determine if another result set is available. If the current result
set has unfetched rows, SQLMoreResults () discards them by closing the cursor and,
if another result set is available, returns SQL_SUCCESS.

If all the result sets have been processed, SQLMoreResults() returns
SQL_NO_DATA_FOUND.

If SQLFreeStmt () is called with the SQL_CLOSE option or SQLFreeHandle() is called
with HandleType set to SQL_HANDLE_STMT, all pending result sets on this
statement handle are discarded.

Return codes
.+ SQL_SUCCESS
« SQL_SUCCESS_WITH_INFO
« SQL_ERROR
¢ SQL_INVALID_HANDLE
¢ SQL_NO_DATA_FOUND

286 ODBC Guide and Reference

Diagnostics

Table 106. SQLMoreResults SQLSTATEs
SQLSTATE Description

SQLMoreResults

Explanation

40003 08S01 Communication link failure.

The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.
HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.
HY013 Unexpected memory handling DB2 ODBC is not able to access memory required to support
error. execution or completion of the function.

In addition SQLMoreResults() can return the SQLSTATEs associated with

SQLExecute().

Restrictions

The ODBC specification of SQLMoreResults() also allows counts associated with the
execution of parameterized INSERT, UPDATE, and DELETE statements with arrays
of input parameter values to be returned. However, DB2 ODBC does not support
the return of such count information.

Example

[* o0 %/

#define NUM_CUSTOMERS 25

SQLCHAR

stmt[] =

{ "WITH " /% Common Table expression (or Define Inline View) =*/
"order (ord_num, cust_num, prod num, quantity, amount) AS "

||("

"SELECT c.ord_num, c.cust_num, 1.prod_num, 1.quantity,

"price(char(p.price, '.'), p.units, char(l.quantity, '.')) "

"FROM ord_cust c, ord line 1, product p
"WHERE c.ord_num = T.ord_num AND 1.prod_num = p.prod_num

"AND cust_num = CNUM(cast (? as integer)) "

II), n

"totals (ord_num, total) AS "

||(n

"SELECT ord_num, sum(decimal(amount, 10, 2)) "
"FROM order GROUP BY ord_num "

II) n

Chapter 5. Functions 287

SQLMoreResults

}s
/*

/* The 'actual' SELECT from the inline view */
"SELECT order.ord_num, cust_num, prod_num, quantity, "
"DECIMAL (amount,10,2) amount, total "
"FROM order, totals "
"WHERE order.ord_num = totals.ord_num

Array of customers to get Tist of all orders for =/

SQLINTEGER Cust[]=

{

}s

10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210, 220, 230, 240, 250

#define NUM_CUSTOMERS sizeof(Cust)/sizeof (SQLINTEGER)

/* Row-Wise (Includes buffer for both column data and length) */

struct {
SQLINTEGER Ord_Num_L;
SQLINTEGER Ord_Num;
SQLINTEGER Cust_Num_L;
SQLINTEGER Cust_Num;
SQLINTEGER Prod_Num_L;
SQLINTEGER Prod_Num;
SQLINTEGER Quant_L;
SQLDOUBLE Quant;
SQLINTEGER Amount_L;
SQLDOUBLE Amount
SQLINTEGER Total L;
SQLDOUBLE Total;

}

Ord[ROWSET_SIZE];

SQLUINTEGER pirow = 0;
SQLUINTEGER pcrow;

SQLINTEGER i
SQLINTEGER Js
[x ... %/
/* Get details and total for each order Row-Wise */
rc = SQLA11ocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
rc = SQLParamOptions(hstmt, NUM_CUSTOMERS, &pirow);
rc = SQLBindParameter(hstmt, 1, SQL_PARAM_ INPUT, SQL C_LONG, SQL_INTEGER,
0, 0, Cust, 0, NULL);
rc = SQLExecDirect(hstmt, stmt, SQL_NTS);
/* SQL_ROWSET_SIZE sets the max number of result rows to fetch each time */
rc =SQLSetStmtAttr(hstmt, SQL_ATTR_ROWSET SIZE, (void *)ROWSET_SIZE, 0);
/* Set Size of One row, Used for Row-Wise Binding Only =/
rc =SQLSetStmtAttr(hstmt, SQL_ATTR BIND TYPE, (void *)sizeof(Ord)/ROW_SIZE, 0);
/* Bind column 1 to the Ord_num Field of the first row in the array*/
rc = SQLBindCol (hstmt, 1, SQL_C_LONG, (SQLPOINTER) &O0rd[0].Ord Num, 0O,
&0rd[0] .Ord_Num L);
/* Bind remaining columns ... */
[* oo %/

288 ODBC Guide and Reference

SQLMoreResults

/* NOTE: This sample assumes that an order never has more
rows than ROWSET_SIZE. A check should be added below to call
SQLExtendedFetch multiple times for each result set.

*/

do /* for each result set */

{ rc = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 0, &pcrow, NULL);

if (pcrow > 0) /* if 1 or more rows in the result set %/

printf("**************************************\n");

printf("Orders for Customer: %1d\n", Ord[0].Cust_Num);

printf("**************************************\n");

while (i < pcrow)

{ printf("\nOrder #: %1d\n", Ord[i].Ord Num);
printf(" Product Quantity Price\n");
printf(" mmmmmmm e e e \n");

Jo= i
while (Ord[j].Ord Num == Ord[i].Ord_Num)
{ printf(" %81d %16.71f %12.21f\n",
Ord[i].Prod_Num, Ord[i].Quant, Ord[i].Amount);

i+t
}
printf(" ============\n');
printf(" %12.21f\n", Ord[j].Total);

} /* end while */
} /% end if %/

1
while (SQLMoreResults(hstmt) == SQL_SUCCESS);
[* .. %/

References

« [“SQLParamOptions - Specify an input array for a parameter” on page 298|

Chapter 5. Functions 289

SQLNativeSql

SQLNativeSql - Get native SQL text

Purpose

Syntax

|Specification: | ODBC 1.0

SQLNativeSql() is used to show how DB2 ODBC interprets vendor escape clauses.
If the original SQL string passed in by the application contains vendor escape
clause sequences, then DB2 ODBC returns the transformed SQL string that the
data source sees (with vendor escape clauses either converted or discarded, as
appropriate).

SQLRETURN SQLNativeSql (SQLHDBC hdbc,
SQLCHAR FAR *szSql1Strln,
SQLINTEGER cbSq1Strin,
SQLCHAR FAR *szSqlStr,
SQLINTEGER cbSqlStrMax,

SQLINTEGER ~ FAR *pchSqlStr);

Function arguments

Table 107. SQLNativeSQL arguments

Data type Argument Use Description

SQLHDBC hdbc input Connection handle.

SQLCHAR * szSqIStrin input Input SQL string.

SQLINTEGER cbSqlStrin input Length of szSqlStrin.

SQLCHAR * szSqlStr output Pointer to buffer for the transformed output string.
SQLINTEGER cbSqlStrMax input Size of buffer pointed by szSq/Str.

SQLINTEGER * pcbSqlStr output The total number of bytes (excluding the null-terminator)

Usage

Return codes

available to return in szSqlStr. If the number of bytes available
to return is greater than or equal to cbSqlStrMax, the output
SQL string in szSq/Stris truncated to cbSqlStrMax - 1 bytes.

This function is called when the application wishes to examine or display the
transformed SQL string that is passed to the data source by DB2 ODBC.
Translation (mapping) only occurs if the input SQL statement string contains vendor
escape clause sequences. For more information on vendor escape clause
sequences, see |“Using vendor escape clauses” on page 448I

DB2 ODBC can only detect vendor escape clause syntax errors; since DB2 ODBC
does not pass the transformed SQL string to the data source for preparation, syntax
errors that are detected by the DBMS are not generated at this time. (The
statement is not passed to the data source for preparation because the preparation
can potentially cause the initiation of a transaction.)

* SQL_SUCCESS
* SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

290 ODBC Guide and Reference

SQLNativeSql

+ SQL_INVALID_HANDLE

Diagnostics
Table 108. SQLNativeSQL SQLSTATEs
SQLSTATE Description Explanation
01004 Data truncated. The buffer szSqlStr is not large enough to contain the entire SQL
string, so truncation occurs. The argument pcbSqlStr contains the
total length of the untruncated SQL string. (Function returns with
SQL_SUCCESS_WITH_INFO)
08003 Connection is closed. The hdbc does not reference an open database connection.
37000 Invalid SQL syntax. The input SQL string in szSq/Strin contained a syntax error.
HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HY009 Invalid use of a null pointer. The argument szSq/Strin is a NULL pointer.
The argument szSq/Stris a NULL pointer.
HY090 Invalid string or buffer length. The argument ¢bSql/Strin was less than 0, but not equal to
SQL_NTS.
The argument cbSqlStrMax was less than 0.
Restrictions
None.
Example
[* ... %/
SQLCHAR in_stmt[1024];
SQLCHAR out_stmt[1024];
SQLSMALLINT pcPar;
SQLINTEGER indicator;
[* ... %/
/* Prompt for a statement to prepare */
printf("Enter an SQL statement: \n");
gets(in_stmt);
/* prepare the statement =/
rc = SQLPrepare(hstmt, in_stmt, SQL_NTS);
SQLNumParams (hstmt, &pcPar);
SQLNativeSql (hstmt, in_stmt, SQL _NTS, out stmt, 1024, &indicator);
if (indicator == SQL_NULL_DATA)
{ printf("Invalid statement\n"); }
else
{ printf(" Input Statement: \n %s \n", in_stmt);
printf("Output Statement: \n %s \n", out_stmt);
printf("Number of Parameter Markers = %1d\n", pcPar);
}
rc =SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
[* ... %/
References

« [‘Using vendor escape clauses” on page 448|

Chapter 5. Functions 291

SQLNumParams

SQLNumParams - Get nhumber of parameters in a SQL statement

Purpose

|Specification: | ODBC 1.0 | |

SQLNumParams () returns the number of parameter markers in a SQL statement.

Syntax

SQLRETURN SQLNumParams (SQLHSTMT hstmt,
SQLSMALLINT FAR =*pcpar);

Function arguments

Table 109. SQLNumParams arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLSMALLINT * pcpar Output Number of parameters in the statement.
Usage

This function can only be called after the statement associated with hstmt has been
prepared. If the statement does not contain any parameter markers, pcpar is set to
0.

An application can call this function to determine how many SQLBindParameter ()
calls are necessary for the SQL statement associated with the statement handle.

Return codes
.+ SQL_SUCCESS
« SQL_ERROR
« SQL_INVALID_HANDLE

Diagnostics

Table 110. SQLNumParams SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY009 Invalid use of a null pointer. pcpar is null.

HYO010 Function sequence error. This function is called before SQLPrepare() is called for the
specified hstmt.
The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

292 ODBC Guide and Reference

SQLNumParams

Restrictions
None.

Example

See ['FExample” on page 291|

References

- |'SQLBindParameter - Binds a parameter marker to a buffer or LOB locator” on|
page 91|
+ ['SQLPrepare - Prepare a statement” on page 300

Chapter 5. Functions 293

SQLNumResultCols

SQLNumResultCols - Get number of result columns

Purpose
|Specification: | ODBC 1.0 | X/OPEN CLI ISO CLI
SQLNumResultCols() returns the number of columns in the result set associated with
the input statement handle.
SQLPrepare() or SQLExecDirect () must be called before calling this function.
After calling this function, you can call SQLCoTAttribute(), or one of the bind
column functions.

Syntax

SQLRETURN SQLNumResultCols (SQLHSTMT hstmt,
SQLSMALLINT FAR =*pccol);

Function arguments
Table 111. SQLNumResultCols arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLSMALLINT * pccol output Number of columns in the result set
Usage

The function sets the output argument to zero if the last statement or function
executed on the input statement handle did not generate a result set.

Return codes
.« SQL_SUCCESS
¢ SQL_ERROR
¢ SQL_INVALID_HANDLE

Diagnostics

Table 112. SQLNumResultCols SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY009 Invalid use of a null pointer. pcccol is a null pointer.

HYO010 Function sequence error. The function is called prior to calling SQLPrepare() or

SQLExecDirect() for the hstmt.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

294 ODBC Guide and Reference

SQLNumResultCols

Table 112. SQLNumResultCols SQLSTATEs (continued)

SQLSTATE Description Explanation
HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support
error. execution or completion of the function.
Restrictions
None.
Example

See ['Example” on page 139

References

+ [‘SQLColAttribute - Get column attributes” on page 106

+ [“SQLDescribeCol - Describe column attributes” on page 137]
+ [“SQLExecDirect - Execute a statement directly” on page 161|
+ [“SQLGetData - Get data from a column” on page 210|

+ [“SQLPrepare - Prepare a statement” on page 300|

Chapter 5. Functions 295

SQLParamData

SQLParamData - Get next parameter for which a data value is needed

Purpose

Syntax

|Specification: | ODBC 1.0 | X/OPEN CLI | ISO CLI

SQLParamData() is used in conjunction with SQLPutData() to send long data in
pieces. It can also be used to send fixed length data as well. For a description of
the exact sequence of this input method, see ['Sending/retrieving long data in
pieces” on page 401|

SQLRETURN SQLParamData (SQLHSTMT hstmt,
SQLPOINTER FAR *prgbValue);

Function arguments

Table 113. SQLParamData arguments

Data type Argument Use Description
SQLHSTMT hstmt input Statement handle.
SQLPOINTER * prgbValue output Pointer to the value of the rgbValue argument specified on the

Usage

Return codes

SQLBindParameter() or SQLSetParam() call.

SQLParamData() returns SQL_NEED_DATA if there is at least one
SQL_DATA_AT_EXEC parameter for which data is not assigned. This function
returns an application provided value in prgbValue supplied by the application
during the previous SQLBindParameter() call. SQLPutData() is called one or more
times (in the case of long data) to send the parameter data. SQLParamData() is
called to signal that all the data has been sent for the current parameter and to
advance to the next SQL_DATA_AT_EXEC parameter. SQL_SUCCESS is returned
when all the parameters have been assigned data values and the associated
statement has been executed successfully. If any errors occur during or before
actual statement execution, SQL_ERROR is returned.

If SQLParamData() returns SQL_NEED_DATA, then only SQLPutData() or

SQLCancel () calls can be made. All other function calls using this statement handle
fails. In addition, all function calls referencing the parent hdbc of hstmt falil if they
involve changing any attribute or state of that connection; that is, the following
function calls on the parent hdbc are also not permitted:

* SQLAllocHandle()

» SQLSetConnectAttr()

* SQLNativeSql()

* SQLEndTran()

Should they be invoked during an SQL_NEED_DATA sequence, these functions
return SQL_ERROR with SQLSTATE of HY010 and the processing of the
SQL_DATA_AT_EXEC parameters is not affected.

+ SQL_SUCCESS
* SQL_SUCCESS_WITH_INFO

296 ODBC Guide and Reference

Diagnostics

Table 114. SQLParamData SQLSTATEs

+ SQL_ERROR

SQLParamData

* SQL_INVALID_HANDLE

* SQL_NEED_DATA

SQLParamData() can return any SQLSTATE returned by the SQLExecDirect() and
SQLExecute() functions. In addition, the following diagnostics can also be

generated:

SQLSTATE Description

Explanation

40001 Transaction rollback.

The transaction to which this SQL statement belonged is rolled back
due to a deadlock or timeout.

40003 08S01 Communication link failure.

The communication link between the application and data source
fails before the function completes.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO010 Function sequence error. SQLParamData() is called out of sequence. This call is only valid
after an SQLExecDirect() or an SQLExecute(), or after an
SQLPutData() call.
Even though this function is called after an SQLExecDirect() or an
SQLExecute() call, there are no SQL_DATA_AT_EXEC parameters
(left) to process.

Restrictions

None.
Example

References

See [‘Example” on page 329}

« [‘SQLBindParameter - Binds a parameter marker to a buffer or LOB locator” on|

page 91|

« [‘SQLCancel - Cancel statement” on page 102|

- [‘SQLExecDirect - Execute a statement directly” on page 161|

« [‘SQLPutData - Passing data value for a parameter’ on page 327

« [‘SQLSetParam - Binds a parameter marker to a buffer’ on page 354]

Chapter 5. Functions 297

SQLParamOptions

SQLParamOptions - Specify an input array for a parameter

Purpose
|Specification: | ODBC 1.0 | |
SQLParamOptions () provides the ability to set multiple values for each parameter set
by SQLBindParameter(). This allows the application to perform batched processing
of the same SQL statement with one set of prepare, execute and
SQLBindParameter() calls.

Syntax
SQLRETURN SQLParamOptions (SQLHSTMT hstmt,

SQLUINTEGER crow,

SQLUINTEGER FAR *pirow);

Function arguments

Table 115. SQLParamOptions arguments

Data type Argument Use Description
SQLHSTMT hstmt Input Statement handle.
SQLUINTEGER crow Input Number of values for each parameter. If this is greater than 1,

then the rgbValue argument in SQLBindParameter() points to
an array of parameter values, and pcbValue points to an array
of lengths.

SQLUINTEGER * pirow Output Pointer to the buffer for the current parameter array index. As
(deferred) each set of parameter values is processed, pirow is set to the
array index of that set. If a statement fails, pirow can be used
to determine how many statements were successfully
processed. Nothing is returned if the pirow pointer is NULL.

Usage

DB2 ODBC prepares the statement, and executes it repeatedly for the array of
parameter markers.

As a statement executes, pirow is set to the index of the current array of parameter
values. If an error occurs during execution for a particular element in the array,
execution halts and SQLExecute(), SQLExecDirect() or SQLParamData() returns
SQL_ERROR.

The contents of pirow have the following uses:
* When SQLParamData() returns SQL_NEED_DATA, the application can access the
value in pirow to determine which set of parameters is being assigned values.

* When SQLExecute() or SQLExecDirect() returns an error, the application can
access the value in pirow to find out which element in the parameter value array
failed.

e When SQLExecute(), SQLExecDirect(), SQLParamData(), or SQLPutData()
succeeds, the value in pirow is set to the input value in crow to indicate that all
elements of the array have been processed successfully.

298 ODBC Guide and Reference

SQLParamOptions

The output argument pirow indicates how many sets of parameters were
successfully processed. If the statement processed is a query, pirow indicates the
array index associated with the current result set returned by SQLMoreResults() and
is incremented each time SQLMoreResults() is called.

Return codes

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_ERROR
SQL_INVALID_HANDLE

Diagnostics
Table 116. SQLParamQOptions SQLSTATEs
SQLSTATE Description Explanation
40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.
HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.
HY107 Row value out of range. The value in the argument crow is less than 1.
Restrictions
None.
Example
See [‘Array input example” on page 405!
References

« [‘SQLBindParameter - Binds a parameter marker to a buffer or LOB locator” on|
page 91|

« [‘SQLMoreResults - Determine if there are more result sets” on page 286|

- [‘SQLSetStmtAttr - Set options related to a statement” on page 360

Chapter 5. Functions 299

SQLPrepare

SQLPrepare - Prepare a statement

Purpose

Syntax

|Specification: | ODBC 1.0 X/OPEN CLI ISO CLI

SQLPrepare() associates an SQL statement with the input statement handle and
sends the statement to the DBMS to be prepared. The application can reference
this prepared statement by passing the statement handle to other functions.

If the statement handle has been previously used with a query statement (or any
function that returns a result set), SQLCToseCursor() must be called to close the
cursor, before calling SQLPrepare().

SQLRETURN SQLPrepare (SQLHSTMT hstmt,
SQLCHAR FAR *szSql1Str,
SQLINTEGER cbSq1Str);

Function arguments

Table 117. SQLPrepare arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle. There must not be an open cursor
associated with hstmt.

SQLCHAR * 5zSqlStr input SQL statement string.

SQLINTEGER cbSqlStr input Length of contents of szSq/Str argument.
This must be set to either the exact length of the SQL
statement in szSqlstr, or to SQL_NTS if the statement text is
null-terminated.

Usage

If the SQL statement text contains vendor escape clause sequences, DB2 ODBC
first modifies the SQL statement text to the appropriate DB2 specific format before
submitting it to the database for preparation. If the application does not generate
SQL statements that contain vendor escape clause sequences (see
fescape clauses” on page 448); then the SQL_NOSCAN statement option should be
set to SQL_NOSCAN_ON at the statement level so that DB2 ODBC does not
perform a scan for any vendor escape clauses.

When a statement is prepared using SQLPrepare(), the application can request
information about the format of the result set (if the statement was a query) by
calling:

e SQLNumResultCols()

e SQLDescribeCol ()

e SQLColAttribute()

The SQL statement string can contain parameter markers and SQLNumParams () can
be called to determine the number of parameter markers in the statement. A
parameter marker is represented by a "?” character that indicates a position in the
statement where an application supplied value is to be substituted when

300 ODBC Guide and Reference

Return codes

SQLPrepare

SQLExecute() is called. The bind parameter functions, SQLBindParameter() and
SQLSetParam() are used to bind (associate) application values with each parameter
marker and to indicate if any data conversion should be performed at the time the
data is transferred.

All parameters must be bound before calling SQLExecute(). For more information
see ['SQLExecute - Execute a statement” on page 166,

After the application processes the results from the SQLExecute() call, it can
execute the statement again with new (or the same) parameter values.

The SQL statement cannot be a COMMIT or ROLLBACK. SQLEndTran() must be
called to issue COMMIT or ROLLBACK. For more information about SQL
statements, that DB2 for 0S/390 and z/OS supports, see|Table 1 on page 10}

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be defined on a separate statement handle under
the same connection handle and same isolation level.

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_ERROR
SQL_INVALID_HANDLE

Diagnostics

Table 118. SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE 5z5qlStr contains an UPDATE or DELETE statement which did not

statement does not include a contain a WHERE clause.
WHERE clause.

21S01 Insert value list does not 5z5qlStr contains an INSERT statement and the number of values

match column list. to be inserted did not match the degree of the derived table.

21502 Degrees of derived table does szSq/Str contains a CREATE VIEW statement and the number of

not match column list. names specified is not the same degree as the derived table
defined by the query specification.

24000 Invalid cursor state. A cursor is already opened on the statement handle.

34000 Invalid cursor name. 5zSqlStr contains a positioned DELETE or a positioned UPDATE
and the cursor referenced by the statement being executed is not
open.

37xxx & Invalid SQL syntax. 5z5qlStr contains one or more of the following:

« ACOMMIT

* AROLLBACK

* An SQL statement that the connected database server cannot
prepare

» A statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belongs is rolled back

due to deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source

fails before the function completes.

Chapter 5. Functions 301

SQLPrepare

Table 118. SQLPrepare SQLSTATEs (continued)
SQLSTATE Description

Explanation

42xxx @ Syntax error or access rule 425xx indicates the authorization ID does not have permission to
violation execute the SQL statement contained in szSq/Str.
Other 42xxx SQLSTATEsS indicate a variety of syntax or access
problems with the statement.

42501 Database object already 5zSqIStr contains a CREATE TABLE or CREATE VIEW statement

exists. and the table name or view name specified already exists.

42502 Database object does not 5z5qlStr contains an SQL statement that references a table name

exist. or a view name that does not exist.

42511 Index already exists. 5z5qlIStr contains a CREATE INDEX statement and the specified
index name already exists.

42512 Index not found. 5z5qIStr contains a DROP INDEX statement and the specified
index name does not exist.

42521 Column already exists. 5zSqIStr contains an ALTER TABLE statement and the column
specified in the ADD clause is not unique or identifies an existing
column in the base table.

42522 Column not found. 5zSqIStr contains an SQL statement that references a column name
that does not exist.

58004 Unexpected system failure. Unrecoverable system error.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY009 Invalid use of a null pointer. 5zS8qlStr is a null pointer.

HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

HYO014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The argument cbSqlStris less than 1, but not equal to SQL_NTS.

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37 class.

Not all DBMSs report all of the above diagnostic messages at prepare time.
Therefore, an application must also be able to handle these conditions when calling

SQLExecute().

Restrictions
None.

302 ODBC Guide and Reference

Example

[k F gk dok ke ok ko k R 2 bt a e *xk [
/* Prepare a query and execute a query twice */
/* specifying a unique value for the parameter marker. */

/**/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlclil.h"

i

{

SQLPrepare

nt main()
SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 03
char *pDSN = "STLEC1";
SWORD chCursor;
SDWORD chValuel;
SDWORD chValue2;
char employee [30];
int salary = 0;
int param_salary = 30000;
char *stmt = "SELECT NAME, SALARY FROM EMPLOYEE WHERE SALARY > ?";

(void) printf ("#*** Entering CLIPO7.\n\n");

/***/

/* Allocate Environment Handle */
[ek ok ok ko e o ok o ko ok ok ek ok ok Kkkkkkkhkhkkh Rk kkhkkkkhkkkx [

RETCODE = SQLATTocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/* Allocate Connection Handle to DSN */

/***/

RETCODE = SQLATTocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle

goto dberror;

Chapter 5. Functions 303

SQLPrepare

/***/

/* CONNECT TO data source (STLEC1) */

/***/

RETCODE = SQLConnect (hDbc, // Connect handle
(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated
NULL, // Null UID
o .,
NULL, // Null Auth string
0);

if(RETCODE != SQL_SUCCESS) // Connect failed

goto dberror;
/***/

/* Allocate Statement Handles */

/***/
rc = SQLATTocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);

if (rc != SQL_SUCCESS)
goto exit;

/***/

/* Prepare the query for multiple execution within current */
/* transaction. Note that query is collapsed when transaction */
/* is committed or rolled back. */

/***/

rc = SQLPrepare (hStmt,
(SQLCHAR *) stmt,
strien(stmt));

if (rc != SQL_SUCCESS)
{

(void) printf ("#%x* PREPARE OF QUERY FAILED.\n");
goto dberror;

}

rc = SQLBindCol (hStmt, // bind employee name
19
SQL_C_CHAR,
employee,
sizeof (employee),
&cbValuel);

if (rc != SQL_SUCCESS)
{

(void) printf ("s%+x BIND OF NAME FAILED.\n");
goto dberror;

}

rc = SQLBindCol (hStmt, // bind employee salary
2,
SQL_C_LONG,
&salary,
0,
&cbValue2);
if (rc != SQL_SUCCESS)

304 ODBC Guide and Reference

{
(void) printf ("s%%x BIND OF SALARY FAILED.\n");
goto dberror;

}

/***/
/* Bind parameter to replace '?' in query. This has an initial =*/
/* value of 30000. */

/***/

rc = SQLBindParameter (hStmt,
1,
SQL_PARAM_INPUT,
SQL_C_LONG,
SQL_INTEGER,
0,
0,
¶m_salary,
0,
NULL) ;
/***/

/* Execute prepared statement to generate answer set. */
/***/

rc = SQLExecute (hStmt);
if (rc != SQL_SUCCESS)
{
(void) printf ("s%*x EXECUTE OF QUERY FAILED.\n");

goto dberror;

}

/***/

/* Answer Set is available -- Fetch rows and print employees x/
/* and salary. x/
[F kg ke kok R R 2 R bt a R R *xk [

(void) printf ("+*xx Employees whose salary exceeds %d follow.\n\n",
param_salary);

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
{
(void) printf ("#**x Employee Name %s with salary %d.\n",
employee,

salary);

}

/***/

/* Close query --- note that query is still prepared. Then change*/

/* bound parameter value to 100000. Then re-execute query. */
/***/

rc =SQLCloseCursor(hStmt);
param_salary = 100000;

rc = SQLExecute (hStmt);
if (rc != SQL_SUCCESS)

Chapter 5.

SQLPrepare

Functions 305

SQLPrepare

{
(void) printf ("s#*x EXECUTE OF QUERY FAILED.\n");

goto dberror;

}

/***/
/* Answer Set is available -- Fetch rows and print employees */

/* and salary. x/
/***/

(void) printf ("+*xx Employees whose salary exceeds %d follow.\n\n",
param_salary);

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)
{

(void) printf ("#*** Employee Name %s with salary %d.\n",
employee,
salary);

}

/***/
/* Deallocate Statement Handles -- statement is no longer in a =/

/* Prepared state. */
/***/

rc =SQLFreeHandle(SQL_HANDLE_STMT, hStmt);

/***/

/* DISCONNECT from data source */

YR IET I ok kxx I IR h KRk kI *hh kKK * % R R Ea e s /

RETCODE = SQLDisconnect (hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

YR T TEE kK xx I IR Rk h ko xhhh Kk kK ok k R R R AR /

/* Deallocate Connection Handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE_DBC, hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Free Environment Handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE_ENV, hEnv);

if (RETCODE == SQL_SUCCESS)
goto exit;

dberror:
RETCODE=12;

exit:
(void) printf ("#*** Exiting CLIPO7.\n\n");

return RETCODE;

306 ODBC Guide and Reference

References

SQLPrepare

“SQLBindParameter - Binds a parameter marker to a buffer or LOB locator” on|

page 91|

“SQLColAttribute - Get column attributes” on page 106

“SQLDescribeCol - Describe column attributes” on page 137|

“SQLExecDirect - Execute a statement directly” on page 161|

“SQLExecute - Execute a statement” on page 166]

“SQLNumParams - Get number of parameters in a SQL statement” on page 292|

“SQLNumResultCols - Get number of result columns” on page 294

“SQLSetParam - Binds a parameter marker to a buffer’ on page 354

Chapter 5. Functions 307

SQLPrimaryKeys

SQLPrimaryKeys - Get primary key columns of a table

Purpose
|Specification: | ODBC 1.0 | |
SQLPrimaryKeys () returns a list of column names that comprise the primary key for
a table. The information is returned in an SQL result set, which can be retrieved
using the same functions that are used to process a result set generated by a
query.
Syntax
SQLRETURN SQLPrimaryKeys (SQLHSTMT hstmt,
SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName) ;
Function arguments
Table 119. SQLPrimaryKeys arguments
Data type Argument Use Description
SQLHSTMT hstmt input Statement handle.
SQLCHAR * szCatalogName input Catalog qualifier of a 3 part table name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT cbCatalogName input Length of szCatalogName.
SQLCHAR * szSchemaName input Schema qualifier of table name.
SQLSMALLINT cbSchemaName input Length of szSchemaName.
SQLCHAR * szTableName input Table name.

SQLSMALLINT cbTableName input Length of szTableName.
Usage

SQLPrimaryKeys() returns the primary key columns from a single table. Search
patterns cannot be used to specify the schema qualifier or the table name.

The result set contains the columns listed in|Table 120 on page 309, ordered by
TABLE_CAT, TABLE_SCHEM, TABLE_NAME and ORDINAL_POSITION.

Since calls to SQLPrimaryKeys() in many cases map to a complex and, thus,
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with
a maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and

308 ODBC Guide and Reference

Table 120. Columns returned by SQLPrimaryKeys

SQLPrimaryKeys

SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Column number/name Data type Description

1 TABLE_CAT VARCHAR(128) This is always null.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME VARCHAR(128) NOT NULL Name of the specified table.

4 COLUMN_NAME VARCHAR(128) NOT NULL Primary key column name.

5 KEY_SEQ SMALLINT NOT NULL Column sequence number in the primary key, starting
with 1.

6 PK_NAME VARCHAR(128) Primary key identifier. NULL if not applicable to the data

source.

Note: The column names used by DB2 ODBC follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLPrimaryKeys () result set in ODBC.

If the specified table does not contain a primary key, an empty result set is

returned.

Return codes

SQL_SUCCESS

SQL_SUCCESS_WITH_INFO

+ SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 121. SQLPrimaryKeys SQLSTATEs
SQLSTATE Description Explanation
24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. ~ The value of one of the name length arguments is less than 0, but
not equal SQL_NTS.

HYCO00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.

Restrictions

None.

Chapter 5. Functions 309

SQLPrimaryKeys

Example

The following example uses SQLPrimaryKeys to locate a primary key for a table, and
calls SQLCoTAttributes to find its data type.

[* ... %/
#include <sqlclil.h>

void main()

{

SQLCHAR rgbDesc_20];
SQLCHAR szTableName_20];
SQLCHAR szSchemaName_20] ;
SQLCHAR rgbValue_20];
SQLINTEGER pchbValue;

SQLHENV henv;

SQLHDBC hdbc;

SQLHSTMT hstmt;
SQLSMALLINT pscDesc;
SQLINTEGER pdDesc;
SQLRETURN rc;

/***/

/* Initialization... */
/*****‘k‘k*‘k‘k**‘k**‘k‘k**‘k**‘k‘k**‘k**‘k‘k*‘k‘k**‘k**‘k‘k**‘k**‘k‘k*****‘k‘k*‘k‘k**‘k**‘k‘k**/

if(SQLATTocHandle(SQL_HANDLE_ENV, SQL_NULL HANDLE, &henv)!=SQL_SUCCESS)
{

fprintf(stdout, "Error in SQLAllocHandle\n");

exit(1);

}
if(SQLATTocHandle(SQL_HANDLE_DBC, henv, &hdbc)!=SQL_SUCCESS)
{

fprintf(stdout, "Error in SQLAllocHandle\n");

exit(1);

if(SQLConnect(hdbc,
NULL, SQL_NTS,
NULL, SQL_NTS,
NULL, SQL_NTS) != SQL_SUCCESS)

fprintf(stdout, "Error in SQLConnect\n");

exit(1);
1
if(SQLA1TocHand1e(SQL_HANDLE_STMT, hdbc, &hstmt)!=SQL_SUCCESS)
{

fprintf(stdout, "Error in SQLAllocHandle\n");

exit(1);

310 ODBC Guide and Reference

SQLPrimaryKeys

/***/

/* Get primary key for table 'myTable' by using SQLPrimaryKeys */
/

... FE——————

rc = SQLPrimaryKeys(hstmt,
NULL, SQL_NTS,
(SQLCHAR*) szSchemaName, SQL_NTS,
(SQLCHAR*)szTableName, SQL_NTS);
if(rc != SQL_SUCCESS)
{

}

/*
* Since all we need is the ordinal position, we'll bind column 5 from
* the result set.
*/
rc = SQLBindCol(hstmt,
5,
SQL_C_CHAR,
(SQLPOINTER) rgbValue,
20,
&pcbValue);
if(rc != SQL_SUCCESS)

goto exit;

{

goto exit;
1
/*
* Fetch data...
*/
if(SQLFetch(hstmt) != SQL_SUCCESS)
{

goto exit;

1
/***/
/* Get data type for that column by calling SQLColAttribute(). */

/***/

rc = SQLColAttribute(hstmt,

pcbValue,
SQL_DESC_TYPE,
rgbDesc,
20,
&pdbcDesc,
&pfDesc);

if(rc != SQL_SUCCESS)

{

goto exit;

}

/*

* Display the data type.

*

/

fprintf(stdout, "Data type ==> %s\n", rgbDesc);

Chapter 5. Functions 311

SQLPrimaryKeys

exit:
/***/
/* Clean up the environment... */
T T———————————— sk ok 5 o ok ok ko ok ok o o ok o o o ok ok o ok ok ok ok ok ok e /

SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);
SQLDisconnect(hdbc);
SQLFreeHand1e(SQL_HANDLE DBC, hdbc);

SQLFreeHandle (SQL_HANDLE_ENV, henv);

References

+ [‘SQLForeignKeys - Get the list of foreign key columns” on page 181
+ [‘SQLStatistics - Get index and statistics information for a base table” on|

page 374|

312 ODBC Guide and Reference

SQLProcedureColumns

SQLProcedureColumns - Get input/output parameter information for a
procedure

Purpose
Specification: | ODBC 1.0
SQLProcedureColumns () returns a list of input and output parameters associated with
a procedure. The information is returned in an SQL result set, which can be
retrieved using the same functions that are used to process a result set generated
by a query.
Syntax
SQLRETURN SQLProcedureColumns (
SQLHSTMT hstmt,
SQLCHAR FAR *szProcCatalog,
SQLSMALLINT cbProcCatalog,
SQLCHAR FAR *szProcSchema,
SQLSMALLINT cbProcSchema,
SQLCHAR FAR *szProcName,
SQLSMALLINT cbProcName,
SQLCHAR FAR *szColumnName,
SQLSMALLINT cbColumnName) ;
Function arguments
Table 122. SQLProcedureColumns arguments
Data type Argument Use Description
SQLHSTMT hstmt input Statement handle.
SQLCHAR * szProcCatalog input Catalog qualifier of a 3 part procedure name.

This must be a NULL pointer or a zero length string.
SQLSMALLINT cbProcCatalog input Length of szProcCatalog. This must be set to 0.

SQLCHAR * szProcSchema input Buffer that can contain a pattern-value to qualify the result set
by schema name.

For Version 4 and Version 5 of DB2 for OS/390, all the stored
procedures are in one schema; the only acceptable value for
the szProcSchema argument is a null pointer. For DB2 UDB,
szProcSchema can contain a valid pattern value. For more
information about valid search patterns, see [‘Querying system|
|catalog information” on page 397,

SQLSMALLINT cbProcSchema input Length of szProcSchema.

SQLCHAR * szProcName input Buffer that can contain a pattern-value to qualify the result set
by procedure name.

SQLSMALLINT cbProcName input Length of szProcName.

SQLCHAR * szColumnName input Buffer that can contain a pattern-value to qualify the result set

by parameter name. This argument is to be used to further
qualify the result set already restricted by specifying a
non-empty value for szProcName and/or szProcSchema.

SQLSMALLINT cbColumnName input Length of szColumnName.

Chapter 5. Functions 313

SQLProcedureColumns

Usage

If the stored procedure is at a DB2 for MVS/ESA Version 4 server or a DB2 for
0S/390 Version 5 server, the name of the stored procedures must be registered in
the server's SYSIBM.SYSPROCEDURES catalog table. If the stored procedure is at
a DB2 for OS/390 Version 6 server or later, the name of the stored procedures
must be registered in the server's SYSIBM.SYSROUTINES catalog table.

For versions of other DB2 servers that do not provide facilities for a stored
procedure catalog, an empty result set is returned.

DB2 ODBC returns information on the input, input/output, and output parameters
associated with the stored procedure, but cannot return information on the
descriptor information for any result sets returned.

SQLProcedureColumns () returns the information in a result set, ordered by
PROCEDURE_CAT, PROCEDURE_SCHEM, PROCEDURE_NAME, and
COLUMN_TYPE. [Table 123|lists the columns in the result set.

Since calls to SQLProcedureColumns () in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with
a maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Applications should be aware that columns beyond the last column might be
defined in future releases. Although new columns might be added and the names of
the existing columns changed in future releases, the position of the current columns
does not change.

Table 123. Columns returned by SQLProcedureColumns

Column number/name

Data type Description

1 PROCEDURE_CAT

VARCHAR(128) The is always null.

2 PROCEDURE_SCHEM VARCHAR(128) The name of the schema containing PROCEDURE_NAME.

(This is also NULL for DB2 for OS/390 and z/OS
SQLProcedureColumns () result sets.)

3 PROCEDURE_NAME VARCHAR(128) Name of the procedure.

4 COLUMN_NAME

VARCHAR(128) Name of the parameter.

314 ODBC Guide and Reference

SQLProcedureColumns

Table 123. Columns returned by SQLProcedureColumns (continued)

Column number/name Data type

Description

5 COLUMN_TYPE SMALLINT NOT
NULL

Identifies the type information associated with this row. The
values can be:

* SQL_PARAM_TYPE_UNKNOWN: the parameter type is
unknown.
Note: This is not returned.

* SQL_PARAM_INPUT: this parameter is an input parameter.

* SQL_PARAM_INPUT_OUTPUT: this parameter is an input /
output parameter.

* SQL_PARAM_OUTPUT: this parameter is an output
parameter.

* SQL_RETURN_VALUE: the procedure column is the return
value of the procedure.
Note: This is not returned.

* SQL_RESULT_COL: this parameter is actually a column in
the result set.

Note: This is not returned.
Note: SQL_PARAM_OUTPUT and SQL_RETURN_VALUE
are supported only on ODBC 2.0 or higher.

6 DATA_TYPE SMALLINT NOT
NULL

SQL data type.

7 TYPE_NAME VARCHAR(128)
NOT NULL

Character string representing the name of the data type
corresponding to DATA_TYPE.

8 COLUMN_SIZE INTEGER

If the DATA_TYPE column value denotes a character or binary
string, then this column contains the maximum length in bytes;
if it is a graphic (DBCS) string, this is the number of double
byte characters for the parameter.

For date, time, timestamp data types, this is the total number
of bytes required to display the value when converted to
character.

For numeric data types, this is either the total number of digits,
or the total number of bits allowed in the column, depending on
the value in the NUM_PREC_RADIX column in the result set.

See|Table 174 on page 486,

9 BUFFER_LENGTH INTEGER

The maximum number of bytes for the associated C buffer to
store data from this parameter if SQL_C_DEFAULT is specified
on the SQLBindCol1(), SQLGetData() and SQLBindParameter()
calls. This length excludes any null-terminator. For exact
numeric data types, the length accounts for the decimal and
the sign.

See|Table 176 on page 488,

10 DECIMAL_DIGITS SMALLINT

The scale of the parameter. NULL is returned for data types
where scale is not applicable.

See|Table 175 on page 487]

Chapter 5. Functions 315

SQLProcedureColumns

Table 123. Columns returned by SQLProcedureColumns (continued)

Column number/name Data type

Description

11 NUM_PREC_RADIX SMALLINT

Either 10 or 2 or NULL. If DATA_TYPE is an approximate
numeric data type, this column contains the value 2, then the
COLUMN_SIZE column contains the number of bits allowed in
the parameter.

If DATA_TYPE is an exact numeric data type, this column
contains the value 10 and the COLUMN_SIZE and
DECIMAL_DIGITS columns contain the number of decimal
digits allowed for the parameter.

For numeric data types, the DBMS can return a
NUM_PREC_RADIX of either 10 or 2.

NULL is returned for data types where radix is not applicable.

12 NULLABLE SMALLINT NOT
NULL

SQL_NO_NULLS if the parameter does not accept NULL
values.

SQL_NULLABLE if the parameter accepts NULL values.

13 REMARKS VARCHAR(254)

Might contain descriptive information about the parameter.

14 COLUMN_DEF VARCHAR(254)

The column’s default value. If the default value is:

¢ A numeric literal, this column contains the character
representation of the numeric literal with no enclosing single
quotes.

» A character string, this column is that string enclosed in
single quotes.

* A pseudo-literal, such as for DATE, TIME, and TIMESTAMP
columns, this column contains the keyword of the
pseudo-literal (for example, CURRENT DATE) with no
enclosing single quotes.

* NULL, this column returns the word NULL, with no enclosing
single quotes.

If the default value cannot be represented without truncation,
this column contains TRUNCATED with no enclosing single
quotes. If no default value is specified, this column is NULL.

15 SQL_DATA_TYPE SMALLINT NOT
NULL

The SQL data type. This columns is the same as the
DATA_TYPE column. For datetime data types, the
SQL_DATA_TYPE field in the result set is SQL_DATETIME,
and the SQL_DATETIME_SUB field returns the subcode for
the specific datetime data type (SQL_CODE_DATE,
SQL_CODE_TIME or SQL_CODE_TIMESTAMP).

16 SQL_DATETIME_SUB SMALLINT

The subtype code for datetime data types:
* SQL_CODE_DATE

+ SQL_CODE_TIME

+ SQL_CODE_TIMESTAMP

For all other data types, this column returns a NULL.

17 CHAR_OCTET_LENGTH INTEGER

The maximum length in bytes of a character data type column.
For all other data types, this column returns a NULL.

18 ORDINAL_POSITION INTEGER NOT
NULL

316 ODBC Guide and Reference

Contains the ordinal position of the parameter given by
COLUMN_NAME in this result set. This is the ordinal position
of the argument provided on the CALL statement. The leftmost
argument has an ordinal position of 1.

SQLProcedureColumns

Table 123. Columns returned by SQLProcedureColumns (continued)

Column number/name Data type Description

19 IS_NULLABLE VARCHAR(128) One of the following:
< "NO”, if the column does not include NULLs
* "YES’, if the column can include NULLs
= Zero-length string if nullability is unknown.

The value returned for this column is different than the value
returned for the NULLABLE column. (See the description of the
NULLABLE column.)

Note: The column names used by DB2 ODBC follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLProcedureColumns () result set in ODBC.

Return codes

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_ERROR
SQL_INVALID_HANDLE

Diagnostics

Table 124. SQLProcedureColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

42601 PARMLIST syntax error. The PARMLIST value in the stored procedures catalog table
contains a syntax error.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length ~ The value of one of the name length arguments is less than 0, but
not equal SQL_NTS.

HYCO00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for procedure
name.
The connected server does not support schema as a qualifier for
procedure name.

Restrictions

SQLProcedureColumns () does not return information about the attributes of result
sets that stored procedures can return.

If an application is connected to a DB2 server that does not provide support for

stored procedures, or for a stored procedure catalog, SQLProcedureColumns ()
returns an empty result set.

Chapter 5. Functions 317

SQLProcedureColumns

Example

[k Kk ke k kK ok e e e ok o ok ok ok ok ko ek ok ko e o e o o o e o ok koo o o ok ok o ok o o ok ok o ok ok ok /
/* Invoke SQLProcedureColumns and enumerate all rows retrieved. =*/
/*************** ** *k*k *k*k ******************************/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>
#include "sqlclil.h"
int main()
{
SQLHENV hEnv = SQL_NULL_HENV;
SQLHDBC hDbc = SQL_NULL_HDBC;
SQLHSTMT hStmt = SQL_NULL_HSTMT;
SQLRETURN rc = SQL_SUCCESS;
SQLINTEGER RETCODE = 0;
char *pDSN = "STLEC1";
char procedure_name [20];
char parameter_name [20];
char ptype [20];
SQLSMALLINT parameter_type = 0;
SQLSMALLINT data_type = 0;
char type_name [20];
SWORD cbCursor;
SDWORD cbValue3;
SDWORD cbValued;
SDWORD cbValue5;
SDWORD cbValue6;
SDWORD cbValue7;
char ProcCatalog [20] = {0};
char ProcSchema [20] = {0};
char ProcName [20] = {"DOIT%"};
char ColumnName [20] = {"P%"};
SQLSMALLINT cbProcCatalog = 0;
SQLSMALLINT cbProcSchema = 0;
SQLSMALLINT cbProcName = strlen(ProcName);
SQLSMALLINT cbColumnName = strlen(ColumnName);

318 ODBC Guide and Reference

SQLProcedureColumns

(void) printf ("#*** Entering CLIP12.\n\n");

T ———— oo ok o o ook ook ook ook ok o A -

/* Allocate Environment Handle */
/***/

RETCODE =SQLATTocHandle(SQL_HANDLE_ENV, SQL NULL HANDLE, &hEnv);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Allocate Connection Handle to DSN */

/***/

RETCODE =SQLA171ocHandle(SQL_HANDLE DBC, hEnv, &hDbc);

if(RETCODE != SQL_SUCCESS) // Could not get a Connect Handle
goto dberror;

/***/

/* CONNECT TO data source (STLEC1) */

/***/

RETCODE = SQLConnect (hDbc, // Connect handle
(SQLCHAR *) pDSN, // DSN
SQL_NTS, // DSN is nul-terminated
NULL, // Null UID
0 H
NULL, // Null Auth string
0);

if(RETCODE != SQL_SUCCESS) // Connect failed

goto dberror;
YR IE TR ERTEE e e e o o o e o ok ko ok o e o ok ok o ok ok ok o o o o ok ok ok o o o ok o ok ok ok *xk [
/* Allocate Statement Handles */

[k kkkkkkkkkkkkkkkkokk ko k ko kR k ko h ko h ko k ko k ko k ko k ko k ko kkkkkkk kK k kK [
rc = SQLATTocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);

if (rc != SQL_SUCCESS)
goto exit;

/***/
/* Invoke SQLProcedureColumns and retrieve all rows within x/

/* answer set. */
/***/

rc = SQLProcedureColumns (hStmt ,
(SQLCHAR *) ProcCatalog,
cbProcCatalog s
(SQLCHAR *) ProcSchema ,
cbProcSchema ,
(SQLCHAR *) ProcName ,
cbProcName ,
(SQLCHAR *) ColumnName ,
cbCoTumnName) ;

Chapter 5. Functions

319

SQLProcedureColumns

if (rc 1= SQL_SUCCESS)
{

(void) printf ("#¥*x SQLProcedureColumns Failed.\n");
goto dberror;

}

rc = SQLBindCol (hStmt, // bind procedure name
3,

SQL_C_CHAR,

procedure_name,

sizeof (procedure_name),

&cbValue3);

if (rc != SQL_SUCCESS)

{
(void) printf ("+*** Bind of procedure name Failed.\n");
goto dberror;

}

rc = SQLBindCol (hStmt, // bind parameter_name
4,
SQL_C_CHAR,
parameter_name,
sizeof(parameter_name),
&cbValued);

if (rc 1= SQL_SUCCESS)
{

(void) printf ("+*** Bind of parameter_name Failed.\n");
goto dberror;

}

rc = SQLBindCol (hStmt, // bind parameter_type
5,

SQL_C_SHORT,

¶meter_type,

0,

&cbValueb);

if (rc != SQL_SUCCESS)
{

(void) printf ("#*** Bind of parameter type Failed.\n");
goto dberror;

}

rc = SQLBindCol (hStmt, // bind SQL data type
65
SQL_C_SHORT,
&data_type,
09
&cbValueb);

if (rc != SQL_SUCCESS)
{
(void) printf ("***+ Bind of data_type Failed.\n");

goto dberror;

}

320 ODBC Guide and Reference

SQLProcedureColumns

= SQLBindCol (hStmt, // bind type name
7,
SQL_C_CHAR,
type_name,
sizeof (type_name),
&cbValue7);

if (rc != SQL_SUCCESS)

{
(void) printf ("+#** Bind of type name Failed.\n");
goto dberror;

}

/***/
/* Answer Set is available - Fetch rows and print parameters for =*/

/* all procedures. */
/***/

while ((rc = SQLFetch (hStmt)) == SQL_SUCCESS)

(void) printf ("#%** Procedure Name = %s. Parameter %s",
procedure_name,
parameter_name) ;

switch (parameter_type)
{
case SQL_PARAM_INPUT
(void) strcpy (ptype, ”INPUT“),
break;
case SQL_PARAM_OUTPUT
(void) strcpy (ptype, "OUTPUT");
break;
case SQL_PARAM_INPUT_ OUTPUT :
(void) strcpy (ptype, "INPUT/OUTPUT");

break;
default
(void) strcpy (ptype, ”UNKNOWN")
break;
1
(void) printf (" is %s. Data Type is %d. Type Name is %s.\n",
ptype s
data_type ,

type_name);

}

/***/
/* Deallocate Statement Handles -- statement is no longer in a =/
/* Prepared state. x/

/***/

rc =SQLFreeHandle(SQL_HANDLE_STMT, hStmt);
/***/

/* DISCONNECT from data source */

/***/

RETCODE = SQLDisconnect (hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

Chapter 5. Functions

321

SQLProcedureColumns

References

/***/

/* Deallocate Connection Handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE_DBC, hDbc);

if (RETCODE != SQL_SUCCESS)
goto dberror;

/***/

/* Free Environment Handle */
/***/

RETCODE =SQLFreeHandle(SQL_HANDLE_ENV, hEnv);

if (RETCODE == SQL_SUCCESS)
goto exit;

dberror:
RETCODE=12;

exit:
(void) printf ("#*** Exiting CLIP12.\n\n");

return RETCODE;

« [“SQLProcedures - Get list of procedure names” on page 323

322 ODBC Guide and Reference

SQLProcedures

SQLProcedures - Get list of procedure names

Purpose

Syntax

|Specification: | ODBC 1.0

SQLProcedures () returns a list of procedure names that have been registered at the
server, and which match the specified search pattern.

The information is returned in an SQL result set, which can be retrieved using the
same functions that are used to process a result set generated by a query.

SQLRETURN SQLProcedures (SQLHSTMT hstmt,

SQLCHAR FAR *szProcCatalog,

SQLSMALLINT cbProcCatalog,
SQLCHAR FAR *szProcSchema,
SQLSMALLINT cbProcSchema,
SQLCHAR FAR *szProcName,
SQLSMALLINT cbProcName) ;

Function arguments

Table 125. SQLProcedures arguments

Data type Argument Use Description

SQLHSTMT hstmt Input Statement handle.

SQLCHAR * szProcCatalog Input Catalog qualifier of a 3 part procedure name.

This must be a NULL pointer or a zero length string.

SQLSMALLINT

cbProcCatalog Input Length of szProcCatalog. This must be set to 0.

SQLCHAR *

szProcSchema Input Buffer that can contain a pattern-value to qualify the result set

by schema name.

For Version 4 and Version 5 of DB2 for OS/390, all the stored
procedures are in one schema; the only acceptable value for
the szProcSchema argument is a null pointer. For DB2 UDB,
szProcSchema can contain a valid pattern value. For more
information about valid search patterns, see [‘Querying system|
|catalog information” on page 397,

SQLSMALLINT

cbProcSchema Input Length of szProcSchema.

SQLCHAR * szProcName Input Buffer that can contain a pattern-value to qualify the result set
by table name.
SQLSMALLINT cbProcName Input Length of szProcName.

Usage

If the stored procedure is at a DB2 for MVS/ESA Version 4 server or a DB2 for
0OS/390 Version 5 server, the name of the stored procedures must be registered in
the servers SYSIBM.SYSPROCEDURES catalog table. If the stored procedure is at
a DB2 for OS/390 Version 6 server or later, the name of the stored procedure must
be registered in the servers SYSIBM.SYSROUTINES catalog table.

Chapter 5. Functions 323

SQLProcedures

For other versions of DB2 servers that do not provide facilities for a stored
procedure catalog, an empty result set is returned.

The result set returned by SQLProcedures() contains the columns listed in [Table 126
in the order given. The rows are ordered by PROCEDURE_CAT,
PROCEDURE_SCHEMA, and PROCEDURE_NAME.

Since calls to SQLProcedures() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set have been declared with
a maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 126. Columns returned by SQLProcedures

Column number/name Data type Description
1 PROCEDURE_CAT VARCHAR(128) This is always null.
2 PROCEDURE_SCHEM VARCHAR(128) The name of the schema containing

PROCEDURE_NAME.

3 PROCEDURE_NAME VARCHAR(128) NOT NULL The name of the procedure.

4 NUM_INPUT_PARAMS INTEGER not NULL Number of input parameters.

5 NUM_OUTPUT_PARAMS INTEGER not NULL Number of output parameters.

6 NUM_RESULT_SETS INTEGER not NULL Number of result sets returned by the procedure.

7 REMARKS VARCHAR(254) Contains the descriptive information about the procedure.
8 PROCEDURE_TYPE SMALLINT Defines the procedure type:

* SQL_PT_UNKNOWN: It cannot be determined whether
the procedure returns a value.

* SQL_PT_PROCEDURE: The returned object is a
procedure; that is, it does not have a return value.

* SQL_PT_FUNCTION: The returned object is a
function; that is, it has a return value.

DB2 ODBC always returns SQL_PT_PROCEDURE.

Note: The column names used by DB2 ODBC follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLProcedures() result set in ODBC.

Return codes

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_ERROR

* SQL_INVALID_HANDLE

324 ODBC Guide and Reference

SQLProcedures

Diagnostics

Table 127. SQLProcedures SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.
HYO014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.
HY090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal to SQL_NTS.
HYCO00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for procedure
name.
The connected server does not supported schema as a qualifier for
procedure name.
Restrictions
If an application is connected to a DB2 server that does not provide support for
stored procedures, or for a stored procedure catalog, SQLProcedureColumns ()
returns an empty result set.
Example

[* o0 %/

printf("Enter Procedure Schema Name Search Pattern:\n");
gets(proc_schem.s);

rc = SQLProcedures(hstmt, NULL, O, proc_schem.s, SQL NTS, "%", SQL _NTS);

rc = SQLBindCol (hstmt, 2, SQL_C_CHAR, (SQLPOINTER) proc_schem.s, 129,
&proc_schem.ind);

rc = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER) proc_name.s, 129,
&proc_name.ind);

rc = SQLBindCol(hstmt, 7, SQL_C_CHAR, (SQLPOINTER) remarks.s, 255,
&remarks.ind);

printf("PROCEDURE SCHEMA PROCEDURE NAME \n");

Printf (" —mmmmmmmmm e \n");

/* Fetch each row, and display */
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {
printf("%-25s %-25s\n", proc_schem.s, proc_name.s);

if (remarks.
printf("

ind != SQL_NULL_DATA) {
(Remarks) %s\n", remarks.s);

/* endwhile x/

Chapter 5. Functions 325

SQLProcedures

References

* [“SQLProcedureColumns - Get input/output parameter information for a|
procedure” on page 313

326 ODBC Guide and Reference

SQLPutData

SQLPutData - Passing data value for a parameter

Purpose

Syntax

|Specification: | ODBC 1.0 | X/OPEN CLI ISO CLI

SQLPutData() is called following an SQLParamData() call returning
SQL_NEED_DATA to supply parameter data values. This function can be used to
send large parameter values in pieces.

The information is returned in an SQL result set, which can be retrieved using the
same functions that are used to process a result set generated by a query.

SQLRETURN SQLPutData (SQLHSTMT hstmt,
SQLPOINTER rgbValue,
SQLINTEGER cbValue);

Function arguments

Table 128. SQLPutData arguments

Data type

Argument Use Description

SQLHSTMT

hstmt Input Statement handle.

SQLPOINTER

rgbValue Input Pointer to the actual data, or portion of data, for a parameter.
The data must be in the form specified in the
SQLBindParameter() call that the application used when
specifying the parameter.

SQLINTEGER

Usage

cbValue Input Length of rgbValue. Specifies the amount of data sent in a call
to SQLPutData() .

The amount of data can vary with each call for a given
parameter. The application can also specify SQL_NTS or
SQL_NULL_DATA for cbValue.

cbValue is ignored for all fixed length C buffer types, such as
date, time, timestamp, and all numeric C buffer types.

For cases where the C buffer type is SQL_C_CHAR or
SQL_C_BINARY, or if SQL_C_DEFAULT is specified as the C
buffer type and the C buffer type default is SQL_C_CHAR or
SQL_C_BINARY, this is the number of bytes of data in the
rgbValue buffer.

For a description on the SQLParamData() and SQLPutData() sequence, see
I'Sending/retrieving long data in pieces” on page 401}

The application calls SQLPutData() after calling SQLParamData() on a statement in
the SQL_NEED_DATA state to supply the data values for an SQL_DATA_AT_EXEC
parameter. Long data can be sent in pieces using repeated calls to SQLPutData().
After all the pieces of data for the parameter have been sent, the application calls
SQLParamData() again to proceed to the next SQL_DATA_AT_EXEC parameter, or,
if all parameters have data values, to execute the statement.

Chapter 5. Functions 327

SQLPutData

Return codes

Diagnostics

SQLPutData() cannot be called more than once for a fixed length C buffer type,
such as SQL_C_LONG.

After an SQLPutData() call, the only legal function calls are SQLParamData(),
SQLCancel (), or another SQLPutData() if the input data is character or binary data.
As with SQLParamData(), all other function calls using this statement handle fail. In
addition, all function calls referencing the parent hdbc of hstmt fail if they involve
changing any attribute or state of that connection; that is, the following function calls
on the parent hdbc are also not permitted:

* SQLAllocHandle()

* SQLSetConnectAttr()

» SQLNativeSql()

* SQLEndTran()

Should they be invoked during an SQL_NEED_DATA sequence, these functions
return SQL_ERROR with SQLSTATE of HY010 and the processing of the
SQL_DATA_AT_EXEC parameters is not affected.

If one or more calls to SQLPutData() for a single parameter results in
SQL_SUCCESS, attempting to call SQLPutData() with cbValue set to
SQL_NULL_DATA for the same parameter results in an error with SQLSTATE of
22005. This error does not result in a change of state; the statement handle is still
in a Need Data state and the application can continue sending parameter data.

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
+ SQL_ERROR

» SQL_INVALID_HANDLE

Some of the following diagnostic conditions are also reported on the final
SQLParamData() call rather than at the time the SQLPutData() is called.

Table 129. SQLPutData SQLSTATEs
SQLSTATE Description Explanation

01004 Data truncated. The data sent for a numeric parameter is truncated without the loss

of significant digits.
Timestamp data sent for a date or time column is truncated.

Function returns with SQL_SUCCESS_WITH_INFO.

22001 String data right truncation. More data is sent for a binary or char data than the data source can
support for that column.
22008 Invalid datetime format or The data value sent for a date, time, or timestamp parameters is
datetime field overflow. invalid.
22018 Error in assignment. The data sent for a parameter is incompatible with the data type of

the associated table column.

40003 08S01 Communication link failure. The communication link between the application and data source

fails before the function completes.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support

execution or completion of the function.

HY009 Invalid use of a null pointer. The argument rgbValue is a NULL pointer, and the argument

cbValue is neither 0 nor SQL_NULL_DATA.

328 ODBC Guide and Reference

SQLPutData

Table 129. SQLPutData SQLSTATEs (continued)
SQLSTATE Description Explanation

HYO010 Function sequence error. The statement handle hstmt must be in a need data state and must

have been positioned on an SQL_DATA_AT_EXEC parameter using
a previous SQLParamData() call.

HYO019 Numeric value out of range. The data sent for a numeric parameter cause the whole part of the

number to be truncated when assigned to the associated column.

SQLPutData() was called more than once for a fixed length
parameter.

HY090 Invalid string or buffer length. The argument rgbValue is not a NULL pointer, and the argument

Restrictions

Example

References

cbValue is less than 0, but not equal to SQL_NTS or
SQL_NULL_DATA.

A new value for pcbValue, SQL_DEFAULT_PARAM, was introduced in ODBC 2.0,
to indicate that the procedure is to use the default value of a parameter, rather than
a value sent from the application. Since the concept of default values does not
apply to DB2 stored procedure arguments, specification of this value for the
pcbValue argument results in an error when the CALL statement is executed
because the SQL_DEFAULT_PARAM value is considered an invalid length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(/ength) macro to be
used with the pcbValue argument. The macro is used to specify the sum total
length of the entire data that would be sent for character or binary C data using the
subsequent SQLPutData() calls. Since the DB2 ODBC driver does not need this
information, the macro is not needed. An ODBC application calls SQLGetInfo() with
the SQL_NEED_LONG_DATA_LEN option to check if the driver needs this
information. The DB2 ODBC driver returns 'N’ to indicate that this information is not
needed by SQLPutData().

See [‘Example” on page 214}

« [‘SQLBindParameter - Binds a parameter marker to a buffer or LOB locator” on|
page 91|

« [‘SQLExecute - Execute a statement” on page 166

« [‘SQLExecDirect - Execute a statement directly” on page 161|

« [‘SQLParamData - Get next parameter for which a data value is needed” on|
page 296|

« [*SQLCancel - Cancel statement” on page 102

Chapter 5. Functions 329

SQLRowCount

SQLRowCount - Get row count

Purpose
|Specification: | ODBC 1.0 X/OPEN CLI ISO CLI
SQLRowCount () returns the number of rows in a table that were affected by an
UPDATE, INSERT, or DELETE statement executed against the table, or a view
based on the table.
SQLExecute() or SQLExecDirect() must be called before calling this function.
Syntax

SQLRETURN SQLRowCount (SQLHSTMT hstmt,
SQLINTEGER FAR *pcrow);

Function arguments

Table 130. SQLRowCount arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLINTEGER * pcrow output Pointer to location where the number of rows affected is
stored.

Usage

If the last executed statement referenced by the input statement handle was not an
UPDATE, INSERT, or DELETE statement, or if it did not execute successfully, then
the function sets the contents of pcrow to -1.

If SQLRowCount () is executed after the SQLExecDirect() or SQLExecute() of an SQL
statement other than INSERT, UPDATE, or DELETE, it results in return code 0 and
pcrow is set to -1.

Any rows in other tables that might be affected by the statement (for example,
cascading deletes) are not included in the count.

If SQLRowCount () is executed after a built-in function (for example, SQLTables()), it
results in return code -1 and SQLSTATE S10160.

Return codes
« SQL_SUCCESS
« SQL_ERROR
+ SQL_INVALID _HANDLE

Diagnostics

Table 131. SQLRowCount SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source

fails before the function completes.

330 ODBC Guide and Reference

SQLRowCount

Table 131. SQLRowCount SQLSTATEs (continued)

SQLSTATE Description Explanation

58004 Unexpected system failure. Unrecoverable system error.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO010 Function sequence error. The function is called prior to calling SQLExecute() or
SQLExecDirect() for the hstmt.

HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.
Restrictions
None.
Example

See [‘Example” on page 139

References

+ [‘SQLExecDirect - Execute a statement directly” on page 161/

+ [“SQLExecute - Execute a statement” on page 166)

+ [‘SQLNumResultCols - Get number of result columns” on page 294|

Chapter 5. Functions 331

SQLSetColAttributes

SQLSetColAttributes - Set column attributes

Purpose
| Specification: | |
SQLSetColAttributes() sets the data source result descriptor (column name, type,
precision, scale and nullability) for one column in the result set so that the DB2
ODBC implementation does not have to obtain the descriptor information from the
DBMS server.
Syntax
SQLRETURN SQLSetColAttributes (SQLHSTMT hstmt,
SQLUSMALLINT icol,
SQLCHAR FAR *pszColName,
SQLSMALLINT cbColName,
SQLSMALLINT fSQLType,
SQLUINTEGER cbColDef,
SQLSMALLINT ibScale,
SQLSMALLINT fNullable);

Function arguments

Table 132. SQLSetColAttributes arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT icol input Column number of result data, ordered sequentially left to
right, starting at 1.

SQLCHAR * szColName input Pointer to the column name. If the column is unnamed or is an
expression, this pointer can be set to NULL, or an empty
string can be used.

SQLSMALLINT cbColName input Length of szColName buffer.

332 ODBC Guide and Reference

SQLSetColAttributes

Table 132. SQLSetColAttributes arguments (continued)

Data type

Argument Use Description

SQLSMALLINT

fSqlType input The SQL data type of the column. The following values are
recognized:
* SQL_BINARY
+ SQL_BLOB
*+ SQL_CHAR
+ SQL_CLOB
* SQL_DBCLOB
* SQL_DECIMAL
* SQL_DOUBLE
* SQL_FLOAT
* SQL_GRAPHIC
* SQL_INTEGER
* SQL_LONGVARBINARY
* SQL_LONGVARCHAR
* SQL_LONGVARGRAPHIC
* SQL_NUMERIC
* SQL_REAL
* SQL_ROWID
* SQL_SMALLINT
* SQL_TYPE_DATE
* SQL_TYPE_TIME
* SQL_TYPE_TIMESTAMP
* SQL_VARBINARY
* SQL_VARCHAR
* SQL_VARGRAPHIC

SQLUINTEGER

cbColDef input The precision of the column on the data source.

SQLSMALLINT

ibScale input The scale of the column on the data source. This is ignored
for all data types except SQL_DECIMAL, SQL_NUMERIC,
SQL_TYPE_TIMESTAMP.

SQLSMALLINT

Usage

fNullable input Indicates whether the column allows NULL value. This must of
one of the following values:
* SQL_NO_NULLS - the column does not allow NULL values.
* SQL_NULLABLE - the column allows NULL values.

This function is designed to help reduce the amount of network traffic that can
result when an application is fetching result sets that contain an extremely large
number of columns. If the application has advanced knowledge of the
characteristics of the descriptor information of a result set (that is, the exact number
of columns, column name, data type, nullability, precision, or scale), then it can
inform DB2 ODBC rather than having DB2 ODBC obtain this information from the
database, thus reducing the quantity of network traffic.

An application typically calls SQLSetColAttributes() after a call to SQLPrepare()
and before the associated call to SQLExecute(). An application can also call
SQLSetColAttributes() before a call to SQLExecDirect(). This function is valid only
after the statement option SQL_NODESCRIBE has been set to
SQL_NODESCRIBE_ON for this statement handle.

SQLSetColAttributes() informs DB2 ODBC of the column name, type, and length
that would be generated by the subsequent execution of the query. This information
allows DB2 ODBC to determine whether any data conversion is necessary when
the result is returned to the application.

Chapter 5. Functions 333

SQLSetColAttributes

Recommendation: The application should only use this function if it has prior
knowledge of the exact nature of the result set.

The application must provide the result descriptor information for every column in
the result set or an error occurs on the subsequent fetch (SQLSTATE 07002). Using
this function only benefits those applications that handle an extremely large number
(hundreds) of columns in a result set, otherwise the effect is minimal.

Return codes

* SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

+ SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 133. SQLSetColAttributes SQLSTATEs
SQLSTATE Description Explanation
01004 Data truncated. szColName contains a column name that is too long. To obtain the
maximum length of the column name, call SQLGetInfo with the
finfoType SQL_MAX_COLUMN_NAME_LEN.
24000 Invalid cursor state. A cursor is already open on the statement handle.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

HY000 General error. An error occurred for which there is no specific SQLSTATE and for
which no implementation defined SQLSTATE is defined. The error
message returned by SQLGetDiagRec() in the argument szErrorMsg
describes the error and its cause.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY004 Invalid SQL data type. The value specified for the argument fSq/Type is not a valid SQL
data type.

HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument cbColName is less than 0 and
not equal to SQL_NTS.

HY099 Nullable type out of range. The value specified for fNullable is invalid.

HY104 Invalid precision or scale The value specified for fSql/Type is either SQL_DECIMAL or

value. SQL_NUMERIC and the value specified for cbColDef is less than 1,
or the value specified for ibScale is less than 0 or greater than the
value for the argument cbColDef (precision).

The value specified for fSqlType is SQL_TYPE_TIMESTAMP and
the value for ibScale is less than 0 or greater than 6.

$1002 Invalid column number. The value specified for the argument icol is less than 1 or greater
than the maximum number of columns supported by the server.

Restrictions

None.

334 ODBC Guide and Reference

Example

References

[* ...

[* ...

/*

SQLSetColAttributes

*/

SQLCHAR stmt[] =

{ "Select id, name from staff" };
*/

/* Tell DB2 ODBC not to get Column Attribute from the server for this hstmt */
rc =SQLSetStmtAttr(hstmt,SQL_ATTR_NODESCRIBE, (void *)SQL_NODESCRIBE_ON, 0);

rc = SQLPrepare(hstmt, stmt, SQL_NTS);

Provide the columns attributes to DB2 ODBC for this hstmt */

rc = SQLSetColAttributes(hstmt, 1, "-ID-", SQL_NTS, SQL_SMALLINT,

5, 0, SQL_NO_NULLS);

rc
9, 0, SQL_NULLABLE);

rc = SQLExecute(hstmt);

print_results(hstmt); /* Call sample function to print column attributes

and fetch and print rows. =*/
rc =SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
rc =SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

printf("Disconnecting \n");
rc = SQLDisconnect (hdbc);

rc =SQLFreeHandle(SQL_HANDLE DBC, hdbc);
if (rc != SQL_SUCCESS)
return (terminate(henv, rc));

rc =SQLFreeHandle(SQL_HANDLE_ENV, henv);
if (rc != SQL_SUCCESS)
return (terminate(henv, rc));

return (SQL_SUCCESS);
/* end main */

“SQLColAttribute - Get column attributes” on page 106)

“SQLDescribeCol - Describe column attributes” on page 137

“SQLExecute - Execute a statement” on page 166

“SQLExecDirect - Execute a statement directly” on page 161|

“SQLPrepare - Prepare a statement” on page 300|

Chapter 5. Functions

SQLSetColAttributes(hstmt, 2, "-NAME-", SQL_NTS, SQL_CHAR,

335

SQLSetConnectAttr

SQLSetConnectAttr - Set connection attributes

Purpose

Syntax

| Specification: |

ODBC 3.0 | X/OPEN CLI ISO CLI

SQLSetConnectAttr() sets attributes that govern aspects of connections.

SQLRETURN SQLSetConnectAttr (SQLHDBC ConnectionHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER StringlLength);

Function arguments

Table 134. SQLSetConnectAttr arguments

Data type

Argument Use

Description

SQLHDBC

ConnectionHandle input

Connection handle.

SQLINTEGER

Attribute input

Connection attribute to set. Refer to [Table 136 on page 337]
for a complete list of attributes.

SQLPOINTER

ValuePtr input

Pointer to the value to be associated with Attribute.
Depending on the value of Attribute, *ValuePtr will be a 32-bit
unsigned integer value or point to a null-terminated character
string. If the Attribute argument is a driver-specific value, the
value in *ValuePtr might be a signed integer.

SQLINTEGER

Usage

StringLength input

Information about the *ValuePtr argument.
» For ODBC-defined attributes:

— If ValuePtr points to a character string, this argument
should be the length of *ValuePtr.

— If ValuePtr points to an integer, BufferLength is ignored.
= For driver-defined attributes (IBM extension):

— If ValuePtr points to a character string, this argument
should be the length of *ValuePtr or SQL_NTS if it is a
null-terminated string.

— If ValuePtr points to an integer, BufferLength is ignored.

SQLSetConnectAttr() sets attributes that govern aspects of connections.

An application can call SQLSetConnectAttr() at any time between the time the
connection is allocated or freed. All connection and statement attributes successfully
set by the application for the connection persist until SQLFreeHandle() is called on

the connection.

Some connection attributes can be set only before or after a connection is made.
Other attributes cannot be set after a statement is allocated. [Table 135 on page 337]
indicates when each of the connection attributes can be set.

336 ODBC Guide and Reference

SQLSetConnectAttr

Table 135. When connection attributes can be set

Before After statements
Attribute connection After connection allocated
SQL_ATTR_ACCESS_MODE Yes Yes Yes'
SQL_ATTR_AUTOCOMMIT Yes Yes Yes?
SQL_ATTR_CONNECTTYPE Yes No No
SQL_ATTR_CURRENT_SCHEMA Yes Yes Yes
SQL_ATTR_MAXCONN Yes No No
SQL_ATTR_SYNC_POINT Yes No No
SQL_ATTR_TXN_ISOLATION No Yes Yes

Notes:

1. Attribute only affects subsequently allocated statements.
2. Attribute can be set only if there are no open transactions on the connections.

able 136 lists the SQLSetConnectAttr() Attribute values. DB2 ODBC supports all of
the ODBC 2.0 Attribute values that are renamed in ODBC 3.0.

For a summary of the Attribute values renamed in ODBC 3.0, see [Table 196 on

page 502

ODBC applications that need to set statement options should use
SQLSetStmtAttr(). Although the ability to set statement options on the connect level
is supported, it is not recommended.

Table 136. Connect options

Attribute

ValuePtr

SQL_ATTR_ACCESS_MODE

A 32-bit integer value which can be either:
« SQL_MODE_READ_ONLY: Indicates that the application is not

performing any updates on data from this point on. Therefore, a less
restrictive isolation level and locking can be used on transactions; that is,
uncommitted read (SQL_TXN_READ_UNCOMMITTED).

DB2 ODBC does not ensure that requests to the database are read-only.
If an update request is issued, DB2 ODBC processes it using the
transaction isolation level it selected as a result of the
SQL_MODE_READ_ONLY setting.

 SQL_MODE_READ_WRITE: Indicates that the application is making

updates on data from this point on. DB2 ODBC goes back to using the
default transaction isolation level for this connection.

SQL_MODE_READ_WRITE is the default.

There must not be any outstanding transactions on this connection.

Chapter 5. Functions 337

SQLSetConnectAttr

Table 136. Connect options (continued)
Attribute

ValuePtr

SQL_ATTR_AUTOCOMMIT

338 ODBC Guide and Reference

A 32-bit integer value that specifies whether to use auto-commit or manual
commit mode:

SQL_AUTOCOMMIT_OFF: The application must manually, explicitly
commit or rollback transactions with SQLEndTran() calls.

SQL_AUTOCOMMIT_ON: DB2 ODBC operates in auto-commit mode.
Each statement is implicitly committed. Each statement, that is not a
query, is committed immediately after it has been executed. Each query
is committed immediately after the associated cursor is closed.

SQL_AUTOCOMMIT_ON is the default.
Note: If this is a coordinated distributed unit of work connection, then the
default is SQL_AUTOCOMMIT_OFF

When specifying auto-commit, the application can have only one
outstanding statement per connection. For example, there must not be
two open cursors, or unpredictable results can occur. An open cursor
must be closed before another query is executed.

Since in many DB2 environments, the execution of the SQL statements and
the commit can be flowed separately to the database server, autocommit
can be expensive. The application developer should take this into
consideration when selecting the auto-commit mode.

Changing from manual-commit to auto-commit mode commits any open
transaction on the connection.

Table 136. Connect options (continued)
Attribute

SQLSetConnectAttr

ValuePtr

SQL_ATTR_CONNECTTYPE

A 32-bit integer value that specifies whether this application is to operate in
a coordinated or uncoordinated distributed environment. If the processing
needs to be coordinated, then this option must be considered in conjunction
with the SQL_SYNC_POINT connection option. The possible values are:

* SQL_CONCURRENT_TRANS: The application can have concurrent
multiple connections to any one database or to multiple databases. This
option setting corresponds to the specification of the type 1 CONNECT in
embedded SQL. Each connection has its own commit scope. No effort is
made to enforce coordination of transaction.

The current setting of the SQL_SYNC_POINT option is ignored.
This is the default.

* SQL_COORDINATED_TRANS: The application wishes to have commit
and rollbacks coordinated among multiple database connections. This
option setting corresponds to the specification of the type 2 CONNECT in
embedded SQL and must be considered in conjunction with the
SQL_SYNC_POINT connection option. In contrast to the
SQL_CONCURRENT_TRANS setting described above, the application is
permitted only one open connection per database.

Note: This connection type results in the default for SQL_AUTOCOMMIT
connection option to be SQL_AUTOCOMMIT_OFF.

This option must be set before making a connect request; otherwise, the
SQLSetConnectAttr() call is rejected.

All the connections within an application must have the same
SQL_ATTR_CONNECTTYPE and SQL_ATTR_SYNC_POINT values. The
first connection determines the acceptable attributes for the subsequent
connections.

Recommendation: Have the application set the
SQL_ATTR_CONNECTTYPE attribute at the environment level rather than
on a per connection basis. ODBC applications written to take advantage of
coordinated DB2 transactions must set these attributes at the connection
level for each connection as SQLSetEnvAttr() is not supported in ODBC.

Note: This is an IBM-defined extension.

SQL_ATTR_CURRENT_SCHEMA

A null-terminated character string containing the name of the schema to be
used by DB2 ODBC for the SQLColumns () call if the szSchemaName pointer
is set to null.

To reset this option, specify this option with a zero length or a null pointer
for the vParam argument.

This option is useful when the application developer has coded a generic
call to SQLCoTumns () that does not restrict the result set by schema name,
but needs to constrain the result set at isolated places in the code.

This option can be set at any time and is effective on the next SQLCoTumns ()
call where the szSchemaName pointer is null.

Note: This is an IBM-defined extension.

Chapter 5. Functions 339

SQLSetConnectAttr

Table 136. Connect options (continued)
Attribute

ValuePtr

SQL_ATTR_MAXCONN

A 32-bit integer value corresponding to the number of maximum concurrent
connections that an application wants to set up. The default value is 0,
which means no maximum - the application is allowed to set up as many
connections as the system resources permit. The integer value must be 0
or a positive number.

This can be used as a governor for the maximum number of connections on
a per application basis.

The value that is in effect when the first connection is established is the
value that is used. When the first connection is established, attempts to
change this value are rejected.

Recommendation: Have the application set SQL_ATTR_MAXCONN at the
environment level rather then on a connection basis. ODBC applications
must set this attribute at the connection level since SQLSetEnvAttr() is not
supported in ODBC.

Note: This is an IBM-defined extension.

SQL_ATTR_PARAMOPT_ATOMIC

If specified, DB2 ODBC returns S1C00 on SQLSetConnectAttr() and HY011
on SQLGetConnectAttr().

SQL_ATTR_SYNC_POINT

340 ODBC Guide and Reference

A 32-bit integer value that allows the application to choose between
one-phase coordinated transactions and two-phase coordinated
transactions. The possible values are:

* SQL_ONEPHASE: The DB2 ODBC 3.0 driver does not support
SQL_ONEPHASE.

* SQL_TWOPHASE: Two-phase commit is used to commit the work done
by each database in a multiple database transaction. This requires the
use of a transaction manager to coordinate two-phase commits among
the databases that support this protocol. Multiple readers and multiple
updaters are allowed within a transaction. This attribute is only utilized
when SQL_ATTR_CONNECTTYPE attribute is
SQL_ATTR_COORDINATED_TRANS. Then SQL_TWOPHASE is the
default. This attribute is ignored when SQL_ATTR_CONNECTTYPE is
set to SQL_ATTR_CONCURRENT_TRANS. See [DB2 SQL Referencd for
more information about distributed unit of work transactions.

This option must be set before a connect request. Otherwise the option set
request is rejected.

All the connections within an application must have the same
SQL_ATTR_CONNECTTYPE and SQL_ATTR_SYNC_POINT values. The
first connection determines the acceptable attributes for the subsequent
connections. Recommendation: The application should set the
SQL_ATTR_CONNECTTYPE attribute at the environment level rather than
at a connection level.

Table 136. Connect options (continued)
Attribute

SQLSetConnectAttr

ValuePtr

SQL_ATTR_TXN_ISOLATION

Return codes

A 32-bit bitmask that sets the transaction isolation level for the current

connection referenced by hdbc. The valid values for vParam can be

determined at runtime by calling SQLGetInfo() with fInfoType set to

SQL_TXN_ISOLATION_OPTIONS. The following values are accepted by

DB2 ODBC, but each server might only support a subset of these isolation

levels:

* SQL_TXN_READ_UNCOMMITTED - Dirty reads, reads that cannot be
repeated, and phantoms are possible.

« SQL_TXN_READ_COMMITTED - Dirty reads are not possible. Reads
that cannot be repeated, and phantoms are possible.

This is the default.

* SQL_TXN_REPEATABLE_READ - Dirty reads and reads that cannot be
repeated are not possible. Phantoms are possible.

* SQL_TXN_SERIALIZABLE - Transactions can be serialized. Dirty reads,
non-repeatable reads, and phantoms are not possible.

* SQL_TXN_NOCOMMIT - Any changes are effectively committed at the
end of a successful operation; no explicit commit or rollback is allowed.
This is analogous to autocommit. This is not an SQL92 isolation level,
but an IBM defined extension, supported only by DB2 for AS/400.

In IBM terminology,

¢ SQL_TXN_READ_UNCOMMITTED is uncommitted read;
* SQL_TXN_READ_COMMITTED is cursor stability;

* SQL_TXN_REPEATABLE_READ is read stability;

* SQL_TXN_SERIALIZABLE is repeatable read.

For a detailed explanation of isolation levels, see IBM SQL Reference.

This option cannot be specified while there is an open cursor on any hstmt,
or an outstanding transaction for this connection; otherwise, SQL_ERROR
is returned on the function call (SQLSTATE S1011).

Note: There is an IBM extension that permits the setting of transaction
isolation levels on a per statement handle basis. See the
SQL_STMTTXN_ISOLATION option in the function description for
SQLSetStmtAttr().

+ SQL_SUCCESS
* SQL_INVALID_HANDLE
+ SQL_ERROR

Diagnostics

Table 137. SQLSetConnectAttr SQLSTATEs

SQLSTATE Description

Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)
01S02 Option value changed. SQL_ATTR_SYNC_POINT changed to SQL_TWOPHASE.
SQL_ONEPHASE is not supported.
08S01 Unable to connect to data The communication link between the application and the data
source. source failed before the function completed.
08003 Connection is closed. An Attribute value was specified that required an open connection,

but the ConnectionHandle was not in a connected state.

Chapter 5. Functions 341

SQLSetConnectAttr

Table 137. SQLSetConnectAttr SQLSTATEs (continued)

SQLSTATE Description Explanation

HYO001 Memory allocation failure. DB2 ODBC was not able to allocate memory for the specified
handle.

HY009 Invalid use of a null pointer. A null pointer was passed for ValuePtr and the value in *ValuePtr
was a string value.

HYO010 Function sequence error. SQLExecute() or SQLExecDirect() was called with the statement
handle, and returned SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution parameters or
columns. Invoke SQLCancel () to cancel the data-at-execution
condition.

HYO011 Operation invalid at this time. The argument Attribute was SQL_ATTR_TXN_ISOLATION and a
transaction was open.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified in
*ValuePtr.

HY090 Invalid string or buffer length. The StringLength argument was less than 0, but was not SQL_NTS.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for this
version of DB2 ODBC.

HYCO00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for this version of the DB2 ODBC
driver, but was not supported by the data source.

Restrictions

None.
Example
rc=SQLSetConnectAttr(hdbc,SQL_ATTR_AUTOCOMMIT,
(voidx) SQL_AUTOCOMMIT OFF, SQL_NTS);
CHECK_HANDLE(SQL_HANDLE_DBC, hdbc, rc) ;
References

+ [‘SQLGetConnectAtir - Get current attribute setting” on page 199

- [‘SQLSetStmtAttr - Set options related to a statement” on page 360

« [“SQLAllocHandle - Allocate handle” on page 79

342 ODBC Guide and Reference

SQLSetConnection

SQLSetConnection - Set connection handle

Purpose
| Specification: | |
This function is needed if the application needs to deterministically switch to a
particular connection before continuing execution. It should only be used when the
application is mixing DB2 ODBC function calls with embedded SQL function calls
and multiple connections are involved.

Syntax

SQLRETURN SQLSetConnection (SQLHDBC hdbc) ;

Function arguments

Table 138. SQLSetConnection arguments

Data type Argument Use Description

SQLHDBC hdbc input The connection handle associated with the connection to
which the application wishes to switch.

Usage

ODBC allows multiple concurrent connections. It is not clear which connection an
embedded SQL routine uses when invoked. In practice, the embedded routine uses
the connection associated with the most recent network activity. However, from the
application’s perspective, this is not always easy to determine and it is difficult to
keep track of this information. SQLSetConnection() is used to allow the application
to explicitly specify which connection is active. The application can then call the
embedded SQL routine.

SQLSetConnection() is not needed at all if the application makes purely DB2 ODBC
calls. This is because each statement handle is implicitly associated with a
connection handle and there is never any confusion as to which connection a
particular DB2 ODBC function applies.

For more information on using embedded SQL within DB2 ODBC applications see
[‘Mixing embedded SQL and DB2 ODBC” on page 446}

Return codes
.+ SQL_SUCCESS
¢ SQL_ERROR
« SQL_INVALID_HANDLE

Diagnostics

Table 139. SQLSetConnection SQLSTATEs

SQLSTATE Description Explanation

08003 Connection is closed. The connection handle provided is not currently associated with an

open connection to a database server.

Chapter 5. Functions 343

SQLSetConnection

Table 139. SQLSetConnection SQLSTATEs (continued)
SQLSTATE Description Explanation

HYO000 General error. An error occurred for which there is no specific SQLSTATE and for
which the implementation does not define an SQLSTATE.
SQLGetDiagRec() returns an error message in the argument
szErrorMsg that describes the error and its cause.

Restrictions

None.
Example

See ['Mixed embedded SQL and DB2 ODBC example” on page 447}
References

« [“SQLConnect - Connect to a data source” on page 129
+ [SQLDriverConnect - (Expanded) connect to a data source” on page 146

344 ODBC Guide and Reference

SQLSetConnectOption

SQLSetConnectOption - Set connection option

Purpose
|Specification: | ODBC 1.0 | X/OPEN CLI
In ODBC 3.0, SQLSetConnectAttr() replaces the ODBC 2.0 function
SQLSetConnectOption(). See SQLSetConnectAttr() for more information.
SQLSetConnectOption() sets connection attributes for a particular connection.
Syntax
SQLRETURN SQLSetConnectOption(
SQLHDBC hdbc,
SQLUSMALLINT fOption,
SQLUINTEGER vParam) ;
Function arguments
Table 140. SQLSetConnectOption arguments
Data Type Argument Use Description
HDBC hdbc Input Connection handle.
SQLUSMALLINT fOption Input Connect option to set.
SQLUINTEGER vParam Input Value associated with fOption. Depending on the option, this

Usage

Return codes

can be a 32-bit integer value, or a pointer to a null-terminated
string.

The SQLSetConnectOption() can be used to specify statement options for all
statement handles on this connection, as well as for all future statement handles on
this connection. For a list of statement options, see [Table 150 on page 361}

All connection and statement options set using the SQLSetConnectOption() persist
until SQLFreeConnect () is called or the next SQLSetConnectOption() call.

It is illegal to call SQLSetConnectOption() (SQLSTATE S1010) if any of the
statement handles associated with this connection is in a need data state (that is, in
the middle of an SQLParamData() -- SQLPutData() sequence to process
SQL_DATA_AT_EXEC parameters). This sequence is described in
|“Sending/retrieving long data in pieces” on page 401|

The format of information set with vParam depends on the specified fOption. The
option information can be either a 32-bit integer or a pointer to a null-terminated
character string. In the case of the null-terminated character string, the maximum
length of the string can be SQL_MAX_OPTION_STRING_LENGTH bytes (excluding
the null-terminator).

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_ERROR
SQL_INVALID_HANDLE

Chapter 5. Functions 345

SQLSetConnectOption

Diagnostics
Table 141. SQLSetConnectOption SQLSTATEs
SQLSTATE Description Explanation

Note: Since SQLSetConnectOption() can also be used to set statement options, SQLSTATEs for
SQLSetConnectOption() can also include those listed under "Diagnostics’ for the SQLSetStmtOption() API.

01000 Warning. Informational message indicating an internal commit has been
issued on behalf of the application as part of the processing to set
the specified connection option.

01S02 Option value changed. SQL_CONNECTTYPE changed to SQL_CONCURRENT_TRANS
when MULTICONTEXT=1 in use.

08003 Connection is closed. An fOption is specified that required an open connection.

40003 08S01 Communication link failure. The communication link between the application and data source

fails before the function completes.

S1001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

S$1009 Invalid argument value. Given the fOption value, an invalid value is specified for the
argument vParam.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

S1011 Operation invalid at this time. The fOption specified option cannot be set at this time:
* SQL_CONNECTTYPE: attempt is made to change the value of
this option from its current value but the connection is open.

* SQL_TXN_ISOLATION, SQL_ACCESS_MODE: a transaction is
outstanding.

S$1092 Option type out of range. An invalid fOption value is specified.

S1C00 Driver not capable. The specified fOption is not supported.

Given specified fOption value, the value specified for the argument
vParam is not supported.

Restrictions

For compatibility with ODBC applications, fOption values of
SQL_CURRENT_QUALIFIER and SQL_PACKET_SIZE are also recognized, but not
supported. If either of these two options are specified, SQL_ERROR is returned on
the function call (SQLSTATE S1CO00).

ODBC fOption values of SQL_TRANSLATE_DLL and SQL_TRANSLATE_OPTION

are not supported since DB2 handles codepage conversion at the server, not the
client.

Example

See ['Example” on page 132

References

« |“SQLGetConnectOption - Returns current setting of a connect option” on|

page 202|

* |"SQLGetStmtOption - Returns current setting of a statement option” on page 273
» |“SQLSetStmtOption - Set statement option” on page 367

346 ODBC Guide and Reference

SQLSetCursorName

SQLSetCursorName - Set cursor name

Purpose

Syntax

|Specification: | ODBC 1.0 X/OPEN CLI ISO CLI

SQLSetCursorName() associates a cursor name with the statement handle. This
function is optional since DB2 ODBC implicitly generates a cursor name when each
statement handle is allocated.

SQLRETURN SQLSetCursorName (SQLHSTMT hstmt,
SQLCHAR FAR *szCursor,
SQLSMALLINT cbCursor) ;

Function arguments

Table 142. SQLSetCursorName arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLCHAR * szCursor input Cursor name

SQLSMALLINT cbCursor input Length of contents of szCursor argument

Usage

DB2 ODBC always generates and uses an internally generated cursor name when
a query is prepared or executed directly. SQLSetCursorName() allows an application
defined cursor name to be used in an SQL statement (a positioned UPDATE or
DELETE). DB2 ODBC maps this name to the internal name. The name remains
associated with the statement handle, until the handle is dropped, or another
SQLSetCursorName() is called on this statement handle.

Although SQLGetCursorName() returns the name set by the application (if one is set),
error messages associated with positioned UPDATE and DELETE statements refer
to the internal name.

Recommendation: Do not use SQLSetCursorName(). Instead, use the internal name
which can be obtained by calling SQLGetCursorName().

Cursor names must follow these rules:

* All cursor names within the connection must be unique.

» Each cursor name must be less than or equal to 18 bytes in length. Any attempt
to set a cursor name longer than 18 bytes results in truncation of that cursor
name to 18 bytes. (No warning is generated.)

+ Since internally generated names begin with SQLCUR, SQL_CUR, or
SQLCURAQRS, the application must not input a cursor name starting with either
SQLCUR or SQL_CUR in order to avoid conflicts with internal names.

» Since a cursor name is considered an identifier in SQL, it must begin with an
English letter (a-z, A-Z) followed by any combination of digits (0-9), English
letters or the underscore character (_).

» To permit cursor names containing characters other than those listed above
(such as National Language Set or Double Bytes Character Set characters), the
application must enclose the cursor name in double quotes (”).

Chapter 5. Functions 347

SQLSetCursorName

* Unless the input cursor name is enclosed in double quotes, all leading and
trailing blanks from the input cursor name string are removed.

For efficient processing, applications should not include any leading or trailing
spaces in the szCursor buffer. If the szCursor buffer contains a delimited identifier,
applications should position the first double quote as the first character in the
szCursor buffer.

Return codes

* SQL_SUCCESS
+ SQL_ERROR
» SQL_INVALID_HANDLE

Diagnostics

Table 143. SQLSetCursorName SQLSTATEs

SQLSTATE Description Explanation

34000 Invalid cursor name. The cursor name specified by the argument szCursor is invalid. The

cursor name either begins with SQLCUR, SQL_CUR, or
SQLCURQRS or violates the cursor naming rules (Must begin with
a-z or A-Z followed by any combination of English letters, digits, or
the ’_’ character.

The cursor name specified by the argument szCursor already
exists.

The cursor name length is greater than the value returned by
SQLGetInfo() with the SQL_MAX_CURSOR_NAME_LEN argument.

40003 08S01

Communication link failure. The communication link between the application and data source
fails before the function completes.

58004 Unexpected system failure. Unrecoverable system error.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HY009 Invalid use of a null pointer. szCursor is a null pointer.

HYO010 Function sequence error. There is an open or positioned cursor on the statement handle.
The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation called prior to SQLSetCursorName().

HYO013 Unexpected memory handling DB2 ODBC is not able to access memory required to support

error. execution or completion of the function.
HY090 Invalid string or buffer length. The argument cbCursor is less than 0, but not equal to SQL_NTS.
Restrictions

None.

348 ODBC Guide and Reference

SQLSetCursorName

Example

/% ... */
SQLCHAR sqlstmt[] =
"SELECT name, job FROM staff "
"WHERE job='Clerk' FOR UPDATE OF job";
[* .../
/* allocate second statement handle for update statement =*/
rc2 =SQLA11ocHandle(SQL_HANDLE STMT, hdbc, &hstmt2);

/* Set Cursor for the SELECT statement's handle */
rc = SQLSetCursorName(hstmtl, "JOBCURS", SQL_NTS);

rc = SQLExecDirect(hstmtl, sqlstmt, SQL_NTS);

/* bind name to first column in the result set =/
rc = SQLBindCol(hstmtl, 1, SQL_C_CHAR, (SQLPOINTER) name.s, 10,
&name.ind);

/* bind job to second column in the result set =*/
rc = SQLBindCol (hstmtl, 2, SQL_C_CHAR, (SQLPOINTER) job.s, 6,
&job.ind);

printf("Job Change for all clerks\n");

while ((rc = SQLFetch(hstmtl)) == SQL_SUCCESS) {
printf("Name: %-9.9s Job: %-5.5s \n", name.s, job.s);
printf("Enter new job or return to continue\n");
gets(newjob);
if (newjob[0] != '"\0') {
sprintf(updstmt,
"UPDATE staff set job = '%s' where current of JOBCURS",
newjob) ;
rc2 = SQLExecDirect(hstmt2, updstmt, SQL_NTS);
}

1
if (rc != SQL_NO_DATA_FOUND)

check_error(henv, hdbc, hstmtl, rc, _ LINE_ , _ FILE_);
[* oo %/

References

+ [‘SQLGetCursorName - Get cursor name” on page 204

Chapter 5. Functions 349

SQLSetEnvAtir

SQLSetEnvAttr - Set environment attribute

Purpose
|Specification: | | X/OPEN CLI ISO CLI
SQLSetEnvAttr() sets attributes that govern aspects of environments.
Syntax
SQLRETURN SQLSetEnvAttr (SQLHENV EnvironmentHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER StringlLength);
Function arguments
Table 144. SQLSetEnvAttr arguments
Data type Argument Use Description
SQLHENV EnvironmentHandle Input Environment handle.
SQLINTEGER Attribute Input Environment attribute to set. See [Table 145 on page 351|for
the list of attributes and their descriptions.
SQLPOINTER ValuePtr Input The desired value for Attribute.
SQLINTEGER StringLength Input Length of ValuePtrin bytes if the attribute value is a

character string. If Attribute does not denote a string, DB2
ODBC ignores StringLength.

Usage

When set, the attributes value affects all connections in this environment.

The application can obtain the current attribute value by calling SQLGetEnvAttr().

[Table 145 on page 351|lists the SQLSetEnvAttr() Attribute values. Attribute values
were renamed in ODBC 3.0. For a summary of the Attributes renamed in ODBC

3.0, see [Table 197 on page 502}

350 ODBC Guide and Reference

Table 145. Environment attributes
Attribute

SQLSetEnvAtir

Contents

SQL_ATTR_ODBC_VERSION

A 32-bit integer that determines whether certain functionality exhibits ODBC
2.0 behavior or ODBC 3.0 behavior. This value cannot be changed while
any connection handles are allocated.

The following values are used to set the value of this attribute:
* SQL_OV_ODBCS3: Causes the following ODBC 3.0 behavior:
— DB2 ODBC returns and expects ODBC 3.0 data type codes for date,
time, and timestamp.
— DB2 ODBC returns ODBC 3.0 SQLSTATE codes when
SQLGetDiagRec(), SQLGetDiagField(),or SQLGetDiagRec() are called.
— The CatalogName argument in a call to SQLTables() accepts a search
pattern.
* SQL_OV_ODBC2 causes the following ODBC 2.x behavior:
— DB2 ODBC returns and expects ODBC 2.x data type codes for date,
time, and timestamp.
— DB2 ODBC returns ODBC 2.0 SQLSTATE codes when
SQLGetDiagRec(), SQLGetDiagField(),or SQLGetDiagRec() are called.

— The CatalogName argument in a call to SQLTables() does not accept
a search pattern.

SQL_ATTR_OUTPUT_NTS

A 32-bit integer value which controls the use of null-termination in output
arguments. The possible values are:

* SQL_TRUE: DB2 ODBC uses null termination to indicate the length of
output character strings.

This is the default.
* SQL_FALSE: DB2 ODBC does not use null termination in output
character strings.

The CLI functions affected by this attribute are all functions called for the
environment (and for any connections and statements allocated under the
environment) that have character string parameters.

This attribute can only be set when there are no connection handles
allocated under this environment.

Chapter 5. Functions 351

SQLSetEnvAtir

Table 145. Environment attributes (continued)

Attribute

Contents

SQL_ATTR_CONNECTTYPE

A 32-bit integer value that specifies whether this application is to operate in
a coordinated or uncoordinated distributed environment. The possible
values are:

« SQL_CONCURRENT_TRANS: Each connection has its own commit
scope. No effort is made to enforce coordination of transaction. If an
application issues a commit using the environment handle on
SQLEndTran() and not all of the connections commit successfully, the
application is responsible for recovery. This corresponds to CONNECT
(type 1) semantics subject to the restrictions described in f‘DBZ ODB§|
[restrictions on the ODBC connection model” on page 17}

This is the default.
* SQL_COORDINATED_TRANS: The application wishes to have commit
and rollbacks coordinated among multiple database connections. In

contrast to the SQL_CONCURRENT_TRANS setting described above,
the application is permitted only one open connection per database.

This attribute must be set before allocating any connection handles,
otherwise, the SQLSetEnvAttr() call is rejected.

All the connections within an application must have the same
SQL_ATTR_CONNECTTYPE and SQL_ATTR_SYNCPOINT values. This
attribute can also be set using the SQLSetConnectAttr function.

Recommendation: Have the application set the
SQL_ATTR_CONNECTTYPE attribute at the environment level rather than
on a per connection basis. ODBC applications written to take advantage of
coordinated DB2 transactions must set these attributes at the connection
level for each connection using SQLSetConnectAttr() as SQLSetEnvAttr() is
not supported in ODBC.

Note: This is an IBM-defined extension.

SQL_ATTR_MAXCONN

Return codes

A 32-bit integer value corresponding to the number that maximum
concurrent connections that an application wants to set up. The default
value is 0, which means no maximum - the application is allowed to set up
as many connections as the system resources permit. The integer value
must be 0 or a positive number.

This can be used as a governor for the maximum number of connections on
a per application basis.

The value that is in effect when the first connection is established is the
value that is used. When the first connection is established, attempts to
change this value are rejected.

Recommendation: Have the application set SQL_ATTR_MAXCONN at the
environment level rather then on a connection basis. ODBC applications
must set this attribute at the connection level since SQLSetEnvAttr() is not
supported in ODBC.

Note: This is an IBM-defined extension.

* SQL_SUCCESS
» SQL_INVALID_HANDLE
+ SQL_ERROR

352 ODBC Guide and Reference

SQLSetEnvAtir

Diagnostics
Table 146. SQLSetEnvAttr SQLSTATEs
SQLSTATE Description Explanation
HY009 Invalid use of a null pointer. A null pointer was passed for ValuePtr and the value in *ValuePtr
was a string value.
HYO11 Operation invalid at this time. Applications cannot set environment attributes while connection
handles are allocated on the environment handle.
HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified in
*ValuePtr.
HY090 Invalid string or buffer length. The StringLength argument was less than 0, but was not SQL_NTS.
HY092 Option type out of range. The value specified for the argument Attribute was not valid for this
version of DB2 ODBC.
HYCO00 Driver not capable. The specified Attribute is not supported by DB2 ODBC. Given
specified Attribute value, the value specified for the argument
ValuePtr is not supported.
Restrictions
None.
Example
See also, [‘Distributed unit of work example” on page 395|
SQLINTEGER output_nts,autocommit;
rc = SQLSetEnvAttr(henv,
SQL_ATTR_OUTPUT_NTS,
(SQLPOINTER) output_nts,
) s
CHECK_HANDLE(SQL_HANDLE_ENV, henv, rc);
References

« [“SQLAllocHandle - Allocate handle” on page 79

+ [‘SQLGetEnvAtir - Returns current setting of an environment attribute” on|

page 226|

+ [‘SQLSetStmtAttr - Set options related to a statement” on page 360

Chapter 5. Functions 353

SQLSetParam

SQLSetParam - Binds a parameter marker to a buffer

Purpose
|Specification: | ODBC 1.0 | X/OPEN CLI |
Note: In ODBC 2.0, this function is replaced by SQLBindParameter(). See the
restrictions section below for details.
SQLSetParam() is used to associate (bind) parameter markers in an SQL statement
to one of the following:
« Application variables (storage buffers), for all data types. In this case data is
transferred from the application to the DBMS when SQLExecute() or
SQLExecDirect() is called. Data conversion can occur as the data is transferred.
* A LOB locator, for SQL LOB data types. In this case, the application transfers a
LOB locator value (not the LOB data itself) to the server when the SQL statement
is executed.
Syntax
SQLRETURN SQLSetParam (SQLHSTMT hstmt,
SQLUSMALLINT ipar,
SQLSMALLINT fCType,
SQLSMALLINT fSq1Type,
SQLUINTEGER cbParamDef,
SQLSMALLINT ibScale,
SQLPOINTER rgbValue,

SQLINTEGER FAR *pcbValue);

Function arguments

Table 147. SQLSetParam arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT ipar input Parameter marker number, ordered sequentially left to right,
starting at 1.

354 ODBC Guide and Reference

Table 147. SQLSetParam arguments (continued)
Data type Argument Use

SQLSetParam

Description

SQLSMALLINT fCType input

C data type of argument. The following types are supported:
+ SQL_C_BINARY

« SQL_C_BIT

+ SQL_C_BLOB_LOCATOR

*+ SQL_C_CHAR

+ SQL_C_CLOB_LOCATOR

+ SQL_C_DBCHAR

+ SQL_C_DBCLOB_LOCATOR
+ SQL_C_DOUBLE

+ SQL_C_FLOAT

+ SQL_C_LONG

+ SQL_C_SHORT

+ SQL_C_TYPE_DATE

« SQL_C_TYPE_TIME

+ SQL_C_TYPE_TIMESTAMP
* SQL_C_TINYINT

+ SQL_C_WCHAR

Specifying SQL_C_DEFAULT causes data to be transferred
from its default C data type for the type indicated in fSq/Type.
See(Table 4 on page 31|for more information.

SQLSMALLINT fSqlType input

SQL data type of column. The supported types are:
+ SQL_BINARY

- SQL_BLOB

+ SQL_BLOB_LOCATOR

+ SQL_CHAR

+ SQL_CLOB

* SQL_CLOB_LOCATOR

+ SQL_DBCLOB

+ SQL_DBCLOB_LOCATOR
+ SQL_DECIMAL

+ SQL_DOUBLE

+ SQL_FLOAT

+ SQL_GRAPHIC

+ SQL_INTEGER

* SQL_LONGVARBINARY
* SQL_LONGVARCHAR

+ SQL_LONGVARGRAPHIC
+ SQL_NUMERIC

+ SQL_REAL

+ SQL_ROWID

+ SQL_SMALLINT

» SQL_TYPE_DATE

+ SQL_TYPE_TIME

+ SQL_TYPE_TIMESTAMP
+ SQL_VARBINARY

+ SQL_VARCHAR

+ SQL_VARGRAPHIC

Note: SQL_BLOB_LOCATOR, SQL_CLOB_LOCATOR, and
SQL_DBCLOB_LOCATOR are application related concepts
and do not map to a data type for column definition during a
CREATE TABLE.

Chapter 5. Functions 355

SQLSetParam

Table 147. SQLSetParam arguments (continued)

Data type Argument Use Description
SQLUINTEGER cbParamDef input Precision of the corresponding parameter marker. If fSql/Type
denotes:

« A binary or single byte character string (for example,
SQL_CHAR, SQL_BINARY), this is the maximum length in
bytes for this parameter marker.

» A double byte character string (for example,
SQL_GRAPHIC), this is the maximum length in double-byte
characters for this parameter.

* SQL_DECIMAL, SQL_NUMERIC, this is the maximum
decimal precision.

* SQL_ROWID, this must be set to 40, the maximum length
in bytes for this data type. Otherwise, an error is returned.

» Otherwise, this argument is ignored.

SQLSMALLINT ibScale input Scale of the corresponding parameter marker if fSqlType is
SQL_DECIMAL or SQL_NUMERIC. If 1SqlType is
SQL_TYPE_TIMESTAMP, this is the number of digits to the
right of the decimal point in the character representation of a
timestamp (for example, the scale of yyyy-mm-dd hh:mm:ss.fff
is 3).

Other than for the fSql/Type values mentioned here, ibScale is
ignored.

SQLPOINTER rgbValue input Pointer to the location which contains (when the statement is
(deferred) executed) the actual values for the associated parameter
marker.

SQLINTEGER * pcbValue input Pointer to the location which contains (when the statement is
(deferred) executed) the length of the parameter marker value stored at
rgbValue.

To specify a null value for a parameter marker, this storage
location must contain SQL_NULL_DATA.

If fCType is SQL_C_CHAR, this storage location must contain
either the exact length of the data stored at rgbValue, or
SQL_NTS if the contents at rgbValue are null-terminated.

If fCType indicates character data (explicitly, or implicitly using
SQL_C_DEFAULT), and this pointer is set to NULL, it is
assumed that the application always provides a null-terminated
string in rgbValue. This also implies that this parameter marker
never contains a null value.

If fSqlType indicates a graphic data type, and the fCType is
SQL_C_CHAR, the pointer to pcbValue can never be NULL
and the contents of pcbValue can never hold SQL_NTS. In
general for graphic data types, this length should be the
number of octets that the double byte data occupies;
therefore, the length should always be a multiple of 2. In fact,
if the length is odd, then an error occurs when the statement
is executed.

Usage

A parameter marker is represented by a "?” character in an SQL statement and is
used to indicate a position in the statement where an application supplied value is
to be substituted when the statement is executed. This value can be obtained from:

356 ODBC Guide and Reference

SQLSetParam

* An application variable.

SQLSetParam() (or SQLBindParameter()) is used to bind the application storage
area to the parameter marker.

* A LOB value from the database server (by specifying a LOB locator).

SQLSetParam() (or SQLBindParameter() is used to bind a LOB locator to the
parameter marker. The LOB value itself is supplied by the database server, so
only the LOB locator is transferred between the database server and the
application.

An application can use a locator with SQLGetSubString(), SQLGetSubString() or
SQLGetLength().SQLGetSubString() can either return another locator, or the data
itself. All locators remain valid until the end of the transaction in which they are
created (even when the cursor moves to another row, or until it is freed using the
FREE LOCATOR statement.

The application must bind a variable to each parameter marker in the SQL
statement before executing the SQL statement. For this function, rgbValue and
pcbValue are deferred arguments. The storage locations must be valid and contain
input data values when the statement is executed. This means either keeping the
SQLExecDirect () or SQLExecute() call in the same procedure scope as the
SQLBindParameter() calls, or, these storage locations must be dynamically allocated
or declared statically or globally.

SQLSetParam() can be called before SQLPrepare() if the columns in the result set
are known, otherwise the attributes of the result set can be obtained after the
statement is prepared.

Parameter markers are referenced by number (icol) and are numbered sequentially
from left to right, starting at 1.

All parameters bound by this function remain in effect until SQLFreeHandle() is
called with HandleType set to SQL_HANDLE_STMT or SQLFreeStmt () is called with
the SQL_RESET_PARAMS option, or until SQLSetParam() is called again for the
same parameter ipar number.

After the SQL statement is executed, and the results processed, the application can
reuse the statement handle to execute a different SQL statement. If the parameter
marker specifications are different (number of parameters, length or type), then
SQLFreeStmt () should be called with SQL_RESET_PARAMS to reset or clear the
parameter bindings.

The C buffer data type given by fCType must be compatible with the SQL data type
indicated by fSqglType, or an error occurs.

If 1SqlType is SQL_ROWID, the cbParamDef value must be set to 40, the maximum
length in bytes for a ROWID data type. If cbParamDef is not set to 40, the
application receives SQLSTATE=22001 when cbParamDef is less than 40 and
SQLSTATE=HY104 when cbParamDef is greater than 40.

An application can pass the value for a parameter either in the rgbValue buffer or
with one or more calls to SQLPutData(). In the latter case, these parameters are
data-at-execution parameters. The application informs DB2 ODBC of a
data-at-execution parameter by placing the SQL_DATA_AT_EXEC value in the
pcbValue buffer. It sets the rgbValue input argument to a 32-bit value which is
returned on a subsequent SQLParamData() call and can be used to identify the
parameter position.

Chapter 5. Functions 357

SQLSetParam

Since the data in the variables referenced by rgbValue and pcbValue is not verified
until the statement is executed, data content or format errors are not detected or
reported until SQLExecute() or SQLExecDirect() is called.

Return codes

+ SQL_SUCCESS
* SQL_ERROR

* SQL_INVALID_HANDLE

Diagnostics

Table 148. SQLSetParam SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The conversion from the data value identified by the fCType

argument to the data type identified by the fSq/Type argument is not
a meaningful conversion. (For example, conversion from
SQL_C_TYPE_DATE to SQL_DOUBLE.)

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

58004

Unexpected system failure.

Unrecoverable system error.

HYO001

Memory allocation failure.

DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO003

Program type out of range.

The value specified by the argument fCType is not a valid data type
or SQL_C_DEFAULT.

HYO004

Invalid SQL data type.

The value specified for the argument fSq/Type is not a valid SQL
data type.

HY009

Invalid use of a null pointer.

The argument rgbValue is a null pointer.

HYO010

Function sequence error.

There is an open or positioned cursor on the statement handle.

The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation, called prior to SQLSetCursorName().

HYO013

Unexpected memory handling
error.

DB2 ODBC is not able to access memory required to support
execution or completion of the function.

HY104

Invalid precision or scale
value.

The value specified for cbParamDef is either less than O or greater
than the permissible range for the fSQLType.

The value specified for fSq/Type is either SQL_DECIMAL or
SQL_NUMERIC and the value specified for ibScale is less than 0 or
greater than the value for the argument cbParamDef (precision).

The value specified for fCType is SQL_C_TYPE_TIMESTAMP and
the value for fSqlType is either SQL_CHAR or SQL_VARCHAR and
the value for ibScale is less than 0 or greater than 6.

HYCO00

Driver not capable.

DB2 ODBC or the data source does not support the conversion
specified by the combination of the value specified for the argument
fCType and the value specified for the argument fSq/Type.

The value specified for the argument fCType or fSqlType is not
supported by either DB2 ODBC or the data source.

S$1093

Invalid parameter number.

358 ODBC Guide and Reference

The value specified for the argument ipar is less than 1 or greater
than the maximum number of parameters supported by the server.

SQLSetParam

Restrictions
In ODBC 2.0, SQLSetParam() has replaced by SQLBindParameter().

SQLSetParam() cannot be used to:

* Bind application variables to parameter markers in a stored procedure CALL
statement.

» Bind arrays of application variables when SQLParamQOptions() has been used to
specify multiple input parameter values.

SQLBindParameter() should be used instead in both of the above situations.

Example

See ['Example” on page 303]

References

+ [‘SQLBindParameter - Binds a parameter marker to a buffer or LOB locator” on|
page 91|

+ [“SQLExecDirect - Execute a statement directly” on page 161|

+ [“SQLExecute - Execute a statement” on page 166

+ [“SQLPrepare - Prepare a statement” on page 300|

Chapter 5. Functions 359

SQLSetStmtAttr

SQLSetStmtAtir - Set options related to a statement

Purpose
|Specification: | ODBC 3.0 | X/OPEN CLI | ISO CLI
SQLSetStmtAttr() sets options related to a statement. To set an option for all
statements associated with a specific connection, an application can call
SQLSetConnectAttr().
Syntax
SQLRETURN SQLSetStmtAttr (SQLHSTMT StatementHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER StringlLength);

Function arguments

Table 149. SQLSetStmtAttr arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLINTEGER Attribute input Statement attribute to set. Refer to [Table 150 on page 361|for
a complete list of attributes.

SQLPOINTER ValuePtr input Pointer to the value to be associated with Attribute.
Depending on the value of Aftribute, *ValuePtr will be a 32-bit
unsigned integer value or point to a null-terminated character
string. If the Attribute argument is a driver-specific value, the
value in *ValuePtr might be a signed integer.

SQLINTEGER StringLength input Information about the *ValuePtr argument.

» For ODBC-defined attributes:

— If ValuePtr points to a character string, this argument
should be the length of *ValuePtr.

— If ValuePtr points to an integer, BufferLength is ignored.

» For driver-defined attributes (IBM extension):

— If ValuePtr points to a character string, this argument
should be the length of *ValuePtr or SQL_NTS if it is a
null-terminated string.

— If ValuePtr points to an integer, BufferLength is ignored.

Usage

Statement attributes for a statement remain in effect until they are changed by
another call to SQLSetStmtAttr() or until the statement is dropped by calling
SQLFreeHandle(). Calling SQLFreeStmt () with the SQL_CLOSE, SQL_UNBIND or
the SQL_RESET_PARAMS option does not reset statement attributes.

Some statement attributes support substitution of a similar value if the data source
does not support the value specified in *ValuePtr. In such cases, DB2 ODBC
returns SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (option value
changed). To determine the substituted value, an application calls
SQLGetStmtAttr().

360 ODBC Guide and Reference

SQLSetStmtAttr

The format of the information set with ValuePtr depends on the specified Attribute.
SQLSetStmtAttr() accepts attribute information either in the format of a
null-terminated character string or a 32-bit integer value. The format of each
ValuePtr value is noted in the attributes description shown in . This format
applies to the information returned for each attribute in SQLGetStmtAttr(). Character
strings that the ValuePtr argument of SQLSetStmtAttr() point to have a length of
StringLength.

DB2 ODBC supports all of the ODBC 2.0 Attribute values that are renamed in
ODBC 3.0. For a summary of the Attribute values renamed in ODBC 3.0, see
[Table 198 on page 502}

Overriding DB2 CCSIDs from DSNHDECP: DB2 ODBC extensions to
SQLSetStmtAttr() and SQLSetStmtAttr() allow an application to override the CCSID
settings of the DB2 subsystem to which they are currently attached. This extension
is intended for applications that are attempting to send and receive data to and rom
DB2 in a CCSID that differs from the default settings in the DB2 DSNHDECP.

The CCSID override applies only to input data bound to parameter markers through
SQLBindParameter() and output data bound to columns through SQLBindCo1 ().

The CCSID override applies on a statement level only. DB2 will continue to use the
default CCSID settings in the DB2 DSNHECP after the statement is dropped or if
SQL_CCSID_DEFAULT is specified.

You can use SQLGetStmtAttr() and SQLGetStmtAttr() to query the settings of the
current statement handle CCSID override.

Table 150. Statement attributes

Attribute

ValuePtr contents

Note: Values shown in bold are default values.

SQL_ATTR_BIND_TYPE

A 32-bit integer value that sets the binding orientation to be used

SQL_ATTR_ROW_BIND_TYPE when SQLExtendedFetch() is called with this statement handle.

Column-wise binding is selected by supplying the value
SQL_BIND_BY_COLUMN for the argument vParam. Row-wise
binding is selected by supplying a value for vParam specifying the
length of the structure or an instance of a buffer into which result
columns are bound.

For row-wise binding, the length specified in vParam must include
space for all of the bound columns and any padding of the
structure or buffer to ensure that when the address of a bound
column is incremented with the specified length, the result points
to the beginning of the same column in the next row. (When using
the sizeof operator with structures or unions in ANSI C, this
behavior is guaranteed.)

Chapter 5. Functions 361

SQLSetStmtAttr

Table 150. Statement attributes (continued)
Attribute

ValuePtr contents

SQL_ATTR_CLOSE_BEHAVIOR

A 32-bit integer that forces the release of locks upon an underlying
CLOSE CURSOR operation. The possible values are:

e SQL_CC_NO_RELEASE: locks are not released when the
cursor on this statement handle is closed.

¢ SQL_CC_RELEASE: locks are released when the cursor on
this statement handle is closed.

Typically cursors are explicitly closed when the function
SQLFreeStmt () is called with the SQL_CLOSE option or
SQLCToseCursor() is called. In addition, the end of the transaction
(when a commit or rollback is issued) can also close the cursor
(depending on the WITH HOLD attribute currently in use).

SQL_ATTR_CONCURRENCY

If specified, DB2 ODBC returns S1C00 on SQLSetConnectOption
and HY011 on SQLGetConnectOption.

SQL_ATTR_CURSOR_HOLD

A 32-bit integer which specifies whether the cursor associated with
this hstmt is preserved in the same position as before the
COMMIT operation, and whether the application can fetch without
executing the statement again.

* SQL_CUSROR_HOLD_ON

+ SQL_CURSOR_HOLD_OFF

The default value when an hstmt is first allocated is
SQL_CURSOR_HOLD_ON.

This option cannot be specified while the re is an open cursor on
this hstmt.

SQL_ATTR_CURSOR_TYPE

A 32-bit integer value that specifies the cursor type. The currently

supported value is:

*+ SQL_CURSOR_FORWARD_ONLY - Cursor behaves as a
forward only scrolling cursor.

This option cannot be set if there is an open cursor on the
associated hstmt.

Note: ODBC architecture has also defined the following values,
which are not supported by DB2 ODBC:

* SQL_CURSOR_STATIC - The data in the result set appears to
be static.

* SQL_CURSOR_KEYSET_DRIVEN - The keys for the number
of rows specified in the SQL_KEYSET_SIZE option is stored.
DB2 ODBC does not support this option value.

+ SQL_CURSOR_DYNAMIC - The keys for the rows in the
rowset are saved. DB2 ODBC does not support this option
value.

If one of these values is used, SQL_SUCCESS_WITH_INFO
(SQLSTATE 01S02) is returned and the value remains unchanged.

SQL_ATTR_MAX_LENGTH

362 ODBC Guide and Reference

A 32-bit integer value corresponding to the maximum amount of
data that can be retrieved from a single character or binary
column. If data is truncated because the value specified for
SQL_ATTR_MAX_LENGTH is less than the amount of data
available, an SQLGetData() call or fetch returns SQL_SUCCESS
instead of returning SQL_SUCCESS_WITH_INFO and SQLSTATE
01004 (data truncated). The default value for vParam is 0; O
means that DB2 ODBC attempts to return all available data for
character or binary type data.

Table 150. Statement attributes (continued)
Attribute

SQLSetStmtAttr

ValuePtr contents

SQL_ATTR_MAX_ROWS

A 32-bit integer value corresponding to the maximum number of
rows to return to the application from a query. The default value
for vParam is 0; 0 means all rows are returned.

SQL_ATTR_NODESCRIBE

A 32-bit integer which specifies whether DB2 ODBC should
automatically describe the column attributes of the result set or
wait to be informed by the application using
SQLSetColAttributes().

+ SQL_NODESCRIBE_OFF

+ SQL_NODESCRIBE_ON

This option cannot be specified while there is an open cursor on
this hstmt.

This option is used in conjunction with the function
SQLSetColAttributes() by an application which has prior
knowledge of the exact nature of the result set to be returned and
which does not wish to incur the extra network traffic associated
with the descriptor information needed by DB2 ODBC to provide
client side processing.

Note: This option is an IBM-defined extension.

SQL_ATTR_NOSCAN

A 32-bit integer value that specifies whether DB2 ODBC will scan

SQL strings for escape clauses. The two permitted values are:

* SQL_NOSCAN_OFF - SQL strings are scanned for escape
clause sequences.

* SQL_NOSCAN_ON - SQL strings are not scanned for escape
clauses. Everything is sent directly to the server for processing.

This application can choose to turn off the scanning if it never
uses vendor escape sequences in the SQL strings that it sends.
This eliminates some of the overhead processing associated with
scanning.

SQL_ATTR_RETRIEVE_DATA

A 32-bit integer value indicating whether DB2 ODBC should
actually retrieve data from the database when SQLExtendedFetch()
is called. The possible values are:

* SQL_RD_ON: SQLExtendedFetch() does retrieve data.

* SQL_RD_OFF: SQLExtendedFetch() does not retrieve data. This
is useful for verifying whether rows exist without incurring the
overhead of sending long data from the database server. DB2
ODBC internally retrieves all the fixed length columns, such as
INTEGER and SMALLINT; so there is still some overhead.

This option cannot be set if the cursor is open.

SQL_ATTR_ROW_ARRAY_SIZE

A 32-bit integer value that specifies the number of rows in the
rowset. This is the number of rows returned by each call to
SQLExtendedFetch(). The default value is 1 which is equivalent to
making a single SQLFetch() call. This option can be specified for
an open cursor and becomes effective on the next
SQLExtendedFetch() call.

SQL_ATTR_ROWSET_SIZE

A 32-bit integer value that specifies the number of rows in the
rowset. A rowset is the array of rows returned by each call to
SQLExtendedFetch(). The default value is 1, which is equivalent to
making a single SQLFetch(). This option can be specified even
when the cursor is open and becomes effective on the next
SQLExtendedFetch() call.

Chapter 5. Functions 363

SQLSetStmtAttr

Table 150. Statement attributes (continued)
Attribute

ValuePtr contents

SQL_ATTR_STMTTXN_ISOLATION
SQL_ATTR_TXN_ISOLATION

A 32-bit integer value that sets the transaction isolation level for
the current hstmt. This overrides the default value set at the
connection level (refer also to[*‘SQLSetConnectOption - Set|
|connection option” on page 345|for the permitted values).

This option cannot be set if there is an open cursor on this
statement handle (SQLSTATE 24000).

The value SQL_ATTR_STMTTXN_ISOLATION is synonymous
with SQL_ATTR_TXN_ISOLATION.

Note: It is an IBM extension to allow setting this option at the
statement level.

SQL_CCSID_CHAR

364 ODBC Guide and Reference

A 32-bit integer value that specifies the CCSID of input/output
data, to or from a column of the following SQL data types:

+ SQL_CHAR

+ SQL_VARCHAR

* SQL_LONGVARCHAR

This CCSID will override the default CCSID setting from DB2

DSNHECP. The input data should be bound to parameter markers

through SQLBindParameter(). The output data should be bound to
columns through SQLBindCo1 ().

SQL_CCSID_DEFAULT is the default value of this statement
option, therefore, the CCSIDs from the DB2 DSNHECP will be
used.

Table 150. Statement attributes (continued)
Attribute

SQLSetStmtAttr

ValuePtr contents

SQL_CCSID_GRAPHIC

Return codes

SQL_SUCCESS

SQL_ERROR

Diagnostics

Table 151. SQLSetStmtAttr SQLSTATEs
SQLSTATE Description

A 32-bit integer value that specifies the CCSID of input/output
data, to or from a column of the following SQL data types:

+ SQL_GRAPHIC

+ SQL_VARGRAPHIC

* SQL_LONGVARGRAPHIC

This CCSID will override the default CCSID setting from DB2
DSNHECP. The input data should be bound to parameter markers
through SQLBindParameter(). The output data should be bound to
columns through SQLBindCo1().

SQL_CCSID_DEFAULT is the default value of this statement
option, therefore, the CCSIDs from the DB2 DSNHECP will be
used.

Note: DB2 UDB for OS/390 ODBC extensions to
SQLSetStmtAttr() and SQLSetStmtAttr() allow an application to
override the CCSID settings of the DB2 subsystem to which they
are currently attached. This extension is intended for applications
that are attempting to send and receive data to and rom DB2 in a
CCSID that differs from the default settings in the DB2
DSNHDECP.

The CCSID override applies only to input data bound to parameter
markers through SQLBindParameter() and output data bound to
columns through SQLBindCo1 ().

The CCSID override applies on a statement level only. DB2 will
continue to use the default CCSID settings in the DB2 DSNHECP
after the statement is dropped or if SQL_CCSID_DEFAULT is
specified.

You can use SQLGetStmtAttr() and SQLGetStmtAttr() to query the
settings of the current statement handle CCSID override.

SQL_SUCCESS_WITH_INFO
SQL_INVALID_HANDLE

Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed. DB2 did not support the value specified in *ValuePtr, or the value
specified in *ValuePtr was invalid due to SQL constraints or
requirements. Therefore, DB2 ODBC substituted a similar value.
(Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Unable to connect to data The communication link between the application and the data

source. source failed before the function completed.

Chapter 5. Functions 365

SQLSetStmtAttr

Table 151. SQLSetStmtAttr SQLSTATEs (continued)

SQLSTATE Description Explanation

24000 Invalid cursor state. The Attribute was SQL_ATTR_CONCURRENCY and the cursor
was open.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HYO001 Memory allocation failure. DB2 ODBC was not able to allocate memory for the specified
handle.

HY009 Invalid use of a null pointer. A null pointer was passed for ValuePtr and the value in *ValuePtr
was a string value.

HYO010 Function sequence error. SQLExecute() or SQLExecDirect() was called with the statement
handle, and returned SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution parameters or
columns. Invoke SQLCancel () to cancel the data-at-execution
condition.

HYO011 Operation invalid at this time. The Attribute was SQL_ATTR_CONCURRENCY and the statement
was prepared.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified in
*ValuePtr.

HY090 Invalid string or buffer length. The StringLength argument was less than 0, but was not SQL_NTS.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for this
version of DB2 ODBC.

HYCO00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for the version of the DB2 ODBC
driver, but was not supported by the data source.

Restrictions

None.
Example
rc = SQLSetStmtAttr(hstmt,
SQL_ATTR_CURSOR_HOLD,
(void =) SQL_CURSOR HOLD OFF,
0) s
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;
References

* [‘'SQLGetConnectAttr - Get current attribute setting” on page 199|

» [*'SQLSetConnectAttr - Set connection attributes” on page 336

* |“SQLGetStmtAttr - Get current setting of a statement attribute” on page 270|

+ [‘SQLCancel - Cancel statement” on page 102|

366 ODBC Guide and Reference

SQLSetStmtOption

SQLSetStmtOption - Set statement option

Purpose

Syntax

|Specification: | ODBC 1.0 | X/OPEN CLI

In ODBC 3.0, SQLSetStmtAttr() replaces the ODBC 2.0 function
SQLSetStmtOption(). See SQLSetStmtAttr() for more information.

SQLSetStmtOption() sets an attribute of a specific statement handle. To set an
option for all statement handles associated with a connection handle, the

application can call SQLSetConnectOption() (see [‘SQLSetConnectOption - Sef]
lconnection option” on page 345).

SQLRETURN ~ SQLSetStmtOption (SQLHSTMT hstmt,
SQLUSMALLINT fOption,
SQLUINTEGER vParam) ;

Function arguments

Table 152. SQLSetStmtOption arguments

Data type Argument Use Description

SQLHSTMT hstmt input Statement handle.

SQLUSMALLINT fOption input Option to set.

SQLUINTEGER vParam input Value associated with fOption. vParam can be a 32-bit integer

Usage

Return codes

value or a pointer to a null-terminated string.

Statement options for an hstmt remain in effect until they are changed by another
call to SQLSetStmtOption() or SQLSetConnectOption(), or the hstmt is dropped by
calling SQLFreeStmt () with the SQL_DROP option. Calling SQLFreeStmt () with the
SQL_CLOSE, SQL_UNBIND, or SQL_RESET_PARAMS options does not reset
statement options.

The format of vParam depends on the value specified fOption. The format of each
is noted in [Table 150 on page 361|. If the format denotes a pointer to a
null-terminated character string the maximum length is
SQL_MAX_OPTION_STRING_LENGTH (excluding the null terminator).

Note: Currently no statement option requires a string.

+ SQL_SUCCESS
*+ SQL_ERROR
* SQL_INVALID_HANDLE

Chapter 5. Functions 367

SQLSetStmtOption

Diagnostics

Table 153. SQLSetStmtOption SQLSTATEs

SQLSTATE Description Explanation

01S02 Option value changed. A recognized concurrency value is specified for the
SQL_CONCURRENCY option, but is not supported by DB2 ODBC.

24000 Invalid cursor state. fOption is set to SQL_CONCURRENCY, SQL_CURSOR_TYPE,

SQL_STMTTXN_ISOLATION, or SQL_TXN_ISOLATION and a
cursor is already opened on the statement handle.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

S$1000 General error. An error occurred for which there is no specific SQLSTATE and for
which no implementation defined SQLSTATE is defined. The error
message returned by SQLGetDiagRec() in the argument szErrorMsg
describes the error and its cause.

S$1001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

S$1009 Invalid argument value. Given the specified fOption value, an invalid value is specified for
the argument vParam.

S1010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation; called prior to SQLSetCursorName().

S1011 Operation invalid at this time. The fOption is SQL_CONCURRENCY, SQL_CURSOR_HOLD,
SQL_NODESCRIBE, SQL_RETRIEVE_DATA,
SQL_(STMT)TXN_ISOLATION, or SQL_CURSOR_TYPE and the
statement is prepared.

$1092 Option type out of range. An invalid fOption value is specified.

S1C00 Driver not capable. The option or option value is not supported.

Restrictions

ODBC also defines statement options SQL_KEYSET_SIZE, SQL_BOOKMARKS
and SQL_SIMULATE_CURSOR. These options are not supported by DB2 ODBC. If
either one is specified, SQL_ERROR (SQLSTATE S1C00) is returned.

Example

See [‘FExample” on page 335}

References

- [*sQLColAttributes - Get column attributes” on page 114

* |"SQLExtendedFetch - Extended fetch (fetch array of rows)” on page 16
* [‘'SQLFetch - Fetch next row” on page 176

* |“SQLGetConnectOption - Returns current setting of a connect option” on|

page 202|

+ [‘SQLGetData - Get data from a column” on page 210|

* “SQLGetStmtOption - Returns current setting of a statement option” on page 273|

» |“SQLParamOptions - Specify an input array for a parameter” on page 29
» |"SQLSetConnectOption - Set connection option” on page 34

368 ODBC Guide and Reference

SQLSpecialColumns

SQLSpecialColumns - Get special (row identifier) columns

Purpose

Syntax

|Specification: | ODBC 1.0 | X/OPEN CLI |

SQLSpecialColumns () returns unique row identifier information (primary key or
unique index) for a table. The information is returned in an SQL result set, which
can be retrieved using the same functions that are used to process a result set
generated by a query.

SQLRETURN SQLSpecialColumns (SQLHSTMT hstmt,
SQLUSMALLINT fColType,
SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName,
SQLUSMALLINT fScope,
SQLUSMALLINT fNullable);

Function arguments

Table 154. SQLSpecialColumns arguments

Data type Argument Use Description
SQLHSTMT hstmt Input Statement handle.
SQLUSMALLINT fColType Input Type of unique row identifier to return. Only the following type

is supported:
*+ SQL_BEST_ROWID

Returns the optimal set of columns that can uniquely
identify any row in the specified table.

Note: For compatibility with ODBC applications,
SQL_ROWVER is also recognized, but not supported,;
therefore, if SQL_ROWVER is specified, an empty result is

returned.

SQLCHAR * szCatalogName Input Catalog qualifier of a 3 part table name. This must be a null
pointer or a zero length string.

SQLSMALLINT cbCatalogName Input Length of szCatalogName. This must be a set to 0.

SQLCHAR * szSchemaName Input Schema qualifier of the specified table.

SQLSMALLINT cbSchemaName Input Length of szSchemaName.

SQLCHAR * szTableName Input Table name.

SQLSMALLINT cbTableName Input Length of cbTableName.

Chapter 5. Functions 369

SQLSpecialColumns

Table 154. SQLSpecialColumns arguments (continued)

Data type Argument Use Description
SQLUSMALLINT fScope Input Minimum required duration for which the unique row identifier
is valid.

fScope must be one of the following:

* SQL_SCOPE_CURROW: The row identifier is guaranteed
to be valid only while positioned on that row. A later
re-select using the same row identifier values might not
return a row if the row was updated or deleted by another
transaction.

* SQL_SCOPE_TRANSACTION: The row identifier is
guaranteed to be valid for the duration of the current
transaction.

Note: This option is only valid if SQL_TXN_SERIALIZABLE
and SQL_TXN_REPEATABLE_READ isolation options are
set.

» SQL_SCOPE_SESSION: The row identifier is guaranteed to
be valid for the duration of the connection.

Note: This option is not supported by DB2 for OS/390 and
z/0S.

The duration over which a row identifier value is guaranteed to
be valid depends on the current transaction isolation level. For
information and scenarios involving isolation levels, see

SQL Reference.

SQLUSMALLINT

Usage

fNullable Input Determines whether to return special columns that can have a
NULL value.

Must be one of the following:

e SQL_NO_NULLS - The row identifier column set returned
cannot have any NULL values.

* SQL_NULLABLE - The row identifier column set returned
can include columns where NULL values are permitted.

If multiple ways exist to uniquely identify any row in a table (that is, if there are
multiple unique indexes on the specified table), then DB2 ODBC returns the best
set of row identifier column sets based on its internal criterion.

If there is no column set that allows any row in the table to be uniquely identified,
an empty result set is returned.

The unique row identifier information is returned in the form of a result set where
each column of the row identifier is represented by one row in the result set.

|Tab|e 155 on page 371|shows the order of the columns in the result set returned by
SQLSpecialColumns (), sorted by SCOPE.

Since calls to SQLSpecialColumns() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call

370 ODBC Guide and Reference

SQLSpecialColumns

SQLGetInfo() with the SQL_MAX_COLUMN_NAME_LEN to determine the actual
length of the COLUMN_NAME column supported by the connected DBMS.

Although new columns might be added and the names of the columns changed in
future releases, the position of the current columns does not change.

Table 155. Columns returned by SQLSpecialColumns

Column number/name

Data type

Description

1 SCOPE

SMALLINT

The duration for which the name in COLUMN_NAME is
guaranteed to point to the same row. Valid values are the
same as for the fScope argument: Actual scope of the
row identifier. Contains one of the following values:

+ SQL_SCOPE_CURROW

+ SQL_SCOPE_TRANSACTION

+ SQL_SCOPE_SESSION

See fScope in [Table 154 on page 369|for a description of
each value.

2 COLUMN_NAME

VARCHAR(128) NOT NULL

Name of the column that is (or part of) the table’s primary
key.

3 DATA_TYPE SMALLINT NOT NULL SQL data type of the column. One of the values in the
Symbolic SQL Data Type column in[Table 4 on page 31|
4 TYPE_NAME VARCHAR(128) NOT NULL DBMS character string represented of the name

associated with DATA_TYPE column value.

5 COLUMN_SIZE

INTEGER

If the DATA_TYPE column value denotes a character or
binary string, then this column contains the maximum
length in bytes; if it is a graphic (DBCS) string, this is the
number of double byte characters for the parameter.

For date, time, timestamp data types, this is the total
number of bytes required to display the value when
converted to character.

For numeric data types, this is either the total number of
digits, or the total number of bits allowed in the column,
depending on the value in the NUM_PREC_RADIX
column in the result set.

See|(Table 174 on page 486|

6 BUFFER_LENGTH

INTEGER

The maximum number of bytes for the associated C
buffer to store data from this column if SQL_C_DEFAULT
is specified on the SQLBindCo1(), SQLGetData() and
SQLBindParameter() calls. This length does not include
any null-terminator. For exact numeric data types, the
length accounts for the decimal and the sign.

See|(Table 176 on page 488|

7 DECIMAL_DIGITS

SMALLINT

The scale of the column. NULL is returned for data types

where scale is not applicable. See|Table 175 on
page 487

Chapter 5. Functions 371

SQLSpecialColumns

Table 155. Columns returned by SQLSpecialColumns (continued)

Column number/name Data type

Description

8 PSEUDO_COLUMN SMALLINT

Return codes

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO

Indicates whether or not the column is a pseudo-column.
DB2 ODBC only returns:

¢ SQL_PC_NOT_PSEUDO

DB2 DBMSs do not support pseudo columns. ODBC
applications can receive the following values from other
non-IBM RDBMS servers:

* SQL_PC_UNKNOWN

*+ SQL_PC_PSEUDO

« SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 156. SQLSpecialColumns SQLSTATEs
SQLSTATE Description Explanation
24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. The value of one of the length arguments is less than 0, but not
equal to SQL_NTS.
The value of one of the length arguments exceeded the maximum
length supported by the DBMS for that qualifier or name.

HY097 Column type out of range. An invalid fColType value is specified.

HY098 Scope type out of range. An invalid fScope value is specified.

HY099 Nullable type out of range. An invalid fNullable values is specified.

HYCO00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.

Restrictions

None.

372 ODBC Guide and Reference

SQLSpecialColumns

Example

[* .. %/
SQLRETURN
1ist_index_columns (SQLHDBC hdbc, SQLCHAR *schema, SQLCHAR xtablename)
R
rc = SQLSpecialColumns (hstmt, SQL_BEST ROWID, NULL, O, schema, SQL_NTS,
tablename, SQL_NTS, SQL_SCOPE_CURROW, SQL_NULLABLE);

rc = SQLBindCol (hstmt, 2, SQL_C CHAR, (SQLPOINTER) column_name.s, 129,

&column_name.ind);

rc = SQLBindCol (hstmt, 4, SQL_C_CHAR, (SQLPOINTER) type name.s, 129,
&type_name.ind);

rc = SQLBindCol(hstmt, 5, SQL_C_LONG, (SQLPOINTER) & precision,

sizeof (precision), &precision_ind);

rc = SQLBindCol (hstmt, 7, SQL_C_SHORT, (SQLPOINTER) & scale,

sizeof(scale), &scale_ind);

printf("Primary Key or Unique Index for %s.%s\n", schema, tablename);
/* Fetch each row, and display =/
while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {
printf(" %s, %s ", column_name.s, type_name.s);
if (precision_ind != SQL_NULL_DATA) {
printf(" (%1d", precision);
} else {
printf("(\n");

if (scale_ind != SQL_NULL_DATA) {
printf(", %d)\n", scale);

} else {
printf(")\n");

[* .../

References

+ [“SQLColumns - Get column information for a table” on page 124

« [“SQLStatistics - Get index and statistics information for a base table” on|
page 374

+ [“SQLTables - Get table information” on page 382

Chapter 5. Functions 373

SQLStatistics

SQLStatistics - Get index and statistics information for a base table

Purpose
| Specification: ODBC 1.0 | XOPENCLI |
SQLStatistics() retrieves index information for a given table. It also returns the
cardinality and the number of pages associated with the table and the indexes on
the table. The information is returned in a result set, which can be retrieved using
the same functions that are used to process a result set generated by a query.
Syntax
SQLRETURN SQLStatistics (SQLHSTMT hstmt,
SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName,
SQLUSMALLINT fUnique,
SQLUSMALLINT fAccuracy) ;
Function arguments
Table 157. SQL Statistics arguments
Data type Argument Use Description
SQLHSTMT hstmt Input Statement handle.
SQLCHAR * szCatalogName Input Catalog qualifier of a 3 part table name. This must be a null
pointer or a zero length string.
SQLSMALLINT cbCatalogName Input Length of cbCatalogName. This must be set to 0.
SQLCHAR * szSchemaName Input Schema qualifier of the specified table.
SQLSMALLINT cbSchemaName Input Length of szSchemaName.
SQLCHAR * szTableName Input Table name.
SQLSMALLINT cbTableName Input Length of cbTableName.
SQLUSMALLINT fUnique Input Type of index information to return:
+ SQL_INDEX_UNIQUE
Only unique indexes are returned.
+ SQL_INDEX_ALL
All indexes are returned.
SQLUSMALLINT fAccuracy Input Indicate whether the CARDINALITY and PAGES columns in

374 ODBC Guide and Reference

the result set contain the most current information:

e SQL_ENSURE : This value is reserved for future use, when
the application requests the most up to date statistics
information. Existing applications that specify this value
receive the same results as SQL_QUICK.
Recommendation: New applications should not use this
value.

* SQL_QUICK : Statistics which are readily available at the
server are returned. The values might not be current, and
no attempt is made to ensure that they be up to date.

Usage

SQLStatistics

SQLStatistics() returns two types of information:

 Statistics information for the table (if it is available):
— when the TYPE column in the table below is set to SQL_TABLE_STAT, the
number of rows in the table and the number of pages used to store the table.
— when the TYPE column indicates an index, the number of unique values in
the index, and the number of pages used to store the indexes.

* Information about each index, where each index column is represented by one
row of the result set. The result set columns are given in|Table 158in the order

shown; the rows in the result set are ordered by NON_UNIQUE, TYPE,
INDEX_QUALIFIER, INDEX_NAME and ORDINAL_POSITION.

Since calls to SQLStatistics() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 158. Columns returned by SQL Statistics

Column number/name Data type Description

1 TABLE_CAT VARCHAR(128) The is always null.

2 TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

3 TABLE_NAME VARCHAR(128) NOT NULL Name of the table.

4 NON_UNIQUE SMALLINT Indicates whether the index prohibits duplicate values:

* SQL_TRUE if the index allows duplicate values.

» SQL_FALSE if the index values must be unique.

* NULL is returned if the TYPE column indicates that this
row is SQL_TABLE_STAT (statistics information on the
table itself).

5 INDEX_QUALIFIER

VARCHAR(128) The string is used to qualify the index name in the DROP
INDEX statement. Appending a period (.) plus the
INDEX_NAME results in a full specification of the index.

6 INDEX_NAME

VARCHAR(128) The name of the index. If the TYPE column has the value
SQL_TABLE_STAT, this column has the value NULL.

Chapter 5. Functions 375

SQLStatistics

Table 158. Columns returned by SQLStatistics (continued)

Column number/name Data type

Description

7 TYPE SMALLINT NOT NULL

Indicates the type of information contained in this row of

the result set:

* SQL_TABLE_STAT - Indicates this row contains
statistics information on the table itself.

* SQL_INDEX_CLUSTERED - Indicates this row
contains information on an index, and the index type is
a clustered index.

* SQL_INDEX_HASHED - Indicates this row contains
information on an index, and the index type is a
hashed index.

* SQL_INDEX_OTHER - Indicates this row contains
information on an index, and the index type is other
than clustered or hashed.

8 ORDINAL_POSITION SMALLINT

Ordinal position of the column within the index whose
name is given in the INDEX_NAME column. A NULL
value is returned for this column if the TYPE column has
the value of SQL_TABLE_STAT.

9 COLUMN_NAME VARCHAR(128)

Name of the column in the index. A NULL value is
returned for this column if the TYPE column has the
value of SQL_TABLE_STAT.

10 ASC_OR_DESC CHAR(1)

Sort sequence for the column; A for ascending, D for
descending. NULL value is returned if the value in the
TYPE column is SQL_TABLE_STAT.

11 CARDINALITY INTEGER

» |If the TYPE column contains the value
SQL_TABLE_STAT, this column contains the number
of rows in the table.

* |If the TYPE column value is not SQL_TABLE_STAT,
this column contains the number of unique values in
the index.

* A NULL value is returned if information is not available
from the DBMS.

12 PAGES INTEGER

* |If the TYPE column contains the value
SQL_TABLE_STAT, this column contains the number
of pages used to store the table.

* |If the TYPE column value is not SQL_TABLE_STAT,
this column contains the number of pages used to
store the indexes.

* A NULL value is returned if information is not available
from the DBMS.

13 FILTER_CONDITION VARCHAR(128)

If the index is a filtered index, this is the filter condition.
Since DATABASE 2 servers do not support filtered
indexes, NULL is always returned. NULL is also returned
if TYPE is SQL_TABLE_STAT.

For the row in the result set that contains table statistics (TYPE is set to
SQL_TABLE_STAT), the columns values of NON_UNIQUE, INDEX_QUALIFIER,
INDEX_NAME, ORDINAL_POSITION, COLUMN_NAME, and ASC_OR_DESC are
set to NULL. If the CARDINALITY or PAGES information cannot be determined,
then NULL is returned for those columns.

Note: The accuracy of the information returned in the SQLERRD(3) and
SQLERRD(4) fields is dependent on many factors such as the use of
parameter markers and expressions within the statement. The main factor

376 ODBC Guide and Reference

SQLStatistics

which can be controlled is the accuracy of the database statistics. That is,
when the statistics were last updated, (for example, for DB2 for OS/390 and
z/OS, the last time the RUNSTATS utility was run.)

Return codes

SQL_SUCCESS

SQL_SUCCESS_WITH_INFO

« SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 159. SQL Statistics SQLSTATEs
SQLSTATE Description Explanation
24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01

Communication link failure.

The communication link between the application and data source
fails before the function completes.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.
HYO014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.
HY090 Invalid string or buffer length. The value of one of the name length arguments was less than O,
but not equal to SQL_NTS.
The valid of one of the name length arguments exceeded the
maximum value supported for that data source. The maximum
supported value can be obtained by calling the SQLGetInfo()
function.
HY100 Uniqueness option type out of An invalid fUnique value was specified.
range.
HY101 Accuracy option type out of An invalid fAccuracy value was specified.
range.
HYCO00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.
Restrictions

None.

377

Chapter 5. Functions

SQLStatistics

Example

[x ... %/

SQLRETURN

1ist_stats(SQLHDBC hdbc, SQLCHAR *schema, SQLCHAR xtablename)
{

[x .. %/

rc

SQLStatistics(hstmt, NULL, O, schema, SQL_NTS,
tablename, SQL_NTS, SQL_INDEX UNIQUE, SQL_QUICK);

SQLBindCol (hstmt, 4, SQL_C_SHORT,

&non_unique, 2, &non_unique_ind);
SQLBindCol (hstmt, 6, SQL_C_CHAR,

index_name.s, 129, &index_name.ind);
rc = SQLBindCol (hstmt, 7, SQL_C_SHORT,

&type, 2, &type_ind);
SQLBindCol (hstmt, 9, SQL _C_CHAR,

column_name.s, 129, &column_name.ind);
SQLBindCol (hstmt, 11, SQL_C_LONG,

&cardinality, 4, &card_ind);
SQLBindCol (hstmt, 12, SQL_C_LONG,

&pages, 4, &pages_ind);

rc

rc

rc

rc

rc

printf("Statistics for %s.%s\n", schema, tablename);

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)
{ if (type != SQL_TABLE_STAT)
{ printf(" Column: %-18s Index Name: %-18s\n",
column_name.s, index_name.s);
1

else
{ printf(" Table Statistics:\n");
}

if (card_ind != SQL_NULL_DATA)

printf(" Cardinality = %131d", cardinality);
else

printf(" Cardinality = (Unavailable)");

if (pages_ind != SQL_NULL_DATA)
printf(" Pages = %131d\n", pages);
else
printf(" Pages = (Unavailable)\n");

[* oo ox/

References

+ [“SQLColumns - Get column information for a table” on page 124
+ [“SQLSpecialColumns - Get special (row identifier) columns” on page 369

378 ODBC Guide and Reference

SQLTablePrivileges

SQLTablePrivileges - Get privileges associated with a table

Purpose

Syntax

|Specification: | ODBC 1.0 | |

SQLTablePrivileges() returns a list of tables and associated privileges for each
table. The information is returned in an SQL result set, which can be retrieved using
the same functions that are used to process a result set generated by a query.

SQLRETURN SQLTablePrivileges (SQLHSTMT hstmt,
SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName) ;

Function arguments

Table 160. SQLTablePrivileges arguments

Data type Argument Use Description
SQLHSTMT hstmt Input Statement handle.
SQLCHAR * szTableQualifier Input Catalog qualifier of a 3 part table name. This must be a null

pointer or a zero length string.

SQLSMALLINT

cbTableQualifier Input Length of szCatalogName. This must be set to 0.

SQLCHAR * szSchemaName Input Buffer that can contain a pattern-value to qualify the result set
by schema name.

SQLSMALLINT cbSchemaName Input Length of szSchemaName.

SQLCHAR * szTableName Input Buffer that can contain a pattern-value to qualify the result set

by table name.

SQLSMALLINT

Usage

cbTableName Input Length of szTableName.

The szSchemaName and szTableName arguments accept search pattern. For more
information about valid search patterns, see [‘Input arguments on catalog functions”|

on page 398,

The results are returned as a standard result set containing the columns listed in
the following table. The result set is ordered by TABLE_CAT, TABLE_SCHEM,
TABLE_NAME, and PRIVILEGE. If multiple privileges are associated with any given
table, each privilege is returned as a separate row.

Since calls to SQLTablePrivileges() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128

Chapter 5. Functions 379

SQLTablePrivileges

characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 161. Columns returned by SQLTablePrivileges
Column Number/Name Data Type

Description

1 TABLE_CAT VARCHAR(128)

The is always null.

2 TABLE_SCHEM VARCHAR(128)

The name of the schema contain TABLE_NAME.

3 TABLE_NAME VARCHAR(128) NOT NULL

The name of the table.

4 GRANTOR VARCHAR(128)

Authorization ID of the user who granted the privilege.

5 GRANTEE VARCHAR(128)

Authorization ID of the user to whom the privilege is
granted.

6 PRIVILEGE VARCHAR(128)

The table privilege. This can be one of the following
strings:

* ALTER

+ CONTROL

* DELETE

* INDEX

* INSERT

* REFERENCES

» SELECT

« UPDATE

7 IS_GRANTABLE VARCHAR(3)

Indicates whether the grantee is permitted to grant the
privilege to other users.

This can be "YES”, "NO” or NULL.

Note: The column names used by DB2 ODBC follow the X/Open CLI CAE specification style. The column types,
contents and order are identical to those defined for the SQLProcedures() result set in ODBC.

Return codes
- SQL_SUCCESS

* SQL_SUCCESS_WITH_INFO

* SQL_ERROR
* SQL_INVALID_HANDLE
Diagnostics
Table 162. SQLTablePrivileges SQLSTATEs
SQLSTATE Description Explanation
24000 Invalid cursor state. A cursor is already opened on the statement handle.
40003 08S01 Communication link failure. The communication link between the application and data source

fails before the function completes.

HYO0O01 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

380 ODBC Guide and Reference

SQLTablePrivileges

Table 162. SQLTablePrivileges SQLSTATEs (continued)

SQLSTATE Description

Explanation

HYO014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.
HY090 Invalid string or buffer length. The value of one of the name length arguments is less than 0, but
not equal to SQL_NTS.
The value of one of the name length arguments exceeded the
maximum value supported for that data source. The maximum
supported value can be obtained by calling the SQLGetInfo()
function.
HYCO00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.
Restrictions
None.
Example
[* ... %/
SQLRETURN

References

Tist_table_privileges(SQLHDBC hdbc, SQLCHAR *schema,

{

SQLHSTMT
SQLRETURN

SQLCHAR *tablename)

hstmt;
rc;

struct { SQLINTEGER ind; /* Length & Indicator variable */

SQLCHAR
} grantor

struct { SQLINTE
SQLCHAR
}is_gran

SQLCHAR
SQLCHAR

/* Allocate a st
rc = SQLATlocHan

/* Create Table
rc = SQLTabTePri

rc = SQLBindCol (

s[129]; /* String variable x/
, grantee, privilege;

GER ind;
s[4];
table;

""s /% Used when printing the */
"m. /% Result set x/

cur_name[512]
pre_name[512]

atement handle to reference the result set =/
d1e(SQL_HANDLE_STMT, hdbc, &hstmt);

Privilges result set */
vileges(hstmt, NULL, 0, schema, SQL_NTS,
tablename, SQL_NTS);

hstmt, 4, SQL_C _CHAR, (SQLPOINTER) grantor.s, 129,
&grantor.ind);

/* Continue Binding, then fetch and display result set */

[* ...

*/

+ [‘SQLTables - Get table information” on page 382

Chapter 5. Functions 381

SQLTables

SQLTables - Get table information

Purpose
|Specification: ODBC 1.0 X/OPEN CLI
SQLTables() returns a list of table names and associated information stored in the
system catalog of the connected data source. The list of table names is returned as
a result set, which can be retrieved using the same functions that are used to
process a result set generated by a query.
Syntax
SQLRETURN ~ SQLTabTes (SQLHSTMT hstmt,
SQLCHAR FAR *szCatalogName,
SQLSMALLINT cbCatalogName,
SQLCHAR FAR *szSchemaName,
SQLSMALLINT cbSchemaName,
SQLCHAR FAR *szTableName,
SQLSMALLINT cbTableName,
SQLCHAR FAR *szTableType,
SQLSMALLINT chTableType);
Function arguments
Table 163. SQLTables arguments
Data type Argument Use Description
SQLHSTMT hstmt Input Statement handle.
SQLCHAR * szCatalogName Input Buffer that can contain a pattern-value to qualify the result set.
Catalog is the first part of a 3 part table name.
This must be a NULL pointer or a zero length string.
SQLSMALLINT cbCatalogName Input Length of szCatalogName. This must be set to 0.
SQLCHAR * szSchemaName Input Buffer that can contain a pattern-value to qualify the result set
by schema name.
SQLSMALLINT cbSchemaName Input Length of szSchemaName.
SQLCHAR * szTableName Input Buffer that can contain a pattern-value to qualify the result set
by table name.
SQLSMALLINT cbTableName Input Length of szTableName.
SQLCHAR * szTableType Input Buffer that can contain a value list to qualify the result set by
table type.
The value list is a list of upper-case comma-separated single
quoted values for the table types of interest. Valid table type
identifiers can include: TABLE, VIEW, SYSTEM TABLE,
ALIAS, SYNONYM. If szTableType argument is a NULL
pointer or a zero length string, then this is equivalent to
specifying all of the possibilities for the table type identifier.
If SYSTEM TABLE is specified, then both system tables and
system views (if there are any) are returned.
SQLSMALLINT cbTableType Input Size of cbTableType

382 ODBC Guide and Reference

Usage

SQLTables

Note that the szCatalogName, szSchemaName, and szTableName arguments
accept search patterns. For more information about valid search patterns, see
[Input arguments on catalog functions” on page 398|

Table information is returned in a result set where each table is represented by one
row of the result set. To determine the type of access permitted on any given table
in the list, the application can call SQLTablePrivileges(). Otherwise, the application
must be able to handle a situation where the user selects a table for which SELECT
privileges are not granted.

To support obtaining just a list of schemas, the following special semantics for the
szSchemaName argument can be applied: if szSchemaName is a string containing
a single percent (%) character, and szCatalogName and szTableName are empty
strings, then the result set contains a list of valid schemas in the data source.

If szTableType is a single percent character (%) and szCatalogName,
szSchemaName, and szTableName are empty strings, then the result set contains a
list of valid table types for the data source. (All columns except the TABLE_TYPE
column contain NULLs.)

If szTableType is not an empty string, it must contain a list of upper-case,
comma-separated values for the types of interest; each value can be enclosed in
single quotes or unquoted. For example, "TABLE’,'VIEW’” or "TABLE,VIEW". If the
data source does not support or does not recognize a specified table type, nothing
is returned for that type.

Sometimes, an application calls SQLTables () with null pointers for some or all of the
szSchemaName, szTableName, and szTableType arguments so that no attempt is
made to restrict the result set returned. For some data sources that contain a large
quantity of tables, views, or aliases, this scenario maps to an extremely large result
set and very long retrieval times. Three mechanisms are introduced to help the end
user reduce the long retrieval times: three keywords (SCHEMALIST, SYSCHEMA,
TABLETYPE) can be specified in the DB2 ODBC initialization file to help restrict the
result set when the application has supplied null pointers for either or both of
szSchemaName and szTableType. These keywords and their usage are discussed
in detail in [‘Initialization keywords” on page 55| If the application did not specify a
null pointer for szSchemaName or szTableType then the associated keyword
specification in the DB2 ODBC initialization file is ignored.

The result set returned by SQLTables () contains the columns listed in [Table 164 on
page 384 in the order given. The rows are ordered by TABLE_TYPE, TABLE_CAT,
TABLE_SCHEM, and TABLE_NAME.

Since calls to SQLTables () in many cases map to a complex and thus expensive
query against the system catalog, they should be used sparingly, and the results
saved rather than repeating calls.

The VARCHAR columns of the catalog functions result set are declared with a
maximum length attribute of 128 to be consistent with SQL92 limits. Since DB2
names are less than 128, the application can choose to always set aside 128
characters (plus the null-terminator) for the output buffer, or alternatively, call
SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and

Chapter 5. Functions 383

SQLTables

SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
supported by the connected DBMS.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns does not change.

Table 164. Columns returned by SQLTables

Column Name Data type Description

TABLE_CAT VARCHAR(128) The name of the catalog containing TABLE_SCHEM. This
column contains a NULL value.

TABLE_SCHEM VARCHAR(128) The name of the schema containing TABLE_NAME.

TABLE_NAME VARCHAR(128) The name of the table, or view, or alias, or synonym.

TABLE_TYPE VARCHAR(128) Identifies the type given by the name in the

TABLE_NAME column. It can have the string values
'TABLE’, "VIEW’, 'INOPERATIVE VIEW’, 'SYSTEM
TABLE’, ’ALIAS’, or 'SYNONYM'.

REMARKS VARCHAR(254) Contains the descriptive information about the table.

Return codes

.« SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_ERROR
¢ SQL_INVALID_HANDLE

Diagnostics

Table 165. SQLTables SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
fails before the function completes.

HYO001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.

HYO010 Function sequence error. The function is called while in a data-at-execute (SQLParamData(),
SQLPutData()) operation.

HYO014 No more handles. DB2 ODBC is not able to allocate a handle due to internal
resources.

HY090 Invalid string or buffer length. ~ The value of one of the name length arguments is less than 0, but
not equal to SQL_NTS.
The value of one of the name length arguments exceeded the
maximum value supported for that data source. The maximum
supported value can be obtained by calling the SQLGetInfo()
function.

HYCO00 Driver not capable. DB2 ODBC does not support catalog as a qualifier for table name.

Restrictions

None.

384 ODBC Guide and Reference

SQLTables

Example

Also, see [‘Querying environment information example” on page 38|

[* .../
SQLRETURN init_tables(SQLHDBC hdbc)
{

SQLHSTMT hstmt;

SQLRETURN rc;

SQLUSMALLINT rowstat[MAX_TABLES];
SQLUINTEGER pcrow;

rc =SQLAT1ocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

/* SQL_ROWSET_SIZE sets the max number of result rows to fetch each time */
rc =SQLSetStmtAttr(hstmt, SQL_ATTR_ROWSET SIZE, (void *)MAX_TABLES, 0);

/* Set Size of One row, Used for Row-Wise Binding Only */
rc =SQLSetStmtAttr(hstmt, SQL_ATTR_BIND TYPE,
(void *)sizeof(table)/MAX_TABLES, 0);

printf("Enter Search Pattern for Table Schema Name:\n");

gets(table->schem);

printf("Enter Search Pattern for Table Name:\n");

gets(table->name);

rc = SQLTables(hstmt, NULL, O, table->schem, SQL_NTS,
table->name, SQL_NTS, NULL, 0);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) &table->schem, 129,

&table->schem_1);

rc = SQLBindCol (hstmt, 3, SQL_C_CHAR, (SQLPOINTER) &table->name, 129,

&table->name_1);

rc = SQLBindCol (hstmt, 4, SQL_C_CHAR, (SQLPOINTER) &table->type, 129,

&table->type 1);

rc = SQLBindCol (hstmt, 5, SQL_C_CHAR, (SQLPOINTER) &table->remarks, 255,
&table->remarks_1);

/* Now fetch the result set */
/% ... %/

References

+ [‘SQLColumns - Get column information for a table” on page 124]
+ [‘SQLTablePrivileges - Get privileges associated with a table” on page 379

Chapter 5. Functions 385

SQLTransact

SQLTransact - Transaction management

Purpose

Syntax

|Specification: | ODBC 1.0 | X/OPEN CLI | ISO CLI

In ODBC 3.0, SQLEndTran() replaces the ODBC 2.0 function SQLTransact(). See
SQLEndTran() for more information.

SQLTransact () commits or rolls back the current transaction in the specified
connection. SQLTransact() can also be used to request that a commit or rollback be
issued for each of the connections associated with the environment.

All changes to the database performed on the connection since connect time or the
previous call to SQLTransact() (whichever is the most recent) are committed or
rolled back.

If a transaction is active on a connection, the application must call SQLTransact ()
before it can disconnect from the database.

SQLRETURN SQLTransact (SQLHENV henv,
SQLHDBC hdbc,
SQLUSMALLINT fType);

Function arguments

Table 166. SQLTransact arguments

Data type Argument Use Description
SQLHENV henv input Environment handle.

If hdbc is a valid connection handle, henv is ignored.
SQLHDBC hdbc input Database connection handle.

If hdbc is set to SQL_NULL_HDBC, then henv must contain
the environment handle that the connection is associated with.

SQLUSMALLINT

Usage

fType input The desired action for the transaction. The value for this
argument must be one of:
+ SQL_COMMIT
+ SQL_ROLLBACK

In DB2 ODBC, a transaction begins implicitly when an application that does not
already have an active transaction, issues SQLPrepare(), SQLExecDirect(),
SQLExecDirect(), SQLGetTypeInfo(), or one of the catalog functions. The
transaction ends when the application calls SQLTransact() or disconnects from the
data source.

If the input connection handle is SQL_NULL_HDBC and the environment handle is
valid, then a commit or rollback is issued on each of the open connections in the
environment. SQL_SUCCESS is returned only if success is reported on all the
connections. If the commit or rollback fails for one or more of the connections,

386 ODBC Guide and Reference

Return codes

SQLTransact

SQLTransact() returns SQL_ERROR. To determine which connections failed the
commit or rollback operation, the application needs to call SQLError() on each
connection handle in the environment.

It is important to note that unless the connection option SQL_CONNECTTYPE is
set to SQL_COORDINATED_TRANS (to indicate coordinated distributed
transactions), there is no attempt to provide coordinated global transaction with
one-phase or two-phase commit protocols.

Completing a transaction has the following effects:

» Prepared SQL statements (using SQLPrepare()) survive transactions; they can be
executed again without first calling SQLPrepare().

» Cursor positions are maintained after a commit unless one or more of the
following is true:

— The server is DB2 Server for VSE & VM.

— The SQL_CURSOR_HOLD statement option for this handle is set to
SQL_CURSOR_HOLD_OFF.

— The CURSORHOLD keyword in the DB2 ODBC initialization file is set so that
cursor with hold is not in effect and this has not been overridden by resetting
the SQL_CURSOR_HOLD statement option.

— The CURSORHOLD keyword is present in a the connection string on the
SQLDriverConnect () call that set up this connection, and it indicates cursor
with hold is not in effect, and this has not been overridden by resetting the
SQL_CURSOR_HOLD statement option.

If the cursor position is not maintained due to any one of the above
circumstances, the cursor is closed and all pending results are discarded.

If the cursor position is maintained after a commit, the application must issue a
fetch to re-position the cursor (to the next row) before continuing with processing
of the remaining result set.

To determine whether cursor position is maintained after a commit, call
SQLGetInfo() with the SQL_CURSOR_COMMIT_BEHAVIOR information type.

» Cursors are closed after a rollback and all pending results are discarded.

« Statement handles are still valid after a call to SQLTransact(), and can be reused
for subsequent SQL statements or de-allocated by calling SQLFreeStmt ().

» Cursor names, bound parameters, and column bindings survive transactions.

If no transaction is currently active on the connection, calling SQLTransact() has no
effect on the database server and returns SQL_SUCCESS.

SQLTransact() can fail while executing the COMMIT or ROLLBACK due to a loss of
connection. In this case the application might not be able to determine whether the

COMMIT or ROLLBACK was processed, and a database administrator’s help might
be required. See the DBMS product information for more information on transaction
logs and other transaction management tasks.

* SQL_SUCCESS
» SQL_ERROR
» SQL_INVALID_HANDLE

Chapter 5. Functions 387

SQLTransact

Diagnostics

Table 167. SQLTransact SQLSTATEs
SQLSTATE Description

Explanation

08003 Connection is closed. The hdbc is not in a connected state.
08007 Connection failure during The connection associated with the hdbc failed during the execution
transaction. of the function and it cannot be determined whether the requested
COMMIT or ROLLBACK occurred before the failure.
58004 Unexpected system failure. Unrecoverable system error.
S1001 Memory allocation failure. DB2 ODBC is not able to allocate memory required to support
execution or completion of the function.
S1012 Invalid transaction code. The value specified for the argument fType was neither
SQL_COMMIT not SQL_ROLLBACK.
$1013 Unexpected memory handling DB2 ODBC is not able to access memory required to support
error. execution or completion of the function.
Restrictions
SQLTransact() can not be issued if the application is executing as a stored
procedure.
Example
See ['‘Example” on page 180]
References

+ [“SQLSetStmtOption - Set statement option” on page 367

+ [‘SQLGetlInfo - Get general information” on page 234|

388 ODBC Guide and Reference

Chapter 6. Using advanced features

This section covers a series of advanced tasks.

« [‘Environment, connection, and statement options”|

« [“Distributed unit of work (coordinated distributed transactions)” on page 391|
« [‘Global transaction processing” on page 396

« [‘Querying system catalog information” on page 397|

« [‘Sending/retrieving long data in pieces” on page 401|

« [‘Using arrays to input parameter values” on page 403|
- [‘Retrieving a result set into an array” on page 406]

« [‘Using large objects” on page 411

« [‘Using distinct types” on page 414

« [‘Using stored procedures” on page 417]

* |“Writing multithreaded applications” on page 421|
 [‘Using Unicode functions” on page 429

« [‘Mixing embedded SQL and DB2 ODBC” on page 446
« [‘Using vendor escape clauses” on page 448|

* [‘Programming hints and tips” on page 452

Environment, connection, and statement options

Environments, connections, and statements each have a defined set of options (or
attributes). All attributes can be queried by the application, but only some attributes
can be changed from their default values. By changing attribute values, the
application can change the behavior of DB2 ODBC.

An environment handle has attributes which affect the behavior of DB2 ODBC
functions under that environment. The application can specify the value of an
attribute by calling SQLSetEnvAttr() and can obtain the current attribute value by
calling SQLGetEnvAttr(). SQLSetEnvAttr() can only be called before connection
handles have been allocated.

A connection handle has options which affect the behavior of DB2 ODBC functions

under that connection. Of the options that can be changed:

* Some can be set any time after the connection handle is allocated.

* Some can be set only before the actual connection is established.

* Some can be set only after the connection is established.

* Some can be set after the connection is established, but only while there are no
outstanding transactions or open cursors.

The application can change the value of connection options by calling
SQLSetConnectAttr() and can obtain the current value of an option by calling
SQLGetConnectAttr(). An example of a connection option which can be set any time
after a handle is allocated is the auto-commit option introduced in['*Commit of]
rollback” on page 26| For complete details on when each option can be set, see
‘SQLSetConnectOption - Set connection option” on page 345,

A statement handle has options which affect the behavior of ODBC functions

executed using that statement handle. Of the statement options that can be

changed:

» Some options can be set, but currently can be set to only one specific value.

* Some options can be set any time after the statement handle is allocated.

* Some options can only be set if there is no open cursor on that statement
handle.

© Copyright IBM Corp. 1997, 2001 389

The application can specify the value of any settable statement option by calling
SQLSetStmtAttr(), and can obtain the current value of an option by calling
SQLGetStmtAttr(). For complete details on when each option can be set, see
[‘'SQLSetStmtOption - Set statement option” on page 367

The SQLSetConnectAttr() function can also be used to set statement options for all
statement handles currently associated with the connection as well as for all future
statement handles to be allocated under this connection. However,
SQLGetConnectAttr() can only be used to obtain connection options;
SQLGetStmtAttr() must be used to obtain the current value of a statement option.

Many applications use just the default option settings; however, there can be
situations where some of these defaults are not suitable for a particular user of the
application. DB2 ODBC provides end users with two methods to change some of
these default values at run time. The first method is to specify the new default
attribute values in the connection string input to the SQLDriverConnect () function.
The second method involves the specification of the new default attribute values in
a DB2 ODBC initialization file.

The DB2 ODBC initialization file can be used to change default values for all DB2
ODBC applications. This might be the end user’s only means of changing the
defaults if the application does not have a way for the user to provide default
attribute values in the SQLDriverConnect () connection string. Default attribute
values that are specified on SQLDriverConnect () override the values in the DB2
ODBC initialization file for that particular connection. For information on how the
end user can use the DB2 ODBC initialization file as well as for a list of changeable
defaults, see ['DB2 ODBC initialization file” on page 52,

The mechanisms for changing defaults are intended for end user tuning; application
developers must use the appropriate set-option function. If an application does call
a set-option or attribute function with a value different from the initialization file or
the connection string specification, then the initial default value is overridden and
the new value takes effect.

The options that can be changed, are listed in the detailed function descriptions of
the set option or attributes functions, see [Chapter 5, “Functions”, on page 67} The
read-only options (if any exist) are listed with the detailed function descriptions of

the get option or attribute functions.

For information on some commonly used options, see [‘Programming hints and tips’|

on page 452

[Figure 8 on page 391| shows the addition of the option or attribute functions to the
basic connect scenario.

390 ODBC Guide and Reference

SQLAllocHandle()

—
SQLGetEnvAttr()
(optional)
’ SQLSetEnvAttr()
>« | Environment attributes can
¢ only be set before a
SQLAllocHandle() connection is allocated

’
-
’ SQLSetConnectAttr()
|

v v

’ SQLConnect() ’ SQLDriverConnect()
[I

.

SQLGetConnectAttr()

(optional) Some options can
l only be changed

after the connect
’ SQLSetConnectAttr()

> [
b

< A 4
A

Optionally set
keyword values

<&
Bl

v

‘.»".Default
SQLAllocHandle() [¢--~" statement

l options

y

SQLGetStmtAttr()
(optional)

|

] SQLSetStmtAttr()
|

» o
Vl‘

Figure 8. Setting and retrieving options (attributes)

Distributed unit of work (coordinated distributed transactions)

The transaction scenario described in [‘Connecting to one or more data sources” on|
portrays an application which interacts with only one database server in a
transaction. Further, only one transaction (that associated with the current server)
existed at any given time.

With distributed unit of work (coordinated distributed transactions), the application, if
executing CONNECT (type 2), is able to access multiple database servers from
within the same coordinated transaction. This section describes how DB2 ODBC
applications can be written to use coordinated distributed unit of work.

Chapter 6. Using advanced features 391

First, consider the environment attribute (SQL_CONNECTTYPE) which controls
whether the application is to operate in a coordinated or uncoordinated distributed
environment. The two possible values for this attribute are:

+ SQL_CONCURRENT_TRANS - supports the single data source per transaction
semantics described in Chapter 2. Multiple (logical) concurrent connections to
different data sources are permitted. This is the default.

* SQL_COORDINATED_TRANS - supports the multiple data sources per
transaction semantics, as discussed below.

All connections within an application must have the same SQL_CONNECTTYPE
setting.

Recommendation: Have the application set this environment attribute, if necessary,
as soon as SQLA1locHandle() (with HandleType set to SQL_HANDLE_ENV) is
called successfully.

Options that govern distributed unit of work semantics

A coordinated transaction means that commits or rollbacks among multiple data
source connections are coordinated. The SQL_COORDINATED_TRANS setting of
the SQL_CONNECTTYPE attribute corresponds to the CONNECT (type 2) in IBM
embedded SQL.

All the connections within an application must have the same
SQL_CONNECTTYPE setting. After the first connection is established, all
subsequent connect types must be the same as the first. Coordinated connections
default to manual-commit mode (for discussion on auto-commit mode, see
for rollback” on page 26).

[Figure 9 on page 393 shows the logical flow of an application executing statements
on two SQL_CONCURRENT_TRANS connections (‘A" and 'B'), and indicates the
scope of the transactions.

[Figure 10 on page 394| shows the same statements being executed on two
SQL_COORDINATED_TRANS connections (A and B), and the scope of a
coordinated distributed transaction.

392 ODBC Guide and Reference

Allocate connect "A"
Connect "A"

Allocate statement "A1"
Allocate statement "A2"
Initialize two connections.
Allocate connect "B" Two statement handles
Connect "B" per connection.

Allocate statement "B1"
Allocate statement "B2”

Transaction
Execute statement "A1"
Execute statement "A2"
Commit "A"

Transaction
Execute statement "B2"
Execute statement "B1"
Commit "B"

‘Transaction
Execute statement "B2" :

Transaction

Execute statement "A1"
Execute statement "B2" |

Execute statement "A2"
Commit "A"

Execute statement "B1"
Commit "B”

Figure 9. Multiple connections with concurrent transactions

In within the context of the ODBC connection model, the third and fourth
transactions can be interleaved as shown. That is, if the application has specified
SQL_CONCURRENT_TRANS, then the ODBC model supports one transaction for
each active connection. The third transaction, consisting of the execution of
statements B2, B2 again and B1 at data source B, can be managed and committed
independent of the fourth transaction, consisting of the execution of statements A1
and A2 at data source A. That is, the transactions at A and B are independent and
exist concurrently.

If the application specifies SQL_CONCURRENT_TRANS and is executing with
MULTICONTEXT=0 specified in the initialization file, then DB2 for OS/390 and z/OS
allows any number of concurrent connection handles to be allocated, subject to the
restriction that only one physical connection can exist at any given time. This
behavior precludes support for the ODBC connection model, and consequently the
behavior of the application is substantially different (than that described for the
ODBC execution model described above.)

In particular, the third transaction is executed as three transactions. Prior to
executing statement 'B2" DB2 ODBC connects to B. This statement is executed
and committed prior to reconnecting to data source A to execute A1. Similarly, this
statement at data source A is committed prior to reconnecting to data source B to
execute statement B2. This statement is then committed and a reconnection is
made to A to execute A2. Next, another commit occurs and a reconnection to B to
execute B1.

From an application point of view, the transaction at data source B, consisting of
B2->B2->B1, is broken into three independent transactions: B2, B2 and B1. The

Chapter 6. Using advanced features 393

fourth transaction at data source A, consisting of A1->A2, is broken into two
independent transactions: A1 and A2.

Allocate environment
Set environment attributes
(SQL_CONNECTTYPE)

Allocate connect "A"
Connect "A"
(SQL_CONCURRENT_TRANS) }

Allocate statement "A1"
Allocate statement "A2"

Allocate connect "B" } Initialize two connections.
Connect "B" Two statement handles

(SQL_CONCURRENT_TRANS) | per connection.

Allocate statement "B1"
Allocate statement "B2"

Coordinated
transaction

Execute statement "A1"
Execute statement "A2"
Execute statement "B2"
Execute statement "B1"

Commit

Coordinated
transaction

Execute statement "B2"
Execute statement "A1"
Execute statement "B2"
Execute statement "A2"
Execute statement "B1"

Commit

Figure 10. Multiple connections with coordinated transactions

For a discussion of multiple active transaction support, see [‘DB2 ODBC support of
[multiple contexts” on page 424}

Establishing a coordinated transaction connection

An application can establish coordinated transaction connections by calling the
SQLSetEnvAttr() or SQLSetConnectAttr() functions, or by setting the
CONNECTTYPE keyword in the DB2 ODBC initialization file or in the connection
string for SQLDriverConnect (). The initialization file is intended for existing
applications that do not use the SQLSetConnectAttr() function. For information
about the keywords, see ['DB2 ODBC initialization file” on page 52|

An application cannot have a mixture of concurrent and coordinated connections;
the type of the first connection determines the type of all subsequent connections.
SQLSetEnvAttr() and SQLSetConnectAttr() return an error if an application attempts
to change the connect type while there is an active connection. When the
connection type is established, it persists until SQLFreeHandTe is called (with
HandleType set to SQL_HANDLE_ENV).

394 ODBC Guide and Reference

Distributed unit of work example
The following example connects to two data sources using a SQL_CONNECTTYPE
set to SQL_COORDINATED_TRANS (CONNECT (type 2)).

[* ...

*/

#define MAX_CONNECTIONS 2

int

DBconnect (SQLHENV henv,

SQLHDBC * hdbc,
char % server);

int
main()
{
SQLHENV henv;
SQLHDBC hdbc[MAX_CONNECTIONS] ;
SQLRETURN rc;
char * svr[MAX_CONNECTIONS] =
{
"KARACHI" .
"DAMASCUS™"

[* ...

}

/* allocate an environment handle =/
SQLA11ocHand1e(SQL_HANDLE ENV, SQL_NULL HANDLE, &henv);

/* Before allocating any connection handles, set Environment wide
Connect Options */
/* Set to Connect type 2 */
rc = SQLSetEnvAttr(henv, SQL_CONNECTTYPE,
(SQLPOINTER) SQL_COORDINATED TRANS, 0);

*

/

/* Connect to first data source */

/* allocate a connection handle */

if (SQLA1TocHandle(SQL_HANDLE_DBC, henv, &hdbc[0]) != SQL_SUCCESS) {
printf(">---ERROR while allocating a connection handle----- \n");

return (SQL_ERROR);

/* Connect to first data source (Type-II) =/

DBconnect (henv,

&hdbc[0],
svr[0]);
/* allocate a second connection handle */
if (SQLATTocHandle(SQL_HANDLE DBC, henv, &hdbc[1]) != SQL_SUCCESS) {
printf(">---ERROR while allocating a connection handle----- \n");

return (SQL_ERROR);
/* Connect to second data source (Type-II) =*/
DBconnect (henv,

&hdbc[1],
svrl1]);

Chapter 6. Using advanced features

395

YEEZ TS, Start Processing Step KhARIIRKERKRK AR KK AR F AR H* [
/* Allocate statement handle, execute statement, etc. */
/* Note that both connections participate in the disposition*/
/* of the transaction. Note that a NULL connection handle */

/* is passed as all work is committed on all connections. =/
[*kH gk KxKk End Processing Step Kkkkkkkhkkkhkkkhkkkhkkhhkxk [

(void)SQLEndTran(SQL_HANDLE_HENV, henv, SQL COMMIT);

/* Disconnect, free handles and exit */

/**

** Server is passed as a parameter. Note that USERID and PASSWORD==*
*% are always NULL. *k
**/

int

DBconnect (SQLHENV henv,
SQLHDBC * hdbc,
char * server)

SQLRETURN rc;

SQLCHAR buffer[255];
SQLSMALLINT outlen;

SQLAT1ocHand1e(SQL_HANDLE DBC, henv, &hdbc);/*allocate connection handle */

rc = SQLConnect(*hdbc, server, SQL_NTS, NULL, SQL NTS, NULL, SQL _NTS);
if (rc != SQL_SUCCESS) {

printf(">--- Error while connecting to database: %s ------- \n", server);
return (SQL_ERROR);
} else {

printf(">Connected to %s\n", server);
return (SQL_SUCCESS);

}
[* oo %/

Global transaction processing

A global transaction is a recoverable unit of work, or transaction, comprised of
changes to a collection of resources. All resources that participate in the global
transaction are guaranteed to b